Sample records for ultraviolet photoemission spectra

  1. Electronic Structures of Purple Bronze KMo6O17 Studied by X-Ray Photoemission Spectra

    NASA Astrophysics Data System (ADS)

    Qin, Xiaokui; Wei, Junyin; Shi, Jing; Tian, Mingliang; Chen, Hong; Tian, Decheng

    X-ray photoemission spectroscopy study has been performed for the purple bronze KMo6O17. The structures of conduction band and valence band are analogous to the results of ultraviolet photoemission spectra and are also consistent with the model of Travaglini et al., but the gap between conduction and valence band is insignificant. The shape of asymmetric and broadening line of O-1s is due to unresolved contributions from the many inequivalent oxygen sites in this crystal structure. Mo 3d core-level spectrum reveals that there are two kinds of valence states of Molybdenum (Mo+5 and Mo+6). The calculated average valence state is about +5.6, which is consistent with the expectation value from the composition of this material. The tail of Mo-3d spectrum toward higher binding energy is the consequence of the excitation of electron-hole pairs with singularity index of 0.21.

  2. Measurement of the background in Auger-Photoemission Spectra (APECS) associated with multi-electron and inelastic valence band photoemission processes

    NASA Astrophysics Data System (ADS)

    Joglekar, Prasad; Shastry, Karthik; Hulbert, Steven; Weiss, Alex

    2014-03-01

    Auger Photoelectron Coincidence Spectroscopy (APECS), in which the Auger spectra is measured in coincidence with the core level photoelectron, is capable of pulling difficult to observe low energy Auger peaks out of a large background due mostly to inelastically scattered valence band photoelectrons. However the APECS method alone cannot eliminate the background due to valence band VB photoemission processes in which the initial photon energy is shared by 2 or more electrons and one of the electrons is in the energy range of the core level photoemission peak. Here we describe an experimental method for estimating the contributions from these background processes in the case of an Ag N23VV Auger spectra obtained in coincidence with the 4p photoemission peak. A beam of 180eV photons was incident on a Ag sample and a series of coincidence measurements were made with one cylindrical mirror analyzer (CMA) set at a fixed energies between the core and the valence band and the other CMA scanned over a range corresponding to electrons leaving the surface between 0eV and the 70eV. The spectra obtained were then used to obtain an estimate of the background in the APECS spectra due to multi-electron and inelastic VB photoemission processes. NSF, Welch Foundation.

  3. Application of the Lucy–Richardson Deconvolution Procedure to High Resolution Photoemission Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rameau, J.; Yang, H.-B.; Johnson, P.D.

    2010-07-01

    Angle-resolved photoemission has developed into one of the leading probes of the electronic structure and associated dynamics of condensed matter systems. As with any experimental technique the ability to resolve features in the spectra is ultimately limited by the resolution of the instrumentation used in the measurement. Previously developed for sharpening astronomical images, the Lucy-Richardson deconvolution technique proves to be a useful tool for improving the photoemission spectra obtained in modern hemispherical electron spectrometers where the photoelectron spectrum is displayed as a 2D image in energy and momentum space.

  4. Three-dimensional characterization of extreme ultraviolet mask blank defects by interference contrast photoemission electron microscopy.

    PubMed

    Lin, Jingquan; Weber, Nils; Escher, Matthias; Maul, Jochen; Han, Hak-Seung; Merkel, Michael; Wurm, Stefan; Schönhense, Gerd; Kleineberg, Ulf

    2008-09-29

    A photoemission electron microscope based on a new contrast mechanism "interference contrast" is applied to characterize extreme ultraviolet lithography mask blank defects. Inspection results show that positioning of interference destructive condition (node of standing wave field) on surface of multilayer in the local region of a phase defect is necessary to obtain best visibility of the defect on mask blank. A comparative experiment reveals superiority of the interference contrast photoemission electron microscope (Extreme UV illumination) over a topographic contrast one (UV illumination with Hg discharge lamp) in detecting extreme ultraviolet mask blank phase defects. A depth-resolved detection of a mask blank defect, either by measuring anti-node peak shift in the EUV-PEEM image under varying inspection wavelength condition or by counting interference fringes with a fixed illumination wavelength, is discussed.

  5. Photoemission spectra and band structures of simple metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shung, K.W.; Mahan, G.D.

    1988-08-15

    We present a detailed calculation of the angle-resolved photoemission spectra of Na. The calculation follows a theory by Mahan, which allows for the inclusion of various bulk and surface effects. We find it important to take into account various broadening effects in order to explain the anomalous structure at E/sub F/, which was found by Jensen and Plummer in the spectra of Na. The broadening effects also help to resolve the discrepancy of the conduction-band width. Efforts are made to compare our results with new measurements of Plummer and Lyo. We discuss the ambiguity concerning the sign of the crystalmore » potential and comment on charge-density waves in the systems. We have also generalized our discussions to other simple metals like K.« less

  6. Attosecond time-resolved streaked photoemission from Mg-covered W(110) surfaces

    NASA Astrophysics Data System (ADS)

    Liao, Qing; Thumm, Uwe

    2015-05-01

    We formulate a quantum-mechanical model for infrared-streaked photoelectron emission by an ultrashort extreme ultraviolet pulse from adsorbate-covered metal surfaces. Applying this numerical model to ultrathin Mg adsorbates on W(110) substrates, we analyze streaked photoelectron spectra and attosecond streaking time delays for photoemission from the Mg/W(110) conduction band and Mg(2p) and W(4f) core levels. Based on this analysis, we propose the use of attosecond streaking spectroscopy on adsorbate-covered surfaces with variable adsorbate thickness as a method for investigating (a) electron transport in condensed-matter systems and (b) metal-adsorbate-interface properties at subatomic length and time scales. Our calculated streaked photoemission spectra and time delays agree with recently obtained experimental data. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy under Grant No. DE-FG02-86ER13491 and NSF Grant PHY-1068752.

  7. Extreme ultraviolet spectra of multiply charged tungsten ions

    NASA Astrophysics Data System (ADS)

    Mita, Momoe; Sakaue, Hiroyuki A.; Kato, Daiji; Murakami, Izumi; Nakamura, Nobuyuki

    2017-11-01

    We present extreme ultraviolet spectra of multiply charged tungsten ions observed with an electron beam ion trap. The observed spectra are compared with previous experimental results and theoretical spectra obtained with a collisional radiative model.

  8. An innovative Yb-based ultrafast deep ultraviolet source for time-resolved photoemission experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boschini, F.; Hedayat, H.; Dallera, C.

    2014-12-15

    Time- and angle-resolved photoemission spectroscopy is a powerful technique to study ultrafast electronic dynamics in solids. Here, an innovative optical setup based on a 100-kHz Yb laser source is presented. Exploiting non-collinear optical parametric amplification and sum-frequency generation, ultrashort pump (hν = 1.82 eV) and ultraviolet probe (hν = 6.05 eV) pulses are generated. Overall temporal and instrumental energy resolutions of, respectively, 85 fs and 50 meV are obtained. Time- and angle-resolved measurements on BiTeI semiconductor are presented to show the capabilities of the setup.

  9. Accurate determination of the valence band edge in hard x-ray photoemission spectra using GW theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lischner, Johannes, E-mail: jlischner597@gmail.com; Department of Physics and Department of Materials and the Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ; Nemšák, Slavomír

    We introduce a new method for determining accurate values of the valence-band maximum in x-ray photoemission spectra. Specifically, we align the sharpest peak in the valence-band region of the experimental spectrum with the corresponding feature of a theoretical valence-band density of states curve from ab initio GW theory calculations. This method is particularly useful for soft and hard x-ray photoemission studies of materials with a mixture of valence-band characters, where strong matrix element effects can render standard methods for extracting the valence-band maximum unreliable. We apply our method to hydrogen-terminated boron-doped diamond, which is a promising substrate material for novelmore » solar cell devices. By carrying out photoemission experiments with variable light polarizations, we verify the accuracy of our analysis and the general validity of the method.« less

  10. Photoemission of Single Dust Grains for Heliospheric Conditions

    NASA Technical Reports Server (NTRS)

    Spann, James F., Jr.; Venturini, Catherine C.; Abbas, Mian M.; Comfort, Richard H.

    2000-01-01

    Initial results of an experiment to measure the photoemission of single dust grains as a function of far ultraviolet wavelengths are presented. Coulombic forces dominate the interaction of the dust grains in the heliosphere. Knowledge of the charge state of dust grains, whether in a dusty plasma (Debye length < intergrain distance) or in the diffuse interplanetary region, is key to understanding their interaction with the solar wind and other solar system constituents. The charge state of heliospheric grains is primarily determined by primary electron and ion collisions, secondary electron emission and photoemission due to ultraviolet sunlight. We have established a unique experimental technique to measure the photoemission of individual micron-sized dust grains in vacuum. This technique resolves difficulties associated with statistical measurements of dust grain ensembles and non-static dust beams. The photoemission yield of Aluminum Oxide 3-micron grains For wavelengths from 120-300 nm with a spectral resolution of 1 nm FWHM is reported. Results are compared to interplanetary conditions.

  11. An LDA+U study of the photoemission spectra of ground state phase of americium and curium

    NASA Astrophysics Data System (ADS)

    Islam, Md; Ray, Asok

    2009-03-01

    We have investigated the photoemission spectra and other ground state properties such as equilibrium volume and bulk modulus of dhcp americium and the density of states and magnetic properties of dhcp curium using LDA+U method. Our calculations show that spin polarized americium is energetically favorable but spin degenerate configuration produces experimental quantities much better than that calculated using spin polarized configuration. The DOS calculated using LDA+U with both non-magnetic and spin polarized configurations is compared and the non-magnetic DOS is shown to be in good agreement with experimental photoemission spectra when U=4.5 eV. In spin polarized case, U is observed to increase the splitting between occupied and unoccupied bands by enhancing Stoner parameter. The results are shown to be in good agreement with that calculated using dynamical mean field theory for these two heavy actinides. For curium, exchange interaction appears to play the dominant role in its magnetic stability.

  12. Valence-band and core-level photoemission study of single-crystal Bi2CaSr2Cu2O8 superconductors

    NASA Astrophysics Data System (ADS)

    Shen, Z.-X.; Lindberg, P. A. P.; Wells, B. O.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.

    1988-12-01

    High-quality single crystals of Bi2CaSr2Cu2O8 superconductors have been prepared and cleaved in ultrahigh vacuum. Low-energy electron diffraction measurements show that the surface structure is consistent with the bulk crystal structure. Ultraviolet photoemission and x-ray photoemission experiments were performed on these well-characterized sample surfaces. The valence-band and the core-level spectra obtained from the single-crystal surfaces are in agreement with spectra recorded from polycrystalline samples, justifying earlier results from polycrystalline samples. Cu satellites are observed both in the valence band and Cu 2p core level, signaling the strong correlation among the Cu 3d electrons. The O 1s core-level data exhibit a sharp, single peak at 529-eV binding energy without any clear satellite structures.

  13. Multiplet Splitting Effects on Core-Level Photoemission and Inverse-Photoemission Spectra of Uranium Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Okada, Kozo

    1999-03-01

    The present paper discusses the role of U 5f-5f exchange interaction (J) in the inverse photoemission spectrum (IPES) and the U 4f x-ray photoemission spectrum (XPS) of uranium intermetallic compounds. The origin of the broad main peak in the IPES of UPd3 and UPd2Al3, for instance, is ascribed to the exchange coupling effects of 5f electrons. In other words, whether the ground state is of high-spin or of low-spin is directly reflected in the width of the IPES. On the other hand, the interpretation for the U 4f photoemission spectrum is not so greatly influenced by J. The full-multiplet calculations are also performed for an U4+ ion for comparison.

  14. Ultraviolet Spectra of Two Magnetic White Dwarfs and Ultraviolet Spectra of Subluminous Objects Found in the Kiso Schmidt Survey

    NASA Technical Reports Server (NTRS)

    Wegner, Gary A.

    1987-01-01

    Low resolution International Ultraviolet Explorer (IUE) spectroscopic observations of two magnetic white dwarfs BPM25114 and K813-14 were obtained using both the SWP and LWP cameras. The first object has an observed magnetic field of 4 x 10(7) Gauss and the second has one of 3 x 10(7) Gauss. Both objects have overall spectral energy distributions appropriate for cool DA white dwarfs with T(eff) near 10,000 K and accordingly show strong lambda lambda 1400 and 1600 absorption in their spectra. Compared to non-magnetic DA white dwarfs of comparable effective temperature, there are some differences in the profiles, presumably produced by the magnetic fields in these objects. In addition, the ultraviolet spectra of a number of hot subluminous stars in the Kiso Schmidt survey were observed.

  15. Observations of the Ultraviolet Spectra of Carbon White Dwarfs

    NASA Technical Reports Server (NTRS)

    Wagner, G. A.

    1982-01-01

    Strong ultraviolet carbon lines were detected in additional white DC (continuous visual spectra) dwarfs using the IUE. These lines are not seen in the ultraviolet spectrum of the cool DC star Stein 2051 B. The bright DA white dwarf LB 3303 has a strong unidentified absorption near lambda 1400.

  16. Ultraviolet Spectra of Two Magnetic White Dwarfs and Ultraviolet Spectra of Subluminous Objects Found in the Kiso Schmidt Survey and Ultraviolet Absorptions in the Spectra of DA White Dwarfds

    NASA Technical Reports Server (NTRS)

    Wegner, Gary A.

    1988-01-01

    Research under NASA Grant NAG5-287 has carried out a number of projects in conjunction with the International Ultraviolet Explorer (IUE) satellite. These include: (1) studies of the UV spectra of DA white dwarfs which show quasi-molecular bands of H2 and H2(+); (2) the peculiar star HR6560; (3) the UV spectra of two magnetic white dwarfs that also show the quasi-molecular features; (4) investigations of the UV spectra of subluminous stars, primarily identified from visual wavelength spectroscopy in the Kiso survey of UV excess stars, some of which show interesting metal lines in their UV spectra; and (5) completion of studies of UV spectra of DB stars. The main result of this research has been to further knowledge of the structure and compositions of subluminous stars which helps cast light on their formation and evolution.

  17. Ultraviolet Spectra of Subluminous Objects Found in the Kiso Schmidt Survey and Systematic Reanalysis of the Archived Ultraviolet Spectra of White Dwarfs Observed with the IUE Satellite Under the Astrophysics Data Program (ADP)

    NASA Technical Reports Server (NTRS)

    Wegner, Gary A.

    1988-01-01

    Recent research under NASA grant NAG5-971 consisted of the performance of two projects in conjunction with the International Ultraviolet Explorer (IUE) satellites. These are: (1) to look at the ultraviolet spectra of subluminous stars identified from visual wavelength spectroscopy that had been originally discovered from the Kiso Schmidt survey for ultraviolet excess stars and (2) to carry out a systematic reanalysis of the archived IUE spectra of white dwarfs. This report presents information on the progress of the re-reduction of over 600 IUE white dwarf spectra and their subsequent analysis employing model atmospheres and the observation of the Kiso ultraviolet excess stars.

  18. Computational Exploration of the Surface Properties of Cs2Te5 Photoemissive Material

    NASA Astrophysics Data System (ADS)

    Ruth, Anthony; Nemeth, Karoly; Harkay, Katherine; Spentzouris, Linda; Terry, Jeff

    2013-03-01

    Cs2Te is a broadly used photoemissive material due to its exceptionally high quantum efficiency (~ 20%). Our group has recently predicted that the acetylation of this material (Cs2TeC2) would lower its workfunction down to about 2.4 eV from ~ 3 eV, and preserve its high quantum efficiency. Such a modification is advantageous because visible light can be used in the operation of such a photoemissive device instead of ultraviolet light. To explore other variants of Cs2Te, we conducted DFT-based computational analysis of the photoemissive properties of Cs2Te5 which is a known phase of Cs and Te. Cs2Te5 attracted our attention for its rod-like 1D Te substructures embedded in a Cs matrix. This structure is similar to Cs2TeC2 as Cs2TeC2 contains TeC2 polymeric rods in a Cs matrix. In addition to that, exploration of various Cesium Telluride phases is necessary to better understand the working of Cs2Te photocathodes. We have calculated surface energies, workfunctions, and optical absorption spectra of several different surfaces of Cs2Te5. A comparison of the properties of various Cs2Te5 surfaces and their utilization in photoemissive devices will be presented.

  19. Large Band Gap of alpha-RuCl3 Probed by Photoemission and Inverse Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sinn, Soobin; Kim, Choong Hyun; Sandilands, Luke; Lee, Kyungdong; Won, Choongjae; Oh, Ji Seop; Han, Moonsup; Chang, Young Jun; Hur, Namjung; Sato, Hitoshi; Park, Byeong-Gyu; Kim, Changyoung; Kim, Hyeong-Do; Noh, Tae Won

    The Kitaev honeycomb lattice model has attracted great attention because of its possibility to stabilize a quantum spin liquid ground state. Recently, it was proposed that alpha-RuCl3 is its material realization and the first 4 d relativistic Mott insulator from an optical spectrum and LDA + U + SO calculations. Here, we present photoemission and inverse photoemission spectra of alpha-RuCl3. The observed band gap is about 1.8 eV, which suggests that the previously assigned optical gap of 0.3 eV is misinterpreted, and that the strong peak at about 1.2 eV in the optical spectrum may be associated with an actual optical gap. Assuming a strong excitonic effect of 0.6 eV in the optical spectrum, all the structures except for the peak at 0.3 eV are consistent with our electronic spectra. When compared with LDA + U + SO calculations, the value of U should be considerably larger than the previous one, which implies that the spin-orbit coupling is not a necessary ingredient for the insulating mechanism of alpha-RuCl3. We also present angle-resolved photoemission spectra to be compared with LDA + U + SO and LDA +DMFT calculations.

  20. Ultraviolet Spectra of Comets Observed with the International Ultraviolet Explorer Satellite Observatory.

    NASA Astrophysics Data System (ADS)

    Weaver, Harold Anthony, Jr.

    Ultraviolet spectra of seven comets observed with the International Ultraviolet Explorer (IUE) satellite are presented. Observations of comet Bradfield (1979 X) made in early 1980 allow a comprehensive study of the production of water by this comet. By comparing the observations to the predictions of two water models of the coma (Haser and vectorial), it is determined that these measurements support the idea of a comet composed principally of water ice. The vaporization of the water has a rather unexpected heliocentric variation, decreasing as r('-3.7) over the entire range of observations. Atomic carbon is relatively abundant in the coma of comet Bradfield; the production rate of carbon is roughly 5-10% of the water production rate. Analysis of the spatial brightness profiles of the strongest atomic carbon emission does not reveal the identity of the source of the observed carbon, but the data are apparently inconsistent with a photodissociation source that is either CO or CO(,2). A comparison of the ultraviolet spectrum of periodic comet Encke, recorded by the IUE between 1980 October 24 and November 5, with similar spectra of short and long period comets shows the gaseous composition of P/Encke to be virtually identical to that of the other comets. If P/Encke is indeed the remains of a once giant comet, this similarity implies a homogeneous structure for the cometary ice nucleus. The OH(0,0) band brightness distribution shows a spatial variation similar to the visible fan-shaped image of the comet. Comets P/Tuttle (1980h), P/Stephan-Oterma (1980g), and Meier (1980q) were observed during November-December 1980 with IUE, while comets P/Borrelly (1980i) and Panther (1980u) were observed with IUE on 6 March 1981. The spectra of these comets are compared with those of comets Bradfield (1979 X) and P/Encke, as well as with each other. In order to simplify the interpretation of the data and to minimize the dependence upon a specific model, the spectra are compared at

  1. Investigation of the poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene]/indium tin oxide interface using photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Lägel, B.; Beerbom, M. M.; Doran, B. V.; Lägel, M.; Cascio, A.; Schlaf, R.

    2005-07-01

    The interface between the luminescent polymer poly [2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) and sputter-cleaned indium tin oxide (ITO) was investigated using photoemission spectroscopy in combination with in situ thin film deposition. MEH-PPV was deposited in high vacuum directly from toluene solution on the ITO substrate using a home-built electrospray thin-film deposition system. The deposition was carried out in multiple steps without breaking the vacuum. In between deposition steps the sample was characterized with x-ray and ultraviolet photoemission spectroscopy. The evaluation of the spectra sequence allowed the determination of the orbital lineup (charge injection barriers) at the interface, as well as the MEH-PPV growth mode at the interface.

  2. A LDA + U study of the photoemission spectra of the double hexagonal close packed phases of Am and Cm

    NASA Astrophysics Data System (ADS)

    Islam, M. Fhokrul; Ray, Asok K.

    2010-05-01

    We have investigated the photoemission spectra and other electronic structure properties such as equilibrium volume and bulk modulus of double hexagonal close packed (dhcp) americium and the density of states (DOS) and magnetic properties of dhcp curium using the LDA+U method. Our calculations show that spin polarized americium is energetically favorable but spin degenerate configuration produces experimental quantities significantly better than those calculated using the spin polarized configuration. The density of states calculated using LDA+U with both non-magnetic and spin polarized configurations is compared and the non-magnetic DOS is shown to be in good agreement with experimental photoemission spectra when U=4.5 eV. In spin polarized case, the onsite interaction parameter, U, is observed to increase the splitting between occupied and unoccupied bands by enhancing the Stoner parameter. The DOS of both non-magnetic americium and anti-ferromagnetic curium are shown to be in good agreement with that calculated using dynamical mean field theory for these two heavy actinides. For curium exchange interaction appears to play a dominant role in magnetic stability.

  3. New developments in laser-based photoemission spectroscopy and its scientific applications: a key issues review

    NASA Astrophysics Data System (ADS)

    Zhou, Xingjiang; He, Shaolong; Liu, Guodong; Zhao, Lin; Yu, Li; Zhang, Wentao

    2018-06-01

    The significant progress in angle-resolved photoemission spectroscopy (ARPES) in last three decades has elevated it from a traditional band mapping tool to a precise probe of many-body interactions and dynamics of quasiparticles in complex quantum systems. The recent developments of deep ultraviolet (DUV, including ultraviolet and vacuum ultraviolet) laser-based ARPES have further pushed this technique to a new level. In this paper, we review some latest developments in DUV laser-based photoemission systems, including the super-high energy and momentum resolution ARPES, the spin-resolved ARPES, the time-of-flight ARPES, and the time-resolved ARPES. We also highlight some scientific applications in the study of electronic structure in unconventional superconductors and topological materials using these state-of-the-art DUV laser-based ARPES. Finally we provide our perspectives on the future directions in the development of laser-based photoemission systems.

  4. Extreme ultraviolet emission spectra of Gd and Tb ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilbane, D.; O'Sullivan, G.

    2010-11-15

    Theoretical extreme ultraviolet emission spectra of gadolinium and terbium ions calculated with the Cowan suite of codes and the flexible atomic code (FAC) relativistic code are presented. 4d-4f and 4p-4d transitions give rise to unresolved transition arrays in a range of ions. The effects of configuration interaction are investigated for transitions between singly excited configurations. Optimization of emission at 6.775 nm and 6.515 nm is achieved for Gd and Tb ions, respectively, by consideration of plasma effects. The resulting synthetic spectra are compared with experimental spectra recorded using the laser produced plasma technique.

  5. Ultraviolet Spectra of Normal Spiral Galaxies

    NASA Technical Reports Server (NTRS)

    Kinney, Anne

    1997-01-01

    The data related to this grant on the Ultraviolet Spectra of Normal Spiral Galaxies have been entirely reduced and analyzed. It is incorporated into templates of Spiral galaxies used in the calculation of K corrections towards the understanding of high redshift galaxies. The main paper was published in the Astrophysical Journal, August 1996, Volume 467, page 38. The data was also used in another publication, The Spectral Energy Distribution of Normal Starburst and Active Galaxies, June 1997, preprint series No. 1158. Copies of both have been attached.

  6. Fingerprints of spin-orbital polarons and of their disorder in the photoemission spectra of doped Mott insulators with orbital degeneracy

    NASA Astrophysics Data System (ADS)

    Avella, Adolfo; Oleś, Andrzej M.; Horsch, Peter

    2018-04-01

    We explore the effects of disordered charged defects on the electronic excitations observed in the photoemission spectra of doped transition metal oxides in the Mott insulating regime by the example of the R1 -xCaxVO3 perovskites, where R = La, ⋯, Lu. A fundamental characteristic of these vanadium d2 compounds with partly filled t2 g valence orbitals is the persistence of spin and orbital order up to high doping, in contrast to the loss of magnetic order in high-Tc cuprates at low defect concentration. We study the disordered electronic structure of such doped Mott-Hubbard insulators within the unrestricted Hartree-Fock approximation and, as a result, manage to explain the spectral features that occur in photoemission and inverse photoemission. In particular, (i) the atomic multiplet excitations in the inverse photoemission spectra and the various defect-related states and satellites are qualitatively well reproduced, (ii) a robust Mott gap survives up to large doping, and (iii) we show that the defect states inside the Mott gap develop a soft gap at the Fermi energy. The soft defect-states gap, which separates the highest occupied from the lowest unoccupied states, can be characterized by a shape and a scale parameter extracted from a Weibull statistical sampling of the density of states near the chemical potential. These parameters provide a criterion and a comprehensive schematization for the insulator-metal transition in disordered systems. Our results provide clear indications that doped holes are bound to charged defects and form small spin-orbital polarons whose internal kinetic energy is responsible for the opening of the soft defect-states gap. We show that this kinetic gap survives disorder fluctuations of defects and is amplified by the long-range electron-electron interactions, whereas we observe a Coulomb singularity in the atomic limit. The small size of spin-orbital polarons is inferred by an analysis of the inverse participation ratio and by

  7. Photoluminescence emission spectra of Makrofol® DE 1-1 upon irradiation with ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    El Ghazaly, M.; Aydarous, Abdulkadir

    Photoluminescence (PL) emission spectra of Makrofol® DE 1-1 (bisphenol-A based polycarbonate) upon irradiation with ultraviolet radiation of different wavelengths were investigated. The absorption-and attenuation coefficient measurements revealed that the Makrofol® DE 1-1 is characterized by high absorbance in the energy range 6.53-4.43 eV but for a lower energy than 4.43 eV, it is approximately transparent. Makrofol® DE 1-1 samples were irradiated with ultraviolet radiation of wavelength in the range from 250 (4.28 eV) to 400 (3.10 eV) nm in step of 10 nm and the corresponding photoluminescence (PL) emission spectra were measured with a spectrofluorometer. It is found that the integrated counts and the peak height of the photoluminescence emission (PL) bands are strongly correlated with the ultraviolet radiation wavelength. They are increased at the ultraviolet radiation wavelength 280 nm and have maximum at 290 nm, thereafter they decrease and diminish at 360 nm of ultraviolet wavelength. The position of the PL emission band peak was red shifted starting from 300 nm, which increased with the increase the ultraviolet radiation wavelength. The PL bandwidth increases linearly with the increase of the ultraviolet radiation wavelength. When Makrofol® DE 1-1 is irradiated with ultraviolet radiation of short wavelength (UVC), the photoluminescence emission spectra peaks also occur in the UVC but of a relatively longer wavelength. The current new findings should be considered carefully when using Makrofol® DE 1-1 in medical applications related to ultraviolet radiation.

  8. Spectral classification with the International Ultraviolet Explorer: An atlas of B-type spectra

    NASA Technical Reports Server (NTRS)

    Rountree, Janet; Sonneborn, George

    1993-01-01

    New criteria for the spectral classification of B stars in the ultraviolet show that photospheric absorption lines in the 1200-1900A wavelength region can be used to classify the spectra of B-type dwarfs, subgiants, and giants on a 2-D system consistent with the optical MK system. This atlas illustrates a large number of such spectra at the scale used for classification. These spectra provide a dense matrix of standard stars, and also show the effects of rapid stellar rotation and stellar winds on the spectra and their classification. The observational material consists of high-dispersion spectra from the International Ultraviolet Explorer archives, resampled to a resolution of 0.25 A, uniformly normalized, and plotted at 10 A/cm. The atlas should be useful for the classification of other IUE high-dispersion spectra, especially for stars that have not been observed in the optical.

  9. Apollo-16 far-ultraviolet spectra in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Carruthers, G. R.; Page, T.

    1977-01-01

    Spectra in the wavelength ranges from 900 to 1600 A and 1050 to 1600 A of some OB associations in the Large Magellanic Cloud were obtained from the lunar surface by the Apollo-16 far-ultraviolet camera/spectrograph on April 22, 1972. The observed spectral distributions appear consistent with a stellar model having an effective temperature of 30,000 K, reddened by E(B-V) = 0.3, and characterized by the average far-ultraviolet extinction curve of Bless and Savage (1972). However, the absolute intensity of the far-ultraviolet spectrum of the associations NGC 2050 and 2055 seems somewhat too bright in comparison with ground-based photometry.

  10. Quantitative analysis of valence photoemission spectra and quasiparticle excitations at chromophore-semiconductor interfaces.

    PubMed

    Patrick, Christopher E; Giustino, Feliciano

    2012-09-14

    Investigating quasiparticle excitations of molecules on surfaces through photoemission spectroscopy forms a major part of nanotechnology research. Resolving spectral features at these interfaces requires a comprehensive theory of electron removal and addition processes in molecules and solids which captures the complex interplay of image charges, thermal effects, and configurational disorder. Here, we develop such a theory and calculate the quasiparticle energy-level alignment and the valence photoemission spectrum for the prototype biomimetic solar cell interface between anatase TiO(2) and the N3 chromophore. By directly matching our calculated photoemission spectrum to experimental data, we clarify the atomistic origin of the chromophore peak at low binding energy. This case study sets a new standard in the interpretation of photoemission spectroscopy at complex chromophore-semiconductor interfaces.

  11. Importance of semicore states in GW calculations for simulating accurately the photoemission spectra of metal phthalocyanine molecules.

    PubMed

    Umari, P; Fabris, S

    2012-05-07

    The quasi-particle energy levels of the Zn-Phthalocyanine (ZnPc) molecule calculated with the GW approximation are shown to depend sensitively on the explicit description of the metal-center semicore states. We find that the calculated GW energy levels are in good agreement with the measured experimental photoemission spectra only when explicitly including the Zn 3s and 3p semicore states in the valence. The main origin of this effect is traced back to the exchange term in the self-energy GW approximation. Based on this finding, we propose a simplified approach for correcting GW calculations of metal phthalocyanine molecules that avoids the time-consuming explicit treatment of the metal semicore states. Our method allows for speeding up the calculations without compromising the accuracy of the computed spectra.

  12. Modelling Stellar Optical and Mid-Ultraviolet Spectra from First Principles

    NASA Astrophysics Data System (ADS)

    Peterson, R. C.; Carney, B. W.; Dorman, B.; Green, E. M.; Landsman, W.; Liebert, J.; O'Connell, R. W.; Rood, R. T.; Schiavon, R. P.

    2004-05-01

    We present comparisons of theoretical and observational high-resolution spectra for a half-dozen stars of a wide range of temperature and abundance, from A star to K giant. These show the fits achieved to date by our ab initio spectral calculations. These comparisons form the first phase of our three-year Hubble Treasury program GO-9455/9974, aimed at providing mid-ultraviolet spectral templates to improve the determination of the age and metallicity of old stellar systems. From matches such as these, we have modified the input atomic-line parameters and guessed the identifications of spectral lines missing from the calculations, as described by Peterson, Dorman, & Rood (2001, ApJ, 559, 372). With this new line list, we now match well the optical spectra of stars of all line strengths. We have begun to calculate a grid of optical indices from the theoretical spectra. In the mid-UV, while the fits at solar abundance are much improved, we are still missing very weak absorption lines near 2650Å and 2900Å. This will be addressed as additional mid-ultraviolet spectra are taken for a larger range of stellar targets during Cycle 13. Support for this work includes grants GO-9455 and GO-9974 from the Hubble Space Telescope Science Institute, and an award from the NASA-OSS Long Term Space Astrophysics program.

  13. Dynamical correlation effects in a weakly correlated material: Inelastic x-ray scattering and photoemission spectra of beryllium

    NASA Astrophysics Data System (ADS)

    Seidu, Azimatu; Marini, Andrea; Gatti, Matteo

    2018-03-01

    Beryllium is a weakly correlated simple metal. Still we find that dynamical correlation effects, beyond the independent-particle picture, are necessary to successfully interpret the electronic spectra measured by inelastic x-ray scattering (IXS) and photoemission spectroscopies (PES). By combining ab initio time-dependent density-functional theory (TDDFT) and many-body Green's function theory in the G W approximation (G W A ), we calculate the dynamic structure factor, the quasiparticle (QP) properties and PES spectra of bulk Be. We show that band-structure effects (i.e., due to interaction with the crystal potential) and QP lifetimes (LT) are both needed in order to explain the origin of the measured double-peak features in the IXS spectra. A quantitative agreement with experiment is obtained only when LT are supplemented to the adiabatic local-density approximation (ALDA) of TDDFT. Besides the valence band, PES spectra display a satellite, a signature of dynamical correlation due to the coupling of QPs and plasmons, which we are able to reproduce thanks to the combination of the G W A for the self-energy with the cumulant expansion of the Green's function.

  14. Integrated experimental setup for angle resolved photoemission spectroscopy of transuranic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Kevin S.; Joyce, John J.; Durakiewicz, Tomasz

    2013-09-15

    We have developed the Angle Resolved Photoemission Spectroscopy (ARPES) system for transuranic materials. The ARPES transuranic system is an endstation upgrade to the Laser Plasma Light Source (LPLS) at Los Alamos National Laboratory. The LPLS is a tunable light source for photoemission with a photon energy range covering the vacuum ultraviolet (VUV) and soft x-ray regions (27–140 eV). The LPLS was designed and developed for transuranic materials. Transuranic photoemission is currently not permitted at the public synchrotrons worldwide in the VUV energy range due to sample encapsulation requirements. With the addition of the ARPES capability to the LPLS system theremore » is an excellent opportunity to explore new details centered on the electronic structure of actinide and transuranic materials.« less

  15. Energy-resolved attosecond interferometric photoemission from Ag(111) and Au(111) surfaces

    NASA Astrophysics Data System (ADS)

    Ambrosio, M. J.; Thumm, U.

    2018-04-01

    Photoelectron emission from solid surfaces induced by attosecond pulse trains into the electric field of delayed phase-coherent infrared (IR) pulses allows the surface-specific observation of energy-resolved electronic phase accumulations and photoemission delays. We quantum-mechanically modeled interferometric photoemission spectra from the (111) surfaces of Au and Ag, including background contributions from secondary electrons and direct emission by the IR pulse, and adjusted parameters of our model to energy-resolved photoelectron spectra recently measured at a synchrotron light source by Roth et al. [J. Electron Spectrosc. 224, 84 (2018), 10.1016/j.elspec.2017.05.008]. Our calculated spectra and photoelectron phase shifts are in fair agreement with the experimental data of Locher et al. [Optica 2, 405 (2015), 10.1364/OPTICA.2.000405]. Our model's not reproducing the measured energy-dependent oscillations of the Ag(111) photoemission phases may be interpreted as evidence for subtle band-structure effects on the final-state photoelectron-surface interaction not accounted for in our simulation.

  16. Everything you ever wanted to know about the ultraviolet spectra of star-forming galaxies but were afraid to ask

    NASA Technical Reports Server (NTRS)

    Kinney, A. L.; Bohlin, R.; Calzetti, D.; Panagia, N.; Wyse, R.

    1993-01-01

    We present ultraviolet spectra of 143 star-forming galaxies of different morphological types and activity classes including S0, Sa, Sb, Sc, Sd, irregular, starburst, blue compact, blue compact dwarf, Liner, and Seyfert 2 galaxies. These IUE spectra cover the wavelength range from 1200 to 3200 A and are taken in a large aperture (10 x 20 inch). The ultraviolet spectral energy distributions are shown for a subset of the galaxies, ordered by spectral index, and separated by type for normal galaxies, Liners, starburst galaxies, blue compact (BCG) and blue compact dwarf (BCDG) galaxies, and Seyfert 2 galaxies. The ultraviolet spectra of Liners are, for the most part, indistinguishable from the spectra of normal galaxies. Starburst galaxies have a large range of ultraviolet slope, from blue to red. The star-forming galaxies which are the bluest in the optical (BCG and BCDG), also have the 'bluest' average ultraviolet slope of beta = -1.75 +/- 0.63. Seyfert 2 galaxies are the only galaxies in the sample that consistently have detectable UV emission lines.

  17. Ultrafast Spin Crossover in [FeII (bpy)3 ]2+ : Revealing Two Competing Mechanisms by Extreme Ultraviolet Photoemission Spectroscopy.

    PubMed

    Moguilevski, Alexandre; Wilke, Martin; Grell, Gilbert; Bokarev, Sergey I; Aziz, Saadullah G; Engel, Nicholas; Raheem, Azhr A; Kühn, Oliver; Kiyan, Igor Yu; Aziz, Emad F

    2017-03-03

    Photoinduced spin-flip in Fe II complexes is an ultrafast phenomenon that has the potential to become an alternative to conventional processing and magnetic storage of information. Following the initial excitation by visible light into the singlet metal-to-ligand charge-transfer state, the electronic transition to the high-spin quintet state may undergo different pathways. Here we apply ultrafast XUV (extreme ultraviolet) photoemission spectroscopy to track the low-to-high spin dynamics in the aqueous iron tris-bipyridine complex, [Fe(bpy) 3 ] 2+ , by monitoring the transient electron density distribution among excited states with femtosecond time resolution. Aided by first-principles calculations, this approach enables us to reveal unambiguously both the sequential and direct de-excitation pathways from singlet to quintet state, with a branching ratio of 4.5:1. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The Far-Ultraviolet Spectra of "Cool" PG1159 Stars

    NASA Technical Reports Server (NTRS)

    Werner, K.; Rauch, T.; Kruk, J. W.

    2015-01-01

    We present a comprehensive study of Far Ultraviolet Spectroscopic Explorer (FUSE) spectra (912-1190 A) of two members of the PG1159 spectral class, which consists of hydrogen-deficient (pre-) white dwarfs with effective temperatures in the range T(sub eff) = 75000-200000 K. As two representatives of the cooler objects, we have selected PG1707+427 (T(sub eff) = 85000 K) and PG1424+535 (T(sub eff) = 110000 K), complementing a previous study of the hotter prototype PG1159-035 (T(sub eff) = 140000 K). The helium-dominated atmospheres are strongly enriched in carbon and oxygen, therefore, their spectra are dominated by lines from C III-IV and O III-VI, many of which were never observed before in hot stars. In addition, lines of many other metals (N, F, Ne, Si, P, S, Ar, Fe) are detectable, demonstrating that observations in this spectral region are most rewarding when compared to the near-ultraviolet and optical wavelength bands. We perform abundance analyses of these species and derive upper limits for several undetected light and heavy metals including iron-group and trans-iron elements. The results are compared to predictions of stellar evolution models for neutron-capture nucleosynthesis and good agreement is found.

  19. Ultraviolet photometry from the Orbiting Astronomical Observatory. XXXII - An atlas of ultraviolet stellar spectra

    NASA Technical Reports Server (NTRS)

    Code, A. D.; Meade, M. R.

    1979-01-01

    Ultraviolet stellar fluxes are presented in graphs and tables for 164 bright stars in the spectral region from 1200 to 3600 A. The spectra represent a subset of OAO 2 spectrometer data on file at the National Space Science Data Center. The monochromatic flux is given in units of erg per (sq cm-s-A) with a spectral resolution of about 22 A in the region from 3600 to 1850 A and of approximately 12 A in the region from 1850 to 1160 A.

  20. Direct detection of density of gap states in C60 single crystals by photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Bussolotti, Fabio; Yang, Janpeng; Hiramoto, Masahiro; Kaji, Toshihiko; Kera, Satoshi; Ueno, Nobuo

    2015-09-01

    We report on the direct and quantitative evaluation of density of gap states (DOGS) in large-size C60 single crystals by using ultralow-background, high-sensitivity ultraviolet photoemission spectroscopy. The charging of the crystals during photoionization was overcome using photoconduction induced by simultaneous laser irradiation. By comparison with the spectra of as-deposited and gas exposed C60 thin films the following results were found: (i) The DOGS near the highest occupied molecular orbital edge in the C60 single crystals (1019-1021states e V-1c m-3) mainly originates from the exposure to inert and ambient gas atmosphere during the sample preparation, storage, and transfer; (ii) the contribution of other sources of gap states such as structural imperfections at grain boundaries is negligible (<1018states e V-1c m-3) .

  1. Revisiting Photoemission and Inverse Photoemission Spectra of Nickel Oxide from First Principles: Implications for Solar Energy Conversion

    PubMed Central

    2015-01-01

    We use two different ab initio quantum mechanics methods, complete active space self-consistent field theory applied to electrostatically embedded clusters and periodic many-body G0W0 calculations, to reanalyze the states formed in nickel(II) oxide upon electron addition and ionization. In agreement with interpretations of earlier measurements, we find that the valence and conduction band edges consist of oxygen and nickel states, respectively. However, contrary to conventional wisdom, we find that the oxygen states of the valence band edge are localized whereas the nickel states at the conduction band edge are delocalized. We argue that these characteristics may lead to low electron–hole recombination and relatively efficient electron transport, which, coupled with band gap engineering, could produce higher solar energy conversion efficiency compared to that of other transition-metal oxides. Both methods find a photoemission/inverse-photoemission gap of 3.6–3.9 eV, in good agreement with the experimental range, lending credence to our analysis of the electronic structure of NiO. PMID:24689856

  2. Linear Dichroism in Angle-Resolved Core-Level Photoemission Spectra Reflecting 4f Ground-State Symmetry of Strongly Correlated Cubic Pr Compounds

    NASA Astrophysics Data System (ADS)

    Hamamoto, Satoru; Fujioka, Shuhei; Kanai, Yuina; Yamagami, Kohei; Nakatani, Yasuhiro; Nakagawa, Koya; Fujiwara, Hidenori; Kiss, Takayuki; Higashiya, Atsushi; Yamasaki, Atsushi; Kadono, Toshiharu; Imada, Shin; Tanaka, Arata; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya; Matsumoto, Keisuke T.; Onimaru, Takahiro; Takabatake, Toshiro; Sekiyama, Akira

    2017-12-01

    We report experimentally observed linear dichroism in angle-resolved core-level photoemission spectra of PrIr2Zn20 and PrB6 with cubic symmetry. The different anisotropic 4f charge distributions between the compounds due to the crystalline-electric-field splitting are responsible for the difference in the linear dichroism, which has been verified by spectral simulations with the full multiplet theory for a single-site Pr3+ ion with cubic symmetry. The observed linear dichroism and polarization-dependent spectra in two different photoelectron directions for PrIr2Zn20 are reproduced by theoretical analysis for the Γ3 ground state, whereas those of the Pr 3d and 4d core levels indicate the Γ5 ground state for PrB6.

  3. Vacuum ultraviolet spectra of the late twilight airglow.

    NASA Technical Reports Server (NTRS)

    Buckley, J. L.; Moos, H. W.

    1971-01-01

    Evaluation of sounding rocket spectra of the late twilight (solar-zenith angle of 120 deg) ultraviolet airglow between 1260 and 1900 A. The only observed features are O I 1304 and 1356. When the instrument looked at an elevation of 17 deg above the western horizon, the brightnesses were 70 and 33 rayleighs, respectively. The upper limits on the total intensity of the Lyman-Birge-Hopfield and Vegard-Kaplan systems of N2 were 26 plus or minus 26 and 55 plus or minus 55 rayleighs, respectively. An estimate shows that a large part of the O I emissions may be due to excitation by conjugate-point electrons.

  4. Far-ultraviolet spectra and flux distributions of some Orion stars

    NASA Technical Reports Server (NTRS)

    Carruthers, G. R.; Heckathorn, H. M.; Opal, C. B.

    1981-01-01

    Far-ultraviolet (950-1800 A) spectra with about 2 A resolution were obtained of a number of stars in Orion during a sounding-rocket flight 1975 December 6. These spectra have been reduced to absolute flux distributions with the aid of preflight calibrations. The derived fluxes are in good agreement with model-atmosphere predictions and previous observations down to about 1200 A. In the 1200-1080 A range, the present results are in good agreement with model predictions but fall above the rocket measurements of Brune, Mount and Feldman. Below 1080 A, our measurements fall below the model predictions, reaching a deviation of a factor of 2 near 1010 A and a factor of 4 near 950 A. The present results are compared with those of Brune et al. via Copernicus U2 observations in this spectral range, and possible sources of discrepancies between the various observations and model-atmosphere predictions are discussed. Other aspects of the spectra, particularly with regard to spectral classification, are briefly discussed.

  5. Phonon-assisted indirect transitions in angle-resolved photoemission spectra of graphite and graphene

    NASA Astrophysics Data System (ADS)

    Ayria, Pourya; Tanaka, Shin-ichiro; Nugraha, Ahmad R. T.; Dresselhaus, Mildred S.; Saito, Riichiro

    2016-08-01

    Indirect transitions of electrons in graphene and graphite are investigated by means of angle-resolved photoemission spectroscopy (ARPES) with several different incident photon energies and light polarizations. The theoretical calculations of the indirect transition for graphene and for a single crystal of graphite are compared with the experimental measurements for highly-oriented pyrolytic graphite and a single crystal of graphite. The dispersion relations for the transverse optical (TO) and the out-of-plane longitudinal acoustic (ZA) phonon modes of graphite and the TO phonon mode of graphene can be extracted from the inelastic ARPES intensity. We find that the TO phonon mode for k points along the Γ -K and K -M -K' directions in the Brillouin zone can be observed in the ARPES spectra of graphite and graphene by using a photon energy ≈11.1 eV. The relevant mechanism in the ARPES process for this case is the resonant indirect transition. On the other hand, the ZA phonon mode of graphite can be observed by using a photon energy ≈6.3 eV through a nonresonant indirect transition, while the ZA phonon mode of graphene within the same mechanism should not be observed.

  6. First-principles photoemission spectroscopy in DNA and RNA nucleobases from Koopmans-compliant functionals

    NASA Astrophysics Data System (ADS)

    Nguyen, Ngoc Linh; Borghi, Giovanni; Ferretti, Andrea; Marzari, Nicola

    The determination of spectral properties of the DNA and RNA nucleobases from first principles can provide theoretical interpretation for experimental data, but requires complex electronic-structure formulations that fall outside the domain of applicability of common approaches such as density-functional theory. In this work, we show that Koopmans-compliant functionals, constructed to enforce piecewise linearity in energy functionals with respect to fractional occupation-i.e., with respect to charged excitations-can predict not only frontier ionization potentials and electron affinities of the nucleobases with accuracy comparable or superior with that of many-body perturbation theory and high-accuracy quantum chemistry methods, but also the molecular photoemission spectra are shown to be in excellent agreement with experimental ultraviolet photoemsision spectroscopy data. The results highlight the role of Koopmans-compliant functionals as accurate and inexpensive quasiparticle approximations to the spectral potential, which transform DFT into a novel dynamical formalism where electronic properties, and not only total energies, can be correctly accounted for.

  7. [Rapid analysis of metronidazole tablets by optic-fiber sensing technologies and the similarity of ultraviolet spectra].

    PubMed

    Jin, Lu; Li, Li; Li, Xin-xia; Yang, Ting; Kong, Bin; Xu, Ping-ping

    2011-02-01

    The paper is to report the development of an optic-fiber sensing technology method to analyze metronidazole tablets rapidly. In this fiber-optic sensing system, the light from source delivering to probe can be dipped into simple-handling sample solution, absorbed by the solution and reflected to the fiber-optic and detected in the detection system at last. Then the drug content can be shown in the screen from the ultraviolet absorption spectra and the consistency between that obtained by this method and that in China Pharmacopoeia can be compared. With regard to data processing, a new method is explored to identify the authenticity of drugs using the similarity between the sample map and the standard pattern by full ultraviolet spectrum. The results indicate that ultraviolet spectra of tablets can be obtained from this technology and the determination results showed no significant difference as compared with the method in China Pharmacopoeia (P > 0.05), and the similarity can be a parameter to identify the authenticity of drugs.

  8. Amplitude mode oscillations in pump-probe photoemission spectra from a d -wave superconductor

    NASA Astrophysics Data System (ADS)

    Nosarzewski, B.; Moritz, B.; Freericks, J. K.; Kemper, A. F.; Devereaux, T. P.

    2017-11-01

    Recent developments in the techniques of ultrafast pump-probe photoemission have made possible the search for collective modes in strongly correlated systems out of equilibrium. Including inelastic scattering processes and a retarded interaction, we simulate time- and angle-resolved photoemission spectroscopy (trARPES) to study the amplitude mode of a d -wave superconductor, a collective mode excited through the nonlinear light-matter coupling to the pump pulse. We find that the amplitude mode oscillations of the d -wave order parameter occur in phase at a single frequency that is twice the quasi-steady-state maximum gap size after pumping. We comment on the necessary conditions for detecting the amplitude mode in trARPES experiments.

  9. Fluorescence spectra of blood plasma treated with ultraviolet irradiation in vivo

    NASA Astrophysics Data System (ADS)

    Zalesskaya, G. A.; Maslova, T. O.

    2010-09-01

    We have studied the fluorescence spectra of blood plasma from patients with acute coronary syndrome, and also the effect of therapeutic doses of in vivo ultraviolet blood irradiation (UBI) on the spectra. We have established that the maxima in the fluorescence spectra of the original plasma samples, obtained from unirradiated blood, are located in the wavelength interval 330-340 nm, characteristic for the fluorescence of tryptophan residues. In extracorporeal UBI ( λ = 254 nm), we observed changes in the shape and also both a blue and a red shift in the maxima of the fluorescence spectra, differing in magnitude for blood plasma samples from different patients in the test group. We show that UBI-initiated changes in the fluorescence spectra of the plasma depend on the original pathological disturbances of metabolite levels, and also on the change in the oxygen-transport function of the blood and the acid-base balance, affecting the oxidative stability of the plasma. We have concluded that UV irradiation, activating buffer systems in the blood, has an effect on the universal and specific interactions of the tryptophan residue with the amino acid residues and water surrounding it.

  10. Amplitude mode oscillations in pump-probe photoemission spectra from a d -wave superconductor

    DOE PAGES

    Nosarzewski, B.; Moritz, B.; Freericks, J. K.; ...

    2017-11-20

    Recent developments in the techniques of ultrafast pump-probe photoemission have made possible the search for collective modes in strongly correlated systems out of equilibrium. Including inelastic scattering processes and a retarded interaction, we simulate time- and angle-resolved photoemission spectroscopy (trARPES) to study the amplitude mode of a d-wave superconductor, a collective mode excited through the nonlinear light-matter coupling to the pump pulse. We find that the amplitude mode oscillations of the d-wave order parameter occur in phase at a single frequency that is twice the quasi-steady-state maximum gap size after pumping. As a result, we comment on the necessary conditionsmore » for detecting the amplitude mode in trARPES experiments.« less

  11. Amplitude mode oscillations in pump-probe photoemission spectra from a d -wave superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nosarzewski, B.; Moritz, B.; Freericks, J. K.

    Recent developments in the techniques of ultrafast pump-probe photoemission have made possible the search for collective modes in strongly correlated systems out of equilibrium. Including inelastic scattering processes and a retarded interaction, we simulate time- and angle-resolved photoemission spectroscopy (trARPES) to study the amplitude mode of a d-wave superconductor, a collective mode excited through the nonlinear light-matter coupling to the pump pulse. We find that the amplitude mode oscillations of the d-wave order parameter occur in phase at a single frequency that is twice the quasi-steady-state maximum gap size after pumping. As a result, we comment on the necessary conditionsmore » for detecting the amplitude mode in trARPES experiments.« less

  12. Apollo 16 far-ultraviolet imagery and spectra of the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Page, T.; Carruthers, G. R.

    1976-01-01

    The Large Magellanic Cloud was observed by the far ultraviolet camera spectrograph from the lunar surface during the Apollo 16 mission 22 April 1972. Images were obtained with about 3 arc min resolution, in the 1,050 to 1,600 and 1,250 to 1,600 A wavelength ranges, of nearly the entire LMC. Spectra were also obtained in the 1,050 to 1,600 and 900 to 1,600 A ranges along a strip 1/4 deg wide (determined by the instrument's grid collimator) passing across the LMC. The images and spectra have been scanned with a PDS microdensitometer, and isodensity contour plots have been prepared using the Univac 1108 computer.

  13. REACTION OF AMINO-ACIDS AND PEPTIDE BONDS WITH FORMALDEHYDE AS MEASURED BY CHANGES IN THE ULTRA-VIOLET SPECTRA,

    DTIC Science & Technology

    AMINO ACIDS , CHEMICAL REACTIONS), (*PEPTIDES, CHEMICAL REACTIONS), (*FORMALDEHYDE, CHEMICAL REACTIONS), (*ULTRAVIOLET SPECTROSCOPY, PROTEINS), ABSORPTION SPECTRA, CHEMICAL BONDS, AMIDES, CHEMICAL EQUILIBRIUM, REACTION KINETICS

  14. Electronic Structure of the Kitaev Material α-RuCl3 Probed by Photoemission and Inverse Photoemission Spectroscopies.

    PubMed

    Sinn, Soobin; Kim, Choong Hyun; Kim, Beom Hyun; Lee, Kyung Dong; Won, Choong Jae; Oh, Ji Seop; Han, Moonsup; Chang, Young Jun; Hur, Namjung; Sato, Hitoshi; Park, Byeong-Gyu; Kim, Changyoung; Kim, Hyeong-Do; Noh, Tae Won

    2016-12-21

    Recently, α-RuCl 3 has attracted much attention as a possible material to realize the honeycomb Kitaev model of a quantum-spin-liquid state. Although the magnetic properties of α-RuCl 3 have been extensively studied, its electronic structure, which is strongly related to its Kitaev physics, is poorly understood. Here, the electronic structure of α-RuCl 3 was investigated by photoemission (PE) and inverse-photoemission (IPE) spectroscopies. The band gap was directly measured from the PE and IPE spectra and was found to be 1.9 eV, much larger than previously estimated values. Local density approximation (LDA) calculations showed that the on-site Coulomb interaction U could open the band gap without spin-orbit coupling (SOC). However, the SOC should also be incorporated to reproduce the proper gap size, indicating that the interplay between U and SOC plays an essential role. Several features of the PE and IPE spectra could not be explained by the results of LDA calculations. To explain such discrepancies, we performed configuration-interaction calculations for a RuCl 6 3- cluster. The experimental data and calculations demonstrated that the 4d compound α-RuCl 3 is a J eff  = 1/2 Mott insulator rather than a quasimolecular-orbital insulator. Our study also provides important physical parameters required for verifying the proposed Kitaev physics in α-RuCl 3 .

  15. Electronic Structure of the Kitaev Material α-RuCl3 Probed by Photoemission and Inverse Photoemission Spectroscopies

    NASA Astrophysics Data System (ADS)

    Sinn, Soobin; Kim, Choong Hyun; Kim, Beom Hyun; Lee, Kyung Dong; Won, Choong Jae; Oh, Ji Seop; Han, Moonsup; Chang, Young Jun; Hur, Namjung; Sato, Hitoshi; Park, Byeong-Gyu; Kim, Changyoung; Kim, Hyeong-Do; Noh, Tae Won

    2016-12-01

    Recently, α-RuCl3 has attracted much attention as a possible material to realize the honeycomb Kitaev model of a quantum-spin-liquid state. Although the magnetic properties of α-RuCl3 have been extensively studied, its electronic structure, which is strongly related to its Kitaev physics, is poorly understood. Here, the electronic structure of α-RuCl3 was investigated by photoemission (PE) and inverse-photoemission (IPE) spectroscopies. The band gap was directly measured from the PE and IPE spectra and was found to be 1.9 eV, much larger than previously estimated values. Local density approximation (LDA) calculations showed that the on-site Coulomb interaction U could open the band gap without spin-orbit coupling (SOC). However, the SOC should also be incorporated to reproduce the proper gap size, indicating that the interplay between U and SOC plays an essential role. Several features of the PE and IPE spectra could not be explained by the results of LDA calculations. To explain such discrepancies, we performed configuration-interaction calculations for a RuCl63- cluster. The experimental data and calculations demonstrated that the 4d compound α-RuCl3 is a Jeff = 1/2 Mott insulator rather than a quasimolecular-orbital insulator. Our study also provides important physical parameters required for verifying the proposed Kitaev physics in α-RuCl3.

  16. Electronic Structure of the Kitaev Material α-RuCl3 Probed by Photoemission and Inverse Photoemission Spectroscopies

    PubMed Central

    Sinn, Soobin; Kim, Choong Hyun; Kim, Beom Hyun; Lee, Kyung Dong; Won, Choong Jae; Oh, Ji Seop; Han, Moonsup; Chang, Young Jun; Hur, Namjung; Sato, Hitoshi; Park, Byeong-Gyu; Kim, Changyoung; Kim, Hyeong-Do; Noh, Tae Won

    2016-01-01

    Recently, α-RuCl3 has attracted much attention as a possible material to realize the honeycomb Kitaev model of a quantum-spin-liquid state. Although the magnetic properties of α-RuCl3 have been extensively studied, its electronic structure, which is strongly related to its Kitaev physics, is poorly understood. Here, the electronic structure of α-RuCl3 was investigated by photoemission (PE) and inverse-photoemission (IPE) spectroscopies. The band gap was directly measured from the PE and IPE spectra and was found to be 1.9 eV, much larger than previously estimated values. Local density approximation (LDA) calculations showed that the on-site Coulomb interaction U could open the band gap without spin-orbit coupling (SOC). However, the SOC should also be incorporated to reproduce the proper gap size, indicating that the interplay between U and SOC plays an essential role. Several features of the PE and IPE spectra could not be explained by the results of LDA calculations. To explain such discrepancies, we performed configuration-interaction calculations for a RuCl63− cluster. The experimental data and calculations demonstrated that the 4d compound α-RuCl3 is a Jeff = 1/2 Mott insulator rather than a quasimolecular-orbital insulator. Our study also provides important physical parameters required for verifying the proposed Kitaev physics in α-RuCl3. PMID:28000731

  17. Direct characterization of the energy level alignments and molecular components in an organic hetero-junction by integrated photoemission spectroscopy and reflection electron energy loss spectroscopy analysis.

    PubMed

    Yun, Dong-Jin; Shin, Weon-Ho; Bulliard, Xavier; Park, Jong Hwan; Kim, Seyun; Chung, Jae Gwan; Kim, Yongsu; Heo, Sung; Kim, Seong Heon

    2016-08-26

    A novel, direct method for the characterization of the energy level alignments at bulk-heterojunction (BHJ)/electrode interfaces on the basis of electronic spectroscopy measurements is proposed. The home-made in situ photoemission system is used to perform x-ray/ultraviolet photoemission spectroscopy (XPS/UPS), reflection electron energy loss spectroscopy (REELS) and inverse photoemission spectroscopy of organic-semiconductors (OSCs) deposited onto a Au substrate. Through this analysis system, we are able to obtain the electronic structures of a boron subphthalocyanine chloride:fullerene (SubPC:C60) BHJ and those of the separate OSC/electrode structures (SubPC/Au and C60/Au). Morphology and chemical composition analyses confirm that the original SubPC and C60 electronic structures remain unchanged in the electrodes prepared. Using this technique, we ascertain that the position and area of the nearest peak to the Fermi energy (EF = 0 eV) in the UPS (REELS) spectra of SubPC:C60 BHJ provide information on the highest occupied molecular orbital level (optical band gap) and combination ratio of the materials, respectively. Thus, extracting the adjusted spectrum from the corresponding SubPC:C60 BHJ UPS (REELS) spectrum reveals its electronic structure, equivalent to that of the C60 materials. This novel analytical approach allows complete energy-level determination for each combination ratio by separating its electronic structure information from the BHJ spectrum.

  18. Nonlocal screening effects on core-level photoemission spectra investigated by large-cluster models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, K.; Kotani, A.

    1995-08-15

    The copper 2{ital p} core-level x-ray photoemission spectrum in CuO{sub 2} plane systems is calculated by means of large-cluster models to investigate in detail the nonlocal screening effects, which were pointed out by van Veenendaal {ital et} {ital al}. [Phys. Rev. B 47, 11 462 (1993)]. Calculating the hole distributions for the initial and final states of photoemission, we show that the atomic coordination in a cluster strongly affects accessible final states. Accordingly, we point out that the interpretation for Cu{sub 3}O{sub 10} given by van Veenendaal {ital et} {ital al}. is not always general. Moreover, it is shown thatmore » the spectrum can be remarkably affected by whether or not the O 2{ital p}{sub {pi}} orbits are taken into account in the calculations. We also introduce a Hartree-Fock approximation in order to treat much larger-cluster models.« less

  19. Thin noble metal films on Si (111) investigated by optical second-harmonic generation and photoemission

    NASA Astrophysics Data System (ADS)

    Pedersen, K.; Kristensen, T. B.; Pedersen, T. G.; Morgen, P.; Li, Z.; Hoffmann, S. V.

    2002-05-01

    Thin noble metal films (Ag, Au and Cu) on Si (111) have been investigated by optical second-harmonic generation (SHG) in combination with synchrotron radiation photoemission spectroscopy. The valence band spectra of Ag films show a quantization of the sp-band in the 4-eV energy range from the Fermi level down to the onset of the d-bands. For Cu and Au the corresponding energy range is much narrower and quantization effects are less visible. Quantization effects in SHG are observed as oscillations in the signal as a function of film thickness. The oscillations are strongest for Ag and less pronounced for Cu, in agreement with valence band photoemission spectra. In the case of Au, a reacted layer floating on top of the Au film masks the observation of quantum well levels by photoemission. However, SHG shows a well-developed quantization of levels in the Au film below the reacted layer. For Ag films, the relation between film thickness and photon energy of the SHG resonances indicates different types of resonances, some of which involve both quantum well and substrate states.

  20. Photoemission and Auger-electron spectroscopic study of the Chevrel-phase compound FexMo6S8

    NASA Astrophysics Data System (ADS)

    Fujimori, A.; Sekita, M.; Wada, H.

    1986-05-01

    The electronic structure of the Chevrel-phase compound FexMo6S8 has been studied by photoemission and Auger-electron spectroscopy. Core-level shifts suggest a large charge transfer from the Fe atoms to the Mo6S8 clusters and a small Mo-to-S charge transfer within the cluster. Line-shape asymmetry in the core levels indicates that the density of states (DOS) at the Fermi level has a finite S 3p component as well as the dominant Mo 3d character. Satellite structure and exchange splitting in the Fe core levels point to weak Fe 3d-S 3p hybridization in spite of the short Fe-S distances comparable to that in FeS. The x-ray and ultraviolet valence-band photoemission spectra and the Mo 4d partial DOS obtained by deconvoluting the Mo M4,5VV Auger spectrum are compared with existing band-structure calculations, and the Mo 4d-S 3p bonding character, the structure of the Mo 4d-derived conduction band etc., are discussed. In particular, it is shown that the conduction-band structure is sensitive to the noncubic distortion of the crystal through changes in the intercluster Mo 4d-S 3p hybridization. A pronounced final-state effect is found in the Mo M4,5N2,3V Auger spectrum and is attributed to strong 4p-4d intershell coupling.

  1. Alkaline Earth Core Level Photoemission Spectroscopy of High-Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, R.

    1993-01-01

    This paper examines photoemission measurements of the alkaline Earth core levels of high-temperature superconductors and related materials, models that seek to explain the large negative shifts observed relative to the corresponding alkaline Earth metals, and the effect of lattice site disorder on the core level spectra and the presence or absence of intrinsic surface peaks.

  2. Two-Color Coherent Control of Femtosecond Above-Threshold Photoemission from a Tungsten Nanotip.

    PubMed

    Förster, Michael; Paschen, Timo; Krüger, Michael; Lemell, Christoph; Wachter, Georg; Libisch, Florian; Madlener, Thomas; Burgdörfer, Joachim; Hommelhoff, Peter

    2016-11-18

    We demonstrate coherent control of multiphoton and above-threshold photoemission from a single solid-state nanoemitter driven by a fundamental and a weak second harmonic laser pulse. Depending on the relative phase of the two pulses, electron emission is modulated with a contrast of the oscillating current signal of up to 94%. Electron spectra reveal that all observed photon orders are affected simultaneously and similarly. We confirm that photoemission takes place within 10 fs. Accompanying simulations indicate that the current modulation with its large contrast results from two interfering quantum pathways leading to electron emission.

  3. Rare-Earth Fourth-Order Multipole Moment in Cubic ErCo2 Probed by Linear Dichroism in Core-Level Photoemission

    NASA Astrophysics Data System (ADS)

    Abozeed, Amina A.; Kadono, Toshiharu; Sekiyama, Akira; Fujiwara, Hidenori; Higashiya, Atsushi; Yamasaki, Atsushi; Kanai, Yuina; Yamagami, Kohei; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya; Andreev, Alexander V.; Wada, Hirofumi; Imada, Shin

    2018-03-01

    We developed a method to experimentally quantify the fourth-order multipole moment of the rare-earth 4f orbital. Linear dichroism (LD) in the Er 3d5/2 core-level photoemission spectra of cubic ErCo2 was measured using bulk-sensitive hard X-ray photoemission spectroscopy. Theoretical calculation reproduced the observed LD, and the result showed that the observed result does not contradict the suggested Γ 83 ground state. Theoretical calculation further showed a linear relationship between the LD size and the size of the fourth-order multipole moment of the Er3+ ion, which is proportional to the expectation value < O40 + 5O44> , where Onm are the Stevens operators. These analyses indicate that the LD in 3d photoemission spectra can be used to quantify the average fourth-order multipole moment of rare-earth atoms in a cubic crystal electric field.

  4. Resonant photoemission study of pyrite-type NiS2, CoS2 and FeS2

    NASA Astrophysics Data System (ADS)

    Fujimori, A.; Mamiya, K.; Mizokawa, T.; Miyadai, T.; Sekiguchi, T.; Takahashi, H.; Môri, N.; Suga, S.

    1996-12-01

    The electronic structure of pyrite-type NiS2, CoS2, and FeS2 has been studied by photoemission spectroscopy. From resonant photoemission studies and configuration-interaction cluster-model analysis of the spectra, NiS2 is found to be a charge-transfer-type insulator, the band gap of which is formed between the occupied S 3p and the empty Ni 3d states. Cluster-model calculations indicate that the short Fe-S distance favors the low-spin (S=0) ground state in FeS2 compared to the high-spin FeS. Resonant photoemission results indicate a sign of electron correlation in the nonmagnetic semiconductor FeS2.

  5. Revisiting the origin of satellites in core-level photoemission of transparent conducting oxides: The case of n -doped SnO2

    NASA Astrophysics Data System (ADS)

    Borgatti, Francesco; Berger, J. A.; Céolin, Denis; Zhou, Jianqiang Sky; Kas, Joshua J.; Guzzo, Matteo; McConville, C. F.; Offi, Francesco; Panaccione, Giancarlo; Regoutz, Anna; Payne, David J.; Rueff, Jean-Pascal; Bierwagen, Oliver; White, Mark E.; Speck, James S.; Gatti, Matteo; Egdell, Russell G.

    2018-04-01

    The longstanding problem of interpretation of satellite structures in core-level photoemission spectra of metallic systems with a low density of conduction electrons is addressed using the specific example of Sb-doped SnO2. Comparison of ab initio many-body calculations with experimental hard x-ray photoemission spectra of the Sn 4 d states shows that strong satellites are produced by coupling of the Sn core hole to the plasma oscillations of the free electrons introduced by doping. Within the same theoretical framework, spectral changes of the valence band spectra are also related to dynamical screening effects. These results demonstrate that, for the interpretation of electron correlation features in the core-level photoelectron spectra of such narrow-band materials, going beyond the homogeneous electron gas electron-plasmon coupling model is essential.

  6. Extreme ultraviolet spectra of Venusian airglow observed by EXCEED

    NASA Astrophysics Data System (ADS)

    Nara, Yusuke; Yoshikawa, Ichiro; Yoshioka, Kazuo; Murakami, Go; Kimura, Tomoki; Yamazaki, Atsushi; Tsuchiya, Fuminori; Kuwabara, Masaki; Iwagami, Naomoto

    2018-06-01

    Extreme ultraviolet (EUV) spectra of Venus in the wavelength range 520 - 1480 Å with 3 - 4 Å resolutions were obtained in March 2014 by an EUV imaging spectrometer EXCEED (Extreme Ultraviolet Spectroscope for Exospheric Dynamics) on the HISAKI spacecraft. Due to its high sensitivity and long exposure time, many new emission lines and bands were identified. Already known emissions such as the O II 834 Å, O I 989 Å, H ILy - β 1026 Å, and the C I 1277 Å lines (Broadfoot et al., 1974; Bertaux et al., 1980; Feldman et al., 2000) are also detected in the EXCEED spectrum. In addition, N2 band systems such as the Lyman-Birge-Hopfield (a 1Πg - X 1Σg+) (2, 0), (2, 1), (3, 1), (3, 2) and (5, 3) bands, the Birge-Hopfield (b1Πu - X 1 Σg+) (1, 3) band, and the Carroll-Yoshino (c 4‧ 1 Σu+ - X 1Σg+) (0, 0) and (0, 1) bands together are identified for the first time in the Venusian airglow. We also identified the CO Hopfield-Birge (B 1Σ+ - X 1Σ+) (1, 0) band in addition to the already known (0, 0) band, and the CO Hopfield-Birge (C 1Σ+ - X 1Σ+) (0, 1), (0, 2) bands in addition to the already known (0, 0) band (Feldman et al., 2000; Gérard et al., 2011).

  7. International Ultraviolet Explorer (IUE)

    NASA Technical Reports Server (NTRS)

    Boehm, Karl-Heinz

    1992-01-01

    The observation, data reduction, and interpretation of ultraviolet spectra (obtained with the International Ultraviolet Explorer) of Herbig-Haro objects, stellar jets, and (in a few cases) reflection nebulae in star-forming regions is discussed. Intermediate results have been reported in the required semi-annual reports. The observations for this research were obtained in 23 (US1) IUE shifts. The spectra were taken in the low resolution mode with the large aperture. The following topics were investigated: (1) detection of UV spectra of high excitation Herbig-Haro (HH) objects, identification of emission lines, and a preliminary study of the energy distribution of the ultraviolet continuum; (2) details of the continuum energy distribution of these spectra and their possible interpretation; (3) the properties of the reddening (extinction) of HH objects; (4) the possible time variation of strong emission lines in high excitation HH objects; (5) the ultraviolet emission of low excitation HH objects, especially in the fluorescent lines of the H2 molecule; (6) the ultraviolet emission in the peculiar object HH24; (7) the spatial emission distribution of different lines and different parts of the continuum in different HH objects; and (8) some properties of reflection nebula, in the environment of Herbig-Haro objects. Each topic is discussed.

  8. New Fe i Level Energies and Line Identifications from Stellar Spectra. II. Initial Results from New Ultraviolet Spectra of Metal-poor Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Ruth C.; Kurucz, Robert L.; Ayres, Thomas R., E-mail: peterson@ucolick.org

    2017-04-01

    The Fe i spectrum is critical to many areas of astrophysics, yet many of the high-lying levels remain uncharacterized. To remedy this deficiency, Peterson and Kurucz identified Fe i lines in archival ultraviolet and optical spectra of metal-poor stars, whose warm temperatures favor moderate Fe i excitation. Sixty-five new levels were recovered, with 1500 detectable lines, including several bound levels in the ionization continuum of Fe i. Here, we extend the previous work by identifying 59 additional levels, with 1400 detectable lines, by incorporating new high-resolution UV spectra of warm metal-poor stars recently obtained by the Hubble Space Telescope Imagingmore » Spectrograph. We provide gf values for these transitions, both computed as well as adjusted to fit the stellar spectra. We also expand our spectral calculations to the infrared, confirming three levels by matching high-quality spectra of the Sun and two cool stars in the H -band. The predicted gf values suggest that an additional 3700 Fe i lines should be detectable in existing solar infrared spectra. Extending the empirical line identification work to the infrared would help confirm additional Fe i levels, as would new high-resolution UV spectra of metal-poor turnoff stars below 1900 Å.« less

  9. New Fe I Level Energies and Line Identifications from Stellar Spectra. II. Initial Results from New Ultraviolet Spectra of Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Peterson, Ruth C.; Kurucz, Robert L.; Ayres, Thomas R.

    2017-04-01

    The Fe I spectrum is critical to many areas of astrophysics, yet many of the high-lying levels remain uncharacterized. To remedy this deficiency, Peterson & Kurucz identified Fe I lines in archival ultraviolet and optical spectra of metal-poor stars, whose warm temperatures favor moderate Fe I excitation. Sixty-five new levels were recovered, with 1500 detectable lines, including several bound levels in the ionization continuum of Fe I. Here, we extend the previous work by identifying 59 additional levels, with 1400 detectable lines, by incorporating new high-resolution UV spectra of warm metal-poor stars recently obtained by the Hubble Space Telescope Imaging Spectrograph. We provide gf values for these transitions, both computed as well as adjusted to fit the stellar spectra. We also expand our spectral calculations to the infrared, confirming three levels by matching high-quality spectra of the Sun and two cool stars in the H-band. The predicted gf values suggest that an additional 3700 Fe I lines should be detectable in existing solar infrared spectra. Extending the empirical line identification work to the infrared would help confirm additional Fe I levels, as would new high-resolution UV spectra of metal-poor turnoff stars below 1900 Å.

  10. a Study on SODIUM(110) and Other Nearly Free Electron Metals Using Angle Resolved Photoemission Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Lyo, In-Whan

    Electronic properties of the epitaxially grown Na(110) film have been studied using angle resolved ultraviolet photoemission spectroscopy with synchrotron radiation as the light source. Na provides an ideal ground to study the fundamental aspects of the electron-electron interactions in metals, because of its simple Fermi surface and small pseudopotential. The absolute band structure of Na(110) using angle resolved photoemission spectroscopy has been mapped out using the extrema searching method. The advantage of this approach is that the usual assumption of the unoccupied state dispersion is not required. We have found that the dispersion of Na(1l0) is very close to the parabolic band with the effective mass 1.21 M_{rm e} at 90 K. Self-consistent calculations of the self-energy for the homogeneous electron gas have been performed using the Green's function technique within the framework of the GW approximation, in the hope of understanding the narrowing mechanism of the bandwidth observed for all the nearly-free-electron (NFE) metals. Good agreements between the experimental data and our calculated self-energy were obtained not only for our data on k-dependency from Na(l10), but also for the total bandwidth corrections for other NFE metals, only if dielectric functions beyond the random phase approximation were used. Our findings emphasize the importance of the screening by long wavelength plasmons. Off-normal spectra of angle resolved photoemission from Na(110) show strong asymmetry of the bulk peak intensity for the wide range of photon energies. Using a simple analysis, we show this asymmetry has an origin in the interference of the surface Umklapp electrons with the normal electrons. We have also performed the detailed experimental studies of the anomalous Fermi level structure observed in the forbidden gap region of Na. This was claimed by A. W. Overhauser as the evidence of the charge density wave in the alkali metal. The possibility of this hypothesis is

  11. Rosetta photoelectron emission and solar ultraviolet flux at comet 67P

    NASA Astrophysics Data System (ADS)

    Johansson, Fredrik L.; Odelstad, E.; Paulsson, J. J. P.; Harang, S. S.; Eriksson, A. I.; Mannel, T.; Vigren, E.; Edberg, N. J. T.; Miloch, W. J.; Simon Wedlund, C.; Thiemann, E.; Eparvier, F.; Andersson, L.

    2017-07-01

    The Langmuir Probe instrument on Rosetta monitored the photoelectron emission current of the probes during the Rosetta mission at comet 67P/Churyumov-Gerasimenko, in essence acting as a photodiode monitoring the solar ultraviolet radiation at wavelengths below 250 nm. We have used three methods of extracting the photoelectron saturation current from the Langmuir probe measurements. The resulting data set can be used as an index of the solar far and extreme ultraviolet at the Rosetta spacecraft position, including flares, in wavelengths which are important for photoionization of the cometary neutral gas. Comparing the photoemission current to data measurements by MAVEN/EUVM and TIMED/SEE, we find good correlation when 67P was at large heliocentric distances early and late in the mission, but up to 50 per cent decrease of the expected photoelectron current at perihelion. We discuss possible reasons for the photoemission decrease, including scattering and absorption by nanograins created by disintegration of cometary dust far away from the nucleus.

  12. Analysis of extreme ultraviolet spectra from laser produced rhenium plasmas

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Higashiguchi, Takeshi; Li, Bowen; Suzuki, Yuhei; Arai, Goki; Dinh, Thanh-Hung; Dunne, Padraig; O'Reilly, Fergal; Sokell, Emma; Liu, Luning; O'Sullivan, Gerry

    2015-08-01

    Extreme ultraviolet spectra of highly-charged rhenium ions were observed in the 1-7 nm region using two Nd:YAG lasers with pulse lengths of 150 ps and 10 ns, respectively, operating at a number of laser power densities. The maximum focused peak power density was 2.6 × 1014 W cm-2 for the former and 5.5 × 1012 W cm-2 for the latter. The Cowan suite of atomic structure codes and unresolved transition array (UTA) approach were used to calculate and interpret the emission properties of the different spectra obtained. The results show that n = 4-n = 4 and n = 4-n = 5 UTAs lead to two intense quasi-continuous emission bands in the 4.3-6.3 nm and 1.5-4.3 nm spectral regions. As a result of the different ion stage distributions in the plasmas induced by ps and ns laser irradiation the 1.5-4.3 nm UTA peak moves to shorter wavelength in the ps laser produced plasma spectra. For the ns spectrum, the most populated ion stage during the lifetime of this plasma that could be identified from the n = 4-n = 5 transitions was Re23+ while for the ps plasma the presence of significantly higher stages was demonstrated. For the n = 4-n = 4 4p64dN-4p54dN+1 + 4p64dN-14f transitions, the 4d-4f transitions contribute mainly in the most intense 4.7-5.5 nm region while the 4p-4d subgroup gives rise to a weaker feature in the 4.3-4.7 nm region. A number of previously unidentified spectral features produced by n = 4-n = 5 transitions in the spectra of Re XVI to Re XXXIX are identified.

  13. Theory of Photoemission in Actinides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svane, Axel

    2008-07-01

    A theory is presented which describes the photoemission spectra of actinide compounds starting from the atomic limit of isolated actinide ions. The multiplets of the ion are calculated and an additional term is introduced to describe the interaction with the sea of conduction electrons. This leads to complex mixed-valent ground states, which describes well the rich spectrum observed for PuSe. In particular, the three-peak feature, which is often seen in Pu and Pu compounds in the vicinity of the Fermi level originates from f{sup 6} {yields} f{sup 5} emission. The theory is further applied to PuSb, PuCoGa{sub 5} and Am.more » (author)« less

  14. The Magellan Evolution of Galaxies Spectroscopic and Ultraviolet Reference Atlas (MegaSaura). I. The Sample and the Spectra

    NASA Astrophysics Data System (ADS)

    Rigby, J. R.; Bayliss, M. B.; Sharon, K.; Gladders, M. D.; Chisholm, J.; Dahle, H.; Johnson, T.; Paterno-Mahler, R.; Wuyts, E.; Kelson, D. D.

    2018-03-01

    We introduce Project MEGaSaURA: the Magellan Evolution of Galaxies Spectroscopic and Ultraviolet Reference Atlas. MEGaSaURA comprises medium-resolution, rest-frame ultraviolet spectroscopy of N = 15 bright gravitationally lensed galaxies at redshifts of 1.68 < z < 3.6, obtained with the MagE spectrograph on the Magellan telescopes. The spectra cover the observed-frame wavelength range 3200 < λ o < 8280 Å the average spectral resolving power is R = 3300. The median spectrum has a signal-to-noise ratio (S/N) = 21 per resolution element at 5000 Å. As such, the MEGaSaURA spectra have superior S/N and wavelength coverage compared to what COS/HST provides for starburst galaxies in the local universe. This paper describes the sample, the observations, and the data reduction. We compare the measured redshifts for the stars, the ionized gas as traced by nebular lines, and the neutral gas as traced by absorption lines; we find the expected bulk outflow of the neutral gas, and no systemic offset between the redshifts measured from nebular lines and the redshifts measured from the stellar continuum. We provide the MEGaSaURA spectra to the astronomical community through a data release.

  15. Accuracy of Td-DFT in the Ultraviolet and Circular Dichroism Spectra of Deoxyguanosine and Uridine.

    PubMed

    Miyahara, Tomoo; Nakatsuji, Hiroshi

    2018-01-11

    Accuracy of the time-dependent density functional theory (Td-DFT) was examined for the ultraviolet (UV) and circular dichroism (CD) spectra of deoxyguanosine (dG) and uridine, using 11 different DFT functionals and two different basis sets. The Td-DFT results of the UV and CD spectra were strongly dependent on the functionals used. The basis-set dependence was observed only for the CD spectral calculations. For the UV spectra, the B3LYP and PBE0 functionals gave relatively good results. For the CD spectra, the B3LYP and PBE0 with 6-311G(d,p) basis gave relatively permissible result only for dG. The results of other functionals were difficult to be used for the studies of the UV and CD spectra, though the symmetry adapted cluster-configuration interaction (SAC-CI) method reproduced well the experimental spectra of these molecules. To obtain valuable information from the theoretical calculations of the UV and CD spectra, the theoretical tool must be able to reproduce correctly both of the intensities and peak positions of the UV and CD spectra. Then, we can analyze the reasons of the changes of the intensity and/or the peak position to clarify the chemistry involved. It is difficult to recommend Td-DFT as such tools of science, at least from the examinations using dG and uridine.

  16. StarCAT: A Catalog of Space Telescope Imaging Spectrograph Ultraviolet Echelle Spectra of Stars

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.

    2010-03-01

    StarCAT is a catalog of high resolution ultraviolet spectra of objects classified as "stars," recorded by Space Telescope Imaging Spectrograph (STIS) during its initial seven years of operations (1997-2004). StarCAT is based on 3184 echelle observations of 545 distinct targets, with a total exposure duration of 5.2 Ms. For many of the objects, broad ultraviolet coverage has been achieved by splicing echellegrams taken in two or more FUV (1150-1700 Å) and/or NUV (1600-3100 Å) settings. In cases of multiple pointings on conspicuously variable sources, spectra were separated into independent epochs. Otherwise, different epochs were combined to enhance the signal-to-noise ratio (S/N). A post-facto correction to the calstis pipeline data sets compensated for subtle wavelength distortions identified in a previous study of the STIS calibration lamps. An internal "fluxing" procedure yielded coherent spectral energy distributions (SEDs) for objects with broadly overlapping wavelength coverage. The best StarCAT material achieves 300 m s-1 internal velocity precision; absolute accuracy at the 1 km s-1 level; photometric accuracy of order 4%; and relative flux precision several times better (limited mainly by knowledge of SEDs of UV standard stars). While StarCAT represents a milestone in the large-scale post-processing of STIS echellegrams, a number of potential improvements in the underlying "final" pipeline are identified.

  17. AN ONLINE CATALOG OF CATACLYSMIC VARIABLE SPECTRA FROM THE FAR-ULTRAVIOLET SPECTROSCOPIC EXPLORER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godon, Patrick; Sion, Edward M.; Levay, Karen

    2012-12-15

    We present an online catalog containing spectra and supporting information for cataclysmic variables that have been observed with the Far-Ultraviolet Spectroscopic Explorer (FUSE). For each object in the catalog we list some of the basic system parameters such as (R.A., decl.), period, inclination, and white dwarf mass, as well as information on the available FUSE spectra: data ID, observation date and time, and exposure time. In addition, we provide parameters needed for the analysis of the FUSE spectra such as the reddening E(B - V), distance, and state (high, low, intermediate) of the system at the time it was observed.more » For some of these spectra we have carried out model fits to the continuum with synthetic stellar and/or disk spectra using the codes TLUSTY and SYNSPEC. We provide the parameters obtained from these model fits; this includes the white dwarf temperature, gravity, projected rotational velocity, and elemental abundances of C, Si, S, and N, together with the disk mass accretion rate, the resulting inclination, and model-derived distance (when unknown). For each object one or more figures are provided (as gif files) with line identification and model fit(s) when available. The FUSE spectra and the synthetic spectra are directly available for download as ASCII tables. References are provided for each object, as well as for the model fits. In this article we present 36 objects, and additional ones will be added to the online catalog in the future. In addition to cataclysmic variables, we also include a few related objects, such as a wind-accreting white dwarf, a pre-cataclysmic variable, and some symbiotics.« less

  18. Synthetic Spectral Analysis of the Far Ultraviolet Spectra of the Old Nova HR Del

    NASA Astrophysics Data System (ADS)

    Robertson, Jordan; Sion, E.

    2012-05-01

    We present a synthetic spectral analysis of the archival IUE far ultraviolet spectra of the post-nova, HR Del (Nova Del 1967). The system has an estimated white dwarf mass of 0.55 Msun (Ritter and Kolb 2003), orbital period P_orb = 0.214165 days, estimated orbital inclination of 40 degrees (Keurster 1988) and distance determinations in the literature ranging from 970 pc to 285 pc. The spectra reveal P Cygni profiles indicative of wind outflow from the disk and closely resemble the IUE spectra of UX UMa nova-likes, which have never had recorded outbursts. We de-reddened the archival IUE spectra using E(B-V) = 0.16. Our synthetic spectral analysis utilized optically thick, steady state accretion disk models and white dwarf model atmospheres that we constructed using TLUSTY and SYNSPEC (Hubeny 1988, Hubeny and Lanz (1995). Our input parameters were the white dwarf mass, inclination and a range of accretion rates for which we found the best-fitting model. We report the results of our model fitting and compare HR Del with other post-novae at comparable times past their nova outburst. This work was supported by NSF grant 0807892 to Villanova University

  19. Photoemission intensity oscillations from quantum-well states in the Ag/V(100) overlayer system

    NASA Astrophysics Data System (ADS)

    Milun, M.; Pervan, P.; Gumhalter, B.; Woodruff, D. P.

    1999-02-01

    Extensive measurements have been made of the photoemission intensities recorded along the surface normal from quantum-well (QW) states of pseudomorphic Ag layers on V(100) in thicknesses from 1-7 ML as a function of photon energy in the range 15-45 eV. In all cases the QW states lead to intense peaks in the photoemission spectra which show strong oscillations in intensity with photon energy, the energy period of the oscillations becoming shorter as the films become thicker. These effects are explained in terms of interference of surface and interfaces photoemission from the sharp changes in potential at the well boundaries, and a semiquantitative description is achieved via calculations based on a simple asymmetric square-well description in the Adawi formulation of surface photoemission. An alternative picture in which intensity peaks are predicted to correspond to the conditions for direct transitions from bulk states of the overlayer material at the same initial-state energy is shown to be in direct contradiction with some of our observations. The reason for this failure, and the relationship of alternative views of the physical processes, are discussed.

  20. Photocathode device that replenishes photoemissive coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, Nathan A.; Lizon, David C.

    2016-06-14

    A photocathode device may replenish its photoemissive coating to replace coating material that desorbs/evaporates during photoemission. A linear actuator system may regulate the release of a replenishment material vapor, such as an alkali metal, from a chamber inside the photocathode device to a porous cathode substrate. The replenishment material deposits on the inner surface of a porous membrane and effuses through the membrane to the outer surface, where it replenishes the photoemissive coating. The rate of replenishment of the photoemissive coating may be adjusted using the linear actuator system to regulate performance of the photocathode device during photoemission. Alternatively, themore » linear actuator system may adjust a plasma discharge gap between a cartridge containing replenishment material and a metal grid. A potential is applied between the cartridge and the grid, resulting in ejection of metal ions from the cartridge that similarly replenish the photoemissive coating.« less

  1. Attosecond-controlled photoemission from metal nanowire tips in the few-electron regime

    NASA Astrophysics Data System (ADS)

    Ahn, B.; Schötz, J.; Kang, M.; Okell, W. A.; Mitra, S.; Förg, B.; Zherebtsov, S.; Süßmann, F.; Burger, C.; Kübel, M.; Liu, C.; Wirth, A.; Di Fabrizio, E.; Yanagisawa, H.; Kim, D.; Kim, B.; Kling, M. F.

    2017-03-01

    Metal nanotip photoemitters have proven to be versatile in fundamental nanoplasmonics research and applications, including, e.g., the generation of ultrafast electron pulses, the adiabatic focusing of plasmons, and as light-triggered electron sources for microscopy. Here, we report the generation of high energy photoelectrons (up to 160 eV) in photoemission from single-crystalline nanowire tips in few-cycle, 750-nm laser fields at peak intensities of (2-7.3) × 1012 W/cm2. Recording the carrier-envelope phase (CEP)-dependent photoemission from the nanowire tips allows us to identify rescattering contributions and also permits us to determine the high-energy cutoff of the electron spectra as a function of laser intensity. So far these types of experiments from metal nanotips have been limited to an emission regime with less than one electron per pulse. We detect up to 13 e/shot and given the limited detection efficiency, we expect up to a few ten times more electrons being emitted from the nanowire. Within the investigated intensity range, we find linear scaling of cutoff energies. The nonlinear scaling of electron count rates is consistent with tunneling photoemission occurring in the absence of significant charge interaction. The high electron energy gain is attributed to field-induced rescattering in the enhanced nanolocalized fields at the wires apex, where a strong CEP-modulation is indicative of the attosecond control of photoemission.

  2. International Ultraviolet Explorer (IUE) ultraviolet spectral atlas of selected astronomical objects

    NASA Technical Reports Server (NTRS)

    Wu, Chi-Chao; Reichert, Gail A.; Ake, Thomas B.; Boggess, Albert; Holm, Albert V.; Imhoff, Catherine L.; Kondo, Yoji; Mead, Jaylee M.; Shore, Steven N.

    1992-01-01

    The IUE Ultraviolet Spectral Atlas of Selected Astronomical Objects (or 'the Atlas'), is based on the data that were available in the IUE archive in 1986, and is intended to be a quick reference for the ultraviolet spectra of many categories of astronomical objects. It shows reflected sunlight from the Moon, planets, and asteroids, and also shows emission from comets. Comprehensive compilations of UV spectra for main sequence, subgiant, giant, bright giant, and supergiant stars are published elsewhere. This Atlas contains the spectra for objects occupying other areas of the Hertzsprung-Russell diagram: pre-main sequence stars, chemically peculiar stars, pulsating variables, subluminous stars, and Wolf-Rayet stars. This Atlas also presents phenomena such as the chromospheric and transition region emissions from late-type stars; composite spectra of stars, gas streams, accretion disks and gas envelopes of binary systems; the behavior of gas ejecta shortly after the outburst of novac and supernovac; and the H II regions, planetary nebulae, and supernova remnants. Population 2 stars, globular clusters, and luminous stars in the Magellanic Clouds, M31, and M33, are also included in this publication. Finally, the Atlas gives the ultraviolet spectra of galaxies of different Hubble types and of active galaxies.

  3. Polarization-dependent X-ray photoemission spectroscopy for High-Tc cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Yamagami, Kohei; Kanai, Yuina; Naimen, Sho; Fujiwara, Hidenori; Kiss, Takayuki; Tanaka, Arata; Higashiya, Atsushi; Imada, Shin; Kadono, Toshiharu; Tamasaku, Kenji; Muro, Takayuki; Yabashi, Makina; Ishikawa, Tetsuya; Eisaki, Hiroshi; Miyasaka, Shigeki; Tajima, Setsuko; Sekiyama, Akira

    2018-05-01

    We have performed photon energy (hν) and linear polarization dependent X-ray photoemission for optimal doped Pb-Bi2Sr2CaCu2O8+δ (Bi2212) to investigate the ground Cu 3d orbital symmetry. We identified that the bulk Cu 3d components in valence-band spectra develop with decreasing hν from 7900 eV to 460 eV. Moreover, the photoelectron intensity ratio of the valence-band spectra measured at hν = 460 eV has shown that the Cu 3dx2-y2 orbital contributions are dominant near the Fermi level (EF). Meanwhile, we revealed that the bulk Cu 2p3/2 core-level spectra without the Bi 4s component is detected at hν = 1550 eV compared with hν and linear-polarization-dependent spectra.

  4. Rosetta Langmuir Probe Photoelectron Emission and Solar Ultraviolet Flux at Comet 67P

    NASA Astrophysics Data System (ADS)

    Johansson, F. L.; Odelstad, E.; Paulsson, J. J.; Harang, S. S.; Eriksson, A. I.; Mannel, T.; Vigren, E.; Edberg, N. J. T.; Miloch, W. J.; Simon Wedlund, C.; Thiemann, E.; Epavier, F.; Andersson, L.

    2017-12-01

    The Langmuir Probe instrument on Rosetta monitored the photoelectron emission current of the probes during the Rosetta mission at comet 67P/Churyumov-Gerasimenko, in essence acting as a photodiode monitoring the solar ultraviolet radiation at wavelengths below 250 nm. We have used three methods of extracting the photoelectron saturation current from the Langmuir probe measurements. The resulting dataset can be used as an index of the solar far and extreme ultraviolet at the Rosetta spacecraft position, including flares, in wavelengths that are important for photoionisation of the cometary neutral gas. Comparing the photoemission current to data measurements by MAVEN/EUVM and TIMED/SEE, we find good correlation when 67P was at large heliocentric distances early and late in the mission, but up to 50 percent decrease of the expected photoelectron current at perihelion. We discuss possible reasons for the photoemission decrease, including scattering and absorption by nanograins created by disintegration of cometary dust far away from the nucleus.

  5. Fingerprints of entangled spin and orbital physics in itinerant ferromagnets via angle-resolved resonant photoemission

    NASA Astrophysics Data System (ADS)

    Da Pieve, F.

    2016-01-01

    A method for mapping the local spin and orbital nature of the ground state of a system via corresponding flip excitations is proposed based on angle-resolved resonant photoemission and related diffraction patterns, obtained here via an ab initio modified one-step theory of photoemission. The analysis is done on the paradigmatic weak itinerant ferromagnet bcc Fe, whose magnetism, a correlation phenomenon given by the coexistence of localized moments and itinerant electrons, and the observed non-Fermi-Liquid behavior at extreme conditions both remain unclear. The combined analysis of energy spectra and diffraction patterns offers a mapping of local pure spin-flip, entangled spin-flip-orbital-flip excitations and chiral transitions with vortexlike wave fronts of photoelectrons, depending on the valence orbital symmetry and the direction of the local magnetic moment. Such effects, mediated by the hole polarization, make resonant photoemission a promising tool to perform a full tomography of the local magnetic properties even in itinerant ferromagnets or macroscopically nonmagnetic systems.

  6. The far-ultraviolet spectra of two hot PG 1159 stars

    NASA Astrophysics Data System (ADS)

    Werner, K.; Rauch, T.; Kruk, J. W.

    2016-09-01

    PG 1159 stars are hot, hydrogen-deficient (pre-) white dwarfs with atmospheres mainly composed of helium, carbon, and oxygen. The unusual surface chemistry is the result of a late helium-shell flash. Observed element abundances enable us to test stellar evolution models quantitatively with respect to their nucleosynthesis products formed near the helium-burning shell of the progenitor asymptotic giant branch stars. Because of the high effective temperatures (Teff), abundance determinations require ultraviolet spectroscopy and non-local thermodynamic equilibrium model atmosphere analyses. Up to now, we have presented results for the prototype of this spectral class and two cooler members (Teff in the range 85 000-140 000 K). Here we report on the results for two even hotter stars (PG 1520+525 and PG 1144+005, both with Teff = 150 000 K) which are the only two objects in this temperature-gravity region for which useful far-ultraviolet spectra are available, and revisit the prototype star. Previous results on the abundances of some species are confirmed, while results on others (Si, P, S) are revised. In particular, a solar abundance of sulphur is measured in contrast to earlier claims of a strong S deficiency that contradicted stellar evolution models. For the first time, we assess the abundances of Na, Al, and Cl with newly constructed non-LTE model atoms. Besides the main constituents (He, C, O), we determine the abundances (or upper limits) of N, F, Ne, Na, Al, Si, P, S, Cl, Ar, and Fe. Generally, good agreement with stellar models is found.

  7. The Far-Ultraviolet Spectra of Two Hot PG1159 Stars

    NASA Technical Reports Server (NTRS)

    Werner, K.; Rauch, T.; Kruk, J. W.

    2016-01-01

    PG 1159 stars are hot, hydrogen-deficient (pre-) white dwarfs with atmospheres mainly composed of helium, carbon, and oxygen. The unusual surface chemistry is the result of a late helium-shell flash. Observed element abundances enable us to test stellar evolution models quantitatively with respect to their nucleosynthesis products formed near the helium-burning shell of the progenitor asymptotic giant branch stars. Because of the high effective temperatures (T(sub eff)), abundance determinations require ultraviolet spectroscopy and non-local thermodynamic equilibrium model atmosphere analyses. Up to now, we have presented results for the prototype of this spectral class and two cooler members (T(sub eff) in the range 85,000-140,000 K). Here we report on the results for two even hotter stars (PG 1520+525 and PG 1144+005, both with T(sub eff) = 150,000 K) which are the only two objects in this temperature-gravity region for which useful far-ultraviolet spectra are available, and revisit the prototype star. Previous results on the abundances of some species are confirmed, while results on others (Si, P, S) are revised. In particular, a solar abundance of sulphur is measured in contrast to earlier claims of a strong S deficiency that contradicted stellar evolution models. For the first time, we assess the abundances of Na, Al, andCl with newly constructed non-LTE model atoms. Besides the main constituents (He, C, O), we determine the abundances (or upper limits) of N, F, Ne, Na, Al, Si, P, S, Cl, Ar, and Fe. Generally, good agreement with stellar models is found.

  8. Metallicity Differences in Type Ia Supernova Progenitors Inferred from Ultraviolet Spectra

    NASA Astrophysics Data System (ADS)

    Foley, Ryan J.; Kirshner, Robert P.

    2013-05-01

    Two "twin" Type Ia supernovae (SNe Ia), SNe 2011by and 2011fe, have extremely similar optical light-curve shapes, colors, and spectra, yet have different ultraviolet (UV) continua as measured in Hubble Space Telescope spectra and measurably different peak luminosities. We attribute the difference in the UV continua to significantly different progenitor metallicities. This is the first robust detection of different metallicities for SN Ia progenitors. Theoretical reasoning suggests that differences in metallicity also lead to differences in luminosity. SNe Ia with higher progenitor metallicities have lower 56Ni yields and lower luminosities for the same light-curve shape. SNe 2011by and 2011fe have different peak luminosities (ΔMV ≈ 0.6 mag), which correspond to different 56Ni yields: M_11fe(^{56}Ni) / M_11by(^{56}Ni) = 1.7^{+0.7}_{-0.5}. From theoretical models that account for different neutron-to-proton ratios in progenitors, the differences in 56Ni yields for SNe 2011by and 2011fe imply that their progenitor stars were above and below solar metallicity, respectively. Although we can distinguish progenitor metallicities in a qualitative way from UV data, the quantitative interpretation in terms of abundances is limited by the present state of theoretical models.

  9. Radiation transport in kinetic simulations and the influence of photoemission on electron current in self-sustaining discharges

    DOE PAGES

    Fierro, Andrew S.; Moore, Christopher Hudson; Scheiner, Brett; ...

    2017-01-12

    A kinetic description for electronic excitation of helium for principal quantum number nmore » $$\\leqslant $$ 4 has been included into a particle-in-cell (PIC) simulation utilizing direct simulation Monte Carlo (DSMC) for electron-neutral interactions. The excited electronic levels radiate state-dependent photons with wavelengths from the extreme ultraviolet (EUV) to visible regimes. Photon wavelengths are chosen according to a Voigt distribution accounting for the natural, pressure, and Doppler broadened linewidths. This method allows for reconstruction of the emission spectrum for a non-thermalized electron energy distribution function (EEDF) and investigation of high energy photon effects on surfaces, specifically photoemission. A parallel plate discharge with a fixed field (i.e. space charge neglected) is used to investigate the effects of including photoemission for a Townsend discharge. When operating at a voltage near the self-sustaining discharge threshold, it is observed that the electron current into the anode is higher when including photoemission from the cathode than without even when accounting for self-absorption from ground state atoms. As a result, the photocurrent has been observed to account for as much as 20% of the total current from the cathode under steady-state conditions.« less

  10. Theoretical simulation of solar spectra in the middle ultraviolet and visible for atmospheric trace constituent measurements

    NASA Technical Reports Server (NTRS)

    Goldman, A.

    1978-01-01

    Two balloon flights reaching float altitudes of approximately 30 and 40 km respectively, were used to obtain scans of the ultraviolet and visible solar spectra. Both flights covered the UV (2800-3500A) at approximately 0.3A resolution and the visible at approximately 0.6A. Numerous scans were obtained during ascent and from float for both flights. All spectral scans obtained at float, from high sun to low sun, were calibrated in wavelength by using several standard solar spectra for line position references. Comparisons of low sun scans and high sun scans show significant atmospheric continuum extinction and have the potential of being used to identify atmospheric lines superimposed on the attenuated solar spectrum. The resolution was mathematically degraded to approximately 5A to better see the broad band atmospheric extinction. This low resolution is also appropriate for the available low resolution absorption coefficients of NO2 and O3, allowing the identification of NO2 and O3 features on the sunset spectra.

  11. Imaging Plasmonic Fields with Atomic Spatiotemporal Resolution

    NASA Astrophysics Data System (ADS)

    Li, Jianxiong; Saydanzad, Erfan; Thumm, Uwe

    2018-06-01

    We propose a scheme for the reconstruction of plasmonic near fields at isolated nanoparticles from infrared-streaked extreme-ultraviolet photoemission spectra. Based on quantum-mechanically modeled spectra, we demonstrate and analyze the accurate imaging of the IR-streaking-pulse-induced transient plasmonic fields at the surface of gold nanospheres and nanoshells with subfemtosecond temporal and subnanometer spatial resolution.

  12. Nature of the high-binding-energy dip in the low-temperature photoemission spectra of Bi2Sr2CaCu2O8+δ

    NASA Astrophysics Data System (ADS)

    Dessau, D. S.; Shen, Z.-X.; Wells, B. O.; King, D. M.; Spicer, W. E.; Arko, A. J.; Lombardo, L. W.; Mitzi, D. B.; Kapitulnik, A.

    1992-03-01

    At the transition to superconductivity, an anomalous high-binding-energy (~=-90 meV) dip appears in the low-temperature photoemission spectra taken along the Γ-M¯ high-symmetry direction of Bi2Sr2CaCu2O8+δ. This paper details experiments which further characterize the energy and k-space dependence of this dip structure. The dip occurs over a wide portion of the Γ-M¯ zone diagonal (110), yet shows minimal energy dispersion. In the spectra taken along the Γ-X zone edge (100), the dip is very weak or not present. We show that these results imply that the dip is not an artifact dependent on the experiment or special features of the band structure and therefore is an intrinsic feature of the superconducting state of Bi2Sr2CaCu2O8+δ. The behavior of the normal-state bands along Γ-M¯ in relation to the local-density-approximation prediction of a Bi-O-based electron ``pocket'' is also discussed, with our data explained most naturally if the Bi-O band remains above the Fermi level for all k.

  13. Materials Properties and Solvated Electron Dynamics of Isolated Nanoparticles and Nanodroplets Probed with Ultrafast Extreme Ultraviolet Beams.

    PubMed

    Ellis, Jennifer L; Hickstein, Daniel D; Xiong, Wei; Dollar, Franklin; Palm, Brett B; Keister, K Ellen; Dorney, Kevin M; Ding, Chengyuan; Fan, Tingting; Wilker, Molly B; Schnitzenbaumer, Kyle J; Dukovic, Gordana; Jimenez, Jose L; Kapteyn, Henry C; Murnane, Margaret M

    2016-02-18

    We present ultrafast photoemission measurements of isolated nanoparticles in vacuum using extreme ultraviolet (EUV) light produced through high harmonic generation. Surface-selective static EUV photoemission measurements were performed on nanoparticles with a wide array of compositions, ranging from ionic crystals to nanodroplets of organic material. We find that the total photoelectron yield varies greatly with nanoparticle composition and provides insight into material properties such as the electron mean free path and effective mass. Additionally, we conduct time-resolved photoelectron yield measurements of isolated oleylamine nanodroplets, observing that EUV photons can create solvated electrons in liquid nanodroplets. Using photoemission from a time-delayed 790 nm pulse, we observe that a solvated electron is produced in an excited state and subsequently relaxes to its ground state with a lifetime of 151 ± 31 fs. This work demonstrates that femotosecond EUV photoemission is a versatile surface-sensitive probe of the properties and ultrafast dynamics of isolated nanoparticles.

  14. 500 days of SN 2013dy: spectra and photometry from the ultraviolet to the infrared

    NASA Astrophysics Data System (ADS)

    Pan, Y.-C.; Foley, R. J.; Kromer, M.; Fox, O. D.; Zheng, W.; Challis, P.; Clubb, K. I.; Filippenko, A. V.; Folatelli, G.; Graham, M. L.; Hillebrandt, W.; Kirshner, R. P.; Lee, W. H.; Pakmor, R.; Patat, F.; Phillips, M. M.; Pignata, G.; Röpke, F.; Seitenzahl, I.; Silverman, J. M.; Simon, J. D.; Sternberg, A.; Stritzinger, M. D.; Taubenberger, S.; Vinko, J.; Wheeler, J. C.

    2015-10-01

    SN 2013dy is a Type Ia supernova (SN Ia) for which we have compiled an extraordinary data set spanning from 0.1 to ˜ 500 d after explosion. We present 10 epochs of ultraviolet (UV) through near-infrared (NIR) spectra with Hubble Space Telescope/Space Telescope Imaging Spectrograph, 47 epochs of optical spectra (15 of them having high resolution), and more than 500 photometric observations in the BVrRiIZYJH bands. SN 2013dy has a broad and slowly declining light curve (Δm15(B) = 0.92 mag), shallow Si II λ 6355 absorption, and a low velocity gradient. We detect strong C II in our earliest spectra, probing unburned progenitor material in the outermost layers of the SN ejecta, but this feature fades within a few days. The UV continuum of SN 2013dy, which is strongly affected by the metal abundance of the progenitor star, suggests that SN 2013dy had a relatively high-metallicity progenitor. Examining one of the largest single set of high-resolution spectra for an SN Ia, we find no evidence of variable absorption from circumstellar material. Combining our UV spectra, NIR photometry, and high-cadence optical photometry, we construct a bolometric light curve, showing that SN 2013dy had a maximum luminosity of 10.0^{+4.8}_{-3.8} × 10^{42} erg s-1. We compare the synthetic light curves and spectra of several models to SN 2013dy, finding that SN 2013dy is in good agreement with a solar-metallicity W7 model.

  15. Electronic structure of Mo1-x Re x alloys studied through resonant photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Sundar, Shyam; Banik, Soma; Sharath Chandra, L. S.; Chattopadhyay, M. K.; Ganguli, Tapas; Lodha, G. S.; Pandey, Sudhir K.; Phase, D. M.; Roy, S. B.

    2016-08-01

    We studied the electronic structure of Mo-rich Mo1-x Re x alloys (0≤slant x≤slant 0.4 ) using valence band photoemission spectroscopy in the photon energy range 23-70 eV and density of states calculations. Comparison of the photoemission spectra with the density of states calculations suggests that, with respect to the Fermi level E F, the d states lie mostly in the binding energy range 0 to  -6 eV, whereas s states lie in the binding energy range  -4 to  -10 eV. We observed two resonances in the photoemission spectra of each sample, one at about 35 eV photon energy and the other at about 45 eV photon energy. Our analysis suggests that the resonance at 35 eV photon energy is related to the Mo 4p-5s transition and the resonance at 45 eV photon energy is related to the contribution from both the Mo 4p-4d transition (threshold: 42 eV) and the Re 5p-5d transition (threshold: 46 eV). In the constant initial state plot, the resonance at 35 eV incident photon energy for binding energy features in the range E F (BE  =  0) to  -5 eV becomes progressively less prominent with increasing Re concentration x and vanishes for x  >  0.2. The difference plots obtained by subtracting the valence band photoemission spectrum of Mo from that of Mo1-x Re x alloys, measured at 47 eV photon energy, reveal that the Re d-like states appear near E F when Re is alloyed with Mo. These results indicate that interband s-d interaction, which is weak in Mo, increases with increasing x and influences the nature of the superconductivity in alloys with higher x.

  16. IUEAGN: A database of ultraviolet spectra of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Pike, G.; Edelson, R.; Shull, J. M.; Saken, J.

    1993-01-01

    In 13 years of operation, IUE has gathered approximately 5000 spectra of almost 600 Active Galactic Nuclei (AGN). In order to undertake AGN studies which require large amounts of data, we are consistently reducing this entire archive and creating a homogeneous, easy-to-use database. First, the spectra are extracted using the Optimal extraction algorithm. Continuum fluxes are then measured across predefined bands, and line fluxes are measured with a multi-component fit. These results, along with source information such as redshifts and positions, are placed in the IUEAGN relational database. Analysis algorithms, statistical tests, and plotting packages run within the structure, and this flexible database can accommodate future data when they are released. This archival approach has already been used to survey line and continuum variability in six bright Seyfert 1s and rapid continuum variability in 14 blazars. Among the results that could only be obtained using a large archival study is evidence that blazars show a positive correlation between degree of variability and apparent luminosity, while Seyfert 1s show an anti-correlation. This suggests that beaming dominates the ultraviolet properties for blazars, while thermal emission from an accretion disk dominates for Seyfert 1s. Our future plans include a survey of line ratios in Seyfert 1s, to be fitted with photoionization models to test the models and determine the range of temperatures, densities and ionization parameters. We will also include data from IRAS, Einstein, EXOSAT, and ground-based telescopes to measure multi-wavelength correlations and broadband spectral energy distributions.

  17. UV-POSIT: Web-Based Tools for Rapid and Facile Structural Interpretation of Ultraviolet Photodissociation (UVPD) Mass Spectra

    NASA Astrophysics Data System (ADS)

    Rosenberg, Jake; Parker, W. Ryan; Cammarata, Michael B.; Brodbelt, Jennifer S.

    2018-04-01

    UV-POSIT (Ultraviolet Photodissociation Online Structure Interrogation Tools) is a suite of web-based tools designed to facilitate the rapid interpretation of data from native mass spectrometry experiments making use of 193 nm ultraviolet photodissociation (UVPD). The suite includes four separate utilities which assist in the calculation of fragment ion abundances as a function of backbone cleavage sites and sequence position; the localization of charge sites in intact proteins; the calculation of hydrogen elimination propensity for a-type fragment ions; and mass-offset searching of UVPD spectra to identify unknown modifications and assess false positive fragment identifications. UV-POSIT is implemented as a Python/Flask web application hosted at http://uv-posit.cm.utexas.edu. UV-POSIT is available under the MIT license, and the source code is available at https://github.com/jarosenb/UV_POSIT. [Figure not available: see fulltext.

  18. UV-POSIT: Web-Based Tools for Rapid and Facile Structural Interpretation of Ultraviolet Photodissociation (UVPD) Mass Spectra.

    PubMed

    Rosenberg, Jake; Parker, W Ryan; Cammarata, Michael B; Brodbelt, Jennifer S

    2018-06-01

    UV-POSIT (Ultraviolet Photodissociation Online Structure Interrogation Tools) is a suite of web-based tools designed to facilitate the rapid interpretation of data from native mass spectrometry experiments making use of 193 nm ultraviolet photodissociation (UVPD). The suite includes four separate utilities which assist in the calculation of fragment ion abundances as a function of backbone cleavage sites and sequence position; the localization of charge sites in intact proteins; the calculation of hydrogen elimination propensity for a-type fragment ions; and mass-offset searching of UVPD spectra to identify unknown modifications and assess false positive fragment identifications. UV-POSIT is implemented as a Python/Flask web application hosted at http://uv-posit.cm.utexas.edu . UV-POSIT is available under the MIT license, and the source code is available at https://github.com/jarosenb/UV_POSIT . Graphical Abstract.

  19. Characterization of photoluminescence spectra from poly allyl diglycol carbonate (CR-39) upon excitation with the ultraviolet radiation of various wavelengths

    NASA Astrophysics Data System (ADS)

    El Ghazaly, M.; Al-Thomali, Talal A.

    2013-04-01

    The induced photoluminescence (PL) from the π-conjugated polymer poly allyl diglycol carbonate (PADC) (CR-39) upon excitation with the ultraviolet radiation of different wavelengths was investigated. The absorption and attenuation coefficients of PADC (CR-39) were recorded using a UV-visible spectrometer. It was found that the absorption and attenuation coefficients of the PADC (CR-39) exhibit a strong dependence on the wavelength of ultraviolet radiation. The PL spectra were measured with a Flormax-4 spectrofluorometer (Horiba). PADC (CR-39) samples were excited by ultraviolet radiation with wavelengths in the range from 260 to 420 nm and the corresponding PL emission bands were recorded. The obtained results show a strong correlation between the PL and the excitation wavelength of ultraviolet radiation. The position of the fluorescence emission band peak was red shifted starting from 300 nm, which was increased with the increase in the excitation wavelength. The PL yield and its band peak height were increased with the increase in the excitation wavelength till 290 nm, thereafter they decreased exponentially with the increase in the ultraviolet radiation wavelength. These new findings should be considered carefully during the use of the PADC (CR-39) in the scientific applications and in using PADC (CR-39) in eyeglasses.

  20. On the Failure of Standard Emission Measure Analysis for Solar Extreme-Ultraviolet and Ultraviolet Irradiance Spectra

    NASA Astrophysics Data System (ADS)

    Judge, P. G.; Woods, T. N.; Brekke, P.; Rottman, G. J.

    1995-12-01

    We perform emission measure analysis of new and accurate UV ( lambda > 1200 A) and extreme-ultraviolet (EUV) ( lambda <= 1200 A) irradiance ("Sun-as-a-star") emission-line spectra of the Sun. Our data consist of (1) daily averaged UV irradiances from the SOLSTICE on the UARS spacecraft and (2) EUV irradiances obtained on the same date from a \\frac {1}{4} m spectrograph flown on a sounding rocket. Both instruments have a spectral resolution of roughly 1 A. The absolute uncertainties in these data are at most +/-15% (+/-2 sigma ), one of the highest photometric accuracies yet achieved. We find large, highly significant and systematic discrepancies in the emission measure analysis of transition region lines which can only be accounted for by a breakdown of one or more standard assumptions. All strong lines above 1000 A, which are from the Li and Na isoelectronic sequences, are too strong by factors of between 2.5 and 7 compared with their counterparts in the EUV region. Previous studies were tantalizingly close to finding these discrepancies, but those data lacked the wavelength coverage and relative photometric precision necessary for definitive conclusions. We argue that either dynamical effects, inaccurate treatments of atomic processes, and/or Lyman continuum absorption are the culprits. However, we favor the former explanation. In any event, this study should have implications for models of the solar transition region, for observing programs with the CDS and SUMER instruments on SOHO, and for analysis of UV spectra for stars across the cool half of the H-R diagram. Finally, the discrepancy is not seen for the "coronal" Li-like ions.

  1. Core-Level Photoemission Investigations of the CADMIUM-TELLURIDE(100) and INDIUM-ANTIMONY(100) Surface and Interfacial Structures.

    NASA Astrophysics Data System (ADS)

    John, Peter James

    1988-12-01

    Photoemission techniques, utilizing a synchrotron light source, were used to analyze the clean (100) surfaces of the zinc-blende semiconductor materials CdTe and InSb. Several interfacial systems involving the surfaces of these materials were also studied, including the CdTe(100)-Ag interface, the CdTe(100)-Sb system, and the InSb(100)-Sn interface. High -energy electron diffraction was also employed to acquire information about of surface structure. A one-domain (2x1) structure was observed for the CdTe(100) surface. Analysis of photoemission spectra of the Cd 4d core level for this surface structure revealed two components resulting from Cd surface atoms. The total intensity of these components accounts for a full monolayer of Cd atoms on the surface. A structural model is discussed commensurate with these results. Photoemission spectra of the Cd and Te 4d core levels indicate that Ag or Sb deposited on the CdTe(100)-(2x1) surface at room temperature do not bound strongly to the surface Cd atoms. The room temperature growth characteristics for these two elements on the CdTe(100)-(2x1) are discussed. The growth at elevated substrate temperatures was also studied for Sb deposition. The InSb(100) surface differed from the CdTe(100) surface. Using molecular beam epitaxy, several structures could be generated for the InSb(100) surface, including a c(8x2), a c(4x4), an asymmetric (1x3), a symmetric (1x3), and a (1x1). Analysis of photoemission intensities and line shapes indicates that the c(4x4) surface is terminated with 1{3 over 4} monolayers of Sb atoms. The c(8x2) surface is found to be terminated with {3over 4} monolayer of In atoms. Structural models for both of these surfaces are proposed based upon the photoemission results and upon models of the similar GaAs(100) structures. The room temperature growth characteristics of grey Sn on the InSb(100)-c(4x4) and InSb(100)-c(8x2) surfaces were studied with photoemission. The discontinuity in the valence band maximum

  2. Invited Article: High resolution angle resolved photoemission with tabletop 11 eV laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yu; Vishik, Inna M.; Yi, Ming

    2016-01-15

    We developed a table-top vacuum ultraviolet (VUV) laser with 113.778 nm wavelength (10.897 eV) and demonstrated its viability as a photon source for high resolution angle-resolved photoemission spectroscopy (ARPES). This sub-nanosecond pulsed VUV laser operates at a repetition rate of 10 MHz, provides a flux of 2 × 10{sup 12} photons/s, and enables photoemission with energy and momentum resolutions better than 2 meV and 0.012 Å{sup −1}, respectively. Space-charge induced energy shifts and spectral broadenings can be reduced below 2 meV. The setup reaches electron momenta up to 1.2 Å{sup −1}, granting full access to the first Brillouin zone ofmore » most materials. Control over the linear polarization, repetition rate, and photon flux of the VUV source facilitates ARPES investigations of a broad range of quantum materials, bridging the application gap between contemporary low energy laser-based ARPES and synchrotron-based ARPES. We describe the principles and operational characteristics of this source and showcase its performance for rare earth metal tritellurides, high temperature cuprate superconductors, and iron-based superconductors.« less

  3. WebPlotDigitizer, a polyvalent and free software to extract spectra from old astronomical publications: application to ultraviolet spectropolarimetry

    NASA Astrophysics Data System (ADS)

    Marin, F.; Rohatgi, A.; Charlot, S.

    2017-12-01

    In this contribution, we present WebPlotDigitizer, a polyvalent and free software developed to facilitate easy and accurate data extraction from a variety of plot types. We describe the numerous features of this numerical tool and present its relevance when applied to astrophysical archival research. We exploit WebPlotDigitizer to extract ultraviolet spectropolarimetric spectra from old publications that used the Hubble Space Telescope, Lick Observatory 3 m Shane telescope and Astro-2 mission to observe the Seyfert-2 AGN NGC 1068. By doing so, we compile all the existing ultraviolet polarimetric data on NGC 1068 to prepare the ground for further investigations with the future high-resolution spectropolarimeter POLLUX on-board of the proposed Large UV/Optical/Infrared Surveyor (LUVOIR) NASA mission.

  4. Vacuum ultraviolet and infrared spectra of condensed methyl acetate on cold astrochemical dust analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivaraman, B.; Nair, B. G.; Mason, N. J.

    2013-12-01

    Following the recent report of the first identification of methyl acetate (CH{sub 3}COOCH{sub 3}) in the interstellar medium (ISM), we have carried out vacuum ultraviolet (VUV) and infrared (IR) spectroscopy studies on methyl acetate from 10 K until sublimation in an ultrahigh vacuum chamber simulating astrochemical conditions. We present the first VUV and IR spectra of methyl acetate relevant to ISM conditions. Spectral signatures clearly showed molecular reorientation to have started in the ice by annealing the amorphous ice formed at 10 K. An irreversible phase change from amorphous to crystalline methyl acetate ice was found to occur between 110more » K and 120 K.« less

  5. Extreme ultraviolet spectra of S IX and S X relevant to solar coronal plasmas

    NASA Astrophysics Data System (ADS)

    Ali, Safdar; Kato, Hiroyuki; Nakamura, Nobuyuki

    2017-10-01

    We present extreme ultraviolet laboratory spectra of highly charged S IX and S X measured using a compact electron beam ion trap. The data were recorded using a flat-field grazing incidence spectrometer in the wavelength range between 210 and 290 Å. The beam energy was tuned for three different values at 365, 410 and 465 eV while keeping electron beam current constant at 10 mA. By measuring the beam energy dependence, we identified several lines originating from S IX and S X ions with the support of collisional-radiative modeling. We compared them with the present calculations and transitions listed in the NIST data base and found in good agreement.

  6. Photoemissive coating

    NASA Technical Reports Server (NTRS)

    Gange, R. A.

    1972-01-01

    Polystyrene coating is applied to holographic storage tube substrate via glow discharge polymerization in an inert environment. After deposition of styrene coating, antimony and then cesium are added to produce photoemissive layer. Technique is utilized in preparing perfectly organized polymeric films useful as single-crystal membranes.

  7. Optimizing the performance of bandpass photon detectors for inverse photoemission: Transmission of alkaline earth fluoride window crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiede, Christian, E-mail: christian.thiede@uni-muenster.de; Schmidt, Anke B.; Donath, Markus

    2015-08-15

    Bandpass photon detectors are widely used in inverse photoemission in the isochromat mode at energies in the vacuum-ultraviolet spectral range. The energy bandpass of gas-filled counters is usually formed by the ionization threshold of the counting gas as high-pass filter and the transmission cutoff of an alkaline earth fluoride window as low-pass filter. The transmission characteristics of the window have, therefore, a crucial impact on the detector performance. We present transmission measurements in the vacuum-ultraviolet spectral range for alkaline earth fluoride window crystals in the vicinity of the transmission cutoff as a function of crystal purity, surface finish, surface contamination,more » temperature, and thickness. Our findings reveal that the transmission characteristics of the window crystal and, thus, the detector performance depend critically on these window parameters.« less

  8. Tetragonal and collapsed-tetragonal phases of CaFe2As2 : A view from angle-resolved photoemission and dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    van Roekeghem, Ambroise; Richard, Pierre; Shi, Xun; Wu, Shangfei; Zeng, Lingkun; Saparov, Bayrammurad; Ohtsubo, Yoshiyuki; Qian, Tian; Sefat, Athena S.; Biermann, Silke; Ding, Hong

    2016-06-01

    We present a study of the tetragonal to collapsed-tetragonal transition of CaFe2As2 using angle-resolved photoemission spectroscopy and dynamical mean field theory-based electronic structure calculations. We observe that the collapsed-tetragonal phase exhibits reduced correlations and a higher coherence temperature due to the stronger Fe-As hybridization. Furthermore, a comparison of measured photoemission spectra and theoretical spectral functions shows that momentum-dependent corrections to the density functional band structure are essential for the description of low-energy quasiparticle dispersions. We introduce those using the recently proposed combined "screened exchange + dynamical mean field theory" scheme.

  9. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Bromberger, H.; Ermolov, A.; Belli, F.; Liu, H.; Calegari, F.; Chávez-Cervantes, M.; Li, M. T.; Lin, C. T.; Abdolvand, A.; Russell, P. St. J.; Cavalleri, A.; Travers, J. C.; Gierz, I.

    2015-08-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi2Se3 with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  10. Comparing Ultraviolet Spectra Against Calculations: First Results

    NASA Technical Reports Server (NTRS)

    Peterson, Ruth C.

    2003-01-01

    The five-year goal of this effort is to calculate high fidelity mid-UV spectra for individual stars and stellar systems for a wide range of ages, abundances, and abundance ratios. In this first year, the emphasis was placed on revising the list of atomic line parameters used to calculate mid-UV spectra. First, new identifications of atomic lines and measurements of their transition probabilities were obtained for lines of the first and second ionization stages of iron-peak elements. Second, observed mid-UV and optical spectra for standard stars were re-analyzed and compared to new calculations, to refine the determination of transition probabilities and to estimate the identity of lines still missing from the laboratory lists. As evidenced by the figures, a dramatic improvement has resulted in the reproduction of the spectra of standard stars by the calculations.

  11. Detection of latent fingerprints by ultraviolet spectral imaging

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Xu, Xiaojing; Wang, Guiqiang

    2013-12-01

    Spectral imaging technology research is becoming more popular in the field of forensic science. Ultraviolet spectral imaging technology is an especial part of the full spectrum of imaging technology. This paper finished the experiment contents of the ultraviolet spectrum imaging method and image acquisition system based on ultraviolet spectral imaging technology. Ultraviolet spectral imaging experiments explores a wide variety of ultraviolet reflectance spectra of the object material curve and its ultraviolet spectrum of imaging modalities, can not only gives a reference for choosing ultraviolet wavelength to show the object surface potential traces of substances, but also gives important data for the ultraviolet spectrum of imaging technology development.

  12. Synchrotron-Radiation Photoemission Study of Electronic Structures of a Cs-Doped Rubrene Surface

    NASA Astrophysics Data System (ADS)

    Cheng, Chiu-Ping; Lu, Meng-Han; Chu, Yu-Ya; Pi, Tun-Wen

    Using synchrotron-radiation photoemission spectroscopy, we have studied the electronic structure of a cesium-doped rubrene thin film. The addition of cesium atoms causes the movement of the valence-band spectra and the change in line shapes at different concentration that can be separated into four different stages. In the first stage, the cesium atoms continuously diffuse into the substrate, and the Fermi level moves in the energy gap as a result of an electron transferred from the cesium to the rubrene. The second stage, in which the shifts of the spectra are interrupted, is characterized by the introduction of two in-gap states. When increasing doping of cesium into the third stage, the spectra move again; whereas, the line shapes maintain at the stoichiometric ratio of one. In the fourth stage, new in-gap states appear, which are the highest occupied molecular orbital (HOMO) and HOMO+1 states of (rubrene)2- anion.

  13. Comparative Photoemission Study of Actinide (Am, Pu, Np and U) Metals, Nitrides, and Hydrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gouder, Thomas; Seibert, Alice; Rebizant, Jean

    2007-07-01

    Core-level and valence-band spectra of Pu and the other early actinide compounds show remarkable systematics, which can be understood in the framework of final state screening. We compare the early actinide (U, Np, Pu and Am) metals, nitrides and hydrides and a few other specific compounds (PuSe, PuS, PuCx, PuSix) prepared as thin films by sputter deposition. In choosing these systems, we combine inherent 5f band narrowing, due to 5f orbital contraction throughout the actinide series, with variations of the chemical environment in the compounds. Goal of this work was to learn more on the electronic structure of the earlymore » actinide systems and to achieve the correct interpretation of their photoemission spectra. The highly correlated nature of the 5f states in systems, which are on the verge to localization, makes this a challenging task, because of the peculiar interplay between ground state DOS and final-state effects. Their influence can be estimated by doing systematic studies on systems with different (5f) bandwidths. We conclude on the basis of such systematic experiments that final-state effects due to strong e-e correlations in narrow 5f-band systems lead to multiplet like structures, analogous to those observed in the case of systems with localized electron states. Such observations in essentially band-like 5f-systems was first surprising, but the astonishing similarity of photoemission spectra of very different chemical systems (e.g. PuSe, Pu{sub 2}C{sub 3}..) points to a common origin, relating them to atomic features rather than material dependent density of states (DOS) features. (authors)« less

  14. The Magellan Evolution of Galaxies Spectroscopic and Ultraviolet Reference Atlas (MegaSaura). II. Stacked Spectra

    NASA Astrophysics Data System (ADS)

    Rigby, J. R.; Bayliss, M. B.; Chisholm, J.; Bordoloi, R.; Sharon, K.; Gladders, M. D.; Johnson, T.; Paterno-Mahler, R.; Wuyts, E.; Dahle, H.; Acharyya, A.

    2018-01-01

    We stack the rest-frame ultraviolet spectra of N = 14 highly magnified gravitationally lensed galaxies at redshifts 1.6< z< 3.6. The resulting new composite spans 900< {λ }{rest}< 3000 Å, with a peak signal-to-noise ratio (S/N) of 103 per spectral resolution element (∼100 km s‑1). It is the highest S/N, highest spectral resolution composite spectrum of z ∼ 2–3 galaxies yet published. The composite reveals numerous weak nebular emission lines and stellar photospheric absorption lines that can serve as new physical diagnostics, particularly at high redshift with the James Webb Space Telescope (JWST). We report equivalent widths to aid in proposing for and interpreting JWST spectra. We examine the velocity profiles of strong absorption features in the composite, and in a matched composite of z∼ 0 COS/HST galaxy spectra. We find remarkable similarity in the velocity profiles at z∼ 0 and z∼ 2, suggesting that similar physical processes control the outflows across cosmic time. While the maximum outflow velocity depends strongly on ionization potential, the absorption-weighted mean velocity does not. As such, the bulk of the high-ionization absorption traces the low-ionization gas, with an additional blueshifted absorption tail extending to at least ‑2000 km s‑1. We interpret this tail as arising from the stellar wind and photospheres of massive stars. Starburst99 models are able to replicate this high-velocity absorption tail. However, these theoretical models poorly reproduce several of the photospheric absorption features, indicating that improvements are needed to match observational constraints on the massive stellar content of star-forming galaxies at z∼ 2. We publicly release our composite spectra.

  15. Valence-band structure of organic radical p-CF3PNN investigated by angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Anzai, Hiroaki; Takakura, Ryosuke; Ono, Yusuke; Ishihara, Suzuna; Sato, Hitoshi; Namatame, Hirofumi; Taniguchi, Masaki; Matsui, Toshiyuki; Noguchi, Satoru; Hosokoshi, Yuko

    2018-05-01

    We study the electronic structure of p-trifluoromethylphenyl nitronyl nitroxide (p-CF3PNN), which forms a one-dimensional alternating antiferromagnetic chain of molecules, using angle-resolved photoemission spectroscopy. A singly occupied molecular orbital (SOMO) is observed clearly at ∼ 2 eV in the valence-band spectra. The small band gap and the overlap between the SOMO orbitals in the NO groups are associated with the antiferromagnetic interaction between neighboring spins.

  16. Electronic structure of the dilute magnetic semiconductor G a1 -xM nxP from hard x-ray photoelectron spectroscopy and angle-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Keqi, A.; Gehlmann, M.; Conti, G.; Nemšák, S.; Rattanachata, A.; Minár, J.; Plucinski, L.; Rault, J. E.; Rueff, J. P.; Scarpulla, M.; Hategan, M.; Pálsson, G. K.; Conlon, C.; Eiteneer, D.; Saw, A. Y.; Gray, A. X.; Kobayashi, K.; Ueda, S.; Dubon, O. D.; Schneider, C. M.; Fadley, C. S.

    2018-04-01

    We have investigated the electronic structure of the dilute magnetic semiconductor (DMS) G a0.98M n0.02P and compared it to that of an undoped GaP reference sample, using hard x-ray photoelectron spectroscopy (HXPS) and hard x-ray angle-resolved photoemission spectroscopy (HARPES) at energies of about 3 keV. We present experimental data, as well as theoretical calculations, to understand the role of the Mn dopant in the emergence of ferromagnetism in this material. Both core-level spectra and angle-resolved or angle-integrated valence spectra are discussed. In particular, the HARPES experimental data are compared to free-electron final-state model calculations and to more accurate one-step photoemission theory. The experimental results show differences between G a0.98M n0.02P and GaP in both angle-resolved and angle-integrated valence spectra. The G a0.98M n0.02P bands are broadened due to the presence of Mn impurities that disturb the long-range translational order of the host GaP crystal. Mn-induced changes of the electronic structure are observed over the entire valence band range, including the presence of a distinct impurity band close to the valence-band maximum of the DMS. These experimental results are in good agreement with the one-step photoemission calculations and a prior HARPES study of G a0.97M n0.03As and GaAs [Gray et al., Nat. Mater. 11, 957 (2012), 10.1038/nmat3450], demonstrating the strong similarity between these two materials. The Mn 2 p and 3 s core-level spectra also reveal an essentially identical state in doping both GaAs and GaP.

  17. Optical study of HgCdTe infrared photodetectors using internal photoemission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lao, Yan-Feng; Unil Perera, A. G., E-mail: uperera@gsu.edu; Wijewarnasuriya, Priyalal S.

    2014-03-31

    We report a study of internal photoemission spectroscopy (IPE) applied to a n-type Hg{sub 1−x}Cd{sub x}Te/Hg{sub 1−y}Cd{sub y}Te heterojunction. An exponential line-shape of the absorption tail in HgCdTe is identified by IPE fittings of the near-threshold quantum yield spectra. The reduction of quantum yield (at higher photon energy) below the fitting value is explained as a result of carrier-phonon scatterings. In addition, the obtained bias independence of the IPE threshold indicates a negligible electron barrier at the heterojunction interface.

  18. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV

    PubMed Central

    Wang, He; Xu, Yiming; Ulonska, Stefan; Robinson, Joseph S.; Ranitovic, Predrag; Kaindl, Robert A.

    2015-01-01

    Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. Here, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s−1 is generated at 22.3 eV, with 5 × 10−5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications. PMID:26067922

  19. Resonant inelastic x-ray scattering and photoemission measurement of O2: Direct evidence for dependence of Rydberg-valence mixing on vibrational states in O 1s → Rydberg states

    NASA Astrophysics Data System (ADS)

    Gejo, T.; Oura, M.; Tokushima, T.; Horikawa, Y.; Arai, H.; Shin, S.; Kimberg, V.; Kosugi, N.

    2017-07-01

    High-resolution resonant inelastic x-ray scattering (RIXS) and low-energy photoemission spectra of oxygen molecules have been measured for investigating the electronic structure of Rydberg states in the O 1s → σ* energy region. The electronic characteristics of each Rydberg state have been successfully observed, and new assignments are made for several states. The RIXS spectra clearly show that vibrational excitation is very sensitive to the electronic characteristics because of Rydberg-valence mixing and vibronic coupling in O2. This observation constitutes direct experimental evidence that the Rydberg-valence mixing characteristic depends on the vibrational excitation near the avoided crossing of potential surfaces. We also measured the photoemission spectra of metastable oxygen atoms (O*) from O2 excited to 1s → Rydberg states. The broadening of the 4p Rydberg states of O* has been found with isotropic behavior, implying that excited oxygen molecules undergo dissociation with a lifetime of the order of 10 fs in 1s → Rydberg states.

  20. Single and double photoemission and generalizations

    NASA Astrophysics Data System (ADS)

    Pavlyukh, Yaroslav

    2016-03-01

    A unified diagrammatic treatment of single and double electron photoemission currents is presented. The irreducible lesser density-density response function is the starting point of these derivations. Diagrams for higher order processes in which several electrons are observed in coincidence can likewise be obtained. For physically relevant situations, in which the photoemission cross-section can be written as the Fermi Golden rule, the diagrams from the nonequilibrium Green's function approach can be put in direct correspondence with the diagrams of the scattering theory.

  1. Far-ultraviolet spectral changes of titanium dioxide with gold nanoparticles by ultraviolet and visible light

    NASA Astrophysics Data System (ADS)

    Tanabe, Ichiro; Kurawaki, Yuji

    2018-05-01

    Attenuated total reflectance spectra including the far-ultraviolet (FUV, ≤ 200 nm) region of titanium dioxide (TiO2) with and without gold (Au) nanoparticles were measured. A newly developed external light-irradiation system enabled to observe spectral changes of TiO2 with Au nanoparticles upon light irradiations. Absorption in the FUV region decreased and increased by the irradiation with ultraviolet and visible light, respectively. These spectral changes may reflect photo-induced electron transfer from TiO2 to Au nanoparticles under ultraviolet light and from Au nanoparticles to TiO2 under visible light, respectively.

  2. Photoemission, NMR, susceptibility and specific heat in V and A15 V 3Pt

    NASA Astrophysics Data System (ADS)

    Amamou, A.; Turek, P.; Kuentzler, R.

    1982-08-01

    We present a study on the electronic structure of V and V 3Pt, based on photoemission (XPS and UPS) measurements and on the examination of previous band calculations, specific heat, susceptibility and NMR results. Photoemission spectra on pure V, in particular the XPS one, show a good agreement with band calculations ; the He II spectrum exhibits a strong satellite which could be attributed to a simple Auger effect or to a resonant process. Photoemission on V 3Pt allows an evaluation of the partial densities of states (PDOS) ; the Vanadium PDOS is similar to that of pure element, at least for the upper part of the valence band ; meanwhile the Platinium partial EDOS is drastically modified. This can be understood in the framework of electronic structure of compounds involving early and late transition metals where the atomic structure seems to play an important role. An evaluation of the EDOS's at the Fermi level n(E F) can also be tempted and compared to those obtained from the other mentioned techniques. Therefore it is suggested that for Vanadium n(E F) is similar to that of pure element ; for Platinium n(E F) is strongly reduced. Finally the analysis of the electronic specific heat of V, Pt and V 3Pt indicates that the parameter of electron-phonon coupling determined by the Mc Millan's theory is likely underesti:ated, due to the occurence of an estimated coupling in V and V 3Pt.

  3. The stellar content of 30 doradus derived from spatially integrated ultraviolet spectra: A test of spectral synthesis models

    NASA Technical Reports Server (NTRS)

    Vacca, William D.; Robert, Carmelle; Leitherer, Claus; Conti, Peter S.

    1995-01-01

    Using the IUE satellite, we have obtained spatially integrated ultraviolet spectra of three areas within the giant H II region 30 Dor in the Large Magellanic Cloud. The spectra correspond to spatial reginswith sizes of 20 sec x 20 sec, 1 min x 1 min, and 3 min x 3 min, all of which are approximately centered on R136. We have performed a spectral synthesis analysis of the spectra of the two larger regions and compared the results with the known stellar content in these regions. The spectral synthesis models are sensitive to the ultraviolet continuum level, the P Cygni profile of the C Iv wavelength 1550 line, the absorption strength of the Si IV wavelength 1400 line, and the emission strength of the He II wavelength 1640 line. The intrinsic continuum levels and the profiles of these stellar wind lines provide constraints on the age and duration of the starburst episode within a region, as well as on the upper curoff mass of the initial mass function. From our analysis we find that the present-day value of the upper cutoff mass in the 1 min x 1 min and 3 min x 3 min regions has a lower limit of approximately 50 solar mass, a result which is in good agreement with several other recent determinations. The age of the starburst episode must be less than approximately 3 Myr, also in agreement with other estimates. Comparison of the observed total numbers of O and W-R stars with those predicted from the various models favors an instantaneous burst of star formation in the regions. However, the differences between the two burst scenarios we investigated (instantaneous and continuous) are small at such a young age, and distinguishing between the two is difficult. We are now confident that these spectral synthesis models can be used to determine the stellar content of more distant star-forming regions.

  4. High-order above-threshold photoemission from nanotips controlled with two-color laser fields

    NASA Astrophysics Data System (ADS)

    Seiffert, Lennart; Paschen, Timo; Hommelhoff, Peter; Fennel, Thomas

    2018-07-01

    We investigate the process of phase-controlled high-order above-threshold photoemission from metallic nanotips under bichromatic laser fields. Experimental photoelectron spectra resulting from two-color excitation with a moderately intense near-infrared fundamental field (1560 nm) and its weak second harmonic show a strong sensitivity on the relative phase and clear indications for a plateau-like structure that is attributed to elastic backscattering. To explore the relevant control mechanisms, characteristic features, and particular signatures from the near-field inhomogeneity, we performed systematic quantum simulations employing a one-dimensional nanotip model. Besides rich phase-dependent structures in the simulated above-threshold ionization photoelectron spectra we find ponderomotive shifts as well as substantial modifications of the rescattering cutoff as function of the decay length of the near-field. To explore the quantum or classical nature of the observed features and to discriminate the two-color effects stemming from electron propagation and from the ionization rate we compare the quantum results to classical trajectory simulations. We show that signatures from direct electrons as well as the modulations in the plateau region mainly stem from control of the ionization probability, while the modulation in the cutoff region can only be explained by the impact of the two-color field on the electron trajectory. Despite the complexity of the phase-dependent features that render two-color strong-field photoemission from nanotips intriguing for sub-cycle strong-field control, our findings support that the recollision features in the cutoff region provide a robust and reliable method to calibrate the relative two-color phase.

  5. Comparison between laser-induced photoemissions and phototransmission of hard tissues using fibre-coupled Nd:YAG and Er(3+)-doped fibre lasers.

    PubMed

    El-Sherif, Ashraf Fathy

    2012-07-01

    During pulsed laser irradiation of dental enamel, laser-induced photoemissions result from the laser-tissue interaction through mechanisms including fluorescence and plasma formation. Fluorescence induced by non-ablative laser light interaction has been used in tissue diagnosis, but the photoemission signal accompanying higher power ablative processes may also be used to provide real-time monitoring of the laser-tissue interaction. The spectral characteristics of the photoemission signals from normal and carious tooth enamel induced by two different pulsed lasers were examined. The radiation sources compared were a high-power extra-long Q-switched Nd:YAG laser operating at a wavelength of 1,066 nm giving pulses (with pulse durations in the range 200-250 μs) in the near infrared and a free-running Er(3+)-doped ZBLAN fibre laser operating at a wavelength near 3 μm with similar pulse durations in the mid-infrared region. The photoemission spectra produced during pulsed laser irradiation of enamel samples were recorded using a high-resolution spectrometer with a CCD array detector that enabled an optical resolution as high as 0.02 nm (FWHM). The spectral and time-dependence of the laser-induced photoemission due to thermal emission and plasma formation were detected during pulsed laser irradiation of hard tissues and were used to distinguish between normal and carious teeth. The use of these effects to distinguish between hard and soft biological tissues during photothermal ablation with a pulsed Nd:YAG laser or an Er fibre laser appears feasible. The real-time spectrally resolved phototransmission spectrum produced during pulsed Nd:YAG laser irradiation of human tooth enamel samples was recorded, with a (normalized) relative transmission coefficient of 1 (100%) for normal teeth and 0.6 (60%) for the carious teeth. The photoemission signal accompanying ablative events may also be used to provide real-time monitoring of the laser-tissue interaction.

  6. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromberger, H., E-mail: Hubertus.Bromberger@mpsd.mpg.de; Liu, H.; Chávez-Cervantes, M.

    2015-08-31

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi{sub 2}Se{sub 3} with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz,more » with photon energies that cover the first Brillouin zone of most materials.« less

  7. Laser angle-resolved photoemission as a probe of initial state k z dispersion, final-state band gaps, and spin texture of Dirac states in the Bi 2Te 3 topological insulator

    DOE PAGES

    Ärrälä, Minna; Hafiz, Hasnain; Mou, Daixiang; ...

    2016-10-27

    Here, we have obtained angle-resolved photoemission (ARPES) spectra from single crystals of the topological insulator material Bi 2Te 3 using tunable laser spectrometer. The spectra were collected for eleven different photon energies ranging from 5.57 to 6.70 eV for incident light polarized linearly along two different in-plane directions. Parallel first-principles, fully relativistic computations of photo-intensities were carried out using the experimental geometry within the framework of the one-step model of photoemission. Good overall accord between theory and experiment is used to gain insight into how properties of the initial and final state band structures as well as those of themore » topological surface states and their spin-textures are reflected in the laser-ARPES spectra. In conclusion, our analysis reveals that laser-ARPES is sensitive to both the initial state k z dispersion and the presence of delicate gaps in the final state electronic spectrum.« less

  8. The outer atmospheres of cool M giants: High-dispersion ultraviolet spectra of Rho Per, 2 Cen, and g Her

    NASA Technical Reports Server (NTRS)

    Eaton, Joel A.; Johnson, Hollis R.

    1986-01-01

    Long duration IUE spectra were obtained to extend coverage of cool giants studied in the ultraviolet at high dispersion to M6. The chromospheric spectra of the three stars, which consist of a profusion of Fe II lines and a few lines of Mg II, Mg I, Al II, C II, C I, Cr II, and Fe I, are remarkably similar, both among themselves and with respect to stars of earlier spectral type. These lines present a picture of a warm chromosphere that is static in the average but may be far from uniform in density and ionization. The Mg II emission lines of 2 Cen show 2 unresolved absorption components, the shorter at the velocity of the local interstellar medium. The longer is blueshifted from the star by 12 to 18 km/sec and must be one of very few observed shell lines uncontaminated by interstellar absorption.

  9. Extreme Ultraviolet Spectra of Few-Times Ionized Tungsten for Divertor Plasma Diagnostics

    DOE PAGES

    Clementson, Joel; Lennartsson, Thomas; Beiersdorfer, Peter

    2015-09-09

    The extreme ultraviolet (EUV) emission from few-times ionized tungsten atoms has been experimentally studied at the Livermore electron beam ion trap facility. The ions were produced and confined during low-energy operations of the EBIT-I electron beam ion trap. By varying the electron-beam energy from around 30–300 eV, tungsten ions in charge states expected to be abundant in tokamak divertor plasmas were excited, and the resulting EUV emission was studied using a survey spectrometer covering 120–320 Å. It is found that the emission strongly depends on the excitation energy; below 150 eV, it is relatively simple, consisting of strong isolated linesmore » from a few charge states, whereas at higher energies, it becomes very complex. For divertor plasmas with tungsten impurity ions, this emission should prove useful for diagnostics of tungsten flux rates and charge balance, as well as for radiative cooling of the divertor volume. Several lines in the 194–223 Å interval belonging to the spectra of five- and seven-times ionized tungsten (Tm-like W VI and Ho-like W VIII) were also measured using a high-resolution spectrometer.« less

  10. Plasmon satellites in valence-band photoemission spectroscopy. Ab initio study of the photon-energy dependence in semiconductors

    NASA Astrophysics Data System (ADS)

    Guzzo, M.; Kas, J. J.; Sottile, F.; Silly, M. G.; Sirotti, F.; Rehr, J. J.; Reining, L.

    2012-09-01

    We present experimental data and theoretical results for valence-band satellites in semiconductors, using the prototypical example of bulk silicon. In a previous publication we introduced a new approach that allows us to describe satellites in valence photoemission spectroscopy, in good agreement with experiment. Here we give more details; we show how the the spectra change with photon energy, and how the theory explains this behaviour. We also describe how we include several effects which are important to obtain a correct comparison between theory and experiment, such as secondary electrons and photon cross sections. In particular the inclusion of extrinsic losses and their dependence on the photon energy are key to the description of the energy dependence of spectra.

  11. Far-ultraviolet spectral changes of titanium dioxide with gold nanoparticles by ultraviolet and visible light.

    PubMed

    Tanabe, Ichiro; Kurawaki, Yuji

    2018-05-15

    Attenuated total reflectance spectra including the far-ultraviolet (FUV, ≤200nm) region of titanium dioxide (TiO 2 ) with and without gold (Au) nanoparticles were measured. A newly developed external light-irradiation system enabled to observe spectral changes of TiO 2 with Au nanoparticles upon light irradiations. Absorption in the FUV region decreased and increased by the irradiation with ultraviolet and visible light, respectively. These spectral changes may reflect photo-induced electron transfer from TiO 2 to Au nanoparticles under ultraviolet light and from Au nanoparticles to TiO 2 under visible light, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. International Ultraviolet Explorer observations of the peculiar variable spectrum of the eclipsing binary R Arae

    NASA Technical Reports Server (NTRS)

    Mccluskey, G. E.; Kondo, Y.

    1983-01-01

    The eclipsing binary system R Arae = HD 149730 is a relatively bright southern system with an orbital period of about 4.4 days. It is a single-lined spectroscopic binary. The spectral class of the primary component is B9 Vp. The system was included in a study of mass flow and evolution in close binary systems using the International Ultraviolet Explorer satellite (IUE). Four spectra in the wavelength range from 1150 to 1900 A were obtained with the far-ultraviolet SWP camera, and six spectra in the range from 1900 to 3200 range were obtained with the mid-ultraviolet LWR camera. The close binary R Arae exhibits very unusual ultraviolet spectra. It appears that no other close binary system, observed with any of the orbiting satellites, shows outside-eclipse ultraviolet continuum flux variations of this nature.

  13. Soft X-ray photoemission study of Co2(Cr1-xFex)Ga Heusler compounds

    NASA Astrophysics Data System (ADS)

    Tsunekawa, Masanori; Hattori, Yoshiro; Sekiyama, Akira; Fujiwara, Hidenori; Suga, Shigemasa; Muro, Takayuki; Kanomata, Takeshi; Imada, Shin

    2015-08-01

    We have performed soft X-ray photoemission spectroscopy (SXPES) and X-ray absorption spectroscopy (XAS) of the Co-based Heusler compounds Co2(Cr1-xFex)Ga (x = 0.0, 0.4, and 1.0) in order to study their electronic structures. Band-structure calculation was carried out and compared with the experimental results. SXPES spectra show hν-dependence, revealing the contributions of the Co, Cr, and Fe 3d electronic states in the valence band. The band width observed by the SXPES seems to be narrower than that predicted by the band-structure calculation. XAS spectra depend strongly on the the value of x in Co2(Cr1-xFex)Ga. The electron correlation effects are found to be stronger as x changes from 0.0 to 1.0.

  14. X-ray photoemission study of NiS2-xSex (x=0.0 1.2)

    NASA Astrophysics Data System (ADS)

    Krishnakumar, S. R.; Sarma, D. D.

    2003-10-01

    Electronic structure of NiS2-xSex system has been investigated for various compositions (x) using x-ray photoemission spectroscopy. An analysis of the core-level as well as the valence-band spectra of NiS2 in conjunction with many-body cluster calculations provides a quantitative description of the electronic structure of this compound. With increasing Se content, the on-site Coulomb correlation strength (U) does not change, while the bandwidth W of the system increases, driving the system from a covalent insulating state to a pd-metallic state.

  15. Ultraviolet spectra of extreme nearby star-forming regions - approaching a local reference sample for JWST

    NASA Astrophysics Data System (ADS)

    Senchyna, Peter; Stark, Daniel P.; Vidal-García, Alba; Chevallard, Jacopo; Charlot, Stéphane; Mainali, Ramesh; Jones, Tucker; Wofford, Aida; Feltre, Anna; Gutkin, Julia

    2017-12-01

    Nearby dwarf galaxies provide a unique laboratory in which to test stellar population models below Z⊙/2. Such tests are particularly important for interpreting the surprising high-ionization ultraviolet (UV) line emission detected at z > 6 in recent years. We present HST/COS UV spectra of 10 nearby metal-poor star-forming galaxies selected to show He II emission in SDSS optical spectra. The targets span nearly a dex in gas-phase oxygen abundance (7.8 < 12 + log O/H < 8.5) and present uniformly large specific star formation rates (sSFR ∼102 Gyr-1). The UV spectra confirm that metal-poor stellar populations can power extreme nebular emission in high-ionization UV lines, reaching C III] equivalent widths comparable to those seen in systems at z ∼ 6-7. Our data reveal a marked transition in UV spectral properties with decreasing metallicity, with systems below 12 + log O/H ≲ 8.0 (Z/Z⊙ ≲ 1/5) presenting minimal stellar wind features and prominent nebular emission in He II and C IV. This is consistent with nearly an order of magnitude increase in ionizing photon production beyond the He+-ionizing edge relative to H-ionizing flux as metallicity decreases below a fifth solar, well in excess of standard stellar population synthesis predictions. Our results suggest that often-neglected sources of energetic radiation such as stripped binary products and very massive O-stars produce a sharper change in the ionizing spectrum with decreasing metallicity than expected. Consequently, nebular emission in C IV and He II powered by these stars may provide useful metallicity constraints in the reionization era.

  16. Comparing Ultraviolet Spectra against Calculations: Year 2 Results

    NASA Technical Reports Server (NTRS)

    Peterson, Ruth C.

    2004-01-01

    The five-year goal of this effort is to calculate high fidelity mid-W spectra for individual stars and stellar systems for a wide range of ages, abundances, and abundance ratios. In this second year, the comparison of our calculations against observed high-resolution mid- W spectra was extended to stars as metal-rich as the Sun, and to hotter and cooler stars, further improving the list of atomic line parameters used in the calculations. We also published the application of our calculations based on the earlier list of line parameters to the observed mid-UV and optical spectra of a mildly metal-poor globular cluster in the nearby Andromeda galaxy, Messier 3 1.

  17. Photoemission-based microelectronic devices

    PubMed Central

    Forati, Ebrahim; Dill, Tyler J.; Tao, Andrea R.; Sievenpiper, Dan

    2016-01-01

    The vast majority of modern microelectronic devices rely on carriers within semiconductors due to their integrability. Therefore, the performance of these devices is limited due to natural semiconductor properties such as band gap and electron velocity. Replacing the semiconductor channel in conventional microelectronic devices with a gas or vacuum channel may scale their speed, wavelength and power beyond what is available today. However, liberating electrons into gas/vacuum in a practical microelectronic device is quite challenging. It often requires heating, applying high voltages, or using lasers with short wavelengths or high powers. Here, we show that the interaction between an engineered resonant surface and a low-power infrared laser can cause enough photoemission via electron tunnelling to implement feasible microelectronic devices such as transistors, switches and modulators. The proposed photoemission-based devices benefit from the advantages of gas-plasma/vacuum electronic devices while preserving the integrability of semiconductor-based devices. PMID:27811946

  18. [Effect of long-wave ultraviolet light (UV-A) and medium-wave ultraviolet rays (UV-B) on human skin. Critical comparison].

    PubMed

    Raab, W

    1980-04-15

    When discussing the effects of ultraviolet radiation on human skin, one should carefully distinguish between the long wave ultraviolet light (UV-A) and the short wave radiations (UV-B and UV-C). Ultraviolet A induces immediate pigmentation but, if high energies are applied, a permanent pigmentation is elicited. This type of ultraviolet A-induced pigmentation has been called "spontaneous" pigmentation as no erythematous reaction is necessary to induce or accelerate melanine formation. Ultraviolet B provokes erythema and consecutive pigmentation. Upon chronic exposure, ultraviolet B causes the wellknown actinic damage of the skin and even provokes carcinoma. With exposures to the sunlight (global radiation), one should be most careful. The public must be informed extensively about the dangers of excessive sunbaths. The use of artificial "suns" with spectra between 260 and 400 nm is limited as it may cause the same type of damage as the global radiation. An exact schedule for use of artificial lamps is strongly recommended. After one cycle of exposures, an interruption is necessary until the next cycle of irradiations may start. Upon continual use for tanning of the skin, artificial lamps may provoke irreversible damage of the skin. Radiation sources with emission spectra of wavelengths between 315 and 400 nm exclusively are well suited for the induction of skin pigmentation (cosmetic use). Potent radiation such as UVASUN systems provoke a "pleasant" permanent pigmentation after exposures for less than one hour. The use of ultraviolet A (UV-A) does not carry any risk for the human skin.

  19. A Search for Metal Lines in the Spectra of DA White Dwarfs

    NASA Technical Reports Server (NTRS)

    Wegner, G. A.

    1986-01-01

    A theoretical analysis was carried out in order to interpret the ultraviolet spectra of DB white dwarfs obtained earlier with the International Ultraviolet Explorer (IUE) satellite. Here the results of the IUE ultraviolet spectroscopy combined with visual data and model atmospheres of DB white dwarfs are reported. In particular, a search for spectra lines due to the element carbon using the ultraviolet was made. In no case is there a positive detection of carbon and from these data, and upper limits for carbon by number relative to helium are derived in the range of C: He 10 to the minus 5 power to 10 to the minus 7 power for the 16 DB stars with ultraviolet spectra in the temperature range 11400 K T sub EFF less than 2300 K. The low carbon abundances found in the atmospheres of the DB stars agree well with the hypothesis that the atmospheric carbon observed in the cooler DQ members of the helium-rich white dwarf sequence is produced by a convective dredging mechanism.

  20. High-resolution vacuum-ultraviolet photoabsorption spectra of 1-butyne and 2-butyne

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacovella, U.; Holland, D. M. P.; Boyé-Péronne, S.

    2015-07-21

    The absolute photoabsorption cross sections of 1- and 2-butyne have been recorded at high resolution by using the vacuum-ultraviolet Fourier-Transform spectrometer at the SOLEIL Synchrotron. Both spectra show more resolved structure than previously observed, especially in the case of 2-butyne. In this work, we assess the potential importance of Rydberg states with higher values of orbital angular momentum, l, than are typically observed in photoabsorption experiments from ground state molecules. We show how the character of the highest occupied molecular orbitals in 1- and 2-butyne suggests the potential importance of transitions to such high-l (l = 3 and 4) Rydbergmore » states. Furthermore, we use theoretical calculations of the partial wave composition of the absorption cross section just above the ionization threshold and the principle of continuity of oscillator strength through an ionization threshold to support this conclusion. The new absolute photoabsorption cross sections are discussed in light of these arguments, and the results are consistent with the expectations. This type of argument should be valuable for assessing the potential importance of different Rydberg series when sufficiently accurate direct quantum chemical calculations are difficult, for example, in the n ≥ 5 manifolds of excited states of larger molecules.« less

  1. Spectroscopic imaging, diffraction, and holography with x-ray photoemission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-02-01

    X-ray probes are capable of determining the spatial structure of an atom in a specific chemical state, over length scales from about a micron all the way down to atomic resolution. Examples of these probes include photoemission microscopy, energy-dependent photoemission diffraction, photoelectron holography, and X-ray absorption microspectroscopy. Although the method of image formation, chemical-state sensitivity, and length scales can be very different, these X-ray techniques share a common goal of combining a capability for structure determination with chemical-state specificity. This workshop will address recent advances in holographic, diffraction, and direct imaging techniques using X-ray photoemission on both theoretical and experimentalmore » fronts. A particular emphasis will be on novel structure determinations with atomic resolution using photoelectrons.« less

  2. Simultaneous measurements of photoemission and morphology of various Al alloys during mechanical deformation

    NASA Astrophysics Data System (ADS)

    Cai, M.; Li, W.; Dickinson, J. T.

    2006-11-01

    We report simultaneous measurements of strain and photoelectron emission from high purity Al (1350), Al-Mg (5052), Al-Mn (3003), Al-Cu (2024), and Al-Mg-Si (6061) alloys under uniaxial tension due to pulsed excimer laser radiation (248nm). The emission of low-energy photoelectrons is sensitive to deformation-induced changes in surface morphology, including the formation of slip lines and slip bands. Alloy composition and surface treatment significantly influence the photoemission during deformation. Surface oxide enhances the signal-to-noise level during photoemission measurement. In the early stage of deformation (strain ⩽0.04), photoemission intensity increases gradually in a nonlinear fashion. While subsequent photoemission increases almost linearly with strain until failure in samples with thin oxide layer (˜31Å), there are two linear segments of photoemission for the samples with oxide of 45Å. The onset of strain localization corresponds to the intersection point of two linear segments, usually at a strain of 0.08-0.20. A constitutive model incorporating microstructure evolution and work hardening during tensile deformation is proposed to qualitatively interpret the growth of the photoemission as a function of strain. Photoemissions from various alloys are interpreted in the light of surface treatment, work function, composition, and microstructural development during deformation.

  3. Unoccupied surface states of LaB6(001) studied by k -resolved inverse photoemission

    NASA Astrophysics Data System (ADS)

    Morimoto, Osamu; Kunii, Satoru; Kakizaki, Akito

    2006-06-01

    We have measured k -resolved inverse photoemission spectra of LaB6(001) to study unoccupied surface states. The surface states are observed near the Fermi level (EF) and at 6.8eV above EF , which are originated from La5d and La4f states, respectively. The surface state near EF shows energy dispersion along the Γ - M direction of the surface Brillouin zone, which does not agree with that of a recently reported theoretical calculation. It is deduced that at a LaB6(001) surface, electrons are transferred from the subsurface to the topmost La layer. This charge redistribution can reduce surface dipole moments.

  4. The extreme ultraviolet spectra of low-redshift radio-loud quasars

    NASA Astrophysics Data System (ADS)

    Punsly, Brian; Reynolds, Cormac; Marziani, Paola; O'Dea, Christopher P.

    2016-07-01

    This paper reports on the extreme ultraviolet (EUV) spectrum of three low-redshift (z ˜ 0.6) radio-loud quasars, 3C 95, 3C 57 and PKS 0405-123. The spectra were obtained with the Cosmic Origins Spectrograph of the Hubble Space Telescope. The bolometric thermal emission, Lbol, associated with the accretion flow is a large fraction of the Eddington limit for all of these sources. We estimate the long-term time-averaged jet power, overline{Q}, for the three sources. overline{Q}/L_{bol}, is shown to lie along the correlation of overline{Q}/L_{bol}, and αEUV found in previous studies of the EUV continuum of intermediate and high-redshift quasars, where the EUV continuum flux density between 1100 and 700 Å is defined by F_{ν } ˜ ν ^{-α _{EUV}}. The high Eddington ratios of the three quasars extend the analysis into a wider parameter space. Selecting quasars with high Eddington ratios has accentuated the statistical significance of the partial correlation analysis of the data. Namely, the correlation of overline{Q}/L_{bol} and αEUV is fundamental, and the correlation of overline{Q} and αEUV is spurious at a very high statistical significance level (99.8 per cent). This supports the regulating role of ram pressure of the accretion flow in magnetically arrested accretion models of jet production. In the process of this study, we use multifrequency and multiresolution Very Large Array radio observations to determine that one of the bipolar jets in 3C 57 is likely frustrated by galactic gas that keeps the jet from propagating outside the host galaxy.

  5. Far ultraviolet excitation processes in comets

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.; Opal, C. B.; Meier, R. R.; Nicolas, K. R.

    1976-01-01

    Recent observations of atomic oxygen and carbon in the far ultraviolet spectrum of comet Kohoutek have demonstrated the existence of these atomic species in the cometary coma. However, in order to identify the source of their origin, it is necessary to relate the observed ultraviolet flux to the atomic production rate. Analyses of observed OI wavelength 1304 and CI wavelength 1657 A multiplets have been carried out using high resolution solar spectra. Also examined is the possibility of observing ultraviolet fluorescence from molecules such as CO and H2, as well as resonance scattering either from atomic ions for which there are strong corresponding solar lines (CII) or from atoms for which there is an accidental wavelength coincidence (SI).

  6. Resolving Nonadiabatic Dynamics of Hydrated Electrons Using Ultrafast Photoemission Anisotropy.

    PubMed

    Karashima, Shutaro; Yamamoto, Yo-Ichi; Suzuki, Toshinori

    2016-04-01

    We have studied ultrafast nonadiabatic dynamics of excess electrons trapped in the band gap of liquid water using time- and angle-resolved photoemission spectroscopy. Anisotropic photoemission from the first excited state was discovered, which enabled unambiguous identification of nonadiabatic transition to the ground state in 60 fs in H_{2}O and 100 fs in D_{2}O. The photoelectron kinetic energy distribution exhibited a rapid spectral shift in ca. 20 fs, which is ascribed to the librational response of a hydration shell to electronic excitation. Photoemission anisotropy indicates that the electron orbital in the excited state is depolarized in less than 40 fs.

  7. Prediction of the Ultraviolet-Visible Absorption Spectra of Polycyclic Aromatic Hydrocarbons (Dibenzo and Naphtho) Derivatives of Fluoranthene.

    PubMed

    Oña-Ruales, Jorge O; Ruiz-Morales, Yosadara

    2017-06-01

    The annellation theory method has been used to predict the locations of maximum absorbance (LMA) of the ultraviolet-visible (UV-Vis) spectral bands in the group of polycyclic aromatic hydrocarbons (PAHs) C 24 H 14 (dibenzo and naphtho) derivatives of fluoranthene (DBNFl). In this group of 21 PAHs, ten PAHs present a sextet migration pattern with four or more benzenoid rings that is potentially related to a high molecular reactivity and high mutagenic conduct. This is the first time that the locations of maximum absorbance in the UV-Vis spectra of naphth[1,2- a]aceanthrylene, dibenz[ a,l]aceanthrylene, indeno[1,2,3- de]naphthacene, naphtho[1,2- j]fluoranthene, naphth[2,1- e]acephenanthrylene, naphth[2,1- a]aceanthrylene, dibenz[ a,j]aceanthrylene, naphth[1,2- e]acephenanthrylene, and naphtho[2,1- j]fluoranthene have been predicted. Also, this represents the first report about the application of the annellation theory for the calculation of the locations of maximum absorbance in the UV-Vis spectra of PAHs with five-membered rings. Furthermore, this study constitutes the premier investigation beyond the pure benzenoid classical approach toward the establishment of a generalized annellation theory that will encompass not only homocyclic benzenoid and non-benzenoid PAHs, but also heterocyclic compounds.

  8. Photoemission Studies of Kondo Lattice Compounds YbNi3(Ga1-xAlx)9

    NASA Astrophysics Data System (ADS)

    Utsumi, Yuki; Sato, Hitoshi; Nagata, Heisuke; Kodama, Junichi; Ohara, Shigeo; Yamashita, Tetsuro; Mimura, Kojiro; Motonami, Satoru; Arita, Masashi; Ueda, Shigenori; Shimada, Kenya; Namatame, Hirofumi; Taniguchi, Masaki

    We have investigated the electronic structure of YbNi3 (Ga1-xAlx)9 (x = 0, 0.05, 0.10, 0.15) by means of hard x-ray (hν ˜ 6 keV) and low energy (hν ˜ 7 eV) photoemission spectroscopies (HAXPES and LEPES). Both Yb2+ and Yb3+ components are observed in the Yb 3d HAXPES spectra, which is an evidence of the valence fluctuation in YbNi3(Ga1-xAlx)9. A substitution of an Al ion for a Ga ion in YbNi3Ga9 changes the Yb ion into a trivalent state. The LEPES spectra of YbNi3Ga9 clearly exhibit the Kondo peak near the Fermi level (EF) and the Kondo temperature is estimated to be TK ˜ 550 K. With the Al substitution, the Kondo peak is shifted toward EF, indicating the decrease of TK

  9. Low resolution ultraviolet and optical spectrophotometry of symbiotic stars

    NASA Technical Reports Server (NTRS)

    Slovak, M. H.

    1982-01-01

    Low resolution International Ultraviolet Explorer spectra combined with optical spectrophotometry provide absolute flux distributions for seven symbiotic variables from 1200 to 6450 A. For five stars (EG And, BF Cyg, CI Cyg, AG Peg, and Z And) the data are representative of the quiescent/out-of-eclipse energy distributions; for CH Cyg and AX Per, the observations were obtained following their atest outburst in 1977 and 1978, respectively. The de-reddened distributions reveal a remarkable diversity of both line spectra and continua. While the optical and near infrared regions lambda = 5500 A) are well represented by single component stellar models, multicomponent flux distributions are required to reproduce the ultraviolet continua.

  10. Probing the electronic and spintronic properties of buried interfaces by extremely low energy photoemission spectroscopy

    PubMed Central

    Fetzer, Roman; Stadtmüller, Benjamin; Ohdaira, Yusuke; Naganuma, Hiroshi; Oogane, Mikihiko; Ando, Yasuo; Taira, Tomoyuki; Uemura, Tetsuya; Yamamoto, Masafumi; Aeschlimann, Martin; Cinchetti, Mirko

    2015-01-01

    Ultraviolet photoemission spectroscopy (UPS) is a powerful tool to study the electronic spin and symmetry features at both surfaces and interfaces to ultrathin top layers. However, the very low mean free path of the photoelectrons usually prevents a direct access to the properties of buried interfaces. The latter are of particular interest since they crucially influence the performance of spintronic devices like magnetic tunnel junctions (MTJs). Here, we introduce spin-resolved extremely low energy photoemission spectroscopy (ELEPS) to provide a powerful way for overcoming this limitation. We apply ELEPS to the interface formed between the half-metallic Heusler compound Co2MnSi and the insulator MgO, prepared as in state-of-the-art Co2MnSi/MgO-based MTJs. The high accordance between the spintronic fingerprint of the free Co2MnSi surface and the Co2MnSi/MgO interface buried below up to 4 nm MgO provides clear evidence for the high interface sensitivity of ELEPS to buried interfaces. Although the absolute values of the interface spin polarization are well below 100%, the now accessible spin- and symmetry-resolved wave functions are in line with the predicted existence of non-collinear spin moments at the Co2MnSi/MgO interface, one of the mechanisms evoked to explain the controversially discussed performance loss of Heusler-based MTJs at room temperature. PMID:25702631

  11. Observations of the Ultraviolet Spectra of Helium (DB) White Dwarfs and a Study of the Ultraviolet Spectra of White Dwarfs Containing Carbon

    NASA Technical Reports Server (NTRS)

    Wegner, G. A.

    1984-01-01

    Strong ultraviolet carbon lines were detected in the spectrum of the southern DC white dwarf BPM 11668. Observations of a number of hotter DB white dwarfs with IUE show no evidence of carbon features. Two additional DA white dwarfs were observed that have the strong unidentified absorption near 1400 A which now seems to be identified with another lower temperature feature as satellite lines to Lyman alpha radiation.

  12. Visible and near-ultraviolet spectra of low-pressure rare-gas microwave discharges

    NASA Technical Reports Server (NTRS)

    Campbell, J. P.; Spisz, E. W.; Bowman, R. L.

    1971-01-01

    The spectral emission characteristics of three commercial low pressure rare gas discharge lamps wire obtained in the near ultraviolet and visible wavelength range. All three lamps show a definite continuum over the entire wavelength range from 0.185 to 0.6 micrometers. Considerable line emission is superimposed on much of the continuum for wavelengths greater than 0.35 micrometers. These sources were used to make transmittance measurements on quartz samples in the near ultraviolet wavelength range.

  13. Photoemission study of the electronic structure (Pr 0.2La 0.8)(Ba 1.875La 0.125)Cu 3O 7- gd

    NASA Astrophysics Data System (ADS)

    Lindberg, P. A. P.; Shen, Z.-X.; Lindau, I.; Spicer, W. E.; Mitzi, D. B.; Kapitulnik, A.

    1989-11-01

    Photoemission results from the Pr and La doped 1 2 3 system (Pr 0.2La 0.8) (Ba 1.875La 0.125)Cu 3O 7-gd are reported. The core level spectra show strong resemblance to those of other compounds of the 1 2 3 and 2 1 4 systems. The Cu 2 p satellite intensity is found to be ˜ 35% of the main Cu 2 p line, and the O 1 s core level spectra, exhibiting a clear doublet, show evidence of extrinsic oxygen. The clear correlation between the intensities of certain features in the valence band and the amount of extrinsic oxygen, as monitored by the O 1 s core level spectra, is explicitly addressed.

  14. Surface studies of solids using integral X-ray-induced photoemission yield

    PubMed Central

    Stoupin, Stanislav; Zhernenkov, Mikhail; Shi, Bing

    2016-01-01

    X-ray induced photoemission yield contains structural information complementary to that provided by X-ray Fresnel reflectivity, which presents an advantage to a wide variety of surface studies if this information is made easily accessible. Photoemission in materials research is commonly acknowledged as a method with a probing depth limited by the escape depth of the photoelectrons. Here we show that the integral hard-X-ray-induced photoemission yield is modulated by the Fresnel reflectivity of a multilayer structure and carries structural information that extends well beyond the photoelectron escape depth. A simple electric self-detection of the integral photoemission yield and Fourier data analysis permit extraction of thicknesses of individual layers. The approach does not require detection of the reflected radiation and can be considered as a framework for non-invasive evaluation of buried layers with hard X-rays under grazing incidence. PMID:27874041

  15. Surface studies of solids using integral x-ray-induced photoemission yield

    DOE PAGES

    Stoupin, Stanislav; Zhernenkov, Mikhail; Shi, Bing

    2016-11-22

    X-ray induced photoemission yield contains structural information complementary to that provided by X-ray Fresnel reflectivity, which presents an advantage to a wide variety of surface studies if this information is made easily accessible. Photoemission in materials research is commonly acknowledged as a method with a probing depth limited by the escape depth of the photoelectrons. Here we show that the integral hard-X-ray-induced photoemission yield is modulated by the Fresnel reflectivity of a multilayer structure and carries structural information that extends well beyond the photoelectron escape depth. A simple electric self-detection of the integral photoemission yield and Fourier data analysis permitmore » extraction of thicknesses of individual layers. The approach does not require detection of the reflected radiation and can be considered as a framework for non-invasive evaluation of buried layers with hard X-rays under grazing incidence.« less

  16. Estimate of the Coulomb correlation energy in CeAg2Ge2 from inverse photoemission and high resolution photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Banik, Soma; Arya, A.; Bendounan, Azzedine; Maniraj, M.; Thamizhavel, A.; Vobornik, I.; Dhar, S. K.; Deb, S. K.

    2014-08-01

    The occupied and the unoccupied electronic structure of CeAg2Ge2 single crystal has been studied using high resolution photoemission and inverse photoemission spectroscopy, respectively. High resolution photoemission reveals the clear signature of Ce 4f states in the occupied electronic structure which was not observed clearly in our earlier studies. The Coulomb correlation energy in this system has been determined experimentally from the position of the 4f states above and below the Fermi level. Theoretically, the correlation energy has been determined by using the first principles density functional calculations within the generalized gradient approximations taking into account the strong intra-atomic (on-site) interaction Hubbard Ueff term. The calculated valence band shows minor changes in the spectral shape with increasing Ueff due to the fact that the density of Ce 4f state is narrow in the occupied part and is hybridized with the Ce 5d, Ag 4d and Ge 4p states. On the other hand, substantial changes are observed in the spectral shape of the calculated conduction band with increasing Ueff since the density of Ce 4f state is very large in the unoccupied part, compared to other states. The estimated value of correlation energy for CeAg2Ge2 from the experiment and the theory is ≈ 4.2 eV. The resonant photoemission data are analyzed in the framework of the single-impurity Anderson model which further confirms the presence of the Coulomb correlation energy and small hybridization in this system.

  17. Charge-density-wave partial gap opening in quasi-2D KMo 6O 17 purple bronze studied by angle resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Valbuena, M. A.; Avila, J.; Pantin, V.; Drouard, S.; Guyot, H.; Asensio, M. C.

    2006-05-01

    Low dimensional (LD) metallic oxides have been a subject of continuous interest in the last two decades, mainly due to the electronic instabilities that they present at low temperatures. In particular, charge density waves (CDW) instabilities associated with a strong electron-phonon interaction have been found in Molybdenum metallic oxides such as KMo 6O 17 purple bronze. We report an angle resolved photoemission (ARPES) study from room temperature (RT) to T ˜40 K well below the Peierls transition temperature for this material, with CDW transition temperature TCDW ˜120 K. We have focused on photoemission spectra along ΓM high symmetry direction as well as photoemission measurements were taken as a function of temperature at one representative kF point in the Brillouin zone in order to look for the characteristic gap opening after the phase transition. We found out a pseudogap opening and a decrease in the density of states near the Fermi energy, EF, consistent with the partial removal of the nested portions of the Fermi surface (FS) at temperature below the CDW transition. In order to elucidate possible Fermi liquid (FL) or non-Fermi liquid (NFL) behaviour we have compared the ARPES data with that one reported on quasi-1D K 0.3MoO 3 blue bronze.

  18. ASASSN-15LH: A SUPERLUMINOUS ULTRAVIOLET REBRIGHTENING OBSERVED BY SWIFT AND HUBBLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Peter J.; Yang, Yi; Wang, Lifan

    2016-09-01

    We present and discuss ultraviolet and optical photometry from the Ultraviolet/Optical Telescope, X-ray limits from the X-Ray Telescope on Swift, and imaging polarimetry and ultraviolet/optical spectroscopy with the Hubble Space Telescope , all from observations of ASASSN-15lh. It has been classified as a hydrogen-poor superluminous supernova (SLSN I), making it more luminous than any other supernova observed. ASASSN-15lh is not detected in the X-rays in individual or co-added observations. From the polarimetry we determine that the explosion was only mildly asymmetric. We find the flux of ASASSN-15lh to increase strongly into the ultraviolet, with an ultraviolet luminosity 100 times greatermore » than the hydrogen-rich, ultraviolet-bright SLSN II SN 2008es. We find that objects as bright as ASASSN-15lh are easily detectable beyond redshifts of ∼4 with the single-visit depths planned for the Large Synoptic Survey Telescope. Deep near-infrared surveys could detect such objects past a redshift of ∼20, enabling a probe of the earliest star formation. A late rebrightening—most prominent at shorter wavelengths—is seen about two months after the peak brightness, which is itself as bright as an SLSN. The ultraviolet spectra during the rebrightening are dominated by the continuum without the broad absorption or emission lines seen in SLSNe or tidal disruption events (TDEs) and the early optical spectra of ASASSN-15lh. Our spectra show no strong hydrogen emission, showing only Ly α absorption near the redshift previously found by optical absorption lines of the presumed host. The properties of ASASSN-15lh are extreme when compared to either SLSNe or TDEs.« less

  19. Energies of rare-earth ion states relative to host bands in optical materials from electron photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Thiel, Charles Warren

    There are a vast number of applications for rare-earth-activated materials and much of today's cutting-edge optical technology and emerging innovations are enabled by their unique properties. In many of these applications, interactions between the rare-earth ion and the host material's electronic states can enhance or inhibit performance and provide mechanisms for manipulating the optical properties. Continued advances in these technologies require knowledge of the relative energies of rare-earth and crystal band states so that properties of available materials may be fully understood and new materials may be logically developed. Conventional and resonant electron photoemission techniques were used to measure 4f electron and valence band binding energies in important optical materials, including YAG, YAlO3, and LiYF4. The photoemission spectra were theoretically modeled and analyzed to accurately determine relative energies. By combining these energies with ultraviolet spectroscopy, binding energies of excited 4fN-15d and 4fN+1 states were determined. While the 4fN ground-state energies vary considerably between different trivalent ions and lie near or below the top of the valence band in optical materials, the lowest 4f N-15d states have similar energies and are near the bottom of the conduction band. As an example for YAG, the Tb3+ 4f N ground state is in the band gap at 0.7 eV above the valence band while the Lu3+ ground state is 4.7 eV below the valence band maximum; however, the lowest 4fN-15d states are 2.2 eV below the conduction band for both ions. We found that a simple model accurately describes the binding energies of the 4fN, 4fN-1 5d, and 4fN+1 states. The model's success across the entire rare-earth series indicates that measurements on two different ions in a host are sufficient to predict the energies of all rare-earth ions in that host. This information provides new insight into electron transfer transitions, luminescence quenching, and valence

  20. Ultraviolet emission lines of Si II in cool star and solar spectra

    NASA Astrophysics Data System (ADS)

    Laha, Sibasish; Keenan, Francis P.; Ferland, Gary J.; Ramsbottom, Catherine A.; Aggarwal, Kanti M.; Ayres, Thomas R.; Chatzikos, Marios; van Hoof, Peter A. M.; Williams, Robin J. R.

    2016-01-01

    Recent atomic physics calculations for Si II are employed within the CLOUDY modelling code to analyse Hubble Space Telescope (HST) STIS ultraviolet spectra of three cool stars, β Geminorum, α Centauri A and B, as well as previously published HST/GHRS observations of α Tau, plus solar quiet Sun data from the High Resolution Telescope and Spectrograph. Discrepancies found previously between theory and observation for line intensity ratios involving the 3s23p 2PJ-3s3p2 4P_{J^' }} intercombination multiplet of Si II at ˜ 2335 Å are significantly reduced, as are those for ratios containing the 3s23p 2PJ-3s3p2 2D_{J^' }} transitions at ˜1816 Å. This is primarily due to the effect of the new Si II transition probabilities. However, these atomic data are not only very different from previous calculations, but also show large disagreements with measurements, specifically those of Calamai et al. for the intercombination lines. New measurements of transition probabilities for Si II are hence urgently required to confirm (or otherwise) the accuracy of the recently calculated values. If the new calculations are confirmed, then a long-standing discrepancy between theory and observation will have finally been resolved. However, if the older measurements are found to be correct, then the agreement between theory and observation is simply a coincidence and the existing discrepancies remain.

  1. An atlas of ultraviolet spectra of star-forming galaxies

    NASA Technical Reports Server (NTRS)

    Kinney, A. L.; Bohlin, R. C.; Calzetti, D.; Panagia, N.; Wyse, Rosemary F. G.

    1993-01-01

    A systematic study is presented of the UV spectra of star-forming galaxies of different morphological type and activity class using a sample drawn from a uniformly reduced IUE data set. The spectra for a wide variety of galaxies, including normal spiral, LINER, starburst, blue compact, blue compact dwarf, and Seyfert 2 galaxies, are presented in the form of spectral energy distributions to demonstrate the overall characteristics according to morphology and activity class and in the form of absolute flux distributions to better show the absorption and emission features of individual objects. The data support the picture based on UV spectra of the Orbiting Astronomical Observatory and of the Astronautical Netherlands Satellite that spiral galaxies of later Hubble class have more flux at the shortest UV wavelengths than do spiral galaxies of earlier Hubble class.

  2. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer

    DOE PAGES

    Dell'Angela, M.; Anniyev, T.; Beye, M.; ...

    2015-03-01

    Vacuum space charge-induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.

  3. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer.

    PubMed

    Dell'Angela, M; Anniyev, T; Beye, M; Coffee, R; Föhlisch, A; Gladh, J; Kaya, S; Katayama, T; Krupin, O; Nilsson, A; Nordlund, D; Schlotter, W F; Sellberg, J A; Sorgenfrei, F; Turner, J J; Öström, H; Ogasawara, H; Wolf, M; Wurth, W

    2015-03-01

    Vacuum space charge induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.

  4. Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Wang, Xinbing; Duan, Lian; Lan, Hui; Chen, Ziqi; Zuo, Duluo; Lu, Peixiang

    2015-05-01

    Angular-resolved ion time-of-flight spectra as well as extreme ultraviolet radiation in laser-produced tin droplet plasma are investigated experimentally and theoretically. Tin droplets with a diameter of 150 μm are irradiated by a pulsed Nd:YAG laser. The ion time-of-flight spectra measured from the plasma formed by laser irradiation of the tin droplets are interpreted in terms of a theoretical elliptical Druyvesteyn distribution to deduce ion density distributions including kinetic temperatures of the plasma. The opacity of the plasma for extreme ultraviolet radiation is calculated based on the deduced ion densities and temperatures, and the angular distribution of extreme ultraviolet radiation is expressed as a function of the opacity using the Beer-Lambert law. Our results show that the calculated angular distribution of extreme ultraviolet radiation is in satisfactory agreement with the experimental data.

  5. Ultraviolet Views of Enceladus, Tethys, and Dione

    NASA Technical Reports Server (NTRS)

    Hansen, C. J.; Hendrix, A. R.

    2005-01-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) has collected ultraviolet observations of many of Saturn's icy moons since Cassini's insertion into orbit around Saturn. We will report on results from Enceladus, Tethys and Dione, orbiting in the Saturn system at distances of 3.95, 4.88 and 6.26 Saturn radii, respectively. Icy satellite science objectives of the UVIS include investigations of surface age and evolution, surface composition and chemistry, and tenuous exospheres. We address these objectives by producing albedo maps, and reflection and emission spectra, and observing stellar occultations. UVIS has four channels: EUV: Extreme Ultraviolet (55 nm to 110 nm), FUV: Far Ultraviolet (110 to 190 nm), HSP: High Speed Photometer, and HDAC: Hydrogen-Deuterium Absorption Cell. The EUV and FUV spectrographs image onto a 2-dimensional detector, with 64 spatial rows by 1024 spectral columns. To-date we have focused primarily on the far ultraviolet data acquired with the low resolution slit width (4.8 angstrom spectral resolution). Additional information is included in the original extended abstract.

  6. Metallicity and the level of the ultraviolet rising branch in elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Faber, S. M.

    1986-01-01

    This final report concerns a project to study the systematics of the ultraviolet flux level in elliptical galaxies. Prior to the inception of this work, the systematic behavior of the ultraviolet flux level was basically unknown and ultraviolet fluxes were observed to vary greatly from galaxy to galaxy. There was a suggestion, however, that there might be a dependence of ultraviolet flux on galaxy metallicity, but the correlation was based on just six galaxies. IUE spectra of elliptical galaxies have been reanalyzed and placed on a consistent, homogenous flux system. The major conclusion is a confirmation of the original hypothesis: galaxies with stronger Mg2 lines show enhanced ultraviolet flux.

  7. Bulk sensitive hard x-ray photoemission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, M., E-mail: m.patt@fz-juelich.de; Wiemann, C.; Weber, N.

    Hard x-ray photoelectron spectroscopy (HAXPES) has now matured into a well-established technique as a bulk sensitive probe of the electronic structure due to the larger escape depth of the highly energetic electrons. In order to enable HAXPES studies with high lateral resolution, we have set up a dedicated energy-filtered hard x-ray photoemission electron microscope (HAXPEEM) working with electron kinetic energies up to 10 keV. It is based on the NanoESCA design and also preserves the performance of the instrument in the low and medium energy range. In this way, spectromicroscopy can be performed from threshold to hard x-ray photoemission. Themore » high potential of the HAXPEEM approach for the investigation of buried layers and structures has been shown already on a layered and structured SrTiO{sub 3} sample. Here, we present results of experiments with test structures to elaborate the imaging and spectroscopic performance of the instrument and show the capabilities of the method to image bulk properties. Additionally, we introduce a method to determine the effective attenuation length of photoelectrons in a direct photoemission experiment.« less

  8. Exploring Mercury's Surface in UltraViolet from Orbit

    NASA Astrophysics Data System (ADS)

    Izenberg, N.

    2017-12-01

    The MESSENGER Mission's Ultraviolet and Visible Spectrometer (UVVS) component of its Mercury Atmosphere and Surface Composition Spectrometer (MASCS) instrument obtained approximately 4600 point observations of Mercury's surface in middle ultraviolet (MUV; 210 nm - 300 nm) and far ultraviolet (FUV; 119.1 - 122.5 nm and 129.2 - 131.5 nm) wavelengths over the course of its orbital mission, mostly in Mercury's southern hemisphere. Given the very low (<1 to 2 wt %) average abundance of iron in the silicates of Mercury observed by multiple MESSENGER instruments, the near- to middle-ultraviolet wavelengths encompassing the oxygen metal charge transfer band (<400 nm), which is more sensitive to the presence of iron than the classic 1 micron absorption band, provides potentially useful additional compositional insight into the top layer of Mercury's regolith. The presence of nano- and microphase carbon also has potentially significant expression in the ultraviolet, and the interplay and variation between carbon and iron in mercury surface materials is an active area of investigation. Analysis of middle-UV surface reflectance and parameters appear to support the presence of varying amounts of carbon in different spectral or geologic units on Mercury. Far-UV reflectance data is currently under-utilized, but analysis of lunar surface by the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) indicate that the data are sensitive to both composition and space weathering. The far-UV reflectance from MASCS may provide similar information for the Mercury surface, complementing results from longer wavelengths. MESSENGER data products for surface reflectance include middle-UV reflectance spectra, ultraviolet far-UV reflectance values, combined middle-UV through near-infrared spectra (210 nm - 1450 nm), a global `spectral cube' of near-UV to near-IR, and an upcoming UV spectral cube.

  9. The electronic structure of Bi 2.0Sr 1.8La 0.3Ca 0.8Cu 2.1O 8+δ superconductors studied using ultraviolet and X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Lindberg, P. A. P.; Shen, Z.-X.; Dessau, D. S.; Wells, B. O.; Borg, A.; Ellis, W.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.

    1989-07-01

    Photoemission measurements on single crystals of La-doped 2212 (Bi 2.0Sr 1.8La 0.3Ca 0.8Cu 2.1O 8+δ) superconductors were carried out utilizing both synchrotron and Al K α (1486.6 eV) radiation. A quantitative analysis of the photoemission data in comparison with similar data for the undoped 2212 material indicates that the La atoms preferentially occupy the Sr sites in the SrO layer next to the BiO plane. Evidence of alternation of the electronic environment of the Bi atoms is found in the Bi 5d core level spectra which show a shoulder at ≈ 1.2 eV higher binding energy, presumably due to the partial substitution of trivalent La ions (La 3+) for divalent Sr ions (Sr 2+). As for the undoped 2212 material, the photoemission spectra reveal a clear Fermi level cut-off at room temperature, single component O ls core level emission, and a Cu 2p satellite to main line intensity ratio of 0.4.

  10. Vacuum ultraviolet spectra of uranium hexafluoride/argon mixtures

    NASA Technical Reports Server (NTRS)

    Krascella, N. L.

    1976-01-01

    The transmission properties of room temperature helium at pressures up to 20 atmospheres were determined in the wavelength range from 80 to 300 nm. Similarly, the transmission properties of uranium hexafluoride at 393 K (pressures less than 1.0 mm) were determined in the wavelength range from 80 to about 120 nm. The results show that high pressure helium is sufficiently transparent in the vacuum ultraviolet region (provided trace contaminants are removed) to be utilized as a transparent purge gas in future fissioning gaseous uranium plasma reactor experiments. Absorption cross sections for uranium hexafluoride were calculated from the data between 80 and 120 nm and were of the order of 10 to the -17 power sq cm.

  11. Direct observation of pure pentavalent uranium in U2O5 thin films by high resolution photoemission spectroscopy.

    PubMed

    Gouder, T; Eloirdi, R; Caciuffo, R

    2018-05-29

    Thin films of the elusive intermediate uranium oxide U 2 O 5 have been prepared by exposing UO 3 precursor multilayers to atomic hydrogen. Electron photoemission spectra measured about the uranium 4f core-level doublet contain sharp satellites separated by 7.9(1) eV from the 4f main lines, whilst satellites characteristics of the U(IV) and U(VI) oxidation states, expected respectively at 6.9(1) and 9.7(1) eV from the main 4f lines, are absent. This shows that uranium ions in the films are in a pure pentavalent oxidation state, in contrast to previous investigations of binary oxides claiming that U(V) occurs only as a metastable intermediate state coexisting with U(IV) and U(VI) species. The ratio between the 5f valence band and 4f core-level uranium photoemission intensities decreases by about 50% from UO 2 to U 2 O 5 , which is consistent with the 5f  2 (UO 2 ) and 5f  1 (U 2 O 5 ) electronic configurations of the initial state. Our studies conclusively establish the stability of uranium pentoxide.

  12. Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hong; Duan, Lian; Lan, Hui

    Angular-resolved ion time-of-flight spectra as well as extreme ultraviolet radiation in laser-produced tin droplet plasma are investigated experimentally and theoretically. Tin droplets with a diameter of 150 μm are irradiated by a pulsed Nd:YAG laser. The ion time-of-flight spectra measured from the plasma formed by laser irradiation of the tin droplets are interpreted in terms of a theoretical elliptical Druyvesteyn distribution to deduce ion density distributions including kinetic temperatures of the plasma. The opacity of the plasma for extreme ultraviolet radiation is calculated based on the deduced ion densities and temperatures, and the angular distribution of extreme ultraviolet radiation is expressedmore » as a function of the opacity using the Beer–Lambert law. Our results show that the calculated angular distribution of extreme ultraviolet radiation is in satisfactory agreement with the experimental data.« less

  13. Solution and solid trinitrotoluene (TNT) photochemistry: persistence of TNT-like ultraviolet (UV) resonance Raman bands.

    PubMed

    Gares, Katie L; Bykov, Sergei V; Godugu, Bhaskar; Asher, Sanford A

    2014-01-01

    We examined the 229 nm deep-ultraviolet resonance Raman (DUVRR) spectra of solution and solid-state trinitrotoluene (TNT) and its solution and solid-state photochemistry. Although TNT photodegrades with a solution quantum yield of ϕ ∼ 0.015, the initial photoproducts show DUVRR spectra extraordinarily similar to pure TNT, due to the similar photoproduct enhancement of the -NO2 stretching vibrations. This results in TNT-like DUVRR spectra even after complete TNT photolysis. These ultraviolet resonance Raman spectral bands enable DUVRR of trace as well as DUVRR standoff TNT detection. We determined the structure of various initial TNT photoproducts by using liquid chromatography-mass spectrometry and tandem mass spectrometry. Similar TNT DUVRR spectra and photoproducts are observed in the solution and solid states.

  14. Time- and angle-resolved photoemission spectroscopy of hydrated electrons near a liquid water surface.

    PubMed

    Yamamoto, Yo-ichi; Suzuki, Yoshi-Ichi; Tomasello, Gaia; Horio, Takuya; Karashima, Shutaro; Mitríc, Roland; Suzuki, Toshinori

    2014-05-09

    We present time- and angle-resolved photoemission spectroscopy of trapped electrons near liquid surfaces. Photoemission from the ground state of a hydrated electron at 260 nm is found to be isotropic, while anisotropic photoemission is observed for the excited states of 1,4-diazabicyclo[2,2,2]octane and I- in aqueous solutions. Our results indicate that surface and subsurface species create hydrated electrons in the bulk side. No signature of a surface-bound electron has been observed.

  15. Photoemission Experiments for Charge Characteristics of Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; West, E.; Pratico, J.; Tankosic, D.; Venturini, C. C.; Six, N. Frank (Technical Monitor)

    2001-01-01

    Photoemission experiments with UV radiation have been performed to investigate the microphysics and charge characteristics of individual isolated dust grains of various compositions and sizes by using the electrodynamic balance facility at NASA Marshall Space Flight Center. Dust particles of 2-10 gm diameter are levitated in a vacuum chamber at pressures approximately 10(exp-5) torr and exposed to a collimated beam of UV radiation in the 120-200 nm spectral range from a deuterium lamp source with a MgF2 window. A monochromator is used to select the UV wavelength with a spectral resolution of 8 nm. The electrodynamic facility permits measurements of the charge and diameters of particles of known composition, and monitoring of photoemission rates with the incident UV radiation. Experiments have been conducted on test particles of silica and polystyrene to determine the photoelectric yields and surface equilibrium potentials when exposed to UV radiation. A brief description of an experimental procedure for photoemission studies is given and some preliminary laboratory measurements of the photoelectric yields of individual dust particles are presented.

  16. LHEA contributions to the Future of Ultraviolet Astronomy Based on Six Years of IUE Research

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.; Urry, C. M.

    1984-01-01

    Astronomical models of galactic nuclei emission spectra are reassessed in light of ultraviolet and X-ray spectroscopic observations. Spectral analysis of BL Lacertae objects using data collected by the International Ultraviolet Explorer (IUE) and other astronomical observatories is presented.

  17. Ultraviolet properties of individual hot stars in globular cluster cores. 1: NGC 1904 (M 79)

    NASA Technical Reports Server (NTRS)

    Altner, Bruce; Matilsky, Terry A.

    1992-01-01

    As part of an observing program using the International Ultraviolet Explorer (IUE) satellite to investigate the ultraviolet properties of stars found within the cores of galactic globular clusters with blue horizontal branches (HBs), we obtained three spectra of the cluster NGC 1904 (M 79). All three were long integration-time, short-wavelength (SWP) spectra obtained at the so called 'center of light' and all three showed evidence of sources within the IUE large aperture (21.4 in. by 10 in.). In this paper we shall describe the analysis of these spectra and present evidence that the UV sources represent individual hot stars in the post-HB stage of evolution.

  18. Nearly simultaneous optical, ultraviolet, and x ray observations of three PG quasars

    NASA Technical Reports Server (NTRS)

    Kriss, Gerard A.

    1990-01-01

    Nearly simultaneous optical, ultraviolet, and x ray observations of three low redshift quasars are presented. The EXOSAT x ray spectra span the range of observed spectral indices for quasars from the canonical 0.7 energy index typical of Seyfert galaxies for PG0923+129 (Mrk 705) to the steep spectral indices frequently seen in higher luminosity quasars with an index of 1.58 for PG0844+349 (Ton 951). None of the quasars exhibits any evidence for a soft x ray excess. This is consistent with accretion disk spectra fit to the IR through UV continua of the quasars -- the best fitting disk spectra peak at approximately 6 eV with black hole masses in the range 5 x 10(exp 7) to 1 x 10(exp 9) solar mass and mass accretion rates of approximately 0.1 times the Eddington-limited rate. These rather soft disk spectra are also compatible with the observed optical and ultraviolet line ratios.

  19. High-resolution, hard x-ray photoemission investigation of BaFe2As2 : Moderate influence of the surface and evidence for a low degree of Fe3d-As4p hybridization of electronic states near the Fermi energy

    NASA Astrophysics Data System (ADS)

    de Jong, S.; Huang, Y.; Huisman, R.; Massee, F.; Thirupathaiah, S.; Gorgoi, M.; Schaefers, F.; Follath, R.; Goedkoop, J. B.; Golden, M. S.

    2009-03-01

    Photoemission data taken with hard x-ray radiation on cleaved single crystals of the barium parent compound of the MFe2As2 pnictide high-temperature superconductor family are presented. Making use of the increased bulk sensitivity upon hard x-ray excitation, and comparing the results to data taken at conventional vacuum ultraviolet photoemission excitation energies, it is shown that the BaFe2As2 cleavage surface provides an electrostatic environment that is slightly different to the bulk, most likely in the form of a modified Madelung potential. However, as the data argue against a different surface doping level, and the surface-related features in the spectra are by no means as dominating as seen in systems such as YBa2Cu3Ox , we can conclude that the itinerant, near- EF electronic states are almost unaffected by the existence of the cleavage surface. Furthermore, exploiting the strong changes in photoionization cross section between the Fe and As states across the wide photon energy range employed, it is shown that the degree of energetic overlap between the iron 3d and arsenic 4p valence bands is particularly small at the Fermi level, which can only mean a very low degree of hybridization between the Fe3d and As4p states near and at EF . Consequently, this means that the itinerancy of the charge carriers in this group of materials involves mainly the Fe3d-Fe3d overlap integrals with at best a minor role for the Fe3d-As4p hopping parameters and that the states which support superconductivity upon doping are essentially of Fe3d character.

  20. Two-phase ultraviolet spectrophotometry of the pulsating white dwarf ZZ Piscium

    NASA Technical Reports Server (NTRS)

    Bond, H. E.; Kemper, E.; Grauer, A. D.; Holm, A. V.; Panek, R. J.; Schiffer, F. H., III

    1985-01-01

    Spectra of the pulsating white dwarf ZZ Psc (= G29-38) were obtained using the International Ultraviolet Explorer. By using a multiple-exposure technique in conjunction with simultaneous ground-based exposure-metering photometry, it was possible to obtain mean on-pulse and off-pulse spectra in the 1950-1310 A wavelength range. The ratio of the time-averaged on-pulse to off-pulse spectra is best fitted by a temperature variation that is in phase with the optical light variation. This result is consistent with the hypothesis that the observed variation is due to a high-order nonradial pulsation. Conventional ultraviolet spectra of ZZ Psc showed broad absorption features at 1390 and 1600 A. These features are also found in the spectra of the cool DA-type white dwarfs G226-29 and G67-23, and appear to increase in strength with decreasing temperature. A possible explanation for the 1600 A feature is absorption by the satellite band of resonance-broadened hydrogen Ly-alpha. Such absorption would also help explain a discrepancy between the observed pulsation amplitude shortward of 1650 A and the predicted amplitudes based on model atmospheres.

  1. The ultraviolet variations of iota Cas

    NASA Technical Reports Server (NTRS)

    Molnar, M. R.; Mallama, A. D.; Soskey, D. G.; Holm, A. V.

    1976-01-01

    The Ap variable star iota Cas was observed with the photometers on OAO-2 covering the spectral range 1430-4250 A. The ultraviolet light curves show a double wave with primary minimum and maximum at phase ? 0.00 and 0.35, respectively. Secondary minimum light is at phase ? 0.65 with secondary maximum at phase ? 0.85. The light curves longward of 3150 A vary in opposition to those shortward of this 'null region'. Ground-based coude spectra show that the Fe II and Cr II line strengths have a double-wave variation such that maximum strength occurs at minimum ultraviolet light. We suggest that the strong ultraviolet opacities due to photoionization and line blanketing by these metals may cause the observed photometric variations. We have also constructed an oblique-rotator model which shows iron and chromium lying in a great circle band rather than in circular spots.

  2. Reference ultraviolet wavelengths of CrIII measured by Fourier transform spectrometry

    NASA Astrophysics Data System (ADS)

    Smillie, D. G.; Pickering, J. C.; Smith, P. L.

    2008-10-01

    We report CrIII ultraviolet (UV) transition wavelengths measured using a high-resolution Fourier transform spectrometer (FTS), for the first time, available for use as wavelength standards. The doubly ionized iron group element spectra dominate the observed opacity of hot B stars in the UV, and improved, accurate, wavelengths are required for the analysis of astronomical spectra. The spectrum was excited using a chromium-neon Penning discharge lamp and measured with the Imperial College vacuum ultraviolet FTS. 140 classified 3d34s-3d34p CrIII transition lines, in the spectral range 38000 to 49000 cm-1 (2632 to 2041 Å), the strongest having wavelength uncertainties less than one part in 107, are presented.

  3. Detection of Neutral Phosphorus in the Near-ultraviolet Spectra of Late-type Stars

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Jacobson, Heather R.; Thanathibodee, Thanawuth; Frebel, Anna; Toller, Elizabeth

    2014-12-01

    We report the detection of several absorption lines of neutral phosphorus (P, Z = 15) in archival near-ultraviolet spectra obtained with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. We derive phosphorus abundances or interesting upper limits in 14 late-type stars with metallicities spanning -3.8 < [Fe/H] <-0.1. Previously, phosphorus had only been studied in Galactic stars with -1.0 < [Fe/H] <+0.3. Iron lines reveal abundance offsets between the optical and ultraviolet regions, and we discuss and apply a correction factor to account for this offset. In stars with [Fe/H] >-1.0, the [P/Fe] ratio decreases toward the solar value with increasing metallicity, in agreement with previous observational studies. In stars with [Fe/H] <-1.0, lang[P/Fe]rang = +0.04 ± 0.10, which overlaps with the [P/Fe] ratios found in several high-redshift damped Lyman-α systems. This behavior hints at a primary origin in massive stars. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. This work is supported through program AR-13246 and is based on observations associated with programs GO-7348, GO-7433, GO-8197, GO-9048, GO-9049, GO-9455, GO-9804, GO-12268, GO-12554, and GO-12976. Portions of this work are based on data obtained from the European Southern Observatory (ESO) Science Archive Facility. These data are associated with Programs 065.L-0507(A), 067.D-0439(A), 072.B-0179(A), 074.C-0364(A), 076.B-0055(A), and 266.D-5655(A). Portions of this research have also made use of the Keck Observatory Archive (KOA), which is operated by the W.M. Keck Observatory and the NASA Exoplanet Science Institute (NExScI), under contract with the National Aeronautics and Space Administration. These data are associated with Programs H2aH (P.I: Boesgaard), H5aH (P.I: Stephens), and H47a

  4. Investigating the Effect of Nanoscale Changes on the Chemistry and Energetics of Nanocrystals with a Novel Photoemission Spectroscopy Methodology

    NASA Astrophysics Data System (ADS)

    Liao, Michael W.

    This dissertation explores the effect of nanometer-scale changes in structure on the energetics of photocatalytic and photovoltaic materials. Of particular interest are semiconductor nanocrystals (NCs), which have interesting chemical properties that lead to novel structures and applications. Chief among these properties are quantum confinement and the high surface area-to-volume ratio, which allow for chemical tuning of the energetics and structure of NCs. This tunable energetic landscape has led to increasing application of NCs in various areas of research, including solar energy conversion, light-emitting diode technologies, and photocatalysis. However, spectroscopic methods to determine the energetics of NCs have not been well developed, due to chemical complexities of relevant NCs such as polydispersity, capping ligand effects, core-shell structures, and other chemical modifications. In this work, we demonstrate and expand the utility of photoelectron spectroscopy (PES) to probe the energetics of NCs by considering the physical processes that lead to background and secondary photoemission to enhance photoemission from the sample of interest. A new methodology for the interpretation of UP spectra was devised in order to emphasize the minute changes to the UP spectra line shape that arise from nanoscopic changes to the NCs. We applied various established subtractions that correct for photon source satellites, secondary photoelectrons, and substrate photoemission. We then investigated the effect of ligand surface coverage on the surface chemistry and density of states at the top of valence band (VB). We systematically removed ligands by increasing numbers of purification steps for two diameters of NCs and found that doing so increased photoemission density at the top of the VB, which is due to undercoordinated surface atoms. Deeper VB structure was also altered, possibly due to reorganization of the atoms in the NC. Using the new UPS interpretation methodology

  5. Picosecond flash spectroscopic studies on ultraviolet stabilizers and stabilized polymers

    NASA Technical Reports Server (NTRS)

    Scott, G. W.

    1982-01-01

    Spectroscopic and excited state decay kinetics are reported for monomeric and polymeric forms of ultraviolet stabilizers in the 2-(2'-hydroxyphenyl)-benzotriazole and 2-hydroxybenzophenone classes. For some of these molecules in various solvents at room temperature, (1) ground state absorption spectra, (2) emission spectra, (3) picosecond time-resolved transient absorption spectra, (4) ground state absorption recovery kinetics, (5) emission kinetics, and (6) transient absorption kinetics are reported. In the solid state at low temperatures, emission spectra and their temperature dependent kinetics up to approximately 200K as well as, in one case, the 12K excitation spectra of the observed dual emission are also reported.

  6. Modelling ultraviolet-line diagnostics of stars, the ionized and the neutral interstellar medium in star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Vidal-García, A.; Charlot, S.; Bruzual, G.; Hubeny, I.

    2017-09-01

    We combine state-of-the-art models for the production of stellar radiation and its transfer through the interstellar medium (ISM) to investigate ultraviolet-line diagnostics of stars, the ionized and the neutral ISM in star-forming galaxies. We start by assessing the reliability of our stellar population synthesis modelling by fitting absorption-line indices in the ISM-free ultraviolet spectra of 10 Large Magellanic Cloud clusters. In doing so, we find that neglecting stochastic sampling of the stellar initial mass function in these young (∼10-100 Myr), low-mass clusters affects negligibly ultraviolet-based age and metallicity estimates but can lead to significant overestimates of stellar mass. Then, we proceed and develop a simple approach, based on an idealized description of the main features of the ISM, to compute in a physically consistent way the combined influence of nebular emission and interstellar absorption on ultraviolet spectra of star-forming galaxies. Our model accounts for the transfer of radiation through the ionized interiors and outer neutral envelopes of short-lived stellar birth clouds, as well as for radiative transfer through a diffuse intercloud medium. We use this approach to explore the entangled signatures of stars, the ionized and the neutral ISM in ultraviolet spectra of star-forming galaxies. We find that, aside from a few notable exceptions, most standard ultraviolet indices defined in the spectra of ISM-free stellar populations are prone to significant contamination by the ISM, which increases with metallicity. We also identify several nebular-emission and interstellar-absorption features, which stand out as particularly clean tracers of the different phases of the ISM.

  7. Principal component analysis of phenolic acid spectra

    USDA-ARS?s Scientific Manuscript database

    Phenolic acids are common plant metabolites that exhibit bioactive properties and have applications in functional food and animal feed formulations. The ultraviolet (UV) and infrared (IR) spectra of four closely related phenolic acid structures were evaluated by principal component analysis (PCA) to...

  8. A far-ultraviolet atlas of symbiotic stars observed with IUE. 1. The SWP range

    NASA Technical Reports Server (NTRS)

    Meier, S. R.; Kafatos, M.; Fahey, R. P.; Michalitsianos, A. G.

    1994-01-01

    This atlas contains sample spectra from the far-ultraviolet observations of 32 symbiotic stars obtained with the International Ultraviolet Explorer (IUE) satellite. In all, 394 low-resolution spectra from the short-wavelength primary (SWP) camera covering the range 1200-2000 A have been extracted from the IUE archive, calibrated, and measured. Absolute line fluxes and wavelengths for the prominent emission lines have been tabulated. Tables of both the general properties of these symbiotics and of features specific to the spectrum of each are included. The spectra shown are representative of the different classes of symbiotic stars that are currently in the IUE archive. These include known eclipsing systems and those that have been observed in outburst (as well as quiescence).

  9. Photoemission Experiments for Charge Characteristics of Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Spann, James F., Jr.; Craven, Paul D.; West, E.; Pratico, Jared; Scheianu, D.; Tankosic, D.; Venturini, C. C.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Photoemission experiments with UV radiation have been performed to investigate the microphysics and charge characteristics of individual isolated dust grains of various compositions and sizes by using the electrodynamic balance facility at NASA Marshall Space Flight Center. Dust particles of 1 - 100 micrometer diameter are levitated in a vacuum chamber at pressures approx. 10(exp -5) torr and exposed to a collimated beam of UV radiation in the 120-300 nanometers spectral range from a deuterium lamp source with a MgF2 window. A monochromator is used to select the UV radiation wavelength with a spectral resolution of 8 nanometers. The electrodynamic facility permits measurements of the charge and diameters of particles of known composition, and monitoring of photoemission rates with the incident UV radiation. Experiments have been conducted on Al2O3 and silicate particles, and in particular on JSC-1 Mars regolith simulants, to determine the photoelectron yields and surface equilibrium potentials of dust particles when exposed to UV radiation in the 120-250 micrometers spectral range. A brief discussion of the experimental procedure, the results of photoemission experiments, and comparisons with theoretical models will be presented.

  10. Photoemission Spectroscopy of Delta- Plutonium: Experimental Review

    NASA Astrophysics Data System (ADS)

    Tobin, J. G.

    2002-03-01

    The electronic structure of Plutonium, particularly delta- Plutonium, remains ill defined and without direct experimental verification. Recently, we have embarked upon a program of study of alpha- and delta- Plutonium, using synchrotron radiation from the Advanced Light Source in Berkeley, CA, USA [1]. This work is set within the context of Plutonium Aging [2] and the complexities of Plutonium Science [3]. The resonant photoemission of delta-plutonium is in partial agreement with an atomic, localized model of resonant photoemission, which would be consistent with a correlated electronic structure. The results of our synchrotron- based studies will be compared with those of recent laboratory- based works [4,5,6]. The talk will conclude with a brief discussion of our plans for the future, such as the performance of spin-resolving and dichroic photoemission measurements of Plutonium [7] and the development of single crystal ultrathin films of Plutonium. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. 1. J. Terry, R.K. Schulze, J.D. Farr, T. Zocco, K. Heinzelman, E. Rotenberg, D.K. Shuh, G. van der Laan, D.A. Arena, and J.G. Tobin, “5f Resonant Photoemission from Plutonium”, UCRL-JC-140782, Surf. Sci. Lett., accepted October 2001. 2. B.D. Wirth, A.J. Schwartz, M.J. Fluss, M.J. Caturla, M.A. Wall, and W.G. Wolfer, MRS Bulletin 26, 679 (2001). 3. S.S. Hecker, MRS Bulletin 26, 667 (2001). 4. T. Gouder, L. Havela, F. Wastin, and J. Rebizant, Europhys. Lett. 55, 705 (2001); MRS Bulletin 26, 684 (2001); Phys. Rev. Lett. 84, 3378 (2000). 5. A.J. Arko, J.J. Joyce, L. Morales, J. Wills, J. Lashley, F. Wastin, and J. Rebizant, Phys. Rev. B 62, 1773 (2000). 6. L.E. Cox, O. Eriksson, and B.R. Cooper, Phys. Rev. B 46, 13571 (1992). 7. J. Tobin, D.A. Arena, B. Chung, P. Roussel, J. Terry, R.K. Schulze, J.D. Farr, T. Zocco, K. Heinzelman, E

  11. Observations and analysis activities of the International Ultraviolet Explorer satellite telescope

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael

    1996-01-01

    The funds from this grant were used to support observations and analysis with the International Ultraviolet Explorer (IUE) satellite telescope. The main area of scientific research concerned the variability analyses of ultraviolet spectra of Active Galactic Nuclei, primarily quasars, Seyfert galaxies, and BL Lacertae objects. The Colorado group included, at various times, the P.I. (J.M. Shull), Research Associate Dr. Rick Edelson, and graduate students Jon Saken, Elise Sachs, and Steve Penton. A portion of the work was also performed by CU undergraduate student Cheong-ming Fu. A major product of the effort was a database of all IUE spectra of active galactic nuclei. This database is being analyzed to obtain spectral indices, line fluxes, and continuum fluxes for over 500 AGN. As a by-product of this project, we implemented a new, improved technique of spectral extraction of IUE spectra, which has been used in several AGN-WATCH campaigns (on the Seyfert galaxy NGC 4151 and on the BL Lac object PKS 2155-304).

  12. Ultraviolet spectroscopy of old novae and symbiotic stars

    NASA Technical Reports Server (NTRS)

    Lambert, D. L.; Slovak, M. H.; Shields, G. A.; Ferland, G. J.

    1981-01-01

    The IUE spectra are presented for two old novae and for two of the symbiotic variables. Prominent emission line spectra are revealed as a continuum whose appearance is effected by the system inclination. These data provide evidence for hot companions in the symbiotic stars, making plausible the binary model for these peculiar stars. Recent IUE spectra of dwarf novae provide additional support for the existence of optically thick accretion disks in active binary systems. The ultraviolet data of the eclipsing dwarf novae EX Hya and BV Cen appear flatter than for the noneclipsing systems, an effect which could be ascribed to the system inclination.

  13. A rocket measurement of the extreme ultraviolet dayglow

    NASA Technical Reports Server (NTRS)

    Christensen, A. B.

    1976-01-01

    Extreme ultraviolet spectra of the mid-latitude dayglow in the wavelength range of 550 to 1250A have been obtained with a rocket borne grating spectrometer at a resolution of 20A. Spectra were obtained in the altitude range of 140 to 280 km. The spectra are dominated by emissions from atomic multiplets and no molecular bands have been identified with certainty. The strongest emissions other than H Lyman-alpha are OI (989) and OII (834). Other prominent emissions include He I(584), N II(916) and N II(1085). An unexpected feature near 612A has an intensity comparable to He I(584).

  14. Action spectra affect variability of the climatology of biologically effective ultraviolet radiation on cloud-free days.

    PubMed

    Grifoni, D; Zipoli, G; Sabatini, F; Messeri, G; Bacci, L

    2013-12-01

    Action spectrum (AS) describes the relative effectiveness of ultraviolet (UV) radiation in producing biological effects and allows spectral UV irradiance to be weighted in order to compute biologically effective UV radiation (UVBE). The aim of this research was to study the seasonal and latitudinal distribution over Europe of daily UVBE doses responsible for various biological effects on humans and plants. Clear sky UV radiation spectra were computed at 30-min time intervals for the first day of each month of the year for Rome, Potsdam and Trondheim using a radiative transfer model fed with climatological data. Spectral data were weighted using AS for erythema, vitamin D synthesis, cataract and photokeratitis for humans, while the generalised plant damage and the plant damage AS were used for plants. The daily UVBE doses for the above-mentioned biological processes were computed and are analysed in this study. The patterns of variation due to season (for each location) and latitude (for each date) resulted as being specific for each adopted AS. The biological implications of these results are briefly discussed highlighting the importance of a specific UVBE climatology for each biological process.

  15. Retrieving plasmonic field information from metallic nanospheres using attosecond photoelectron streaking spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Jianxiong; Saydanzad, Erfan; Thumm, Uwe

    2017-04-01

    Streaked photoemission by attosecond extreme ultraviolet (XUV) pulses into an infrared (IR) or visible streaking pulse, holds promise for imaging with sub-fs time resolution the dielectric plasmonic response of metallic nanoparticles to the IR or visible streaking pulse. We calculated the plasmonic field induced by streaking pulses for 10 to 200 nm diameter Au, Ag, and Cu nanospheres and obtained streaked photoelectron spectra by employing our quantum-mechanical model. Our simulated spectra show significant oscillation-amplitude enhancements and phase shifts for all three metals (relative to spectra that are calculated without including the induced plasmonic field) and allow the reconstruction of the plasmonic field enhancements and phase shifts for each material. Supported by the US NSD-EPSCoR program, NSF, and DoE.

  16. Ultraviolet spectrophotometry of three LINERs

    NASA Technical Reports Server (NTRS)

    Goodrich, R. W.; Keel, W. C.

    1986-01-01

    Three galaxies known to be LINERs were observed spectroscopically in the ultraviolet in an attempt to detect the presumed nonthermal continuum source thought to be the source of photoionization in the nuclei. NGC 4501 was found to be too faint for study with the IUE spectrographs, while NGC 5005 had an extended ultraviolet light profile. Comparison with the optical light profile of NGC 5005 indicates that the ultraviolet source is distributed spatially in the same manner as the optical starlight, probably indicating that the ultraviolet excess is due to a component of hot stars in the nucleus. These stars contribute detectable absorption features longward of 2500 A; together with optical data, the IUE spectra suggest a burst of star formation about 1 billion yr ago, with a lower rate continuing to produce a few OB stars. In NGC 4579, a point source contributing most of the ultraviolet excess is found that is much different than the optical light distribution. Furthermore, the ultraviolet to X-ray spectral index in NGC 4579 is 1.4, compatible with the UV to X-ray indices found for samples of Seyfert galaxies. This provides compelling evidence for the detection of the photoionizing continuum in NGC 4579 and draws the research fields of normal galaxies and active galactic nuclei closer together. The emission-line spectrum of NGC 4579 is compared with calculations from a photoionization code, CLOUDY, and several shock models. The photoionization code is found to give superior results, adding to the increasing weight of evidence that the LINER phenomenon is essentially a scaled-down version of the Seyfert phenomenon.

  17. Resolution of isomeric new designer stimulants using gas chromatography - Vacuum ultraviolet spectroscopy and theoretical computations.

    PubMed

    Skultety, Ludovit; Frycak, Petr; Qiu, Changling; Smuts, Jonathan; Shear-Laude, Lindsey; Lemr, Karel; Mao, James X; Kroll, Peter; Schug, Kevin A; Szewczak, Angelica; Vaught, Cory; Lurie, Ira; Havlicek, Vladimir

    2017-06-08

    Distinguishing isomeric representatives of "bath salts", "plant food", "spice", or "legal high" remains a challenge for analytical chemistry. In this work, we used vacuum ultraviolet spectroscopy combined with gas chromatography to address this issue on a set of forty-three designer drugs. All compounds, including many isomers, returned differentiable vacuum ultraviolet/ultraviolet spectra. The pair of 3- and 4-fluoromethcathinones (m/z 181.0903), as well as the methoxetamine/meperidine/ethylphenidate (m/z 247.1572) triad, provided very distinctive vacuum ultraviolet spectral features. On the contrary, spectra of 4-methylethcathinone, 4-ethylmethcathinone, 3,4-dimethylmethcathinone triad (m/z 191.1310) displayed much higher similarities. Their resolution was possible only if pure standards were probed. A similar situation occurred with the ethylone and butylone pair (m/z 221.1052). On the other hand, majority of forty-three drugs was successfully separated by gas chromatography. The detection limits for all the drug standards were in the 2-4 ng range (on-column amount), which is sufficient for determinations of seized drugs during forensics analysis. Further, state-of-the-art time-dependent density functional theory was evaluated for computation of theoretical absorption spectra in the 125-240 nm range as a complementary tool. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. New advances in protection against solar ultraviolet radiation in textiles for summer clothing.

    PubMed

    Aguilera, José; de Gálvez, María Victoria; Sánchez-Roldán, Cristina; Herrera-Ceballos, Enrique

    2014-01-01

    Clothing is considered one of the most important tools for photoprotection against harmful solar ultraviolet radiation (UVR). The standard for sun-protective clothing is based on erythema despite other biological effects of UVR on the skin. We analyzed the potential protection against UVR in fabrics destined for summer clothing based on several action spectra. We examined 50 garments classified by type of fabric composition, structure of the fiber yarn and color. The ultraviolet protection factor was calculated based on fabric ultraviolet transmittance corrected for erythema according to the EU standard E-13758 as well as the UVA transmittance of fabrics. UVR protection was also analyzed in base of different action spectra as for previtamin D3, nonmelanoma skin cancer, photoimmunosuppression and photoaging. Most knitted fabrics used for sports T-shirts offered excellent ratings for ultraviolet protection while normal shirts showed very low ratings, particularly against photoaging. The cover is the most influential variable in fabric photoprotection, having an exponential relationship with the UPF. The relation between cover and UVA protection was linearly negative. Information about ultraviolet protection in textiles used for summer clothing should be included in labeling as some types of fabrics, especially those used for shirts, offer very low UVR protection. © 2014 The American Society of Photobiology.

  19. Reference Ultraviolet Wavelengths of Cr III Measured by Fourier Transform Spectrometry

    NASA Technical Reports Server (NTRS)

    Smillie, D.G.; Pickering, J.C.; Smith, P.L.

    2008-01-01

    We report Cr III ultraviolet (UV) transition wavelengths measured using a high-resolution Fourier transform spectrometer (FTS), for the first time, available for use as wavelength standards. The doubly ionized iron group element spectra dominate the observed opacity of hot B stars in the UV, and improved, accurate, wavelengths are required for the analysis of astronomical spectra. The spectrum was excited using a chromium-neon Penning discharge lamp and measured with the Imperial College vacuum ultraviolet FTS. 140 classified 3d(exp 3)4s- 3d(exp 3)4p Cr III transition lines, in the spectral range 38,000 to 49,000 cm(exp -1) (2632 to 2041 A), the strongest having wavelength uncertainties less than one part in 10(exp 7), are presented.

  20. Ultrafast Imaging of Chiral Surface Plasmon by Photoemission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Dai, Yanan; Dabrowski, Maciej; Petek, Hrvoje

    We employ Time-Resolved Photoemission Electron Microscopy (TR-PEEM) to study surface plasmon polariton (SPP) wave packet dynamics launched by tunable (VIS-UV) femtosecond pulses of various linear and circular polarizations. The plasmonic structures are micron size single-crystalline Ag islands grown in situ on Si surfaces and characterized by Low Energy Electron Microscopy (LEEM). The local fields of plasmonic modes enhance two and three photon photoemission (2PP and 3PP) at the regions of strong field enhancement. Imaging of the photoemission signal with PEEM electron optics thus images the plasmonic fields excited in the samples. The observed PEEM images with left and right circularly polarized light show chiral images, which is a consequence of the transverse spin momentum of surface plasmon. By changing incident light polarization, the plasmon interference pattern shifts with light ellipticity indicating a polarization dependent excitation phase of SPP. In addition, interferometric-time resolved measurements record the asymmetric SPP wave packet motion in order to characterize the dynamical properties of chiral SPP wave packets.

  1. Laboratory spectra of C60 and related molecular structures

    NASA Technical Reports Server (NTRS)

    Janca, J.; Solc, M.; Vetesnik, M.

    1994-01-01

    The electronic spectra of fullerene structures in high frequency discharge are studied in the plasma chemistry laboratory of the Faculty of Science of Masaryk University in Brno. The ultraviolet and visual spectra are investigated in order to be compared with the diffuse interstellar bands and interpreted within the theory of quantum mechanics. The preliminary results of the study are presented here in the form of a poster.

  2. Copernicus ultraviolet spectra of OB supergiants with strong stellar winds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchings, J.B.

    1976-03-01

    Spectral scans at approximately 0.2 A resolution have been obtained in the far-ultraviolet of eight stars which have high mass-loss rates from stellar winds. The P Cygni characteristics of the line profiles appear to vary inversely as the mass flow rate, and in P Cygni itself the C III lambda 1175 line shows no velocity shift, or emission. It is suggested that higher mass flow rates occur through a denser, slower moving envelope in which collisional interactions are important. (auth)

  3. Far-Ultraviolet Observations of Outflows from Infrared-Luminous Galaxies

    NASA Astrophysics Data System (ADS)

    Leitherer, Claus; Chandar, Rupali; Tremonti, Christy A.; Wofford, Aida

    2013-03-01

    We have obtained ultraviolet spectra between 1150 and 1450 Å of four ultraviolet-bright, infrared-luminous starburst galaxies. Our selected sight-lines towards the starburst nuclei probe the conditions in the starburst-driven outflows. We detect outflowing gas with velocities of up to ˜900 km s-1. It is likely that the outflows are a major source of metal enrichment of the galaxies' halos. The mass outflow rates of several tens of M⊙ yr-1 are similar to the star-formation rates. The outflows may quench star formation and ultimately regulate the starburst.

  4. One-step model of photoemission from single-crystal surfaces

    DOE PAGES

    Karkare, Siddharth; Wan, Weishi; Feng, Jun; ...

    2017-02-28

    In our paper, we present a three-dimensional one-step photoemission model that can be used to calculate the quantum efficiency and momentum distributions of electrons photoemitted from ordered single-crystal surfaces close to the photoemission threshold. Using Ag(111) as an example, we also show that the model can not only calculate the quantum efficiency from the surface state accurately without using any ad hoc parameters, but also provides a theoretical quantitative explanation of the vectorial photoelectric effect. This model in conjunction with other band structure and wave function calculation techniques can be effectively used to screen single-crystal photoemitters for use as electronmore » sources for particle accelerator and ultrafast electron diffraction applications.« less

  5. Far Ultraviolet Spectroscopy of Saturn's Icy Moon Rhea

    NASA Astrophysics Data System (ADS)

    Elowitz, Mark; Hendrix, Amanda; Mason, Nigel J.; Sivaraman, Bhalamurugan

    2018-01-01

    We present an analysis of spatially resolved, far-UV reflectance spectra of Saturn’s icy satellite Rhea, collected by the Cassini Ultraviolet Imaging Spectrograph (UVIS). In recent years ultraviolet spectroscopy has become an important tool for analysing the icy satellites of the outer solar system (1Hendrix & Hansen, 2008). Far-UV spectroscopy provides unique information about the molecular structure and electronic transitions of chemical species. Many molecules that are suspected to be present in the icy surfaces of moons in the outer solar system have broad absorption features due to electronic transitions that occur in the far-UV portion of the spectrum. The studies show that Rhea, like the other icy satellites of the Saturnian system are dominated by water-ice as evident by the 165-nm absorption edge, with minor UV absorbing contaminants. Far-UV spectra of several Saturnian icy satellites, including Rhea and Dione, show an unexplained weak absorption feature centered near 184 nm. To carry out the geochemical survey of Rhea’s surface, the UVIS observations are compared with vacuum-UV spectra of thin-ice samples measured in laboratory experiments. Thin film laboratory spectra of water-ice and other molecular compounds in the solid phase were collected at near-vacuum conditions and temperatures identical to those at the surface of Rhea. Comparison between the observed far-UV spectra of Rhea’s surface ice and modelled spectra based on laboratory absorption measurements of different non-water-ice compounds show that two possible chemical compounds could explain the 184-nm absorption feature. The two molecular compounds include simple chlorine molecules and hydrazine monohydrate. Attempts to explain the source(s) of these compounds on Rhea and the scientific implications of their possible discovery will be summarized.[1] Hendrix, A. R. & Hansen, C. J. (2008). Icarus, 193, pp. 323-333.

  6. Angle resolved photoemission study of Fermi surfaces and single-particle excitations of quasi-low dimensional materials

    NASA Astrophysics Data System (ADS)

    Gweon, Gey-Hong

    Using angle resolved photoemission spectroscopy (ARPES) as the main experimental tool and the single particle Green's function as the main theoretical tool, materials of various degrees of low dimensionality and different ground states are studied. The underlying theme of this thesis is that of one dimensional physics, which includes charge density waves (CDW's) and the Luttinger liquid (LL). The LL is the prime example of a lattice non-Fermi liquid (non-FL) and CDW fluctuations also give non-FL behaviors. Non-FL physics is an emerging paradigm of condensed matter physics. It is thought by some researchers that one dimensional LL behavior is a key element in solving the high temperature superconductivity problem. TiTe2 is a quasi-2 dimensional (quasi-2D) Fermi liquid (FL) material very well suited for ARPES lineshape studies. I report ARPES spectra at 300 K which show an unusual behavior of a peak moving through the Fermi energy (EF). I also report a good fit of the ARPES spectra at 25 K obtained by using a causal Green's function proposed by K. Matho. SmTe3 is a quasi-2D CDW material. The near EF ARPES spectra and intensity map reveal rich details of an anisotropic gap and imperfectly nested Fermi surface (FS) for a high temperature CDW. A simple model of imperfect nesting can be constructed from these data and predicts a CDW wavevector in very good agreement with the value known from electron diffraction. NaMo6O17 and KMo 6O17 are also quasi-2D CDW materials. The "hidden nesting" or "hidden 1 dimensionality" picture for the CDW is confirmed very well by our direct image of the FS. K0.3MoO3, the so-called "blue bronze," is a quasi-1 dimensional (quasi-1D) CDW material. Even in its metallic phase above the CDW transition temperature, its photoemission spectra show an anomalously weak intensity at EF and no clear metallic Fermi edge. I compare predictions of an LL model and a CDW fluctuation model regarding these aspects, and find that the LL scenario explains them

  7. Application of Koopmans' theorem for density functional theory to full valence-band photoemission spectroscopy modeling.

    PubMed

    Li, Tsung-Lung; Lu, Wen-Cai

    2015-10-05

    In this work, Koopmans' theorem for Kohn-Sham density functional theory (KS-DFT) is applied to the photoemission spectra (PES) modeling over the entire valence-band. To examine the validity of this application, a PES modeling scheme is developed to facilitate a full valence-band comparison of theoretical PES spectra with experiments. The PES model incorporates the variations of electron ionization cross-sections over atomic orbitals and a linear dispersion of spectral broadening widths. KS-DFT simulations of pristine rubrene (5,6,11,12-tetraphenyltetracene) and potassium-rubrene complex are performed, and the simulation results are used as the input to the PES models. Two conclusions are reached. First, decompositions of the theoretical total spectra show that the dissociated electron of the potassium mainly remains on the backbone and has little effect on the electronic structures of phenyl side groups. This and other electronic-structure results deduced from the spectral decompositions have been qualitatively obtained with the anionic approximation to potassium-rubrene complexes. The qualitative validity of the anionic approximation is thus verified. Second, comparison of the theoretical PES with the experiments shows that the full-scale simulations combined with the PES modeling methods greatly enhance the agreement on spectral shapes over the anionic approximation. This agreement of the theoretical PES spectra with the experiments over the full valence-band can be regarded, to some extent, as a collective validation of the application of Koopmans' theorem for KS-DFT to valence-band PES, at least, for this hydrocarbon and its alkali-adsorbed complex. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The acetone bandpass detector for inverse photoemission: operation in proportional and Geiger–Müller modes

    NASA Astrophysics Data System (ADS)

    Thiede, Christian; Niehues, Iris; Schmidt, Anke B.; Donath, Markus

    2018-06-01

    Inverse photoemission is the most versatile experimental tool to study the unoccupied electronic structure at surfaces of solids. Typically, the experiments are performed in the isochromat mode with bandpass photon detectors. For gas-filled counters, the bandpass behavior is realized by the combination of the photoionization threshold of the counting gas as the high-pass filter and the ultraviolet transmission cutoff of an alkaline earth fluoride entrance window as the low-pass filter. The transmission characteristics of the entrance window determine the optical bandpass. The performance of the counter depends on the composition of the detection gas and the fill-gas pressure, the readout electronics and the counter geometry. For the well-known combination of acetone and CaF2, the detector can be operated in proportional and Geiger–Müller modes. In this work, we review aspects concerning the working principles, the counter construction and the read-out electronics. We identify optimum working parameters and provide a step-by-step recipe how to build, install and operate the device.

  9. Metal-organic semiconductor interfacial barrier height determination from internal photoemission signal in spectral response measurements

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Iyer, S. Sundar Kumar

    2017-04-01

    Accurate and convenient evaluation methods of the interfacial barrier ϕb for charge carriers in metal semiconductor (MS) junctions are important for designing and building better opto-electronic devices. This becomes more critical for organic semiconductor devices where a plethora of molecules are in use and standardised models applicable to myriads of material combinations for the different devices may have limited applicability. In this paper, internal photoemission (IPE) from spectral response (SR) in the ultra-violet to near infra-red range of different MS junctions of metal-organic semiconductor-metal (MSM) test structures is used to determine more realistic MS ϕb values. The representative organic semiconductor considered is [6, 6]-phenyl C61 butyric acid methyl ester, and the metals considered are Al and Au. The IPE signals in the SR measurement of the MSM device are identified and separated before it is analysed to estimate ϕb for the MS junction. The analysis of IPE signals under different bias conditions allows the evaluation of ϕb for both the front and back junctions, as well as for symmetric MSM devices.

  10. Ultraviolet Spectroscopy of Asteroid(4) Vesta

    NASA Technical Reports Server (NTRS)

    Li, Jian-Yang; Bodewits, Dennis; Feaga, Lori M.; Landsman, Wayne; A'Hearn, Michael F.; Mutchler, Max J.; Russell, Christopher T.; McFadden, Lucy A.; Raymond, Carol A.

    2011-01-01

    We report a comprehensive review of the UV-visible spectrum and rotational lightcurve of Vesta combining new observations by Hubble Space Telescope and Swift with archival International Ultraviolet Explorer observations. The geometric albedos of Vesta from 220 nm to 953 nm arc derived by carefully comparing these observations from various instruments at different times and observing geometries. Vesta has a rotationally averaged geometric albedo of 0.09 at 250 nm, 0.14 at 300 nm, 0.26 at 373 nm, 0.38 at 673 nm, and 0.30 at 950 nm. The linear spectral slope in the ultraviolet displays a sharp minimum ncar sub-Earth longitude of 20deg, and maximum in the eastern hemisphere. This is completely consistent with the distribution of the spectral slope in the visible wavelength. The uncertainty of the measurement in the ultraviolet is approx.20%, and in the visible wavelengths better than 10%. The amplitude of Vesta's rotational lightcurves is approx.10% throughout the range of wavelengths we observed, but is smaller at 950 nm (approx.6%) ncar the 1-micron mafic band center. Contrary to earlier reports, we found no evidence for any difference between the phasing of the ultraviolet and visible/ncar-infrared lightcurves with respect to sub-Earth longitude. Vesta's average spectrum between 220 and 950 nm can well be described by measured reflectance spectra of fine particle howardite-like materials of basaltic achondrite meteorites. Combining this with the in-phase behavior of the ultraviolet, visible. and ncar-infrared lightcurves, and the spectral slopes with respect to the rotational phase, we conclude that there is no global ultraviolet/visible reversal on Vesta. Consequently, this implies lack of global space weathering on Vesta. Keyword,: Asteroid Vesta; Spectrophotometry; Spectroscopy; Ultraviolet observations; Hubble Space Telescope observations

  11. The human, primate and rabbit ultraviolet action spectra

    NASA Technical Reports Server (NTRS)

    Pitts, D. G.; Gibbons, W. D.

    1972-01-01

    A 5000 watt xenon-mercury high pressure lamp was used to produce a continuous ultraviolet spectrum. Human and animal exposures were made to establish the photokeratitis threshold and abiotic action spectrum. The lower limit of the abiotic action spectrum was 220 nm while the upper limit was 310 nm. The radiant exposure threshold at 270 nm was 0.005 watts/sq cm for the rabbit, 0.004 watts/sq cm for the primate, and 0.004 watts/ sq cm for the human. The rabbit curve was bi-peaked with minimums at 220 nm, 240 nm and 270 nm. The primate curve was tri-peaked with minimums at 220 nm, 240 nm and 270 nm. The human data showed a rather shallow curve with a minimum at 270 nm. Formulas and calculations are given to predict minimum exposure times for ocular damage to man in outer space, to establish valid safety criteria, and to establish protective design criteria.

  12. A Dust Grain Photoemission Experiment

    NASA Technical Reports Server (NTRS)

    Venturini, C. C.; Spann, J. F., Jr.; Abbas, M. M.; Comfort, R. H.

    2000-01-01

    A laboratory experiment has been developed at Marshall Space Flight Center to study the interaction of micron-sized particles with plasmas and FUV radiation. The intent is to investigate the conditions under which particles of various compositions and sizes become charged, or discharged, while exposed to an electron beam and/or UV radiation. This experiment uses a unique laboratory where a single charged micron size particle is suspended in a quadrupole trap and then subjected to a controlled environment. Tests are performed using different materials and sizes, ranging from 10 microns to 1 micron, to determine the particle's charge while being subjected to an electron beam and /or UV radiation. The focus of this presentation will be on preliminary results from UV photoemission tests, but past results from electron beam, secondary electron emission tests will also be highlighted. A monochromator is used to spectrally resolve UV in the 120 nm to 300 nm range. This enables photoemission measurements as a function of wavelength. Electron beam tests are conducted using I to 3 micron sized aluminum oxide particles subjected to energies between 100 eV to 3 KeV. It was found that for both positive and negative particles the potential tended toward neutrality over time with possible equilibrium potentials between -0.8 Volts and 0.8 Volts.

  13. Significant relaxation of residual negative carrier in polar Alq3 film directly detected by high-sensitivity photoemission

    NASA Astrophysics Data System (ADS)

    Kinjo, Hiroumi; Lim, Hyunsoo; Sato, Tomoya; Noguchi, Yutaka; Nakayama, Yasuo; Ishii, Hisao

    2016-02-01

    Tris(8-hydroxyquinoline)aluminum (Alq3) has been widely applied as a good electron-injecting layer (EIL) in organic light-emitting diodes. High-sensitivity photoemission measurement revealed a clear photoemission by visible light, although its ionization energy is 5.7 eV. This unusual photoemission is ascribed to Alq3 anions captured by positive polarization charges. The observed electron detachment energy of the anion was about 1 eV larger than the electron affinity reported by inverse photoemission. This difference suggests that the injected electron in the Alq3 layer is energetically relaxed, leading to the reduction in injection barrier. This nature is one of the reasons why Alq3 worked well as the EIL.

  14. Photoemission studies of CdTe(100) and the Ag-CdTe(100) interface: Surface structure, growth behavior, Schottky barrier, and surface photovoltage

    NASA Astrophysics Data System (ADS)

    John, P.; Miller, T.; Hsieh, T. C.; Shapiro, A. P.; Wachs, A. L.; Chiang, T.-C.

    1986-11-01

    The clean CdTe(100) surface prepared by sputtering and annealing was studied with high-energy electron diffraction (HEED) and photoemission. HEED showed the surface to be a one-domain, (2×1) reconstruction. Photoemission spectra showed two surface-shifted components for the Cd 4d core level, with an intensity ratio of about 1:3, accounting for nearly an entire atomic layer. No surface-induced shifts for the Te 4d core level were detected. A model is proposed for the surface structure in which the surface layer is free of Te, and Cd atoms form dimers resulting in a (2×1) reconstruction; in addition, about (1/4) of the surface area is covered by excess loosely attached Cd atoms. Ag was evaporated on the surface at room temperature and found to grow three dimensionally in the [111] direction. The Ag was found to interact only weakly with the substrate, although the Cd atoms originally loosely bound on top of the surface were found to float on the evaporated Ag islands. A small coverage-dependent surface photovoltage, induced by the synchrotron radiation used for photoemission, was observed; with this effect taken into account, band bending was monitored, the final Fermi-level position being near 0.96 eV above the valence-band maximum. This corresponds to a Schottky-barrier height of about 0.60 eV for the n-type sample used in this experiment. The mechanism for generation of the surface photovoltage will be discussed.

  15. Electronic structure of Mott-insulator CaCu3Ti4O12: Photoemission and inverse photoemission study

    NASA Astrophysics Data System (ADS)

    Im, H. J.; Iwataki, M.; Yamazaki, S.; Usui, T.; Adachi, S.; Tsunekawa, M.; Watanabe, T.; Takegahara, K.; Kimura, S.; Matsunami, M.; Sato, H.; Namatame, H.; Taniguchi, M.

    2015-09-01

    We have performed the photoemission and inverse photoemission experiments to elucidate the origin of Mott insulating states in A-site ordered perovskite CaCu3Ti4O12 (CCTO). Experimental results have revealed that Cu 3d-O 2p hybridized bands, which are located around the Fermi level in the prediction of the local-density approximation (LDA) band calculations, are actually separated into the upper Hubbard band at ~1.5 eV and the lower Hubbard band at ~-1.7 eV with a band gap of ~1.5-1.8 eV. We also observed that Cu 3d peak at ~-3.8 eV and Ti 3d peak at ~3.8 eV are further away from each other than as indicated in the LDA calculations. In addition, it is found that the multiplet structure around -9 eV includes a considerable number of O 2p states. These observations indicate that the Cu 3d and Ti 3d electrons hybridized with the O 2p states are strongly correlated, which originates in the Mott-insulating states of CCTO.

  16. Heterojunction-Internal-Photoemission Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1991-01-01

    New type of photodetector adds options for design of imaging devices. Heterojunction-internal-photoemission (HIP) infrared photodetectors proposed for incorporation into planar arrays in imaging devices required to function well at wavelengths from 8 to 17 micrometers and at temperatures above 65 K. Photoexcited electrons cross energy barrier at heterojunction and swept toward collection layer. Array of such detectors made by etching mesa structures. HIP layers stacked to increase quantum efficiency. Also built into integrated circuits including silicon multiplexer/readout circuits.

  17. Key issues of ultraviolet radiation of OH at high altitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuhuai; Wan, Tian; Jiang, Jianzheng

    2014-12-09

    Ultraviolet (UV) emissions radiated by hydroxyl (OH) is one of the fundamental elements in the prediction of radiation signature of high-altitude and high-speed vehicle. In this work, the OH A{sup 2}Σ{sup +}→X{sup 2}Π ultraviolet emission band behind the bow shock is computed under the experimental condition of the second bow-shock ultraviolet flight (BSUV-2). Four related key issues are discussed, namely, the source of hydrogen element in the high-altitude atmosphere, the formation mechanism of OH species, efficient computational algorithm of trace species in rarefied flows, and accurate calculation of OH emission spectra. Firstly, by analyzing the typical atmospheric model, the verticalmore » distributions of the number densities of different species containing hydrogen element are given. According to the different dominating species containing hydrogen element, the atmosphere is divided into three zones, and the formation mechanism of OH species is analyzed in the different zones. The direct simulation Monte Carlo (DSMC) method and the Navier-Stokes equations are employed to compute the number densities of the different OH electronically and vibrationally excited states. Different to the previous work, the trace species separation (TSS) algorithm is applied twice in order to accurately calculate the densities of OH species and its excited states. Using a non-equilibrium radiation model, the OH ultraviolet emission spectra and intensity at different altitudes are computed, and good agreement is obtained with the flight measured data.« less

  18. Key issues of ultraviolet radiation of OH at high altitudes

    NASA Astrophysics Data System (ADS)

    Zhang, Yuhuai; Wan, Tian; Jiang, Jianzheng; Fan, Jing

    2014-12-01

    Ultraviolet (UV) emissions radiated by hydroxyl (OH) is one of the fundamental elements in the prediction of radiation signature of high-altitude and high-speed vehicle. In this work, the OH A2Σ+→ X2Π ultraviolet emission band behind the bow shock is computed under the experimental condition of the second bow-shock ultraviolet flight (BSUV-2). Four related key issues are discussed, namely, the source of hydrogen element in the high-altitude atmosphere, the formation mechanism of OH species, efficient computational algorithm of trace species in rarefied flows, and accurate calculation of OH emission spectra. Firstly, by analyzing the typical atmospheric model, the vertical distributions of the number densities of different species containing hydrogen element are given. According to the different dominating species containing hydrogen element, the atmosphere is divided into three zones, and the formation mechanism of OH species is analyzed in the different zones. The direct simulation Monte Carlo (DSMC) method and the Navier-Stokes equations are employed to compute the number densities of the different OH electronically and vibrationally excited states. Different to the previous work, the trace species separation (TSS) algorithm is applied twice in order to accurately calculate the densities of OH species and its excited states. Using a non-equilibrium radiation model, the OH ultraviolet emission spectra and intensity at different altitudes are computed, and good agreement is obtained with the flight measured data.

  19. Ultraviolet spectroscopy of the brightest supergiants in M31 and M33

    NASA Technical Reports Server (NTRS)

    Humphreys, R. M.; Blaha, C.; Dodorico, S.; Gull, T. R.; Benevenuti, P.

    1983-01-01

    Ultraviolet spectroscopy from the IUE, in combination with groundbased visual and infrared photometry, are to determine the energy distributions of the luminous blue variables, the Hubble-Sandage variables, in M31 and M33. The observed energy distributions, especially in the ultraviolet, show that these stars are suffering interstellar reddening. When corrected for interstellar extinction, the integrated energy distributions yield the total luminosities and black body temperatures of the stars. The resulting bolometric magnitudes and temperatures confirm that these peculiar stars are indeed very luminous, hot stars. They occupy the same regions of the sub B01 vs. log T sub e diagram as do eta Car, P Cyg and S Dor in our galaxy and the LMC. Many of the Hubble-Sandage variables have excess infrared radiation which is attributed to free-free emission from their extended atmospheres. Rough mass loss estimates from the infrared excess yield rates of 0.00001 M sub annual/yr. The ultraviolet spectra of the H-S variables are also compared with similar spectra of eta Car, P Cyg and S For.

  20. Surface studies of anatase and rutile single crystals as model solar cell materials

    NASA Astrophysics Data System (ADS)

    Mallick, Asim K.

    The adsorption of ionic and molecular species on anatase and rutile TiO[2] single crystals has been investigated using synchrotron radiation photoemission spectroscopy. For clean single crystal anatase (101) and (001), and rutile (110) surfaces, a resonant enhancement of the O 2p valence band photoemission intensity is observed as the photon energy is swept through the Ti 3p→3d and 3p→4s optical transition energy, which indicates strong hybridization between Ti and O ions. A small defect peak is observed around 1.1 eV binding energy (B.E.) with respect to the Fermi energy on both anatase (101) and (001) surfaces and at 0.9 eV B.E. on the rutile (110) surface following annealing to 650 °C in UHV. This indicates the surfaces are reduced giving rise to surface Ti[3+]. The adsorption of Cul on single crystal TiO[2] surfaces has been studied using resonant photoemission spectroscopy. The thickness of the Cul overlayer was estimated using core level photoemission via a simple two-layer model and through simulated Auger spectra using the Simulation of Electron Spectra for Surface Analysis (SESSA) database. Photoemission spectra taken at the Ti 3p→3d/4s and Cu 3p→3d/4s optical energies show evidence of strong resonances. In case of the Cu resonances, a particularly strong resonance of a satellite structure at 16 eV B.E. at a photon energy of 77 eV is observed. At the same photon energy an antiresonance is found for valence band features associated with the CuI overlayer indicating a strong ligand-hole screening effect. Band bending effects are observed at both CuI anatase and CuI rutile interfaces, consistent with the formation of a p - n junction. Water adsorption on the single crystal anatase TiO[2] (101) surface has been investigated using ultraviolet photoemission spectroscopy (UPS) at room temperature in order to understand the fundamental interaction of water with anatase surfaces. Following water adsorption the spectra contain features at 6.04 and 10.2 eV B

  1. Simultaneous X-ray and Far-Ultraviolet Spectra of AGN with ASCA and HUT

    NASA Technical Reports Server (NTRS)

    Kriss, Gerard A.

    1997-01-01

    We obtained ASCA spectra of the Seyfert 1 galaxy NGC 3516 in March 1995. Simultaneous far-UV observations were obtained with the Hopkins Ultraviolet Telescope on the Astro-2 shuttle mission. The ASCA spectrum shows a lightly absorbed power law of energy index 0.78. The low energy absorbing column is significantly less than previously seen. Prominent 0 VII and 0 VIII absorption edges are visible, but, consistent with the much lower total absorbing column, no Fe K absorption edge is detectable. A weak, narrow Fe K(alpha) emission line from cold material is present as well as a broad Fe K(alpha) line. These features are similar to those reported in other Seyfert 1 galaxies. A single warm absorber model provides only an imperfect description of the low energy absorption. In addition to a highly ionized absorber with ionization parameter U = 1.66 and a total column density of 1.4 x 10(exp 22)/sq cm, adding a lower ionization absorber with U = 0.32 and a total column of 6.9 x 10(exp 21)/sq cm significantly improves the fit. The contribution of resonant line scattering to our warm absorber models limits the Doppler parameter to less than 160 km/s at 90% confidence. Turbulence at the sound speed of the photoionized gas provides the best fit. None of the warm absorber models fit to the X-ray spectrum can match the observed equivalent widths of all the UV absorption lines. Accounting for the X-ray and UV absorption simultaneously requires an absorbing region with a broad range of ionization parameters and column densities.

  2. Quasiparticle spectra from molecules to bulk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlček, Vojtěch; Rabani, Eran; Neuhauser, Daniel

    We present a stochastic cumulant GW method, allowing us to map the evolution of photoemission spectra, quasiparticle energies, lifetimes, and emergence of collective excitations from molecules to bulklike systems with up to thousands of valence electrons, including Si nanocrystals and nanoplatelets. The quasiparticle energies rise due to their coupling with collective shake-up (plasmon) excitations, and this coupling leads to significant spectral weight loss (up to 50% for the low-energy states), shortening the lifetimes and shifting the spectral features to lower energies by as much as 0.6 eV. Such features are common to all the systems studied irrespective of their sizesmore » and shapes. For small and low-dimensional systems the surface plasmon resonances affect the frequency of the collective excitation and position of the satellites.« less

  3. Quasiparticle spectra from molecules to bulk

    DOE PAGES

    Vlček, Vojtěch; Rabani, Eran; Neuhauser, Daniel

    2018-03-16

    We present a stochastic cumulant GW method, allowing us to map the evolution of photoemission spectra, quasiparticle energies, lifetimes, and emergence of collective excitations from molecules to bulklike systems with up to thousands of valence electrons, including Si nanocrystals and nanoplatelets. The quasiparticle energies rise due to their coupling with collective shake-up (plasmon) excitations, and this coupling leads to significant spectral weight loss (up to 50% for the low-energy states), shortening the lifetimes and shifting the spectral features to lower energies by as much as 0.6 eV. Such features are common to all the systems studied irrespective of their sizesmore » and shapes. For small and low-dimensional systems the surface plasmon resonances affect the frequency of the collective excitation and position of the satellites.« less

  4. Retrieving plasmonic near-field information: A quantum-mechanical model for streaking photoelectron spectroscopy of gold nanospheres

    NASA Astrophysics Data System (ADS)

    Li, Jianxiong; Saydanzad, Erfan; Thumm, Uwe

    2016-11-01

    Streaked photoemission from nanostructures is characterized by size- and material-dependent nanometer-scale variations of the induced nanoplasmonic response to the electronic field of the streaking pulse and thus holds promise of allowing photoelectron imaging with both subfemtosecond temporal and nanometer spatial resolution. In order to scrutinize the driven collective electronic dynamics in 10-200-nm-diameter gold nanospheres, we calculated the plasmonic field induced by streaking pulses in the infrared and visible spectral range and developed a quantum-mechanical model for streaked photoemission by extreme ultraviolet pulses. Our simulated photoelectron spectra reveal a significant amplitude enhancement and phase shift of the photoelectron streaking trace relative to calculations that exclude the induced plasmonic field. Both are most pronounced for streaking pulses tuned to the plasmon frequency and retrace the plasmonic electromagnetic field enhancement and phase shift near the nanosphere surface.

  5. Method for outlier detection: a tool to assess the consistency between laboratory data and ultraviolet-visible absorbance spectra in wastewater samples.

    PubMed

    Zamora, D; Torres, A

    2014-01-01

    Reliable estimations of the evolution of water quality parameters by using in situ technologies make it possible to follow the operation of a wastewater treatment plant (WWTP), as well as improving the understanding and control of the operation, especially in the detection of disturbances. However, ultraviolet (UV)-Vis sensors have to be calibrated by means of a local fingerprint laboratory reference concentration-value data-set. The detection of outliers in these data-sets is therefore important. This paper presents a method for detecting outliers in UV-Vis absorbances coupled to water quality reference laboratory concentrations for samples used for calibration purposes. Application to samples from the influent of the San Fernando WWTP (Medellín, Colombia) is shown. After the removal of outliers, improvements in the predictability of the influent concentrations using absorbance spectra were found.

  6. Bypassing the energy-time uncertainty in time-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Randi, Francesco; Fausti, Daniele; Eckstein, Martin

    2017-03-01

    The energy-time uncertainty is an intrinsic limit for time-resolved experiments imposing a tradeoff between the duration of the light pulses used in experiments and their frequency content. In standard time-resolved photoemission, this limitation maps directly onto a tradeoff between the time resolution of the experiment and the energy resolution that can be achieved on the electronic spectral function. Here we propose a protocol to disentangle the energy and time resolutions in photoemission. We demonstrate that dynamical information on all time scales can be retrieved from time-resolved photoemission experiments using suitably shaped light pulses of quantum or classical nature. As a paradigmatic example, we study the dynamical buildup of the Kondo peak, a narrow feature in the electronic response function arising from the screening of a magnetic impurity by the conduction electrons. After a quench, the electronic screening builds up on timescales shorter than the inverse width of the Kondo peak and we demonstrate that the proposed experimental scheme could be used to measure the intrinsic time scales of such electronic screening. The proposed approach provides an experimental framework to access the nonequilibrium response of collective electronic properties beyond the spectral uncertainty limit and will enable the direct measurement of phenomena such as excited Higgs modes and, possibly, the retarded interactions in superconducting systems.

  7. Ultraviolet analysis of the peculiar supergiant HD 112374 = HR 4912

    NASA Technical Reports Server (NTRS)

    Bohm-Vitense, E.; Proffitt, C.

    1984-01-01

    The ultraviolet energy distribution of the metal-poor supergiant HD 112374 is analyzed based on observations from the International Ultraviolet Explorer (IUE) satellite for the region between 1200 and 2000 A. A discontinuity was found in the UV spectra at 2600 A which confirmed the low-abundance of heavy elements found by Luck et al. (1983). Values for effective temperature and log g in HD112374 were consistent with the star being a very luminous Population II semi-regular variable. The full observational results are presented in a table.

  8. Time-dependent many-body treatment of electron-boson dynamics: Application to plasmon-accompanied photoemission

    NASA Astrophysics Data System (ADS)

    Schüler, M.; Berakdar, J.; Pavlyukh, Y.

    2016-02-01

    Recent experiments access the time-resolved photoelectron signal originating from plasmon satellites in correlated materials and address their buildup and decay in real time. Motivated by these developments, we present the Kadanoff-Baym formalism for the nonequilibrium time evolution of interacting fermions and bosons. In contrast to the fermionic case, the bosons are described by second-order differential equations. Solution of the bosonic Kadanoff-Baym equations—which is the central ingredient of this work—requires substantial modification of the usual two-times electronic propagation scheme. The solution is quite general and can be applied to a number of problems, such as the interaction of electrons with quantized photons, phonons, and other bosonic excitations. Here the formalism is applied to the photoemission from a deep core hole accompanied by plasmon excitation. We compute the time-resolved photoelectron spectra and discuss the effects of intrinsic and extrinsic electron energy losses and their interference.

  9. Photoemission from sodium on ice: a mechanism for positive and negative charge coexistence in the mesosphere.

    PubMed

    Vondrak, Tomas; Plane, John M C; Meech, Stephen R

    2006-03-09

    Photoemission from sodium deposited on ice films is described. Deposition of 0.02 ML of sodium is found to dramatically reduce the threshold for photoemission from the ice film to (2.3+/-0.2) eV. Thus, the cross-section for photoemission reaches >10(-18) cm2 in the visible region of the spectrum. It is proposed that the initial state is a solvated electron on the ice surface, which is supported by optical transmission spectroscopy. The potential significance of these results in understanding unexplained charging phenomena in the mesosphere is discussed.

  10. Electronic structure of LiCoO2 thin films: A combined photoemission spectroscopy and density functional theory study

    NASA Astrophysics Data System (ADS)

    Ensling, David; Thissen, Andreas; Laubach, Stefan; Schmidt, Peter C.; Jaegermann, Wolfram

    2010-11-01

    The electronic properties of LiCoO2 have been studied by theoretical band-structure calculations (using density functional theory) and experimental methods (photoemission). Synchrotron-induced photoelectron spectroscopy, resonant photoemission spectroscopy (ResPES), and soft x-ray absorption (XAS) have been applied to investigate the electronic structure of both occupied and unoccupied states. High-quality PES spectra were obtained from stoichiometric and highly crystalline LiCoO2 thin films deposited “in situ” by rf magnetron sputtering. An experimental approach of separating oxygen- and cobalt-derived (final) states by ResPES in the valence-band region is presented. The procedure takes advantage of an antiresonant behavior of cobalt-derived states at the 3p-3d excitation threshold. Information about the unoccupied density of states has been obtained by OK XAS. The structure of the CoL absorption edge is compared to semiempirical charge-transfer multiplet calculations. The experimental results are furthermore compared with band-structure calculations considering three different exchange potentials [generalized gradient approximation (GGA), using a nonlocal Hubbard U (GGA+U) and using a hybrid functional (Becke, three-parameter, Lee-Yang-Parr [B3LYP])]. For these different approaches total density of states and partial valence-band density of states have been investigated. The best qualitative agreement with experimental results has been obtained by using a GGA+U functional with U=2.9eV .

  11. Far-ultraviolet Spectroscopy of the Nova-like Variable KQ Monocerotis: A New SW Sextantis Star?

    NASA Astrophysics Data System (ADS)

    Wolfe, Aaron; Sion, Edward M.; Bond, Howard E.

    2013-06-01

    New optical spectra obtained with the SMARTS 1.5 m telescope and archival International Ultraviolet Explorer (IUE) far-ultraviolet (FUV) spectra of the nova-like variable KQ Mon are discussed. The optical spectra reveal Balmer lines in absorption as well as He I absorption superposed on a blue continuum. The 2011 optical spectrum is similar to the KPNO 2.1 m IIDS spectrum we obtained 33 years earlier except that the Balmer and He I absorption is stronger in 2011. Far-ultraviolet IUE spectra reveal deep absorption lines due to C II, Si III, Si IV, C IV, and He II, but no P Cygni profiles indicative of wind outflow. We present the results of the first synthetic spectral analysis of the IUE archival spectra of KQ Mon with realistic optically thick, steady-state, viscous accretion-disk models with vertical structure and high-gravity photosphere models. We find that the photosphere of the white dwarf (WD) contributes very little FUV flux to the spectrum and is overwhelmed by the accretion light of a steady disk. Disk models corresponding to a WD mass of ~0.6 M ⊙, with an accretion rate of order 10-9 M ⊙ yr-1 and disk inclinations between 60° and 75°, yield distances from the normalization in the range of 144-165 pc. KQ Mon is discussed with respect to other nova-like variables. Its spectroscopic similarity to the FUV spectra of three definite SW Sex stars suggests that it is likely a member of the SW Sex class and lends support to the possibility that the WD is magnetic.

  12. Shuttle-based measurements: GLO ultraviolet earthlimb view

    NASA Astrophysics Data System (ADS)

    Gardner, James A.; Murad, Edmond; Viereck, Rodney A.; Knecht, David J.; Pike, Charles P.; Broadfoot, A. Lyle

    1996-11-01

    The GLO experiment is an on-going shuttle-based spectrograph/imager project that has returned ultraviolet (100 - 400 nm) limb views. High spectral (0.35 nm FWHM) and temporal (4 s) resolution spectra include simultaneous altitude profiles (in the range of 80 - 400 km tangent height with 10 km resolution) of dayglow and nightglow features. Measured emissions include the NO gamma, N2 Vegard-Kaplan and second positive, N2+ first negative, and O2 Herzberg I band systems and both atomic and cation lines of N, O, and Mg. This data represents a low solar activity benchmark for future observations. We report on the status of the GLO project, which included three space flights in 1995, and present spectral data on important ultraviolet band systems.

  13. Catalog of far-ultraviolet objective-prism spectrophotometry: Skylab experiment S-019, ultraviolet steller astronomy

    NASA Technical Reports Server (NTRS)

    Henize, K. G.; Wray, J. D.; Parsons, S. B.; Benedict, G. F.

    1979-01-01

    Ultraviolet stellar spectra in the wavelength region from 1300 to 5000 A (130 to 500) were photographed during the three manned Skylab missions using a 15 cm aperture objective-prism telescope. The prismatic dispersion varied from 58 A mm/1 at 1400 A to 1600 A mm/1 at 3000 A. Approximately 1000 spectra representing 500 stars were measured and reduced to observed fluxes. About 100 stars show absorption lines of Si IV, C IV, or C II. Numerous line features are also recorded in supergiant stars, shell stars, A and F stars, and Wolf-Rayet stars. Most of the stars in the catalog are of spectral class B, with a number of O and A type stars and a sampling of WC, WN, F and C type stars. Spectrophotometric results are tabulated for these 500 stars.

  14. Two-photon photoemission from a copper cathode in an Χ-band photoinjector

    DOE PAGES

    Li, H.; Limborg-Deprey, C.; Adolphsen, C.; ...

    2016-02-24

    This study presents two-photon photoemission from a copper cathode in an X-band photoinjector. We experimentally verified that the electron bunch charge from photoemission out of a copper cathode scales with laser intensity (I) square for 400 nm wavelength photons. We compare this two-photon photoemission process with the single photon process at 266 nm. Despite the high reflectivity (R) of the copper surface for 400 nm photons (R=0.48) and higher thermal energy of photoelectrons (two-photon at 200 nm) compared to 266 nm photoelectrons, the quantum efficiency of the two-photon photoemission process (400 nm) exceeds the single-photon process (266 nm) when themore » incident laser intensity is above 300 GW/cm 2. At the same laser pulse energy (E) and other experimental conditions, emitted charge scales inversely with the laser pulse duration. A thermal emittance of 2.7 mm-mrad per mm root mean square (rms) was measured on our cathode which exceeds by sixty percent larger compared to the theoretical predictions, but this discrepancy is similar to previous experimental thermal emittance on copper cathodes with 266 nm photons. The damage of the cathode surface of our first-generation X-band gun from both rf breakdowns and laser impacts mostly explains this result. Using a 400 nm laser can substantially simplify the photoinjector system, and make it an alternative solution for compact pulsed electron sources.« less

  15. Visualizing the chiral anomaly in Dirac and Weyl semimetals with photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Behrends, Jan; Grushin, Adolfo G.; Ojanen, Teemu; Bardarson, Jens H.

    2016-02-01

    Quantum anomalies are the breaking of a classical symmetry by quantum fluctuations. They dictate how physical systems of diverse nature, ranging from fundamental particles to crystalline materials, respond topologically to external perturbations, insensitive to local details. The anomaly paradigm was triggered by the discovery of the chiral anomaly that contributes to the decay of pions into photons and influences the motion of superfluid vortices in 3He-A. In the solid state, it also fundamentally affects the properties of topological Weyl and Dirac semimetals, recently realized experimentally. In this work we propose that the most identifying consequence of the chiral anomaly, the charge density imbalance between fermions of different chirality induced by nonorthogonal electric and magnetic fields, can be directly observed in these materials with the existing technology of photoemission spectroscopy. With angle resolution, the chiral anomaly is identified by a characteristic note-shaped pattern of the emission spectra, originating from the imbalanced occupation of the bulk states and a previously unreported momentum dependent energy shift of the surface state Fermi arcs. We further demonstrate that the chiral anomaly likewise leaves an imprint in angle averaged emission spectra, facilitating its experimental detection. Thereby, our work provides essential theoretical input to foster the direct visualization of the chiral anomaly in condensed matter, in contrast to transport properties, such as negative magnetoresistance, which can also be obtained in the absence of a chiral anomaly.

  16. ULTRAVIOLET SPECTROSCOPY OF PQ Gem AND V405 Aur FROM THE HST AND IUE SATELLITES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanad, M. R., E-mail: mrsanad1@yahoo.com

    Ultraviolet spectra of two intermediate polars (IPs), PQ Gem and V405 Aur, observed with Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph and Faint Object Spectrograph and International Ultraviolet Explorer (IUE) satellites were analyzed during the period between 1994–2000. We estimated the reddening of the two systems from the 2200 Å feature. Six spectra of the two systems revealing modulations of line fluxes at different times are presented. PQ Gem and V405 Aur are featured by spectral lines in different ionization states. This paper focuses on the third ionized carbon emission line at 1550 Å and the first ionized heliummore » emission line at 1640 Å produced in the optically thin outer region of the accretion curtain for the two systems by calculating spectral line fluxes. From HST and IUE data, we deduced ultraviolet luminosities and ultraviolet accretion rates for the two binary stars. The average temperature of the accretion streams for PQ Gem and V405 Aur are ∼4500 K and 4100 K, respectively. The results reveal that there are modulations in fluxes of spectral lines, ultraviolet luminosities, and ultraviolet accretion rates with time for both systems. These modulations are referred to the changes of both density and temperature as a result of the variations of mass transfer rate from the secondary star to the primary star. The current results are consistent with an accretion curtain model for IPs.« less

  17. Electronic structure of charge-density-wave state in quasi-2D KMo6O17 purple bronze characterized by angle resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Valbuena, M. A.; Avila, J.; Drouard, S.; Guyot, H.; Asensio, M. C.

    2006-01-01

    We report on an angle-resolved-photoemission spectroscopy (ARPES) investigation of layered quasi-two dimensional (2D) Molybdenum purple bronze KMo6O17 in order to study and characterizes the transition to a charge-density-wave (CDW) state. We have performed photoemission temperature dependent measurements cooling down from room temperature (RT) to 32 K, well below the Peierls transition for this material, with CDW transition temperature Tc =110 K. The spectra have been taken at a selected kF point of the Fermi surface (FS) that satisfies the nesting condition of the FS, looking for the characteristic pseudo-gap opening in this kind of materials. The pseudogap has been estimated and it result to be in agreement with our previous works. The shift to lower binding energy of crossing Fermi level ARPES feature have been also confirmed and studied as a function of temperature, showing a rough like BCS behaviour. Finally we have also focused on ARPES measurements along ΓM¯ high symmetry direction for both room and low temperature states finding some insight for ‘shadow’ or back folded bands indicating the new periodicity of real lattice after the CDW lattice distortion.

  18. Algorithms for classification of astronomical object spectra

    NASA Astrophysics Data System (ADS)

    Wasiewicz, P.; Szuppe, J.; Hryniewicz, K.

    2015-09-01

    Obtaining interesting celestial objects from tens of thousands or even millions of recorded optical-ultraviolet spectra depends not only on the data quality but also on the accuracy of spectra decomposition. Additionally rapidly growing data volumes demands higher computing power and/or more efficient algorithms implementations. In this paper we speed up the process of substracting iron transitions and fitting Gaussian functions to emission peaks utilising C++ and OpenCL methods together with the NOSQL database. In this paper we implemented typical astronomical methods of detecting peaks in comparison to our previous hybrid methods implemented with CUDA.

  19. Typical ultraviolet spectra in combination with diagnostic mass fragmentation analysis for the rapid and comprehensive profiling of chlorogenic acids in the buds of Lonicera macranthoides.

    PubMed

    Zhang, Shui-Han; Hu, Xin; Shi, Shu-Yun; Huang, Lu-Qi; Chen, Wei; Chen, Lin; Cai, Ping

    2016-05-01

    A major challenge of profiling chlorogenic acids (CGA) in natural products is to effectively detect unknown or minor isomeric compounds. Here, we developed an effective strategy, typical ultraviolet (UV) spectra in combination with diagnostic mass fragmentation analysis based on HPLC-DAD-QTOF-MS/MS, to comprehensively profile CGA in the buds of Lonicera macranthoides. First, three CGA UV patterns were obtained by UV spectra screening. Second, 13 types of CGA classified by molecular weights were found by thorough analysis of CGA peaks using high-resolution MS. Third, selected ion monitoring (SIM) was carried out for each type of CGA to avoid overlooking of minor ones. Fourth, MS/MS spectra of each CGA were investigated. Then 70 CGA were identified by matching their UV spectra, accurate mass signals and fragmentation patterns with standards or previously reported compounds, including six caffeoylquinic acids (CQA), six diCQA, one triCQA, three caffeoylshikimic acids (CSA), six diCSA, one triCSA, three p-coumaroylquinic acids (pCoQA), four p-coumaroylcaffeoylquinic acids (pCoCQA), four feruloylquinic acids (FQA), five methyl caffeoylquinates (MCQ), three ethyl caffeoylquinates (ECQ), three dimethoxycinnamoylquinic acids (DQA), six caffeoylferuloylquinic acids (CFQA), six methyl dicaffeoylquinates (MdiCQ), four FQA glycosides (FQAG), six MCQ glycosides (MCQG), and three ethyl dicaffeoylquinates (EdiCQ). Forty-five of them were discovered from Lonicera species for the first time, and it is noted that CGA profiles were investigated for the first time in L. macranthoides. Results indicated that the developed method was a useful approach to explore unknown and minor isomeric compounds from complex natural products.

  20. Synthetic IRIS spectra of the solar transition region: Effect of high-energy tails

    NASA Astrophysics Data System (ADS)

    Dzifčáková, E.; Vocks, C.; Dudík, J.

    2017-06-01

    Aims: The solar transition region satisfies the conditions for presence of non-Maxwellian electron energy distributions with high-energy tails at energies corresponding to the ionization potentials of many ions emitting in the extreme-ultraviolet and ultraviolet portions of the spectrum. Methods: We calculate the synthetic Si iv, O iv, and S iv spectra in the far ultraviolet channel of the Interface Region Imaging Spectrograph (IRIS). Ionization, recombination, and excitation rates are obtained by integration of the cross-sections or their approximations over the model electron distributions considering particle propagation from the hotter corona. Results: The ionization rates are significantly affected by the presence of high-energy tails. This leads to the peaks of the relative abundance of individual ions to be broadened with pronounced low-temperature shoulders. As a result, the contribution functions of individual lines observable by IRIS also exhibit low-temperature shoulders, or their peaks are shifted to temperatures an order of magnitude lower than for the Maxwellian distribution. The integrated emergent spectra can show enhancements of Si iv compared to O iv by more than a factor of two. Conclusions: The high-energy particles can have significant impact on the emergent spectra and their presence needs to be considered even in situations without strong local acceleration.

  1. Ultraviolet reflectance properties of asteroids

    NASA Astrophysics Data System (ADS)

    Butterworth, P. S.; Meadows, A. J.

    1985-05-01

    An analysis of the UV spectra of 28 asteroids obtained with the Internal Ultraviolet Explorer (IUE) satellite is presented. The spectra lie within the range 2100-3200 A. The results are examined in terms of both asteroid classification and of current ideas concerning the surface mineralogy of asteroids. For all the asteroids examined, UV reflectivity declines approximately linearly toward shorter wavelengths. In general, the same taxonomic groups are seen in the UV as in the visible and IR, although there is some evidence for asteroids with anomalous UV properties and for UV subclasses within the S class. No mineral absorption features are reported of strength similar to the strongest features in the visible and IR regions, but a number of shallow absorptions do occur and may provide valuable information on the surface composition of many asteroids.

  2. Photoemission from buried interfaces in SrTiO3/LaTiO3 superlattices.

    PubMed

    Takizawa, M; Wadati, H; Tanaka, K; Hashimoto, M; Yoshida, T; Fujimori, A; Chikamatsu, A; Kumigashira, H; Oshima, M; Shibuya, K; Mihara, T; Ohnishi, T; Lippmaa, M; Kawasaki, M; Koinuma, H; Okamoto, S; Millis, A J

    2006-08-04

    We have measured photoemission spectra of SrTiO3/LaTiO3 superlattices with a topmost SrTiO3 layer of variable thickness. A finite coherent spectral weight with a clear Fermi cutoff was observed at chemically abrupt SrTiO3/LaTiO3 interfaces, indicating that an "electronic reconstruction" occurs at the interface between the Mott insulator LaTiO3 and the band insulator SrTiO3. For SrTiO3/LaTiO3 interfaces annealed at high temperatures (approximately 1000 degrees C), which leads to Sr/La atomic interdiffusion and hence to the formation of La(1-x)Sr(x)TiO3-like material, the intensity of the incoherent part was found to be dramatically reduced whereas the coherent part with a sharp Fermi cutoff was enhanced due to the spread of charge. These important experimental features are well reproduced by layer dynamical-mean-field-theory calculation.

  3. Vacuum-ultraviolet lasers and spectroscopy

    NASA Astrophysics Data System (ADS)

    Hollenstein, U.

    2012-01-01

    Single-photon ionisation of most atoms and molecules requires short-wavelength radiation, typically in the vacuum-ultraviolet (VUV, λ < 200 nm) or extreme ultraviolet (XUV, λ < 105 nm) region of the electromagnetic spectrum. The first VUV and XUV radiation sources used to study molecular photoabsorption and photoionisation spectra were light sources emitting a broad continuous spectrum, such as high pressure lamps or synchrotrons. Monochromatic VUV and XUV radiation was obtained using diffraction gratings in evacuated monochromators, which resulted in a resolving power ν/Δv of at best 106 (i. e. 0.1 cm-1 at 100 000 cm-1), but more typically in the range 104-105 . The invention of the laser and the development of nonlinear optical frequency-upconversion techniques enabled the development of table-top narrow-bandwidth, coherent VUV and XUV laser sources with which VUV photoabsorption, photoionisation and photoelectron spectra of molecules can be recorded at much higher resolution, the best sources having bandwidths better than 50 MHz. Such laser sources are ideally suited to study the structure and dynamics of electronically excited states of atoms and molecules and molecular photoionisation using photoabsorption, photoionisation and photoelectron spectroscopy. This chapter presents the general principles that are exploited to generate tunable narrow-band laser radiation below 200 nm and describes spectroscopic methods such as photoabsorption spectroscopy, photoionisation spectroscopy and threshold photoelectron spectroscopy that relay on the broad tunability and narrow-bandwidth of VUV radiation sources.

  4. Highly efficient and stable ultraviolet photocathode based on nanodiamond particles

    NASA Astrophysics Data System (ADS)

    Velardi, L.; Valentini, A.; Cicala, G.

    2016-02-01

    Nanodiamond (ND) layers on silicon substrate are deposited by the pulsed spray technique starting from nanoparticles of about 250 nm dispersed in 1,2-dichloroethane solvent. The aim of this letter is to investigate the quantum efficiency (QE) of photocathodes based on ND particles in the vacuum ultraviolet spectral range. Various ND layers are examined employing as-received and hydrogenated nanoparticles. As expected, the hydrogen plasma treatment improves strongly the photoemission of the layer giving a QE of 22% at 146 nm. Indeed, this efficiency value is achieved only if the particles are treated in H2 microwave plasma before the growth of the sprayed layer rather than to hydrogenate the already formed one. These QE values are higher than those of photocathodes based on plasma chemical vapor deposition diamond films, but with the advantage of being much stable, too. The highest QE values are explained to be due to the intrinsic chemical and structural features of utilized ND particles.

  5. Doing Solar Science With Extreme-ultraviolet and X-ray High Resolution Imaging Spectroscopy

    NASA Astrophysics Data System (ADS)

    Doschek, G. A.

    2005-12-01

    In this talk I will demonstrate how high resolution extreme-ultraviolet (EUV) and/or X-ray imaging spectroscopy can be used to provide unique information for solving several current key problems of the solar atmosphere, e.g., the morphology and reconnection site of solar flares, the structure of the transition region, and coronal heating. I will describe the spectra that already exist relevant to these problems and what the shortcomings of the data are, and how an instrument such as the Extreme-ultraviolet Imaging Spectrometer (EIS) on Solar-B as well as other proposed spectroscopy missions such as NEXUS and RAM will improve on the existing observations. I will discuss a few particularly interesting properties of the spectra and atomic data for highly ionized atoms that are important for the science problems.

  6. Evidence for a Trapped Radical (OH) on Ariel, Oberon, and Titania from Hubble Space Telescope Ultraviolet Spectra

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Noll, Keith S.; Pendleton, Yvonne J.; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    The moons Ariel, Titania, and Oberon have orbits lying within the magnetosphere of Uranus, exposing them to particle irradiation from trapped Ions. This Is similar to the situation experienced by the jovian moons Europa, Ganymede, and Callisto, as well as the saturnian satellites Enceladus, Tethys, Dione, and Rhea. Identification of SO2 on Europa, Ganymede and Callisto, and O3 on Ganymede, Rhea, and Dione has supported suggestions that chemical modifications occur on icy bodies due to ion bombardment associated with the particles entrained within the magnetospheric fields of Jupiter and Saturn. Similar to the Jovian and saturnian satellites mentioned above, water ice is a major component on the larger uranian satellites", thus one might anticipate chemical modification to he an important process in the uranian system. Laboratory studies or the interaction of ultraviolet (uv) and charged-particle radiation with water ice show that in addition to molecular species, a variety of radicals are also produced. We report here evidence for an uv absorption feature in the spectra of Ariel, Titania, and Oberon that we identify as due, in part, to OH; providing the first evidence of a radical produced and trapped on an icy moon within our solar system.

  7. Experimental investigation on large-area dielectric barrier discharge in atmospheric nitrogen and air assisted by the ultraviolet lamp.

    PubMed

    Zhang, Yan; Gu, Biao; Wang, Wenchun; Wang, Dezhen; Peng, Xuwen

    2009-04-01

    In this paper, ultraviolet radiation produced by the ultraviolet lamp is employed to supply pre-ionization for the dielectric barrier discharge in N(2) or air at atmospheric pressure. The effect of the ultraviolet pre-ionization on improving the uniformity of the dielectric barrier discharge is investigated experimentally. The atmospheric pressure glow discharge of the large area (270 mm x 120 mm) is obtained successfully via the ultraviolet pre-ionization in atmospheric DBD in N(2) when the gas gap decrease to 3mm. Based on the emission spectra, the mechanism which ultraviolet pre-ionization improves the uniformity of the dielectric barrier discharge is discussed.

  8. Ultraviolet Spectroscopy of Supernovae: The First Two Years of Swift Observations

    NASA Technical Reports Server (NTRS)

    Immler, Stefan

    2008-01-01

    We present the entire sample of ultraviolet (1JV) spectra of supernovae (SNe) obtained with the Ultraviolet/Optical Telescope (UVOT) on board the Swift satellite during the first 2 years of observations (2005/2006). A total of 31 UV-grism and 22 V-grism spectra of 9 supernovae (SNe) have been collected. of which 6 are thermonuclear (type Ia) and 3 core collapse (type Ibc/II) SNe. All the spectra have been obtained during the photospheric phase. After a comparison of the spectra of our sample with those in the literature (SNe 1992A. 1990N and 1999em). we confirm some degree of diversity in the UV emission of Type Ia SNe and a greater homogeneity in the Type I1 Plateau SN sample. Signatures of interaction between the ejecta and the circumstellar environment have been found in the UV spectrum of SN 2006jc, the only SN Type Ib/c for which UVOT grism data are available. Currently, Swift LJVOT is the best suited instrument for early SN studies in the UV due to its fast response and flexible scheduling capabilities. However. in order to increase the quality of the data and significantly improve our understanding of the lJV properties of SNe and to fully maximize the scientific potential of UVOT grism observations. a larger investment in obsening time and longer exposures are needed.

  9. Surface and electronic structure of Bi-Ca-Sr-Cu-O superconductors studied by LEED, UPS and XPS

    NASA Astrophysics Data System (ADS)

    Shen, Z.-X.; Lindberg, P. A. P.; Wells, B. O.; Lindau, I.; Spicer, W. E.; Mitzi, D. B.; Eom, C. B.; Kapitulnik, A.; Geballe, T. H.; Soukiassian, P.

    1989-02-01

    Single crystal and polycrystalline samples of Bi2CaSr2Cu2O8 have been studied by various surface sensitive techniques, including low energy electron diffraction (LEED), ultraviolet photoemission spectroscopy (UPS) and x-ray photoemission spectroscopy (XPS). The surface structure of the single crystals was characterized by LEED to be consistent with that of the bulk structure. Our data suggest that Bi2CaSr2Cu2O8 single crystals are very stable in the ultrahigh vacuu. No change of XPS spectra with temperature was observed. We have also studied the electronic structure of Bi2Sr2CuO6, which has a lower superconducting transition temperature Tc. Comparing the electronic structure of the two Bi-Ca-Sr-Cu-O superconductors, an important difference in the density of states near EF was observed which seems to be related to the difference in Tc.

  10. Can the circadian system of a diurnal and a nocturnal rodent entrain to ultraviolet light?

    PubMed

    Hut, R A; Scheper, A; Daan, S

    2000-01-01

    Spectral measurements of sunlight throughout the day show close correspondence between the timing of above ground activity of the European ground squirrel and the presence of ultraviolet light in the solar spectrum. However, in a standard entrainment experiment ground squirrels show no entrainment to ultraviolet light, while Syrian hamsters do entrain under the same protocol. Presented transmittance spectra for lenses, corneas, and vitreous bodies may explain the different results of the entrainment experiment. We found ultraviolet light transmittance in the colourless hamster lens (50% cut-off at 341 nm), but not in the yellow ground squirrel lens (50% cut-off around 493 nm). Ultraviolet sensitivity in the ground squirrels based upon possible fluorescence mechanisms was not evident. Possible functions of ultraviolet lens filters in diurnal mammals are discussed, and compared with nocturnal mammals and diurnal birds. Species of the latter two groups lack ultraviolet filtering properties of their lenses and their circadian system is known to respond to ultraviolet light, a feature that does not necessarily has to depend on ultraviolet photoreceptors. Although the circadian system of several species responds to ultraviolet light, we argue that the role of ultraviolet light as a natural Zeitgeber is probably limited.

  11. Structure, spectra and antioxidant action of ascorbic acid studied by density functional theory, Raman spectroscopic and nuclear magnetic resonance techniques.

    PubMed

    Singh, Gurpreet; Mohanty, B P; Saini, G S S

    2016-02-15

    Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Metal/silicon Interfaces and Their Oxidation Behavior - Photoemission Spectroscopy Analysis.

    NASA Astrophysics Data System (ADS)

    Yeh, Jyh-Jye

    Synchrotron radiation photoemission spectroscopy was used to study Ni/Si and Au/Si interface properties on the atomic scale at room temperature, after high temperature annealing and after oxygen exposures. Room temperature studies of metal/Si interfaces provide background for an understanding of the interface structure after elevated temperature annealing. Oxidation studies of Si surfaces covered with metal overlayers yield insight about the effect of metal atoms in the Si oxidation mechanisms and are useful in the identification of subtle differences in bonding relations between atoms at the metal/Si interfaces. Core level and valence band spectra with variable surface sensitivities were used to study the interactions between metal, Si, and oxygen for metal coverages and oxide thickness in the monolayer region. Interface morphology at the initial stage of metal/Si interface formation and after oxidation was modeled on the basis of the evolutions of metal and Si signals at different probing depths in the photoemission experiment. Both Ni/Si and Au/Si interfaces formed at room temperature have a diffusive region at the interface. This is composed of a layer of metal-Si alloy, formed by Si outdiffusion into the metal overlayer, above a layer of interstitial metal atoms in the Si substrate. Different atomic structures of these two regions at Ni/Si interface can account for the two different growth orientations of epitaxial Ni disilicides on the Si(111) surface after thermal annealing. Annealing the Au/Si interface at high temperature depletes all the Au atoms except for one monolayer of Au on the Si(111) surface. These phenomena are attributed to differences in the metal-Si chemical bonding relations associated with specific atomic structures. After oxygen exposures, both the Ni disilicide surface and Au covered Si surfaces (with different coverages and surface orderings) show silicon in higher oxidation states, in comparison to oxidized silicon on a clean surface

  13. Surface intervalley scattering on GaAs(110) studied with picosecond laser photoemission

    NASA Astrophysics Data System (ADS)

    Haight, R.; Silberman, J. A.

    1990-01-01

    Laser-based photoemission sources provide the unique opportunity to study dynamic electronic processes at surfaces and interfaces. Using angle-resolved, laser photoemission with < 1 ps time resolution, we have directly observed a new surface band at the X¯ point in the GaAs(110) surface Brillouin zone. The appearance of electron population in this valley occurs only as a result of scattering from the directly photoexcited valley at overlineГ. The momentum resolution of our experiment has permitted us to isolate the dynamic electron population changes at both overlineГ and X¯ and to deduce the scattering time between the two valleys.

  14. The laser desorption/laser ionization mass spectra of some anti-inflammatory drugs

    NASA Astrophysics Data System (ADS)

    Milnes, John; Rogers, Kevin; Jones, Sian; Gormally, John

    1994-03-01

    The IR laser desorption/ultraviolet laser ionization time-of-flight mass spectra are reported for the anti-inflammatory drugs indomethacin, acemetacin, ibuprofen, flurbiprofen, diflunisal and mefenamic acid. It is found that the six compounds can be readily ionized by two photon absorption at a fixed wavelength of 266 nm. Mass spectra have been obtained under conditions of high ionizing irradiance and the observed fragmentation behaviour is discussed.

  15. Inverse opal with an ultraviolet photonic gap

    NASA Astrophysics Data System (ADS)

    Ni, Peigen; Cheng, Bingying; Zhang, Daozhong

    2002-03-01

    Photonic crystals composed of TiO2 and air voids fabricated by the template method exhibit an ultraviolet photonic stop band (˜380 nm) in the Γ-L direction. Scanning electron microscopy images show that the inverse opal possesses face-centered-cubic symmetry with a lattice constant of 240 nm. The transmission spectra show that the change in transmittance is one order of magnitude in the gap, which is in accord with the reflection spectrum.

  16. Ultra-violet and visible absorption characterization of explosives by differential reflectometry.

    PubMed

    Dubroca, Thierry; Moyant, Kyle; Hummel, Rolf E

    2013-03-15

    This study presents some optical properties of TNT (2,4,6-trinitrotoluene), RDX, HMX and tetryl, specifically their absorption spectra as a function of concentration in various solvents in the ultraviolet and visible portion of the electromagnetic spectrum. We utilize a standoff explosives detection method, called differential reflectometry (DR). TNT was diluted in six different solvents (acetone, acetonitrile, ethanol, ethyl acetate, methanol, and toluene), which allowed for a direct comparison of absorption features over a wide range of concentrations. A line-shape analysis was adopted with great accuracy (R(2)>0.99) to model the absorption features of TNT in differential reflectivity spectra. We observed a blue shift in the pertinent absorption band with decreasing TNT concentration for all solvents. Moreover, using this technique, it was found that for all utilized solvents the concentration of TNT as well as of RDX, HMX, and tetryl, measured as a function of the transition wavelength of the ultra-violet absorption edge in differential reflectivity spectra shows three distinct regions. A model is presented to explain this behavior which is based on intermolecular hydrogen bonding of explosives molecules with themselves (or lack thereof) at different concentrations. Other intermolecular forces such as dipole-dipole interactions, London dispersion forces and π-stacking contribute to slight variations in the resulting spectra, which were determined to be rather insignificant in comparison to hydrogen bonding. The results are aimed towards a better understanding of the DR spectra of explosives energetic materials. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Angle-resolved photoemission spectroscopy with quantum gas microscopes

    NASA Astrophysics Data System (ADS)

    Bohrdt, A.; Greif, D.; Demler, E.; Knap, M.; Grusdt, F.

    2018-03-01

    Quantum gas microscopes are a promising tool to study interacting quantum many-body systems and bridge the gap between theoretical models and real materials. So far, they were limited to measurements of instantaneous correlation functions of the form 〈O ̂(t ) 〉 , even though extensions to frequency-resolved response functions 〈O ̂(t ) O ̂(0 ) 〉 would provide important information about the elementary excitations in a many-body system. For example, single-particle spectral functions, which are usually measured using photoemission experiments in electron systems, contain direct information about fractionalization and the quasiparticle excitation spectrum. Here, we propose a measurement scheme to experimentally access the momentum and energy-resolved spectral function in a quantum gas microscope with currently available techniques. As an example for possible applications, we numerically calculate the spectrum of a single hole excitation in one-dimensional t -J models with isotropic and anisotropic antiferromagnetic couplings. A sharp asymmetry in the distribution of spectral weight appears when a hole is created in an isotropic Heisenberg spin chain. This effect slowly vanishes for anisotropic spin interactions and disappears completely in the case of pure Ising interactions. The asymmetry strongly depends on the total magnetization of the spin chain, which can be tuned in experiments with quantum gas microscopes. An intuitive picture for the observed behavior is provided by a slave-fermion mean-field theory. The key properties of the spectra are visible at currently accessible temperatures.

  18. The far-ultraviolet spectra and geometric albedos of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Clarke, J. T.; Moos, H. W.; Feldman, P. D.

    1982-01-01

    Spectra and geometric albedoes in the range 1200 to 1940 A are compiled for Jupiter and Saturn on the basis of IUE observations. The spectra of both planets are dominated by H Lyman-alpha emission line at 1216 A, although absorption bands of C2H2 are apparent at longer wavelengths, particularly in the spectrum of Saturn, and the C I line at 1657 A is also observed. Geometric albedoes show emission features corresponding to the weak H2 Lyman and Werner bands around 1230-1280 A, auroral Lyman band emission, C I emission, and C2H2 absorption from 1600 to 1900 A. A model of atmospheric absorption in homogeneously mixed atmospheres of H2 and trace molecular absorbers is then presented and fit to the Jupiter albedo, resulting in a predicted atmosphere containing C2H2 and an unidentified molecular or particulate absorber. Finally, north-south maps of Jupiter continuum emission show limb darkening, and a comparison of equatorial and polar spectra indicates a polar increase in C2H2 absorption and weaker polar H2 emissions than previously reported.

  19. Rotatable spin-polarized electron source for inverse-photoemission experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolwijk, S. D., E-mail: Sebastian.Stolwijk@wwu.de; Wortelen, H.; Schmidt, A. B.

    2014-01-15

    We present a ROtatable Spin-polarized Electron source (ROSE) for the use in spin- and angle-resolved inverse-photoemission (SR-IPE) experiments. A key feature of the ROSE is a variable direction of the transversal electron beam polarization. As a result, the inverse-photoemission experiment becomes sensitive to two orthogonal in-plane polarization directions, and, for nonnormal electron incidence, to the out-of-plane polarization component. We characterize the ROSE and test its performance on the basis of SR-IPE experiments. Measurements on magnetized Ni films on W(110) serve as a reference to demonstrate the variable spin sensitivity. Moreover, investigations of the unoccupied spin-dependent surface electronic structure of Tl/Si(111)more » highlight the capability to analyze complex phenomena like spin rotations in momentum space. Essentially, the ROSE opens the way to further studies on complex spin-dependent effects in the field of surface magnetism and spin-orbit interaction at surfaces.« less

  20. Photoemission and photoionization time delays and rates

    PubMed Central

    Gallmann, L.; Jordan, I.; Wörner, H. J.; Castiglioni, L.; Hengsberger, M.; Osterwalder, J.; Arrell, C. A.; Chergui, M.; Liberatore, E.; Rothlisberger, U.; Keller, U.

    2017-01-01

    Ionization and, in particular, ionization through the interaction with light play an important role in fundamental processes in physics, chemistry, and biology. In recent years, we have seen tremendous advances in our ability to measure the dynamics of photo-induced ionization in various systems in the gas, liquid, or solid phase. In this review, we will define the parameters used for quantifying these dynamics. We give a brief overview of some of the most important ionization processes and how to resolve the associated time delays and rates. With regard to time delays, we ask the question: how long does it take to remove an electron from an atom, molecule, or solid? With regard to rates, we ask the question: how many electrons are emitted in a given unit of time? We present state-of-the-art results on ionization and photoemission time delays and rates. Our review starts with the simplest physical systems: the attosecond dynamics of single-photon and tunnel ionization of atoms in the gas phase. We then extend the discussion to molecular gases and ionization of liquid targets. Finally, we present the measurements of ionization delays in femto- and attosecond photoemission from the solid–vacuum interface. PMID:29308414

  1. Upgrade of beamline BL08B at Taiwan Light Source from a photon-BPM to a double-grating SGM beamline.

    PubMed

    Yuh, Jih Young; Lin, Shan Wei; Huang, Liang Jen; Fung, Hok Sum; Lee, Long Life; Chen, Yu Joung; Cheng, Chiu Ping; Chin, Yi Ying; Lin, Hong Ji

    2015-09-01

    During the last 20 years, beamline BL08B has been upgraded step by step from a photon beam-position monitor (BPM) to a testing beamline and a single-grating beamline that enables experiments to record X-ray photo-emission spectra (XPS) and X-ray absorption spectra (XAS) for research in solar physics, organic semiconductor materials and spinel oxides, with soft X-ray photon energies in the range 300-1000 eV. Demands for photon energy to extend to the extreme ultraviolet region for applications in nano-fabrication and topological thin films are increasing. The basic spherical-grating monochromator beamline was again upgraded by adding a second grating that delivers photons of energy from 80 to 420 eV. Four end-stations were designed for experiments with XPS, XAS, interstellar photoprocess systems (IPS) and extreme-ultraviolet lithography (EUVL) in the scheduled beam time. The data from these experiments show a large count rate in core levels probed and excellent statistics on background normalization in the L-edge adsorption spectrum.

  2. Tunable absorption resonances in the ultraviolet for InP nanowire arrays.

    PubMed

    Aghaeipour, Mahtab; Anttu, Nicklas; Nylund, Gustav; Samuelson, Lars; Lehmann, Sebastian; Pistol, Mats-Erik

    2014-11-17

    The ability to tune the photon absorptance spectrum is an attracting way of tailoring the response of devices like photodetectors and solar cells. Here, we measure the reflectance spectra of InP substrates patterned with arrays of vertically standing InP nanowires. Using the reflectance spectra, we calculate and analyze the corresponding absorptance spectra of the nanowires. We show that we can tune absorption resonances for the nanowire arrays into the ultraviolet by decreasing the diameter of the nanowires. When we compare our measurements with electromagnetic modeling, we generally find good agreement. Interestingly, the remaining differences between modeled and measured spectra are attributed to a crystal-phase dependence in the refractive index of InP. Specifically, we find indication of significant differences in the refractive index between the modeled zinc-blende InP nanowires and the measured wurtzite InP nanowires in the ultraviolet. We believe that such crystal-phase dependent differences in the refractive index affect the possibility to excite optical resonances in the large wavelength range of 345 < λ < 390 nm. To support this claim, we investigated how resonances in nanostructures can be shifted in wavelength by geometrical tuning. We find that dispersion in the refractive index can dominate over geometrical tuning and stop the possibility for such shifting. Our results open the door for using crystal-phase engineering to optimize the absorption in InP nanowire-based solar cells and photodetectors.

  3. Vacuum ultraviolet photoabsorption of prime ice analogues of Pluto and Charon

    NASA Astrophysics Data System (ADS)

    Pavithraa, S.; Lo, J.-I.; Rahul, K.; Raja Sekhar, B. N.; Cheng, B.-M.; Mason, N. J.; Sivaraman, B.

    2018-02-01

    Here we present the first Vacuum UltraViolet (VUV) photoabsorption spectra of ice analogues of Pluto and Charon ice mixtures. For Pluto the ice analogue is an icy mixture containing nitrogen (N2), carbon monoxide (CO), methane (CH4) and water (H2O) prepared with a 100:1:1:3 ratio, respectively. Photoabsorption of icy mixtures with and without H2O were recorded and no significant changes in the spectra due to presence of H2O were observed. For Charon a VUV photoabsorption spectra of an ice analogue containing ammonia (NH3) and H2O prepared with a 1:1 ratio was recorded, a spectrum of ammonium hydroxide (NH4OH) was also recorded. These spectra may help to interpret the P-Alice data from New Horizons.

  4. Galileo Ultraviolet Spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Hord, C. W.; Mcclintock, W. E.; Stewart, A. I. F.; Barth, C. A.; Esposito, L. W.; Thomas, G. E.; Sandel, B. R.; Hunten, D. M.; Broadfoot, A. L.; Shemansky, D. E.

    1992-01-01

    The Galileo ultraviolet spectrometer experiment uses data obtained by the Ultraviolet Spectrometer (UVS) mounted on the pointed orbiter scan platform and from the Extreme Ultraviolet Spectrometer (EUVS) mounted on the spinning part of the orbiter with the field of view perpendicular to the spin axis. The UVS is a Ebert-Fastie design that covers the range 113-432 nm with a wavelength resolution of 0.7 nm below 190 and 1.3 nm at longer wavelengths. The UVS spatial resolution is 0.4 deg x 0.1 deg for illuminated disk observations and 1 deg x 0.1 deg for limb geometries. The EUVS is a Voyager design objective grating spectrometer, modified to cover the wavelength range from 54 to 128 nm with wavelength resolution 3.5 nm for extended sources and 1.5 nm for point sources and spatial resolution of 0.87 deg x 0.17 deg. The EUVS instrument will follow up on the many Voyager UVS discoveries, particularly the sulfur and oxygen ion emissions in the Io torus and molecular and atomic hydrogen auroral and airglow emissions from Jupiter. The UVS will obtain spectra of emission, absorption, and scattering features in the unexplored, by spacecraft, 170-432 nm wavelength region. The UVS and EUVS instruments will provide a powerful instrument complement to investigate volatile escape and surface composition of the Galilean satellites, the Io plasma torus, micro- and macro-properties of the Jupiter clouds, and the composition structure and evolution of the Jupiter upper atmosphere.

  5. IUE's treasure-chest of the ultraviolet Universe

    NASA Astrophysics Data System (ADS)

    1997-11-01

    IUE was the most long-lived and (by a wide margin) the most productive satellite so far, in the history of space astronomy. After going into orbit on 26 January 1978, as a NASA-ESA-UK project, IUE was meant to operate for three years. More than eighteen years later, IUE still worked 24 hours a day, harvesting new knowledge for astronomers. The last observations were made from ESA's ground station at Villafranca, Spain, on 26 September 1996, and IUE was switched off four days later. Since then, team members at Villafranca and at NASAs Goddard Space Flight Center have used modern data-processing and information technology to recycle 100,000 ultraviolet spectra of comets, planets, stars, galaxies and quasars, acquired by IUE during its 18.5 years of operations. As a result, the IUE Final Archive is already available on-line via the Internet to hundreds of users who have registered to work with the data. The last few items (about 2 per cent of the total) will be added before the end of November. Also to be presented at the Sevilla conference is ESA's system called INES ("IUE Newly Extracted Spectra") which offers access, selection and distribution of data products, in a thoroughly user-friendly fashion. The IUE Final Archive is the third massive compendium made available to the worlds astronomers by ESA in 1997. The Hipparcos and Tycho Catalogues, released earlier in the year, give the positions of stars with unprecedented accuracy, thanks to ESA's Hipparcos satellite. "Space astronomy has set the example in providing a high standard of data quality and making the data accessible to the scientific community through archives", says Roger Bonnet, ESA's Scientific Director. "Now, ground-based observatories are following suit. The data legacy of IUE will be distributed to he community so that research on IUE data can continue long after the end of IUE's lifetime in space". Wonders of ultraviolet spectroscopy IUE analysed ultraviolet light, in a wavelength range from 1150

  6. Genuine binding energy of the hydrated electron

    PubMed Central

    Luckhaus, David; Yamamoto, Yo-ichi; Suzuki, Toshinori; Signorell, Ruth

    2017-01-01

    The unknown influence of inelastic and elastic scattering of slow electrons in water has made it difficult to clarify the role of the solvated electron in radiation chemistry and biology. We combine accurate scattering simulations with experimental photoemission spectroscopy of the hydrated electron in a liquid water microjet, with the aim of resolving ambiguities regarding the influence of electron scattering on binding energy spectra, photoelectron angular distributions, and probing depths. The scattering parameters used in the simulations are retrieved from independent photoemission experiments of water droplets. For the ground-state hydrated electron, we report genuine values devoid of scattering contributions for the vertical binding energy and the anisotropy parameter of 3.7 ± 0.1 eV and 0.6 ± 0.2, respectively. Our probing depths suggest that even vacuum ultraviolet probing is not particularly surface-selective. Our work demonstrates the importance of quantitative scattering simulations for a detailed analysis of key properties of the hydrated electron. PMID:28508051

  7. A catalog of 0.2 A resolution far-ultraviolet stellar spectra measured with Copernicus

    NASA Technical Reports Server (NTRS)

    Snow, T. P., Jr.; Jenkins, E. B.

    1977-01-01

    Spectra between 1000 and 1450 A for 60 O- and B-type stars observed by Copernicus at 0.2-A resolution are presented in three forms: tables containing the numerical data, plots showing renormalized spectra, and synthetic photographic spectra. The data have been corrected for all instrument effects of importance for the photometric accuracy except fluctuations in continuum level caused by small variations in spacecraft guidance. Spectrometer sensitivity curves are provided for use in converting to absolute fluxes. It is expected that this catalog will be of use for research on many aspects of stellar UV spectra, including spectral classification, line identification, abundance determinations, spectrum synthesis, model atmosphere calculations, flux distributions, bolometric corrections, stellar winds, and mass loss.

  8. Nanoscale spatial analysis of clay minerals containing cesium by synchrotron radiation photoemission electron microscopy

    NASA Astrophysics Data System (ADS)

    Yoshigoe, Akitaka; Shiwaku, Hideaki; Kobayashi, Toru; Shimoyama, Iwao; Matsumura, Daiju; Tsuji, Takuya; Nishihata, Yasuo; Kogure, Toshihiro; Ohkochi, Takuo; Yasui, Akira; Yaita, Tsuyoshi

    2018-01-01

    A synchrotron radiation photoemission electron microscope (SR-PEEM) was applied to demonstrate the pinpoint analysis of micrometer-sized weathered biotite clay particles with artificially adsorbed cesium (Cs) atoms. Despite the insulating properties of the clay, we observed the spatial distributions of constituent elements (Si, Al, Cs, Mg, and Fe) without charging issues and clarified reciprocal site-correlations among these elements with nanometer resolution. We found that Cs atoms were likely to be adsorbed evenly over the entire particle; however, we identified an occupational conflict between Cs and Mg atoms, implying that Cs sorption involves ion exchange processes. Spatially resolved X-ray absorption spectra (XAS) of the Cs4,5 M-edge region showed Cs to be present in a monocation state (Cs+) as typically observed for Cs compounds. Further pinpoint XAS measurements were also performed at the Fe L2,3-edge to determine the chemical valence of the Fe atoms. The shapes of the spectra were similar to those for Fe2O3, indicating that Fe in the clay was in a 3+ oxidation state. From these observations, we infer that charge compensation facilitates Cs adsorption in the vicinity of a substitution site where Si4+ ions are replaced by Fe3+ ions in SiO4 tetrahedral sheets. Our results demonstrate the utility of SR-PEEM as a tool for spatially resolved chemical analyses of various environmental substances, which is not limited by the poor conductivity of samples.

  9. A survey of ultraviolet interstellar absorption lines

    NASA Technical Reports Server (NTRS)

    Bohlin, R. C.; Jenkins, E. B.; Spitzer, L., Jr.; York, D. G.; Hill, J. K.; Savage, B. D.; Snow, T. P., Jr.

    1983-01-01

    A telescope-spectrometer on the Copernicus spacecraft made possible the measurement of many ultraviolet absorption lines produced by the interstellar gas. The present survey provides data on ultraviolet absorption lines in the spectra of 88 early-type stars. The stars observed are divided into four classes, including reddened stars, unreddened bright stars, moderately reddened bright stars, and unreddened and moderately reddened faint stars. Data are presented for equivalent width, W, radial velocity V, and rms line width, D, taking into account some 10 to 20 lines of N I, O I, Si II, P II, S II, Cl I, Cl II, Mn II, Fe II, Ni II, Cu II, and H2. The data are based on multiple scans for each line. Attention is given to details of observations, the data reduction procedure, and the computation of equivalent width, mean velocity, and velocity dispersion.

  10. Configuration interaction in charge exchange spectra of tin and xenon

    NASA Astrophysics Data System (ADS)

    D'Arcy, R.; Morris, O.; Ohashi, H.; Suda, S.; Tanuma, H.; Fujioka, S.; Nishimura, H.; Nishihara, K.; Suzuki, C.; Kato, T.; Koike, F.; O'Sullivan, G.

    2011-06-01

    Charge-state-specific extreme ultraviolet spectra from both tin ions and xenon ions have been recorded at Tokyo Metropolitan University. The electron cyclotron resonance source spectra were produced from charge exchange collisions between the ions and rare gas target atoms. To identify unknown spectral lines of tin and xenon, atomic structure calculations were performed for Sn14+-Sn17+ and Xe16+-Xe20+ using the Hartree-Fock configuration interaction code of Cowan (1981 The Theory of Atomic Structure and Spectra (Berkeley, CA: University of California Press)). The energies of the capture states involved in the single-electron process that occurs in these slow collisions were estimated using the classical over-barrier model.

  11. Vacuum ultraviolet photoabsorption of prime ice analogues of Pluto and Charon.

    PubMed

    Pavithraa, S; Lo, J-I; Rahul, K; Raja Sekhar, B N; Cheng, B-M; Mason, N J; Sivaraman, B

    2018-02-05

    Here we present the first Vacuum UltraViolet (VUV) photoabsorption spectra of ice analogues of Pluto and Charon ice mixtures. For Pluto the ice analogue is an icy mixture containing nitrogen (N 2 ), carbon monoxide (CO), methane (CH 4 ) and water (H 2 O) prepared with a 100:1:1:3 ratio, respectively. Photoabsorption of icy mixtures with and without H 2 O were recorded and no significant changes in the spectra due to presence of H 2 O were observed. For Charon a VUV photoabsorption spectra of an ice analogue containing ammonia (NH 3 ) and H 2 O prepared with a 1:1 ratio was recorded, a spectrum of ammonium hydroxide (NH 4 OH) was also recorded. These spectra may help to interpret the P-Alice data from New Horizons. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Correlation, temperature and disorder: Recent developments in the one-step description of angle-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Braun, Jürgen; Minár, Ján; Ebert, Hubert

    2018-04-01

    Various apparative developments extended the potential of angle-resolved photoemission spectroscopy tremendously during the last two decades. Modern experimental arrangements consisting of new photon sources, analyzers and detectors supply not only extremely high angle and energy resolution but also spin resolution. This provides an adequate platform to study in detail new materials like low-dimensional magnetic structures, Rashba systems, topological insulator materials or high TC superconductors. The interest in such systems has grown enormously not only because of their technological relevance but even more because of exciting new physics. Furthermore, the use of photon energies from few eV up to several keV makes this experimental technique a rather unique tool to investigate the electronic properties of solids and surfaces. The following article reviews the corresponding recent theoretical developments in the field of angle-resolved photoemission with a special emphasis on correlation effects, temperature and relativistic aspects. The most successful theoretical approach to deal with angle-resolved photoemission is the so-called spectral function or one-step formulation of the photoemission process. Nowadays, the one-step model allows for photocurrent calculations for photon energies ranging from a few eV to more than 10 keV, to deal with arbitrarily ordered and disordered systems, to account for finite temperatures, and considering in addition strong correlation effects within the dynamical mean-field theory or similar advanced approaches.

  13. Action spectra for photosynthetic inhibition

    NASA Technical Reports Server (NTRS)

    Caldwell, M. M.; Flint, S.; Camp, L. B.

    1981-01-01

    The ultraviolet action spectrum for photosynthesis inhibition was determined to fall between that of the general DNA action spectrum and the generalized plant action spectrum. The characteristics of this action spectrum suggest that a combination of pronounced increase in effectiveness with decreasing wavelength, substantial specificity for the UV-B waveband, and very diminished response in the UV-A waveband result in large radiation amplification factors when the action spectra are used as weighting functions. Attempted determination of dose/response relationships for leaf disc inhibition provided inconclusive data from which to deconvolute an action spectrum.

  14. Skyglow effects in UV and visible spectra: Radiative fluxes

    NASA Astrophysics Data System (ADS)

    Kocifaj, Miroslav; Solano Lamphar, Hector Antonio

    2013-09-01

    Several studies have tried to understand the mechanisms and effects of radiative transfer under different night-sky conditions. However, most of these studies are limited to the various effects of visible spectra. Nevertheless, the invisible parts of the electromagnetic spectrum can pose a more profound threat to nature. One visible threat is from what is popularly termed skyglow. Such skyglow is caused by injudiciously situated or designed artificial night lighting systems which degrade desired sky viewing. Therefore, since lamp emissions are not limited to visible electromagnetic spectra, it is necessary to consider the complete spectrum of such lamps in order to understand the physical behaviour of diffuse radiation at terrain level. In this paper, the downward diffuse radiative flux is computed in a two-stream approximation and obtained ultraviolet spectral radiative fluxes are inter-related with luminous fluxes. Such a method then permits an estimate of ultraviolet radiation if the traditionally measured illuminance on a horizontal plane is available. The utility of such a comparison of two spectral bands is shown, using the different lamp types employed in street lighting. The data demonstrate that it is insufficient to specify lamp type and its visible flux production independently of each other. Also the UV emissions have to be treated by modellers and environmental scientists because some light sources can be fairly important pollutants in the near ultraviolet. Such light sources can affect both the living organisms and ambient environment.

  15. The discontinuity near 1600 A in the spectra of DA white dwarfs

    NASA Technical Reports Server (NTRS)

    Wegner, G.

    1984-01-01

    Ultraviolet spectroscopic observations of two relatively cool DA white dwarfs, L481 - 60 (= WD 1544 - 37) and BPM 1266 ( = WD 2105 - 82), with the International Ultraviolet Explorer (IUE) satellite show a strong drop in their spectral energy distributions below 1600 A. Published model atmospheres and thier visual spectra suggest that these two stars have effective temperatures in the vicinity of 9,000-10,000 K, and it is proposed that the 1600 A feature could be due to the 342(1S) 3s2(1S) photoionization edge of Mg I.

  16. Novel system for picosecond photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Haight, R.; Silberman, J. A.; Lilie, M. I.

    1988-09-01

    This article describes a laser-based source and detection scheme for performing time-resolved photoemission studies of materials. The pulsed laser source produces intense picosecond pulses of coherent radiation that are nearly continuously tunable from the near infrared to photon energies up to 13 eV. To achieve high sensitivity, a novel multianode time-of-flight spectrometer has been built that generates an angularly resolved intensity versus kinetic energy spectrum with better than 100-meV resolution. The source and detector provide an opportunity to study the electronic dynamics of excited systems on a picosecond time scale.

  17. Measurement of Nanoplasmonic Field Enhancement with Ultrafast Photoemission.

    PubMed

    Rácz, Péter; Pápa, Zsuzsanna; Márton, István; Budai, Judit; Wróbel, Piotr; Stefaniuk, Tomasz; Prietl, Christine; Krenn, Joachim R; Dombi, Péter

    2017-02-08

    Probing nanooptical near-fields is a major challenge in plasmonics. Here, we demonstrate an experimental method utilizing ultrafast photoemission from plasmonic nanostructures that is capable of probing the maximum nanoplasmonic field enhancement in any metallic surface environment. Directly measured field enhancement values for various samples are in good agreement with detailed finite-difference time-domain simulations. These results establish ultrafast plasmonic photoelectrons as versatile probes for nanoplasmonic near-fields.

  18. DC High Voltage Conditioning of Photoemission Guns at Jefferson Lab FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Garcia, C.; Benson, S. V.; Biallas, G.

    2009-08-04

    DC high voltage photoemission electron guns with GaAs photocathodes have been used to produce polarized electron beams for nuclear physics experiments for about 3 decades with great success. In the late 1990s, Jefferson Lab adopted this gun technology for a free electron laser (FEL), but to assist with high bunch charge operation, considerably higher bias voltage is required compared to the photoguns used at the Jefferson Lab Continuous Electron Beam Accelerator Facility. The FEL gun has been conditioned above 400 kV several times, albeit encountering non-trivial challenges with ceramic insulators and field emission from electrodes. Recently, high voltage processing withmore » krypton gas was employed to process very stubborn field emitters. This work presents a summary of the high voltage techniques used to high voltage condition the Jefferson Lab FEL photoemission gun.« less

  19. Synthesis, Spectra, and Theoretical Investigations of 1,3,5-Triazines Compounds as Ultraviolet Rays Absorber Based on Time-Dependent Density Functional Calculations and three-Dimensional Quantitative Structure-Property Relationship.

    PubMed

    Wang, Xueding; Xu, Yilian; Yang, Lu; Lu, Xiang; Zou, Hao; Yang, Weiqing; Zhang, Yuanyuan; Li, Zicheng; Ma, Menglin

    2018-03-01

    A series of 1,3,5-triazines were synthesized and their UV absorption properties were tested. The computational chemistry methods were used to construct quantitative structure-property relationship (QSPR), which was used to computer aided design of new 1,3,5-triazines ultraviolet rays absorber compounds. The experimental UV absorption data are in good agreement with those predicted data using the Time-dependent density functional theory (TD-DFT) [B3LYP/6-311 + G(d,p)]. A suitable forecasting model (R > 0.8, P < 0.0001) was revealed. Predictive three-dimensional quantitative structure-property relationship (3D-QSPR) model was established using multifit molecular alignment rule of Sybyl program, which conclusion is consistent with the TD-DFT calculation. The exceptional photostability mechanism of such ultraviolet rays absorber compounds was studied and confirmed as principally banked upon their ability to undergo excited-state deactivation via an ultrafast excited-state proton transfer (ESIPT). The intramolecular hydrogen bond (IMHB) of 1,3,5-triazines compounds is the basis for the excited state proton transfer, which was explored by IR spectroscopy, UV spectra, structural and energetic aspects of different conformers and frontier molecular orbitals analysis.

  20. Astigmatism correction in x-ray scanning photoemission microscope with use of elliptical zone plate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, H.; Ko, C.; Anderson, E.

    1992-03-02

    We report the impact of an elliptical, high resolution zone plate on the performance of an initially astigmatic soft x-ray scanning photoemission microscope. A zone plate with carefully calibrated eccentricity has been used to eliminate astigmatism arising from transport optics, and an improvement of about a factor of 3 in spatial resolution was achieved. The resolution is still dominated by the source size and chromatic aberrations rather than by diffraction and coma, and a further gain of about a factor of 2 in resolution is possible. Sub 100 nm photoemission microscopy with primary photoelectrons is now within reach.

  1. Far-Ultraviolet Spectroscopy of Three Long-Period Novalike Variables

    NASA Astrophysics Data System (ADS)

    Bisol, Alexandra C.; Godon, Patrick; Sion, Edward M.

    2012-02-01

    We have selected three novalike variables at the long-period extreme of novalike orbital periods: V363 Aur, RZ Gru, and AC Cnc, all with IUE archival far-ultraviolet spectra. All are UX UMa-type novalike variables and all have Porb > 7 hr. V363 Aur is a bona fide SW Sex star, and AC Cnc is a probable one, while RZ Gru has not proven to be a member of the SW Sex subclass. We have carried out the first synthetic spectral analysis of far-ultraviolet spectra of the three systems using state-of-the-art models of both accretion disks and white dwarf photospheres. We find that the FUV spectral energy distribution of both V363 Aur and RZ Gru are in agreement with optically thick steady-state accretion disk models in which the luminous disk accounts for 100% of the FUV light. We present accretion rates and model-derived distances for V363 Aur and RZ Gru. For AC Cnc, we find that a hot accreting white dwarf accounts for ˜60% of the FUV light, with an accretion disk providing the rest. We compare our accretion rates and model-derived distances with estimates in the literature.

  2. Near-simultaneous ultraviolet and optical spectrophotometry of T Tauri stars

    NASA Technical Reports Server (NTRS)

    Goodrich, Robert W.; Herbig, G. H.

    1986-01-01

    A set of near-simultaneous ultraviolet and optical spectra and UBVR(J)I(J) photometry of five T Tauri stars has been analyzed for the shape of the energy distribution shortward of 3000 A. The far-ultraviolet continua of these stars are very much stronger than the level of light scattered from longer wavelengths in the IUE spectrograph. The results, expressed as two-color plots, show that the UV colors of T Tauri stars differ significantly from those expected from their optical spectral types. Although these particular K-type T Tauri stars are not extreme members of the class, they have the UV colors of A stars. The spectral shape of this UV excess is approximately that expected from published chromospheric models of T Tauri stars.

  3. The characterization of Cr secondary oxide phases in ZnO films studied by X-ray spectroscopy and photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Chiou, J. W.; Chang, S. Y.; Huang, W. H.; Chen, Y. T.; Hsu, C. W.; Hu, Y. M.; Chen, J. M.; Chen, C.-H.; Kumar, K.; Guo, J.-H.

    2011-03-01

    X-ray absorption near-edge structure (XANES), X-ray emission spectroscopy (XES), and X-ray photoemission spectroscopy (XPS) were used to characterize the Cr secondary oxide phases in ZnO films that had been prepared using a co-sputtering method. Analysis of the Cr L3,2-edge XANES spectra reveals that the intensity of white-line features decreases subtly as the sputtering power increases, indicating that the occupation of Cr 3 d orbitals increases with Cr concentration in (Zn, Cr)O films. The O K-edge spectra show that the intensity of XANES features of (Zn, Cr)O films is lower than those of ZnO film, suggesting enhanced occupation of O 2 p-derived states through O 2 p-Cr 3 d hybridization. The XES and XPS spectra indicate that the line shapes in the valence band of (Zn, Cr)O films are quite different from those of ZnO and that the Cr 2O 3 phase dominates the spinel structure of (Zn, Cr)O films increasingly as the Cr sputtering power is increased. Over all results suggest that the non-ferromagnetic behavior of (Zn, Cr)O films can be attributed to the dominant presence of Cr 2O 3, whereas the bulk comprise phase segregations of Cr 2O 3 and/or ZnCr 2O 4, which results them the most stable TM-doped ZnO material against etching.

  4. Low-resolution ultraviolet spectroscopy of several hot stars observed from Apollo 17

    NASA Technical Reports Server (NTRS)

    Henry, R. C.; Weinstein, A.; Feldman, P. D.; Fastie, W. G.; Moos, H. W.

    1975-01-01

    Low-resolution ultraviolet spectra were obtained for six early-type stars in 1972 December, using an Ebert spectrometer mounted in the service module of the Apollo 17 spacecraft. The spectrometer scanned from 1180 A to 1680 A, with a speed that varied with wavelength according to a program chosen for lunar studies. Spectral resolution was 11 A. The ultraviolet absolute calibration of the instrument was determined by comparison with National Bureau of Standards calibrated photodiodes, and is believed known to plus or minus 10 percent. The absolute intensities are in good general agreement with the observations of other stars and with the predictions of stellar model-atmosphere calculations.

  5. Far-ultraviolet fluorescence of carbon monoxide in the red giant Arcturus

    NASA Technical Reports Server (NTRS)

    Ayres, T. R.; Moos, H. W.; Linsky, J. L.

    1981-01-01

    Evidence is presented that many of the weak features observed with International Ultraviolet Explorer (IUE) in the far-ultraviolet (1150-2000 A) spectrum of the archetype red giant Arcturus (K2 III) are A-X fourth positive bands of carbon monoxide excited by chromospheric emissions of O I, C I, and H I. The appearance of fluorescent CO bands near the wavelength of commonly used indicators of high-temperature (T greater than 20,000 K) plasma, such as C II at wavelength 1335 and C IV at wavelength 1548, introduces a serious ambiguity in diagnosing the presence of hot material in the outer atmospheres of the cool giants by means of low-dispersion IUE spectra.

  6. Excitation of vacuum ultraviolet spectra of krypton in a cooled gas discharge

    NASA Astrophysics Data System (ADS)

    Gerasimov, Gennadii N.; Krylov, Boris E.; Hallin, Reinhold

    1995-08-01

    Results are presented on the experimental study of VUV spectra of krypton excited by a dc discharge in a capillary tube with the wall cooled to the temperature of liquid nitrogen. We studied the 120-200 nm spectral region corresponding to the transitions between the dimer lowest excited states and the weakly bound ground state, 1u, 0u+ yields 0g+. Electron impact, transferring dimers from the ground state into the excited state, is shown to be an efficient excitation mechanism in the 50-650 Torr and the 10-50 mA pressure and current ranges. The spectra obtained and the calculations made corroborate the high rate of this process.

  7. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids

    NASA Astrophysics Data System (ADS)

    Jablonowski, H.; Bussiahn, R.; Hammer, M. U.; Weltmann, K.-D.; von Woedtke, Th.; Reuter, S.

    2015-12-01

    Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100-400 nm) and, in particular, vacuum ultraviolet (VUV, 10-200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH2O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stable reactive oxygen species, hydrogen peroxide (H2O2) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O2•-) and hydroxyl radicals (•OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.

  8. The Production of Titan's Ultraviolet Nitrogen Airglow

    NASA Astrophysics Data System (ADS)

    Stevens, Michael H.; Gustin, J.; Ajello, J. M.; Evans, J. S.; Meier, R. R.; Stewart, A. I. F.; Esposito, L. W.; McClintock, W. E.; Stephan, A. W.

    2010-10-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed Titan's dayside limb on 22 June, 2009, obtaining high quality extreme ultraviolet (EUV) and far ultraviolet (FUV) spectra from a distance of only 60,000 km (23 Titan radii). The observations reveal the same EUV and FUV emissions arising from photoelectron excitation and photofragmentation of molecular nitrogen (N2) on Earth but with the altitude of peak emission much higher on Titan near 1000 km altitude. In the EUV, emission bands from the photoelectron excited N2 Carroll-Yoshino c4'-X system and N I and N II multiplets arising from photofragmentation of N2 dominate, with no detectable c4'(0,0) emission near 958 Å, contrary to many interpretations of the lower resolution Voyager 1 Ultraviolet Spectrometer data. The FUV is dominated by emission bands from the N2 Lyman-Birge-Hopfield a-X system and additional N I multiplets. We also identify several N2 Vegard-Kaplan A-X bands between 1500-1900 Å, two of which are located near 1561 and 1657 Å where C I multiplets were previously identified from a separate UVIS disk observation. We compare these limb emissions to predictions from a terrestrial airglow model adapted to Titan that uses a solar spectrum appropriate for these June, 2009 observations. Volume production rates and limb radiances are calculated, including extinction by methane and allowance for multiple scattering within the readily excited c4'(0,v') system, and compared to UVIS observations. We find that for these airglow data only emissions arising from processes involving N2 are present.

  9. Reassignment of the Iron (3) Absorption Bands in the Spectra of Mars

    NASA Technical Reports Server (NTRS)

    Sherman, D. M.

    1985-01-01

    Absorption features in the near-infrared and visible region reflectance spectra of Mars have been assigned to specific Fe (3+) crystal-field and o(2-) yields Fe(3+) charge transfer transitions. Recently, near-ultraviolet absorption spectra of iron oxides were obtained and the energies of o(2-) yields Fe(3+) charge-transfer (LMCT) transitions were determined from accurate SCF-X # alpha-SW molecular orbital calculations on (FeO6)(9-) and (FeO4)(5-) clusters. Both the theoretical and experimental results, together with existing data in the literature, show that some of the previous Fe(3+) band assignments in the spectra of Mars need to be revised. The theory of Fe(3+) spectra in minerals is discussed and applied to the spectrum of Mars.

  10. Photoemission and Photoabsorption Investigation of the Electronic Structure of Ytterbium Doped Strontium Fluoroapatite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, A J; van Buuren, T; Bostedt, C

    X-ray photoemission and x-ray photoabsorption were used to study the composition and the electronic structure of ytterbium doped strontium fluoroapatite (Yb:S-FAP). High resolution photoemission measurements on the valence band electronic structure was used to evaluate the density of occupied states of this fluoroapatite. Element specific density of unoccupied electronic states in Yb:S-FAP were probed by x-ray absorption spectroscopy (XAS) at the Yb 4d (N{sub 4,5}-edge), Sr 3d (M{sub 4,5}-edge), P 2p (L{sub 2,3}-edge), F 1s and O 1s (K-edges) absorption edges. These results provide the first measurements of the electronic structure and surface chemistry of this material.

  11. The International Ultraviolet Explorer: Case study in spacecraft design

    NASA Technical Reports Server (NTRS)

    Freeman, H. R.; Longanecker, G. W.

    1979-01-01

    The International Ultraviolet Explorer (IUE) is a geosynchronous scientific satellite that was conceived as an international space observatory capable of measuring UV spectra of faint celestial bodies. Simple operational procedures allow the astronomers to joystick the spaceborne telescope about the sky, using familiar ground-based observatory techniques. The present paper deals with the IUE project objectives, the technical problems, constraints, trade-offs, and the problem solving techniques used in the IUE program.

  12. Hidden relationship between the electrical conductivity and the Mn 2p core-level photoemission spectra in La{sub 1-x}Sr{sub x}MnO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hishida, T.; Ohbayashi, K.; Saitoh, T.

    2013-01-28

    Core-level electronic structure of La{sub 1-x}Sr{sub x}MnO{sub 3} has been studied by x-ray photoemission spectroscopy (XPS). We first report, by the conventional XPS, the well-screened shoulder structure in Mn 2p{sub 3/2} peak, which had been observed only by hard x-ray photoemission spectroscopy so far. Multiple-peak analysis revealed that the Mn{sup 4+} spectral weight was not proportional to the nominal hole concentration x, indicating that a simple Mn{sup 3+}/Mn{sup 4+} intensity ratio analysis may result in a wrong quantitative elemental analysis. Considerable weight of the shoulder at x = 0.0 and the fact that the shoulder weight was even slightly goingmore » down from x = 0.2 to 0.4 were not compatible with the idea that this weight simply represents the metallic behavior. Further analysis found that the whole Mn 2p{sub 3/2} peak can be decomposed into four portions, the Mn{sup 4+}, the (nominal) Mn{sup 3+}, the shoulder, and the other spectral weight located almost at the Mn{sup 3+} location. We concluded that this weight represents the well-screened final state at Mn{sup 4+} sites, whereas the shoulder is known as that of the Mn{sup 3+} states. We found that the sum of these two spectral weight has an empirical relationship to the conductivity evolution with x.« less

  13. Improved discrimination between monocotyledonous and dicotyledonous plants for weed control based on the blue-green region of ultraviolet-induced fluorescence spectra.

    PubMed

    Panneton, Bernard; Guillaume, Serge; Roger, Jean-Michel; Samson, Guy

    2010-01-01

    Precision weeding by spot spraying in real time requires sensors to discriminate between weeds and crop without contact. Among the optical based solutions, the ultraviolet (UV) induced fluorescence of the plants appears as a promising alternative. In a first paper, the feasibility of discriminating between corn hybrids, monocotyledonous, and dicotyledonous weeds was demonstrated on the basis of the complete spectra. Some considerations about the different sources of fluorescence oriented the focus to the blue-green fluorescence (BGF) part, ignoring the chlorophyll fluorescence that is inherently more variable in time. This paper investigates the potential of performing weed/crop discrimination on the basis of several large spectral bands in the BGF area. A partial least squares discriminant analysis (PLS-DA) was performed on a set of 1908 spectra of corn and weed plants over 3 years and various growing conditions. The discrimination between monocotyledonous and dicotyledonous plants based on the blue-green fluorescence yielded robust models (classification error between 1.3 and 4.6% for between-year validation). On the basis of the analysis of the PLS-DA model, two large bands were chosen in the blue-green fluorescence zone (400-425 nm and 425-490 nm). A linear discriminant analysis based on the signal from these two bands also provided very robust inter-year results (classification error from 1.5% to 5.2%). The same selection process was applied to discriminate between monocotyledonous weeds and maize but yielded no robust models (up to 50% inter-year error). Further work will be required to solve this problem and provide a complete UV fluorescence based sensor for weed-maize discrimination.

  14. The Loopy Ultraviolet Line Profiles of RU Lupi: Accretion, Outflows, and Fluorescence

    NASA Astrophysics Data System (ADS)

    Herczeg, Gregory J.; Walter, Frederick M.; Linsky, Jeffrey L.; Gahm, Gösta F.; Ardila, David R.; Brown, Alexander; Johns-Krull, Christopher M.; Simon, Michal; Valenti, Jeff A.

    2005-06-01

    We present far-ultraviolet (FUV) spectra of the classical T Tauri star RU Lup covering the 912-1710 Å spectral range, as observed by the Hubble Space Telescope STIS and the Far Ultraviolet Spectroscopic Explorer satellite. We use these spectra, which are rich in emission and absorption lines, to probe both the accreting and outflowing gas. Absorption in the Lyα profile constrains the extinction to AV~0.07 mag, which we confirm with other diagnostics. We estimate a mass accretion rate of (5+/-2)×10-8 Msolar yr-1 using the optical-NUV accretion continuum. The accreting gas is also detected in bright, broad lines of C IV, Si IV, and N V, which all show complex structures across the line profile. Many other emission lines, including those of H2 and Fe II, are pumped by Lyα. RU Lup's spectrum varies significantly in the FUV; our STIS observations occurred when RU Lup was brighter than several other observations in the FUV, possibly because of a high mass accretion rate.

  15. Ultraviolet observations of four symbiotic stars

    NASA Technical Reports Server (NTRS)

    Michalitsianos, A. G.; Feibelman, W. A.; Hobbs, R. W.; Kafatos, M.

    1982-01-01

    Observations were obtained with the International Ultraviolet Explorer (IUE) of four symbiotic stars. The UV spectra of YY Her, SY Mus, CL Sco, and BX Mon are characterized by varying degrees of thermal excitation. These low resolution spectra have been analyzed in terms of line-blanketed model atmospheres of early A, B, and F type stars in order to identify the nature of the hot companion in these systems. The expected emission from early main sequence stars does not fully explain the observed distribution of UV continuum energy over the entire IUE spectral range (1200-3200 A). More likely the observed continuum may be originating from an accretion disk and/or hot subdwarf that photoionizes circumstellar material, and gives rise to the high excitation lines that have been detected. The Bowen fluorescent excited lines of O III in SY Mus exhibit slightly broadened profiles that suggest possible turbulent motions in an extended circumstellar cloud with characteristic velocities of approximately 300 km/s.

  16. Electronic Structure of Ytterbium-Doped Strontium Fluoroapatite: Photoemission and Photoabsorption Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Art J.; Van Buuren, Tony W.; Bostedt, C

    X-ray photoemission and x-ray photoabsorption were used to study the composition and the electronic structure of ytterbium-doped strontium fluoroapatite (Yb:S-FAP). High resolution photoemission measurements on the valence band electronic structure and Sr 3d, P 2p and 2s, Yb 4d and 4p, F 1s and O 1s core lines were used to evaluate the surface and near surface chemistry of this fluoroapatite. Element specific density of unoccupied electronic states in Yb:S-FAP were probed by x-ray absorption spectroscopy (XAS) at the Yb 4d (N4,5-edge), Sr 3d (M4,5-edge), P 2p (L2,3-edge), F 1s and O 1s (K-edges) absorption edges. These results provide themore » first measurements of the electronic structure and surface chemistry of this material.« less

  17. Ultraviolet variability and mass expulsion from R Aquarii

    NASA Technical Reports Server (NTRS)

    Kafatos, M.; Michalitsianos, A. G.; Hollis, J. M.

    1986-01-01

    Ultraviolet spectra in the 1200-3200 A range indicate that the extended nebular features which resemble a jet in the peculiar variable R Aquarii (M7e + pec) increased in excitation in 1985. The emission properties of the compact H II region that surrounds the unresolved binary, and those of the extended nebular jet, have been analyzed from low-resolution IUE spectra of these regions. In particular, the UV line intensities observed in the jet appear variable on a time scale of about 1.5 yr. A new accretion disk model is proposed that explains the kinematic and ionization properties of discrete components which comprise the jet emission nebulosity, the appearance of the jet in the 1980s, and morphology that uniquely characterizes the R Aquarii system at radio, optical, UV, and X-ray wavelengths.

  18. Electronic structure of the indium tin oxide/nanocrystalline anatase (TiO2)/ruthenium-dye interfaces in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lyon, J. E.; Rayan, M. K.; Beerbom, M. M.; Schlaf, R.

    2008-10-01

    The electronic structure of two interfaces commonly found in dye-sensitized photovoltaic cells based on nanocrystalline anatase TiO2 ("Grätzel cells") was investigated using photoemission spectroscopy (PES). X-ray photoemission spectroscopy (XPS) and ultraviolet photoemission spectroscopy (UPS) measurements were carried out on the indium tin oxide (ITO)/TiO2 and the TiO2/cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium(II)bis-tetrabutylammonium dye ("N719" or "Ruthenium 535-bisTBA") interfaces. Both contacts were investigated using a multistep deposition procedure where the entire structure was prepared in vacuum using electrospray deposition. In between deposition steps the surface was characterized with XPS and UPS resulting in a series of spectra, allowing the determination of the orbital and band lineup at the interfaces. The results of these efforts confirm previous PES measurements on TiO2/dye contacts prepared under ambient conditions, suggesting that ambient contamination might not have significant influence on the electronic structure at the dye/TiO2 interface. The results also demonstrate that there may be a significant barrier for electron injection at the sputtered ITO/TiO2 interface and that this interface should be viewed as a semiconductor heterojunction rather than as metal-semiconductor (Schottky) contact.

  19. The VUV dimer spectra excited in condensed krypton

    NASA Astrophysics Data System (ADS)

    Gerasimov, Gennady N.; Krylov, Boris E.; Hallin, Reinhold

    2004-05-01

    The vacuum ultraviolet (VUV) emission spectra of krypton homonuclear molecules (dimers) were observed in the wavelength range 120-200 nm. The krypton dimers were excited in a DC capillary discharge and the wall of tube could be cooled with liquid nitrogen. The homogeneous DC discharge was a straight channel in the middle of capillary tube. The gas krypton pressure in the discharge channel could be stabilized in the pressure range from 3 hPa to 1000 hPa. The DC discharge current density and the electron concentration were ~ 10 A/cm2 and ~ 2-4 1014 cm-3, respectively. The VUV krypton spectra excited in vicinity of solid krypton were compared with the spectra recorded without condensed krypton. The VUV spectral lines intensities were observed as nonlinear function of the discharge length. This nonlinear increase of intensity with the length of the tube has still to be explained.

  20. Calculation of density of states for modeling photoemission using method of moments

    NASA Astrophysics Data System (ADS)

    Finkenstadt, Daniel; Lambrakos, Samuel G.; Jensen, Kevin L.; Shabaev, Andrew; Moody, Nathan A.

    2017-09-01

    Modeling photoemission using the Moments Approach (akin to Spicer's "Three Step Model") is often presumed to follow simple models for the prediction of two critical properties of photocathodes: the yield or "Quantum Efficiency" (QE), and the intrinsic spreading of the beam or "emittance" ɛnrms. The simple models, however, tend to obscure properties of electrons in materials, the understanding of which is necessary for a proper prediction of a semiconductor or metal's QE and ɛnrms. This structure is characterized by localized resonance features as well as a universal trend at high energy. Presented in this study is a prototype analysis concerning the density of states (DOS) factor D(E) for Copper in bulk to replace the simple three-dimensional form of D(E) = (m/π2 h3)p2mE currently used in the Moments approach. This analysis demonstrates that excited state spectra of atoms, molecules and solids based on density-functional theory can be adapted as useful information for practical applications, as well as providing theoretical interpretation of density-of-states structure, e.g., qualitatively good descriptions of optical transitions in matter, in addition to DFT's utility in providing the optical constants and material parameters also required in the Moments Approach.

  1. Electronic and geometric structure of thin CoO(100) films studied by angle-resolved photoemission spectroscopy and Auger electron diffraction

    NASA Astrophysics Data System (ADS)

    Heiler, M.; Chassé, A.; Schindler, K.-M.; Hollering, M.; Neddermeyer, H.

    2000-05-01

    We have prepared ordered thin films of CoO by evaporating cobalt in an O 2 atmosphere on to a heated (500 K) Ag(100) substrate. The geometric and electronic structure of the films was characterized by means of Auger electron diffraction (AED) and angle-resolved photoemission spectroscopy (ARUPS), respectively. The experimental AED results were compared with simulated data, which showed that the film grows in (100) orientation on the Ag(100) substrate. Synchrotron-radiation-induced photoemission investigations were performed in the photon energy range from 25 eV to 67 eV. The dispersion of the transitions was found to be similar to that of previous results on a single-crystal CoO(100) surface. The resonance behaviour of the photoemission lines in the valence-band region was investigated by constant-initial-state (CIS) spectroscopy. The implications of this behaviour for assignment of the photoemission lines to specific electronic transitions is discussed and compared with published theoretical models of the electronic structure.

  2. Energy- and k -resolved mapping of the magnetic circular dichroism in threshold photoemission from Co films on Pt(111)

    NASA Astrophysics Data System (ADS)

    Staab, Maximilian; Kutnyakhov, Dmytro; Wallauer, Robert; Chernov, Sergey; Medjanik, Katerina; Elmers, Hans Joachim; Kläui, Mathias; Schönhense, Gerd

    2017-04-01

    The magnetic circular dichroism in threshold photoemission (TPMCD) for perpendicularly magnetized fcc Co films on Pt(111) has been revisited. A complete mapping of the spectral function I (EB,kx,ky) (binding energy EB, momentum parallel to surface kx, ky) and the corresponding TPMCD asymmetry distribution AMCD(EB,kx,ky) has been performed for one-photon and two-photon photoemission using time-of-flight momentum microscopy. The experimental results allow distinguishing direct from indirect transitions. The measurements reveal clear band features of direct transitions from bulk bands that show a nontrivial asymmetry pattern. A significant homogeneous background with substantial asymmetry stemming from indirect transitions superposes direct transitions. Two-photon photoemission reveals enhanced emission intensity via an image potential state, acting as intermediate state. The image potential state enhances not only intensity but also asymmetry. The present results demonstrate that two-photon photoemission is a powerful method for mapping the spin-polarized unoccupied band structures and points out pathways for applying TPMCD as a contrast mechanism for various classes of magnetic materials.

  3. Experimental Determination of the Ionization Energies of MoSe 2, WS 2, and MoS 2 on SiO 2 Using Photoemission Electron Microscopy

    DOE PAGES

    Keyshar, Kunttal; Berg, Morgann; Zhang, Xiang; ...

    2017-07-19

    Here, the values of the ionization energies of transition metal dichalcogenides (TMDs) are needed to assess their potential usefulness in semiconductor heterojunctions for high-performance optoelectronics. Here, we report on the systematic determination of ionization energies for three prototypical TMD monolayers (MoSe 2, WS 2, and MoS 2) on SiO 2 using photoemission electron microscopy with deep ultraviolet illumination. The ionization energy displays a progressive decrease from MoS 2, to WS 2, to MoSe 2, in agreement with predictions of density functional theory calculations. Combined with the measured energy positions of the valence band edge at the Brillouin zone center, wemore » deduce that, in the absence of interlayer coupling, a vertical heterojunction comprising any of the three TMD monolayers would form a staggered (type-II) band alignment. This band alignment could give rise to long-lived interlayer excitons that are potentially useful for valleytronics or efficient electron–hole separation in photovoltaics.« less

  4. Recent advances and applications of gas chromatography vacuum ultraviolet spectroscopy.

    PubMed

    Santos, Inês C; Schug, Kevin A

    2017-01-01

    The vacuum ultraviolet spectrophotometer was developed recently as an alternative to existing gas chromatography detectors. This detector measures the absorption of gas-phase chemical species in the range of 120-240 nm, where all chemical compounds present unique absorption spectra. Therefore, qualitative analysis can be performed and quantification follows standard Beer-Lambert law principles. Different fields of application, such as petrochemical, food, and environmental analysis have been explored. Commonly demonstrated is the capability for facile deconvolution of co-eluting analytes. The concept of additive absorption for co-eluting analytes has also been advanced for classification and speciation of complex mixtures using a data treatment procedure termed time interval deconvolution. Furthermore, pseudo-absolute quantitation can be performed for system diagnosis, as well as potentially calibrationless quantitation. In this manuscript an overview of these features, the vacuum ultraviolet spectrophotometer instrumentation, and performance capabilities are given. A discussion of the applications of the vacuum ultraviolet detector is provided by describing and discussing the papers published thus far since 2014. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Photoemission properties of Eu-doped Zr1- x Ce x O2 (x = 0-0.2) nanoparticles prepared by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Ozawa, Masakuni; Matsumoto, Masashi; Hattori, Masatomo

    2018-01-01

    Photoluminescent Eu-doped ZrO2 and Zr1- x Ce x O2 (x = 0-0.2) nanoparticles were prepared by a hydrothermal method. X-ray diffraction and Raman spectra indicated the formation of tetragonal crystals of ZrO2 and its solid solutions with a grain size of less than 10 nm diameter after heat treatment at 400 °C. The photoemission spectra of Zr1- x Ce x O2:Eu3+ nanocrystalline samples showed the typical emission of Eu3+ ions assigned to 5D0 → 7F1 (590 nm) and 5D0 → 7F2 (610 nm) transitions and additional emissions of 5D0 → 7F J with higher J of 3-5. Increasing the CeO2 concentration reduced the emission intensity, and the emission peak shift was affected by a local lattice distortion, i.e., CeO2 concentration. The present study provided fundamental knowledge that is expected to enable the fabrication of ZrO2-based nanocrystal phosphor materials and a measure for controlling the emission peak shift and intensity in oxide fluorite-based phosphor.

  6. VizieR Online Data Catalog: Spectra of a Holmium in the near-UV. I. Ho I. (Al-Labady+, 2017)

    NASA Astrophysics Data System (ADS)

    Al-Labady, N.; Ozdalgic, B.; Er, A.; Guzelcimen, F.; Ozturk, I. K.; Kroger, S.; Kruzins, A.; Tamanis, M.; Ferber, R.; Basar, G.

    2017-04-01

    The high-resolution spectra of Holmium (Ho) were recorded with a Fourier Transform spectrometer IFS125 HR at the Laser Centre of the University of Latvia in Riga. Two Ho spectra were recorded, one with argon (Ar) as a buffer gas and one with neon (Ne). The spectra cover the ultraviolet spectral range from 25000 up to 31530cm-1, or 317 to 400nm, respectively. (1 data file).

  7. Investigating the 3.3 micron infrared fluorescence from naphthalene following ultraviolet excitation

    NASA Technical Reports Server (NTRS)

    Williams, Richard M.; Leone, Stephen R.

    1994-01-01

    Polycyclic aromatic hydrocarbon (PAH) type molecules are proposed as the carriers of the unidentified infrared (UIR) bands. Detailed studies of the 3.3 micrometer infrared emission features from naphthalene, the simplest PAH, following ultraviolet laser excitation are used in the interpretation of the 3.29 micrometer (3040 cm(sup -1)) UIR band. A time-resolved Fourier transform spectrometer is used to record the infrared emission spectrum of gas-phase naphthalene subsequent to ultraviolet excitation facilitated by an excimer laser operated at either 193 nm or 248 nm. The emission spectra differ significantly from the absorption spectrum in the same spectral region. Following 193 nm excitation the maximum in the emission profile is red-shifted 45 cm(sup -1) relative to the absorption maximum; a 25 cm(sup -1) red-shift is observed after 248 nm excitation. The red-shifting of the emission spectrum is reduced as collisional and radiative relaxation removes energy from the highly vibrationally excited molecules. Coupling between the various vibrational modes is thought to account for the differences between absorption and emission spectra. Strong visible emission is also observed following ultraviolet excitation. Visible emission may play an important role in the rate of radiative relaxation, which according to the interstellar PAH hypothesis occurs only by the slow emission of infrared photons. Studying the visible emission properties of PAH type molecules may be useful in the interpretation of the DIB's observed in absorption.

  8. A Fourier transform spectrometer for visible and near ultra-violet measurements of atmospheric absorption

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.; Gerlach, J. C.; Whitehurst, M.

    1982-01-01

    The development of a prototype, ground-based, Sun-pointed Michelson interferometric spectrometer is described. Its intended use is to measure the atmospheric amount of various gases which absorb in the near-infrared, visible, and near-ultraviolet portions of the electromagnetic spectrum. Preliminary spectra which contain the alpha, 0.8 micrometer, and rho sigma tau water vapor absorption bands in the near-infrared are presented to indicate the present capability of the system. Ultimately, the spectrometer can be used to explore the feasible applications of Fourier transform spectroscopy in the ultraviolet where grating spectrometers were used exclusively.

  9. Electron-plasmon and electron-phonon satellites in the angle-resolved photoelectron spectra of n -doped anatase TiO2

    NASA Astrophysics Data System (ADS)

    Caruso, Fabio; Verdi, Carla; Poncé, Samuel; Giustino, Feliciano

    2018-04-01

    We develop a first-principles approach based on many-body perturbation theory to investigate the effects of the interaction between electrons and carrier plasmons on the electronic properties of highly doped semiconductors and oxides. Through the evaluation of the electron self-energy, we account simultaneously for electron-plasmon and electron-phonon coupling in theoretical calculations of angle-resolved photoemission spectra, electron linewidths, and relaxation times. We apply this methodology to electron-doped anatase TiO2 as an illustrative example. The simulated spectra indicate that electron-plasmon coupling in TiO2 underpins the formation of satellites at energies comparable to those of polaronic spectral features. At variance with phonons, however, the energy of plasmons and their spectral fingerprints depends strongly on the carrier concentration, revealing a complex interplay between plasmon and phonon satellites. The electron-plasmon interaction accounts for approximately 40% of the total electron-boson interaction strength, and it is key to improve the agreement with measured quasiparticle spectra.

  10. Hartmann characterization of the PEEM-3 aberration-corrected X-ray photoemission electron microscope.

    PubMed

    Scholl, A; Marcus, M A; Doran, A; Nasiatka, J R; Young, A T; MacDowell, A A; Streubel, R; Kent, N; Feng, J; Wan, W; Padmore, H A

    2018-05-01

    Aberration correction by an electron mirror dramatically improves the spatial resolution and transmission of photoemission electron microscopes. We will review the performance of the recently installed aberration corrector of the X-ray Photoemission Electron Microscope PEEM-3 and show a large improvement in the efficiency of the electron optics. Hartmann testing is introduced as a quantitative method to measure the geometrical aberrations of a cathode lens electron microscope. We find that aberration correction leads to an order of magnitude reduction of the spherical aberrations, suggesting that a spatial resolution of below 100 nm is possible at 100% transmission of the optics when using x-rays. We demonstrate this improved performance by imaging test patterns employing element and magnetic contrast. Published by Elsevier B.V.

  11. Molecular alignment dependent electron interference in attosecond ultraviolet photoionization

    PubMed Central

    Yuan, Kai-Jun; Bandrauk, André D.

    2015-01-01

    We present molecular photoionization processes by intense attosecond ultraviolet laser pulses from numerical solutions of time-dependent Schrödinger equations. Simulations preformed on a single electron diatomic H2+ show minima in molecular photoelectron energy spectra resulting from two center interference effects which depend strongly on molecular alignment. We attribute such sensitivity to the spatial orientation asymmetry of the photoionization process from the two nuclei. A similar influence on photoelectron kinetic energies is also presented. PMID:26798785

  12. First-principles C band absorption spectra of SO2 and its isotopologues

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Kumar, Praveen; Kłos, Jacek; Alexander, Millard H.; Poirier, Bill; Guo, Hua

    2017-04-01

    The low-energy wing of the C ˜ B12 ←X˜ 1A1 absorption spectra for SO2 in the ultraviolet region is computed for the 32S,33S,34S and 36S isotopes, using the recently developed ab initio potential energy surfaces (PESs) of the two electronic states and the corresponding transition dipole surface. The state-resolved absorption spectra from various ro-vibrational states of SO2(X˜ 1A1 ) are computed. When contributions of these excited ro-vibrational states are included, the thermally averaged spectra are broadened but maintain their key characters. Excellent agreement with experimental absorption spectra is found, validating the accuracy of the PESs. The isotope shifts of the absorption peaks are found to increase linearly with energy, in good agreement with experiment.

  13. Harmonium: A pulse preserving source of monochromatic extreme ultraviolet (30-110 eV) radiation for ultrafast photoelectron spectroscopy of liquids.

    PubMed

    Ojeda, J; Arrell, C A; Grilj, J; Frassetto, F; Mewes, L; Zhang, H; van Mourik, F; Poletto, L; Chergui, M

    2016-03-01

    A tuneable repetition rate extreme ultraviolet source (Harmonium) for time resolved photoelectron spectroscopy of liquids is presented. High harmonic generation produces 30-110 eV photons, with fluxes ranging from ∼2 × 10(11) photons/s at 36 eV to ∼2 × 10(8) photons/s at 100 eV. Four different gratings in a time-preserving grating monochromator provide either high energy resolution (0.2 eV) or high temporal resolution (40 fs) between 30 and 110 eV. Laser assisted photoemission was used to measure the temporal response of the system. Vibrational progressions in gas phase water were measured demonstrating the ∼0.2 eV energy resolution.

  14. Effects of the electron-hole pair in Auger and X-ray photoemission spectroscopy from surfaces of Fe-Si

    NASA Astrophysics Data System (ADS)

    Gervasoni, J. L.; Jenko, M.; Poniku, B.; Belič, I.; Juan, A.

    2015-07-01

    In this work, we investigate in detail the effects due to the interaction between an electron and a stationary positive ion (or atomic hole) in the neighborhood of a surface of Fe-Si, having a strong plasmon peak in their electron energy loss spectra, when it is excited with synchrotron radiation. We take into account the effects due to the sudden creation of an electron and the residual holes, one in the case of X-ray photoemission spectroscopy (XPS) and two in the case of Auger electron spectroscopy (AES). We use a semi classical dielectric formulation for the photoelectron trajectory, and we estimated the parameter rs, the radius of the sphere occupied by one electron in the solid, which is critical in order to define the electron density of the alloy. With the cited formulation, we have obtained a detailed behavior of the different contributions of the collective excitations in both processes.

  15. Ultraviolet Extensions

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Side-by-Side Comparison Click on image for larger view

    This ultraviolet image from NASA's Galaxy Evolution Explorer shows the Southern Pinwheel galaxy, also know as Messier 83 or M83. It is located 15 million light-years away in the southern constellation Hydra.

    Ultraviolet light traces young populations of stars; in this image, young stars can be seen way beyond the main spiral disk of M83 up to 140,000 light-years from its center. Could life exist around one of these far-flung stars? Scientists say it's unlikely because the outlying regions of a galaxy are lacking in the metals required for planets to form.

    The image was taken at scheduled intervals between March 15 and May 20, 2007. It is one of the longest-exposure, or deepest, images ever taken of a nearby galaxy in ultraviolet light. Near-ultraviolet light (or longer-wavelength ultraviolet light) is colored yellow, and far-ultraviolet light is blue.

    What Lies Beyond the Edge of a Galaxy The side-by-side comparison shows the Southern Pinwheel galaxy, or M83, as seen in ultraviolet light (right) and at both ultraviolet and radio wavelengths (left). While the radio data highlight the galaxy's long, octopus-like arms stretching far beyond its main spiral disk (red), the ultraviolet data reveal clusters of baby stars (blue) within the extended arms.

    The ultraviolet image was taken by NASA's Galaxy Evolution Explorer between March 15 and May 20, 2007, at scheduled intervals. Back in 2005, the telescope first photographed M83 over a shorter period of time. That picture was the first to reveal far-flung baby stars forming up to 63,000 light-years from the edge of the main spiral disk. This came as a surprise to astronomers because a galaxy's outer territory typically lacks high densities of star-forming materials.

    The newest picture of M83 from the Galaxy Evolution Explorer is shown at the right, and was taken over a longer period of

  16. A study of meteor spectroscopy and physics from earth-orbit: A preliminary survey into ultraviolet meteor spectra

    NASA Technical Reports Server (NTRS)

    Meisel, D. D.

    1976-01-01

    Preliminary data required to extrapolate available meteor physics information (obtained in the photographic, visual and near ultraviolet spectral regions) into the middle and far ultraviolet are presented. Wavelength tables, telluric attenuation factors, meteor rates, and telluric airglow data are summarized in the context of near-earth observation vehicle parameters using moderate to low spectral resolution instrumentation. Considerable attenuation is given to the problem of meteor excitation temperatures since these are required to predict the strength of UV features. Relative line intensities are computed for an assumed chondritic composition. Features of greatest predicted intensities, the major problems in meteor physics, detectability of UV meteor events, complications of spacecraft motion, and UV instrumentation options are summarized.

  17. Universal High Energy Anomaly in the Angle-Resolved Photoemission Spectra of High Temperature Superconductors: Possible Evidence of Spinon and Holon Branches

    NASA Astrophysics Data System (ADS)

    Graf, J.; Gweon, G.-H.; McElroy, K.; Zhou, S. Y.; Jozwiak, C.; Rotenberg, E.; Bill, A.; Sasagawa, T.; Eisaki, H.; Uchida, S.; Takagi, H.; Lee, D.-H.; Lanzara, A.

    2007-02-01

    A universal high energy anomaly in the single particle spectral function is reported in three different families of high temperature superconductors by using angle-resolved photoemission spectroscopy. As we follow the dispersing peak of the spectral function from the Fermi energy to the valence band complex, we find dispersion anomalies marked by two distinctive high energy scales, E1≈0.38eV and E2≈0.8eV. E1 marks the energy above which the dispersion splits into two branches. One is a continuation of the near parabolic dispersion, albeit with reduced spectral weight, and reaches the bottom of the band at the Γ point at ≈0.5eV. The other is given by a peak in the momentum space, nearly independent of energy between E1 and E2. Above E2, a bandlike dispersion reemerges. We conjecture that these two energies mark the disintegration of the low-energy quasiparticles into a spinon and holon branch in the high Tc cuprates.

  18. Rotation of dwarf star chromospheres in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Hallam, K. L.; Wolff, C. L.

    1981-01-01

    Periodic variations in the ultraviolet fluxes of chromospheric emission line multiplets are investigated for F, G and K stars as evidence of rotational modulation. Vacuum ultraviolet spectra were obtained with the IUE spacecraft for six stars as many as 11 times over the period April 23 to December 3, 1980. Variations in the emission fluxes of the hydrogen Lyman-alpha, Si II and Mg II lines are observed with periods up to 47 days. The periodicity, which is identified with rotational modulation, is found to persist over many rotational cycles, although the periods and time dependences of the fluxes from the different ionic species are not identical, probably due to differential rotation and global distributions. The spread of the UV periods is observed to be within 10%, with one or two peaks per cycle and a ratio of modulated to umodulated flux ranging from 1.1 to 3.0, analogous to solar behavior.

  19. An ultraviolet and visible spectroscopic study of a pulsational cycle of RY Sagittarii

    NASA Technical Reports Server (NTRS)

    Clayton, Geoffrey C.; Lawson, W. A.; Cottrell, P. L.; Whitney, Barbara A.; Stanford, S. Adam; De Ruyter, Frank

    1994-01-01

    High-dispersion visible and ultraviolet spectra and UBVRI photometry, covering a complete pulsation of the R Coronae Borealis star RY Sgr, have been obtained. The UV spectra were the first high-dispersion data ever obtained for the star. Together these observations comprise the most complete data set covering an RCB star pulsation cycle. The cycle observed was somewhat anomalous as it was affected by a second 55 day pulsation period as well as the primary 38 day period. However, the visible spectra showed the typical line splitting and radial velocity variations which have been observed previously. The simultaneous UV spectra showed much smaller, and phase-shifted, velocity variations than those seen in the visible. No evidence was seen of shock-induced emission at Mg II. These observations provide some support for the models of pulsating hydrogen deficient stars developed by Saio & Wheeler.

  20. Ultraviolet absorption by highly ionized halo gas near the Galactic center

    NASA Technical Reports Server (NTRS)

    Savage, B. D.; Massa, D.

    1985-01-01

    Initial results are presented for a program to survey highly ionized gas in the Milky Way disk and halo. High-resolution IUE (International Ultraviolet Explorer) far-UV spectra were obtained for 12 stars at galactocentric distances less than 6 kpc. The stars are 0.7-2.2 kpc away from the plane. Most of the spectra contain exceedingly strong and broad interstellar absorption lines of weakly and highly ionized atoms. In addition to the normally strong lines of Si IV and C IV, strong interstellar NV lines have been detected in the spectra of eight stars. The detection of NV absorption (amounting to more than 10 times the predicted NV) provides an important new constraint on models for the origin of Galactic halo gas. A Galactic fountain operating in the presence of known UV and EUV radiation might explain the observations.

  1. Ultraviolet Spectroscopy of the Surfaces of the Inner Icy Saturnian Satellites

    NASA Astrophysics Data System (ADS)

    Hendrix, A. R.; Hansen, C. J.

    2008-12-01

    The Cassini mission has provided a unique opportunity to make high-resolution, multi-spectral measurements of Saturn's icy moons, to investigate their surface compositions, processes and evolution. Here we present results from the Ultraviolet Imaing Spectrograph (UVIS). This instrument allows for the first measurements of the icy satellites in the extreme ultraviolet (EUV) to far-ultraviolet (FUV) wavelength range. The icy satellites of the Saturn system exhibit a remarkable amount of variability: Dark, battered Phoebe orbiting at a distant 200 RS, black-and-white Iapetus, the wispy streaks of Dione, cratered Rhea and Mimas, bright Tethys and geologically active Enceladus. Phoebe, Iapetus and Hyperion all orbit largely outside Saturn's magnetosphere, while the inner icy satellites Mimas, Enceladus, Dione Tethys and Rhea all orbit within the magnetosphere. Furthermore, the inner icy satellites all orbit within the E-ring - so the extent of exogenic effects on these icy satellites is wide-ranging. We present an overview of UVIS results from Tethys, Dione, Mimas, Enceladus and Rhea, focusing on surface investigations. We expect that the UV signatures of these icy satellites are strongly influenced not only by their water ice composition, but by external effects and magnetospheric environments. We study the FUV reflectance spectra to learn about the surface composition, map out water ice grain size variations, investigate effects of coating by E-ring grains, examine disk-resolved and hemispheric compositional and brightness variations, and investigate the presence of radiation products. This is new work: FUV spectra of surfaces have not been well-studied in the past. Spectra of the inner icy moons have been used to better develop spectral models, to further understand existing lab data of water ice and to help with understanding instrument performance. Analysis is challenged by a lack of laboratory data in this wavelength region, but intriguing results are being found

  2. The Apollo 17 far ultraviolet spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Fastie, W. G.

    1972-01-01

    The Apollo 17 command service module in lunar orbit will carry a far ultraviolet scanning spectrometer whose prime mission will be to measure the composition of the lunar atmosphere. Additional observations will include the spectral lunar albedo, the temporary atmosphere injected by the engines of the lunar exploration module, the solar system atmosphere, the galactic atmosphere and the spectra of astronomical sources, including the earth. A detailed description of the experimental equipment which observes the spectral range 1180 to 1680 A, the observing program and broad speculation about the possible results of the experiment, are presented.

  3. Stratospheric ozone loss, ultraviolet effects and action spectroscopy

    NASA Astrophysics Data System (ADS)

    Coohill, Thomas P.

    The major effect of stratospheric ozone loss will be an increase in the amount of ultraviolet radiation reaching the ground. This increase will be entirely contained within the UV-B (290-320nm). How this will impact life on Earth will be determined by the UV-B photobiology of exposed organisms, including humans. One of the analytical methods useful in estimating these effects is Action Spectroscopy (biological effect as a function of wavelength). Carefully constructed action spectra will allow us to partially predict the increase in bio-effect due to additional UV exposure. What effect this has on the organism and the system in which the organism resides is of paramount importance. Suitable action spectra already exist for human skin cancer, human cell mutation and killing, and for one immune response. Comprehensive and widely applicable action spectra for terrestrial and aquatic plant responses are being generated but are not yet suitable for extensive analysis. There is little data available for animals, other than those experiments completed in the laboratory as model systems for human studies. Some polychromatic action spectra have proven useful in determining the possible impact of ozone loss on biological systems. The pitfalls and limits of this approach will be addressed.

  4. Emission spectra of photoionized plasmas induced by intense EUV pulses: Experimental and theoretical investigations

    NASA Astrophysics Data System (ADS)

    Saber, Ismail; Bartnik, Andrzej; Skrzeczanowski, Wojciech; Wachulak, Przemysław; Jarocki, Roman; Fiedorowicz, Henryk

    2017-03-01

    Experimental measurements and numerical modeling of emission spectra in photoionized plasma in the ultraviolet and visible light (UV/Vis) range for noble gases have been investigated. The photoionized plasmas were created using laser-produced plasma (LPP) extreme ultraviolet (EUV) source. The source was based on a gas puff target; irradiated with 10ns/10J/10Hz Nd:YAG laser. The EUV radiation pulses were collected and focused using grazing incidence multifoil EUV collector. The laser pulses were focused on a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Irradiation of gases resulted in a formation of low temperature photoionized plasmas emitting radiation in the UV/Vis spectral range. Atomic photoionized plasmas produced this way consisted of atomic and ionic with various ionization states. The most dominated observed spectral lines originated from radiative transitions in singly charged ions. To assist in a theoretical interpretation of the measured spectra, an atomic code based on Cowan's programs and a collisional-radiative PrismSPECT code have been used to calculate the theoretical spectra. A comparison of the calculated spectral lines with experimentally obtained results is presented. Electron temperature in plasma is estimated using the Boltzmann plot method, by an assumption that a local thermodynamic equilibrium (LTE) condition in the plasma is validated in the first few ionization states. A brief discussion for the measured and computed spectra is given.

  5. Skylab ultraviolet stellar spectra - A new white dwarf, HD 149499 B

    NASA Technical Reports Server (NTRS)

    Parsons, S. B.; Wray, J. D.; Benedict, G. F.; Henize, K. G.; Laget, M.

    1976-01-01

    The letter reports the discovery of a cool star with excess brightness in the vacuum ultraviolet on an objective-prism photograph obtained during the second Skylab mission. This star, HD 149499, is of type K0 V and has a companion with an apparent magnitude of about 11.8; the relatively flat UV spectrum observed at the position of HD 149499 is characteristic of a 10th or 11th magnitude unreddened O- or early B-type star. It is shown that the excess VUV brightness is due to the companion, HD 149499B, which probably lies in the region of the H-R diagram occupied by the hot white dwarfs. Inspection of white dwarf lists indicates that this star is the sixth or seventh brightest white dwarf known. A maximum orbital motion of 0.025 arcsec/yr is estimated along with a period of just under 500 yr.

  6. Exploring the Electronic Structure and Chemical Homogeneity of Individual Bi2Te3 Nanowires by Nano-Angle-Resolved Photoemission Spectroscopy.

    PubMed

    Krieg, Janina; Chen, Chaoyu; Avila, José; Zhang, Zeying; Sigle, Wilfried; Zhang, Hongbin; Trautmann, Christina; Asensio, Maria Carmen; Toimil-Molares, Maria Eugenia

    2016-07-13

    Due to their high surface-to-volume ratio, cylindrical Bi2Te3 nanowires are employed as model systems to investigate the chemistry and the unique conductive surface states of topological insulator nanomaterials. We report on nanoangle-resolved photoemission spectroscopy (nano-ARPES) characterization of individual cylindrical Bi2Te3 nanowires with a diameter of 100 nm. The nanowires are synthesized by electrochemical deposition inside channels of ion-track etched polymer membranes. Core level spectra recorded with submicron resolution indicate a homogeneous chemical composition along individual nanowires, while nano-ARPES intensity maps reveal the valence band structure at the single nanowire level. First-principles electronic structure calculations for chosen crystallographic orientations are in good agreement with those revealed by nano-ARPES. The successful application of nano-ARPES on single one-dimensional nanostructures constitutes a new avenue to achieve a better understanding of the electronic structure of topological insulator nanomaterials.

  7. A study on the electronic spectra of some 2-azidobenzothiazoles, TD-DFT treatment.

    PubMed

    Abu-Eittah, Rafie H; El-Taher, Sabry; Hassan, Walid; Noamaan, Mahmoud

    2015-12-05

    The electronic absorption spectra of some 2-azidobenzothiazoles were measured in different solvents. The effects of solvent and substitution on the spectra were investigated. Substitution by a bromine atom and by a nitro group have significant effects on both band maxima and band intensity. Correlation between the spectra of the studied compounds and the corresponding hydrocarbons proved to be weak, whereas the correlation between the observed spectra and those calculated is adequate. Theoretical treatment of the ultraviolet spectra of the studied compounds was carried out by using the TD-DFT procedures, at the B3LYP level and the 6-311+G(∗∗) basis sets, the results compared well with the experimental values. The computed molecular orbitals of the ground state indicate that some orbitals are "localized-π" or "localized σ" molecular orbitals while the others are delocalized orbitals. The calculated functions of the excited states lead to an accurate assignment of the bands observed in the spectra. Copyright © 2015. Published by Elsevier B.V.

  8. Early stages of the oxidation of metal surfaces. [photoelectron spectroscopy of zinc oxide

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Johnson, K. H.

    1978-01-01

    Photoemission cross sections were calculated for the ZnO4(-6) cluster using the self consistent-chi alpha- scattered wave theory to display the main features of the ultraviolet and X-ray photoemission data from ZnO. A solid model is suggested for an absolute photoemission intensity comparison resulting in chi alpha intensities which are roughly 70% of the experimental values. Together with the experimental data, the calculations allow a complete determination of the electronic structure of a ZnO surface.

  9. Ultraviolet observations of the Io torus from the IUE observatory

    NASA Technical Reports Server (NTRS)

    Moos, H. W.; Clarke, J. T.

    1981-01-01

    The short wavelength spectrograph on the International Ultraviolet Explorer (IUE) has been used to obtain 11 A resolution spectra of the Io torus from 1175-1950 A. The four spectra, obtained in the springs of 1979 and 1980, show emissions (about 40R) of S II A1256A and S III A1199A. An unidentified feature is also present at 1729 A; a tentative identification as an intercombination line of S III is proposed. Weak features, probably due to O III A1664A and S IV A1406A, appear in some of the spectra. Abundances of the ions are determined from the brightnesses of the observed features. Upper limits are also set for the abundances of a number of ionic and neutral species. An observation of Io itself does not show any additional or enhanced spectral features, permitting upper limits to be set on the injection rate for a number of species.

  10. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jablonowski, H.; Hammer, M. U.; Reuter, S.

    Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100–400 nm) and, in particular, vacuum ultraviolet (VUV, 10–200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH{sub 2}O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stablemore » reactive oxygen species, hydrogen peroxide (H{sub 2}O{sub 2}) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O{sub 2}{sup •−}) and hydroxyl radicals ({sup •}OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.« less

  11. High passive CEP stability from a few-cycle, tunable NOPA-DFG system for observation of CEP-effects in photoemission.

    PubMed

    Vogelsang, Jan; Robin, Jörg; Piglosiewicz, Björn; Manzoni, Cristian; Farinello, Paolo; Melzer, Stefan; Feru, Philippe; Cerullo, Giulio; Lienau, Christoph; Groß, Petra

    2014-10-20

    The investigation of fundamental mechanisms taking place on a femtosecond time scale is enabled by ultrafast pulsed laser sources. Here, the control of pulse duration, center wavelength, and especially the carrier-envelope phase has been shown to be of essential importance for coherent control of high harmonic generation and attosecond physics and, more recently, also for electron photoemission from metallic nanostructures. In this paper we demonstrate the realization of a source of 2-cycle laser pulses tunable between 1.2 and 2.1 μm, and with intrinsic CEP stability. The latter is guaranteed by difference frequency generation between the output pulse trains of two noncollinear optical parametric amplifier stages that share the same CEP variations. The CEP stability is better than 50 mrad over 20 minutes, when averaging over 100 pulses. We demonstrate the good CEP stability by measuring kinetic energy spectra of photoemitted electrons from a single metal nanostructure and by observing a clear variation of the electron yield with the CEP.

  12. Ultraviolet Spectral Behavior of TVCol During and After Flaring Activity

    NASA Astrophysics Data System (ADS)

    Sanad, M. R.; Abdel-Sabour, M. A.

    2018-01-01

    We studied the intermediate polar TVCol during and after its flare in November 1982 observed in the ultraviolet range with the International Ultraviolet Explorer. Two spectra revealing the variations of emission lines at different times are presented. We have estimated a new value of the reddening from the 2200 Å absorption feature, E ( B - V ) = 0.12 ± 0.02, and calculated the line fluxes of C IV and He II emission lines produced in the outer accretion disk. The average ultraviolet luminosity of emitting region during and after the flare is approximately 4 × 1032 erg s-1 and 9 × 1030 erg s-1, the corresponding average mass accretion rate is nearly 3 × 1015 erg s-1 (4.76 × 10-11 M ⊙ yr-1) and 5 × 1013 erg s-1 (7.93 × 10-13 M ⊙ yr-1), and the average temperature of the emitting region during and after flare is estimated to be of about 3.5 × 103 K and 2 × 103 K. We attribute this flare to a sudden increase in the mass accretion rate leading to the outburst activity.

  13. Understanding the Early Evolution of M dwarf Extreme Ultraviolet Radiation

    NASA Astrophysics Data System (ADS)

    Peacock, Sarah; Barman, Travis; Shkolnik, Evgenya

    2015-11-01

    The chemistry and evolution of planetary atmospheres depends on the evolution of high-energy radiation emitted by its host star. High levels of extreme ultraviolet (EUV) radiation can drastically alter the atmospheres of terrestrial planets through ionizing, heating, expanding, chemically modifying and eroding them during the first few billion years of a planetary lifetime. While there is evidence that stars emit their highest levels of far and near ultraviolet (FUV; NUV) radiation in the earliest stages of their evolution, we are currently unable to directly measure the EUV radiation. Most previous stellar atmosphere models under-predict FUV and EUV emission from M dwarfs; here we present new models for M stars that include prescriptions for the hot, lowest density atmospheric layers (chromosphere, transition region and corona), from which this radiation is emitted. By comparing our model spectra to GALEX near and far ultraviolet fluxes, we are able to predict the evolution of EUV radiation for M dwarfs from 10 Myr to a few Gyr. This research is the next major step in the HAZMAT (HAbitable Zones and M dwarf Activity across Time) project to analyze how the habitable zone evolves with the evolving properties of stellar and planetary atmospheres.

  14. A DETAILED FAR-ULTRAVIOLET SPECTRAL ATLAS OF MAIN-SEQUENCE B STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Myron A.

    2010-02-01

    We have constructed a detailed spectral atlas covering the wavelength region 930-1225 A for 10 sharp-lined B0-B9 stars near the main sequence. Most of the spectra we assembled are from the archives of the Far Ultraviolet Spectroscopic Explorer satellite, but for nine stars, wavelength coverage above 1188 A was taken from high-resolution International Ultraviolet Explorer or echelle Hubble Space Telescope/Space Telescope Imaging Spectrograph spectra. To represent the tenth star at type B0.2 V, we used the Copernicus atlas of {tau} Sco. We made extensive line identifications in the region 949-1225 A of all atomic features having published oscillator strengths atmore » types B0, B2, and B8. These are provided as a supplementary data product-hence the term detailed atlas. Our list of found features totals 2288, 1612, and 2469 lines, respectively. We were able to identify 92%, 98%, and 98% of these features with known atomic transitions with varying degrees of certainty in these spectra. The remaining lines do not have published oscillator strengths. Photospheric lines account for 94%, 87%, and 91%, respectively, of all our identifications, with the remainder being due to interstellar (usually molecular H{sub 2}) lines. We also discuss the numbers of lines with respect to the distributions of various ions for these three most studied spectral subtypes. A table is also given of 162 least blended lines that can be used as possible diagnostics of physical conditions in B star atmospheres.« less

  15. Interface states and internal photoemission in p-type GaAs metal-oxide-semiconductor surfaces

    NASA Technical Reports Server (NTRS)

    Kashkarov, P. K.; Kazior, T. E.; Lagowski, J.; Gatos, H. C.

    1983-01-01

    An interface photodischarge study of p-type GaAs metal-oxide-semiconductor (MOS) structures revealed the presence of deep interface states and shallow donors and acceptors which were previously observed in n-type GaAs MOS through sub-band-gap photoionization transitions. For higher photon energies, internal photoemission was observed, i.e., injection of electrons to the conduction band of the oxide from either the metal (Au) or from the GaAs valence band; the threshold energies were found to be 3.25 and 3.7 + or - 0.1 eV, respectively. The measured photoemission current exhibited a thermal activation energy of about 0.06 eV, which is consistent with a hopping mechanism of electron transport in the oxide.

  16. Advanced Models of Accretion Disk Atmospheres and Spectra for Close Binary Stars

    NASA Technical Reports Server (NTRS)

    Wade, Richard A.

    1997-01-01

    This work led to the development of code for fitting models to data, and to an understanding of the nature of the models which enabled a more rapid search of 'parameter space' for optimal fits to spectral data sets. The code was used to find optimal fits to IUE spectra of quiescent dwarf novae that have been reported to show evidence for the white dwarf. The models consisted of a white dwarf component and an accretion disk with boundary conditions appropriate for the choice of the white dwarf. The preliminary work has strengthened the initial impression that accretion disk spectra can mimic the appearance of white dwarf spectra in the short-wavelength ultraviolet, so that additional constraints (such as distance) are needed to distinguish to two cases.

  17. Classifying galaxy spectra at 0.5 < z < 1 with self-organizing maps

    NASA Astrophysics Data System (ADS)

    Rahmani, S.; Teimoorinia, H.; Barmby, P.

    2018-05-01

    The spectrum of a galaxy contains information about its physical properties. Classifying spectra using templates helps elucidate the nature of a galaxy's energy sources. In this paper, we investigate the use of self-organizing maps in classifying galaxy spectra against templates. We trained semi-supervised self-organizing map networks using a set of templates covering the wavelength range from far ultraviolet to near infrared. The trained networks were used to classify the spectra of a sample of 142 galaxies with 0.5 < z < 1 and the results compared to classifications performed using K-means clustering, a supervised neural network, and chi-squared minimization. Spectra corresponding to quiescent galaxies were more likely to be classified similarly by all methods while starburst spectra showed more variability. Compared to classification using chi-squared minimization or the supervised neural network, the galaxies classed together by the self-organizing map had more similar spectra. The class ordering provided by the one-dimensional self-organizing maps corresponds to an ordering in physical properties, a potentially important feature for the exploration of large datasets.

  18. Orbital-differentiated coherence-incoherence crossover identified by photoemission spectroscopy in LiFeAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, H.; Yin, Z. P.; Wu, S. F.

    In the iron-based superconductors (FeSCs), orbital differentiation is an important phenomenon, whereby correlations stronger on the d xy orbital than on the d xz/d yz orbital yield quasi-particles with d xy orbital character having larger mass renormalization and abnormal temperature evolution. However, the physical origin of this orbital di erentiation is debated between the Hund's coupling induced unbinding of spin and orbital degrees of freedom and the Hubbard interaction instigated orbital selective Mott transition. Here we use angle-resolved photoemission spectroscopy to identify an orbital-dependent correlation-induced quasi-particle (QP) anomaly in LiFeAs. Lastly, the excellent agreement between our photoemission measurements and first-principlesmore » many-body theory calculations shows that the orbital-differentiated QP lifetime anomalies in LiFeAs are controlled by the Hund's coupling.« less

  19. Orbital-differentiated coherence-incoherence crossover identified by photoemission spectroscopy in LiFeAs

    DOE PAGES

    Miao, H.; Yin, Z. P.; Wu, S. F.; ...

    2016-11-14

    In the iron-based superconductors (FeSCs), orbital differentiation is an important phenomenon, whereby correlations stronger on the d xy orbital than on the d xz/d yz orbital yield quasi-particles with d xy orbital character having larger mass renormalization and abnormal temperature evolution. However, the physical origin of this orbital di erentiation is debated between the Hund's coupling induced unbinding of spin and orbital degrees of freedom and the Hubbard interaction instigated orbital selective Mott transition. Here we use angle-resolved photoemission spectroscopy to identify an orbital-dependent correlation-induced quasi-particle (QP) anomaly in LiFeAs. Lastly, the excellent agreement between our photoemission measurements and first-principlesmore » many-body theory calculations shows that the orbital-differentiated QP lifetime anomalies in LiFeAs are controlled by the Hund's coupling.« less

  20. Reaction of Rb and oxygen overlayers with single-crystalline Bi2Sr2CaCu2O8+δ superconductors

    NASA Astrophysics Data System (ADS)

    Lindberg, P. A. P.; Shen, Z.-X.; Wells, B. O.; Dessau, D. S.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.

    1989-02-01

    Single crystals of Bi2Sr2CaCu2O8+δ superconductors, in situ cleaved and modified by Rb and oxygen overlayers, have been studied using ultraviolet and x-ray photoemission spectroscopy. The core-level results show that Rb strongly reacts with the Bi and O states, while the Cu and Sr states are left unchanged. This observation strongly indicates that the Bi-O plane forms the surface layer. Subsequent exposure to oxygen results in new oxygen states at the surface as monitored by the O 1s core-level data. For both Rb and oxygen overlayers the valence-band spectra are severely altered. In particular, new valence-band states, presumably of oxygen character, are formed.

  1. Band alignment at the Cu2ZnSn(SxSe1-x)4/CdS interface

    NASA Astrophysics Data System (ADS)

    Haight, Richard; Barkhouse, Aaron; Gunawan, Oki; Shin, Byungha; Copel, Matt; Hopstaken, Marinus; Mitzi, David B.

    2011-06-01

    Energy band alignments between CdS and Cu2ZnSn(SxSe1-x)4 (CZTSSe) grown via solution-based and vacuum-based deposition routes were studied as a function of the [S]/[S+Se] ratio with femtosecond laser ultraviolet photoelectron spectroscopy, photoluminescence, medium energy ion scattering, and secondary ion mass spectrometry. Band bending in the underlying CZTSSe layer was measured via pump/probe photovoltage shifts of the photoelectron spectra and offsets were determined with photoemission under flat band conditions. Increasing the S content of the CZTSSe films produces a valence edge shift to higher binding energy and increases the CZTSSe band gap. In all cases, the CdS conduction band offsets were spikes.

  2. High-Energy Anomaly in the Angle-Resolved Photoemission Spectra of Nd2-xCexCuO4: Evidence for a Matrix Element Effect

    NASA Astrophysics Data System (ADS)

    Rienks, E. D. L.; ńrrälä, M.; Lindroos, M.; Roth, F.; Tabis, W.; Yu, G.; Greven, M.; Fink, J.

    2014-09-01

    We use polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd2-xCexCuO4, x =0.123. We find that at particular photon energies the anomalous, waterfall-like dispersion gives way to a broad, continuous band. This suggests that the HEA is a matrix element effect: it arises due to a suppression of the intensity of the broadened quasiparticle band in a narrow momentum range. We confirm this interpretation experimentally, by showing that the HEA appears when the matrix element is suppressed deliberately by changing the light polarization. Calculations of the matrix element using atomic wave functions and simulation of the ARPES intensity with one-step model calculations provide further evidence for this scenario. The possibility to detect the full quasiparticle dispersion further allows us to extract the high-energy self-energy function near the center and at the edge of the Brillouin zone.

  3. High-energy anomaly in the angle-resolved photoemission spectra of Nd(2-x)Ce(x)CuO₄: evidence for a matrix element effect.

    PubMed

    Rienks, E D L; Ärrälä, M; Lindroos, M; Roth, F; Tabis, W; Yu, G; Greven, M; Fink, J

    2014-09-26

    We use polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd(2-x)Ce(x)CuO₄, x=0.123. We find that at particular photon energies the anomalous, waterfall-like dispersion gives way to a broad, continuous band. This suggests that the HEA is a matrix element effect: it arises due to a suppression of the intensity of the broadened quasiparticle band in a narrow momentum range. We confirm this interpretation experimentally, by showing that the HEA appears when the matrix element is suppressed deliberately by changing the light polarization. Calculations of the matrix element using atomic wave functions and simulation of the ARPES intensity with one-step model calculations provide further evidence for this scenario. The possibility to detect the full quasiparticle dispersion further allows us to extract the high-energy self-energy function near the center and at the edge of the Brillouin zone.

  4. Research in extreme ultraviolet and far ultraviolet astronomy

    NASA Technical Reports Server (NTRS)

    Labov, S. E.

    1985-01-01

    Instruments designed to explore different aspects of far and extreme ultraviolet cosmic radiation were studied. The far ultraviolet imager (FUVI) was flown on the Aries sounding rocket. Its unique large format 75mm detector mapped out the far ultraviolet background radiation with a resolution of only a few arc minutes. Analysis of this data indicates to what extent the FUVI background is extra galactic in origin. A power spectrum of the spatial fluctuations will have direct consequences for galactic evolution.

  5. Ultraviolet absorption of common spacecraft contaminants. [to control effects of contaminants on optical systems

    NASA Technical Reports Server (NTRS)

    Colony, J. A.

    1979-01-01

    Organic contamination of ultraviolet optical systems is discussed. Degradation of signal by reflection, scattering, interference, and absorption is shown. The first three processes depend on the physical state of the contaminant while absorption depends on its chemical structure. The latter phenomenon is isolated from the others by dissolving contaminants in cyclohexane and determining absorption spectra from 2100A to 3600A. A variety of materials representing the types of contaminants responsible for most spaceflight hardware problems is scanned and the spectra is presented. The effect of thickness is demonstrated for the most common contaminant, di(2 ethyl hexyl)phthalate, by scanning successive dilutions.

  6. High repetition pump-and-probe photoemission spectroscopy based on a compact fiber laser system.

    PubMed

    Ishida, Y; Otsu, T; Ozawa, A; Yaji, K; Tani, S; Shin, S; Kobayashi, Y

    2016-12-01

    The paper describes a time-resolved photoemission (TRPES) apparatus equipped with a Yb-doped fiber laser system delivering 1.2-eV pump and 5.9-eV probe pulses at the repetition rate of 95 MHz. Time and energy resolutions are 11.3 meV and ∼310 fs, respectively, the latter is estimated by performing TRPES on a highly oriented pyrolytic graphite (HOPG). The high repetition rate is suited for achieving high signal-to-noise ratio in TRPES spectra, thereby facilitating investigations of ultrafast electronic dynamics in the low pump fluence (p) region. TRPES of polycrystalline bismuth (Bi) at p as low as 30 nJ/mm 2 is demonstrated. The laser source is compact and is docked to an existing TRPES apparatus based on a 250-kHz Ti:sapphire laser system. The 95-MHz system is less prone to space-charge broadening effects compared to the 250-kHz system, which we explicitly show in a systematic probe-power dependency of the Fermi cutoff of polycrystalline gold. We also describe that the TRPES response of an oriented Bi(111)/HOPG sample is useful for fine-tuning the spatial overlap of the pump and probe beams even when p is as low as 30 nJ/mm 2 .

  7. Analysis of Fe V and Ni V Wavelength Standards in the Vacuum Ultraviolet

    NASA Astrophysics Data System (ADS)

    Ward, Jacob Wolfgang; Nave, Gillian

    2015-01-01

    The recent publication[1] by J.C. Berengut et al. tests for a potential variation in the fine-structure constant in the presence of high gravitational potentials through spectral analysis of white-dwarf stars.The spectrum of the white-dwarf star studied in the paper, G191-B2B, has prominent Fe V and Ni V lines, which were used to determine any variation in the fine-structure constant via observed shifts in the wavelengths of Fe V and Ni V in the vacuum ultraviolet region. The results of the paper indicate no such variation, but suggest that refined laboratory values for the observed wavelengths could greatly reduce the uncertainty associated with the paper's findings.An investigation of Fe V and Ni V spectra in the vacuum ultraviolet region has been conducted to reduce wavelength uncertainties currently limiting modern astrophysical studies of this nature. The analyzed spectra were produced by a sliding spark light source with electrodes made of invar, an iron nickel alloy, at peak currents of 750-2000 A. The use of invar ensures that systematic errors in the calibration are common to both species. The spectra were recorded with the NIST Normal Incidence Vacuum Spectrograph on phosphor image plate and photographic plate detectors. Calibration was done with a Pt II spectrum produced by a Platinum Neon Hollow Cathode lamp.[1] J. C. Berengut, V. V. Flambaum, A. Ong, et al Phys. Rev. Lett. 111, 010801 (2013)

  8. Multidimensional photoemission spectroscopy—the space-charge limit

    NASA Astrophysics Data System (ADS)

    Schönhense, B.; Medjanik, K.; Fedchenko, O.; Chernov, S.; Ellguth, M.; Vasilyev, D.; Oelsner, A.; Viefhaus, J.; Kutnyakhov, D.; Wurth, W.; Elmers, H. J.; Schönhense, G.

    2018-03-01

    Photoelectron spectroscopy, especially at pulsed sources, is ultimately limited by the Coulomb interaction in the electron cloud, changing energy and angular distribution of the photoelectrons. A detailed understanding of this phenomenon is crucial for future pump-probe photoemission studies at (x-ray) free electron lasers and high-harmonic photon sources. Measurements have been performed for Ir(111) at hν = 1000 eV with photon flux densities between ˜102 and 104 photons per pulse and μm2 (beamline P04/PETRA III, DESY Hamburg), revealing space-charge induced energy shifts of up to 10 eV. In order to correct the essential part of the energy shift and restore the electron distributions close to the Fermi energy, we developed a semi-analytical theory for the space-charge effect in cathode-lens instruments (momentum microscopes, photoemission electron microscopes). The theory predicts a Lorentzian profile of energy isosurfaces and allows us to quantify the charge cloud from measured energy profiles. The correction is essential for the determination of the Fermi surface, as we demonstrate by means of ‘k-space movies’ for the prototypical high-Z material tungsten. In an energy interval of about 1 eV below the Fermi edge, the bandstructure can be restored up to substantial shifts of ˜7 eV. Scattered photoelectrons strongly enhance the inelastic background in the region several eV below E F, proving that the majority of scattering events involves a slow electron. The correction yields a gain of two orders of magnitude in usable intensity compared with the uncorrected case (assuming a tolerable shift of 250 meV). The results are particularly important for future experiments at SASE-type free electron lasers, since the correction also works for strongly fluctuating (but known) pulse intensities.

  9. Observations of the Magnetic Cataclysmic Variable VV Puppis with the Far Ultraviolet Spectroscopic Explorer

    NASA Astrophysics Data System (ADS)

    Hoard, D. W.; Szkody, Paula; Ishioka, Ryoko; Ferrario, L.; Gänsicke, B. T.; Schmidt, Gary D.; Kato, Taichi; Uemura, Makoto

    2002-10-01

    We present the first far-ultraviolet (FUV) observations of the magnetic cataclysmic variable VV Puppis, obtained with the Far Ultraviolet Spectroscopic Explorer satellite. In addition, we have obtained simultaneous ground-based optical photometric observations of VV Pup during part of the FUV observation. The shapes of the FUV and optical light curves are consistent with each other and with those of past observations at optical, extreme-ultraviolet, and X-ray wavelengths. Time-resolved FUV spectra during the portion of VV Pup's orbit when the accreting magnetic pole of the white dwarf can be seen show an increasing continuum level as the accretion spot becomes more directly visible. The most prominent features in the spectrum are the O VI λλ1031.9, 1037.6 emission lines. We interpret the shape and velocity shift of these lines in the context of an origin in the accretion funnel near the white dwarf surface. A blackbody function with Tbb>~90,000 K provides an adequate fit to the FUV spectral energy distribution of VV Pup. Based on observations with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer. FUSE is operated for NASA by Johns Hopkins University under NASA contract NAS 5-32985.

  10. Far Ultraviolet Spectroscopic Explorer Observations of the Seyfert 1.5 Galaxy NGC 5548 in a Low State

    NASA Technical Reports Server (NTRS)

    Brotherton, M. S.; Green, R. F.; Kriss, G. A.; Oegerle, W.; Kaiser, M. E.; Zheng, W.; Hutchings, J. B.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We present far-ultraviolet spectra of the Seyfert 1.5 galaxy NGC 5548 obtained in 2000 June with the Far Ultraviolet Spectroscopic Explorer (FUSE). Our data span the observed wavelength range 915-1185 A at a resolution of approximately 20 km s(exp -1). The spectrum shows a weak continuum and emission from O VI (lambda)(lambda)1032, 1038, C III (lambda)977, and He II (lambda)1085. The FUSE data were obtained when the AGN (Active Galactic Nuclei) was in a low state, which has revealed strong, narrow O VI emission lines. We also resolve intrinsic, associated absorption lines of O VI and the Lyman series. Several distinct kinematic components are present, spanning a velocity range of approximately 0 to -1300 km s(exp -1) relative to systemic, with kinematic structure similar to that seen in previous observations of longer wavelength ultraviolet (UV) lines. We explore the relationships between the far-UV (ultraviolet) absorbers and those seen previously in the UV and X-rays. We find that the high-velocity UV absorption component is consistent with being low-ionization, contrary to some previous claims, and is consistent with its non-detection in high-resolution X-ray spectra. The intermediate velocity absorbers, at -300 to -400 km s(exp -1), show H I and O VI column densities consistent with having contributions from both a high-ionization X-ray absorber and a low-ionization UV absorber. No single far-UV absorbing component can be solely identified with the X-ray absorber.

  11. The effects of ionizing radiations on L-, DL-phenylalanine and L-, DL- tryptophase studied by ultra-violet and infra-red spectrophotometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korgaonkar, K S; Donde, R B

    Aqueous solutions of L-, DL-phenylalanlne and L-, DLtryptophane were irradiated with Co 60 gamma rays. Marked changes in the ultraviolet spectra of the samples and in the infra-red spectra of their solid residues were noted. The radiosensitivities of these irradiated molecules in terms of G-values were determined, and the modes of action and the nature of irradiation products are discussed. A common order of radiosensitivities among the three aromatic amino acids both L-, and DL-forms is observed. Apparent differences In the ultraviolet spectral responses of tryptophane on the one hand and phenylalanine and tyrosine on the other are explained. Evidencemore » is presented suggesting some common radiation end-product of a cellulose or sugar type from these aromatic amino acids.« less

  12. Ultraviolet and X-ray Variability of the Seyfert 1.5 Galaxy Markarian 817

    NASA Astrophysics Data System (ADS)

    Winter, Lisa M.; Danforth, Charles; Vasudevan, Ranjan; Brandt, W. N.; Scott, Jennifer; Froning, Cynthia; Keeney, Brian; Shull, J. Michael; Penton, Steve; Mushotzky, Richard; Schneider, Donald P.; Arav, Nahum

    2011-02-01

    We present an investigation of the ultraviolet and X-ray spectra of the Seyfert 1.5 galaxy Markarian 817. The ultraviolet analysis includes two recent observations taken with the Cosmic Origins Spectrograph (COS) in 2009 August and December, as well as archival spectra from the International Ultraviolet Explorer and the Hubble Space Telescope. Twelve Lyα absorption features are detected in the 1997 Goddard High Resolution Spectrograph (GHRS) and 2009 COS spectra—of these, four are associated with high-velocity clouds in the interstellar medium, four are at low significance, and the remaining four are intrinsic features, which vary between the GHRS and COS observations. The strongest intrinsic absorber in the 1997 spectrum has a systemic velocity of ~-4250 km s-1. The corresponding feature in the COS data is five times weaker than the GHRS absorber. The three additional weak (equivalent width from 13 to 54 mÅ) intrinsic Lyα absorbers are at systemic velocities of -4100 km s-1, -3550 km s-1, and -2600 km s-1. However, intrinsic absorption troughs from highly ionized C IV and N V are not detected in the COS observations. No ionized absorption signatures are detected in the ~14 ks XMM-Newton EPIC spectra. The factor of five change in the intrinsic Lyα absorber is most likely due to bulk motions in the absorber, since there is no drastic change in the UV luminosity of the source from the GHRS to the COS observations. In a study of the variability of Mrk 817, we find that the X-ray luminosity varies by a factor of ~40 over 20 years, while the UV continuum/emission lines vary by at most a factor of ~2.3 over 30 years. The variability of the X-ray luminosity is strongly correlated with the X-ray power-law index, but no correlation is found with the simultaneous optical/UV photometry.

  13. Interstellar Deuterium, Nitrogen and Oxygen Abundances Toward BD+28(deg) 4211: Results from the Far Ultraviolet Spectroscopic Explorer

    NASA Technical Reports Server (NTRS)

    Sonneborn, George; Andre, Martial; Oliveira, Cristina; Hebrard, Guillaume; Howk, J. Christopher; Tripp, Todd M.; Chayer, Pierre; Friedman, Scott D.; Kruk, Jeffery W.; Jenkins, Edward B.; hide

    2002-01-01

    High resolution far-ultraviolet spectra of the O-type subdwarf BD+28(deg)4211 were obtained with the Far Ultraviolet Spectroscopic Explorer to measure the interstellar deuterium, nitrogen, and oxygen abundances in this direction. The interstellar D(I) transitions are analyzed down to Ly(ioat) at 920.7 A. The star was observed several times at different target offsets in the direction of spectral dispersion. The aligned and coedited spectra have high signal-to-noise ratios (S/N=50-100). D(I), N(I), and O(I) transitions were analyzed with curve-of-growth and profile fitting techniques. A model of interstellar molecular hydrogen on the line of sight was derived from H(II) lines in the FUSE spectra and used to help analyze some features where blending with H(II) was significant. The H(I) column density was determined from high resolution HST/STIS spectra of Ly(alpha) to be log N(H(I))= 19.846+/-0.035(2sigma), which is higher than is typical for sight lines in the local ISM studied for D/H. We found that D/H=(1.39+/-0.21)x 10(exp -5)(2sigma) and O/H=(2.37+/-0.55)x10(exp -4)(2sigma). O/H toward BD+28(deg)4211 appears to be significantly below the mean O/H ratio for the ISM and the Local Bubble.

  14. NIST Databases on Atomic Spectra

    NASA Astrophysics Data System (ADS)

    Reader, J.; Wiese, W. L.; Martin, W. C.; Musgrove, A.; Fuhr, J. R.

    2002-11-01

    The NIST atomic and molecular spectroscopic databases now available on the World Wide Web through the NIST Physics Laboratory homepage include Atomic Spectra Database, Ground Levels and Ionization Energies for the Neutral Atoms, Spectrum of Platinum Lamp for Ultraviolet Spectrograph Calibration, Bibliographic Database on Atomic Transition Probabilities, Bibliographic Database on Atomic Spectral Line Broadening, and Electron-Impact Ionization Cross Section Database. The Atomic Spectra Database (ASD) [1] offers evaluated data on energy levels, wavelengths, and transition probabilities for atoms and atomic ions. Data are given for some 950 spectra and 70,000 energy levels. About 91,000 spectral lines are included, with transition probabilities for about half of these. Additional data resulting from our ongoing critical compilations will be included in successive new versions of ASD. We plan to include, for example, our recently published data for some 16,000 transitions covering most ions of the iron-group elements, as well as Cu, Kr, and Mo [2]. Our compilations benefit greatly from experimental and theoretical atomic-data research being carried out in the NIST Atomic Physics Division. A new compilation covering spectra of the rare gases in all stages of ionization, for example, revealed a need for improved data in the infrared. We have thus measured these needed data with our high-resolution Fourier transform spectrometer [3]. An upcoming new database will give wavelengths and intensities for the stronger lines of all neutral and singly-ionized atoms, along with energy levels and transition probabilities for the persistent lines [4]. A critical compilation of the transition probabilities of Ba I and Ba II [5] has been completed and several other compilations of atomic transition probabilities are nearing completion. These include data for all spectra of Na, Mg, Al, and Si [6]. Newly compiled data for selected ions of Ne, Mg, Si and S, will form the basis for a new

  15. Topological surface state of α -Sn on InSb(001) as studied by photoemission

    NASA Astrophysics Data System (ADS)

    Scholz, M. R.; Rogalev, V. A.; Dudy, L.; Reis, F.; Adler, F.; Aulbach, J.; Collins-McIntyre, L. J.; Duffy, L. B.; Yang, H. F.; Chen, Y. L.; Hesjedal, T.; Liu, Z. K.; Hoesch, M.; Muff, S.; Dil, J. H.; Schäfer, J.; Claessen, R.

    2018-02-01

    We report on the electronic structure of the elemental topological semimetal α -Sn on InSb(001). High-resolution angle-resolved photoemission data allow us to observe the topological surface state (TSS) that is degenerate with the bulk band structure and show that the former is unaffected by different surface reconstructions. An unintentional p -type doping of the as-grown films was compensated by deposition of potassium or tellurium after the growth, thereby shifting the Dirac point of the surface state below the Fermi level. We show that, while having the potential to break time-reversal symmetry, iron impurities with a coverage of up to 0.25 monolayers do not have any further impact on the surface state beyond that of K or Te. Furthermore, we have measured the spin-momentum locking of electrons from the TSS by means of spin-resolved photoemission. Our results show that the spin vector lies fully in-plane, but it also has a finite radial component. Finally, we analyze the decay of photoholes introduced in the photoemission process, and by this gain insight into the many-body interactions in the system. Surprisingly, we extract quasiparticle lifetimes comparable to other topological materials where the TSS is located within a bulk band gap. We argue that the main decay of photoholes is caused by intraband scattering, while scattering into bulk states is suppressed due to different orbital symmetries of bulk and surface states.

  16. [Ultraviolet-visible spectrometry analysis of insoluble xanthate heavy metal complexes].

    PubMed

    Qiu, Bo; Liu, Jin-Feng; Liu, Yao-Chi; Yang, Zhao-Guang; Li, Hai-Pu

    2014-11-01

    A ultraviolet-visible spectrometry method of determining insoluble xanthate heavy metal complexes in flotation wastewater was the first time to be put forward. In this work, the changes of ultraviolet-visible spectra of xanthate solution after the addition of various heavy metal ions were investigated firstly. It was found that Pb2+ and Cu2+ can form insoluble complexes with xanthate, while Fe2+, Zn2+ and Mn2+ have little effect on the ultraviolet absorption of xanthate solution. Then the removal efficiencies of filter membrane with different pore sizes were compared, and the 0.22 μm membrane was found to be effective to separate copper xanthate or lead xanthate from the filtrate. Furthermore, the results of the study on the reaction of sodium sulfide and insoluble xanthate heavy metal complexes showed that S(2-) can release the xanthate ion quantitatively from insoluble complexes to solution. Based on the above research, it was concluded that the amount of insoluble xanthate heavy metal complexes in water samples can be obtained through the increase of free xanthate in the filtrate after the addition of sodium sulfide. Finally, the feasibility of this method was verified by the application to the analysis of flotation wastewater from three ore-dressing plants in the Thirty-six Coves in Chenzhou.

  17. Evaluation of ultraviolet spectrophotometry for simultaneous analysis of alkylbenzenes, alkylnaphthalenes, alkylanthracenes/phenanthrenes and total aromatics in mid-distillate fuels

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Seng, G. T.

    1982-01-01

    A rapid ultraviolet spectrophotometric method for the simultaneous determination of aromatics in middistillate fuels was developed and evaluated. In this method, alkylbenzenes, alkylnaphthalenes, alkylanthracenes/phenanthracenes and total aromatics were determined from ultraviolet spectra of the fuels. The accuracy and precision were determined using simulated standard fuels with known compositions. The total aromatics fraction accuracy was 5% for a Jet A type fuel and 0.6% for a broadened properties jet turbine type fuel. Precision, expressed as relative standard deviations, ranged from 2.9% for the alkylanthracenes/phenanthrenes to 15.3% for the alkylbenzenes. The accuracy, however, was less for actual fuel samples when compared to the results obtained by a mass spectrometric method. In addition, the ASTM D-1840 method for naphthalenes by ultraviolet spectroscopy was evaluated.

  18. A study of ultraviolet absorption lines through the complete Galactic halo by the analysis of HST faint object spectrograph spectra of active Galactic nuclei, 1

    NASA Technical Reports Server (NTRS)

    Burks, Geoffrey S.; Bartko, Frank; Shull, J. Michael; Stocke, John T.; Sachs, Elise R.; Burbidge, E. Margaret; Cohen, Ross D.; Junkkarinen, Vesa T.; Harms, Richard J.; Massa, Derck

    1994-01-01

    The ultraviolet (1150 - 2850 A) spectra of a number of active galactic nuclei (AGNs) observed with the Hubble Space Telescope (HST) Faint Object Spectrograph (FOS) have been used to study the properties of the Galactic halo. The objects that served as probes are 3C 273, PKS 0454-220, Pg 1211+143, CSO 251, Ton 951, and PG 1351+640. The equivalent widths of certain interstellar ions have been measured, with special attention paid to the C IV/C II and Si IV/Si II ratios. These ratios have been intercompared, and the highest values are found in the direction of 3C 273, where C IV/C II = 1.2 and Si IV/Si II greater than 1. These high ratios may be due to a nearby supernova remnant, rather than to ionized gas higher up in the Galactic halo. Our data give some support to the notion that QSO metal-line systems may arise from intervening galaxies which contain high supernova rates, galactic fountains, and turbulent mixing layers.

  19. Charge transfer and symmetry reduction at the CuPc/Ag(110) interface studied by photoemission tomography

    NASA Astrophysics Data System (ADS)

    Schönauer, K.; Weiss, S.; Feyer, V.; Lüftner, D.; Stadtmüller, B.; Schwarz, D.; Sueyoshi, T.; Kumpf, C.; Puschnig, P.; Ramsey, M. G.; Tautz, F. S.; Soubatch, S.

    2016-11-01

    On the Ag(110) surface copper phthalocyanine (CuPc) orders in two structurally similar superstructures, as revealed by low-energy electron diffraction. Scanning tunneling microscopy (STM) shows that in both superstructures the molecular planes are oriented parallel to the surface and the long molecular axes, defined as diagonals of the square molecule, are rotated by ≃±32∘ away from the high-symmetry directions [1 1 ¯0 ] and [001] of the silver surface. Similarly to many other adsorbed metal phthalocyanines, the CuPc molecules on Ag(110) appear in STM as crosslike features with twofold symmetry. Photoemission tomography based on angle-resolved photoemission spectroscopy reveals a charge transfer from the substrate into the molecule. A symmetry analysis of experimental and theoretical constant binding energy maps of the photoemission intensity in the kx,ky -plane points to a preferential occupation of one of the two initially degenerate lowest unoccupied molecular orbitals (LUMOs) of eg symmetry. The occupied eg orbital is rotated by 32∘ against the [001] direction of the substrate. The lifting of the degeneracy of the LUMOs and the related reduction of the symmetry of the adsorbed CuPc molecule are attributed to an anisotropy in the chemical reactivity of the Ag(110) surface.

  20. Laboratory absorption spectra of molecules at interstellar cloud temperatures - First measurements on CO at about 97 nm

    NASA Technical Reports Server (NTRS)

    Smith, P. L.; Yoshino, K.; Stark, G.; Ito, K.; Stevens, M. H.

    1991-01-01

    In the 91-100 nm spectral region, where absorption of photons by interstellar CO usually leads to dissociation, laboratory spectra obtained at 295 K show that most CO bands are both overlapped and perturbed. Reliable band oscillator strengths cannot be extracted from such spectra. As a consequence, synthetic extreme-ultraviolet absorption spectra for CO at the low temperatures that prevail in interstellar clouds are uncertain. A supersonic expansion technique has been used to cool CO to 30 K and three bands in the 97-nm region have been studied with high spectral resolution. The measured spectrum at 30 K is in reasonable agreement with some published modeled spectra, but the ratios of integrated cross sections are somewhat different from those determined from low resolution spectra obtained at 295 K, in which the bands are blended.

  1. INFRARED AND ULTRAVIOLET SPECTRA OF METHANE DILUTED IN SOLID NITROGEN AND IRRADIATED WITH ELECTRONS DURING DEPOSITION AT VARIOUS TEMPERATURES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, Chih-Hao; Chen, Sian-Cong; Liu, Meng-Chen

    We recorded the infrared and ultraviolet absorption spectra of CH{sub 4}:N{sub 2} matrix samples that underwent electron bombardment during deposition in the temperature range of 10–44 K. In contrast to a previous experiment on the IR spectroscopy of electron-bombarded icy samples, methyl and azide radicals became the main products upon electron bombardment during deposition; furthermore, reduced production of nitrile species was observed for deposition at 10 and 20 K. On the other hand, for deposition above 33 K, the observed bands of the radical species (such as methyl and azide) decreased, and bands of large nitriles appeared. This observation maymore » suggest that radical species easily diffuse and recombine to form more complex molecules in solid nitrogen at higher temperatures. Further measurements of similar samples at 10–33 K in the UV region revealed the intense band of azide radicals at 272.5 nm and weak, broad, overlapping features of methyl and azide radicals in the 225–197 nm region. For deposition at 44 K, only a broad feature centered at 219.4 nm was observed, and the possible carriers of nitrile species were proposed based on the corresponding IR spectrum and theoretical predictions of excitation energy. This band is similar to the observed absorption feature of Pluto’s surface recorded by the Hubble telescope in terms of both band position and bandwidth. Our findings therefore further support the suggestion that complex nitrile species may exist on the surface of Pluto.« less

  2. SEURAT: SPH scheme extended with ultraviolet line radiative transfer

    NASA Astrophysics Data System (ADS)

    Abe, Makito; Suzuki, Hiroyuki; Hasegawa, Kenji; Semelin, Benoit; Yajima, Hidenobu; Umemura, Masayuki

    2018-05-01

    We present a novel Lyman alpha (Ly α) radiative transfer code, SEURAT (SPH scheme Extended with Ultraviolet line RAdiative Transfer), where line scatterings are solved adaptively with the resolution of the smoothed particle hydrodynamics (SPH). The radiative transfer method implemented in SEURAT is based on a Monte Carlo algorithm in which the scattering and absorption by dust are also incorporated. We perform standard test calculations to verify the validity of the code; (i) emergent spectra from a static uniform sphere, (ii) emergent spectra from an expanding uniform sphere, and (iii) escape fraction from a dusty slab. Thereby, we demonstrate that our code solves the {Ly} α radiative transfer with sufficient accuracy. We emphasize that SEURAT can treat the transfer of {Ly} α photons even in highly complex systems that have significantly inhomogeneous density fields. The high adaptivity of SEURAT is desirable to solve the propagation of {Ly} α photons in the interstellar medium of young star-forming galaxies like {Ly} α emitters (LAEs). Thus, SEURAT provides a powerful tool to model the emergent spectra of {Ly} α emission, which can be compared to the observations of LAEs.

  3. Psoralen-ultraviolet A treatment with Psoralen-ultraviolet B therapy in the treatment of psoriasis.

    PubMed

    Ahmed Asim, Sadaf; Ahmed, Sitwat; Us-Sehar, Najam

    2013-05-01

    To compare the conventional psoralen-ultraviolet A treatment with psoralen-ultraviolet B therapy in the treatment of psoriasis. We studied 50 patients of plaque type psoriasis who were selected to receive either conventional psoralen-ultraviolet A or psoralen-ultraviolet B treatment. There was no significant difference between the two treatment groups in the number of patients whose skin cleared of psoriasis or the number of exposures required for clearance. Profile of side effects and disease status was also similar after three months of follow up. Psoralen-ultraviolet B treatment is as effective as conventional psoralen-ultraviolet A in the treatment of psoriasis. Further long term studies are needed to assess the safety of psoralen-ultraviolet B.

  4. Absolute Transition Probabilities of Lines in the Spectra of Astrophysical Atoms, Molecules, and Ions

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Smith, P. L.; Yoshino, K.

    1984-01-01

    Progress in the investigation of absolute transition probabilities (A-values or F values) for ultraviolet lines is reported. A radio frequency ion trap was used for measurement of transition probabilities for intersystem lines seen in astronomical spectra. The intersystem line at 2670 A in Al II, which is seen in pre-main sequence stars and symbiotic stars, was studied.

  5. Crystal structure and X-ray photoemission spectroscopic study of A{sub 2}LaMO{sub 6} [A=Ba, Ca; M=Nb, Ta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Alo, E-mail: alo_dutta@yahoo.com; Saha, Sujoy; Kumari, Premlata

    2015-09-15

    The X-ray photoemission spectroscopic (XPS) study of the double perovskite oxides A{sub 2}LaMO{sub 6} [A=Ba, Ca; M=Nb, Ta] synthesized by the solid-state reaction technique has been carried out to investigate the nature of the chemical state of the constituent ions and the bonding between them. The Rietveld refinement of the X-ray diffraction patterns suggests the monoclinic crystal structure of all the materials at room temperature. The negative and positive chemical shifts of the core level XPS spectrum of O-1s and Nb-3d{sub 3/2}/Ta-4f{sub 5/2} respectively suggest the covalent bonding between Nb/Ta cations and O ion. The change of the bonding strengthmore » between the anion and the cations from one material to another has been analyzed. The vibrational property of the materials is investigated using the room temperature Raman spectra. A large covalency of Ta-based compound than Nb compound is confirmed from the relative shifting of the Raman modes of the materials. - Graphical abstract: Crystal structure of two perovskite oxides CLN and CLT is investigated. XPS study confirms the two different co-ordination environments of Ca and covalent bonding between B-site cations and O-ion. - Highlights: • Ordered perovskite structure obtained by Rietveld refinement of XRD patterns. • Study of nature of chemical bonding by X-ray photoemission spectroscopy. • Opposite chemical shift of d-states of Nb/Ta with respect to O. • Covalent bonding between d-states of Nb/Ta and O. • Relative Raman shifts of CLN and CLT substantiate the more covalent character of Ta than Nb.« less

  6. A dense plasma ultraviolet source

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.

    1978-01-01

    The intense ultraviolet emission from the NASA Hypocycloidal-Pinch (HCP) plasma is investigated. The HCP consists of three disk electrodes whose cross section has a configuration similar to the cross section of a Mather-type plasma focus. Plasma foci were produced in deuterium, helium, xenon, and krypton gases in order to compare their emission characteristics. Time-integrated spectra in the wavelength range from 200 nm to 350 nm and temporal variations of the uv emission were obtained with a uv spectrometer and a photomultiplier system. Modifications to enhance uv emission in the iodine-laser pump band (250 to 290 nm) and preliminary results produced by these modifications are presented. Finally, the advantages of the HCP as a uv over use of conventional xenon lamps with respect to power output limit, spectral range, and lifetime are discussed.

  7. Accretion Rates for T Tauri Stars Using Nearly Simultaneous Ultraviolet and Optical Spectra

    NASA Astrophysics Data System (ADS)

    Ingleby, Laura; Calvet, Nuria; Herczeg, Gregory; Blaty, Alex; Walter, Frederick; Ardila, David; Alexander, Richard; Edwards, Suzan; Espaillat, Catherine; Gregory, Scott G.; Hillenbrand, Lynne; Brown, Alexander

    2013-04-01

    We analyze the accretion properties of 21 low-mass T Tauri stars using a data set of contemporaneous near-UV (NUV) through optical observations obtained with the Hubble Space Telescope Imaging Spectrograph and the ground-based Small and Medium Aperture Research Telescope System, a unique data set because of the nearly simultaneous broad wavelength coverage. Our data set includes accreting T Tauri stars in Taurus, Chamaeleon I, η Chamaeleon, and the TW Hydra Association. For each source we calculate the accretion rate (\\dot{M}) by fitting the NUV and optical excesses above the photosphere, produced in the accretion shock, introducing multiple accretion components characterized by a range in energy flux (or density) for the first time. This treatment is motivated by models of the magnetospheric geometry and accretion footprints, which predict that high-density, low filling factor accretion spots coexist with low-density, high filling factor spots. By fitting the UV and optical spectra with multiple accretion components, we can explain excesses which have been observed in the near-IR. Comparing our estimates of \\dot{M} to previous estimates, we find some discrepancies; however, they may be accounted for when considering assumptions for the amount of extinction and variability in optical spectra. Therefore, we confirm many previous estimates of the accretion rate. Finally, we measure emission line luminosities from the same spectra used for the \\dot{M} estimates, to produce correlations between accretion indicators (Hβ, Ca II K, C II], and Mg II) and accretion properties obtained simultaneously.

  8. The use of UV, FT-IR and Raman spectra for the identification of the newest penem analogs: solutions based on mathematic procedure and the density functional theory.

    PubMed

    Cielecka-Piontek, J; Lewandowska, K; Barszcz, B; Paczkowska, M

    2013-02-15

    The application of ultraviolet, FT-IR and Raman spectra was proposed for identification studies of the newest penem analogs (doripenem, biapenem and faropenem). An identification of the newest penem analogs based on their separation from related substances was achieved after the application of first derivative of direct spectra in ultraviolet which permitted elimination of overlapping effects. A combination of experimental and theoretical studies was performed for analyzing the structure and vibrational spectra (FT-IR and Raman spectra) of doripenem, biapenem and faropenem. The calculations were conducted using the density functional theory with the B3LYP hybrid functional and 6-31G(d,p) basis set. The confirmation of the applicability of the DFT methodology for interpretation of vibrational IR and Raman spectra of the newest penem analogs contributed to determination of changes of vibrations in the area of the most labile bonds. By employing the theoretical approach it was possible to eliminate necessity of using reference standards which - considering the instability of penem analogs - require that correction coefficients are factored in. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Psoralen-ultraviolet A treatment with Psoralen-ultraviolet B therapy in the treatment of psoriasis

    PubMed Central

    Ahmed Asim, Sadaf; Ahmed, Sitwat; us-Sehar, Najam

    2013-01-01

    Objective: To compare the conventional psoralen-ultraviolet A treatment with psoralen-ultraviolet B therapy in the treatment of psoriasis. Methodology: We studied 50 patients of plaque type psoriasis who were selected to receive either conventional psoralen-ultraviolet A or psoralen-ultraviolet B treatment. Results: There was no significant difference between the two treatment groups in the number of patients whose skin cleared of psoriasis or the number of exposures required for clearance. Profile of side effects and disease status was also similar after three months of follow up. Conclusion: Psoralen-ultraviolet B treatment is as effective as conventional psoralen-ultraviolet A in the treatment of psoriasis. Further long term studies are needed to assess the safety of psoralen-ultraviolet B. PMID:24353623

  10. Inference of a 7.75 eV lower limit in the ultraviolet pumping of interstellar polycyclic aromatic hydrocarbon cations with resulting unidentified infrared emissions

    NASA Technical Reports Server (NTRS)

    Robinson, M. S.; Beegle, L. W.; Wdowiak, T. J.

    1997-01-01

    The discrete infrared features known as the unidentified infrared (UIR) bands originating in starburst regions of other galaxies, and in H II regions and planetary nebulae within the Milky Way, are widely thought to be the result of ultraviolet pumped infrared fluorescence of polycyclic aromatic hydrocarbon (PAH) molecules and ions. These UIR emissions are estimated to account for 10%-30% of the total energy emitted by galaxies. Laboratory absorption spectra including the vacuum ultraviolet region, as described in this paper, show a weakening of the intensity of absorption features as the population of cations increases, suggesting that strong pi* <-- pi transitions are absent in the spectra of PAH cations. This implies a lower energy bound for ultraviolet photons that pump infrared emissions from such ions at 7.75 eV, an amount greater than previously thought. The implications include size and structure limitations on the PAH molecules and ions which are apparent constituents of the interstellar medium. Also, this might affect estimations of the population of early-type stars in regions of rapid star formation.

  11. Ultraviolet Changes of the Central Source and the Very Nearby Ejecta

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.; Nielsen, Krister; Vierira, Gladys; Hillier, John; Walborn, Nolan; Davidson, Kris

    2004-01-01

    We utilized the high spatial and high spectral resolution of the HST/STIS MAMA echelle modes in the ultraviolet (0.025 inch spatial resolution and 30,000 to 120,000 spectral resolving power) to view changes in and around Eta Carinae before and after the X-Ray drop which occurred on June 29, 2003 (M. Corcoran, IAUC 8160). Major changes in the spectra of the Central Source and nearby nebulosities occurred between June 22 and July 5. Visibility of the Central Source dropped, especially between 1175 and 1350 Angstroms, but not uniformly throughout the ultraviolet. This fading is likely due to multiple line absorptions both in the source and in the intervening ejecta. Nebular emission of Si III] and Fe III, located 0.09 sec. to the west, disappeared. By July 29, a bright feature extending up to 0.071 sec. east of the Central Source became prominent in broad emission lines near 2500 Angstroms, but was not noticeable longward of 2900 Angstroms. ACS/HRC imagery and STIS CCD spectra taken concurrently are being examined for larger scale changes. Numerous narrow velocity components between -146 and -585 kilometers per second were identified in spectra before the minimum. New components appeared primarily in Fe II absorption lines with velocities between -170 and -380 kilometers per second. While the lines of the -513 kilometers per second component did not change, most lines of the -146 kilometers per second component changed considerably. Lines originating from high energy levels diminished or disappeared, while lines originating from lower energy levels strengthened. Strong absorption lines of Ti II, not present before the X-Ray drop, appeared within seven days, but disappeared by July 29. Further analysis of these unprecedented data will provide significant new information about the structure of Eta Carinae and its periodic variations.

  12. Visible and Ultraviolet Detectors for High Earth Orbit and Lunar Observatories

    NASA Technical Reports Server (NTRS)

    Woodgate, Bruce E.

    1989-01-01

    The current status of detectors for the visible and UV for future large observatories in earth orbit and the moon is briefly reviewed. For the visible, CCDs have the highest quantum efficiency, but are subject to contamination of the data by cosmic ray hits. For the moon, the level of hits can be brought down to that at the earth's surface by shielding below about 20 meters of rock. For high earth orbits above the geomagnetic shield, CCDs might be able to be used by combining many short exposures and vetoing the cosmic ray hits, otherwise photoemissive detectors will be necessary. For the UV, photoemissive detectors will be necessary to reject the visible; to use CCDs would require the development of UV-efficient filters which reject the visible by many orders of magnitude. Development of higher count rate capability would be desirable for photoemissive detectors.

  13. The Hopkins Ultraviolet Telescope: The Final Archive

    NASA Technical Reports Server (NTRS)

    Dixon, William V.; Blair, William P.; Kruk, Jeffrey W.; Romelfanger, Mary L.

    2013-01-01

    The Hopkins Ultraviolet Telescope (HUT) was a 0.9 m telescope and moderate-resolution (Delta)lambda equals 3 A) far-ultraviolet (820-1850 Å) spectrograph that flew twice on the space shuttle, in 1990 December (Astro-1, STS-35) and 1995 March (Astro-2, STS-67). The resulting spectra were originally archived in a nonstandard format that lacked important descriptive metadata. To increase their utility, we have modified the original datareduction software to produce a new and more user-friendly data product, a time-tagged photon list similar in format to the Intermediate Data Files (IDFs) produced by the Far Ultraviolet Spectroscopic Explorer calibration pipeline. We have transferred all relevant pointing and instrument-status information from locally-archived science and engineering databases into new FITS header keywords for each data set. Using this new pipeline, we have reprocessed the entire HUT archive from both missions, producing a new set of calibrated spectral products in a modern FITS format that is fully compliant with Virtual Observatory requirements. For each exposure, we have generated quicklook plots of the fully-calibrated spectrum and associated pointing history information. Finally, we have retrieved from our archives HUT TV guider images, which provide information on aperture positioning relative to guide stars, and converted them into FITS-format image files. All of these new data products are available in the new HUT section of the Mikulski Archive for Space Telescopes (MAST), along with historical and reference documents from both missions. In this article, we document the improved data-processing steps applied to the data and show examples of the new data products.

  14. The Hopkins Ultraviolet Telescope: The Final Archive

    NASA Astrophysics Data System (ADS)

    Dixon, William V.; Blair, William P.; Kruk, Jeffrey W.; Romelfanger, Mary L.

    2013-04-01

    The Hopkins Ultraviolet Telescope (HUT) was a 0.9 m telescope and moderate-resolution (Δλ = 3 Å) far-ultraviolet (820-1850 Å) spectrograph that flew twice on the space shuttle, in 1990 December (Astro-1, STS-35) and 1995 March (Astro-2, STS-67). The resulting spectra were originally archived in a nonstandard format that lacked important descriptive metadata. To increase their utility, we have modified the original data-reduction software to produce a new and more user-friendly data product, a time-tagged photon list similar in format to the Intermediate Data Files (IDFs) produced by the Far Ultraviolet Spectroscopic Explorer calibration pipeline. We have transferred all relevant pointing and instrument-status information from locally-archived science and engineering databases into new FITS header keywords for each data set. Using this new pipeline, we have reprocessed the entire HUT archive from both missions, producing a new set of calibrated spectral products in a modern FITS format that is fully compliant with Virtual Observatory requirements. For each exposure, we have generated quick-look plots of the fully-calibrated spectrum and associated pointing history information. Finally, we have retrieved from our archives HUT TV guider images, which provide information on aperture positioning relative to guide stars, and converted them into FITS-format image files. All of these new data products are available in the new HUT section of the Mikulski Archive for Space Telescopes (MAST), along with historical and reference documents from both missions. In this article, we document the improved data-processing steps applied to the data and show examples of the new data products.

  15. International Conference on Vacuum Ultraviolet Radiation Physics, 8th, Lunds Universitet, Sweden, Aug. 4-8, 1986, Proceedings

    NASA Technical Reports Server (NTRS)

    Nilsson, Per-Olof (Editor); Nordgren, Joseph (Editor)

    1987-01-01

    The interactions of VUV radiation with solids are explored in reviews and reports of recent theoretical and experimental investigations from the fields of atomic and molecular physics, solid-state physics, and VUV instrumentation. Topics examined include photoabsorption and photoionization, multiphoton processes, plasma physics, VUV lasers, time-resolved spectroscopy, synchrotron radiation centers, solid-state spectroscopy, and dynamical processes involving localized levels. Consideration is given to the fundamental principles of photoemission, spin-polarized photoemission, inverse photoemission, semiconductors, organic materials, and adsorbates.

  16. Increase of intrinsic emittance induced by multiphoton photoemission from copper cathodes illuminated by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    An, Chenjie; Zhu, Rui; Xu, Jun; Liu, Yaqi; Hu, Xiaopeng; Zhang, Jiasen; Yu, Dapeng

    2018-05-01

    Electron sources driven by femtosecond laser have important applications in many aspects, and the research about the intrinsic emittance is becoming more and more crucial. The intrinsic emittance of polycrystalline copper cathode, which was illuminated by femtosecond pulses (FWHM of the pulse duration was about 100 fs) with photon energies above and below the work function, was measured with an extremely low bunch charge (single-electron pulses) based on free expansion method. A minimum emittance was obtained at the photon energy very close to the effective work function of the cathode. When the photon energy decreased below the effective work function, emittance increased rather than decreased or flattened out to a constant. By investigating the dependence of photocurrent density on the incident laser intensity, we found the emission excited by pulsed photons with sub-work-function energies contained two-photon photoemission. In addition, the portion of two-photon photoemission current increased with the reduction of photon energy. We attributed the increase of emittance to the effect of two-photon photoemission. This work shows that conventional method of reducing the photon energy of excited light source to approach the room temperature limit of the intrinsic emittance may be infeasible for femtosecond laser. There would be an optimized photon energy value near the work function to obtain the lowest emittance for pulsed laser pumped photocathode.

  17. Astronaut John Young in shadow of Lunar Module behind ultraviolet camera

    NASA Image and Video Library

    1972-04-22

    AS16-114-18439 (22 April 1972) --- Astronaut Charles M. Duke Jr., lunar module pilot, stands in the shadow of the Lunar Module (LM) behind the ultraviolet (UV) camera which is in operation. This photograph was taken by astronaut John W. Young, commander, during the mission's second extravehicular activity (EVA). The UV camera's gold surface is designed to maintain the correct temperature. The astronauts set the prescribed angles of azimuth and elevation (here 14 degrees for photography of the large Magellanic Cloud) and pointed the camera. Over 180 photographs and spectra in far-ultraviolet light were obtained showing clouds of hydrogen and other gases and several thousand stars. The United States flag and Lunar Roving Vehicle (LRV) are in the left background. While astronauts Young and Duke descended in the Apollo 16 Lunar Module (LM) "Orion" to explore the Descartes highlands landing site on the moon, astronaut Thomas K. Mattingly II, command module pilot, remained with the Command and Service Modules (CSM) "Casper" in lunar orbit.

  18. Performance of The Far Ultraviolet Spectroscopic Explorer Mirror Assemblies

    NASA Technical Reports Server (NTRS)

    Ohi, Raymond G.; Barkhouser, Robert H.; Conard, Steven J.; Friedman, Scott D.; Hampton, Jeffery; Moos, H. Warren; Nikulla, Paul; Oliveira, Cristina M.; Saha, Timo T.; Obenschain, Arthur (Technical Monitor)

    2000-01-01

    The Far Ultraviolet Spectroscopic Explorer is a NASA astrophysics satellite which produces high-resolution spectra in the far-ultraviolet (90.5-118.7 nm bandpass) using a high effective area and low background detectors. The observatory was launched on its three-year mission from Cape Canaveral Air Station on 24 June 1999. The instrument contains four coaligned, normal incidence, off-axis parabolic mirrors which illuminate separate Rowland circle spectrograph channels equipped with holographically ruled diffraction gratings and delay line microchannel plate detectors. The telescope mirrors have a 352 x 387 mm aperture and 2245 mm focal length and are attached to actuator assemblies, which provide on-orbit, tip, tilt, and focus control. Two mirrors are coated with silicon carbide (SiC) and two are coated with lithium fluoride over aluminum (Al:LiF). We describe mirror assembly in-flight optical and mechanical performance. On-orbit measurements of the far-ultraviolet point spread function associated with each mirror are compared to expectations based on pre-flight laboratory measurements and modeling using the Optical Surface Analysis Code and surface metrology data. On-orbit imaging data indicate that the mirrors meet their instrument-level requirement of 50 percent and 95 percent slit transmission for the high- and mid-resolution spectrograph entrance slits, respectively. The degradation of mirror reflectivity during satellite integration and test is also discussed. The far-ultraviolet reflectivity of the SiC- and AlLiF-coated mirrors decreased about six percent and three percent, respectively, between coating and launch. Each mirror is equipped with three actuators, which consist of a stepper motor driving a ball screw via a two-stage planetary gear train. We also discuss the mechanical performance of the mirror assemblies, including actuator performance and thermal effects.

  19. Adsorption study of copper phthalocyanine on Si(111)(√3 × √3)R30°Ag surface

    NASA Astrophysics Data System (ADS)

    Menzli, S.; Ben Hamada, B.; Arbi, I.; Souissi, A.; Laribi, A.; Akremi, A.; Chefi, C.

    2016-04-01

    The adsorption of copper phthalocyanine (CuPc) molecules on Si(111)(√3 × √3)R30°Ag surface is studied at room temperature under ultra high vacuum. Crystallographic, chemical and electronic properties of the interface are investigated by low energy electron diffraction (LEED), ultraviolet and X-ray photoemission spectroscopies (UPS, XPS) and X-ray photoemission diffraction (XPD). LEED and XPD results indicate that after one monolayer deposition the molecular layer is highly ordered with a flat lying adsorption configuration. The corresponding pattern reveals the coexistence of three symmetrically equivalent orientations of molecules with respect to the substrate. XPS core level spectra of the substrate reveal that there is no discernible chemical interaction between molecules and substrate; however there is evidence of Fermi level movement. During the growth, the work function was found to decrease from 4.90 eV for the clean substrate to 4.35 eV for the highest coverage (60 monolayers). Within a thickness of two monolayer deposition an interface dipole of 0.35 eV and a band bending of 0.2 eV have been found. UPS spectra indicate the existence of a band bending of the highest occupied molecular orbital (HOMO) of 0.55 eV. The changes in the work function, in the Fermi level position and in the HOMO state have been used to determine the energy level alignment at the interface.

  20. Exploring the Origin of Blue and Ultraviolet Fluorescence in Graphene Oxide.

    PubMed

    Kozawa, Daichi; Miyauchi, Yuhei; Mouri, Shinichiro; Matsuda, Kazunari

    2013-06-20

    We studied the fluorescence (FL) properties of highly exfoliated graphene oxide (GO) in aqueous solution using continuous-wave and time-resolved FL spectroscopy. The FL spectra of highly exfoliated GO showed two distinct peaks at ∼440 (blue) and ∼300 nm [ultraviolet (UV)]. The FL of GO in the UV region at ∼300 nm was observed for the first time. The average FL lifetimes of the emission peaks at ∼440 and ∼300 nm are 8-13 and 6-8 ns, respectively. The experimentally observed peak wavelengths of pH-dependent FL, FL excitation spectra, and the FL lifetimes are nearly coincident with those of aromatic compounds bound with oxygen functional groups, which suggests that the FL comes from sp(2) fragments consisting of small numbers of aromatic rings with oxygen functional groups acting as FL centers in the GO.

  1. Absence of photoemission from the Fermi level in potassium intercalated picene and coronene films: structure, polaron, or correlation physics?

    PubMed

    Mahns, Benjamin; Roth, Friedrich; Knupfer, Martin

    2012-04-07

    The electronic structure of potassium intercalated picene and coronene films has been studied using photoemission spectroscopy. Picene has additionally been intercalated using sodium. Upon alkali metal addition core level as well as valence band photoemission data signal a filling of previously unoccupied states of the two molecular materials due to charge transfer from potassium. In contrast to the observation of superconductivity in K(x)picene and K(x)coronene (x ~ 3), none of the films studied shows emission from the Fermi level, i.e., we find no indication for a metallic ground state. Several reasons for this observation are discussed.

  2. Late-time spectra and type Ia supernova models: New clues from the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Ruiz-Lapuente, P.; Kirshner, R. P.; Phillips, M. M.; Challis, P. M.; Schmidt, B. P.; Filippenko, A. V.; Wheeler, J. C.

    1995-01-01

    Calculated late-time spectra of two classical hydrodynamical models for Type Ia supernovae (deflagration model W7 of Nomoto, Thielemann, & Yokoi, and delayed detonation model DD4 of Woosley & Weaver) are compared with observations of SN 1992A and other spectroscopically normal SNe Ia. An important new piece of information is provided by observations done with the Hubble Space Telescope (HST) which cover the ultraviolet range at the nebular phase of a SN Ia: SN 1992A in NGC 1380. For the first time a picture of SN Ia emission from the ultraviolet through the optical is obtained at these phases. Predictions of the classical model (W7 and DD4) are compared with the observed spectrum of SN 1992A and with the optical spectra of SN 1989M in NGC 4579 and SN 1990N in NGC 4639 at similar epochs. The absolute B and V magnitudes of the models are also estimated at these late phases. Taken at face value the nebular spectra of these 'classical' models are more consistent with the long extragalactic distance scale, pointing to distances to NGC 4579 around 21 +/- 3 Mpc and a slightly larger distance, 22 +/- 3 Mpc, to NGC 4639, on the back side of the Virgo Cluster. However, the calculated Fe(+3) luminosity as predicted from the models exceeds the observed limit from the HST data of SN 1992A. Other differences in the ratios of the line intensities between calculated and observed spectra, show some disagreement with the observed spectra at the nebular phases. They may not be the best choice for spectroscopically normal SNe Ia, and their use as an independent calibration of the extragalactic distance scale should be viewed with caution.

  3. Delayed photo-emission model for beam optics codes

    DOE PAGES

    Jensen, Kevin L.; Petillo, John J.; Panagos, Dimitrios N.; ...

    2016-11-22

    Future advanced light sources and x-ray Free Electron Lasers require fast response from the photocathode to enable short electron pulse durations as well as pulse shaping, and so the ability to model delays in emission is needed for beam optics codes. The development of a time-dependent emission model accounting for delayed photoemission due to transport and scattering is given, and its inclusion in the Particle-in-Cell code MICHELLE results in changes to the pulse shape that are described. Furthermore, the model is applied to pulse elongation of a bunch traversing an rf injector, and to the smoothing of laser jitter onmore » a short pulse.« less

  4. Initial results from the extreme ultraviolet explorer

    NASA Technical Reports Server (NTRS)

    Bowyer, S.; Malina, R. F.

    1993-01-01

    Data obtained during the first five months of calibration and science operation of the Extreme Ultraviolet Explorer (EUVE) are presented. Spectra of an extragalactic object were obtained; the object is detectable to wavelenghts longer than 100 A, demonstrating that extragalactic EUV astronomy is possible. Spectra of a hot white dwarf, and a late-type star in quiescence and flaring are shown as examples of the type of spectrographic data obtainable with EUVE. Other objects for which broad band photometric mode data have been obtained and analyzed include an RS CVn star and several late-type stars. The backgrounds in the EUVE detectors are quite low and the character of the diffuse astronomical EUV background has been investigated using these very low rates. Evidence is presented showing that, contrary to previously published reports, EUVE is about three times more sensitive than the English Wide Field Camera in the short wavelength bandpass covered by both instruments. Only limited information has been extracted from the longer bandpasses coered only by EUVE. Nonetheless, the brightest EUV source in the sky, a B star, has been discovered and is detected only in these longer bandpasses.

  5. Interaction of phosphine with Si(100) from core-level photoemission and real-time scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Deng-Sung; Ku, Tsai-Shuan; Chen, Ru-Ping

    2000-01-01

    In this paper, we investigate the interaction of phosphine (PH3) on the Si(100)-2×1 surface at temperatures between 635 and 900 K. The hydrogen desorption, growth mode, surface morphology, and chemical composition and ordering of the surface layer are examined by synchrotron radiation core-level photoemission and real-time high-temperature scanning tunneling microscopy. The P 2p core-level spectra indicate that decomposition of PHn is complete above ~550 K and the maximum P coverage is strongly influenced by the growth temperature, which governs the coverage of H-terminated sites. The scanning tunneling microscopy (STM) images taken at real time during PH3 exposure indicate that a surface phosphorus atom readily and randomly displaces one Si atom from the substrate. The ejected Si diffuses, nucleates, and incorporates itself into islands or step edges, leading to similar growth behavior as that found in Si chemical vapor deposition. Line defects both perpendicular and parallel to the dimer rows are observed on the nearly P-saturated surface. Perpendicular line defects act as a strain relief mechanism. Parallel line defects result from growth kinetics. STM images also indicate that incorporating a small amount of phosphorus eliminates the line defects in the Si(100)-2×n surface.

  6. Consistent Iron Abundances Derived from Neutral and Singly Ionized Iron Lines in Ultraviolet and Optical Spectra of Six Warm Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Sneden, Christopher; Lawler, James E.; Sobeck, Jennifer S.; Cowan, John J.; Boesgaard, Ann Merchant

    2018-06-01

    Neutral Fe lines in metal-poor stars yield conflicting abundances depending on whether and how deviations from local thermodynamic equilibrium (LTE) are considered. We have collected new high-resolution and high signal-to-noise ultraviolet (UV) spectra of three warm dwarf stars with [Fe/H] ≈ ‑2.9 with the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. We locate archival UV spectra for three other warm dwarfs with [Fe/H] ≈ ‑3.3, ‑2.2, and ‑1.6, supplemented with optical spectra for all six stars. We calculate stellar parameters using methods that are largely independent of the spectra, adopting broadband photometry, color–temperature relations, Gaia parallaxes, and assumed masses. We use the LTE line analysis code MOOG to derive Fe abundances from hundreds of Fe I and Fe II lines with wavelengths from 2290 to 6430 Å. The [Fe/H] ratios derived separately from Fe I and Fe II lines agree in all six stars, with [Fe II/H]–[Fe I/H] ranging from +0.00 ± 0.07 to ‑0.12 ± 0.09 dex, when strong lines and Fe I lines with lower excitation potential <1.2 eV are excluded. This constrains the extent of any deviations from LTE that may occur within this parameter range. While our result confirms non-LTE calculations for some warm, metal-poor dwarfs, it may not be generalizable to more metal-poor dwarfs, where deviations from LTE are predicted to be larger. We also investigate trends of systematically lower abundances derived from Fe I lines in the Balmer continuum region (≈3100–3700 Å), and we conclude that no proposed explanation for this effect can fully account for the observations presently available. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy, Inc. (AURA), under NASA contract NAS 5-26555. These observations are associated with program GO-14232. Some data presented in

  7. Transferrable monolithic multicomponent system for near-ultraviolet optoelectronics

    NASA Astrophysics Data System (ADS)

    Qin, Chuan; Gao, Xumin; Yuan, Jialei; Shi, Zheng; Jiang, Yuan; Liu, Yuhuai; Wang, Yongjin; Amano, Hiroshi

    2018-05-01

    A monolithic near-ultraviolet multicomponent system is implemented on a 0.8-mm-diameter suspended membrane by integrating a transmitter, waveguide, and receiver into a single chip. Two identical InGaN/Al0.10Ga0.90N multiple-quantum well (MQW) diodes are fabricated using the same process flow, which separately function as a transmitter and receiver. There is a spectral overlap between the emission and detection spectra of the MQW diodes. Therefore, the receiver can respond to changes in the emission of the transmitter. The multicomponent system is mechanically transferred from silicon, and the wire-bonded transmitter on glass experimentally demonstrates spatial light transmission at 200 Mbps using non-return-to-zero on–off keying modulation.

  8. Study on photoemission surface of varied doping GaN photocathode

    NASA Astrophysics Data System (ADS)

    Qiao, Jianliang; Du, Ruijuan; Ding, Huan; Gao, Youtang; Chang, Benkang

    2014-09-01

    For varied doping GaN photocathode, from bulk to surface the doping concentrations are distributed from high to low. The varied doping GaN photocathode may produce directional inside electric field within the material, so the higher quantum efficiency can be obtained. The photoemission surface of varied doping GaN photocathode is very important to the high quantum efficiency, but the forming process of the surface state after Cs activation or Cs/O activation has been not known completely. Encircling the photoemission mechanism of varied GaN photocathode, considering the experiment phenomena during the activation and the successful activation results, the varied GaN photocathode surface model [GaN(Mg):Cs]:O-Cs after activation with cesium and oxygen was given. According to GaN photocathode activation process and the change of electronic affinity, the comparatively ideal NEA property can be achieved by Cs or Cs/O activation, and higher quantum efficiency can be obtained. The results show: The effective NEA characteristic of GaN can be gotten only by Cs. [GaN(Mg):Cs] dipoles form the first dipole layer, the positive end is toward the vacuum side. In the activation processing with Cs/O, the second dipole layer is formed by O-Cs dipoles, A O-Cs dipole includes one oxygen atom and two Cs atoms, and the positive end is also toward the vacuum side thus the escape of electrons can be promoted.

  9. A statistical analysis of IUE spectra of dwarf novae and nova-like stars

    NASA Technical Reports Server (NTRS)

    Ladous, Constanze

    1990-01-01

    First results of a statistical analysis of the IUE International Ultraviolet Explorer archive on dwarf novae and nova like stars are presented. The archive contains approximately 2000 low resolution spectra of somewhat over 100 dwarf novae and nova like stars. Many of these were looked at individually, but so far the collective information content of this set of data has not been explored. The first results of work are reported.

  10. Spin-Resolved Circularly Polarised Resonant Photoemission: Cu as a Model System

    NASA Astrophysics Data System (ADS)

    Brookes, N. B.

    A brief introduction to the technique of spin resolved resonant photoemission using circularly polarised soft x-rays is given. The method is illustrated by considering the simple case of Cu2+. Starting from CuO we show how the same ideas can be applied to more complex and interesting cases, such as the model compound Sr2CuO2Cl2 and an optimally doped high temperature superconductor, Bi2Sr2CaCu2O8+δ.

  11. Whispering gallery mode photoemission from self-assembled poly-para-phenylenevinylene microspheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushida, Soh; Yamamoto, Yohei; Braam, Daniel

    2015-12-31

    Poly[2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMOPPV) self-assembles to form well-defined spheres with several micrometers in diameter upon addition of a methanol vapor into a chloroform solution of MDMOPPV. The single sphere of MDMOPPV with 5.7 µm diameter exhibits whispering gallery mode (WGM) photoemission upon excitation with focused laser beam. The periodic emission lines are characterized by transverse electric and magnetic WGMs, and Q-factor reaches ∼345 at the highest.

  12. Theoretical Prediction of Si 2–Si 33 Absorption Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Li -Zhen; Lu, Wen -Cai; Qin, Wei

    Here, the optical absorption spectra of Si 2–Si 33 clusters were systematically studied by a time-dependent density functional theory approach. The calculations revealed that the absorption spectrum becomes significantly broad with increasing cluster size, stretching from ultraviolet to the infrared region. The absorption spectra are closely related to the structural motifs. With increasing cluster size, the absorption intensity of cage structures gradually increases, but the absorption curves of the prolate and the Y-shaped structures are very sensitive to cluster size. If the transition energy reaches ~12 eV, it is noted that all the clusters have remarkable absorption in deep ultravioletmore » region of 100–200 nm, and the maximum absorption intensity is ~100 times that in the visible region. Further, the optical responses to doping in the Si clusters were studied.« less

  13. Theoretical Prediction of Si 2–Si 33 Absorption Spectra

    DOE PAGES

    Zhao, Li -Zhen; Lu, Wen -Cai; Qin, Wei; ...

    2017-07-07

    Here, the optical absorption spectra of Si 2–Si 33 clusters were systematically studied by a time-dependent density functional theory approach. The calculations revealed that the absorption spectrum becomes significantly broad with increasing cluster size, stretching from ultraviolet to the infrared region. The absorption spectra are closely related to the structural motifs. With increasing cluster size, the absorption intensity of cage structures gradually increases, but the absorption curves of the prolate and the Y-shaped structures are very sensitive to cluster size. If the transition energy reaches ~12 eV, it is noted that all the clusters have remarkable absorption in deep ultravioletmore » region of 100–200 nm, and the maximum absorption intensity is ~100 times that in the visible region. Further, the optical responses to doping in the Si clusters were studied.« less

  14. Combined Ultraviolet and Optical Spectra of 48 Low-Redshift QSOs and the Relation of the Continuum and Emission-Line Properties

    NASA Astrophysics Data System (ADS)

    Corbin, Michael R.; Boroson, Todd A.

    1996-11-01

    We present combined ultraviolet and optical spectra of 48 QSOs and Seyfert 1 galaxies in the redshift range 0.034-0.774. The UV spectra were obtained non-simultaneously with the optical and are derived from archival Hubble Space Telescope (HST) Faint Object Spectrograph and International Ultraviolet Explorer (IUE) observations. The sample consists of 22 radio- quiet objects, 12 flat radio spectrum radio-loud objects, and 14 steep radio spectrum objects, and it covers approximately 2.5 decades in ultraviolet continuum luminosity. The sample objects are among the most luminous known in this redshift range and include 3C 273 and Fairall 9, as well as many objects discovered in the Bright Quasar Survey. We measure and compare an array of emission-line and continuum parameters, including 2 keV X-ray luminosities derived from the Einstein database. We examine individual correlations and also apply a principal components analysis (PCA) in an effort to determine the underlying sources of variance among these observables. Our main results are as follows. 1. The C IV λ1549 profile asymmetry is correlated with the UV continuum luminosity measured at the position of that line, such that increasing continuum luminosity produces increasing redward asymmetry. This is the same correlation found between Hβ asymmetry and 2 keV luminosity in a larger sample of objects and appears to be followed by both radio-loud and radio-quiet sources. The C IV profile asymmetry is also correlated with the FWZI of the Lyα profile, with more redward asymmetric profiles associated with wider profile bases. The PCA reveals that the correlated increase in luminosity, C IV redward asymmetry, and profile base width accounts for over half the statistical variance in the sample. 2. There is a statistically significant difference between the FWZI distributions of the Lyα and Hβ lines, such that the former is wider on average by ~10^4^ km s^-1^. The FWHM values of the broad Hβ line are weakly

  15. Hard X-ray photoemission study of the Fabre salts (TMTTF)2X (X = SbF6 and PF6)

    NASA Astrophysics Data System (ADS)

    Medjanik, Katerina; de Souza, Mariano; Kutnyakhov, Dmytro; Gloskovskii, Andrei; Müller, Jens; Lang, Michael; Pouget, Jean-Paul; Foury-Leylekian, Pascale; Moradpour, Alec; Elmers, Hans-Joachim; Schönhense, Gerd

    2014-11-01

    Core-level photoemission spectra of the Fabre salts with X = SbF6 and PF6 were taken using hard X-rays from PETRA III, Hamburg. In these salts TMTTF layers show a significant stack dimerization with a charge transfer of 1 e per dimer to the anion SbF6 or PF6. At room temperature and slightly below the core-level spectra exhibit single lines, characteristic for a well-screened metallic state. At reduced temperatures progressive charge localization sets in, followed by a 2nd order phase transition into a charge-ordered ground state. In both salts groups of new core-level signals occur, shifted towards lower kinetic energies. This is indicative of a reduced transverse-conductivity across the anion layers, visible as layer-dependent charge depletion for both samples. The surface potential was traced via shifts of core-level signals of an adsorbate. A well-defined potential could be established by a conducting cap layer of 5 nm aluminum which appears "transparent" due to the large probing depth of HAXPES (8-10 nm). At the transition into the charge-ordered phase the fluorine 1 s line of (TMTTF)2SbF6 shifts by 2.8 eV to higher binding energy. This is a spectroscopic fingerprint of the loss of inversion symmetry accompanied by a cooperative shift of the SbF6 anions towards the more positively charged TMTTF donors. This shift does not occur for the X = PF6 compound, most likely due to smaller charge disproportion or due to the presence of charge disorder.

  16. The igmspec database of public spectra probing the intergalactic medium

    NASA Astrophysics Data System (ADS)

    Prochaska, J. X.

    2017-04-01

    We describe v02 of igmspec, a database of publicly available ultraviolet, optical, and near-infrared spectra that probe the intergalactic medium (IGM). This database, a child of the specdb repository in the specdb github organization, comprises 403 277 unique sources and 434 686 spectra obtained with the world's greatest observatories. All of these data are distributed in a single ≈ 25GB HDF5 file maintained at the University of California Observatories and the University of California, Santa Cruz. The specdb software package includes Python scripts and modules for searching the source catalog and spectral datasets, and software links to the linetools package for spectral analysis. The repository also includes software to generate private spectral datasets that are compliant with International Virtual Observatory Alliance (IVOA) protocols and a Python-based interface for IVOA Simple Spectral Access queries. Future versions of igmspec will ingest other sources (e.g. gamma-ray burst afterglows) and other surveys as they become publicly available. The overall goal is to include every spectrum that effectively probes the IGM. Future databases of specdb may include publicly available galaxy spectra (exgalspec) and published supernovae spectra (snspec). The community is encouraged to join the effort on github: https://github.com/specdb.

  17. Research in extreme ultraviolet and far ultraviolet astronomy

    NASA Technical Reports Server (NTRS)

    Bowyer, C. S.

    1985-01-01

    The Far Ultraviolet imager (FUVI) was flown on the Aries class sounding rocket 24.015, producing outstanding results. The diffuse extreme ultraviolet (EUV) background spectrometer which is under construction is described. It will be launched on the Black Brant sounding rocket flight number 27.086. Ongoing design studies of a high resolution spectrometer are discussed. This instrument incorporates a one meter normal incidence mirror and will be suitable for an advanced Spartan mission.

  18. Ultraviolet absorption hygrometer

    DOEpatents

    Gersh, M.E.; Bien, F.; Bernstein, L.S.

    1986-12-09

    An ultraviolet absorption hygrometer is provided including a source of pulsed ultraviolet radiation for providing radiation in a first wavelength region where water absorbs significantly and in a second proximate wavelength region where water absorbs weakly. Ultraviolet radiation in the first and second regions which has been transmitted through a sample path of atmosphere is detected. The intensity of the radiation transmitted in each of the first and second regions is compared and from this comparison the amount of water in the sample path is determined. 5 figs.

  19. Far-ultraviolet absorption spectra of quasars: How to find missing hot gas and metals

    NASA Technical Reports Server (NTRS)

    Verner, D. A.; Tytler, David; Barthel, P. D.

    1994-01-01

    We show that some high-redshift QSO absorption systems that reveal only the H I Lyman series lines at wavelengths visible from the ground maybe a new class of ultra-high-ionization metal line systems, with metal lines in the far-UV region which is now being explored with satellites. At high temperatures or in intense radiation fields metal systems will not show the usual C IV absorption, and O VI will become the most prominent metal absorber. At still higher ionization, O IV also becomes weak and the strongest metal lines are from Ne VIII, Mg X and Si XII, which have doublets in the rangs 500-800 A. Hence very high ionization metal systems will not show metal lines in existing spectra. Recent X-ray observations show that galaxy halos contain hot gas, so we predict that far-UV spectra of QSOs will also show this gas.

  20. An improved ultraviolet spectral line list for the symbiotic star RR Telescopii

    NASA Technical Reports Server (NTRS)

    Doschek, G. A.; Feibelman, W. A.

    1993-01-01

    We have remeasured wavelengths and intensities of International Ultraviolet Explorer (IUE) spectra of the symbiotic star, RR Tel. The main work is centered on the long 820 minute exposure high-resolution spectrum obtained on 1983 June 18. The list is intended to serve as a source of improved intensities and wavelengths for the ultraviolet spectrum of this star. A complete line list with intensities based on this exposure has not been published previously. The strongest spectral lines are saturated in the 820 minute exposure, and intensities for these lines are mostly obtained from a 20 minute exposure obtained on the same day. A few intensities are obtained from other exposures if neither the 820 nor the 20 minute exposure is satisfactory. There are 111 lines in our list between 1168 and 1980 A. Some of the very weakest lines may not be real. These are indicated by question marks. We also discuss some of the plasma diagnostics available using spectral lines of O v and O iv.

  1. An Atlas of Far-ultraviolet Spectra of the Zeta Aurigae Binary 31 Cygni with Line Identifications

    NASA Astrophysics Data System (ADS)

    Hagen Bauer, Wendy; Bennett, Philip D.

    2014-04-01

    The ζ Aurigae system 31 Cygni (K4 Ib + B4 V) was observed by the FUSE satellite during total eclipse and at three phases during chromospheric eclipse. We present the coadded, calibrated spectra and atlases with line identifications. During total eclipse, emission from high ionization states (e.g., Fe III and Cr III) shows asymmetric profiles redshifted from the systemic velocity, while emission from lower ionization states (e.g., Fe II and O I) appears more symmetric and is centered closer to the systemic velocity. Absorption from neutral and singly ionized elements is detected during chromospheric eclipse. Late in chromospheric eclipse, absorption from the K star wind is detected at a terminal velocity of ~80 km s-1. These atlases will be useful for interpreting the far-UV spectra of other ζ Aur systems, as the observed FUSE spectra of 32 Cyg, KQ Pup, and VV Cep during chromospheric eclipse resemble that of 31 Cyg.

  2. Investigating the Near-Infrared Properties of Planetary Nebulae II. Medium Resolution Spectra. 2; Medium Resolution Spectra

    NASA Technical Reports Server (NTRS)

    Hora, Joseph L.; Latter, William B.; Deutsch, Lynne K.

    1998-01-01

    We present medium-resolution (R approximately 700) near-infrared (lambda = 1 - 2.5 micrometers) spectra of a sample of planetary nebulae (PNe). A narrow slit was used which sampled discrete locations within the nebulae; observations were obtained at one or more positions in the 41 objects included in the survey. The PN spectra fall into one of four general categories: H1 emission line-dominated PNe, H1 and H2 emission line PNe, H2 emission line-dominated PNe, and continuum-dominated PNe. These categories correlate with morphological type, with the elliptical PNe falling into the first group, and the bipolar PNe primarily in the H2 and continuum emission groups. The categories also correlate with C/O ratio, with the O-rich objects falling into the first group and the C-rich objects in the groups. Other spectral features were observed in all catagories, such as continuum emission from the central star, and warm dust continuum emission towards the long wavelength end of the spectra. H2 was detected in four PNe in this survey for the first time. An analysis was performed using the H2 line ratios in all of the PN spectra in the survey where a sufficient number of lines were observed to determine the ortho-to-para ratio and the rotational and vibrational excitation temperatures of the H-2 in those objects. One unexpected result from this analysis is that the H-2 is excited by absorption of ultraviolet photons in most of the PNe, although there are several PNe in which collisional excitation plays an important role. The correlation between bipolar morphology and H2 emission has been strengthened with the new detections of H2 in this survey.

  3. Electric field stimulation setup for photoemission electron microscopes.

    PubMed

    Buzzi, M; Vaz, C A F; Raabe, J; Nolting, F

    2015-08-01

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg(0.66)Nb(0.33))O3-PbTiO3 and La(0.7)Sr(0.3)MnO3/PMN-PT artificial multiferroic nanostructures.

  4. The Relationship between Ultraviolet Line Emission and Magnetic Field Strength in Magnetic Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Howell, Steve B.; Cash, Jennifer; Mason, Keith O.; Herzog, Adrienne E.

    1999-02-01

    We present the first UV spectral observations of six magnetic cataclysmic variables discovered by the ROSAT Wide Field Camera (WFC). Using the^ International Ultraviolet Explorer (IUE), 1200-3400 Å spectra were obtained of the AM Herculis stars RE 0531-46, RE 1149+28, RE 1844-74, QS Tel (RE 1938-46), and HU Aqr (RE 2107-05) and the DQ Herculis star PQ Gem (RE 0751+14). The high-state UV spectra are dominated by strong emission lines. Continuum flux distributions for these stars (from 100 to 5500 Å) reveal that over this entire range, none of the spectral energy distributions can be fitted by a single-valued blackbody. Our new UV observations and additional archival IUE spectra were used to discover a correlation between the strength of the high-state UV emission lines and the strength of the white dwarf magnetic field. Model spectral results are used to confirm the production of the UV emission lines by photoionization from X-ray and EUV photons.

  5. Spectral transmission of the pig lens: effect of ultraviolet A+B radiation.

    PubMed

    Artigas, C; Navea, A; López-Murcia, M-M; Felipe, A; Desco, C; Artigas, J-M

    2014-12-01

    To determine the spectral transmission curve of the crystalline lens of the pig. To analyse how this curve changes when the crystalline lens is irradiated with ultraviolet A+B radiation similar to that of the sun. To compare these results with literature data from the human crystalline lens. We used crystalline lenses of the common pig from a slaughterhouse, i.e. genetically similar pigs, fed with the same diet, and slaughtered at six months old. Spectral transmission was measured with a Perkin-Elmer Lambda 35 UV/VIS spectrometer. The lenses were irradiated using an Asahi Spectra Lax-C100 ultraviolet source, which made it possible to select the spectral emission band as well as the intensity and exposure time. The pig lens transmits all the visible spectrum (95%) and lets part of the ultraviolet A through (15%). Exposure to acute UV (A+B) irradiation causes a decrease in its transmission as the intensity or exposure time increases: this decrease is considerable in the UV region. We were able to determine the mean spectral transmission curve of the pig lens. It appears to be similar to that of the human lens in the visible spectrum, but different in the ultraviolet. Pig lens transmission is reduced by UV (A+B) irradiation and its transmission in the UV region can even disappear as the intensity or exposure time increases. An adequate exposure intensity and time of UV (A+B) radiation always causes an anterior subcapsular cataract (ASC). Copyright © 2014. Published by Elsevier Masson SAS.

  6. Ultraviolet observations of clusters of Wolf-Rayet stars in the SBm3 galaxy NGC 4214 and Ultraviolet and optical observations of LINER's

    NASA Technical Reports Server (NTRS)

    Filippenko, Alexei V.

    1992-01-01

    The purpose of the grant was to obtain and analyze IUE (UV) and ground-based (optical) spectra of the central bar of NGC 4214, which contains several bright H II regions, in order to further explore the properties of the Wolf-Rayet stars in this galaxy. Several spatially distinct regions, with widely different equivalent widths of optical Wolf-Rayet lines, could be sampled by the large IUE entrance aperture. By using newly developed extraction techniques, the spectra of these H II regions could be isolated, and differences in their stellar populations would be systematically studied. Data were obtained with IUE in late February and early March, 1992. Some of the shifts were successful, but a few were not -- apparently the blind offset from the nearby star did not work equally well in all cases. Thus, the signal-to-noise ratio is somewhat lower than we had hoped. This necessitated a more careful extraction of the spectra of individual H II regions from the two-dimensional spectra. (A program that models the point spread function in the spatial direction was used to deblend the distinct H II regions.) The IUE data are currently being analyzed in conjunction with ground-based optical spectra. There appear to be obvious variations in the stellar population over angular scales of only a few arc seconds. The second part of the research performed under this grant was a continuation of a project that uses IUE (UV) and ground-based (optical) spectra to infer the physical conditions in Low-Ionization Nuclear Emission-Line Regions (LINER's). We have obtained spectra of a few key objects that cover a representative range in LINER continuum and emission-line properties. The overall goals are to (1) separate the emission into spatially distinct components, (2) establish whether the observed nuclear ultraviolet continua indicate sufficient photoionizing fluxes to account for the emission lines, (3) determine whether the nuclear emission can be explained by hot stars alone, (4

  7. Exciplex vacuum ultraviolet emission spectra of KrAr: Temperature dependence and potentials

    NASA Astrophysics Data System (ADS)

    Subtil, J.-L.; Jonin, C.; Laporte, P.; Reininger, R.; Spiegelmann, F.; Gürtler, P.

    1996-11-01

    The temperature dependence of the emissions from the 0+(3P1)and 1(3P2) Kr*Ar exciplex states in the range 85-350 K was studied using time resolved techniques, vacuum ultraviolet synchrotron radiation, and argon samples doped with minimal amounts of krypton. As the temperature is increased, the emission shifts to the blue, its width increases by almost a factor of 2, and the line shape becomes asymmetrical. The experimental line shapes have been simulated by means of Franck-Condon density calculations using the available ground state potential of Aziz and Slaman [Mol. Phys. 58, 679 (1986)] and by modeling the exciplex potentials as Morse curves. The potential parameters for the 0+ and 1 states are re=5.05±0.01 and 5.07±0.01 a0, respectively; De=1150±200 cm-1 and β=1.4±0.1 a0-1 for both states. The latter two values yield ωe=140 cm-1 and ωexe=4.3 cm-1. The energy positions of the exciplexes's wells and their depths are compared with published results.

  8. Ultraviolet photodissociation action spectroscopy of the N-pyridinium cation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Christopher S., E-mail: csh297@uowmail.edu.au; Trevitt, Adam J., E-mail: adamt@uow.edu.au; Blanksby, Stephen J.

    2015-01-07

    The S{sub 1}←S{sub 0} electronic transition of the N-pyridinium ion (C{sub 5}H{sub 5}NH{sup +}) is investigated using ultraviolet photodissociation (PD) spectroscopy of the bare ion and also the N{sub 2}-tagged complex. Gas-phase N-pyridinium ions photodissociate by the loss of molecular hydrogen (H{sub 2}) in the photon energy range 37 000–45 000 cm{sup −1} with structurally diagnostic ion-molecule reactions identifying the 2-pyridinylium ion as the exclusive co-product. The photodissociation action spectra reveal vibronic details that, with the aid of electronic structure calculations, support the proposal that dissociation occurs through an intramolecular rearrangement on the ground electronic state following internal conversion. Quantum chemical calculationsmore » are used to analyze the measured spectra. Most of the vibronic features are attributed to progressions of totally symmetric ring deformation modes and out-of-plane modes active in the isomerization of the planar excited state towards the non-planar excited state global minimum.« less

  9. A Detailed Far-ultraviolet Spectral Atlas of O-type Stars

    NASA Astrophysics Data System (ADS)

    Smith, Myron A.

    2012-10-01

    In this paper, we present a spectral atlas covering the wavelength interval 930-1188 Å for O2-O9.5 stars using Far-Ultraviolet Spectroscopic Explorer archival data. The stars selected for the atlas were drawn from three populations: Galactic main-sequence (classes III-V) stars, supergiants, and main-sequence stars in the Magellanic Clouds, which have low metallicities. For several of these stars, we have prepared FITS files comprised of pairs of merged spectra for user access via the Multimission Archive at Space Telescope (MAST). We chose spectra from the first population with spectral types O4, O5, O6, O7, O8, and O9.5 and used them to compile tables and figures with identifications of all possible atmospheric and interstellar medium lines in the region 949-1188 Å. Our identified line totals for these six representative spectra are 821 (500), 992 (663), 1077 (749), 1178 (847), 1359 (1001), and 1798 (1392) lines, respectively, where the numbers in parentheses are the totals of lines formed in the atmospheres, according to spectral synthesis models. The total number of unique atmospheric identifications for the six main-sequence O-star template spectra is 1792, whereas the number of atmospheric lines in common to these spectra is 300. The number of identified lines decreases toward earlier types (increasing effective temperature), while the percentages of "missed" features (unknown lines not predicted from our spectral syntheses) drop from a high of 8% at type B0.2, from our recently published B-star far-UV atlas, to 1%-3% for type O spectra. The percentages of overpredicted lines are similar, despite their being much higher for B-star spectra. We discuss the statistics of line populations among the various elemental ionization states. Also, as an aid to users we list those isolated lines that can be used to determine stellar temperatures and the presence of possible chemical anomalies. Finally, we have prepared FITS files that give pairs of merged spectra for

  10. Three-dimensional superconducting gap in FeSe from angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Kushnirenko, Y. S.; Fedorov, A. V.; Haubold, E.; Thirupathaiah, S.; Wolf, T.; Aswartham, S.; Morozov, I.; Kim, T. K.; Büchner, B.; Borisenko, S. V.

    2018-05-01

    We present a systematic angle-resolved photoemission spectroscopy study of the superconducting gap in FeSe. The gap function is determined in a full Brillouin zone including all Fermi surfaces and kz dependence. We find significant anisotropy of the superconducting gap in all momentum directions. While the in-plane anisotropy can be explained by both nematicity-induced pairing anisotropy and orbital-selective pairing, the kz anisotropy requires an additional refinement of the theoretical approaches.

  11. Impact of Fe doping on the electronic structure of SrTiO3 thin films determined by resonant photoemission

    NASA Astrophysics Data System (ADS)

    Kubacki, J.; Kajewski, D.; Goraus, J.; Szot, K.; Koehl, A.; Lenser, Ch.; Dittmann, R.; Szade, J.

    2018-04-01

    Epitaxial thin films of Fe doped SrTiO3 have been studied by the use of resonant photoemission. This technique allowed us to identify contributions of the Fe and Ti originating electronic states to the valence band. Two valence states of iron Fe2+ and Fe3+, detected on the base of x-ray absorption studies spectra, appeared to form quite different contributions to the valence band of SrTiO3. The electronic states within the in-gap region can be attributed to Fe and Ti ions. The Fe2+ originating states which can be connected to the presence of oxygen vacancies form a broad band reaching binding energies of about 0.5 eV below the conduction band, while Fe3+ states form in the gap a sharp feature localized just above the top of the valence band. These structures were also confirmed by calculations performed with the use of the FP-LAPW/APW+lo method including Coulomb correlations within the d shell. It has been shown that Fe doping induced Ti originating states in the energy gap which can be related to the hybridization of Ti and Fe 3d orbitals.

  12. Anodic iridium oxide films: An UPS study of emersed electrodes

    NASA Astrophysics Data System (ADS)

    Kötz, E. R.; Neff, H.

    1985-09-01

    Formation of anodic iridium oxide films has been monitored using Ultraviolet Photoemission Spectroscopy (UPS) of the emersed electrodes. The potential dependent valence band spectra clearly show the onset of oxide formation at about 0.6 V versus SCE. The density of states at the Fermi level and the positron of the Fermi level with respect to the maximum of the t 2g band of the oxide indicates a transition from metallic to semiconducting behaviour of the oxide. Protonation of the oxide is associated with increased emission from OH species. A linear correlation between electrode potential and workfunction change is observed for the metal as well as for the oxide. Our results confirm known band theory models and provide a fundamental understanding of the electrochromism of anodic iridium oxide films.

  13. Organic [6,6]-phenyl-C61-butyric-acid-methyl-ester field effect transistors: Analysis of the contact properties by combined photoemission spectroscopy and electrical measurements

    NASA Astrophysics Data System (ADS)

    Scheinert, S.; Grobosch, M.; Sprogies, J.; Hörselmann, I.; Knupfer, M.; Paasch, G.

    2013-05-01

    Carrier injection barriers determined by photoemission spectroscopy for organic/metal interfaces are widely accepted to determine the performance of organic field-effect transistors (OFET), which strongly depends on this interface at the source/drain contacts. This assumption is checked here in detail, and a more sophisticated connection is presented. According to the preparation process described in our recently published article [S. Scheinert, J. Appl. Phys. 111, 064502 (2012)], we prepared PCBM/Au and PCBM/Al samples to characterize the interface by photoemission and electrical measurements of PCBM based OFETs with bottom and top (TOC) contacts, respectively. The larger drain currents for TOC OFETs indicate the presence of Schottky contacts at source/drain for both metals. The hole injection barrier as determined by photoemission is 1.8 eV for both Al and Au. Therefore, the electron injection barriers are also the same. In contrast, the drain currents are orders of magnitude larger for the transistors with the Al contacts than for those with the Au contacts. We show that indeed the injection is determined by two other properties measured also by photoemission, the (reduced) work functions, and the interface dipoles, which have different sign for each contact material. In addition, we demonstrate by core-level and valence band photoemission that the deposition of gold as top contact onto PCBM results in the growth of small gold clusters. With increasing gold coverage, the clusters grow inside and begin to form a metallic, but not uniform, closed film onto PCBM.

  14. Ultraviolet photodissociation dynamics of the benzyl radical.

    PubMed

    Song, Yu; Zheng, Xianfeng; Lucas, Michael; Zhang, Jingsong

    2011-05-14

    Ultraviolet (UV) photodissociation dynamics of jet-cooled benzyl radical via the 4(2)B(2) electronically excited state is studied in the photolysis wavelength region of 228 to 270 nm using high-n Rydberg atom time-of-flight (HRTOF) and resonance enhanced multiphoton ionization (REMPI) techniques. In this wavelength region, H-atom photofragment yield (PFY) spectra are obtained using ethylbenzene and benzyl chloride as the precursors of benzyl radical, and they have a broad peak centered around 254 nm and are in a good agreement with the previous UV absorption spectra of benzyl. The H + C(7)H(6) product translational energy distributions, P(E(T))s, are derived from the H-atom TOF spectra. The P(E(T)) distributions peak near 5.5 kcal mol(-1), and the fraction of average translational energy in the total excess energy, , is ∼0.3. The P(E(T))s indicate the production of fulvenallene + H, which was suggested by recent theoretical studies. The H-atom product angular distribution is isotropic, with the anisotropy parameter β ≈ 0. The H/D product ratios from isotope labeling studies using C(6)H(5)CD(2) and C(6)D(5)CH(2) are reasonably close to the statistical H/D ratios, suggesting that the H/D atoms are scrambled in the photodissociation of benzyl. The dissociation mechanism is consistent with internal conversion of the electronically excited benzyl followed by unimolecular decomposition of the hot benzyl radical on the ground state.

  15. Surface-plasmon enhanced photoemission of a silver nano-patterned photocathode

    DOE PAGES

    Zhang, Z.; Li, R.; To, H.; ...

    2016-11-22

    Here, nano-patterned photocathodes (NPC) take advantage of plasmonic effects to resonantly increase absorption of light and localize electromagnetic field intensity on metal surfaces leading to surface-plasmon enhanced photoemission. In this paper, we report the status of NPC research at UCLA including in particular the optimization of the dimensions of a nanohole array on a silver wafer to enhance plasmonic response at 800 nm light, the development of a spectrally-resolved reflectivity measurement setup for quick nanopattern validation, and of a novel cathode plug to enable high power tests of NPCs on single crystal substrates in a high gradient radiofrequency gun.

  16. Surface-plasmon enhanced photoemission of a silver nano-patterned photocathode

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Li, R.; To, H.; Andonian, G.; Pirez, E.; Meade, D.; Maxson, J.; Musumeci, P.

    2017-09-01

    Nano-patterned photocathodes (NPC) take advantage of plasmonic effects to resonantly increase absorption of light and localize electromagnetic field intensity on metal surfaces leading to surface-plasmon enhanced photoemission. In this paper, we report the status of NPC research at UCLA including in particular the optimization of the dimensions of a nanohole array on a silver wafer to enhance plasmonic response at 800 nm light, the development of a spectrally-resolved reflectivity measurement setup for quick nanopattern validation, and of a novel cathode plug to enable high power tests of NPCs on single crystal substrates in a high gradient radiofrequency gun.

  17. Surface-plasmon enhanced photoemission of a silver nano-patterned photocathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z.; Li, R.; To, H.

    Here, nano-patterned photocathodes (NPC) take advantage of plasmonic effects to resonantly increase absorption of light and localize electromagnetic field intensity on metal surfaces leading to surface-plasmon enhanced photoemission. In this paper, we report the status of NPC research at UCLA including in particular the optimization of the dimensions of a nanohole array on a silver wafer to enhance plasmonic response at 800 nm light, the development of a spectrally-resolved reflectivity measurement setup for quick nanopattern validation, and of a novel cathode plug to enable high power tests of NPCs on single crystal substrates in a high gradient radiofrequency gun.

  18. The ultraviolet bands of the CO2/plus/ ion in comets

    NASA Astrophysics Data System (ADS)

    Festou, M. C.; Feldman, P. D.; Weaver, H. A.

    1982-05-01

    Eight comets are studied with the International Ultraviolet Explorer spectrographs. The existence of the CO2(plus) ion in a comet is confirmed through the presence of the 2890 A doublet in at least three of these objects. Spatial and spectral resolution obtained in comets Bradfield (1979 X) and Seargent (1978 XV) permit a discussion of the production mechanisms of this ion. The spectra reveal new ionic features in the 3100-3400 A range, which are attributed to resonance fluorescence of the Fox-Duffendack-Barker system of the CO2(plus) ion and, near 3350 A, to the OH(plus) ion.

  19. Ultraviolet Laser Lithography of Titania Photonic Crystals for Terahertz-Wave Modulation.

    PubMed

    Kirihara, Soshu; Nonaka, Koki; Kisanuki, Shoichiro; Nozaki, Hirotoshi; Sakaguchi, Keito

    2018-05-18

    Three-dimensional (3D) microphotonic crystals with a diamond structure composed of titania microlattices were fabricated using ultraviolet laser lithography, and the bandgap properties in the terahertz (THz) electromagnetic-wave frequency region were investigated. An acrylic resin paste with titania fine particle dispersions was used as the raw material for additive manufacturing. By scanning a spread paste surface with an ultraviolet laser beam, two-dimensional solid patterns were dewaxed and sintered. Subsequently, 3D structures with a relative density of 97% were created via layer lamination and joining. A titania diamond lattice with a lattice constant density of 240 µm was obtained. The properties of the electromagnetic wave were measured using a THz time-domain spectrometer. In the transmission spectra for the Γ-X direction, a forbidden band was observed from 0.26 THz to 0.44 THz. The frequency range of the bandgap agreed well with calculated results obtained using the plane⁻wave expansion method. Additionally, results of a simulation via transmission-line modeling indicated that a localized mode can be obtained by introducing a plane defect between twinned diamond lattice structures.

  20. Vacuum ultraviolet detector for gas chromatography.

    PubMed

    Schug, Kevin A; Sawicki, Ian; Carlton, Doug D; Fan, Hui; McNair, Harold M; Nimmo, John P; Kroll, Peter; Smuts, Jonathan; Walsh, Phillip; Harrison, Dale

    2014-08-19

    Analytical performance characteristics of a new vacuum ultraviolet (VUV) detector for gas chromatography (GC) are reported. GC-VUV was applied to hydrocarbons, fixed gases, polyaromatic hydrocarbons, fatty acids, pesticides, drugs, and estrogens. Applications were chosen to feature the sensitivity and universal detection capabilities of the VUV detector, especially for cases where mass spectrometry performance has been limited. Virtually all chemical species absorb and have unique gas phase absorption cross sections in the approximately 120-240 nm wavelength range monitored. Spectra are presented, along with the ability to use software for deconvolution of overlapping signals. Some comparisons with experimental synchrotron data and computed theoretical spectra show good agreement, although more work is needed on appropriate computational methods to match the simultaneous broadband electronic and vibronic excitation initiated by the deuterium lamp. Quantitative analysis is governed by Beer-Lambert Law relationships. Mass on-column detection limits reported for representatives of different classes of analytes ranged from 15 (benzene) to 246 pg (water). Linear range measured at peak absorption for benzene was 3-4 orders of magnitude. Importantly, where absorption cross sections are known for analytes, the VUV detector is capable of absolute determination (without calibration) of the number of molecules present in the flow cell in the absence of chemical interferences. This study sets the stage for application of GC-VUV technology across a wide breadth of research areas.

  1. The Copernicus observations - Interstellar or circumstellar material. [UV spectra of early stars

    NASA Technical Reports Server (NTRS)

    Steigman, G.; Strittmatter, P. A.; Williams, R. E.

    1975-01-01

    It is suggested that the sharp absorption lines observed in the ultraviolet spectra of early-type stars by the Copernicus satellite may be entirely accounted for by the circumstellar material in the H II regions and associated transition zones around the observed stars. If this interpretation is correct, the Copernicus results yield little information on the state of any interstellar (as opposed to circumstellar) gas and, in particular, shed little light on the degree of element depletion in interstellar space.

  2. Ultraviolet Observations of Three Dwarf Cepheids

    NASA Astrophysics Data System (ADS)

    Sturch, Conrad R.

    Ultraviolet observations of three dwarf Cepheids (VZ Cnc, SX Phe, and AI Vel) have been obtained with the ANS. Analysis of these observations (Sturch and WU 1982) reveals that the flux distributions observed for each of these objects exhibit UV deficiencies which increase monotonically with decreasing wavelengths. The largest UV deficiencies are noted for SX Phe which has been identified with group of dwarf Cepheids with low metallicity and low luminosity, two attributes that are expected to have opposite effects on the UV flux distribution. It is proposed to obtain low dispersion IUE spectra of the three stars throughout each of their light cycles. Such observations will identify spectral features responsible for the flux deficiencies and will provide data necessary for a detailed comparison with model atmospheres. Knowledge of atmospheric parameters will lead to a better understanding of the evolutionary status of dwarf Cepheids.

  3. Molecular hydrogen fluorescence and accretion in far-ultraviolet spectra of classical T Tauri stars

    NASA Astrophysics Data System (ADS)

    Herczeg, Gregory J.

    2005-11-01

    Far-ultraviolet spectra of classical T Tauri stars reveal accretion, outflows, and H 2 fluorescence. The E140M echelle spectrograph on HST /STIS and the FUSE satellite offer high spectral resolution and broad wavelength coverage, and enables our unique and detailed analysis of the H 2 lines. A strong and broad Lya emission line excites warm H 2 into many levels of the B and C electronic states, from which we can detect as many as 200 H 2 emission lines. These H2 lines are narrow and often asymmetric, with excess blueshifted emission that can extend to 100 km s -1 from some sources. The fluorescent H 2 emission probes diverse environments around CTTSs. High spectral and spatial resolution are essential for identifying the location and studying the kinematics of the gas, which constrain the origin of the H 2 emission. Several other spectral characteristics, including absorption of H2 emission by the wind and H 2 absorption lines, also provide valuable diagnostics of the origin of this emission. The H 2 emission is most likely produced at the surface of a circumstellar disk in some sources, but is produced by outflows from other sources. DF Tau appears to show H 2 emission from both a disk and an outflow. The excitation of H 2 can be determined from relative line strengths by measuring self-absorption in lines with low-energy lower levels, or by reconstructing the Lya profile incident upon the warm H 2 using the total flux from a single upper level and the opacity in the pumping transition. Based on those diagnostics and the rich H 2 spectrum of TW Hya, the H 2 at the warm disk surface has a column density of log N (H 2 ) = [Special characters omitted.] , a temperature T = [Special characters omitted.] K, and a filling factor of H 2 , as seen by the source of Lya emission, of 0.25 +/- 0.08 (all 2s error bars). The total FUV luminosity from CTTSs ranges from 2 x 10 -3 to 3 x 10 -2 [Special characters omitted.] , much of which is in the Lya line. With the exception of

  4. 21 CFR 872.6350 - Ultraviolet detector.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultraviolet detector. 872.6350 Section 872.6350...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6350 Ultraviolet detector. (a) Identification. An ultraviolet detector is a device intended to provide a source of ultraviolet light which is used...

  5. 21 CFR 872.6350 - Ultraviolet detector.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultraviolet detector. 872.6350 Section 872.6350...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6350 Ultraviolet detector. (a) Identification. An ultraviolet detector is a device intended to provide a source of ultraviolet light which is used...

  6. 21 CFR 872.6350 - Ultraviolet detector.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultraviolet detector. 872.6350 Section 872.6350...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6350 Ultraviolet detector. (a) Identification. An ultraviolet detector is a device intended to provide a source of ultraviolet light which is used...

  7. 21 CFR 872.6350 - Ultraviolet detector.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ultraviolet detector. 872.6350 Section 872.6350...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6350 Ultraviolet detector. (a) Identification. An ultraviolet detector is a device intended to provide a source of ultraviolet light which is used...

  8. 21 CFR 872.6350 - Ultraviolet detector.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultraviolet detector. 872.6350 Section 872.6350...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6350 Ultraviolet detector. (a) Identification. An ultraviolet detector is a device intended to provide a source of ultraviolet light which is used...

  9. Astrophysics Meets Atomic Physics: Fe I Line Identifications and Templates for Old Stellar Populations from Warm and Hot Stellar UV Spectra

    NASA Astrophysics Data System (ADS)

    Peterson, Ruth

    2017-08-01

    Imaging surveys from the ultraviolet to the infrared are recording ever more distant astronomical sources. Needed to interpret them are high-resolution ultraviolet spectral templates at all metallicities for both old and intermediate-age stars, and the atomic physics data essential to model their spectra. To this end we are proposing new UV spectra of four warm and hot stars spanning a wide range of metallicity. These will provide observational templates of old and young metal-poor turnoff stars, and the laboratory source for the identification of thousands of lines of neutral iron that appear in stellar spectra but are not identified in laboratory spectra. By matching existing and new stellar spectra to calculations of energy levels, line wavelengths, and gf-values, Peterson & Kurucz (2015) and Peterson, Kurucz, & Ayres (2017) identified 124 Fe I levels with energies up to 8.4eV. These provided 3000 detectable Fe I lines from 1600A to 5.4mu, and yielded empirical gf-values for 640 of these. Here we propose high-resolution UV spectra reaching 1780A for the first time at the turnoff, to detect and identify the strongest Fe I lines at 1800 - 1850A. This should add 250 new Fe I levels. These spectra, plus one at lower resolution reaching 1620A, will also provide empirical UV templates for turnoff stars at high redshifts as well as low. This is essential to deriving age and metallicity independently for globular clusters and old galaxies out to z 3. It will also improve abundances of trace elements in metal-poor stars, constraining nucleosynthesis at early epochs and aiding the reconstruction of the populations of the Milky Way halo and of nearby globular clusters.

  10. Autonomous portable solar ultraviolet spectroradiometer (APSUS) - a new CCD spectrometer system for localized, real-time solar ultraviolet (280-400 nm) radiation measurement.

    PubMed

    Hooke, Rebecca; Pearson, Andy; O'Hagan, John

    2014-01-01

    Terrestrial solar ultraviolet (UV) radiation has significant implications for human health and increasing levels are a key concern regarding the impact of climate change. Monitoring solar UV radiation at the earth's surface is therefore of increasing importance. A new prototype portable CCD (charge-coupled device) spectrometer-based system has been developed that monitors UV radiation (280-400 nm) levels at the earth's surface. It has the ability to deliver this information to the public in real time. Since the instrument can operate autonomously, it is called the Autonomous Portable Solar Ultraviolet Spectroradiometer (APSUS). This instrument incorporates an Ocean Optics QE65000 spectrometer which is contained within a robust environmental housing. The APSUS system can gather reliable solar UV spectral data from approximately April to October inclusive (depending on ambient temperature) in the UK. In this study the new APSUS unit and APSUS system are presented. Example solar UV spectra and diurnal UV Index values as measured by the APSUS system in London and Weymouth in the UK in summer 2012 are shown. © 2014 Crown copyright. Photochemistry and Photobiology © 2014 The American Society of Photobiology. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland and Public Health England.

  11. Astronaut Charles M. Duke, Jr., in shadow of Lunar Module behind ultraviolet camera

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Charles M. Duke, Jr., lunar module pilot, stands in the shadow of the Lunar Module (LM) behind the ultraviolet (UV) camera which is in operation. This photograph was taken by astronaut John W. Young, mission commander, during the mission's second extravehicular activity (EVA-2). The UV camera's gold surface is designed to maintain the correct temperature. The astronauts set the prescribed angles of azimuth and elevation (here 14 degrees for photography of the large Magellanic Cloud) and pointed the camera. Over 180 photographs and spectra in far-ultraviolet light were obtained showing clouds of hydrogen and other gases and several thousand stars. The United States flag and Lunar Roving Vehicle (LRV) are in the left background. While astronauts Young and Duke descended in the Apollo 16 Lunar Module (lm) 'Orion' to explore the Descartes highlands landing site on the Moon, astronaut Thomas K. Mattingly II, command module pilot, remained with the Command and Service Modules (csm) 'Casper' in lunar orbit.

  12. Unoccupied Surface State on Ag(110) as Revealed by Inverse Photoemission

    NASA Astrophysics Data System (ADS)

    Reihl, B.; Schlittler, R. R.; Neff, H.

    1984-05-01

    By use of the new technique of k-resolved inverse photoemission spectroscopy, an unoccupied s-like surface state on Ag(110) has been detected, which lies within the projected L2'-->L1 gap of the bulk. At the X¯ point of the surface Brillouin zone, the energy of the surface state is 1.65 eV above the Fermi level EF, and exhibits a band dispersion E(k∥) towards higher energies. The surface-state emission is immediately quenched when the surface is exposed to very small amounts of oxygen or hydrogen.

  13. Hopkins Ultraviolet Telescope determination of the Io torus electron temperature

    NASA Technical Reports Server (NTRS)

    Hall, D. T.; Bednar, C. J.; Durrance, S. T.; Feldman, P. D.; Mcgrath, M. A.; Moos, H. W.; Strobel, D. F.

    1994-01-01

    Sulfur ion emissions from the Io plasma torus observed by the Hopkins Ultraviolet Telescope (HUT) in 1990 December have been analyzed to determine the effective temperature of the exciting electrons. Spectra were obtained with a long slit that extended from 3.1 to 8.7 Jupiter radii R(sub J) on both dawn and dusk torus ansae. The average temperature of electrons exciting S(2+) emissions from the dawn ansa is (4800 +/- 2400) K lower than on the dusk ansa, a dawn-dusk asymmetry comparable in both sign and magnitude to that measured by the Voyager Ultraviolet Spectrograph (UVS) experiment. Emissions from S(2+) ions are generated in a source region with electron temperatures in the range 32,000-56,000 K; S(3+) ion emissions are excited by electrons that average 20,000-40,000 K hotter. This distinct difference suggests that the S(3+) emission source region is spatially separate from the S(2+) source region. Estimated relative aperture filling factors suggest that the S(3+) emissions originate from a region more extended out of the centrifugal plane than the S(2+) emissions.

  14. Pre-resonance Raman spectra of some simple gases. [sulfur oxides, hydrogen sulfide, and nitrogen oxides

    NASA Technical Reports Server (NTRS)

    Low, P. W.

    1974-01-01

    The pre-resonance Raman spectra of SO2, N2O, and H2S were investigated using the 4880 A, 4727 A, and 4579 A lines of the argon ion laser. Although these molecules have electronic absorption bands in the near ultraviolet, none exhibit any pre-resonance enhancement within our experimental error of + or - 10%. Possible explanations taking into account the current theories for resonance Raman are discussed.

  15. Probing buried layers by photoelectron spectromicroscopy with hard x-ray excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiemann, C.; Patt, M.; Cramm, S.

    We report about a proof-of-principle experiment which explores the perspectives of performing hard x-ray photoemission spectromicroscopy with high lateral resolution. Our results obtained with an energy-filtered photoemission microscope at the PETRA III storage ring facility using hard x-ray excitation up to 6.5 keV photon energy demonstrate that it is possible to obtain selected-area x-ray photoemission spectra from regions less than 500 nm in diameter.

  16. Soft X-ray spectroscopy of nanoparticles by velocity map imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostko, O.; Xu, B.; Jacobs, M. I.

    Velocity map imaging (VMI), a technique traditionally used to study chemical dynamics in the gas phase, is applied to study X-ray photoemission from aerosol nanoparticles. Soft X-rays from the Advanced Light Source synchrotron, probe a beam of nanoparticles, and the resulting photoelectrons are velocity mapped to obtain their kinetic energy distributions. A new design of the VMI spectrometer is described. The spectrometer is benchmarked by measuring vacuum ultraviolet photoemission from gas phase xenon and squalene nanoparticles followed by measurements using soft X-rays. It is demonstrated that the photoelectron distribution from X-ray irradiated squalene nanoparticles is dominated by secondary electrons. Bymore » scanning the photon energies and measuring the intensities of these secondary electrons, a near edge X-ray absorption fine structure (NEXAFS) spectrum is obtained. The NEXAFS technique is used to obtain spectra of aqueous nanoparticles at the oxygen K edge. By varying the position of the aqueous nanoparticle beam relative to the incident X-ray beam, evidence is presented such that the VMI technique allows for NEXAFS spectroscopy of water in different physical states. Finally, we discuss the possibility of applying VMI methods to probe liquids and solids via X-ray spectroscopy.« less

  17. Soft X-ray spectroscopy of nanoparticles by velocity map imaging

    DOE PAGES

    Kostko, O.; Xu, B.; Jacobs, M. I.; ...

    2017-05-05

    Velocity map imaging (VMI), a technique traditionally used to study chemical dynamics in the gas phase, is applied to study X-ray photoemission from aerosol nanoparticles. Soft X-rays from the Advanced Light Source synchrotron, probe a beam of nanoparticles, and the resulting photoelectrons are velocity mapped to obtain their kinetic energy distributions. A new design of the VMI spectrometer is described. The spectrometer is benchmarked by measuring vacuum ultraviolet photoemission from gas phase xenon and squalene nanoparticles followed by measurements using soft X-rays. It is demonstrated that the photoelectron distribution from X-ray irradiated squalene nanoparticles is dominated by secondary electrons. Bymore » scanning the photon energies and measuring the intensities of these secondary electrons, a near edge X-ray absorption fine structure (NEXAFS) spectrum is obtained. The NEXAFS technique is used to obtain spectra of aqueous nanoparticles at the oxygen K edge. By varying the position of the aqueous nanoparticle beam relative to the incident X-ray beam, evidence is presented such that the VMI technique allows for NEXAFS spectroscopy of water in different physical states. Finally, we discuss the possibility of applying VMI methods to probe liquids and solids via X-ray spectroscopy.« less

  18. Visualizing electron dynamics in organic materials: Charge transport through molecules and angular resolved photoemission

    NASA Astrophysics Data System (ADS)

    Kümmel, Stephan

    Being able to visualize the dynamics of electrons in organic materials is a fascinating perspective. Simulations based on time-dependent density functional theory allow to realize this hope, as they visualize the flow of charge through molecular structures in real-space and real-time. We here present results on two fundamental processes: Photoemission from organic semiconductor molecules and charge transport through molecular structures. In the first part we demonstrate that angular resolved photoemission intensities - from both theory and experiment - can often be interpreted as a visualization of molecular orbitals. However, counter-intuitive quantum-mechanical electron dynamics such as emission perpendicular to the direction of the electrical field can substantially alter the picture, adding surprising features to the molecular orbital interpretation. In a second study we calculate the flow of charge through conjugated molecules. The calculations show in real time how breaks in the conjugation can lead to a local buildup of charge and the formation of local electrical dipoles. These can interact with neighboring molecular chains. As a consequence, collections of ''molecular electrical wires'' can show distinctly different characteristics than ''classical electrical wires''. German Science Foundation GRK 1640.

  19. Comparison of Newly Acquired Lunar Spectra with the Titanium Abundance Maps Derived from Clementine

    NASA Technical Reports Server (NTRS)

    Holsclaw, G. M.; McClintock, W. E.; Robinson, M. S.

    2005-01-01

    The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) is one of seven science instruments onboard NASA's MESSENGER mission, currently en-route to the planet Mercury. One of MASCS s components, referred to as the Visible and Near Infrared Spectrograph (VIRS), will record reflectance spectra of the surface in order to characterize the mineralogy of the planet [1]. The lunar highlands and the average mercurian crust are proposed to be compositionally similar [i.e. 2]. In preparation to interpret VIRS reflectance spectra of Mercury to be first obtained in 2008, the Moon has been observed with an engineering model of the VIRS from a ground-based telescope. In this study, the ultraviolet and visible region of the spectrum is compared with titanium content in the lunar regolith.

  20. Spectra of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory

    NASA Astrophysics Data System (ADS)

    Quimby, Robert M.; De Cia, Annalisa; Gal-Yam, Avishay; Leloudas, Giorgos; Lunnan, Ragnhild; Perley, Daniel A.; Vreeswijk, Paul M.; Yan, Lin; Bloom, Joshua S.; Cenko, S. Bradley; Cooke, Jeff; Ellis, Richard; Filippenko, Alexei V.; Kasliwal, Mansi M.; Kleiser, Io K. W.; Kulkarni, Shrinivas R.; Matheson, Thomas; Nugent, Peter E.; Pan, Yen-Chen; Silverman, Jeffrey M.; Sternberg, Assaf; Sullivan, Mark; Yaron, Ofer

    2018-03-01

    Most Type I superluminous supernovae (SLSNe-I) reported to date have been identified by their high peak luminosities and spectra lacking obvious signs of hydrogen. We demonstrate that these events can be distinguished from normal-luminosity SNe (including Type Ic events) solely from their spectra over a wide range of light-curve phases. We use this distinction to select 19 SLSNe-I and four possible SLSNe-I from the Palomar Transient Factory archive (including seven previously published objects). We present 127 new spectra of these objects and combine these with 39 previously published spectra, and we use these to discuss the average spectral properties of SLSNe-I at different spectral phases. We find that Mn II most probably contributes to the ultraviolet spectral features after maximum light, and we give a detailed study of the O II features that often characterize the early-time optical spectra of SLSNe-I. We discuss the velocity distribution of O II, finding that for some SLSNe-I this can be confined to a narrow range compared to relatively large systematic velocity shifts. Mg II and Fe II favor higher velocities than O II and C II, and we briefly discuss how this may constrain power-source models. We tentatively group objects by how well they match either SN 2011ke or PTF12dam and discuss the possibility that physically distinct events may have been previously grouped together under the SLSN-I label.

  1. Spectra of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory

    DOE PAGES

    Quimby, Robert M.; Cia, Annalisa De; Gal-Yam, Avishay; ...

    2018-02-27

    Most Type I superluminous supernovae (SLSNe-I) reported to date have been identified by their high peak luminosities and spectra lacking obvious signs of hydrogen. Here, we demonstrate that these events can be distinguished from normal-luminosity SNe (including Type Ic events) solely from their spectra over a wide range of light-curve phases. We use this distinction to select 19 SLSNe-I and four possible SLSNe-I from the Palomar Transient Factory archive (including seven previously published objects). We present 127 new spectra of these objects and combine these with 39 previously published spectra, and we use these to discuss the average spectral propertiesmore » of SLSNe-I at different spectral phases. We find that Mn ii most probably contributes to the ultraviolet spectral features after maximum light, and we give a detailed study of the O II features that often characterize the early-time optical spectra of SLSNe-I. We discuss the velocity distribution of O II, finding that for some SLSNe-I this can be confined to a narrow range compared to relatively large systematic velocity shifts. Mg II and Fe II favor higher velocities than O II and C II, and we briefly discuss how this may constrain power-source models. We tentatively group objects by how well they match either SN 2011ke or PTF12dam and discuss the possibility that physically distinct events may have been previously grouped together under the SLSN-I label.« less

  2. Spectra of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quimby, Robert M.; Cia, Annalisa De; Gal-Yam, Avishay

    Most Type I superluminous supernovae (SLSNe-I) reported to date have been identified by their high peak luminosities and spectra lacking obvious signs of hydrogen. Here, we demonstrate that these events can be distinguished from normal-luminosity SNe (including Type Ic events) solely from their spectra over a wide range of light-curve phases. We use this distinction to select 19 SLSNe-I and four possible SLSNe-I from the Palomar Transient Factory archive (including seven previously published objects). We present 127 new spectra of these objects and combine these with 39 previously published spectra, and we use these to discuss the average spectral propertiesmore » of SLSNe-I at different spectral phases. We find that Mn ii most probably contributes to the ultraviolet spectral features after maximum light, and we give a detailed study of the O II features that often characterize the early-time optical spectra of SLSNe-I. We discuss the velocity distribution of O II, finding that for some SLSNe-I this can be confined to a narrow range compared to relatively large systematic velocity shifts. Mg II and Fe II favor higher velocities than O II and C II, and we briefly discuss how this may constrain power-source models. We tentatively group objects by how well they match either SN 2011ke or PTF12dam and discuss the possibility that physically distinct events may have been previously grouped together under the SLSN-I label.« less

  3. New Observations of Molecular Nitrogen by the Imaging Ultraviolet Spectrograph on MAVEN

    NASA Astrophysics Data System (ADS)

    Stevens, Michael H.; Evans, J. S.; Schneider, Nicholas M.; Stewart, A. I. F.; Deighan, Justin; Jain, Sonal K.; Crismani, Matteo M. J.; Stiepen, Arnaud; Chaffin, Michael S.; McClintock, William E.; Holsclaw, Greg M.; Lefevre, Franck; Montmessin, Franck; Lo, Daniel Y.; Clarke, John T.; Bougher, Stephen W.; Jakosky, Bruce M.

    2015-11-01

    The Martian ultraviolet dayglow provides information on the basic state of the Martian upper atmosphere. The Imaging Ultraviolet Spectrograph (IUVS) on NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) mission has observed Mars at mid and far-UV wavelengths since its arrival in September 2014. In this work, we describe a linear regression method used to extract components of UV spectra from IUVS limb observations and focus in particular on molecular nitrogen (N2) photoelectron excited emissions. We identify N2 Lyman-Birge-Hopfield (LBH) emissions for the first time at Mars and we also confirm the tentative identification of N2 Vegard-Kaplan (VK) emissions. We compare observed VK and LBH limb radiance profiles to model results between 90 and 210 km. Finally, we compare retrieved N2 density profiles to general circulation (GCM) model results. Contrary to earlier analyses using other satellite data that indicated N2 densities were a factor of three less than predictions, we find that N2 abundances exceed GCM results by about a factor of two at 130 km but are in agreement at 150 km.

  4. Ultraviolet studies of Cepheids

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, Erika

    1992-01-01

    We discuss whether with new evolutionary tracks we still have a problem fitting the Cepheids and their evolved companions on the appropriate evolutionary tracks. We find that with the Bertelli et al. tracks with convective overshoot by one pressure scale height the problem is essentially removed, though somewhat more mixing would give a better fit. By using the results of recent nonlinear hydrodynamic calculations, we find that we also have no problem matching the observed pulsation periods of the Cepheids with those expected from their new evolutionary masses, provided that Cepheids with periods less than 9 days are overtone pulsators. We investigate possible mass loss of Cepheids from UV studies of the companion spectrum of S Mus and from the ultraviolet spectra of the long period Cepheid l Carinae. For S Mus with a period of 9.6 days we derive an upper limit for the mass loss of M less than 10(exp -9) solar mass, if a standard velocity law is assumed for the wind. For l Carinae with a period of 35.5 days we find a probable mass loss of M is approximately 10(exp -5+/-2) solar mass.

  5. Ultraviolet and optical observations of metal deficient red giants and chromospheric models

    NASA Technical Reports Server (NTRS)

    Duprele, A. K.; Avrett, E. H.; Hartmann, L.; Smith, G.

    1984-01-01

    Three metal deficient field stars were observed in the ultraviolet and optical spectral regions: HD 165195, HD 110281, and HD 232078. High dispersion spectra near H alpha, and low dispersion, long wavelength IUE spectra were obtained. The H alpha profiles have strong asymmetric emission with absorption cores that are frequently asymmetric. The surface flux of Mg II lines is similar to that of luminous Pop I stars in spite of the lower metal abundance. Semi-empirical atmospheric models suggest that the characteristic emission in the wings of the H alpha line can arise within static chromospheres. Radial expansion gives an asymmetric, blue-shifted H alpha core accompanied by greater emission in the red line wing than the blue wing. Wind models with extended atmospheres suggest mass loss rates - 2 billion M/yr. Thus H alpha provides no evidence that steady mass loss is substantial enough to significantly affect the evolution of stars on the red giant branch of globular clusters.

  6. The formation of IRIS diagnostics. III. Near-ultraviolet spectra and images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, T. M. D.; Leenaarts, J.; De Pontieu, B.

    The Mg II h and k lines are the prime chromospheric diagnostics of NASA's Interface Region Imaging Spectrograph (IRIS). In the previous papers of this series, we used a realistic three-dimensional radiative magnetohydrodynamics model to calculate the h and k lines in detail and investigated how their spectral features relate to the underlying atmosphere. In this work, we employ the same approach to investigate how the h and k diagnostics fare when taking into account the finite resolution of IRIS and different noise levels. In addition, we investigate the diagnostic potential of several other photospheric lines and near-continuum regions presentmore » in the near-ultraviolet (NUV) window of IRIS and study the formation of the NUV slit-jaw images. We find that the instrumental resolution of IRIS has a small effect on the quality of the h and k diagnostics; the relations between the spectral features and atmospheric properties are mostly unchanged. The peak separation is the most affected diagnostic, but mainly due to limitations of the simulation. The effects of noise start to be noticeable at a signal-to-noise ratio (S/N) of 20, but we show that with noise filtering one can obtain reliable diagnostics at least down to a S/N of 5. The many photospheric lines present in the NUV window provide velocity information for at least eight distinct photospheric heights. Using line-free regions in the h and k far wings, we derive good estimates of photospheric temperature for at least three heights. Both of these diagnostics, in particular the latter, can be obtained even at S/Ns as low as 5.« less

  7. Electronic absorption spectra of hydrogenated protonated naphthalene and proflavine

    NASA Astrophysics Data System (ADS)

    Bonaca, A.; Bilalbegović, G.

    2011-09-01

    We study hydrogenated cations of two polycyclic hydrocarbon molecules as models of hydrogenated organic species that form in the interstellar medium. Optical spectra of the hydrogenated naphthalene cation Hn-C10H+8 for n= 1, 2 and 10, as well as the astrobiologically interesting hydrogenated proflavine cation Hn-C13H11N+3 for n= 1 and 14, are calculated. The pseudopotential time-dependent density functional theory is used. It is found that the fully hydrogenated proflavine cation H14-C13H11N+3 shows a broad spectrum in which the positions of individual lines are almost lost. The positions, shapes and intensities of lines change in hydronaphthalene and hydroproflavine cations, showing that hydrogen additions induce substantially different optical spectra in comparison with base polycyclic hydrocarbon cations. One calculated line in the visible spectrum of H10-C10H+8 and one in the visible spectrum of H-C13H11N+3 are close to the measured diffuse interstellar bands. We also present the positions of near-ultraviolet lines.

  8. The Ultraviolet Radiation Environment around M Dwarf Exoplanet Host Stars

    NASA Technical Reports Server (NTRS)

    France, Kevin; Froning, Cynthia S.; Linsky, Jeffrey L.; Roberge, Aki; Stocke, John T.; Tian, Feng; Bushinsky, Rachel; Desert, Jean-Michel; Mauas, Pablo; Mauas, Pablo; hide

    2013-01-01

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. Ultraviolet photons influence the atmospheric temperature profiles and production of potential biomarkers on Earth-like planets around these stars. At present, little observational or theoretical basis exists for understanding the ultraviolet spectra of M dwarfs, despite their critical importance to predicting and interpreting the spectra of potentially habitable planets as they are obtained in the coming decades. Using observations from the Hubble Space Telescope, we present a study of the UV radiation fields around nearby M dwarf planet hosts that covers both far-UV (FUV) and near-UV (NUV) wavelengths. The combined FUV+NUV spectra are publicly available in machine-readable format. We find that all six exoplanet host stars in our sample (GJ 581, GJ 876, GJ 436, GJ 832, GJ 667C, and GJ 1214) exhibit some level of chromospheric and transition region UV emission. No "UV-quiet" M dwarfs are observed. The bright stellar Lyman-alpha emission lines are reconstructed, and we find that the Lyman-alpha line fluxes comprise approximately 37%-75% of the total 1150-3100 A flux from most M dwarfs; approximately greater than 10(exp3) times the solar value. We develop an empirical scaling relation between Lyman-alpha and Mg II emission, to be used when interstellar H I attenuation precludes the direct observation of Lyman-alpha. The intrinsic unreddened flux ratio is F(Lyman-alpha)/F(Mg II) = 10(exp3). The F(FUV)/F(NUV) flux ratio, a driver for abiotic production of the suggested biomarkers O2 and O3, is shown to be approximately 0.5-3 for all M dwarfs in our sample, greather than 10(exp3) times the solar ratio. For the four stars with moderate signal-to-noise Cosmic Origins Spectrograph time-resolved spectra, we find UV emission line variability with amplitudes of 50%.500% on 10(exp2)-10(exp3) s timescales. This effect should be taken

  9. An experimental and theoretical core-level study of tautomerism in guanine.

    PubMed

    Plekan, Oksana; Feyer, Vitaliy; Richter, Robert; Coreno, Marcello; Vall-Llosera, Gemma; Prince, Kevin C; Trofimov, Alexander B; Zaytseva, Irina L; Moskovskaya, Tatyana E; Gromov, Evgeniy V; Schirmer, Jochen

    2009-08-20

    The core level photoemission and near edge X-ray photoabsorption spectra of guanine in the gas phase have been measured and the results interpreted with the aid of high level ab initio calculations. Tautomers are clearly identified spectroscopically, and their relative free energies and Boltzmann populations at the temperature of the experiment (600 K) have been calculated and compared with the experimental results and with previous calculations. We obtain good agreement between experiment and the Boltzmann weighted theoretical photoemission spectra, which allows a quantitative determination of the ratio of oxo to hydroxy tautomer populations. For the photoabsorption spectra, good agreement is found for the C 1s and O 1s spectra but only fair agreement for the N 1s edge.

  10. Augmentation of the IUE Ultraviolet Spectral Atlas

    NASA Astrophysics Data System (ADS)

    Wu, Chi-Chao

    IUE is the only and last satellite which will support a survey program to record the ultraviolet spectrum of a large number of bright normal stars. It is important to have a library of high quality low dispersion spectra of sufficient number of stars that provide good coverage in spectral type and luminosity class. Such a library is invaluable for stellar population synthesis of galaxies, studying the nature of distant galaxies, establishing a UV spectral classification system, providing comparison stars for interstellar extinction studies and for peculiar objects or binary systems, studying the effects of temperature, gravity and metallicity on stellar UV spectra, and as a teaching aid. We propose to continue observations of normal stars in order to provide (1) a stellar library as complete as practical, which will be able to support astronomical research by the scientific community long into the future, and (2) a sufficient sample of stars to guard against variability and peculiarity, and to allow a finite range of temperature, gravity, and metallicity in a given spectral type-luminosity class combination. Our primary goal is to collect the data and make them available to the community immediately (without claiming the 6-month proprietary right). The data will be published in the IUE Newsletter as soon as practical, and the data will be prepared for distribution by the IUE Observatory and the NSSDC.

  11. Augmentation of the IUE Ultraviolet Spectral Atlas

    NASA Astrophysics Data System (ADS)

    Wu, Chi-Chao

    Most likely IUE is the only and last satellite which will support a survey program to record the ultraviolet spectrum of a large number of bright normal stars. It is important to have a library of high quality Low dispersion spectra of sufficient number of stars that provide good coverage in spectral type and luminosity class. Such a library is invaluable for stellar population synthesis of galaxies, studying the nature of distant galaxies, establishing a UV spectral classification system, providing comparison stars for interstellar extinction studies and for peculiar objects or binary systems, studying the effects of temperature, gravity and metallicity on stellar UV spectra, and as a teaching aid. We propose to continue observations of normal stars in order to provide (1) a more complete coverage of the spectral type and luminosity class, and (2) more than one star per spectral typeluminosity class combination to guard against variability and peculiarity, and to allow a finite range of temperature, gravity, and metallicity in a given combination. Our primary goal is to collect the data and make them available to the community immediately (without claiming the 6-month proprietary right). The data will be published in the IUE Newsletter as soon as practical, and the data will be prepared for distribution by the IUE Observatory and the NSSDC.

  12. Nano-interconnection for microelectronics and polymers with benzo-triazole

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon; Choi, Sang H.; Noh, Hyunpil; Kuk, Young

    2006-01-01

    Benzo-Triazole (BTA) is considered as an important bridging material that can connect an organic polymer to the metal electrode on silicon wafers as a part of the microelectronics fabrication technology. We report a detailed process of surface induced 3-D polymerization of BTA on the Cu electrode material which was measured with the Ultraviolet Photoemission Spectroscopy (UPS), X-ray Photoemission Spectroscopy (XPS), and Scanning Tunneling Microscope (STM). The electric utilization of shield and chain polymerization of BTA on Cu surface is contemplated in this study.

  13. Spectral photometry of extreme helium stars: Ultraviolet fluxes and effective temperature

    NASA Technical Reports Server (NTRS)

    Drilling, J. S.; Schoenberner, D.; Heber, U.; Lynas-Gray, A. E.

    1982-01-01

    Ultraviolet flux distributions are presented for the extremely helium rich stars BD +10 deg 2179, HD 124448, LSS 3378, BD -9 deg 4395, LSE 78, HD 160641, LSIV -1 deg 2, BD 1 deg 3438, HD 168476, MV Sgr, LS IV-14 deg 109 (CD -35 deg 11760), LSII +33 deg 5 and BD +1 deg 4381 (LSIV +2 deg 13) obtained with the International Ultraviolet Explorer (IUE). Broad band photometry and a newly computed grid of line blanketed model atmospheres were used to determine accurate angular diameters and total stellar fluxes. The resultant effective temperatures are in most cases in satisfactory agreement with those based on broad band photometry and/or high resolution spectroscopy in the visible. For two objects, LSII +33 deg 5 and LSE 78, disagreement was found between the IUE observations and broadband photometry: the colors predict temperatures around 20,000 K, whereas the UV spectra indicate much lower photospheric temperatures of 14,000 to 15,000 K. The new temperature scale for extreme helium stars extends to lower effective temperatures than that of Heber and Schoenberner (1981) and covers the range from 8,500 K to 32,000 K.

  14. Overview of Key Results from SDO Extreme ultraviolet Variability Experiment (EVE)

    NASA Astrophysics Data System (ADS)

    Woods, Tom; Eparvier, Frank; Jones, Andrew; Mason, James; Didkovsky, Leonid; Chamberlin, Phil

    2016-10-01

    The SDO Extreme ultraviolet Variability Experiment (EVE) includes several channels to observe the solar extreme ultraviolet (EUV) spectral irradiance from 1 to 106 nm. These channels include the Multiple EUV Grating Spectrograph (MEGS) A, B, and P channels from the University of Colorado (CU) and the EUV SpectroPhometer (ESP) channels from the University of Southern California (USC). The solar EUV spectrum is rich in many different emission lines from the corona, transition region, and chromosphere. The EVE full-disk irradiance spectra are important for studying the solar impacts in Earth's ionosphere and thermosphere and are useful for space weather operations. In addition, the EVE observations, with its high spectral resolution of 0.1 nm and in collaboration with AIA solar EUV images, have proven valuable for studying active region evolution and explosive energy release during flares and coronal eruptions. These SDO measurements have revealed interesting results such as understanding the flare variability over all wavelengths, discovering and classifying different flare phases, using coronal dimming measurements to predict CME properties of mass and velocity, and exploring the role of nano-flares in continual heating of active regions.

  15. Transmitting and reflecting diffuser. [for ultraviolet light

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr.; Burcher, E. E.; Kopia, L. P. (Inventor)

    1973-01-01

    A near-Lambertian diffuser is described which transmits and reflects ultraviolet light. An ultraviolet grade fused silica substrate is coated with vaporized fuse silica. The coating thickness is controlled, one thickness causing ultraviolet light to diffuse and another thickness causing ultraviolet light to reflect a near Lambertian pattern.

  16. Copernicus spectra and infrared photometry of 42 Orionis

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.; Snow, T. P., Jr.; Gehrz, R. D.; Hackwell, J. A.

    1977-01-01

    The Orion sword star 42 Ori is embedded in a nebula north of and separated from the Orion nebula. The B1 V star is probably normal. Other members of the multiple remain poorly defined, and the nebula may exhibit some peculiarities that may depend on them. Copernicus ultraviolet spectra of the star are described here, especially in the form of tables of wavelength identifications. The properties of the interstellar material in the line of sight are also discussed. Infrared photometry is presented which suggests that the ratio of total to selective extinction ranges from 3 to 3.5 for the interstellar matter in the direction of 42 Ori. The IR photometry provides no evidence for companion stellar or circumstellar components.

  17. Copernicus spectra and infrared photometry of 42 Orionis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, H.M.; Snow, T.P. Jr.; Gehrz, R.D.

    1977-04-01

    The Orion sword star 42 Ori is embedded in a nebula north of and separated from the Orion nebula. The B1 V star is probably normal. Other members of the multiple remain poorly defined, and the nebula may exhibit some peculiarities that may depend on them. Copernicus ultraviolet spectra of the star are described here, especially in the form of tables of wavelength identifications. The properties of the interstellar material in the line of sight are also discussed. We present infrared photometry which suggests that 3 less than or equal to R less than or equal to 3.5 for themore » interstellar matter in the direction of 42 Ori. The IR photometry provides no evidence for companion stellar or circumstellar components.« less

  18. Vacuum scanning capillary photoemission microscopy.

    PubMed

    Aseyev, S A; Cherkun, A P; Mironov, B N; Petrunin, V V; Chekalin, S V

    2017-08-01

    We demonstrate the use of a conical capillary in a scanning probe microscopy for surface analysis. The probe can measure photoemission from a substrate by transmitting photoelectrons along the capillary as a function of probe position. The technique is demonstrated on a model substrate consisting of a gold reflecting layer on a compact disc which has been illuminated by an unfocused laser beam with a wavelength 400nm, from a femtosecond laser with a beam size of 4mm. A quartz capillary with a 2-µm aperture has been used in the experiments. The period of gold microstructure, shown to be 1.6µ, was measured by the conical probe operating in shear force mode. In shear force regime, the dielectric capillary has been used as a "classical" SPM tip, which provided images reflecting the surface topology. In a photoelectron regime photoelectrons passed through hollow tip and entered a detector. The spatial distribution of the recorded photoelectrons consisted of periodic mountain-valley strips, resembling the surface profile of the sample. Submicron spatial resolution has been achieved. This approach paves the way to study pulsed photodesorption of large organic molecular ions with high spatial and element resolution using the combination of a hollow-tip scanner with time-of-flight technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The ultraviolet reflectance of Enceladus: Implications for surface composition

    NASA Astrophysics Data System (ADS)

    Hendrix, Amanda R.; Hansen, Candice J.; Holsclaw, Greg M.

    2010-04-01

    The reflectance of Saturn's moon Enceladus has been measured at far ultraviolet (FUV) wavelengths (115-190 nm) by Cassini's Ultraviolet Imaging Spectrograph (UVIS). At visible and near infrared (VNIR) wavelengths Enceladus' reflectance spectrum is very bright, consistent with a surface composed primarily of H 2O ice. At FUV wavelengths, however, Enceladus is surprisingly dark - darker than would be expected for pure water ice. Previous analyses have focused on the VNIR spectrum, comparing it to pure water ice (Cruikshank, D.P., Owen, T.C., Dalle Ore, C., Geballe, T.R., Roush, T.L., de Bergh, C., Sandford, S.A., Poulet, F., Benedix, G.K., Emery, J.P. [2005] Icarus, 175, 268-283) or pure water ice plus a small amount of NH 3 (Emery, J.P., Burr, D.M., Cruikshank, D.P., Brown, R.H., Dalton, J.B. [2005] Astron. Astrophys., 435, 353-362) or NH 3 hydrate (Verbiscer, A.J., Peterson, D.E., Skrutskie, M.F., Cushing, M., Helfenstein, P., Nelson, M.J., Smith, J.D., Wilson, J.C. [2006] Icarus, 182, 211-223). We compare Enceladus' FUV spectrum to existing laboratory measurements of the reflectance spectra of candidate species, and to spectral models. We find that the low FUV reflectance of Enceladus can be explained by the presence of a small amount of NH 3 and a small amount of a tholin in addition to H 2O ice on the surface. The presence of these three species (H 2O, NH 3, and a tholin) appears to satisfy not only the low FUV reflectance and spectral shape, but also the middle-ultraviolet to visible wavelength brightness and spectral shape. We expect that ammonia in the Enceladus plume is transported across the surface to provide a global coating.

  20. Performance of the Far Ultraviolet Spectroscopic Explorer mirror assemblies

    NASA Astrophysics Data System (ADS)

    Ohl, Raymond G.; Barkhouser, Robert H.; Conard, Steven J.; Friedman, Scott D.; Hampton, Jeffrey; Moos, H. Warren; Nikulla, Paul; Oliveira, Cristina M.; Saha, Timo T.

    2000-12-01

    The Far Ultraviolet Spectroscopic Explorer is a NASA astrophysics satellite which produces high-resolution spectra in the far-ultraviolet (90.5 - 118.7 nm bandpass) using a high effective area and low background detectors. The observatory was launched on its three-year mission from Cape Canaveral Air Station on 24 June 1999. The instrument contains four co- aligned, normal incidence, off-axis parabolic mirrors which illuminate separate Rowland circle spectrograph channels equipped with holographically ruled diffraction gratings and delay line microchannel plate detectors. The telescope mirrors have a 352 X 387 mm aperture and 2245 mm focal length and are attached to actuator assemblies, which provide on-orbit, tip, tilt, and focus control. Two mirrors are coated with silicon carbide (SiC) and two are coated with lithium fluoride over aluminum (Al:LiF). We describe mirror assembly in-flight optical and mechanical performance. On-orbit measurements of the far-ultraviolet point spread function associated with each mirror are compared to expectations based on pre-flight laboratory measurements and modeling using the Optical Surface Analysis Code and surface metrology data. On-orbit imaging data indicate that the mirrors meet their instrument-level requirement of 50% and 95% slit transmission for the high- and mid-resolution spectrograph entrance slits, respectively. The degradation of mirror reflectivity during satellite integration and test is also discussed. The FUV reflectivity of the SiC- and Al:LiF-coated mirrors decreased about 6% and 3%, respectively, between coating and launch. Each mirror is equipped with three actuators, which consist of a stepper motor driving a ball screw via a two-stage planetary gear train. We also discuss the mechanical performance of the mirror assemblies, including actuator performance and thermal effects.

  1. Development of potent in vivo mutagenesis plasmids with broad mutational spectra

    PubMed Central

    Badran, Ahmed H.; Liu, David R.

    2015-01-01

    Methods to enhance random mutagenesis in cells offer advantages over in vitro mutagenesis, but current in vivo methods suffer from a lack of control, genomic instability, low efficiency and narrow mutational spectra. Using a mechanism-driven approach, we created a potent, inducible, broad-spectrum and vector-based mutagenesis system in E. coli that enhances mutation 322,000-fold over basal levels, surpassing the mutational efficiency and spectra of widely used in vivo and in vitro methods. We demonstrate that this system can be used to evolve antibiotic resistance in wild-type E. coli in <24 h, outperforming chemical mutagens, ultraviolet light and the mutator strain XL1-Red under similar conditions. This system also enables the continuous evolution of T7 RNA polymerase variants capable of initiating transcription using the T3 promoter in <10 h. Our findings enable broad-spectrum mutagenesis of chromosomes, episomes and viruses in vivo, and are applicable to both bacterial and bacteriophage-mediated laboratory evolution platforms. PMID:26443021

  2. Development of potent in vivo mutagenesis plasmids with broad mutational spectra.

    PubMed

    Badran, Ahmed H; Liu, David R

    2015-10-07

    Methods to enhance random mutagenesis in cells offer advantages over in vitro mutagenesis, but current in vivo methods suffer from a lack of control, genomic instability, low efficiency and narrow mutational spectra. Using a mechanism-driven approach, we created a potent, inducible, broad-spectrum and vector-based mutagenesis system in E. coli that enhances mutation 322,000-fold over basal levels, surpassing the mutational efficiency and spectra of widely used in vivo and in vitro methods. We demonstrate that this system can be used to evolve antibiotic resistance in wild-type E. coli in <24 h, outperforming chemical mutagens, ultraviolet light and the mutator strain XL1-Red under similar conditions. This system also enables the continuous evolution of T7 RNA polymerase variants capable of initiating transcription using the T3 promoter in <10 h. Our findings enable broad-spectrum mutagenesis of chromosomes, episomes and viruses in vivo, and are applicable to both bacterial and bacteriophage-mediated laboratory evolution platforms.

  3. The near ultraviolet spectra of comets P/Brorsen-Metcalf and Austin

    NASA Technical Reports Server (NTRS)

    Cochran, William D.; Odell, C. R.; Miller, C. O.; Cochran, Anita L.; Opal, C. B.; Valk, D.; Barker, E. S.

    1990-01-01

    Results are reported on spectrophotometric observations of comets P/Brorsen-Metcalf and Austin from 3000 to 3600 A at a spectral resolution of about 1.8 A. The strongest features are the OH(A-X) 0-0 and 1-1 bands, and the NH(A-X) 0-0 bands. For the first time, the OH(A-X) 0-1 band was clearly found. The existence of the CN(B-X) 2-1 and 3-2 bands were verified and measured. A feature at 3258 A that was first seen in uncalibrated spectra was detected, and was identified as the NH singlet (c-a) 0-0 transition. The CO2(+) features at 3378, 3504, and 3512 A were also firmly identified. This ion was reported as being present in the tail of Comet Bester (1984 I) by Swings and Page (1950). The identification of a weak feature at 3547 A was proposed as the fundamental transition of H2CO, which would make this the first optical cometary detection of this molecule which is very abundant in giant molecular clouds.

  4. Simulation of Two Dimensional Ultraviolet (2DUV) Spectroscopy of Amyloid Fibrils

    PubMed Central

    Jiang, Jun; Abramavicius, Darius; Falvo, Cyril; Bulheller, Benjamin M.; Hirst, Jonathan D.; Mukamel, Shaul

    2010-01-01

    Revealing the structure and aggregation mechanism of amyloid fibrils is essential for the treatment of over 20 diseases related to protein misfolding. Coherent two dimensional (2D) infrared spectroscopy is a novel tool that provides a wealth of new insight into the structure and dynamics of biomolecular systems. Recently developed ultrafast laser sources are extending multidimensional spectroscopy into the ultraviolet (UV) region, and this opens up new opportunities for probing fibrils. In a simulation study, we show that 2DUV spectra of the backbone of a 32-residue β-amyloid (Aβ9–40) fibril associated with Alzheimer’s disease, and two intermediate prefibrillar structures carry characteristic signatures of fibril size and geometry that could be used to monitor its formation kinetics. The dependence of these signals on the fibril size and geometry is explored. We demonstrate that the dominant features of the β-amyloid fibril spectra are determined by intramolecular interactions within a single Aβ9–40, while intermolecular interactions at the “external interface” have clear signatures in the fine details of these signals. PMID:20795695

  5. Ultraviolet electroluminescence from hybrid inorganic/organic ZnO/GaN/poly(3-hexylthiophene) dual heterojunctions.

    PubMed

    Chen, Yungting; Shih, Hanyu; Wang, Chunhsiung; Hsieh, Chunyi; Chen, Chihwei; Chen, Yangfang; Lin, Taiyuan

    2011-05-09

    Based on hybrid inorganic/organic n-ZnO nanorods/p-GaN thin film/poly(3-hexylthiophene)(P3HT) dual heterojunctions, the light emitting diode (LED) emits ultraviolet (UV) radiation (370 nm - 400 nm) and the whole visible light (400 nm -700 nm) at the low injection current density. Meanwhile, under the high injection current density, the UV radiation overwhelmingly dominates the room-temperature electroluminescence spectra, exponentially increases with the injection current density and possesses a narrow full width at half maximum less than 16 nm. Comparing electroluminescence with photoluminescence spectra, an enormously enhanced transition probability of the UV luminescence in the electroluminescence spectra was found. The P3HT layer plays an essential role in helping the UV emission from p-GaN material because of its hole-conductive characteristic as well as the band alignment with respect to p-GaN. With our new finding, the result shown here may pave a new route for the development of high brightness LEDs derived from hybrid inorganic/organic heterojuctions.

  6. Neurotransmitter measurement with a fiber optic probe using pulsed ultraviolet resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Schulze, H. Georg; Greek, L. Shane; Blades, Michael W.; Bree, Alan V.; Gorzalka, Boris B.; Turner, Robin F. B.

    1997-05-01

    Many techniques have been developed to investigate the chemistry associated with brain activity. These techniques generally fall into two categories: fast techniques with species restricted sensitivity and slow techniques with generally unrestricted species sensitivity. Therefore, a need exists for a fast non-invasive technique sensitive to a wide array of biologically relevant compounds in order to measure chemical brain events in real time. The work presented here describes the progress made toward the development of a novel neurotransmitter probe. A fiber-optic linked Raman and tunable ultraviolet resonance Raman system was assembled with custom designed optical fiber probes. Probes of several different geometries were constructed and their working curves obtained in aqueous mixtures of methyl orange and potassium nitrate to determine the best probe configuration given particular sample characteristics. Using this system, the ultraviolet resonance Raman spectra of some neurotransmitters were measured with a fiber-optic probe and are reported here for the first time. The probe has also been used to measure neurotransmitter secretions obtained from depolarized rat pheochromocytoma cells.

  7. Surface intervalley scattering on GaAs(110): Direct observation with picosecond laser photoemission

    NASA Astrophysics Data System (ADS)

    Haight, R.; Silberman, J. A.

    1989-02-01

    Angle-resolved laser photoemission investigations of the laser excited GaAs(110) surface have revealed a previously unobserved valley of the C3 unoccupied surface band whose minimum is at X¯ in the surface Brillouin zone. Electron population in this valley increases only as a result of scattering from the directly photoexcited valley at Γ¯. With high momentum resolution, we have isolated the dynamic electron population changes at both Γ¯ and X¯ and deduced the scattering time between the two valleys.

  8. DIFFERENTIATION OF AURANTII FRUCTUS IMMATURUS AND FRUCTUS PONICIRI TRIFOLIATAE IMMATURUS BY FLOW-INJECTION WITH ULTRAVIOLET SPECTROSCOPIC DETECTION AND PROTON NUCLEAR MAGNETIC RESONANCE USING PARTIAL LEAST-SQUARES DISCRIMINANT ANALYSIS.

    PubMed

    Zhang, Mengliang; Zhao, Yang; Harrington, Peter de B; Chen, Pei

    2016-03-01

    Two simple fingerprinting methods, flow-injection coupled to ultraviolet spectroscopy and proton nuclear magnetic resonance, were used for discriminating between Aurantii fructus immaturus and Fructus poniciri trifoliatae immaturus . Both methods were combined with partial least-squares discriminant analysis. In the flow-injection method, four data representations were evaluated: total ultraviolet absorbance chromatograms, averaged ultraviolet spectra, absorbance at 193, 205, 225, and 283 nm, and absorbance at 225 and 283 nm. Prediction rates of 100% were achieved for all data representations by partial least-squares discriminant analysis using leave-one-sample-out cross-validation. The prediction rate for the proton nuclear magnetic resonance data by partial least-squares discriminant analysis with leave-one-sample-out cross-validation was also 100%. A new validation set of data was collected by flow-injection with ultraviolet spectroscopic detection two weeks later and predicted by partial least-squares discriminant analysis models constructed by the initial data representations with no parameter changes. The classification rates were 95% with the total ultraviolet absorbance chromatograms datasets and 100% with the other three datasets. Flow-injection with ultraviolet detection and proton nuclear magnetic resonance are simple, high throughput, and low-cost methods for discrimination studies.

  9. Optical and ultraviolet spectroscopic analysis of SN 2011fe at late times

    NASA Astrophysics Data System (ADS)

    Friesen, Brian; Baron, E.; Parrent, Jerod T.; Thomas, R. C.; Branch, David; Nugent, Peter E.; Hauschildt, Peter H.; Foley, Ryan J.; Wright, Darryl E.; Pan, Yen-Chen; Filippenko, Alexei V.; Clubb, Kelsey I.; Silverman, Jeffrey M.; Maeda, Keiichi; Shivvers, Isaac; Kelly, Patrick L.; Cohen, Daniel P.; Rest, Armin; Kasen, Daniel

    2017-05-01

    We present optical spectra of the nearby Type Ia supernova SN 2011fe at 100, 205, 311, 349 and 578 d post-maximum light, as well as an ultraviolet (UV) spectrum obtained with the Hubble Space Telescope at 360 d post-maximum light. We compare these observations with synthetic spectra produced with the radiative transfer code phoenix. The day +100 spectrum can be well fitted with models that neglect collisional and radiative data for forbidden lines. Curiously, including these data and recomputing the fit yields a quite similar spectrum, but with different combinations of lines forming some of the stronger features. At day +205 and later epochs, forbidden lines dominate much of the optical spectrum formation; however, our results indicate that recombination, not collisional excitation, is the most influential physical process driving spectrum formation at these late times. Consequently, our synthetic optical and UV spectra at all epochs presented here are formed almost exclusively through recombination-driven fluorescence. Furthermore, our models suggest that the UV spectrum even as late as day +360 is optically thick and consists of permitted lines from several iron-peak species. These results indicate that the transition to the 'nebular' phase in Type Ia supernovae is complex and highly wavelength dependent.

  10. Optical and ultraviolet spectroscopic analysis of SN 2011fe at late times

    DOE PAGES

    Friesen, Brian; Baron, E.; Parrent, Jerod T.; ...

    2017-02-27

    This paper presents optical spectra of the nearby Type Ia supernova SN 2011fe at 100, 205, 311, 349 and 578 d post-maximum light, as well as an ultraviolet (UV) spectrum obtained with the Hubble Space Telescope at 360 d post-maximum light. We compare these observations with synthetic spectra produced with the radiative transfer code PHOENIX. The day +100 spectrum can be well fitted with models that neglect collisional and radiative data for forbidden lines. Curiously, including these data and recomputing the fit yields a quite similar spectrum, but with different combinations of lines forming some of the stronger features. Atmore » day +205 and later epochs, forbidden lines dominate much of the optical spectrum formation; however, our results indicate that recombination, not collisional excitation, is the most influential physical process driving spectrum formation at these late times. Consequently, our synthetic optical and UV spectra at all epochs presented here are formed almost exclusively through recombinationdriven fluorescence. Furthermore, our models suggest that the UV spectrum even as late as day +360 is optically thick and consists of permitted lines from several iron-peak species. These results indicate that the transition to the 'nebular' phase in Type Ia supernovae is complex and highly wavelength dependent.« less

  11. Ultraviolet Imaging Telescope ultraviolet images - Large-scale structure, H II regions, and extinction in M81

    NASA Technical Reports Server (NTRS)

    Hill, Jesse K.; Bohlin, Ralph C.; Cheng, Kwang-Ping; Hintzen, Paul M. N.; Landsman, Wayne B.; Neff, Susan G.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Smith, Eric P.

    1992-01-01

    The study employs UV images of M81 obtained by the Ultraviolet Imaging Telescope (UIT) during the December 1990 Astro-1 spacelab mission to determine 2490- and 1520-A fluxes from 46 H II regions and global surface brightness profiles. Comparison photometry in the V band is obtained from a ground-based CCD image. UV radial profiles show bulge and exponential disk components, with a local decrease in disk surface brightness inside the inner Lindblad Resonance about 4 arcmin from the nucleus. The V profile shows typical bulge plus exponential disk structure, with no local maximum in the disk. There is little change of UV color across the disk, although there is a strong gradient in the bulge. Observed m152-V colors of the H II regions are consistent with model spectra for young clusters, after dereddening using Av determined from m249-V and the Galactic extinction curve. The value of Av, so determined, is 0.4 mag greater on the average than Av derived from radio continuum and H-alpha fluxes.

  12. Future Directions in Ultraviolet Spectroscopy

    NASA Technical Reports Server (NTRS)

    Sonneborn, George (Editor); Moos, Warren; VanSteenberg, Michael

    2009-01-01

    The 'Future Directions in Ultraviolet Spectroscopy' conference was inspired by the accomplishments of the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission. The FUSE mission was launched in June 1999 and spent over eight years exploring the far-ultraviolet universe, gathering over 64 million seconds of high-resolution spectral data on nearly 3000 astronomical targets. The goal of this conference was not only to celebrate the accomplishments of FUSE, but to look toward the future and understand the major scientific drivers for the ultraviolet capabilities of the next generation fo space observatories. Invited speakers presented discussions based on measurements made by FUSE and other ultraviolet instruments, assessed their connection with measurements made with other techniques and, where appropriate, discussed the implications of low-z measurements for high-z phenomena. In addition to the oral presentations, many participants presented poster papers. The breadth of these presentation made it clear that much good science is still in progress with FUSE data and that these result will continue to have relevance in many scientific areas.

  13. Trident: A Universal Tool for Generating Synthetic Absorption Spectra from Astrophysical Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hummels, Cameron B.; Smith, Britton D.; Silvia, Devin W.

    Hydrodynamical simulations are increasingly able to accurately model physical systems on stellar, galactic, and cosmological scales; however, the utility of these simulations is often limited by our ability to directly compare them with the data sets produced by observers: spectra, photometry, etc. To address this problem, we have created trident, a Python-based open-source tool for post-processing hydrodynamical simulations to produce synthetic absorption spectra and related data. trident can (i) create absorption-line spectra for any trajectory through a simulated data set mimicking both background quasar and down-the-barrel configurations; (ii) reproduce the spectral characteristics of common instruments like the Cosmic Origins Spectrograph;more » (iii) operate across the ultraviolet, optical, and infrared using customizable absorption-line lists; (iv) trace simulated physical structures directly to spectral features; (v) approximate the presence of ion species absent from the simulation outputs; (vi) generate column density maps for any ion; and (vii) provide support for all major astrophysical hydrodynamical codes. trident was originally developed to aid in the interpretation of observations of the circumgalactic medium and intergalactic medium, but it remains a general tool applicable in other contexts.« less

  14. Trident: A Universal Tool for Generating Synthetic Absorption Spectra from Astrophysical Simulations

    NASA Astrophysics Data System (ADS)

    Hummels, Cameron B.; Smith, Britton D.; Silvia, Devin W.

    2017-09-01

    Hydrodynamical simulations are increasingly able to accurately model physical systems on stellar, galactic, and cosmological scales; however, the utility of these simulations is often limited by our ability to directly compare them with the data sets produced by observers: spectra, photometry, etc. To address this problem, we have created trident, a Python-based open-source tool for post-processing hydrodynamical simulations to produce synthetic absorption spectra and related data. trident can (I) create absorption-line spectra for any trajectory through a simulated data set mimicking both background quasar and down-the-barrel configurations; (II) reproduce the spectral characteristics of common instruments like the Cosmic Origins Spectrograph; (III) operate across the ultraviolet, optical, and infrared using customizable absorption-line lists; (IV) trace simulated physical structures directly to spectral features; (v) approximate the presence of ion species absent from the simulation outputs; (VI) generate column density maps for any ion; and (vii) provide support for all major astrophysical hydrodynamical codes. trident was originally developed to aid in the interpretation of observations of the circumgalactic medium and intergalactic medium, but it remains a general tool applicable in other contexts.

  15. Development of far- and deep-ultraviolet surface plasmon resonance (SPR) sensor using aluminum thin film

    NASA Astrophysics Data System (ADS)

    Tanabe, Ichiro; Tanaka, Yoshito Y.; Ryoki, Takayuki; Watari, Koji; Goto, Takeyoshi; Kikawada, Masakazu; Inami, Wataru; Kawata, Yoshimasa; Ozaki, Yukihiro

    2016-09-01

    We investigated the surface plasmon resonance (SPR) of aluminum (Al) thin films with varying refractive index of the environment near the films in the far‒ultraviolet (FUV, <= 200 nm) and deep‒ultraviolet (DUV, <= 300 nm) regions. By using our original FUV‒DUV spectrometer which adopts an attenuated total reflectance (ATR) system, the measurable wavelength range was down to the 180 nm, and the environment near the Al surface could be controlled. In addition, this spectrometer was equipped with a variable incident angle apparatus, which enabled us to measure the FUV‒DUV reflectance spectra (170-450 nm) with various incident angles ranging from 45° to 85°. Based on the obtained spectra, the dispersion relation of Al‒SPR in the FUV and DUV regions was obtained. In the presence of various liquids (HFIP, water, alcohols etc.) on the Al film, the angle and wavelength of the SPR became larger and longer, respectively, compared with those in the air (i.e., with no materials on the film). These shifts correspond well with the results of simulations performed according to the Fresnel equations, and can be used in the application of SPR sensors. FUV‒DUV‒SPR sensors (in particular, FUV‒SPR sensors) with tunable incident light wavelength have three experimental advantages compared with conventional visible‒SPR sensors, as discussed based on the Fresnel equations, i.e., higher sensitivity, more narrowly limited surface measurement, and better material selectivity.

  16. Far-ultraviolet spectral images of comet Halley from sounding rockets

    NASA Technical Reports Server (NTRS)

    Mccoy, R. P.; Carruthers, G. R.; Opal, C. B.

    1986-01-01

    Far-ultraviolet images of comet Halley obtained from sounding rockets launched from White Sands Missile Range, New Mexico, on 24 February and 13 March, 1986, are presented. Direct electrographic images of the hydrogen coma of the comet were obtained at the Lyman-alpha wavelength along with objective spectra containing images of the coma at the oxygen, carbon, and sulfur resonance multiplets. Analysis of the Lyman-alpha images yields hydrogen atom production rates of 1.9 x 10 to the 30th/s and 1.4 x 120 to the 30th/s for the two observations. Images of oxygen, carbon, and sulfur emissions obtained with the objective grating spectrograph are presented for the first set of observations and preliminary production rates are derived for these elements.

  17. A rocket observation of the far-ultraviolet spectrum of Saturn

    NASA Technical Reports Server (NTRS)

    Weiser, H.; Moos, H. W.

    1978-01-01

    Far-ultraviolet (1160-1750 A) spectra of the Saturnian disk and the ring system have been obtained by using a very sensitive rocket-borne spectrograph with a microchannel plate detector. The use of two apertures of different diameter in the telescope focal plane permitted the separation of the contribution of the planetary disk from that of the rings. H I lambda 1216 was the only atomic spectral line emission detected in the planet and the rings. A weak signal from the disk between 1300 A and 1500 A was observed. Geometric disk albedos, averaged over 50 A, were determined from 1500 A to 1700 A. Measurements of the ring reflectivity longward of 1650 A are compatible with H2O frost but not NH3 frost.

  18. Broadband interference lithography at extreme ultraviolet and soft x-ray wavelengths.

    PubMed

    Mojarad, Nassir; Fan, Daniel; Gobrecht, Jens; Ekinci, Yasin

    2014-04-15

    Manufacturing efficient and broadband optics is of high technological importance for various applications in all wavelength regimes. Particularly in the extreme ultraviolet and soft x-ray spectra, this becomes challenging due to the involved atomic absorption edges that rapidly change the optical constants in these ranges. Here we demonstrate a new interference lithography grating mask that can be used for nanopatterning in this spectral range. We demonstrate photolithography with cutting-edge resolution at 6.5 and 13.5 nm wavelengths, relevant to the semiconductor industry, as well as using 2.5 and 4.5 nm wavelength for patterning thick photoresists and fabricating high-aspect-ratio metal nanostructures for plasmonics and sensing applications.

  19. Vacuum ultraviolet photofragmentation of octadecane: photoionization mass spectrometric and theoretical investigation.

    PubMed

    Xu, Jing; Sang, Pengpeng; Zhao, Lianming; Guo, Wenyue; Qi, Fei; Xing, Wei; Yan, Zifeng

    The photoionization and fragmentation of octadecane were investigated with infrared laser desorption/tunable synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (IRLD/VUV PIMS) and theoretical calculations. Mass spectra of octadecane were measured at various photon energies. The fragment ions were gradually detected with the increase of photon energy. The main fragment ions were assigned to radical ions (C n H 2 n +1 + , n  = 4-11) and alkene ions (C n H 2 n + , n  = 5-10). The ionization energy of the precursor and appearance energy of ionic fragments were obtained by measuring the photoionization efficiency spectrum. Possible formation pathways of the fragment ions were discussed with the help of density functional theory calculations.

  20. Ultraviolet Enceladus

    NASA Image and Video Library

    2004-09-23

    Looking beyond Saturn's south pole, this was the Cassini spacecraft's view of the distant, icy moon Enceladus on July 28, 2004. The planet itself shows few obvious features at these ultraviolet wavelengths, due to scattering of light by molecules of the gases high in the atmosphere. Enceladus is 499 kilometers (310 miles) wide. The image was taken with the Cassini spacecraft narrow angle camera at a distance of 7.4 million kilometers (4.6 million miles) from Saturn through a filter sensitive to ultraviolet wavelengths of light. The image scale is 44 kilometers (27 miles) per pixel of Saturn. http://photojournal.jpl.nasa.gov/catalog/PIA06483

  1. Ultraviolet radiation induced discharge laser

    DOEpatents

    Gilson, Verle A.; Schriever, Richard L.; Shearer, James W.

    1978-01-01

    An ultraviolet radiation source associated with a suitable cathode-anode electrode structure, disposed in a gas-filled cavity of a high pressure pulsed laser, such as a transverse electric atmosphere (TEA) laser, to achieve free electron production in the gas by photoelectric interaction between ultraviolet radiation and the cathode prior to the gas-exciting cathode-to-anode electrical discharge, thereby providing volume ionization of the gas. The ultraviolet radiation is produced by a light source or by a spark discharge.

  2. Compact advanced extreme-ultraviolet imaging spectrometer for spatiotemporally varying tungsten spectra from fusion plasmas.

    PubMed

    Song, Inwoo; Seon, C R; Hong, Joohwan; An, Y H; Barnsley, R; Guirlet, R; Choe, Wonho

    2017-09-01

    A compact advanced extreme-ultraviolet (EUV) spectrometer operating in the EUV wavelength range of a few nanometers to measure spatially resolved line emissions from tungsten (W) was developed for studying W transport in fusion plasmas. This system consists of two perpendicularly crossed slits-an entrance aperture and a space-resolved slit-inside a chamber operating as a pinhole, which enables the system to obtain a spatial distribution of line emissions. Moreover, a so-called v-shaped slit was devised to manage the aperture size for measuring the spatial resolution of the system caused by the finite width of the pinhole. A back-illuminated charge-coupled device was used as a detector with 2048 × 512 active pixels, each with dimensions of 13.5 × 13.5 μm 2 . After the alignment and installation on Korea superconducting tokamak advanced research, the preliminary results were obtained during the 2016 campaign. Several well-known carbon atomic lines in the 2-7 nm range originating from intrinsic carbon impurities were observed and used for wavelength calibration. Further, the time behavior of their spatial distributions is presented.

  3. Optical characteristics of p-type GaAs-based semiconductors towards applications in photoemission infrared detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lao, Y. F.; Perera, A. G. U., E-mail: uperera@gsu.edu; Center for Nano-Optics

    2016-03-14

    Free-carrier effects in a p-type semiconductor including the intra-valence-band and inter-valence-band optical transitions are primarily responsible for its optical characteristics in infrared. Attention has been paid to the inter-valence-band transitions for the development of internal photoemission (IPE) mid-wave infrared (MWIR) photodetectors. The hole transition from the heavy-hole (HH) band to the spin-orbit split-off (SO) band has demonstrated potential applications for 3–5 μm detection without the need of cooling. However, the forbidden SO-HH transition at the Γ point (corresponding to a transition energy Δ{sub 0}, which is the split-off gap between the HH and SO bands) creates a sharp drop around 3.6 μmmore » in the spectral response of p-type GaAs/AlGaAs detectors. Here, we report a study on the optical characteristics of p-type GaAs-based semiconductors, including compressively strained InGaAs and GaAsSb, and a dilute magnetic semiconductor, GaMnAs. A model-independent fitting algorithm was used to derive the dielectric function from experimental reflection and transmission spectra. Results show that distinct absorption dip at Δ{sub 0} is observable in p-type InGaAs and GaAsSb, while GaMnAs displays enhanced absorption without degradation around Δ{sub 0}. This implies the promise of using GaMnAs to develop MWIR IPE detectors. Discussions on the optical characteristics correlating with the valence-band structure and free-hole effects are presented.« less

  4. Polarity determination of polar and semipolar (112¯2) InN and GaN layers by valence band photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Skuridina, D.; Dinh, D. V.; Lacroix, B.; Ruterana, P.; Hoffmann, M.; Sitar, Z.; Pristovsek, M.; Kneissl, M.; Vogt, P.

    2013-11-01

    We demonstrate that the polarity of polar (0001), (0001¯) and semipolar (112¯2) InN and GaN thin layers can be determined by valence band X-ray photoemission spectroscopy (XPS). The polarity of the layers has been confirmed by wet etching and convergent beam electron diffraction. Unlike these two techniques, XPS is a non-destructive method and unaffected by surface oxidation or roughness. Different intensities of the valence band states in spectra recorded by using AlKα X-ray radiation are observed for N-polar and group-III-polar layers. The highest intensity of the valence band state at ≈3.5 eV for InN and ≈5.2 eV for GaN correlates with the group-III polarity, while the highest intensity at ≈6.7 eV for InN and ≈9.5 eV for GaN correlates with the N-polarity. The difference between the peaks for the group-III- and N-polar orientations was found to be statistically significant at the 0.05 significance level. The polarity of semipolar (112¯2) InN and GaN layers can be determined by recording valence band photoelectrons emitted along the [000 ± 1] direction.

  5. Vacuum Ultraviolet Photoionization of Complex Chemical Systems

    DOE PAGES

    Kostko, Oleg; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2016-02-24

    Tunable vacuum ultraviolet (VUV) radiation coupled to mass spectrometry is applied to the study of complex chemical systems in this paper. The identification of novel reactive intermediates and radicals is revealed in flame, pulsed photolysis, and pyrolysis reactors, leading to the elucidation of spectroscopy, reaction mechanisms, and kinetics. Mass-resolved threshold photoelectron photoion coincidence measurements provide unprecedented access to vibrationally resolved spectra of free radicals present in high-temperature reactors. Photoionization measurements in water clusters, nucleic acid base dimers, and their complexes with water provide signatures of proton transfer in hydrogen-bonded and π-stacked systems. Experimental and theoretical methods to track ion–molecule reactionsmore » and fragmentation pathways in intermolecular and intramolecular hydrogen-bonded systems in sugars and alcohols are described. Photoionization of laser-ablated molecules, clusters, and their reaction products inform thermodynamics and spectroscopy that are relevant to astrochemistry and catalysis. Finally, new directions in coupling VUV radiation to interrogate complex chemical systems are discussed.« less

  6. Ultraviolet spectra of planetary nebulae. X - Physical conditions in the compact planetary nebula Sw St 1

    NASA Technical Reports Server (NTRS)

    Flower, D. R.; Goharji, A.; Cohen, M.

    1984-01-01

    Photoelectric visual and ultraviolet observations of the compact planetary nebula Sw St 1 are analyzed. The electron density, determined from the C III 1907/1909 A line ratio, is N(e) = (1.1 + or - 0.1) x 10 to the 5th/cu cm, consistent with the high emission measure and high critical frequency determined from observations of the thermal radio emission. The C/O abundance ratio in the nebula is found to be N(C)/N(O) = 0.72 + or - 0.1, i.e. the envelope is oxygen-rich, as suggested by the identification of the silicate feature in the 8-13 micron infrared spectrum. Difficulties remain in accurately determining the reddening constant to the nebula and its electron temperature.

  7. Discovery of an Ultraviolet Counterpart to an Ultrafast X-Ray Outflow in the Quasar PG 1211+143

    NASA Astrophysics Data System (ADS)

    Kriss, Gerard A.; Lee, Julia C.; Danehkar, Ashkbiz; Nowak, Michael A.; Fang, Taotao; Hardcastle, Martin J.; Neilsen, Joseph; Young, Andrew

    2018-02-01

    We observed the quasar PG 1211+143 using the Cosmic Origins Spectrograph on the Hubble Space Telescope in 2015 April as part of a joint campaign with the Chandra X-ray Observatory and the Jansky Very Large Array. Our ultraviolet spectra cover the wavelength range 912–2100 Å. We find a broad absorption feature (∼ 1080 {km} {{{s}}}-1) at an observed wavelength of 1240 Å. Interpreting this as H I Lyα, in the rest frame of PG 1211+143 (z = 0.0809), this corresponds to an outflow velocity of ‑16,980 {km} {{{s}}}-1 (outflow redshift {z}{out}∼ -0.0551), matching the moderate ionization X-ray absorption system detected in our Chandra observation and reported previously by Pounds et al. With a minimum H I column density of {log} {N}{{H}{{I}}}> 14.5, and no absorption in other UV resonance lines, this Lyα absorber is consistent with arising in the same ultrafast outflow as the X-ray absorbing gas. The Lyα feature is weak or absent in archival ultraviolet spectra of PG 1211+143, strongly suggesting that this absorption is transient, and intrinsic to PG 1211+143. Such a simultaneous detection in two independent wavebands for the first time gives strong confirmation of the reality of an ultrafast outflow in an active galactic nucleus.

  8. [Near ultraviolet absorption spectral properties of chromophoric dissolved organic matter in the north area of Yellow Sea].

    PubMed

    Wang, Lin; Zhao, Dong-Zhi; Yang, Jian-Hong; Chen, Yan-Long

    2010-12-01

    Chromophoric dissolved organic matter (CDOM) near ultraviolet absorption spectra contains CDOM molecular structure, composition and other important physical and chemical information. Based on the measured data of CDOM absorption coefficient in March 2009 in the north area of Yellow Sea, the present paper analyzed near ultraviolet absorption spectral properties of CDOM. The results showed that due to the impact of near-shore terrigenous input, the composition of CDOM is quite different in the north area of Yellow Sea, and this area is a typical case II water; fitted slope with specific range of spectral band and absorption coefficient at specific band can indicate the relative size of CDOM molecular weight, correlation between spectral slope of the Sg,275-300), Sg,300-350, Sg,350-400 and Sg,250-275 and the relative size of CDOM molecular weight indicative parameter M increases in turn and the highest is up to 0.95. Correlation between a(g)(lambda) and M value increases gradually with the increase in wavelength, and the highest is up to 0.92 at 400 nm; being correlated or not between spectral slope and absorption coefficient is decided by the fitting-band wavelength range for the spectra slope and the wavelength for absorption coefficient. Correlation between Sg,275-300 and a(g)(400) is the largest, up to 0.87.

  9. X-ray photoemission analysis of clean and carbon monoxide-chemisorbed platinum(111) stepped surfaces using a curved crystal

    DOE PAGES

    Walter, Andrew L.; Schiller, Frederik; Corso, Martina; ...

    2015-11-12

    Surface chemistry and catalysis studies could significantly gain from the systematic variation of surface active sites, tested under the very same conditions. Curved crystals are excellent platforms to perform such systematics, which may in turn allow to better resolve fundamental properties and reveal new phenomena. This is demonstrated here for the carbon monoxide/platinum system. We curve a platinum crystal around the high-symmetry (111) direction and carry out photoemission scans on top. This renders the spatial core-level imaging of carbon monoxide adsorbed on a 'tunable' vicinal surface, allowing a straightforward visualization of the rich chemisorption phenomenology at steps and terraces. Throughmore » such photoemission images we probe a characteristic elastic strain variation at stepped surfaces, and unveil subtle stress-release effects on clean and covered vicinal surfaces. Lastly, these results offer the prospect of applying the curved surface approach to rationally investigate the chemical activity of surfaces under real pressure conditions.« less

  10. X-ray photoemission analysis of clean and carbon monoxide-chemisorbed platinum(111) stepped surfaces using a curved crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, Andrew L.; Schiller, Frederik; Corso, Martina

    Surface chemistry and catalysis studies could significantly gain from the systematic variation of surface active sites, tested under the very same conditions. Curved crystals are excellent platforms to perform such systematics, which may in turn allow to better resolve fundamental properties and reveal new phenomena. This is demonstrated here for the carbon monoxide/platinum system. We curve a platinum crystal around the high-symmetry (111) direction and carry out photoemission scans on top. This renders the spatial core-level imaging of carbon monoxide adsorbed on a 'tunable' vicinal surface, allowing a straightforward visualization of the rich chemisorption phenomenology at steps and terraces. Throughmore » such photoemission images we probe a characteristic elastic strain variation at stepped surfaces, and unveil subtle stress-release effects on clean and covered vicinal surfaces. Lastly, these results offer the prospect of applying the curved surface approach to rationally investigate the chemical activity of surfaces under real pressure conditions.« less

  11. High-resolution, far-ultraviolet study of Beta Draconis (G2 Ib-II) - Transition region structure and energy balance

    NASA Technical Reports Server (NTRS)

    Brown, A.; Jordan, C.; Stencel, R. E.; Linsky, J. L.; Ayres, T. R.

    1984-01-01

    High-resolution far ultraviolet spectra of the star Beta Draconis have been obtained with the IUE satellite. The observations and emission line data from the spectra are presented, the interpretation of the emission line widths and shifts is discussed, and the implications are given in terms of atmospheric properties. The emission measure distribution is derived, and density diagnostics involving both line ratios and line opacity arguments is investigated. The methods for calculating spherically symmetric models of the atmospheric structure are outlined, and several such models are presented. The extension of these models to log T(e) greater than 5.3 using the observed X-ray flux is addressed, the energy balance of an 'optimum' model is investigated, and possible models of energy transport and deposition are discussed.

  12. Ultraviolet spectroscopy of symbiotic nova V1016 Cyg with IUE and HST

    NASA Astrophysics Data System (ADS)

    Sanad, M. R.

    2017-04-01

    We present International Ultraviolet Explorer (IUE) & Hubble Space Telescope Space Telescope Imaging Spectrograph (HST STIS) observations of the symbiotic nova V1016 Cyg through the period 1978 - 2000. Four spectra at different times revealing the changes in line fluxes are presented. The outflow velocity of the emitting region was calculated to be 900-2000 km s-1 (FWHM). The reddening of V1016 Cyg was determined from 2200 Å absorption feature to be E (B-V) = 0.36 ± 0.02. We calculated the fluxes of CIV 1550 Å & CIII] 1909 Å emission lines produced in a stellar wind from the hot white dwarf. We determined the average wind mass loss rate to be ˜2.3 × 10-6 M⊙, the average temperature of the emitting region to be ˜1.3 × 105 K, and an average ultraviolet luminosity to be ˜2 × 1035 erg s-1. The results show that there are modulations of line fluxes with time. We attributed these spectral modulations to the changes of density and temperature in the emitting region as a result of the variable stellar wind.

  13. An ultrafast angle-resolved photoemission apparatus for measuring complex materials

    NASA Astrophysics Data System (ADS)

    Smallwood, Christopher L.; Jozwiak, Christopher; Zhang, Wentao; Lanzara, Alessandra

    2012-12-01

    We present technical specifications for a high resolution time- and angle-resolved photoemission spectroscopy setup based on a hemispherical electron analyzer and cavity-dumped solid state Ti:sapphire laser used to generate pump and probe beams, respectively, at 1.48 and 5.93 eV. The pulse repetition rate can be tuned from 209 Hz to 54.3 MHz. Under typical operating settings the system has an overall energy resolution of 23 meV, an overall momentum resolution of 0.003 Å-1, and an overall time resolution of 310 fs. We illustrate the system capabilities with representative data on the cuprate superconductor Bi2Sr2CaCu2O8+δ. The descriptions and analyses presented here will inform new developments in ultrafast electron spectroscopy.

  14. Widespread spin polarization effects in photoemission from topological insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jozwiak, C.; Chen, Y. L.; Fedorov, A. V.

    2011-06-22

    High-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES) was performed on the three-dimensional topological insulator Bi{sub 2}Se{sub 3} using a recently developed high-efficiency spectrometer. The topological surface state's helical spin structure is observed, in agreement with theoretical prediction. Spin textures of both chiralities, at energies above and below the Dirac point, are observed, and the spin structure is found to persist at room temperature. The measurements reveal additional unexpected spin polarization effects, which also originate from the spin-orbit interaction, but are well differentiated from topological physics by contrasting momentum and photon energy and polarization dependencies. These observations demonstrate significant deviations ofmore » photoelectron and quasiparticle spin polarizations. Our findings illustrate the inherent complexity of spin-resolved ARPES and demonstrate key considerations for interpreting experimental results.« less

  15. Photoelectron spectroscopic studies of ultra-thin CuPc layers on a Si(111)-(√3 × √3)R30°-B surface

    NASA Astrophysics Data System (ADS)

    Menzli, S.; Laribi, A.; Mrezguia, H.; Arbi, I.; Akremi, A.; Chefi, C.; Chérioux, F.; Palmino, F.

    2016-12-01

    The adsorption of copper phthalocyanine (CuPc) molecules on Si(111)-(√3 × √3)R30°-B surface is investigated at room temperature under ultra-high vacuum. Crystallographic, chemical and electronic properties of the interface are investigated by low energy electron diffraction (LEED), ultraviolet and X-ray photoemission spectroscopies (UPS, XPS) and X-ray photoemission diffraction (XPD). LEED and XPD results shed light on the growth mechanism of CuPc on this substrate. At one monolayer coverage the growth mode was characterized by the formation of crystalline 3D nanoislands. The molecular packing deduced from this study appears very close to the one of the bulk CuPc α phase. The 3D islands are formed by molecules aligned in a standing manner. XPS core level spectra of the substrate reveal that there is no discernible chemical interaction between molecules and substrate. However there is charge transfer from molecules to the substrate. During the growth, the work function (WF) was found to decrease from 4.50 eV for the clean substrate to 3.70 eV for the highest coverage (30 monolayers). Within a thickness of two monolayers deposition, an interface dipole of 0.50 eV was found. A substrate band bending of 0.25 eV was deduced over all the range of exposure. UPS spectra indicate the existence of a band bending of the highest occupied molecular orbital (HOMO) of 0.30 eV. The changes in the work function, in the Fermi level position and in the onset of the molecular HOMO state have been used to determine the energy level alignment at the interface.

  16. Tuning extreme ultraviolet emission for optimum coupling with multilayer mirrors for future lithography through control of ionic charge states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohashi, Hayato, E-mail: ohashi@cc.utsunomiya-u.ac.jp; Higashiguchi, Takeshi, E-mail: higashi@cc.utsunomiya-u.ac.jp; Suzuki, Yuhei

    2014-01-21

    We report on the identification of the optimum plasma conditions for a laser-produced plasma source for efficient coupling with multilayer mirrors at 6.x nm for beyond extreme ultraviolet lithography. A small shift to lower energies of the peak emission for Nd:YAG laser-produced gadolinium plasmas was observed with increasing laser power density. Charge-defined emission spectra were observed in electron beam ion trap (EBIT) studies and the charge states responsible identified by use of the flexible atomic code (FAC). The EBIT spectra displayed a larger systematic shift of the peak wavelength of intense emission at 6.x nm to longer wavelengths with increasingmore » ionic charge. This combination of spectra enabled the key ion stage to be confirmed as Gd{sup 18+}, over a range of laser power densities, with contributions from Gd{sup 17+} and Gd{sup 19+} responsible for the slight shift to longer wavelengths in the laser-plasma spectra. The FAC calculation also identified the origin of observed out-of-band emission and the charge states responsible.« less

  17. Inhibition of seagrass photosynthesis by ultraviolet-B radiation.

    PubMed

    Trocine, R P; Rice, J D; Wells, G N

    1981-07-01

    Effects of ultraviolet-B radiation on the photosynthesis of seagrasses (Halophila engelmanni Aschers, Halodule wrightii Aschers, and Syringodium filiforme Kütz) were examined. The intrinsic tolerance of each seagrass to ultraviolet-B, the presence and effectiveness of photorepair mechanisms to ultraviolet-B-induced photosynthetic inhibition, and the role of epiphytic growth as a shield from ultraviolet-B were investigated.Halodule was found to possess the greatest photosynthetic tolerance for ultraviolet-B. Photosynthesis in Syringodium was slightly more sensitive to ultraviolet-B while Halophila showed relatively little photosynthetic tolerance. Evidence for a photorepair mechanism was found only in Halodule. This mechanism effectively attenuated photosynthetic inhibition induced by ultraviolet-B dose rates and dosages in excess of natural conditions. Syringodium appeared to rely primarily on a thick epidermal cell layer to reduce photosynthetic damage. Halophila seemed to have no morphological or photorepair capabilities to deal with ultraviolet-B. This species appeared to rely on epiphytic and detrital shielding and the shade provided by other seagrasses to reduce ultraviolet-B irradiation to tolerable levels. The presence of epiphytes on leaf surfaces was found to reduce the extent of photosynthetic inhibition from ultraviolet-B exposure in all species.Observations obtained in this study seem to suggest the possibility of anthocyanin and/or other flavonoid synthesis as an adaptation to long term ultraviolet-B irradiation by these species. In addition, Halophila appears to obtain an increased photosynthetic tolerance to ultraviolet-B as an indirect benefit of chloroplast clumping to avoid photo-oxidation by intense levels of photosynthetically active radiation.

  18. Ultraviolet laser effects on the cornea

    NASA Astrophysics Data System (ADS)

    Zuclich, Joseph A.

    1990-07-01

    Ultraviolet radiation in the ambient environment or from artificial sources may pose both acute and chronic hazards to the skin and the ocular tissues. In general terrestrial conditions have evolved such that there are only narrow safety margins between ambient UV levels and exposure levels harmful to the human. Obvious examples of acute consequences ofUV overexposure are sunburn and snowblindness as well as analogous conditions induced by artificial sources such as the welder''s arc mercury vapor lamps and UV-emitting lasers. Further chronic UV exposure is strongly implicated as a causative agent in certain types of cataract and skin cancer. This presentation will summarize a number of specific cases where UV radiation affected the primate cornea. Data presented will include the action spectra for far- and near-UV induced ocular damage the pulsewidth and total energy dependencies of ocular thresholds studies of cumulative effects of repeated UV exposures and quantitative determinations of tissue repair or recovery rates. Depending on the exposure parameters utilized photochemical thermal or photoablative damage mechanisms may prevail. 1.

  19. Inhibition of seagrass photosynthesis by ultraviolet-B radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trocine, R.P.; Rice, J.D.; Wells, G.N.

    1981-07-01

    Effects of ultraviolet-B radiation on the photosynthesis of seagrasses (Halophila engelmanni Aschers, Halodule wrightii Aschers, and Syringodium filiforme (Kuetz) were examined. The intrinsic tolerance of each seagrass to ultraviolet-B, the presence and effectiveness of photorepair mechanisms to ultraviolet-B-induced photosynthetic inhibition, and the role of epiphytic growth as a shield from ultraviolet-B were investigated. Halodule was found to possess the greatest photosynthetic tolerance for ultraviolet-B. Photosynthesis in Syringodium was slightly more sensitive to ultraviolet-B while Halophila showed relatively little photosynthetic tolerance. Evidence for a photorepair mechanism was found only in Halodule. Syringodium appeared to rely primarily on a thick epidermal cellmore » layer to reduce photosynthetic damage. Halophila seemed to have no morphological or photorepair capabilities to deal with ultraviolet-B. This species appeared to rely on epiphytic and detrital shielding and the shade provided by other seagrasses to reduce ultraviolet-B irradiation to tolerable levels. The presence of epiphytes on leaf surfaces was found to reduce the extent of photosynthetic inhibition from ultraviolet-B exposure in all species. Halophila appears to obtain an increased photosynthetic tolerance to ultraviolet-B as an indirect benefit of chloroplast clumping to avoid photo-oxidation by intense levels of photosynthetically active radiation.« less

  20. Transition from the adiabatic to the sudden limit in core-electron photoemission

    NASA Astrophysics Data System (ADS)

    Hedin, Lars; Michiels, John; Inglesfield, John

    1998-12-01

    in the predictions for the photoemission spectra are found small. We confirm the finding by Langreth that the BS limit is reached only in the keV range. At no photon energy are the plasmon satellites close to being either purely intrinsic or extrinsic. For photoelectron energies larger than a few times the plasmon energy, a semiclassical approximation gives results very close to our QM model. At lower energies the QM model gives a large peak in the ratio between the total intensity in the first plasmon satellite and the main peak, which is not reproduced by the SC expression. This maximum has a simple physical explanation in terms of different dampings of the electrons in the QP peak and in the satellite. For the MND peak Jk(ω) and Ac(ɛk-ω) agree well for a range of a few eV, and experimental data can thus be used to extract the MND singularity index. For an embedded atom at a small distance from the surface there are, however, substantial deviations from the large-distance limit. Our model is simple enough to perform quantitative calculations allowing for band-structure and surface details.