Sample records for ultraviolet light-induced damage

  1. Preventing Ultraviolet Light-Induced Damage: The Benefits of Antioxidants

    ERIC Educational Resources Information Center

    Yip, Cheng-Wai

    2007-01-01

    Extracts of fruit peels contain antioxidants that protect the bacterium "Escherichia coli" against damage induced by ultraviolet light. Antioxidants neutralise free radicals, thus preventing oxidative damage to cells and deoxyribonucleic acid. A high survival rate of UV-exposed cells was observed when grapefruit or grape peel extract was…

  2. Radiation-damage-induced phasing: a case study using UV irradiation with light-emitting diodes.

    PubMed

    de Sanctis, Daniele; Zubieta, Chloe; Felisaz, Franck; Caserotto, Hugo; Nanao, Max H

    2016-03-01

    Exposure to X-rays, high-intensity visible light or ultraviolet radiation results in alterations to protein structure such as the breakage of disulfide bonds, the loss of electron density at electron-rich centres and the movement of side chains. These specific changes can be exploited in order to obtain phase information. Here, a case study using insulin to illustrate each step of the radiation-damage-induced phasing (RIP) method is presented. Unlike a traditional X-ray-induced damage step, specific damage is introduced via ultraviolet light-emitting diodes (UV-LEDs). In contrast to UV lasers, UV-LEDs have the advantages of small size, low cost and relative ease of use.

  3. Ultrastructure study of hair damage after ultraviolet irradiation.

    PubMed

    Zuel-Fakkar, Nehal Mohamed; El Khateeb, Ekramy Ahmed; Cousha, Hala Sobhi; Hamed, Dina Mohamed

    2013-12-01

    Natural ultraviolet exposure induces hair damage, which is difficult to avoid. Most of the research work is focused on the effect of ultraviolet on the epidermis, dermis as well as the immune system, whereas the long-term effect of ultraviolet on hair has not been investigated. we performed our experiment to find out the changes induced in hair follicle and shaft in those patients exposed to high doses of ultraviolet (A and B) during treatment of other skin conditions. Light and transmission electron microscopy examination of scalp hair follicles and shafts of 10 patients with vitiligo under psoralen plus ultraviolet A (group 1) and 10 patients with vitiligo under narrow band ultraviolet B (group 2) was carried out and compared with those of 10 healthy volunteers (group 3). Physical changes in the appearance of hair were more in groups 1 and 2 than control. Reduced hair follicle thickness and perifollicular infiltrate and hyaline disorganized perifollicular collagen were observed more in group 1 than in group 2 with the absence of these changes in group 3. Transmission electron microscopy showed nonspecific cell injury in hair follicles in group 1 more than the other 2 groups, while the damaging effect on hair was more in the second group than the others. Due to the damaging effect of ultraviolet on hair, patients under treatment with this modality should be cautious to protect their hair during treatment. © 2013 Wiley Periodicals, Inc.

  4. Does infrared or ultraviolet light damage the lens?

    PubMed Central

    Söderberg, P G; Talebizadeh, N; Yu, Z; Galichanin, K

    2016-01-01

    In daylight, the human eye is exposed to long wavelength ultraviolet radiation (UVR), visible radiation and short wavelength infrared radiation (IRR). Almost all the UVR and a fraction of the IRR waveband, respectively, left over after attenuation in the cornea, is absorbed in the lens. The time delay between exposure and onset of biological response in the lens varies from immediate-to-short-to-late. After exposure to sunlight or artificial sources, generating irradiances of the same order of magnitude or slightly higher, biological damage may occur photochemically or thermally. Epidemiological studies suggest a dose-dependent association between short wavelength UVR and cortical cataract. Experimental data infer that repeated daily in vivo exposures to short wavelength UVR generate photochemically induced damage in the lens, and that short delay onset cataract after UVR exposure is photochemically induced. Epidemiology suggests that daily high-intensity short wavelength IRR exposure of workers, is associated with a higher prevalence of age-related cataract. It cannot be excluded that this effect is owing to a thermally induced higher denaturation rate. Recent experimental data rule out a photochemical effect of 1090 nm in the lens but other wavelengths in the near IRR should be investigated. PMID:26768915

  5. The repair of low dose UV light-induced damage to human skin DNA in condition of trace amount Mg 2+

    NASA Astrophysics Data System (ADS)

    Gao, Fang; Guo, Zhouyi; Zheng, Changchun; Wang, Rui; Liu, Zhiming; Meng, Pei; Zhai, Juan

    2008-12-01

    Ultraviolet light-induced damage to human skin DNA was widely investigated. The primary mechanism of this damage contributed to form cyclobutane pyrimidine dimmers (CPDs). Although the distribution of UV light-induced CPDs within a defined sequence is similar, the damage in cellular environment which shields the nuclear DNA was higher than that in organism in apparent dose. So we use low UVB light as main study agent. Low dose UV-irradiated HDF-a cells (Human Dermal Fibroblasts-adult cells) which is weaker than epidermic cells were cultured with DMEM at different trace amount of Mg2+ (0mmol/L , 0.1mmol/L , 0.2mmol/L, 0.4mmol/L, 0.8mmol/L, 1.2mmol/L) free-serum DMEM and the repair of DNA strands injured were observed. Treat these cells with DNA strand breaks detection, photoproducts detection and the repair of photoproducts detection. Then quantitate the role of trace amount Mg2+ in repair of UV light-induced damage to human skin. The experiment results indicated that epidermic cells have capability of resistance to UV-radiation at a certain extent. And Mg2+ can regulate the UV-induced damage repair and relative vitality. It can offer a rationale and experiment data to relieve UV light-induced skin disease.

  6. Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light

    PubMed Central

    Kuse, Yoshiki; Ogawa, Kenjiro; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki

    2014-01-01

    Our eyes are increasingly exposed to light from the emitting diode (LED) light of video display terminals (VDT) which contain much blue light. VDTs are equipped with televisions, personal computers, and smart phones. The present study aims to clarify the mechanism underlying blue LED light-induced photoreceptor cell damage. Murine cone photoreceptor-derived cells (661 W) were exposed to blue, white, or green LED light (0.38 mW/cm2). In the present study, blue LED light increased reactive oxygen species (ROS) production, altered the protein expression level, induced the aggregation of short-wavelength opsins (S-opsin), resulting in severe cell damage. While, blue LED light damaged the primary retinal cells and the damage was photoreceptor specific. N-Acetylcysteine (NAC), an antioxidant, protected against the cellular damage induced by blue LED light. Overall, the LED light induced cell damage was wavelength-, but not energy-dependent and may cause more severe retinal photoreceptor cell damage than the other LED light. PMID:24909301

  7. [Effect of long-wave ultraviolet light (UV-A) and medium-wave ultraviolet rays (UV-B) on human skin. Critical comparison].

    PubMed

    Raab, W

    1980-04-15

    When discussing the effects of ultraviolet radiation on human skin, one should carefully distinguish between the long wave ultraviolet light (UV-A) and the short wave radiations (UV-B and UV-C). Ultraviolet A induces immediate pigmentation but, if high energies are applied, a permanent pigmentation is elicited. This type of ultraviolet A-induced pigmentation has been called "spontaneous" pigmentation as no erythematous reaction is necessary to induce or accelerate melanine formation. Ultraviolet B provokes erythema and consecutive pigmentation. Upon chronic exposure, ultraviolet B causes the wellknown actinic damage of the skin and even provokes carcinoma. With exposures to the sunlight (global radiation), one should be most careful. The public must be informed extensively about the dangers of excessive sunbaths. The use of artificial "suns" with spectra between 260 and 400 nm is limited as it may cause the same type of damage as the global radiation. An exact schedule for use of artificial lamps is strongly recommended. After one cycle of exposures, an interruption is necessary until the next cycle of irradiations may start. Upon continual use for tanning of the skin, artificial lamps may provoke irreversible damage of the skin. Radiation sources with emission spectra of wavelengths between 315 and 400 nm exclusively are well suited for the induction of skin pigmentation (cosmetic use). Potent radiation such as UVASUN systems provoke a "pleasant" permanent pigmentation after exposures for less than one hour. The use of ultraviolet A (UV-A) does not carry any risk for the human skin.

  8. Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing

    NASA Astrophysics Data System (ADS)

    Wang, Zhaona; Yu, Ruomeng; Pan, Caofeng; Li, Zhaoling; Yang, Jin; Yi, Fang; Wang, Zhong Lin

    2015-09-01

    Zinc oxide is potentially a useful material for ultraviolet detectors; however, a relatively long response time hinders practical implementation. Here by designing and fabricating a self-powered ZnO/perovskite-heterostructured ultraviolet photodetector, the pyroelectric effect, induced in wurtzite ZnO nanowires on ultraviolet illumination, has been utilized as an effective approach for high-performance photon sensing. The response time is improved from 5.4 s to 53 μs at the rising edge, and 8.9 s to 63 μs at the falling edge, with an enhancement of five orders in magnitudes. The specific detectivity and the responsivity are both enhanced by 322%. This work provides a novel design to achieve ultrafast ultraviolet sensing at room temperature via light-self-induced pyroelectric effect. The newly designed ultrafast self-powered ultraviolet nanosensors may find promising applications in ultrafast optics, nonlinear optics, optothermal detections, computational memories and biocompatible optoelectronic probes.

  9. Stress-Induced Sleep After Exposure to Ultraviolet Light Is Promoted by p53 in Caenorhabditis elegans.

    PubMed

    DeBardeleben, Hilary K; Lopes, Lindsey E; Nessel, Mark P; Raizen, David M

    2017-10-01

    Stress-induced sleep (SIS) in Caenorhabditis elegans is important for restoration of cellular homeostasis and is a useful model to study the function and regulation of sleep. SIS is triggered when epidermal growth factor (EGF) activates the ALA neuron, which then releases neuropeptides to promote sleep. To further understand this behavior, we established a new model of SIS using irradiation by ultraviolet C (UVC) light. While UVC irradiation requires ALA signaling and leads to a sleep state similar to that induced by heat and other stressors, it does not induce the proteostatic stress seen with heat exposure. Based on the known genotoxic effects of UVC irradiation, we tested two genes, atl-1 and cep-1 , which encode proteins that act in the DNA damage response pathway. Loss-of-function mutants of atl-1 had no defect in UVC-induced SIS but a partial loss-of-function mutant of cep-1 , gk138 , had decreased movement quiescence following UVC irradiation. Germline ablation experiments and tissue-specific RNA interference experiments showed that cep-1 is required somatically in neurons for its effect on SIS. The cep-1 ( gk138 ) mutant suppressed body movement quiescence controlled by EGF, indicating that CEP-1 acts downstream or in parallel to ALA activation to promote quiescence in response to ultraviolet light. Copyright © 2017 by the Genetics Society of America.

  10. Fyn is a redox sensor involved in solar ultraviolet light-induced signal transduction in skin carcinogenesis.

    PubMed

    Kim, J-E; Roh, E; Lee, M H; Yu, D H; Kim, D J; Lim, T-G; Jung, S K; Peng, C; Cho, Y-Y; Dickinson, S; Alberts, D; Bowden, G T; Einspahr, J; Stratton, S P; Curiel-Lewandrowski, C; Bode, A M; Lee, K W; Dong, Z

    2016-08-04

    Solar ultraviolet (UV) light is a major etiological factor in skin carcinogenesis, with solar UV-stimulated signal transduction inducing pathological changes and skin damage. The primary sensor of solar UV-induced cellular signaling has not been identified. We use an experimental system of solar simulated light (SSL) to mimic solar UV and we demonstrate that Fyn is a primary redox sensor involved in SSL-induced signal transduction. Reactive oxygen species (ROS) generated by SSL exposure directly oxidize Cys488 of Fyn, resulting in increased Fyn kinase activity. Fyn oxidation was increased in mouse skin after SSL exposure and Fyn-knockout mice formed larger and more tumors compared with Fyn wild-type mice when exposed to SSL for an extended period of time. Murine embryonic fibroblasts (MEFs) lacking Fyn and cells in which Fyn expression was knocked down were resistant to SSL-induced apoptosis. Furthermore, cells expressing mutant Fyn (C448A) were resistant to SSL-induced apoptosis. These findings suggest that Fyn acts as a regulatory nexus between solar UV, ROS and signal transduction during skin carcinogenesis.

  11. Far-ultraviolet spectral changes of titanium dioxide with gold nanoparticles by ultraviolet and visible light

    NASA Astrophysics Data System (ADS)

    Tanabe, Ichiro; Kurawaki, Yuji

    2018-05-01

    Attenuated total reflectance spectra including the far-ultraviolet (FUV, ≤ 200 nm) region of titanium dioxide (TiO2) with and without gold (Au) nanoparticles were measured. A newly developed external light-irradiation system enabled to observe spectral changes of TiO2 with Au nanoparticles upon light irradiations. Absorption in the FUV region decreased and increased by the irradiation with ultraviolet and visible light, respectively. These spectral changes may reflect photo-induced electron transfer from TiO2 to Au nanoparticles under ultraviolet light and from Au nanoparticles to TiO2 under visible light, respectively.

  12. Colored lenses suppress blue light-emitting diode light-induced damage in photoreceptor-derived cells.

    PubMed

    Hiromoto, Kaho; Kuse, Yoshiki; Tsuruma, Kazuhiro; Tadokoro, Nobuyuki; Kaneko, Nobuyuki; Shimazawa, Masamitsu; Hara, Hideaki

    2016-03-01

    Blue light-emitting diodes (LEDs) in liquid crystal displays emit high levels of blue light, exposure to which is harmful to the retina. Here, we investigated the protective effects of colored lenses in blue LED light-induced damage to 661W photoreceptor-derived cells. We used eight kinds of colored lenses and one lens that reflects blue light. Moreover, we evaluated the relationship between the protective effects of the lens and the transmittance of lens at 464 nm. Lenses of six colors, except for the SY, PN, and reflective coating lenses, strongly decreased the reduction in cell damage induced by blue LED light exposure. The deep yellow lens showed the most protective effect from all the lenses, but the reflective coating lens and pink lens did not show any effects on photoreceptor-derived cell damage. Moreover, these results were correlated with the lens transmittance of blue LED light (464 nm). These results suggest that lenses of various colors, especially deep yellow lenses, may protect retinal photoreceptor cells from blue LED light in proportion to the transmittance for the wavelength of blue LED and the suppression of reactive oxygen species production and cell damage.

  13. The Involvement of the Oxidative Stress in Murine Blue LED Light-Induced Retinal Damage Model.

    PubMed

    Nakamura, Maho; Kuse, Yoshiki; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki

    2017-01-01

    The aim of study was to establish a mouse model of blue light emitting diode (LED) light-induced retinal damage and to evaluate the effects of the antioxidant N-acetylcysteine (NAC). Mice were exposed to 400 or 800 lx blue LED light for 2 h, and were evaluated for retinal damage 5 d later by electroretinogram amplitude and outer nuclear layer (ONL) thickness. Additionally, we investigated the effect of blue LED light exposure on shorts-wave-sensitive opsin (S-opsin), and rhodopsin expression by immunohistochemistry. Blue LED light induced light intensity dependent retinal damage and led to collapse of S-opsin and altered rhodopsin localization from inner and outer segments to ONL. Conversely, NAC administered at 100 or 250 mg/kg intraperitoneally twice a day, before dark adaptation and before light exposure. NAC protected the blue LED light-induced retinal damage in a dose-dependent manner. Further, blue LED light-induced decreasing of S-opsin levels and altered rhodopsin localization, which were suppressed by NAC. We established a mouse model of blue LED light-induced retinal damage and these findings indicated that oxidative stress was partially involved in blue LED light-induced retinal damage.

  14. Ursolic Acid-Regulated Energy Metabolism—Reliever or Propeller of Ultraviolet-Induced Oxidative Stress and DNA Damage?

    PubMed Central

    Lee, Yuan-Hao; Sun, Youping; Glickman, Randolph D.

    2014-01-01

    Ultraviolet (UV) light is a leading cause of diseases, such as skin cancers and cataracts. A main process mediating UV-induced pathogenesis is the production of reactive oxygen species (ROS). Excessive ROS levels induce the formation of DNA adducts (e.g., pyrimidine dimers) and result in stalled DNA replication forks. In addition, ROS promotes phosphorylation of tyrosine kinase-coupled hormone receptors and alters downstream energy metabolism. With respect to the risk of UV-induced photocarcinogenesis and photodamage, the antitumoral and antioxidant functions of natural compounds become important for reducing UV-induced adverse effects. One important question in the field is what determines the differential sensitivity of various types of cells to UV light and how exogenous molecules, such as phytochemicals, protect normal cells from UV-inflicted damage while potentiating tumor cell death, presumably via interaction with intracellular target molecules and signaling pathways. Several endogenous molecules have emerged as possible players mediating UV-triggered DNA damage responses. Specifically, UV activates the PIKK (phosphatidylinositol 3-kinase-related kinase) family members, which include DNA-PKcs, ATM (ataxia telangiectasia mutated) and mTOR (mammalian target of rapamycin), whose signaling can be affected by energy metabolism; however, it remains unclear to what extent the activation of hormone receptors regulates PIKKs and whether this crosstalk occurs in all types of cells in response to UV. This review focuses on proteomic descriptions of the relationships between cellular photosensitivity and the phenotypic expression of the insulin/insulin-like growth receptor. It covers the cAMP-dependent pathways, which have recently been shown to regulate the DNA repair machinery through interactions with the PIKK family members. Finally, this review provides a strategic illustration of how UV-induced mitogenic activity is modulated by the insulin sensitizer, ursolic

  15. Far-ultraviolet spectral changes of titanium dioxide with gold nanoparticles by ultraviolet and visible light.

    PubMed

    Tanabe, Ichiro; Kurawaki, Yuji

    2018-05-15

    Attenuated total reflectance spectra including the far-ultraviolet (FUV, ≤200nm) region of titanium dioxide (TiO 2 ) with and without gold (Au) nanoparticles were measured. A newly developed external light-irradiation system enabled to observe spectral changes of TiO 2 with Au nanoparticles upon light irradiations. Absorption in the FUV region decreased and increased by the irradiation with ultraviolet and visible light, respectively. These spectral changes may reflect photo-induced electron transfer from TiO 2 to Au nanoparticles under ultraviolet light and from Au nanoparticles to TiO 2 under visible light, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Stimulation of hair cells with ultraviolet light

    NASA Astrophysics Data System (ADS)

    Azimzadeh, Julien B.; Fabella, Brian A.; Hudspeth, A. J.

    2018-05-01

    Hair bundles are specialized organelles that transduce mechanical inputs into electrical outputs. To activate hair cells, physiologists have resorted to mechanical methods of hair-bundle stimulation. Here we describe a new method of hair-bundle stimulation, irradiation with ultraviolet light. A hair bundle illuminated by ultraviolet light rapidly moves towards its tall edge, a motion typically associated with excitatory stimulation. The motion disappears upon tip-link rupture and is associated with the opening of mechanotransduction channels. Hair bundles can be induced to move sinusoidally with oscillatory modulation of the stimulation power. We discuss the implications of ultraviolet stimulation as a novel hair-bundle stimulus.

  17. Light-induced absorption and its relaxation under illumination of continuous wave ultraviolet light in Mn-doped near-stoichiometric LiNbO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Youwen; Kitamura, Kenji; Takekawa, Shunji

    2005-04-01

    The steady-state light-induced absorption and the temporal relaxation behavior under illumination of cw ultraviolet light in Mn-doped near-stoichiometric LiNbO{sub 3} with different crystal compositions are investigated. The ultraviolet-light-induced absorption has been assigned to small polarons Nb{sub Li}{sup 4+} by measuring the absorption spectra at room temperature. The dependences of relaxation behaviors (time constant and stretching factor) of light-induced absorption on various illumination conditions (intensity, polarization) and temperature are presented, which are very different from those observed in Fe-doped LiNbO{sub 3} illuminated with highly intense light pulse, though the temporal relaxation follows the same stretched-exponential decay behavior in both cases. Themore » results are explained reasonably by using the model of distance-dependent electron transition probabilities between localized deep traps and small polarons without any additional assumptions, and discussed to tailor doped near-stoichiometric LiNbO{sub 3} crystals for two-color holographic recording with cw laser light.« less

  18. Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc

    PubMed Central

    Cooper, Karen L.; King, Brenee S.; Sandoval, Monica M.; Liu, Ke Jian; Hudson, Laurie G.

    2013-01-01

    Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. PMID:23523584

  19. Blue light-induced oxidative stress in live skin.

    PubMed

    Nakashima, Yuya; Ohta, Shigeo; Wolf, Alexander M

    2017-07-01

    Skin damage from exposure to sunlight induces aging-like changes in appearance and is attributed to the ultraviolet (UV) component of light. Photosensitized production of reactive oxygen species (ROS) by UVA light is widely accepted to contribute to skin damage and carcinogenesis, but visible light is thought not to do so. Using mice expressing redox-sensitive GFP to detect ROS, blue light could produce oxidative stress in live skin. Blue light induced oxidative stress preferentially in mitochondria, but green, red, far red or infrared light did not. Blue light-induced oxidative stress was also detected in cultured human keratinocytes, but the per photon efficacy was only 25% of UVA in human keratinocyte mitochondria, compared to 68% of UVA in mouse skin. Skin autofluorescence was reduced by blue light, suggesting flavins are the photosensitizer. Exposing human skin to the blue light contained in sunlight depressed flavin autofluorescence, demonstrating that the visible component of sunlight has a physiologically significant effect on human skin. The ROS produced by blue light is probably superoxide, but not singlet oxygen. These results suggest that blue light contributes to skin aging similar to UVA. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Skin protection against UVA-induced iron damage by multiantioxidants and iron chelating drugs/prodrugs.

    PubMed

    Reelfs, Olivier; Eggleston, Ian M; Pourzand, Charareh

    2010-03-01

    In humans, prolonged sunlight exposure is associated with various pathological states. The continuing drive to develop improved skin protection involves not only approaches to reduce DNA damage by solar ultraviolet B (UVB) but also the development of methodologies to provide protection against ultraviolet A (UVA), the oxidising component of sunlight. Furthermore identification of specific cellular events following ultraviolet (UV) irradiation is likely to provide clues as to the mechanism of the development of resulting pathologies and therefore strategies for protection. Our discovery that UVA radiation, leads to an immediate measurable increase in 'labile' iron in human skin fibroblasts and keratinocytes provides a new insight into UVA-induced skin damage, since iron is a catalyst of biological oxidations. The main purpose of this overview is to bring together some of the new findings related to mechanisms underlying UVA-induced iron release and to discuss novel approaches based on the use of multiantioxidants and light-activated caged-iron chelators for efficient protection of skin cells against UVA-induced iron damage.

  1. DNA damage and repair in plants under ultraviolet and ionizing radiations.

    PubMed

    Gill, Sarvajeet S; Anjum, Naser A; Gill, Ritu; Jha, Manoranjan; Tuteja, Narendra

    2015-01-01

    Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315-400 nm; UV-B, 280-315 nm; and UV-C, <280 nm) is unpreventable. DNA in particular strongly absorbs UV-B; therefore, it is the most important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH(•)) and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context.

  2. DNA Damage and Repair in Plants under Ultraviolet and Ionizing Radiations

    PubMed Central

    Gill, Sarvajeet S.; Gill, Ritu; Jha, Manoranjan; Tuteja, Narendra

    2015-01-01

    Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315–400 nm; UV-B, 280–315 nm; and UV-C, <280 nm) is unpreventable. DNA in particular strongly absorbs UV-B; therefore, it is the most important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH•) and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context. PMID:25729769

  3. Effects of near-ultraviolet light on mutations, intragenic and intergenic recombinations in Saccharomyces cerevisiae.

    PubMed

    Machida, I; Saeki, T; Nakai, S

    1986-03-01

    The effects of far (254 nm) and near (290-350 nm) ultraviolet (UV) light on mutations, intragenic and intergenic recombinations were compared in diploid strains of Saccharomyces cerevisiae. At equivalent survival levels there was not much difference in the induction of nonsense and missense mutations between far- and near-UV radiations. However, frameshift mutations were induced more frequently by near-UV than by far-UV radiation. Near-UV radiation induced intragenic recombination (gene conversion) as efficiently as far-UV radiation and the induced levels were similar in both radiations at equitoxic doses. A strikingly higher frequency was observed for the intergenic recombination induced by near-UV radiation than by far-UV radiation when compared at equivalent survival levels. Photoreactivation reduced the frequency only slightly in far-UV induced intergenic recombination and not at all in near-UV induction. These results indicate that near-UV damage involves strand breakage in addition to pyrimidine dimers and other lesions induced, whereas far-UV damage consists largely of photoreactivable lesions, pyrimidine dimers, and near-UV induced damage is more efficient for the induction of crossing-over.

  4. The effects of quercetin-loaded PLGA-TPGS nanoparticles on ultraviolet B-induced skin damages in vivo.

    PubMed

    Zhu, Xianbing; Zeng, Xiaowei; Zhang, Xudong; Cao, Wei; Wang, Yilin; Chen, Houjie; Wang, Teng; Tsai, Hsiang-I; Zhang, Ran; Chang, Danfeng; He, Shuai; Mei, Lin; Shi, Xiaojun

    2016-04-01

    Ultraviolet (UV) radiation has deleterious effects on living organisms, and functions as a tumor initiator and promoter. Multiple natural compounds, like quercetin, have been shown the protective effects on UV-induced damage. However, quercetin is extremely hydrophobic and limited by its poor percutaneous permeation and skin deposition. Here, we show that quercetin-loaded PLGA-TPGS nanoparticles could overcome low hydrophilicity of quercetin and improve its anti-UVB effect. Quercetin-loaded NPs can significantly block UVB irradiation induced COX-2 up-expression and NF-kB activation in Hacat cell line. Moreover, PLGA-TPGS NPs could efficiently get through epidermis and reach dermis. Treatment of mice with quercetin-loaded NPs also attenuates UVB irradiation-associated macroscopic and histopathological changes in mice skin. These results demonstrated that copolymer PLGA-TPGS could be used as drug nanocarriers against skin damage and disease. The findings provide an external use of PLGA-TPGS nanocarriers for application in the treatment of skin diseases. Skin is the largest organ in the body and is subjected to ultraviolet (UV) radiation damage daily from the sun. Excessive exposure has been linked to the development of skin cancer. Hence, topically applied agents can play a major role in skin protection. In this article, the authors developed quercetin-loaded PLGA-TPGS nanoparticles and showed their anti-UVB effect. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Platelet-Derived Growth Factor-BB Lessens Light-Induced Rod Photoreceptor Damage in Mice.

    PubMed

    Takahashi, Kei; Shimazawa, Masamitsu; Izawa, Hiroshi; Inoue, Yuki; Kuse, Yoshiki; Hara, Hideaki

    2017-12-01

    Platelet-derived growth factor (PDGF)-BB is known to have neuroprotective effects against various neurodegenerative disorders. The purpose of this study was to determine whether PDGF-BB can be neuroprotective against light-induced photoreceptor damage in mice. Mice were exposed to 8000-lux luminance for 3 hours to induce phototoxicity. Two hours before light exposure, the experimental mice were injected with PDGF-BB intravitreally, and the control mice were injected with phosphate-buffered saline. The light-exposed PDGF-BB-injected mice and saline-injected mice were evaluated electroretinographically and histologically. The site and expression levels of PDGFR-β and PDGF-BB were determined by immunostaining and Western blotting, respectively. The effect of PDGF-BB on light-induced cone and rod photoreceptor damage was also evaluated in vitro in 661W cells, a murine cone photoreceptor cell line, and in primary retinal cell cultures. An intravitreal injection of PDGF-BB significantly reduced the decrease in the amplitudes of the electroretinograms (ERGs) and the thinning of the outer nuclear layer (ONL) induced by the light exposure. It also reduced the number of TUNEL-positive cells in the ONL. PDGFR-β was expressed in the rod outer segments (OSs) but not the cone OSs. The levels of PDGF-BB and PDGFR-β were decreased after light irradiation. In addition, PDGF-BB had protective effects against light-induced damage to cells of rod photoreceptors but had no effect on the 661W cells in vitro. These findings indicate that PDGF-BB reduces the degree of light-induced retinal damage by activating PDGFR-β in rod photoreceptors. These findings suggest that PDGF-BB could play a role in the prevention of degeneration in eyes susceptible to phototoxicity.

  6. Ultraviolet Radiations: Skin Defense-Damage Mechanism.

    PubMed

    Mohania, Dheeraj; Chandel, Shikha; Kumar, Parveen; Verma, Vivek; Digvijay, Kumar; Tripathi, Deepika; Choudhury, Khushboo; Mitten, Sandeep Kumar; Shah, Dilip

    2017-01-01

    UV-radiations are the invisible part of light spectra having a wavelength between visible rays and X-rays. Based on wavelength, UV rays are subdivided into UV-A (320-400 nm), UV-B (280-320 nm) and UV-C (200-280 nm). Ultraviolet rays can have both harmful and beneficial effects. UV-C has the property of ionization thus acting as a strong mutagen, which can cause immune-mediated disease and cancer in adverse cases. Numbers of genetic factors have been identified in human involved in inducing skin cancer from UV-radiations. Certain heredity diseases have been found susceptible to UV-induced skin cancer. UV radiations activate the cutaneous immune system, which led to an inflammatory response by different mechanisms. The first line of defense mechanism against UV radiation is melanin (an epidermal pigment), and UV absorbing pigment of skin, which dissipate UV radiation as heat. Cell surface death receptor (e.g. Fas) of keratinocytes responds to UV-induced injury and elicits apoptosis to avoid malignant transformation. In addition to the formation of photo-dimers in the genome, UV also can induce mutation by generating ROS and nucleotides are highly susceptible to these free radical injuries. Melanocortin 1 receptor (MC1R) has been known to be implicated in different UV-induced damages such as pigmentation, adaptive tanning, and skin cancer. UV-B induces the formation of pre-vitamin D3 in the epidermal layer of skin. UV-induced tans act as a photoprotection by providing a sun protection factor (SPF) of 3-4 and epidermal hyperplasia. There is a need to prevent the harmful effects and harness the useful effects of UV radiations.

  7. Graphene Oxide Transparent Hybrid Film and Its Ultraviolet Shielding Property.

    PubMed

    Xie, Siyuan; Zhao, Jianfeng; Zhang, Bowu; Wang, Ziqiang; Ma, Hongjuan; Yu, Chuhong; Yu, Ming; Li, Linfan; Li, Jingye

    2015-08-19

    Herein, we first reported a facile strategy to prepare functional Poly(vinyl alcohol) (PVA) hybrid film with well ultraviolet (UV) shielding property and visible light transmittance using graphene oxide nanosheets as UV-absorber. The absorbance of ultraviolet light at 300 nm can be up to 97.5%, while the transmittance of visible light at 500 nm keeps 40% plus. This hybrid film can protect protein from UVA light induced photosensitive damage, remarkably.

  8. Transmitting and reflecting diffuser. [for ultraviolet light

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr.; Burcher, E. E.; Kopia, L. P. (Inventor)

    1973-01-01

    A near-Lambertian diffuser is described which transmits and reflects ultraviolet light. An ultraviolet grade fused silica substrate is coated with vaporized fuse silica. The coating thickness is controlled, one thickness causing ultraviolet light to diffuse and another thickness causing ultraviolet light to reflect a near Lambertian pattern.

  9. Blue light induced free radicals from riboflavin on E. coli DNA damage.

    PubMed

    Liang, Ji-Yuan; Yuann, Jeu-Ming P; Cheng, Chien-Wei; Jian, Hong-Lin; Lin, Chin-Chang; Chen, Liang-Yu

    2013-02-05

    The micronutrients in many cellular processes, riboflavin (vitamin B(2)), FMN, and FAD are photo-sensitive to UV and visible light to generate reactive oxygen species (ROS). The riboflavin photochemical treatment with UV light has been applied for the inactivation of microorganisms to serve as an effective and safe technology. Ultra-violet or high-intensity radiation is, however, considered as a highly risky practice. This study was working on the application of visible LED lights to riboflavin photochemical reactions to development an effective antimicrobial treatment. The photosensitization of bacterial genome with riboflavin was investigated in vitro and in vivo by light quality and irradiation dosage. The riboflavin photochemical treatment with blue LED light was proved to be able to inactivate E. coli by damaging nucleic acids with ROS generated. Riboflavin is capable of intercalating between the bases of bacterial DNA or RNA and absorbs lights in the visible regions. LED light illumination could be a more accessible and safe practice for riboflavin photochemical treatments to achieve hygienic requirements in vitro. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Solar simulated ultraviolet radiation damages murine neonatal skin and alters Langerhans cell development, but does not induce inflammation.

    PubMed

    McGee, Heather M; Dharmadasa, Thanuja; Woods, Gregory M

    2009-06-01

    Development of melanoma has been linked to excessive childhood exposure to sunlight. As neonates have a relatively underdeveloped immune system, it is likely that the immune system reacts differently to the exposure, leading to alterations in this development. This study was designed to assess changes in development of the skin immune system following neonatal irradiation. Ultraviolet radiation exposure led to relative depletion of Langerhans cells, however this was not due to migration or cell death, but rather restriction of Langerhans cells populating the epidermis. During this time, there was evidence of cellular damage, however there was no induction of an inflammatory response. It therefore appears that neonatal exposure to ultraviolet radiation leads to a skew towards a tolerogenic immune response, which may lead to a reduced ability to respond to ultraviolet radiation-induced tumours.

  11. Protection from visible light by commonly used textiles is not predicted by ultraviolet protection.

    PubMed

    Van den Keybus, Caroline; Laperre, Jan; Roelandts, Rik

    2006-01-01

    Interest is increasing in the prevention of acute and chronic actinic damage provided by clothing. This interest has focused mainly on protection against ultraviolet irradiation, but it has now also turned to protection against visible light. This change is mainly due to the action spectrum in the visible light range of some photodermatoses and the increasing interest in photodynamic therapy. The ultraviolet protection provided by commercially available textiles can be graded by determining an ultraviolet protection factor. Several methods have already been used to determine the ultraviolet protection factor. The fact that protection from visible light by textiles cannot be predicted by their ultraviolet protection makes the situation more complicated. This study attempts to determine whether or not the ultraviolet protection factor value of a particular textile is a good parameter for gauging its protection in the visible light range and concludes that a protection factor of textile materials against visible light needs to be developed. This development should go beyond the protection factor definition used in this article, which has some limitations, and should take into account the exact action spectrum for which the protection is needed.

  12. Very low risk of light-induced retinal damage during Boston keratoprosthesis surgery: a rabbit study.

    PubMed

    Salvador-Culla, Borja; Behlau, Irmgard; Sayegh, Rony R; Stacy, Rebecca C; Dohlman, Claes H; Delori, François

    2014-02-01

    The aim of this study was to assess the possibility of light damage to the retina by a surgical microscope during implantation of a Boston Keratoprosthesis (B-KPro) in rabbits. The retinal irradiance from a Zeiss OPMI Lumera S7 operating microscope was measured at the working distance (16.5 cm). Light transmittance through an isolated B-KPro was measured. A B-KPro was implanted into 1 eye of 12 rabbits with the optic covered during the procedure. The operated eyes were then continuously exposed to a fixed light intensity under the microscope for 1 hour. Fluorescein angiography was carried out on days 2 and 9 postsurgery, after which the animals were euthanized. Further, we compared the potential of these retinal exposures to well-accepted light safety guidelines applicable to humans. Light transmittance of B-KPro revealed a blockage of short wavelengths (<390 nm) and of long wavelengths (1660-1750 nm) of light. In addition, the surgical microscope filtered a part of the blue, ultraviolet, and infrared wavelengths. Neither fluorescein angiography nor a histological examination showed any morphological retinal changes in our rabbits. Moreover, the retinal exposures were well below the safety limits. Modern surgical microscopes have filters incorporated in them that block the most damaging wavelengths of light. The B-KPro is made of 100% poly(methyl methacrylate), which makes it in itself a blocker of short wavelengths of light. No damage could be demonstrated in the animal study, and the retinal exposures were well below the safety limits. Together, these results suggest that light exposures during B-KPro surgery present a low risk of photochemical damage to the retina.

  13. Scatter Measurements Made With Ultraviolet Light

    NASA Astrophysics Data System (ADS)

    Anthon, Erik W.

    1985-09-01

    The quality of optical surfaces is generally evaluated by how much light (normally visible light) is scattered by the surface. Most optical glasses and many coating materials are completely opaque to ultraviolet light (253.7 nm). Ultraviolet light tends to scatter much more than visible light. Scatter measurements made with ultraviolet light are therefore very sensitive and the scatter from second surfaces and from the interior (bulk) of the optical material is eliminated by the opacity. A novel scattermeter that operates with ultraviolet light has been developed. The construction and operation of this scattermeter will be described. Cleaning soon becomes the limiting factor when measuring the surfaces with very low level of scatter. Sensitivity to repeated cleaning has been investigated. Different surfaces are compared and uniformity of surfaces is measured by mapping a surface area with an x-y stage. Polished glass surfaces generally have much higher scatter than natural glass surfaces (fire polished, drawn or floated surfaces). Very low scatter levels have been found on thin drawn glass.

  14. Ultraviolet Radiation-Induced Skin Aging: The Role of DNA Damage and Oxidative Stress in Epidermal Stem Cell Damage Mediated Skin Aging

    PubMed Central

    Panich, Uraiwan; Sittithumcharee, Gunya; Rathviboon, Natwarath

    2016-01-01

    Skin is the largest human organ. Skin continually reconstructs itself to ensure its viability, integrity, and ability to provide protection for the body. Some areas of skin are continuously exposed to a variety of environmental stressors that can inflict direct and indirect damage to skin cell DNA. Skin homeostasis is maintained by mesenchymal stem cells in inner layer dermis and epidermal stem cells (ESCs) in the outer layer epidermis. Reduction of skin stem cell number and function has been linked to impaired skin homeostasis (e.g., skin premature aging and skin cancers). Skin stem cells, with self-renewal capability and multipotency, are frequently affected by environment. Ultraviolet radiation (UVR), a major cause of stem cell DNA damage, can contribute to depletion of stem cells (ESCs and mesenchymal stem cells) and damage of stem cell niche, eventually leading to photoinduced skin aging. In this review, we discuss the role of UV-induced DNA damage and oxidative stress in the skin stem cell aging in order to gain insights into the pathogenesis and develop a way to reduce photoaging of skin cells. PMID:27148370

  15. Naringin protects ultraviolet B-induced skin damage by regulating p38 MAPK signal pathway.

    PubMed

    Ren, Xiaolin; Shi, Yuling; Zhao, Di; Xu, Mengyu; Li, Xiaolong; Dang, Yongyan; Ye, Xiyun

    2016-05-01

    Naringin is a bioflavonoid and has free radical scavenging and anti-inflammatory properties. We examined the effects of naringin on skin after ultraviolet radiation B (UVB) irradiation and the signal pathways by in vitro and in vivo assay. HaCaT cells pretreated with naringin significantly inhibited UVB induced-cell apoptosis and production of intracellular reactive oxygen species (ROS). The expressions of interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and cyclooxygenase-2 (COX-2) in HaCaT cells pretreated with naringin were decreased compared with the only UVB group. Also, the activation of p38 induced by UVB in HaCaT cells was reversed by naringin treatments. The inhibition function of naringin on p38 activity was more obvious than JNK. In vivo, topical treatments with naringin prevented the increase of epidermal thickness, IL-6 production, cell apoptosis and the overexpression of COX-2 in BALB/c mice skin irradiated with UVB. Naringin treatment also markedly blocked the activation of p38 in response to UVB stimulation in the mouse skin. Naringin can effectively protect against UVB-induced keratinocyte apoptosis and skin damage by inhibiting ROS production, COX-2 overexpression and strong inflammation reactions. It seemed that naringin played its role against UVB-induced skin damage through inhibition of mitogen-activated protein kinase (MAPK)/p38 activation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Redundancy of mammalian Y family DNA polymerases in cellular responses to genomic DNA lesions induced by ultraviolet light

    PubMed Central

    Jansen, Jacob G.; Temviriyanukul, Piya; Wit, Niek; Delbos, Frédéric; Reynaud, Claude-Agnès; Jacobs, Heinz; de Wind, Niels

    2014-01-01

    Short-wave ultraviolet light induces both mildly helix-distorting cyclobutane pyrimidine dimers (CPDs) and severely distorting (6–4) pyrimidine pyrimidone photoproducts ((6–4)PPs). The only DNA polymerase (Pol) that is known to replicate efficiently across CPDs is Polη, a member of the Y family of translesion synthesis (TLS) DNA polymerases. Phenotypes of Polη deficiency are transient, suggesting redundancy with other DNA damage tolerance pathways. Here we performed a comprehensive analysis of the temporal requirements of Y-family Pols ι and κ as backups for Polη in (i) bypassing genomic CPD and (6–4)PP lesions in vivo, (ii) suppressing DNA damage signaling, (iii) maintaining cell cycle progression and (iv) promoting cell survival, by using mouse embryonic fibroblast lines with single and combined disruptions in these Pols. The contribution of Polι is restricted to TLS at a subset of the photolesions. Polκ plays a dominant role in rescuing stalled replication forks in Polη-deficient mouse embryonic fibroblasts, both at CPDs and (6–4)PPs. This dampens DNA damage signaling and cell cycle arrest, and results in increased survival. The role of relatively error-prone Pols ι and κ as backups for Polη contributes to the understanding of the mutator phenotype of xeroderma pigmentosum variant, a syndrome caused by Polη defects. PMID:25170086

  17. Ultraviolet-B-induced DNA damage and ultraviolet-B tolerance mechanisms in species with different functional groups coexisting in subalpine moorlands.

    PubMed

    Wang, Qing-Wei; Kamiyama, Chiho; Hidema, Jun; Hikosaka, Kouki

    2016-08-01

    High doses of ultraviolet-B (UV-B; 280-315 nm) radiation can have detrimental effects on plants, and especially damage their DNA. Plants have DNA repair and protection mechanisms to prevent UV-B damage. However, it remains unclear how DNA damage and tolerance mechanisms vary among field species. We studied DNA damage and tolerance mechanisms in 26 species with different functional groups coexisting in two moorlands at two elevations. We collected current-year leaves in July and August, and determined accumulation of cyclobutane pyrimidine dimer (CPD) as UV-B damage and photorepair activity (PRA) and concentrations of UV-absorbing compounds (UACs) and carotenoids (CARs) as UV-B tolerance mechanisms. DNA damage was greater in dicot than in monocot species, and higher in herbaceous than in woody species. Evergreen species accumulated more CPDs than deciduous species. PRA was higher in Poaceae than in species of other families. UACs were significantly higher in woody than in herbaceous species. The CPD level was not explained by the mechanisms across species, but was significantly related to PRA and UACs when we ignored species with low CPD, PRA and UACs, implying the presence of another effective tolerance mechanism. UACs were correlated negatively with PRA and positively with CARs. Our results revealed that UV-induced DNA damage significantly varies among native species, and this variation is related to functional groups. DNA repair, rather than UV-B protection, dominates in UV-B tolerance in the field. Our findings also suggest that UV-B tolerance mechanisms vary among species under evolutionary trade-off and synergism.

  18. Ultraviolet light-an FDA approved technology

    USDA-ARS?s Scientific Manuscript database

    Ultraviolet Light (254 nm) is a U.S. Food and Drug Administration approved nonthermal intervention technology that can be used for decontamination of food and food contact surfaces. Ultraviolet light is a green technology that leaves no chemical residues. Results from our laboratory indicate that ex...

  19. An ethanol extract derived from Bonnemaisonia hamifera scavenges ultraviolet B (UVB) radiation-induced reactive oxygen species and attenuates UVB-induced cell damage in human keratinocytes.

    PubMed

    Piao, Mei Jing; Hyun, Yu Jae; Cho, Suk Ju; Kang, Hee Kyoung; Yoo, Eun Sook; Koh, Young Sang; Lee, Nam Ho; Ko, Mi Hee; Hyun, Jin Won

    2012-12-14

    The present study investigated the photoprotective properties of an ethanol extract derived from the red alga Bonnemaisonia hamifera against ultraviolet B (UVB)-induced cell damage in human HaCaT keratinocytes. The Bonnemaisonia hamifera ethanol extract (BHE) scavenged the superoxide anion generated by the xanthine/xanthine oxidase system and the hydroxyl radical generated by the Fenton reaction (FeSO₄ + H₂O₂), both of which were detected by using electron spin resonance spectrometry. In addition, BHE exhibited scavenging activity against the 1,1-diphenyl-2-picrylhydrazyl radical and intracellular reactive oxygen species (ROS) that were induced by either hydrogen peroxide or UVB radiation. BHE reduced UVB-induced apoptosis, as shown by decreased apoptotic body formation and DNA fragmentation. BHE also attenuated DNA damage and the elevated levels of 8-isoprostane and protein carbonyls resulting from UVB-mediated oxidative stress. Furthermore, BHE absorbed electromagnetic radiation in the UVB range (280-320 nm). These results suggest that BHE protects human HaCaT keratinocytes against UVB-induced oxidative damage by scavenging ROS and absorbing UVB photons, thereby reducing injury to cellular components.

  20. Ultraviolet safety assessments of insect light traps.

    PubMed

    Sliney, David H; Gilbert, David W; Lyon, Terry

    2016-01-01

    Near-ultraviolet (UV-A: 315-400 nm), "black-light," electric lamps were invented in 1935 and ultraviolet insect light traps (ILTs) were introduced for use in agriculture around that time. Today ILTs are used indoors in several industries and in food-service as well as in outdoor settings. With recent interest in photobiological lamp safety, safety standards are being developed to test for potentially hazardous ultraviolet emissions. A variety of UV "Black-light" ILTs were measured at a range of distances to assess potential exposures. Realistic time-weighted human exposures are shown to be well below current guidelines for human exposure to ultraviolet radiation. These UV-A exposures would be far less than the typical UV-A exposure in the outdoor environment. Proposals are made for realistic ultraviolet safety standards for ILT products.

  1. Photoprotection of human skin beyond ultraviolet radiation.

    PubMed

    Grether-Beck, Susanne; Marini, Alessandra; Jaenicke, Thomas; Krutmann, Jean

    2014-01-01

    Photoprotection of human skin by means of sunscreens or daily skin-care products is traditionally centered around the prevention of acute (e.g. sunburn) and chronic (e.g. skin cancer and photoaging) skin damage that may result from exposure to ultraviolet rays (UVB and UVA). Within the last decade, however, it has been appreciated that wavelengths beyond the ultraviolet spectrum, in particular visible light and infrared radiation, contribute to skin damage in general and photoaging of human skin in particular. As a consequence, attempts have been made to develop skin care/sunscreen products that not only protect against UVB or UVA radiation but provide photoprotection against visible light and infrared radiation as well. In this article, we will briefly review the current knowledge about the mechanisms responsible for visible light/infrared radiation-induced skin damage and then, based on this information, discuss strategies that have been successfully used or may be employed in the future to achieve photoprotection of human skin beyond ultraviolet radiation. In this regard we will particularly focus on the use of topical antioxidants and the challenges that result from the task of showing their efficacy. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Silymarin Protects Epidermal Keratinocytes from Ultraviolet Radiation-Induced Apoptosis and DNA Damage by Nucleotide Excision Repair Mechanism

    PubMed Central

    Katiyar, Santosh K.; Mantena, Sudheer K.; Meeran, Syed M.

    2011-01-01

    Solar ultraviolet (UV) radiation is a well recognized epidemiologic risk factor for melanoma and non-melanoma skin cancers. This observation has been linked to the accumulation of UVB radiation-induced DNA lesions in cells, and that finally lead to the development of skin cancers. Earlier, we have shown that topical treatment of skin with silymarin, a plant flavanoid from milk thistle (Silybum marianum), inhibits photocarcinogenesis in mice; however it is less understood whether chemopreventive effect of silymarin is mediated through the repair of DNA lesions in skin cells and that protect the cells from apoptosis. Here, we show that treatment of normal human epidermal keratinocytes (NHEK) with silymarin blocks UVB-induced apoptosis of NHEK in vitro. Silymarin reduces the amount of UVB radiation-induced DNA damage as demonstrated by reduced amounts of cyclobutane pyrimidine dimers (CPDs) and as measured by comet assay, and that ultimately may lead to reduced apoptosis of NHEK. The reduction of UV radiation-induced DNA damage by silymarin appears to be related with induction of nucleotide excision repair (NER) genes, because UV radiation-induced apoptosis was not blocked by silymarin in NER-deficient human fibroblasts. Cytostaining and dot-blot analysis revealed that silymarin repaired UV-induced CPDs in NER-proficient fibroblasts from a healthy individual but did not repair UV-induced CPD-positive cells in NER-deficient fibroblasts from patients suffering from xeroderma pigmentosum complementation-A disease. Similarly, immunohistochemical analysis revealed that silymarin did not reduce the number of UVB-induced sunburn/apoptotic cells in the skin of NER-deficient mice, but reduced the number of sunburn cells in their wild-type counterparts. Together, these results suggest that silymarin exert the capacity to reduce UV radiation-induced DNA damage and, thus, prevent the harmful effects of UV radiation on the genomic stability of epidermal cells. PMID:21731736

  3. Effects of a turmeric extract (Curcuma longa) on chronic ultraviolet B irradiation-induced skin damage in melanin-possessing hairless mice.

    PubMed

    Sumiyoshi, Maho; Kimura, Yoshiyuki

    2009-12-01

    Turmeric (the rhizomes of Curcuma longa L., Zingiberacease) is widely used as a dietary pigment and spice, and has been traditionally used for the treatment of inflammation, skin wounds and hepatic disorders in Ayurvedic, Unani and Chinese medicine. Although the topical application or oral administration of turmeric is used to improve skin trouble, there is no evidence to support this effect. The aim of this study was to clarify whether turmeric prevents chronic ultraviolet B (UVB)-irradiated skin damage. We examined the effects of a turmeric extract on skin damage including changes in skin thickness and elasticity, pigmentation and wrinkling caused by long-term, low-dose ultraviolet B irradiation in melanin-possessing hairless mice. The extract (at 300 or 1000 mg/kg, twice daily) prevented an increase in skin thickness and a reduction in skin elasticity induced by chronic UVB exposure. It also prevented the formation of wrinkles and melanin (at 1000 mg/kg, twice daily) as well as increases in the diameter and length of skin blood vessels and in the expression of matrix metalloproteinase-2 (MMP-2). Prevention of UVB-induced skin aging by turmeric may be due to the inhibition of increases in MMP-2 expression caused by chronic irradiation.

  4. [Effect of flavin adenine dinucleotide on ultraviolet B induced damage in cultured human corneal epithelial cells].

    PubMed

    Sakamoto, Asuka; Nakamura, Masatsugu

    2012-01-01

    This study evaluated the effects of flavin adenine dinucleotide (FAD) on ultraviolet B (UV-B)-induced damage in cultured human corneal epithelial (HCE-T) cells. The cultured HCE-T cells were treated with 0.003125-0.05% FAD before exposure to 80 mJ/cm2 UV-B. Cell viability was measured 24 h after UV-B irradiation using the MTS assay. Reactive oxygen species (ROS) were detected 30 min after UV-B irradiation using 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate acetyl ester. Apoptosis was evaluated 4 h after UV-B irradiation in the caspase-3/7 activity assay. UV-B irradiation reduced cell viability and stimulated ROS production and caspase-3/7 activity in HCE-T cells. Pretreatment of UV-B irradiated HCE-T cells with FAD significantly attenuated cell viability reduction and inhibited the stimulation of both ROS production and caspase-3/7 activity due to UV-B exposure compared with those with vehicle (0% FAD). These results clarified that FAD inhibits ROS-mediated apoptosis by UV-B irradiation in HCE-T cells and suggest that FAD may be effective as a radical scavenger in UV-B-induced corneal damage.

  5. Damage of multilayer optics with varying capping layers induced by focused extreme ultraviolet beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jody Corso, Alain; Nicolosi, Piergiorgio; Nardello, Marco

    2013-05-28

    Extreme ultraviolet Mo/Si multilayers protected by capping layers of different materials were exposed to 13.5 nm plasma source radiation generated with a table-top laser to study the irradiation damage mechanism. Morphology of single-shot damaged areas has been analyzed by means of atomic force microscopy. Threshold fluences were evaluated for each type of sample in order to determine the capability of the capping layer to protect the structure underneath.

  6. Photoprotection beyond ultraviolet radiation--effective sun protection has to include protection against infrared A radiation-induced skin damage.

    PubMed

    Schroeder, P; Calles, C; Benesova, T; Macaluso, F; Krutmann, J

    2010-01-01

    Solar radiation is well known to damage human skin, for example by causing premature skin ageing (i.e. photoageing). We have recently learned that this damage does not result from ultraviolet (UV) radiation alone, but also from longer wavelengths, in particular near-infrared radiation (IRA radiation, 760-1,440 nm). IRA radiation accounts for more than one third of the solar energy that reaches human skin. While infrared radiation of longer wavelengths (IRB and IRC) does not penetrate deeply into the skin, more than 65% of the shorter wavelength (IRA) reaches the dermis. IRA radiation has been demonstrated to alter the collagen equilibrium of the dermal extracellular matrix in at least two ways: (a) by leading to an increased expression of the collagen-degrading enzyme matrix metalloproteinase 1, and (b) by decreasing the de novo synthesis of the collagen itself. IRA radiation exposure therefore induces similar biological effects to UV radiation, but the underlying mechanisms are substantially different, specifically, the cellular response to IRA irradiation involves the mitochondrial electron transport chain. Effective sun protection requires specific strategies to prevent IRA radiation-induced skin damage. 2010 S. Karger AG, Basel.

  7. Microwave-driven ultraviolet light sources

    DOEpatents

    Manos, Dennis M.; Diggs, Jessie; Ametepe, Joseph D.

    2002-01-29

    A microwave-driven ultraviolet (UV) light source is provided. The light source comprises an over-moded microwave cavity having at least one discharge bulb disposed within the microwave cavity. At least one magnetron probe is coupled directly to the microwave cavity.

  8. Ultraviolet safety assessments of insect light traps

    PubMed Central

    Sliney, David H.; Gilbert, David W.; Lyon, Terry

    2016-01-01

    ABSTRACT Near-ultraviolet (UV-A: 315–400 nm), “black-light,” electric lamps were invented in 1935 and ultraviolet insect light traps (ILTs) were introduced for use in agriculture around that time. Today ILTs are used indoors in several industries and in food-service as well as in outdoor settings. With recent interest in photobiological lamp safety, safety standards are being developed to test for potentially hazardous ultraviolet emissions. A variety of UV “Black-light” ILTs were measured at a range of distances to assess potential exposures. Realistic time-weighted human exposures are shown to be well below current guidelines for human exposure to ultraviolet radiation. These UV-A exposures would be far less than the typical UV-A exposure in the outdoor environment. Proposals are made for realistic ultraviolet safety standards for ILT products. PMID:27043058

  9. Differential effects of topical vitamin E and C E Ferulic® treatments on ultraviolet light B-induced cutaneous tumor development in Skh-1 mice.

    PubMed

    Burns, Erin M; Tober, Kathleen L; Riggenbach, Judith A; Kusewitt, Donna F; Young, Gregory S; Oberyszyn, Tatiana M

    2013-01-01

    Because of the ever-increasing incidence of ultraviolet light B (UVB)-induced skin cancer, considerable attention is being paid to prevention through the use of both sunscreens and after sun treatments, many of which contain antioxidants. Vitamin E is included as an antioxidant in many sunscreens and lotions currently on the market. Studies examining the efficacy of vitamin E as a topical preventative agent for UVB-induced skin cancer have yielded conflicting results. A likely contributor to differences in study outcome is the stability of vitamin E in the particular formulation being tested. In the current study we examined the effects of topical vitamin E alone as well as vitamin E combined with vitamin C and ferulic acid in a more stable topical formula (C E Ferulic®). Mice were exposed to UVB for 10 weeks in order to induce skin damage. Then, before the appearance of any cutaneous lesions, mice were treated for 15 weeks with a topical antioxidant, without any further UVB exposure. We found that topical C E Ferulic decreased tumor number and tumor burden and prevented the development of malignant skin tumors in female mice with chronically UVB-damaged skin. In contrast, female mice chronically exposed to UVB and treated topically with vitamin E alone showed a trend towards increased tumor growth rate and exhibited increased levels of overall DNA damage, cutaneous proliferation, and angiogenesis compared to vehicle-treated mice. Thus, we have demonstrated that topical 5% alpha tocopherol may actually promote carcinogenesis when applied on chronically UVB-damaged skin while treating with a more stable antioxidant compound may offer therapeutic benefits.

  10. Protective effects of bilberry and lingonberry extracts against blue light-emitting diode light-induced retinal photoreceptor cell damage in vitro

    PubMed Central

    2014-01-01

    Background Blue light is a high-energy or short-wavelength visible light, which induces retinal diseases such as age-related macular degeneration and retinitis pigmentosa. Bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea) contain high amounts of polyphenols (anthocyanins, resveratrol, and proanthocyanidins) and thus confer health benefits. This study aimed to determine the protective effects and mechanism of action of bilberry extract (B-ext) and lingonberry extract (L-ext) and their active components against blue light-emitting diode (LED) light-induced retinal photoreceptor cell damage. Methods Cultured murine photoreceptor (661 W) cells were exposed to blue LED light following treatment with B-ext, L-ext, or their constituents (cyanidin, delphinidin, malvidin, trans-resveratrol, and procyanidin B2). 661 W cell viability was assessed using a tetrazolium salt (WST-8) assay and Hoechst 33342 nuclear staining, and intracellular reactive oxygen species (ROS) production was determined using CM-H2DCFDA after blue LED light exposure. Activation of p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor-kappa B (NF-κB), and LC3, an ubiquitin-like protein that is necessary for the formation of autophagosomes, were analyzed using Western blotting. Caspase-3/7 activation caused by blue LED light exposure in 661 W cells was determined using a caspase-3/7 assay kit. Results B-ext, L-ext, NAC, and their active components improved the viability of 661 W cells and inhibited the generation of intracellular ROS induced by blue LED light irradiation. Furthermore, B-ext and L-ext inhibited the activation of p38 MAPK and NF-κB induced by blue LED light exposure. Finally, B-ext, L-ext, and NAC inhibited caspase-3/7 activation and autophagy. Conclusions These findings suggest that B-ext and L-ext containing high amounts of polyphenols exert protective effects against blue LED light-induced retinal photoreceptor cell damage mainly through inhibition

  11. Inactivation of Pseudomonas aeruginosa biofilm after ultraviolet light-emitting diode treatment: a comparative study between ultraviolet C and ultraviolet B

    NASA Astrophysics Data System (ADS)

    Argyraki, Aikaterini; Markvart, Merete; Bjørndal, Lars; Bjarnsholt, Thomas; Petersen, Paul Michael

    2017-06-01

    The objective of this study was to test the inactivation efficiency of two different light-based treatments, namely ultraviolet B (UVB) and ultraviolet C (UVC) irradiation, on Pseudomonas aeruginosa biofilms at different growth stages (24, 48, and 72 h grown). In our experiments, a type of AlGaN light-emitting diodes (LEDs) was used to deliver UV irradiation on the biofilms. The effectiveness of the UVB at 296 nm and UVC at 266 nm irradiations was quantified by counting colony-forming units. The survival of less mature biofilms (24 h grown) was studied as a function of UV-radiant exposure. All treatments were performed on three different biological replicates to test reproducibility. It was shown that UVB irradiation was significantly more effective than UVC irradiation in inactivating P. aeruginosa biofilms. UVC irradiation induced insignificant inactivation on mature biofilms. The fact that the UVB at 296 nm exists in daylight and has such disinfection ability on biofilms provides perspectives for the treatment of infectious diseases.

  12. Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review.

    PubMed

    Sklar, Lindsay R; Almutawa, Fahad; Lim, Henry W; Hamzavi, Iltefat

    2013-01-01

    The effects of ultraviolet radiation, visible light, and infrared radiation on cutaneous erythema, immediate pigment darkening, persistent pigment darkening, and delayed tanning are affected by a variety of factors. Some of these factors include the depth of cutaneous penetration of the specific wavelength, the individual skin type, and the absorption spectra of the different chromophores in the skin. UVB is an effective spectrum to induce erythema, which is followed by delayed tanning. UVA induces immediate pigment darkening, persistent pigment darkening, and delayed tanning. At high doses, UVA (primarily UVA2) can also induce erythema in individuals with skin types I-II. Visible light has been shown to induce erythema and a tanning response in dark skin, but not in fair skinned individuals. Infrared radiation produces erythema, which is probably a thermal effect. In this article we reviewed the available literature on the effects of ultraviolet radiation, visible light, and infrared radiation on the skin in regards to erythema and pigmentation. Much remains to be learned on the cutaneous effects of visible light and infrared radiation.

  13. Influence of subsurface defects on damage performance of fused silica in ultraviolet laser

    NASA Astrophysics Data System (ADS)

    Huang, Jin; Zhou, Xinda; Liu, Hongjie; Wang, Fengrui; Jiang, Xiaodong; Wu, Weidong; Tang, Yongjian; Zheng, Wanguo

    2013-02-01

    In ultraviolet pulse laser, damage performance of fused silica optics is directly dependent on the absorptive impurities and scratches in subsurface, which are induced by mechanical polishing. In the research about influence of subsurface defects on damage performance, a series of fused silica surfaces with various impurity concentrations and scratch structures were created by hydrofluoric (HF) acid solution etching. Time of Flight secondary ion mass spectrometry and scanning probe microprobe revealed that with increasing etching depth, impurity concentrations in subsurface layers are decreased, the scratch structures become smoother and the diameter:depth ratio is increased. Damage performance test with 355-nm pulse laser showed that when 600 nm subsurface thickness is removed by HF acid etching, laser-induced damage threshold of fused silica is raised by 40 percent and damage density is decreased by over one order of magnitude. Laser weak absorption was tested to explain the cause of impurity elements impacting damage performance, field enhancement caused by change of scratch structures was calculated by finite difference time domain simulation, and the calculated results are in accord with the damage test results.

  14. Fragmentation of mercury compounds under ultraviolet light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokkonen, E.; Hautala, L.; Jänkälä, K.

    2015-08-21

    Ultraviolet light induced photofragmentation of mercury compounds is studied experimentally with electron energy resolved photoelectron-photoion coincidence techniques and theoretically with computational quantum chemical methods. A high resolution photoelectron spectrum using synchrotron radiation is presented. Fragmentation of the molecule is studied subsequent to ionization to the atomic-mercury-like d orbitals. State dependent fragmentation behaviour is presented and specific reactions for dissociation pathways are given. The fragmentation is found to differ distinctly in similar orbitals of different mercury compounds.

  15. Protection from UV light is an evolutionarily conserved feature of the haematopoietic niche

    USGS Publications Warehouse

    Kapp, Friedrich G.; Perlin, Julie R.; Hagedorn, Elliott J.; Gansner, John M.; Schwarz, Daniel E.; O'Connell, Lauren A.; Johnson, Nicholas; Amemiya, Chris; Fisher, David E.; Wolfle, Ute; Trompouki, Eirini; Niemeyer, Charlotte M.; Driever, Wolfgang; Zon, Leonard I.

    2018-01-01

    Haematopoietic stem and progenitor cells (HSPCs) require a specific microenvironment, the haematopoietic niche, which regulates HSPC behaviour. The location of this niche varies across species, but the evolutionary pressures that drive HSPCs to different microenvironments remain unknown. The niche is located in the bone marrow in adult mammals, whereas it is found in other locations in non-mammalian vertebrates, for example, in the kidney marrow in teleost fish. Here we show that a melanocyte umbrella above the kidney marrow protects HSPCs against ultraviolet light in zebrafish. Because mutants that lack melanocytes have normal steady-state haematopoiesis under standard laboratory conditions, we hypothesized that melanocytes above the stem cell niche protect HSPCs against ultraviolet-light-induced DNA damage. Indeed, after ultraviolet-light irradiation, unpigmented larvae show higher levels of DNA damage in HSPCs, as indicated by staining of cyclobutane pyrimidine dimers and have reduced numbers of HSPCs, as shown by cmyb (also known as myb) expression. The umbrella of melanocytes associated with the haematopoietic niche is highly evolutionarily conserved in aquatic animals, including the sea lamprey, a basal vertebrate. During the transition from an aquatic to a terrestrial environment, HSPCs relocated into the bone marrow, which is protected from ultraviolet light by the cortical bone around the marrow. Our studies reveal that melanocytes above the haematopoietic niche protect HSPCs from ultraviolet-light-induced DNA damage in aquatic vertebrates and suggest that during the transition to terrestrial life, ultraviolet light was an evolutionary pressure affecting the location of the haematopoietic niche.

  16. Protection from UV light is an evolutionarily conserved feature of the haematopoietic niche.

    PubMed

    Kapp, Friedrich G; Perlin, Julie R; Hagedorn, Elliott J; Gansner, John M; Schwarz, Daniel E; O'Connell, Lauren A; Johnson, Nicholas S; Amemiya, Chris; Fisher, David E; Wölfle, Ute; Trompouki, Eirini; Niemeyer, Charlotte M; Driever, Wolfgang; Zon, Leonard I

    2018-06-01

    Haematopoietic stem and progenitor cells (HSPCs) require a specific microenvironment, the haematopoietic niche, which regulates HSPC behaviour 1,2 . The location of this niche varies across species, but the evolutionary pressures that drive HSPCs to different microenvironments remain unknown. The niche is located in the bone marrow in adult mammals, whereas it is found in other locations in non-mammalian vertebrates, for example, in the kidney marrow in teleost fish. Here we show that a melanocyte umbrella above the kidney marrow protects HSPCs against ultraviolet light in zebrafish. Because mutants that lack melanocytes have normal steady-state haematopoiesis under standard laboratory conditions, we hypothesized that melanocytes above the stem cell niche protect HSPCs against ultraviolet-light-induced DNA damage. Indeed, after ultraviolet-light irradiation, unpigmented larvae show higher levels of DNA damage in HSPCs, as indicated by staining of cyclobutane pyrimidine dimers and have reduced numbers of HSPCs, as shown by cmyb (also known as myb) expression. The umbrella of melanocytes associated with the haematopoietic niche is highly evolutionarily conserved in aquatic animals, including the sea lamprey, a basal vertebrate. During the transition from an aquatic to a terrestrial environment, HSPCs relocated into the bone marrow, which is protected from ultraviolet light by the cortical bone around the marrow. Our studies reveal that melanocytes above the haematopoietic niche protect HSPCs from ultraviolet-light-induced DNA damage in aquatic vertebrates and suggest that during the transition to terrestrial life, ultraviolet light was an evolutionary pressure affecting the location of the haematopoietic niche.

  17. Light-induced damage and its diagnosis in two-photon excited autofluorescence imaging of retinal pigment epithelium cells

    NASA Astrophysics Data System (ADS)

    Chen, Danni; Qu, Junle; Xu, Gaixia; Zhao, Lingling; Niu, Hanben

    2007-05-01

    In this paper, a novel method for the differentiation of the retinal pigment epithelium (RPE) cells after light-induced damage by two-photon excitation is presented. Fresh samples of RPE cells of pig eyes are obtained from local slaughterhouse. Light-induced damage is produced by the output from Ti: sapphire laser which is focused onto the RPE layer. We study the change of the autofluorescence properties of RPE after two-photon excitation with the same wavelength. Preliminary results show that after two-photon excitation, there are two clear changes in the emission spectrum. The first change is the blue-shift of the emission peak. The emission peak of the intact RPE is located at 592nm, and after excitation, it shifts to 540nm. It is supposed that the excitation has led to the increased autofluorescence of flavin whose emission peak is located at 540nm. The second change is the increased intensity of the emission peak, which might be caused by the accelerated aging because the autofluorescence of RPE would increase during aging process. Experimental results indicate that two-photon excitation could not only lead to the damage of the RPE cells in multiphoton RPE imaging, but also provide an evaluation of the light-induced damage.

  18. Nitric oxide alleviates oxidative damage induced by enhanced ultraviolet-B radiation in cyanobacterium.

    PubMed

    Xue, Lingui; Li, Shiweng; Sheng, Hongmei; Feng, Huyuan; Xu, Shijian; An, Lizhe

    2007-10-01

    To study the role of nitric oxide (NO) on enhanced ultraviolet-B (UV-B) radiation (280-320 nm)-induced damage of Cyanobacterium, the growth, pigment content, and antioxidative activity of Spirulina platensis-794 cells were investigated under enhanced UV-B radiation and under different chemical treatments with or without UV-B radiation for 6 h. The changes in chlorophyll-a, malondialdehyde content, and biomass confirmed that 0.5 mM: sodium nitroprusside (SNP), a donor of nitric oxide (NO), could markedly alleviate the damage caused by enhanced UV-B. Specifically, the biomass and the chlorophyll-a content in S. platensis-794 cells decreased 40% and 42%, respectively under enhanced UV-B stress alone, but they only decreased 10% and 18% in the cells treated with UV-B irradiation and 0.5 mM: SNP. Further experiments suggested that NO treatment significantly increased the activities of superoxide dismutase (SOD) and catalase (CAT), and decreased the accumulation of O (2)(-) in enhanced UV-B-irradiated cells. SOD and CAT activity increased 0.95- and 6.73-fold, respectively. The accumulation of reduced glutathione (GSH) increased during treatment with 0.5 mM: SNP in normal S. platensis cells, but SNP treatment could inhibit the increase of GSH in enhanced UV-B-stressed S. platensis cells. Thus, these results suggest that NO can strongly alleviate oxidative damage caused by UV-B stress by increasing the activities of SOD, peroxidase, CAT, and the accumulation of GSH, and by eliminating O (2)(-) in S. platensis-794 cells. In addition, the difference of NO origin between plants and cyanobacteria are discussed.

  19. Ultraviolet radiation-induced interleukin 6 release in HeLa cells is mediated via membrane events in a DNA damage-independent way.

    PubMed

    Kulms, D; Pöppelmann, B; Schwarz, T

    2000-05-19

    Evidence exists that ultraviolet radiation (UV) affects molecular targets in the nucleus or at the cell membrane. UV-induced apoptosis was found to be mediated via DNA damage and activation of death receptors, suggesting that nuclear and membrane effects are not mutually exclusive. To determine whether participation of nuclear and membrane components is also essential for other UV responses, we studied the induction of interleukin-6 (IL-6) by UV. Exposing HeLa cells to UV at 4 degrees C, which inhibits activation of surface receptors, almost completely prevented IL-6 release. Enhanced repair of UV-mediated DNA damage by addition of the DNA repair enzyme photolyase did not affect UV-induced IL-6 production, suggesting that in this case membrane events predominant over nuclear effects. UV-induced IL-6 release is mediated via NFkappaB since the NFkappaB inhibitor MG132 or transfection of cells with a super-repressor form of the NFkappaB inhibitor IkappaB reduced IL-6 release. Transfection with a dominant negative mutant of the signaling protein TRAF-2 reduced IL-6 release upon exposure to UV, indicating that UV-induced IL-6 release is mediated by activation of the tumor necrosis factor receptor-1. These data demonstrate that UV can exert biological effects mainly by affecting cell surface receptors and that this is independent of its ability to induce nuclear DNA damage.

  20. Novel Ultraviolet Light Absorbing Polymers For Optical Applications

    NASA Astrophysics Data System (ADS)

    Doddi, Namassivaya; Yamada, Akira; Dunks, Gary B.

    1988-07-01

    Ultraviolet light absorbing monomers have been developed that can be copolymerized with acrylates. The composition of the resultant stable copolymers can be adjusted to totally block the transmission of light below about 430 nm. Fabrication of lenses from the materials is accomplished by lathe cutting and injection molding procedures. These ultraviolet light absorbing materials are non-mutagenic and non-toxic and are currently being used in intraocular lenses.

  1. The influence of the environment and clothing on human exposure to ultraviolet light.

    PubMed

    Liu, Jin; Zhang, Wei

    2015-01-01

    The aim of this study is to determine the effect of clothing and the environment on human exposure to ultraviolet light. The ultraviolet (ultraviolet A and ultraviolet B) light intensity was measured, and air quality parameters were recorded in 2014 in Beijing, China. Three types of clothing (white polyester cloth, pure cotton white T-shirt, and pure cotton black T-shirt) were individually placed on a mannequin. The ultraviolet (ultraviolet A and ultraviolet B) light intensities were measured above and beneath each article of clothing, and the percentage of ultraviolet light transmission through the clothing was calculated. (1) The ultraviolet light transmission was significantly higher through white cloth than through black cloth; the transmission was significantly higher through polyester cloth than through cotton. (2) The weather significantly influenced ultraviolet light transmission through white polyester cloth; transmission was highest on clear days and lowest on overcast days (ultraviolet A: P=0.000; ultraviolet B: P=0.008). (3) Air quality parameters (air quality index and particulate matter 2.5 and 10) were inversely related to the ultraviolet light intensity that reached the earth's surface. Ultraviolet B transmission through white polyester cloth was greater under conditions of low air pollution compared with high air pollution. Clothing color and material and different types of weather affected ultraviolet light transmission; for one particular cloth, the transmission decreased with increasing air pollution.

  2. Solar ultraviolet radiation induces biological alterations in human skin in vitro: relevance of a well-balanced UVA/UVB protection.

    PubMed

    Bernerd, Francoise; Marionnet, Claire; Duval, Christine

    2012-06-01

    Cutaneous damages such as sunburn, pigmentation, and photoaging are known to be induced by acute as well as repetitive sun exposure. Not only for basic research, but also for the design of the most efficient photoprotection, it is crucial to understand and identify the early biological events occurring after ultraviolet (UV) exposure. Reconstructed human skin models provide excellent and reliable in vitro tools to study the UV-induced alterations of the different skin cell types, keratinocytes, fibroblasts, and melanocytes in a dose- and time-dependent manner. Using different in vitro human skin models, the effects of UV light (UVB and UVA) were investigated. UVB-induced damages are essentially epidermal, with the typical sunburn cells and DNA lesions, whereas UVA radiation-induced damages are mostly located within the dermal compartment. Pigmentation can also be obtained after solar simulated radiation exposure of pigmented reconstructed skin model. Those models are also highly adequate to assess the potential of sunscreens to protect the skin from UV-associated damage, sunburn reaction, photoaging, and pigmentation. The results showed that an effective photoprotection is provided by broad-spectrum sunscreens with a potent absorption in both UVB and UVA ranges.

  3. High extraction efficiency ultraviolet light-emitting diode

    DOEpatents

    Wierer, Jonathan; Montano, Ines; Allerman, Andrew A.

    2015-11-24

    Ultraviolet light-emitting diodes with tailored AlGaN quantum wells can achieve high extraction efficiency. For efficient bottom light extraction, parallel polarized light is preferred, because it propagates predominately perpendicular to the QW plane and into the typical and more efficient light escape cones. This is favored over perpendicular polarized light that propagates along the QW plane which requires multiple, lossy bounces before extraction. The thickness and carrier density of AlGaN QW layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. At Al>0.3, thinner QW layers (<2.5 nm are preferred) result in light preferentially polarized parallel to the QW plane. Also, active regions consisting of six or more QWs, to reduce carrier density, and with thin barriers, to efficiently inject carriers in all the QWs, are preferred.

  4. The Influence of the Environment and Clothing on Human Exposure to Ultraviolet Light

    PubMed Central

    Liu, Jin; Zhang, Wei

    2015-01-01

    Objection The aim of this study is to determine the effect of clothing and the environment on human exposure to ultraviolet light. Methods The ultraviolet (ultraviolet A and ultraviolet B) light intensity was measured, and air quality parameters were recorded in 2014 in Beijing, China. Three types of clothing (white polyester cloth, pure cotton white T-shirt, and pure cotton black T-shirt) were individually placed on a mannequin. The ultraviolet (ultraviolet A and ultraviolet B) light intensities were measured above and beneath each article of clothing, and the percentage of ultraviolet light transmission through the clothing was calculated. Results (1) The ultraviolet light transmission was significantly higher through white cloth than through black cloth; the transmission was significantly higher through polyester cloth than through cotton. (2) The weather significantly influenced ultraviolet light transmission through white polyester cloth; transmission was highest on clear days and lowest on overcast days (ultraviolet A: P=0.000; ultraviolet B: P=0.008). (3) Air quality parameters (air quality index and particulate matter 2.5 and 10) were inversely related to the ultraviolet light intensity that reached the earth’s surface. Ultraviolet B transmission through white polyester cloth was greater under conditions of low air pollution compared with high air pollution. Conclusion Clothing color and material and different types of weather affected ultraviolet light transmission; for one particular cloth, the transmission decreased with increasing air pollution. PMID:25923778

  5. Epidermal Rac1 regulates the DNA damage response and protects from UV-light-induced keratinocyte apoptosis and skin carcinogenesis

    PubMed Central

    Deshmukh, Jayesh; Pofahl, Ruth; Haase, Ingo

    2017-01-01

    Non-melanoma skin cancer (NMSC) is the most common type of cancer. Increased expression and activity of Rac1, a small Rho GTPase, has been shown previously in NMSC and other human cancers; suggesting that Rac1 may function as an oncogene in skin. DMBA/TPA skin carcinogenesis studies in mice have shown that Rac1 is required for chemically induced skin papilloma formation. However, UVB radiation by the sun, which causes DNA damage, is the most relevant cause for NMSC. A potential role of Rac1 in UV-light-induced skin carcinogenesis has not been investigated so far. To investigate this, we irradiated mice with epidermal Rac1 deficiency (Rac1-EKO) and their controls using a well-established protocol for long-term UV-irradiation. Most of the Rac1-EKO mice developed severe skin erosions upon long-term UV-irradiation, unlike their controls. These skin erosions in Rac1-EKO mice healed subsequently. Surprisingly, we observed development of squamous cell carcinomas (SCCs) within the UV-irradiation fields. This shows that the presence of Rac1 in the epidermis protects from UV-light-induced skin carcinogenesis. Short-term UV-irradiation experiments revealed increased UV-light-induced apoptosis of Rac1-deficient epidermal keratinocytes in vitro as well as in vivo. Further investigations using cyclobutane pyrimidine dimer photolyase transgenic mice revealed that the observed increase in UV-light-induced keratinocyte apoptosis in Rac1-EKO mice is DNA damage dependent and correlates with caspase-8 activation. Furthermore, Rac1-deficient keratinocytes showed reduced levels of p53, γ-H2AX and p-Chk1 suggesting an attenuated DNA damage response upon UV-irradiation. Taken together, our data provide direct evidence for a protective role of Rac1 in UV-light-induced skin carcinogenesis and keratinocyte apoptosis probably through regulating mechanisms of the DNA damage response and repair pathways. PMID:28277539

  6. Epidermal Rac1 regulates the DNA damage response and protects from UV-light-induced keratinocyte apoptosis and skin carcinogenesis.

    PubMed

    Deshmukh, Jayesh; Pofahl, Ruth; Haase, Ingo

    2017-03-09

    Non-melanoma skin cancer (NMSC) is the most common type of cancer. Increased expression and activity of Rac1, a small Rho GTPase, has been shown previously in NMSC and other human cancers; suggesting that Rac1 may function as an oncogene in skin. DMBA/TPA skin carcinogenesis studies in mice have shown that Rac1 is required for chemically induced skin papilloma formation. However, UVB radiation by the sun, which causes DNA damage, is the most relevant cause for NMSC. A potential role of Rac1 in UV-light-induced skin carcinogenesis has not been investigated so far. To investigate this, we irradiated mice with epidermal Rac1 deficiency (Rac1-EKO) and their controls using a well-established protocol for long-term UV-irradiation. Most of the Rac1-EKO mice developed severe skin erosions upon long-term UV-irradiation, unlike their controls. These skin erosions in Rac1-EKO mice healed subsequently. Surprisingly, we observed development of squamous cell carcinomas (SCCs) within the UV-irradiation fields. This shows that the presence of Rac1 in the epidermis protects from UV-light-induced skin carcinogenesis. Short-term UV-irradiation experiments revealed increased UV-light-induced apoptosis of Rac1-deficient epidermal keratinocytes in vitro as well as in vivo. Further investigations using cyclobutane pyrimidine dimer photolyase transgenic mice revealed that the observed increase in UV-light-induced keratinocyte apoptosis in Rac1-EKO mice is DNA damage dependent and correlates with caspase-8 activation. Furthermore, Rac1-deficient keratinocytes showed reduced levels of p53, γ-H2AX and p-Chk1 suggesting an attenuated DNA damage response upon UV-irradiation. Taken together, our data provide direct evidence for a protective role of Rac1 in UV-light-induced skin carcinogenesis and keratinocyte apoptosis probably through regulating mechanisms of the DNA damage response and repair pathways.

  7. Ectoine: A compatible solute in radio-halophilic Stenotrophomonas sp. WMA-LM19 strain to prevent ultraviolet-induced protein damage.

    PubMed

    Sajjad, Wasim; Qadir, Sundas; Ahmad, Manzoor; Rafiq, Muhammad; Hasan, Fariha; Tehan, Richard; McPhail, Kerry L; Shah, Aamer Ali

    2018-05-04

    The current study was conducted to investigate the possible role of a compatible solute from radio-halophilic bacterium against desiccation and ultra-violet radiation induced oxidative stress. Nine different radio-resistant bacteria were isolated from desert soil, where strain WMA-LM19 was chosen for detailed studies on the basis of its high tolerance to ultraviolet radiation among all these isolates. 16S rRNA gene sequencing indicated the bacterium was closely related to Stenotrophomonas sp. (KT008383). A bacterial milking strategy was applied for extraction of intracellular compatible solutes in 70% (v/v) ethanol, which were purified by High Performance Liquid Chromatography (HPLC). The compound was characterized as ectoine by 1 H and 13 C Nuclear Magnetic Resonance (NMR), and Mass Spectrometry (MS). Ectoine inhibited oxidative damage to proteins and lipids in comparison to the standard ascorbic acid. It also demonstrated more efficient preventition (54.80%) against lysis to erythrocytes membrane by surface active agents than lecithin. Furthermore, a high level of ectoine-mediated protection of bovine serum albumin against ionizing radiation (1500-2000Jm -2 ) was observed, as indicated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. The results indicated that ectoine from Stenotrophomonas sp. WMA-LM19 can be used as a potential mitigator and radio-protective agent to overcome radiation- and salinity-mediated oxidative damages in extreme environment. Due to its anti-oxidant properties, ectoine from a radio-halophilic bacterium might be used in sunscreen formulation for protection against UV induced oxidative stress. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Quercitrin Protects Skin from UVB-induced Oxidative Damage

    PubMed Central

    Yin, Yuanqin; Li, Wenqi; Son, Yong-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-01-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. PMID:23545178

  9. Using natural dietary sources of antioxidants to protect against ultraviolet and visible radiation-induced DNA damage: an investigation of human green tea ingestion.

    PubMed

    Malhomme de la Roche, Helena; Seagrove, Susan; Mehta, Anisha; Divekar, Preshita; Campbell, Sandra; Curnow, Alison

    2010-11-03

    Oral ingestion of green tea is a potent dietary source of antioxidant polyphenols. These compounds are of interest as they may be able to provide additional protection to the body to help prevent the deleterious effects of ultraviolet A and visible radiation (UVA/VIS) produced indirectly via reactive oxygen species (ROS) in sunlight exposed skin. A small clinical study was conducted in ten healthy adult volunteers. Samples of whole blood were obtained from each before and 30, 60 and 90 min following ingestion of three breakfast cups of green tea (540 ml in total) prepared in a standardised manner. Peripheral leucocytes were isolated from each blood sample and exposed to increasing periods of UVA/VIS irradiation in the laboratory (0, 9, 12 or 18 min). Alkaline single cell gel electrophoresis (the comet assay) was then conducted to determine the level of DNA damage in each sample from each individual. The findings support those of our previous pilot study and indicate that drinking green tea did significantly reduce the genotoxic effects observed in peripheral blood cells 60 min following ingestion when artificially exposed to 12 min of UVA/VIS irradiation in the laboratory. It is postulated that this protection is afforded by the polyphenol compounds (known to be contained within green tea) via scavenging or quenching of the damaging ROS induced by this form of light exposure. Further investigation should consider whether this dietary-induced protection could be extended to cells of the skin. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Near infrared and extreme ultraviolet light pulses induced modifications of ultrathin Co films

    NASA Astrophysics Data System (ADS)

    Kisielewski, Jan; Sveklo, Iosif; Kurant, Zbigniew; Bartnik, Andrzej; Jakubowski, Marcin; Dynowska, ElŻbieta; Klinger, Dorota; Sobierajski, Ryszard; Wawro, Andrzej; Maziewski, Andrzej

    2017-05-01

    We report on comparative study of magnetic properties of Pt/Co/Pt trilayers after irradiation with different light sources. Ultrathin Pt/Co/Pt films were deposited by molecular beam epitaxy technique on sapphire (0001) substrates. Pt buffers were grown at room temperature (RT) and at 750°C (high temperature, HT). The samples were irradiated with a broad range of light energy densities (up to film ablation) using two different single pulse irradiation sources: (i) 40 fs laser with 800 nm wavelength and (ii) 3 ns laser-plasma source of extreme ultraviolet (EUV) with the most intense emission centered at 11 nm. The light pulse-driven irreversible structural and as a consequence, magnetic modifications were investigated using polar magneto-optical Kerr effect-based microscopy and atomic and magnetic force microscopies. The light pulse-induced transitions from the out-of-plane to in-plane magnetization state, and from in-plane to out-of-plane, were observed for both types of samples and irradiation methods. Diagrams of the magnetic states as a function of the Co layer thickness and energy density of the absorbed femtosecond pulses were constructed for the samples with both the RT and HT buffers. The energy density range responsible for the creation of the out-of-plane magnetization was wider for the HT than for RT buffer. This is correlated with the higher (for HT) crystalline quality and much smoother Pt/Co surface deduced from the X-ray diffraction studies. Submicrometer magnetic domains were observed in the irradiated region while approaching the out-of-plane magnetization state. Changes of Pt/Co/Pt structures are discussed for both types of light pulses.

  11. Protective Effect of Fucoxanthin Isolated from Laminaria japonica against Visible Light-Induced Retinal Damage Both in Vitro and in Vivo.

    PubMed

    Liu, Yixiang; Liu, Meng; Zhang, Xichun; Chen, Qingchou; Chen, Haixiu; Sun, Lechang; Liu, Guangming

    2016-01-20

    With increasingly serious eye exposure to light stresses, such as light-emitting diodes, computers, and widescreen mobile phones, efficient natural compounds for preventing visible light-induced retinal damages are becoming compelling needs in the modern society. Fucoxanthin, as the main light absorption system in marine algae, may possess an outstanding bioactivity in vision protection because of its filtration of blue light and excellent antioxidative activity. In this work, both in vitro and in vivo simulated visible light-induced retinal damage models were employed. The in vitro results revealed that fucoxanthin exhibited better bioactivities than lutein, zeaxanthin, and blueberry anthocyanins in inhibiting overexpression of vascular endothelial growth factor, resisting senescence, improving phagocytic function, and clearing intracellular reactive oxygen species in retinal pigment epithelium cells. The in vivo experiment also confirmed the superiority of fucoxanthin than lutein in protecting retina against photoinduced damage. This excellent bioactivity may be attributed to its unique structural features, including allenic, epoxide, and acetyl groups. Fucoxanthin is expected to be an important ocular nutrient in the future.

  12. Feasibility of Ionization-Mediated Pathway for Ultraviolet-Induced Melanin Damage.

    PubMed

    Mandal, Mukunda; Das, Tamal; Grewal, Baljinder K; Ghosh, Debashree

    2015-10-22

    Melanin is the pigment found in human skin that is responsible for both photoprotection and photodamage. Recently there have been reports that greater photodamage of DNA occurs when cells containing melanin are irradiated with ultraviolet (UV) radiation, thus suggesting that the photoproducts of melanin cause DNA damage. Photoionization processes have also been implicated in the photodegradation of melanin. However, not much is known about the oxidation potential of melanin and its monomers. In this work we calculate the ionization energies of monomers, dimers, and few oligomers of eumelanin to estimate the threshold energy required for the ionization of eumelanin. We find that this threshold is within the UV-B region for eumelanin. We also look at the charge and spin distributions of the various ionized states of the monomers that are formed to understand which of the ionization channels might favor monomerization from a covalent dimer.

  13. Arctigenin protects against ultraviolet-A-induced damage to stemness through inhibition of the NF-κB/MAPK pathway.

    PubMed

    Park, See-Hyoung; Cho, Jae Youl; Oh, Sae Woong; Kang, Mingyeong; Lee, Seung Eun; Yoo, Ju Ah; Jung, Kwangseon; Lee, Jienny; Lee, Sang Yeol; Lee, Jongsung

    2018-02-25

    The stemness of stem cells is negatively affected by ultraviolet A (UVA) irradiation. This study was performed to examine the effects of arctigenin on UVA-irradiation-induced damage to the stemness of human mesenchymal stem cells (hMSCs) derived from adipose tissue. The mechanisms of action of arctigenin were also investigated. A BrdU-incorporation assay demonstrated that arctigenin attenuated the UVA-induced reduction of the cellular proliferative potential. Arctigenin also increased the UVA-induced reduction in stemness of hMSCs by upregulating stemness-related genes such as SOX2, OCT4, and NANOG. In addition, the UVA-induced reduction in the mRNA expression level of hypoxia-inducible factor (HIF)-1α was significantly recovered by arctigenin. The antagonizing effect of arctigenin on UVA irradiation was mediated by reduced PGE 2 production through the inhibition of MAPKs (p42/44 MAPK, p38 MAPK, and JNK) and NF-κB. Overall, these findings suggest that arctigenin can ameliorate the reduced stemness of hMSCs induced by UVA irradiation. The effects of arctigenin are mediated by PGE 2 -cAMP signaling-dependent upregulation of HIF-1α. Therefore, arctigenin could be used as an antagonist to attenuate the effects of UVA irradiation. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Inorganic volumetric light source excited by ultraviolet light

    DOEpatents

    Reed, Scott; Walko, Robert J.; Ashley, Carol S.; Brinker, C. Jeffrey

    1994-01-01

    The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light.

  15. Inorganic volumetric light source excited by ultraviolet light

    DOEpatents

    Reed, S.; Walko, R.J.; Ashley, C.S.; Brinker, C.J.

    1994-04-26

    The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light. 4 figures.

  16. Nucleophile sensitivity of Drosophila TRPA1 underlies light-induced feeding deterrence

    PubMed Central

    Du, Eun Jo; Ahn, Tae Jung; Wen, Xianlan; Seo, Dae-Won; Na, Duk L; Kwon, Jae Young; Choi, Myunghwan; Kim, Hyung-Wook; Cho, Hana; Kang, KyeongJin

    2016-01-01

    Solar irradiation including ultraviolet (UV) light causes tissue damage by generating reactive free radicals that can be electrophilic or nucleophilic due to unpaired electrons. Little is known about how free radicals induced by natural sunlight are rapidly detected and avoided by animals. We discover that Drosophila Transient Receptor Potential Ankyrin 1 (TRPA1), previously known only as an electrophile receptor, sensitively detects photochemically active sunlight through nucleophile sensitivity. Rapid light-dependent feeding deterrence in Drosophila was mediated only by the TRPA1(A) isoform, despite the TRPA1(A) and TRPA1(B) isoforms having similar electrophile sensitivities. Such isoform dependence re-emerges in the detection of structurally varied nucleophilic compounds and nucleophilicity-accompanying hydrogen peroxide (H2O2). Furthermore, these isoform-dependent mechanisms require a common set of TRPA1(A)-specific residues dispensable for electrophile detection. Collectively, TRPA1(A) rapidly responds to natural sunlight intensities through its nucleophile sensitivity as a receptor of photochemically generated radicals, leading to an acute light-induced behavioral shift in Drosophila. DOI: http://dx.doi.org/10.7554/eLife.18425.001 PMID:27656903

  17. Effect of ultraviolet light on mood, depressive disorders and well-being.

    PubMed

    Veleva, Bistra I; van Bezooijen, Rutger L; Chel, Victor G M; Numans, Mattijs E; Caljouw, Monique A A

    2018-06-01

    Human and animal studies have shown that exposure to ultraviolet light can incite a chain of endocrine, immunologic, and neurohumoral reactions that might affect mood. This review focuses on the evidence from clinical trials and observational studies on the effect of ultraviolet light on mood, depressive disorders, and well-being. A search was made in PubMed, Embase, Web of Science, Cochrane, Psychinfo, CINAHL, Academic Search Premier and Science Direct, and the references of key papers, for clinical trials and observational studies describing the effect of ultraviolet light applied to skin or eyes on mood, depressive disorders, and well-being. Of the seven studies eligible for this review, the effect of ultraviolet light on mood, depressive symptoms and seasonal affective disorders was positive in six of them. Of the seven studies, six demonstrated benefit of exposure to ultraviolet radiation and improvement in mood which supports a positive effect of ultraviolet light on mood. Because of the small number of the studies and their heterogeneity, more research is warranted to confirm and document this correlation. © 2018 The Authors. Photodermatology, Photoimmunology & Photomedicine Published by John Wiley & Sons Ltd.

  18. Silibinin enhances the repair of ultraviolet B-induced DNA damage by activating p53-dependent nucleotide excision repair mechanism in human dermal fibroblasts

    PubMed Central

    Guillermo-Lagae, Ruth; Deep, Gagan; Ting, Harold; Agarwal, Chapla; Agarwal, Rajesh

    2015-01-01

    Ultraviolet radiation B (UVB) is the main cause of DNA damage in epidermal cells; and if not repaired, this DNA damage leads to skin cancer. In earlier studies, we have reported that natural flavonolignan silibinin exerts strong chemopreventive efficacy against UVB-induced skin damage and carcinogenesis; however mechanistic studies are still being actively pursued. Here, we investigated the role of nucleotide excision repair (NER) pathway in silibinin's efficacy to repair UVB-induced DNA damage. Normal human dermal fibroblasts (NHDFs) were exposed to UVB (1 mJ/cm2) with pre- or post- silibinin (100 μM) treatment, and cyclobutane pyrimidine dimers (CPDs) formation/repair was measured. Results showed that post-UVB silibinin treatment accelerates DNA repair via activating the NER pathway including the expression of XPA (xeroderma pigmentosum complementation group A), XPB, XPC, and XPG. In UVB exposed fibroblasts, silibinin treatment also increased p53 and GADD45α expression; the key regulators of the NER pathway and DNA repair. Consistently, post-UVB silibinin treatment increased the mRNA transcripts of XPA and GADD45α. Importantly, silibinin showed no effect on UVB-induced DNA damage repair in XPA- and XPB-deficient human dermal fibroblasts suggesting their key role in silibinin-mediated DNA damage repair. Moreover, in the presence of pifithrin-α, an inhibitor of p53, the DNA repair efficacy of silibinin was compromised associated with a reduction in XPA and GADD45α transcripts. Together, these findings suggest that silibinin's efficacy against UVB-induced photodamage is primarily by inhibiting NER and p53; and these findings further support silibinin's usage as a potential inexpensive, effective, and non-toxic agent for skin cancer chemoprevention. PMID:26447614

  19. Silibinin enhances the repair of ultraviolet B-induced DNA damage by activating p53-dependent nucleotide excision repair mechanism in human dermal fibroblasts.

    PubMed

    Guillermo-Lagae, Ruth; Deep, Gagan; Ting, Harold; Agarwal, Chapla; Agarwal, Rajesh

    2015-11-24

    Ultraviolet radiation B (UVB) is the main cause of DNA damage in epidermal cells; and if not repaired, this DNA damage leads to skin cancer. In earlier studies, we have reported that natural flavonolignan silibinin exerts strong chemopreventive efficacy against UVB-induced skin damage and carcinogenesis; however mechanistic studies are still being actively pursued. Here, we investigated the role of nucleotide excision repair (NER) pathway in silibinin's efficacy to repair UVB-induced DNA damage. Normal human dermal fibroblasts (NHDFs) were exposed to UVB (1 mJ/cm2) with pre- or post- silibinin (100 μM) treatment, and cyclobutane pyrimidine dimers (CPDs) formation/repair was measured. Results showed that post-UVB silibinin treatment accelerates DNA repair via activating the NER pathway including the expression of XPA (xeroderma pigmentosum complementation group A), XPB, XPC, and XPG. In UVB exposed fibroblasts, silibinin treatment also increased p53 and GADD45α expression; the key regulators of the NER pathway and DNA repair. Consistently, post-UVB silibinin treatment increased the mRNA transcripts of XPA and GADD45α. Importantly, silibinin showed no effect on UVB-induced DNA damage repair in XPA- and XPB-deficient human dermal fibroblasts suggesting their key role in silibinin-mediated DNA damage repair. Moreover, in the presence of pifithrin-α, an inhibitor of p53, the DNA repair efficacy of silibinin was compromised associated with a reduction in XPA and GADD45α transcripts. Together, these findings suggest that silibinin's efficacy against UVB-induced photodamage is primarily by inhibiting NER and p53; and these findings further support silibinin's usage as a potential inexpensive, effective, and non-toxic agent for skin cancer chemoprevention.

  20. Quercitrin protects skin from UVB-induced oxidative damage.

    PubMed

    Yin, Yuanqin; Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-06-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Ultraviolet radiation induced discharge laser

    DOEpatents

    Gilson, Verle A.; Schriever, Richard L.; Shearer, James W.

    1978-01-01

    An ultraviolet radiation source associated with a suitable cathode-anode electrode structure, disposed in a gas-filled cavity of a high pressure pulsed laser, such as a transverse electric atmosphere (TEA) laser, to achieve free electron production in the gas by photoelectric interaction between ultraviolet radiation and the cathode prior to the gas-exciting cathode-to-anode electrical discharge, thereby providing volume ionization of the gas. The ultraviolet radiation is produced by a light source or by a spark discharge.

  2. 10-Hydroxy-2-decenoic acid prevents ultraviolet A-induced damage and matrix metalloproteinases expression in human dermal fibroblasts.

    PubMed

    Zheng, Jinfen; Lai, Wei; Zhu, Guoxing; Wan, Miaojian; Chen, Jian; Tai, Yan; Lu, Chun

    2013-10-01

    10-Hydroxy-2-decenoic acid (10-HDA) is a major fatty acid component of royal jelly, which has been reported to have a variety of beneficial pharmacological characteristics. However, the effects of 10-HDA on skin photoageing and its potential mechanism of action are unclear. We investigated the protective effects of 10-HDA on ultraviolet (UV) A-induced damage in human dermal fibroblasts (HDFs). We then explored the inhibitory effects of 10-HDA on UVA-induced matrix metalloproteinases (MMPs) expression and elucidated the signalling pathways controlling MMPs inhibition. Primary human dermal fibroblasts were exposed to UVA. Cell proliferation, cellular senescent state and collagen content were analysed using CCK-8, senescence-associated β-galactosidase staining and Sircol collagen assay, respectively. Fluorometric assays were performed to detect the formation of reactive oxygen species (ROS) in the cells. The mRNA levels of MMP-1, MMP-3 and type I (α1) collagen were determined by quantitative real-time PCR. Western blot was applied to detect the expression of MMP-1, MMP-3, JNK and p38 MAPK. HDFs treated with 10-HDA were significantly protected from UVA-induced cytotoxicity, ROS, cellular senescence and stimulated collagen production. Moreover, 10-HDA suppressed the UVA-induced expression of MMP-1 and MMP-3 at both the transcriptional and protein levels. Treatment with 10-HDA also reduced the UVA-induced activation of the JNK and p38 MAPK pathways. The data obtained in this study provide evidence that 10-HDA could prevent UVA-induced damage and inhibit MMP-1 and MMP-3 expressions. Therefore, 10-HDA may be a potential agent for the prevention and treatment of skin photoageing. © 2012 The Authors. Journal of the European Academy of Dermatology and Venereology © 2012 European Academy of Dermatology and Venereology.

  3. Perilla frutescens leaves extract ameliorates ultraviolet radiation-induced extracellular matrix damage in human dermal fibroblasts and hairless mice skin.

    PubMed

    Bae, Jung-Soo; Han, Mira; Shin, Hee Soon; Kim, Min-Kyoung; Shin, Chang-Yup; Lee, Dong Hun; Chung, Jin Ho

    2017-01-04

    Perilla frutescens (L.) Britt. (Lamiaceae) is a traditional herb that is consumed in East Asian countries as a traditional medicine. This traditional herb has been documented for centuries to treat various diseases such as depression, allergies, inflammation and asthma. However, the effect of Perilla frutescens on skin has not been characterized well. The present study aimed to investigate the effect of Perilla frutescens leaves extract (PLE) on ultraviolet radiation-induced extracellular matrix damage in human dermal fibroblasts and hairless mice skin. Human dermal fibroblasts and Skh-1 hairless mice were irradiated with UV and treated with PLE. Protein and mRNA levels of various target molecules were analyzed by western blotting and quantitative RT-PCR, respectively. Histological changes of mouse skin were analyzed by H&E staining. To elucidate underlying mechanism of PLE, activator protein-1 (AP-1) DNA binding assay and the measurement of reactive oxygen species (ROS) were performed. PLE significantly inhibited basal and UV-induced MMP-1 and MMP-3 expression dose-dependently, and also decreased UV-induced phosphorylation of extracellular signal-regulated kinases and c-Jun N-terminal kinases. This inhibitory effects of PLE on MMP-1 and MMP-3 were mediated by reduction of ROS generation and AP-1 DNA binding activity induced by UV. Furthermore, PLE promoted type I procollagen production irrespective of UV irradiation. In the UV-irradiated animal model, PLE significantly reduced epidermal skin thickness and MMP-13 expression induced by UV. Our results demonstrate that PLE has the protective effect against UV-induced dermal matrix damage. Therefore, we suggest that PLE can be a potential agent for prevention of skin aging. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Quercitrin protects skin from UVB-induced oxidative damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Yuanqin; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY; Li, Wenqi

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidativemore » damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries.« less

  5. MAHLI Calibration Target in Ultraviolet Light

    NASA Image and Video Library

    2012-02-07

    During pre-flight testing in March 2011, the Mars Hand Lens Imager MAHLI camera on NASA Mars rover Curiosity took this image of the MAHLI calibration target under illumination from MAHLI two ultraviolet LEDs light emitting diodes.

  6. Nicotinamide Enhances Repair of Arsenic and Ultraviolet Radiation-Induced DNA Damage in HaCaT Keratinocytes and Ex Vivo Human Skin

    PubMed Central

    Thompson, Benjamin C.; Halliday, Gary M.; Damian, Diona L.

    2015-01-01

    Arsenic-induced skin cancer is a significant global health burden. In areas with arsenic contamination of water sources, such as China, Pakistan, Myanmar, Cambodia and especially Bangladesh and West Bengal, large populations are at risk of arsenic-induced skin cancer. Arsenic acts as a co-carcinogen with ultraviolet (UV) radiation and affects DNA damage and repair. Nicotinamide (vitamin B3) reduces premalignant keratoses in sun-damaged skin, likely by prevention of UV-induced cellular energy depletion and enhancement of DNA repair. We investigated whether nicotinamide modifies DNA repair following exposure to UV radiation and sodium arsenite. HaCaT keratinocytes and ex vivo human skin were exposed to 2μM sodium arsenite and low dose (2J/cm2) solar-simulated UV, with and without nicotinamide supplementation. DNA photolesions in the form of 8-oxo-7,8-dihydro-2′-deoxyguanosine and cyclobutane pyrimidine dimers were detected by immunofluorescence. Arsenic exposure significantly increased levels of 8-oxo-7,8-dihydro-2′-deoxyguanosine in irradiated cells. Nicotinamide reduced both types of photolesions in HaCaT keratinocytes and in ex vivo human skin, likely by enhancing DNA repair. These results demonstrate a reduction of two different photolesions over time in two different models in UV and arsenic exposed cells. Nicotinamide is a nontoxic, inexpensive agent with potential for chemoprevention of arsenic induced skin cancer. PMID:25658450

  7. Design Considerations for a Water Treatment System Utilizing Ultra-Violet Light Emitting Diodes

    DTIC Science & Technology

    2014-03-27

    DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING DIODES...the United States. ii AFIT-ENV-14-M-58 DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING DIODES...DISTRIBUTION UNLIMITED. iii AFIT-ENV-14-M-58 DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING

  8. GALEX 1st Light Far Ultraviolet

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image was taken May 21 and 22 by NASA's Galaxy Evolution Explorer. The image was made from data gathered by the far ultraviolet channel of the spacecraft camera during the mission's 'first light' milestone. It shows about 400 celestial objects, appearing in blue, detected over a 3-minute, 20-second period in the constellation Hercules.

    The Galaxy Evolution Explorer's first light images are dedicated to the crew of the Space Shuttle Columbia. The Hercules region was directly above Columbia when it made its last contact with NASA Mission Control on February 1, over the skies of Texas.

    The Galaxy Evolution Explorer launched on April 28 on a mission to map the celestial sky in the ultraviolet and determine the history of star formation in the universe over the last 10 billion years.

  9. Molecular Mechanisms of Ultraviolet Radiation-Induced DNA Damage and Repair

    PubMed Central

    Rastogi, Rajesh P.; Richa; Kumar, Ashok; Tyagi, Madhu B.; Sinha, Rajeshwar P.

    2010-01-01

    DNA is one of the prime molecules, and its stability is of utmost importance for proper functioning and existence of all living systems. Genotoxic chemicals and radiations exert adverse effects on genome stability. Ultraviolet radiation (UVR) (mainly UV-B: 280–315 nm) is one of the powerful agents that can alter the normal state of life by inducing a variety of mutagenic and cytotoxic DNA lesions such as cyclobutane-pyrimidine dimers (CPDs), 6-4 photoproducts (6-4PPs), and their Dewar valence isomers as well as DNA strand breaks by interfering the genome integrity. To counteract these lesions, organisms have developed a number of highly conserved repair mechanisms such as photoreactivation, base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). Additionally, double-strand break repair (by homologous recombination and nonhomologous end joining), SOS response, cell-cycle checkpoints, and programmed cell death (apoptosis) are also operative in various organisms with the expense of specific gene products. This review deals with UV-induced alterations in DNA and its maintenance by various repair mechanisms. PMID:21209706

  10. Paraheliotropic leaf movement in Siratro as a protective mechanism against drought-induced damage to primary photosynthetic reactions: damage by excessive light and heat.

    PubMed

    Ludlow, M M; Björkman, O

    1984-11-01

    Damage to primary photosynthetic reactions by drought, excess light and heat in leaves of Macroptilium atropurpureum Dc. cv. Siratro was assessed by measurements of chlorophyll fluorescence emission kinetics at 77 K (-196°C). Paraheliotropic leaf movement protected waterstressed Siratro leaves from damage by excess light (photoinhibition), by heat, and by the interactive effects of excess light and high leaf temperatures. When the leaves were restrained to a horizontal position, photoinhibition occurred and the degree of photoinhibitory damage increased with the time of exposure to high levels of solar radiation. Severe inhibition was followed by leaf death, but leaves gradually recovered from moderate damage. This drought-induced photoinhibitory damage seemed more closely related to low leaf water potential than to low leaf conductance. Exposure to leaf temperatures above 42°C caused damage to the photosynthetic system even in the dark and leaves died at 48°C. Between 42 and 48°C the degree of heat damage increased with the time of exposure, but recovery from moderate heat damage occurred over several days. The threshold temperature for direct heat damage increased with the growth temperature regime, but was unaffected by water-stress history or by current leaf water status. No direct heat damage occurred below 42°C, but in water-stressed plants photoinhibition increased with increasing leaf temperature in the range 31-42°C and with increasing photon flux density up to full sunglight values. Thus, water stress evidently predisposes the photosynthetic system to photoinhibition and high leaf temperature exacerbates this photoinhibitory damage. It seems probable that, under the climatic conditions where Siratro occurs in nature, but in the absence of paraheliotropic leaf movement, photoinhibitory damage would occur more frequently during drought than would direct heat damage.

  11. Characterization of process-induced damage in Cu/low-k interconnect structure by microscopic infrared spectroscopy with polarized infrared light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seki, Hirofumi, E-mail: Hirofumi-Seki@trc.toray.co.jp; Hashimoto, Hideki; Ozaki, Yukihiro

    Microscopic Fourier-transform infrared (FT-IR) spectra are measured for a Cu/low-k interconnect structure using polarized IR light for different widths of low-k spaces and Cu lines, and for different heights of Cu lines, on Si substrates. Although the widths of the Cu line and the low-k space are 70 nm each, considerably smaller than the wavelength of the IR light, the FT-IR spectra of the low-k film were obtained for the Cu/low-k interconnect structure. A suitable method was established for measuring the process-induced damage in a low-k film that was not detected by the TEM-EELS (Transmission Electron Microscope-Electron Energy-Loss Spectroscopy) using microscopicmore » IR polarized light. Based on the IR results, it was presumed that the FT-IR spectra mainly reflect the structural changes in the sidewalls of the low-k films for Cu/low-k interconnect structures, and the mechanism of generating process-induced damage involves the generation of Si-OH groups in the low-k film when the Si-CH{sub 3} bonds break during the fabrication processes. The Si-OH groups attract moisture and the OH peak intensity increases. It was concluded that the increase in the OH groups in the low-k film is a sensitive indicator of low-k damage. We achieved the characterization of the process-induced damage that was not detected by the TEM-EELS and speculated that the proposed method is applicable to interconnects with line and space widths of 70 nm/70 nm and on shorter scales of leading edge devices. The location of process-induced damage and its mechanism for the Cu/low-k interconnect structure were revealed via the measurement method.« less

  12. Ultraviolet Shadowing of RNA Can Cause Significant Chemical Damage in Seconds

    PubMed Central

    Kladwang, Wipapat; Hum, Justine; Das, Rhiju

    2012-01-01

    Chemical purity of RNA samples is important for high-precision studies of RNA folding and catalytic behavior, but photodamage accrued during ultraviolet (UV) shadowing steps of sample preparation can reduce this purity. Here, we report the quantitation of UV-induced damage by using reverse transcription and single-nucleotide-resolution capillary electrophoresis. We found photolesions in a dozen natural and artificial RNAs; across multiple sequence contexts, dominantly at but not limited to pyrimidine doublets; and from multiple lamps recommended for UV shadowing. Irradiation time-courses revealed detectable damage within a few seconds of exposure for 254 nm lamps held at a distance of 5 to 10 cm from 0.5-mm thickness gels. Under these conditions, 200-nucleotide RNAs subjected to 20 seconds of UV shadowing incurred damage to 16-27% of molecules; and, due to a ‘skin effect’, the molecule-by-molecule distribution of lesions gave 4-fold higher variance than a Poisson distribution. Thicker gels, longer wavelength lamps, and shorter exposure times reduced but did not eliminate damage. These results suggest that RNA biophysical studies should report precautions taken to avoid artifactual heterogeneity from UV shadowing. PMID:22816040

  13. Lycium barbarum polysaccharide protects human keratinocytes against UVB-induced photo-damage.

    PubMed

    Li, Huaping; Li, Zhenjie; Peng, Liqian; Jiang, Na; Liu, Qing; Zhang, Erting; Liang, Bihua; Li, Runxiang; Zhu, Huilan

    2017-02-01

    Ultraviolet B (UVB) irradiation plays a key role in skin damage, which induces oxidative and inflammatory damages, thereby causing photoaging or photocarcinogenesis. Lycium barbarum polysaccharide (LBP), the most biologically active fraction of wolfberry, possesses significant antioxidative and anti-inflammatory effects on multiple tissues. In the present study, the photoprotective effects and potential underlying molecular mechanisms of LBP against UVB-induced photo-damage were investigated in immortalized human keratinocytes (HaCaT cells). The data indicated that pretreatment with LBP significantly attenuated UVB-induced decrease in cell viability, increase in ROS production and DNA damage. LBP also significantly suppressed UVB-induced p38 MAPK activation, and subsequently reversed caspase-3 activation and MMP-9 expression. Notably, LBP was found to induce Nrf2 nuclear translocation and increase the expression of Nrf2-dependent ARE target genes. Furthermore, the protective effects of LBP were abolished by siRNA-mediated Nrf2 silencing. These results showed that the antioxidant LBP could partially protect against UVB irradiation-induced photo-damage through activation of Nrf2/ARE pathway, thereby scavenging ROS and reducing DNA damage, and subsequently suppressing UVB-induced p38 MAP pathway. Thus, LBP can be potentially used for skincare against oxidative damage from environmental insults.

  14. Editor's Highlight: Periodic Exposure to Smartphone-Mimic Low-Luminance Blue Light Induces Retina Damage Through Bcl-2/BAX-Dependent Apoptosis.

    PubMed

    Lin, Cheng-Hui; Wu, Man-Ru; Li, Ching-Hao; Cheng, Hui-Wen; Huang, Shih-Hsuan; Tsai, Chi-Hao; Lin, Fan-Li; Ho, Jau-Der; Kang, Jaw-Jou; Hsiao, George; Cheng, Yu-Wen

    2017-05-01

    Blue light-induced phototoxicity plays an important role in retinal degeneration and might cause damage as a consequence of smartphone dependency. Here, we investigated the effects of periodic exposure to blue light-emitting diode in a cell model and a rat retinal damage model. Retinal pigment epithelium (RPE) cells were subjected to blue light in vitro and the effects of blue light on activation of key apoptotic pathways were examined by measuring the levels of Bcl-2, Bax, Fas ligand (FasL), Fas-associated protein with death domain (FADD), and caspase-3 protein. Blue light treatment of RPE cells increased Bax, cleaved caspase-3, FasL, and FADD expression, inhibited Bcl-2 and Bcl-xL accumulation, and inhibited Bcl-2/Bax association. A rat model of retinal damage was developed with or without continuous or periodic exposure to blue light for 28 days. In this rat model of retinal damage, periodic blue light exposure caused fundus damage, decreased total retinal thickness, caused atrophy of photoreceptors, and injured neuron transduction in the retina. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Can the circadian system of a diurnal and a nocturnal rodent entrain to ultraviolet light?

    PubMed

    Hut, R A; Scheper, A; Daan, S

    2000-01-01

    Spectral measurements of sunlight throughout the day show close correspondence between the timing of above ground activity of the European ground squirrel and the presence of ultraviolet light in the solar spectrum. However, in a standard entrainment experiment ground squirrels show no entrainment to ultraviolet light, while Syrian hamsters do entrain under the same protocol. Presented transmittance spectra for lenses, corneas, and vitreous bodies may explain the different results of the entrainment experiment. We found ultraviolet light transmittance in the colourless hamster lens (50% cut-off at 341 nm), but not in the yellow ground squirrel lens (50% cut-off around 493 nm). Ultraviolet sensitivity in the ground squirrels based upon possible fluorescence mechanisms was not evident. Possible functions of ultraviolet lens filters in diurnal mammals are discussed, and compared with nocturnal mammals and diurnal birds. Species of the latter two groups lack ultraviolet filtering properties of their lenses and their circadian system is known to respond to ultraviolet light, a feature that does not necessarily has to depend on ultraviolet photoreceptors. Although the circadian system of several species responds to ultraviolet light, we argue that the role of ultraviolet light as a natural Zeitgeber is probably limited.

  16. Light shift from ultraviolet to near infrared light: Cerenkov luminescence with gold nanocluster - near infrared (AuNc-NIR) conjugates

    NASA Astrophysics Data System (ADS)

    Yoo, Su Woong; Mun, Hyoyoung; Oh, Gyungseok; Ryu, Youngjae; Kim, Min-Gon; Chung, Euiheon

    2015-03-01

    Cerenkov luminescence (CL) is generated when a charged particle moves faster than the speed of light in dielectric media. Recently CL imaging becomes an emerging technique with the use of radioisotopes. However, due to relatively weak blue light production and massive tissue attenuation, CL has not been applied widely. Therefore, we attempted to shift the CL emission to more near infrared (NIR) spectrum for better tissue penetration by using Cerenkov Radiation Energy Transfer (CRET). Gold nanoclusters were conjugated with NIR dye molecules (AuNc-IR820 and AuNc-ICG) to be activated with ultraviolet light. We found optimal conjugate concentrations of AuNc-NIR conjugates by spectroscopy system to generate maximal photon emission. When exposed by ultraviolet light, the emission of NIR light from the conjugates were verified. In quantitative analysis, AuNc-NIR conjugates emit brighter light signal than pure AuNc. This result implies that NIR fluorescent dyes (both IR820 and ICG) can be excited by the emission from AuNc. Following the above baseline experiment, we mixed F-18 fluorodeoxyglucose (F-18 FDG) radioisotope to the AuNc- NIR conjugates, to confirm NIR emission induced from Cerenkov radiation. Long pass filter was used to block Cerenkov luminescence and to collect the emission from AuNc-NIR conjugates. Instead of one long exposure imaging with CCD, we used multiple frame scheme to eliminate gamma radiation strike in each frame prior to combination. In summary, we obtained NIR emission light from AuNc-NIR conjugated dyes that is induced from CL. We plan to perform in vivo small animal imaging with these conjugates to assess better tissue penetration.

  17. The protective effects of bilberry and lingonberry extracts against UV light-induced retinal photoreceptor cell damage in vitro.

    PubMed

    Ogawa, Kenjirou; Tsuruma, Kazuhiro; Tanaka, Junji; Kakino, Mamoru; Kobayashi, Saori; Shimazawa, Masamitsu; Hara, Hideaki

    2013-10-30

    Bilberry extract (B-ext) and lingonberry extract (L-ext) are currently used as health supplements. We investigated the protective mechanisms of the B-ext and L-ext against ultraviolet A (UVA)-induced retinal photoreceptor cell damage. Cultured murine photoreceptor (661W) cells were exposed to UVA following treatment with B-ext and L-ext and their main constituents (cyanidin, delphinidin, malvidin, trans-resveratrol, and procyanidin). B-ext, L-ext, and constituents improved cell viability and suppressed ROS generation. Phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), c-Jun N-terminal kinase (JNK), and protein kinase B (Akt) were analyzed by Western blotting. B-ext and cyanidin inhibited phosphorylation of p38 MAPK, and B-ext also inhibited phosphorylation of JNK by UVA. L-ext, trans-resveratrol, and procyanidin alleviated the reduction of phosphorylated Akt levels by UVA. Finally, a cotreatment with B-ext and L-ext showed an additive effect on cell viability. Our findings suggest that both B-ext and L-ext endow protective effects against UVA-induced retinal damage.

  18. GALEX 1st Light Far Ultraviolet

    NASA Image and Video Library

    2003-05-28

    This image was taken May 21 and 22, 2003 by NASA Galaxy Evolution Explorer. The image was made from data gathered by the far ultraviolet channel of the spacecraft camera during the mission first light milestone. It shows about 400 celestial objects

  19. A visible light-induced photocatalytic silver enhancement reaction for gravimetric biosensors.

    PubMed

    Ko, Wooree; Yim, Changyong; Jung, Namchul; Joo, Jinmyoung; Jeon, Sangmin; Seo, Hyejung; Lee, Soo Suk; Park, Jae Chan

    2011-10-07

    We have developed a novel microgravimetric immunosensor using a WO(3) nanoparticle-modified immunoassay and a silver enhancement reaction. When the nanoparticles in silver ion solution (i.e.  AgNO(3)) are exposed to visible light, the silver ions are photocatalytically reduced and form a metallic silver coating on the nanoparticles. This silver coating consequently induces changes in the mass and light absorption spectrum. Although photocatalytic reduction reactions can be achieved using ultraviolet (UV) light and TiO(2) nanoparticles as described in our previous publication (Seo et al 2010 Nanotechnology 21 505502), the use of UV light in biosensing applications has drawbacks in that UV light can damage proteins. In addition, conventional quartz crystal substrates must be passivated to prevent undesirable silver ion reduction on their gold-coated sensing surfaces. We addressed these problems by adopting a visible light-induced photocatalytic silver enhancement method using WO(3) nanoparticles and lateral field excited (LFE) quartz crystals. As a proof-of-concept demonstration of the technique, streptavidin was adsorbed onto an LFE quartz crystal, and its mass was enhanced with biotinylated WO(3) nanoparticles, this being followed by a photocatalytic silver enhancement reaction. The mass change due to the enhancement was found to be > 30 times greater than the mass change obtained with the streptavidin alone.

  20. Deep ultraviolet semiconductor light sources for sensing and security

    NASA Astrophysics Data System (ADS)

    Shatalov, Max; Bilenko, Yuri; Yang, Jinwei; Gaska, Remis

    2009-09-01

    III-Nitride based deep ultraviolet (DUV) light emitting diodes (LEDs) rapidly penetrate into sensing market owing to several advantages over traditional UV sources (i.e. mercury, xenon and deuterium lamps). Small size, a wide choice of peak emission wavelengths, lower power consumption and reduced cost offer flexibility to system integrators. Short emission wavelength offer advantages for gas detection and optical sensing systems based on UV induced fluorescence. Large modulation bandwidth for these devices makes them attractive for frequency-domain spectroscopy. We will review present status of DUV LED technology and discuss recent advances in short wavelength emitters and high power LED lamps.

  1. Silibinin inhibits ultraviolet B radiation-induced DNA-damage and apoptosis by enhancing interleukin-12 expression in JB6 cells and SKH-1 hairless mouse skin.

    PubMed

    Narayanapillai, Sreekanth; Agarwal, Chapla; Deep, Gagan; Agarwal, Rajesh

    2014-06-01

    Recent studies have demonstrated silibinin efficacy against ultraviolet B (UVB)-induced skin carcinogenesis via different mechanisms in cell lines and animal models; however, its role in regulating interleukin-12 (IL-12), an immunomodulatory cytokine that reduces UVB-induced DNA damage and apoptosis, is not known. Here, we report that UVB irradiation causes caspase 3 and PARP cleavage and apoptosis, and addition of recombinant IL-12 or silibinin immediately after UVB significantly protects UVB-induced apoptosis in JB6 cells. IL-12 antibody-mediated blocking of IL-12 activity compromised the protective effects of both IL-12 and silibinin. Both silibinin and IL-12 also accelerated the repair of UVB-caused cyclobutane-pyrimidine dimers (CPDs) in JB6 cells. Additional studies confirmed that indeed silibinin causes a significant increase in IL-12 levels in UVB-irradiated JB6 cells as well as in mouse skin epidermis, and that similar to cell-culture findings, silibinin topical application immediately after UVB exposure causes a strong protection against UVB-induced TUNEL positive cells in epidermis possibly through a significantly accelerated repair of UVB-caused CPDs. Together, these findings for the first time provide an important insight regarding the pharmacological mechanism wherein silibinin induces endogenous IL-12 in its efficacy against UVB-caused skin damages. In view of the fact that an enhanced endogenous IL-12 level could effectively remove UVB-caused DNA damage and associated skin cancer, our findings suggest that the use of silibinin in UVB-damaged human skin would also be a practical and translational strategy to manage solar radiation-caused skin damages as well as skin cancer. © 2013 Wiley Periodicals, Inc.

  2. RAD18 and associated proteins are immobilized in nuclear foci in human cells entering S-phase with ultraviolet light-induced damage

    PubMed Central

    Watson, Nicholas B.; Nelson, Eric; Digman, Michelle; Thornburg, Joshua A.; Alphenaar, Bruce W.; McGregor, W. Glenn

    2008-01-01

    Proteins required for translesion DNA synthesis localize in nuclear foci of cells with replication-blocking lesions. The dynamics of this process were examined in human cells with fluorescence-based biophysical techniques. Photobleaching recovery and raster image correlation spectroscopy experiments indicated that involvement in the nuclear foci reduced the movement of RAD18 from diffusion-controlled to virtual immobility. Examination of the mobility of REV1 indicated that it is similarly immobilized when it is observed in nuclear foci. Reducing the level of RAD18 greatly reduced the focal accumulation of REV1 and reduced UV mutagenesis to background frequencies. Fluorescence lifetime measurements indicated that RAD18 and RAD6A or polη only transferred resonance energy when these proteins colocalized in damage-induced nuclear foci, indicating a close physical association only within such foci. Our data support a model in which RAD18 within damage-induced nuclear foci is immobilized and is required for recruitment of Y-family DNA polymerases and subsequent mutagenesis. In the absence of damage these proteins are not physically associated within the nucleoplasm. PMID:18926833

  3. Molecular and sensory mechanisms to mitigate sunlight-induced DNA damage in treefrog tadpoles.

    PubMed

    Schuch, André P; Lipinski, Victor M; Santos, Mauricio B; Santos, Caroline P; Jardim, Sinara S; Cechin, Sonia Z; Loreto, Elgion L S

    2015-10-01

    The increased incidence of solar ultraviolet B (UVB) radiation has been proposed as an environmental stressor, which may help to explain the enigmatic decline of amphibian populations worldwide. Despite growing knowledge regarding the UV-induced biological effects in several amphibian models, little is known about the efficacy of DNA repair pathways. In addition, little attention has been given to the interplay between these molecular mechanisms with other physiological strategies that avoid the damage induced by sunlight. Here, DNA lesions induced by environmental doses of solar UVB and UVA radiation were detected in genomic DNA samples of treefrog tadpoles (Hypsiboas pulchellus) and their DNA repair activity was evaluated. These data were complemented by monitoring the induction of apoptosis in blood cells and tadpole survival. Furthermore, the tadpoles' ability to perceive and escape from UV wavelengths was evaluated as an additional strategy of photoprotection. The results show that tadpoles are very sensitive to UVB light, which could be explained by the slow DNA repair rates for both cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6,4) pyrimidone photoproducts (6,4PPs). However, they were resistant to UVA, probably as a result of the activation of photolyases during UVA irradiation. Surprisingly, a sensory mechanism that triggers their escape from UVB and UVA light avoids the generation of DNA damage and helps to maintain the genomic integrity. This work demonstrates the genotoxic impact of both UVB and UVA radiation on tadpoles and emphasizes the importance of the interplay between molecular and sensory mechanisms to minimize the damage caused by sunlight. © 2015. Published by The Company of Biologists Ltd.

  4. Quantitatively characterizing microstructural variations of skin tissues during ultraviolet radiation damaging process based on Mueller matrix polarimetry

    NASA Astrophysics Data System (ADS)

    Sheng, Wei; He, Honghui; Dong, Yang; Ma, Hui

    2018-02-01

    As one of the most fundamental features of light, polarization can be used to develop imaging techniques which can provide insight into the optical and structural properties of tissues. Especially, the Mueller matrix polarimetry is suitable to detect the changes in collagen and elastic fibres, which are the main compositions of skin tissue. Here we demonstrate a novel quantitative, non-contact and in situ technique to monitor the microstructural variations of skin tissue during ultraviolet radiation (UVR) induced photoaging based on Mueller matrix polarimetry. Specifically, we measure the twodimensional (2D) backscattering Mueller matrices of nude mouse skin samples, then calculate and analyze the Mueller matrix derived parameters during the skin photoaging and self-repairing processes. To induce three-day skin photoaging, the back skin of each mouse is irradiated with UVR (0.05J/cm2) for five minutes per day. After UVR, the microstructures of the nude mouse skin are damaged. During the process of UV damage, we measure the backscattering Mueller matrices of the mouse skin samples and examine the relationship between the Mueller matrix parameters and the microstructural variations of skin tissue quantitatively. The comparisons between the UVR damaged groups with and without sunscreens show that the Mueller matrix derived parameters are potential indicators for fibrous microstructure variation in skin tissue. The pathological examinations and Monte Carlo simulations confirm the relationship between the values of Mueller matrix parameters and the changes of fibrous structures. Combined with smart phones or wearable devices, this technique may have a good application prospect in the fields of cosmetics and dermatological health.

  5. Protective effect of 3,4-dihydroxybenzoic acid isolated from Cladophora wrightiana Harvey against ultraviolet B radiation-induced cell damage in human HaCaT keratinocytes.

    PubMed

    Cha, Ji Won; Piao, Mei Jing; Kim, Ki Cheon; Zheng, Jian; Yao, Cheng Wen; Hyun, Chang Lim; Kang, Hee Kyoung; Yoo, Eun Sook; Koh, Young Sang; Lee, Nam Ho; Ko, Mi Hee; Hyun, Jin Won

    2014-03-01

    The aim of the present study was to elucidate the protective properties of 3,4-dihydroxybenzoic acid (DBA) isolated from Cladophora wrightiana Harvey (a green alga) against ultraviolet B (UVB)-induced damage to human HaCaT keratinocytes. DBA exhibited scavenging actions against the 1,1-diphenyl-2-picrylhydrazyl radical, the superoxide anion, and the hydroxyl radical. Furthermore, DBA decreased the levels of intracellular reactive oxygen species generated by hydrogen peroxide or UVB treatment of the cells. DBA also decreased the UVB-augmented levels of phospho-histone H2A.X and the extent of comet tail formation, which are both indications of DNA damage. In addition, the compound safeguarded keratinocytes from UVB-induced injury by reversing the production of apoptotic bodies, overturning the disruption of mitochondrial membrane potential, increasing the expression of the anti-apoptotic protein, B-cell lymphoma 2, and decreasing the expression of the pro-apoptotic proteins, Bcl-2-associated X and cleaved caspase-3. Taken together, these results demonstrate that DBA isolated from a green alga protects human keratinocytes against UVB-induced oxidative stress and apoptosis.

  6. Deep ultraviolet light-emitting and laser diodes

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Asif, Fatima; Muhtadi, Sakib

    2016-02-01

    Nearly all the air-water purification/polymer curing systems and bio-medical instruments require 250-300 nm wavelength ultraviolet light for which mercury lamps are primarily used. As a potential replacement for these hazardous mercury lamps, several global research teams are developing AlGaN based Deep Ultraviolet (DUV) light emitting diodes (LEDs) and DUV LED Lamps and Laser Diodes over Sapphire and AlN substrates. In this paper, we review the current research focus and the latest device results. In addition to the current results we also discuss a new quasipseudomorphic device design approach. This approach which is much easier to integrate in a commercial production setting was successfully used to demonstrate UVC devices on Sapphire substrates with performance levels equal to or better than the conventional relaxed device designs.

  7. Ultraviolet photometry from the Orbiting Astronomical Observatory. XXVIII - Ultraviolet light curves for Alpha Lupi and BW Vulpeculae

    NASA Technical Reports Server (NTRS)

    Lesh, J. R.

    1978-01-01

    Photometric data from the Wisconsin Experiment Package on OAO-2 have been used to construct light curves at three ultraviolet wavelengths for Alpha Lup and at seven wavelengths for BW Vul. Both stars are well-known variables of the Beta Cephei (Beta Canis Majoris) type. The light curves for Alpha Lup are in good agreement with the radial-velocity period. A temperature variation of 400-500 K is derived. The BW Vul light curves confirm recent ephemerides based on a secularly varying period and show a stillstand near light maximum at some wavelengths. Both stars exhibit increasing light amplitude at the shortest ultraviolet wavelengths. There is little evidence for cycle-to-cycle variations on a time scale of the order of 1 day.

  8. Effect of green light spectra on the reduction of retinal damage and stress in goldfish, Carassius auratus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Jin Ah; Kim, Na Na; Choi, Young Jae

    We investigated the effect of light spectra on retinal damage and stress in goldfish using green (530 nm) and red (620 nm) light emitting diodes (LEDs) at three intensities each (0.5, 1.0, and 1.5 W/m{sup 2}). We measured the change in the levels of plasma cortisol and H{sub 2}O{sub 2} and expression and levels of caspase-3. The apoptotic response of green and red LED spectra was assessed using the terminal transferase dUTP nick end labeling (TUNEL) assay. Stress indicator (cortisol and H{sub 2}O{sub 2}) and apoptosis-related genes (caspase-3) decreased in green light, but increased in red light with higher light intensities over time.more » The TUNEL assay revealed that more apoptotic cells were detected in outer nuclear layers after exposure to red LED over time with the increase in light intensity, than the other spectra. These results indicate that green light efficiently reduces retinal damage and stress, whereas red light induces it. Therefore, red light-induced retina damage may induce apoptosis in goldfish retina. -- Highlights: •Green light efficiently reduces retinal damage and stress. •Green spectra reduce caspase production and apoptosis. •Red light-induced retina damage may induce apoptosis in goldfish retina. •The retina of goldfish recognizes green spectra as a stable environment.« less

  9. Light shield and cooling apparatus. [high intensity ultraviolet lamp

    NASA Technical Reports Server (NTRS)

    Meador, T. G., Jr. (Inventor)

    1974-01-01

    A light shield and cooling apparatus was developed for a high intensity ultraviolet lamp including water and high pressure air for cooling and additional apparatus for shielding the light and suppressing the high pressure air noise.

  10. Repair of Ultraviolet Radiation Damage in Sensitive Mutants of Micrococcus radiodurans

    PubMed Central

    Moseley, B. E. B.

    1969-01-01

    Various aspects of the repair of ultraviolet (UV) radiation-induced damage were compared in wild-type Micrococcus radiodurans and two UV-sensitive mutants. Unlike the wild type, the mutants are more sensitive to radiation at 265 nm than at 280 nm. The delay in deoxyribonucleic acid (DNA) synthesis following exposure to UV is about seven times as long in the mutants as in the wild type. All three strains excise UV-induced pyrimidine dimers from their DNA, although the rate at which cytosine-thymine dimers are excised is slower in the mutants. The three strains also mend the single-strand breaks that appear in the irradiated DNA as a result of dimer excision, although the process is less efficient in the mutants. It is suggested that the increased sensitivity of the mutants to UV radiation may be caused by a partial defect in the second step of dimer excision. PMID:5773016

  11. Roles of PCNA ubiquitination and TLS polymerases κ and η in the bypass of methyl methanesulfonate-induced DNA damage

    PubMed Central

    Wit, Niek; Buoninfante, Olimpia Alessandra; van den Berk, Paul C.M.; Jansen, Jacob G.; Hogenbirk, Marc A.; de Wind, Niels; Jacobs, Heinz

    2015-01-01

    Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) κ is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), ultraviolet (UV) light and the alkylating agent methyl methanesulfonate (MMS). As TLS polymerases are intrinsically error-prone, tight regulation of their activity is required. One level of control is provided by ubiquitination of the homotrimeric DNA clamp PCNA at lysine residue 164 (PCNA-Ub). We here show that Polκ can function independently of PCNA modification and that Polη can function as a backup during TLS of MMS-induced lesions. Compared to cell lines deficient for PCNA modification (PcnaK164R) or Polκ, double mutant cell lines display hypersensitivity to MMS but not to BPDE or UV-C. Double mutant cells also displayed delayed post-replicative TLS, accumulate higher levels of replication stress and delayed S-phase progression. Furthermore, we show that Polη and Polκ are redundant in the DNA damage bypass of MMS-induced DNA damage. Taken together, we provide evidence for PCNA-Ub-independent activation of Polκ and establish Polη as an important backup polymerase in the absence of Polκ in response to MMS-induced DNA damage. PMID:25505145

  12. Ultraviolet light absorbers having two different chromophors in the same molecule

    DOEpatents

    Vogl, O.; Li, S.

    1983-10-06

    This invention relates to novel ultraviolet light absorbers having two chromophors in the same molecule, and more particularly to benzotriazole substituted dihydroxybenzophenones and acetophenones. More particularly, this invention relates to 3,5-(di(2H-benzotriazole-2-yl))-2,4-dihydroxybenzophenone and 3,5-(di(2H-benzotriazole-2-yl))-2,4-dihydroxyacetophenone which are particularly useful as an ultraviolet light absorbers.

  13. Visible light neutralizes the effect produced by ultraviolet radiation in proteins.

    PubMed

    Espinoza, J Horacio; Mercado-Uribe, Hilda

    2017-02-01

    The damage produced by UV-C radiation (100-280nm) in organisms and cells is a well known fact. The main reactions of proteins to UV-C radiation consist in the alteration of their secondary structures, exposure of hydrophobic residues, unfolding and aggregation. Furthermore, it has been found that electromagnetic radiation of lower energy (visible light, where wavelengths are between 400 and 750nm) also induces different disturbances in biomolecules. For instance, it has been observed that blue visible light from emitting diodes (LEDs) produces severe damage in murine cone photoreceptor-derived cells, and it can be even more harmful for some organisms than UV radiation. Recently, it has been found that the exposure of proteins to green and red light produces conformational changes, considerably increasing their cohesion enthalpies. This is presumably due to the strengthening of the hydrogen bonds and the formation of new ones. Therefore, it seems that visible light acts contrary to what it is observed for UV-C: instead of unfolding the proteins it folds them further, halting the damage produced by UV-C. This can be understood if we consider the modification of the folding energy-landscape; visible light induces the descent of the proteins into deeper states impeding the unfolding produced by UV-C. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Skin β-endorphin mediates addiction to ultraviolet light

    PubMed Central

    Fell, Gillian L.; Robinson, Kathleen C.; Mao, Jianren; Woolf, Clifford J.; Fisher, David E.

    2014-01-01

    SUMMARY Ultraviolet light is an established carcinogen yet evidence suggests that UV-seeking behavior has addictive features. Following UV exposure, epidermal keratinocytes synthesize Proopiomelanocortin that is processed to Melanocyte Stimulating Hormone, inducing tanning. We show that in rodents another POMC-derived peptide, β-endorphin, is coordinately synthesized in skin, elevating plasma levels after low-dose UV. Increases in pain-related thresholds are observed, and reversed by pharmacologic opioid antagonism. Opioid blockade also elicits withdrawal signs after chronic UV exposure. This effect was sufficient to guide operant behavioral choices to avoidance of opioid withdrawal (conditioned place aversion). These UV-induced nociceptive and behavioral effects were absent in β-endorphin knockout mice and in mice lacking p53-mediated POMC induction in epidermal keratinocytes. While primordial UV addiction, mediated by the hedonic action of β-endorphin and anhedonic effects of withdrawal, may theoretically have enhanced evolutionary vitamin D biosynthesis, it now may contribute to the relentless rise in skin cancer incidence in man. PMID:24949966

  15. Focal brain lesions induced with ultraviolet irradiation.

    PubMed

    Nakata, Mariko; Nagasaka, Kazuaki; Shimoda, Masayuki; Takashima, Ichiro; Yamamoto, Shinya

    2018-05-22

    Lesion and inactivation methods have played important roles in neuroscience studies. However, traditional techniques for creating a brain lesion are highly invasive, and control of lesion size and shape using these techniques is not easy. Here, we developed a novel method for creating a lesion on the cortical surface via 365 nm ultraviolet (UV) irradiation without breaking the dura mater. We demonstrated that 2.0 mWh UV irradiation, but not the same amount of non-UV light irradiation, induced an inverted bell-shaped lesion with neuronal loss and accumulation of glial cells. Moreover, the volume of the UV irradiation-induced lesion depended on the UV light exposure amount. We further succeeded in visualizing the lesioned site in a living animal using magnetic resonance imaging (MRI). Importantly, we also observed using an optical imaging technique that the spread of neural activation evoked by adjacent cortical stimulation disappeared only at the UV-irradiated site. In summary, UV irradiation can induce a focal brain lesion with a stable shape and size in a less invasive manner than traditional lesioning methods. This method is applicable to not only neuroscientific lesion experiments but also studies of the focal brain injury recovery process.

  16. ULTRAVIOLET LIGHT DISINFECTION OF COMBINED SEWER OVERFLOW (NEW ORLEANS)

    EPA Science Inventory

    The objective of this state-of-the-art review is to examine the performance and effectiveness of ultraviolet (UV) light disinfection for combined sewer overflow (CSO) applications. Topics presented include the use of UV light as a disinfecting agent, its practical applications, d...

  17. Red light improves spermatozoa motility and does not induce oxidative DNA damage

    NASA Astrophysics Data System (ADS)

    Preece, Daryl; Chow, Kay W.; Gomez-Godinez, Veronica; Gustafson, Kyle; Esener, Selin; Ravida, Nicole; Durrant, Barbara; Berns, Michael W.

    2017-04-01

    The ability to successfully fertilize ova relies upon the swimming ability of spermatozoa. Both in humans and in animals, sperm motility has been used as a metric for the viability of semen samples. Recently, several studies have examined the efficacy of low dosage red light exposure for cellular repair and increasing sperm motility. Of prime importance to the practical application of this technique is the absence of DNA damage caused by radiation exposure. In this study, we examine the effect of 633 nm coherent, red laser light on sperm motility using a novel wavelet-based algorithm that allows for direct measurement of curvilinear velocity under red light illumination. This new algorithm gives results comparable to the standard computer-assisted sperm analysis (CASA) system. We then assess the safety of red light treatment of sperm by analyzing, (1) the levels of double-strand breaks in the DNA, and (2) oxidative damage in the sperm DNA. The results demonstrate that for the parameters used there are insignificant differences in oxidative DNA damage as a result of irradiation.

  18. HUBBLE IDENTIFIES SOURCE OF ULTRAVIOLET LIGHT IN AN OLD GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Hubble Space Telescope's exquisite resolution has allowed astronomers to resolve, for the first time, hot blue stars deep inside an elliptical galaxy. The swarm of nearly 8,000 blue stars resembles a blizzard of snowflakes near the core (lower right) of the neighboring galaxy M32, located 2.5 million light-years away in the constellation Andromeda. Hubble confirms that the ultraviolet light comes from a population of extremely hot helium-burning stars at a late stage in their lives. Unlike the Sun, which burns hydrogen into helium, these old stars exhausted their central hydrogen long ago, and now burn helium into heavier elements. The observations, taken in October 1998, were made with the camera mode of the Space Telescope Imaging Spectrograph (STIS) in ultraviolet light. The STIS field of view is only a small portion of the entire galaxy, which is 20 times wider on the sky. For reference, the full moon is 70 times wider than the STIS field-of-view. The bright center of the galaxy was placed on the right side of the image, allowing fainter stars to be seen on the left side of the image. These results are to be published in the March 1, 2000 issue of The Astrophysical Journal. Thirty years ago, the first ultraviolet observations of elliptical galaxies showed that they were surprisingly bright when viewed in ultraviolet light. Before those pioneering UV observations, old groups of stars were assumed to be relatively cool and thus extremely faint in the ultraviolet. Over the years since the initial discovery of this unexpected ultraviolet light, indirect evidence has accumulated that it originates in a population of old, but hot, helium-burning stars. Now Hubble provides the first direct visual evidence. Nearby elliptical galaxies are thought to be relatively simple galaxies comprised of old stars. Because they are among the brightest objects in the Universe, this simplicity makes them useful for tracing the evolution of stars and galaxies. Credits: NASA and Thomas

  19. High-space resolution imaging plate analysis of extreme ultraviolet (EUV) light from tin laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Musgrave, Christopher S. A.; Murakami, Takehiro; Ugomori, Teruyuki; Yoshida, Kensuke; Fujioka, Shinsuke; Nishimura, Hiroaki; Atarashi, Hironori; Iyoda, Tomokazu; Nagai, Keiji

    2017-03-01

    With the advent of high volume manufacturing capabilities by extreme ultraviolet lithography, constant improvements in light source design and cost-efficiency are required. Currently, light intensity and conversion efficiency (CE) measurments are obtained by charged couple devices, faraday cups etc, but also phoshpor imaging plates (IPs) (BaFBr:Eu). IPs are sensitive to light and high-energy species, which is ideal for studying extreme ultraviolet (EUV) light from laser produced plasmas (LPPs). In this work, we used IPs to observe a large angular distribution (10°-90°). We ablated a tin target by high-energy lasers (1064 nm Nd:YAG, 1010 and 1011 W/cm2) to generate the EUV light. The europium ions in the IP were trapped in a higher energy state from exposure to EUV light and high-energy species. The light intensity was angular dependent; therefore excitation of the IP depends on the angle, and so highly informative about the LPP. We obtained high-space resolution (345 μm, 0.2°) angular distribution and grazing spectrometer (5-20 nm grate) data simultaneously at different target to IP distances (103 mm and 200 mm). Two laser systems and IP types (BAS-TR and BAS-SR) were also compared. The cosine fitting values from the IP data were used to calculate the CE to be 1.6% (SD ± 0.2) at 13.5 nm 2% bandwidth. Finally, a practical assessment of IPs and a damage issue are disclosed.

  20. GALEX 1st Light Near and Far Ultraviolet -100

    NASA Image and Video Library

    2003-05-28

    NASA's Galaxy Evolution Explorer took this image on May 21 and 22, 2003. The image was made from data gathered by the two channels of the spacecraft camera during the mission's "first light" milestone. It shows about 100 celestial objects in the constellation Hercules. The reddish objects represent those detected by the camera's near ultraviolet channel over a 5-minute period, while bluish objects were detected over a 3-minute period by the camera's far ultraviolet channel. The Galaxy Evolution Explorer's first light images are dedicated to the crew of the Space Shuttle Columbia. The Hercules region was directly above Columbia when it made its last contact with NASA Mission Control on February 1, over the skies of Texas. The Galaxy Evolution Explorer launched on April 28 on a mission to map the celestial sky in the ultraviolet and determine the history of star formation in the universe over the last 10 billion years. http://photojournal.jpl.nasa.gov/catalog/PIA04281

  1. Environmental phototoxicity: Solar ultraviolet radiation affects the toxicity of natural and man-made chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, R.A.; Berenbaum, M.R.

    1988-04-01

    Ultraviolet radiation appears to be toxic to all forms of unpigmented living cells, including bacteria, protozoa, nematodes, arthropods, fish, birds, and mammals. In addition to the direct absorption of solar energy by cellular constituents, toxicity may occur because of the absorption of sunlight by xenobiotics (or by naturally occurring compounds outside the target cell); these may be converted by light or by subsequent light-promoted reactions that induce cellular damage. This article describes the phototoxicity of photodynamic dyes, light-activated synthetic herbicides, petroleum and its constituents, and naturally occurring chemicals from plants. Detoxification mechanisms are also discussed.

  2. Damage threshold in adult rabbit eyes after scleral cross-linking by riboflavin/blue light application.

    PubMed

    Iseli, Hans Peter; Körber, Nicole; Karl, Anett; Koch, Christian; Schuldt, Carsten; Penk, Anja; Liu, Qing; Huster, Daniel; Käs, Josef; Reichenbach, Andreas; Wiedemann, Peter; Francke, Mike

    2015-10-01

    Several scleral cross-linking (SXL) methods were suggested to increase the biomechanical stiffness of scleral tissue and therefore, to inhibit axial eye elongation in progressive myopia. In addition to scleral cross-linking and biomechanical effects caused by riboflavin and light irradiation such a treatment might induce tissue damage, dependent on the light intensity used. Therefore, we characterized the damage threshold and mechanical stiffening effect in rabbit eyes after application of riboflavin combined with various blue light intensities. Adult pigmented and albino rabbits were treated with riboflavin (0.5 %) and varying blue light (450 ± 50 nm) dosages from 18 to 780 J/cm(2) (15 to 650 mW/cm(2) for 20 min). Scleral, choroidal and retinal tissue alterations were detected by means of light microscopy, electron microscopy and immunohistochemistry. Biomechanical changes were measured by shear rheology. Blue light dosages of 480 J/cm(2) (400 mW/cm(2)) and beyond induced pathological changes in ocular tissues; the damage threshold was defined by the light intensities which induced cellular degeneration and/or massive collagen structure changes. At such high dosages, we observed alterations of the collagen structure in scleral tissue, as well as pigment aggregation, internal hemorrhages, and collapsed blood vessels. Additionally, photoreceptor degenerations associated with microglia activation and macroglia cell reactivity in the retina were detected. These pathological alterations were locally restricted to the treated areas. Pigmentation of rabbit eyes did not change the damage threshold after a treatment with riboflavin and blue light but seems to influence the vulnerability for blue light irradiations. Increased biomechanical stiffness of scleral tissue could be achieved with blue light intensities below the characterized damage threshold. We conclude that riboflavin and blue light application increased the biomechanical stiffness of scleral tissue at

  3. Roles of PCNA ubiquitination and TLS polymerases κ and η in the bypass of methyl methanesulfonate-induced DNA damage.

    PubMed

    Wit, Niek; Buoninfante, Olimpia Alessandra; van den Berk, Paul C M; Jansen, Jacob G; Hogenbirk, Marc A; de Wind, Niels; Jacobs, Heinz

    2015-01-01

    Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) κ is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), ultraviolet (UV) light and the alkylating agent methyl methanesulfonate (MMS). As TLS polymerases are intrinsically error-prone, tight regulation of their activity is required. One level of control is provided by ubiquitination of the homotrimeric DNA clamp PCNA at lysine residue 164 (PCNA-Ub). We here show that Polκ can function independently of PCNA modification and that Polη can function as a backup during TLS of MMS-induced lesions. Compared to cell lines deficient for PCNA modification (Pcna(K164R)) or Polκ, double mutant cell lines display hypersensitivity to MMS but not to BPDE or UV-C. Double mutant cells also displayed delayed post-replicative TLS, accumulate higher levels of replication stress and delayed S-phase progression. Furthermore, we show that Polη and Polκ are redundant in the DNA damage bypass of MMS-induced DNA damage. Taken together, we provide evidence for PCNA-Ub-independent activation of Polκ and establish Polη as an important backup polymerase in the absence of Polκ in response to MMS-induced DNA damage. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Alzheimer's lymphocytes are resistant to ultraviolet B-induced apoptosis.

    PubMed

    Zana, Marianna; Juhász, Anna; Rimanóczy, Agnes; Bjelik, Annamária; Baltás, Eszter; Ocsovszki, Imre; Boda, Krisztina; Penke, Botond; Dobozy, Attila; Kemény, Lajos; Janka, Zoltán; Kálmán, János

    2006-06-01

    In the present pilot investigation, the susceptibility of T-lymphocytes from Alzheimer's disease (AD) subjects (n=22) and aged-matched, non-demented controls (CNT) (n=12) was examined with ultraviolet (UV) B light-induced apoptosis in vitro. The basal apoptotic ratios were similar in both groups. However, the AD lymphocytes displayed significantly (p<0.0001) lower apoptotic levels than those of the CNT lymphocytes at all of the applied UVB exposure doses (100, 200 and 300 mJ/cm(2)). These observations indicate that AD lymphocytes are more resistant than CNT lymphocytes to UVB irradiation.

  5. Protective Effect of Highly Polymeric A-Type Proanthocyanidins from Seed Shells of Japanese Horse Chestnut (Aesculus turbinata BLUME) against Light-Induced Oxidative Damage in Rat Retina

    PubMed Central

    Ishihara, Tomoe; Kaidzu, Sachiko; Kimura, Hideto; Koyama, Yasurou; Matsuoka, Yotaro

    2018-01-01

    Retinal tissue is exposed to oxidative stress caused by visible light. Light-damaged rat used in age-related macular degeneration (AMD) studies clarified that antioxidants decrease retinal light damage. Albino rats were exposed to 5000 Lux light for 12 h with oral administration of the polyphenolic compounds fraction (PF) from the seed shells of Japanese horse chestnut (30 mg/kg, 100 mg/kg, and 300 mg/kg body weight: BW). To evaluate the protective effects against light damage, electroretinograms (ERGs), the outer nuclear layer (ONL) thickness, the antioxidant activity of plasma, oxidized retinal lipids, and the detection of apoptosis were examined. To reveal their active compounds, PF were separated into an A-type proanthocyanidin (PAF) and a flavonol O-glycosides fraction. The protective effects of these fractions against light damage were compared by measuring the thickness of the ERGs and ONL. Compared with the negative control, the PF group (100 mg/kg and 300 mg/kg BW) significantly suppressed the decrease of the ERG amplitudes and ONL thickness. PF (300 mg/kg BW) induced the elevation of in vivo antioxidant activity, and the suppression of retinal lipid oxidation. PF administration also suppressed apoptotic cell death. The protective effects against light damage were attributable to the antioxidant activity of PAF. The light-induced damage of retinas was protected by oral administration of PF and PAF. Taken together, these compounds are potentially useful for the prevention of the disease caused by light exposure. Highlights: The protective effects of retinal damage by light exposure were evaluated using polyphenolic compounds from the seed shells of Japanese horse chestnut (Aesculus turbinata BLUME) as an antioxidant. Decreases in the electroretinographic amplitude and outer nuclear layer thickness were suppressed by the polyphenolic compounds of the seed shells. Polyphenolic compounds from the seed shells of Japanese horse chestnut inhibited the oxidation

  6. Protective Effect of Highly Polymeric A-Type Proanthocyanidins from Seed Shells of Japanese Horse Chestnut (Aesculus turbinata BLUME) against Light-Induced Oxidative Damage in Rat Retina.

    PubMed

    Ishihara, Tomoe; Kaidzu, Sachiko; Kimura, Hideto; Koyama, Yasurou; Matsuoka, Yotaro; Ohira, Akihiro

    2018-05-10

    Retinal tissue is exposed to oxidative stress caused by visible light. Light-damaged rat used in age-related macular degeneration (AMD) studies clarified that antioxidants decrease retinal light damage. Albino rats were exposed to 5000 Lux light for 12 h with oral administration of the polyphenolic compounds fraction (PF) from the seed shells of Japanese horse chestnut (30 mg/kg, 100 mg/kg, and 300 mg/kg body weight: BW). To evaluate the protective effects against light damage, electroretinograms (ERGs), the outer nuclear layer (ONL) thickness, the antioxidant activity of plasma, oxidized retinal lipids, and the detection of apoptosis were examined. To reveal their active compounds, PF were separated into an A-type proanthocyanidin (PAF) and a flavonol O -glycosides fraction. The protective effects of these fractions against light damage were compared by measuring the thickness of the ERGs and ONL. Compared with the negative control, the PF group (100 mg/kg and 300 mg/kg BW) significantly suppressed the decrease of the ERG amplitudes and ONL thickness. PF (300 mg/kg BW) induced the elevation of in vivo antioxidant activity, and the suppression of retinal lipid oxidation. PF administration also suppressed apoptotic cell death. The protective effects against light damage were attributable to the antioxidant activity of PAF. The light-induced damage of retinas was protected by oral administration of PF and PAF. Taken together, these compounds are potentially useful for the prevention of the disease caused by light exposure. The protective effects of retinal damage by light exposure were evaluated using polyphenolic compounds from the seed shells of Japanese horse chestnut ( Aesculus turbinata BLUME) as an antioxidant. Decreases in the electroretinographic amplitude and outer nuclear layer thickness were suppressed by the polyphenolic compounds of the seed shells. Polyphenolic compounds from the seed shells of Japanese horse chestnut inhibited the oxidation of retinal

  7. Is UV-induced DNA damage greater at higher elevation?

    PubMed

    Wang, Qing-Wei; Hidema, Jun; Hikosaka, Kouki

    2014-05-01

    • Although ultraviolet radiation (UV) is known to have negative effects on plant growth, there has been no direct evidence that plants growing at higher elevations are more severely affected by ultraviolet-B (UV-B) radiation, which is known to increase with elevation. We examined damage to DNA, a primary target of UV-B, in the widespread species Polygonum sachalinense (Fallopia sachalinensis) and Plantago asiatica at two elevations.• We sampled leaves of both species at 300 and 1700 m above sea level every 2 h for 11 d across the growing season and determined the level of cyclobutane pyrimidine dimer (CPD), a major product of UV damage to DNA.• The CPD level was significantly influenced by the time of day, date, elevation, and their interactions in both species. The CPD level tended to be higher at noon or on sunny days. DNA damage was more severe at 1700 m than at 300 m: on average, 8.7% greater at high elevation in P. asiatica and 7.8% greater in P. sachalinense Stepwise multiple regression analysis indicated that the CPD level was explained mainly by UV-B and had no significant relationship with other environmental factors such as temperature and photosynthetically active radiation.• UV-induced DNA damage in plants is greater at higher elevations. © 2014 Botanical Society of America, Inc.

  8. RuvAB and RecG are not essential for the recovery of DNA synthesis following UV-induced DNA damage in Escherichia coli.

    PubMed Central

    Donaldson, Janet R; Courcelle, Charmain T; Courcelle, Justin

    2004-01-01

    Ultraviolet light induces DNA lesions that block the progression of the replication machinery. Several models speculate that the resumption of replication following disruption by UV-induced DNA damage requires regression of the nascent DNA or migration of the replication machinery away from the blocking lesion to allow repair or bypass of the lesion to occur. Both RuvAB and RecG catalyze branch migration of three- and four-stranded DNA junctions in vitro and are proposed to catalyze fork regression in vivo. To examine this possibility, we characterized the recovery of DNA synthesis in ruvAB and recG mutants. We found that in the absence of either RecG or RuvAB, arrested replication forks are maintained and DNA synthesis is resumed with kinetics that are similar to those in wild-type cells. The data presented here indicate that RecG- or RuvAB-catalyzed fork regression is not essential for DNA synthesis to resume following arrest by UV-induced DNA damage in vivo. PMID:15126385

  9. Protection against ultraviolet A-induced oxidative damage in normal human epidermal keratinocytes under post-menopausal conditions by an ultraviolet A-activated caged-iron chelator: a pilot study.

    PubMed

    Pelle, Edward; Jian, Jinlong; Declercq, Lieve; Dong, Kelly; Yang, Qing; Pourzand, Charareh; Maes, Daniel; Pernodet, Nadine; Yarosh, Daniel B; Huang, Xi

    2011-10-01

    Human skin is constantly exposed to ultraviolet A (UVA), which can generate reactive oxygen species and cause iron release from ferritin, leading to oxidative damage in biomolecules. This is particularly true in post-menopausal skin due to an increase in iron as a result of menopause. As iron is generally released through desquamation, the skin becomes a main portal for the release of excess iron in this age group. In the present study, we examined a strategy for controlling UVA- and iron-induced oxidative stress in skin using a keratinocyte post-menopausal cellular model system. Keratinocytes that had been cultured under normal or high-iron, low-estrogen conditions were treated with (2-nitrophenyl) ethyl pyridoxal isonicotinoyl hydrazone (2-PNE-PIH). 2-PNE-PIH is a caged-iron chelator that does not normally bind iron but can be activated by UVA radiation to bind iron. Following incubation with 2-PNE-PIH, the cells were exposed to 5 J/cm² UVA and then measured for changes in lipid peroxidation and ferritin levels. 2-PNE-PIH protected keratinocytes against UVA-induced lipid peroxidation and ferritin depletion. Further, 2-PNE-PIH was neither cytotoxic nor did it alter iron metabolism. 2-PNE-PIH may be a useful deterrent against UVA-induced oxidative stress in post-menopausal women. © 2011 John Wiley & Sons A/S.

  10. Polyphenol-enriched Vaccinium uliginosum L. fractions reduce retinal damage induced by blue light in A2E-laden ARPE19 cell cultures and mice.

    PubMed

    Lee, Bom-Lee; Kang, Jung-Hwan; Kim, Hye-Mi; Jeong, Se-Hee; Jang, Dae-Sik; Jang, Young-Pyo; Choung, Se-Young

    2016-12-01

    Polyphenols exert beneficial effects on vision. We hypothesized that polyphenol components of Vaccinium uliginosum L. (V.U.) extract protect retinal pigment epithelial (RPE) cells against blue light-induced damage. Our aim was to test extracts containing polyphenol components to ascertain effects to reduce damage against blue light in RPEs. We measured the activity in fractions eluted from water, ethanol, and HP20 resin (FH), and found that the FH fraction had the highest beneficial activity. We isolated the individual active compounds from the FH fraction using chromatographic techniques, and found that FH contained flavonoids, anthocyanins, phenyl propanoids, and iridoids. Cell cultures of A2E-laden ARPE-19 exposed to blue light after treatment with V.U. extract fractions and their individual constituents indicated improvement. V uliginosum L extract fractions and constituent compounds significantly reduced A2E photo-oxidation-induced RPE cell death and inhibited intracellular A2E accumulation. Furthermore, Balb/c male mice were exposed to blue light at 10000 lux for 1 h/d for 2 weeks to induce retinal damage. One week after the final blue light exposure, retinal damage evaluated revealed that the outer nuclear layer thickness and nuclei count were improved. Histologic examination of murine photoreceptor cells demonstrated that FH, rich in polyphenols, inhibited the loss of outer nuclear layer thickness and nuclei. Our findings suggest that V.U. extract and eluted fractions are a potential source of bioactive compounds that potentially serve a therapeutic approach for age-related macular degeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Antigenotoxic Effect Against Ultraviolet Radiation-induced DNA Damage of the Essential Oils from Lippia Species.

    PubMed

    Quintero Ruiz, Nathalia; Córdoba Campo, Yuri; Stashenko, Elena E; Fuentes, Jorge Luis

    2017-07-01

    The antigenotoxicity against ultraviolet radiation (UV)-induced DNA damage of essential oils (EO) from Lippia species was studied using SOS Chromotest. Based on the minimum concentration that significantly inhibits genotoxicity, the genoprotective potential of EO from highest to lowest was Lippia graveolens, thymol-RC ≈ Lippia origanoides, carvacrol-RC ≈ L. origanoides, thymol-RC > Lippia alba, citral-RC ≈ Lippia citriodora, citral-RC ≈ Lippia micromera, thymol-RC > L. alba, myrcenone-RC. EO from L. alba, carvone/limonene-RC, L. origanoides, α-phellandrene-RC and L. dulcis, trans-β-caryophyllene-RC did not reduce the UV genotoxicity at any of the doses tested. A gas chromatography with flame ionization detection analysis (GC-FID) was conducted to evaluate the solubility of the major EO constituents under our experimental conditions. GC-FID analysis showed that, at least partially, major EO constituents were water-soluble and therefore, they were related with the antigenotoxicity detected for EO. Constituents such as p-cymene, geraniol, carvacrol, thymol, citral and 1,8-cineole showed antigenotoxicity. The antioxidant activity of EO constituents was also determined using the oxygen radical antioxidant capacity (ORAC) assay. The results showed that the antigenotoxicity of the EO constituents was unconnected with their antioxidant activity. The antigenotoxicity to different constituent binary mixtures suggests that synergistic effects can occur in some of the studied EO. © 2017 The American Society of Photobiology.

  12. Dietary supplementation with omega-3 polyunsaturated fatty acid-rich oils protects against visible-light-induced retinal damage in vivo.

    PubMed

    Deng, Qianchun; Wang, Yong; Wang, Chengtao; Ji, Baoping; Cong, Renhuai; Zhao, Lei; Chen, Peng; Zang, Xixi; Lu, Feng; Han, Fei; Huang, Fenghong

    2018-04-25

    The effects of administering omega-3 (ω-3) polyunsaturated fatty acid (PUFA)-rich oils on visible-light-induced retinal damage were investigated in rabbits. The mole percentages of α-linolenic acid in sea buckthorn berry oil, sea buckthorn oil (SO), sea buckthorn seed oil and flaxseed oil (FO) were 2.12%, 12.98%, 31.56% and 55.41%, respectively. Algal oil (AO) contains 33.34% docosahexaenoic acid. SO has the highest total phenolic content (63.42 ± 0.59 mg SAE per 100 g) amongst these oils. The administration of SO, FO and AO provided structural and functional protection to the retina. In the retina, we observed a significant increase in the levels of DHA in the AO group compared with the normal group. The mechanism of retinal protection by SO, FO and AO involves up-regulating the expression of nuclear factor erythroid-2 related factor 2 and haem oxygenase-1. The levels of interleukin-1 β, tumour necrosis factor-alpha, interleukin-8, and cyclooxygenase 2 in the retina were significantly reduced with AO treatment. The administration of AO resulted in the down-regulation of nuclear factor kappa B mRNA expression. In addition, the treatment with AO significantly attenuated the light-induced apoptosis and angiogenesis in the retina. These results suggest that dietary ω-3 PUFA-rich oils protect against visible-light-induced retinal damage.

  13. Saturn's Rings in Ultraviolet Light

    NASA Image and Video Library

    2017-12-08

    Saturn's Rings in Ultraviolet Light Credit: NASA and E. Karkoschka (University of Arizona) The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html

  14. CHALLENGES OF COMBINED SEWER OVERFLOW DISINFECTION BY ULTRAVIOLET LIGHT IRRADIATION

    EPA Science Inventory

    This article examines the performance and effectiveness of ultraviolet (UV) light irradiation for disinfection of combined sewer overflow (CSO). Due to the negative impact of conventional water disinfectants on aquatic life, new agents (e.g., UV light) are being investigated for ...

  15. Radiation damage effects in far-ultraviolet filters, thin films, and substrates.

    PubMed

    Keffer, C E; Torr, M R; Zukic, M; Spann, J F; Torr, D G; Kim, J

    1994-09-01

    Advances in vacuum ultraviolet thin-film filter technology have been made through the use of filter designs with multilayers of materials such as Al(2)O(3), BaF(2), CaF(2), HfO(2), LaF(3), MgF(2), and SiO(2). Our immediate application for these filters will be in an imaging system to be flown on a satellite where a 2 × 9 R(E) orbit will expose the instrument to approximately 250 krad of radiation. Because to our knowledge no previous studies have been made on the potential radiation damage of these materials in the thin-film format, we report on such an assessment here. Transmittances and reflectances of BaF(2), CaF(2), HfO(2), MgF(2), and SiO(2) thin films on MgF(2) substrates, Al(2)O(3) thin films on fused-silica substrates, uncoated fused silica and MgF(2), and four multilayer filters made from these materials were measured from 120 to 180 nm beforeand after irradiation by 250 krad from a (60)Co gamma radiation source. No radiation-induced losses in transmittance or reflectance occurred in this wavelength range. Additional postradiation measurements from 160 to 300 nm indicates 2-5% radiation-induced absorption near 260 nm in some of the samples with MgF(2) substrates. From these measurements we conclude that far-ultraviolet filters made from the materials tested should experience less than 5% change from exposure to up to 250 krad of high-energy radiation in space applications.

  16. Ultraweak photon emission induced by visible light and ultraviolet A radiation via photoactivated skin chromophores: in vivo charge coupled device imaging.

    PubMed

    Prasad, Ankush; Pospíšil, Pavel

    2012-08-01

    Solar radiation that reaches Earth's surface can have severe negative consequences for organisms. Both visible light and ultraviolet A (UVA) radiation are known to initiate the formation of reactive oxygen species (ROS) in human skin by photosensitization reactions (types I and II). In the present study, we investigated the role of visible light and UVA radiation in the generation of ROS on the dorsal and the palmar side of a hand. The ROS are known to oxidize biomolecules such as lipids, proteins, and nucleic acids to form electronically excited species, finally leading to ultraweak photon emission. We have employed a highly sensitive charge coupled device camera and a low-noise photomultiplier tube for detection of two-dimensional and one-dimensional ultraweak photon emission, respectively. Our experimental results show that oxidative stress is generated by the exposure of human skin to visible light and UVA radiation. The oxidative stress generated by UVA radiation is claimed to be significantly higher than that by visible light. Two-dimensional photon imaging can serve as a potential tool for monitoring the oxidative stress in the human skin induced by various stress factors irrespective of its physical or chemical nature.

  17. Carrier Conduction and Light Emission by Modification of Poly(alkylfluorene) Interface under Vacuum Ultraviolet Light Irradiation

    NASA Astrophysics Data System (ADS)

    Ohmori, Yutaka; Kajii, Hirotake; Terashima, Daiki; Kusumoto, Yusuke

    2013-03-01

    Organic field effect transistors (OFETs) have been extensively studied for flexible electronics. The characteristics of poly(9,9-dioctylfluorenyl-2,7-dyl) (F8) modified by thermal or light are strongly dependent on the carrier transport and optical characteristics. We investigate all solution-processed OFETs with Ag nano-ink as gate electrodes patterned by Vacuum Ultraviolet (VUV) (172 nm). Bi-layer gate insulators of amorphous fluoro-polymer CYTOP (Asahi Glass Corp.) and poly(methylmethacrylate) (PMMA) were used. Top-gate-type OFETs with ITO source/drain electrode utilizing F8 or poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) as an active layer were fabricated, and investigated the carrier conduction and emission characteristic. Without VUV irradiation, both OFETs showed the ambipolar and light-emitting characteristics. On the other hand, F8 devices with VUV exhibited only p-type conduction. The quenching centers were generated in F8 layer by VUV irradiation, which are related to the electron trap sites at the interface. OFETs with F8BT showed both p- and n-type conduction even after VUV. F8BT suffers less damage by VUV and maintain light emission. Light emitting transistors were realized utilizing F8BT patterned by VUV irradiation. This research was partially supported financially by MEXT. The authors thank Harima Chemicals Inc. for providing Ag nano-ink.

  18. Ultraviolet Laser-induced ignition of RDX single crystal

    PubMed Central

    Yan, Zhonghua; Zhang, Chuanchao; Liu, Wei; Li, Jinshan; Huang, Ming; Wang, Xuming; Zhou, Guorui; Tan, Bisheng; Yang, Zongwei; Li, Zhijie; Li, Li; Yan, Hongwei; Yuan, Xiaodong; Zu, Xiaotao

    2016-01-01

    The RDX single crystals are ignited by ultraviolet laser (355 nm, 6.4 ns) pulses. The laser-induced damage morphology consisted of two distinct regions: a core region of layered fracture and a peripheral region of stripped material surrounding the core. As laser fluence increases, the area of the whole crack region increases all the way, while both the area and depth of the core region increase firstly, and then stay stable over the laser fluence of 12 J/cm2. The experimental details indicate the dynamics during laser ignition process. Plasma fireball of high temperature and pressure occurs firstly, followed by the micro-explosions on the (210) surface, and finally shock waves propagate through the materials to further strip materials outside and yield in-depth cracks in larger surrounding region. The plasma fireball evolves from isotropic to anisotropic under higher laser fluence resulting in the damage expansion only in lateral direction while maintaining the fixed depth. The primary insights into the interaction dynamics between laser and energetic materials can help developing the superior laser ignition technique. PMID:26847854

  19. Reactivation of latent herpes simplex virus infection by ultraviolet light: a human model.

    PubMed

    Perna, J J; Mannix, M L; Rooney, J F; Notkins, A L; Straus, S E

    1987-09-01

    Infection with herpes simplex virus often results in a latent infection of local sensory ganglia and a disease characterized by periodic viral reactivation and mucocutaneous lesions. The factors that trigger reactivation in humans are still poorly defined. In our study, five patients with documented histories of recurrent herpes simplex virus infection on the buttocks or sacrum were exposed to three times their minimal erythema dose of ultraviolet light. Site-specific cutaneous herpes simplex virus infection occurred at 4.4 +/- 0.4 days after exposure to ultraviolet light in 8 of 13 attempts at reactivation. We conclude that ultraviolet light can reactivate herpes simplex virus under experimentally defined conditions. This model in humans should prove useful in evaluating the pathophysiology and prevention of viral reactivation.

  20. Dietary proanthocyanidins prevent ultraviolet radiation-induced non-melanoma skin cancer through enhanced repair of damaged DNA-dependent activation of immune sensitivity.

    PubMed

    Katiyar, Santosh K; Pal, Harish C; Prasad, Ram

    2017-10-01

    Numerous plant products have been used to prevent and manage a wide variety of diseases for centuries. These products are now considered as promising options for the development of more effective and less toxic alternatives to the systems of medicine developed primarily in developed countries in the modern era. Grape seed proanthocyanidins (GSPs) are of great interest due to their anti-carcinogenic effects that have been demonstrated using various tumor models including ultraviolet (UV) radiation-induced non-melanoma skin cancer. In a pre-clinical mouse model supplementation of a control diet (AIN76A) with GSPs at concentrations of 0.2% and 0.5% (w/w) significantly inhibits the growth and multiplicity of UVB radiation-induced skin tumors. In this review, we summarize the evidence that this inhibition of UVB-induced skin tumor development by dietary GSPs is mediated by a multiplicity of coordinated effects including: (i) Promotion of the repair of damaged DNA by nuclear excision repair mechanisms, and (ii) DNA repair-dependent stimulation of the immune system following the functional activation of dendritic cells and effector T cells. Dietary GSPs hold promise for the development of an effective alternative strategy for the prevention of excessive solar UVB radiation exposure-induced skin diseases including the risk of non-melanoma skin cancer in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Characteristics of ultraviolet light and radicals formed by pulsed discharge in water

    NASA Astrophysics Data System (ADS)

    Sun, Bing; Kunitomo, Shinta; Igarashi, Chiaki

    2006-09-01

    In this investigation, the ultraviolet light characteristics and OH radical properties produced by a pulsed discharge in water were studied. For the plate-rod reactor, it was found that the ultraviolet light energy has a 3.2% total energy injected into the reactor. The ultraviolet light changed with the peak voltage and electrode distance. UV characteristics in tap water and the distilled water are given. The intensity of the OH radicals was the highest for the 40 mm electrode distance reactor. In addition, the properties of hydrogen peroxide and ozone were also studied under arc discharge conditions. It was found that the OH radicals were in the ground state and the excited state when a pulsed arc discharge was used. The ozone was produced by the arc discharge even if the oxygen gas is not bubbled into the reactor. The ozone concentration produces a maximum value with treatment time.

  2. Melanocortin 1 receptor genotype: an important determinant of the damage response of melanocytes to ultraviolet radiation

    PubMed Central

    Kadekaro, Ana Luisa; Leachman, Sancy; Kavanagh, Renny J.; Swope, Viki; Cassidy, Pamela; Supp, Dorothy; Sartor, Maureen; Schwemberger, Sandy; Babcock, George; Wakamatsu, Kazumasa; Ito, Shosuke; Koshoffer, Amy; Boissy, Raymond E.; Manga, Prashiela; Sturm, Richard A.; Abdel-Malek, Zalfa A.

    2010-01-01

    The melanocortin 1 receptor gene is a main determinant of human pigmentation, and a melanoma susceptibility gene, because its variants that are strongly associated with red hair color increase melanoma risk. To test experimentally the association between melanocortin 1 receptor genotype and melanoma susceptibility, we compared the responses of primary human melanocyte cultures naturally expressing different melanocortin 1 receptor variants to α-melanocortin and ultraviolet radiation. We found that expression of 2 red hair variants abolished the response to α-melanocortin and its photoprotective effects, evidenced by lack of functional coupling of the receptor, and absence of reduction in ultraviolet radiation-induced hydrogen peroxide generation or enhancement of repair of DNA photoproducts, respectively. These variants had different heterozygous effects on receptor function. Microarray data confirmed the observed differences in responses of melanocytes with functional vs. nonfunctional receptor to α-melanocortin and ultraviolet radiation, and identified DNA repair and antioxidant genes that are modulated by α-melanocortin. Our findings highlight the molecular mechanisms by which the melanocortin 1 receptor genotype controls genomic stability of and the mutagenic effect of ultraviolet radiation on human melanocytes.—Kadekaro, A. L., Leachman, S., Kavanagh, R. J., Swope, V., Cassidy, P., Supp, D., Sartor, M., Schwemberger, S., Babcock, G., Wakamatsu, K., Ito, S., Koshoffer, A., Boissy, R. E., Manga, P., Sturm, R. A., Abdel-Malek, Z. A. Melanocortin 1 receptor genotype: an important determinant of the damage response of melanocytes to ultraviolet radiation. PMID:20519635

  3. Reactivation of latent herpes simplex virus infection by ultraviolet light: a human model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perna, J.J.; Mannix, M.L.; Rooney, J.F.

    1987-09-01

    Infection with herpes simplex virus often results in a latent infection of local sensory ganglia and a disease characterized by periodic viral reactivation and mucocutaneous lesions. The factors that trigger reactivation in humans are still poorly defined. In our study, five patients with documented histories of recurrent herpes simplex virus infection on the buttocks or sacrum were exposed to three times their minimal erythema dose of ultraviolet light. Site-specific cutaneous herpes simplex virus infection occurred at 4.4 +/- 0.4 days after exposure to ultraviolet light in 8 of 13 attempts at reactivation. We conclude that ultraviolet light can reactivate herpesmore » simplex virus under experimentally defined conditions. This model in humans should prove useful in evaluating the pathophysiology and prevention of viral reactivation.« less

  4. Ultraviolet light exposure, skin cancer risk and vitamin D production.

    PubMed

    Rivas, Miguel; Rojas, Elisa; Araya, María C; Calaf, Gloria M

    2015-10-01

    The danger of overexposure to solar ultraviolet radiation has been widely reviewed since the 1980s due to the depletion of the ozone layer. However, the benefits of mild exposure of the skin to ultraviolet (UV) light have not been widely investigated. Numerous reports have demonstrated that an association exists between low light exposure to the sun, non-melanoma skin cancer and a lack of vitamin D synthesis. As vitamin D synthesis in the body depends on skin exposure to UVB radiation from the sun (wavelength, 290-320 nm), experimental measurements for this type of solar radiation are important. The present study analyzed data obtained from a laboratory investigating UV radiation from the sun at the University of Tarapacá (Arica, Chile), where systematic experimental UVB measurements had been performed using a calibrated biometer instrument since 2006. These data were compared with skin cancer data from the local population. The results demonstrated that the incidence of skin cancer systematically increased from 7.4 to 18.7 in men and from 10.0 to 21.7 in women between 2000 and 2006 in Arica, respectively; this increase may be due to multiple factors, including the lack of adequate levels of vitamin D in risk groups such as post-menopausal women and senior age. This marked increase may also be due to the high levels of UV radiation measured in this region throughout the year. However, it is not certain that the local population has adequate vitamin D levels, nor that their skin has been predominantly exposed to artificial light that does not allow adequate vitamin D synthesis. Thus, the current study presents the association between skin type IV, the time to induce solar erythema and the time required to produce 1,000 international units of vitamin D.

  5. Ultraviolet light exposure, skin cancer risk and vitamin D production

    PubMed Central

    RIVAS, MIGUEL; ROJAS, ELISA; ARAYA, MARÍA C.; CALAF, GLORIA M.

    2015-01-01

    The danger of overexposure to solar ultraviolet radiation has been widely reviewed since the 1980s due to the depletion of the ozone layer. However, the benefits of mild exposure of the skin to ultraviolet (UV) light have not been widely investigated. Numerous reports have demonstrated that an association exists between low light exposure to the sun, non-melanoma skin cancer and a lack of vitamin D synthesis. As vitamin D synthesis in the body depends on skin exposure to UVB radiation from the sun (wavelength, 290–320 nm), experimental measurements for this type of solar radiation are important. The present study analyzed data obtained from a laboratory investigating UV radiation from the sun at the University of Tarapacá (Arica, Chile), where systematic experimental UVB measurements had been performed using a calibrated biometer instrument since 2006. These data were compared with skin cancer data from the local population. The results demonstrated that the incidence of skin cancer systematically increased from 7.4 to 18.7 in men and from 10.0 to 21.7 in women between 2000 and 2006 in Arica, respectively; this increase may be due to multiple factors, including the lack of adequate levels of vitamin D in risk groups such as post-menopausal women and senior age. This marked increase may also be due to the high levels of UV radiation measured in this region throughout the year. However, it is not certain that the local population has adequate vitamin D levels, nor that their skin has been predominantly exposed to artificial light that does not allow adequate vitamin D synthesis. Thus, the current study presents the association between skin type IV, the time to induce solar erythema and the time required to produce 1,000 international units of vitamin D. PMID:26622830

  6. The interaction of ultraviolet light with Arctic sea ice during SHEBA

    NASA Astrophysics Data System (ADS)

    Perovich, Donald K.

    The reflection, absorption and transmission of ultraviolet light by a sea-ice cover strongly impacts primary productivity, higher trophic components of the food web, and humans. Measurements of the incident irradiance at 305, 320, 340 and 380 nm and of the photosynthetically active radiation were made from April through September 1998 as part of the SHEBA (Surface Heat Budget of the Arctic Ocean program) field experiment in the Arctic Ocean. In addition, observations of snow depth and ice thickness were made at more than 100 sites encompassing a comprehensive range of conditions. The thickness observations were combined with a radiative transfer model to compute a time series of the ultraviolet light transmitted by the ice cover from April through September. Peak values of incident ultraviolet irradiance occurred in mid-June. Peak transmittance was later in the summer at the end of the melt season when the snow cover had completely melted, the ice had thinned and pond coverage was extensive. The fraction of the incident ultraviolet irradiance transmitted through the ice increased by several orders of magnitude as the melt season progressed. Ultraviolet transmittance was approximately a factor of ten greater for melt ponds than bare ice. Climate change has the potential to alter the amplitude and timing of the annual albedo cycle of sea ice. If the onset of melt occurs at increasingly earlier dates, ultraviolet transmittance will be significantly enhanced, with potentially deleterious biological impacts.

  7. Are there mechanistic differences between ultraviolet and visible radiation induced skin pigmentation?

    PubMed

    Ramasubramaniam, Rajagopal; Roy, Arindam; Sharma, Bharati; Nagalakshmi, Surendra

    2011-12-01

    Most of the studies on sunlight-induced pigmentation of skin are mainly focused on ultraviolet (UV) radiation-induced pigmentation and ways to prevent it. Recent studies have shown that the visible component of sunlight can also cause significant skin pigmentation. In the current study, the extent of pigmentation induced by UV and visible regions of sunlight in subjects with Fitzpatrick skin type IV-V was measured and compared with pigmentation induced by total sunlight. The immediate pigment darkening (IPD) induced by the visible fraction of sunlight is not significantly different from that induced by the UV fraction. However, the persistent pigment darkening (PPD) induced by visible fraction of sunlight in significantly lower than that induced by the UV fraction. The dose responses of IPD induced by UV, visible light and total sunlight suggest that both UV and visible light interact with the same precursor although UV is 25 times more efficient in inducing pigmentation per J cm(-2) of irradiation compared to visible radiation. The measured diffused reflection spectra and decay kinetics of UV and visible radiation-induced pigmentation are very similar, indicating that the nature of the transient and persistent species involved in both the processes are also likely to be same.

  8. Selective protection of cultured human cells from the toxic effects of ultraviolet light by proflavine pretreatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, J.R.; Little, J.B.

    1977-10-01

    Pretreatment of LICH human cells by nontoxic doses (0.1 to 5.0 ..mu..g/ml) of proflavine protects them from inactivation by ultraviolet light. The protection is acquired rapidly after exposure of cells to proflavine, with 50 percent of maximum protection being afforded within 5 min and cells being maximally protected by 20 min. Loss of protection follows similar kinetics upon removal of proflavine from the culture medium. Protection is selective and cannot be explained on the basis of proflavine absorption of uv light. Cellular survival curves after ultraviolet light for cells protected by 1, 2, 3, 4, or 5 ..mu..g/ml of proflavinemore » show that protection alters only the slope of the survival curve, not altering the quasi-threshold dose, D/sub q/. The D/sub 0/ varies from 4.8 J/m/sup 2/ for untreated cells to 10.5 J/m/sup 2/ for cells pretreated with 5 ..mu..g/ml. These data suggest the D/sub 0/ and D/sub q/ do not represent parameters of a single underlying process, manifested in a random stochastic manner, but may reflect different cellular mechanisms or responses to different DNA damage. Proflavine is selective in mitigating only those which predominate at uv doses greater than the D/sub q/.« less

  9. Effect of green light spectra on the reduction of retinal damage and stress in goldfish, Carassius auratus.

    PubMed

    Song, Jin Ah; Kim, Na Na; Choi, Young Jae; Choi, Cheol Young

    2016-07-22

    We investigated the effect of light spectra on retinal damage and stress in goldfish using green (530 nm) and red (620 nm) light emitting diodes (LEDs) at three intensities each (0.5, 1.0, and 1.5 W/m(2)). We measured the change in the levels of plasma cortisol and H2O2 and expression and levels of caspase-3. The apoptotic response of green and red LED spectra was assessed using the terminal transferase dUTP nick end labeling (TUNEL) assay. Stress indicator (cortisol and H2O2) and apoptosis-related genes (caspase-3) decreased in green light, but increased in red light with higher light intensities over time. The TUNEL assay revealed that more apoptotic cells were detected in outer nuclear layers after exposure to red LED over time with the increase in light intensity, than the other spectra. These results indicate that green light efficiently reduces retinal damage and stress, whereas red light induces it. Therefore, red light-induced retina damage may induce apoptosis in goldfish retina. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Ultraviolet Extensions

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Side-by-Side Comparison Click on image for larger view

    This ultraviolet image from NASA's Galaxy Evolution Explorer shows the Southern Pinwheel galaxy, also know as Messier 83 or M83. It is located 15 million light-years away in the southern constellation Hydra.

    Ultraviolet light traces young populations of stars; in this image, young stars can be seen way beyond the main spiral disk of M83 up to 140,000 light-years from its center. Could life exist around one of these far-flung stars? Scientists say it's unlikely because the outlying regions of a galaxy are lacking in the metals required for planets to form.

    The image was taken at scheduled intervals between March 15 and May 20, 2007. It is one of the longest-exposure, or deepest, images ever taken of a nearby galaxy in ultraviolet light. Near-ultraviolet light (or longer-wavelength ultraviolet light) is colored yellow, and far-ultraviolet light is blue.

    What Lies Beyond the Edge of a Galaxy The side-by-side comparison shows the Southern Pinwheel galaxy, or M83, as seen in ultraviolet light (right) and at both ultraviolet and radio wavelengths (left). While the radio data highlight the galaxy's long, octopus-like arms stretching far beyond its main spiral disk (red), the ultraviolet data reveal clusters of baby stars (blue) within the extended arms.

    The ultraviolet image was taken by NASA's Galaxy Evolution Explorer between March 15 and May 20, 2007, at scheduled intervals. Back in 2005, the telescope first photographed M83 over a shorter period of time. That picture was the first to reveal far-flung baby stars forming up to 63,000 light-years from the edge of the main spiral disk. This came as a surprise to astronomers because a galaxy's outer territory typically lacks high densities of star-forming materials.

    The newest picture of M83 from the Galaxy Evolution Explorer is shown at the right, and was taken over a longer period of

  11. Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal

    NASA Astrophysics Data System (ADS)

    Relaix, Sabrina; Bourgerette, Christian; Mitov, Michel

    2006-12-01

    It is shown that the natural ultraviolet light absorbing properties of the liquid crystal constituent during the photoinduced elaboration of a liquid crystalline gel induce the broadening of the reflection bandwidth. The polymer component is then included in a resin by preserving its spatial distribution, and transmission electron microscopy investigations of cross sections show the existence of a structure gradient, which is at the origin of the broadening phenomenon. Such reflectors may be of interest for reflective polarizer-free displays or smart windows for the control of solar light for which a broadband reflection is required.

  12. STUDIES ON BIOLUMINESCENCE : XVII. FLUORESCENCE AND INHIBITION OF LUMINESCENCE IN CTENOPHORES BY ULTRA-VIOLET LIGHT.

    PubMed

    Harvey, E N

    1925-01-20

    1. Small dumps of the luminous cells of Mnemiopsis cannot readily be stimulated mechanically but will luminesce on treatment with saponin solution. Larger groups of luminous cells (such as are connected with two paddle plates) luminesce on mechanical stimulation. This suggests that mechanical stimulation to luminesce occurs chiefly through a nerve mechanism which has been broken up in the small dumps of luminous tissue. 2. The smallest bits of luminous tissue, even cells freed from the animal by agitation, that will pass through filter paper, lose their power to luminesce in daylight and regain it (at least partially) in the dark. 3. Luminescence of the whole animal and of individual cells is suppressed by near ultra-violet light (without visible light). 4. Inhibition in ultra-violet light is not due to stimulation (by the ultra-violet light) of the animal to luminesce, thereby using up the store of photogenic material. 5. Animals stimulated mechanically several times and placed in ultra-violet light show a luminescence along the meridians in the same positions as the luminescence that appears on stimulation. This luminescence in the ultra-violet or "tonic luminescence," is not obtained with light adapted ctenophores and is interpreted to be a fluorescence of the product of oxidation of the photogenic material. 6. Marked fluorescence of the luminous organ of the glowworm (Photuris) and of the luminous slime of Chatopterus may be observed in ultra-violet but no marked fluorescence of the luminous substances of Cypridina is apparent. 7. Evidence is accumulating to show a close relation between fluorescent and chemiluminescent substances in animals, similar to that described for unsaturated silicon compounds and the Grignard reagents.

  13. Cell damage caused by ultraviolet B radiation in the desert cyanobacterium Phormidium tenue and its recovery process.

    PubMed

    Wang, Gaohong; Deng, Songqiang; Liu, Jiafeng; Ye, Chaoran; Zhou, Xiangjun; Chen, Lanzhou

    2017-10-01

    Phormidium tenue, a cyanobacterium that grows in the topsoil of biological soil crusts (BSCs), has the highest recovery rate among desert crust cyanobacteria after exposure to ultraviolet B (UV-B) radiation. However, the mechanism underlying its recovery process is unclear. To address this issue, we measured chlorophyll a fluorescence, generation of reactive oxygen species (ROS), lipid peroxidation, and repair of DNA breakage in P. tenue following exposure to UV-B. We found that UV-B radiation at all doses tested reduced photosynthesis and induced cell damage in P. tenue. However, P. tenue responded to UV-B radiation by rapidly reducing photosynthetic activity, which protects the cell by leaking less ROS. Antioxidant enzymes, DNA damage repair systems, and UV absorbing pigments were then induced to mitigate the damage caused by UV-B radiation. The addition of exogenous antioxidant chemicals ascorbate and N-acetylcysteine also mitigated the harmful effects caused by UV-B radiation and enhanced the recovery process. These chemicals could aid in the resistance of P. tenue to the exposure of intense UV-B radiation in desertified areas when inoculated onto the sand surface to form artificial algal crusts. Copyright © 2017. Published by Elsevier Inc.

  14. Ultraviolet-C light effect on physicochemical, bioactive, microbiological, and sensorial characteristics of carrot (Daucus carota) beverages.

    PubMed

    Hernández-Carranza, Paola; Ruiz-López, Irving Israel; Pacheco-Aguirre, Francisco Manuel; Guerrero-Beltrán, José Ángel; Ávila-Sosa, Raúl; Ochoa-Velasco, Carlos Enrique

    2016-09-01

    The aim of this research was to evaluate the effect of ultraviolet-C light on physicochemical, bioactive, microbial, and sensory characteristics of carrot beverages. Beverages were formulated with different concentrations of carrot juice (60, 80, and 100% [v/v]) and treated with ultraviolet-C light at different flow rates (0, 0.5, 3.9, and 7.9 mL s(-1)) and times (5, 10, 15, 20, and 30 min), equivalent to ultraviolet-C dosages of 13.2, 26.4, 39.6, 52.8, and 79.2 J cm(-2) Total soluble solids, pH, and titratable acidity were not affected by the ultraviolet-C light treatment. Ultraviolet-C light significantly affected (p < 0.05) color parameters of pure juice; however, at low concentration of juice, total color change was slightly affected (ΔE = 2.0 ± 0.7). Phenolic compounds (4.1 ± 0.1, 5.2 ± 0.2, and 8.6 ± 0.3 mg of GAE 100 mL(-1) of beverage with 60, 80, and 100% of juice, respectively) and antioxidant capacity (6.1 ± 0.4, 8.5 ± 0.4, and 9.4 ± 0.3 mg of Trolox 100 mL(-1) of beverage with 60, 80, and 100% of juice, respectively) of carrot beverages were not affected by ultraviolet-C light treatment. Microbial kinetics showed that mesophiles were mostly reduced at high flow rates in carrot beverages with 60% of juice. Maximum logarithmic reductions for mesophiles and total coliforms were 3.2 ± 0.1 and 2.6 ± 0.1, respectively, after 30 min of ultraviolet-C light processing. Beverages were well accepted (6-7) by judges who did not perceive the difference between untreated and Ultraviolet-C light treated beverages. © The Author(s) 2016.

  15. Impact of Ultraviolet Light on Vitiligo.

    PubMed

    Singh, Rasnik K

    2017-01-01

    Vitiligo is a disorder of the melanocytes that results in a dynamic spectrum of skin depigmentation. Its etiology is complex and multifactorial, with data supporting several different hypotheses. Given its prominent phenotype, vitiligo has a significant negative impact on quality of life. Coupled with the chronic and incurable nature of the disease, this presents a formidable treatment challenge. Several treatment modalities have been instituted over the years, with varying efficacy. This chapter focuses on the use of ultraviolet light in vitiligo as an established therapeutic option.

  16. Glass-Based Transparent Conductive Electrode: Its Application to Visible-to-Ultraviolet Light-Emitting Diodes.

    PubMed

    Lee, Tae Ho; Kim, Kyeong Heon; Lee, Byeong Ryong; Park, Ju Hyun; Schubert, E Fred; Kim, Tae Geun

    2016-12-28

    Nitride-based ultraviolet light-emitting diodes (UV LEDs) are promising replacements for conventional UV lamps. However, the external quantum efficiency of UV LEDs is much lower than for visible LEDs due to light absorption in the p-GaN contact and electrode layers, along with p-AlGaN growth and doping issues. To minimize such absorption, we should obtain direct ohmic contact to p-AlGaN using UV-transparent ohmic electrodes and not use p-GaN as a contact layer. Here, we propose a glass-based transparent conductive electrode (TCE) produced using electrical breakdown (EBD) of an AlN thin film, and we apply the thin film to four (Al)GaN-based visible and UV LEDs with thin buffer layers for current spreading and damage protection. Compared to LEDs with optimal ITO contacts, our LEDs with AlN TCEs exhibit a lower forward voltage, higher light output power, and brighter light emission for all samples. The ohmic transport mechanism for current injection and spreading from the metal electrode to p-(Al)GaN layer via AlN TCE is also investigated by analyzing the p-(Al)GaN surface before and after EBD.

  17. [UV-induced DNA damage and protective effects of antioxidants on DNA damage in human lens epithelial cells studied with comet assay].

    PubMed

    Wu, Zhi-hong; Wang, Mian-rong; Yan, Qi-chang; Pu, Wei; Zhang, Jin-song

    2006-11-01

    To investigate the mechanism of UV-induced DNA damage and repair and the protective effects of antioxidants on DNA damage in human lens epithelial cells. Human lens epithelial cells were irradiated at UV-doses 0.0 (control group), 2.5, 5.0, 7.5, 10.0 mJ/cm(2) (treated group 1 - 4). The amounts of DNA single strand breaks (SSB) were measured with the alkaline comet assay (CA). The spontaneous repair of DNA SSB after exposure to UV at 10.0 mJ/cm(2) was also determined in human lens epithelial cells. Human lens epithelial cells were treated with different concentration of VitaminC (VitC), taurine, superoxide dismutase (SOD) and epigallocatechin gallate (EGCG) before and after ultraviolet radiation, the effects of antioxidants on DNA damage was examined with alkaline comet assay. The amount of DNA SSB in control group and treated groups 1 - 4 showed increased tendency, was dose-dependent to the dose of UV irradiation, the differences of DNA SSB in 5 group were significantly (P < 0.01). UV-induced DNA SSB at 10.0 mJ/cm(2) in human lens epithelial cells, the half repair time was 60 minutes. Human lens epithelial cells were treated with different concentrations of taurine, SOD and EGCG before ultraviolet radiation. The differences of DNA damage in control and various antioxidant treated groups was statistically significant (F = 6.591, 13.542, 4.626 in cells treated with taurine, SOD and EGCG, respectively, P < 0.01), the difference of VitC effect on DNA in control and treated group were not significantly (F = 1.451, P > 0.05). Human lens epithelial cells were treated with different concentration of VitC, taurine, SOD and EGCG after ultraviolet radiation. The differences of DNA damage between the control and treated group were statistically significant (F = 6.571, 4.810, 6.824, 9.182 in cells treated with VitC, taurine, SOD and EGCG, respectively, P < 0.01). The differences of protective effects on DNA damage in these four different kinds of antioxidants added before UV

  18. Ultraviolet light protection by a sunscreen prevents interferon-driven skin inflammation in cutaneous lupus erythematosus.

    PubMed

    Zahn, Sabine; Graef, Medina; Patsinakidis, Nikolaos; Landmann, Aysche; Surber, Christian; Wenzel, Joerg; Kuhn, Annegret

    2014-07-01

    Irradiation with ultraviolet (UV) light is an important exacerbating factor in cutaneous lupus erythematosus (CLE) and induces various effects in the skin of patients with the disease, such as cell death and inflammation. Recently, we demonstrated the ability of a broad-spectrum sunscreen to prevent UV-induced damage both in patients with CLE and healthy controls (HCs). The aim of this study was to evaluate whether the UV-dependent activation of interferon (IFN)-driven inflammation in CLE can also be prevented by application of the sunscreen. In 20 patients with different subtypes of CLE and 10 HCs, defined areas on the upper back were treated with a broad-spectrum liposomal sunscreen 20 min prior to a combined standardized UVA/UVB irradiation. Immunohistological analyses using antibodies directed against MxA, CD11c, CD123 and CD68 were performed from skin biopsies taken from areas before UV irradiation as well as from sunscreen-treated and sunscreen-untreated areas 24 and 72 h after UV irradiation. The expression of MxA was completely prevented by the sunscreen applied prior to UV irradiation in CLE patients and HCs. Additionally, sunscreen protection significantly diminished the number of the CD11c- and CD123-positive dendritic cells, which are suggested to be a major source of type I/III IFNs, in UV-irradiated skin of patients with CLE. Moreover, the application of the sunscreen prevented the increase in CD68-positive macrophages in both groups 72 h after UV irradiation. The data of this study demonstrate that UV protection reduces lesional tissue damage and inhibits the typical IFN-driven inflammatory response in CLE. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Sun damage in ultraviolet photographs correlates with phenotypic melanoma risk factors in 12-year-old children.

    PubMed

    Gamble, Ryan G; Asdigian, Nancy L; Aalborg, Jenny; Gonzalez, Victoria; Box, Neil F; Huff, Laura S; Barón, Anna E; Morelli, Joseph G; Mokrohisky, Stefan T; Crane, Lori A; Dellavalle, Robert P

    2012-10-01

    Ultraviolet (UV) photography has been used to motivate sun safety in behavioral interventions. The relationship between sun damage shown in UV photographs and melanoma risk has not been systematically investigated. To examine the relationship between severity of sun damage in UV photographs and phenotypic melanoma risk factors in children. UV, standard visible and cross-polarized photographs were recorded for 585 children. Computer software quantified sun damage. Full-body nevus counts, skin color by colorimetry, facial freckling, hair and eye color were collected in skin examinations. Demographic data were collected in telephone interviews of parents. Among 12-year-old children, sun damage shown in UV photographs correlated with phenotypic melanoma risk factors. Sun damage was greatest for children who were non-Hispanic white and those who had red hair, blue eyes, increased facial freckling, light skin and greater number of nevi (all P values < .001). Results were similar for standard visible and cross-polarized photographs. Freckling was the strongest predictor of sun damage in visible and UV photographs. All other phenotypic melanoma risk factors were also predictors for the UV photographs. Differences in software algorithms used to score the photographs could produce different results. UV photographs portray more sun damage in children with higher risk for melanoma based on phenotype. Therefore sun protection interventions targeting those with greater sun damage on UV photographs will target those at higher melanoma risk. This study establishes reference ranges dermatologists can use to assess sun damage in their pediatric patients. Copyright © 2011 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  20. Tualang honey protects keratinocytes from ultraviolet radiation-induced inflammation and DNA damage.

    PubMed

    Ahmad, Israr; Jimenez, Hugo; Yaacob, Nik Soriani; Yusuf, Nabiha

    2012-01-01

    Malaysian tualang honey possesses strong antioxidant and anti-inflammatory properties. Here, we evaluated the effect of tualang honey on early biomarkers of photocarcinogenesis employing PAM212 mouse keratinocyte cell line. Keratinocytes were treated with tualang honey (1.0%, v/v) before a single UVB (150 mJ cm(-2) ) irradiation. We found that the treatment of tualang honey inhibited UVB-induced DNA damage, and enhanced repair of UVB-mediated formation of cyclobutane pyrimidine dimers and 8-oxo-7,8-dihydro-2'-deoxyguanosine. Treatment of tualang honey inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in murine keratinocyte cell line. The treatment of tualang honey also inhibited UVB-induced inflammatory cytokines and inducible nitric oxide synthase protein expression. Furthermore, the treatment of tualang honey inhibited UVB-induced COX-2 expression and PGE2 production. Taken together, we provide evidence that the treatment of tualang honey to keratinocytes affords substantial protection from the adverse effects of UVB radiation via modulation in early biomarkers of photocarcinogenesis and provide suggestion for its photochemopreventive potential. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  1. UV and ionizing radiations induced DNA damage, differences and similarities

    NASA Astrophysics Data System (ADS)

    Ravanat, Jean-Luc; Douki, Thierry

    2016-11-01

    Both UV and ionizing radiations damage DNA. Two main mechanisms, so-called direct and indirect pathways, are involved in the degradation of DNA induced by ionizing radiations. The direct effect of radiation corresponds to direct ionization of DNA (one electron ejection) whereas indirect effects are produced by reactive oxygen species generated through water radiolysis, including the highly reactive hydroxyl radicals, which damage DNA. UV (and visible) light damages DNA by again two distinct mechanisms. UVC and to a lesser extend UVB photons are directly absorbed by DNA bases, generating their excited states that are at the origin of the formation of pyrimidine dimers. UVA (and visible) light by interaction with endogenous or exogenous photosensitizers induce the formation of DNA damage through photosensitization reactions. The excited photosensitizer is able to induce either a one-electron oxidation of DNA (type I) or to produce singlet oxygen (type II) that reacts with DNA. In addition, through an energy transfer from the excited photosensitizer to DNA bases (sometime called type III mechanism) formation of pyrimidine dimers could be produced. Interestingly it has been shown recently that pyrimidine dimers are also produced by direct absorption of UVA light by DNA, even if absorption of DNA bases at these wavelengths is very low. It should be stressed that some excited photosensitizers (such as psoralens) could add directly to DNA bases to generate adducts. The review will described the differences and similarities in terms of damage formation (structure and mechanisms) between these two physical genotoxic agents.

  2. A Novel Mechanism for the Pathogenesis of Nonmelanoma Skin Cancer Resulting from Early Exposure to Ultraviolet Light

    DTIC Science & Technology

    2013-09-01

    entering the circulation, and traveling throughout the body may be a new behavior of epidermal stem cells. We proposed that sunburn following...response to sunburn . We address the following question: Do hair follicle stem cells migrate from the skin following sunburn as a consequence of ultraviolet...light induced inflammation? Our hypothesis is that sunburn makes the hair follicles stem cells leave the skin and enter the blood circulation, and

  3. Phototoxicity to the retina: mechanisms of damage.

    PubMed

    Glickman, Randolph D

    2002-01-01

    Light damage to the retina occurs through three general mechanisms involving thermal, mechanical, or photochemical effects. The particular mechanism activated depends on the wavelength and exposure duration of the injuring light. The transitions between the various light damage mechanism may overlap to some extent. Energy confinement is a key concept in understanding or predicting the type of damage mechanism produced by a given light exposure. As light energy (either from a laser or an incoherent source) is deposited in the retina, its penetration through, and its absorption in, various tissue compartments is determined by its wavelength. Strongly absorbing tissue components will tend to "concentrate" the light energy. The effect of absorbed light energy largely depends on the rate of energy deposition, which is correlated with the exposure duration. If the rate of energy deposition is too low to produce an appreciable temperature increase in the tissue, then any resulting tissue damage necessarily occurs because of chemical (oxidative) reactions induced by absorption of energetic photons (photochemical damage). If the rate of energy deposition is faster than the rate of thermal diffusion (thermal confinement), then the temperature of the exposed tissue rises. If a critical temperature is reached (typically about 10 degrees C above basal), then thermal damage occurs. If the light energy is deposited faster than mechanical relaxation can occur (stress confinement), then a thermoelastic pressure wave is produced, and tissue is disrupted by shear forces or by cavitation-nonlinear effects. Very recent evidence suggests that ultrashort laser pulses can produce tissue damage through nonlinear and photochemical mechanisms; the latter because of two-photon excitation of cellular chromophores. In addition to tissue damage caused directly by light absorption, light toxicity can be produced by the presence of photosensitizing agents. Drugs excited to reactive states by

  4. Effect of some ultraviolet light absorbers on photo-stabilization of azadirachtin-A.

    PubMed

    Deota, P T; Upadhyay, P R; Patel, K B; Mehta, K J; Varshney, A K; Mehta, M H

    2002-10-01

    The effect of photo-stabilization of Azadirachtin-A (Aza-A) was examined when exposed to sunlight and ultraviolet light in the presence of four structurally different ultraviolet stabilizers namely 4-aminobenzoic acid, 2,4-dihydroxybenzophenone, 4,4'-dihydroxybenzophenone and phenyl salicylate. The percentages of Aza-A recovered at different time intervals from slides exposed to different light conditions with and without UV stabilizers as well as kinetic studies indicated that the addition of phenyl salicylate in methanolic solution of Aza-A (in 1:1 mole ratio) provides the best photo-stabilization of Aza-A molecule among the four UV stabilizers studied.

  5. The Inherent Visible Light Signature of an Intense Underwater Ultraviolet Light Source Due to Combined Raman and Fluorescence Effects

    DTIC Science & Technology

    2000-01-01

    Humans cannot see ultraviolet light. The blue-sensitive cones in the retina would respond weakly to ultraviolet wavelengths if exposed to them, but...545, 1992. 3. C. S. Yentsch, and D. A. Phinney, " Autofluorescence and Raman scattering in the marine underwater environment," Ocean Optics X, SPIE

  6. Laser-ultraviolet-A-induced ultraweak photon emission in mammalian cells.

    PubMed

    Niggli, Hugo J; Tudisco, Salvatore; Privitera, Giuseppe; Applegate, Lee Ann; Scordino, Agata; Musumeci, Franco

    2005-01-01

    Photobiological research in the last 30 yr has shown the existence of ultraweak photon emission in biological tissue, which can be detected with sophisticated photomultiplier systems. Although the emission of this ultraweak radiation, often termed biophotons, is extremely low in mammalian cells, it can be efficiently increased by ultraviolet light. Most recently it was shown that UV-A (330 to 380 nm) releases such very weak cell radiation in differentiated human skin fibroblasts. Based on these findings, a new and powerful tool in the form of UV-A-laser-induced biophotonic emission of cultured cells was developed with the intention to detect biophysical changes between carcinogenic and normal cells. With suspension densities ranging from 1 to 8 x 10(6) cells/mL, it was evident that an increase of the UV-A-laser-light induced photon emission intensity could be observed in normal as well as melanoma cells. Using this new detection procedure of ultraweak light emission, photons in cell suspensions as low as 100 microL could be determined, which is a factor of 100 lower compared to previous procedures. Moreover, the detection procedure has been further refined by turning off the photomultiplier system electronically during irradiation leading to the first measurements of induced light emission in the cells after less than 10 micros instead of 150 ms, as reported in previous procedures. This improvement leads to measurements of light bursts up 10(7) photons/s instead of several hundred as found with classical designs. Overall, we find decreasing induction ratings between normal and melanoma cells as well as cancer-prone and melanoma cells. Therefore, it turns out that this highly sensitive and noninvasive device enables us to detect high levels of ultraweak photon emission following UV-A-laser-induced light stimulation within the cells, which enables future development of new biophysical strategies in cell research. Copyright 2005 Society of Photo

  7. Effects of exposure to ultraviolet light on the development of Rana pipiens, the northern leopard frog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, J.J.; Wofford, H.W.

    1996-10-01

    The increase in ultraviolet light intensity levels due to ozone depletion recently has been linked to the decline in amphibian population. In this experiment, eggs and larvae of Rana pipiens were subjected to differing amounts of ultraviolet radiation to determine the effects of ultraviolet light on the development of amphibian tadpoles. The total length, length of body without tail, and maximum width of each specimen was recorded for a month of the tadpoles` development, including several measurements after the ultraviolet exposures were concluded. It was found that ultraviolet exposure significantly reduced the size of the organisms in comparison with themore » control group in all three measured areas. Ultraviolet radiation altered the health and appearance of the exposed organisms and was lethal at large amounts. This experiment showed that ultraviolet radiation could cause many problems in developing amphibians. By slowing their development and physically weakening predation, thus contributing to a decline in overall population levels.« less

  8. Ultraviolet light curves of beta Lyrae: Comparison of OAO A-2, IUE, and Voyager Observations

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji; Mccluskey, George E.; Silvis, Jeffery M. S.; Polidan, Ronald S.; Mccluskey, Carolina P. S.; Eaton, Joel A.

    1994-01-01

    The six-band ultraviolet light curves of beta Lyrae obtained with the Orbiting Astronomical Observatory (OAO) A-2 in 1970 exhibited a very unusual behavior. The secondary minimum deepened at shorter wavelength, indicating that one was not observing light variations caused primarily by the eclipses of two stars having a roughly Planckian energy distribution. It was then suggested that the light variations were caused by a viewing angle effect of an optically thick, ellipsoidal circumbinary gas cloud. Since 1978 beta Lyrae has been observed with the International Ultraviolet Explorer (IUE) satellite. We have constructed ultraviolet light curves from the IUE archival data for comparison with the OAO A-2 results. We find that they are in substantial agreement with each other. The Voyager ultraviolet spectrometer was also used to observe this binary during a period covered by IUE observations. The Voyager results agree with those of the two other satellite observatories at wavelengths longer than about 1350 A. However, in the wavelength region shorter than the Lyman-alpha line at 1216 A, the light curves at 1085 and 965 A show virtually no light variation except an apparent flaring near phase 0.7, which is also in evidence at longer wavelengths. We suggest that the optically thick circumbinary gas cloud, which envelops the two stars completely, assumes a roughly spherical shape when observed at these shorter wavelengths.

  9. Artificial sunlight and ultraviolet light induced photo-epoxidation of propylene over V-Ti/MCM-41 photocatalyst

    PubMed Central

    Nguyen, Van-Huy; Bai, Hsunling

    2014-01-01

    Summary The light irradiation parameters, including the wavelength spectrum and intensity of light source, can significantly influence a photocatalytic reaction. This study examines the propylene photo-epoxidation over V-Ti/MCM-41 photocatalyst by using artificial sunlight (Xe lamp with/without an Air Mass 1.5 Global Filter at 1.6/18.5 mW·cm−2) and ultraviolet light (Mercury Arc lamp with different filters in the range of 0.1–0.8 mW·cm−2). This is the first report of using artificial sunlight to drive the photo-epoxidation of propylene. Over V-Ti/MCM-41 photocatalyst, the propylene oxide (PO) formation rate is 193.0 and 112.1 µmol·gcat −1·h−1 with a PO selectivity of 35.0 and 53.7% under UV light and artificial sunlight, respectively. A normalized light utilization (NLU) index is defined and found to correlate well with the rate of both PO formation and C3H6 consumption in log–log scale. The light utilization with a mercury arc lamp is better than with a xenon lamp. The selectivity to PO remains practically unchanged with respect to NLU, suggesting that the photo-epoxidation occurs through the same mechanism under the conditions tested in this study. PMID:24991493

  10. Protective effect of maghemite nanoparticles on ultraviolet-induced photo-damage in human skin fibroblasts

    NASA Astrophysics Data System (ADS)

    Lee, Kwon-Jai; An, Jeung-Hee; Shin, Jae-Soo; Kim, Dong-Hee; Kim, Changman; Ozaki, Hajime; Koh, Jae-Gui

    2007-11-01

    This study examined the optical properties of an oxidized form of maghemite (γ-Fe2O3) nanoparticles and their protective effects against the photoaging of human skin fibroblasts irradiated with ultraviolet (UV) light. Nanoparticles with diameters ranging from 8.7 to 12 nm were prepared using a chemical co-precipitation method. The nanoparticles were coated with two surfactants to obtain a water-based product. The onset of the absorption of the γ-Fe2O3 nanoparticles in the UV-visible absorption spectra increased with increasing particle size. The γ-Fe2O3 nanoparticles significantly inhibited the production of matrix metalloproteinase-1 in human skin fibroblast HS 68 cells by 60% compared with the UV-irradiated control. These results suggest that γ-Fe2O3 nanoparticles have photoprotective properties, and have potential use as an agent against photoaging.

  11. Ultraviolet B irradiation induces expansion of intraepithelial tumor cells in a tissue model of early cancer progression.

    PubMed

    Mudgil, Adarsh V; Segal, Nadav; Andriani, Frank; Wang, Youai; Fusenig, Norbert E; Garlick, Jonathan A

    2003-07-01

    Ultraviolet B irradiation is thought to enable skin cancer progression as clones of genetically damaged keratinocytes escape apoptosis and expand at the expense of adjacent normal cells. Mechanisms through which potentially malignant cells in human skin undergo clonal expansion, however, are not well understood. The goal of this study was to characterize the role of ultraviolet B irradiation on the intraepithelial expansion of early stage human tumor cells in organotypic skin cultures. To accomplish this, we have studied the effect of ultraviolet B irradiation on organotypic cultures that were fabricated by mixing normal human keratinocytes with beta-galactosidase-marked, intraepithelial tumor cells (HaCaT-ras, clone II-4), which bear mutations in both p53 alleles and harbor an activated H-ras oncogene. We found that when organotypic mixtures were exposed to an ultraviolet B dose of 50 mJ per cm2, intraepithelial tumor cells underwent a significant degree of proliferative expansion compared to nonirradiated cultures. To understand this response, organotypic cultures of nor-mal keratinocytes were exposed to ultraviolet B and showed a dose-dependent increase in numbers of sunburn cells and TUNEL-positive cells although their proliferation was suppressed. In contrast, neither the apoptotic nor the proliferative response of II-4 cells was altered by ultraviolet B in organotypic cultures. The differential response of these cell types suggested that II-4 cells were resistant to ultraviolet-B-induced alterations, which allowed these intraepithelial tumor cells to gain a selective growth and survival advantage relative to neighboring normal cells. These findings demonstrate that ultraviolet B exposure can induce the intraepithelial expansion of apoptosis-resistant, p53-mutant, and ras-activated keratinocytes, suggesting that this agent can act to promote the early stages of epithelial carcinogenesis.

  12. Temperature dependence on plasma-induced damage and chemical reactions in GaN etching processes using chlorine plasma

    NASA Astrophysics Data System (ADS)

    Liu, Zecheng; Ishikawa, Kenji; Imamura, Masato; Tsutsumi, Takayoshi; Kondo, Hiroki; Oda, Osamu; Sekine, Makoto; Hori, Masaru

    2018-06-01

    Plasma-induced damage (PID) on GaN was optimally reduced by high-temperature chlorine plasma etching. Energetic ion bombardments primarily induced PID involving stoichiometry, surface roughness, and photoluminescence (PL) degradation. Chemical reactions under ultraviolet (UV) irradiation and chlorine radical exposure at temperatures higher than 400 °C can be controlled by taking into account the synergism of simultaneous photon and radical irradiations to effectively reduce PID.

  13. Wavelength-dependent ultraviolet induction of cyclobutane pyrimidine dimers in the human cornea.

    PubMed

    Mallet, Justin D; Rochette, Patrick J

    2013-08-01

    Exposition to ultraviolet (UV) light is involved in the initiation and the progression of skin cancer. The genotoxicity of UV light is mainly attributed to the induction of cyclobutane pyrimidine dimers (CPDs), the most abundant DNA damage generated by all UV types (UVA, B and C). The human cornea is also exposed to the harmful UV radiations, but no UV-related neoplasm has been reported in this ocular structure. The probability that a specific DNA damage leads to a mutation and eventually to cellular transformation is influenced by its formation frequency. To shed light on the genotoxic effect of sunlight in the human eye, we have analyzed CPD induction in the cornea and the iris following irradiation of ex vivo human eyes with UVA, B or C. The extent of CPD induction was used to establish the penetrance of the different UV types in the human cornea. We show that UVB- and UVC-induced CPDs are concentrated in the corneal epithelium and do not penetrate deeply beyond this corneal layer. On the other hand, UVA wavelengths penetrate deeper and induce CPDs in the entire cornea and in the first layers of the iris. Taken together, our results are undoubtedly an important step towards better understanding the consequences of UV exposure to the human eye.

  14. Cytotoxic and mutagenic properties of shale oil byproducts. II. Comparison of mutagenic effects at five genetic markers induced by retort process water plus near ultraviolet light in Chinese hamster ovary cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, D.J.C.; Strniste, G.F.

    1982-01-01

    A Chinese hamster ovary (CHO) cell line heterozygous at the adenine phosphoribosyl transferase (APRT) locus was used for selection of induced mutants resistant to 8-azaadenine (8AA), 6-thioguanine (6TG), ouabain (OUA), emetine (EMT) and diphtheria toxin (DIP). The expression times necessary for optimizing the number of mutants recovered at the different loci have been determined using the known direct acting mutagen, far ultraviolet light (FUV), and a complex aqueous organic mixture (shale oil process water) activated with near ultraviolet light (NUV). The results indicate that optimal expression times following treatment with either mutagen was between 2 and 8 days. For CHOmore » cells treated with shale oil process water and subsequently exposed to NUV a linear dose response for mutant induction was observed for all five genetic loci. At 10% surviving fraction of cells, between 35- and 130-fold increases above backgound mutation frequencies were observed for the various markers examined.« less

  15. Ultraviolet light-responsive photorheological fluids: as a new class of smart fluids

    NASA Astrophysics Data System (ADS)

    Cho, Min-Young; Kim, Ji-Sik; Choi, Hyoung Jin; Choi, Seung-Bok; Kim, Gi-Woo

    2017-05-01

    We present a comprehensive introduction to the photorheological (PR) fluids whose rheological behavior can be changed by ultraviolet (UV) light with a wavelength of 365 nm. When the PR fluid was exposed to UV light, the viscosity of the fluid decreased, while the viscosity recovered to its initial value when UV light was turned off, indicating that the viscosity of these types of fluids can be reversible and tunable by UV light. Contrary to conventional smart fluids, such as electrorheological and magnetorheological fluids, PR fluid does not suffer from a phase splitting problem because it exists in a single-phase solution. Additionally, the PR fluid does not require any contact component, such as electrodes, and electric wires that are essential components for conventional smart fluids. In this work, the PR fluids were synthesized by doping lecithin/sodium deoxycholate reverse micelles with a photo-chromic spiropyran compound. It is demonstrated that the viscosity changes of PR fluids can be induced by UV light, and their rheological properties are examined in detail. In addition, an example of tailoring rheological properties using photoluminescence was introduced for improved response time. One of the potential applications, such as microfluidic flow control using the PR fluids, is also briefly presented.

  16. Antagonist effects of veratric acid against UVB-induced cell damages.

    PubMed

    Shin, Seoung Woo; Jung, Eunsun; Kim, Seungbeom; Lee, Kyung-Eun; Youm, Jong-Kyung; Park, Deokhoon

    2013-05-10

    Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in human epidermis, resulting in inflammation, photoaging, and photocarcinogenesis. Adequate protection of skin against the harmful effect of UV irradiation is essential. In recent years naturally occurring herbal compounds such as phenolic acids, flavonoids, and high molecular weight polyphenols have gained considerable attention as beneficial protective agents. The simple phenolic veratric acid (VA, 3,4-dimethoxybenzoic acid) is one of the major benzoic acid derivatives from vegetables and fruits and it also occurs naturally in medicinal mushrooms which have been reported to have anti-inflammatory and anti-oxidant activities. However, it has rarely been applied in skin care. This study, therefore, aimed to explore the possible roles of veratric acid in protection against UVB-induced damage in HaCaT cells. Results showed that veratric acid can attenuate cyclobutane pyrimidine dimers (CPDs) formation, glutathione (GSH) depletion and apoptosis induced by UVB. Furthermore, veratric acid had inhibitory effects on the UVB-induced release of the inflammatory mediators such as IL-6 and prostaglandin-E2. We also confirmed the safety and clinical efficacy of veratric acid on human skin. Overall, results demonstrated significant benefits of veratric acid on the protection of keratinocyte against UVB-induced injuries and suggested its potential use in skin photoprotection.

  17. Protective effect of curcumin against ultraviolet A irradiation‑induced photoaging in human dermal fibroblasts.

    PubMed

    Liu, Xiaoming; Zhang, Ruizhi; Shi, Haixia; Li, Xiaobo; Li, Yanhong; Taha, Ahmad; Xu, Chunxing

    2018-05-01

    Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in skin, resulting in photoaging. Natural botanicals have gained considerable attention due to their beneficial protection against the harmful effects of UV irradiation. The present study aimed to evaluate the ability of curcumin (Cur) to protect human dermal fibroblasts (HDFs) against ultraviolet A (UVA)‑induced photoaging. HDFs were treated with 0‑10 µM Cur for 2 h and subsequently exposed to various intensities of UVA irradiation. The cell viability and apoptotic rate of HDFs were investigated by MTT and flow cytometry assays, respectively. The effect of UVA and Cur on the formation of reactive oxygen species (ROS), malondialdehyde levels, which are an indicator of ROS, and the levels/activity of antioxidative defense proteins, including glutathione, superoxide dismutase and catalase, were evaluated using 2',7'-dichlorofluorescin diacetate and commercial assay kits. Furthermore, western blotting was performed to determine the levels of proteins associated with endoplasmic reticulum (ER) stress, the apoptotic pathway, inflammation and the collagen synthesis pathway. The results demonstrated that Cur reduced the accumulation of ROS and restored the activity of antioxidant defense enzymes, indicating that Cur minimized the damage induced by UVA irradiation in HDFs. Furthermore, western blot analysis demonstrated that Cur may attenuate UVA‑induced ER stress, inflammation and apoptotic signaling by downregulating the protein expression of glucose‑regulated protein 78, C/EBP‑homologous protein, nuclear factor‑κB and cleaved caspase‑3, while upregulating the expression of Bcl‑2. Additionally, it was demonstrated that Cur may regulate collagen metabolism by decreasing the protein expression of matrix metalloproteinase (MMP)‑1 and MMP‑3, and may promote the repair of cells damaged as a result of UVA irradiation through increasing the protein expression of

  18. Protective effect of curcumin against ultraviolet A irradiation-induced photoaging in human dermal fibroblasts

    PubMed Central

    Liu, Xiaoming; Zhang, Ruizhi; Shi, Haixia; Li, Xiaobo; Li, Yanhong; Taha, Ahmad; Xu, Chunxing

    2018-01-01

    Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in skin, resulting in photoaging. Natural botanicals have gained considerable attention due to their beneficial protection against the harmful effects of UV irradiation. The present study aimed to evaluate the ability of curcumin (Cur) to protect human dermal fibroblasts (HDFs) against ultraviolet A (UVA)-induced photoaging. HDFs were treated with 0–10 µM Cur for 2 h and subsequently exposed to various intensities of UVA irradiation. The cell viability and apoptotic rate of HDFs were investigated by MTT and flow cytometry assays, respectively. The effect of UVA and Cur on the formation of reactive oxygen species (ROS), malondialdehyde levels, which are an indicator of ROS, and the levels/activity of antioxidative defense proteins, including glutathione, superoxide dismutase and catalase, were evaluated using 2′,7′-dichlorofluorescin diacetate and commercial assay kits. Furthermore, western blotting was performed to determine the levels of proteins associated with endoplasmic reticulum (ER) stress, the apoptotic pathway, inflammation and the collagen synthesis pathway. The results demonstrated that Cur reduced the accumulation of ROS and restored the activity of antioxidant defense enzymes, indicating that Cur minimized the damage induced by UVA irradiation in HDFs. Furthermore, western blot analysis demonstrated that Cur may attenuate UVA-induced ER stress, inflammation and apoptotic signaling by downregulating the protein expression of glucose-regulated protein 78, C/EBP-homologous protein, nuclear factor-κB and cleaved caspase-3, while upregulating the expression of Bcl-2. Additionally, it was demonstrated that Cur may regulate collagen metabolism by decreasing the protein expression of matrix metalloproteinase (MMP)-1 and MMP-3, and may promote the repair of cells damaged as a result of UVA irradiation through increasing the protein expression of transforming

  19. Tryptophan Cluster Protects Human γD-Crystallin from Ultraviolet Radiation-Induced Photoaggregation In Vitro

    PubMed Central

    Schafheimer, Nathaniel; King, Jonathan

    2013-01-01

    Exposure to ultraviolet radiation (UVR) is a significant risk factor for age-related cataract, a disease of the human lens and the most prevalent cause of blindness in the world. Cataract pathology involves protein misfolding and aggregation of the primary proteins of the lens, the crystallins. Human γD-crystallin (HγD-Crys) is a major γ-crystallin in the nucleus of the human lens. We report here analysis of UVR-induced damage to HγD-Crys in vitro. Irradiation of solutions of recombinant HγD-Crys with UVA/UVB light produced a rise in solution turbidity due to polymerization of the monomeric crystallins into higher molecular weight aggregates. A significant fraction of this polymerized protein was covalently linked. Photoaggregation of HγD-Crys required oxygen and its rate was protein concentration and UVR dose dependent. To investigate the potential roles of individual tryptophan residues in photoaggregation, triple W:F mutants of HγD-Crys were irradiated. Surprisingly, despite reducing UVR absorbing capacity, multiple W:F HγD-Crys mutant proteins photoaggregated more quickly and extensively than wild type. The results reported here are consistent with previous studies that postulated that an energy transfer mechanism between the highly conserved pairs of tryptophan residues in HγD-Crys could be protective against UVR-induced photodamage. PMID:23683003

  20. Photomorphogenic responses to ultraviolet-B light.

    PubMed

    Jenkins, Gareth I

    2017-11-01

    Exposure to ultraviolet B (UV-B) light regulates numerous aspects of plant metabolism, morphology and physiology through the differential expression of hundreds of genes. Photomorphogenic responses to UV-B are mediated by the photoreceptor UV RESISTANCE LOCUS8 (UVR8). Considerable progress has been made in understanding UVR8 action: the structural basis of photoreceptor function, how interaction with CONSTITUTIVELY PHOTOMORPHOGENIC 1 initiates signaling and how REPRESSOR OF UV-B PHOTOMORPHOGENESIS proteins negatively regulate UVR8 action. In addition, recent research shows that UVR8 mediates several responses through interaction with other signaling pathways, in particular auxin signaling. Nevertheless, many aspects of UVR8 action remain poorly understood. Most research to date has been undertaken with Arabidopsis, and it is important to explore the functions and regulation of UVR8 in diverse plant species. Furthermore, it is essential to understand how UVR8, and UV-B signaling in general, regulates processes under natural growth conditions. Ultraviolet B regulates the expression of many genes through UVR8-independent pathways, but the activity and importance of these pathways in plants growing in sunlight are poorly understood. © 2017 John Wiley & Sons Ltd.

  1. MAHLI First Night Imaging of Martian Rock Under Ultraviolet Lighting

    NASA Image and Video Library

    2013-01-24

    This image of a Martian rock dubbed Sayunei is illuminated by ultraviolet LEDs light emitting diodes is part of the first set of nighttime images taken by the Mars Hand Lens Imagery camera at the end of the robotic arm of NASA Mars rover Curiosity.

  2. DNA Damage in Bone Marrow Cells Induced by Femtosecond and Nanosecond Ultraviolet Laser Pulses.

    PubMed

    Morkunas, Vaidotas; Gabryte, Egle; Vengris, Mikas; Danielius, Romualdas; Danieliene, Egle; Ruksenas, Osvaldas

    2015-12-01

    The purpose of this study was to investigate the possible genotoxic impact of new generation 205 nm femtosecond solid-state laser irradiation on the DNA of murine bone marrow cells in vitro, and to compare the DNA damage caused by both femtosecond and nanosecond UV laser pulses. Recent experiments of corneal stromal ablation in vitro and in vivo applying femtosecond UV pulses showed results comparable with or superior to those obtained using nanosecond UV lasers. However, the possible genotoxic effect of ultrashort laser pulses was not investigated. Mouse bone marrow cells were exposed to different doses of 205 nm femtosecond, 213 and 266 nm nanosecond lasers, and 254 nm UV lamp irradiation. The comet assay was used for the evaluation of DNA damage. All types of irradiation demonstrated intensity-dependent genotoxic impact. The DNA damage induced depended mainly upon wavelength rather than on other parameters such as pulse duration, repetition rate, or beam delivery to a target. Both 205 nm femtosecond and clinically applied 213 nm nanosecond lasers' pulses induced a comparable amount of DNA breakage in cells exposed to the same irradiation dose. To further evaluate the suitability of femtosecond UV laser sources for microsurgery, a separate investigation of the genotoxic and mutagenic effects on corneal cells in vitro and, particularly, in vivo is needed.

  3. Effects of Combined Ketamine/Xylazine Anesthesia on Light Induced Retinal Degeneration in Rats

    PubMed Central

    Bolz, Sylvia; Eslava-Schmalbach, Javier; Willmann, Gabriel; Zhour, Ahmad; Zrenner, Eberhart; Fischer, M. Dominik; Gekeler, Florian

    2012-01-01

    Objectives To explore the effect of ketamine-xylazine anesthesia on light-induced retinal degeneration in rats. Methods Rats were anesthetized with ketamine and xylazine (100 and 5 mg, respectively) for 1 h, followed by a recovery phase of 2 h before exposure to 16,000 lux of environmental illumination for 2 h. Functional assessment by electroretinography (ERG) and morphological assessment by in vivo imaging (optical coherence tomography), histology (hematoxylin/eosin staining, TUNEL assay) and immunohistochemistry (GFAP and rhodopsin staining) were performed at baseline (ERG), 36 h, 7 d and 14 d post-treatment. Non-anesthetized animals treated with light damage served as controls. Results Ketamine-xylazine pre-treatment preserved retinal function and protected against light-induced retinal degeneration. In vivo retinal imaging demonstrated a significant increase of outer nuclear layer (ONL) thickness in the non-anesthetized group at 36 h (p<0.01) and significant reduction one week (p<0.01) after light damage. In contrast, ketamine-xylazine pre-treated animals showed no significant alteration of total retinal or ONL thickness at either time point (p>0.05), indicating a stabilizing and/or protective effect with regard to phototoxicity. Histology confirmed light-induced photoreceptor cell death and Müller cells gliosis in non-anesthetized rats, especially in the superior hemiretina, while ketamine-xylazine treated rats showed reduced photoreceptor cell death (TUNEL staining: p<0.001 after 7 d), thicker ONL and longer IS/OS. Fourteen days after light damage, a reduction of standard flash induced a-wave amplitudes and a-wave slopes (p = 0.01) and significant alterations in parameters of the scotopic sensitivity function (e.g. Vmax of the Naka Rushton fit p = 0.03) were observed in non-treated vs. ketamine-xylazine treated animals. Conclusions Our results suggest that pre-treatment with ketamine-xylazine anesthesia protects retinas against light damage

  4. Protective effects of TES trioleate, an inhibitor of phospholipase A2, on reactive oxygen species and UVA-induced cell damage.

    PubMed

    Park, Soo Nam; Kim, Moon Jin; Ha, Ji Hoon; Lee, Nan Hee; Park, Jino; Lee, Jiwon; Kim, Dukha; Yoon, Chulsoo

    2016-11-01

    2-[Tris(oleoyloxymethyl)methylamino]-1-ethane sulfonic acid (TES trioleate) is an inhibitor of phospholipase A 2 (PLA2), which hydrolyzes cell membrane phospholipids to produce arachidonic acid (AA) and lysophospholipids (LysoPLs). Here, we investigated the protective effects of TES trioleate on cell damage caused by ultraviolet A (UVA) light and reactive oxygen species (ROS). Pre-incubation with 250-1000μM TES trioleate resulted in concentration-dependent protection from UVA-induced damage in HaCaT cells. Additionally, 25-1000μM TES trioleate provided protection against H 2 O 2 in a concentration-dependent manner. In human erythrocytes treated with 1 O 2 , 10-100μM TES trioleate showed concentration-dependent protective effects, similar to but stronger than the controls, 4-BPB and lipophilic antioxidant (+)-α-tocopherol at 100μM. TES trioleate did not have detectable radical scavenging activity. Moreover, compared with (+)-α-tocopherol and rutin, TES trioleate showed low ROS scavenging activity. Thus, although TES trioleate showed cell protective effects against UVA, H 2 O 2 , and 1 O 2 -induced damages, these effects were not caused by the scavenging ability of the radical or ROS. Finally, pretreatment of HaCaT cells and human erythrocytes with l-α-lysophosphatidylcholine produced by PLA2 promoted increased cell damage at low concentrations. Thus, the protective effects of TES trioleate on cellular damage by UVA and ROS may be associated with inhibition of PLA2-dependent cell damage rather than ROS scavenging. Copyright © 2016. Published by Elsevier B.V.

  5. Role of p53 in silibinin-mediated inhibition of ultraviolet B radiation-induced DNA damage, inflammation and skin carcinogenesis.

    PubMed

    Rigby, Cynthia M; Roy, Srirupa; Deep, Gagan; Guillermo-Lagae, Ruth; Jain, Anil K; Dhar, Deepanshi; Orlicky, David J; Agarwal, Chapla; Agarwal, Rajesh

    2017-01-01

    Non-melanoma skin cancers (NMSC) are a growing problem given that solar ultraviolet B (UVB) radiation exposure is increasing most likely due to depletion of the atmospheric ozone layer and lack of adequate sun protection. Better preventive methods are urgently required to reduce UV-caused photodamage and NMSC incidence. Earlier, we have reported that silibinin treatment activates p53 and reduces photodamage and NMSC, both in vitro and in vivo; but whether silibinin exerts its protective effects primarily through p53 remains unknown. To address this question, we generated p53 heterozygous (p53 +/- ) and p53 knockout (p53 -/- ) mice on SKH-1 hairless mouse background, and assessed silibinin efficacy in both short- and long-term UVB exposure experiments. In the chronic UVB-exposed skin tumorigenesis study, compared to p53 +/+ mice, p53 +/- mice developed skin tumors earlier and had higher tumor number, multiplicity and volume. Silibinin topical treatment significantly reduced the tumor number, multiplicity and volume in p53 +/+ mice but silibinin' protective efficacy was significantly compromised in p53 +/- mice. Additionally, silibinin treatment failed to inhibit precursor skin cancer lesions in p53 -/- mice but improved the survival of the mice. In short-term studies, silibinin application accelerated the removal of UVB-induced DNA damage in p53 +/+ mice while its efficacy was partially compromised in p53 -/- mice. Interestingly, silibinin treatment also inhibited the UVB-induced inflammatory markers in skin tissue. These results further confirmed that absence of the p53 allele predisposes mice to photodamage and photocarcinogenesis, and established that silibinin mediates its protection against UVB-induced photodamage, inflammation and photocarcinogenesis partly through p53 activation. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Role of p53 in silibinin-mediated inhibition of ultraviolet B radiation-induced DNA damage, inflammation and skin carcinogenesis

    PubMed Central

    Rigby, Cynthia M.; Roy, Srirupa; Deep, Gagan; Guillermo-Lagae, Ruth; Jain, Anil K.; Dhar, Deepanshi; Orlicky, David J.; Agarwal, Chapla; Agarwal, Rajesh

    2017-01-01

    Non-melanoma skin cancers (NMSC) are a growing problem given that solar ultraviolet B (UVB) radiation exposure is increasing most likely due to depletion of the atmospheric ozone layer and lack of adequate sun protection. Better preventive methods are urgently required to reduce UV-caused photodamage and NMSC incidence. Earlier, we have reported that silibinin treatment activates p53 and reduces photodamage and NMSC, both in vitro and in vivo; but whether silibinin exerts its protective effects primarily through p53 remains unknown. To address this question, we generated p53 heterozygous (p53+/−) and p53 knockout (p53−/−) mice on SKH-1 hairless mouse background, and assessed silibinin efficacy in both short- and long-term UVB exposure experiments. In the chronic UVB-exposed skin tumorigenesis study, compared to p53+/+ mice, p53+/− mice developed skin tumors earlier and had higher tumor number, multiplicity and volume. Silibinin topical treatment significantly reduced the tumor number, multiplicity and volume in p53+/+ mice but silibinin’ protective efficacy was significantly compromised in p53+/− mice. Additionally, silibinin treatment failed to inhibit precursor skin cancer lesions in p53−/− mice but improved the survival of the mice. In short-term studies, silibinin application accelerated the removal of UVB-induced DNA damage in p53+/+ mice while its efficacy was partially compromised in p53−/− mice. Interestingly, silibinin treatment also inhibited the UVB-induced inflammatory markers in skin tissue. These results further confirmed that absence of the p53 allele predisposes mice to photodamage and photocarcinogenesis, and established that silibinin mediates its protection against UVB-induced photodamage, inflammation and photocarcinogenesis partly through p53 activation. PMID:27729375

  7. Solar Simulated Ultraviolet Radiation Induces Global Histone Hypoacetylation in Human Keratinocytes.

    PubMed

    Zhang, Xiaoru; Kluz, Thomas; Gesumaria, Lisa; Matsui, Mary S; Costa, Max; Sun, Hong

    2016-01-01

    Ultraviolet radiation (UVR) from sunlight is the primary effector of skin DNA damage. Chromatin remodeling and histone post-translational modification (PTM) are critical factors in repairing DNA damage and maintaining genomic integrity, however, the dynamic changes of histone marks in response to solar UVR are not well characterized. Here we report global changes in histone PTMs induced by solar simulated UVR (ssUVR). A decrease in lysine acetylation of histones H3 and H4, particularly at positions of H3 lysine 9, lysine 56, H4 lysine 5, and lysine 16, was found in human keratinocytes exposed to ssUVR. These acetylation changes were highly associated with ssUVR in a dose-dependent and time-specific manner. Interestingly, H4K16ac, a mark that is crucial for higher order chromatin structure, exhibited a persistent reduction by ssUVR that was transmitted through multiple cell divisions. In addition, the enzymatic activities of histone acetyltransferases were significantly reduced in irradiated cells, which may account for decreased global acetylation. Moreover, depletion of histone deacetylase SIRT1 in keratinocytes rescued ssUVR-induced H4K16 hypoacetylation. These results indicate that ssUVR affects both HDAC and HAT activities, leading to reduced histone acetylation.

  8. Solar Simulated Ultraviolet Radiation Induces Global Histone Hypoacetylation in Human Keratinocytes

    PubMed Central

    Zhang, Xiaoru; Kluz, Thomas; Gesumaria, Lisa; Matsui, Mary S.; Costa, Max; Sun, Hong

    2016-01-01

    Ultraviolet radiation (UVR) from sunlight is the primary effector of skin DNA damage. Chromatin remodeling and histone post-translational modification (PTM) are critical factors in repairing DNA damage and maintaining genomic integrity, however, the dynamic changes of histone marks in response to solar UVR are not well characterized. Here we report global changes in histone PTMs induced by solar simulated UVR (ssUVR). A decrease in lysine acetylation of histones H3 and H4, particularly at positions of H3 lysine 9, lysine 56, H4 lysine 5, and lysine 16, was found in human keratinocytes exposed to ssUVR. These acetylation changes were highly associated with ssUVR in a dose-dependent and time-specific manner. Interestingly, H4K16ac, a mark that is crucial for higher order chromatin structure, exhibited a persistent reduction by ssUVR that was transmitted through multiple cell divisions. In addition, the enzymatic activities of histone acetyltransferases were significantly reduced in irradiated cells, which may account for decreased global acetylation. Moreover, depletion of histone deacetylase SIRT1 in keratinocytes rescued ssUVR-induced H4K16 hypoacetylation. These results indicate that ssUVR affects both HDAC and HAT activities, leading to reduced histone acetylation. PMID:26918332

  9. Protective Effect of the Ethyl Acetate Fraction of Sargassum muticum Against Ultraviolet B–Irradiated Damage in Human Keratinocytes

    PubMed Central

    Piao, Mei Jing; Yoon, Weon Jong; Kang, Hee Kyoung; Yoo, Eun Sook; Koh, Young Sang; Kim, Dong Sam; Lee, Nam Ho; Hyun, Jin Won

    2011-01-01

    The aim of this study was to investigate the cytoprotective properties of the ethyl acetate fraction of Sargassum muticum (SME) against ultraviolet B (UVB)-induced cell damage in human keratinocytes (HaCaT cells). SME exhibited scavenging activity toward the 1,1-diphenyl-2-picrylhydrazyl radicals and hydrogen peroxide (H2O2) and UVB-induced intracellular reactive oxygen species (ROS). SME also scavenged the hydroxyl radicals generated by the Fenton reaction (FeSO4 + H2O2), which was detected using electron spin resonance spectrometry. In addition, SME decreased the level of lipid peroxidation that was increased by UVB radiation, and restored the level of protein expression and the activities of antioxidant enzymes that were decreased by UVB radiation. Furthermore, SME reduced UVB-induced apoptosis as shown by decreased DNA fragmentation and numbers of apoptotic bodies. These results suggest that SME protects human keratinocytes against UVB-induced oxidative stress by enhancing antioxidant activity in cells, thereby inhibiting apoptosis. PMID:22174656

  10. Ocular hazards of light sources: review of current knowledge.

    PubMed

    Ham, W T

    1983-02-01

    Retinal damage is the most important hazard from light. There are three types of retinal damage classified as structural, thermal and photochemical; damage type depends on wavelength, power level and exposure time. Photochemical damage from blue light produces solar retinitis and is postulated to accelerate aging which leads to senile macular degeneration. The lens protects the retina from blue light and near ultraviolet (UV) but at the expense of cataractogenesis. Lens removal exposes retina to near UV that is six times more dangerous than blue light. Filters are recommended to protect lens and retina from blue light and near UV.

  11. Investigation of Laser-Induced Retinal Damage: Wavelength and Pulsewidth Dependent Mechanisms

    DTIC Science & Technology

    1994-08-31

    transformation. Biochim Biophys Acta 1991; 1072:129-57. 2. Artuc M, Ramshad M, Kappus H. Studies on acute toxic effects to keratinocytes induced by...hematoporphyrin derivatives and laser light Arch Dermatol Res 1989;281:491-4. 3. Artuc M, Ramshad M, Reinhold C, Kappus H. DNA damage caused by laser light

  12. Abnormal hump in capacitance-voltage measurements induced by ultraviolet light in a-IGZO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Tsao, Yu-Ching; Chang, Ting-Chang; Chen, Hua-Mao; Chen, Bo-Wei; Chiang, Hsiao-Cheng; Chen, Guan-Fu; Chien, Yu-Chieh; Tai, Ya-Hsiang; Hung, Yu-Ju; Huang, Shin-Ping; Yang, Chung-Yi; Chou, Wu-Ching

    2017-01-01

    This work demonstrates the generation of abnormal capacitance for amorphous indium-gallium-zinc oxide (a-InGaZnO4) thin-film transistors after being subjected to negative bias stress under ultraviolet light illumination stress (NBIS). At various operation frequencies, there are two-step tendencies in their capacitance-voltage curves. When gate bias is smaller than threshold voltage, the measured capacitance is dominated by interface defects. Conversely, the measured capacitance is dominated by oxygen vacancies when gate bias is larger than threshold voltage. The impact of these interface defects and oxygen vacancies on capacitance-voltage curves is verified by TCAD simulation software.

  13. Polyhydroxylated fatty alcohols derived from avocado suppress inflammatory response and provide non-sunscreen protection against UV-induced damage in skin cells.

    PubMed

    Rosenblat, Gennady; Meretski, Shai; Segal, Joseph; Tarshis, Mark; Schroeder, Avi; Zanin-Zhorov, Alexandra; Lion, Gilead; Ingber, Arieh; Hochberg, Malka

    2011-05-01

    Exposing skin to ultraviolet (UV) radiation contributes to photoaging and to the development of skin cancer by DNA lesions and triggering inflammatory and other harmful cellular cascades. The present study tested the ability of unique lipid molecules, polyhydroxylated fatty alcohols (PFA), extracted from avocado, to reduce UVB-induced damage and inflammation in skin. Introducing PFA to keratinocytes prior to their exposure to UVB exerted a protective effect, increasing cell viability, decreasing the secretion of IL-6 and PGE(2), and enhancing DNA repair. In human skin explants, treating with PFA reduced significantly UV-induced cellular damage. These results support the idea that PFA can play an important role as a photo-protective agent in UV-induced skin damage.

  14. Can pulsed xenon ultraviolet light systems disinfect aerobic bacteria in the absence of manual disinfection?

    PubMed

    Jinadatha, Chetan; Villamaria, Frank C; Ganachari-Mallappa, Nagaraja; Brown, Donna S; Liao, I-Chia; Stock, Eileen M; Copeland, Laurel A; Zeber, John E

    2015-04-01

    Whereas pulsed xenon-based ultraviolet light no-touch disinfection systems are being increasingly used for room disinfection after patient discharge with manual cleaning, their effectiveness in the absence of manual disinfection has not been previously evaluated. Our study indicates that pulsed xenon-based ultraviolet light systems effectively reduce aerobic bacteria in the absence of manual disinfection. These data are important for hospitals planning to adopt this technology as adjunct to routine manual disinfection. Published by Elsevier Inc.

  15. Quantification of high-power ultrasound induced damage on potato starch granules using light microscopy.

    PubMed

    Zuo, Yue Yue J; Hébraud, Pascal; Hemar, Yacine; Ashokkumar, Muthupandian

    2012-05-01

    A simple light microscopic technique was developed in order to quantify the damage inflicted by high-power low-frequency ultrasound (0-160 W, 20 kHz) treatment on potato starch granules in aqueous dispersions. The surface properties of the starch granules were modified using ethanol and SDS washing methods, which are known to displace proteins and lipids from the surface of the starch granules. The study showed that in the case of normal and ethanol-washed potato starch dispersions, two linear regions were observed. The number of defects first increased linearly with an increase in ultrasound power up to a threshold level. This was then followed by another linear dependence of the number of defects on the ultrasound power. The power threshold where the change-over occurred was higher for the ethanol-washed potato dispersions compared to non-washed potato dispersions. In the case of SDS-washed potato starch, although the increase in defects was linear with the ultrasound power, the power threshold for a second linear region was not observed. These results are discussed in terms of the different possible mechanisms of cavitation induced-damage (hydrodynamic shear stresses and micro-jetting) and by taking into account the hydrophobicity of the starch granule surface. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Damaging effects of visible light. Comprehensive progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1981-01-01

    Research progress is reported on studies of retinal light damage. A myriad of variables effect the production of light damage. These include age, prior light history, body temperature, vitamin A status, intensity, wavelength and duration of light. The intensity-duration function and the age function have been studied in detail in rats. Studies have been begun on the wavelength variable. (ACR)

  17. Protective effect of crocin on ultraviolet B‑induced dermal fibroblast photoaging.

    PubMed

    Deng, Mingwu; Li, Dong; Zhang, Yichen; Zhou, Guangdong; Liu, Wei; Cao, Yilin; Zhang, Wenjie

    2018-06-11

    Ultraviolet B (UVB) radiation induces the production of reactive oxygen species (ROS), resulting in the aging of dermal fibroblasts. Crocin, a bioactive constituent of Crocus sativus, possesses anti‑oxidation effects. The purpose of the present study was to evaluate the protective effect of crocin on UVB‑induced dermal fibroblast photoaging. Human dermal fibroblasts were isolated and cultured with different concentrations of crocin prior to and following exposure to UVB irradiation. The senescent phenotypes of cells were evaluated, including cell proliferation, cell cycle, senescence‑associated β‑galactosidase (SA‑β‑gal) expression, intracellular ROS, expression of antioxidant protein glutathione peroxidase 1 (GPX‑1) and extracellular matrix protein collagen type 1 (Col‑1). Crocin rescued the cell proliferation inhibited by UVB irradiation, prevented cell cycle arrest and markedly decreased the number of SA‑β‑gal‑positive cells. In addition, crocin reduced UVB‑induced ROS by increasing GPX‑1 expression and other direct neutralization effects. Furthermore, crocin promoted the expression of the extracellular matrix protein Col‑1. Crocin could effectively prevent UVB‑induced cell damage via the reduction of intracellular ROS; thus, it could potentially be used in the prevention of skin photoaging.

  18. Large area, surface discharge pumped, vacuum ultraviolet light source

    DOEpatents

    Sze, Robert C.; Quigley, Gerard P.

    1996-01-01

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source. A contamination-free VUV light source having a 225 cm.sup.2 emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm.sup.2 at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing.

  19. Large area, surface discharge pumped, vacuum ultraviolet light source

    DOEpatents

    Sze, R.C.; Quigley, G.P.

    1996-12-17

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source is disclosed. A contamination-free VUV light source having a 225 cm{sup 2} emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm{sup 2} at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing. 3 figs.

  20. Flavonoids Derived from Abelmoschus esculentus Attenuates UV-B Induced Cell Damage in Human Dermal Fibroblasts Through Nrf2-ARE Pathway.

    PubMed

    Patwardhan, Juilee; Bhatt, Purvi

    2016-05-01

    Ultraviolet-B (UV-B) radiation is a smaller fraction of the total radiation reaching the Earth but leads to extensive damage to the deoxyribonucleic acid (DNA) and other biomolecules through formation of free radicals altering redox homeostasis of the cell. Abelmoschus esculentus (okra) has been known in Ayurveda as antidiabetic, hypolipidemic, demulscent, antispasmodic, diuretic, purgative, etc. The aim of this study is to evaluate the protective effect of flavonoids from A. esculentus against UV-B-induced cell damage in human dermal fibroblasts. UV-B protective activity of ethyl acetate (EA) fraction of okra was studied against UV-B-induced cytotoxicity, antioxidant regulation, oxidative DNA damage, intracellular reactive oxygen species (ROS) generation, apoptotic morphological changes, and regulation of heme oxygenase-1 (HO-1) gene through nuclear factor E2-related factor 2-antioxidant response element (Nrf2-ARE) pathway. Flavonoid-rich EA fraction depicted a significant antioxidant potential also showing presence of rutin. Pretreatment of cells with EA fraction (10-30 μg/ml) prevented UV-B-induced cytotoxicity, depletion of endogenous enzymatic antioxidants, oxidative DNA damage, intracellular ROS production, apoptotic changes, and overexpression of Nrf2 and HO-1. Our study demonstrated for the 1(st) time that EA fraction of okra may reduce oxidative stress through Nrf2-ARE pathway as well as through endogenous enzymatic antioxidant system. These results suggested that flavonoids from okra may be considered as potential UV-B protective agents and may also be formulated into herbal sunscreen for topical application. Flavonoid-enriched ethyl acetate (EA) fraction from A. esculentus protected against ultraviolet-B (UV-B)-induced oxidative DNA damageEA fraction prevented UV-B-induced cytotoxicity, depletion of endogenous enzymatic antioxidants, and intracellular reactive oxygen species productionEA fraction could reduce oxidative stress through the Nrf2-ARE

  1. Formation of the thioester, N,S-diacetylcysteine, from acetaldehyde and N,N'-diacetylcystine in aqueous solution with ultraviolet light

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1981-01-01

    The thioester, N,S-diacetylcysteine, is formed during the illumination of phosphate buffered (pH 7.0) aqueous solutions of acetaldehyde and N,N'-diacetylcystine with ultraviolet light. The yield of N,S-diacetylcysteine relative to N-acetylcysteine and unidentified products progressively increases as ultraviolet light below 239 nm, 253 nm and 281 nm is cut off with optical filters. When ultraviolet light below 320 nm is removed with an optical filter, there is no detectable reaction. Illumination of 0.025 M N,N'-diacetylcystine with 0.5 M and 1.0 M acetaldehyde with filtered ultraviolet light gives, respectively, 20% and 80% yields of N,S-diacetylcysteine. In the reaction with 1.0 M acetaldehyde, N-acetylcysteine forms early in the reaction and later decreases with its conversion to N,S-diacetylcysteine. The prebiotic significance of these reactions is discussed.

  2. Synergistic damage effects of vacuum ultraviolet photons and O2 in SiCOH ultra-low-k dielectric films

    NASA Astrophysics Data System (ADS)

    Lee, J.; Graves, D. B.

    2010-10-01

    Damage incurred during plasma processing, leading to increases in dielectric constant k, is a persistent problem with porous ultra-low-k dielectric films, such as SiCOH. Although most of the proposed mechanisms of plasma-induced damage focus on the role of ion bombardment and radical attack, we show that plasma-generated vacuum ultraviolet (VUV) photons can play a role in creating damage leading to increases in the dielectric constant of this material. Using a vacuum beam apparatus with a calibrated VUV lamp, we show that 147 nm VUV photons impacting SiCOH results in post-exposure adsorption and reaction with water vapour from the atmosphere to form silanol bonds, thereby raising the dielectric constant. Furthermore, the level of damage increases synergistically under simultaneous exposure to VUV photons and O2. The vacuum beam photon fluences are representative of typical plasma processes, as measured in a separate plasma tool. Fourier-transform infrared (FTIR) spectroscopy (ex situ) and mass spectrometry (in situ) imply that O2 reacts with methyl radicals formed from scissioned Si-C bonds to create CO2 and H2O, the latter combining with Si dangling bonds to generate more SiOH groups than with photon exposure alone. In addition, sample near-surface diffusivity, manipulated through ion bombardment and sample heating, can be seen to affect this process. These results demonstrate that VUV photo-generated surface reactions can be potent contributors to ultra-low-k dielectric SiCOH film plasma-induced damage, and suggest that they could play analogous roles in other plasma-surface interactions.

  3. Radiation Damage Effects in Far Ultraviolet Filters and Substrates

    NASA Technical Reports Server (NTRS)

    Keffer, Charles E.; Torr, Marsha R.; Zukic, Muamer; Spann, James F.; Torr, Douglas G.; Kim, Jongmin

    1993-01-01

    New advances in VUV thin film filter technology have been made using filter designs with multilayers of materials such as Al2O3, BaF2, CaF2, HfO2, LaF3, MgF2, and SiO2. Our immediate application for these filters will be in an imaging system to be flown on a satellite where a 2 X 9 R(sub E) orbit will expose the instrument to approximately 275 krads of radiation. In view of the fact that no previous studies have been made on potential radiation damage of these materials in the thin film format, we report on such an assessment here. Transmittances and reflectances of BaF2, CaF2, HfO2, LaF3, MgF2, and SiO2 thin films on MgF2 substrates, Al2O3 thin films on fused silica substrates, uncoated fused silica and MgF2, and four multilayer filters made from these materials were measured from 120 nm to 180 nm before and after irradiation by 250 krads from a Co-60 gamma radiation source. No radiation-induced losses in transmittance or reflectance occurred in this wavelength range. Additional postradiation measurements from 160 nm to 300 nm indicated a 3 - 5% radiation-induced absorption near 260 nm in some of the samples with MgF2 substrates. From these measurements it is concluded that far ultraviolet filters made from the materials tested should experience less that 5% change from exposure to up to 250 krads of high energy radiation in space applications.

  4. Extreme sensitivity to ultraviolet light in the fungal pathogen causing white-nose syndrome of bats.

    PubMed

    Palmer, Jonathan M; Drees, Kevin P; Foster, Jeffrey T; Lindner, Daniel L

    2018-01-02

    Bat white-nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans, has decimated North American hibernating bats since its emergence in 2006. Here, we utilize comparative genomics to examine the evolutionary history of this pathogen in comparison to six closely related nonpathogenic species. P. destructans displays a large reduction in carbohydrate-utilizing enzymes (CAZymes) and in the predicted secretome (~50%), and an increase in lineage-specific genes. The pathogen has lost a key enzyme, UVE1, in the alternate excision repair (AER) pathway, which is known to contribute to repair of DNA lesions induced by ultraviolet (UV) light. Consistent with a nonfunctional AER pathway, P. destructans is extremely sensitive to UV light, as well as the DNA alkylating agent methyl methanesulfonate (MMS). The differential susceptibility of P. destructans to UV light in comparison to other hibernacula-inhabiting fungi represents a potential "Achilles' heel" of P. destructans that might be exploited for treatment of bats with WNS.

  5. An extended sequence specificity for UV-induced DNA damage.

    PubMed

    Chung, Long H; Murray, Vincent

    2018-01-01

    The sequence specificity of UV-induced DNA damage was determined with a higher precision and accuracy than previously reported. UV light induces two major damage adducts: cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (6-4PPs). Employing capillary electrophoresis with laser-induced fluorescence and taking advantages of the distinct properties of the CPDs and 6-4PPs, we studied the sequence specificity of UV-induced DNA damage in a purified DNA sequence using two approaches: end-labelling and a polymerase stop/linear amplification assay. A mitochondrial DNA sequence that contained a random nucleotide composition was employed as the target DNA sequence. With previous methodology, the UV sequence specificity was determined at a dinucleotide or trinucleotide level; however, in this paper, we have extended the UV sequence specificity to a hexanucleotide level. With the end-labelling technique (for 6-4PPs), the consensus sequence was found to be 5'-GCTC*AC (where C* is the breakage site); while with the linear amplification procedure, it was 5'-TCTT*AC. With end-labelling, the dinucleotide frequency of occurrence was highest for 5'-TC*, 5'-TT* and 5'-CC*; whereas it was 5'-TT* for linear amplification. The influence of neighbouring nucleotides on the degree of UV-induced DNA damage was also examined. The core sequences consisted of pyrimidine nucleotides 5'-CTC* and 5'-CTT* while an A at position "1" and C at position "2" enhanced UV-induced DNA damage. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  6. Lycium barbarum Polysaccharides Protect Rat Corneal Epithelial Cells against Ultraviolet B-Induced Apoptosis by Attenuating the Mitochondrial Pathway and Inhibiting JNK Phosphorylation.

    PubMed

    Du, Shaobo; Han, Biao; Li, Kang; Zhang, Xuan; Sha, Xueli; Gao, Lan

    2017-01-01

    Lycium barbarum polysaccharides (LBPs) have been shown to play a key role in protecting the eyes by reducing the apoptosis induced by certain types of damage. However, it is not known whether LBPs can protect damaged corneal cells from apoptosis. Moreover, no reports have focused on the role of LBPs in guarding against ultraviolet B- (UVB-) induced apoptosis. The present study aimed to investigate the protective effect and underlying mechanism of LBPs against UVB-induced apoptosis in rat corneal epithelial (RCE) cells. The results showed that LBPs significantly prevented the loss of cell viability and inhibited cell apoptosis induced by UVB in RCE cells. LBPs also inhibited UVB-induced loss of mitochondrial membrane potential, downregulation of Bcl-2 , and upregulation of Bax and caspase-3. Finally, LBPs attenuated the phosphorylation of c-Jun NH 2 -terminal kinase (JNK) triggered by UVB. In summary, LBPs protect RCE cells against UVB-induced damage and apoptosis, and the underlying mechanism involves the attenuation of the mitochondrial apoptosis pathway and the inhibition of JNK phosphorylation.

  7. Progranulin, a Major Secreted Protein of Mouse Adipose-Derived Stem Cells, Inhibits Light-Induced Retinal Degeneration

    PubMed Central

    Tsuruma, Kazuhiro; Yamauchi, Mika; Sugitani, Sou; Otsuka, Tomohiro; Ohno, Yuta; Nagahara, Yuki; Ikegame, Yuka; Shimazawa, Masamitsu; Yoshimura, Shinichi; Iwama, Toru

    2014-01-01

    Adipose tissue stromal vascular fraction contains mesenchymal stem cells, which show protective effects when administered to damaged tissues, mainly through secreted trophic factors. We examined the protective effects of adipose-derived stem cells (ASCs) and ASC-conditioned medium (ASC-CM) against retinal damage and identified the neuroprotective factors in ASC-CM. ASCs and mature adipocytes were isolated from mouse subcutaneous tissue. ASCs were injected intravitreally in a mouse model of light-induced retinal damage, and ASC injection recovered retinal function as measured by electroretinogram and inhibited outer nuclear layer, thinning, without engraftment of ASCs. ASC-CM and mature adipocyte-conditioned medium were collected after 72 hours of culture. In vitro, H2O2- and light-induced cell death was reduced in a photoreceptor cell line with ASC-CM but not with mature adipocyte-conditioned medium. In vivo, light-induced photoreceptor damage was evaluated by measurement of outer nuclear layer thickness at 5 days after light exposure and by electroretinogram recording. ASC-CM significantly inhibited photoreceptor degeneration and retinal dysfunction after light exposure. Progranulin was identified as a major secreted protein of ASCs that showed protective effects against retinal damage in vitro and in vivo. Furthermore, progranulin phosphorylated extracellular signal-regulated kinase, cAMP response element binding protein, and hepatocyte growth factor receptor, and protein kinase C signaling pathways were involved in the protective effects of progranulin. These findings suggest that ASC-CM and progranulin have neuroprotective effects in the light-induced retinal-damage model. Progranulin may be a potential target for the treatment of the degenerative diseases of the retina. PMID:24233842

  8. Progranulin, a major secreted protein of mouse adipose-derived stem cells, inhibits light-induced retinal degeneration.

    PubMed

    Tsuruma, Kazuhiro; Yamauchi, Mika; Sugitani, Sou; Otsuka, Tomohiro; Ohno, Yuta; Nagahara, Yuki; Ikegame, Yuka; Shimazawa, Masamitsu; Yoshimura, Shinichi; Iwama, Toru; Hara, Hideaki

    2014-01-01

    Adipose tissue stromal vascular fraction contains mesenchymal stem cells, which show protective effects when administered to damaged tissues, mainly through secreted trophic factors. We examined the protective effects of adipose-derived stem cells (ASCs) and ASC-conditioned medium (ASC-CM) against retinal damage and identified the neuroprotective factors in ASC-CM. ASCs and mature adipocytes were isolated from mouse subcutaneous tissue. ASCs were injected intravitreally in a mouse model of light-induced retinal damage, and ASC injection recovered retinal function as measured by electroretinogram and inhibited outer nuclear layer, thinning, without engraftment of ASCs. ASC-CM and mature adipocyte-conditioned medium were collected after 72 hours of culture. In vitro, H2O2- and light-induced cell death was reduced in a photoreceptor cell line with ASC-CM but not with mature adipocyte-conditioned medium. In vivo, light-induced photoreceptor damage was evaluated by measurement of outer nuclear layer thickness at 5 days after light exposure and by electroretinogram recording. ASC-CM significantly inhibited photoreceptor degeneration and retinal dysfunction after light exposure. Progranulin was identified as a major secreted protein of ASCs that showed protective effects against retinal damage in vitro and in vivo. Furthermore, progranulin phosphorylated extracellular signal-regulated kinase, cAMP response element binding protein, and hepatocyte growth factor receptor, and protein kinase C signaling pathways were involved in the protective effects of progranulin. These findings suggest that ASC-CM and progranulin have neuroprotective effects in the light-induced retinal-damage model. Progranulin may be a potential target for the treatment of the degenerative diseases of the retina.

  9. Carcinogenic damage to deoxyribonucleic acid is induced by near-infrared laser pulses in multiphoton microscopy via combination of two- and three-photon absorption

    NASA Astrophysics Data System (ADS)

    Nadiarnykh, Oleg; Thomas, Giju; Van Voskuilen, Johan; Sterenborg, Henricus J. C. M.; Gerritsen, Hans C.

    2012-11-01

    Nonlinear optical imaging modalities (multiphoton excited fluorescence, second and third harmonic generation) applied in vivo are increasingly promising for clinical diagnostics and the monitoring of cancer and other disorders, as they can probe tissue with high diffraction-limited resolution at near-infrared (IR) wavelengths. However, high peak intensity of femtosecond laser pulses required for two-photon processes causes formation of cyclobutane-pyrimidine-dimers (CPDs) in cellular deoxyribonucleic acid (DNA) similar to damage from exposure to solar ultraviolet (UV) light. Inaccurate repair of subsequent mutations increases the risk of carcinogenesis. In this study, we investigate CPD damage that results in Chinese hamster ovary cells in vitro from imaging them with two-photon excited autofluorescence. The CPD levels are quantified by immunofluorescent staining. We further evaluate the extent of CPD damage with respect to varied wavelength, pulse width at focal plane, and pixel dwell time as compared with more pronounced damage from UV sources. While CPD damage has been expected to result from three-photon absorption, our results reveal that CPDs are induced by competing two- and three-photon absorption processes, where the former accesses UVA absorption band. This finding is independently confirmed by nonlinear dependencies of damage on laser power, wavelength, and pulse width.

  10. Ultraviolet radiation effects on the infrared damage rate of a thermal control coating

    NASA Technical Reports Server (NTRS)

    Bass, J. A.

    1972-01-01

    The effects of ultraviolet radiation on the infrared reflectance of ZnO silicone white thermal coatings were investigated. Narrow band ultraviolet radiation for wavelengths in the 2200A to 3500A range by a monochromator and a high pressure, 150-W Eimac xenon lamp. The sample was irradiated while in a vacuum of at least 0.000001 torr, and infrared reflectance was measured in situ with a spectroreflectometer at 19,500A. Reflectance degradation was studied as a function of wavelength, time, intensity, and dose. Damage was wavelength dependent at constant exposure, but no maximum was evident above the shortest wavelength investigated here. The degradation rate at constant intensity was an exponential function of time and varies with intensity.

  11. COMPARATIVE TOXICITY OF FLUORANTHENE TO FRESHWATER AND SALTWATER SPECIES UNDER FLUORESCENT AND ULTRAVIOLET LIGHT

    EPA Science Inventory

    The acute and chronic toxicity of fluoranthene was determined for a diverse group of freshwater and saltwater species under both standard laboratory fluorescent light and ultraviolet (UV) light test conditions. Acute tests with 21 species demonstrated that fluoranthene was not le...

  12. Impact of pulsed xenon ultraviolet light on hospital-acquired infection rates in a community hospital.

    PubMed

    Vianna, Pedro G; Dale, Charles R; Simmons, Sarah; Stibich, Mark; Licitra, Carmelo M

    2016-03-01

    The role of contaminated environments in the spread of hospital-associated infections has been well documented. This study reports the impact of a pulsed xenon ultraviolet no-touch disinfection system on infection rates in a community care facility. This study was conducted in a community hospital in Southern Florida. Beginning November 2012, a pulsed xenon ultraviolet disinfection system was implemented as an adjunct to traditional cleaning methods on discharge of select rooms. The technology uses a xenon flashlamp to generate germicidal light that damages the DNA of organisms in the hospital environment. The device was implemented in the intensive care unit (ICU), with a goal of using the pulsed xenon ultraviolet system for disinfecting all discharges and transfers after standard cleaning and prior to occupation of the room by the next patient. For all non-ICU discharges and transfers, the pulsed xenon ultraviolet system was only used for Clostridium difficile rooms. Infection data were collected for methicillin-resistant Staphylococcus aureus, C difficile, and vancomycin-resistant Enterococci (VRE). The intervention period was compared with baseline using a 2-sample Wilcoxon rank-sum test. In non-ICU areas, a significant reduction was found for C difficile. There was a nonsignificant decrease in VRE and a significant increase in methicillin-resistant S aureus. In the ICU, all infections were reduced, but only VRE was significant. This may be because of the increased role that environment plays in the transmission of this pathogen. Overall, there were 36 fewer infections in the whole facility and 16 fewer infections in the ICU during the intervention period than would have been expected based on baseline data. Implementation of pulsed xenon ultraviolet disinfection is associated with significant decreases in facility-wide and ICU infection rates. These outcomes suggest that enhanced environmental disinfection plays a role in the risk mitigation of hospital

  13. Interpretation of OAO-2 ultraviolet light curves of beta Doradus

    NASA Technical Reports Server (NTRS)

    Hutchinson, J. L.; Lillie, C. F.; Hill, S. J.

    1975-01-01

    Middle-ultraviolet light curves of beta Doradus, obtained by OAO-2, are presented along with other evidence indicating that the small additional bumps observed on the rising branches of these curves have their origin in shock-wave phenomena in the upper atmosphere of this classical Cepheid. A simple piston-driven spherical hydrodynamic model of the atmosphere is developed to explain the bumps, and the calculations are compared with observations. The model is found to be consistent with the shapes of the light curves as well as with measurements of the H-alpha radial velocities.

  14. Apigenin prevents ultraviolet-B radiation induced cyclobutane pyrimidine dimers formation in human dermal fibroblasts.

    PubMed

    Britto, S Mary; Shanthakumari, D; Agilan, B; Radhiga, T; Kanimozhi, G; Prasad, N Rajendra

    2017-09-01

    Exposure to solar ultraviolet-B (UVB) radiation leads to the formation of cyclobutane pyrimidine dimers (CPDs). We investigated the protective effect of apigenin against UVB-induced CPDs formation in human dermal fibroblasts cells (HDFa). For this purpose, HDFa cells were treated with apigenin (15μM) prior to UVB irradiation (20mJ/cm 2 ); DNA damage and subsequent molecular end points were observed. Exposure to UVB radiation increased significant CPDs formation in HDFa cells and the frequencies of CPDs were reduced by treatment with apigenin (15μM). UVB-induced CPDs downregulates the expression of nucleotide excision repair (NER) genes such as xeroderma pigmentosum complementation group C, B, G and F (XPC, XPB, XPG and XPF), transcription factor II human (TFIIH) and excision repair cross-complementation group 1 (ERCC1) in HDFa cells. Conversely, apigenin treatment restored UVB-induced loss of NER proteins in HDFa cells, which indicates its preventive effect against CPDs formation. Besides, single low dose UVB-exposure induced nuclear fragmentation, apoptotic frequency and apoptotic proteins expression (Bax and Caspase-3) have been prevented by the apigenin pretreatment. Furthermore, apigenin exhibits strong UV absorbance property and showed 10.08 SPF value. Thus, apigenin can protect skin cells against UVB-induced CPDs formation probably through its sunscreen effect. Hence, apigenin can be considered as an effective protective agent against UV induced skin damages. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. UV-B-induced damage to the lens in vitro: prevention by caffeine.

    PubMed

    Varma, Shambhu D; Hegde, Kavita R; Kovtun, Svitlana

    2008-10-01

    Ultraviolet (UV) irradiation is one of the significant risk factors in the genesis of cataracts. Pathogenetically, the process can be triggered by the intraocular generation of various reactive species of oxygen that are well known to be initiated by the penetration of light, especially of the UV frequencies. The contribution of UV exposure in the etiology of this disease is likely to increase further due to ozone depletion in the upper atmosphere. The present studies were undertaken to examine if the UV effects can be attenuated with the xanthine-based alkaloids primarily present in tea and coffee. We have examined this possibility by in vitro lens culture studies with caffeine. As expected, mice lenses incubated in Tyrode solution exposed to UV at 302 nm are physiologically damaged, as evidenced by the inhibition of the active transport of (86)Rb(+), an ion acting as a surrogate of the K(+). There was a simultaneous decrease in the levels of adenosine triphosphate and glutathione. The addition of caffeine to the medium prevented such deleterious effects. That caffeine and perhaps other xanthinoids have a protective effect against cataract formation induced by UV has hence been demonstrated for the first time.

  16. Nuclear DNA damage-triggered NLRP3 inflammasome activation promotes UVB-induced inflammatory responses in human keratinocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa, Tatsuya, E-mail: tatsuya.hasegawa@to.shiseido.co.jp; Nakashima, Masaya; Suzuki, Yoshiharu

    Ultraviolet (UV) radiation in sunlight can result in DNA damage and an inflammatory reaction of the skin commonly known as sunburn, which in turn can lead to cutaneous tissue disorders. However, little has been known about how UV-induced DNA damage mediates the release of inflammatory mediators from keratinocytes. Here, we show that UVB radiation intensity-dependently increases NLRP3 gene expression and IL-1β production in human keratinocytes. Knockdown of NLRP3 with siRNA suppresses UVB-induced production of not only IL-1β, but also other inflammatory mediators, including IL-1α, IL-6, TNF-α, and PGE{sub 2}. In addition, inhibition of DNA damage repair by knockdown of XPA,more » which is a major component of the nucleotide excision repair system, causes accumulation of cyclobutane pyrimidine dimer (CPD) and activation of NLRP3 inflammasome. In vivo immunofluorescence analysis confirmed that NLRP3 expression is also elevated in UV-irradiated human epidermis. Overall, our findings indicate that UVB-induced DNA damage initiates NLRP3 inflammasome activation, leading to release of various inflammatory mediators from human keratinocytes. - Highlights: • UVB radiation induces NLRP3 inflammasome activation in human keratinocytes. • NLRP3 knockdown suppresses production of UVB-induced inflammatory mediators. • UVB-induced DNA damage triggers NLRP3 inflammasome activation. • NLRP3 expression in human epidermis is elevated in response to UV radiation.« less

  17. DNA's Encounter with Ultraviolet Light: An Instinct for Self-Preservation?

    PubMed

    Barlev, Adam; Sen, Dipankar

    2018-02-20

    Photochemical modification is the major class of environmental damage suffered by DNA, the genetic material of all free-living organisms. Photolyases are enzymes that carry out direct photochemical repair (photoreactivation) of covalent pyrimidine dimers formed in DNA from exposure to ultraviolet light. The discovery of catalytic RNAs in the 1980s led to the "RNA world hypothesis", which posits that early in evolution RNA or a similar polymer served both genetic and catalytic functions. Intrigued by the RNA world hypothesis, we set out to test whether a catalytic RNA (or a surrogate, a catalytic DNA) with photolyase activity could be contemplated. In vitro selection from a random-sequence DNA pool yielded two DNA enzymes (DNAzymes): Sero1C, which requires serotonin as an obligate cofactor, and UV1C, which is cofactor-independent and optimally uses light of 300-310 nm wavelength to repair cyclobutane thymine dimers within a gapped DNA substrate. Both Sero1C and UV1C show multiple turnover kinetics, and UV1C repairs its substrate with a quantum yield of ∼0.05, on the same order as the quantum yields of certain classes of photolyase enzymes. Intensive study of UV1C has revealed that its catalytic core consists of a guanine quadruplex (G-quadruplex) positioned proximally to the bound substrate's thymine dimer. We hypothesize that electron transfer from photoexcited guanines within UV1C's G-quadruplex is responsible for substrate photoreactivation, analogous to electron transfer to pyrimidine dimers within a DNA substrate from photoexcited flavin cofactors located within natural photolyase enzymes. Though the analogy to evolution is necessarily limited, a comparison of the properties of UV1C and Sero1C, which arose out of the same in vitro selection experiment, reveals that although the two DNAzymes comparably accelerate the rate of thymine dimer repair, Sero1C has a substantially broader substrate repertoire, as it can repair many more kinds of pyrimidine dimers than

  18. Inhibition of seagrass photosynthesis by ultraviolet-B radiation.

    PubMed

    Trocine, R P; Rice, J D; Wells, G N

    1981-07-01

    Effects of ultraviolet-B radiation on the photosynthesis of seagrasses (Halophila engelmanni Aschers, Halodule wrightii Aschers, and Syringodium filiforme Kütz) were examined. The intrinsic tolerance of each seagrass to ultraviolet-B, the presence and effectiveness of photorepair mechanisms to ultraviolet-B-induced photosynthetic inhibition, and the role of epiphytic growth as a shield from ultraviolet-B were investigated.Halodule was found to possess the greatest photosynthetic tolerance for ultraviolet-B. Photosynthesis in Syringodium was slightly more sensitive to ultraviolet-B while Halophila showed relatively little photosynthetic tolerance. Evidence for a photorepair mechanism was found only in Halodule. This mechanism effectively attenuated photosynthetic inhibition induced by ultraviolet-B dose rates and dosages in excess of natural conditions. Syringodium appeared to rely primarily on a thick epidermal cell layer to reduce photosynthetic damage. Halophila seemed to have no morphological or photorepair capabilities to deal with ultraviolet-B. This species appeared to rely on epiphytic and detrital shielding and the shade provided by other seagrasses to reduce ultraviolet-B irradiation to tolerable levels. The presence of epiphytes on leaf surfaces was found to reduce the extent of photosynthetic inhibition from ultraviolet-B exposure in all species.Observations obtained in this study seem to suggest the possibility of anthocyanin and/or other flavonoid synthesis as an adaptation to long term ultraviolet-B irradiation by these species. In addition, Halophila appears to obtain an increased photosynthetic tolerance to ultraviolet-B as an indirect benefit of chloroplast clumping to avoid photo-oxidation by intense levels of photosynthetically active radiation.

  19. Removal of the blue component of light significantly decreases retinal damage after high intensity exposure.

    PubMed

    Vicente-Tejedor, Javier; Marchena, Miguel; Ramírez, Laura; García-Ayuso, Diego; Gómez-Vicente, Violeta; Sánchez-Ramos, Celia; de la Villa, Pedro; Germain, Francisco

    2018-01-01

    Light causes damage to the retina (phototoxicity) and decreases photoreceptor responses to light. The most harmful component of visible light is the blue wavelength (400-500 nm). Different filters have been tested, but so far all of them allow passing a lot of this wavelength (70%). The aim of this work has been to prove that a filter that removes 94% of the blue component may protect the function and morphology of the retina significantly. Three experimental groups were designed. The first group was unexposed to light, the second one was exposed and the third one was exposed and protected by a blue-blocking filter. Light damage was induced in young albino mice (p30) by exposing them to white light of high intensity (5,000 lux) continuously for 7 days. Short wavelength light filters were used for light protection. The blue component was removed (94%) from the light source by our filter. Electroretinographical recordings were performed before and after light damage. Changes in retinal structure were studied using immunohistochemistry, and TUNEL labeling. Also, cells in the outer nuclear layer were counted and compared among the three different groups. Functional visual responses were significantly more conserved in protected animals (with the blue-blocking filter) than in unprotected animals. Also, retinal structure was better kept and photoreceptor survival was greater in protected animals, these differences were significant in central areas of the retina. Still, functional and morphological responses were significantly lower in protected than in unexposed groups. In conclusion, this blue-blocking filter decreases significantly photoreceptor damage after exposure to high intensity light. Actually, our eyes are exposed for a very long time to high levels of blue light (screens, artificial light LED, neons…). The potential damage caused by blue light can be palliated.

  20. The human intra-S checkpoint response to UVC-induced DNA damage.

    PubMed

    Kaufmann, William K

    2010-05-01

    The intra-S checkpoint response to 254 nm light (UVC)-induced DNA damage appears to have dual functions to slow the rate of DNA synthesis and stabilize replication forks that become stalled at sites of UVC-induced photoproducts in DNA. These functions should provide more time for repair of damaged DNA before its replication and thereby reduce the frequencies of mutations and chromosomal aberrations in surviving cells. This review tries to summarize the history of discovery of the checkpoint, the current state of understanding of the biological features of intra-S checkpoint signaling and its mechanisms of action with a focus primarily on intra-S checkpoint responses in human cells. The differences in the intra-S checkpoint responses to UVC and ionizing radiation-induced DNA damage are emphasized. Evidence that [6-4]pyrimidine-pyrimidone photoproducts in DNA trigger the response is discussed and the relationships between cellular responses to UVC and the molecular dose of UVC-induced DNA damage are briefly summarized. The role of the intra-S checkpoint response in protecting against solar radiation carcinogenesis remains to be determined.

  1. Ultraviolet light exposure and skin cancer in the city of Arica, Chile.

    PubMed

    Rivas, Miguel; Araya, María C; Durán, Viviava; Rojas, Elisa; Cortes, Juan; Calaf, Gloria M

    2009-01-01

    An increase in the amount of solar ultraviolet light that reaches the Earth is considered to be responsible for the worldwide increase in skin cancer. Solar ultraviolet B (UVB) light (290-320 nm) has multiple effects that can be harmful to human beings. The city of Arica in Chile receives high UV levels. This can explain the high prevalence of skin cancer in the Arica population. In the present study, pathological reports of skin cancer were collected from an Arica hospital and retrospectively examined to investigate the possible effects of UV radiation. Among the malignant skin tumor types, basocellular and spinocellular carcinomas were more common in men (44.4 and 16.6%, respectively) than in women (24.9 and 10.7%, respectively). Basocellular carcinoma was observed in individuals 40-79 years of age. The incidence of skin cancer significantly increased (P<0.05) between 2000 and 2006 per 100,000 population. The factor of incidence of skin cancer per 100,000 population significantly increased (P<0.05) between 1980 and 2000 in both genders, but was higher in men (0.79-1.99) than in women (0.63-1.56). The results of the study indicate a steady increase in the incidence of skin cancer in Arica, Chile, most probably due to the high levels of ultraviolet light to which individuals are exposed throughout the year, and the cumulative effect of this type of radiation on the skin.

  2. Rapid diagnosis of sensitivity to ultraviolet light in fibroblasts from dermatologic disorders, with particular reference to xeroderma pigmentosum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleaver, J.E.; Thomas, G.H.

    1988-04-01

    A rapid and simple method for determining the sensitivity of human fibroblasts to ultraviolet light is described. As an alternative to the colony formation assay, this method can be used for the rapid diagnosis of ultraviolet light sensitivity in fibroblasts from photosensitive disorders. The method is based on growth of small numbers of cells in 1-cm wells of culture trays for 4 or more days after irradiation and determination of cell survival by the incorporation of (/sup 3/H)hypoxanthine. D37 values (the dose at which 37% of the control level of incorporation remains) obtained from this procedure showed the same relativemore » sensitivity of normal and xeroderma pigmentosum fibroblasts as was obtained by colony formation. Untransformed and SV40-transformed fibroblasts, which have different growth rates and different responses to high cell densities, gave different D37 values by this assay in culture trays as compared with colony formation. Comparison of relative sensitivities to irradiation should therefore be made only between cell types with similar growth characteristics. The similar sensitivity of normal and xeroderma pigmentosum cells to mitomycin C was also determined by this culture tray method. By increasing cell density at the beginning of the experiments, a greater capacity of group C compared with group D fibroblasts for recovery from potentially lethal damage was also detected.« less

  3. A role for calcium hydroxide and dolomite in water: acceleration of the reaction under ultraviolet light.

    PubMed

    Nagase, Hiroyasu; Tsujino, Hidekazu; Kurihara, Daisuke; Saito, Hiroshi; Kawase, Masaya

    2014-04-01

    Organic environmental pollutants are now being detected with remarkably high frequency in the aquatic environment. Photodegradation by ultraviolet light is sometimes used as a method for removing organic chemicals from water; however, this method is relatively inefficient because of the low degradation rates involved, and more efficient methods are under development. Here we show that the removal of various organic pollutants can be assisted by calcined dolomite in aqueous solution under irradiation with ultraviolet light. It was possible to achieve substantial removal of bisphenol A, chlorophenols, alkylphenols, 1-naphthol and 17β-estradiol. The major component of dolomite responsible for the removal was calcium hydroxide. Our results demonstrate that the use of calcium hydroxide with ultraviolet light irradiation can be a very effective method of rapidly removing organic environmental pollutants from water. This is a new role for calcium hydroxide and dolomite in water treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Nonthermal combined ultraviolet and vacuum-ultraviolet curing process for organosilicate dielectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, H.; Guo, X.; Pei, D.

    2016-06-13

    Porous SiCOH films are of great interest in semiconductor fabrication due to their low-dielectric constant properties. Post-deposition treatments using ultraviolet (UV) light on organosilicate thin films are required to decompose labile pore generators (porogens) and to ensure optimum network formation to improve the electrical and mechanical properties of low-k dielectrics. The goal of this work is to choose the best vacuum-ultraviolet photon energy in conjunction with vacuum ultraviolet (VUV) photons without the need for heating the dielectric to identify those wavelengths that will have the most beneficial effect on improving the dielectric properties and minimizing damage. VUV irradiation between 8.3more » and 8.9 eV was found to increase the hardness and elastic modulus of low-k dielectrics at room temperature. Combined with UV exposures of 6.2 eV, it was found that this “UV/VUV curing” process is improved compared with current UV curing. We show that UV/VUV curing can overcome drawbacks of UV curing and improve the properties of dielectrics more efficiently without the need for high-temperature heating of the dielectric.« less

  5. Light-induced propulsion of a giant liposome driven by peptide nanofibre growth.

    PubMed

    Inaba, Hiroshi; Uemura, Akihito; Morishita, Kazushi; Kohiki, Taiki; Shigenaga, Akira; Otaka, Akira; Matsuura, Kazunori

    2018-04-19

    Light-driven nano/micromotors are attracting much attention, not only as molecular devices but also as components of bioinspired robots. In nature, several pathogens such as Listeria use actin polymerisation machinery for their propulsion. Despite the development of various motors, it remains challenging to mimic natural systems to create artificial motors propelled by fibre formation. Herein, we report the propulsion of giant liposomes driven by light-induced peptide nanofibre growth on their surface. Peptide-DNA conjugates connected by a photocleavage unit were asymmetrically introduced onto phase-separated giant liposomes. Ultraviolet (UV) light irradiation cleaved the conjugates and released peptide units, which self-assembled into nanofibres, driving the translational movement of the liposomes. The velocity of the liposomes reflected the rates of the photocleavage reaction and subsequent fibre formation of the peptide-DNA conjugates. These results showed that chemical design of the light-induced peptide nanofibre formation is a useful approach to fabricating bioinspired motors with controllable motility.

  6. Quantitative Evaluation of Hard X-ray Damage to Biological Samples using EUV Ptychography

    NASA Astrophysics Data System (ADS)

    Baksh, Peter; Odstrcil, Michal; Parsons, Aaron; Bailey, Jo; Deinhardt, Katrin; Chad, John E.; Brocklesby, William S.; Frey, Jeremy G.

    2017-06-01

    Coherent diffractive imaging (CDI) has become a standard method on a variety of synchrotron beam lines. The high brilliance short wavelength radiation from these sources can be used to reconstruct attenuation and relative phase of a sample with nanometre resolution via CDI methods. However, the interaction between the sample and high energy ionising radiation can cause degradation to sample structure. We demonstrate, using a laboratory based high harmonic generation (HHG) based extreme ultraviolet (EUV) source, imaging a sample of hippocampal neurons using the ptychography method. The significant increase in contrast of the sample in the EUV light allows identification of damage induced from exposure to 7.3 keV photons, without causing any damage to the sample itself.

  7. Light deprivation damages monoamine neurons and produces a depressive behavioral phenotype in rats

    PubMed Central

    Gonzalez, M. M. C.; Aston-Jones, G.

    2008-01-01

    Light is an important environmental factor for regulation of mood. There is a high frequency of seasonal affective disorder in high latitudes where light exposure is limited, and bright light therapy is a successful antidepressant treatment. We recently showed that rats kept for 6 weeks in constant darkness (DD) have anatomical and behavioral features similar to depressed patients, including dysregulation of circadian sleep–waking rhythms and impairment of the noradrenergic (NA)-locus coeruleus (LC) system. Here, we analyzed the cell viability of neural systems related to the pathophysiology of depression after DD, including NA-LC, serotoninergic-raphe nuclei and dopaminergic-ventral tegmental area neurons, and evaluated the depressive behavioral profile of light-deprived rats. We found increased apoptosis in the three aminergic systems analyzed when compared with animals maintained for 6 weeks in 12:12 light-dark conditions. The most apoptosis was observed in NA-LC neurons, associated with a significant decrease in the number of cortical NA boutons. Behaviorally, DD induced a depression-like condition as measured by increased immobility in a forced swim test (FST). DD did not appear to be stressful (no effect on adrenal or body weights) but may have sensitized responses to subsequent stressors (increased fecal number during the FST). We also found that the antidepressant desipramine decreases these neural and behavioral effects of light deprivation. These findings indicate that DD induces neural damage in monoamine brain systems and this damage is associated with a depressive behavioral phenotype. Our results suggest a mechanism whereby prolonged limited light intensity could negatively impact mood. PMID:18347342

  8. Diagnostics for the detection and evaluation of laser induced damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheehan, L.; Kozlowski, M.; Rainer, F.

    1995-12-31

    The Laser Damage and Conditioning Group at LLNL is evaluating diagnostics which will help make damage testing more efficient and reduce the risk of damage during laser conditioning. The work to date has focused on photoacoustic and scattered light measurements on 1064-nm wavelength HfO{sub 2}/SiO{sub 2} multilayer mirror and polarizer coatings. Both the acoustic and scatter diagnostics have resolved 10 {mu}m diameter damage points in these coatings. Using a scanning stage, the scatter diagnostic can map both intrinsic and laser-induced scatter. Damage threshold measurements obtained using scatter diagnostics compare within experimental error with those measured using 100x Nomarski microscopy. Scattermore » signals measured during laser conditioning can be used to detect damage related to nodular defects.« less

  9. Diagnostics for the detection and evaluation of laser induced damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheehan, L.; Kozlowski, M.; Rainer, F.

    1995-01-03

    The Laser Damage and Conditioning Group at LLNL is evaluating diagnostics which will help make damage testing more efficient and reduce the risk of damage during laser conditioning. The work to date has focused on photoacoustic and scattered light measurements on 1064-nm wavelength HfO{sub 2}/SiO{sub 2} multilayer mirror and polarizer coatings. Both the acoustic and scatter diagnostics have resolved 10 {mu}m diameter damage points in these coatings. Using a scanning stage, the scatter diagnostic can map both intrinsic and laser-induced scatter. Damage threshold measurements obtained using scatter diagnostics compare within experimental error with those measured using 100x Nomarski microscopy. Scattermore » signals measured during laser conditioning can be used to detect damage related to nodular defects.« less

  10. Measurement system to determine the total and angle-resolved light scattering of optical components in the deep-ultraviolet and vacuum-ultraviolet spectral regions

    NASA Astrophysics Data System (ADS)

    Schröder, Sven; Gliech, Stefan; Duparré, Angela

    2005-10-01

    An instrumentation for total and angle-resolved scattering (ARS) at 193 and 157 nm has been developed at the Fraunhofer Institute in Jena to meet the severe requirements for scattering analysis of deep- and vacuum-ultraviolet optical components. Extremely low backscattering levels of 10^-6 for the total scattering measurements and more than 9 orders of magnitude dynamic range for ARS have been accomplished. Examples of application extend from the control of at-wavelength scattering losses of superpolished substrates with rms roughness as small as 0.1 nm to the detection of volume material scattering and the study into the scattering of multilayer coatings. In addition, software programs were developed to model the roughness-induced light scattering of substrates and thin-film coatings.

  11. Radiation damage by light- and heavy-ion bombardment of single-crystal LiNbO₃

    DOE PAGES

    Huang, Hsu-Cheng; Zhang, Lihua; Malladi, Girish; ...

    2015-04-14

    In this work, a battery of analytical methods including in situ RBS/C, confocal micro-Raman, TEM/STEM, EDS, AFM, and optical microscopy were used to provide a comparative investigation of light- and heavy-ion radiation damage in single-crystal LiNbO₃. High (~MeV) and low (~100s keV) ion energies, corresponding to different stopping power mechanisms, were used and their associated damage events were observed. In addition, sequential irradiation of both ion species was also performed and their cumulative depth-dependent damage was determined. It was found that the contribution from electronic stopping by high-energy heavy ions gave rise to a lower critical fluence for damage formationmore » than for the case of low-energy irradiation. Such energy-dependent critical fluence of heavy-ion irradiation is two to three orders of magnitude smaller than that for the case of light-ion damage. In addition, materials amorphization and collision cascades were seen for heavy-ion irradiation, while for light ion, crystallinity remained at the highest fluence used in the experiment. The irradiation-induced damage is characterized by the formation of defect clusters, elastic strain, surface deformation, as well as change in elemental composition. In particular, the presence of nanometric-scale damage pockets results in increased RBS/C backscattered signal and the appearance of normally forbidden Raman phonon modes. The location of the highest density of damage is in good agreement with SRIM calculations. (author)« less

  12. Radiation damage by light- and heavy-ion bombardment of single-crystal LiNbO₃

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Hsu-Cheng; Zhang, Lihua; Malladi, Girish

    In this work, a battery of analytical methods including in situ RBS/C, confocal micro-Raman, TEM/STEM, EDS, AFM, and optical microscopy were used to provide a comparative investigation of light- and heavy-ion radiation damage in single-crystal LiNbO₃. High (~MeV) and low (~100s keV) ion energies, corresponding to different stopping power mechanisms, were used and their associated damage events were observed. In addition, sequential irradiation of both ion species was also performed and their cumulative depth-dependent damage was determined. It was found that the contribution from electronic stopping by high-energy heavy ions gave rise to a lower critical fluence for damage formationmore » than for the case of low-energy irradiation. Such energy-dependent critical fluence of heavy-ion irradiation is two to three orders of magnitude smaller than that for the case of light-ion damage. In addition, materials amorphization and collision cascades were seen for heavy-ion irradiation, while for light ion, crystallinity remained at the highest fluence used in the experiment. The irradiation-induced damage is characterized by the formation of defect clusters, elastic strain, surface deformation, as well as change in elemental composition. In particular, the presence of nanometric-scale damage pockets results in increased RBS/C backscattered signal and the appearance of normally forbidden Raman phonon modes. The location of the highest density of damage is in good agreement with SRIM calculations. (author)« less

  13. Inhibition of Seagrass Photosynthesis by Ultraviolet-B Radiation 1

    PubMed Central

    Trocine, Robert P.; Rice, John D.; Wells, Gary N.

    1981-01-01

    Effects of ultraviolet-B radiation on the photosynthesis of seagrasses (Halophila engelmanni Aschers, Halodule wrightii Aschers, and Syringodium filiforme Kütz) were examined. The intrinsic tolerance of each seagrass to ultraviolet-B, the presence and effectiveness of photorepair mechanisms to ultraviolet-B-induced photosynthetic inhibition, and the role of epiphytic growth as a shield from ultraviolet-B were investigated. Halodule was found to possess the greatest photosynthetic tolerance for ultraviolet-B. Photosynthesis in Syringodium was slightly more sensitive to ultraviolet-B while Halophila showed relatively little photosynthetic tolerance. Evidence for a photorepair mechanism was found only in Halodule. This mechanism effectively attenuated photosynthetic inhibition induced by ultraviolet-B dose rates and dosages in excess of natural conditions. Syringodium appeared to rely primarily on a thick epidermal cell layer to reduce photosynthetic damage. Halophila seemed to have no morphological or photorepair capabilities to deal with ultraviolet-B. This species appeared to rely on epiphytic and detrital shielding and the shade provided by other seagrasses to reduce ultraviolet-B irradiation to tolerable levels. The presence of epiphytes on leaf surfaces was found to reduce the extent of photosynthetic inhibition from ultraviolet-B exposure in all species. Observations obtained in this study seem to suggest the possibility of anthocyanin and/or other flavonoid synthesis as an adaptation to long term ultraviolet-B irradiation by these species. In addition, Halophila appears to obtain an increased photosynthetic tolerance to ultraviolet-B as an indirect benefit of chloroplast clumping to avoid photo-oxidation by intense levels of photosynthetically active radiation. Images PMID:16661893

  14. Phytophotodermatitis induced by wild parsnip.

    PubMed

    Walling, Abigail L; Walling, Hobart W

    2018-02-15

    Phytophotodermatitis results when skin is exposed to ultraviolet light after previous contact with a phototoxic compound. Wild parsnip (Pastinia sativa), a member of the Umbelliferae family, is an invasive plant species introduced to North America as a root vegetable. Although cultivated less commonly today, the plant is increasingly found growing wild in prairies and roadsides. The stems and leaves contain furocoumarins, which upon activation by UV light interact with oxygen. Resultant reactive oxygen species induce tissue damage manifesting initially as blistering and later as hyperpigmentation. We report the case of a woman who developed phytophoto-dermatitis after encountering wild parsnip on a midwestern prairie.

  15. Pterocarpus santalinus L. Regulated Ultraviolet B Irradiation-induced Procollagen Reduction and Matrix Metalloproteinases Expression Through Activation of TGF-β/Smad and Inhibition of the MAPK/AP-1 Pathway in Normal Human Dermal Fibroblasts.

    PubMed

    Gao, Wei; Lin, Pei; Hwang, Eunson; Wang, Yushuai; Yan, Zhengfei; Ngo, Hien T T; Yi, Tae-Hoo

    2018-01-01

    Ultraviolet light-induced reactive oxygen species (ROS) damage human skin and prematurely cause aging. A growing body of research is focusing on considering plants and plant-derived compounds as antiphotoaging therapeutic material. Pterocarpus santalinus L., as an Indian traditional medicine, possesses antidiabetic, anti-inflammatory and antioxidative effects. Here, we studied the antiphotoaging effects of ethanolic extract of P. santalinus L. heartwood (EPS) on ultraviolet radiation B (UVB)-irradiated normal human dermal fibroblasts (NHDFs). Results showed that EPS significantly inhibited the upregulation of matrix metalloproteinases and IL-6 caused by UVB irradiation, and suppressed UVB-induced phosphorylation of extracellular signal-regulated kinase, Jun N-terminal kinase and p38, as well as the activation of AP-1 transcription factors. Further study indicated that UVB-induced production of MMP-1 and IL-6 could be inhibited by PD 98059 (an ERK inhibitor) and SP600125 (A JNK inhibitor), implied that EPS inhibited UVB-induced MMP-1 and IL-6 secretion by inactivating MAPK signaling pathway. In addition, EPS possessed an excellent antioxidant activity, which could increase cytoprotective antioxidants such as HO-1, NQ-O1 expression by facilitating the nuclear accumulation of Nrf2. Treatment of NHDFs with EPS also recovered UVB-induced procollagen type I reduction by activating TGF-β/Smad pathway. These findings demonstrated that EPS had a potential effect against UVB-induced skin photoaging. © 2017 The American Society of Photobiology.

  16. Light-Induced Retinopathy: Young Age Protects more than Ocular Pigmentation.

    PubMed

    Polosa, Anna; Bessaklia, Hyba; Lachapelle, Pierre

    2017-06-01

    The purpose of this study was to compare the efficacy that ocular melanin confers in protecting the retina of juvenile and adult rats exposed to a bright luminous environment. Juvenile (JLE) and adult (ALE) Long-Evans pigmented rats were thus exposed to a bright cyclic light (10,000lux; white light) from postnatal day 14-28 or for 6 consecutive days, respectively. Flash electroretinograms (ERG) and retinal histology were performed at different predetermined ages, post-light exposure. Despite a significant reduction in ERG responses immediately following light exposure, with time, retinal function fully recovered in JLE compared to a 54% recovery for the ALE. In ALE, we noted a region of the supero-temporal quadrant that was highly vulnerable to light damage. This region was also devoid of melanin granules prior to the light exposure. This melanin-free zone increased in size in the days that followed the end of exposure, a process that was accompanied by the gradual degeneration of the thus uncovered photoreceptors. In contrast, melanin and photoreceptor losses were minimal in JLE. Our results suggest that the light-induced photoreceptor degeneration in ALE would be secondary to the initial destruction of the RPE and ensuing loss of melanin protection. In contrast, the melanin granules of JLE appear to be significantly more resistant to light damage, a characteristic that would explain the higher resistance of JLE photoreceptors to light damage. Our results would thus suggest that the efficacy of ocular melanin protection against light damage declines with age.

  17. ASSESSING THE EFFECTIVENESS OF LOW PRESSURE ULTRAVIOLET LIGHT FOR INACTIVATING HELICOBACTER PYLORI

    EPA Science Inventory

    Three strains of Helicobacter pylori were exposed to ultraviolet (UV) light from a low-pressure source to determine log inactivation versus applied fluence. Results indicate that H. pylori is readily inactivated at UV fluences typically used in water treatment r...

  18. Vacuum ultra-violet damage and damage mitigation for plasma processing of highly porous organosilicate glass dielectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marneffe, J.-F. de, E-mail: marneffe@imec.be; Lukaszewicz, M.; Porter, S. B.

    2015-10-07

    Porous organosilicate glass thin films, with k-value 2.0, were exposed to 147 nm vacuum ultra-violet (VUV) photons emitted in a Xenon capacitive coupled plasma discharge. Strong methyl bond depletion was observed, concomitant with a significant increase of the bulk dielectric constant. This indicates that, besides reactive radical diffusion, photons emitted during plasma processing do impede dielectric properties and therefore need to be tackled appropriately during patterning and integration. The detrimental effect of VUV irradiation can be partly suppressed by stuffing the low-k porous matrix with proper sacrificial polymers showing high VUV absorption together with good thermal and VUV stability. In addition,more » the choice of an appropriate hard-mask, showing high VUV absorption, can minimize VUV damage. Particular processing conditions allow to minimize the fluence of photons to the substrate and lead to negligible VUV damage. For patterned structures, in order to reduce VUV damage in the bulk and on feature sidewalls, the combination of both pore stuffing/material densification and absorbing hard-mask is recommended, and/or the use of low VUV-emitting plasma discharge.« less

  19. Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond

    PubMed Central

    Yin, Rui; Dai, Tianhong; Avci, Pinar; Jorge, Ana Elisa Serafim; de Melo, Wanessa CMA; Vecchio, Daniela; Huang, Ying-Ying; Gupta, Asheesh; Hamblin, Michael R

    2013-01-01

    Owing to the worldwide increase in antibiotic resistance, researchers are investigating alternative anti-infective strategies to which it is supposed microorganisms will be unable to develop resistance. Prominent among these strategies, is a group of approaches which rely on light to deliver the killing blow. As is well known, ultraviolet light, particularly UVC (200–280nm), is germicidal, but it has not been much developed as an anti-infective approach until recently, when it was realized that the possible adverse effects to host tissue were relatively minor compared to its high activity in killing pathogens. Photodynamic therapy is the combination of non-toxic photosensitizing dyes with harmless visible light that together produce abundant destructive reactive oxygen species (ROS). Certain cationic dyes or photosensitizers have good specificity for binding to microbial cells while sparing host mammalian cells and can be used for treating many localized infections, both superficial and even deep-seated by using fiber optic delivered light. Many microbial cells are highly sensitive to killing by blue light (400–470 nm) due to accumulation of naturally occurring photosensitizers such as porphyrins and flavins. Near infrared light has also been shown to have antimicrobial effects against certain species. Clinical applications of these technologies include skin, dental, wound, stomach, nasal, toenail and other infections which are amenable to effective light delivery. PMID:24060701

  20. Optical effects of exposing intact human lenses to ultraviolet radiation and visible light.

    PubMed

    Kessel, Line; Eskildsen, Lars; Lundeman, Jesper Holm; Jensen, Ole Bjarlin; Larsen, Michael

    2011-12-30

    The human lens is continuously exposed to high levels of light. Ultraviolet radiation is believed to play a causative role in the development of cataract. In vivo, however, the lens is mainly exposed to visible light and the ageing lens absorbs a great part of the short wavelength region of incoming visible light. The aim of the present study was to examine the optical effects on human lenses of short wavelength visible light and ultraviolet radiation. Naturally aged human donor lenses were irradiated with UVA (355 nm), violet (400 and 405 nm) and green (532 nm) lasers. The effect of irradiation was evaluated qualitatively by photography and quantitatively by measuring the direct transmission before and after irradiation. Furthermore, the effect of pulsed and continuous laser systems was compared as was the effect of short, intermediate and prolonged exposures. Irradiation with high intensity lasers caused scattering lesions in the human lenses. These effects were more likely to be seen when using pulsed lasers because of the high pulse intensity. Prolonged irradiation with UVA led to photodarkening whereas no detrimental effects were observed after irradiation with visible light. Irradiation with visible light does not seem to be harmful to the human lens except if the lens is exposed to laser irradiances that are high enough to warrant thermal protein denaturation that is more readily seen using pulsed laser systems.

  1. Recording of individual identification information on dental prostheses using fluorescent material and ultraviolet light.

    PubMed

    Naito, Yoshihito; Meinar, Ashrin N; Iwawaki, Yuki; Kashiwabara, Toshiya; Goto, Takaharu; Ito, Teruaki; Sakuma, Tetsuro; Ichikawa, Tetsuo

    2013-01-01

    The placement of individual identification on a prosthesis is very important for forensic dentistry and traceability. This article describes the unique naming/labeling of dentures with information for individual identification using a method in which information is invisible under natural light but visible under ultraviolet light-emitting diode/black light exposure. The use of laser beam machining with this method will enable the recording of a large amount of information.

  2. Prevention of UVB Radiation-induced Epidermal Damage by Expression of Heat Shock Protein 70*

    PubMed Central

    Matsuda, Minoru; Hoshino, Tatsuya; Yamashita, Yasuhiro; Tanaka, Ken-ichiro; Maji, Daisuke; Sato, Keizo; Adachi, Hiroaki; Sobue, Gen; Ihn, Hironobu; Funasaka, Yoko; Mizushima, Tohru

    2010-01-01

    Irradiation with UV light, especially UVB, causes epidermal damage via the induction of apoptosis, inflammatory responses, and DNA damage. Various stressors, including UV light, induce heat shock proteins (HSPs) and the induction, particularly that of HSP70, provides cellular resistance to such stressors. The anti-inflammatory activity of HSP70, such as its inhibition of nuclear factor kappa B (NF-κB), was recently revealed. These in vitro results suggest that HSP70 protects against UVB-induced epidermal damage. Here we tested this idea by using transgenic mice expressing HSP70 and cultured keratinocytes. Irradiation of wild-type mice with UVB caused epidermal damage such as induction of apoptosis, which was suppressed in transgenic mice expressing HSP70. UVB-induced apoptosis in cultured keratinocytes was suppressed by overexpression of HSP70. Irradiation of wild-type mice with UVB decreased the cutaneous level of IκB-α (an inhibitor of NF-κB) and increased the infiltration of leukocytes and levels of pro-inflammatory cytokines and chemokines in the epidermis. These inflammatory responses were suppressed in transgenic mice expressing HSP70. In vitro, the overexpression of HSP70 suppressed the expression of pro-inflammatory cytokines and chemokines and increased the level of IκB-α in keratinocytes irradiated with UVB. UVB induced an increase in cutaneous levels of cyclobutane pyrimidine dimers and 8-hydroxy-2′-deoxyguanosine, both of which were suppressed in transgenic mice expressing HSP70. This study provides genetic evidence that HSP70 protects the epidermis from UVB-induced radiation damage. The findings here also suggest that the protective action of HSP70 is mediated by anti-apoptotic, anti-inflammatory, and anti-DNA damage effects. PMID:20018843

  3. The vitamin D hypothesis revisited: race-based disparities in birth outcomes in the United States and ultraviolet light availability.

    PubMed

    Thayer, Zaneta M

    2014-04-15

    Skin color has been proposed to contribute to race-based health disparities in the United States because of differences in ultraviolet (UV) light-induced vitamin D synthesis. The prediction of this hypothesis, herein named the UVD hypothesis, is that racial disparities in health outcomes are correlated with UV light availability. This paper investigates whether UV light availability is associated with disparities in the rates of low birth weight (LBW) and preterm birth (PTB) between whites and blacks, because these outcomes are thought to be influenced by vitamin D status and to shape disease risk in later life. Data on LBW and PTB from 2007 (n = 2,825,620 births) were compared with data on UV light exposure across the United States. Contrary to the predictions of the UVD hypothesis, LBW and PTB rate disparities were greatest in states with the highest UV light exposure. Notably, income inequality was positively and significantly related to LBW and PTB disparities, even after controlling for UV light availability. The results of this analysis demonstrate that there is a significant environmental gradient in racial disparities in birth outcomes in the United States, but other social or environmental factors associated with living in the southern United States are likely stronger contributors to disparities in birth outcomes than UV light-induced vitamin D status.

  4. Combined loss of three DNA damage response pathways renders C. elegans intolerant to light.

    PubMed

    van Bostelen, Ivo; Tijsterman, Marcel

    2017-06-01

    Infliction of DNA damage initiates a complex cellular reaction - the DNA damage response - that involves both signaling and DNA repair networks with many redundancies and parallel pathways. Here, we reveal the three strategies that the simple multicellular eukaryote, C. elegans, uses to deal with DNA damage induced by light. Separately inactivating repair or replicative bypass of photo-lesions results in cellular hypersensitivity towards UV-light, but impeding repair of replication associated DNA breaks does not. Yet, we observe an unprecedented synergistic relationship when these pathways are inactivated in combination. C. elegans mutants that lack nucleotide excision repair (NER), translesion synthesis (TLS) and alternative end joining (altEJ) grow undisturbed in the dark, but become sterile when grown in light. Even exposure to very low levels of normal daylight impedes animal growth. We show that NER and TLS operate to suppress the formation of lethal DNA breaks that require polymerase theta-mediated end joining (TMEJ) for their repair. Our data testifies to the enormous genotoxicity of light and to the demand of multiple layers of protection against an environmental threat that is so common. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Ultraviolet Light-Assisted Copper Oxide Nanowires Hydrogen Gas Sensor

    NASA Astrophysics Data System (ADS)

    Sihar, Nabihah; Tiong, Teck Yaw; Dee, Chang Fu; Ooi, Poh Choon; Hamzah, Azrul Azlan; Mohamed, Mohd Ambri; Majlis, Burhanuddin Yeop

    2018-05-01

    We fabricated copper oxide nanowires (CuO NWs) ultraviolet (UV) light-assisted hydrogen gas sensor. The fabricated sensor shows promising sensor response behavior towards 100 ppm of H2 at room temperature and elevated temperature at 100 °C when exposed to UV light (3.0 mW/cm2). One hundred-cycle device stability test has been performed, and it is found that for sample elevated at 100 °C, the UV-activated sample achieved stability in the first cycle as compared to the sample without UV irradiation which needed about 10 cycles to achieve stability at the initial stage, whereas the sample tested at room temperature was able to stabilize with the aid of UV irradiation. This indicates that with the aid of UV light, after some "warming up" time, it is possible for the conventional CuO NW sensor which normally work at elevated temperature to function at room temperature because UV source is speculated to play a dominant role to increase the interaction of the surface of CuO NWs and hydrogen gas molecules absorbed after the light exposure.

  6. Inhibition of ultraviolet light-induced oxidative events in the skin and internal organs of hairless mice by isoflavone genistein.

    PubMed

    Wei, Huachen; Zhang, Xueshu; Wang, Yan; Lebwohl, Mark

    2002-11-08

    We have previously demonstrated that soybean isoflavone genistein inhibits ultraviolet-B (UVB)-induced skin tumorigenesis in hairless mice. In the present study, we further investigated the possible mechanism(s) of action whereby genistein inhibits photocarcinogenesis with focuses on UVB-induced oxidative events, including hydrogen peroxide (H(2)O(2)) production, lipid peroxidation (as represented by malondialdehyde, MDA), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation in vivo. We demonstrated that subacute exposure to UVB substantially increased the level of H(2)O(2), lipid peroxides, and 8-OHdG in skin of hairless mice. In addition, chronic exposure to low-dose UVB (0.9-1.2 kJ/m(2) for 20 weeks) substantially increased the levels of 8-OHdG not only in the epidermis, but also in the internal organs such as liver, brain, and spleen of mice with exception of kidney. However, genistein did not affect the level of UVB-induced pyrimidine dimmers in the same UVB exposed mouse skin, indicating selective inhibition of oxidative DNA damage by genistein. Induction of H(2)O(2) was independent of UVB fluences whereas the levels of MDA and 8-OHdG were induced in an UVB fluence-dependent manner. The results suggest that H(2)O(2) be generated as an acute cutaneous response to UVB irradiation, while MDA and 8-OHdG are accumulated with increasing UVB exposure and more closely related to chronic effects of UVB radiation. Pre-treatment of animals with 10 micromol of genistein 1 h prior to UVB exposure significantly inhibited UVB-induced H(2)O(2) and MDA in skin and 8-OHdG in epidermis as well as internal organs. Suppression of 8-OHdG formation by genistein has been corroborated in purified DNA irradiated with UVA and B. In summary, our results suggest that UVB irradiation elicit a series of oxidative events, which can be substantially inhibited by isoflavonoid genistein through either direct quenching of reactive oxygen species or indirect antiinflammatory effects. Thus, the

  7. ADA-07 Suppresses Solar Ultraviolet-Induced Skin Carcinogenesis by Directly Inhibiting TOPK.

    PubMed

    Gao, Ge; Zhang, Tianshun; Wang, Qiushi; Reddy, Kanamata; Chen, Hanyong; Yao, Ke; Wang, Keke; Roh, Eunmiri; Zykova, Tatyana; Ma, Weiya; Ryu, Joohyun; Curiel-Lewandrowski, Clara; Alberts, David; Dickinson, Sally E; Bode, Ann M; Xing, Ying; Dong, Zigang

    2017-09-01

    Cumulative exposure to solar ultraviolet (SUV) irradiation is regarded as the major etiologic factor in the development of skin cancer. The activation of the MAPK cascades occurs rapidly and is vital in the regulation of SUV-induced cellular responses. The T-LAK cell-originated protein kinase (TOPK), an upstream activator of MAPKs, is heavily involved in inflammation, DNA damage, and tumor development. However, the chemopreventive and therapeutic effects of specific TOPK inhibitors in SUV-induced skin cancer have not yet been elucidated. In the current study, ADA-07, a novel TOPK inhibitor, was synthesized and characterized. Pull-down assay results, ATP competition, and in vitro kinase assay data revealed that ADA-07 interacted with TOPK at the ATP-binding pocket and inhibited its kinase activity. Western blot analysis showed that ADA-07 suppressed SUV-induced phosphorylation of ERK1/2, p38, and JNKs and subsequently inhibited AP-1 activity. Importantly, topical treatment with ADA-07 dramatically attenuated tumor incidence, multiplicity, and volume in SKH-1 hairless mice exposed to chronic SUV. Our findings suggest that ADA-07 is a promising chemopreventive or potential therapeutic agent against SUV-induced skin carcinogenesis that acts by specifically targeting TOPK. Mol Cancer Ther; 16(9); 1843-54. ©2017 AACR . ©2017 American Association for Cancer Research.

  8. Exposure of Metarhizium acridum mycelium to light induces tolerance to UV-B radiation.

    PubMed

    Brancini, Guilherme T P; Rangel, Drauzio E N; Braga, Gilberto Ú L

    2016-03-01

    Metarhizium acridum is an entomopathogenic fungus commonly used as a bioinsecticide. The conidium is the fungal stage normally employed as field inoculum in biological control programs and must survive under field conditions such as high ultraviolet-B (UV-B) exposure. Light, which is an important stimulus for many fungi, has been shown to induce the production of M. robertsii conidia with increased stress tolerance. Here we show that a two-hour exposure to white or blue/UV-A light of fast-growing mycelium induces tolerance to subsequent UV-B irradiation. Red light, however, does not have the same effect. In addition, we established that this induction can take place with as little as 1 min of white-light exposure. This brief illumination scheme could be relevant in future studies of M. acridum photobiology and for the production of UV-B resistant mycelium used in mycelium-based formulations for biological control. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Inhibition of seagrass photosynthesis by ultraviolet-B radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trocine, R.P.; Rice, J.D.; Wells, G.N.

    1981-07-01

    Effects of ultraviolet-B radiation on the photosynthesis of seagrasses (Halophila engelmanni Aschers, Halodule wrightii Aschers, and Syringodium filiforme (Kuetz) were examined. The intrinsic tolerance of each seagrass to ultraviolet-B, the presence and effectiveness of photorepair mechanisms to ultraviolet-B-induced photosynthetic inhibition, and the role of epiphytic growth as a shield from ultraviolet-B were investigated. Halodule was found to possess the greatest photosynthetic tolerance for ultraviolet-B. Photosynthesis in Syringodium was slightly more sensitive to ultraviolet-B while Halophila showed relatively little photosynthetic tolerance. Evidence for a photorepair mechanism was found only in Halodule. Syringodium appeared to rely primarily on a thick epidermal cellmore » layer to reduce photosynthetic damage. Halophila seemed to have no morphological or photorepair capabilities to deal with ultraviolet-B. This species appeared to rely on epiphytic and detrital shielding and the shade provided by other seagrasses to reduce ultraviolet-B irradiation to tolerable levels. The presence of epiphytes on leaf surfaces was found to reduce the extent of photosynthetic inhibition from ultraviolet-B exposure in all species. Halophila appears to obtain an increased photosynthetic tolerance to ultraviolet-B as an indirect benefit of chloroplast clumping to avoid photo-oxidation by intense levels of photosynthetically active radiation.« less

  10. Morphological studies of laser-induced photoacoustic damage

    NASA Astrophysics Data System (ADS)

    Flotte, Thomas J.; Yashima, Yutaka; Watanabe, Shinichi; McAuliffe, Daniel J., Sr.; Jacques, Steven L.

    1990-06-01

    Argon-fluoride excimer laser ablation of stratum comeum causes deeper tissue damage than expected for thermal or photochemical mechanisms, suggesting thatphotoacoustic waves have arole in tissue damage. Laserirradiation (193 nm, 14 ns pulses, 1-2 Hz) attworadiantexposures, 60 and 160 mJ/cm2perpulse was usedto ablate the stratumcomeumofskin. Light and electron microscopy ofimmediate biopsies demonstrated damage to fibroblasts as deep as 88 and 220 jun, respectively, below the ablation site. Ablation throughwaterwas usedtoinertially confine the ablation zone. Partial ablationofs.c. through airproducedno damage, whereas partial ablation through water damaged skin to amean depth of 1 14.5 8.8( Full thickness ablation of s.c. through air and water produced damage zones measuring 192.2 16.2 and 293.0 71.6 rim, respectively (p <0.05). The increased depth ofdamage in the presence ofinertial confinementprovided by the layer of water strongly supports a photoacoustic mechanism ofdamage. The depths ofdamage for thelarge spot, line, and small spots were 43 1 164 urn, 269 96xni, andno damage. The spot size dependence ofthedepthofdamage is consistentwiththe geometric attenuation one would expect to be present from a pressure wave related phenomena. Sequential biopsies were taken over a 7 day period for light and transmission electron microscopy. At 24 hours, there was necrosis of the epidermis and papillary dermis subjacent to the ablation site, with neutrophils surrounding and demarcating the affected area. The necrotic zone sloughedby48 hours. Thereepithelializationwas completeby7 days. The sequenceofrepairis similartoknife wound healing which we have previously studied, and is analogous to other wound healing processes. We have used an experimental model of ArF excimer laser ablation of stratum corneum to investigate laser-induced photoacoustic damage. The evidence for the injury being due to pressure transients is indirectbutcompelling. Whether these pressuretransients are

  11. Induction of sister chromatid exchange in preimplantation mouse embryos in vitro by /sup 3/H-thymidine or ultraviolet light in combination with caffeine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, W.U.S.; Spindle, A.

    1986-01-01

    Preimplantation mouse embryos were exposed in vitro to /sup 3/H-thymidine (25, 100, or 250 Bq/ml) or ultraviolet (UV) light (1.35 or 4.05 J/m2), either alone or in combination with caffeine (1 mM with /sup 3/H-thymidine and 0.5 mM with UV light). Exposure to /sup 3/H-thymidine lasted for 2 days, from the two-cell stage to the late morula/early blastocyst stage, and UV radiation was applied acutely at the late morula/early blastocyst stage. The effects were quantified by the sister chromatid exchange (SCE) assay. All three agents induced SCEs when used singly. /sup 3/H-thymidine was effective in inducing SCEs only at 250more » Bq/ml, whereas UV light was effective at both fluences. Although caffeine did not induce SCEs when it was added before exposure to bromodeoxyuridine (BrdUrd), which is used to visualize SCEs, it did induce SCEs when present during the entire culture period (/sup 3/H-thymidine experiments) or during incubation in BrdUrd (UV experiments). Caffeine markedly enhanced the SCE-inducing effect of UV light but did not influence the effect of /sup 3/H-thymidine.« less

  12. Toll-Like Receptor-4 deficiency enhances repair of ultraviolet radiation induced cutaneous DNA damage by nucleotide excision repair mechanism

    PubMed Central

    Ahmad, Israr; Simanyi, Eva; Guroji, Purushotham; Tamimi, Iman A; delaRosa, Hillary J; Nagar, Anusuiya; Nagar, Priyamvada; Katiyar, Santosh K; Elmets, Craig A; Yusuf, Nabiha

    2014-01-01

    UVB-induced DNA damage plays a critical role in development of photoimmunosuppression. The purpose of this study was to determine whether repair of UVB-induced DNA damage is regulated by Toll-like receptor-4 (TLR4). When TLR4 gene knockout (TLR4-/-) and TLR4 competent (TLR4+/+) mice were subjected to 90 mJ/cm2 UVB radiation locally, DNA damage in the form of CPD, were repaired more efficiently in the skin and bone marrow dendritic cells (BMDC) of TLR4-/- mice in comparison to TLR4+/+ mice. Expression of DNA repair gene XPA (Xeroderma pigmentosum complementation group A) was significantly lower in skin and BMDC of TLR4+/+ mice than TLR4-/- mice after UVB exposure. When cytokine levels were compared in these strains after UVB exposure, BMDC from UV-irradiated TLR4-/- mice produced significantly more interleukin (IL)-12 and IL-23 cytokines (p<0.05) than BMDC from TLR4+/+ mice. Addition of anti-IL-12 and anti-IL-23 antibodies to BMDC of TLR4-/- mice (before UVB exposure) inhibited repair of CPD, with a concomitant decrease in XPA expression. Addition of TLR4 agonist to TLR4+/+ BMDC cultures decreased XPA expression and inhibited CPD repair. Thus, strategies to inhibit TLR4 may allow for immunopreventive and immunotherapeutic approaches for managing UVB-induced cutaneous DNA damage and skin cancer. PMID:24326454

  13. Enhanced light extraction efficiency of micro-ring array AlGaN deep ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Bekele Fayisa, Gabisa; Lee, Jong Won; Kim, Jungsub; Kim, Yong-Il; Park, Youngsoo; Kim, Jong Kyu

    2017-09-01

    An effective approach to overcome inherently poor light extraction efficiency of AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) is presented. We demonstrated the 5 × 5 array micro-ring DUV LED having an inclined sidewall at the outer perimeter and a p-GaN-removed inner circle of the micro-ring, together with MgF2/Al omnidirectional reflectors. The micro-ring array DUV LED shows remarkably higher light output power by 70% than the reference, consistent with the calculated result, as well as comparable turn-on and operational voltages, which are attributed to the effective extraction of strong transverse-magnetic polarized anisotropic emission and the reduction of the absorption loss by the p-GaN contact layer, simultaneously.

  14. Characterization of electrically-active defects in ultraviolet light-emitting diodes with laser-based failure analysis techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Mary A.; Tangyunyong, Paiboon; Cole, Edward I.

    2016-01-14

    Laser-based failure analysis techniques demonstrate the ability to quickly and non-intrusively screen deep ultraviolet light-emitting diodes (LEDs) for electrically-active defects. In particular, two laser-based techniques, light-induced voltage alteration and thermally-induced voltage alteration, generate applied voltage maps (AVMs) that provide information on electrically-active defect behavior including turn-on bias, density, and spatial location. Here, multiple commercial LEDs were examined and found to have dark defect signals in the AVM indicating a site of reduced resistance or leakage through the diode. The existence of the dark defect signals in the AVM correlates strongly with an increased forward-bias leakage current. This increased leakage ismore » not present in devices without AVM signals. Transmission electron microscopy analysis of a dark defect signal site revealed a dislocation cluster through the pn junction. The cluster included an open core dislocation. Even though LEDs with few dark AVM defect signals did not correlate strongly with power loss, direct association between increased open core dislocation densities and reduced LED device performance has been presented elsewhere [M. W. Moseley et al., J. Appl. Phys. 117, 095301 (2015)].« less

  15. Characterization of electrically-active defects in ultraviolet light-emitting diodes with laser-based failure analysis techniques

    DOE PAGES

    Miller, Mary A.; Tangyunyong, Paiboon; Edward I. Cole, Jr.

    2016-01-12

    In this study, laser-based failure analysis techniques demonstrate the ability to quickly and non-intrusively screen deep ultraviolet light-emitting diodes(LEDs) for electrically-active defects. In particular, two laser-based techniques, light-induced voltage alteration and thermally-induced voltage alteration, generate applied voltage maps (AVMs) that provide information on electrically-active defect behavior including turn-on bias, density, and spatial location. Here, multiple commercial LEDs were examined and found to have dark defect signals in the AVM indicating a site of reduced resistance or leakage through the diode. The existence of the dark defect signals in the AVM correlates strongly with an increased forward-bias leakage current. This increasedmore » leakage is not present in devices without AVM signals. Transmission electron microscopyanalysis of a dark defect signal site revealed a dislocation cluster through the pn junction. The cluster included an open core dislocation. Even though LEDs with few dark AVM defect signals did not correlate strongly with power loss, direct association between increased open core dislocation densities and reduced LED device performance has been presented elsewhere [M. W. Moseley et al., J. Appl. Phys. 117, 095301 (2015)].« less

  16. Pulsed ultraviolet light reduces immunoglobulin E binding to atlantic white shrimp (litopenaeus setiferus).

    USDA-ARS?s Scientific Manuscript database

    To date, the only effective method to prevent allergic reactions to shellfish is complete avoidance; however, if processing methods could be employed to minimize shellfish allergens before products reach consumers, illness could be substantially lessened. Pulsed ultraviolet light (PUV), a novel food...

  17. The involvement of ATF4 and S-opsin in retinal photoreceptor cell damage induced by blue LED light.

    PubMed

    Ooe, Emi; Tsuruma, Kazuhiro; Kuse, Yoshiki; Kobayashi, Saori; Shimazawa, Masamitsu; Hara, Hideaki

    2017-01-01

    Blue light is a high-energy emitting light with a short wavelength in the visible light spectrum. Blue light induces photoreceptor apoptosis and causes age-related macular degeneration or retinitis pigmentosa. In the present study, we investigated the roles of endoplasmic reticulum (ER) stress induced by blue light-emitting diode (LED) light exposure in murine photoreceptor cells. The murine photoreceptor cell line was incubated and exposed to blue LED light (464 nm blue LED light, 450 lx, 3 to 24 h). The expression of the factors involved in the unfolded protein response pathway was examined using quantitative real-time reverse transcription (RT)-PCR and immunoblot analysis. The aggregation of short-wavelength opsin (S-opsin) in the murine photoreceptor cells was observed with immunostaining. The effect of S-opsin knockdown on ATF4 expression in the murine photoreceptor cell line was also investigated. Exposure to blue LED light increased the bip , atf4 , and grp94 mRNA levels, induced the expression of ATF4 protein, and increased the levels of ubiquitinated proteins. Exposure to blue LED light in combination with ER stress inducers (tunicamycin and dithiothreitol) induced the aggregation of S-opsin. S-opsin mRNA knockdown prevented the induction of ATF4 expression in response to exposure to blue LED light. These findings indicate that the aggregation of S-opsin induced by exposure to blue LED light causes ER stress, and ATF4 activation in particular.

  18. Quercetin-3-O-α-l-arabinopyranoside protects against retinal cell death via blue light-induced damage in human RPE cells and Balb-c mice.

    PubMed

    Kim, Jun; Jin, Hong Lan; Jang, Dae Sik; Jeong, Kwang Won; Choung, Se-Young

    2018-04-25

    Age-related macular degeneration (AMD) is among the increasing number of diseases causing irreversible blindness in the elderly. Dry AMD is characterized by the accumulation of lipofuscin in retinal pigment epithelium (RPE) cells. N-Retinylidene-N-retinylethanolamine (A2E), a component of lipofuscin, is oxidized to oxo-A2E under blue light illumination, leading to retinal cell death. The aim of this study was to investigate the protective effect and mechanism of quercetin-3-O-α-l-arabinopyranoside (QA) against blue light (BL)-induced damage in both RPE cells and mice models. Treatment by QA inhibited A2E uptake in RPE cells, as determined by a decrease in fluorescence intensity. QA also protected A2E-laden RPE cells against BL-induced apoptosis. QA inhibited C3 complement activation and poly (ADP-ribose) polymerase (PARP) cleavage, as determined by western blotting. QA showed an inhibitory effect on AP1 and NF-kB activity as estimated in a reporter gene assay. In addition, QA activated the gene expression of aryl hydrocarbon receptor target genes (CYP1A1, CYP1B1) in TCDD-treated RPE cells. In the mice model, oral administration of QA protected against retinal degeneration induced by BL exposure as determined by histological analyses (thickness of retinal layers and immunostaining for caspase-3). In addition, QA inhibited apoptosis and inflammation via inhibition of NF-kB p65 translocation, C3 activation, and PARP cleavage. Collectively, these results revealed the protective mechanism of QA against BL-induced retinal damage both in vitro and in vivo.

  19. Protection of therapeutic antibodies from visible light induced degradation: Use safe light in manufacturing and storage.

    PubMed

    Du, Cheng; Barnett, Gregory; Borwankar, Ameya; Lewandowski, Angela; Singh, Nripen; Ghose, Sanchayita; Borys, Michael; Li, Zheng Jian

    2018-06-01

    As macromolecules, biologics are susceptible to light exposure, which induces oxidation of multiple amino acid residues including tryptophan, tyrosine, phenylalanine, cysteine and methionine. Pertaining to safety, efficacy and potency, light-induced oxidation of biologics has been widely studied and necessary precautions need to be taken during biologics manufacturing process, drug substance and products handling and storage. Proteins will degrade to varying extents depending on the protein properties, degradation pathways, formulation compositions and type of light source. In addition to UV light, which has been widely known to degrade proteins, visible light from indoor fluorescent lighting also can mediate protein degradation. In this report, we examine and identify wavelengths in the visual spectrum (400-700 nm) that can cause monoclonal antibody and histidine buffer degradation. Installation of safe lights which exclude the identified damaging wavelengths from visible spectra in manufacturing and storage areas can provide a balance between lighting requirement for human operators and their safety and conservation of product quality. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources

    PubMed Central

    Zhao, S.; Connie, A. T.; Dastjerdi, M. H. T.; Kong, X. H.; Wang, Q.; Djavid, M.; Sadaf, S.; Liu, X. D.; Shih, I.; Guo, H.; Mi, Z.

    2015-01-01

    Despite broad interest in aluminum gallium nitride (AlGaN) optoelectronic devices for deep ultraviolet (DUV) applications, the performance of conventional Al(Ga)N planar devices drastically decays when approaching the AlN end, including low internal quantum efficiencies (IQEs) and high device operation voltages. Here we show that these challenges can be addressed by utilizing nitrogen (N) polar Al(Ga)N nanowires grown directly on Si substrate. By carefully tuning the synthesis conditions, a record IQE of 80% can be realized with N-polar AlN nanowires, which is nearly ten times higher compared to high quality planar AlN. The first 210 nm emitting AlN nanowire light emitting diodes (LEDs) were achieved, with a turn on voltage of about 6 V, which is significantly lower than the commonly observed 20 – 40 V. This can be ascribed to both efficient Mg doping by controlling the nanowire growth rate and N-polarity induced internal electrical field that favors hole injection. In the end, high performance N-polar AlGaN nanowire LEDs with emission wavelengths covering the UV-B/C bands were also demonstrated. PMID:25684335

  1. Micronucleated erythrocytes in newborns rats exposed to three different types of ultraviolet-A (UVA) lamps from commonly uses devices.

    PubMed

    Zúñiga-González, Guillermo M; Gómez-Meda, Belinda C; Zamora-Perez, Ana L; Martínez-González, María A; Bautista-Bejarano, Miguel A; Patiño-Valenzuela, Sebastián; Armendáriz-Borunda, Juan; Lazalde-Ramos, Blanca P; Sánchez-Parada, María G; Gallegos-Arreola, Martha P

    2016-12-01

    Exposure to ultraviolet-A (UVA) light can accidentally cause adverse effects in the skin and eyes. UVA induces DNA damage directly by creating pyrimidine dimers or by the formation of reactive oxygen species that can indirectly affect DNA integrity. UVA radiation is emitted by lamps from everyday devices. In adult rats, micronucleated erythrocytes (MNE) are removed from the circulation by the spleen. However, in newborn rats, MNE have been observed in peripheral blood erythrocytes. The objective of this study was to use micronucleus tests to evaluate the DNA damage caused in newborn rats exposed to UVA light from three different types of UVA lamps obtained from commonly used devices: counterfeit detectors, insecticide devices, and equipment used to harden resins for artificial nails. Rat neonates were exposed to UVA lamps for 20min daily for 6days. The neonates were sampled every third day, and the numbers of MNE and micronucleated polychromatic erythrocytes (MNPCE) in the peripheral blood were determined. The rat neonates exposed to the three types of UVA lamps showed increased numbers of MNE and MNPCE from 48h to 144h (P<0.05 and P<0.001 respectively). However, no relationship was observed between the number of MNE and the wattage of the lamps. In conclusion, under these conditions, UVA light exposure induced an increase in MNE without causing any apparent damage to the skin. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Thread Embedding Acupuncture Inhibits Ultraviolet B Irradiation-Induced Skin Photoaging in Hairless Mice.

    PubMed

    Kim, Yoon-Jung; Kim, Ha-Neui; Shin, Mi-Sook; Choi, Byung-Tae

    2015-01-01

    Thread embedding acupuncture (TEA) is an acupuncture treatment applied to many diseases in Korean medical clinics because of its therapeutic effects by continuous stimulation to tissues. It has recently been used to enhance facial skin appearance and antiaging, but data from evidence-based medicine are limited. To investigate whether TEA therapy can inhibit skin photoaging by ultraviolet B (UVB) irradiation, we performed analyses for histology, histopathology, in situ zymography and western blot analysis in HR-1 hairless mice. TEA treatment resulted in decreased wrinkle formation and skin thickness (Epidermis; P = 0.001 versus UV) in UVB irradiated mice and also inhibited degradation of collagen fibers (P = 0.010 versus normal) by inhibiting proteolytic activity of gelatinase matrix-metalloproteinase-9 (MMP-9). Western blot data showed that activation of c-Jun N-terminal kinase (JNK) induced by UVB (P = 0.002 versus normal group) was significantly inhibited by TEA treatment (P = 0.005 versus UV) with subsequent alleviation of MMP-9 activation (P = 0.048 versus UV). These results suggest that TEA treatment can have anti-photoaging effects on UVB-induced skin damage by maintenance of collagen density through regulation of expression of MMP-9 and related JNK signaling. Therefore, TEA therapy may have potential roles as an alternative treatment for protection against skin damage from aging.

  3. Thread Embedding Acupuncture Inhibits Ultraviolet B Irradiation-Induced Skin Photoaging in Hairless Mice

    PubMed Central

    Kim, Yoon-Jung; Kim, Ha-Neui; Shin, Mi-Sook; Choi, Byung-Tae

    2015-01-01

    Thread embedding acupuncture (TEA) is an acupuncture treatment applied to many diseases in Korean medical clinics because of its therapeutic effects by continuous stimulation to tissues. It has recently been used to enhance facial skin appearance and antiaging, but data from evidence-based medicine are limited. To investigate whether TEA therapy can inhibit skin photoaging by ultraviolet B (UVB) irradiation, we performed analyses for histology, histopathology, in situ zymography and western blot analysis in HR-1 hairless mice. TEA treatment resulted in decreased wrinkle formation and skin thickness (Epidermis; P = 0.001 versus UV) in UVB irradiated mice and also inhibited degradation of collagen fibers (P = 0.010 versus normal) by inhibiting proteolytic activity of gelatinase matrix-metalloproteinase-9 (MMP-9). Western blot data showed that activation of c-Jun N-terminal kinase (JNK) induced by UVB (P = 0.002 versus normal group) was significantly inhibited by TEA treatment (P = 0.005 versus UV) with subsequent alleviation of MMP-9 activation (P = 0.048 versus UV). These results suggest that TEA treatment can have anti-photoaging effects on UVB-induced skin damage by maintenance of collagen density through regulation of expression of MMP-9 and related JNK signaling. Therefore, TEA therapy may have potential roles as an alternative treatment for protection against skin damage from aging. PMID:26185518

  4. An Overview of Ultraviolet B Radiation-Induced Skin Cancer Chemoprevention by Silibinin.

    PubMed

    Kumar, Rahul; Deep, Gagan; Agarwal, Rajesh

    2015-06-01

    Skin cancer incidences are rising worldwide, and one of the major causative factors is excessive exposure to solar ultraviolet radiation (UVR). Annually, ~5 million skin cancer patients are treated in United States, mostly with nonmelanoma skin cancer (NMSC), which is also frequent in other Western countries. As sunscreens do not provide adequate protection against deleterious effects of UVR, additional and alternative chemoprevention strategies are urgently needed to reduce skin cancer burden. Over the last couple of decades, extensive research has been conducted to understand the molecular basis of skin carcinogenesis, and to identifying novel agents which could be useful in the chemoprevention of skin cancer. In this regard, several natural non-toxic compounds have shown promising efficacy in preventing skin carcinogenesis at initiation, promotion and progression stages, and are considered important in better management of skin cancer. Consistent with this, we and others have studied and established the notable efficacy of natural flavonolignan silibinin against UVB-induced skin carcinogenesis. Extensive pre-clinical animal and cell culture studies report strong anti-inflammatory, anti-oxidant, DNA damage repair, immune-modulatory and anti-proliferative properties of silibinin. Molecular studies have identified that silibinin targets pleotropic signaling pathways including mitogenic, cell cycle, apoptosis, autophagy, p53, NF-κB, etc. Overall, the skin cancer chemopreventive potential of silibinin is well supported by comprehensive mechanistic studies, suggesting its greater use against UV-induced cellular damages and photocarcinogenesis.

  5. An Overview of Ultraviolet B Radiation-Induced Skin Cancer Chemoprevention by Silibinin

    PubMed Central

    Kumar, Rahul; Deep, Gagan; Agarwal, Rajesh

    2015-01-01

    Skin cancer incidences are rising worldwide, and one of the major causative factors is excessive exposure to solar ultraviolet radiation (UVR). Annually, ~5 million skin cancer patients are treated in United States, mostly with nonmelanoma skin cancer (NMSC), which is also frequent in other Western countries. As sunscreens do not provide adequate protection against deleterious effects of UVR, additional and alternative chemoprevention strategies are urgently needed to reduce skin cancer burden. Over the last couple of decades, extensive research has been conducted to understand the molecular basis of skin carcinogenesis, and to identifying novel agents which could be useful in the chemoprevention of skin cancer. In this regard, several natural non-toxic compounds have shown promising efficacy in preventing skin carcinogenesis at initiation, promotion and progression stages, and are considered important in better management of skin cancer. Consistent with this, we and others have studied and established the notable efficacy of natural flavonolignan silibinin against UVB-induced skin carcinogenesis. Extensive pre-clinical animal and cell culture studies report strong anti-inflammatory, anti-oxidant, DNA damage repair, immune-modulatory and anti-proliferative properties of silibinin. Molecular studies have identified that silibinin targets pleotropic signaling pathways including mitogenic, cell cycle, apoptosis, autophagy, p53, NF-κB, etc. Overall, the skin cancer chemopreventive potential of silibinin is well supported by comprehensive mechanistic studies, suggesting its greater use against UV-induced cellular damages and photocarcinogenesis. PMID:26097804

  6. Binding of antibodies to the extractable nuclear antigens SS-A/Ro and SS-B/La is induced on the surface of human keratinocytes by ultraviolet light (UVL): Implications for the pathogenesis of photosensitive cutaneous lupus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furukawa, F.; Kashihara-Sawami, M.; Lyons, M.B.

    1990-01-01

    Autoantibodies to the non-histone nucleoprotein antigens SS-A/Ro, SS-B/La, and RNP are highly associated with photosensitive cutaneous lupus erythematosus (LE). In order to better understand the potential mechanisms of ultraviolet (UV) light on photosensitivity in patients with cutaneous LE, we designed immunopathologic in vitro and in vivo experiments to evaluate the effects of UV on the binding of such autoantibodies to the surface of human keratinocytes, one major target of immunologic damage in photosensitive LE. Short-term 2% paraformaldehyde fixation of suspensions of cultured human keratinocytes previously incubated with monospecific antiserum probes enabled the detection of ENA expression on the cell surfacemore » by flow-cytometry analysis. UVB light (280-320 nm) induced the binding of monospecific antibody probes for SS-A/Ro and SS-B/La on keratinocytes in a dose-dependent pattern with maximal induction observed at the dose of 200 mJ/cm2 UVB. Binding of SS-A/Ro, SS-B/La, and RNP antibody was augmented strongly, but binding of anti-Sm was very weak. In contrast, UVA (320-400 nm) light had no effect on the induction of binding of these antibody probes. Identical results were seen by standard immunofluorescence techniques. Hydroxyurea-treated keratinocytes showed similar induction of those antigens by UVB irradiation, which suggested that ENA expression on cultured keratinocytes by UVB were cell-cycle independent. Tunicamycin, an inhibitor of glycosylation of proteins, reduced UVB light effect on the SS-A/Ro and SS-B/La antigen's expression. These in vitro FACS analyses revealed that ENA augmentation on the keratinocyte cell surface was dose dependent, UVB dependent, glycosylation dependent, and cell-cycle independent. In vivo ENA augmentation on the keratinocyte surface was examined in suction blister epidermal roofs.« less

  7. Ultraviolet Light-Assisted Copper Oxide Nanowires Hydrogen Gas Sensor.

    PubMed

    Sihar, Nabihah; Tiong, Teck Yaw; Dee, Chang Fu; Ooi, Poh Choon; Hamzah, Azrul Azlan; Mohamed, Mohd Ambri; Majlis, Burhanuddin Yeop

    2018-05-15

    We fabricated copper oxide nanowires (CuO NWs) ultraviolet (UV) light-assisted hydrogen gas sensor. The fabricated sensor shows promising sensor response behavior towards 100 ppm of H 2 at room temperature and elevated temperature at 100 °C when exposed to UV light (3.0 mW/cm 2 ). One hundred-cycle device stability test has been performed, and it is found that for sample elevated at 100 °C, the UV-activated sample achieved stability in the first cycle as compared to the sample without UV irradiation which needed about 10 cycles to achieve stability at the initial stage, whereas the sample tested at room temperature was able to stabilize with the aid of UV irradiation. This indicates that with the aid of UV light, after some "warming up" time, it is possible for the conventional CuO NW sensor which normally work at elevated temperature to function at room temperature because UV source is speculated to play a dominant role to increase the interaction of the surface of CuO NWs and hydrogen gas molecules absorbed after the light exposure.

  8. Protective effects of skin permeable epidermal and fibroblast growth factor against ultraviolet-induced skin damage and human skin wrinkles.

    PubMed

    An, Jae Jin; Eum, Won Sik; Kwon, Hyuck Se; Koh, Jae Sook; Lee, Soo Yun; Baek, Ji Hwoon; Cho, Yong-Jun; Kim, Dae Won; Han, Kyu Huyng; Park, Jinseu; Jang, Sang Ho; Choi, Soo Young

    2013-12-01

    Epidermal and fibroblast growth factor (EGF and FGF1) proteins play an important role in the regeneration and proliferation of skin cells. EGF and FGF1 have considerable potential as possible therapeutic or cosmetic agents for the treatment of skin damage including wrinkles. Using protein transduction domains (PTD), we investigated whether PTD-EGF and FGF1 transduced into skin cells and tissue. Transduced proteins showed protective effects in a UV-induced skin damage model as well as against skin wrinkles. Transduced PTD-EGF and FGF1 proteins were detected by immunofluorescence and immunohistochemistry. The effects of PTD-EGF and FGF1 were examined by WST assay, Western blotting, immunohistochemistry, and skin wrinkle parameters. The PTD-EGF and FGF1 increased cell proliferation and collagen type 1 alpha 1 protein accumulation in skin tissue. Also, PTD-EGF and FGF1 inhibited UV-induced skin damage. Furthermore, topical application of PTD-EGF and FGF1 contained ampoules which were considered to improve the wrinkle parameters of human skin. These results show that PTD-EGF and FGF1 can be a potential therapeutic or cosmetic agent for skin damaged and injury including wrinkles and aging. © 2013 Wiley Periodicals, Inc.

  9. Semi-transparent all-oxide ultraviolet light-emitting diodes based on ZnO/NiO-core/shell nanowires

    NASA Astrophysics Data System (ADS)

    Shi, Zhi-Feng; Xu, Ting-Ting; Wu, Di; Zhang, Yuan-Tao; Zhang, Bao-Lin; Tian, Yong-Tao; Li, Xin-Jian; Du, Guo-Tong

    2016-05-01

    Semi-transparent all-oxide light-emitting diodes based on ZnO/NiO-core/shell nanowire structures were prepared on double-polished c-Al2O3 substrates. The entire heterojunction diode showed an average transparency of ~65% in the ultraviolet and visible regions. Under forward bias, the diode displayed an intense ultraviolet emission at ~382 nm, and its electroluminescence performance was remarkable in terms of a low emission onset, acceptable operating stability, and the ability to optically excite emissive semiconductor nanoparticle chromophores.Semi-transparent all-oxide light-emitting diodes based on ZnO/NiO-core/shell nanowire structures were prepared on double-polished c-Al2O3 substrates. The entire heterojunction diode showed an average transparency of ~65% in the ultraviolet and visible regions. Under forward bias, the diode displayed an intense ultraviolet emission at ~382 nm, and its electroluminescence performance was remarkable in terms of a low emission onset, acceptable operating stability, and the ability to optically excite emissive semiconductor nanoparticle chromophores. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07236k

  10. Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes.

    PubMed

    Liebel, Frank; Kaur, Simarna; Ruvolo, Eduardo; Kollias, Nikiforos; Southall, Michael D

    2012-07-01

    Daily skin exposure to solar radiation causes cells to produce reactive oxygen species (ROS), which are a primary factor in skin damage. Although the contribution of the UV component to skin damage has been established, few studies have examined the effects of non-UV solar radiation on skin physiology. Solar radiation comprises <10% of UV, and thus the purpose of this study was to examine the physiological response of skin to visible light (400-700 nm). Irradiation of human skin equivalents with visible light induced production of ROS, proinflammatory cytokines, and matrix metalloproteinase (MMP)-1 expression. Commercially available sunscreens were found to have minimal effects on reducing visible light-induced ROS, suggesting that UVA/UVB sunscreens do not protect the skin from visible light-induced responses. Using clinical models to assess the generation of free radicals from oxidative stress, higher levels of free radical activity were found after visible light exposure. Pretreatment with a photostable UVA/UVB sunscreen containing an antioxidant combination significantly reduced the production of ROS, cytokines, and MMP expression in vitro, and decreased oxidative stress in human subjects after visible light irradiation. Taken together, these findings suggest that other portions of the solar spectrum aside from UV, particularly visible light, may also contribute to signs of premature photoaging in skin.

  11. Extending the use of ultraviolet light for fruit quality sorting in citrus packinghouses

    USDA-ARS?s Scientific Manuscript database

    Illumination with ultraviolet light (UV) is commonly used in citrus packinghouses as a means to aid in the identification and removal of decayed oranges from the packline. This technique is effective because areas of decay strongly fluoresce under UV illumination. It was observed that oranges often ...

  12. Protective Effects of Resveratrol against UVA-Induced Damage in ARPE19 Cells

    PubMed Central

    Chan, Chi-Ming; Huang, Cheng-Hua; Li, Hsin-Ju; Hsiao, Chien-Yu; Su, Ching-Chieh; Lee, Pei-Lan; Hung, Chi-Feng

    2015-01-01

    Ultraviolet radiation, especially UVA, can penetrate the lens, reach the retina, and induce oxidative stress to retinal pigment epithelial (RPE) cells. Even though it is weakly absorbed by protein and DNA, it may trigger the production of reactive oxygen species (ROS) and generate oxidative injury; oxidative injury to the retinal pigment epithelium has been implicated to play a contributory role in age-related macular degeneration (AMD). Studies showed that resveratrol, an abundant and active component of red grapes, can protect several cell types from oxidative stress. In this study, adult RPE cells being treated with different concentrations of resveratrol were used to evaluate the protective effect of resveratrol on RPE cells against UVA-induced damage. Cell viability assay showed that resveratrol reduced the UVA-induced decrease in RPE cell viability. Through flow cytometry analysis, we found that the generation of intracellular H2O2 induced by UVA irradiation in RPE cells could be suppressed by resveratrol in a concentration-dependent manner. Results of Western blot analysis demonstrated that resveratrol lowered the activation of UVA-induced extracellular signal-regulated kinase, c-jun-NH2 terminal kinase and p38 kinase in RPE cells. In addition, there was also a reduction in UVA-induced cyclooxygenase-2 (COX-2) expression in RPE cells pretreated with resveratrol. Our observations suggest that resveratrol is effective in preventing RPE cells from being damaged by UVA radiation, and is worth considering for further development as a chemoprotective agent for the prevention of early AMD. PMID:25775159

  13. Protective effects of resveratrol against UVA-induced damage in ARPE19 cells.

    PubMed

    Chan, Chi-Ming; Huang, Cheng-Hua; Li, Hsin-Ju; Hsiao, Chien-Yu; Su, Ching-Chieh; Lee, Pei-Lan; Hung, Chi-Feng

    2015-03-12

    Ultraviolet radiation, especially UVA, can penetrate the lens, reach the retina, and induce oxidative stress to retinal pigment epithelial (RPE) cells. Even though it is weakly absorbed by protein and DNA, it may trigger the production of reactive oxygen species (ROS) and generate oxidative injury; oxidative injury to the retinal pigment epithelium has been implicated to play a contributory role in age-related macular degeneration (AMD). Studies showed that resveratrol, an abundant and active component of red grapes, can protect several cell types from oxidative stress. In this study, adult RPE cells being treated with different concentrations of resveratrol were used to evaluate the protective effect of resveratrol on RPE cells against UVA-induced damage. Cell viability assay showed that resveratrol reduced the UVA-induced decrease in RPE cell viability. Through flow cytometry analysis, we found that the generation of intracellular H2O2 induced by UVA irradiation in RPE cells could be suppressed by resveratrol in a concentration-dependent manner. Results of Western blot analysis demonstrated that resveratrol lowered the activation of UVA-induced extracellular signal-regulated kinase, c-jun-NH2 terminal kinase and p38 kinase in RPE cells. In addition, there was also a reduction in UVA-induced cyclooxygenase-2 (COX-2) expression in RPE cells pretreated with resveratrol. Our observations suggest that resveratrol is effective in preventing RPE cells from being damaged by UVA radiation, and is worth considering for further development as a chemoprotective agent for the prevention of early AMD.

  14. Retinal compensatory changes after light damage in albino mice

    PubMed Central

    Montalbán-Soler, Luis; Alarcón-Martínez, Luis; Jiménez-López, Manuel; Salinas-Navarro, Manuel; Galindo-Romero, Caridad; Bezerra de Sá, Fabrízio; García-Ayuso, Diego; Avilés-Trigueros, Marcelino; Vidal-Sanz, Manuel; Agudo-Barriuso, Marta

    2012-01-01

    Purpose To investigate the anatomic and functional changes triggered by light exposure in the albino mouse retina and compare them with those observed in the albino rat. Methods BALB/c albino mice were exposed to 3,000 lx of white light during 24 h and their retinas analyzed from 1 to 180 days after light exposure (ALE). Left pupil mydriasis was induced with topical atropine. Retinal function was analyzed by electroretinographic (ERG) recording. To assess retinal degeneration, hematoxylin and eosin staining, the TdT-mediated dUTP nick-end labeling (TUNEL) technique, and quantitative immunohistofluorescence for synaptophysin and protein kinase Cα (PKCα) were used in cross sections. Intravenous injection of horseradish peroxidase and Fluoro-Gold™ tracing were used in whole-mounted retinas to study the retinal vasculature and the retinal ganglion cell (RGC) population, respectively. Results Light exposure caused apoptotic photoreceptor death in the central retina. This death was more severe in the dorsal than in the ventral retina, sparing the periphery. Neither retinal vascular leakage nor retinal ganglion cell death was observed ALE. The electroretinographic a-wave was permanently impaired, while the b-wave decreased but recovered gradually by 180 days ALE. The scotopic threshold responses, associated with the inner retinal function, diminished at first but recovered completely by 14 days ALE. This functional recovery was concomitant with the upregulation of protein kinase Cα and synaptophysin. Similar results were obtained in both eyes, irrespective of mydriasis. Conclusions In albino mice, light exposure induces substantial retinal damage, but the surviving photoreceptors, together with compensatory morphological/molecular changes, allow an important restoration of the retinal function. PMID:22509098

  15. The Effects of Blue Light on Ocular Health.

    ERIC Educational Resources Information Center

    Kitchel, Elaine

    2000-01-01

    This review of the literature examines the effects of blue light (or near UV - ultraviolet), especially that given off by black-light tubes, often used with children with visual impairments. It finds a long-term danger of retinal and lens damage and offers six practical suggestions which emphasize using proper filters and limiting exposure to…

  16. DNA Damage Levels Determine Cyclobutyl Pyrimidine Dimer Repair Mechanisms in Alfalfa Seedlings.

    PubMed Central

    Quaite, F. E.; Takayanagi, S.; Ruffini, J.; Sutherland, J. C.; Sutherland, B. M.

    1994-01-01

    Ultraviolet radiation in sunlight damages DNA in plants, but little is understood about the types, lesion capacity, and coordination of repair pathways. We challenged intact alfalfa seedlings with UV doses that induced different initial levels of cyclobutyl pyrimidine dimers and measured repair by excision and photoreactivation. By using alkaline gel electrophoresis of nonradioactive DNAs treated with a cyclobutyl pyrimidine dimer-specific UV endonuclease, we quantitated ethidium-stained DNA by electronic imaging and calculated lesion frequencies from the number average molecular lengths. At low initial dimer frequencies (less than ~30 dimers per million bases), the seedlings used only photoreactivation to repair dimers; excision repair was not significant. At higher damage levels, both excision and photorepair contributed significantly. This strategy would allow plants with low damage levels to use error-free repair requiring only an external light energy source, whereas seedlings subjected to higher damage frequencies could call on additional repair processes requiring cellular energy. Characterization of repair in plants thus requires an investigation of a range of conditions, including the level of initial damage. PMID:12244228

  17. Role of HfO 2/SiO 2 thin-film interfaces in near-ultraviolet absorption and pulsed laser damage

    DOE PAGES

    Papernov, Semyon; Kozlov, Alexei A.; Oliver, James B.; ...

    2016-07-15

    Here, the role of thin-film interfaces in the near-ultraviolet (near-UV) absorption and pulsed laser-induced damage was studied for ion-beam-sputtered and electron-beam-evaporated coatings comprised from HfO 2 and SiO 2 thin-film pairs. To separate contributions from the bulk of the film and from interfacial areas, absorption and damage threshold measurements were performed for a one-wave (355-nm wavelength) thick, HfO 2 single-layer film and for a film containing seven narrow HfO 2 layers separated by SiO 2 layers. The seven-layer film was designed to have a total optical thickness of HfO 2 layers, equal to one wave at 355 nm and anmore » E-field peak and average intensity similar to a single-layer HfO 2 film. Absorption in both types of films was measured using laser calorimetry and photothermal heterodyne imaging. The results showed a small contribution to total absorption from thin-film interfaces as compared to HfO 2 film material. The relevance of obtained absorption data to coating near-UV, nanosecond-pulse laser damage was verified by measuring the damage threshold and characterizing damage morphology. The results of this study revealed a higher damage resistance in the seven-layer coating as compared to the single-layer HfO 2 film in both sputtered and evaporated coatings. The results are explained through the similarity of interfacial film structure with structure formed during the codeposition of HfO 2 and SiO 2 materials.« less

  18. Micronucleated erythrocytes in newborns of rat dams exposed to ultraviolet-A light during pregnancy; protection by ascorbic acid supplementation.

    PubMed

    Zúñiga-González, Guillermo M; Gómez-Meda, Belinda C; Zamora-Perez, Ana L; Martínez-González, María A; Muñoz de Haro, Ilse A; Pérez-Navarro, Adhoksaja E; Armendáriz-Borunda, Juan; Gallegos-Arreola, Martha P

    2015-04-01

    Pregnant hairless rat dams were exposed to ultraviolet-A light (UVA) to induce micronucleated erythrocytes (MNE) in their fetuses. The control group was exposed to conventional light; the experimental groups were exposed to UVA (365nm) during gestational days 16-21. In some cases, ascorbic acid (Asc) was administered in the drinking water from gestational day 15 until delivery. Dams were sampled at 48-h intervals during gestation, from day 16 until delivery. Blood was also obtained from neonates at birth; MNE, micronucleated polychromatic erythrocytes (MNPCE), and polychromatic erythrocytes (PCE) were scored. Increased MNE and MNPCE were observed in neonates born to mothers exposed to UVA for 40, 80 or 160min, compared to the control group. Asc treatment reduced MNE and MNPCE induction. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Effects of different levels of vitamin C on UV radiation-induced DNA damage

    NASA Astrophysics Data System (ADS)

    Zhou, Dianfeng; Heng, Hang; Ji, Kang; Ke, Weizhong

    2005-05-01

    The Raman spectra of DNA in different levels of vitamin C with 10- and 30-min ultraviolet (UV) radiations were reported. The intensity of UV radiation was 18.68 W/m2. The experimental results proved that vitamin C could alone prevent UV radiation from damaging DNA, but the effects depended on the concentration of vitamin C. When the concentration of vitamin C was about 0.08-0.4 mmol/L, vitamin C decreased UV radiation-induced DNA's damage. When the concentration of vitamin C exceeded 0.4 mmol/L, vitamin C accelerated DNA's damage instead. Maybe the reason is that when DNA in aqueous solution is radiated by UV, free radicals come into being, and vitamin C can scavenge free radicals, so vitamin C in lower concentration can protect DNA. The quantity of free radicals is finite, when vitamin C is superfluous, free radicals have been scavenged absolutely and vitamin C is residual. Vitamin C is a strong reductant. When the mixture of DNA and residual vitamin C is radiated by UV, vitamin C reacts with DNA. The more residual vitamin C and the longer time of UV radiation, the more DNA is damaged.

  20. Laser-induced damage threshold of camera sensors and micro-optoelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Schwarz, Bastian; Ritt, Gunnar; Koerber, Michael; Eberle, Bernd

    2017-03-01

    The continuous development of laser systems toward more compact and efficient devices constitutes an increasing threat to electro-optical imaging sensors, such as complementary metal-oxide-semiconductors (CMOS) and charge-coupled devices. These types of electronic sensors are used in day-to-day life but also in military or civil security applications. In camera systems dedicated to specific tasks, micro-optoelectromechanical systems, such as a digital micromirror device (DMD), are part of the optical setup. In such systems, the DMD can be located at an intermediate focal plane of the optics and it is also susceptible to laser damage. The goal of our work is to enhance the knowledge of damaging effects on such devices exposed to laser light. The experimental setup for the investigation of laser-induced damage is described in detail. As laser sources, both pulsed lasers and continuous-wave (CW)-lasers are used. The laser-induced damage threshold is determined by the single-shot method by increasing the pulse energy from pulse to pulse or in the case of CW-lasers, by increasing the laser power. Furthermore, we investigate the morphology of laser-induced damage patterns and the dependence of the number of destructive device elements on the laser pulse energy or laser power. In addition to the destruction of single pixels, we observe aftereffects, such as persistent dead columns or rows of pixels in the sensor image.

  1. Inhibition of Ultraviolet B-Induced Expression of the Proinflammatory Cytokines TNF-α and VEGF in the Cornea by Fucoxanthin Treatment in a Rat Model.

    PubMed

    Chen, Shiu-Jau; Lee, Ching-Ju; Lin, Tzer-Bin; Liu, Hsiang-Jui; Huang, Shuan-Yu; Chen, Jia-Zeng; Tseng, Kuang-Wen

    2016-01-07

    Ultraviolet B (UVB) irradiation is the most common cause of radiation damage to the eyeball and is a risk factor for human corneal damage. We determined the protective effect of fucoxanthin, which is a carotenoid found in common edible seaweed, on ocular tissues against oxidative UVB-induced corneal injury. The experimental rats were intravenously injected with fucoxanthin at doses of 0.5, 5 mg/kg body weight/day or with a vehicle before UVB irradiation. Lissamine green for corneal surface staining showed that UVB irradiation caused serious damage on the corneal surface, including severe epithelial exfoliation and deteriorated epithelial smoothness. Histopathological lesion examination revealed that levels of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α) and vascular endothelial growth factor (VEGF), significantly increased. However, pretreatment with fucoxanthin inhibited UVB radiation-induced corneal disorders including evident preservation of corneal surface smoothness, downregulation of proinflammatory cytokine expression, and decrease of infiltrated polymorphonuclear leukocytes from UVB-induced damage. Moreover, significant preservation of the epithelial integrity and inhibition of stromal swelling were also observed after UVB irradiation in fucoxanthin-treated groups. Pretreatment with fucoxanthin may protect against UVB radiation-induced corneal disorders by inhibiting expression of proinflammatory factors, TNF-α, and VEGF and by blocking polymorphonuclear leukocyte infiltration.

  2. Optical Microfiber Technology for Current, Temperature, Acceleration, Acoustic, Humidity and Ultraviolet Light Sensing

    PubMed Central

    Lancaster, David G.; Monro, Tanya M.

    2017-01-01

    Optical microfibers possess excellent optical and mechanical properties that have been exploited for sensing. We highlight the authors’ recent work in the areas of current, temperature, acceleration, acoustic, humidity and ultraviolet-light sensing based on this exquisite technology, and the advantages and challenges of using optical microfibers are discussed. PMID:29283414

  3. Topical Formulation Containing Naringenin: Efficacy against Ultraviolet B Irradiation-Induced Skin Inflammation and Oxidative Stress in Mice

    PubMed Central

    Martinez, Renata M.; Pinho-Ribeiro, Felipe A.; Steffen, Vinicius S.; Silva, Thais C. C.; Caviglione, Carla V.; Bottura, Carolina; Fonseca, Maria J. V.; Vicentini, Fabiana T. M. C.; Vignoli, Josiane A.; Baracat, Marcela M.; Georgetti, Sandra R.; Verri, Waldiceu A.; Casagrande, Rubia

    2016-01-01

    Naringenin (NGN) exhibits anti-inflammatory and antioxidant activities, but it remains undetermined its topical actions against ultraviolet B (UVB)-induced inflammation and oxidative stress in vivo. The purpose of this study was to evaluate the physicochemical and functional antioxidant stability of NGN containing formulations, and the effects of selected NGN containing formulation on UVB irradiation-induced skin inflammation and oxidative damage in hairless mice. NGN presented ferric reducing power, ability to scavenge 2,2′-azinobis (3-ethylbenzothiazoline- 6-sulfonic acid) (ABTS) and hydroxyl radical, and inhibited iron-independent and dependent lipid peroxidation. Among the three formulations containing NGN, only the F3 kept its physicochemical and functional stability over 180 days. Topical application of F3 in mice protected from UVB-induced skin damage by inhibiting edema and cytokine production (TNF-α, IL-1β, IL-6, and IL-10). Furthermore, F3 inhibited superoxide anion and lipid hydroperoxides production and maintained ferric reducing and ABTS scavenging abilities, catalase activity, and reduced glutathione levels. In addition, F3 maintained mRNA expression of cellular antioxidants glutathione peroxidase 1, glutathione reductase and transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2), and induced mRNA expression of heme oxygenase-1. In conclusion, a formulation containing NGN may be a promising approach to protecting the skin from the deleterious effects of UVB irradiation. PMID:26741806

  4. Novel cylindrical illuminator tip for ultraviolet light delivery

    NASA Astrophysics Data System (ADS)

    Shangguan, HanQun; Haw, Thomas E.; Gregory, Kenton W.; Casperson, Lee W.

    1993-06-01

    The design, processing, and sequential testing of a novel cylindrical diffusing optical fiber tip for ultraviolet light delivery is described. This device has been shown to uniformly (+/- 15%) illuminate angioplasty balloons, 20 mm in length, that are used in an experimental photochemotherapeutic treatment of swine intimal hyperplasia. Our experiments show that uniform diffusing tips of < 400 micron diameter can be reliably constructed for this and other interstitial applications. Modeling results indicate that this design is scalable to smaller diameters. The diffusing tips are made by stripping the protective buffer and etching away the cladding over a length of 20 mm from the fiber tip and replacing it with a thin layer of optical epoxy mixed with Al2O3 powder. To improve the uniformity and ease of fabrication, we have evaluated a new device configuration where the tip is etched into a modified conical shape, and the distal end face is polished and then coated with an optically opaque epoxy. This is shown to uniformly scatter approximately 70% of the light launched into the fiber without forward transmission.

  5. Light-Induced Alterations in Basil Ganglia Kynurenic Acid Levels

    NASA Technical Reports Server (NTRS)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.; Orr, M. C.

    1997-01-01

    The metabolic synthesis, release and breakdown of several known CNS neurotransmitters have been shown to follow a circadian pattern entrained to the environmental light/dark cycle. The levels of excitatory amino acid (EAA) transmitters such as glutamate, have been shown to vary with environmental lighting conditions. Kynurenic Acid (KA), an endogenous tryptophan metabolite and glutamate receptor antagonist, has been reported to have neuroprotective effects against EAA-induced excitotoxic cell damage. Changes in KA's activity within the mammalian basal ganglia has been proposed as being contributory to neurotoxicity in Huntington's Disease. It is not known whether CNS KA levels follow a circadian pattern or exhibit light-induced fluctuations. However, because the symptoms of certain degenerative motor disorders seem to fluctuate with daily 24 hour rhythm, we initiated studies to determine if basal ganglia KA were influenced by the daily light/dark cycle and could influence motor function. Therefore in this study, HPLC-EC was utilized to determine if basal ganglia KA levels in tissue extracts from adult male Long-Evans rats (200-250g) entrained to 24 and 48 hours constant light and dark conditions, respectively. Samples were taken one hour before the onset of the subjective day and one hour prior to the onset of the subjective night in order to detect possible phase differences in KA levels and to allow for accumulation of factors expressed in association with the light or dark phase. Data analysis revealed that KA levels in the basal ganglia vary with environmental lighting conditions; being elevated generally during the dark. Circadian phase differences in KA levels were also evident during the subjective night and subjective day, respectively. Results from these studies are discussed with respect to potential cyclic changes in neuronal susceptibility to excitotoxic damage during the daily 24 hour cycle and its possible relevance to future therapeutic approaches in

  6. Disinfection of swine wastewater using chlorine, ultraviolet light and ozone.

    PubMed

    Macauley, John J; Qiang, Zhimin; Adams, Craig D; Surampalli, Rao; Mormile, Melanie R

    2006-06-01

    Veterinary antibiotics are widely used at concentrated animal feeding operations (CAFOs) to prevent disease and promote growth of livestock. However, the majority of antibiotics are excreted from animals in urine, feces, and manure. Consequently, the lagoons used to store these wastes can act as reservoirs of antibiotics and antibiotic-resistant bacteria. There is currently no regulation or control of these systems to prevent the spread of these bacteria and their genes for antibiotic resistance into other environments. This study was conducted to determine the disinfection potential of chlorine, ultraviolet light and ozone against swine lagoon bacteria. Results indicate that a chlorine dose of 30 mg/L could achieve a 2.2-3.4 log bacteria reduction in lagoon samples. However, increasing the dose of chlorine did not significantly enhance the disinfection activity due to the presence of chlorine-resistant bacteria. The chlorine resistant bacteria were identified to be closely related to Bacillus subtilis and Bacillus licheniformis. A significant percentage of lagoon bacteria were not susceptible to the four selected antibiotics: chlortetracycline, lincomycin, sulfamethazine and tetracycline (TET). However, the presence of both chlorine and TET could inactivate all bacteria in one lagoon sample. The disinfection potential of UV irradiation and ozone was also examined. Ultraviolet light was an effective bacterial disinfectant, but was unlikely to be economically viable due to its high energy requirements. At an ozone dose of 100 mg/L, the bacteria inactivation efficiency could reach 3.3-3.9 log.

  7. The role of film interfaces in near-ultraviolet absorption and pulsed-laser damage in ion-beam-sputtered coatings based on HfO 2/SiO 2 thin-film pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ristau, Detlev; Papernov, S.; Kozlov, A. A.

    2015-11-23

    The role of thin-film interfaces in the near-ultraviolet absorption and pulsed-laser–induced damage was studied for ion-beam–sputtered and electron-beam–evaporated coatings comprised from HfO 2 and SiO 2 thin-film pairs. To separate contributions from the bulk of the film and from interfacial areas, absorption and damage-threshold measurements were performed for a one-wave (355-nm wavelength) thick, HfO 2 single-layer film and for a film containing seven narrow HfO 2 layers separated by SiO 2 layers. The seven-layer film was designed to have a total optical thickness of HfO 2 layers, equal to one wave at 355 nm and an E-field peak and averagemore » intensity similar to a single-layer HfO 2 film. Absorption in both types of films was measured using laser calorimetry and photothermal heterodyne imaging. The results showed a small contribution to total absorption from thin-film interfaces, as compared to HfO 2 film material. The relevance of obtained absorption data to coating near-ultraviolet, nanosecond-pulse laser damage was verified by measuring the damage threshold and characterizing damage morphology. The results of this study revealed a higher damage resistance in the seven-layer coating as compared to the single-layer HfO 2 film in both sputtered and evaporated coatings. Here, the results are explained through the similarity of interfacial film structure with structure formed during the co-deposition of HfO 2 and SiO 2 materials.« less

  8. Whales Use Distinct Strategies to Counteract Solar Ultraviolet Radiation

    PubMed Central

    Martinez-Levasseur, Laura M.; Birch-Machin, Mark A.; Bowman, Amy; Gendron, Diane; Weatherhead, Elizabeth; Knell, Robert J.; Acevedo-Whitehouse, Karina

    2013-01-01

    A current threat to the marine ecosystem is the high level of solar ultraviolet radiation (UV). Large whales have recently been shown to suffer sun-induced skin damage from continuous UV exposure. Genotoxic consequences of such exposure remain unknown for these long-lived marine species, as does their capacity to counteract UV-induced insults. We show that UV exposure induces mitochondrial DNA damage in the skin of seasonally sympatric fin, sperm, and blue whales and that this damage accumulates with age. However, counteractive molecular mechanisms are markedly different between species. For example, sperm whales, a species that remains for long periods at the sea surface, activate genotoxic stress pathways in response to UV exposure whereas the paler blue whale relies on increased pigmentation as the season progresses. Our study also shows that whales can modulate their responses to fluctuating levels of UV, and that different evolutionary constraints may have shaped their response strategies. PMID:23989080

  9. Investigation of Ultraviolet Light Curable Polysilsesquioxane Gate Dielectric Layers for Pentacene Thin Film Transistors.

    PubMed

    Shibao, Hideto; Nakahara, Yoshio; Uno, Kazuyuki; Tanaka, Ichiro

    2016-04-01

    Polysilsesquioxane (PSQ) comprising 3-methacryloxypropyl groups was investigated as an ultraviolet (UV)-light curable gate dielectric-material for pentacene thin film transistors (TFTs). The surface of UV-light cured PSQ films was smoother than that of thermally cured ones, and the pentacene layers deposited on the UV-Iight cured PSQ films consisted of larger grains. However, carrier mobility of the TFTs using the UV-light cured PSQ films was lower than that of the TFTs using the thermally cured ones. It was shown that the cross-linker molecules, which were only added to the UV-light cured PSQ films, worked as a major mobility-limiting factor for the TFTs.

  10. Effects of ultraviolet light on Hymenolepis diminuta ova and cysticercoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGavock, W.D.; Howard, K.E.

    The ova and cysticercoids of Hymenolepis diminuta were exposed to a 2537 A wave length of ultraviolet light for various time periods. Development was extremely impaired in the cysts which had been irradiated for 30 and 60 minutes. When these were administered to the final host no tapeworms developed. From 113 intermediate host beetle larvae fed with irradiated ova, only three cysticercoids were recovered. Development was impaired in both cases and the infective rate of irradiated ova and cysts of the least exposed groups was lower than that of the controls.

  11. Animal model for evaluation of topical photoprotection against ultraviolet A (320-380 nm) radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chew, S.; DeLeo, V.A.; Harber, L.C.

    Recent studies reporting UVA (ultraviolet A radiation 320-380 nm) as an integral part of the cumulative sun-induced damage in human skin have prompted an interest in developing effective UVA photoprotective agents. The development of such compounds has been impeded by the absence of a clinically relevant animal model for evaluating their efficacy. This report describes the development and use of such a laboratory animal system. Selected concentrations of oxybenzone (2-hydroxy-4-methoxybenzophenone) in vehicle (0.1% to 6%) or vehicle alone were applied to the depilated dorsal skin of 30 Hartley strain female albino guinea pigs. The skin was irradiated with solar simulatedmore » UVA from a xenon light source. Acute radiation-induced damage was assayed by erythema grading and inhibition of (/sup 3/H)thymidine incorporation into epidermal DNA. Data from erythema grading studies indicated that a significant degree of photoprotection was achieved with 6%, 3%, and 1% solutions of benzophenone compared with the control vehicle; the 6% solution was significantly more photoprotective than the 3% and 1% solutions. A 6% solution afforded significant photoprotection when assayed by (/sup 3/H)thymidine incorporation.« less

  12. Protective effects of grape stem extract against UVB-induced damage in C57BL mice skin.

    PubMed

    Che, Denis Nchang; Xie, Guang Hua; Cho, Byoung Ok; Shin, Jae Young; Kang, Hyun Ju; Jang, Seon Il

    2017-08-01

    Humans have become exposed to another form of a trait which is ultraviolet B (UVB) radiation reaching the earth's surface. This has become a major source of oxidative stress that ultimately leads to inflammation, DNA damage, photoaging and pigmentation disorders etc. Although several studies have shown the photo-protective role of different grape parts like the fruits and seeds, little or no data demonstrating the in vivo photo-protective role of grape stem, which is the most discarded part of the grape are available. We evaluated the protective influence of grape stem extract against UVB-induced oxidative damage in C57BL mice characterized by epidermal hyperplasia, pigmentation, collagen degradation and inflammation. Grape stem extract was administered topically 1week before UVB irradiation (120mJ/cm 2 ) and continued until the termination of the experiment. A group of non-irradiated mice and a group of irradiated mice topically administered with propylene were used as a negative and positive control. Epidermal thickness, pigmentation, erythema, mast cell and neutrophil infiltration, collagen degradation and COX-2, Nrf2, and HO-1 expressions were evaluated. Grape stem extract markedly recovered skin damage induced by the UVB radiation through the prevention of epidermal hyperplasia, pigmentation, erythema, mast cell and neutrophil infiltrations, collagen degradation and COX-2, Nrf2, and HO-1 expressions. Our study demonstrated for the first time in C57BL mice that grape stem extract reduces UVB-induced oxidative damage and hence can play a protective role in skin photo-damage. Copyright © 2017. Published by Elsevier B.V.

  13. Application of ultraviolet-C light on oranges for the inactivation of postharvest wound pathogens

    USDA-ARS?s Scientific Manuscript database

    Germicidal effects of ultraviolet-C (UV-C) light on the postharvest wound pathogens of citrus fruits namely Penicillium digitatum and Penicillium italicum were investigated. P. digitatum and P. italicum spores were inoculated (4.00 – 4.50 log cfu/ orange) onto Washington navel oranges (Citrus sinens...

  14. Xeroderma pigmentosum variants have a slow recovery of DNA synthesis after irradiation with ultraviolet light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleaver, J.E.; Thomas, G.H.; Park, S.D.

    1979-01-01

    Human cells (normal and xeroderma pigmentosum variant) irradiated with ultraviolet light and pulse-labelled with (/sup 3/H)thymidine underwent transient decline and recovery of molecular weights of newly synthesized DNA and rates of (/sup 3/H)thymidine incorporation. The ability to synthesize normal-sized DNA recovered more rapidly in both cell types than thymidine incorporation. During recovery cells steadily increased in their ability to replicate normal-sized DNA on damaged templates. The molecular weight versus time curves fitted exponential functions with similar rate constants in normal and heterozygous xeroderma pigmentosum cells, but with a slower rate in two xeroderma pigmentosum variant cell lines. Caffeine added duringmore » the post-irradiation period eliminated the recovery of molecular weights in xeroderma pigmentosum variant but not in normal cells. The recovery of the ability to synthesize normal-sized DNA represents a combination of a number of cellular regulatory processes, some of which are constitutive, and one of which is altered in the xeroderma pigmentosum variant such that recovery becomes slow and caffeine sensitive.« less

  15. Glucocorticoid-Induced Leucine Zipper Protects the Retina From Light-Induced Retinal Degeneration by Inducing Bcl-xL in Rats.

    PubMed

    Gu, Ruiping; Tang, Wenyi; Lei, Boya; Ding, Xinyi; Jiang, Cheng; Xu, Gezhi

    2017-07-01

    The aim of the present study was to investigate the neuroprotective effects of glucocorticoid-induced leucine zipper (GILZ) in a light-induced retinal degeneration model and to explore the underlying mechanisms. Intravitreal injection of recombinant GILZ-overexpressing lentivirus (OE-GILZ-rLV) and short hairpin RNA targeting GILZ recombinant lentivirus (shRNA-GILZ-rLV) was performed to up- and downregulate retinal GILZ, respectively. Three days after stable transduction, rats were exposed to continuous bright light (5000 lux) for 2 days. Retinal function was assessed by full-field electroretinography (ERG), and the retinal structure was examined for photoreceptor survival and death in rats kept under a 12-hour light:2-hour dark cycle following light exposure. The expression levels of retinal Bcl-xL, caspase-9, and caspase-3 were examined by Western blotting or real-time PCR at 1, 3, 5, and 7 days after light exposure. Exposure to bright light downregulated retinal GILZ in parallel with the downregulation of Bcl-xL and the upregulation of active caspase-3. Overexpression of retinal GILZ attenuated the decrease of Bcl-xL and the activation of caspase-9 and caspase-3 at 1, 3, 5, and 7 days after bright light exposure, respectively. GILZ silencing aggravated the downregulation of Bcl-xL induced by bright light exposure. Bright light exposure reduced the amplitude of ERG, increased the number of apoptotic photoreceptor cells, and decreased retinal thickness; and GILZ overexpression could attenuate all these effects. Overexpression of GILZ by OE-GILZ-rLV transduction protected the retina from light-induced cellular damage by activating antiapoptotic pathways.

  16. Molecular response of nasal mucosa to therapeutic exposure to broad-band ultraviolet radiation

    PubMed Central

    Mitchell, David; Paniker, Lakshmi; Sanchez, Guillermo; Bella, Zsolt; Garaczi, Edina; Szell, Marta; Hamid, Qutayba; Kemeny, Lajos; Koreck, Andrea

    2010-01-01

    Abstract Ultraviolet radiation (UVR) phototherapy is a promising new treatment for inflammatory airway diseases. However, the potential carcinogenic risks associated with this treatment are not well understood. UV-specific DNA photoproducts were used as biomarkers to address this issue. Radioimmunoassay was used to quantify cyclobutane pyrimidine dimers (CPDs) and (6–4) photoproducts in DNA purified from two milieus: nasal mucosa samples from subjects exposed to intranasal phototherapy and human airway (EpiAirway™) and human skin (EpiDerm™) tissue models. Immunohistochemistry was used to detect CPD formation and persistence in human nasal biopsies and human tissue models. In subjects exposed to broadband ultraviolet radiation, DNA damage frequencies were determined prior to as well as immediately after treatment and at increasing times post-treatment. We observed significant levels of DNA damage immediately after treatment and efficient removal of the damage within a few days. No residual damage was observed in human subjects exposed to multiple UVB treatments several weeks after the last treatment. To better understand the molecular response of the nasal epithelium to DNA damage, parallel experiments were conducted in EpiAirway and EpiDerm model systems. Repair rates in these two tissues were very similar and comparable to that observed in human skin. The data suggest that the UV-induced DNA damage response of respiratory epithelia is very similar to that of the human epidermis and that nasal mucosa is able to efficiently repair UVB induced DNA damage. PMID:18671762

  17. Optical feedback-induced light modulation for fiber-based laser ablation.

    PubMed

    Kang, Hyun Wook

    2014-11-01

    Optical fibers have been used as a minimally invasive tool in various medical fields. However, due to excessive heat accumulation, the distal end of a fiber often suffers from severe melting or devitrification, leading to the eventual fiber failure during laser treatment. In order to minimize thermal damage at the fiber tip, an optical feedback sensor was developed and tested ex vivo. Porcine kidney tissue was used to evaluate the feasibility of optical feedback in terms of signal activation, ablation performance, and light transmission. Testing various signal thresholds demonstrated that 3 V was relatively appropriate to trigger the feedback sensor and to prevent the fiber deterioration during kidney tissue ablation. Based upon the development of temporal signal signatures, full contact mode rapidly activated the optical feedback sensor possibly due to heat accumulation. Modulated light delivery induced by optical feedback diminished ablation efficiency by 30% in comparison with no feedback case. However, long-term transmission results validated that laser ablation assisted with optical feedback was able to almost consistently sustain light delivery to the tissue as well as ablation efficiency. Therefore, an optical feedback sensor can be a feasible tool to protect optical fiber tips by minimizing debris contamination and delaying thermal damage process and to ensure more efficient and safer laser-induced tissue ablation.

  18. RAD9-dependent G1 arrest defines a second checkpoint for damaged DNA in the cell cycle of Saccharomyces cerevisiae.

    PubMed

    Siede, W; Friedberg, A S; Friedberg, E C

    1993-09-01

    Exposure of the yeast Saccharomyces cerevisiae to ultraviolet (UV) light, the UV-mimetic chemical 4-nitroquinoline-1-oxide (4NQO), or gamma radiation after release from G1 arrest induced by alpha factor results in delayed resumption of the cell cycle. As is the case with G2 arrest following ionizing radiation damage [Weinert, T. A. & Hartwell, L. H. (1988) Science 241, 317-322], the normal execution of DNA damage-induced G1 arrest depends on a functional yeast RAD9 gene. We suggest that the RAD9 gene product may interact with cellular components common to the G1/S and G2/M transition points in the cell cycle of this yeast. These observations define a checkpoint in the eukaryotic cell cycle that may facilitate the repair of lesions that are otherwise processed to lethal and/or mutagenic damage during DNA replication. This checkpoint apparently operates after the mating pheromone-induced G1 arrest point but prior to replicative DNA synthesis, S phase-associated maximal induction of histone H2A mRNA, and bud emergence.

  19. Inflammation-Induced Cell Proliferation Potentiates DNA Damage-Induced Mutations In Vivo

    PubMed Central

    Kiraly, Orsolya; Gong, Guanyu; Olipitz, Werner; Muthupalani, Sureshkumar; Engelward, Bevin P.

    2015-01-01

    Mutations are a critical driver of cancer initiation. While extensive studies have focused on exposure-induced mutations, few studies have explored the importance of tissue physiology as a modulator of mutation susceptibility in vivo. Of particular interest is inflammation, a known cancer risk factor relevant to chronic inflammatory diseases and pathogen-induced inflammation. Here, we used the fluorescent yellow direct repeat (FYDR) mice that harbor a reporter to detect misalignments during homologous recombination (HR), an important class of mutations. FYDR mice were exposed to cerulein, a potent inducer of pancreatic inflammation. We show that inflammation induces DSBs (γH2AX foci) and that several days later there is an increase in cell proliferation. While isolated bouts of inflammation did not induce HR, overlap between inflammation-induced DNA damage and inflammation-induced cell proliferation induced HR significantly. To study exogenously-induced DNA damage, animals were exposed to methylnitrosourea, a model alkylating agent that creates DNA lesions relevant to both environmental exposures and cancer chemotherapy. We found that exposure to alkylation damage induces HR, and importantly, that inflammation-induced cell proliferation and alkylation induce HR in a synergistic fashion. Taken together, these results show that, during an acute bout of inflammation, there is a kinetic barrier separating DNA damage from cell proliferation that protects against mutations, and that inflammation-induced cell proliferation greatly potentiates exposure-induced mutations. These studies demonstrate a fundamental mechanism by which inflammation can act synergistically with DNA damage to induce mutations that drive cancer and cancer recurrence. PMID:25647331

  20. Heat-Stress and Light-Stress Induce Different Cellular Pathologies in the Symbiotic Dinoflagellate during Coral Bleaching

    PubMed Central

    Downs, C. A.; McDougall, Kathleen E.; Woodley, Cheryl M.; Fauth, John E.; Richmond, Robert H.; Kushmaro, Ariel; Gibb, Stuart W.; Loya, Yossi; Ostrander, Gary K.; Kramarsky-Winter, Esti

    2013-01-01

    Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m−2 s−1 PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching. PMID:24324575

  1. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching.

    PubMed

    Downs, C A; McDougall, Kathleen E; Woodley, Cheryl M; Fauth, John E; Richmond, Robert H; Kushmaro, Ariel; Gibb, Stuart W; Loya, Yossi; Ostrander, Gary K; Kramarsky-Winter, Esti

    2013-01-01

    Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m(-2) s(-1) PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching.

  2. Antagonizing Effects and Mechanisms of Afzelin against UVB-Induced Cell Damage

    PubMed Central

    Shin, Seoung Woo; Jung, Eunsun; Kim, Seungbeom; Kim, Jang-Hyun; Kim, Eui-Gyun; Lee, Jongsung; Park, Deokhoon

    2013-01-01

    Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in human keratinocytes, resulting in skin inflammation, photoaging, and photocarcinogenesis. Adequate protection of skin against the harmful effects of UV irradiation is essential. Therefore, in this study, we investigated the protective effects of afzelin, one of the flavonoids, against UV irradiation in human keratinocytes and epidermal equivalent models. Spectrophotometric measurements revealed that the afzelin extinction maxima were in the UVB and UVA range, and UV transmission below 376 nm was <10%, indicating UV-absorbing activity of afzelin. In the phototoxicity assay using the 3T3 NRU phototoxicity test (3T3-NRU-PT), afzelin presented a tendency to no phototoxic potential. In addition, in order to investigate cellular functions of afzelin itself, cells were treated with afzelin after UVB irradiation. In human keratinocyte, afzelin effectively inhibited the UVB-mediated increase in lipid peroxidation and the formation of cyclobutane pyrimidine dimers. Afzelin also inhibited UVB-induced cell death in human keratinocytes by inhibiting intrinsic apoptotic signaling. Furthermore, afzelin showed inhibitory effects on UVB-induced release of pro-inflammatory mediators such as interleukin-6, tumor necrosis factor-α, and prostaglandin-E2 in human keratinocytes by interfering with the p38 kinase pathway. Using an epidermal equivalent model exposed to UVB radiation, anti-apoptotic activity of afzelin was also confirmed together with a photoprotective effect at the morphological level. Taken together, our results suggest that afzelin has several cellular activities such as DNA-protective, antioxidant, and anti-inflammatory as well as UV-absorbing activity and may protect human skin from UVB-induced damage by a combination of UV-absorbing and cellular activities. PMID:23626759

  3. The effects of topically applied glycolic acid and salicylic acid on ultraviolet radiation-induced erythema, DNA damage and sunburn cell formation in human skin.

    PubMed

    Kornhauser, Andrija; Wei, Rong-Rong; Yamaguchi, Yuji; Coelho, Sergio G; Kaidbey, Kays; Barton, Curtis; Takahashi, Kaoruko; Beer, Janusz Z; Miller, Sharon A; Hearing, Vincent J

    2009-07-01

    alpha-Hydroxy acids (alphaHAs) are reported to reduce signs of aging in the skin and are widely used cosmetic ingredients. Several studies suggest that alphaHA can increase the sensitivity of skin to ultraviolet radiation. More recently, beta-hydroxy acids (betaHAs), or combinations of alphaHA and betaHA have also been incorporated into antiaging skin care products. Concerns have also arisen about increased sensitivity to ultraviolet radiation following use of skin care products containing beta-HA. To determine whether topical treatment with glycolic acid, a representative alphaHA, or with salicylic acid, a betaHA, modifies the short-term effects of solar simulated radiation (SSR) in human skin. Fourteen subjects participated in this study. Three of the four test sites on the mid-back of each subject were treated daily Monday-Friday, for a total of 3.5 weeks, with glycolic acid (10%), salicylic acid (2%), or vehicle (control). The fourth site received no treatment. After the last treatment, each site was exposed to SSR, and shave biopsies from all four sites were obtained. The endpoints evaluated in this study were erythema (assessed visually and instrumentally), DNA damage and sunburn cell formation. Treatment with glycolic acid resulted in increased sensitivity of human skin to SSR, measured as an increase in erythema, DNA damage and sunburn cell formation. Salicylic acid did not produce significant changes in any of these biomarkers. Short-term topical application of glycolic acid in a cosmetic formulation increased the sensitivity of human skin to SSR, while a comparable treatment with salicylic acid did not.

  4. Statin-induced muscle damage and atrogin-1 induction is the result of a geranylgeranylation defect

    PubMed Central

    Cao, Peirang; Hanai, Jun-ichi; Tanksale, Preeti; Imamura, Shintaro; Sukhatme, Vikas P.; Lecker, Stewart H.

    2009-01-01

    Statins are widely used to treat hypercholesterolemia but can lead to a number of side effects in muscle, including rhabdomyolysis. Our recent findings implicated the induction of atrogin-1, a gene required for the development of muscle atrophy, in statin-induced muscle damage. Since statins inhibit many biochemical reactions besides cholesterol synthesis, we sought to define the statin-inhibited pathways responsible for atrogin-1 expression and muscle damage. We report here that lovastatin-induced atrogin-1 expression and muscle damage in cultured mouse myotubes and zebrafish can be prevented in the presence of geranylgeranol but not farnesol. Further, inhibitors of the transfer of geranylgeranyl isoprene units to protein targets cause statin muscle damage and atrogin-1 induction in cultured cells and in fish. These findings support the concept that dysfunction of small GTP-binding proteins lead to statin-induced muscle damage since these molecules require modification by geranylgeranyl moieties for their cellular localization and activity. Collectively, our animal and in vitro findings shed light on the molecular mechanism of statin-induced myopathy and suggest that atrogin-1 may be regulated by novel signaling pathways.—Cao, P., Hanai, J., Tanksale, P., Imamura, S., Sukhatme, V. P., Lecker, S. H. Statin-induced muscle damage and atrogin-1 induction is the result of a geranylgeranylation defect. PMID:19406843

  5. An ultraviolet light induced bacteriophage in Beneckea gazogenes. [organism growth on precambrian earth

    NASA Technical Reports Server (NTRS)

    Rambler, M.; Margulis, L.

    1979-01-01

    The effects of UV and high intensity irradiation on microorganisms growing under conditions prevalent during the early Precambrian Aeon are examined. The study employed the anaerobic red pigmented marine vibrio, Beneckea gazogenes (Harwood, 1978), using an extreme UV sensitivity of 2537 A, extensive cell lysis, and commitant production of bacteriophage induced by the UV light. Three types of white mutant, pink colony mutant, and red wild type isolates of B gazogenes were grown showing differential irradiation sensitivity and phage particles from all three lysates were collected and examined.

  6. Ubiquitin-specific Protease 7 Regulates Nucleotide Excision Repair through Deubiquitinating XPC Protein and Preventing XPC Protein from Undergoing Ultraviolet Light-induced and VCP/p97 Protein-regulated Proteolysis*

    PubMed Central

    He, Jinshan; Zhu, Qianzheng; Wani, Gulzar; Sharma, Nidhi; Han, Chunhua; Qian, Jiang; Pentz, Kyle; Wang, Qi-en; Wani, Altaf A.

    2014-01-01

    Ubiquitin specific protease 7 (USP7) is a known deubiquitinating enzyme for tumor suppressor p53 and its downstream regulator, E3 ubiquitin ligase Mdm2. Here we report that USP7 regulates nucleotide excision repair (NER) via deubiquitinating xeroderma pigmentosum complementation group C (XPC) protein, a critical damage recognition factor that binds to helix-distorting DNA lesions and initiates NER. XPC is ubiquitinated during the early stage of NER of UV light-induced DNA lesions. We demonstrate that transiently compromising cellular USP7 by siRNA and chemical inhibition leads to accumulation of ubiquitinated forms of XPC, whereas complete USP7 deficiency leads to rapid ubiquitin-mediated XPC degradation upon UV irradiation. We show that USP7 physically interacts with XPC in vitro and in vivo. Overexpression of wild-type USP7, but not its catalytically inactive or interaction-defective mutants, reduces the ubiquitinated forms of XPC. Importantly, USP7 efficiently deubiquitinates XPC-ubiquitin conjugates in deubiquitination assays in vitro. We further show that valosin-containing protein (VCP)/p97 is involved in UV light-induced XPC degradation in USP7-deficient cells. VCP/p97 is readily recruited to DNA damage sites and colocalizes with XPC. Chemical inhibition of the activity of VCP/p97 ATPase causes an increase in ubiquitinated XPC on DNA-damaged chromatin. Moreover, USP7 deficiency severely impairs the repair of cyclobutane pyrimidine dimers and, to a lesser extent, affects the repair of 6-4 photoproducts. Taken together, our findings uncovered an important role of USP7 in regulating NER via deubiquitinating XPC and by preventing its VCP/p97-regulated proteolysis. PMID:25118285

  7. Ultraviolet converter transients induced by electrons

    NASA Technical Reports Server (NTRS)

    Kernell, R. L.; Becher, J.; Reft, C. S.

    1984-01-01

    The output of ultraviolet converters typically used in satellite astronomy was monitored during irradiation with electrons from a sealed SR-90 source which approximated the peak flux in earth's outer electron belt. The signal induced by irradiation was attributed to two mechanisms: (1) photoelectrons resulting from photons created in the MgF2 window and (2) the direct impact of electrons on the phosphor. For irradiation at about 1 x 10 to the 7th e/sq cm sec, these two effects produced signals which were, in order of magnitude, the same as those produced by an incident UV flux (254 nm) of 10 to the 8th and 10 to the 7th photons/sq cm sec, respectively. In addition, the induced signal was investigated as a function of electron energy by irradiating another converter with 0.4-1.8-MeV electrons from a Van de Graaff. These results suggest that the dominant contribution to the electron-induced signal is Cerenkov photon production in the MgF2 window.

  8. Role of Visible Light-Activated Photocatalyst on the Reduction of Anthrax Spore-Induced Mortality in Mice

    PubMed Central

    Huang, Hsin-Hsien; Wong, Ming-Show; Lin, Hung-Chi; Chang, Hsin-Hou

    2009-01-01

    Background Photocatalysis of titanium dioxide (TiO2) substrates is primarily induced by ultraviolet light irradiation. Anion-doped TiO2 substrates were shown to exhibit photocatalytic activities under visible-light illumination, relative environmentally-friendly materials. Their anti-spore activity against Bacillus anthracis, however, remains to be investigated. We evaluated these visible-light activated photocatalysts on the reduction of anthrax spore-induced pathogenesis. Methodology/Principal Findings Standard plating method was used to determine the inactivation of anthrax spore by visible light-induced photocatalysis. Mouse models were further employed to investigate the suppressive effects of the photocatalysis on anthrax toxin- and spore-mediated mortality. We found that anti-spore activities of visible light illuminated nitrogen- or carbon-doped titania thin films significantly reduced viability of anthrax spores. Even though the spore-killing efficiency is only approximately 25%, our data indicate that spores from photocatalyzed groups but not untreated groups have a less survival rate after macrophage clearance. In addition, the photocatalysis could directly inactivate lethal toxin, the major virulence factor of B. anthracis. In agreement with these results, we found that the photocatalyzed spores have tenfold less potency to induce mortality in mice. These data suggest that the photocatalysis might injury the spores through inactivating spore components. Conclusion/Significance Photocatalysis induced injuries of the spores might be more important than direct killing of spores to reduce pathogenicity in the host. PMID:19132100

  9. Simultaneous detection of ultraviolet B-induced DNA damage using capillary electrophoresis with laser-induced fluorescence.

    PubMed

    Guthrie, Jeffrey W; Limmer, Robert T; Brooks, Eric A; Wisnewski, Chelsea C; Loggins-Davis, Nnekia D; Bouzid, Abderraouf

    2015-01-01

    An immunoassay based on CE-LIF was developed for the simultaneous detection of cyclobutane pyrimidine dimers (CPDs) and pyrimidine 6-4 pyrimidone photoproducts (6-4PPs) in genomic DNA irradiated with UVB or natural sunlight. Human cells were first exposed to varying amounts of UVB or natural sunlight to induce DNA damage. Genomic DNA was extracted and incubated with anti-CPD and anti-6-4PP primary antibodies attached to secondary antibodies with a fluorescent quantum dot (QD) reporter that emitted either red or yellow fluorescence. CE was used to separate the unbound antibodies from those bound to the photoproducts, and LIF with appropriate optical filters was used to separate the fluorescence signals from each QD to individual photomultiplier tubes for simultaneous photoproduct detection. Using this strategy, photoproducts were detected from ∼6 ng (200 ng μL(-1)) of DNA under a low UVB fluence of 65 J m(-2) for CPDs or 195 J m(-2) for 6-4PPs. This assay was also the first to demonstrate the detection of CPDs in human cells after only 15 min of irradiation under natural sunlight. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY RADIATION, CHEMICAL MUTAGENS AND ENZYMES

    EPA Science Inventory

    A simple and rapid assay to detect DNA damage is reported. This novel assay is based on changes in melting/annealing behavior and facilitated using certain dyes that increase their fluorescence upon association with double stranded (ds)DNA. Damage caused by ultraviolet (UV) ra...

  11. Improved light-induced cell detachment on rutile TiO₂ nanodot films.

    PubMed

    Cheng, Kui; Sun, Yu; Wan, Hongping; Wang, Xiaozhao; Weng, Wenjian; Lin, Jun; Wang, Huiming

    2015-10-01

    Anatase TiO2 nanodot films have been found to be able to release cells under light illumination with excellent efficiency and safety. In the present study, we investigated the effects of rutile contents in TiO2 nanodot films on such light induced cell detachment behavior. The results showed that TiO2 nanodot films with different contents of rutile phase have been prepared successfully. The content of rutile phase increased with the increase in calcination temperature. All films possessed good cell adhesion but there was a decrease in cell proliferation with the increasing content of rutile phase. Single cell detachment assay showed that the films with high rutile contents (calcined at 900°C and 1100°C) showed better cell detachment performance. That was ascribed to the changes of the secondary structure of extracellular proteins adsorbed on the nanodot surface after ultraviolet (365 nm, UV365) illumination. In addition, cell sheets detached through UV365 illumination maintained high activity and could be further used in tissue engineering. The present work showed that the existence of rutile phase is helpful in cell detachment behavior and it could be utilized to optimize light-induced cell detachment behavior. This work discovers that the presence of rutile phase in TiO2 nanodot films could improve the light-induced cell detachment behavior, although rutile phase is inferior to anatase phase on light induced superhydrophilicity. That strongly supported that the behaviors of adsorbed proteins are crucial in acquiring cell sheet with light illumination. In fact, the state and behavior of adsorbed protein greatly affect the interaction between biomaterials and living cells. Therefore, we consider this work is not only important in harvesting cells or cell sheets through light illumination, but also helpful in further understanding of interaction between biomaterials and cells. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Rapamycin Protects Skin Fibroblasts from Ultraviolet B-Induced Photoaging by Suppressing the Production of Reactive Oxygen Species.

    PubMed

    Qin, Dengke; Ren, Runjian; Jia, Chuanlong; Lu, Yongzhou; Yang, Qingjian; Chen, Liang; Wu, Xinyuan; Zhu, Jingjing; Guo, Yu; Yang, Ping; Zhou, Yiqun; Zhu, Ningwen; Bi, Bo; Liu, Tianyi

    2018-01-01

    Ultraviolet B (UVB) irradiation alters multiple molecular pathways in the skin, thereby inducing skin photoaging. Murine dermal fibroblasts (MDFs) were subjected to a series of 4 sub-cytotoxic UVB doses (120 mJ/cm2), resulting in changes in cell shape, DNA damage, cell cycle arrest, extracellular matrix variations, reactive oxygen species (ROS) generation, and alterations in major intracellular antioxidant and cellular autophagy levels. Rapamycin (RAPA) is a new macrolide immunosuppressive agent that is primarily used in oncology, cardiology, and transplantation medicine and has been found to extend the lifespan of genetically heterogeneous mice. Several studies have shown that RAPA may have anti-aging effects in cells and organisms. Thus, in this study, we explored the effects and mechanisms of RAPA against the photoaging process using a well-established cellular photoaging model. We developed a stress-induced premature senescence (SIPS) model through repeated exposure of MDFs to ultraviolet B (UVB) irradiation. The cells were cultured in the absence or presence of RAPA for 48 h. Senescent phenotypes were assessed by examining cell viability, cell morphology, senescence-associated β-galactosidase (SA-β-gal) expression, cell cycle progression, intracellular ROS production, matrix metalloproteinase (MMP) synthesis and degradation, extracellular matrix (ECM) component protein expression, alterations in major intracellular antioxidant levels, and the cellular autophagy level. Compared with the UVB group, pretreatment with RAPA (5 µM) significantly decreased the staining intensity and percentage of SA-β-gal-positive cells and preserved the elongated cell shape. Moreover, cells pretreated with RAPA showed inhibition of the reduction in the type I collagen content by blocking the UVB-induced upregulation of MMP expression. RAPA also decreased photoaging cell cycle arrest and downregulated p53 and p21 expression. RAPA application significantly attenuated irradiation-induced

  13. Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Frank R., E-mail: frank.wagner@fresnel.fr; Natoli, Jean-Yves; Akhouayri, Hassan

    2014-06-28

    Due to its high effective nonlinearity and the possibility to produce periodically poled crystals, potassium titanyl phosphate (KTiOPO{sub 4}, KTP) is still one of the economically important nonlinear optical materials. In this overview article, we present a large study on catastrophic nanosecond laser induced damage in this material and the very similar RbTiOPO{sub 4} (RTP). Several different systematic studies are included: multiple pulse laser damage, multi-wavelength laser damage in KTP, damage resistance anisotropy, and variations of the laser damage thresholds for RTP crystals of different qualities. All measurements were carried out in comparable experimental conditions using a 1064 nm Q-switched lasermore » and some were repeated at 532 nm. After summarizing the experimental results, we detail the proposed model for laser damage in this material and discuss the experimental results in this context. According to the model, nanosecond laser damage is caused by light-induced generation of transient laser-damage precursors which subsequently provide free electrons that are heated by the same nanosecond pulse. We also present a stimulated Raman scattering measurement and confront slightly different models to the experimental data. Finally, the physical nature of the transient damage precursors is discussed and similarities and differences to laser damage in other crystals are pointed out.« less

  14. NAD+ maintenance attenuates light induced photoreceptor degeneration Δ

    PubMed Central

    Bai, Shi; Sheline, Christian T.

    2013-01-01

    Light-induced retinal damage (LD) occurs after surgery or sun exposure. We previously showed that zinc (Zn2+) accumulated in photoreceptors and RPE cells after LD but prior to cell death, and pyruvate or nicotinamide attenuated the resultant death perhaps by restoring nicotinamide adenine dinucleotide (NAD+) levels. We first examined the levels of NAD+ and the efficacy of pyruvate or nicotinamide in oxidative toxicities using primary retinal cultures. We next manipulated NAD+ levels in vivo and tested the affect on LD to photoreceptors and RPE. NAD+ levels cycle with a 24-h rhythm in mammals, which is affected by the feeding schedule. Therefore, we tested the affect of increasing NAD+ levels on LD by giving nicotinamide, inverting the feeding schedule, or using transgenic mice which overexpress cytoplasmic nicotinamide mononucleotide adenyl-transferase-1 (cytNMNAT1), an NAD+ synthetic enzyme. Zn2+ accumulation was also assessed in culture and in retinal sections. Retinas of light damaged animals were examined by OCT and plastic sectioning, and retinal NAD levels were measured. Day fed, or nicotinamide treated rats showed less NAD+ loss, and LD compared to night fed rats or untreated rats without changing the Zn2+ staining pattern. CytNMNAT1 showed less Zn2+ staining, NAD+ loss, and cell death after LD. In conclusion, intense light, Zn2+ and oxidative toxicities caused an increase in Zn2+, NAD+ loss, and cell death which were attenuated by NAD+ restoration. Therefore, NAD+ levels play a protective role in LD-induced death of photoreceptors and RPE cells. PMID:23274583

  15. Discolouration of orthodontic adhesives caused by food dyes and ultraviolet light.

    PubMed

    Faltermeier, Andreas; Rosentritt, Martin; Reicheneder, Claudia; Behr, Michael

    2008-02-01

    Enamel discolouration after debonding of orthodontic attachments could occur because of irreversible penetration of resin tags into the enamel structure. Adhesives could discolour because of food dyes or ultraviolet irradiation. The aim of this study was to investigate the colour stability of adhesives during ultraviolet irradiation and exposure to food colourants. Four different adhesives were exposed in a Suntest CPS+ ageing device to a xenon lamp to simulate natural daylight (Transbond XT, Enlight, RelyX Unicem, and Meron Plus AC). Tomato ketchup, Coca Cola, and tea were chosen as the food colourants. After 72 hours of exposure, colour measurements were performed by means of a spectrophotometer according to the Commission Internationale de l'Eclairage L*a*b* system and colour changes (DeltaE*) were computed. Statistical differences were investigated using two-way analysis of variance (ANOVA) and Friedman test. Unsatisfactory colour stability after in vitro exposure to food colourants and ultraviolet light was observed for the conventional adhesive systems, Transbond XT and Enlight. RelyX Unicem showed the least colour change and the resin-reinforced glass-ionomer cement (GIC), Meron Plus AC, the greatest colour change. The investigated adhesives seem to be susceptible to both internal and external discolouration. These in vitro findings indicate that the tested conventional adhesive systems reveal unsatisfactory colour stability which should be improved to avoid enamel discolouration.

  16. The effectiveness of riboflavin and ultraviolet light pathogen reduction technology in eliminating Trypanosoma cruzi from leukoreduced whole blood.

    PubMed

    Jimenez-Marco, Teresa; Cancino-Faure, Beatriz; Girona-Llobera, Enrique; Alcover, M Magdalena; Riera, Cristina; Fisa, Roser

    2017-06-01

    The parasitic Chagas disease is caused by the protozoan Trypanosoma cruzi, which is mainly transmitted by insect vectors. Other infection routes, both in endemic and in nonendemic areas, include organ and marrow transplantation, congenital transmission, and blood transfusion. Asymptomatic chronic chagasic individuals may have a low and transient parasitemia in peripheral blood and, consequently, they can unknowingly transmit the disease via blood transfusion. Riboflavin and ultraviolet (UV) light pathogen reduction is a method to reduce pathogen transfusion transmission risk based on damage to the pathogen nucleic acids. In this study, we tested the effectiveness of this technology for the elimination of T. cruzi parasites in artificially contaminated whole blood units (WBUs) and thus for decreasing the risk of T. cruzi transfusion transmission. The contaminated WBUs were leukoreduced by filtration and treated with riboflavin and UV light. The level of pathogen reduction was quantified by a real-time polymerase chain reaction (qPCR) and a real-time reverse transcription-polymerase chain reaction (RT-qPCR) as a viability assay. The RNA (cDNA) quantification of the parasites showed a more than 99% reduction of viable T. cruzi parasites after leukoreduction and a complete reduction (100%) after the riboflavin and UV light treatment. Riboflavin and UV light treatment and leukoreduction used in conjunction appears to eliminate significant amounts of viable T. cruzi in whole blood. Both strategies could complement other blood bank measures already implemented to prevent the transmission of T. cruzi via blood transfusion. © 2017 AABB.

  17. Hereditary Disorders with Defective Repair of UV-Induced DNA Damage

    PubMed Central

    Moriwaki, Shinichi

    2013-01-01

    Nucleotide excision repair (NER) is an essential system for correcting ultraviolet (UV)—induced DNA damage. Lesions remaining in DNA due to reduced capacity of NER may result in cellular death, premature aging, mutagenesis and carcinogenesis of the skin. So, NER is an important protection against these changes. There are three representative genodermatoses resulting from genetic defects in NER: xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD). In Japan, CS is similarly rare but XP is more common and TTD is less common compared to Western countries. In 1998, we established the system for the diagnosis of these disorders and we have been performing DNA repair and genetic analysis for more than 400 samples since then. At present, there is no cure for any human genetic disorder. Early diagnosis and symptomatic treatment of neurological, ocular and dermatological abnormalities should contribute to prolonging life and elevating QOL in patients. PMID:23966815

  18. [KINETICS OF PHOTO-INDUCED FREE RADICALS IN THE HUMAN HAIR CHESTNUT COLOR AFTER SHORT PERIODS OF RED, GREEN, BLUE AND WHITE LIGHT EXPOSURE].

    PubMed

    Tskhvediani, N; Chikvaidze, E; Tsibadze, A; Kvachadze, I; Gogoladze, T; Katsitadze, A

    2016-04-01

    The aim of the study was to investigate the kinetics of photo-induced free radicals in the human hair chestnut color with short-term exposure to visible light in different frequency ranges. Studies carried out on human volunteers aged 17-21 years (n=37). Hairs of volunteers of the study were not treated with dyes and other active cosmetic preparations. Hairs bundled in a bun had a length - 1.5 cm, weight - 40 mg. At the beginning background EPR-spectrum of a sample was measured and then hairs were irradiated with visible light (blue, green, red and white) of different wavelength subsequently; exposure duration - 60 minutes; after the exposure the kinetics of photo-induced free radicals was measured within 60 minutes. The radiation source was selected LED array of the four crystals that provides a nearly monochromatic radiation spectrum having no parasitic infrared and ultraviolet radiations. The studies give a reason to assume that the impact on hairs by visible electromagnetic rays a leading factor is their frequency characteristics: on the one hand - the proximity of the blue light to ultraviolet radiation, and on the other - the red light to the infrared range.

  19. Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light

    PubMed Central

    Buonanno, Manuela; Ponnaiya, Brian; Welch, David; Stanislauskas, Milda; Randers-Pehrson, Gerhard; Smilenov, Lubomir; Lowy, Franklin D.; Owens, David M.; Brenner, David J.

    2017-01-01

    We have previously shown that 207-nm ultraviolet (UV) light has similar antimicrobial properties as typical germicidal UV light (254 nm), but without inducing mammalian skin damage. The biophysical rationale is based on the limited penetration distance of 207-nm light in biological samples (e.g. stratum corneum) compared with that of 254-nm light. Here we extended our previous studies to 222-nm light and tested the hypothesis that there exists a narrow wavelength window in the far-UVC region, from around 200–222 nm, which is significantly harmful to bacteria, but without damaging cells in tissues. We used a krypton-chlorine (Kr-Cl) excimer lamp that produces 222-nm UV light with a bandpass filter to remove the lower- and higher-wavelength components. Relative to respective controls, we measured: 1. in vitro killing of methicillin-resistant Staphylococcus aureus (MRSA) as a function of UV fluence; 2. yields of the main UV-associated premutagenic DNA lesions (cyclobutane pyrimidine dimers and 6-4 photoproducts) in a 3D human skin tissue model in vitro; 3. eight cellular and molecular skin damage endpoints in exposed hairless mice in vivo. Comparisons were made with results from a conventional 254-nm UV germicidal lamp used as positive control. We found that 222-nm light kills MRSA efficiently but, unlike conventional germicidal UV lamps (254 nm), it produces almost no premutagenic UV-associated DNA lesions in a 3D human skin model and it is not cytotoxic to exposed mammalian skin. As predicted by biophysical considerations and in agreement with our previous findings, far-UVC light in the range of 200–222 nm kills bacteria efficiently regardless of their drug-resistant proficiency, but without the skin damaging effects associated with conventional germicidal UV exposure. PMID:28225654

  20. Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light.

    PubMed

    Buonanno, Manuela; Ponnaiya, Brian; Welch, David; Stanislauskas, Milda; Randers-Pehrson, Gerhard; Smilenov, Lubomir; Lowy, Franklin D; Owens, David M; Brenner, David J

    2017-04-01

    We have previously shown that 207-nm ultraviolet (UV) light has similar antimicrobial properties as typical germicidal UV light (254 nm), but without inducing mammalian skin damage. The biophysical rationale is based on the limited penetration distance of 207-nm light in biological samples (e.g. stratum corneum) compared with that of 254-nm light. Here we extended our previous studies to 222-nm light and tested the hypothesis that there exists a narrow wavelength window in the far-UVC region, from around 200-222 nm, which is significantly harmful to bacteria, but without damaging cells in tissues. We used a krypton-chlorine (Kr-Cl) excimer lamp that produces 222-nm UV light with a bandpass filter to remove the lower- and higher-wavelength components. Relative to respective controls, we measured: 1. in vitro killing of methicillin-resistant Staphylococcus aureus (MRSA) as a function of UV fluence; 2. yields of the main UV-associated premutagenic DNA lesions (cyclobutane pyrimidine dimers and 6-4 photoproducts) in a 3D human skin tissue model in vitro; 3. eight cellular and molecular skin damage endpoints in exposed hairless mice in vivo. Comparisons were made with results from a conventional 254-nm UV germicidal lamp used as positive control. We found that 222-nm light kills MRSA efficiently but, unlike conventional germicidal UV lamps (254 nm), it produces almost no premutagenic UV-associated DNA lesions in a 3D human skin model and it is not cytotoxic to exposed mammalian skin. As predicted by biophysical considerations and in agreement with our previous findings, far-UVC light in the range of 200-222 nm kills bacteria efficiently regardless of their drug-resistant proficiency, but without the skin damaging effects associated with conventional germicidal UV exposure.

  1. Simultaneous removal of NO and SO2 using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS).

    PubMed

    Liu, Yangxian; Wang, Yan; Wang, Qian; Pan, Jianfeng; Zhang, Jun

    2018-01-01

    Simultaneous removal process of SO 2 and NO from flue gas using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS) in a VUV spraying reactor was proposed. The key influencing factors, active species, reaction products and mechanism of SO 2 and NO simultaneous removal were investigated. The results show that vacuum ultraviolet light (185 nm) achieves the highest NO removal efficiency and yield of and under the same test conditions. NO removal is enhanced at higher PMS concentration, light intensity and oxygen concentration, and is inhibited at higher NO concentration, SO 2 concentration and solution pH. Solution temperature has a double impact on NO removal. CO 2 concentration has no obvious effect on NO removal. and produced from VUV-activation of PMS play a leading role in NO removal. O 3 and ·O produced from VUV-activation of O 2 also play an important role in NO removal. SO 2 achieves complete removal under all experimental conditions due to its very high solubility in water and good reactivity. The highest simultaneous removal efficiency of SO 2 and NO reaches 100% and 91.3%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. EDITORIAL Light-induced material organization Light-induced material organization

    NASA Astrophysics Data System (ADS)

    Vainos, Nikos; Rode, Andrei V.

    2010-12-01

    horizons to production processing (Koroleva et al). The use of femtosecond lasers enables polymerization for flexible production of micro-optics and integrated optics (Malinauskas et al). Laser beams of moderate intensity are used to create surface relief patterning in polymer and hybrid matter (Babeva et al) while the use of optimized acrylamide photopolymers results in submicron holographic structures (Trainer et al). In a different concept, the application of laser radiation forces in soft polymer matter offers intriguing, yet unexplored, means for the organization of dense structures and filaments in polymer solutes, pointing to nonlinear optical applications (Anyfantakis et al). Finally, high laser intensities are used for the processing of soft polymer and hybrid matter. In the two modes of operation available, laser-induced forward transfer of polymers is a promising alternative for the creation of controlled structures (Palla-Papavlu et al), while ablative structuring creates interfaces with enhanced properties by excimer laser irradiation at the deep ultraviolet 193 nm and 157 nm wavelengths (Athanasekos et al). Such methods provide flexible tools for the fabrication of optimized photonic sensor structures based on hybrid nanocomposites incorporating diffractive optic interfaces, a technology enabling the recent advent of remote point sensing of chemical and physical agents by light (Vasileiades et al). A substantial part of this work has been supported in the framework of COST MP0604 Action `Optical Micro-Manipulation by Nonlinear Nanophotonics' of the European Science Foundation. We are confident that this collection of papers on light-induced material organization will guide the reader in this emerging field, inspire the interested scientific community and stimulate further research and innovation in this exciting and growing field.

  3. The efficacy of post porosity plasma protection against vacuum-ultraviolet damage in porous low-k materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lionti, K.; Volksen, W.; Darnon, M.

    2015-03-21

    As of today, plasma damage remains as one of the main challenges to the reliable integration of porous low-k materials into microelectronic devices at the most aggressive node. One promising strategy to limit damage of porous low-k materials during plasma processing is an approach we refer to as post porosity plasma protection (P4). In this approach, the pores of the low-k material are filled with a sacrificial agent prior to any plasma treatment, greatly minimizing the total damage by limiting the physical interactions between plasma species and the low-k material. Interestingly, the contribution of the individual plasma species to themore » total plasma damage is not fully understood. In this study, we investigated the specific damaging effect of vacuum-ultraviolet (v-UV) photons on a highly porous, k = 2.0 low-k material and we assessed the P4 protective effect against them. It was found that the impact of the v-UV radiation varied depending upon the v-UV emission lines of the plasma. More importantly, we successfully demonstrated that the P4 process provides excellent protection against v-UV damage.« less

  4. Defect-Enabled Electrical Current Leakage in Ultraviolet Light-Emitting Diodes

    DOE PAGES

    Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; ...

    2015-04-13

    The AlGaN materials system offers a tunable, ultra-wide bandgap that is exceptionally useful for high-power electronics and deep ultraviolet optoelectronics. Moseley et al. (pp. 723–726) investigate a structural defect known as an open-core threading dislocation or ''nanopipe'' that is particularly detrimental to devices that employ these materials. Furthermore, an AlGaN thin film was synthesized using metal-organic chemical-vapor deposition. Electrical current leakage is detected at a discrete point using a conductive atomic-force microscope (CAFM). However, no physical feature or abnormality at this location was visible by an optical microscope. The AlGaN thin film was then etched in hot phosphoric acid, andmore » the same location that was previously analyzed was revisited with the CAFM. The point that previously exhibited electrical current leakage had been decorated with a 1.1 μm wide hexagonal pit, which identified the site of electrical current leakage as a nanopipe and allows these defects to be easily observed by optical microscopy. Moreover, with this nanopipe identification and quantification strategy, the authors were able to correlate decreasing ultraviolet light-emitting diode optical output power with increasing nanopipe density.« less

  5. Moderate Light-Induced Degeneration of Rod Photoreceptors with Delayed Transducin Translocation in shaker1 Mice

    PubMed Central

    Zallocchi, Marisa; Wang, Wei-Min; Delimont, Duane; Cosgrove, Dominic

    2011-01-01

    Purpose. Usher syndrome is characterized by congenital deafness associated with retinitis pigmentosa (RP). Mutations in the myosin VIIa gene (MYO7A) cause a common and severe subtype of Usher syndrome (USH1B). Shaker1 mice have mutant MYO7A. They are deaf and have vestibular dysfunction but do not develop photoreceptor degeneration. The goal of this study was to investigate abnormalities of photoreceptors in shaker1 mice. Methods. Immunocytochemistry and hydroethidine-based detection of intracellular superoxide production were used. Photoreceptor cell densities under various conditions of light/dark exposures were evaluated. Results. In shaker1 mice, the rod transducin translocation is delayed because of a shift of its light activation threshold to a higher level. Even moderate light exposure can induce oxidative damage and significant rod degeneration in shaker1 mice. Shaker1 mice reared under a moderate light/dark cycle develop severe retinal degeneration in less than 6 months. Conclusions. These findings show that, contrary to earlier studies, shaker1 mice possess a robust retinal phenotype that may link to defective rod protein translocation. Importantly, USH1B animal models are likely vulnerable to light-induced photoreceptor damage, even under moderate light. PMID:21447681

  6. Patterns of light interference produced by damaged cuticle cells in human hair.

    PubMed

    Gamez-Garcia, Manuel; Lu, Yuan

    2007-01-01

    Colorful patterns of light interference have been observed to occur in human hair cuticle cells. The light interference phenomenon has been analyzed by optical microscopy. The strong patterns of light interference appeared only in cuticle cells that had been damaged either mechanically or by thermal stresses. Cuticle cells that were not damaged did not produce this phenomenon. The zones of light interference on the hair surface were seen to extend to cuticle sheath areas whose damage was not apparent when analyzed under the Scanning Electron Microscope. The presence of oils and other hydrophobic materials in the hair had a strong effect in the appearance or disappearance of the interference patterns.

  7. Photoinhibition-like damage to the photosynthetic apparatus in plant leaves induced by submergence treatment in the dark.

    PubMed

    Fan, Xingli; Zhang, Zishan; Gao, Huiyuan; Yang, Cheng; Liu, Meijun; Li, Yuting; Li, Pengmin

    2014-01-01

    Submergence is a common type of environmental stress for plants. It hampers survival and decreases crop yield, mainly by inhibiting plant photosynthesis. The inhibition of photosynthesis and photochemical efficiency by submergence is primarily due to leaf senescence and excess excitation energy, caused by signals from hypoxic roots and inhibition of gas exchange, respectively. However, the influence of mere leaf-submergence on the photosynthetic apparatus is currently unknown. Therefore, we studied the photosynthetic apparatus in detached leaves from four plant species under dark-submergence treatment (DST), without influence from roots and light. Results showed that the donor and acceptor sides, the reaction center of photosystem II (PSII) and photosystem I (PSI) in leaves were significantly damaged after 36 h of DST. This is a photoinhibition-like phenomenon similar to the photoinhibition induced by high light, as further indicated by the degradation of PsaA and D1, the core proteins of PSI and PSII. In contrast to previous research, the chlorophyll content remained unchanged and the H2O2 concentration did not increase in the leaves, implying that the damage to the photosynthetic apparatus was not caused by senescence or over-accumulation of reactive oxygen species (ROS). DST-induced damage to the photosynthetic apparatus was aggravated by increasing treatment temperature. This type of damage also occurred in the anaerobic environment (N2) without water, and could be eliminated or restored by supplying air to the water during or after DST. Our results demonstrate that DST-induced damage was caused by the hypoxic environment. The mechanism by which DST induces the photoinhibition-like damage is discussed below.

  8. Photoinhibition-Like Damage to the Photosynthetic Apparatus in Plant Leaves Induced by Submergence Treatment in the Dark

    PubMed Central

    Gao, Huiyuan; Yang, Cheng; Liu, Meijun; Li, Yuting; Li, Pengmin

    2014-01-01

    Submergence is a common type of environmental stress for plants. It hampers survival and decreases crop yield, mainly by inhibiting plant photosynthesis. The inhibition of photosynthesis and photochemical efficiency by submergence is primarily due to leaf senescence and excess excitation energy, caused by signals from hypoxic roots and inhibition of gas exchange, respectively. However, the influence of mere leaf-submergence on the photosynthetic apparatus is currently unknown. Therefore, we studied the photosynthetic apparatus in detached leaves from four plant species under dark-submergence treatment (DST), without influence from roots and light. Results showed that the donor and acceptor sides, the reaction center of photosystem II (PSII) and photosystem I (PSI) in leaves were significantly damaged after 36 h of DST. This is a photoinhibition-like phenomenon similar to the photoinhibition induced by high light, as further indicated by the degradation of PsaA and D1, the core proteins of PSI and PSII. In contrast to previous research, the chlorophyll content remained unchanged and the H2O2 concentration did not increase in the leaves, implying that the damage to the photosynthetic apparatus was not caused by senescence or over-accumulation of reactive oxygen species (ROS). DST-induced damage to the photosynthetic apparatus was aggravated by increasing treatment temperature. This type of damage also occurred in the anaerobic environment (N2) without water, and could be eliminated or restored by supplying air to the water during or after DST. Our results demonstrate that DST-induced damage was caused by the hypoxic environment. The mechanism by which DST induces the photoinhibition-like damage is discussed below. PMID:24586508

  9. Tunnel junction enhanced nanowire ultraviolet light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarwar, A. T. M. Golam; May, Brelon J.; Deitz, Julia I.

    Polarization engineered interband tunnel junctions (TJs) are integrated in nanowire ultraviolet (UV) light emitting diodes (LEDs). A ∼6 V reduction in turn-on voltage is achieved by the integration of tunnel junction at the base of polarization doped nanowire UV LEDs. Moreover, efficient hole injection into the nanowire LEDs leads to suppressed efficiency droop in TJ integrated nanowire LEDs. The combination of both reduced bias voltage and increased hole injection increases the wall plug efficiency in these devices. More than 100 μW of UV emission at ∼310 nm is measured with external quantum efficiency in the range of 4–6 m%. The realization of tunnel junctionmore » within the nanowire LEDs opens a pathway towards the monolithic integration of cascaded multi-junction nanowire LEDs on silicon.« less

  10. 21 CFR 872.6350 - Ultraviolet detector.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultraviolet detector. 872.6350 Section 872.6350...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6350 Ultraviolet detector. (a) Identification. An ultraviolet detector is a device intended to provide a source of ultraviolet light which is used...

  11. 21 CFR 872.6350 - Ultraviolet detector.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultraviolet detector. 872.6350 Section 872.6350...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6350 Ultraviolet detector. (a) Identification. An ultraviolet detector is a device intended to provide a source of ultraviolet light which is used...

  12. 21 CFR 872.6350 - Ultraviolet detector.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultraviolet detector. 872.6350 Section 872.6350...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6350 Ultraviolet detector. (a) Identification. An ultraviolet detector is a device intended to provide a source of ultraviolet light which is used...

  13. 21 CFR 872.6350 - Ultraviolet detector.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ultraviolet detector. 872.6350 Section 872.6350...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6350 Ultraviolet detector. (a) Identification. An ultraviolet detector is a device intended to provide a source of ultraviolet light which is used...

  14. 21 CFR 872.6350 - Ultraviolet detector.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultraviolet detector. 872.6350 Section 872.6350...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6350 Ultraviolet detector. (a) Identification. An ultraviolet detector is a device intended to provide a source of ultraviolet light which is used...

  15. The Effects of Topically Applied Glycolic Acid and Salicylic Acid on Ultraviolet Radiation-Induced Erythema, DNA Damage and Sunburn Cell Formation in Human Skin

    PubMed Central

    Kornhauser, Andrija; Wei, Rong-Rong; Yamaguchi, Yuji; Coelho, Sergio G.; Kaidbey, Kays; Barton, Curtis; Takahashi, Kaoruko; Beer, Janusz Z.; Miller, Sharon A.; Hearing, Vincent J.

    2009-01-01

    Background α-Hydroxy acids (αHA) are reported to reduce signs of aging in the skin and are widely used cosmetic ingredients. Several studies suggest that αHA can increase the sensitivity of skin to ultraviolet radiation. More recently, β-hydroxy acids (βHA), or combinations of αHA and βHA have also been incorporated into antiaging skin care products. Concerns have also arisen about increased sensitivity to ultraviolet radiation following use of skin care products containing β-HA. Objective To determine whether topical treatment with glycolic acid, a representative αHA, or with salicylic acid, a βHA, modifies the short-term effects of solar simulated radiation (SSR) in human skin. Methods Fourteen subjects participated in this study. Three of the four test sites on the mid-back of each subject were treated daily Monday - Friday, for a total of 3.5 weeks, with glycolic acid (10%), salicylic acid (2%), or vehicle (control). The fourth site received no treatment. After the last treatment, each site was exposed to SSR, and shave biopsies from all 4 sites were obtained. The endpoints evaluated in this study were erythema (assessed visually and instrumentally), DNA damage and sunburn cell formation. Results Treatment with glycolic acid resulted in increased sensitivity of human skin to SSR, measured as an increase in erythema, DNA damage and sunburn cell formation. Salicylic acid did not produce significant changes in any of these biomarkers. Conclusions Short-term topical application of glycolic acid in a cosmetic formulation increased the sensitivity of human skin to SSR, while a comparable treatment with salicylic acid did not. PMID:19411163

  16. ALA-PDT elicits oxidative damage and apoptosis in UVB-induced premature senescence of human skin fibroblasts.

    PubMed

    Zhou, Bing-Rong; Zhang, Li-Chao; Permatasari, Felicia; Liu, Juan; Xu, Yang; Luo, Dan

    2016-06-01

    5-Aminolevulinic acid photodynamic therapy (ALA-PDT) has been used for the treatment of skin photoaging. It can significantly improve the appearance of fine lines, dotted pigmentation, and roughness of photoaged skin. However, the mechanisms by which ALA-PDT yields rejuvenating effects on photoaged skin have not been well elucidated. Thus, in this study we explored the effects of ALA-PDT in photoaged fibroblasts. We established a stress-induced premature senescence (SIPS) model by repeated exposures of human dermal fibroblasts (HDFs) to ultraviolet B (UVB) irradiation. Cells were irradiated by red light laser at 635nm wavelength (50mW/cm(2)). Intracellular protoporphyrin IX (PpIX) was detected by confocal microscopy. Intracellular reactive oxygen species (ROS) level and mitochondrial membrane potential (MMP) change were detected by fluorescence microscopy and flow cytometry. Morphological changes were observed by optical microscopy. Proliferative activity was measured by a cell counting kit-8 (CCK-8). Cell apoptosis was detected by fluorescence microscopy using Hoechst staining and flow cytometry using annexin V/propidium Iodide double staining. Intracellular PpIX fluorescence in UVB-induced premature senescent HDFs (UVB-SIPS-HDFs) reached the highest intensity after incubation with 1.00mmol/L ALA for 6h (P<0.05). Compared with control group, intracellular ROS level, MMP, and apoptotic rate were increased (P<0.05) and proliferative activity was decreased (P<0.05) in UVB-SIPS-HDFs treated with ALA-PDT, which were positively correlated to ALA incubation time and red light laser dose. Our study demonstrated that ALA-PDT elicits oxidative damage and apoptosis in photoaged fibroblasts in vitro, which may be the basis for the rejuvenating effects on photoaged skin. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Ultraviolet Laser Damage Dependence on Contamination Concentration in Fused Silica Optics during Reactive Ion Etching Process

    PubMed Central

    Sun, Laixi; Shao, Ting; Shi, Zhaohua; Huang, Jin; Ye, Xin; Jiang, Xiaodong; Wu, Weidong; Yang, Liming; Zheng, Wanguo

    2018-01-01

    The reactive ion etching (RIE) process of fused silica is often accompanied by surface contamination, which seriously degrades the ultraviolet laser damage performance of the optics. In this study, we find that the contamination behavior on the fused silica surface is very sensitive to the RIE process which can be significantly optimized by changing the plasma generating conditions such as discharge mode, etchant gas and electrode material. Additionally, an optimized RIE process is proposed to thoroughly remove polishing-introduced contamination and efficiently prevent the introduction of other contamination during the etching process. The research demonstrates the feasibility of improving the damage performance of fused silica optics by using the RIE technique. PMID:29642571

  18. Protective effect of cerium ion against ultraviolet B radiation-induced water stress in soybean seedlings.

    PubMed

    Mao, Chun Xia; Chen, Min Min; Wang, Lei; Zou, Hua; Liang, Chan Juan; Wang, Li Hong; Zhou, Qing

    2012-06-01

    Effects of cerium ion (Ce(III)) on water relations of soybean seedlings (Glycine max L.) under ultraviolet B radiation (UV-B, 280-320 nm) stress were investigated under laboratory conditions. UV-B radiation not only affected the contents of two osmolytes (proline, soluble sugar) in soybean seedlings, but also inhibited the transpiration in soybean seedlings by decreasing the stomatal density and conductance. The two effects caused the inhibition in the osmotic and metabolic absorption of water, which decreased the water content and the free water/bound water ratio. Obviously, UV-B radiation led to water stress, causing the decrease in the photosynthesis in soybean seedlings. The pretreatment with 20 mg L(-1) Ce(III) could alleviate UV-B-induced water stress by regulating the osmotic and metabolic absorption of water in soybean seedlings. The alleviated effect caused the increase in the photosynthesis and the growth of soybean seedlings. It is one of the protective effect mechanisms of Ce(III) against the UV-B radiation-induced damage to plants.

  19. Ultraviolet Enceladus

    NASA Image and Video Library

    2004-09-23

    Looking beyond Saturn's south pole, this was the Cassini spacecraft's view of the distant, icy moon Enceladus on July 28, 2004. The planet itself shows few obvious features at these ultraviolet wavelengths, due to scattering of light by molecules of the gases high in the atmosphere. Enceladus is 499 kilometers (310 miles) wide. The image was taken with the Cassini spacecraft narrow angle camera at a distance of 7.4 million kilometers (4.6 million miles) from Saturn through a filter sensitive to ultraviolet wavelengths of light. The image scale is 44 kilometers (27 miles) per pixel of Saturn. http://photojournal.jpl.nasa.gov/catalog/PIA06483

  20. Ultraviolet and short wavelength visible light exposure: why ultraviolet protection alone is not adequate.

    PubMed

    Reichow, Alan W; Citek, Karl; Edlich, Richard F

    2006-01-01

    The danger of exposure to ultraviolet (UV) radiation in both the natural environment and artificial occupational settings has long been recognized by national and international standards committees and worker safety agencies. There is an increasing body of literature that suggests that protection from UV exposure is not enough. Unprotected exposure to the short wavelengths of the visible spectrum, termed the "blue light hazard", is gaining acceptance as a true risk to long-term visual health. Global standards and experts in the field are now warning that those individuals who spend considerable time outdoors should seek sun filter eyewear with high impact resistant lenses that provide 100% UV filtration, high levels of blue light filtration, and full visual field lens/frame coverage as provided by high wrap eyewear. The Skin Cancer Foundation has endorsed certain sunglasses as "product[s]...effective [as] UV filter[s] for the eyes and surrounding skin". However, such endorsement does not necessarily mean that the eyewear meets all the protective needs for outdoor use. There are several brands that offer products with such protective characteristics. Performance sun eyewear by Nike Vision, available in both corrective and plano (nonprescription) forms, is one such brand incorporating these protective features.

  1. Oral administration of Lactobacillus plantarum HY7714 protects hairless mouse against ultraviolet B-induced photoaging.

    PubMed

    Kim, Hyun Mee; Lee, Dong Eun; Park, Soo Dong; Kim, Yong-Tae; Kim, Yu Jin; Jeong, Ji Woong; Jang, Sung Sik; Ahn, Young-Tae; Sim, Jae-Hun; Huh, Chul-Sung; Chung, Dae Kyun; Lee, Jung-Hee

    2014-11-28

    Ultraviolet (UV) irradiation alters multiple molecular pathways in the skin, thereby inducing skin damage, including photoaging. In recent years, probiotics have gained interest due to their beneficial effects on skin health, such as inhibiting atopic dermatitis and improving skin immunity or inflammation. However, little is known about the effects of probiotics on UVBinduced photoaging. In this study, we evaluated the effect of Lactobacillus plantarum HY7714 against UVB-induced photoaging in human dermal fibroblasts and hairless mice. The results showed that L. plantarum HY7714 treatment effectively rescued UVB-reduced procollagen expression through the inhibition of UVB-induced matrix metalloproteinase (MMP)-1 expression in human dermal fibroblasts. Data from a western blot showed that L. plantarum HY7714 inhibited the phosphorylation of Jun N-terminal kinase, thereby suppressing the UVB-induced phosphorylation and expression of c-Jun. Oral administration of L. plantarum HY7714 clearly inhibited the number, depth, and area of wrinkles in hairless mouse skin. Histological data showed that L. plantarum HY7714 significantly inhibited UVB-induced epidermal thickness in mice. Western blot and zymography data also revealed that L. plantarum HY7714 effectively inhibited MMP-13 expression as well as MMP-2 and -9 activities in dermal tissue. Collectively, these results provide further insight regarding the skin biological actions of L. plantarum HY7714, a potential skin anti-photoaging agent.

  2. 2016 Arte Poster Competition First Place Winner: Circadian Rhythm and UV-Induced Skin Damage: An In Vivo Study.

    PubMed

    Guan, Linna; Suggs, Amanda; Ahsanuddin, Sayeeda; Tarrillion, Madeline; Selph, Jacqueline; Lam, Minh; Baron, Elma

    2016-09-01

    Exposure of the skin to ultraviolet (UV) irradiation causes many detrimental effects through mechanisms related to oxidative stress and DNA damage. Excessive oxidative stress can cause apoptosis and cellular dysfunction of epidermal cells leading to cellular senescence and connective tissue degradation. Direct and indirect damage to DNA predisposes the skin to cancer formation. Chronic UV exposure also leads to skin aging manifested as wrinkling, loss of skin tone, and decreased resilience. Fortunately, human skin has several natural mechanisms for combating UV-induced damage. The mechanisms operate on a diurnal rhythm, a cycle that repeats approximately every 24 hours. It is known that the circadian rhythm is involved in many skin physiologic processes, including water regulation and epidermal stem cell function. This study evaluated whether UV damage and the skin's natural mechanisms of inflammation and repair are also affected by circadian rhythm. We looked at UV-induced erythema on seven human subjects irradiated with simulated solar radiation in the morning (at 08:00 h) versus in the afternoon (at 16:00 h). Our data suggest that the same dose of UV radiation induces significantly more inflammation in the morning than in the afternoon. Changes in protein expression relevant to DNA damage, such as xeroderma pigmentosum, complementation group A (XPA), and cyclobutane pyrimidine dimers (CPD) from skin biopsies correlated with our clinical results. Both XPA and CPD levels were higher after the morning UV exposure compared with the afternoon exposure.

    J Drugs Dermatol. 2016;15(9):1124-1130.

  3. EFFECTS OF ULTRAVIOLET-B LIGHT AND POLYAROMATIC HYDROCARBON EXPOSURE ON SEA URCHIN DEVELOPMENT AND BACTERIAL BIOLUMINESCENCE

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) are relatively common contaminants of the Gulf of Mexico and may be activated to more toxic metabolites by ultraviolet-B (UV-B) light. A marine bacterial bioassay system (Vibrio fischeri) which focused on the reduction of luciferase-mediate...

  4. Assessing the effectiveness of low-pressure ultraviolet light for inactivating Mycobacterium avium complex (MAC) micro-organisms

    EPA Science Inventory

    Aims: To assess low-pressure ultraviolet light (LP-UV) inactivation kinetics of Mycobacterium avium complex (MAC) strains in a water matrix using collimated beam apparatus. Methods and Results: Strains of M. avium (n = 3) and Mycobacterium intracellulare (n = 2) were exposed t...

  5. Noise Induced DNA Damage Within the Auditory Nerve.

    PubMed

    Guthrie, O'neil W

    2017-03-01

    An understanding of the molecular pathology that underlies noise induced neurotoxicity is a prerequisite to the design of targeted therapies. The objective of the current experiment was to determine whether or not DNA damage is part of the pathophysiologic sequela of noise induced neurotoxicity. The experiment consisted of 41 hooded Long-Evans rats (2 month old males) that were randomized into control and noise exposed groups. Both the control and the noise group followed the same time schedule and therefore started and ended the experiment together. The noise dose consisted of a 6000 Hz noise band at 105 dB SPL. Temporal bones from both groups were harvested, and immunohistochemistry was used to identify neurons with DNA damage. Quantitative morphometric analyses was then employed to determine the level of DNA damage. Neural action potentials were recorded to assess the functional impact of noise induced DNA damage. Immunohistochemical reactions revealed that the noise exposure precipitated DNA damage within the nucleus of auditory neurons. Quantitative morphometry confirmed the noise induced increase in DNA damage levels and the precipitation of DNA damage was associated with a significant loss of nerve sensitivity. Therefore, DNA damage is part of the molecular pathology that drives noise induced neurotoxicity. Anat Rec, 300:520-526, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Photo-protection by 3-bromo-4, 5-dihydroxybenzaldehyde against ultraviolet B-induced oxidative stress in human keratinocytes.

    PubMed

    Hyun, Yu Jae; Piao, Mei Jing; Zhang, Rui; Choi, Yung Hyun; Chae, Sungwook; Hyun, Jin Won

    2012-09-01

    Exposure of the skin to ultraviolet B (UVB) radiation leads to epidermal damage and the generation of reactive oxygen species (ROS) in skin cells, including keratinocytes. Therefore, the photo-protective effect of 3-bromo-4, 5-dihydroxybenzaldehyde (BDB) against UVB was assessed in human HaCaT keratinocytes exposed to UVB radiation in vitro. BDB restored cell viability, which decreased upon exposure to UVB radiation. BDB exhibited scavenging activity against 1, 1-diphenyl-2-picrylhydrazyl radicals, intracellular ROS induced by hydrogen peroxide (H(2)O(2)) or UVB radiation, the superoxide anion generated by the xanthine/xanthine oxidase system, and the hydroxyl radical generated by the Fenton reaction (FeSO(4)+H(2)O(2)). Moreover, BDB absorbed UVB and decreased injury resulting from UVB-induced oxidative stress to lipids, proteins and DNA. Finally, BDB reduced UVB-induced apoptosis, as exemplified by fewer apoptotic bodies and a reduction in DNA fragmentation. Taken together, these results suggest that BDB protects human keratinocytes against UVB-induced oxidative stress by scavenging ROS and absorbing UVB rays, thereby reducing injury to cellular components. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. 8-Oxo-2'-deoxyguanosine ameliorates UVB-induced skin damage in hairless mice by scavenging reactive oxygen species and inhibiting MMP expression.

    PubMed

    Lee, Jin-Ku; Ko, Seong-Hee; Ye, Sang-Kyu; Chung, Myung-Hee

    2013-04-01

    Skin is uniquely vulnerable to damage caused by reactive oxygen species (ROS), which are most commonly produced in response to ultraviolet (UV) light. ROS generated at injury sites play an important role in modulating the inflammatory response. Besides inhibiting Rac, 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG) has also shown notable antioxidant action. We tested whether 8-oxo-dG could protect skin from UVB-induced damage by scavenging ROS. HaCaT cells and hairless mice were irradiated with 15 and 180 mJ/cm(2) narrow-spectrum UVB, respectively. ROS generation was detected through incubation with DCFDA and confocal microscopy. Western blot analyses and immunohistochemistry were performed to verify the activities of ERK, JNK, p38, ATF-2, and c-Jun, and the expression of matrix metalloproteinases (MMPs), in UVB-irradiated HaCaT cells and murine skin. Hydrogen peroxide production and protein carbonyl concentrations were measured in UVB-damaged mouse skin. MMP-1 and MMP-9 expression in UVB-irradiated HaCaT cells was measured by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). In UVB-irradiated HaCaT cells, 8-oxo-dG inhibited ROS production, subsequent activation of mitogen-activated protein kinase (MAPK), ATF-2, and c-Jun, and MMP expression. It also prevented UV-induced skin reactions in hairless mice, inhibiting the increase in protein carbonyl content, activation of MAPKs, ATF-2, and c-Jun, the increases in MMP-9 and -13 expression, and epidermal hyperplasia. 8-oxo-dG can be considered an endogenous antioxidant and its potent antioxidant activity might be a beneficial property that could be exploited to protect skin from ROS-associated photodamage. Copyright © 2013. Published by Elsevier Ireland Ltd.

  8. Water Treatment Using Advanced Ultraviolet Light Sources Final Report CRADA No. TC02089.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoppes, W.; Oster, S.

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Teknichal Services, LLC (TkS), to develop water treatment systems using advanced ultraviolet light sources. The Russian institutes involved with this project were The High Current Electronics Institute (HCEI) and Russian Institute of Technical Physics-Institute of Experimental Physics (VNIIEF). HCEI and VNIIEF developed and demonstrated the potential commercial viability of short-wavelength ultraviolet excimer lamps under a Thrust 1 Initiatives for Proliferation Prevention (IPP) Program. The goals of this collaboration were to demonstrate both the commercial viability of excilampbased watermore » disinfection and achieve further substantial operational improvement in the lamps themselves; particularly in the area of energy efficiency.« less

  9. Near unity ultraviolet absorption in graphene without patterning

    NASA Astrophysics Data System (ADS)

    Zhu, Jinfeng; Yan, Shuang; Feng, Naixing; Ye, Longfang; Ou, Jun-Yu; Liu, Qing Huo

    2018-04-01

    Enhancing the light-matter interaction of graphene is an important issue for related photonic devices and applications. In view of its potential ultraviolet applications, we aim to achieve extremely high ultraviolet absorption in graphene without any nanostructure or microstructure patterning. By manipulating the polarization and angle of incident light, the ultraviolet power can be sufficiently coupled to the optical dissipation of graphene based on single-channel coherent perfect absorption in an optimized multilayered thin film structure. The ultraviolet absorbance ratios of single and four atomic graphene layers are enhanced up to 71.4% and 92.2%, respectively. Our research provides a simple and efficient scheme to trap ultraviolet light for developing promising photonic and optoelectronic devices based on graphene and potentially other 2D materials.

  10. Spatial Positioning of All 24 Chromosomes in the Lymphocytes of Six Subjects: Evidence of Reproducible Positioning and Spatial Repositioning following DNA Damage with Hydrogen Peroxide and Ultraviolet B

    PubMed Central

    Kandukuri, Lakshmi; Quadri, Ameer; Becerra, Victor; Simpson, Joe Leigh

    2015-01-01

    The higher-order organization of chromatin is well-established, with chromosomes occupying distinct positions within the interphase nucleus. Chromatin is susceptible to, and constantly assaulted by both endogenous and exogenous threats. However, the effects of DNA damage on the spatial topology of chromosomes are hitherto, poorly understood. This study investigates the organization of all 24 human chromosomes in lymphocytes from six individuals prior to- and following in-vitro exposure to genotoxic agents: hydrogen peroxide and ultraviolet B. This study is the first to report reproducible distinct hierarchical radial organization of chromosomes with little inter-individual differences between subjects. Perturbed nuclear organization was observed following genotoxic exposure for both agents; however a greater effect was observed for hydrogen peroxide including: 1) More peripheral radial organization; 2) Alterations in the global distribution of chromosomes; and 3) More events of chromosome repositioning (18 events involving 10 chromosomes vs. 11 events involving 9 chromosomes for hydrogen peroxide and ultraviolet B respectively). Evidence is provided of chromosome repositioning and altered nuclear organization following in-vitro exposure to genotoxic agents, with notable differences observed between the two investigated agents. Repositioning of chromosomes following genotoxicity involved recurrent chromosomes and is most likely part of the genomes inherent response to DNA damage. The variances in nuclear organization observed between the two agents likely reflects differences in mobility and/or decondensation of chromatin as a result of differences in the type of DNA damage induced, chromatin regions targeted, and DNA repair mechanisms. PMID:25756782

  11. Spatial positioning of all 24 chromosomes in the lymphocytes of six subjects: evidence of reproducible positioning and spatial repositioning following DNA damage with hydrogen peroxide and ultraviolet B.

    PubMed

    Ioannou, Dimitrios; Kandukuri, Lakshmi; Quadri, Ameer; Becerra, Victor; Simpson, Joe Leigh; Tempest, Helen G

    2015-01-01

    The higher-order organization of chromatin is well-established, with chromosomes occupying distinct positions within the interphase nucleus. Chromatin is susceptible to, and constantly assaulted by both endogenous and exogenous threats. However, the effects of DNA damage on the spatial topology of chromosomes are hitherto, poorly understood. This study investigates the organization of all 24 human chromosomes in lymphocytes from six individuals prior to- and following in-vitro exposure to genotoxic agents: hydrogen peroxide and ultraviolet B. This study is the first to report reproducible distinct hierarchical radial organization of chromosomes with little inter-individual differences between subjects. Perturbed nuclear organization was observed following genotoxic exposure for both agents; however a greater effect was observed for hydrogen peroxide including: 1) More peripheral radial organization; 2) Alterations in the global distribution of chromosomes; and 3) More events of chromosome repositioning (18 events involving 10 chromosomes vs. 11 events involving 9 chromosomes for hydrogen peroxide and ultraviolet B respectively). Evidence is provided of chromosome repositioning and altered nuclear organization following in-vitro exposure to genotoxic agents, with notable differences observed between the two investigated agents. Repositioning of chromosomes following genotoxicity involved recurrent chromosomes and is most likely part of the genomes inherent response to DNA damage. The variances in nuclear organization observed between the two agents likely reflects differences in mobility and/or decondensation of chromatin as a result of differences in the type of DNA damage induced, chromatin regions targeted, and DNA repair mechanisms.

  12. Efficacy of PLGA-loaded apigenin nanoparticles in Benzo[a]pyrene and ultraviolet-B induced skin cancer of mice: mitochondria mediated apoptotic signalling cascades.

    PubMed

    Das, Sreemanti; Das, Jayeeta; Samadder, Asmita; Paul, Avijit; Khuda-Bukhsh, Anisur Rahman

    2013-12-01

    Skin cancer is increasing at an alarming rate and becoming resistant to conventional chemotherapy necessitating improved drug delivery system. We loaded apigenin (Ap), a dietary flavonoid having anti-cancer property, with poly (lactic-co-glycolide) (PLGA) nanoparticles (NAp) to explore if nano-encapsulation could enhance anti-carcinogenic effect against ultra-violet B (UVB) and Benzo(a)pyrene (BaP) induced skin tumor and mitochondrial dysfunction in mice. Particle size, morphology and zeta potential of NAp were determined using dynamic light scattering and atomic force microscopy. Tumor incidence and multiplicity in UVB-BaP induced mice with/without NAp treatment were ascertained and their histolopathological sections and chromosomal aberrations were studied. ROS accumulation and mitochondrial functioning through relevant markers like mitochondrial transmembrane potential were analyzed. Mitochondrial volume changes/swelling, cytochrome c (cyt c) release, mRNA and protein expressions of Apaf-1, bax, bcl-2, cyt c, cleaved caspase-9 and 3 were studied. Results showed that NAp produced better effects than Ap, due to their smaller size, and faster mobility. NAp reduced tissue damage and frequency of chromosomal aberrations, increased ROS accumulation to mediate mitochondrial-apoptosis through modulation of several apoptotic markers and mitochondrial matrix swelling. NAp showed ameliorative potentials in combating skin cancer and therefore has greater prospect of use in therapeutic management of skin cancer. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Topical treatment with pterostilbene, a natural phytoalexin, effectively protects hairless mice against UVB radiation-induced skin damage and carcinogenesis.

    PubMed

    Sirerol, J Antoni; Feddi, Fatima; Mena, Salvador; Rodriguez, María L; Sirera, Paula; Aupí, Miguel; Pérez, Salvador; Asensi, Miguel; Ortega, Angel; Estrela, José M

    2015-08-01

    The aim of our study was to investigate in the SKH-1 hairless mouse model the effect of pterostilbene (Pter), a natural dimethoxy analog of resveratrol (Resv), against procarcinogenic ultraviolet B radiation (UVB)-induced skin damage. Pter prevented acute UVB (360 mJ/cm(2))-induced increase in skin fold, thickness, and redness, as well as photoaging-associated skin wrinkling and hyperplasia. Pter, but not Resv, effectively prevented chronic UVB (180 mJ/cm(2), three doses/week for 6 months)-induced skin carcinogenesis (90% of Pter-treated mice did not develop skin carcinomas, whereas a large number of tumors were observed in all controls). This anticarcinogenic effect was associated with (a) maintenance of skin antioxidant defenses (i.e., glutathione (GSH) levels, catalase, superoxide, and GSH peroxidase activities) close to control values (untreated mice) and (b) an inhibition of UVB-induced oxidative damage (using as biomarkers 8-hydroxy-2'-deoxyguanosine, protein carbonyls, and isoprostanes). The molecular mechanism underlying the photoprotective effect elicited by Pter was further evaluated using HaCaT immortalized human keratinocytes and was shown to involve potential modulation of the Nrf2-dependent antioxidant response. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Investigating the protective properties of milk phospholipids against ultraviolet light exposure in a skin equivalent model

    NASA Astrophysics Data System (ADS)

    Russell, Ashley; Laubscher, Andrea; Jimenez-Flores, Rafael; Laiho, Lily H.

    2010-02-01

    Current research on bioactive molecules in milk has documented health advantages of bovine milk and its components. Milk Phospholipids, selected for this study, represent molecules with great potential benefit in human health and nutrition. In this study we used confocal reflectance and multiphoton microscopy to monitor changes in skin morphology upon skin exposure to ultraviolet light and evaluate the potential of milk phospholipids in preventing photodamage to skin equivalent models. The results suggest that milk phospholipids act upon skin cells in a protective manner against the effect of ultraviolet (UV) radiation. Similar results were obtained from MTT tissue viability assay and histology.

  15. Ultraviolet light exposure influences skin cancer in association with latitude.

    PubMed

    Rivas, Miguel; Araya, María C; Caba, Fresia; Rojas, Elisa; Calaf, Gloria M

    2011-04-01

    The increase in the amount of solar ultraviolet (UV) light that reaches the earth is considered to be responsible for the worldwide increase in skin cancer. It has been reported that excessive levels of UVA and UVB light have multiple effects, which can be harmful to humans. Experimental measurements were obtained using wide-band solar light YES biometers from 2006 to 2009 in Arica, Chile and from 2003 to 2006 in Valdivia, Chile, both instruments having been calibrated according to the World Health Organization (WHO) criteria and integrated into the Chilean Meteorological Organization network. To explain the possible effect of radiation on skin cancer, revised pathological reports in Arica and Valdivia were analyzed. In Arica, data on men and women were collected between 1997 and 1998-2002, and in Valdivia, between 1997-2000 and 2001-2007. In this study, comparative values of ultraviolet index (UVI) from the above datasets, were analyzed. Arica is a city located in the subtropical zone of northern Chile, 25 meters above sea level, with a latitude of 18˚49'S and a longitude of 70˚19'W. It has a microclimate characterized by stable meteorological conditions throughout the year, including low precipitation (<5 mm per decade), predictable winds, a high percentage of clear sky days and high ground reflectivity due to the presence of light sand. Due to its location near sea level, the population performs a great number of outdoor activities. Valdivia is a city located in the southern part of Chile, 19 meters above sea level with a latitude of 39˚38'S and a longitude of 73˚5'W. The aim of the present study was to determine the relationship between latitude and the risk of skin cancer in two cities with different latitudes. The incidence of skin cancer per 100,000 persons significantly (P<0.05) increased in both genders between the periods 1997-2000 and 2001-2007 in Arica. However, it decreased in men between the periods 1993-1997 and 1998-2002 in Valdivia. The results

  16. Lattice-matched double dip-shaped BAlGaN/AlN quantum well structures for ultraviolet light emission devices

    NASA Astrophysics Data System (ADS)

    Park, Seoung-Hwan; Ahn, Doyeol

    2018-05-01

    Ultraviolet light emission characteristics of lattice-matched BxAlyGa1-x-y N/AlN quantum well (QW) structures with double AlGaN delta layers were investigated theoretically. In contrast to conventional single dip-shaped QW structure where the reduction effect of the spatial separation between electron and hole wave functions is negligible, proposed double dip-shaped QW shows significant enhancement of the ultraviolet light emission intensity from a BAlGaN/AlN QW structure due to the reduced spatial separation between electron and hole wave functions. The emission peak of the double dip-shaped QW structure is expected to be about three times larger than that of the conventional rectangular AlGaN/AlN QW structure.

  17. Probing of Hermean Exosphere by ultraviolet spectroscopy: Instrument presentation, calibration philosophy and first lights results

    NASA Astrophysics Data System (ADS)

    Mariscal, J. F.; Rouanet, N.; Maria, J. L.; Quémerais, E.; Mine, P. O.; Zuppella, P.; Suman, M.; Nicolosi, P.; Pelizzo, M. G.; Yoshikawa, I.; Yoshioka, K.; Murakami, G.

    2017-11-01

    PHEBUS (Probing of Hermean Exosphere by Ultraviolet Spectroscopy) is a double spectrometer for the Extreme Ultraviolet range (55-155 nm) and the Far Ultraviolet range (145-315 nm) dedicated to the characterization of Mercury's exosphere composition and dynamics, and surface-exosphere connections. PHEBUS is part of the ESA BepiColombo cornerstone mission payload devoted to the study of Mercury. The BepiColombo mission consists of two spacecrafts: the Mercury Magnetospheric Orbiter (MMO) and the Mercury Planetary Orbiter (MPO) on which PHEBUS will be mounted. PHEBUS is a French-led instrument implemented in a cooperative scheme involving Japan (detectors), Russia (scanner) and Italy (ground calibration). Before launch, PHEBUS team want to perform a full absolute calibration on ground, in addition to calibrations which will be made in-flight, in order to know the instrument's response as precisely as possible. Instrument overview and calibration philosophy are introduced along with the first lights results observed by a first prototype.

  18. Crystallization-mediated amorphous CuxO (x = 1, 2)/crystalline CuI p-p type heterojunctions with visible light enhanced and ultraviolet light restrained photocatalytic dye degradation performance

    NASA Astrophysics Data System (ADS)

    Wang, Hongli; Cai, Yun; Zhou, Jian; Fang, Jun; Yang, Yang

    2017-04-01

    We report simple and cost-effective fabrication of amorphous CuxO (x = 1, 2)/crystalline CuI p-p type heterojunctions based on crystallization-mediated approaches including antisolvent crystallization and crystal reconstruction. Starting from CuI acetonitrile solution, large crystals in commercial CuI can be easily converted to aggregates consisting of small particles by the crystallization processes while the spontaneous oxidation of CuI by atmospheric/dissolved oxygen can induce the formation of trace CuxO on CuI surface. As a proof of concept, the as-fabricated CuxO/CuI heterojunctions exhibit effective photocatalytic activity towards the degradation of methyl blue and other organic pollutants under visible light irradiation, although the wide band-gap semiconductor CuI is insensible to visible light. Unexpectedly, the CuxO/CuI heterojunctions exhibit restrained photocatalytic activity when ultraviolet light is applied in addition to the visible. It is suggested that the CuxO/CuI interface can enhance the spatial separation of the electron-hole pairs with the excitation of CuxO under visible light and prolong the lifetime of photogenerated charges with high redox ability. The present work represents a critically important step in advancing the crystallization technique for potential mass production of semiconductor heterojunctions in a mild manner.

  19. Optimized constants for an ultraviolet light-adjustable intraocular lens.

    PubMed

    Conrad-Hengerer, Ina; Dick, H Burkhard; Hütz, Werner W; Haigis, Wolfgang; Hengerer, Fritz H

    2011-12-01

    To determine the accuracy of intraocular lens (IOL) power calculations and to suggest adjusted constants for implantation of ultraviolet light-adjustable IOLs. Center for Vision Science, Ruhr University Eye Clinic, Bochum, Germany. Cohort study. Eyes with a visually significant cataract that had phacoemulsification with implantation of a light-adjustable IOL were evaluated. IOLMaster measurements were performed before phacoemulsification and IOL implantation and 4 weeks after surgery before the first adjustment of the IOL. The difference in the expected refraction and estimation error was studied. The study evaluated 125 eyes. Using the surgical constants provided by the manufacturer of the light-adjustable IOL, the SRK/T formula gave a more hyperopic refraction than the Hoffer Q and Holladay 1 formulas. The mean error of prediction was 0.93 diopter (D) ± 0.69 (SD), 0.91 ± 0.63 D, and 0.86 ± 0.65 D, respectively. The corresponding mean absolute error of prediction was 0.98 ± 0.61 D, 0.93 ± 0.61 D, and 0.90 ± 0.59 D, respectively. With optimized constants for the formulas, the mean error of prediction was 0.00 ± 0.63 D for Hoffer Q, 0.00 ± 0.64 D for Holladay 1, and 0.00 ± 0.66 D for SRK/T. The expected refraction after phacoemulsification and implantation of a light-adjustable IOL toward the hyperopic side of the desired refraction could be considered when using the optimized constants for all formulas. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  20. Mitochondria regulate DNA damage and genomic instability induced by high LET radiation

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Davidson, Mercy M.; Hei, Tom K.

    2014-04-01

    High linear energy transfer (LET) radiation including α particles and heavy ions is the major type of radiation found in space and is considered a potential health risk for astronauts. Even though the chance that these high LET particles traversing through the cytoplasm of cells is higher than that through the nuclei, the contribution of targeted cytoplasmic irradiation to the induction of genomic instability and other chromosomal damages induced by high LET radiation is not known. In the present study, we investigated whether mitochondria are the potential cytoplasmic target of high LET radiation in mediating cellular damage using a mitochondrial DNA (mtDNA) depleted (ρ0) human small airway epithelial (SAE) cell model and a precision charged particle microbeam with a beam width of merely one micron. Targeted cytoplasmic irradiation by high LET α particles induced DNA oxidative damage and double strand breaks in wild type ρ+ SAE cells. Furthermore, there was a significant increase in autophagy and micronuclei, which is an indication of genomic instability, together with the activation of nuclear factor kappa-B (NF-κB) and mitochondrial inducible nitric oxide synthase (iNOS) signaling pathways in ρ+ SAE cells. In contrast, ρ0 SAE cells exhibited a significantly lower response to these same endpoints examined after cytoplasmic irradiation with high LET α particles. The results indicate that mitochondria are essential in mediating cytoplasmic radiation induced genotoxic damage in mammalian cells. Furthermore, the findings may shed some light in the design of countermeasures for space radiation.

  1. Production of organic compounds in plasmas: A comparison among electric sparks, laser-induced plasmas and UV light

    NASA Technical Reports Server (NTRS)

    Scattergood, T. W.; Mckay, C. P.; Borucki, W. J.; Giver, L. P.; Vanghyseghem, H.; Parris, J. E.; Miller, S. L.

    1991-01-01

    In order to study the production of organic compounds in plasmas (and shocks), various mixtures of N2, CH4, and H2, modeling the atmosphere of Titan, were exposed to discrete sparks, laser-induced plasmas (LIP) and ultraviolet light. The yields of HCN and simple hydrocarbons were measured and compared to those calculated from a simple quenched thermodynamic equilibrium model. The agreement between experiment and theory was fair for HCN and C2H2. However, the yields of C2H6 and other hydrocarbons were much higher than those predicted by the model. Our experiments suggest that photolysis by ultraviolet light from the plasma is an important process in the synthesis. This was confirmed by the photolysis of gas samples exposed to the light, but not to the plasma or shock waves. The results of these experiments demonstrate that, in addition to the well-known efficient synthesis of organic compounds in plasmas, the yields of saturated species, e.g., ethane, may be higher than predicted by theory and that LIP provide a convenient and clean way of simulating planetary lightning and impact plasmas in the laboratory.

  2. Light-induced rapid Ca2+ response and MAPK phosphorylation in the cells heterologously expressing human OPN5

    PubMed Central

    Sugiyama, Takashi; Suzuki, Hirobumi; Takahashi, Takeo

    2014-01-01

    Molecular imaging is a powerful tool for investigating intracellular signalling, but it is difficult to acquire conventional fluorescence imaging from photoreceptive cells. Here we demonstrated that human opsin5 (OPN5) photoreceptor mediates light-induced Ca2+ response in human embryonic kidney (HEK293) and mouse neuroblastoma (Neuro2a) cell lines using a luminescence imaging system with a fluorescent indicator and a newly synthesized bioluminescent indicator. Weak light fluorescence and bioluminescence imaging revealed rapid and transient light-stimulated Ca2+ release from thapsigargin-sensitive Ca2+ stores, whereas long-lasting Ca2+ elevation was observed using a conventional fluorescence imaging system. Bioluminescence imaging also demonstrated that OPN5 activation in HEK293 cells induced a decrease in pertussis toxin–sensitive cAMP, confirming previous reports. In addition, ultraviolet radiation induced the phosphorylation of mitogen-activated protein kinases when OPN5 was stimulated in Neuro2a cells. These findings suggest that the combination of these imaging approaches may provide a new means to investigate the physiological characteristics of photoreceptors. PMID:24941910

  3. Light interaction in sapphire/MgF2/Al triple-layer omnidirectional reflectors in AlGaN-based near ultraviolet light-emitting diodes

    PubMed Central

    Lee, Keon Hwa; Moon, Yong-Tae; Song, June-O; Kwak, Joon Seop

    2015-01-01

    This study examined systematically the mechanism of light interaction in the sapphire/MgF2/Al triple-layer omnidirectional reflectors (ODR) and its effects on the light output power in near ultraviolet light emitting diodes (NUV-LEDs) with the ODR. The light output power of NUV-LEDs with the triple-layer ODR structure increased with decreasing surface roughness of the sapphire backside in the ODR. Theoretical modeling of the roughened surface suggests that the dependence of the reflectance of the triple-layer ODR structure on the surface roughness can be attributed mainly to light absorption by the Al nano-structures and the trapping of scattered light in the MgF2 layer. Furthermore, the ray tracing simulation based upon the theoretical modeling showed good agreement with the measured reflectance of the ODR structure in diffuse mode. PMID:26010378

  4. Light interaction in sapphire/MgF2/Al triple-layer omnidirectional reflectors in AlGaN-based near ultraviolet light-emitting diodes.

    PubMed

    Lee, Keon Hwa; Moon, Yong-Tae; Song, June-O; Kwak, Joon Seop

    2015-05-26

    This study examined systematically the mechanism of light interaction in the sapphire/MgF2/Al triple-layer omnidirectional reflectors (ODR) and its effects on the light output power in near ultraviolet light emitting diodes (NUV-LEDs) with the ODR. The light output power of NUV-LEDs with the triple-layer ODR structure increased with decreasing surface roughness of the sapphire backside in the ODR. Theoretical modeling of the roughened surface suggests that the dependence of the reflectance of the triple-layer ODR structure on the surface roughness can be attributed mainly to light absorption by the Al nano-structures and the trapping of scattered light in the MgF2 layer. Furthermore, the ray tracing simulation based upon the theoretical modeling showed good agreement with the measured reflectance of the ODR structure in diffuse mode.

  5. Saturn's E Ring in Ultraviolet Light

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Visible from Earth only at times of ring plane crossing, Saturn's tenuous E Ring was discovered during the 1966 crossings and imaged again in 1980. From these observations, its color is known to be distinctively blue. The E Ring was captured in ultraviolet light for the first time in this image taken with HST's Wide Field and Planetary Camera on 9 August 1995. Five individual images taken with a broadband 3000 A filter were combined, amounting to a total exposure time of 2200 sec. Shorter exposure images were also obtained with blue, red and infrared filters in order to characterize the ring's color. The peak brightness of the E Ring occurs at 3.9 Saturn radii (235,000 km), coinciding with the orbit of Enceladus. In the HST images it can be traced out to a maximum distance of approximately 8 Rs (480,000 km). The vertical thickness of the ring, on the other hand, is smallest at Enceladus' orbit, with the ring puffing up noticeably at larger distances to 15,000 km or more thick. Also visible in this image, between the E Ring and the overexposed outermost part of the main rings near the lower edge of the frame, is the tenuous, thin, 6000 km-wide G Ring at 2.8 Rs (170,000 km). This is among the first earth-based observations of the G Ring, which was discovered by the Pioneer 11 spacecraft in 1979. Noticeably thinner than the E Ring and more neutral in color, the G Ring is thought to be composed of larger, macroscopic particles, and to pose a significant hazard to spacecraft. The faint diagonal band in the lower right part of the image is due to diffracted light from the heavily-overexposed planet. Credit: Phil Nicholson (Cornell University), Mark Showalter (NASA-Ames/Stanford) and NASA

  6. The Role of Pyruvate in Protecting 661W Photoreceptor-Like Cells Against Light-Induced Cell Death.

    PubMed

    Natoli, Riccardo; Rutar, Matt; Lu, Yen-Zhen; Chu-Tan, Joshua A; Chen, Yuwei; Saxena, Kartik; Madigan, Michele; Valter, Krisztina; Provis, Jan M

    2016-11-01

    Light is a requirement for the function of photoreceptors in visual processing. However, prolonged light exposure can be toxic to photoreceptors, leading to increased reactive oxygen species (ROS), lipid peroxidation, and photoreceptor cell death. We used the 661W mouse cone photoreceptor-like cell line to study the effects of pyruvate in protecting these cells from light-induced toxicity. 661W cells were exposed to 15,000 lux continuous bright light for 5 hours and incubated in Dulbecco's modified eagle medium (DMEM) with various concentrations of pyruvate. Following light damage, cells were assessed for changes in morphology, cell toxicity, viability, and ROS production. Mitochondrial respiration and anaerobic glycolysis were also assessed using a Seahorse Xfe96 extracellular flux analyzer. We found that cell death caused by light damage in 661W cells was dramatically reduced in the presence of pyruvate. Cells with pyruvate-supplemented media also showed attenuation of oxidative stress and maintained normal levels of ATP. We also found that alterations in the concentrations of pyruvate had no effect on mitochondrial respiration or glycolysis in light-damaged cells. Taken together, the results show that pyruvate is protective against light damage but does not alter the metabolic output of the cells, indicating an alternative role for pyruvate in reducing oxidative stress. Thus, sodium pyruvate is a possible candidate for the treatment against the oxidative stress component of retinal degenerations.

  7. Drug-induced corneal damage.

    PubMed

    2014-04-01

    Corneal damage can have a variety of causes, including infections, chemical splashes, environmental factors (radiation, trauma, contact lenses, etc.), and systemic diseases (genetic, autoimmune, inflammatory, metabolic, etc.). A wide range of drugs can also damage the cornea. The severity of drug-induced corneal changes can range from simple asymptomatic deposits to irreversible, sight-threatening damage. Several factors can influence the onset of corneal lesions. Some factors, such as the dose, are treatment-related, while others such as contact lenses, are patient-related. A variety of mechanisms may be involved, including corneal dryness, changes in the corneal epithelium, impaired wound healing and deposits. Many drugs can damage the cornea through direct contact, after intraocular injection or instillation, including VEGF inhibitors, anti-inflammatory drugs, local anaesthetics, glaucoma drugs, fluoroquinolones, and preservatives. Some systemically administered drugs can also damage the cornea, notably cancer drugs, amiodarone and isotretinoin. Vulnerable patients should be informed of this risk if they are prescribed a drug with the potential to damage the cornea so that they can identify problems in a timely manner. It may be necessary to discontinue the suspect drug when signs and symptoms of corneal damage occur.

  8. A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.

    PubMed

    Binh, P H; Trong, V D; Renucci, P; Marie, X

    2013-08-01

    We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.

  9. FEM modeling and histological analyses on thermal damage induced in facial skin resurfacing procedure with different CO2 laser pulse duration

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Zingoni, Tiziano; Di Cicco, Emiliano; Manetti, Leonardo; Pini, Roberto; Fortuna, Damiano

    2011-07-01

    Laser light is nowadays routinely used in the aesthetic treatments of facial skin, such as in laser rejuvenation, scar removal etc. The induced thermal damage may be varied by setting different laser parameters, in order to obtain a particular aesthetic result. In this work, it is proposed a theoretical study on the induced thermal damage in the deep tissue, by considering different laser pulse duration. The study is based on the Finite Element Method (FEM): a bidimensional model of the facial skin is depicted in axial symmetry, considering the different skin structures and their different optical and thermal parameters; the conversion of laser light into thermal energy is modeled by the bio-heat equation. The light source is a CO2 laser, with different pulse durations. The model enabled to study the thermal damage induced into the skin, by calculating the Arrhenius integral. The post-processing results enabled to study in space and time the temperature dynamics induced in the facial skin, to study the eventual cumulative effects of subsequent laser pulses and to optimize the procedure for applications in dermatological surgery. The calculated data where then validated in an experimental measurement session, performed in a sheep animal model. Histological analyses were performed on the treated tissues, evidencing the spatial distribution and the entity of the thermal damage in the collageneous tissue. Modeling and experimental results were in good agreement, and they were used to design a new optimized laser based skin resurfacing procedure.

  10. Laser-induced damage threshold of camera sensors and micro-opto-electro-mechanical systems

    NASA Astrophysics Data System (ADS)

    Schwarz, Bastian; Ritt, Gunnar; Körber, Michael; Eberle, Bernd

    2016-10-01

    The continuous development of laser systems towards more compact and efficient devices constitutes an increasing threat to electro-optical imaging sensors such as complementary metal-oxide-semiconductors (CMOS) and charge-coupled devices (CCD). These types of electronic sensors are used in day-to-day life but also in military or civil security applications. In camera systems dedicated to specific tasks, also micro-opto-electro-mechanical systems (MOEMS) like a digital micromirror device (DMD) are part of the optical setup. In such systems, the DMD can be located at an intermediate focal plane of the optics and it is also susceptible to laser damage. The goal of our work is to enhance the knowledge of damaging effects on such devices exposed to laser light. The experimental setup for the investigation of laser-induced damage is described in detail. As laser sources both pulsed lasers and continuous-wave (CW) lasers are used. The laser-induced damage threshold (LIDT) is determined by the single-shot method by increasing the pulse energy from pulse to pulse or in the case of CW-lasers, by increasing the laser power. Furthermore, we investigate the morphology of laser-induced damage patterns and the dependence of the number of destructed device elements on the laser pulse energy or laser power. In addition to the destruction of single pixels, we observe aftereffects like persisting dead columns or rows of pixels in the sensor image.

  11. Enhancing the efficacy of AREDS antioxidants in light-induced retinal degeneration

    PubMed Central

    Wong, Paul; Markey, M.; Rapp, C. M.; Darrow, R. M.; Ziesel, A.

    2017-01-01

    Purpose Light-induced photoreceptor cell degeneration and disease progression in age-related macular degeneration (AMD) involve oxidative stress and visual cell loss, which can be prevented, or slowed, by antioxidants. Our goal was to test the protective efficacy of a traditional Age-related Eye Disease Study antioxidant formulation (AREDS) and AREDS combined with non-traditional antioxidants in a preclinical animal model of photooxidative retinal damage. Methods Male Sprague-Dawley rats were reared in a low-intensity (20 lux) or high-intensity (200 lux) cyclic light environment for 6 weeks. Some animals received a daily dietary supplement consisting of a small cracker infused with an AREDS antioxidant mineral mixture, AREDS antioxidants minus zinc, or zinc oxide alone. Other rats received AREDS combined with a detergent extract of the common herb rosemary, AREDS plus carnosic acid, zinc oxide plus rosemary, or rosemary alone. Antioxidant efficacy was determined by measuring retinal DNA levels 2 weeks after 6 h of intense exposure to white light (9,000 lux). Western blotting was used to determine visual cell opsin and arrestin levels following intense light treatment. Rhodopsin regeneration was determined after 1 h of exposure to light. Gene array analysis was used to determine changes in the expression of retinal genes resulting from light rearing environment or from antioxidant supplementation. Results Chronic high-intensity cyclic light rearing resulted in lower levels of rod and cone opsins, retinal S-antigen (S-ag), and medium wavelength cone arrestin (mCAR) than found for rats maintained in low cyclic light. However, as determined by retinal DNA, and by residual opsin and arrestin levels, 2 weeks after acute photooxidative damage, visual cell loss was greater in rats reared in low cyclic light. Retinal damage decreased with AREDS plus rosemary, or with zinc oxide plus rosemary whereas AREDS alone and zinc oxide alone (at their daily recommended levels

  12. Protective Effect of Proanthocyanidins from Sea Buckthorn (Hippophae Rhamnoides L.) Seed against Visible Light-Induced Retinal Degeneration in Vivo.

    PubMed

    Wang, Yong; Zhao, Liang; Huo, Yazhen; Zhou, Feng; Wu, Wei; Lu, Feng; Yang, Xue; Guo, Xiaoxuan; Chen, Peng; Deng, Qianchun; Ji, Baoping

    2016-05-02

    Dietary proanthocyanidins (PACs) as health-protective agents have become an important area of human nutrition research because of their potent bioactivities. We investigated the retinoprotective effects of PACs from sea buckthorn (Hippophae rhamnoides L.) seed against visible light-induced retinal degeneration in vivo. Pigmented rabbits were orally administered sea buckthorn seed PACs (50 and 100 mg/kg/day) for 14 consecutive days of pre-illumination and seven consecutive days of post-illumination. Retinal function was quantified via electroretinography 7 days after light exposure. Retinal damage was evaluated by measuring the thickness of the full-thickness retina and outer nuclear layer 7 days after light exposure. Sea buckthorn seed PACs significantly attenuated the destruction of electroretinograms and maintained the retinal structure. Increased retinal photooxidative damage was expressed by the depletion of glutathione peroxidase and catalase activities, the decrease of total antioxidant capacity level and the increase of malondialdehyde level. Light exposure induced a significant increase of inflammatory cytokines (IL-1β, TNF-α and IL-6) and angiogenesis (VEGF) levels in retina. Light exposure upregulated the expression of pro-apoptotic proteins Bax and caspase-3 and downregulated the expression of anti-apoptotic protein Bcl-2. However, sea buckthorn seed PACs ameliorated these changes induced by light exposure. Sea buckthorn seed PACs mediated the protective effect against light-induced retinal degeneration via antioxidant, anti-inflammatory and antiapoptotic mechanisms.

  13. Protective Effect of Proanthocyanidins from Sea Buckthorn (Hippophae Rhamnoides L.) Seed against Visible Light-Induced Retinal Degeneration in Vivo

    PubMed Central

    Wang, Yong; Zhao, Liang; Huo, Yazhen; Zhou, Feng; Wu, Wei; Lu, Feng; Yang, Xue; Guo, Xiaoxuan; Chen, Peng; Deng, Qianchun; Ji, Baoping

    2016-01-01

    Dietary proanthocyanidins (PACs) as health-protective agents have become an important area of human nutrition research because of their potent bioactivities. We investigated the retinoprotective effects of PACs from sea buckthorn (Hippophae rhamnoides L.) seed against visible light-induced retinal degeneration in vivo. Pigmented rabbits were orally administered sea buckthorn seed PACs (50 and 100 mg/kg/day) for 14 consecutive days of pre-illumination and seven consecutive days of post-illumination. Retinal function was quantified via electroretinography 7 days after light exposure. Retinal damage was evaluated by measuring the thickness of the full-thickness retina and outer nuclear layer 7 days after light exposure. Sea buckthorn seed PACs significantly attenuated the destruction of electroretinograms and maintained the retinal structure. Increased retinal photooxidative damage was expressed by the depletion of glutathione peroxidase and catalase activities, the decrease of total antioxidant capacity level and the increase of malondialdehyde level. Light exposure induced a significant increase of inflammatory cytokines (IL-1β, TNF-α and IL-6) and angiogenesis (VEGF) levels in retina. Light exposure upregulated the expression of pro-apoptotic proteins Bax and caspase-3 and downregulated the expression of anti-apoptotic protein Bcl-2. However, sea buckthorn seed PACs ameliorated these changes induced by light exposure. Sea buckthorn seed PACs mediated the protective effect against light-induced retinal degeneration via antioxidant, anti-inflammatory and antiapoptotic mechanisms. PMID:27144578

  14. Debris- and radiation-induced damage effects on EUV nanolithography source collector mirror optics performance

    NASA Astrophysics Data System (ADS)

    Allain, J. P.; Nieto, M.; Hendricks, M.; Harilal, S. S.; Hassanein, A.

    2007-05-01

    Exposure of collector mirrors facing the hot, dense pinch plasma in plasma-based EUV light sources to debris (fast ions, neutrals, off-band radiation, droplets) remains one of the highest critical issues of source component lifetime and commercial feasibility of nanolithography at 13.5-nm. Typical radiators used at 13.5-nm include Xe and Sn. Fast particles emerging from the pinch region of the lamp are known to induce serious damage to nearby collector mirrors. Candidate collector configurations include either multi-layer mirrors (MLM) or single-layer mirrors (SLM) used at grazing incidence. Studies at Argonne have focused on understanding the underlying mechanisms that hinder collector mirror performance at 13.5-nm under fast Sn or Xe exposure. This is possible by a new state-of-the-art in-situ EUV reflectometry system that measures real time relative EUV reflectivity (15-degree incidence and 13.5-nm) variation during fast particle exposure. Intense EUV light and off-band radiation is also known to contribute to mirror damage. For example offband radiation can couple to the mirror and induce heating affecting the mirror's surface properties. In addition, intense EUV light can partially photo-ionize background gas (e.g., Ar or He) used for mitigation in the source device. This can lead to local weakly ionized plasma creating a sheath and accelerating charged gas particles to the mirror surface and inducing sputtering. In this paper we study several aspects of debris and radiation-induced damage to candidate EUVL source collector optics materials. The first study concerns the use of IMD simulations to study the effect of surface roughness on EUV reflectivity. The second studies the effect of fast particles on MLM reflectivity at 13.5-nm. And lastly the third studies the effect of multiple energetic sources with thermal Sn on 13.5-nm reflectivity. These studies focus on conditions that simulate the EUVL source environment in a controlled way.

  15. Antioxidant characterization and sensory evaluation during storage of ultraviolet-B light exposed baby carrots (abstract)

    USDA-ARS?s Scientific Manuscript database

    Baby carrot processing induces wounding stress activation of phenylalanine ammonia-lyase (PAL), enhancing its nutrient content by increasing synthesis of secondary metabolites. Ultraviolet-B (UV-B) exposure further promotes the formation of soluble phenolic compounds, significantly increasing antiox...

  16. The crustacean eye: dark/light adaptation, polarization sensitivity, flicker fusion frequency, and photoreceptor damage.

    PubMed

    Meyer-Rochow, V B

    2001-12-01

    Compound eyes, nauplius eyes, frontal organs, intracerebral ocelli, and caudal photoreceptors are the main light and darkness detectors in crustaceans, but they need not be present all at once in an individual and in some crustaceans no photoreceptors whatsoever are known. Compound eye designs reflect on their functions and have evolved to allow the eye to operate optimally under a variety of environmental conditions. Dark-light-adaptational changes manifest themselves in pigment granule translocations, cell movements, and optical adjustments which fine-tune an eye's performance to rapid and unpredictable fluctuations in ambient light intensities as well as to the slower and predictable light level changes associated with day and night oscillations. Recycling of photoreceptive membrane and light-induced membrane collapse are superficially similar events that involve the transduction cascade, intracellular calcium, and membrane fatty acid composition, but which differ in aetiology and longterm consequence. Responses to intermittant illumination and linearly polarized light evoke in the eye of many crustaceans characteristic responses that appear to be attuned to each species' special needs. How the visual responses are processed more centrally and to what extent a crustacean makes behavioural use of e-vector discrimination and flickering lights are questions, however, that still have not been satisfactorily answered for the vast majority of all crustacean species. The degree of light-induced photoreceptor damage depends on a large number of variables, but once manifest, it tends to be progressive and irreversible. Concomittant temperature stress aggravates the situation and there is evidence that free radicals and lipid hydroperoxides are involved.

  17. Effect of Pulsed Ultraviolet Light and High Hydrostatic Pressure on the Antigenicity of Almond Protein Extracts.

    USDA-ARS?s Scientific Manuscript database

    The efficacy of pulsed ultraviolet light (PUV) and high hydrostatic pressure (HHP) on reducing the IgE binding to the almond extracts, was studied using SDS-PAGE, Western Blot, and ELISA probed with human plasma containing IgE antibodies to almond allergens, and a polyclonal antibody against almond ...

  18. Inactivation of avirulent Yersinia pestis on food and food contact surfaces by ultraviolet light and freezing

    USDA-ARS?s Scientific Manuscript database

    Yersinia pestis, the causative agent of plague, can occasionally be contracted as a naso-pharangeal or gastrointestinal illness through consumption of contaminated meat. In this study, the use of 254 nm ultraviolet light (UV-C) to inactivate a multi-isolate cocktail of avirulent Y. pestis on food an...

  19. Carbachol ameliorates lipopolysaccharide-induced intestinal epithelial tight junction damage by down-regulating NF-κβ and myosin light-chain kinase pathways.

    PubMed

    Zhang, Ying; Li, Jianguo

    2012-11-16

    Carbachol is a cholinergic agonist that protects the intestines after trauma or burn injury. The present study determines the beneficial effects of carbachol and the mechanisms by which it ameliorates the lipopolysaccharide (LPS)-induced intestinal barrier breakdown. Rats were injected intraperitoneally with 10 mg/kg LPS. Results showed that the gut barrier permeability was reduced, the ultrastructural disruption of tight junctions (TJs) was prevented, the redistribution of zonula occludens-1 and claudin-2 proteins was partially reversed, and the nuclear factor-kappa beta (NF-κβ) and myosin light-chain kinase (MLCK) activation in the intestinal epithelium were suppressed after carbachol administration in LPS-exposed rats. Pretreatment with the α7 nicotinic acetylcholine receptor (α7nAchR) antagonist α-bungarotoxin blocked the protective action of carbachol. These results suggested that carbachol treatment can protect LPS-induced intestinal barrier dysfunction. Carbachol exerts its beneficial effect on the amelioration of the TJ damage by inhibiting the NF-κβ and MLCK pathways in an α7nAchR-dependent manner. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Large enhancement of light extraction efficiency in AlGaN-based nanorod ultraviolet light-emitting diode structures.

    PubMed

    Ryu, Han-Youl

    2014-02-04

    Light extraction efficiency (LEE) of AlGaN-based nanorod deep ultraviolet (UV) light-emitting diodes (LEDs) is numerically investigated using three-dimensional finite-difference time-domain simulations. LEE of deep UV LEDs is limited by strong light absorption in the p-GaN contact layer and total internal reflection. The nanorod structure is found to be quite effective in increasing LEE of deep UV LEDs especially for the transverse magnetic (TM) mode. In the nanorod LED, strong dependence of LEE on structural parameters such as the diameter of a nanorod and the p-GaN thickness is observed, which can be attributed to the formation of resonant modes inside the nanorod structure. Simulation results show that, when the structural parameters of the nanorod LED are optimized, LEE can be higher than 50% and 60% for the transverse electric (TE) and TM modes, respectively. The nanorod structure is expected to be a good candidate for the application to future high-efficiency deep UV LEDs. PACS: 41.20.Jb; 42.72.Bj; 85.60.Jb.

  1. Large enhancement of light extraction efficiency in AlGaN-based nanorod ultraviolet light-emitting diode structures

    PubMed Central

    2014-01-01

    Light extraction efficiency (LEE) of AlGaN-based nanorod deep ultraviolet (UV) light-emitting diodes (LEDs) is numerically investigated using three-dimensional finite-difference time-domain simulations. LEE of deep UV LEDs is limited by strong light absorption in the p-GaN contact layer and total internal reflection. The nanorod structure is found to be quite effective in increasing LEE of deep UV LEDs especially for the transverse magnetic (TM) mode. In the nanorod LED, strong dependence of LEE on structural parameters such as the diameter of a nanorod and the p-GaN thickness is observed, which can be attributed to the formation of resonant modes inside the nanorod structure. Simulation results show that, when the structural parameters of the nanorod LED are optimized, LEE can be higher than 50% and 60% for the transverse electric (TE) and TM modes, respectively. The nanorod structure is expected to be a good candidate for the application to future high-efficiency deep UV LEDs. PACS 41.20.Jb; 42.72.Bj; 85.60.Jb PMID:24495598

  2. Ultraviolet laser effects on the cornea

    NASA Astrophysics Data System (ADS)

    Zuclich, Joseph A.

    1990-07-01

    Ultraviolet radiation in the ambient environment or from artificial sources may pose both acute and chronic hazards to the skin and the ocular tissues. In general terrestrial conditions have evolved such that there are only narrow safety margins between ambient UV levels and exposure levels harmful to the human. Obvious examples of acute consequences ofUV overexposure are sunburn and snowblindness as well as analogous conditions induced by artificial sources such as the welder''s arc mercury vapor lamps and UV-emitting lasers. Further chronic UV exposure is strongly implicated as a causative agent in certain types of cataract and skin cancer. This presentation will summarize a number of specific cases where UV radiation affected the primate cornea. Data presented will include the action spectra for far- and near-UV induced ocular damage the pulsewidth and total energy dependencies of ocular thresholds studies of cumulative effects of repeated UV exposures and quantitative determinations of tissue repair or recovery rates. Depending on the exposure parameters utilized photochemical thermal or photoablative damage mechanisms may prevail. 1.

  3. Involvement of all-trans-retinal in acute light-induced retinopathy of mice.

    PubMed

    Maeda, Akiko; Maeda, Tadao; Golczak, Marcin; Chou, Steven; Desai, Amar; Hoppel, Charles L; Matsuyama, Shigemi; Palczewski, Krzysztof

    2009-05-29

    Exposure to bright light can cause visual dysfunction and retinal photoreceptor damage in humans and experimental animals, but the mechanism(s) remain unclear. We investigated whether the retinoid cycle (i.e. the series of biochemical reactions required for vision through continuous generation of 11-cis-retinal and clearance of all-trans-retinal, respectively) might be involved. Previously, we reported that mice lacking two enzymes responsible for clearing all-trans-retinal, namely photoreceptor-specific ABCA4 (ATP-binding cassette transporter 4) and RDH8 (retinol dehydrogenase 8), manifested retinal abnormalities exacerbated by light and associated with accumulation of diretinoid-pyridinium-ethanolamine (A2E), a condensation product of all-trans-retinal and a surrogate marker for toxic retinoids. Now we show that these mice develop an acute, light-induced retinopathy. However, cross-breeding these animals with lecithin:retinol acyltransferase knock-out mice lacking retinoids within the eye produced progeny that did not exhibit such light-induced retinopathy until gavaged with the artificial chromophore, 9-cis-retinal. No significant ocular accumulation of A2E occurred under these conditions. These results indicate that this acute light-induced retinopathy requires the presence of free all-trans-retinal and not, as generally believed, A2E or other retinoid condensation products. Evidence is presented that the mechanism of toxicity may include plasma membrane permeability and mitochondrial poisoning that lead to caspase activation and mitochondria-associated cell death. These findings further understanding of the mechanisms involved in light-induced retinal degeneration.

  4. Efficient removal of cyclobutane pyrimidine dimers in barley: differential contribution of light-dependent and dark DNA repair pathways.

    PubMed

    Manova, Vasilissa; Georgieva, Ralitsa; Borisov, Borislav; Stoilov, Lubomir

    2016-10-01

    Barley stress response to ultraviolet radiation (UV) has been intensively studied at both the physiological and morphological level. However, the ability of barley genome to repair UV-induced lesions at the DNA level is far less characterized. In this study, we have investigated the relative contribution of light-dependent and dark DNA repair pathways for the efficient elimination of cyclobutane pyrimidine dimers (CPDs) from the genomic DNA of barley leaf seedlings. The transcriptional activity of barley CPD photolyase gene in respect to the light-growth conditions and UV-C irradiation of the plants has also been analyzed. Our results show that CPDs induced in the primary barley leaf at frequencies potentially damaging DNA at the single-gene level are removed efficiently and exclusively by photorepair pathway, whereas dark repair is hardly detectable, even at higher CPD frequency. A decrease of initially induced CPDs under dark is observed but only after prolonged incubation, suggesting the activation of light-independent DNA damage repair and/or tolerance mechanisms. The green barley seedlings possess greater capacity for CPD photorepair than the etiolated ones, with efficiency of CPD removal dependent on the intensity and quality of recovering light. The higher repair rate of CPDs measured in the green leaves correlates with the higher transcriptional activity of barley CPD photolyase gene. Visible light and UV-C radiation affect differentially the expression of CPD photolyase gene particularly in the etiolated leaves. We propose that the CPD repair potential of barley young seedlings may influence their response to UV-stress. © 2016 Scandinavian Plant Physiology Society.

  5. Inactivation of carotenoid-producing and albino strains of Neurospora crassa by visible light, blacklight, and ultraviolet radiation.

    PubMed Central

    Blanc, P L; Tuveson, R W; Sargent, M L

    1976-01-01

    Suspensions of Neurospora crassa conidia were inactivated by blacklight (BL) radiation (300 to 425 nm) in the absence of exogenous photosensitizing compounds. Carotenoid-containing wild-type conidia were less sensitive to BL radiation than albino conidia, showing a dose enhancement factor (DEF) of 1.2 for dose levels resulting in less than 10% survival. The same strains were about equally sensitive to shortwave ultraviolet (UV) inactivation. The kinetics of BL inactivation are similar to those of photodynamic inactivation by visible light in the presence of a photosensitizing dye (methylene blue). Only limited inactivation by visible light in the absence of exogenous photosensitizers was observed. BL and UV inactivations are probably caused by different mechanisms since wild-type conidia are only slightly more resistant to BL radiation (DEF = 1.2 at 1.0% survival) than are conidia from a UV-sensitive strain (upr-1, uvs-3). The BL-induced lethal lesions are probably no cyclobutyl pyrimidine dimers since BL-inactivated Haemophilus influenzae transforming deoxyribonucleic acid is not photoreactivated by N. crassa wild-type enzyme extracts, whereas UV-inactivated transforming deoxyribonucleic acid is photoreactivable with this treatment. PMID:128556

  6. Anti-Photoaging Effect of Jeju Putgyul (Unripe Citrus) Extracts on Human Dermal Fibroblasts and Ultraviolet B-induced Hairless Mouse Skin.

    PubMed

    Choi, Seung-Hyun; Choi, Sun-Il; Jung, Tae-Dong; Cho, Bong-Yeon; Lee, Jin-Ha; Kim, Seung-Hyung; Yoon, Seon-A; Ham, Young-Min; Yoon, Weon-Jong; Cho, Ju-Hyun; Lee, Ok-Hawn

    2017-09-25

    Ultraviolet (UV) radiation stimulates the expression of matrix metalloproteinases (MMPs) and inflammatory cytokines. These signaling pathways participate in the degradation of the extracellular matrix and induce inflammatory responses that lead to photoaging. This study evaluated the antioxidant activity and the effect on MMPs and procollagen of putgyul extract in vitro. The anti-photoaging activity of putgyul extracts was estimated in vivo using hairless mice (HR-1). The putgyul extracts reduced MMP-1 production and increased the content of procollagen type I carboxy-terminal peptide in human dermal fibroblasts. Ultravilot-B (UVB)-induced expression of inflammatory cytokines and MMPs was detected in mice, and putgyul extracts suppressed the expression. These results suggest that putgyul extract inhibits photoaging by inhibiting the expression of MMPs that degrade collagen and inhibiting cytokines that induce inflammatory responses. The mouse model also demonstrated that oral administration of putgyul extracts decreased wrinkle depth, epidermal thickness, collagen degradation, and trans-epidermal water loss, and increased β-glucosidase activity on UVB exposed skin. Putgyul extract protects against UVB-induced damage of skin and could be valuable in the prevention of photoaging.

  7. New GABA modulators protect photoreceptor cells from light-induced degeneration in mouse models.

    PubMed

    Schur, Rebecca M; Gao, Songqi; Yu, Guanping; Chen, Yu; Maeda, Akiko; Palczewski, Krzysztof; Lu, Zheng-Rong

    2018-01-24

    No clinically approved therapies are currently available that prevent the onset of photoreceptor death in retinal degeneration. Signaling between retinal neurons is regulated by the release and uptake of neurotransmitters, wherein GABA is the main inhibitory neurotransmitter. In this work, novel 3-chloropropiophenone derivatives and the clinical anticonvulsants tiagabine and vigabatrin were tested to modulate GABA signaling and protect against light-induced retinal degeneration. Abca4 -/- Rdh8 -/- mice, an accelerated model of retinal degeneration, were exposed to intense light after prophylactic injections of one of these compounds. Imaging and functional assessments of the retina indicated that these compounds successfully protected photoreceptor cells from degeneration to maintain a full-visual-field response. Furthermore, these compounds demonstrated a strong safety profile in wild-type mice and did not compromise visual function or damage the retina, despite repeated administration. These results indicate that modulating inhibitory GABA signaling can offer prophylactic protection against light-induced retinal degeneration.-Schur, R. M., Gao, S., Yu, G., Chen, Y., Maeda, A., Palczewski, K., Lu, Z.-R. New GABA modulators protect photoreceptor cells from light-induced degeneration in mouse models.

  8. Investigation of optical fibers for high-repetition-rate, ultraviolet planar laser-induced fluorescence of OH.

    PubMed

    Hsu, Paul S; Kulatilaka, Waruna D; Roy, Sukesh; Gord, James R

    2013-05-01

    We investigate the fundamental transmission characteristics of nanosecond-duration, 10 kHz repetition rate, ultraviolet (UV) laser pulses through state-of-the-art, UV-grade fused-silica fibers being used for hydroxyl radical (OH) planar laser-induced fluorescence (PLIF) imaging. Studied in particular are laser-induced damage thresholds (LIDTs), nonlinear absorption, and optical transmission stability during long-term UV irradiation. Solarization (photodegradation) effects are significantly enhanced when the fiber is exposed to high-repetition-rate, 283 nm UV irradiation. For 10 kHz laser pulses, two-photon absorption is strong and LIDTs are low, as compared to those of laser pulses propagating at 10 Hz. The fiber characterization results are utilized to perform single-laser-shot, OH-PLIF imaging in pulsating turbulent flames with a laser that operates at 10 kHz. The nearly spatially uniform output beam that exits a long multimode fiber becomes ideal for PLIF measurements. The proof-of-concept measurements show significant promise for extending the application of a fiber-coupled, high-speed OH-PLIF system to harsh environments such as combustor test beds, and potential system improvements are suggested.

  9. In vitro protective effects of an aqueous extract of Clitoria ternatea L. flower against hydrogen peroxide-induced cytotoxicity and UV-induced mtDNA damage in human keratinocytes.

    PubMed

    Zakaria, N N A; Okello, E J; Howes, M-J; Birch-Machin, M A; Bowman, A

    2018-06-01

    The traditional practice of eating the flowers of Clitoria ternatea L. or drinking their infusion as herbal tea in some of the Asian countries is believed to promote a younger skin complexion and defend against skin aging. This study was conducted to investigate the protective effect of C. ternatea flower water extract (CTW) against hydrogen peroxide-induced cytotoxicity and ultraviolet (UV)-induced mitochondrial DNA (mtDNA) damage in human keratinocytes. The protective effect against hydrogen peroxide-induced cytotoxicity was determined by 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay, and mtDNA damage induced by UV was determined by polymerase chain reaction. Preincubation of HaCaT with 100, 250, and 500 μg/ml CTW reduced cytotoxicity effects of H 2 O 2 compared with control (H 2 O 2 alone). CTW also significantly reduced mtDNA damage in UV-exposed HaCaT (p < .05). CTW was chemically-characterized using high resolution liquid chromatography-mass spectrometry. The main compounds detected were assigned as anthocyanins derived from delphinidin, including polyacylated ternatins, and flavonol glycosides derived from quercetin and kaempferol. These results demonstrated the protective effects of C. ternatea flower extracts that contain polyacylated anthocyanins and flavonol glycosides as major constituents, against H 2 O 2 and UV-induced oxidative stress on skin cells, and may provide some explanation for the putative traditional and cosmetic uses of C. ternatea flower against skin aging. Copyright © 2018 John Wiley & Sons, Ltd.

  10. Ba2Mg(BO3)2:Bi3+ - A new phosphor with ultraviolet light emission

    NASA Astrophysics Data System (ADS)

    Lakshminarasimhan, N.; Jayakiruba, S.; Prabhavathi, K.

    2017-10-01

    Ultraviolet light emission was observed in a new Ba2Mg(BO3)2:Bi3+ phosphor. Bi3+ substitution for Ba2+ in the lattice was supplemented with K+ to maintain the charge neutrality. The samples of the formula Ba2-2xBixKxMg(BO3)2 [x = 0, 0.001, 0.01, 0.02, and 0.05] synthesized by solid state reaction were characterized using powder X-ray diffraction for their phase formation. Raman and diffuse reflectance UV-Vis spectroscopic techniques were used to obtain information on the vibrational modes and optical properties, respectively. The room temperature photoluminescence measurements revealed an ultraviolet emission at 370 nm when excited using 304 nm wavelength and the Stokes shift is 5868 cm-1.

  11. Ultraviolet B-Sensitive Rice Cultivar Deficient in Cyclobutyl Pyrimidine Dimer Repair.

    PubMed Central

    Hidema, J.; Kumagai, T.; Sutherland, J. C.; Sutherland, B. M.

    1997-01-01

    Repair of cyclobutyl pyrimidine dimers (CPDs) in DNA is essential in most organisms to prevent biological damage by ultraviolet (UV) light. In higher plants tested thus far, UV-sensitive strains had higher initial damage levels or deficient repair of nondimer DNA lesions but normal CPD repair. This suggested that CPDs might not be important for biological lesions. The photosynthetic apparatus has also been proposed as a critical target. We have analyzed CPD induction and repair in the UV-sensitive rice (Oryza sativa L.) cultivar Norin 1 and its close relative UV-resistant Sasanishiki using alkaline agarose gel electrophoresis. Norin 1 is deficient in cyclobutyl pyrimidine dimer photoreactivation and excision; thus, UV sensitivity correlates with deficient dimer repair. PMID:12223592

  12. REPRESSOR OF ULTRAVIOLET-B PHOTOMORPHOGENESIS function allows efficient phototropin mediated ultraviolet-B phototropism in etiolated seedlings.

    PubMed

    Vanhaelewyn, Lucas; Schumacher, Paolo; Poelman, Dirk; Fankhauser, Christian; Van Der Straeten, Dominique; Vandenbussche, Filip

    2016-11-01

    Ultraviolet B (UV-B) light is a part of the solar radiation which has significant effects on plant morphology, even at low doses. In Arabidopsis, many of these morphological changes have been attributed to a specific UV-B receptor, UV resistance locus 8 (UVR8). Recent findings showed that next to phototropin regulated phototropism, UVR8 mediated signaling is able of inducing directional bending towards UV-B light in etiolated seedlings of Arabidopsis, in a phototropin independent manner. In this study, kinetic analysis of phototropic bending was used to evaluate the relative contribution of each of these pathways in UV-B mediated phototropism. Diminishing UV-B light intensity favors the importance of phototropins. Molecular and genetic analyses suggest that UV-B is capable of inducing phototropin signaling relying on phototropin kinase activity and regulation of NPH3. Moreover, enhanced UVR8 responses in the UV-B hypersensitive rup1rup2 mutants interferes with the fast phototropin mediated phototropism. Together the data suggest that phototropins are the most important receptors for UV-B induced phototropism in etiolated seedlings, and a RUP mediated negative feedback pathway prevents UVR8 signaling to interfere with the phototropin dependent response. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Synthesis and characterization of attosecond light vortices in the extreme ultraviolet

    PubMed Central

    Géneaux, R.; Camper, A.; Auguste, T.; Gobert, O.; Caillat, J.; Taïeb, R.; Ruchon, T.

    2016-01-01

    Infrared and visible light beams carrying orbital angular momentum (OAM) are currently thoroughly studied for their extremely broad applicative prospects, among which are quantum information, micromachining and diagnostic tools. Here we extend these prospects, presenting a comprehensive study for the synthesis and full characterization of optical vortices carrying OAM in the extreme ultraviolet (XUV) domain. We confirm the upconversion rules of a femtosecond infrared helically phased beam into its high-order harmonics, showing that each harmonic order carries the total number of OAM units absorbed in the process up to very high orders (57). This allows us to synthesize and characterize helically shaped XUV trains of attosecond pulses. To demonstrate a typical use of these new XUV light beams, we show our ability to generate and control, through photoionization, attosecond electron beams carrying OAM. These breakthroughs pave the route for the study of a series of fundamental phenomena and the development of new ultrafast diagnosis tools using either photonic or electronic vortices. PMID:27573787

  14. Exciplex formation and electroluminescent absorption in ultraviolet organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Zhang, Hao; Zhang, Xiao-Wen; Xu, Tao; Wei, Bin

    2015-02-01

    We investigated the formation of exciplex and electroluminescent absorption in ultraviolet organic light-emitting diodes (UV OLEDs) using different heterojunction structures. It is found that an energy barrier of over 0.3 eV between the emissive layer (EML) and adjacent transport layer facilitates exciplex formation. The electron blocking layer effectively confines electrons in the EML, which contributes to pure UV emission and enhances efficiency. The change in EML thickness generates tunable UV emission from 376 nm to 406 nm. In addition, the UV emission excites low-energy organic function layers and produces photoluminescent emission. In UV OLED, avoiding the exciplex formation and averting light absorption can effectively improve the purity and efficiency. A maximum external quantum efficiency of 1.2% with a UV emission peak of 376 nm is realized. Project supported by the National Natural Science Foundation of China (Grant Nos. 61136003 and 61275041) and the Guangxi Provincial Natural Science Foundation, China (Grant No. 2012GXNSFBA053168).

  15. Effect of 60-Hz magnetic fields on ultraviolet light-induced mutation and mitotic recombination in Saccharomyces cerevisiae.

    PubMed

    Ager, D D; Radul, J A

    1992-12-01

    The purpose of this study was to examine the effect of extremely low frequency (ELF) magnetic fields on the induction of genetic damage. In general, mutational studies involving ELF magnetic fields have proven negative. However, studies examining sister-chromatid exchange and chromosome aberrations have yielded conflicting results. In this study, we have examined whether 60-Hz magnetic fields are capable of inducing mutation or mitotic recombination in the yeast Saccharomyces cerevisiae. In addition we determined whether magnetic fields were capable of altering the genetic response of S. cerevisiae to UV (254 nm). We measured the frequencies of induced mutation, gene conversion and reciprocal mitotic crossing-over for exposures to magnetic fields alone (1 mT) or in combination with various UV exposures (2-50 J/m2). These experiments were performed using a repair-proficient strain (RAD+), as well as a strain of yeast (rad3) which is incapable of excising UV-induced thymine dimers. Magnetic field exposures did not induce mutation, gene conversion or reciprocal mitotic crossing-over in either of these strains, nor did the fields influence the frequencies of UV-induced genetic events.

  16. BMAL1 and CLOCK proteins in regulating UVB-induced apoptosis and DNA damage responses in human keratinocytes.

    PubMed

    Sun, Yang; Wang, Peiling; Li, Hongyu; Dai, Jun

    2018-06-26

    A diverse array of biological processes are under circadian controls. In mouse skin, ultraviolet ray (UVR)-induced apoptosis and DNA damage responses are time-of-day dependent, which are controlled by core clock proteins. This study investigates the roles of clock proteins in regulating UVB responses in human keratinocytes (HKCs). We found that the messenger RNA expression of brain and muscle ARNT-like 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) genes is altered by low doses (5 mJ/cm 2 ) of UVB in the immortalized HaCat HKCs cell line. Although depletion of BMAL1 or CLOCK has no effect on the activation of Rad3-related protein kinases-checkpoint kinase 1-p53 mediated DNA damage checkpoints, it leads to suppression of UVB-stimulated apoptotic responses, and downregulation of UVB-elevated expression of DNA damage marker γ-H2AX and cell cycle inhibitor p21. Diminished apoptotic responses are also observed in primary HKCs depleted of BMAL1 or CLOCK after UVB irradiation. While CLOCK depletion shows a suppressive effect on UVB-induced p53 protein accumulation, depletion of either clock gene triggers early keratinocyte differentiation of HKCs at their steady state. These results suggest that UVB-induced apoptosis and DNA damage responses are controlled by clock proteins, but via different mechanisms in the immortalized human adult low calcium temperature and primary HKCs. Given the implication of UVB in photoaging and photocarcinogenesis, mechanistic elucidation of circadian controls on UVB effects in human skin will be critical and beneficial for prevention and treatment of skin cancers and other skin-related diseases. © 2018 Wiley Periodicals, Inc.

  17. Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp

    NASA Astrophysics Data System (ADS)

    Muramoto, Yoshihiko; Kimura, Masahiro; Nouda, Suguru

    2014-06-01

    Ultraviolet light-emitting diodes (UV-LEDs) have started replacing UV lamps. The power per LED of high-power LED products has reached 12 W (14 A), which is 100 times the values observed ten years ago. In addition, the cost of these high-power LEDs has been decreasing. In this study, we attempt to understand the technologies and potential of UV-LEDs.

  18. Ultraviolet-Induced Decrease in Integration of Haemophilus influenzae Transforming Deoxyribonucleic Acid in Sensitive and Resistant Cells

    PubMed Central

    Muhammed, Amir; Setlow, Jane K.

    1970-01-01

    The decrease in integration of transforming deoxyribonucleic acid (DNA) caused by ultraviolet irradiation of the DNA was found to be independent of the presence or absence of excision repair in the recipient cell. Much of the ultraviolet-induced inhibition of integration resulted from the presence in the transforming DNA of pyrimidine dimers, as judged by the photoreactivability of the inhibition with yeast photoreactivating enzyme. The inhibition of integration made only a small contribution to the inactivation of transforming ability of the DNA by ultraviolet radiation. PMID:5308769

  19. Optical control of filamentation-induced damage to DNA by intense, ultrashort, near-infrared laser pulses

    PubMed Central

    Dharmadhikari, J. A.; Dharmadhikari, A. K.; Kasuba, K. C.; Bharambe, H.; D’Souza, J. S.; Rathod, K. D.; Mathur, D.

    2016-01-01

    We report on damage to DNA in an aqueous medium induced by ultrashort pulses of intense laser light of 800 nm wavelength. Focusing of such pulses, using lenses of various focal lengths, induces plasma formation within the aqueous medium. Such plasma can have a spatial extent that is far in excess of the Rayleigh range. In the case of water, the resulting ionization and dissociation gives rise to in situ generation of low-energy electrons and OH-radicals. Interactions of these with plasmid DNA produce nicks in the DNA backbone: single strand breaks (SSBs) are induced as are, at higher laser intensities, double strand breaks (DSBs). Under physiological conditions, the latter are not readily amenable to repair. Systematic quantification of SSBs and DSBs at different values of incident laser energy and under different external focusing conditions reveals that damage occurs in two distinct regimes. Numerical aperture is the experimental handle that delineates the two regimes, permitting simple optical control over the extent of DNA damage. PMID:27279565

  20. Ultraviolet laser beam monitor using radiation responsive crystals

    DOEpatents

    McCann, Michael P.; Chen, Chung H.

    1988-01-01

    An apparatus and method for monitoring an ultraviolet laser beam includes disposing in the path of an ultraviolet laser beam a substantially transparent crystal that will produce a color pattern in response to ultraviolet radiation. The crystal is exposed to the ultraviolet laser beam and a color pattern is produced within the crystal corresponding to the laser beam intensity distribution therein. The crystal is then exposed to visible light, and the color pattern is observed by means of the visible light to determine the characteristics of the laser beam that passed through crystal. In this manner, a perpendicular cross sectional intensity profile and a longitudinal intensity profile of the ultraviolet laser beam may be determined. The observation of the color pattern may be made with forward or back scattered light and may be made with the naked eye or with optical systems such as microscopes and television cameras.

  1. Light-Induced Acclimation of the Arabidopsis chlorina1 Mutant to Singlet Oxygen[C][W

    PubMed Central

    Ramel, Fanny; Ksas, Brigitte; Akkari, Elsy; Mialoundama, Alexis S.; Monnet, Fabien; Krieger-Liszkay, Anja; Ravanat, Jean-Luc; Mueller, Martin J.; Bouvier, Florence; Havaux, Michel

    2013-01-01

    Singlet oxygen (1O2) is a reactive oxygen species that can function as a stress signal in plant leaves leading to programmed cell death. In microalgae, 1O2-induced transcriptomic changes result in acclimation to 1O2. Here, using a chlorophyll b–less Arabidopsis thaliana mutant (chlorina1 [ch1]), we show that this phenomenon can also occur in vascular plants. The ch1 mutant is highly photosensitive due to a selective increase in the release of 1O2 by photosystem II. Under photooxidative stress conditions, the gene expression profile of ch1 mutant leaves very much resembled the gene responses to 1O2 reported in the Arabidopsis mutant flu. Preexposure of ch1 plants to moderately elevated light intensities eliminated photooxidative damage without suppressing 1O2 formation, indicating acclimation to 1O2. Substantial differences in gene expression were observed between acclimation and high-light stress: A number of transcription factors were selectively induced by acclimation, and contrasting effects were observed for the jasmonate pathway. Jasmonate biosynthesis was strongly induced in ch1 mutant plants under high-light stress and was noticeably repressed under acclimation conditions, suggesting the involvement of this hormone in 1O2-induced cell death. This was confirmed by the decreased tolerance to photooxidative damage of jasmonate-treated ch1 plants and by the increased tolerance of the jasmonate-deficient mutant delayed-dehiscence2. PMID:23590883

  2. Role of Caspase-3 in acute light damage to retina of rats.

    PubMed

    Wang, Xiao; Hu, Shi-Xing; Li, Wei; Lin, Shao-Chun

    2007-03-01

    To investigate the role of Caspase-3 in retinal damage caused by light exposure in rats. Light injury to retina was induced by persistent exposure to illumination (intensity: 30 000 +/- 50 lux) of operating microscope for 30 minutes in the right eyes of Sprague-Dawley rats. The pathological changes of retina were observed under optical and electron microscopies at different time points, which were 6 hours, 1, 3, 7, and 15 days after the light exposure. Apoptosis of retinal cells was analyzed by flow cytometry. The activity of Caspase-3 was evaluated by using the Caspase-3 assay kit. At the same time, the expression of Caspase-3 protease was determined with Western blot analysis. The examination results of optical and transmission electron microscopes showed that edema of inner and outer segments of the retina, especially the chondriosome inside the inner segment, became obvious 6 hours after the light exposure. The change was deteriorated along with the increasing time. The structures of the discoidal valve dissociated in the outer segment simultaneously. Disorderly arranged nuclei, karyopycnosis, and thinning in the outer nuclear layer were observed. The retinal pigment epithelium almost disappeared during the later stage. The staining results of Annexin-V combined with PI demonstrated that the proportion of apoptotic cells increased with time. The proportion between 7th day (82.7%) and 15th day (80.4%), however, showed no significant difference. Caspase-3 became remarkably active with the lapse of time, which increased from 0.02 at 6th hour to the peak of 9.8 at 7th day before it started to descend. The Western blot detected a expression of the active form of Caspase-3 at 7th day and 15th day. Apoptosis of photoreceptor cells is markedly involved in the light damage and Caspase-3 protease may play an important role in the apoptotic process of the retina after light exposure in rats.

  3. Ultraviolet electroluminescence from zinc oxide nanorods/deoxyribonucleic acid hybrid bio light-emitting diode

    NASA Astrophysics Data System (ADS)

    Gupta, Rohini Bhardwaj; Nagpal, Swati; Arora, Swati; Bhatnagar, Pramod Kumar; Mathur, Parmatma Chandra

    2011-01-01

    Ultraviolet (UV) light-emitting diode using salmon deoxyribonucleic acid (sDNA)-cetyltrimethylammonium complex as an electron blocking layer and zinc oxide (ZnO) nanorods as emissive material was fabricated. UV emission, which was blue shifted up to 335 nm with respect to the band edge emission of 390 nm, was observed. This blue shift was caused due to accumulation of electrons in the conduction band of ZnO because of a high potential barrier existing at the sDNA/ZnO interface.

  4. STEREO's Extreme UltraViolet Imager (EUVI)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    At a pixel resolution of 2048x2048, the STEREO EUVI instrument provides views of the Sun in ultraviolet light that rivals the full-disk views of SOHO/EIT. This image is through the 171 Angstrom (ultraviolet) filter which is characteristic of iron ions (missing eight and nine electrons) at 1 million degrees. There is a short data gap in the latter half of the movie that creates a freeze and then jump in the data view. This is a movie of the Sun in 171 Angstrom ultraviolet light. The time frame is late January, 2007

  5. The ultraviolet variations of iota Cas

    NASA Technical Reports Server (NTRS)

    Molnar, M. R.; Mallama, A. D.; Soskey, D. G.; Holm, A. V.

    1976-01-01

    The Ap variable star iota Cas was observed with the photometers on OAO-2 covering the spectral range 1430-4250 A. The ultraviolet light curves show a double wave with primary minimum and maximum at phase ? 0.00 and 0.35, respectively. Secondary minimum light is at phase ? 0.65 with secondary maximum at phase ? 0.85. The light curves longward of 3150 A vary in opposition to those shortward of this 'null region'. Ground-based coude spectra show that the Fe II and Cr II line strengths have a double-wave variation such that maximum strength occurs at minimum ultraviolet light. We suggest that the strong ultraviolet opacities due to photoionization and line blanketing by these metals may cause the observed photometric variations. We have also constructed an oblique-rotator model which shows iron and chromium lying in a great circle band rather than in circular spots.

  6. Effect of ultraviolet light on water- and fat-soluble vitamins in cow and goat milk.

    PubMed

    Guneser, O; Karagul Yuceer, Y

    2012-11-01

    The objective of this study was to investigate and compare the effects of UV light and heat treatment on vitamins A, B(2), C, and E in cow and goat milk. Vitamins were analyzed by reverse-phase high-pressure liquid chromatography. Ultraviolet and pasteurization treatments caused loss in vitamin C in milk. Pasteurization did not have any significant effect on vitamin B(2). However, UV light treatment decreased the amount of vitamin B(2) after several passes of milk through the UV system. In addition, UV light treatment decreased the amount of vitamins A and E. Vitamins C and E are more sensitive to UV light. UV light sensitivities of vitamins were C>E>A>B(2). These results show that UV light treatment decreases the vitamin content in milk. Also, the number of passes through the UV system and the initial amount of vitamins in milk are important factors affecting vitamin levels. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Lemon balm extract (Melissa officinalis, L.) promotes melanogenesis and prevents UVB-induced oxidative stress and DNA damage in a skin cell model.

    PubMed

    Pérez-Sánchez, Almudena; Barrajón-Catalán, Enrique; Herranz-López, María; Castillo, Julián; Micol, Vicente

    2016-11-01

    Solar ultraviolet (UV) radiation is one of the main causes of a variety of cutaneous disorders, including photoaging and skin cancer. Its UVB component (280-315nm) leads to oxidative stress and causes inflammation, DNA damage, p53 induction and lipid and protein oxidation. Recently, an increase in the use of plant polyphenols with antioxidant and anti-inflammatory properties has emerged to protect human skin against the deleterious effects of sunlight. This study evaluates the protective effects of lemon balm extract (LBE) (Melissa Officinalis, L) and its main phenolic compound rosmarinic acid (RA) against UVB-induced damage in human keratinocytes. The LBE composition was determined by HPLC analysis coupled to photodiode array detector and ion trap mass spectrometry with electrospray ionization (HPLC-DAD-ESI-IT-MS/MS). Cell survival, ROS generation and DNA damage were determined upon UVB irradiation in the presence of LBE. The melanogenic capacity of LBE was also determined. RA and salvianolic acid derivatives were the major compounds, but caffeic acid and luteolin glucuronide were also found in LBE. LBE and RA significantly increased the survival of human keratinocytes upon UVB radiation, but LBE showed a stronger effect. LBE significantly decreased UVB-induced intracellular ROS production. Moreover, LBE reduced UV-induced DNA damage and the DNA damage response (DDR), which were measured as DNA strand breaks in the comet assay and histone H2AX activation, respectively. Finally, LBE promoted melanogenesis in the cell model. These results suggest that LBE may be considered as a candidate for the development of oral/topical photoprotective ingredients against UVB-induced skin damage. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Protective effect of rare earth against oxidative stress under ultraviolet-B radiation.

    PubMed

    Wang, Lihong; Huang, Xiaohua; Zhou, Qing

    2009-04-01

    The effects of lanthanum (III) (La(III)) in protecting soybean leaves against oxidative stress induced by ultraviolet-B (UV-B) radiation were investigated. The increase in contents of hydrogen peroxide (H(2)O(2)) and superoxide (O2*-) due to UV-B radiation suggested oxidative stress. The increase in the content of malondialdehyde (MDA) and the decrease in the index of unsaturated fatty acid (IUFA) indicated oxidative damage on cell membrane induced by UV-B radiation. La(III) partially reversed UV-B-radiation-induced damage of plant growth. The reduction in the contents of H(2)O(2), O2*-, and MDA and increase in the content of IUFA, compared with UV-B treatment, also indicated that La(III) alleviated the oxidative damage induced by UV-B radiation. The increase in the activities of superoxide dismutase and peroxidase and the contents of ascorbate, carotenoids, and flavonoids were observed in soybean leaves with La(III) + UV-B treatment, compared with UV-B treatment. Our data suggested that La(III) could protect soybean plants from UV-B-radiation-induced oxidative stress by reacting with reactive oxygen species directly or by improving the defense system of plants.

  9. Blue Light and Ultraviolet Radiation Exposure from Infant Phototherapy Equipment.

    PubMed

    Pinto, Iole; Bogi, Andrea; Picciolo, Francesco; Stacchini, Nicola; Buonocore, Giuseppe; Bellieni, Carlo V

    2015-01-01

    Phototherapy is the use of light for reducing the concentration of bilirubin in the body of infants. Although it has become a mainstay since its introduction in 1958, a better understanding of the efficacy and safety of phototherapy applications seems to be necessary for improved clinical practices and outcomes. This study was initiated to evaluate workers' exposure to Optical Radiation from different types of phototherapy devices in clinical use in Italy. During infant phototherapy the staff monitors babies periodically for around 10 min every hour, and fixation of the phototherapy beam light frequently occurs: almost all operators work within 30 cm of the phototherapy source during monitoring procedures, with most of them commonly working at ≤25 cm from the direct or reflected radiation beam. The results of this study suggest that there is a great variability in the spectral emission of equipments investigated, depending on the types of lamps used and some phototherapy equipment exposes operators to blue light photochemical retinal hazard. Some of the equipment investigated presents relevant spectral emission also in the UVA region. Taking into account that the exposure to UV in childhood has been established as an important contributing factor for melanoma risk in adults and considering the high susceptibility to UV-induced skin damage of the newborn, related to his pigmentary traits, the UV exposure of the infant during phototherapy should be "as low as reasonably achievable," considering that it is unnecessary to the therapy. It is recommended that special safety training be provided for the affected employees: in particular, protective eyewear can be necessary during newborn assistance activities carried out in proximity of some sources. The engineering design of phototherapy equipment can be optimized. Specific requirements for photobiological safety of lamps used in the phototherapy equipment should be defined in the safety product standard for such

  10. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma

    NASA Astrophysics Data System (ADS)

    Bald, Tobias; Quast, Thomas; Landsberg, Jennifer; Rogava, Meri; Glodde, Nicole; Lopez-Ramos, Dorys; Kohlmeyer, Judith; Riesenberg, Stefanie; van den Boorn-Konijnenberg, Debby; Hömig-Hölzel, Cornelia; Reuten, Raphael; Schadow, Benjamin; Weighardt, Heike; Wenzel, Daniela; Helfrich, Iris; Schadendorf, Dirk; Bloch, Wilhelm; Bianchi, Marco E.; Lugassy, Claire; Barnhill, Raymond L.; Koch, Manuel; Fleischmann, Bernd K.; Förster, Irmgard; Kastenmüller, Wolfgang; Kolanus, Waldemar; Hölzel, Michael; Gaffal, Evelyn; Tüting, Thomas

    2014-03-01

    Intermittent intense ultraviolet (UV) exposure represents an important aetiological factor in the development of malignant melanoma. The ability of UV radiation to cause tumour-initiating DNA mutations in melanocytes is now firmly established, but how the microenvironmental effects of UV radiation influence melanoma pathogenesis is not fully understood. Here we report that repetitive UV exposure of primary cutaneous melanomas in a genetically engineered mouse model promotes metastatic progression, independent of its tumour-initiating effects. UV irradiation enhanced the expansion of tumour cells along abluminal blood vessel surfaces and increased the number of lung metastases. This effect depended on the recruitment and activation of neutrophils, initiated by the release of high mobility group box 1 (HMGB1) from UV-damaged epidermal keratinocytes and driven by Toll-like receptor 4 (TLR4). The UV-induced neutrophilic inflammatory response stimulated angiogenesis and promoted the ability of melanoma cells to migrate towards endothelial cells and use selective motility cues on their surfaces. Our results not only reveal how UV irradiation of epidermal keratinocytes is sensed by the innate immune system, but also show that the resulting inflammatory response catalyses reciprocal melanoma-endothelial cell interactions leading to perivascular invasion, a phenomenon originally described as angiotropism in human melanomas by histopathologists. Angiotropism represents a hitherto underappreciated mechanism of metastasis that also increases the likelihood of intravasation and haematogenous dissemination. Consistent with our findings, ulcerated primary human melanomas with abundant neutrophils and reactive angiogenesis frequently show angiotropism and a high risk for metastases. Our work indicates that targeting the inflammation-induced phenotypic plasticity of melanoma cells and their association with endothelial cells represent rational strategies to specifically interfere

  11. Faster DNA Repair of Ultraviolet-Induced Cyclobutane Pyrimidine Dimers and Lower Sensitivity to Apoptosis in Human Corneal Epithelial Cells than in Epidermal Keratinocytes

    PubMed Central

    Mallet, Justin D.; Bastien, Nathalie; Gendron, Sébastien P.; Rochette, Patrick J.

    2016-01-01

    Absorption of UV rays by DNA generates the formation of mutagenic cyclobutane pyrimidine dimers (CPD) and pyrimidine (6–4) pyrimidone photoproducts (6-4PP). These damages are the major cause of skin cancer because in turn, they can lead to signature UV mutations. The eye is exposed to UV light, but the cornea is orders of magnitude less prone to UV-induced cancer. In an attempt to shed light on this paradox, we compared cells of the corneal epithelium and the epidermis for UVB-induced DNA damage frequency, repair and cell death sensitivity. We found similar CPD levels but a 4-time faster UVB-induced CPD, but not 6-4PP, repair and lower UV-induced apoptosis sensitivity in corneal epithelial cells than epidermal. We then investigated levels of DDB2, a UV-induced DNA damage recognition protein mostly impacting CPD repair, XPC, essential for the repair of both CPD and 6-4PP and p53 a protein upstream of the genotoxic stress response. We found more DDB2, XPC and p53 in corneal epithelial cells than in epidermal cells. According to our results analyzing the protein stability of DDB2 and XPC, the higher level of DDB2 and XPC in corneal epithelial cells is most likely due to an increased stability of the protein. Taken together, our results show that corneal epithelial cells have a better efficiency to repair UV-induced mutagenic CPD. On the other hand, they are less prone to UV-induced apoptosis, which could be related to the fact that since the repair is more efficient in the HCEC, the need to eliminate highly damaged cells by apoptosis is reduced. PMID:27611318

  12. Engineered Defects for Investigation of Laser-Induced Damage of Fused Silica at 355nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamza, A V; Siekhaus, W J; Rubenchik, A M

    2001-12-18

    Embedded gold and mechanical deformation in silica were used to investigate initiation of laser-induced damage at 3.55-nm (7.6 ns). The nanoparticle-covered surfaces were coated with between 0 and 500 nm of SiO{sub 2} by e-beam deposition. The threshold for observable damage and initiation site morphology for these ''engineered'' surfaces was determined. The gold nanoparticle coated surfaces with 500nm SiO{sub 2} coating exhibited pinpoint damage threshold of <0.7 J/cm{sup 2} determined by light scattering and Nomarski microscopy. The gold nanoparticle coated surfaces with the 100nm SiO{sub 2} coatings exhibited what nominally appeared to be film exfoliation damage threshold of 19 J/cm{supmore » 2} via light scattering and Nomarski microscopy. With atomic force microscopy pinholes could be detected at fluences greater than 7 J/cm{sup 2} and blisters at fluences greater than 3 J/cm{sup 2} on the 100 nm-coated surfaces. A series of mechanical indents and scratches were made in the fused silica substrates using a nano-indentor. Plastic deformation without cracking led to damage thresholds of -25 J/cm{sup 2}, whereas indents and scratches with cracking led to damage thresholds of only {approx}5 J/cm{sup 2}. Particularly illuminating was the deterministic damage of scratches at the deepest end of the scratch, as if the scratch acted as a waveguide.« less

  13. Heavy Mg-doping of (Al,Ga)N films for potential applications in deep ultraviolet light-emitting structures

    NASA Astrophysics Data System (ADS)

    Liang, Y. H.; Towe, E.

    2018-03-01

    Doping of high aluminum-containing (Al,Ga)N thin films has remained a challenging problem that has hindered progress in the development of deep ultraviolet light-emitters. This paper reports on the synthesis and use of heavily doped (Al,Ga)N films in deep ultraviolet (˜274 nm) light-emitting structures; these structures were synthesized by molecular beam epitaxy under liquid-metal growth conditions that facilitate the incorporation of extremely high density of Mg dopant impurities (up to 5 × 1019 cm-3) into aluminum-rich (Al,Ga)N thin films. Prototypical light-emitting diode structures incorporating Al0.7Ga0.3N films doped with Mg impurities that ionize to give free hole carrier concentrations of up to 6 × 1017 cm-3 exhibit external quantum efficiencies of up 0.56%; this is an improvement from previous devices made from molecular beam epitaxy-grown materials. This improvement is believed to be due to the high hole carrier concentration enabled by the relatively low activation energy of 220 meV compared to the expected values of 408-507 meV for Al0.7Ga0.3N films.

  14. Determining the Location of DNA Modification and Mutation Caused by UVB Light in Skin Cancer

    DTIC Science & Technology

    2014-09-01

    14 Appendices……………………………………………………………………………14 2 Introduction Ultraviolet ( UV ) light damages skin cells by causing the formation of...dimers on adjacent pyrimidines in DNA. The two main forms of damage caused by UV light are cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6...caused by UV damage in tumor suppressor genes such as p53 have been found in the majority of skin cancers. Many studies have focused on these and

  15. Nrf2 protects photoreceptor cells from photo-oxidative stress induced by blue light.

    PubMed

    Chen, Wan-Ju; Wu, Caiying; Xu, Zhenhua; Kuse, Yoshiki; Hara, Hideaki; Duh, Elia J

    2017-01-01

    Oxidative stress plays a key role in age-related macular degeneration and hereditary retinal degenerations. Light damage in rodents has been used extensively to model oxidative stress-induced photoreceptor degeneration, and photo-oxidative injury from blue light is particularly damaging to photoreceptors. The endogenous factors protecting photoreceptors from oxidative stress, including photo-oxidative stress, are continuing to be elucidated. In this study, we evaluated the effect of blue light exposure on photoreceptors and its relationship to Nrf2 using cultured murine photoreceptor (661W) cells. 661W cells were exposed to blue light at 2500 lux. Exposure to blue light for 6-24 h resulted in a significant increase in intracellular reactive oxygen species (ROS) and death of 661W cells in a time-dependent fashion. Blue light exposure resulted in activation of Nrf2, as indicated by an increase in nuclear translocation of Nrf2. This was associated with a significant induction of expression of Nrf2 as well as an array of Nrf2 target genes, including antioxidant genes, as indicated by quantitative reverse transcription PCR (qRT-PCR). In order to determine the functional role of Nrf2, siRNA-mediated knockdown studies were performed. Nrf2-knockdown in 661W cells resulted in significant exacerbation of blue light-induced reactive oxygen species levels as well as cell death. Taken together, these findings indicate that Nrf2 is an important endogenous protective factor against oxidative stress in photoreceptor cells. This suggests that drugs targeting Nrf2 could be considered as a neuroprotective strategy for photoreceptors in AMD and other retinal conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Tunnel-injected sub-260 nm ultraviolet light emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih; Bajaj, Sanyam; Allerman, Andrew A.; Moseley, Michael W.; Armstrong, Andrew M.; Rajan, Siddharth

    2017-05-01

    We report on tunnel-injected deep ultraviolet light emitting diodes (UV LEDs) configured with a polarization engineered Al0.75Ga0.25 N/In0.2Ga0.8 N tunnel junction structure. Tunnel-injected UV LED structure enables n-type contacts for both bottom and top contact layers. However, achieving Ohmic contact to wide bandgap n-AlGaN layers is challenging and typically requires high temperature contact metal annealing. In this work, we adopted a compositionally graded top contact layer for non-alloyed metal contact and obtained a low contact resistance of ρc = 4.8 × 10-5 Ω cm2 on n-Al0.75Ga0.25 N. We also observed a significant reduction in the forward operation voltage from 30.9 V to 19.2 V at 1 kA/cm2 by increasing the Mg doping concentration from 6.2 × 1018 cm-3 to 1.5 × 1019 cm-3. Non-equilibrium hole injection into wide bandgap Al0.75Ga0.25 N with Eg>5.2 eV was confirmed by light emission at 257 nm. This work demonstrates the feasibility of tunneling hole injection into deep UV LEDs and provides a structural design towards high power deep-UV emitters.

  17. Laboratory measurement of the absorption coefficient of riboflavin for ultraviolet light (365 nm).

    PubMed

    Iseli, Hans Peter; Popp, Max; Seiler, Theo; Spoerl, Eberhard; Mrochen, Michael

    2011-03-01

    Corneal cross-linking (CXL) is an increasingly used treatment technique for stabilizing the cornea in keratoconus. Cross-linking (polymerization) between collagen fibrils is induced by riboflavin (vitamin B2) and ultraviolet light (365 nm). Although reported to reach a constant value at higher riboflavin concentrations, the Lambert-Beer law predicts a linear increase in the absorption coefficient. This work was carried out to determine absorption behavior at different riboflavin concentrations and to further investigate the purported plateau absorption coefficient value of riboflavin and to identify possible bleaching effects. The Lambert-Beer law was used to calculate the absorption coefficient at various riboflavin concentrations. The following investigated concentrations of riboflavin solutions were prepared using a mixture of 0.5% riboflavin and 20% Dextran T500 dissolved in 0.9% sodium chloride solution: 0%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.08%, 0.1%, 0.2%, 0.3%, 0.4%, and 0.5%, and were investigated with and without aperture plate implementation. An additional test series measured the transmitted power at selected riboflavin concentrations over time. In diluted solutions, a linear correlation exists between the absorption coefficient and riboflavin concentration. The absorption coefficient reaches a plateau, but this occurs at a higher riboflavin concentration (0.1%) than previously reported (just above 0.04%). Transmitted light power increases over time, indicating a bleaching effect of riboflavin. The riboflavin concentration can be effectively varied as a treatment parameter in a considerably broader range than previously thought. Copyright 2011, SLACK Incorporated.

  18. Ultraviolet Extensions

    NASA Image and Video Library

    2008-04-16

    This ultraviolet image from NASA Galaxy Evolution Explorer shows the Southern Pinwheel galaxy, also know as Messier 83 or M83. It is located 15 million light-years away in the southern constellation Hydra.

  19. Hypoxic preconditioning protects photoreceptors against light damage independently of hypoxia inducible transcription factors in rods.

    PubMed

    Kast, Brigitte; Schori, Christian; Grimm, Christian

    2016-05-01

    Hypoxic preconditioning protects photoreceptors against light-induced degeneration preserving retinal morphology and function. Although hypoxia inducible transcription factors 1 and 2 (HIF1, HIF2) are the main regulators of the hypoxic response, photoreceptor protection does not depend on HIF1 in rods. Here we used rod-specific Hif2a single and Hif1a;Hif2a double knockout mice to investigate the potential involvement of HIF2 in rods for protection after hypoxic preconditioning. To identify potential HIF2 target genes in rods we determined the retinal transcriptome of hypoxic control and rod-specific Hif2a knockouts by RNA sequencing. We show that rods do not need HIF2 for hypoxia-induced increased survival after light exposure. The transcriptomic analysis revealed a number of genes that are potentially regulated by HIF2 in rods; among those were Htra1, Timp3 and Hmox1, candidates that are interesting due to their connection to human degenerative diseases of the retina. We conclude that neither HIF1 nor HIF2 are required in photoreceptors for protection by hypoxic preconditioning. We hypothesize that HIF transcription factors may be needed in other cells to produce protective factors acting in a paracrine fashion on photoreceptor cells. Alternatively, hypoxic preconditioning induces a rod-intrinsic response that is independent of HIF transcription factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Photon extraction from nitride ultraviolet light-emitting devices

    DOEpatents

    Schowalter, Leo J; Chen, Jianfeng; Grandusky, James R

    2015-02-24

    In various embodiments, a rigid lens is attached to a light-emitting semiconductor die via a layer of encapsulant having a thickness insufficient to prevent propagation of thermal expansion mismatch-induced strain between the rigid lens and the semiconductor die.

  1. Recruitment of TRF2 to laser-induced DNA damage sites.

    PubMed

    Huda, Nazmul; Abe, Satoshi; Gu, Ling; Mendonca, Marc S; Mohanty, Samarendra; Gilley, David

    2012-09-01

    Several lines of evidence suggest that the telomere-associated protein TRF2 plays critical roles in the DNA damage response. TRF2 is rapidly and transiently phosphorylated by an ATM-dependent pathway in response to DNA damage and this DNA damage-induced phosphoryation is essential for the DNA-PK-dependent pathway of DNA double-strand break repair (DSB). However, the type of DNA damage that induces TRF2 localization to the damage sites, the requirement for DNA damage-induced phosphorylation of TRF2 for its recruitment, as well as the detailed kinetics of TRF2 accumulation at DNA damage sites have not been fully investigated. In order to address these questions, we used an ultrafast femtosecond multiphoton laser and a continuous wave 405-nm single photon laser to induce DNA damage at defined nuclear locations. Our results showed that DNA damage produced by a femtosecond multiphoton laser was sufficient for localization of TRF2 to these DNA damage sites. We also demonstrate that ectopically expressed TRF2 was recruited to DNA lesions created by a 405-nm laser. Our data suggest that ATM and DNA-PKcs kinases are not required for TRF2 localization to DNA damage sites. Furthermore, we found that phosphorylation of TRF2 at residue T188 was not essential for its recruitment to laser-induced DNA damage sites. Thus, we provide further evidence that a protein known to function in telomere maintenance, TRF2, is recruited to sites of DNA damage and plays critical roles in the DNA damage response. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Deep Ultraviolet Light Emitters Based on (Al,Ga)N/GaN Semiconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Liang, Yu-Han

    Deep ultraviolet (UV) light sources are useful in a number of applications that include sterilization, medical diagnostics, as well as chemical and biological identification. However, state-of-the-art deep UV light-emitting diodes and lasers made from semiconductors still suffer from low external quantum efficiency and low output powers. These limitations make them costly and ineffective in a wide range of applications. Deep UV sources such as lasers that currently exist are prohibitively bulky, complicated, and expensive. This is typically because they are constituted of an assemblage of two to three other lasers in tandem to facilitate sequential harmonic generation that ultimately results in the desired deep UV wavelength. For semiconductor-based deep UV sources, the most challenging difficulty has been finding ways to optimally dope the (Al,Ga)N/GaN heterostructures essential for UV-C light sources. It has proven to be very difficult to achieve high free carrier concentrations and low resistivities in high-aluminum-containing III-nitrides. As a result, p-type doped aluminum-free III-nitrides are employed as the p-type contact layers in UV light-emitting diode structures. However, because of impedance-mismatch issues, light extraction from the device and consequently the overall external quantum efficiency is drastically reduced. This problem is compounded with high losses and low gain when one tries to make UV nitride lasers. In this thesis, we provide a robust and reproducible approach to resolving most of these challenges. By using a liquid-metal-enabled growth mode in a plasma-assisted molecular beam epitaxy process, we show that highly-doped aluminum containing III-nitride films can be achieved. This growth mode is driven by kinetics. Using this approach, we have been able to achieve extremely high p-type and n-type doping in (Al,Ga)N films with high aluminum content. By incorporating a very high density of Mg atoms in (Al,Ga)N films, we have been able to

  3. Fernblock (Polypodium leucotomos Extract): Molecular Mechanisms and Pleiotropic Effects in Light-Related Skin Conditions, Photoaging and Skin Cancers, a Review

    PubMed Central

    Parrado, Concepcion; Mascaraque, Marta; Gilaberte, Yolanda; Juarranz, Angeles; Gonzalez, Salvador

    2016-01-01

    Healthier life styles include increased outdoors time practicing sports and walking. This means increased exposure to the sun, leading to higher risk of sunburn, photoaging and skin cancer. In addition to topical barrier products, oral supplementations of various botanicals endowed with antioxidant activity are emerging as novel method of photoprotection. Polypodium leucotomos extract (PL, commercial name Fernblock®, IFC Group, Spain) is a powerful antioxidant due to its high content of phenolic compounds. PL is administered orally, with proven safety, and it can also be used topically. Its mechanisms include inhibition of the generation and release of reactive oxygen species (ROS) by ultraviolet (UV) light. It also prevents UV- and ROS-induced DNA damage with inhibition of AP1 and NF-κB and protection of natural antioxidant enzyme systems. At the cellular level, PL decreases cellular apoptosis and necrosis mediated UV and inhibits abnormal extracellular matrix remodeling. PL reduces inflammation, prevents immunosuppression, activates tumor suppressor p53 and inhibits UV-induced cyclooxygenase-2 (COX-2) enzyme expression. In agreement with increased p53 activity, PL decreased UV radiation-induced cell proliferation. PL also prevents common deletions mitochondrial DNA damage induced by UVA, and MMP-1 expression induced Visible Light and Infrared Radiation. These cellular and molecular effects are reflected in inhibitions of carcinogenesis and photoaging. PMID:27367679

  4. Fernblock (Polypodium leucotomos Extract): Molecular Mechanisms and Pleiotropic Effects in Light-Related Skin Conditions, Photoaging and Skin Cancers, a Review.

    PubMed

    Parrado, Concepcion; Mascaraque, Marta; Gilaberte, Yolanda; Juarranz, Angeles; Gonzalez, Salvador

    2016-06-29

    Healthier life styles include increased outdoors time practicing sports and walking. This means increased exposure to the sun, leading to higher risk of sunburn, photoaging and skin cancer. In addition to topical barrier products, oral supplementations of various botanicals endowed with antioxidant activity are emerging as novel method of photoprotection. Polypodium leucotomos extract (PL, commercial name Fernblock(®), IFC Group, Spain) is a powerful antioxidant due to its high content of phenolic compounds. PL is administered orally, with proven safety, and it can also be used topically. Its mechanisms include inhibition of the generation and release of reactive oxygen species (ROS) by ultraviolet (UV) light. It also prevents UV- and ROS-induced DNA damage with inhibition of AP1 and NF-κB and protection of natural antioxidant enzyme systems. At the cellular level, PL decreases cellular apoptosis and necrosis mediated UV and inhibits abnormal extracellular matrix remodeling. PL reduces inflammation, prevents immunosuppression, activates tumor suppressor p53 and inhibits UV-induced cyclooxygenase-2 (COX-2) enzyme expression. In agreement with increased p53 activity, PL decreased UV radiation-induced cell proliferation. PL also prevents common deletions mitochondrial DNA damage induced by UVA, and MMP-1 expression induced Visible Light and Infrared Radiation. These cellular and molecular effects are reflected in inhibitions of carcinogenesis and photoaging.

  5. Protective Effect of Mangifera indica Linn., Cocos nucifera Linn., and Averrhoa carambola Linn. Extracts against Ultraviolet B-Induced Damage in Human Keratinocytes

    PubMed Central

    Ronpirin, Chalinee; Pattarachotanant, Nattaporn

    2016-01-01

    This study was aimed at investigating the antioxidant activity of Mangifera indica Linn., Cocos nucifera Linn., and Averrhoa carambola Linn. and their biological effect on human keratinocytes affected by the ultraviolet B (UVB), a major cause of cell damage and skin cancer through induction of DNA damage, production of reactive oxygen species (ROS), and apoptosis. The richest antioxidant activity was found in ethanol fraction of M. indica (21.32 ± 0.66 mg QE/g dry weight), while the lowest one was found in aqueous fractions of M. indica and C. nucifera (1.76 ± 2.10 and 1.65 ± 0.38 mg QE/g dry weight, respectively). Ethanol and aqueous fractions of A. carambola (250 µg/mL) significantly reduced the number of apoptotic cells. The expression of cleaved caspase 3 in UVB-treated group was significantly greater than that in untreated group. Both fractions of A. carambola (50, 100, and 250 µg/mL) significantly decreased the expression of cleaved caspase 3. Regarding the induction of DNA repair, ethanol (100 and 250 µg/mL) and aqueous (50, 100 and 250 µg/mL) fractions of A. carambola significantly decreased the percentage of cyclobutane pyrimidine dimers (CPD). Taken together, our results suggest that both fractions of A. carambola may be potentially developed for dermal applications. PMID:27057195

  6. Protective Effect of Mangifera indica Linn., Cocos nucifera Linn., and Averrhoa carambola Linn. Extracts against Ultraviolet B-Induced Damage in Human Keratinocytes.

    PubMed

    Ronpirin, Chalinee; Pattarachotanant, Nattaporn; Tencomnao, Tewin

    2016-01-01

    This study was aimed at investigating the antioxidant activity of Mangifera indica Linn., Cocos nucifera Linn., and Averrhoa carambola Linn. and their biological effect on human keratinocytes affected by the ultraviolet B (UVB), a major cause of cell damage and skin cancer through induction of DNA damage, production of reactive oxygen species (ROS), and apoptosis. The richest antioxidant activity was found in ethanol fraction of M. indica (21.32 ± 0.66 mg QE/g dry weight), while the lowest one was found in aqueous fractions of M. indica and C. nucifera (1.76 ± 2.10 and 1.65 ± 0.38 mg QE/g dry weight, respectively). Ethanol and aqueous fractions of A. carambola (250 µg/mL) significantly reduced the number of apoptotic cells. The expression of cleaved caspase 3 in UVB-treated group was significantly greater than that in untreated group. Both fractions of A. carambola (50, 100, and 250 µg/mL) significantly decreased the expression of cleaved caspase 3. Regarding the induction of DNA repair, ethanol (100 and 250 µg/mL) and aqueous (50, 100 and 250 µg/mL) fractions of A. carambola significantly decreased the percentage of cyclobutane pyrimidine dimers (CPD). Taken together, our results suggest that both fractions of A. carambola may be potentially developed for dermal applications.

  7. Constitutive overexpression of Norrin activates Wnt/β-catenin and endothelin-2 signaling to protect photoreceptors from light damage.

    PubMed

    Braunger, Barbara M; Ohlmann, Andreas; Koch, Marcus; Tanimoto, Naoyuki; Volz, Cornelia; Yang, Ying; Bösl, Michael R; Cvekl, Ales; Jägle, Herbert; Seeliger, Mathias W; Tamm, Ernst R

    2013-02-01

    Norrin is a retinal signaling molecule which is expressed in Müller glia and binds to Frizzled-4 to activate canonical Wnt/β-catenin signaling. Norrin is part of an essential signaling system that controls the formation of retinal capillaries during development. To evaluate neuroprotective properties of Norrin independently from its function during retinal angiogenesis, we generated transgenic mice (Rpe65-Norrin) that constitutively express Norrin in the retinal pigmented epithelium. Substantial amounts of Norrin were secreted into the outer retina, which triggered retinal Wnt/β-catenin signaling in conjunction with an increase in the expression of endothelin-2 (EDN2), endothelin receptor B (EDNRB), and glial fibrillary acidic protein (GFAP). Photoreceptors of Norrin-overexpressing mice were significantly less vulnerable to light-induced damage compared to their wild-type littermates. Following light damage, we observed less apoptotic death of photoreceptors and a better retinal function than in controls. The protective effects were abolished if either Wnt/β-catenin or EDN2 signaling was blocked by intravitreal injection of Dickkopf-1 or BQ788, respectively. Light-damaged retinae from transgenic mice contained higher amounts of brain-derived neurotrophic factor (BDNF) and pAkt than those of wild-type littermates. We conclude that constitutive overexpression of Norrin protects photoreceptors from light damage, an effect that is mediated by Wnt/β-catenin and EDN2 signaling and involves neurotrophic activities of BDNF. The findings suggest that Norrin and its associated signaling pathways have strong potentials to attenuate photoreceptor death following injury. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. High-power AlGaN-based near-ultraviolet light-emitting diodes grown on Si(111)

    NASA Astrophysics Data System (ADS)

    Li, Zengcheng; Liu, Legong; Huang, Yingnan; Sun, Qian; Feng, Meixin; Zhou, Yu; Zhao, Hanmin; Yang, Hui

    2017-07-01

    High-power AlGaN-based 385 nm near-ultraviolet light-emitting diodes (UVA-LEDs) grown on Si(111) substrates are reported. The threading dislocation (TD) density of AlGaN was reduced by employing an Al-composition step-graded AlN/AlGaN multilayer buffer. V-shaped pits were intentionally incorporated into the active region to screen the carriers from the nonradiative recombination centers (NRCs) around the TDs and to facilitate hole injection. The light extraction efficiency was enhanced by the surface roughening of a thin-film (TF) vertical chip structure. The as-fabricated TF-UVA-LED exhibited a light output power of 960 mW at 500 mA, corresponding to an external quantum efficiency of 59.7%.

  9. Interactive lethal and mutagenic effects of ultraviolet light and bleomycin in yeast: synergism or antagonism?

    PubMed

    Lillo, O L; Severgnini, A A; Nunes, E M

    1997-11-01

    The mutagenic interactions of ultraviolet light and bleomycin in haploid populations of Saccharomyces cerevisiae were analyzed. Survival and mutation frequency as a function of different bleomycin concentrations after one conditioning dose of UV radiation were determined. Furthermore, corresponding interaction functions and sensitization factors were calculated. A synergistic interaction between UV light and bleomycin was shown for both lethal and mutagenic events when the cells were in nutrient broth during the treatments. Conversely, the interaction between UV light and bleomycin was antagonistic when the cells were in deionized water during the treatment. The magnitude of lethal and mutagenic interactions depends on dose, and thus presumably on the number of lesions. The observed interactions between UV light and bleomycin suggest that the mechanism that is most likely involved is the induction of repair systems with different error probabilities during the delay of cell division.

  10. Infrared radiation increases skin damage induced by other wavelengths in solar urticaria.

    PubMed

    de Gálvez, María Victoria; Aguilera, José; Sánchez-Roldán, Cristina; Herrera-Ceballos, Enrique

    2016-09-01

    Photodermatoses are typically investigated by analyzing the individual or combined effects of ultraviolet A (UVA), ultraviolet B (UVB), and visible light using light sources that simulate portions of the solar spectrum. Infrared radiation (IRR), however, accounts for 53% of incident solar radiation, but its effects are not taken into account in standard phototest protocols. The aim was to analyze the effects of IRR, alone and combined with UVA and visible light on solar urticaria lesions, with a distinction between infrared A (IRA) and infrared B (IRB). We performed standard phototests with UVA and visible light in four patients with solar urticaria and also tested the effects after blocking IRB with a water filter. To analyze the direct effect of IRR, we performed phototests with IRA and IRB. Initial standard phototests that were all positive found the induction of erythema and whealing, while when IRR was blocked from the UVA and visible light sources, three of the patients developed no lesions, while the fourth developed a very small wheal. These results suggest that IRR has the potential to produce and exacerbate lesions caused by other types of radiation. Consideration of these effects during phototesting could help prevent diagnostic errors. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Protective Effect of Total Flavones from Hippophae rhamnoides L. against Visible Light-Induced Retinal Degeneration in Pigmented Rabbits.

    PubMed

    Wang, Yong; Huang, Fenghong; Zhao, Liang; Zhang, Di; Wang, Ou; Guo, Xiaoxuan; Lu, Feng; Yang, Xue; Ji, Baoping; Deng, Qianchun

    2016-01-13

    Sea buckthorn (Hippophae rhamnoides L.) flavones have been used as candidate functional food ingredients because of their bioactivities, such as treating cardiovascular disorders, lowering plasma cholesterol level, and regulating immune function. However, the protective effects of sea buckthorn flavones against retinal degeneration remain unclear to date. This study investigated the protective effects of total flavones from H. rhamnoides (TFH) against visible light-induced retinal damage and explored the related mechanisms in pigmented rabbits. Rabbits were treated with TFH (250 and 500 mg/kg) for 2 weeks pre-illumination and 1 week post-illumination until sacrifice. Retinal function was quantified by performing electroretinography 1 day before and 1, 3, and 7 days after light exposure (18000 lx for 2 h). Retinal degeneration was evaluated by measuring the thickness of the outer nuclear layer (ONL) and performing the TUNEL assay 7 days after light exposure. Enzyme-linked immunosorbent assay, Western blot analysis, and immunohistochemistry were used to explore the antioxidant, anti-inflammatory, and anti-apoptotic mechanisms of TFH during visible light-induced retinal degeneration. Light exposure produced a degenerative effect primarily on the ONL, inner nuclear layer (INL), and ganglion cell layer (GCL). TFH significantly attenuated the destruction of electroretinograms caused by light damage, maintained ONL thickness, and decreased the number of TUNEL-positive cells in the INL and GCL. TFH ameliorated the retinal oxidative stress (GSH-Px, CAT, T-AOC, and MDA), inflammation (IL-1β and IL-6), angiogenesis (VEGF), and apoptosis (Bax, Bcl2, and caspase-3) induced by light exposure. Therefore, TFH exhibited protective effects against light-induced retinal degeneration by increasing the antioxidant defense mechanisms, suppressing pro-inflammatory and angiogenic cytokines, and inhibiting retinal cell apoptosis.

  12. Susceptible cytotoxicity to ultraviolet B light in fibroblasts and keratinocytes cultured from autoimmune-prone MRL/Mp-lpr/lpr mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furukawa, F.; Lyon, M.B.; Norris, D.A.

    1989-09-01

    The MRL/Mp-lpr/lpr (MRL/l) mouse is an autoimmune model of spontaneous lupus erythematosus (LE), in addition to lupus nephritis. In order to better understand the mechanisms of photosensitivity in LE, in vitro photocytotoxicity was examined by using fibroblasts and keratinocytes cultured from MRL/l mice, control MRL/Mp- +/+ (MRL/n) mice, and normal BALB/c mice. A colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and the acridine orange/ethidium bromide assay were used for determination of cytotoxicity. Fibroblasts cultured from newborn MRL/l mice showed higher susceptibility to single ultraviolet light B (UVB) light irradiation at a dose of 100-500 mJ than those from MRL/n, F1 hybrid ofmore » (MRL/l x MRL/n mice), and BALB/c mice. However, the susceptibility to UVB was not observed in young (1-month-old) and adult (4-month-old) MRL/l mice. UVA light irradiation was not cytotoxic. Keratinocytes cultured from MRL mice showed lower cytotoxicity to UVB irradiation than fibroblasts cultured. However, keratinocytes from newborn MRL/l mice showed higher cytotoxicity to 50 mJ UVB irradiation than cells from MRL/n mice. Syngeneic or allogeneic sera augmented UVB-induced cytotoxicity of fibroblasts cultured. UVB irradiation of spleen cells induced no significant difference of cytotoxicity between MRL/l and MRL/n mice. Based on the results of F1 hybrid of (MRL/l x MRL/n) mice, the susceptibility seemed to be associated with autoimmune traits and to be regulated by genetical background.« less

  13. Inactivation of Staphylococcus saprophyticus in chicken meat and exudate using high pressure processing, gamma radiation, and ultraviolet light

    USDA-ARS?s Scientific Manuscript database

    Stapylococcus saprophyticus is a common contaminant in foods and causes urinary tract infections in humans. Three nonthermal food safety intervention technologies used to improve the safety foods include high pressure processing (HPP), ionizing (gamma) radiation (GR), and ultraviolet light (UV-C). A...

  14. An Investigation of Laser Induced Surface Damage in glass.

    DTIC Science & Technology

    1985-06-01

    ROA-RI60 669 RN INVESTIGATION OF LASER INDUCED SURFACE DAMAG IN In1 1 6lo GLASS (U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA R D UYAK JUN 85IUNCLASSIFIED...ii -0 NAVAL POSTGRADUATE SCHOOL Monterey, California bor OCT THESIS AN INVESTIGATION OF LASER INDUCED SURFACE DAMAGE IN GLASS by )Richard David Uyak ,L...Subtitle) EPORT 6 PERIOD COVERED %An Investigation of Laser Induced Master’s Thesis Surface Damage in Glass June 1985S. PERFORMING ORG. REPORT MUMMER 7

  15. n-ZnO/p-GaN heterojunction light-emitting diodes featuring a buried polarization-induced tunneling junction

    NASA Astrophysics Data System (ADS)

    Li, Ling; Zhang, Yuantao; Yan, Long; Jiang, Junyan; Han, Xu; Deng, Gaoqiang; Chi, Chen; Song, Junfeng

    2016-12-01

    n-ZnO/p-GaN heterojunction light-emitting diodes with a p-GaN/Al0.1Ga0.9N/n+-GaN polarization-induced tunneling junction (PITJ) were fabricated by metal-organic chemical vapor deposition. An intense and sharp ultraviolet emission centered at ˜396 nm was observed under forward bias. Compared with the n-ZnO/p-GaN reference diode without PITJ, the light intensity of the proposed diode is increased by ˜1.4-folds due to the improved current spreading. More importantly, the studied diode operates continuously for eight hours with the decay of only ˜3.5% under 20 mA, suggesting a remarkable operating stability. The results demonstrate the feasibility of using PITJ as hole injection layer for high-performance ZnO-based light-emitting devices.

  16. 355 nm and 1064 nm-pulse mixing to identify the laser-induced damage mechanisms in KDP

    NASA Astrophysics Data System (ADS)

    Reyné, Stéphane; Duchateau, Guillaume; Natoli, Jean-Yves; Lamaignère, Laurent

    2011-02-01

    Nanosecond laser-induced damage (LID) in potassium dihydrogen phosphate (KH2PO4 or KDP) remains an issue for light-frequency converters in large-aperture lasers such as NIF (National Ignition Facility, in USA) LMJ (Laser MegaJoule, in France). In the final optic assembly, converters are simultaneously illuminated by multiple wavelengths during the frequency conversion. In this configuration, the damage resistance of the KDP crystals becomes a crucial problem and has to be improved. In this study, we propose a refined investigation about the LID mechanisms involved in the case of a multiple wavelengths combination. Experiments based on an original pump-pump set-up have been carried out in the nanosecond regime on a KDP crystal. In particular, the impact of a simultaneous mixing of 355 nm and 1064 nm pulses has been experimentally studied and compared to a model based on heat transfer, the Mie theory and a Drude model. This study sheds light on the physical processes implied in the KDP laser damage. In particular, a three-photon ionization mechanism is shown to be responsible for laser damage in KDP.

  17. Fisetin Regulates Nrf2 Expression and the Inflammation-Related Signaling Pathway to Prevent UVB-Induced Skin Damage in Hairless Mice.

    PubMed

    Wu, Po-Yuan; Lyu, Jia-Ling; Liu, Yi-Jung; Chien, Ting-Yi; Hsu, Hao-Cheng; Wen, Kuo-Ching; Chiang, Hsiu-Mei

    2017-10-10

    Chronic ultraviolet (UV) exposure may cause skin damage, disrupt skin barrier function, and promote wrinkle formation. UV induces oxidative stress and inflammation, which results in extracellular matrix degradation in the dermis and epidermal hyperplasia. Our previous study demonstrated that fisetin exerts photoprotective activity by inhibiting mitogen-activated protein kinase/activator protein-1/matrix metalloproteinases (MMPs) activation. In this study, fisetin was applied topically to investigate its antiphotodamage effects in hairless mice. The erythema index (a* values) and transepidermal water loss were evaluated to assess skin damage, and immunohistochemical staining was conducted to elucidate the photoprotective mechanism of fisetin. The results revealed that the topical application of fisetin reduced UVB-induced increase in the a* value and wrinkle formation. In addition, fisetin inhibited epidermal hyperplasia and increased the collagen content in the dermis. Fisetin exerted photoprotective activity by inhibiting the expression of MMP-1, MMP-2, and cyclooxygenase-2 and increasing the expression of nuclear factor erythroid 2-related factor. Furthermore, fisetin increased the expression of filaggrin to prevent UVB-induced barrier function disruption. Altogether, the present results provide evidence of the effects and mechanisms of fisetin's antiphotodamage and antiphotoinflammation activities.

  18. Fisetin Regulates Nrf2 Expression and the Inflammation-Related Signaling Pathway to Prevent UVB-Induced Skin Damage in Hairless Mice

    PubMed Central

    Wu, Po-Yuan; Lyu, Jia-Ling; Chien, Ting-Yi; Hsu, Hao-Cheng; Wen, Kuo-Ching

    2017-01-01

    Chronic ultraviolet (UV) exposure may cause skin damage, disrupt skin barrier function, and promote wrinkle formation. UV induces oxidative stress and inflammation, which results in extracellular matrix degradation in the dermis and epidermal hyperplasia. Our previous study demonstrated that fisetin exerts photoprotective activity by inhibiting mitogen-activated protein kinase/activator protein-1/matrix metalloproteinases (MMPs) activation. In this study, fisetin was applied topically to investigate its antiphotodamage effects in hairless mice. The erythema index (a* values) and transepidermal water loss were evaluated to assess skin damage, and immunohistochemical staining was conducted to elucidate the photoprotective mechanism of fisetin. The results revealed that the topical application of fisetin reduced UVB-induced increase in the a* value and wrinkle formation. In addition, fisetin inhibited epidermal hyperplasia and increased the collagen content in the dermis. Fisetin exerted photoprotective activity by inhibiting the expression of MMP-1, MMP-2, and cyclooxygenase-2 and increasing the expression of nuclear factor erythroid 2-related factor. Furthermore, fisetin increased the expression of filaggrin to prevent UVB-induced barrier function disruption. Altogether, the present results provide evidence of the effects and mechanisms of fisetin’s antiphotodamage and antiphotoinflammation activities. PMID:28994699

  19. Role of Ultraviolet Radiation in Papillomavirus-Induced Disease

    PubMed Central

    Uberoi, Aayushi; Yoshida, Satoshi; Frazer, Ian H.; Pitot, Henry C.; Lambert, Paul F.

    2016-01-01

    Human papillomaviruses are causally associated with 5% of human cancers. The recent discovery of a papillomavirus (MmuPV1) that infects laboratory mice provides unique opportunities to study the life cycle and pathogenesis of papillomaviruses in the context of a genetically manipulatable host organism. To date, MmuPV1-induced disease has been found largely to be restricted to severely immunodeficient strains of mice. In this study, we report that ultraviolet radiation (UVR), specifically UVB spectra, causes wild-type strains of mice to become highly susceptible to MmuPV1-induced disease. MmuPV1-infected mice treated with UVB develop warts that progress to squamous cell carcinoma. Our studies further indicate that UVB induces systemic immunosuppression in mice that correlates with susceptibility to MmuPV1-associated disease. These findings provide new insight into how MmuPV1 can be used to study the life cycle of papillomaviruses and their role in carcinogenesis, the role of host immunity in controlling papillomavirus-associated pathogenesis, and a basis for understanding in part the role of UVR in promoting HPV infection in humans. PMID:27244228

  20. Role of Ultraviolet Radiation in Papillomavirus-Induced Disease.

    PubMed

    Uberoi, Aayushi; Yoshida, Satoshi; Frazer, Ian H; Pitot, Henry C; Lambert, Paul F

    2016-05-01

    Human papillomaviruses are causally associated with 5% of human cancers. The recent discovery of a papillomavirus (MmuPV1) that infects laboratory mice provides unique opportunities to study the life cycle and pathogenesis of papillomaviruses in the context of a genetically manipulatable host organism. To date, MmuPV1-induced disease has been found largely to be restricted to severely immunodeficient strains of mice. In this study, we report that ultraviolet radiation (UVR), specifically UVB spectra, causes wild-type strains of mice to become highly susceptible to MmuPV1-induced disease. MmuPV1-infected mice treated with UVB develop warts that progress to squamous cell carcinoma. Our studies further indicate that UVB induces systemic immunosuppression in mice that correlates with susceptibility to MmuPV1-associated disease. These findings provide new insight into how MmuPV1 can be used to study the life cycle of papillomaviruses and their role in carcinogenesis, the role of host immunity in controlling papillomavirus-associated pathogenesis, and a basis for understanding in part the role of UVR in promoting HPV infection in humans.

  1. In vitro evaluation of color change in maxillofacial elastomer through the use of an ultraviolet light absorber and a hindered amine light stabilizer.

    PubMed

    Tran, Ngoc H; Scarbecz, Mark; Gary, John J

    2004-05-01

    External prostheses composed of silicone elastomers exhibit an unwanted color change over time. This study evaluated color stability when an ultraviolet light absorber and hindered amine light stabilizer were mixed in the maxillofacial elastomer containing either organic or inorganic pigments. The materials used were an RTV silicone elastomer, 1 natural inorganic dry-earth pigment (burnt sienna) and 2 synthesized organic pigments (hansa yellow and alizarin red), ultraviolet light absorber (UVA) and hindered amine light stabilizer (HALS). Specimens (n=160) were fabricated in a custom mold and randomly assigned and exposed to weathering sites in Miami and Phoenix for approximately 3 months. Eight test groups (2 of each 4 material types with or without additives) of 10 specimens each were assigned to each site. L*, a*, b* readings were obtained before and after weathering from a spectrocolorimeter. Nonpigmented elastomers served as the control. Three-factor ANOVA was conducted to examine interaction effects between weathering sites, specimen type, and the presence of additive (alpha=.05). Overall color change (Delta E) and change in color coordinates (Delta L*, Delta a*, Delta b*) of specimen groups with and without additive were analyzed with independent sample t tests. In specimen groups with the additives (UVA and HALS), color change decreased significantly (P<.05) in burnt sienna and hansa yellow in Phoenix and in the control and hansa yellow in Miami. Additives did not affect color change in the alizarin red group. UVA and HALS were shown to be effective in retarding color change in some circumstances.

  2. DNA-damage response during mitosis induces whole-chromosome missegregation.

    PubMed

    Bakhoum, Samuel F; Kabeche, Lilian; Murnane, John P; Zaki, Bassem I; Compton, Duane A

    2014-11-01

    Many cancers display both structural (s-CIN) and numerical (w-CIN) chromosomal instabilities. Defective chromosome segregation during mitosis has been shown to cause DNA damage that induces structural rearrangements of chromosomes (s-CIN). In contrast, whether DNA damage can disrupt mitotic processes to generate whole chromosomal instability (w-CIN) is unknown. Here, we show that activation of the DNA-damage response (DDR) during mitosis selectively stabilizes kinetochore-microtubule (k-MT) attachments to chromosomes through Aurora-A and PLK1 kinases, thereby increasing the frequency of lagging chromosomes during anaphase. Inhibition of DDR proteins, ATM or CHK2, abolishes the effect of DNA damage on k-MTs and chromosome segregation, whereas activation of the DDR in the absence of DNA damage is sufficient to induce chromosome segregation errors. Finally, inhibiting the DDR during mitosis in cancer cells with persistent DNA damage suppresses inherent chromosome segregation defects. Thus, the DDR during mitosis inappropriately stabilizes k-MTs, creating a link between s-CIN and w-CIN. The genome-protective role of the DDR depends on its ability to delay cell division until damaged DNA can be fully repaired. Here, we show that when DNA damage is induced during mitosis, the DDR unexpectedly induces errors in the segregation of entire chromosomes, thus linking structural and numerical chromosomal instabilities. ©2014 American Association for Cancer Research.

  3. Temperature rise induced by some light emitting diode and quartz-tungsten-halogen curing units.

    PubMed

    Asmussen, Erik; Peutzfeldt, Anne

    2005-02-01

    Because of the risk of thermal damage to the pulp, the temperature rise induced by light-curing units should not be too high. LED (light emitting diode) curing units have the main part of their irradiation in the blue range and have been reported to generate less heat than QTH (quartz-tungsten-halogen) curing units. This study had two aims: first, to measure the temperature rise induced by ten LED and three QTH curing units; and, second, to relate the measured temperature rise to the power density of the curing units. The light-induced temperature rise was measured by means of a thermocouple embedded in a small cylinder of resin composite. The power density was measured by using a dental radiometer. For LED units, the temperature rise increased with increasing power density, in a statistically significant manner. Two of the three QTH curing units investigated resulted in a higher temperature rise than LED curing units of the same power density. Previous findings, that LED curing units induce less temperature rise than QTH units, does not hold true in general.

  4. Ultraviolet spectrophotometry of three LINERs

    NASA Technical Reports Server (NTRS)

    Goodrich, R. W.; Keel, W. C.

    1986-01-01

    Three galaxies known to be LINERs were observed spectroscopically in the ultraviolet in an attempt to detect the presumed nonthermal continuum source thought to be the source of photoionization in the nuclei. NGC 4501 was found to be too faint for study with the IUE spectrographs, while NGC 5005 had an extended ultraviolet light profile. Comparison with the optical light profile of NGC 5005 indicates that the ultraviolet source is distributed spatially in the same manner as the optical starlight, probably indicating that the ultraviolet excess is due to a component of hot stars in the nucleus. These stars contribute detectable absorption features longward of 2500 A; together with optical data, the IUE spectra suggest a burst of star formation about 1 billion yr ago, with a lower rate continuing to produce a few OB stars. In NGC 4579, a point source contributing most of the ultraviolet excess is found that is much different than the optical light distribution. Furthermore, the ultraviolet to X-ray spectral index in NGC 4579 is 1.4, compatible with the UV to X-ray indices found for samples of Seyfert galaxies. This provides compelling evidence for the detection of the photoionizing continuum in NGC 4579 and draws the research fields of normal galaxies and active galactic nuclei closer together. The emission-line spectrum of NGC 4579 is compared with calculations from a photoionization code, CLOUDY, and several shock models. The photoionization code is found to give superior results, adding to the increasing weight of evidence that the LINER phenomenon is essentially a scaled-down version of the Seyfert phenomenon.

  5. CITIUS: An infrared-extreme ultraviolet light source for fundamental and applied ultrafast science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grazioli, C.; Gauthier, D.; Ivanov, R.

    2014-02-15

    We present the main features of CITIUS, a new light source for ultrafast science, generating tunable, intense, femtosecond pulses in the spectral range from infrared to extreme ultraviolet (XUV). The XUV pulses (about 10{sup 5}-10{sup 8} photons/pulse in the range 14-80 eV) are produced by laser-induced high-order harmonic generation in gas. This radiation is monochromatized by a time-preserving monochromator, also allowing one to work with high-resolution bandwidth selection. The tunable IR-UV pulses (10{sup 12}-10{sup 15} photons/pulse in the range 0.4-5.6 eV) are generated by an optical parametric amplifier, which is driven by a fraction of the same laser pulse thatmore » generates high order harmonics. The IR-UV and XUV pulses follow different optical paths and are eventually recombined on the sample for pump-probe experiments. We also present the results of two pump-probe experiments: with the first one, we fully characterized the temporal duration of harmonic pulses in the time-preserving configuration; with the second one, we demonstrated the possibility of using CITIUS for selective investigation of the ultra-fast dynamics of different elements in a magnetic compound.« less

  6. Novel antioxidant capability of titanium induced by UV light treatment.

    PubMed

    Ueno, Takeshi; Ikeda, Takayuki; Tsukimura, Naoki; Ishijima, Manabu; Minamikawa, Hajime; Sugita, Yoshihiko; Yamada, Masahiro; Wakabayashi, Noriyuki; Ogawa, Takahiro

    2016-11-01

    The intracellular production of reactive oxygen species (ROS) is a representative form of cellular oxidative stress and plays an important role in triggering adverse cellular events, such as the inflammatory reaction and delayed or compromised differentiation. Osteoblastic reaction to titanium with particular focus on ROS production remains unknown. Ultraviolet (UV) light treatment improves the physicochemical properties of titanium, specifically the induction of super hydrophilicity and removal of hydrocarbon, and eventually enhances its osteoconductivity. We hypothesized that there is a favorable regulatory change of ROS production within osteoblasts in contact with UV-treated titanium. Osteoblasts were cultured on titanium disks with or without UV-pretreatment. The intracellular production of ROS was higher on acid-etch-created rough titanium surfaces than on machine-prepared smooth ones. The ROS production was reduced by 40-50% by UV pretreatment of titanium regardless of the surface roughness. Oxidative DNA damage, as detected by 8-OHdG expression, was alleviated by 50% on UV-treated titanium surfaces. The expression of inflammatory cytokines was consistently lower in osteoblasts cultured on UV-treated titanium. ROS scavenger, glutathione, remained more without being depleted in osteoblasts on UV-treated titanium. Bio-burden test further showed that culturing osteoblasts on UV-treated titanium can significantly reduce the ROS production even with the presence of hydrogen peroxide, an oxidative stress inducer. These data suggest that the intracellular production of ROS and relevant inflammatory reaction, which unavoidably occurs in osteoblasts in contact with titanium, can be significantly reduced by UV pretreatment of titanium, implying a novel antioxidant capability of the particular titanium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Spectral shifts of mammalian ultraviolet-sensitive pigments (short wavelength-sensitive opsin 1) are associated with eye length and photic niche evolution

    PubMed Central

    Emerling, Christopher A.; Huynh, Hieu T.; Nguyen, Minh A.; Meredith, Robert W.; Springer, Mark S.

    2015-01-01

    Retinal opsin photopigments initiate mammalian vision when stimulated by light. Most mammals possess a short wavelength-sensitive opsin 1 (SWS1) pigment that is primarily sensitive to either ultraviolet or violet light, leading to variation in colour perception across species. Despite knowledge of both ultraviolet- and violet-sensitive SWS1 classes in mammals for 25 years, the adaptive significance of this variation has not been subjected to hypothesis testing, resulting in minimal understanding of the basis for mammalian SWS1 spectral tuning evolution. Here, we gathered data on SWS1 for 403 mammal species, including novel SWS1 sequences for 97 species. Ancestral sequence reconstructions suggest that the most recent common ancestor of Theria possessed an ultraviolet SWS1 pigment, and that violet-sensitive pigments evolved at least 12 times in mammalian history. We also observed that ultraviolet pigments, previously considered to be a rarity, are common in mammals. We then used phylogenetic comparative methods to test the hypotheses that the evolution of violet-sensitive SWS1 is associated with increased light exposure, extended longevity and longer eye length. We discovered that diurnal mammals and species with longer eyes are more likely to have violet-sensitive pigments and less likely to possess UV-sensitive pigments. We hypothesize that (i) as mammals evolved larger body sizes, they evolved longer eyes, which limited transmittance of ultraviolet light to the retina due to an increase in Rayleigh scattering, and (ii) as mammals began to invade diurnal temporal niches, they evolved lenses with low UV transmittance to reduce chromatic aberration and/or photo-oxidative damage. PMID:26582021

  8. Feasibility of Ultraviolet Light Emitting Diodes as an Alternative Light Source for Photocatalysis

    NASA Technical Reports Server (NTRS)

    Levine, Langanf H.; Richards, Jeffrey T.; Soler, Robert; Maxik, Fred; Coutts, Janelle; Wheeler, Raymond M.

    2011-01-01

    The objective of this study was to determine whether ultraviolet light emitting diodes (UV-LEDs) could serve as an alternative photon source efficiently for heterogeneous photocatalytic oxidation (PCO). An LED module consisting of 12 high-power UV-A LEDs was designed to be interchangeable with a UV-A fluorescent black light blue (BLB) lamp in a Silica-Titania Composite (STC) packed bed annular reactor. Lighting and thermal properties were characterized to assess the uniformity and total irradiant output. A forward current of (I(sub F)) 100 mA delivered an average irradiance of 4.0 m W cm(exp -2), which is equivalent to the maximum output of the BLB, but the irradiance of the LED module was less uniform than that of the BLB. The LED- and BLB-reactors were tested for the oxidization of 50 ppmv ethanol in a continuous flow-through mode with 0.94 sec space time. At the same irradiance, the UV-A LED reactor resulted in a lower PCO rate constant than the UV-A BLB reactor (19.8 vs. 28.6 nM CO2 sec-I), and consequently lower ethanol removal (80% vs. 91%) and mineralization efficiency (28% vs. 44%). Ethanol mineralization increased in direct proportion to the irradiance at the catalyst surface. This result suggests that reduced ethanol mineralization in the LED- reactor could be traced to uneven irradiance over the photocatalyst, leaving a portion of the catalyst was under-irradiated. The potential of UV-A LEDs may be fully realized by optimizing the light distribution over the catalyst and utilizing their instantaneous "on" and "off' feature for periodic irradiation. Nevertheless, the current UV-A LED module had the same wall plug efficiency (WPE) of 13% as that of the UV-A BLB. These results demonstrated that UV-A LEDs are a viable photon source both in terms of WPE and PCO efficiency.

  9. Use of coupled wavelength ultraviolet light-emitting diodes for inactivation of bacteria in subsea oil-field injection water.

    PubMed

    Qiao, Yang; Chen, Daoyi; Wen, Diya

    2018-06-04

    The development of subsea injection water disinfection systems will enable the novel exploration of offshore oilfields. Ultraviolet light emitting diodes (UV-LEDs) with peak wavelengths at 255 nm, 280 nm, 350 nm, and combinations of 255 nm and 350 nm, and 280 nm and 350 nm were investigated in this study to determine their efficiency at disinfecting saprophytic bacteria, iron bacteria, and sulfate reducing bacteria. Results show that UV-LEDs with peak wavelengths at 280 nm were the most practical in this domain because of their high performance in both energy-efficiency and reactivation suppression, although 255 nm UV-LEDs achieved an optimal germicidal effect in dose-based experiments. The use of combined 280 nm and 350 nm wavelengths also induced synergistic bactericidal effects on saprophytic bacteria. Copyright © 2018. Published by Elsevier B.V.

  10. Astro-1 Image Taken by the Ultraviolet Imaging Telescope

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This is a presentation of two comparison images of the Spiral Galaxy M81 in the constellation URA Major. The galaxy is about 12-million light years from Earth. The left image is the Spiral Galaxy M81 as photographed by the Ultraviolet Imaging Telescope (UIT) during the Astro-1 Mission (STS-35) on December 9, 1990. This UIT photograph, made with ultraviolet light, reveals regions where new stars are forming at a rapid rate. The right image is a photograph of the same galaxy in red light made with a 36-inch (0.9-meter) telescope at the Kitt Peak National Observatory near Tucson, Arizona. The Astro Observatory was designed to explore the universe by observing and measuring ultraviolet radiation from celestial objects. Three instruments made up the Astro Observatory: The Hopkins Ultraviolet Telescope (HUT), the Ultraviolet Imaging Telescope (UIT), and the Wisconsin Ultraviolet Photo-Polarimetry Experiment (WUPPE). The Marshall Space Flight Center had management responsibilities for the Astro-1 mission. The Astro-1 Observatory was launched aboard the Space Shuttle Orbiter Columbia (STS-35) on December 2, 1990.

  11. Synthesis and characterization of attosecond light vortices in the extreme ultraviolet

    DOE PAGES

    Géneaux, R.; Camper, A.; Auguste, T.; ...

    2016-08-30

    Infrared and visible light beams carrying orbital angular momentum (OAM) are currently thoroughly studied for their extremely broad applicative prospects, among which are quantum information, micromachining and diagnostic tools. Here we extend these prospects, presenting a comprehensive study for the synthesis and full characterization of optical vortices carrying OAM in the extreme ultraviolet (XUV) domain. We confirm the upconversion rules of a femtosecond infrared helically phased beam into its high-order harmonics, showing that each harmonic order carries the total number of OAM units absorbed in the process up to very high orders (57). This allows us to synthesize and characterizemore » helically shaped XUV trains of attosecond pulses. To demonstrate a typical use of these new XUV light beams, we show our ability to generate and control, through photoionization, attosecond electron beams carrying OAM. Furthermore, these breakthroughs pave the route for the study of a series of fundamental phenomena and the development of new ultrafast diagnosis tools using either photonic or electronic vortices.« less

  12. Curculigo orchioides protects cisplatin-induced cell damage.

    PubMed

    Kang, Tong Ho; Hong, Bin Na; Jung, Su-Young; Lee, Jeong-Han; So, Hong-Seob; Park, Raekil; You, Yong-Ouk

    2013-01-01

    Cisplatin is commonly used as a chemotherapeutic agent against many human cancers. However, it generates reactive oxygen species (ROS) and has serious dose-limiting side effects, including ototoxicity. The roots of Curculigo orchioides (C. orchioides) have been used to treat auditory diseases such as tinnitus and hearing loss in Chinese traditional medicine. In the present study, we investigated the protective effects of an ethanol extract obtained from C. orchioides rhizome (COR) on cisplatin-induced cell damage in auditory cells (HEI-OC1). COR (2.5-25 μg/ml) inhibited cisplatin-induced HEI-OC1 cell damage in a dose-dependent manner. To investigate the protective mechanism of COR on cisplatin cytotoxicity in HEI-OC1 cells, we measured the effects of COR on ROS generation and lipid peroxidation in cisplatin-treated cells as well as its scavenging activities against superoxide radicals, hydroxyl radicals, hydrogen peroxide, and DPPH radicals. COR (1-25 μg/ml) had scavenging activities against superoxide radicals, hydroxyl radicals, hydrogen peroxide, and DPPH radicals, as well as reduced lipid peroxidation. In in vivo experiments, COR was shown to reduce cochlear and peripheral auditory function impairments through cisplatin-induced auditory damage in mice. These results indicate that COR protects from cisplatin-induced auditory damage by inhibiting lipid peroxidation and scavenging activities against free radicals.

  13. Side effects from intense pulsed light: Importance of skin pigmentation, fluence level and ultraviolet radiation-A randomized controlled trial.

    PubMed

    Thaysen-Petersen, Daniel; Erlendsson, Andres M; Nash, J F; Beerwerth, Frank; Philipsen, Peter A; Wulf, Hans C; Paasch, Uwe; Haedersdal, Merete

    2017-01-01

    Intense pulsed light (IPL) is a mainstream treatment for hair removal. Side effects after IPL are known, but risk factors remain to be investigated. The objective of this study was to assess the contribution of skin pigmentation, fluence level, and ultraviolet radiation (UVR) on IPL-induced side effects. The study was a blinded, randomized intra-individual controlled trial including 16 healthy subjects with Fitzpatrick Skin Types (FST) II-V. Three test areas were each divided into four sites, randomized to a single IPL exposure of 22, 34, 46 J/cm 2 or triple stacking of 46 J/cm 2 . Areas were subsequently randomized to no UVR or single solar-simulated UVR exposure of 3 Standard Erythema Dose at 30 minutes or 24 hours after IPL. Each area had a corresponding control, resulting in 15 treatment sites. Follow-up visits were scheduled up to 4 weeks after IPL. Outcome measures were: (i) blinded clinical skin reactions; (ii) objectively measured erythema and pigmentation; (iii) pain measured by visual analog scale (VAS); (iv) histology (H&E, Fontana-Masson); and (v) mRNA-expression of p53. Fifteen subjects with FST II-IV completed the protocol. IPL induced a wide range of skin reactions, including erythema (87% of subjects), purpura (27%), blisters (20%), edema (13%), crusting (13%), hyper- (60%), and hypopigmentation (20%). Darker skin pigmentation and increasing IPL fluence were determinants for IPL-induced side effects (P ≤ 0.002), while a single exposure of UVR did not exacerbate side effects (P ≥ 0.180). Clinical findings were confirmed objectively by reflectance spectrometry and qualitatively by histological changes in skin architecture, inflammatory infiltration, and pigmentation. Marker of cellular DNA damage, that is, p53, did not increase after IPL (P ≥ 0.24). Skin pigmentation and IPL fluence are major determinants of side effects after IPL exposure, while a single exposure to three SED of UVR at 30 minutes or 24 hours after IPL

  14. Anti-Photoaging Effect of Jeju Putgyul (Unripe Citrus) Extracts on Human Dermal Fibroblasts and Ultraviolet B-induced Hairless Mouse Skin

    PubMed Central

    Choi, Seung-Hyun; Choi, Sun-Il; Jung, Tae-Dong; Cho, Bong-Yeon; Lee, Jin-Ha; Kim, Seung-Hyung; Yoon, Seon-A; Ham, Young-Min; Yoon, Weon-Jong; Cho, Ju-Hyun; Lee, Ok-Hawn

    2017-01-01

    Ultraviolet (UV) radiation stimulates the expression of matrix metalloproteinases (MMPs) and inflammatory cytokines. These signaling pathways participate in the degradation of the extracellular matrix and induce inflammatory responses that lead to photoaging. This study evaluated the antioxidant activity and the effect on MMPs and procollagen of putgyul extract in vitro. The anti-photoaging activity of putgyul extracts was estimated in vivo using hairless mice (HR-1). The putgyul extracts reduced MMP-1 production and increased the content of procollagen type I carboxy-terminal peptide in human dermal fibroblasts. Ultravilot-B (UVB)-induced expression of inflammatory cytokines and MMPs was detected in mice, and putgyul extracts suppressed the expression. These results suggest that putgyul extract inhibits photoaging by inhibiting the expression of MMPs that degrade collagen and inhibiting cytokines that induce inflammatory responses. The mouse model also demonstrated that oral administration of putgyul extracts decreased wrinkle depth, epidermal thickness, collagen degradation, and trans-epidermal water loss, and increased β-glucosidase activity on UVB exposed skin. Putgyul extract protects against UVB-induced damage of skin and could be valuable in the prevention of photoaging. PMID:28946661

  15. Advanced hair damage model from ultra-violet radiation in the presence of copper.

    PubMed

    Marsh, J M; Davis, M G; Flagler, M J; Sun, Y; Chaudhary, T; Mamak, M; McComb, D W; Williams, R E A; Greis, K D; Rubio, L; Coderch, L

    2015-10-01

    Damage to hair from UV exposure has been well reported in the literature and is known to be a highly complex process involving initiation via absorption of UV light followed by formation and propagation of reactive oxygen species (ROS). The objective of this work was to understand these mechanisms, explain the role of copper in accelerating the formation of ROS and identify strategies to reduce the hair damage caused by these reactive species. The location of copper in hair was measured by Transmission electron microscopy-(TEM) X-ray energy dispersive spectroscopy (XEDS) and levels measured by ICP-OES. Protein changes were measured as total protein loss via the Lowry assay, and MALDI ToF was used to identify the biomarker protein fragments. TBARS assay was used to measure lipid peroxide formation. Sensory methods and dry combing friction were used to measure hair damage due to copper and UV exposure and to demonstrate the efficacy of N,N' ethylenediamine disuccinic acid (EDDS) and histidine chelants to reduce this damage. In this work, a biomarker protein fragment formed during UV exposure is identified using mass spectrometry. This fragment originates from the calcium-binding protein S100A3. Also shown is the accelerated formation of this peptide fragment in hair containing low levels of copper absorbed from hair during washing with tap water containing copper ions. Transmission electron microscopy (TEM) X-ray energy dispersive spectroscopy (XEDS) studies indicate copper is located in the sulphur-poor endo-cuticle region, a region where the S100A3 protein is concentrated. A mechanism for formation of this peptide fragment is proposed in addition to the possible role of lipids in UV oxidation. A shampoo and conditioner containing chelants (EDDS in shampoo and histidine in conditioner) is shown to reduce copper uptake from tap water and reduce protein loss and formation of S100A3 protein fragment. In addition, the long-term consequences of UV oxidation and

  16. Jatropha curcas leaf and bark fractions protect against ultraviolet radiation-B induced DNA damage in human peripheral blood lymphocytes.

    PubMed

    Sundari, J; Selvaraj, R; Rajendra Prasad, N; Elumalai, R

    2013-11-01

    The present study is conducted to investigate the antioxidant potential of Jatropha curcas root bark extract (RB4 fraction) and leaf extract (L1 fraction), and to study their effects on UVB-radiation-induced DNA damage in cultured human blood lymphocytes. In this study, J. curcas showed strong antioxidant property in different free radical scavenging systems. Both the fractions effectively scavenged hydroxyl (OH), superoxide anion (O₂(·-)), 1,1-diphenyl-2-picrylhydrazyl (DPPH·) and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid radical cation (ABTS(·+)) in a concentration-dependent manner. The IC₅₀ (Inhibitory Concentration 50) values of J. curcas fractions were compared to standard ascorbic acid used in this study. The antioxidant potential of a compound was directly proportional to the photoprotective effect. In this study, human peripheral blood lymphocytes (HPBL) were exposed to UVB-radiation and there was an increase in comet attributes (% tail DNA, tail length, tail movement and Olive tail moment). Jatropha curcas RB4 fraction and L1 fraction treatment before UVB-irradiation significantly decreased the % tail DNA, tail length, tail moment and Olive tail moment in irradiated HPBL. These results suggested that J. curcas exhibited strong antioxidant property and RB4 and L1 fractions protected UVB-radiation-induced DNA damage in HPBL. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Fowlpox Virus Encodes a Novel DNA Repair Enzyme, CPD-Photolyase, That Restores Infectivity of UV Light-Damaged Virus

    PubMed Central

    Srinivasan, Viswanathan; Schnitzlein, William M.; Tripathy, Deoki N.

    2001-01-01

    Fowlpox virus (FPV), a pathogen of poultry, can persist in desiccated scabs shed from infected hosts. Although the mechanisms which ensure virus survival are unknown, it is likely that some type of remedial action against environmentally induced damage is required. In this regard, we have identified an open reading frame (ORF) coding for a putative class II cyclobutane pyrimidine dimer (CPD)-photolyase in the genome of FPV. This enzyme repairs the UV light-induced formation of CPDs in DNA by using blue light as an energy source and thus could enhance the viability of FPV during its exposure to sunlight. Based on transcriptional analyses, the photolyase gene was found to be expressed late during the FPV replicative cycle. That the resultant protein retained DNA repair activity was demonstrated by the ability of the corresponding FPV ORF to complement functionally a photolyase-deficient Escherichia coli strain. Interestingly, insertional inactivation of the FPV photolyase gene did not impair the replication of such a genetically altered virus in cultured cells. However, greater sensitivity of this mutant than of the parental virus to UV light irradiation was evident when both were subsequently photoreactivated in the absence of host participation. Therefore, FPV appears to incorporate its photolyase into mature virions where the enzyme can promote their survival in the environment. Although expression of a homologous protein has been predicted for some chordopoxviruses, this report is the first to demonstrate that a poxvirus can utilize light to repair damage to its genome. PMID:11160666

  18. Influence of ultraviolet light irradiation on the corrosion behavior of carbon steel AISI 1015

    NASA Astrophysics Data System (ADS)

    Riazi, H. R.; Danaee, I.; Peykari, M.

    2013-03-01

    Corrosion of carbon steel in sodium chloride solution was studied under ultraviolet illumination using weight loss, polarization, electrochemical impedance spectroscopy and current transient tests. The polarization test revealed an increase in the corrosion current density observed under UV illumination. The impedance spectroscopy indicated that the charge transfer resistance of the system was decreased by irradiation of UV light on a carbon steel electrode. The weight loss of carbon steel in solution increased under UV light, which confirms the results obtained from electrochemical measurements. We propose that the main effect of UV irradiation is on the oxide film, which forms on the surface. Thus, in presence of UV, the conductivity of oxide film might increase and lead to higher metal dissolution and corrosion rate.

  19. Lighting considerations in controlled environments for nonphotosynthetic plant responses to blue and ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Caldwell, M. M.; Flint, S. D.

    1994-01-01

    This essay will consider both physical and photobiological aspects of controlled environment lighting in the spectral region beginning in the blue and taken to the normal limit of the solar spectrum in the ultraviolet. The primary emphasis is directed to questions of plant response to sunlight. Measurement and computations used in radiation dosimetry in this part of the spectrum are also briefly treated. Because of interest in the ozone depletion problem, there has been some activity in plant UV-B research and there are several recent reviews available. Some aspects of growth chamber lighting as it relates to UV-B research were covered earlier. Apart from work related to the blue/UV-A receptor, less attention has been given to UV-A responses.

  20. Reactor for simulation and acceleration of solar ultraviolet damage

    NASA Technical Reports Server (NTRS)

    Laue, E.; Gupta, A.

    1979-01-01

    An environmental test chamber providing acceleration of UV radiation and precise temperature control (+ or -)1 C was designed, constructed and tested. This chamber allows acceleration of solar ultraviolet up to 30 suns while maintaining temperature of the absorbing surface at 30 C - 60 C. This test chamber utilizes a filtered medium pressure mercury arc as the source of radiation, and a combination of selenium radiometer and silicon radiometer to monitor solar ultraviolet (295-340 nm) and total radiant power output, respectively. Details of design and construction and operational procedures are presented along with typical test data.

  1. Dynamics of defects in Ce³⁺ doped silica affecting its performance as protective filter in ultraviolet high-power lasers.

    PubMed

    Demos, Stavros G; Ehrmann, Paul R; Qiu, S Roger; Schaffers, Kathleen I; Suratwala, Tayyab I

    2014-11-17

    We investigate defects forming in Ce³⁺-doped fused silica samples following exposure to nanosecond ultraviolet laser pulses and their relaxation as a function of time and exposure to low intensity light at different wavelengths. A subset of these defects are responsible for inducing absorption in the visible and near infrared spectral range, which is of critical importance for the use of this material as ultraviolet light absorbing filter in high power laser systems. The dependence of the induced absorption as a function of laser fluence and methods to most efficiently mitigate this effect are presented. Experiments simulating the operation of the material as a UV protection filter for high power laser systems were performed in order to determine limitations and practical operational conditions.

  2. Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Juanjuan; Zhang, Yu; Xu, Wentao, E-mail: xuwentaoboy@sina.com

    Oxidative stress and DNA damage are the most studied mechanisms by which ochratoxin A (OTA) induces its toxic effects, which include nephrotoxicity, hepatotoxicity, immunotoxicity and genotoxicity. Zinc, which is an essential trace element, is considered a potential antioxidant. The aim of this paper was to investigate whether zinc supplement could inhibit OTA-induced oxidative damage and DNA damage in HepG2 cells and the mechanism of inhibition. The results indicated that that exposure of OTA decreased the intracellular zinc concentration; zinc supplement significantly reduced the OTA-induced production of reactive oxygen species (ROS) and decrease in superoxide dismutase (SOD) activity but did notmore » affect the OTA-induced decrease in the mitochondrial membrane potential (Δψ{sub m}). Meanwhile, the addition of the zinc chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) strongly aggravated the OTA-induced oxidative damage. This study also demonstrated that zinc helped to maintain the integrity of DNA through the reduction of OTA-induced DNA strand breaks, 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation and DNA hypomethylation. OTA increased the mRNA expression of metallothionein1-A (MT1A), metallothionein2-A (MT2A) and Cu/Zn superoxide dismutase (SOD1). Zinc supplement further enhanced the mRNA expression of MT1A and MT2A, but it had no effect on the mRNA expression of SOD1 and catalase (CAT). Zinc was for the first time proven to reduce the cytotoxicity of OTA through inhibiting the oxidative damage and DNA damage, and regulating the expression of zinc-associated genes. Thus, the addition of zinc can potentially be used to reduce the OTA toxicity of contaminated feeds. - Highlights: ► OTA decreased the intracellular zinc concentration. ► OTA induced the formation of 8-OHdG in HepG2 cells. ► It was testified for the first time that OTA induced DNA hypomethylation. ► Zinc protects against the oxidative damage and DNA damage

  3. An estimation methode for measurement of ultraviolet radiation during nondestructive testing

    NASA Astrophysics Data System (ADS)

    Hosseinipanah, M.; Movafeghi, A.; Farvadin, D.

    2018-04-01

    Dye penetrant testing and magnetic particle testing are among conventional NDT methods. For increased sensitivity, fluorescence dyes and particles can be used with ultraviolet (black) lights. UV flaw detection lights have different spectra. With the help of photo-filters, the output lights are transferred to UV-A and visible zones. UV-A light can be harmful to human eyes in some conditions. In this research, UV intensity and spectrum were obtained by a Radio-spectrometer for two different UV flaw detector lighting systems. According to the standards such as ASTM E709, UV intensity must be at least 10 W/m2 at a distance of 30 cm. Based on our measurements; these features not achieved in some lamps. On the other hand, intensity and effective intensity of UV lights must be below the some limits for prevention of unprotected eye damage. NDT centers are usually using some type of UV measuring devices. A method for the estimation of effective intensity of UV light has been proposed in this research.

  4. The planarian TRPA1 homolog mediates extraocular behavioral responses to near-ultraviolet light.

    PubMed

    Birkholz, Taylor R; Beane, Wendy S

    2017-07-15

    Although light is most commonly thought of as a visual cue, many animals possess mechanisms to detect light outside of the eye for various functions, including predator avoidance, circadian rhythms, phototaxis and migration. Here we confirm that planarians (like Caenorhabditis elegans , leeches and Drosophila larvae) are capable of detecting and responding to light using extraocular photoreception. We found that, when either eyeless or decapitated worms were exposed to near-ultraviolet (near-UV) light, intense wild-type photophobic behaviors were still observed. Our data also revealed that behavioral responses to green wavelengths were mediated by ocular mechanisms, whereas near-UV responses were driven by extraocular mechanisms. As part of a candidate screen to uncover the genetic basis of extraocular photoreception in the planarian species Schmidtea mediterranea , we identified a potential role for a homolog of the transient receptor potential channel A1 ( TRPA1 ) in mediating behavioral responses to extraocular light cues. RNA interference (RNAi) to Smed-TrpA resulted in worms that lacked extraocular photophobic responses to near-UV light, a mechanism previously only identified in Drosophila These data show that the planarian TRPA1 homolog is required for planarian extraocular-light avoidance and may represent a potential ancestral function of this gene. TRPA1 is an evolutionarily conserved detector of temperature and chemical irritants, including reactive oxygen species that are byproducts of UV-light exposure. Our results suggest that planarians possess extraocular photoreception and display an unconventional TRPA1-mediated photophobic response to near-UV light. © 2017. Published by The Company of Biologists Ltd.

  5. Laser-Induced Damage with Femtosecond Pulses

    NASA Astrophysics Data System (ADS)

    Kafka, Kyle R. P.

    The strong electric fields of focused femtosecond laser pulses lead to non-equilibrium dynamics in materials, which, beyond a threshold intensity, causes laser-induced damage (LID). Such a strongly non-linear and non-perturbative process renders important LID observables like fluence and intensity thresholds and damage morphology (crater) extremely difficult to predict quantitatively. However, femtosecond LID carries a high degree of precision, which has been exploited in various micro/nano-machining and surface engineering applications, such as human eye surgery and super-hydrophobic surfaces. This dissertation presents an array of experimental studies which have measured the damage behavior of various materials under femtosecond irradiation. Precision experiments were performed to produce extreme spatio-temporal confinement of the femtosecond laser-solid damage interaction on monocrystalline Cu, which made possible the first successful direct-benchmarking of LID simulation with realistic damage craters. A technique was developed to produce laser-induced periodic surface structures (LIPSS) in a single pulse (typically a multi-pulse phenomenon), and was used to perform a pump-probe study which revealed asynchronous LIPSS formation on copper. Combined with 1-D calculations, this new experimental result suggests more drastic electron heating than expected. Few-cycle pulses were used to study the LID performance and morphology of commercial ultra-broadband optics, which had not been systematically studied before. With extensive surface analysis, various morphologies were observed, including LIPSS, swelling (blisters), simple craters, and even ring-shaped structures, which varied depending on the coating design, number of pulses, and air/vacuum test environment. Mechanisms leading to these morphologies are discussed, many of which are ultrafast in nature. The applied damage behavior of multi-layer dielectric mirrors was measured and compared between long pulse (150 ps

  6. Ultraviolet Source For Testing Hydrogen-Fire Detectors

    NASA Technical Reports Server (NTRS)

    Hall, Gregory A.; Larson, William E.; Youngquist, Robert C.; Moerk, John S.; Haskell, William D.; Cox, Robert B.; Polk, Jimmy D.; Stout, Stephen J.; Strobel, James P.

    1995-01-01

    Hand-held portable unit emits ultraviolet light similar to that emitted by hydrogen burning in air. Developed for use in testing optoelectronic hydrogen-fire detectors, which respond to ultraviolet light at wavelengths from 180 to 240 nanometers. Wavelength range unique in that within it, hydrogen fires emit small but detectable amounts of radiation, light from incandescent lamps and Sun almost completely absent, and air sufficiently transmissive to enable detection of hydrogen fire from distance. Consequently, this spectral region favorable for detecting hydrogen fires while minimizing false alarms.

  7. DNA damage induced by the direct effect of radiation

    NASA Astrophysics Data System (ADS)

    Yokoya, A.; Shikazono, N.; Fujii, K.; Urushibara, A.; Akamatsu, K.; Watanabe, R.

    2008-10-01

    We have studied the nature of DNA damage induced by the direct effect of radiation. The yields of single- (SSB) and double-strand breaks (DSB), base lesions and clustered damage were measured using the agarose gel electrophoresis method after exposing to various kinds of radiations to a simple model DNA molecule, fully hydrated closed-circular plasmid DNA (pUC18). The yield of SSB does not show significant dependence on linear energy transfer (LET) values. On the other hand, the yields of base lesions revealed by enzymatic probes, endonuclease III (Nth) and formamidopyrimidine DNA glycosylase (Fpg), which excise base lesions and leave a nick at the damage site, strongly depend on LET values. Soft X-ray photon (150 kVp) irradiation gives a maximum yield of the base lesions detected by the enzymatic probes as SSB and clustered damage, which is composed of one base lesion and proximate other base lesions or SSBs. The clustered damage is visualized as an enzymatically induced DSB. The yields of the enzymatically additional damages strikingly decrease with increasing levels of LET. These results suggest that in higher LET regions, the repair enzymes used as probes are compromised because of the dense damage clustering. The studies using simple plasmid DNA as a irradiation sample, however, have a technical difficulty to detect multiple SSBs in a plasmid DNA. To detect the additional SSBs induced in opposite strand of the first SSB, we have also developed a novel technique of DNA-denaturation assay. This allows us to detect multiply induced SSBs in both strand of DNA, but not induced DSB.

  8. Photorefraction in the ultraviolet: Materials and effects

    NASA Astrophysics Data System (ADS)

    Laeri, F.; Jungen, R.; Angelow, G.; Vietze, U.; Engel, T.; Würtz, M.; Hilgenberg, D.

    1995-10-01

    Doped as well as nominally pure crystals of Lithium Niobate (LiNbO3), ι-Arginine Phosphate (LAP), Lithium Iodate (LiIO3), Potassium Dihydrogen Phosphate (KDP), Lithium Formate (LFM), Beta-Barium Borate (BBO), and lithium tetra borate were grown and investigated for photorefractive effects at ultraviolet wavelengths down to 333 nm. In nominally undoped LiNbO3 crystals strong beam coupling effects were observed. In contrast to the visible we revealed a diffusion-dominated charge transport mechanism based on holes, and a low photovoltaic field in the order of 550 V/cm. With such a crystal we investigated the modulation transfer function of a lensless image projection system based on a phase conjugation scheme. A spatial frequency response beyond 2800 line pairs per millimeter was observed. Photorefractive beam coupling was also obtained in LiIO3. Light-induced scattering was detected in iron-doped LiIO3 whereas as-grown LAP material did not exhibit any observable photorefractive effects. However, 100 kV X-ray irradiation seems to induce material defects which can lead to weak light-induced scattering at 351 nm. In all other above-mentioned materials, doped as well as undoped, light-induced scattering could not be observed. On the other hand, this is appreciated in all the applications where the crystals are used as nonlinear material for optical frequency conversion.

  9. Mechanisms of free radical-induced damage to DNA.

    PubMed

    Dizdaroglu, Miral; Jaruga, Pawel

    2012-04-01

    Endogenous and exogenous sources cause free radical-induced DNA damage in living organisms by a variety of mechanisms. The highly reactive hydroxyl radical reacts with the heterocyclic DNA bases and the sugar moiety near or at diffusion-controlled rates. Hydrated electron and H atom also add to the heterocyclic bases. These reactions lead to adduct radicals, further reactions of which yield numerous products. These include DNA base and sugar products, single- and double-strand breaks, 8,5'-cyclopurine-2'-deoxynucleosides, tandem lesions, clustered sites and DNA-protein cross-links. Reaction conditions and the presence or absence of oxygen profoundly affect the types and yields of the products. There is mounting evidence for an important role of free radical-induced DNA damage in the etiology of numerous diseases including cancer. Further understanding of mechanisms of free radical-induced DNA damage, and cellular repair and biological consequences of DNA damage products will be of outmost importance for disease prevention and treatment.

  10. Mechanical Properties of Shock-Damaged Rocks

    NASA Technical Reports Server (NTRS)

    He, Hongliang; Ahrens, T. J.

    1994-01-01

    Stress-strain tests were performed both on shock-damaged gabbro and limestone. The effective Young's modulus decreases with increasing initial damage parameter value, and an apparent work-softening process occurs prior to failure. To further characterize shock-induced microcracks, the longitudinal elastic wave velocity behavior of shock-damaged gabbro in the direction of compression up to failure was measured using an acoustic transmission technique under uniaxial loading. A dramatic increase in velocity was observed for the static compressive stress range of 0-50 MPa. Above that stress range, the velocity behavior of lightly damaged (D(sub 0) less than 0.1) gabbro is almost equal to unshocked gabbro. The failure strength of heavily-damaged (D(sub 0) greater than 0.1) gabbro is approx. 100-150 MPa, much lower than that of lightly damaged and unshocked gabbros (approx. 230-260 MPa). Following Nur's theory, the crack shape distribution was analyzed. The shock-induced cracks in gabbro appear to be largely thin penny-shaped cracks with c/a values below 5 x 10(exp -4). Moreover, the applicability of Ashby and Sammis's theory relating failure strength and damage parameter of shock-damaged rocks was examined and was found to yield a good estimate of the relation of shock-induced deficit in elastic modulus with the deficit in compressive strength.

  11. The effect of ultra-violet light curing on the molecular structure and fracture properties of an ultra low-k material

    NASA Astrophysics Data System (ADS)

    Smith, Ryan Scott

    As the gate density increases in microelectronic devices, the interconnect delay or RC response also increases and has become the limiting delay to faster devices. In order to decrease the RC time delay, a new metallization scheme has been chosen by the semiconductor industry. Copper has replaced aluminum as the metal lines and new low-k dielectric materials are being developed to replace silicon dioxide. A promising low-k material is porous organosilicate glass or p-OSG. The p-OSG film is a hybrid material where the silicon dioxide backbone is terminated with methyl or hydrogen, reducing the dielectric constant and creating mechanically weak films that are prone to fracture. A few methods of improving the mechanical properties of p-OSG films have been attempted-- exposing the film to hydrogen plasma, electron beam curing, and ultra-violet light curing. Hydrogen plasma and electron-beam curing suffer from a lack of specificity and can cause charging damage to the gates. Therefore, ultra-violet light curing (UV curing) is preferable. The effect of UV curing on an ultra-low-k, k~2.5, p-OSG film is studied in this dissertation. Changes in the molecular structure were measured with Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy. The evolution of the molecular structure with UV curing was correlated with material and fracture properties. The material properties were film shrinkage, densification, and an increase in dielectric constant. From the changes in molecular structure and material properties, a set of condensation reactions with UV light are predicted. The connectivity of the film increases with the condensation reactions and, therefore, the fracture toughness should also increase. The effect of UV curing on the critical and sub-critical fracture toughness was also studied. The critical fracture toughness was measured at four different mode-mixes-- zero, 15°, 32°, and 42°. It was found that the critical fracture toughness

  12. Ultraviolet Light Curves of Gaia16apd in Superluminous Supernova Models

    NASA Astrophysics Data System (ADS)

    Tolstov, Alexey; Zhiglo, Andrey; Nomoto, Ken'ichi; Sorokina, Elena; Kozyreva, Alexandra; Blinnikov, Sergei

    2017-08-01

    Observations of Gaia16apd revealed extremely luminous ultraviolet emission among superluminous supernovae (SLSNe). Using radiation hydrodynamics simulations, we perform a comparison of UV light curves, color temperatures, and photospheric velocities between the most popular SLSN models: pair-instability supernova, magnetar, and interaction with circumstellar medium. We find that the interaction model is the most promising to explain the extreme UV luminosity of Gaia16apd. The differences in late-time UV emission and in color evolution found between the models can be used to link an observed SLSN event to the most appropriate model. Observations at UV wavelengths can be used to clarify the nature of SLSNe and more attention should be paid to them in future follow-up observations.

  13. Ultraviolet Light Curves of Gaia16apd in Superluminous Supernova Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolstov, Alexey; Zhiglo, Andrey; Nomoto, Ken’ichi

    2017-08-10

    Observations of Gaia16apd revealed extremely luminous ultraviolet emission among superluminous supernovae (SLSNe). Using radiation hydrodynamics simulations, we perform a comparison of UV light curves, color temperatures, and photospheric velocities between the most popular SLSN models: pair-instability supernova, magnetar, and interaction with circumstellar medium. We find that the interaction model is the most promising to explain the extreme UV luminosity of Gaia16apd. The differences in late-time UV emission and in color evolution found between the models can be used to link an observed SLSN event to the most appropriate model. Observations at UV wavelengths can be used to clarify the naturemore » of SLSNe and more attention should be paid to them in future follow-up observations.« less

  14. [Tanning lamp radiation-induced photochemical retinal damage].

    PubMed

    Volkov, V V; Kharitonova, N N; Mal'tsev, D S

    2014-01-01

    On the basis of original clinical research a rare case of bilateral retinal damage due to tanning lamp radiation exposure is presented. Along with significant decrease of visual acuity and light sensitivity of central visual field as well as color vision impairment, bilateral macular dystrophy was found during an ophthalmoscopy and confirmed by optical coherent tomography and fluorescent angiography. Intensive retinoprotective, vascular, and antioxidant therapy was effective and led to functional improvement and stabilization of the pathologic process associated with photochemical retinal damage. A brief review of literature compares mechanisms of retinal damage by either short or long-wave near visible radiation.

  15. Calibration of a microchannel plate based extreme ultraviolet grazing incident spectrometer at the Advanced Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakeman, M. S.; Lawrence Berkeley National Laboratory, Berkeley, California 94720; Tilborg, J. van

    We present the design and calibration of a microchannel plate based extreme ultraviolet spectrometer. Calibration was performed at the Advance Light Source (ALS) at the Lawrence Berkeley National Laboratory (LBNL). This spectrometer will be used to record the single shot spectrum of radiation emitted by the tapered hybrid undulator (THUNDER) undulator installed at the LOASIS GeV-class laser-plasma-accelerator. The spectrometer uses an aberration-corrected concave grating with 1200 lines/mm covering 11-62 nm and a microchannel plate detector with a CsI coated photocathode for increased quantum efficiency in the extreme ultraviolet. A touch screen interface controls the grating angle, aperture size, and placementmore » of the detector in vacuum, allowing for high-resolution measurements over the entire spectral range.« less

  16. The electronics in fluorescent bulbs and light emitting diodes (LED), rather than ultraviolet radiation, cause increased malignant melanoma incidence in indoor office workers and tanning bed users.

    PubMed

    Milham, Samuel; Stetzer, Dave

    2018-07-01

    The epidemiology of cutaneous malignant melanoma (CMM) has a number of facets that do not fit with sunlight and ultraviolet light as the primary etiologic agents. Indoor workers have higher incidence and mortality rates of CMM than outdoor workers; CMM occurs in body locations never exposed to sunlight; CMM incidence is increasing in spite of use of UV blocking agents and small changes in solar radiation. Installation of two new fluorescent lights in the milking parlor holding area of a Minnesota dairy farm in 2015 caused an immediate drop in milk production. This lead to measurement of body amperage in humans exposed to modern non-incandescent lighting. People exposed to old and new fluorescent lights, light emitting diodes (LED) and compact fluorescent lights (CFL) had body amperage levels above those considered carcinogenic. We hypothesize that modern electric lighting is a significant health hazard, a carcinogen, and is causing increasing CMM incidence in indoor office workers and tanning bed users. These lights generate dirty electricity (high frequency voltage transients), radio frequency (RF) radiation, and increase body amperage, all of which have been shown to be carcinogenic. This could explain the failure of ultraviolet blockers to stem the malignant melanoma pandemic. Tanning beds and non-incandescent lighting could be made safe by incorporating a grounded Faraday cage which allows passage of ultraviolet and visible light frequencies and blocks other frequencies. Modern electric lighting should be fabricated to be electrically clean. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Ginger Treatment Ameliorates Alcohol-induced Myocardial Damage by Suppression of Hyperlipidemia and Cardiac Biomarkers in Rats.

    PubMed

    Subbaiah, Ganjikunta Venkata; Mallikarjuna, Korivi; Shanmugam, Bhasha; Ravi, Sahukari; Taj, Patan Usnan; Reddy, Kesireddy Sathyavelu

    2017-01-01

    substantially suppressed by ginger treatmentAlcohol, induced an increase in cardiac damage biomarkers, CK-MB, cTn-T and cTn-I were remarkably suppressed by ginger treatmentPerformed histopathological studies by transmission electron microscopy and light microscopy shows additional convincing evidence on ginger cardio-protective effects. The drastic changes were rehabilitated in cardiac tissue by ginger treatment may be it acts as a good antioxidant and possessing hypolipidemic activity.Collectively, our findings confirm hypothesis that ginger has cardio protective potential through suppression of hyperlipidemia, preserving the tissue damage bio markers, cardiac biomarkers in plasma and preservation of histoarchitecture of myocytes. Abbreviations used: Gt: Ginger Ethanolic Extract; NC: Normal Control; At: Alcohol treated; MI: Myocardial Infarction.

  18. The Saccharomyces cerevisiae RAD9, RAD17, RAD24 and MEC3 genes are required for tolerating irreparable, ultraviolet-induced DNA damage.

    PubMed Central

    Paulovich, A G; Armour, C D; Hartwell, L H

    1998-01-01

    In wild-type Saccharomyces cerevisiae, a checkpoint slows the rate of progression of an ongoing S phase in response to exposure to a DNA-alkylating agent. Mutations that eliminate S phase regulation also confer sensitivity to alkylating agents, leading us to suggest that, by regulating the S phase rate, cells are either better able to repair or better able to replicate damaged DNA. In this study, we determine the effects of mutations that impair S phase regulation on the ability of excision repair-defective cells to replicate irreparably UV-damaged DNA. We assay survival after UV irradiation, as well as the genetic consequences of replicating a damaged template, namely mutation and sister chromatid exchange induction. We find that RAD9, RAD17, RAD24, and MEC3 are required for UV-induced (although not spontaneous) mutagenesis, and that RAD9 and RAD17 (but not REV3, RAD24, and MEC3) are required for maximal induction of replication-dependent sister chromatid exchange. Therefore, checkpoint genes not only control cell cycle progression in response to damage, but also play a role in accommodating DNA damage during replication. PMID:9725831

  19. The Saccharomyces cerevisiae RAD9, RAD17, RAD24 and MEC3 genes are required for tolerating irreparable, ultraviolet-induced DNA damage.

    PubMed

    Paulovich, A G; Armour, C D; Hartwell, L H

    1998-09-01

    In wild-type Saccharomyces cerevisiae, a checkpoint slows the rate of progression of an ongoing S phase in response to exposure to a DNA-alkylating agent. Mutations that eliminate S phase regulation also confer sensitivity to alkylating agents, leading us to suggest that, by regulating the S phase rate, cells are either better able to repair or better able to replicate damaged DNA. In this study, we determine the effects of mutations that impair S phase regulation on the ability of excision repair-defective cells to replicate irreparably UV-damaged DNA. We assay survival after UV irradiation, as well as the genetic consequences of replicating a damaged template, namely mutation and sister chromatid exchange induction. We find that RAD9, RAD17, RAD24, and MEC3 are required for UV-induced (although not spontaneous) mutagenesis, and that RAD9 and RAD17 (but not REV3, RAD24, and MEC3) are required for maximal induction of replication-dependent sister chromatid exchange. Therefore, checkpoint genes not only control cell cycle progression in response to damage, but also play a role in accommodating DNA damage during replication.

  20. Cytoprotective effect against UV-induced DNA damage and oxidative stress: role of new biological UV filter.

    PubMed

    Said, T; Dutot, M; Martin, C; Beaudeux, J-L; Boucher, C; Enee, E; Baudouin, C; Warnet, J-M; Rat, P

    2007-03-01

    The majority of chemical solar filters are cytotoxic, particularly on sensitive ocular cells (corneal and conjunctival cells). Consequently, a non-cytotoxic UV filter would be interesting in dermatology, but more especially in ophthalmology. In fact, light damage to the eye can be avoided thanks to a very efficient ocular antioxidant system; indeed, the chromophores absorb light and dissipate its energy. After middle age, a decrease in the production of antioxidants and antioxidative enzymes appears with accumulation of endogenous molecules that are phototoxic. UV radiations can induce reactive oxygen species formation, leading to various ocular diseases. Because most UV filters are cytotoxic for the eye, we investigated the anti-UV properties of Calophyllum inophyllum oil in order to propose it as a potential vehicle, free of toxicity, with a natural UV filter action in ophthalmic formulation. Calophyllum inophyllum oil, even at low concentration (1/10,000, v/v), exhibited significant UV absorption properties (maximum at 300nm) and was associated with an important sun protection factor (18-22). Oil concentrations up to 1% were not cytotoxic on human conjunctival epithelial cells, and Calophyllum inophyllum oil appeared to act as a cytoprotective agent against oxidative stress and DNA damage (85% of the DNA damage induced by UV radiations were inhibited with 1% Calophyllum oil) and did not induce in vivo ocular irritation (Draize test on New Zealand rabbits). Calophyllum inophyllum oil thus exhibited antioxidant and cytoprotective properties, and therefore might serve, for the first time, as a natural UV filter in ophthalmic preparations.

  1. Ultraviolet laser-induced voltage in anisotropic shale

    NASA Astrophysics Data System (ADS)

    Miao, Xinyang; Zhu, Jing; Li, Yizhang; Zhao, Kun; Zhan, Honglei; Yue, Wenzheng

    2018-01-01

    The anisotropy of shales plays a significant role in oil and gas exploration and engineering. Owing to various problems and limitations, anisotropic properties were seldom investigated by direct current resistivity methods. Here in this work, a 248 nm ultraviolet laser was employed to assess the anisotropic electrical response of a dielectric shale. Angular dependence of laser-induced voltages (V p) were obtained, with a data symmetry at the location of 180° and a ~62.2% V p anisotropy of the sample. The double-exponential functions have provided an explanation for the electrical field controlled carrier transportation process in horizontal and vertical directions. The results demonstrate that the combination of optics and electrical logging analysis (Opti-electrical Logging) is a promising technology for the investigation of unconventional reservoirs.

  2. ULTRAVIOLET PROTECTIVE PIGMENTS AND DNA DIMER INDUCTION AS RESPONSES TO ULTRAVIOLET RADIATION

    EPA Science Inventory

    Life on Earth has evolved adaptations to many environmental stresses over the epochs. One consistent stress has been exposure to ultraviolet (UV) radiation. The most basic effect of UV radiation on biological systems is damage to DNA. In response to UV radiation organisms have ad...

  3. Ultraviolet light emitting diodes and bio-aerosol sensing

    NASA Astrophysics Data System (ADS)

    Davitt, Kristina M.

    Recent interest in compact ultraviolet (UV) light emitters has produced advances in material quality and device performance from aluminum-rich alloys of the nitride semiconductor system. The epitaxial growth of device structures from this material poses remarkable challenges, and state-of-the-art in semiconductor UV light sources at wavelengths shorter than 350 nm is currently limited to LEDs. A portion of the work presented in this thesis involves the design and characterization of UV LED structures, with particular focus on sub-300 nm LEDs which have only been demonstrated within the last four years. Emphasis has been placed on the integration of early devices with modest efficiencies and output powers into a practical, fluorescence-based bio-sensing instrument. The quality of AlGaInN and AlGaN-based materials is characterized by way of the performance of 340 nm and 290 nm LEDs respectively. A competitive level of device operation is achieved, although much room remains for improvement in the efficiency of light emission from this material system. A preliminary investigation of 300 nm LEDs grown on bulk AIN shows promising electrical and optical characteristics, and illustrates the numerous advantages that this native substrate offers to the epitaxy of wide bandgap nitride semiconductors. The application of UV LEDs to the field of bio-aerosol sensing is pursued by constructing an on-the-fly fluorescence detection system. A linear array of UV LEDs is designed and implemented, and the capability of test devices to excite native fluorescence from bacterial spores is established. In order to fully capitalize on the reduction in size afforded by LEDs, effort is invested in re-engineering the remaining sensor components. Operation of a prototype system for physically sorting bio-aerosols based on fluorescence spectra acquired in real-time from single airborne particles excited by a UV-LED array is demonstrated using the bio-fluorophores NADH and tryptophan. Sensor

  4. Biological effects of blocking blue and other visible light on the mouse retina.

    PubMed

    Narimatsu, Toshio; Ozawa, Yoko; Miyake, Seiji; Kubota, Shunsuke; Yuki, Kenya; Nagai, Norihiro; Tsubota, Kazuo

    2014-08-01

    To elucidate the biological effects of blocking fluorescent light on the retina using specific blocking materials. Seven- to 8-week-old BALB/c mice were divided into three groups and placed in one of the three boxes: one blocked ultraviolet and violet wavelengths of light (violet blockade), one blocked ultraviolet, violet, blue and some other visible wavelengths (blue-plus blockade), and one allowed most visible light to pass through (control). They were then exposed to a white fluorescent lamp for 1 h at 5.65E-05 mW/cm(2) /s. After treatment, the electroretinogram, retinal outer nuclear layer thickness and retinal outer segment length were measured. In addition, retinal apoptotic cells were quantified by TdT-mediated dUTP nick-end labelling assay and c-Fos messenger RNA, and protein levels were measured by real-time reverse-transcription polymerase chain reaction and immunoblot analyses, respectively. The blue-plus blockade group retained a significantly better electroretinogram response following light exposure than the control or violet blockade groups. The blue-plus blockade group also exhibited greater outer nuclear layer thickness and greater outer-segment length, and fewer apoptotic cells after light exposure than the other groups. The c-Fos messenger RNA and protein levels were substantially reduced in the blue-plus blockade group and reduced to a lesser extent in the violet blockade group. The blockade of blue plus additional visible wavelengths of light was most effective in protecting the retina from light-induced damage. The blockade of violet light alone was also effective in reducing intracellular molecular responses, but these effects were not sufficient for attenuating retinal degeneration. © 2013 Royal Australian and New Zealand College of Ophthalmologists.

  5. Interactions of Changing Solar Ultraviolet Radiation and Climate with Light Induced Chemical Reactions in Aquatic Environments

    EPA Science Inventory

    Changes in the ozone layer over the past two decades have resulted in increases in solar ultraviolet radiation that reach the surface of North American aquatic environments. Concurrent changes in atmospheric CO2 are resulting in changes in stratification and precipitation that ar...

  6. CD133+ cell content correlates with tumour growth in melanomas from skin with chronic sun-induced damage.

    PubMed

    González-Herrero, I; Romero-Camarero, I; Cañueto, J; Cardeñoso-Álvarez, E; Fernández-López, E; Pérez-Losada, J; Sánchez-García, I; Román-Curto, C

    2013-10-01

    Melanoma is responsible for almost 80% of the deaths attributed to skin cancer. Stem cells, defined by CD133 expression, have been implicated in melanoma tumour growth, but their specific role is still uncertain. We hypothesized that the phenotypic heterogeneity of human cutaneous melanomas is related to their content of CD133+ cells. We compared the percentages of CD133+ cells in 29 tumours from four classic types of melanoma: lentigo maligna melanoma (LMM), superficial spreading melanoma, nodular melanoma and acral lentiginous melanoma (ALM). Also, we compared the percentages of CD133+ cells in melanomas with different degrees of exposure to ultraviolet radiation: 16 melanomas from skin with chronic sun-induced damage and 13 melanomas from skin without such damage. We found a statistically significant increase of CD133+ cells in three different contexts: in melanomas arising on skin with signs of chronic sun-induced damage vs. nonexposed skin, in melanomas in situ vs. invasive melanomas, and in LMM vs. ALM. The proportions of CD133+ cells did not differ among samples of normal skin with different degrees of sun exposure. A distinct subpopulation of CD133+CXCR4+ cancer stem cells (CSCs) was identified and shown to be related to the invasive phenotype of the tumours. Here, we provide evidence showing, for the first time, that an increase in the CD133+ cell content is associated both with melanomas arising on skin with signs of chronic sun-induced damage and in melanomas in situ with better prognosis. Moreover, our study further confirms the existence of a subpopulation of CD133+CXCR4+ CSCs in cutaneous melanomas with invasive phenotype and poor prognosis. © 2013 British Association of Dermatologists.

  7. Use of near infrared femtosecond lasers as sub-micron radiation microbeam for cell DNA damage and repair studies.

    PubMed

    Botchway, S W; Reynolds, P; Parker, A W; O'Neill, P

    2010-01-01

    Laser induced radiation microbeam technology for radiobiology research is undergoing rapid growth because of the increased availability and ease of use of femtosecond laser sources. The main processes involved are multiphoton absorption and/or plasma formation. The high peak powers these lasers generate make them ideal tools for depositing sub-micrometer size radiant energy within a region of a living cell nucleus to activate ionising and/or photochemically driven processes. The technique allows questions relating to the effects of low doses of radiation, the propagation and treatment of deoxyribonucleic acid (DNA) damage and repair in individual live cells as well as non-targeted cell to cell effects to be addressed. This mini-review focuses on the use of near infrared (NIR) ca. 800nm radiation to induce damage that is radically different from the early and subsequent ultraviolet microbeam techniques. Ultrafast pulsed NIR instrumentation has many benefits including the ability to eliminate issues of unspecific UV absorption by the many materials prevalent within cells. The multiphoton interaction volume also permits energy deposition beyond the diffraction limit. Work has established that the fundamental process of the damage induced by the ultrashort laser pulses is different to those induced from continuous wave light sources. Pioneering work has demonstrated that NIR laser microbeam radiation can mimic ionising radiation via multiphoton absorption within the 3D femtolitre volume of the highly focused Gaussian beam. This light-matter interaction phenomenon provides a novel optical microbeam probe for mimicking both complex ionising and UV radiation-type cell damage including double strand breaks (DSBs) and base damage. A further advantage of the pulsed laser technique is that it provides further scope for time-resolved experiments. Recently the NIR laser microbeam technique has been used to investigate the recruitment of repair proteins to the sub

  8. Prediction of skin cancer occurrence by ultraviolet solar index

    PubMed Central

    Rivas, Miguel; Rojas, Elisa; Calaf, Gloria M.

    2012-01-01

    An increase in the amount of solar ultraviolet light that reaches the Earth is considered to be responsible for the worldwide increase in skin cancer. It has been reported that exposure to excessive levels of solar ultraviolet light has multiple effects, which can be harmful to humans. Experimental ultraviolet light measurements were obtained in several locations in Chile between 2006 and 2009 using wide-band solar light Biometer YES, calibrated according to World Meteorological Organization (WMO) criteria and integrated into the National Meteorological Center of Chile ultraviolet network (DMC). The aim of this study was to determine skin cancer rates in relation to experimental data accumulated during one year of studying the solar ultraviolet index in Chile, in order to explain the possible effect of radiation on skin cancer. The rate of skin cancer per 100,000 persons was considered in Arica, Santiago, Concepción and Valdivia and extrapolated to other cities. Results of the present study showed that the incidence of skin cancer was markedly correlated with accumulative ultraviolet radiation, and rates of skin cancer could be extrapolated to other locations in Chile. There is a steady increase in the rate of skin cancer in cities located nearest to the equator (low latitude) that receive greater accumulated solar ultraviolet radiation, due to the accumulative effects of this type of radiation on the skin. It can be concluded that Arica is a city at sea level that receives higher levels of ultraviolet solar radiation than other locations, which may explain the higher prevalence of skin cancer in the population of this location, compared with other cities in Chile. PMID:22741013

  9. Mechanisms of ultraviolet disinfection and chlorination of Escherichia coli: Culturability, membrane permeability, metabolism, and genetic damage.

    PubMed

    Xu, Limei; Zhang, Chongmiao; Xu, Pengcheng; Wang, Xiaochang C

    2018-03-01

    Traditional culture methods may underestimate the tolerance of microorganisms to disinfectants because of the existence of viable but nonculturable or sublethally injured cells after disinfection. The selection of a strict method is crucial for the evaluation of disinfection performance. The actions of 2 typical disinfectants - ultraviolet (UV) and chlorine - on the fecal indicator Escherichia coli were investigated by the detection of culturability, membrane permeability, metabolic activity, deoxyribonucleic acid (DNA), and messenger ribonucleic acid (mRNA). During UV disinfection, the irreversible damages in the cell membrane and cellular adenosine triphosphate (ATP) were negligible at low UV doses (<80mJ/cm 2 ). However, membrane permeability was damaged at low doses of chlorine (<5mg/L), leading to leakage of cellular ATP. Our study showed that a slight lesion in DNA was detected even at high doses of UV (400mJ/cm 2 ) and chlorine (>5mg/L) treatments. The decay of mRNA was more rapid than that of DNA. The degradation level of mRNA depended on the choice of target genes. After exposure to 50mJ/cm 2 UV dose or 5mg/L chlorine for 30min, the DNA damage repair function (RecA mRNA) was inhibited. The mRNA involved in the DNA damage repair function can be a potential indicator of bacterial viability. Copyright © 2017. Published by Elsevier B.V.

  10. Investigations of blue light-induced reactive oxygen species from flavin mononucleotide on inactivation of E. coli.

    PubMed

    Liang, Ji-Yuan; Cheng, Chien-Wei; Yu, Chin-Hao; Chen, Liang-Yü

    2015-02-01

    The micronutrients in many cellular processes, riboflavin, flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD) are photo-sensitive to UV and visible light for generating reactive oxygen species (ROS). Produced from phosphorylation of riboflavin, FMN is more water-soluble and rapidly transformed into free riboflavin after ingestion. This study investigated the application of visible blue light with FMN to development of an effective antimicrobial treatment. The photosensitization of bacterial viability with FMN was investigated by light quality, intensity, time, and irradiation dosage. The blue light-induced photochemical reaction with FMN could inactivate Escherichiacoli by the generated ROS in damaging nucleic acids, which was validated. This novel photodynamic technique could be a safe practice for photo-induced inactivation of environmental microorganism to achieve hygienic requirements in food processing. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Non-thermal damage to lead tungstate induced by intense short-wavelength laser radiation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Vozda, Vojtech; Boháček, Pavel; Burian, Tomáš; Chalupský, Jaromir; Hájková, Vera; Juha, Libor; Vyšín, Ludek; Gaudin, Jérôme; Heimann, Philip A.; Hau-Riege, Stefan P.; Jurek, Marek; Klinger, Dorota; Krzywinski, Jacek; Messerschmidt, Marc; Moeller, Stefan P.; Nagler, Robert; Pelka, Jerzy B.; Rowen, Michael; Schlotter, William F.; Swiggers, Michele L.; Sinn, Harald; Sobierajski, Ryszard; Tiedtke, Kai; Toleikis, Sven; Tschentscher, Thomas; Turner, Joshua J.; Wabnitz, Hubertus; Nelson, Art J.; Kozlova, Maria V.; Vinko, Sam M.; Whitcher, Thomas; Dzelzainis, Thomas; Renner, Oldrich; Saksl, Karel; Fäustlin, Roland R.; Khorsand, Ali R.; Fajardo, Marta; Iwan, Bianca S.; Andreasson, Jakob; Hajdu, Janos; Timneanu, Nicusor; Wark, Justin S.; Riley, David; Lee, Richard W.; Nagasono, Mitsuru; Yabashi, Makina

    2017-05-01

    Interaction of short-wavelength free-electron laser (FEL) beams with matter is undoubtedly a subject to extensive investigation in last decade. During the interaction various exotic states of matter, such as warm dense matter, may exist for a split second. Prior to irreversible damage or ablative removal of the target material, complicated electronic processes at the atomic level occur. As energetic photons impact the target, electrons from inner atomic shells are almost instantly photo-ionized, which may, in some special cases, cause bond weakening, even breaking of the covalent bonds, subsequently result to so-called non-thermal melting. The subject of our research is ablative damage to lead tungstate (PbWO4) induced by focused short-wavelength FEL pulses at different photon energies. Post-mortem analysis of complex damage patterns using the Raman spectroscopy, atomic-force (AFM) and Nomarski (DIC) microscopy confirms an existence of non-thermal melting induced by high-energy photons in the ionic monocrystalline target. Results obtained at Linac Coherent Light Source (LCLS), Free-electron in Hamburg (FLASH), and SPring-8 Compact SASE Source (SCSS) are presented in this Paper.

  12. Oxidative stress-induced protein damage inhibits DNA repair and determines mutation risk and anticancer drug effectiveness

    PubMed Central

    McAdam, Elizabeth; Brem, Reto; Karran, Peter

    2016-01-01

    The relationship between sun exposure and non-melanoma skin cancer risk is well established. Solar ultraviolet radiation (UV; wavelengths 280-400 nm) is firmly implicated in skin cancer development. Nucleotide excision repair (NER) protects against cancer by removing potentially mutagenic DNA lesions induced by UVB (280-320 nm). How the 20-fold more abundant UVA (320-400 mn) component of solar UV radiation increases skin cancer risk is not understood. We demonstrate here that the contribution of UVA to the effects of UV radiation on cultured human cells is largely independent of its ability to damage DNA. Instead, the effects of UVA reflect the induction of oxidative stress that causes extensive protein oxidation. Because NER proteins are among those damaged, UVA irradiation inhibits NER and increases the cells’ susceptibility to mutation by UVB. NER inhibition is a common consequence of oxidative stress. Exposure to chemical oxidants, treatment with drugs that deplete cellular antioxidants, and interventions that interfere with glucose metabolism to disrupt the supply of cellular reducing power all inhibit NER. Tumor cells are often in a condition of oxidative stress and one effect of the NER inhibition that results from stress-induced protein oxidation is an increased sensitivity to the anticancer drug cisplatin. Statement of implication: Since NER is both a defence against cancer a significant determinant of cell survival after treatment with anticancer drugs, its attenuation by protein damage under conditions of oxidative-stress has implications for both cancer risk and for the effectiveness of anticancer therapy. PMID:27106867

  13. Spectral shifts of mammalian ultraviolet-sensitive pigments (short wavelength-sensitive opsin 1) are associated with eye length and photic niche evolution.

    PubMed

    Emerling, Christopher A; Huynh, Hieu T; Nguyen, Minh A; Meredith, Robert W; Springer, Mark S

    2015-11-22

    Retinal opsin photopigments initiate mammalian vision when stimulated by light. Most mammals possess a short wavelength-sensitive opsin 1 (SWS1) pigment that is primarily sensitive to either ultraviolet or violet light, leading to variation in colour perception across species. Despite knowledge of both ultraviolet- and violet-sensitive SWS1 classes in mammals for 25 years, the adaptive significance of this variation has not been subjected to hypothesis testing, resulting in minimal understanding of the basis for mammalian SWS1 spectral tuning evolution. Here, we gathered data on SWS1 for 403 mammal species, including novel SWS1 sequences for 97 species. Ancestral sequence reconstructions suggest that the most recent common ancestor of Theria possessed an ultraviolet SWS1 pigment, and that violet-sensitive pigments evolved at least 12 times in mammalian history. We also observed that ultraviolet pigments, previously considered to be a rarity, are common in mammals. We then used phylogenetic comparative methods to test the hypotheses that the evolution of violet-sensitive SWS1 is associated with increased light exposure, extended longevity and longer eye length. We discovered that diurnal mammals and species with longer eyes are more likely to have violet-sensitive pigments and less likely to possess UV-sensitive pigments. We hypothesize that (i) as mammals evolved larger body sizes, they evolved longer eyes, which limited transmittance of ultraviolet light to the retina due to an increase in Rayleigh scattering, and (ii) as mammals began to invade diurnal temporal niches, they evolved lenses with low UV transmittance to reduce chromatic aberration and/or photo-oxidative damage. © 2015 The Author(s).

  14. Lighting considerations in controlled environments for nonphotosynthetic plant responses to blue and ultraviolet radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caldwell, M.M.; Flint, S.D.

    1994-12-31

    This essay will consider both physical and photobiological aspects of controlled environment lighting in the spectral region beginning in the blue and taken to the normal limit of the solar spectrum in the ultraviolet. The primary emphasis is directed to questions of plant response to sunlight. Measurement and computations used in radiation dosimetry in this part of the spectrum are also briefly treated. Because of interest in the ozone depletion problem, there has been some activity in plant UV-B research and there are several recent reviews available. Some aspects of growth chamber lighting as it relates to UV-B research weremore » covered earlier. Apart from work related to the blue/UV-A receptor, less attention has been given to UV-A responses.« less

  15. Milk thistle and olive extract: old substances with a new mission against sun-induced skin damage.

    PubMed

    DI Caprio, Roberta; Monfrecola, Giuseppe; Gasparri, Franco; Micillo, Raffaella; Balato, Anna; Lembo, Serena

    2017-11-30

    Natural antioxidants represent an effective option in the prevention and/or improvement of ultraviolet radiations (UVR)-induced/aggravated skin conditions. UVR cause DNA damage in keratinocytes, directly, in the form of cyclobutane pyrimidine dimers (CPDs), or indirectly, through oxidative stress production. Failure of the repair system can result in genetic mutations primarily responsible for the initiation of NMSCs. The aim of our study was to evaluate the in vitro protective effect of milk thistle and olive purified extracts on cultured keratinocytes after solar simulator irradiations (SSR). Immortalized keratinocytes were pre-incubated with different concentrations of milk thistle and olive purified extracts, and irradiated with increasing doses of SSR. Thereafter, CPDs and p53 expression were evaluated to assess DNA damage, whereas cellular antioxidants consumption and lipid membranes peroxidation were measured to analyse oxidative stress. The study substances were well tolerated by cells and displayed good cytoprotective and anti-oxidant activities, being milk thistle dry extract more effective in limiting the direct DNA damage, and olive extract particularly able to reduce lipid membrane peroxidation and to increase cellular antioxidants. Both study substances can be defined as safe compounds, showing differential cytoprotective and anti-oxidant activities and might represent interesting options for NMSCs chemoprevention.

  16. A sensitive ultraviolet light photodiode based on graphene-on-zinc oxide Schottky junction

    NASA Astrophysics Data System (ADS)

    Zhang, Teng-Fei; Wu, Guo-An; Wang, Jiu-Zhen; Yu, Yong-Qiang; Zhang, Deng-Yue; Wang, Dan-Dan; Jiang, Jing-Bo; Wang, Jia-Mu; Luo, Lin-Bao

    2017-08-01

    In this study, we present a simple ultraviolet (UV) light photodiode by transferring a layer of graphene film on single-crystal ZnO substrate. The as-fabricated heterojunction exhibited typical rectifying behavior, with a Schottky barrier height of 0.623 eV. Further optoelectronic characterization revealed that the graphene-ZnO Schottky junction photodiode displayed obvious sensitivity to 365-nm light illumination with good reproducibility. The responsivity and photoconductive gain were estimated to be 3×104 A/W and 105, respectively, which were much higher than other ZnO nanostructure-based devices. In addition, it was found that the on/off ratio of the present device can be considerably improved from 2.09 to 12.1, when the device was passivated by a layer of AlOx film. These results suggest that the present simply structured graphene-ZnO UV photodiode may find potential application in future optoelectronic devices.

  17. Ultraviolet-C Light Sanitization of English Cucumber (Cucumis sativus) Packaged in Polyethylene Film.

    PubMed

    Tarek, Abdussamad R; Rasco, Barbara A; Sablani, Shyam S

    2016-06-01

    Food safety is becoming an increasing concern in the United States. This study investigated the effects of ultraviolet-C (UV-C) light as a postpackaging bactericidal treatment on the quality of English cucumber packaged in polyethylene (PE) film. Escherichia coli k-12 was used as a surrogate microbe. The microbial growth and physical properties of packaged cucumbers were analyzed during a 28-d storage period at 5 °C. Inoculating packaged cucumbers treated at 23 °C for 6 min with UV-C (560 mJ/cm(2) ) resulted in a 1.60 log CFU/g reduction. However, this treatment had no significant effect (P > 0.05) on the water vapor transmission rate or oxygen transmission rate of the PE film. Results show that UV-C light treatment delayed the loss of firmness and yellowing of English cucumber up to 28 d at 5 °C. In addition, UV-C light treatment extended the shelf life of treated cucumber 1 wk longer compared to untreated cucumbers. Electron microscopy images indicate that UV-C light treatment influences the morphology of the E. coli k-12 cells. Findings demonstrate that treating cucumbers with UV-C light following packaging in PE film can reduce bacterial populations significantly and delay quality loss. This technology may also be effective for other similarly packaged fresh fruits and vegetables. © 2016 Institute of Food Technologists®

  18. Resistance of a lizard (the green anole, Anolis carolinensis; Polychridae) to ultraviolet radiation-induced immunosuppression

    USGS Publications Warehouse

    Cope, R.B.; Fabacher, D.L.; Lieske, C.; Miller, C.A.

    2001-01-01

    The green anole (Anolis carolinensis) is the most northerly distributed of its Neotropical genus. This lizard avoids a winter hibernation phase by the use of sun basking behaviors. Inevitably, this species is exposed to high doses of ambient solar ultraviolet radiation (UVR). Increases in terrestrial ultraviolet-B (UV-B) radiation secondary to stratospheric ozone depletion and habitat perturbation potentially place this species at risk of UVR-induced immunosuppression. Daily exposure to subinflammatory UVR (8 kJ/m2/day UV-B, 85 kJ/m2/day ultraviolet A [UV-A]), 6 days per week for 4 weeks (total cumulative doses of 192 kJ/m2 UV-B, 2.04 × 103 kJ/m2 UV-A) did not suppress the anole's acute or delayed type hypersensitivity (DTH) response to horseshoe crab hemocyanin. In comparison with the available literature UV-B doses as low as 0.1 and 15.9 kJ/m2 induced suppression of DTH responses in mice and humans, respectively. Exposure of anoles to UVR did not result in the inhibition of ex vivo splenocyte phagocytosis of fluorescein labeled Escherichia coli or ex vivo splenocyte nitric oxide production. Doses of UV-B ranging from 0.35 to 45 kJ/m2 have been reported to suppress murine splenic/peritoneal macrophage phagocytosis and nitric oxide production. These preliminary studies demonstrate the resistance of green anoles to UVR-induced immunosuppression. Methanol extracts of anole skin contained two peaks in the ultraviolet wavelength range that could be indicative of photoprotective substances. However, the resistance of green anoles to UVR is probably not completely attributable to absorption by UVR photoprotective substances in the skin but more likely results from a combination of other factors including absorption by the cutis and absorption and reflectance by various components of the dermis.

  19. Laser-induced bulk damage of silica glass at 355nm and 266nm

    NASA Astrophysics Data System (ADS)

    Kashiwagi, R.; Aramomi, S.

    2016-12-01

    Laser processing machines using Nd:YAG 3rd harmonic wave (355 nm) and 4th harmonic wave (266 nm) have been developed and put into practical use lately. Due to this, optical elements with high laser durability to 355 nm and 266 nm are required. Silica glass is the optical element which has high UV transmission and high laser durability. Laser-induced surface damage of the silica glass has been studied in detail, but we hardly have the significant knowledge of laserinduced bulk damage. This knowledge is required in order to evaluate the silica glass itself. That is because cracks and scratches on the surface give rise to a higher possibility of damage. Therefore, we studied the laser durability of a variety of the silica glass samples by 1-on-1 and S-on-1 laser-induced bulk damage threshold (LIDT) at 355 nm and 266 nm. In this study, we gained knowledge in three areas about bulk damage to the silica glass. First, the LIDT became lower as shot counts increased. Second, the LIDT decreased as the hydroxyl content in the silica glass increased. Last, the LIDT became higher as the hydrogen concentration in the silica glass increased. Under the UV irradiation, impurities are generated and the silica glass absorbs more light. Therefore, the LIDT decreased as shot counts increased. Also, the hydroxyl in particular generates more impurities, so damage easily occurs. On the other hand, the hydrogen reacts with impurities and absorption is suppressed. Based on these results, we can improve laser durability at 355 nm and 266 nm by reducing the hydroxyl content and increasing the hydrogen concentration in the silica glass.

  20. Measurement of the vacuum-ultraviolet absorption spectrum of low-k dielectrics using X-ray reflectivity

    NASA Astrophysics Data System (ADS)

    Choudhury, F. A.; Nguyen, H. M.; King, S. W.; Lee, C. H.; Lin, Y. H.; Fung, H. S.; Chen, C. C.; Li, W.; Benjamin, D.; Blatz, J. M.; Nishi, Y.; Shohet, J. L.

    2018-02-01

    During plasma processing, low-k dielectrics are exposed to high levels of vacuum ultraviolet (VUV) radiation that can cause severe damage to dielectric materials. The degree and nature of VUV-induced damage depend on the VUV photon energies and fluence. In this work, we examine the VUV-absorption spectrum of low-k organosilicate glass using specular X-ray reflectivity (XRR). Low-k SiCOH films were exposed to synchrotron VUV radiation with energies ranging from 7 to 21 eV, and the density vs. depth profile of the VUV-irradiated films was extracted from fitting the XRR experimental data. The results show that the depth of the VUV-induced damage layer is a function of the photon energy. Between 7 and 11 eV, the depth of the damaged layer decreases sharply from 110 nm to 60 nm and then gradually increases to 85 nm at 21 eV. The maximum VUV absorption in low-k films occurs between 11 and 15 eV. The depth of the damaged layer was found to increase with film porosity.