Sample records for ultraviolet spectral signatures

  1. Synchrotron and Synchrotron Self-Compton Spectral Signatures and Blazar Emission Models

    NASA Technical Reports Server (NTRS)

    Chiang, James; Boettcher, Markus; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We find that energy losses due to synchrotron self-Compton (BBC) emission in Blazar jets can produce distinctive signatures in the time-averaged synchrotron and SSC spectra of these objects. For a fairly broad range of particle injection distributions, SSC-loss-dominated synchrotron emission exhibits a spectral dependence Fv approximately v (exp -3/2). The presence or absence of this dependence in the optical and ultraviolet spectra of flat-spectrum radio quasars such as PC 279 and in the soft X-ray spectra of high-frequency BL Lac objects such as Mark 501 gives a robust measure of the importance of SSC losses. Furthermore, for partially cooled particle distributions, spectral breaks of varying sizes can appear in the synchrotron and SSC spectra and will be related to the spectral indices of the emission below the break. These spectral signatures place constraints on the size scale and the nonthermal particle content of the emitting plasma, as well as the observer orientation relative to the jet axis.

  2. Detection of latent fingerprints by ultraviolet spectral imaging

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Xu, Xiaojing; Wang, Guiqiang

    2013-12-01

    Spectral imaging technology research is becoming more popular in the field of forensic science. Ultraviolet spectral imaging technology is an especial part of the full spectrum of imaging technology. This paper finished the experiment contents of the ultraviolet spectrum imaging method and image acquisition system based on ultraviolet spectral imaging technology. Ultraviolet spectral imaging experiments explores a wide variety of ultraviolet reflectance spectra of the object material curve and its ultraviolet spectrum of imaging modalities, can not only gives a reference for choosing ultraviolet wavelength to show the object surface potential traces of substances, but also gives important data for the ultraviolet spectrum of imaging technology development.

  3. The spectral signature of cloud spatial structure in shortwave irradiance

    PubMed Central

    Song, Shi; Schmidt, K. Sebastian; Pilewskie, Peter; King, Michael D.; Heidinger, Andrew K.; Walther, Andi; Iwabuchi, Hironobu; Wind, Gala; Coddington, Odele M.

    2017-01-01

    In this paper, we used cloud imagery from a NASA field experiment in conjunction with three-dimensional radiative transfer calculations to show that cloud spatial structure manifests itself as a spectral signature in shortwave irradiance fields – specifically in transmittance and net horizontal photon transport in the visible and near-ultraviolet wavelength range. We found a robust correlation between the magnitude of net horizontal photon transport (H) and its spectral dependence (slope), which is scale-invariant and holds for the entire pixel population of a domain. This was surprising at first given the large degree of spatial inhomogeneity. We prove that the underlying physical mechanism for this phenomenon is molecular scattering in conjunction with cloud spatial structure. On this basis, we developed a simple parameterization through a single parameter ε, which quantifies the characteristic spectral signature of spatial inhomogeneities. In the case we studied, neglecting net horizontal photon transport leads to a local transmittance bias of ±12–19 %, even at the relatively coarse spatial resolution of 20 km. Since three-dimensional effects depend on the spatial context of a given pixel in a nontrivial way, the spectral dimension of this problem may emerge as the starting point for future bias corrections. PMID:28824698

  4. The spectral signature of cloud spatial structure in shortwave irradiance.

    PubMed

    Song, Shi; Schmidt, K Sebastian; Pilewskie, Peter; King, Michael D; Heidinger, Andrew K; Walther, Andi; Iwabuchi, Hironobu; Wind, Gala; Coddington, Odele M

    2016-11-08

    In this paper, we used cloud imagery from a NASA field experiment in conjunction with three-dimensional radiative transfer calculations to show that cloud spatial structure manifests itself as a spectral signature in shortwave irradiance fields - specifically in transmittance and net horizontal photon transport in the visible and near-ultraviolet wavelength range. We found a robust correlation between the magnitude of net horizontal photon transport ( H ) and its spectral dependence (slope), which is scale-invariant and holds for the entire pixel population of a domain. This was surprising at first given the large degree of spatial inhomogeneity. We prove that the underlying physical mechanism for this phenomenon is molecular scattering in conjunction with cloud spatial structure. On this basis, we developed a simple parameterization through a single parameter ε , which quantifies the characteristic spectral signature of spatial inhomogeneities. In the case we studied, neglecting net horizontal photon transport leads to a local transmittance bias of ±12-19 %, even at the relatively coarse spatial resolution of 20 km. Since three-dimensional effects depend on the spatial context of a given pixel in a nontrivial way, the spectral dimension of this problem may emerge as the starting point for future bias corrections.

  5. Quality of signatures. [spectral signatures of winter wheat grown in Texas

    NASA Technical Reports Server (NTRS)

    Kan, E. P. F.

    1974-01-01

    Three conclusions are drawn on the usability, inherent variations, and noise aspects of the spectral signatures processed from data collected by the Field Signature Acquisition System (FSAS). Conclusions are based on the spectral data collected from winter wheat of the 1972/73 season, grown at Texas A and M University, College Station, Texas.

  6. Spectral signature selection for mapping unvegetated soils

    NASA Technical Reports Server (NTRS)

    May, G. A.; Petersen, G. W.

    1975-01-01

    Airborne multispectral scanner data covering the wavelength interval from 0.40-2.60 microns were collected at an altitude of 1000 m above the terrain in southeastern Pennsylvania. Uniform training areas were selected within three sites from this flightline. Soil samples were collected from each site and a procedure developed to allow assignment of scan line and element number from the multispectral scanner data to each sampling location. These soil samples were analyzed on a spectrophotometer and laboratory spectral signatures were derived. After correcting for solar radiation and atmospheric attenuation, the laboratory signatures were compared to the spectral signatures derived from these same soils using multispectral scanner data. Both signatures were used in supervised and unsupervised classification routines. Computer-generated maps using the laboratory and multispectral scanner derived signatures resulted in maps that were similar to maps resulting from field surveys. Approximately 90% agreement was obtained between classification maps produced using multispectral scanner derived signatures and laboratory derived signatures.

  7. Spectral signature verification using statistical analysis and text mining

    NASA Astrophysics Data System (ADS)

    DeCoster, Mallory E.; Firpi, Alexe H.; Jacobs, Samantha K.; Cone, Shelli R.; Tzeng, Nigel H.; Rodriguez, Benjamin M.

    2016-05-01

    In the spectral science community, numerous spectral signatures are stored in databases representative of many sample materials collected from a variety of spectrometers and spectroscopists. Due to the variety and variability of the spectra that comprise many spectral databases, it is necessary to establish a metric for validating the quality of spectral signatures. This has been an area of great discussion and debate in the spectral science community. This paper discusses a method that independently validates two different aspects of a spectral signature to arrive at a final qualitative assessment; the textual meta-data and numerical spectral data. Results associated with the spectral data stored in the Signature Database1 (SigDB) are proposed. The numerical data comprising a sample material's spectrum is validated based on statistical properties derived from an ideal population set. The quality of the test spectrum is ranked based on a spectral angle mapper (SAM) comparison to the mean spectrum derived from the population set. Additionally, the contextual data of a test spectrum is qualitatively analyzed using lexical analysis text mining. This technique analyzes to understand the syntax of the meta-data to provide local learning patterns and trends within the spectral data, indicative of the test spectrum's quality. Text mining applications have successfully been implemented for security2 (text encryption/decryption), biomedical3 , and marketing4 applications. The text mining lexical analysis algorithm is trained on the meta-data patterns of a subset of high and low quality spectra, in order to have a model to apply to the entire SigDB data set. The statistical and textual methods combine to assess the quality of a test spectrum existing in a database without the need of an expert user. This method has been compared to other validation methods accepted by the spectral science community, and has provided promising results when a baseline spectral signature is

  8. Determination of spectral signatures of substances in natural waters

    NASA Technical Reports Server (NTRS)

    Klemas, V.; Philpot, W. D.; Davis, G.

    1978-01-01

    Optical remote sensing of water pollution offers the possibility of fast, large scale coverage at a relatively low cost. The possibility of using the spectral characteristics of the upwelling light from water for the purpose of ocean water quality monitoring was explained. The work was broken into several broad tasks as follows: (1) definition of a remotely measured spectral signature of water, (2) collection of field data and testing of the signature analysis, and (3) the possibility of using LANDSAT data for the identification of substances in water. An attempt to extract spectral signatures of acid waste and sediment was successful.

  9. Far-ultraviolet spectral changes of titanium dioxide with gold nanoparticles by ultraviolet and visible light

    NASA Astrophysics Data System (ADS)

    Tanabe, Ichiro; Kurawaki, Yuji

    2018-05-01

    Attenuated total reflectance spectra including the far-ultraviolet (FUV, ≤ 200 nm) region of titanium dioxide (TiO2) with and without gold (Au) nanoparticles were measured. A newly developed external light-irradiation system enabled to observe spectral changes of TiO2 with Au nanoparticles upon light irradiations. Absorption in the FUV region decreased and increased by the irradiation with ultraviolet and visible light, respectively. These spectral changes may reflect photo-induced electron transfer from TiO2 to Au nanoparticles under ultraviolet light and from Au nanoparticles to TiO2 under visible light, respectively.

  10. Far-ultraviolet spectral changes of titanium dioxide with gold nanoparticles by ultraviolet and visible light.

    PubMed

    Tanabe, Ichiro; Kurawaki, Yuji

    2018-05-15

    Attenuated total reflectance spectra including the far-ultraviolet (FUV, ≤200nm) region of titanium dioxide (TiO 2 ) with and without gold (Au) nanoparticles were measured. A newly developed external light-irradiation system enabled to observe spectral changes of TiO 2 with Au nanoparticles upon light irradiations. Absorption in the FUV region decreased and increased by the irradiation with ultraviolet and visible light, respectively. These spectral changes may reflect photo-induced electron transfer from TiO 2 to Au nanoparticles under ultraviolet light and from Au nanoparticles to TiO 2 under visible light, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The Copernicus ultraviolet spectral atlas of Sirius

    NASA Technical Reports Server (NTRS)

    Rogerson, John B., Jr.

    1987-01-01

    A near-ultraviolet spectral atlas for the A1 V star Alpha CMa (Sirius) has been prepared from data taken by the Princeton spectrometer aboard the Copernicus satellite. The spectral region from 1649 to 3170 A has been scanned with a resolution of 0.1 A. The atlas is presented in graphs, and line identifications for the absorption features have been tabulated.

  12. The Copernicus ultraviolet spectral atlas of Vega

    NASA Technical Reports Server (NTRS)

    Rogerson, John B., Jr.

    1989-01-01

    A near-ultraviolet spectral atlas for the A0 V star Alpha Lyr (Vega) has been prepared from data taken by the Princeton spectrometer aboard the Copernicus satellite. The spectral region from 2000 to 3187 A has been scanned with a resolution of 0.1 A. The atlas is presented in graphs with a normalized continuum, and an identification table for the absorption features has been prepared.

  13. Littoral assessment of mine burial signatures (LAMBS): buried landmine/background spectral-signature analyses

    NASA Astrophysics Data System (ADS)

    Kenton, Arthur C.; Geci, Duane M.; Ray, Kristofer J.; Thomas, Clayton M.; Salisbury, John W.; Mars, John C.; Crowley, James K.; Witherspoon, Ned H.; Holloway, John H., Jr.

    2004-09-01

    The objective of the Office of Naval Research (ONR) Rapid Overt Reconnaissance (ROR) program and the Airborne Littoral Reconnaissance Technologies (ALRT) project's LAMBS effort is to determine if electro-optical spectral discriminants exist that are useful for the detection of land mines in littoral regions. Statistically significant buried mine overburden and background signature data were collected over a wide spectral range (0.35 to 14 μm) to identify robust spectral features that might serve as discriminants for new airborne sensor concepts. LAMBS has expanded previously collected databases to littoral areas - primarily dry and wet sandy soils - where tidal, surf, and wind conditions can severely modify spectral signatures. At AeroSense 2003, we reported completion of three buried mine collections at an inland bay, Atlantic and Gulf of Mexico beach sites. We now report LAMBS spectral database analyses results using metrics which characterize the detection performance of general types of spectral detection algorithms. These metrics include mean contrast, spectral signal-to-clutter, covariance, information content, and spectral matched filter analyses. Detection performance of the buried land mines was analyzed with regard to burial age, background type, and environmental conditions. These analyses considered features observed due to particle size differences, surface roughness, surface moisture, and compositional differences.

  14. Spectral signature variations, atmospheric scintillations and sensor parameters

    NASA Astrophysics Data System (ADS)

    Berger, Henry; Neander, John

    2002-11-01

    The spectral signature of a material is the curve of power density vs. wavelength (λ) obtained from measurements of reflected light. It is used, among other things, for the identification of targets in remotely acquired images. Sometimes, however, unpredictable distortions may prevent this. In only a few cases have such distortions been explained. We propose some reasonable arguments that in a significant number of circumstances, atmospheric turbulence may contribute to such spectral signature distortion. We propose, based on this model, what appears to be one method that could combat such distortion.

  15. Littoral Assessment of Mine Burial Signatures (LAMBS) buried land mine/background spectral signature analyses

    USGS Publications Warehouse

    Kenton, A.C.; Geci, D.M.; Ray, K.J.; Thomas, C.M.; Salisbury, J.W.; Mars, J.C.; Crowley, J.K.; Witherspoon, N.H.; Holloway, J.H.; Harmon R.S.Broach J.T.Holloway, Jr. J.H.

    2004-01-01

    The objective of the Office of Naval Research (ONR) Rapid Overt Reconnaissance (ROR) program and the Airborne Littoral Reconnaissance Technologies (ALRT) project's LAMBS effort is to determine if electro-optical spectral discriminants exist that are useful for the detection of land mines in littoral regions. Statistically significant buried mine overburden and background signature data were collected over a wide spectral range (0.35 to 14 ??m) to identify robust spectral features that might serve as discriminants for new airborne sensor concepts. LAMBS has expanded previously collected databases to littoral areas - primarily dry and wet sandy soils - where tidal, surf, and wind conditions can severely modify spectral signatures. At AeroSense 2003, we reported completion of three buried mine collections at an inland bay, Atlantic and Gulf of Mexico beach sites.1 We now report LAMBS spectral database analyses results using metrics which characterize the detection performance of general types of spectral detection algorithms. These metrics include mean contrast, spectral signal-to-clutter, covariance, information content, and spectral matched filter analyses. Detection performance of the buried land mines was analyzed with regard to burial age, background type, and environmental conditions. These analyses considered features observed due to particle size differences, surface roughness, surface moisture, and compositional differences.

  16. Raman spectral signatures as conformational probes of gas phase flexible molecules

    NASA Astrophysics Data System (ADS)

    Golan, Amir; Mayorkas, Nitzan; Rosenwaks, Salman; Bar, Ilana

    2009-07-01

    A novel application of ionization-loss stimulated Raman spectroscopy (ILSRS) for monitoring the spectral features of four conformers of a gas phase flexible molecule is reported. The Raman spectral signatures of four conformers of 2-phenylethylamine are well matched by the results of density functional theory calculations, showing bands uniquely identifying the structures. The measurement of spectral signatures by ILSRS in an extended spectral range, with a conventional laser source, is instrumental in facilitating the unraveling of intra- and intermolecular interactions that are significant in biological structure and activity.

  17. Spectral signatures for RDX-based explosives in the 3 micron region

    NASA Astrophysics Data System (ADS)

    Osborn, Tabetha; Kaimal, Sindhu; Reeve, Scott W.; Burns, William

    2008-04-01

    Explosive compounds such as RDX, and HMX present significant challenges to optically based sensors. This difficulty is due in part to the low vapor pressures these compounds possess. One approach for sensing explosives that circumvents the low explosive vapor pressure problem, involves focusing on the trace amounts of relatively high vapor pressure impurities that will be present in the vapor signature. In order to effectively detect these volatile impurities, the spectral signature databases must be readily available. One of our goals therefore, is the generation of a database of high resolution spectral signatures for these volatile organic impurities. Some rather formidable spectroscopic measurement challenges have been encountered while working to extend the spectral signature effort to the 3 micron region. Here we will outline progress to date, with a focus on the volatile organic compounds formaldehyde, acetaldehyde, nitromethane, acetone, isobutene, and cyclohexanone.

  18. Preliminary measurements of spectral signatures of tropical and temperate plants in the thermal infrared

    NASA Technical Reports Server (NTRS)

    Salisbury, John W.; Milton, N. M.

    1987-01-01

    Spectral reflectance measurements of seven tropical species and six deciduous species were carried out in thermal infrared to establish the species-dependent spectral characteristics and to investigate the effect on spectral signatures of environmental variables, such as leaf maturity, drought, and metal stress. Seasonal variations of spectral signatures occurred between spring and summer leaves, but such variations were minimal during summer and early fall. Overall reflectance of senescent leaves was higher than that of young leaves, as was the reflectance of leaves from trees growing in metal-enriched soils, as compared with leaves from the control area. However, the characteristic spectral features were not changed in either case. It was also found that water stress did not have any effect on the infrared signatures: trees grown during a drought season maintained their characteristic spectral signatures.

  19. Infrared Spectral Signatures for Io's Dark and Green Spots

    NASA Technical Reports Server (NTRS)

    Granahan, J. C.; Fanale, F. P.; Carlson, R.; Smythe, W. D.

    2001-01-01

    This spectral study of Io identifies the infrared components of the visible spectral units (green and dark) as identified by Galileo. The green units possess sulfur dioxide and the dark units are associated with infrared thermal signatures. Additional information is contained in the original extended abstract.

  20. Ultraviolet Spectral Irradiance Scale Comparison: 210 nm to 300 nm

    PubMed Central

    Thompson, Ambler; Early, Edward A.; O’Brian, Thomas R.

    1998-01-01

    Comparison of the irradiances from a number of ultraviolet spectral irradiance standards, based on different physical principles, showed agreement to within their combined standard uncertainties as assigned to them by NIST. The wavelength region of the spectral irradiance comparison was from 210 nm to 300 nm. The spectral irradiance sources were: an electron storage ring, 1000 W quartz-halogen lamps, deuterium arc lamps, and a windowless argon miniarc. PMID:28009378

  1. Remotely sensed and laboratory spectral signatures of an ocean-dumped acid waste

    NASA Technical Reports Server (NTRS)

    Lewis, B. W.; Collins, V. G.

    1977-01-01

    An ocean-dumped acid waste plume was studied by using a rapid scanning spectrometer to remotely measure ocean radiance from a helicopter. The results of these studies are presented and compared with results from sea truth samples and laboratory experiments. An ocean spectral reflectance signature and a laboratory spectral transmission signature were established for the iron-acid waste pollutant. The spectrally and chemically significant component of the acid waste pollutant was determined to be ferric iron.

  2. Science of Land Target Spectral Signatures

    DTIC Science & Technology

    2013-04-03

    F. Meriaudeau, T. Downey , A. Wig , A. Passian, M. Buncick, T.L. Ferrell, Fiber optic sensor based on gold island plasmon resonance , Sensors and...processing, detection algorithms, sensor fusion, spectral signature modeling Dr. J. Michael Cathcart Georgia Tech Research Corporation Office of...target detection and sensor fusion. The phenomenology research continued to focus on spectroscopic soil measurements, optical property analyses, field

  3. Raman Spectral Signatures as Conformational Probes of Biomolecules

    NASA Astrophysics Data System (ADS)

    Golan, Amir; Mayorkas, Nitzan; Rosenwaks, Salman; Bar, Ilana

    2009-06-01

    A first application of ionization-loss stimulated Raman spectroscopy (ILSRS) for monitoring the spectral features of four conformers of a gas phase neurotransmitter (2-phenylethylamine) is reported. The Raman spectra of the conformers show bands that uniquely identify the conformational structure of the molecule and are well matched by density functional theory calculations. The measurement of spectral signatures by ILSRS in an extended spectral range, with a relatively convenient laser source, is extremely important, allowing enhanced accessibility to intra- and inter-molecular forces, which are significant in biological structure and activity.

  4. Raman Spectral Signatures as Conformational Probes of Biomolecules

    NASA Astrophysics Data System (ADS)

    Bar, Ilana; Golan, Amir; Mayorkas, Nitzan; Rosenwaks, Salman

    2009-03-01

    A first application of ionization-loss stimulated Raman spectroscopy (ILSRS) monitoring the spectral features of four conformers of a gas phase neurotransmitter (2-phenylethylamine) is reported. The Raman spectra of the conformers show bands that uniquely identify the conformational structure of the molecule and are well matched by density functional theory calculations. The measurement of spectral signatures by ILSRS in an extended spectral range, with a relatively convenient laser source, is extremely important, allowing enhanced accessibility to intra- and inter-molecular forces, which are significant in biological structure and activity.

  5. Relation of laboratory and remotely sensed spectral signatures of ocean-dumped acid waste

    NASA Technical Reports Server (NTRS)

    Lewis, B. W.

    1978-01-01

    Results of laboratory transmission and remotely sensed ocean upwelled spectral signatures of acid waste ocean water solutions are presented. The studies were performed to establish ocean-dumped acid waste spectral signatures and to relate them to chemical and physical interactions occurring in the dump plume. The remotely sensed field measurements and the laboratory measurements were made using the same rapid-scanning spectrometer viewing a dump plume and with actual acid waste and ocean water samples, respectively. Laboratory studies showed that the signatures were produced by soluble ferric iron being precipitated in situ as ferric hydroxide upon dilution with ocean water. Sea-truth water samples were taken and analyzed for pertinent major components of the acid waste. Relationships were developed between the field and laboratory data both for spectral signatures and color changes with concentration. The relationships allow for the estimation of concentration of the indicator iron from remotely sensed spectral data and the laboratory transmission concentration data without sea-truth samples.

  6. Hyperspectral imagery for observing spectral signature change in Aspergillus flavus

    NASA Astrophysics Data System (ADS)

    DiCrispino, Kevin; Yao, Haibo; Hruska, Zuzana; Brabham, Kori; Lewis, David; Beach, Jim; Brown, Robert L.; Cleveland, Thomas E.

    2005-11-01

    Aflatoxin contaminated corn is dangerous for domestic animals when used as feed and cause liver cancer when consumed by human beings. Therefore, the ability to detect A. flavus and its toxic metabolite, aflatoxin, is important. The objective of this study is to measure A. flavus growth using hyperspectral technology and develop spectral signatures for A. flavus. Based on the research group's previous experiments using hyperspectral imaging techniques, it has been confirmed that the spectral signature of A. flavus is unique and readily identifiable against any background or surrounding surface and among other fungal strains. This study focused on observing changes in the A. flavus spectral signature over an eight-day growth period. The study used a visible-near-infrared hyperspectral image system for data acquisition. This image system uses focal plane pushbroom scanning for high spatial and high spectral resolution imaging. Procedures previously developed by the research group were used for image calibration and image processing. The results showed that while A. flavus gradually progressed along the experiment timeline, the day-to-day surface reflectance of A. flavus displayed significant difference in discreet regions of the wavelength spectrum. External disturbance due to environmental changes also altered the growth and subsequently changed the reflectance patterns of A. flavus.

  7. The Copernicus ultraviolet spectral atlas Tau Scorpii

    NASA Technical Reports Server (NTRS)

    Rogerson, J. B., Jr.; Upson, W. L., II

    1977-01-01

    An ultraviolet spectral atlas was presented for the B0 V star, Tau Scorpii. It was scanned from 949 to 1560 A by the Princeton spectrometer aboard the Copernicus satellite. From 949 to 1420 A the observations have a nominal resolution of 0.05 A. At the longer wavelengths, the resolution was 0.1 A. The atlas was presented in both tables and graphs.

  8. Water quality parameter measurement using spectral signatures

    NASA Technical Reports Server (NTRS)

    White, P. E.

    1973-01-01

    Regression analysis is applied to the problem of measuring water quality parameters from remote sensing spectral signature data. The equations necessary to perform regression analysis are presented and methods of testing the strength and reliability of a regression are described. An efficient algorithm for selecting an optimal subset of the independent variables available for a regression is also presented.

  9. Spectral transmission of the pig lens: effect of ultraviolet A+B radiation.

    PubMed

    Artigas, C; Navea, A; López-Murcia, M-M; Felipe, A; Desco, C; Artigas, J-M

    2014-12-01

    To determine the spectral transmission curve of the crystalline lens of the pig. To analyse how this curve changes when the crystalline lens is irradiated with ultraviolet A+B radiation similar to that of the sun. To compare these results with literature data from the human crystalline lens. We used crystalline lenses of the common pig from a slaughterhouse, i.e. genetically similar pigs, fed with the same diet, and slaughtered at six months old. Spectral transmission was measured with a Perkin-Elmer Lambda 35 UV/VIS spectrometer. The lenses were irradiated using an Asahi Spectra Lax-C100 ultraviolet source, which made it possible to select the spectral emission band as well as the intensity and exposure time. The pig lens transmits all the visible spectrum (95%) and lets part of the ultraviolet A through (15%). Exposure to acute UV (A+B) irradiation causes a decrease in its transmission as the intensity or exposure time increases: this decrease is considerable in the UV region. We were able to determine the mean spectral transmission curve of the pig lens. It appears to be similar to that of the human lens in the visible spectrum, but different in the ultraviolet. Pig lens transmission is reduced by UV (A+B) irradiation and its transmission in the UV region can even disappear as the intensity or exposure time increases. An adequate exposure intensity and time of UV (A+B) radiation always causes an anterior subcapsular cataract (ASC). Copyright © 2014. Published by Elsevier Masson SAS.

  10. International Ultraviolet Explorer (IUE) ultraviolet spectral atlas of selected astronomical objects

    NASA Technical Reports Server (NTRS)

    Wu, Chi-Chao; Reichert, Gail A.; Ake, Thomas B.; Boggess, Albert; Holm, Albert V.; Imhoff, Catherine L.; Kondo, Yoji; Mead, Jaylee M.; Shore, Steven N.

    1992-01-01

    The IUE Ultraviolet Spectral Atlas of Selected Astronomical Objects (or 'the Atlas'), is based on the data that were available in the IUE archive in 1986, and is intended to be a quick reference for the ultraviolet spectra of many categories of astronomical objects. It shows reflected sunlight from the Moon, planets, and asteroids, and also shows emission from comets. Comprehensive compilations of UV spectra for main sequence, subgiant, giant, bright giant, and supergiant stars are published elsewhere. This Atlas contains the spectra for objects occupying other areas of the Hertzsprung-Russell diagram: pre-main sequence stars, chemically peculiar stars, pulsating variables, subluminous stars, and Wolf-Rayet stars. This Atlas also presents phenomena such as the chromospheric and transition region emissions from late-type stars; composite spectra of stars, gas streams, accretion disks and gas envelopes of binary systems; the behavior of gas ejecta shortly after the outburst of novac and supernovac; and the H II regions, planetary nebulae, and supernova remnants. Population 2 stars, globular clusters, and luminous stars in the Magellanic Clouds, M31, and M33, are also included in this publication. Finally, the Atlas gives the ultraviolet spectra of galaxies of different Hubble types and of active galaxies.

  11. Spectral Calibration of the MSFC Solar Ultraviolet Magnetograph

    NASA Technical Reports Server (NTRS)

    West, Edward; Kobayashi, Ken; Cirtain, Jonathan; Gary, Allen; Davis, John; Reader, Joseph

    2009-01-01

    This paper describes the scientific goals of a sounding rocket program called the Solar Ultraviolet Magnetograph Investigation (SUMI), presents a brief description of the optics that were developed to meet those goals and discusses the spectral, spatial and polarization characteristics of SUMI's Toroidal Variable-Line-Space (TVLS) gratings; which are critical to SUMI's measurements of the magnetic field in the Sun's transition region.

  12. A Real-Time Infrared Ultra-Spectral Signature Classification Method via Spatial Pyramid Matching

    PubMed Central

    Mei, Xiaoguang; Ma, Yong; Li, Chang; Fan, Fan; Huang, Jun; Ma, Jiayi

    2015-01-01

    The state-of-the-art ultra-spectral sensor technology brings new hope for high precision applications due to its high spectral resolution. However, it also comes with new challenges, such as the high data dimension and noise problems. In this paper, we propose a real-time method for infrared ultra-spectral signature classification via spatial pyramid matching (SPM), which includes two aspects. First, we introduce an infrared ultra-spectral signature similarity measure method via SPM, which is the foundation of the matching-based classification method. Second, we propose the classification method with reference spectral libraries, which utilizes the SPM-based similarity for the real-time infrared ultra-spectral signature classification with robustness performance. Specifically, instead of matching with each spectrum in the spectral library, our method is based on feature matching, which includes a feature library-generating phase. We calculate the SPM-based similarity between the feature of the spectrum and that of each spectrum of the reference feature library, then take the class index of the corresponding spectrum having the maximum similarity as the final result. Experimental comparisons on two publicly-available datasets demonstrate that the proposed method effectively improves the real-time classification performance and robustness to noise. PMID:26205263

  13. Discrimination of fungal infections on grape berries via spectral signatures

    NASA Astrophysics Data System (ADS)

    Molitor, Daniel; Griesser, Michaela; Schütz, Erich; Khuen, Marie-Therese; Schefbeck, Christa; Ronellenfitsch, Franz Kai; Schlerf, Martin; Beyer, Marco; Schoedl-Hummel, Katharina; Anhalt, Ulrike; Forneck, Astrid

    2016-04-01

    The fungal pathogens Botrytis cinerea and Penicillium expansum are causing economic damages on grapevine worldwide. Especially the simultaneous occurrence of both often results in off-flavours highly threatening wine quality. For the classification of grape quality as well as for the determination of targeted enological treatments, the knowledge of the level of fungal attack is of highest interest. However, visual assessment and pathogen discrimination are cost-intensive. Consequently, a pilot laboratory study aimed at (i) detecting differences in spectral signatures between grape berry lots with different levels of infected berries (B. cinerea and/or P. expansum) and (ii) detecting links between spectral signatures and biochemical as well as quantitative molecular markers for fungal attack. To this end, defined percentages (infection levels) of table grape berries were inoculated with fungal spore suspensions. Spectral measurements were taken using a FieldSpec 3 Max spectroradiometer (ASD Inc., Boulder/Colorado, USA) in regular intervals after inoculation. In addition, fungal attack was determined enzymatically) and quantitatively (real-time PCR). In addition, gluconic acid concentrations (as a potential markers for fungal attack) were determined photometrically. Results indicate that based on spectral signatures, a discrimination of P. expansum and B. cinerea infections as well as of different B. cinerea infection levels is possible. Real-time PCR analyses, detecting DNA levels of both fungi, showed yet a low detection level. Whereas the gluconic acid concentrations turned out to be specific for the two fungi tested (B. cinerea vs. P. expansum) and thus may serve as a differentiating biochemical marker. Correlation analyses between spectral measurements and biological data (gluconic acid concentrations, fungi DNA) as well as further common field and laboratory trials are targeted.

  14. The Copernicus ultraviolet spectral atlas of Gamma Pegasi

    NASA Technical Reports Server (NTRS)

    Rogerson, J. B., Jr.

    1985-01-01

    An ultraviolet spectral atlas is presented for the B2 IV star Gamma Pegasi, which has been scanned from 970 to 1501 A by the Princeton spectrometer aboard the Copernicus satellite. From 970 to 1430 A the observations have a nominal resolution of 0.05 A. At the longer wavelengths the resolution is 0.1 A. The atlas is presented in graphs. Line identifications are also listed.

  15. The Copernicus ultraviolet spectral atlas of Tau Scorpii

    NASA Technical Reports Server (NTRS)

    Rogerson, J. B., Jr.; Upson, W. L., II

    1977-01-01

    An ultraviolet spectral atlas is presented for the B0 V star, Tau Scorpii. It has been scanned from 949 to 1560 A by the Princeton spectrometer aboard the Copernicus satellite. From 949 to 1420 A the observations have a nominal resolution of 0.05 A. At the longer wavelengths, the resolution is 0.1 A. The atlas is presented in both tables and graphs.

  16. The Copernicus ultraviolet spectral atlas of Beta Orionis

    NASA Technical Reports Server (NTRS)

    Rogerson, J. B., Jr.; Upson, W. L., II

    1982-01-01

    An ultraviolet spectral atlas is presented for the B8 Ia star Beta Orionis, which has been scanned from 999 to 1561 A by the Princeton spectrometer aboard the Copernicus satellite. From 999 to 1420 A the observations have a nominal resolution of 0.05 A. At the longer wavelengths the resolution is 0.1 A. The atlas is presented in graphs. Lines identified in the spectrum are also listed.

  17. The Copernicus ultraviolet spectral atlas of Iota Herculis

    NASA Technical Reports Server (NTRS)

    Upson, W. L., II; Rogerson, J. B., Jr.

    1980-01-01

    An ultraviolet spectral atlas is presented for the B3 IV star Iota Herculis, which has been scanned from 999 to 1467 A by the Princeton spectrometer aboard the Copernicus satellite. From 999 to 1422 A the observations have a nominal resolution of 0.05 A. At the longer wavelengths the resolution is 0.1 A. The atlas is presented in graphs. Lines identified in the spectrum are also listed.

  18. Canadian Thesis Abstracts: Synthèse spectrale de jeunes populations stellaires dans; l'ultraviolet lointain

    NASA Astrophysics Data System (ADS)

    Pellerin, Anne

    2005-02-01

    Le but de cette thèse était de développer et tester la technique de synthè;se spectrale évolutive aux longueurs d'onde de l'ultraviolet lointain. Jusquà récemment, cette technique n'était appliqué quà des données au-delà de 1200 Å. Le lancement du satellite FUSE en 1999 a permis d'explorer le domaine de l'ultraviolet lointain (900-1200 Å) avec une grande résolution spectrale. J'ai donc utilisé les spectres du satellite FUSE de 228 étoiles chaudes de type O et B, de 24 galaxies à sursauts de formation d'étoiles et de quatre galaxies Seyfert. Dans un premier temps, j'ai caractérisé le comportement des profils de raies stellaires en fonction du type spectral, de la classe de luminosité et de la métallicité des étoiles. Les raies O vi >>1031.9, 1037.6, S iv >>1062.7, 1073.0, 1073.5, P v>>1118.0, 1128.0 et C iii >1175.6 ont été identifiées comme étant des indicateurs stellaires potentiellement intéressants pour la synthèse spectrale. Le domaine de longueur d'onde inférieur à 1000 Å couvert par FUSEmontre aussi des signatures stellaires mais qui sont peu intéressantes pour la synthèse en raison de la contamination interstellaire. J'ai ensuite crééé; une bibliothèque de spectres FUSE qui a été intégrée au code de synthèse LavalSBafin de produire des spectres de synthèse dans l'ultraviolet lointain pour diverses populations stellaires théoriques. Il s'est avéré que les raies de P vet de C iii sont d'excellents indicateurs d'âge, de métallicité et de fonction de masse initiale de la population stellaire, tandis que les raies de O vi et de S ivne sont pas aussi efficaces. La comparaison des spectres FUSEde galaxies avec les spectres synthétiques a révèlé des âges entre 2.5 et 18 millions d'années pour un large éventail de métallicités. On trouve aussi une forte dominance du mode instantané de formation stellaire. Ce travail a aussi permis d'estimer quantitativement l'extinction interne et les masses

  19. Identification of crops in Central Arkansas using visual and infrared spectral reflectance signatures

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The spectral reflectance signatures of principle crops of central Arkansas were calibrated. Data were collected by conducting ground based reflectance signatures at well controlled test sites. Data collected were primarily for soybeans, therefore, additional measurements are essential to the acquisition of significant results.

  20. Augmentation of the IUE Ultraviolet Spectral Atlas

    NASA Astrophysics Data System (ADS)

    Wu, Chi-Chao

    Most likely IUE is the only and last satellite which will support a survey program to record the ultraviolet spectrum of a large number of bright normal stars. It is important to have a library of high quality Low dispersion spectra of sufficient number of stars that provide good coverage in spectral type and luminosity class. Such a library is invaluable for stellar population synthesis of galaxies, studying the nature of distant galaxies, establishing a UV spectral classification system, providing comparison stars for interstellar extinction studies and for peculiar objects or binary systems, studying the effects of temperature, gravity and metallicity on stellar UV spectra, and as a teaching aid. We propose to continue observations of normal stars in order to provide (1) a more complete coverage of the spectral type and luminosity class, and (2) more than one star per spectral typeluminosity class combination to guard against variability and peculiarity, and to allow a finite range of temperature, gravity, and metallicity in a given combination. Our primary goal is to collect the data and make them available to the community immediately (without claiming the 6-month proprietary right). The data will be published in the IUE Newsletter as soon as practical, and the data will be prepared for distribution by the IUE Observatory and the NSSDC.

  1. Optical detection of explosives: spectral signatures for the explosive bouquet

    NASA Astrophysics Data System (ADS)

    Osborn, Tabetha; Kaimal, Sindhu; Causey, Jason; Burns, William; Reeve, Scott

    2009-05-01

    Research with canines suggests that sniffer dogs alert not on the odor from a pure explosive, but rather on a set of far more volatile species present in an explosive as impurities. Following the explosive trained canine example, we have begun examining the vapor signatures for many of these volatile impurities utilizing high resolution spectroscopic techniques in several molecular fingerprint regions. Here we will describe some of these high resolution measurements and discuss strategies for selecting useful spectral signature regions for individual molecular markers of interest.

  2. Traveling reference spectroradiometer for routine quality assurance of spectral solar ultraviolet irradiance measurements.

    PubMed

    Gröbner, Julian; Schreder, Josef; Kazadzis, Stelios; Bais, Alkiviadis F; Blumthaler, Mario; Görts, Peter; Tax, Rick; Koskela, Tapani; Seckmeyer, Gunther; Webb, Ann R; Rembges, Diana

    2005-09-01

    A transportable reference spectroradiometer for measuring spectral solar ultraviolet irradiance has been developed and validated. The expanded uncertainty of solar irradiance measurements with this reference spectroradiometer, based on the described methodology, is 8.8% to 4.6%, depending on the wavelength and the solar zenith angle. The accuracy of the spectroradiometer was validated by repeated site visits to two European UV monitoring sites as well as by regular comparisons with the reference spectroradiometer of the European Reference Centre for UV radiation measurements in Ispra, Italy. The spectral solar irradiance measurements of the Quality Assurance of Spectral Ultraviolet Measurements in Europe through the Development of a Transportable Unit (QASUME) spectroradiometer and these three spectroradiometers have agreed to better than 6% during the ten intercomparison campaigns held from 2002 to 2004. If the differences in irradiance scales of as much as 2% are taken into account, the agreement is of the order of 4% over the wavelength range of 300-400 nm.

  3. X-Ray Spectral Variability Signatures of Flares in BL Lac Objects

    NASA Technical Reports Server (NTRS)

    Boettcher, Markus; Chiang, James; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We are presenting a detailed parameter study of the time-dependent electron injection and kinematics and the self-consistent radiation transport in jets of intermediate and low-frequency peaked BL Lac objects. Using a time-dependent, combined synchrotron-self-Compton and external-Compton jet model, we study the influence of variations of several essential model parameters, such as the electron injection compactness, the relative contribution of synchrotron to external soft photons to the soft photon compactness, the electron- injection spectral index, and the details of the time profiles of the electron injection episodes giving rise to flaring activity. In the analysis of our results, we focus on the expected X-ray spectral variability signatures in a region of parameter space particularly well suited to reproduce the broadband spectral energy distributions of intermediate and low-frequency peaked BL Lac objects. We demonstrate that SSC- and external-Compton dominated models for the gamma-ray emission from blazars are producing significantly different signatures in the X-ray variability, in particular in the soft X-ray light curves and the spectral hysteresis at soft X-ray energies, which can be used as a powerful diagnostic to unveil the nature of the high-energy emission from BL Lac objects.

  4. Stability across environments of the coffee variety near infrared spectral signature.

    PubMed

    Posada, H; Ferrand, M; Davrieux, F; Lashermes, P; Bertrand, B

    2009-02-01

    Previous study on food plants has shown that near infrared (NIR) spectral methods seem effective for authenticating coffee varieties. We confirm that result, but also show that inter-variety differences are not stable from one harvest to the next. We put forward the hypothesis that the spectral signature is affected by environmental factors. The purpose of this study was to find a way of reducing this environmental variance to increase the method's reliability and to enable practical application in breeding. Spectral collections were obtained from ground green coffee samples from multilocation trials. Two harvests of bean samples from 11 homozygous introgressed lines, and the cv 'Caturra' as the control, supplied from three different sites, were compared. For each site, squared Euclidean distances among the 12 varieties were estimated from the NIR spectra. Matrix correlation coefficients were assessed by the Mantel test. We obtained very good stability (high correlations) for inter-variety differences across the sites when using the two harvests data. If only the most heritable zones of the spectrum were used, there was a marked improvement in the efficiency of the method. This improvement was achieved by treating the spectrum as succession of phenotypic variables, each resulting from an environmental and genetic effect. Heritabilities were calculated with confidence intervals. A near infrared spectroscopy signature, acquired over a set of harvests, can therefore effectively characterize a coffee variety. We indicated how this typical signature can be used in breeding to assist in selection.

  5. Ultraviolet spectral reflectance of carbonaceous materials

    NASA Astrophysics Data System (ADS)

    Applin, Daniel M.; Izawa, Matthew R. M.; Cloutis, Edward A.; Gillis-Davis, Jeffrey J.; Pitman, Karly M.; Roush, Ted L.; Hendrix, Amanda R.; Lucey, Paul G.

    2018-06-01

    A number of planetary spacecraft missions have carried instruments with sensors covering the ultraviolet (UV) wavelength range. However, there exists a general lack of relevant UV reflectance laboratory data to compare against these planetary surface remote sensing observations in order to make confident material identifications. To address this need, we have systematically analyzed reflectance spectra of carbonaceous materials in the 200-500 nm spectral range, and found spectral-compositional-structural relationships that suggest this wavelength region could distinguish between otherwise difficult-to-identify carbon phases. In particular (and by analogy with the infrared spectral region), large changes over short wavelength intervals in the refractive indices associated with the trigonal sp2π-π* transition of carbon can lead to Fresnel peaks and Christiansen-like features in reflectance. Previous studies extending to shorter wavelengths also show that anomalous dispersion caused by the σ-σ* transition associated with both the trigonal sp2 and tetrahedral sp3 sites causes these features below λ = 200 nm. The peak wavelength positions and shapes of π-π* and σ-σ* features contain information on sp3/sp2, structure, crystallinity, and powder grain size. A brief comparison with existing observational data indicates that the carbon fraction of the surface of Mercury is likely amorphous and submicroscopic, as is that on the surface of the martian satellites Phobos and Deimos, and possibly comet 67P/Churyumov-Gerasimenko, while further coordinated observations and laboratory experiments should refine these feature assignments and compositional hypotheses. The new laboratory diffuse reflectance data reported here provide an important new resource for interpreting UV reflectance measurements from planetary surfaces throughout the solar system, and confirm that the UV can be rich in important spectral information.

  6. Augmentation of the IUE Ultraviolet Spectral Atlas

    NASA Astrophysics Data System (ADS)

    Wu, Chi-Chao

    IUE is the only and last satellite which will support a survey program to record the ultraviolet spectrum of a large number of bright normal stars. It is important to have a library of high quality low dispersion spectra of sufficient number of stars that provide good coverage in spectral type and luminosity class. Such a library is invaluable for stellar population synthesis of galaxies, studying the nature of distant galaxies, establishing a UV spectral classification system, providing comparison stars for interstellar extinction studies and for peculiar objects or binary systems, studying the effects of temperature, gravity and metallicity on stellar UV spectra, and as a teaching aid. We propose to continue observations of normal stars in order to provide (1) a stellar library as complete as practical, which will be able to support astronomical research by the scientific community long into the future, and (2) a sufficient sample of stars to guard against variability and peculiarity, and to allow a finite range of temperature, gravity, and metallicity in a given spectral type-luminosity class combination. Our primary goal is to collect the data and make them available to the community immediately (without claiming the 6-month proprietary right). The data will be published in the IUE Newsletter as soon as practical, and the data will be prepared for distribution by the IUE Observatory and the NSSDC.

  7. An improved ultraviolet spectral line list for the symbiotic star RR Telescopii

    NASA Technical Reports Server (NTRS)

    Doschek, G. A.; Feibelman, W. A.

    1993-01-01

    We have remeasured wavelengths and intensities of International Ultraviolet Explorer (IUE) spectra of the symbiotic star, RR Tel. The main work is centered on the long 820 minute exposure high-resolution spectrum obtained on 1983 June 18. The list is intended to serve as a source of improved intensities and wavelengths for the ultraviolet spectrum of this star. A complete line list with intensities based on this exposure has not been published previously. The strongest spectral lines are saturated in the 820 minute exposure, and intensities for these lines are mostly obtained from a 20 minute exposure obtained on the same day. A few intensities are obtained from other exposures if neither the 820 nor the 20 minute exposure is satisfactory. There are 111 lines in our list between 1168 and 1980 A. Some of the very weakest lines may not be real. These are indicated by question marks. We also discuss some of the plasma diagnostics available using spectral lines of O v and O iv.

  8. Spectrally-resolved measurements of aerosol extinction at ultraviolet and visible wavelengths

    NASA Astrophysics Data System (ADS)

    Flores, M.; Washenfelder, R. A.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2012-12-01

    Aerosols play an important role in the Earth's radiative budget. Aerosol extinction includes both the scattering and absorption of light, and these vary with wavelength, aerosol diameter, and aerosol composition. Historically, aerosol absorption has been measured using filter-based or extraction methods that are prone to artifacts. There have been few investigations of ambient aerosol optical properties at the blue end of the visible spectrum and into the ultraviolet. Brown carbon is particularly important in this spectral region, because it both absorbs and scatters light, and encompasses a large and variable group of organic compounds from biomass burning and secondary organic aerosol. We have developed a laboratory instrument that combines new, high-power LED light sources with high-finesse optical cavities to achieve sensitive measurements of aerosol optical extinction. This instrument contains two broadband channels, with spectral coverage from 360 - 390 nm and 385 - 420 nm. Using this instrument, we report aerosol extinction in the ultraviolet and near-visible spectral region as a function of chemical composition and structure. We have measured the extinction cross-sections between 360 - 420 nm with 0.5 nm resolution using different sizes and concentrations of polystyrene latex spheres, ammonium sulfate, and Suwannee River fulvic acid. Fitting the real and imaginary part of the refractive index allows the absorption and scattering to be determined.

  9. FUV Spectral Signatures of Molecules and the Evolution of the Gaseous Coma of Comet 67P/Churyumov–Gerasimenko

    NASA Astrophysics Data System (ADS)

    Feldman, Paul D.; A’Hearn, Michael F.; Bertaux, Jean-Loup; Feaga, Lori M.; Keeney, Brian A.; Knight, Matthew M.; Noonan, John; Parker, Joel Wm.; Schindhelm, Eric; Steffl, Andrew J.; Stern, S. Alan; Vervack, Ronald J.; Weaver, Harold A.

    2018-01-01

    The Alice far-ultraviolet imaging spectrograph onboard Rosetta observed emissions from atomic and molecular species from within the coma of comet 67P/Churyumov–Gerasimenko during the entire escort phase of the mission from 2014 August to 2016 September. The initial observations showed that emissions of atomic hydrogen and oxygen close to the surface were produced by energetic electron impact dissociation of H2O. Following delivery of the lander, Philae, on 2014 November 12, the trajectory of Rosetta shifted to near-terminator orbits that allowed for these emissions to be observed against the shadowed nucleus that, together with the compositional heterogeneity, enabled us to identify unique spectral signatures of dissociative electron impact excitation of H2O, CO2, and O2. CO emissions were found to be due to both electron and photoexcitation processes. Thus, we are able, from far-ultraviolet spectroscopy, to qualitatively study the evolution of the primary molecular constituents of the gaseous coma from start to finish of the escort phase. Our results show asymmetric outgassing of H2O and CO2 about perihelion, H2O dominant before and CO2 dominant after, consistent with the results from both the in situ and other remote sensing instruments on Rosetta.

  10. Thin film optical coatings for the ultraviolet spectral region

    NASA Astrophysics Data System (ADS)

    Torchio, P.; Albrand, G.; Alvisi, M.; Amra, C.; Rauf, H.; Cousin, B.; Otrio, G.

    2017-11-01

    The applications and innovations related to the ultraviolet field are today in strong growth. To satisfy these developments which go from biomedical to the large equipment like the Storage Ring Free Electron Laser, it is crucial to control with an extreme precision the optical performances, in using the substrates and the thin film materials impossible to circumvent in this spectral range. In particular, the reduction of the losses by electromagnetic diffusion, Joule effect absorption, or the behavior under UV luminous flows of power, resistance to surrounding particulate flows... become top priority which concerns a broad European and international community. Our laboratory has the theoretical, experimental and technological tools to design and fabricate numerous multilayer coatings with desirable optical properties in the visible and infrared spectral ranges. We have extended our expertise to the ultraviolet. We present here some results on high reflectivity multidielectric mirrors towards 250 nm in wavelength, produced by Ion Plating Deposition. The latter technique allows us to obtain surface treatments with low absorption and high resistance. We give in this study the UV transparent materials and the manufacturing technology which have been the best suited to meet requirements. Single UV layers were deposited and characterized. HfO2/SiO2 mirrors with a reflectance higher than 99% at 300 nm were obtained. Optical and non-optical characterizations such as UV spectrophotometric measurements, X-Ray Diffraction spectra, Scanning Electron Microscope and Atomic Force Microscope images were performed

  11. Characterisation of spectrophotometers used for spectral solar ultraviolet radiation measurements.

    PubMed

    Gröbner, J

    2001-01-01

    Spectrophotometers used for spectral measurements of the solar ultraviolet radiation need to be well characterised to provide accurate and reliable data. Since the characterisation and calibration are usually performed in the laboratory under conditions very different from those encountered during solar measurements, it is essential to address all issues concerned with the representativity of the laboratory characterisation with respect to the solar measurements. These include among others the instrument stability, the instrument linearity, the instrument responsivity, the wavelength accuracy, the spectral resolution, stray light rejection and the instrument dependence on ambient temperature fluctuations. These instrument parameters need to be determined often enough so that the instrument changes only marginally in the period between successive characterisations and therefore provides reliable data for the intervening period.

  12. UV Signatures of Ices: Moons in the Solar System

    NASA Astrophysics Data System (ADS)

    Hendrix, A. R.; Hansen, C. J.; Retherford, K. D.; Vilas, F.

    2017-12-01

    Using Earth-orbiting telescopes such as the International Ultraviolet Explorer and the Hubble Space Telescope, significant advances have been made in the area of ultraviolet observations of solar system objects. More in-depth studies have been made using interplanetary probes such as Galileo, Cassini and Lunar Reconnaissance Orbiter (LRO). While the UV spectral range has traditionally been used to study atmospheric and auroral processes, there is much to be learned by examining solid surfaces in the UV, including surface composition, weathering processes and effects, and the generation of thin atmospheres. Here we focus on moons in the solar system, including Earth's moon and the Saturnian satellites. The diagnostic UV signature of H2O is used to study ice in the lunar polar regions as well as hydration at lower latitudes, in observations from LRO LAMP. The water ice signature is nearly ubiquitous in the Saturn system; Cassini UVIS datasets are used to study grain sizes, exogenic processes/effects and non-ice species.

  13. Extreme ultraviolet spectral irradiance measurements since 1946

    NASA Astrophysics Data System (ADS)

    Schmidtke, G.

    2015-03-01

    In the physics of the upper atmosphere the solar extreme ultraviolet (EUV) radiation plays a dominant role controlling most of the thermospheric/ionospheric (T/I) processes. Since this part of the solar spectrum is absorbed in the thermosphere, platforms to measure the EUV fluxes became only available with the development of rockets reaching altitude levels exceeding 80 km. With the availability of V2 rockets used in space research, recording of EUV spectra started in 1946 using photographic films. The development of pointing devices to accurately orient the spectrographs toward the sun initiated intense activities in solar-terrestrial research. The application of photoelectric recording technology enabled the scientists placing EUV spectrometers aboard satellites observing qualitatively strong variability of the solar EUV irradiance on short-, medium-, and long-term scales. However, as more measurements were performed more radiometric EUV data diverged due to the inherent degradation of the EUV instruments with time. Also, continuous recording of the EUV energy input to the T/I system was not achieved. It is only at the end of the last century that there was progress made in solving the serious problem of degradation enabling to monitore solar EUV fluxes with sufficient radiometric accuracy. The data sets available allow composing the data available to the first set of EUV data covering a period of 11 years for the first time. Based on the sophisticated instrumentation verified in space, future EUV measurements of the solar spectral irradiance (SSI) are promising accuracy levels of about 5% and less. With added low-cost equipment, real-time measurements will allow providing data needed in ionospheric modeling, e.g., for correcting propagation delays of navigation signals from space to earth. Adding EUV airglow and auroral emission monitoring by airglow cameras, the impact of space weather on the terrestrial T/I system can be studied with a spectral terrestrial

  14. Dancing to the MUSSIC: Steps towards creating a Multisatellite Ultraviolet Solar Spectral Irradiance Composite

    NASA Astrophysics Data System (ADS)

    Snow, M. A.; Machol, J. L.; Richard, E. C.

    2016-12-01

    Solar spectral irradiance (SSI) has been measured since the beginning of the satellite era in 1978, but the observational record has many gaps in both wavelength and time. We describe our current effort in linking several such datasets ranging from the Extreme Ultraviolet to the Near Ultraviolet (0-400 nm). This wavelength range includes two important solar activity proxies, the Magnesium II core—to-wing ratio and the Lyman alpha irradiance, and special attention will be applied to these two wavelength intervals.

  15. Multispectral signature analysis measurements of selected sniper rifles and small arms

    NASA Astrophysics Data System (ADS)

    Law, David B.; Carapezza, Edward M.; Csanadi, Christina J.; Edwards, Gerald D.; Hintz, Todd M.; Tong, Ronald M.

    1997-02-01

    During October 1995 - June 1996, the Naval Command, Control and Ocean Surveillance Center RDT&E Division (NRaD), under sponsorship from Defense Advanced Research Projects Agency (DARPA), conducted an intensive series of multi-spectral signature analyses of typical sniper weapons. Multi-spectral signatures of the muzzle flashes from rifles and pistols and some imagery of the bullets in flight were collected. Multi- spectral signatures of the muzzle flash were collected in the infrared (2.5 - 14.5 microns), visible -- near-IR (400 - 1200 nanometers), and the ultra-violet (185 - 400 nanometers) wavelength regions. These measurements consisted of high spectral resolution (0.0159 micron) measurements of the spectral radiance of the muzzle flash. A time history plot of the muzzle flash as it evolves just forward of the end of the muzzle is provided. These measurements were performed with a CI Systems Model SR5000 IR/Visible spectroradiometer and an Ocean Optics Model PC1000 UV spectroradiometer. Muzzle flash infrared imagery is provided to show the effect that specific muzzle breaks have on the resulting muzzle flash. The following set of sniper weapons were included in this test: AK-47, SKS, M16A2, M-14, FN-FAL, SMLE IIa, 03 Springfield, SVD Dragunov, 50 caliber McMillan, and a 45 caliber ACP pistol. The results of this signature analysis show that important measurable electro-optical differences do exist between all these weapons in terms of spectral radiance of the flash, spectral content of the gun powders, and spectral shapes/geometries of the muzzle flashes. These differences were sufficient such that, after a more complete data base is collected, it will be possible to develop a passive electro-optical weapon and ammunition identifier.

  16. Let your fingers do the walking: A simple spectral signature model for "remote" fossil prospecting.

    PubMed

    Conroy, Glenn C; Emerson, Charles W; Anemone, Robert L; Townsend, K E Beth

    2012-07-01

    Even with the most meticulous planning, and utilizing the most experienced fossil-hunters, fossil prospecting in remote and/or extensive areas can be time-consuming, expensive, logistically challenging, and often hit or miss. While nothing can predict or guarantee with 100% assurance that fossils will be found in any particular location, any procedures or techniques that might increase the odds of success would be a major benefit to the field. Here we describe, and test, one such technique that we feel has great potential for increasing the probability of finding fossiliferous sediments - a relatively simple spectral signature model using the spatial analysis and image classification functions of ArcGIS(®)10 that creates interactive thematic land cover maps that can be used for "remote" fossil prospecting. Our test case is the extensive Eocene sediments of the Uinta Basin, Utah - a fossil prospecting area encompassing ∼1200 square kilometers. Using Landsat 7 ETM+ satellite imagery, we "trained" the spatial analysis and image classification algorithms using the spectral signatures of known fossil localities discovered in the Uinta Basin prior to 2005 and then created interactive probability models highlighting other regions in the Basin having a high probability of containing fossiliferous sediments based on their spectral signatures. A fortuitous "post-hoc" validation of our model presented itself. Our model identified several paleontological "hotspots", regions that, while not producing any fossil localities prior to 2005, had high probabilities of being fossiliferous based on the similarities of their spectral signatures to those of previously known fossil localities. Subsequent fieldwork found fossils in all the regions predicted by the model. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Global spectral graph wavelet signature for surface analysis of carpal bones

    NASA Astrophysics Data System (ADS)

    Masoumi, Majid; Rezaei, Mahsa; Ben Hamza, A.

    2018-02-01

    Quantitative shape comparison is a fundamental problem in computer vision, geometry processing and medical imaging. In this paper, we present a spectral graph wavelet approach for shape analysis of carpal bones of the human wrist. We employ spectral graph wavelets to represent the cortical surface of a carpal bone via the spectral geometric analysis of the Laplace-Beltrami operator in the discrete domain. We propose global spectral graph wavelet (GSGW) descriptor that is isometric invariant, efficient to compute, and combines the advantages of both low-pass and band-pass filters. We perform experiments on shapes of the carpal bones of ten women and ten men from a publicly-available database of wrist bones. Using one-way multivariate analysis of variance (MANOVA) and permutation testing, we show through extensive experiments that the proposed GSGW framework gives a much better performance compared to the global point signature embedding approach for comparing shapes of the carpal bones across populations.

  18. Global spectral graph wavelet signature for surface analysis of carpal bones.

    PubMed

    Masoumi, Majid; Rezaei, Mahsa; Ben Hamza, A

    2018-02-05

    Quantitative shape comparison is a fundamental problem in computer vision, geometry processing and medical imaging. In this paper, we present a spectral graph wavelet approach for shape analysis of carpal bones of the human wrist. We employ spectral graph wavelets to represent the cortical surface of a carpal bone via the spectral geometric analysis of the Laplace-Beltrami operator in the discrete domain. We propose global spectral graph wavelet (GSGW) descriptor that is isometric invariant, efficient to compute, and combines the advantages of both low-pass and band-pass filters. We perform experiments on shapes of the carpal bones of ten women and ten men from a publicly-available database of wrist bones. Using one-way multivariate analysis of variance (MANOVA) and permutation testing, we show through extensive experiments that the proposed GSGW framework gives a much better performance compared to the global point signature embedding approach for comparing shapes of the carpal bones across populations.

  19. Anomalous crater Marcia on asteroid 4 Vesta: Spectral signatures and their geological relationship

    NASA Astrophysics Data System (ADS)

    Giebner, T.; Jaumann, R.; Schroeder, S.; Krohn, K.

    2016-12-01

    DAWN Framing Camera (FC) images are used in this study to analyze the diverse spectral signatures of crater Marcia. As the FC offers high spatial resolution as well as several color filters it is well suited to resolve geological correlations on Vestas surface. Our approach comprises the analysis of images from four FC filters ( F3, F4, F5 and F6) that cover the pyroxene absorption band at 0.9 um and the comparison of Vesta data with HED meteorite spectra. We use the ratios R 750/915 (F3/F4) and R 965/830 (F5/F6) [nm] to separate HED lithologies spectrally and depict corresponding areas on HAMO mosaics ( 60 m/px). Additionally, higher resolution LAMO images ( 20 m/px) are analyzed to reveal the geologic setting. In this work, Marcia is broadly classified into three spectral regions. The first region is located in the northwestern part of the crater as well as in the central peak area and shows the most HED-like signature within the Marcia region. The other two regions, with one of them also describing Marcia ejecta, are spectrally further away from HED lithologies and likely display a mixing with more howarditic-rich material associated with carbonaceous chondrite clasts and relatively higher OH and H concentrations (e.g., [1], [2], [3]). In general, these other two regions are also associated with thick flow features within the crater, while the HED-like area does not show such prominent flows. Hence, these darker regions seem to display post-impact material inflow of the weathered howarditic surface regolith. We conclude that the Marcia impactor likely struck through the howarditic regolith and hit the eucritic crust underneath. Depicting this HED-like signature globally, it resides mostly in the Rheasilvia basin and ejecta blanket, as well as in very young crater ejecta in the equatorial region, consistent with it being a signature of fresh basaltic crust. [1] M. C. De Sanctis et al. (2012b) The Astrophysical Journal Letters, 758:L36 (5pp) [2] T. McCord et al

  20. Magnetic spectral signatures in the Earth's magnetosheath and plasma depletion layer

    NASA Technical Reports Server (NTRS)

    Anderson, Brian J.; Fuselier, Stephen A.; Gary, S. Peter; Denton, Richard E.

    1994-01-01

    Correlations between plasma properties and magnetic fluctuations in the sub-solar magnetosheath downstream of a quasi-perpendicular shock have been found and indicate that mirror and ion cyclotronlike fluctuations correlate with the magnetosheath proper and plasma depletion layer, respectively (Anderson and Fueselier, 1993). We explore the entire range of magnetic spectral signatures observed from the Active Magnetospheric Particle Tracer Explorers/Charge Composition Explorer (AMPTE/CCE)spacecraft in the magnetosheath downstream of a quasi-perpendicular shock. The magnetic spectral signatures typically progress from predominantly compressional fluctuations,delta B(sub parallel)/delta B perpendicular to approximately 3, with F/F (sub p) less than 0.2 (F and F (sub p) are the wave frequency and proton gyrofrequency, respectively) to predominantly transverse fluctuations, delta B(sub parallel)/delta B perpendicular to approximately 0.3, extending up to F(sub p). The compressional fluctuations are characterized by anticorrelation between the field magnitude and electron density, n(sub e), and by a small compressibility, C(sub e) identically equal to (delta n(sub e)/n(sub e)) (exp 2) (B/delta B(sub parallel)) (exp 2) approximately 0.13, indicative of mirror waves. The spectral characteristics of the transverse fluctuations are in agreement with predictions of linear Vlasov theory for the H(+) and He(2+) cyclotron modes. The power spectra and local plasma parameters are found to vary in concert: mirror waves occur for beta(s ub parallel p) (beta (sub parallel p) identically = 2 mu(sub zero) n(sub p) kT (sub parallel p) / B(exp 2) approximately = 2, A(sub p) indentically = T(sub perpendicular to p)/T(sub parallel p) - 1 approximately = 0.4, whereas cyclotron waves occur for beta (sub parallel p) approximately = 0.2 and A(sub p) approximately = 2. The transition from mirror to cyclotron modes is predicted by linear theory. The spectral characteristics overlap for

  1. The Spectral Signatures Of BH Versus NS Sources

    NASA Astrophysics Data System (ADS)

    Seifina, E.; Titarchuk, L.

    2011-09-01

    We present a comparative analysis of spectral properties of Black Hole (BH) and Neutron Star (NS) X-ray binaries during transition events observed with BeppoSAX and RXTE satellites. In particular, we investigated the behavior of Comptonized component of X-ray spectra when object evolves from the low to high spectral states. The basic models to fit X-ray spectra of these objects are upscattering models (so called BMC and COMPTB models) which are the first principal models. These models taking into account both dynamical and thermal Comptonization and allow to study separate contributions of thermal component and Comptonization component (bulk and thermal effect of Comptonization processes). Specifically, we tested quite a few observations of BHs (GRS 1915+105 and SS 433) and NSs (4U 1728-34 and GX 3+1) applying BMC and COMPTB models. In this way it was found a crucial difference in behavior of photon index vs mass accretion rate (mdot) for BHs and NSs. Namely, we revealed the stability of the photon index around typical value of Gamma=2 versus mdot (or electron temperature) during spectral evolution of NS sources. This stability effect was previously suggested for a number of other neutron binaries (see Farinelli and Titarchuk, 2011). This intrinsic property of NS is fundamentally different from that in BH binary sources for which the index demonstrates monotonic growth with mass accretion rate followed by its saturation at high values of mdot. These index-mass accretion rate behavior during X-ray spectral transition events can be considered as signatures, which allow to differ NS from BH.

  2. Temporal measurement and analysis of high-resolution spectral signatures of plants and relationships to biophysical characteristics

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R., Jr.; Rebbman, Jan; Hall, Carlton; Provancha, Mark; Vieglais, David

    1995-11-01

    Measurements of temporal reflectance signatures as a function of growing season for sand live oak (Quercus geminata), myrtle oak (Q. myrtifolia, and saw palmetto (Serenoa repens) were collected during a two year study period. Canopy level spectral reflectance signatures, as a function of 252 channels between 368 and 1115 nm, were collected using near nadir viewing geometry and a consistent sun illumination angle. Leaf level reflectance measurements were made in the laboratory using a halogen light source and an environmental optics chamber with a barium sulfate reflectance coating. Spectral measurements were related to several biophysical measurements utilizing optimal passive ambient correlation spectroscopy (OPACS) technique. Biophysical parameters included percent moisture, water potential (MPa), total chlorophyll, and total Kjeldahl nitrogen. Quantitative data processing techniques were used to determine optimal bands based on the utilization of a second order derivative or inflection estimator. An optical cleanup procedure was then employed that computes the double inflection ratio (DIR) spectra for all possible three band combinations normalized to the previously computed optimal bands. These results demonstrate a unique approach to the analysis of high spectral resolution reflectance signatures for estimation of several biophysical measures of plants at the leaf and canopy level from optimally selected bands or bandwidths.

  3. Optical spectral signatures of liquids by means of fiber optic technology for product and quality parameter identification

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Mencaglia, A. A.; Diaz-Herrera, N.; Garcia-Allende, P. B.; Ottevaere, H.; Thienpont, H.; Attilio, C.; Cimato, A.; Francalanci, S.; Paccagnini, A.; Pavone, F. S.

    2009-01-01

    Absorption spectroscopy in the wide 200-1700 nm spectral range is carried out by means of optical fiber instrumentation to achieve a digital mapping of liquids for the prediction of important quality parameters. Extra virgin olive oils from Italy and lubricant oils from turbines with different degrees of degradation were considered as "case studies". The spectral data were processed by means of multivariate analysis so as to obtain a correlation to quality parameters. In practice, the wide range absorption spectra were considered as an optical signature of the liquids from which to extract product quality information. The optical signatures of extra virgin olive oils were used to predict the content of the most important fatty acids. The optical signatures of lubricant oils were used to predict the concentration of the most important parameters for indicating the oil's degree of degradation, such as TAN, JOAP anti-wear index, and water content.

  4. A DETAILED FAR-ULTRAVIOLET SPECTRAL ATLAS OF MAIN-SEQUENCE B STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Myron A.

    2010-02-01

    We have constructed a detailed spectral atlas covering the wavelength region 930-1225 A for 10 sharp-lined B0-B9 stars near the main sequence. Most of the spectra we assembled are from the archives of the Far Ultraviolet Spectroscopic Explorer satellite, but for nine stars, wavelength coverage above 1188 A was taken from high-resolution International Ultraviolet Explorer or echelle Hubble Space Telescope/Space Telescope Imaging Spectrograph spectra. To represent the tenth star at type B0.2 V, we used the Copernicus atlas of {tau} Sco. We made extensive line identifications in the region 949-1225 A of all atomic features having published oscillator strengths atmore » types B0, B2, and B8. These are provided as a supplementary data product-hence the term detailed atlas. Our list of found features totals 2288, 1612, and 2469 lines, respectively. We were able to identify 92%, 98%, and 98% of these features with known atomic transitions with varying degrees of certainty in these spectra. The remaining lines do not have published oscillator strengths. Photospheric lines account for 94%, 87%, and 91%, respectively, of all our identifications, with the remainder being due to interstellar (usually molecular H{sub 2}) lines. We also discuss the numbers of lines with respect to the distributions of various ions for these three most studied spectral subtypes. A table is also given of 162 least blended lines that can be used as possible diagnostics of physical conditions in B star atmospheres.« less

  5. Oil pollution signatures by remote sensing.

    NASA Technical Reports Server (NTRS)

    Catoe, C. E.; Mclean, J. T.

    1972-01-01

    Study of the possibility of developing an effective remote sensing system for oil pollution monitoring which would be capable of detecting oil films on water, mapping the areal extent of oil slicks, measuring slick thickness, and identifying the oil types. In the spectral regions considered (ultraviolet, visible, infrared, microwave, and radar), the signatures were sufficiently unique when compared to the background so that it was possible to detect and map oil slicks. Both microwave and radar techniques are capable of operating in adverse weather. Fluorescence techniques show promise in identifying oil types. A multispectral system will be required to detect oil, map its distribution, estimate film thickness, and characterize the oil pollutant.

  6. A review of materials for spectral design coatings in signature management applications

    NASA Astrophysics Data System (ADS)

    Andersson, Kent E.; Škerlind, Christina

    2014-10-01

    The current focus in Swedish policy towards national security and high-end technical systems, together with a rapid development in multispectral sensor technology, adds to the utility of developing advanced materials for spectral design in signature management applications. A literature study was performed probing research databases for advancements. Qualitative text analysis was performed using a six-indicator instrument: spectrally selective reflectance; low gloss; low degree of polarization; low infrared emissivity; non-destructive properties in radar and in general controllability of optical properties. Trends are identified and the most interesting materials and coating designs are presented with relevant performance metrics. They are sorted into categories in the order of increasing complexity: pigments and paints, one-dimensional structures, multidimensional structures (including photonic crystals), and lastly biomimic and metamaterials. The military utility of the coatings is assessed qualitatively. The need for developing a framework for assessing the military utility of incrementally increasing the performance of spectrally selective coatings is identified.

  7. Development of Neutron Energy Spectral Signatures for Passive Monitoring of Spent Nuclear Fuels in Dry Cask Storage

    NASA Astrophysics Data System (ADS)

    Harkness, Ira; Zhu, Ting; Liang, Yinong; Rauch, Eric; Enqvist, Andreas; Jordan, Kelly A.

    2018-01-01

    Demand for spent nuclear fuel dry casks as an interim storage solution has increased globally and the IAEA has expressed a need for robust safeguards and verification technologies for ensuring the continuity of knowledge and the integrity of radioactive materials inside spent fuel casks. Existing research has been focusing on "fingerprinting" casks based on count rate statistics to represent radiation emission signatures. The current research aims to expand to include neutron energy spectral information as part of the fuel characteristics. First, spent fuel composition data are taken from the Next Generation Safeguards Initiative Spent Fuel Libraries, representative for Westinghouse 17ˣ17 PWR assemblies. The ORIGEN-S code then calculates the spontaneous fission and (α,n) emissions for individual fuel rods, followed by detailed MCNP simulations of neutrons transported through the fuel assemblies. A comprehensive database of neutron energy spectral profiles is to be constructed, with different enrichment, burn-up, and cooling time conditions. The end goal is to utilize the computational spent fuel library, predictive algorithm, and a pressurized 4He scintillator to verify the spent fuel assemblies inside a cask. This work identifies neutron spectral signatures that correlate with the cooling time of spent fuel. Both the total and relative contributions from spontaneous fission and (α,n) change noticeably with respect to cooling time, due to the relatively short half-life (18 years) of the major neutron source 244Cm. Identification of this and other neutron spectral signatures allows the characterization of spent nuclear fuels in dry cask storage.

  8. [Near ultraviolet absorption spectral properties of chromophoric dissolved organic matter in the north area of Yellow Sea].

    PubMed

    Wang, Lin; Zhao, Dong-Zhi; Yang, Jian-Hong; Chen, Yan-Long

    2010-12-01

    Chromophoric dissolved organic matter (CDOM) near ultraviolet absorption spectra contains CDOM molecular structure, composition and other important physical and chemical information. Based on the measured data of CDOM absorption coefficient in March 2009 in the north area of Yellow Sea, the present paper analyzed near ultraviolet absorption spectral properties of CDOM. The results showed that due to the impact of near-shore terrigenous input, the composition of CDOM is quite different in the north area of Yellow Sea, and this area is a typical case II water; fitted slope with specific range of spectral band and absorption coefficient at specific band can indicate the relative size of CDOM molecular weight, correlation between spectral slope of the Sg,275-300), Sg,300-350, Sg,350-400 and Sg,250-275 and the relative size of CDOM molecular weight indicative parameter M increases in turn and the highest is up to 0.95. Correlation between a(g)(lambda) and M value increases gradually with the increase in wavelength, and the highest is up to 0.92 at 400 nm; being correlated or not between spectral slope and absorption coefficient is decided by the fitting-band wavelength range for the spectra slope and the wavelength for absorption coefficient. Correlation between Sg,275-300 and a(g)(400) is the largest, up to 0.87.

  9. Spectral signature of alpine snow cover from the Landsat Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Dozier, Jeff

    1989-01-01

    In rugged terrain, snow in the shadows can appear darker than soil or vegetation in the sunlight, making it difficult to interpret satellite data images of rugged terrains. This paper discusses methods for using Thematic Mapper (TM) and SPOT data for automatic analyses of alpine snow cover. Typical spectral signatures of the Landsat TM are analyzed for a range of snow types, atmospheric profiles, and topographic illumination conditions. A number of TM images of Sierra Nevada are analyzed to distinguish several classes of snow from other surface covers.

  10. [Investigation of quantitative detection of water quality using spectral fluorescence signature].

    PubMed

    He, Jun-hua; Cheng, Yong-jin; Han, Yan-ling; Zhang, Hao; Yang, Tao

    2008-08-01

    A method of spectral analysis, which can simultaneously detect dissolved organic matter (DOM) and chlorophyll a (Chl-a) in natural water, was developed in the present paper with the intention of monitoring water quality fast and quantitatively. Firstly, the total luminescence spectra (TLS) of water sample from East Lake in Wuhan city were measured by the use of laser (532 nm) induced fluorescence (LIF). There were obvious peaks of relative intensity at the wavelength value of 580, 651 and 687 nm in the TLS of the sample, which correspond respectively to spectra of DOM, and the Raman scattering of water and Chl-a in the water. Then the spectral fluorescence signature (SFS) technique was adopted to analyze and distinguish spectral characteristics of DOM and Chl-a in natural water. The calibration curves and function expressions, which indicate the relation between the normalized fluorescence intensities of DOM and Chl-a in water and their concentrations, were obtained respectively under the condition of low concentration(< 40 mg x L(-1))by using normalization of Raman scattering spectrum of water. The curves have a high linearity. When the concentration of the solution with humic acid is large (> 40 mg x L(-1)), the Raman scattering signal is totally absorbed by the molecules of humic acid being on the ground state, so the normalization technique can not be adopted. However the function expression between the concentration of the solution with humic acid and its relative fluorescence peak intensity can be acquired directly with the aid of experiment of fluorescence spectrum. It is concluded that although the expression is non-linearity as a whole, there is a excellent linear relation between the fluorescence intensity and concentration of DOM when the concentration is less than 200 mg x L(-1). The method of measurement based on spectral fluorescence signature technique and the calibration curves gained will have prospects of broad application. It can recognize fast

  11. Spectral classification with the International Ultraviolet Explorer: An atlas of B-type spectra

    NASA Technical Reports Server (NTRS)

    Rountree, Janet; Sonneborn, George

    1993-01-01

    New criteria for the spectral classification of B stars in the ultraviolet show that photospheric absorption lines in the 1200-1900A wavelength region can be used to classify the spectra of B-type dwarfs, subgiants, and giants on a 2-D system consistent with the optical MK system. This atlas illustrates a large number of such spectra at the scale used for classification. These spectra provide a dense matrix of standard stars, and also show the effects of rapid stellar rotation and stellar winds on the spectra and their classification. The observational material consists of high-dispersion spectra from the International Ultraviolet Explorer archives, resampled to a resolution of 0.25 A, uniformly normalized, and plotted at 10 A/cm. The atlas should be useful for the classification of other IUE high-dispersion spectra, especially for stars that have not been observed in the optical.

  12. Raman spectral signatures of cervical exfoliated cells from liquid-based cytology samples

    NASA Astrophysics Data System (ADS)

    Kearney, Padraig; Traynor, Damien; Bonnier, Franck; Lyng, Fiona M.; O'Leary, John J.; Martin, Cara M.

    2017-10-01

    It is widely accepted that cervical screening has significantly reduced the incidence of cervical cancer worldwide. The primary screening test for cervical cancer is the Papanicolaou (Pap) test, which has extremely variable specificity and sensitivity. There is an unmet clinical need for methods to aid clinicians in the early detection of cervical precancer. Raman spectroscopy is a label-free objective method that can provide a biochemical fingerprint of a given sample. Compared with studies on infrared spectroscopy, relatively few Raman spectroscopy studies have been carried out to date on cervical cytology. The aim of this study was to define the Raman spectral signatures of cervical exfoliated cells present in liquid-based cytology Pap test specimens and to compare the signature of high-grade dysplastic cells to each of the normal cell types. Raman spectra were recorded from single exfoliated cells and subjected to multivariate statistical analysis. The study demonstrated that Raman spectroscopy can identify biochemical signatures associated with the most common cell types seen in liquid-based cytology samples; superficial, intermediate, and parabasal cells. In addition, biochemical changes associated with high-grade dysplasia could be identified suggesting that Raman spectroscopy could be used to aid current cervical screening tests.

  13. Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS)

    DOE PAGES

    Zhang, Libing; Lu, Zhou; Velarde, Luis; ...

    2015-03-03

    Both the C–H and O–H region spectra of crystalline cellulose were studied using the sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) for the first time. The resolution of HR-BB-SFG-VS is about 10-times better than conventional scanning SFG-VS and has the capability of measuring the intrinsic spectral lineshape and revealing many more spectral details. With HR-BB-SFG-VS, we found that in cellulose samples from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the O–H region were unique for the two allomorphs, i.e. Iα and Iβ, while the spectral signaturesmore » in the C–H regions varied in all samples examined. Even though the origin of the different spectral signatures of the crystalline cellulose in the O–H and C–H vibrational frequency regions are yet to be correlated to the structure of cellulose, these results lead to new spectroscopic methods and opportunities to classify and to understand the basic crystalline structures, as well as variations in polymorphism of the crystalline cellulose.« less

  14. Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Libing; Lu, Zhou; Velarde, Luis

    Both the C–H and O–H region spectra of crystalline cellulose were studied using the sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) for the first time. The resolution of HR-BB-SFG-VS is about 10-times better than conventional scanning SFG-VS and has the capability of measuring the intrinsic spectral lineshape and revealing many more spectral details. With HR-BB-SFG-VS, we found that in cellulose samples from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the O–H region were unique for the two allomorphs, i.e. Iα and Iβ, while the spectral signaturesmore » in the C–H regions varied in all samples examined. Even though the origin of the different spectral signatures of the crystalline cellulose in the O–H and C–H vibrational frequency regions are yet to be correlated to the structure of cellulose, these results lead to new spectroscopic methods and opportunities to classify and to understand the basic crystalline structures, as well as variations in polymorphism of the crystalline cellulose.« less

  15. Ultraviolet Studies of Jupiter's Hydrocarbons and Aerosols from Galileo

    NASA Technical Reports Server (NTRS)

    Gladstone, G. Randall

    2001-01-01

    This is the final report for this project. The purpose of this project was to support PI Wayne Pryor's effort to reduce and analyze Galileo UVS (Ultraviolet Spectrometer) data under the JSDAP program. The spectral observations made by the Galileo UVS were to be analyzed to determine mixing ratios for important hydrocarbon species (and aerosols) in Jupiter's stratosphere as a function of location on Jupiter. Much of this work is still ongoing. To date, we have concentrated on analyzing the variability of the auroral emissions rather than the absorption signatures of hydrocarbons, although we have done some work in this area with related HST-STIS data.

  16. Comparison of spectral radiance responsivity calibration techniques used for backscatter ultraviolet satellite instruments

    NASA Astrophysics Data System (ADS)

    Kowalewski, M. G.; Janz, S. J.

    2015-02-01

    Methods of absolute radiometric calibration of backscatter ultraviolet (BUV) satellite instruments are compared as part of an effort to minimize pre-launch calibration uncertainties. An internally illuminated integrating sphere source has been used for the Shuttle Solar BUV, Total Ozone Mapping Spectrometer, Ozone Mapping Instrument, and Global Ozone Monitoring Experiment 2 using standardized procedures traceable to national standards. These sphere-based spectral responsivities agree to within the derived combined standard uncertainty of 1.87% relative to calibrations performed using an external diffuser illuminated by standard irradiance sources, the customary spectral radiance responsivity calibration method for BUV instruments. The combined standard uncertainty for these calibration techniques as implemented at the NASA Goddard Space Flight Center’s Radiometric Calibration and Development Laboratory is shown to less than 2% at 250 nm when using a single traceable calibration standard.

  17. Detection and classification of salmonella serotypes using spectral signatures collected by fourier transform infrared (FT-IR) spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Spectral signatures of Salmonella serotypes namely Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky were collected using Fourier transform infrared spectroscopy (FT-IR). About 5-10 µL of Salmonella suspensions with concentrations of 1...

  18. Spectral function of few electrons in quantum wires and carbon nanotubes as a signature of Wigner localization

    NASA Astrophysics Data System (ADS)

    Secchi, Andrea; Rontani, Massimo

    2012-03-01

    We demonstrate that the profile of the space-resolved spectral function at finite temperature provides a signature of Wigner localization for electrons in quantum wires and semiconducting carbon nanotubes. Our numerical evidence is based on the exact diagonalization of the microscopic Hamiltonian of few particles interacting in gate-defined quantum dots. The minimal temperature required to suppress residual exchange effects in the spectral function image of (nanotubes) quantum wires lies in the (sub)kelvin range.

  19. Ordinary Chondrite Spectral Signatures in the 243 Ida Asteroid System

    NASA Astrophysics Data System (ADS)

    Granahan, J. C.

    2012-12-01

    The NASA Galileo spacecraft observed asteroid 243 Ida and satellite Dactyl on August 28, 1993, with the Near Infrared Mapping Spectrometer (NIMS) at wavelengths ranging from 0.7 to 5.2 micrometers[Carlson et al., 1994]. Work is being conducted to produce radiance-calibrated spectral images of 243 Ida consisting of 17-channel, 299 meters per pixel files and a 102-channel, 3.2 kilometer per pixel NIMS observations of 243 Ida for the NASA Planetary Data System (PDS). These data are currently archived in PDS as uncalibrated data number counts. Radiometric calibrated 17-channel and 102-channel NIMS spectral data files of Dactyl and light curve 243 Ida observations are also being prepared. Analysis of this infrared asteroid data has confirmed that both 243 Ida and Dactyl are S-type asteroid objects and found that their olivine and pyroxene mineral abundances are consistent with that of ordinary chondrite meteorites. Tholen [1989] identified 243 Ida and Chapman et al. [1995] identified Dactyl as S-type asteroids on the basis of spectral data ranging from 0.4 to 1.0 micrometers. S-type are described [Tholen, 1989] as asteroids with a moderate albedos, a moderate to strong absorption feature shortward of 0.7 micrometers, and moderate to nonexistent absorption features longward of 0.7 micrometers. DeMeo et al. [2009] found 243 Ida to be a Sw asteroid based on Earth-based spectral observations 0.4 to 2.5 micrometers in range. Sw is a subclass of S-type asteroids that has a space weathering spectral component [DeMeo et al., 2009]. The NIMS data 243 Ida and Dactyl processed in this study exhibit signatures consistent with the Sw designation of DeMeo et al. [2009]. Measurements of olivine and pyroxene spectral bands were also conducted for the NIMS radiance data of 243 Ida and Dactyl. Band depth and band center measurements have been used to compare S-type asteroids with those of meteorites [Dunn et al., 2010; Gaffey et al., 1993]. The 243 Ida spectra were found to be consistent

  20. Spectral analysis of natural solar ultraviolet B to promote synthesis of vitamin D

    NASA Astrophysics Data System (ADS)

    Hung, Min-Wei; Lin, Yu-Hsuan; Chang, Han-Chao; Huang, Kuo-Cheng

    2016-10-01

    This paper presents a spectral analysis system for the measurement of solar ultraviolet B over long durations. The proposed system provides high resolution at low cost in a highly robust and flexible format. We obtained information pertaining to the absolute irradiance of sunlight in a fixed location with the aim of identifying the best period in which to seek exposure to the sun with regard to maximizing the synthesis of vitamin D while minimizing damage to the skin. This study also provides a means of establishing a database for the development of healthy lamp technology.

  1. Complementary shifts in photoreceptor spectral tuning unlock the full adaptive potential of ultraviolet vision in birds.

    PubMed

    Toomey, Matthew B; Lind, Olle; Frederiksen, Rikard; Curley, Robert W; Riedl, Ken M; Wilby, David; Schwartz, Steven J; Witt, Christopher C; Harrison, Earl H; Roberts, Nicholas W; Vorobyev, Misha; McGraw, Kevin J; Cornwall, M Carter; Kelber, Almut; Corbo, Joseph C

    2016-07-12

    Color vision in birds is mediated by four types of cone photoreceptors whose maximal sensitivities (λmax) are evenly spaced across the light spectrum. In the course of avian evolution, the λmax of the most shortwave-sensitive cone, SWS1, has switched between violet (λmax > 400 nm) and ultraviolet (λmax < 380 nm) multiple times. This shift of the SWS1 opsin is accompanied by a corresponding short-wavelength shift in the spectrally adjacent SWS2 cone. Here, we show that SWS2 cone spectral tuning is mediated by modulating the ratio of two apocarotenoids, galloxanthin and 11’,12’-dihydrogalloxanthin, which act as intracellular spectral filters in this cell type. We propose an enzymatic pathway that mediates the differential production of these apocarotenoids in the avian retina, and we use color vision modeling to demonstrate how correlated evolution of spectral tuning is necessary to achieve even sampling of the light spectrum and thereby maintain near-optimal color discrimination.

  2. Density Wave Signatures In VIMS Spectral Data

    NASA Astrophysics Data System (ADS)

    Nicholson, Philip D.; Hedman, M. M.; Cassini VIMS Team

    2012-10-01

    Spectral scans of Saturn's rings by the Cassini VIMS instrument have revealed both regional and local variations in the depths of the water ice bands at 1.5 and 2.0 microns, which have been interpreted in terms of variations in regolith grain size and the amount of non-icy "contaminants" (Filacchione et al. 2012; Hedman et al. 2012). Noteworthy among the local variations are distinctive patterns associated with the four strong density waves in the A ring. Within each wavetrain there is a peak in band strength relative to the surrounding material, while extending on both sides of the wave is a "halo" of reduced band strength. The typical width of these haloes is 400-500 km, about 2-3 times the visible extent of the density waves. The origin of these features is unknown, but may involve enhanced collisional erosion in the wave zones and transport of the smaller debris into nearby regions. A similar pattern of band depth variations is also seen at several locations in the more opaque B ring in association with the strong 3:2 ILRs of Janus, Pandora and Prometheus. The former shows a pattern just like its siblings in the A ring, while the latter two resonances show haloes, but without central peaks. In each case, the radial widths of the halo approaches 1000 km, but stellar occultation profiles show no detectable density wavetrain. We suggest that this spectral signature may be a useful diagnostic for the presence of strong density waves in regions where the rings are too opaque for occultations to reveal a typical wave profile. More speculatively, the displacement of the haloes' central radii from the calculated ILR locations of 600-700 km could imply a surface density in the central B ring in excess of 500 g/cm^2. This research was supported by the Cassini/Huygens project.

  3. Search for Olivine Spectral Signatures on the Surface of Vesta

    NASA Technical Reports Server (NTRS)

    Palomba, E.; De Sanctis, M. C.; Ammannito, E.; Capaccioni, F.; Capria, M. T.; Farina, M.; Frigeri, A.; Longobardo, A.; Tosi, F.; Zambon, F.; hide

    2012-01-01

    The occurrence of olivines on Vesta were first postulated from traditional petrogenetic models which suggest the formation of olivine as lower crustal cumulates. An indirect confirmation is given by their presence as a minor component in some samples of diogenite meteorites, the harzburgitic diogenites and the dunitic diogenites, and as olivine mineral clasts in howardites. Another indication for this mineral was given by interpretations of groundbased and Hubble Space Telescope observations that suggested the presence of local olivine-bearing units on the surface of Vesta. The VIR instrument onboard the DAWN mission has been mapping Vesta since July 2011. VIR acquired hyperspectral images of Vesta s surface in the wavelength range from 0.25 to 5.1 m during Approach, Survey and High Altitude Mapping (HAMO) orbits that allowed a 2/3 of the entire asteroid surface to be mapped. The VIR operative spectral interval, resolution and coverage is suitable for the detection and mapping of any olivine rich regions that may occur on the Vesta surface. The abundance of olivine in diogenites is typically lower than 10% but some samples richer in olivine are known. However, we do not expect to have extensive exposures of olivine-rich material on Vesta. Moreover, the partial overlap of olivine and pyroxene spectral signatures will make olivine difficult to detect. Different spectral parameters have been used to map olivine on extraterrestrial bodies, and here we discuss the different approaches used, and develop new ones specifically for Vesta. Our new methods are based on combinations of the spectral parameters relative to the 1 and 2 micron bands (the most prominent spectral features of Vesta surface in the visible and the infrared), such as band center locations, band depths, band areas, band area ratios. Before the direct application to the VIR data, the efficiency of each approach is evaluated by means of analysis of laboratory spectra of HED meteorites, pyroxenes, olivines

  4. Signature extension studies

    NASA Technical Reports Server (NTRS)

    Vincent, R. K.; Thomas, G. S.; Nalepka, R. F.

    1974-01-01

    The importance of specific spectral regions to signature extension is explored. In the recent past, the signature extension task was focused on the development of new techniques. Tested techniques are now used to investigate this spectral aspect of the large area survey. Sets of channels were sought which, for a given technique, were the least affected by several sources of variation over four data sets and yet provided good object class separation on each individual data set. Using sets of channels determined as part of this study, signature extension was accomplished between data sets collected over a six-day period and over a range of about 400 kilometers.

  5. A Detailed Far-ultraviolet Spectral Atlas of O-type Stars

    NASA Astrophysics Data System (ADS)

    Smith, Myron A.

    2012-10-01

    In this paper, we present a spectral atlas covering the wavelength interval 930-1188 Å for O2-O9.5 stars using Far-Ultraviolet Spectroscopic Explorer archival data. The stars selected for the atlas were drawn from three populations: Galactic main-sequence (classes III-V) stars, supergiants, and main-sequence stars in the Magellanic Clouds, which have low metallicities. For several of these stars, we have prepared FITS files comprised of pairs of merged spectra for user access via the Multimission Archive at Space Telescope (MAST). We chose spectra from the first population with spectral types O4, O5, O6, O7, O8, and O9.5 and used them to compile tables and figures with identifications of all possible atmospheric and interstellar medium lines in the region 949-1188 Å. Our identified line totals for these six representative spectra are 821 (500), 992 (663), 1077 (749), 1178 (847), 1359 (1001), and 1798 (1392) lines, respectively, where the numbers in parentheses are the totals of lines formed in the atmospheres, according to spectral synthesis models. The total number of unique atmospheric identifications for the six main-sequence O-star template spectra is 1792, whereas the number of atmospheric lines in common to these spectra is 300. The number of identified lines decreases toward earlier types (increasing effective temperature), while the percentages of "missed" features (unknown lines not predicted from our spectral syntheses) drop from a high of 8% at type B0.2, from our recently published B-star far-UV atlas, to 1%-3% for type O spectra. The percentages of overpredicted lines are similar, despite their being much higher for B-star spectra. We discuss the statistics of line populations among the various elemental ionization states. Also, as an aid to users we list those isolated lines that can be used to determine stellar temperatures and the presence of possible chemical anomalies. Finally, we have prepared FITS files that give pairs of merged spectra for

  6. Study of air pollutant signatures for remote sensing. [of the spectral reflectivity of leaves

    NASA Technical Reports Server (NTRS)

    Nowak, W. B.

    1974-01-01

    Experimental results are presented for a possible new, indirect signature for air pollutants: the spectral reflectivity of plant leaves. Sub-visual changes (up to 160%) in the spectral reflectivity of bean and tobacco leaves were observed over the range 475nm to 750nm in response to SO2 exposures such as 2ppm/4hrs or 4ppm/16hrs, or to O3 exposures such as 90pphm/21hrs or 7.5pphm/292hrs. Such changes might be observed from a satellite using either laser or sunlight as the illumination source. Inasmuch as the plants appear to become acclimated to some of these exposure doses, environmental changes may be most important for this type of plant-response.

  7. Spectral Signature of Radiative Forcing by East Asian Dust-Soot Mixture

    NASA Astrophysics Data System (ADS)

    Zhu, A.; Ramanathan, V.

    2007-12-01

    The Pacific Dust Experiment (PACDEX) provides the first detailed sampling of dust-soot mixtures from the western Pacific to the eastern Pacific Ocean. The data includes down and up spectral irradiance, mixing state of dust and soot, and other aerosol properties. This study attempts to simulate the radiative forcing by dust-soot mixtures during the experimental period. The MODTRAN band model was employed to investigate the spectral signatures of solar irradiance change induced by aerosols at moderate spectral resolutions. For the short wave band (300-1100nm) used in this study, the reduction of downward irradiance at surface by aerosols greatly enhances with increasing wavelength in the UV band (300-400nm), reaches a maximum in the blue band, then gradually decreases toward the red band. In the near-IR band (700-1100nm), irradiance reduction by aerosols shows great fluctuations in the band with center wavelength at around 940nm, 820nm, 720nm, 760nm, 690nm, where the aerosol effect is overwhelmed by the water vapor and O2 absorptions. The spectral pattern of irradiance reduction varies for different aerosol species. The maximum reduction lies at around 450nm for soot, and shifting to about 490nm for East Asian mineral dust. It's worth noting that although soot aerosols reduce more irradiance than East Asian dust in the UV and blue band, the impact of dust to the irradiance exceeds that by soot at the longer wavelength band (i.e. around 550nm). The reduction of irradiance by East Asian dust (soot) in the UV band, visible band, and near-IR accounts for about 6% (10%), 56% (64%), and 38% (26%) of total irradiance reduction. As large amount of soot aerosols are involved during the long range transport of East Asian dust, the optical properties of dust aerosols are modified with different mixing state with soot, the spectral pattern of the irradiance reduction will be changed. The study of aerosol forcing at moderate spectral resolutions has the potential application for

  8. Satellite propulsion spectral signature detection and analysis through Hall effect thruster plume and atmospheric modeling

    NASA Astrophysics Data System (ADS)

    Wheeler, Pamela; Cobb, Richard; Hartsfield, Carl; Prince, Benjamin

    2016-09-01

    Space Situational Awareness (SSA) is of utmost importance in today's congested and contested space environment. Satellites must perform orbital corrections for station keeping, devices like high efficiency electric propulsion systems such as a Hall effect thrusters (HETs) to accomplish this are on the rise. The health of this system is extremely important to ensure the satellite can maintain proper position and perform its intended mission. Electron temperature is a commonly used diagnostic to determine the efficiency of a hall thruster. Recent papers have coordinated near infrared (NIR) spectral measurements of emission lines in xenon and krypton to electron temperature measurements. Ground based observations of these spectral lines could allow the health of the thruster to be determined while the satellite is in operation. Another issue worth considering is the availability of SSA assets for ground-based observations. The current SSA architecture is limited and task saturated. If smaller telescopes, like those at universities, could successfully detect these signatures they could augment data collection for the SSA network. To facilitate this, precise atmospheric modeling must be used to pull out the signature. Within the atmosphere, the NIR has a higher transmission ratio and typical HET propellants are approximately 3x the intensity in the NIR versus the visible spectrum making it ideal for ground based observations. The proposed research will focus on developing a model to determine xenon and krypton signatures through the atmosphere and estimate the efficacy through ground-based observations. The model will take power modes, orbit geometries, and satellite altitudes into consideration and be correlated with lab and field observations.

  9. NASA AVIRIS Map shows Spectral Signature of 2013 Rim Fire

    NASA Image and Video Library

    2015-04-09

    At left, a NASA AVIRIS map shows the spectral signature of the 2013 Rim fire in and near Yosemite National Park, California, the third largest in the state's history, burning more than 250,000 acres. Almost two years later, forest restoration efforts are still ongoing. Charred wood has a strong signal in the wavelengths shown here in red, so areas that are predominantly red in the image were heavily burned. The wavelengths of green, visible light (the color of vegetation) appear on this map as blue. There are no solid blue patches on the map because no large areas of green, living foliage survived the fire. Purple, a mixture of red and blue, indicates an area where charred wood and living plants are mingled. This image provides far more information about the state of the post-fire vegetation than the view on the right, which is what an observer flying overhead would see. AVIRIS is a unique NASA science instrument that measures the complete solar reflected portion of the electromagnetic spectrum with unmatched spectral range, calibration accuracy and signal-to-noise ratio. AVIRIS spectra are measured from 370 to 2,500 nanometers at 9.8-nanometer intervals. Images are acquired with 20-, 6- or 4-meter (66-, 20, or 13-feet) spatial resolution with a 34 degree swath. Up to 100 million spectra are measured in image format on each flight. The spectral image measurements are provided in orthorectified (geometrically corrected) format for direct use by scientists. http://photojournal.jpl.nasa.gov/catalog/PIA19361

  10. Complementary shifts in photoreceptor spectral tuning unlock the full adaptive potential of ultraviolet vision in birds

    PubMed Central

    Toomey, Matthew B; Lind, Olle; Frederiksen, Rikard; Curley, Robert W; Riedl, Ken M; Wilby, David; Schwartz, Steven J; Witt, Christopher C; Harrison, Earl H; Roberts, Nicholas W; Vorobyev, Misha; McGraw, Kevin J; Cornwall, M Carter; Kelber, Almut; Corbo, Joseph C

    2016-01-01

    Color vision in birds is mediated by four types of cone photoreceptors whose maximal sensitivities (λmax) are evenly spaced across the light spectrum. In the course of avian evolution, the λmax of the most shortwave-sensitive cone, SWS1, has switched between violet (λmax > 400 nm) and ultraviolet (λmax < 380 nm) multiple times. This shift of the SWS1 opsin is accompanied by a corresponding short-wavelength shift in the spectrally adjacent SWS2 cone. Here, we show that SWS2 cone spectral tuning is mediated by modulating the ratio of two apocarotenoids, galloxanthin and 11’,12’-dihydrogalloxanthin, which act as intracellular spectral filters in this cell type. We propose an enzymatic pathway that mediates the differential production of these apocarotenoids in the avian retina, and we use color vision modeling to demonstrate how correlated evolution of spectral tuning is necessary to achieve even sampling of the light spectrum and thereby maintain near-optimal color discrimination. DOI: http://dx.doi.org/10.7554/eLife.15675.001 PMID:27402384

  11. Nonlinear spectral imaging of biological tissues

    NASA Astrophysics Data System (ADS)

    Palero, J. A.

    2007-07-01

    The work presented in this thesis demonstrates live high resolution 3D imaging of tissue in its native state and environment. The nonlinear interaction between focussed femtosecond light pulses and the biological tissue results in the emission of natural autofluorescence and second-harmonic signal. Because biological intrinsic emission is generally very weak and extends from the ultraviolet to the visible spectral range, a broad-spectral range and high sensitivity 3D spectral imaging system is developed. Imaging the spectral characteristics of the biological intrinsic emission reveals the structure and biochemistry of the cells and extra-cellular components. By using different methods in visualizing the spectral images, discrimination between different tissue structures is achieved without the use of any stain or fluorescent label. For instance, RGB real color spectral images of the intrinsic emission of mouse skin tissues show blue cells, green hair follicles, and purple collagen fibers. The color signature of each tissue component is directly related to its characteristic emission spectrum. The results of this study show that skin tissue nonlinear intrinsic emission is mainly due to the autofluorescence of reduced nicotinamide adenine dinucleotide (phosphate), flavins, keratin, melanin, phospholipids, elastin and collagen and nonlinear Raman scattering and second-harmonic generation in Type I collagen. In vivo time-lapse spectral imaging is implemented to study metabolic changes in epidermal cells in tissues. Optical scattering in tissues, a key factor in determining the maximum achievable imaging depth, is also investigated in this work.

  12. Non-invasive, Contrast-enhanced Spectral Imaging of Breast Cancer Signatures in Preclinical Animal Models In vivo

    PubMed Central

    Ramanujan, V Krishnan; Ren, Songyang; Park, Sangyong; Farkas, Daniel L

    2011-01-01

    We report here a non-invasive multispectral imaging platform for monitoring spectral reflectance and fluorescence images from primary breast carcinoma and metastatic lymph nodes in preclinical rat model in vivo. The system is built around a monochromator light source and an acousto-optic tunable filter (AOTF) for spectral selection. Quantitative analysis of the measured reflectance profiles in the presence of a widely-used lymphazurin dye clearly demonstrates the capability of the proposed imaging platform to detect tumor-associated spectral signatures in the primary tumors as well as metastatic lymphatics. Tumor-associated changes in vascular oxygenation and interstitial fluid pressure are reasoned to be the physiological sources of the measured reflectance profiles. We also discuss the translational potential of our imaging platform in intra-operative clinical setting. PMID:21572915

  13. Ultraviolet spectral variations of symbiotic nova PU Vul during and after second eclipse

    NASA Astrophysics Data System (ADS)

    Sanad, M. R.

    2016-12-01

    I have analyzed spectral data of the symbiotic nova PU Vul observed with the International Ultraviolet Explorer (IUE) during the period 1993-1996. The study concentrated on the two sources of nebular emitting regions, the first is a nebula around the white dwarf partially eclipsed by a cool giant star and the second is a very extended nebular region not affected by the eclipse of the giant star. I concentrated on the N IV] 1486 Å and C IV 1550 Å emission lines produced in the first region and N III] 1750 Å and C III] 1909 Å emission lines produced in the second region very far from the giant star.

  14. Ultraviolet and optical spectral morphology of Melnick 42 and Radcliffe 136a in 30 Doradus

    NASA Technical Reports Server (NTRS)

    Walborn, Nolan R.; Ebbets, Dennis C.; Parker, Joel WM.; Nichols-Bohlin, Joy; White, Richard L.

    1992-01-01

    HST/GHRS ultraviolet spectrograms of the individual O3 If*/WN6-A object Mk 42 in 30 Dor and the adjacent, central multiple system R136a are compared with each other and with an appropriate sequence of O3 If* and WN6-A standards from the IUE archive. The analogous spectral montages covering the blue-violet regino, based on new, homogeneous, digital observations of the same stars with the CTIO 4 m telescope, are also presented. These comparisons show clearly the intermediate O3/WN nature of the Mk 42 spectrum, in terms of both emission-line strength (increasing with envelope density) and stellar-wind velocity (decreasing with envelope density). It is also shown that R136a possesses stronger WN spectral characteristics than Mk 42, in agreement with HST narrow-band imaging by the WF/PC Team.

  15. Comprehensive study of solid pharmaceutical tablets in visible, near infrared (NIR), and longwave infrared (LWIR) spectral regions using a rapid simultaneous ultraviolet/visible/NIR (UVN) + LWIR laser-induced breakdown spectroscopy linear arrays detection system and a fast acousto-optic tunable filter NIR spectrometer.

    PubMed

    Yang, Clayton S C; Jin, Feng; Swaminathan, Siva R; Patel, Sita; Ramer, Evan D; Trivedi, Sudhir B; Brown, Ei E; Hommerich, Uwe; Samuels, Alan C

    2017-10-30

    This is the first report of a simultaneous ultraviolet/visible/NIR and longwave infrared laser-induced breakdown spectroscopy (UVN + LWIR LIBS) measurement. In our attempt to study the feasibility of combining the newly developed rapid LWIR LIBS linear array detection system to existing rapid analytical techniques for a wide range of chemical analysis applications, two different solid pharmaceutical tablets, Tylenol arthritis pain and Bufferin, were studied using both a recently designed simultaneous UVN + LWIR LIBS detection system and a fast AOTF NIR (1200 to 2200 nm) spectrometer. Every simultaneous UVN + LWIR LIBS emission spectrum in this work was initiated by one single laser pulse-induced micro-plasma in the ambient air atmosphere. Distinct atomic and molecular LIBS emission signatures of the target compounds measured simultaneously in UVN (200 to 1100 nm) and LWIR (5.6 to 10 µm) spectral regions are readily detected and identified without the need to employ complex data processing. In depth profiling studies of these two pharmaceutical tablets without any sample preparation, one can easily monitor the transition of the dominant LWIR emission signatures from coating ingredients gradually to the pharmaceutical ingredients underneath the coating. The observed LWIR LIBS emission signatures provide complementary molecular information to the UVN LIBS signatures, thus adding robustness to identification procedures. LIBS techniques are more surface specific while NIR spectroscopy has the capability to probe more bulk materials with its greater penetration depth. Both UVN + LWIR LIBS and NIR absorption spectroscopy have shown the capabilities of acquiring useful target analyte spectral signatures in comparable short time scales. The addition of a rapid LWIR spectroscopic probe to these widely used optical analytical methods, such as NIR spectroscopy and UVN LIBS, may greatly enhance the capability and accuracy of the combined system for a comprehensive analysis.

  16. GAMA/H-ATLAS: the ultraviolet spectral slope and obscuration in galaxies

    NASA Astrophysics Data System (ADS)

    Wijesinghe, D. B.; da Cunha, E.; Hopkins, A. M.; Dunne, L.; Sharp, R.; Gunawardhana, M.; Brough, S.; Sadler, E. M.; Driver, S.; Baldry, I.; Bamford, S.; Liske, J.; Loveday, J.; Norberg, P.; Peacock, J.; Popescu, C. C.; Tuffs, R.; Andrae, E.; Auld, R.; Baes, M.; Bland-Hawthorn, J.; Buttiglione, S.; Cava, A.; Cameron, E.; Conselice, C. J.; Cooray, A.; Croom, S.; Dariush, A.; Dezotti, G.; Dye, S.; Eales, S.; Frenk, C.; Fritz, J.; Hill, D.; Hopwood, R.; Ibar, E.; Ivison, R.; Jarvis, M.; Jones, D. H.; van Kampen, E.; Kelvin, L.; Kuijken, K.; Maddox, S. J.; Madore, B.; Michałowski, M. J.; Nichol, B.; Parkinson, H.; Pascale, E.; Pimbblet, K. A.; Pohlen, M.; Prescott, M.; Rhodighiero, G.; Robotham, A. S. G.; Rigby, E. E.; Seibert, M.; Sergeant, S.; Smith, D. J. B.; Temi, P.; Sutherland, W.; Taylor, E.; Thomas, D.; van der Werf, P.

    2011-08-01

    We use multiwavelength data from the Galaxy And Mass Assembly (GAMA) and Herschel-ATLAS (H-ATLAS) surveys to compare the relationship between various dust obscuration measures in galaxies. We explore the connections between the ultraviolet (UV) spectral slope, β, the Balmer decrement and the far-infrared (FIR) to 150 nm far-ultraviolet (FUV) luminosity ratio. We explore trends with galaxy mass, star formation rate (SFR) and redshift in order to identify possible systematics in these various measures. We reiterate the finding of other authors that there is a large scatter between the Balmer decrement and the β parameter, and that β may be poorly constrained when derived from only two broad passbands in the UV. We also emphasize that FUV-derived SFRs, corrected for dust obscuration using β, will be overestimated unless a modified relation between β and the attenuation factor is used. Even in the optimum case, the resulting SFRs have a significant scatter, well over an order of magnitude. While there is a stronger correlation between the IR-to-FUV luminosity ratio and β parameter than with the Balmer decrement, neither of these correlations are particularly tight, and dust corrections based on β for high-redshift galaxy SFRs must be treated with caution. We conclude with a description of the extent to which the different obscuration measures are consistent with each other as well as the effects of including other galactic properties on these correlations.

  17. Avalanche multiplication in AlGaN-based heterostructures for the ultraviolet spectral range

    NASA Astrophysics Data System (ADS)

    Hahn, L.; Fuchs, F.; Kirste, L.; Driad, R.; Rutz, F.; Passow, T.; Köhler, K.; Rehm, R.; Ambacher, O.

    2018-04-01

    AlxGa1-xN based avalanche photodiodes grown on sapphire substrate with Al-contents of x = 0.65 and x = 0.60 have been examined under back- and frontside illumination with respect to their avalanche gain properties. The photodetectors suitable for the solar-blind ultraviolet spectral regime show avalanche gain for voltages in excess of 30 V reverse bias in the linear gain mode. Devices with a mesa diameter of 100 μm exhibit stable avalanche gain below the break through threshold voltage, exceeding a multiplication gain of 5500 at 84 V reverse bias. A dark current below 1 pA can be found for reverse voltages up to 60 V.

  18. Investigation of ultraviolet fluxes of normal and peculiar stars

    NASA Technical Reports Server (NTRS)

    Deutschman, W. A.; Schild, R. E.

    1974-01-01

    Data from Project Celescope, a program that photographed the ultraviolet sky, in order to study several problems in current astrophysics are analyzed. Two star clusters, the Pleiades and the Hyades, reveal differences between the two that we are unable to explain simply from their differences in chemical abundance, rotation, or reddening. Data for Orion show large scatter, which appears to be in the sense that the Orion stars are too faint for their ground-based photometry. Similarly, many supergiants in the association Sco OB1 are too faint in the ultraviolet, but the ultraviolet brightness appears to be only poorly correlated with spectral type. Ultraviolet Celescope data for several groups of peculiar stars have also been analyzed. The strong He I stars are too faint in the ultraviolet, possibly owing to enhancement of O II continuous opacity due to oxygen overabundance. The Be stars appear to have ultraviolet colors normal for their MK spectral types. The P Cygni stars are considerably fainter than main-sequence stars of comparable spectral type, probably owing, at least in part, to line blocking by resonance lines of multiply ionized light metals. The Wolf-Rayet stars have ultraviolet color temperatures of O stars.

  19. Field Studies of Broadband Aerosol Optical Extinction in the Ultraviolet Spectral Region

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A.; Brock, C. A.; Brown, S. S.

    2013-12-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross sections and complex refractive indices. In the case of brown carbon, its wavelength-dependent absorption in the ultraviolet spectral region has been suggested as an important component of aerosol radiative forcing. We describe a new field instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We deployed this instrument during the Fire Lab at Missoula Experiment during Fall 2012 to measure biomass burning aerosol, and again during the Southern Oxidant and Aerosol Study in summer 2013 to measure organic aerosol in the Southeastern U.S. In both field experiments, we determined aerosol optical extinction as a function of wavelength and can interpret this together with size distribution and composition measurements to characterize the aerosol optical properties and radiative forcing.

  20. Signature extraction of ocean pollutants by eigenvector transformation of remote spectra

    NASA Technical Reports Server (NTRS)

    Grew, G. W.

    1978-01-01

    Spectral signatures of suspended matter in the ocean are being extracted through characteristic vector analysis of remote ocean color data collected with MOCS (Multichannel Ocean Color Sensor). Spectral signatures appear to be obtainable through analyses of 'linear' clusters that appear on scatter diagrams associated with eigenvectors. Signatures associated with acid waste, sewage sludge, oil, and algae are presented. The application of vector analysis to two acid waste dumps overflown two years apart is examined in some detail. The relationships between eigenvectors and spectral signatures for these examples are analyzed. These cases demonstrate the value of characteristic vector analysis in remotely identifying pollutants in the ocean and in determining the consistency of their spectral signatures.

  1. Integrated ray tracing simulation of annual variation of spectral bio-signatures from cloud free 3D optical Earth model

    NASA Astrophysics Data System (ADS)

    Ryu, Dongok; Kim, Sug-Whan; Kim, Dae Wook; Lee, Jae-Min; Lee, Hanshin; Park, Won Hyun; Seong, Sehyun; Ham, Sun-Jeong

    2010-09-01

    Understanding the Earth spectral bio-signatures provides an important reference datum for accurate de-convolution of collapsed spectral signals from potential earth-like planets of other star systems. This study presents a new ray tracing computation method including an improved 3D optical earth model constructed with the coastal line and vegetation distribution data from the Global Ecological Zone (GEZ) map. Using non-Lambertian bidirectional scattering distribution function (BSDF) models, the input earth surface model is characterized with three different scattering properties and their annual variations depending on monthly changes in vegetation distribution, sea ice coverage and illumination angle. The input atmosphere model consists of one layer with Rayleigh scattering model from the sea level to 100 km in altitude and its radiative transfer characteristics is computed for four seasons using the SMART codes. The ocean scattering model is a combination of sun-glint scattering and Lambertian scattering models. The land surface scattering is defined with the semi empirical parametric kernel method used for MODIS and POLDER missions. These three component models were integrated into the final Earth model that was then incorporated into the in-house built integrated ray tracing (IRT) model capable of computing both spectral imaging and radiative transfer performance of a hypothetical space instrument as it observes the Earth from its designated orbit. The IRT model simulation inputs include variation in earth orientation, illuminated phases, and seasonal sea ice and vegetation distribution. The trial simulation runs result in the annual variations in phase dependent disk averaged spectra (DAS) and its associated bio-signatures such as NDVI. The full computational details are presented together with the resulting annual variation in DAS and its associated bio-signatures.

  2. Studies on Ammonia Spectral Signatures Relevant to Jupiter's Clouds

    NASA Astrophysics Data System (ADS)

    Kalogerakis, Konstantinos S.; Oza, A. U.; Marschall, J.; Wong, M. H.

    2006-09-01

    Observational evidence and thermochemical models indicate an abundance of ammonia ice clouds in Jupiter's atmosphere. However, spectrally identifiable ammonia ice clouds are found covering less than 1% of Jupiter's atmosphere, notably in turbulent areas [1,2]. Current literature suggests two possible explanations: coating by a hydrocarbon haze and/or photochemical processing ("tanning") [2,3]. We are pursuing a research program investigating the above hypotheses. In the experiments, thin films of ammonia ices are deposited in a cryogenic apparatus, coated with hydrocarbons, and characterized by infrared spectroscopy. The ice films can be irradiated by ultraviolet light to study their photochemistry. The spectroscopic measurements aim to identify the processes that control the optical properties of the ice mixtures and quantify their dependence on the identity of the coating, the temperature, and the ice composition. We have observed a consistent suppression of the ammonia absorption feature at 3 μm with coverage by thin layers of hydrocarbons. Modeling calculations of the multi-layer thin films assist in the interpretation of the experimental results and reveal the role of optical interference in masking the aforementioned ammonia spectral feature. The implications of these results for Jupiter's atmosphere will be discussed. Funding from the NSF Planetary Astronomy Program under grant AST-0206270 and from the NASA Outer Planets Research Program under grant NNG06GF37G is gratefully acknowledged. The participation of Anand Oza (Princeton University) was made possible by the NSF Research Experiences for Undergraduates Program under grant PHY-0353745. 1. S. K. Atreya, A.-S. Wong, K. H. Baines, M. H. Wong, T. C. Owen, Planet. Space Science 53, 498 (2005). 2. K. H. Baines, R. W. Carlson, and L. W. Kamp, Icarus 159, 74 (2002). 3. A.-S. Wong, Y. L. Yung, and A. J. Friedson, Geophys. Res. Lett. 30, 1447 (2003).

  3. Studies on Ammonia Spectral Signatures Relevant to Jupiter's Clouds

    NASA Astrophysics Data System (ADS)

    Oza, A. U.; Marschall, J.; Wong, M. H.; Kalogerakis, K. S.

    2006-12-01

    Observational evidence and thermochemical models indicate an abundance of ammonia ice clouds in Jupiter's atmosphere. However, spectrally identifiable ammonia ice clouds are found covering less than 1% of Jupiter's atmosphere, notably in turbulent areas [1,2]. Current literature suggests two possible explanations: coating by a hydrocarbon haze and/or photochemical processing ("tanning")[2,3]. We are pursuing a research program investigating the above hypotheses. In the experiments, thin films of ammonia ices are deposited in a cryogenic apparatus, coated with hydrocarbons, and characterized by infrared spectroscopy. The ice films can be irradiated by ultraviolet light to study their photochemistry. The spectroscopic measurements aim to identify the processes that control the optical properties of the ice mixtures and quantify their dependence on the identity of the coating, the temperature, and the ice composition. We have observed a consistent suppression of the ammonia absorption feature at 3 μm with coverage by thin layers of hydrocarbons. Modeling calculations of the multi-layer thin films assist in the interpretation of the experimental results and reveal the role of optical interference in masking the aforementioned ammonia spectral feature. The implications of these results for Jupiter's atmosphere will be discussed. Funding from the NSF Planetary Astronomy Program under grant AST-0206270 and from the NASA Outer Planets Research Program under grant NNG06GF37G is gratefully acknowledged. The participation of Anand Oza (Princeton University) was made possible by the NSF Research Experiences for Undergraduates Program under grant PHY-0353745. 1. S. K. Atreya, A.-S. Wong, K. H. Baines, M. H. Wong, T. C. Owen, Planet. Space Science 53, 498 (2005). 2. K. H. Baines, R. W. Carlson, and L. W. Kamp, Icarus 159, 74 (2002). 3. A.-S. Wong, Y. L. Yung, and A. J. Friedson, Geophys. Res. Lett. 30, 1447 (2003).

  4. Spectral mapping tools from the earth sciences applied to spectral microscopy data.

    PubMed

    Harris, A Thomas

    2006-08-01

    Spectral imaging, originating from the field of earth remote sensing, is a powerful tool that is being increasingly used in a wide variety of applications for material identification. Several workers have used techniques like linear spectral unmixing (LSU) to discriminate materials in images derived from spectral microscopy. However, many spectral analysis algorithms rely on assumptions that are often violated in microscopy applications. This study explores algorithms originally developed as improvements on early earth imaging techniques that can be easily translated for use with spectral microscopy. To best demonstrate the application of earth remote sensing spectral analysis tools to spectral microscopy data, earth imaging software was used to analyze data acquired with a Leica confocal microscope with mechanical spectral scanning. For this study, spectral training signatures (often referred to as endmembers) were selected with the ENVI (ITT Visual Information Solutions, Boulder, CO) "spectral hourglass" processing flow, a series of tools that use the spectrally over-determined nature of hyperspectral data to find the most spectrally pure (or spectrally unique) pixels within the data set. This set of endmember signatures was then used in the full range of mapping algorithms available in ENVI to determine locations, and in some cases subpixel abundances of endmembers. Mapping and abundance images showed a broad agreement between the spectral analysis algorithms, supported through visual assessment of output classification images and through statistical analysis of the distribution of pixels within each endmember class. The powerful spectral analysis algorithms available in COTS software, the result of decades of research in earth imaging, are easily translated to new sources of spectral data. Although the scale between earth imagery and spectral microscopy is radically different, the problem is the same: mapping material locations and abundances based on unique

  5. IRIS Ultraviolet Spectral Properties of a Sample of X-Class Solar Flares

    NASA Astrophysics Data System (ADS)

    Butler, Elizabeth; Kowalski, Adam; Cauzzi, Gianna; Allred, Joel C.; Daw, Adrian N.

    2018-06-01

    The white-light (near-ultraviolet (NUV) and optical) continuum emission comprises the majority of the radiated energy in solar flares. However, there are nearly as many explanations for the origin of the white-light continuum radiation as there are white-light flares that have been studied in detail with spectra. Furthermore, there are rarely robust constraints on the time-resolved dynamics in the white-light emitting flare layers. We are conducting a statistical study of the properties of Fe II lines, Mg II lines, and NUV continuum intensity in bright flare kernels observed by the Interface Region Imaging Spectrograph (IRIS), in order to provide comprehensive constraints for radiative-hydrodynamic flare models. Here we present a new technique for identifying bright flare kernels and preliminary relationships among IRIS spectral properties for a sample of X-class solar flares.

  6. Ultraviolet Spectroscopy of Asteroid(4) Vesta

    NASA Technical Reports Server (NTRS)

    Li, Jian-Yang; Bodewits, Dennis; Feaga, Lori M.; Landsman, Wayne; A'Hearn, Michael F.; Mutchler, Max J.; Russell, Christopher T.; McFadden, Lucy A.; Raymond, Carol A.

    2011-01-01

    We report a comprehensive review of the UV-visible spectrum and rotational lightcurve of Vesta combining new observations by Hubble Space Telescope and Swift with archival International Ultraviolet Explorer observations. The geometric albedos of Vesta from 220 nm to 953 nm arc derived by carefully comparing these observations from various instruments at different times and observing geometries. Vesta has a rotationally averaged geometric albedo of 0.09 at 250 nm, 0.14 at 300 nm, 0.26 at 373 nm, 0.38 at 673 nm, and 0.30 at 950 nm. The linear spectral slope in the ultraviolet displays a sharp minimum ncar sub-Earth longitude of 20deg, and maximum in the eastern hemisphere. This is completely consistent with the distribution of the spectral slope in the visible wavelength. The uncertainty of the measurement in the ultraviolet is approx.20%, and in the visible wavelengths better than 10%. The amplitude of Vesta's rotational lightcurves is approx.10% throughout the range of wavelengths we observed, but is smaller at 950 nm (approx.6%) ncar the 1-micron mafic band center. Contrary to earlier reports, we found no evidence for any difference between the phasing of the ultraviolet and visible/ncar-infrared lightcurves with respect to sub-Earth longitude. Vesta's average spectrum between 220 and 950 nm can well be described by measured reflectance spectra of fine particle howardite-like materials of basaltic achondrite meteorites. Combining this with the in-phase behavior of the ultraviolet, visible. and ncar-infrared lightcurves, and the spectral slopes with respect to the rotational phase, we conclude that there is no global ultraviolet/visible reversal on Vesta. Consequently, this implies lack of global space weathering on Vesta. Keyword,: Asteroid Vesta; Spectrophotometry; Spectroscopy; Ultraviolet observations; Hubble Space Telescope observations

  7. Broadband cavity enhanced spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A. R.; Flores, J. M.; Rudich, Y.; Brown, S. S.

    2015-09-01

    Formaldehyde (CH2O) is the most abundant aldehyde in the atmosphere, and strongly affects photochemistry through its photolysis. We describe simultaneous measurements of CH2O and nitrogen dioxide (NO2) using broadband cavity enhanced spectroscopy in the ultraviolet spectral region. The light source consists of a continuous-wave diode laser focused into a Xenon bulb to produce a plasma that emits high-intensity, broadband light. The plasma discharge is optically filtered and coupled into a 1 m optical cavity. The reflectivity of the cavity mirrors is 0.99933 ± 0.00003 (670 ppm loss) at 338 nm, as determined from the known Rayleigh scattering of He and zero air. This mirror reflectivity corresponds to an effective path length of 1.49 km within the 1 m cell. We measure the cavity output over the 315-350 nm spectral region using a grating monochromator and charge-coupled device (CCD) array detector. We use published reference spectra with spectral fitting software to simultaneously retrieve CH2O and NO2 concentrations. Independent measurements of NO2 standard additions by broadband cavity enhanced spectroscopy and cavity ringdown spectroscopy agree within 2 % (slope for linear fit = 0.98 ± 0.03 with r2 = 0.998). Standard additions of CH2O measured by broadband cavity enhanced spectroscopy and calculated based on flow dilution are also well-correlated, with r2 = 0.9998. During constant, mixed additions of NO2 and CH2O, the 30 s measurement precisions (1σ) of the current configuration were 140 and 210 pptv, respectively. The current 1-min detection limit for extinction measurements at 315-350 nm provides sufficient sensitivity for measurement of trace gases in laboratory experiments and ground-based field experiments. Additionally, the instrument provides highly accurate, spectroscopically-based trace gas detection that may complement higher precision techniques based on non-absolute detection methods. In addition to trace gases, this approach will be appropriate for

  8. Spectral analysis of the He-enriched sdO-star HD 127493

    NASA Astrophysics Data System (ADS)

    Dorsch, Matti; Latour, Marilyn; Heber, Ulrich

    2018-02-01

    The bright sdO star HD127493 is known to be of mixed H/He composition and excellent archival spectra covering both optical and ultraviolet ranges are available. UV spectra play a key role as they give access to many chemical species that do not show spectral lines in the optical, such as iron and nickel. This encouraged the quantitative spectral analysis of this prototypical mixed H/He composition sdO star. We determined atmospheric parameters for HD127493 in addition to the abundance of C, N, O, Si, S, Fe, and Ni in the atmosphere using non-LTE model atmospheres calculated with TLUSTY/SYNSPEC. A comparison between the parallax distance measured by Hipparcos and the derived spectroscopic distance indicate that the derived atmospheric parameters are realistic. From our metal abundance analysis, we find a strong CNO signature and enrichment in iron and nickel.

  9. Laboratory calibration of density-dependent lines in the extreme ultraviolet spectral region

    NASA Astrophysics Data System (ADS)

    Lepson, J. K.; Beiersdorfer, P.; Gu, M. F.; Desai, P.; Bitter, M.; Roquemore, L.; Reinke, M. L.

    2012-05-01

    We have been making spectral measurements in the extreme ultraviolet (EUV) from different laboratory sources in order to investigate the electron density dependence of various astrophysically important emission lines and to test the atomic models underlying the diagnostic line ratios. The measurement are being performed at the Livermore EBIT-I electron beam ion trap, the National Spherical Torus Experiment (NSTX) at Princeton, and the Alcator C-Mod tokamak at the Massachusetts Institute of Technology, which together span an electron density of four orders of magnitude and which allow us to test the various models at high and low density limits. Here we present measurements of Fe XXII and Ar XIV, which include new data from an ultra high resolution (λ/Δλ >4000) spectrometer at the EBIT-I facility. We found good agreement between the measurements and modeling calculations for Fe XXII, but poorer agreement for Ar XIV.

  10. Audio Tracking in Noisy Environments by Acoustic Map and Spectral Signature.

    PubMed

    Crocco, Marco; Martelli, Samuele; Trucco, Andrea; Zunino, Andrea; Murino, Vittorio

    2018-05-01

    A novel method is proposed for generic target tracking by audio measurements from a microphone array. To cope with noisy environments characterized by persistent and high energy interfering sources, a classification map (CM) based on spectral signatures is calculated by means of a machine learning algorithm. Next, the CM is combined with the acoustic map, describing the spatial distribution of sound energy, in order to obtain a cleaned joint map in which contributions from the disturbing sources are removed. A likelihood function is derived from this map and fed to a particle filter yielding the target location estimation on the acoustic image. The method is tested on two real environments, addressing both speaker and vehicle tracking. The comparison with a couple of trackers, relying on the acoustic map only, shows a sharp improvement in performance, paving the way to the application of audio tracking in real challenging environments.

  11. Spectral signatures of photosynthesis. I. Review of Earth organisms.

    PubMed

    Kiang, Nancy Y; Siefert, Janet; Govindjee; Blankenship, Robert E

    2007-02-01

    Why do plants reflect in the green and have a "red edge" in the red, and should extrasolar photosynthesis be the same? We provide (1) a brief review of how photosynthesis works, (2) an overview of the diversity of photosynthetic organisms, their light harvesting systems, and environmental ranges, (3) a synthesis of photosynthetic surface spectral signatures, and (4) evolutionary rationales for photosynthetic surface reflectance spectra with regard to utilization of photon energy and the planetary light environment. We found the "near-infrared (NIR) end" of the red edge to trend from blue-shifted to reddest for (in order) snow algae, temperate algae, lichens, mosses, aquatic plants, and finally terrestrial vascular plants. The red edge is weak or sloping in lichens. Purple bacteria exhibit possibly a sloping edge in the NIR. More studies are needed on pigment-protein complexes, membrane composition, and measurements of bacteria before firm conclusions can be drawn about the role of the NIR reflectance. Pigment absorbance features are strongly correlated with features of atmospheric spectral transmittance: P680 in Photosystem II with the peak surface incident photon flux density at approximately 685 nm, just before an oxygen band at 687.5 nm; the NIR end of the red edge with water absorbance bands and the oxygen A-band at 761 nm; and bacteriochlorophyll reaction center wavelengths with local maxima in atmospheric and water transmittance spectra. Given the surface incident photon flux density spectrum and resonance transfer in light harvesting, we propose some rules with regard to where photosynthetic pigments will peak in absorbance: (1) the wavelength of peak incident photon flux; (2) the longest available wavelength for core antenna or reaction center pigments; and (3) the shortest wavelengths within an atmospheric window for accessory pigments. That plants absorb less green light may not be an inefficient legacy of evolutionary history, but may actually satisfy

  12. Detecting of transient vibration signatures using an improved fast spatial-spectral ensemble kurtosis kurtogram and its applications to mechanical signature analysis of short duration data from rotating machinery

    NASA Astrophysics Data System (ADS)

    Chen, BinQiang; Zhang, ZhouSuo; Zi, YanYang; He, ZhengJia; Sun, Chuang

    2013-10-01

    Detecting transient vibration signatures is of vital importance for vibration-based condition monitoring and fault detection of the rotating machinery. However, raw mechanical signals collected by vibration sensors are generally mixtures of physical vibrations of the multiple mechanical components installed in the examined machinery. Fault-generated incipient vibration signatures masked by interfering contents are difficult to be identified. The fast kurtogram (FK) is a concise and smart gadget for characterizing these vibration features. The multi-rate filter-bank (MRFB) and the spectral kurtosis (SK) indicator of the FK are less powerful when strong interfering vibration contents exist, especially when the FK are applied to vibration signals of short duration. It is encountered that the impulsive interfering contents not authentically induced by mechanical faults complicate the optimal analyzing process and lead to incorrect choosing of the optimal analysis subband, therefore the original FK may leave out the essential fault signatures. To enhance the analyzing performance of FK for industrial applications, an improved version of fast kurtogram, named as "fast spatial-spectral ensemble kurtosis kurtogram", is presented. In the proposed technique, discrete quasi-analytic wavelet tight frame (QAWTF) expansion methods are incorporated as the detection filters. The QAWTF, constructed based on dual tree complex wavelet transform, possesses better vibration transient signature extracting ability and enhanced time-frequency localizability compared with conventional wavelet packet transforms (WPTs). Moreover, in the constructed QAWTF, a non-dyadic ensemble wavelet subband generating strategy is put forward to produce extra wavelet subbands that are capable of identifying fault features located in transition-band of WPT. On the other hand, an enhanced signal impulsiveness evaluating indicator, named "spatial-spectral ensemble kurtosis" (SSEK), is put forward and utilized

  13. Ultraviolet Views of Enceladus, Tethys, and Dione

    NASA Technical Reports Server (NTRS)

    Hansen, C. J.; Hendrix, A. R.

    2005-01-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) has collected ultraviolet observations of many of Saturn's icy moons since Cassini's insertion into orbit around Saturn. We will report on results from Enceladus, Tethys and Dione, orbiting in the Saturn system at distances of 3.95, 4.88 and 6.26 Saturn radii, respectively. Icy satellite science objectives of the UVIS include investigations of surface age and evolution, surface composition and chemistry, and tenuous exospheres. We address these objectives by producing albedo maps, and reflection and emission spectra, and observing stellar occultations. UVIS has four channels: EUV: Extreme Ultraviolet (55 nm to 110 nm), FUV: Far Ultraviolet (110 to 190 nm), HSP: High Speed Photometer, and HDAC: Hydrogen-Deuterium Absorption Cell. The EUV and FUV spectrographs image onto a 2-dimensional detector, with 64 spatial rows by 1024 spectral columns. To-date we have focused primarily on the far ultraviolet data acquired with the low resolution slit width (4.8 angstrom spectral resolution). Additional information is included in the original extended abstract.

  14. Mid-infrared, long wave infrared (4-12 μm) molecular emission signatures from pharmaceuticals using laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Yang, Clayton S-C; Brown, Ei E; Kumi-Barimah, Eric; Hommerich, Uwe H; Jin, Feng; Trivedi, Sudhir B; Samuels, Alan C; Snyder, A Peter

    2014-01-01

    In an effort to augment the atomic emission spectra of conventional laser-induced breakdown spectroscopy (LIBS) and to provide an increase in selectivity, mid-wave to long-wave infrared (IR), LIBS studies were performed on several organic pharmaceuticals. Laser-induced breakdown spectroscopy signature molecular emissions of target organic compounds are observed for the first time in the IR fingerprint spectral region between 4-12 μm. The IR emission spectra of select organic pharmaceuticals closely correlate with their respective standard Fourier transform infrared spectra. Intact and/or fragment sample molecular species evidently survive the LIBS event. The combination of atomic emission signatures derived from conventional ultraviolet-visible-near-infrared LIBS with fingerprints of intact molecular entities determined from IR LIBS promises to be a powerful tool for chemical detection.

  15. Vacuum ultraviolet and infrared spectra of condensed methyl acetate on cold astrochemical dust analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivaraman, B.; Nair, B. G.; Mason, N. J.

    2013-12-01

    Following the recent report of the first identification of methyl acetate (CH{sub 3}COOCH{sub 3}) in the interstellar medium (ISM), we have carried out vacuum ultraviolet (VUV) and infrared (IR) spectroscopy studies on methyl acetate from 10 K until sublimation in an ultrahigh vacuum chamber simulating astrochemical conditions. We present the first VUV and IR spectra of methyl acetate relevant to ISM conditions. Spectral signatures clearly showed molecular reorientation to have started in the ice by annealing the amorphous ice formed at 10 K. An irreversible phase change from amorphous to crystalline methyl acetate ice was found to occur between 110more » K and 120 K.« less

  16. Synthetic Spectral Analysis of the Far Ultraviolet Spectra of the Old Nova HR Del

    NASA Astrophysics Data System (ADS)

    Robertson, Jordan; Sion, E.

    2012-05-01

    We present a synthetic spectral analysis of the archival IUE far ultraviolet spectra of the post-nova, HR Del (Nova Del 1967). The system has an estimated white dwarf mass of 0.55 Msun (Ritter and Kolb 2003), orbital period P_orb = 0.214165 days, estimated orbital inclination of 40 degrees (Keurster 1988) and distance determinations in the literature ranging from 970 pc to 285 pc. The spectra reveal P Cygni profiles indicative of wind outflow from the disk and closely resemble the IUE spectra of UX UMa nova-likes, which have never had recorded outbursts. We de-reddened the archival IUE spectra using E(B-V) = 0.16. Our synthetic spectral analysis utilized optically thick, steady state accretion disk models and white dwarf model atmospheres that we constructed using TLUSTY and SYNSPEC (Hubeny 1988, Hubeny and Lanz (1995). Our input parameters were the white dwarf mass, inclination and a range of accretion rates for which we found the best-fitting model. We report the results of our model fitting and compare HR Del with other post-novae at comparable times past their nova outburst. This work was supported by NSF grant 0807892 to Villanova University

  17. Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A. R.; Flores, J. M.; Zarzana, K. J.; Rudich, Y.; Brown, S. S.

    2016-01-01

    Formaldehyde (CH2O) is the most abundant aldehyde in the atmosphere, and it strongly affects photochemistry through its photolysis. We describe simultaneous measurements of CH2O and nitrogen dioxide (NO2) using broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region. The light source consists of a continuous-wave diode laser focused into a Xenon bulb to produce a plasma that emits high-intensity, broadband light. The plasma discharge is optically filtered and coupled into a 1 m optical cavity. The reflectivity of the cavity mirrors is 0.99930 ± 0.00003 (1- reflectivity = 700 ppm loss) at 338 nm, as determined from the known Rayleigh scattering of He and zero air. This mirror reflectivity corresponds to an effective path length of 1.43 km within the 1 m cell. We measure the cavity output over the 315-350 nm spectral region using a grating monochromator and charge-coupled device array detector. We use published reference spectra with spectral fitting software to simultaneously retrieve CH2O and NO2 concentrations. Independent measurements of NO2 standard additions by broadband cavity-enhanced absorption spectroscopy and cavity ring-down spectroscopy agree within 2 % (slope for linear fit = 1.02 ± 0.03 with r2 = 0.998). Standard additions of CH2O measured by broadband cavity-enhanced absorption spectroscopy and calculated based on flow dilution are also well correlated, with r2 = 0.9998. During constant mixed additions of NO2 and CH2O, the 30 s measurement precisions (1σ) of the current configuration were 140 and 210 pptv, respectively. The current 1 min detection limit for extinction measurements at 315-350 nm provides sufficient sensitivity for measurement of trace gases in laboratory experiments and ground-based field experiments. Additionally, the instrument provides highly accurate, spectroscopically based trace gas detection that may complement higher precision techniques based on non

  18. Constraints on the temperature inhomogeneity in quasar accretion discs from the ultraviolet-optical spectral variability

    NASA Astrophysics Data System (ADS)

    Kokubo, Mitsuru

    2015-05-01

    The physical mechanisms of the quasar ultraviolet (UV)-optical variability are not well understood despite the long history of observations. Recently, Dexter & Agol presented a model of quasar UV-optical variability, which assumes large local temperature fluctuations in the quasar accretion discs. This inhomogeneous accretion disc model is claimed to describe not only the single-band variability amplitude, but also microlensing size constraints and the quasar composite spectral shape. In this work, we examine the validity of the inhomogeneous accretion disc model in the light of quasar UV-optical spectral variability by using five-band multi-epoch light curves for nearly 9 000 quasars in the Sloan Digital Sky Survey (SDSS) Stripe 82 region. By comparing the values of the intrinsic scatter σint of the two-band magnitude-magnitude plots for the SDSS quasar light curves and for the simulated light curves, we show that Dexter & Agol's inhomogeneous accretion disc model cannot explain the tight inter-band correlation often observed in the SDSS quasar light curves. This result leads us to conclude that the local temperature fluctuations in the accretion discs are not the main driver of the several years' UV-optical variability of quasars, and consequently, that the assumption that the quasar accretion discs have large localized temperature fluctuations is not preferred from the viewpoint of the UV-optical spectral variability.

  19. The standoff aerosol active signature testbed (SAAST) at MIT Lincoln Laboratory

    NASA Astrophysics Data System (ADS)

    Richardson, Jonathan M.; Aldridge, John C.

    2005-11-01

    Standoff LIDAR detection of BW agents depends on accurate knowledge of the infrared and ultraviolet optical elastic scatter (ES) and ultraviolet fluorescence (UVF) signatures of bio-agents and interferents. MIT Lincoln Laboratory has developed the Standoff Aerosol Active Signature Testbed (SAAST) for measuring ES cross sections from BW simulants and interferents at all angles including 180º (direct backscatter). Measurements of interest include the dependence of the ES and UVF signatures on several spore production parameters including growth medium, sporulation protocol, washing protocol, fluidizing additives, and degree of aggregation. Using SAAST, we have made measurements of the ES signature of Bacillus globigii (atropheaus, Bg) spores grown under different growth methods. We have also investigated one common interferent (Arizona Test Dust). Future samples will include pollen and diesel exhaust. This paper presents the details of the SAAST apparatus along with the results of recent measurements.

  20. Generating circularly polarized radiation in the extreme ultraviolet spectral range at the free-electron laser FLASH

    NASA Astrophysics Data System (ADS)

    von Korff Schmising, Clemens; Weder, David; Noll, Tino; Pfau, Bastian; Hennecke, Martin; Strüber, Christian; Radu, Ilie; Schneider, Michael; Staeck, Steffen; Günther, Christian M.; Lüning, Jan; Merhe, Alaa el dine; Buck, Jens; Hartmann, Gregor; Viefhaus, Jens; Treusch, Rolf; Eisebitt, Stefan

    2017-05-01

    A new device for polarization control at the free electron laser facility FLASH1 at DESY has been commissioned for user operation. The polarizer is based on phase retardation upon reflection off metallic mirrors. Its performance is characterized in three independent measurements and confirms the theoretical predictions of efficient and broadband generation of circularly polarized radiation in the extreme ultraviolet spectral range from 35 eV to 90 eV. The degree of circular polarization reaches up to 90% while maintaining high total transmission values exceeding 30%. The simple design of the device allows straightforward alignment for user operation and rapid switching between left and right circularly polarized radiation.

  1. Textural signatures for wetland vegetation

    NASA Technical Reports Server (NTRS)

    Whitman, R. I.; Marcellus, K. L.

    1973-01-01

    This investigation indicates that unique textural signatures do exist for specific wetland communities at certain times in the growing season. When photographs with the proper resolution are obtained, the textural features can identify the spectral features of the vegetation community seen with lower resolution mapping data. The development of a matrix of optimum textural signatures is the goal of this research. Seasonal variations of spectral and textural features are particularly important when performing a vegetations analysis of fresh water marshes. This matrix will aid in flight planning, since expected seasonal variations and resolution requirements can be established prior to a given flight mission.

  2. Venus' Spectral Signatures and the Potential for Life in the Clouds.

    PubMed

    Limaye, Sanjay S; Mogul, Rakesh; Smith, David J; Ansari, Arif H; Słowik, Grzegorz P; Vaishampayan, Parag

    2018-03-30

    The lower cloud layer of Venus (47.5-50.5 km) is an exceptional target for exploration due to the favorable conditions for microbial life, including moderate temperatures and pressures (∼60°C and 1 atm), and the presence of micron-sized sulfuric acid aerosols. Nearly a century after the ultraviolet (UV) contrasts of Venus' cloud layer were discovered with Earth-based photographs, the substances and mechanisms responsible for the changes in Venus' contrasts and albedo are still unknown. While current models include sulfur dioxide and iron chloride as the UV absorbers, the temporal and spatial changes in contrasts, and albedo, between 330 and 500 nm, remain to be fully explained. Within this context, we present a discussion regarding the potential for microorganisms to survive in Venus' lower clouds and contribute to the observed bulk spectra. In this article, we provide an overview of relevant Venus observations, compare the spectral and physical properties of Venus' clouds to terrestrial biological materials, review the potential for an iron- and sulfur-centered metabolism in the clouds, discuss conceivable mechanisms of transport from the surface toward a more habitable zone in the clouds, and identify spectral and biological experiments that could measure the habitability of Venus' clouds and terrestrial analogues. Together, our lines of reasoning suggest that particles in Venus' lower clouds contain sufficient mass balance to harbor microorganisms, water, and solutes, and potentially sufficient biomass to be detected by optical methods. As such, the comparisons presented in this article warrant further investigations into the prospect of biosignatures in Venus' clouds. Key Words: Venus-Clouds-Life-Habitability-Microorganism-Albedo-Spectroscopy-Biosignatures-Aerosol-Sulfuric Acid. Astrobiology 18, xxx-xxx.

  3. Post-analysis report on Chesapeake Bay data processing. [spectral analysis and recognition computer signature extension

    NASA Technical Reports Server (NTRS)

    Thomson, F.

    1972-01-01

    The additional processing performed on data collected over the Rhode River Test Site and Forestry Site in November 1970 is reported. The techniques and procedures used to obtain the processed results are described. Thermal data collected over three approximately parallel lines of the site were contoured, and the results color coded, for the purpose of delineating important scene constituents and to identify trees attacked by pine bark beetles. Contouring work and histogram preparation are reviewed and the important conclusions from the spectral analysis and recognition computer (SPARC) signature extension work are summarized. The SPARC setup and processing records are presented and recommendations are made for future data collection over the site.

  4. Spectral signatures of photosynthesis. II. Coevolution with other stars and the atmosphere on extrasolar worlds.

    PubMed

    Kiang, Nancy Y; Segura, Antígona; Tinetti, Giovanna; Govindjee; Blankenship, Robert E; Cohen, Martin; Siefert, Janet; Crisp, David; Meadows, Victoria S

    2007-02-01

    As photosynthesis on Earth produces the primary signatures of life that can be detected astronomically at the global scale, a strong focus of the search for extrasolar life will be photosynthesis, particularly photosynthesis that has evolved with a different parent star. We take previously simulated planetary atmospheric compositions for Earth-like planets around observed F2V and K2V, modeled M1V and M5V stars, and around the active M4.5V star AD Leo; our scenarios use Earth's atmospheric composition as well as very low O2 content in case anoxygenic photosynthesis dominates. With a line-by-line radiative transfer model, we calculate the incident spectral photon flux densities at the surface of the planet and under water. We identify bands of available photosynthetically relevant radiation and find that photosynthetic pigments on planets around F2V stars may peak in absorbance in the blue, K2V in the red-orange, and M stars in the near-infrared, in bands at 0.93-1.1 microm, 1.1-1.4 microm, 1.5-1.8 microm, and 1.8-2.5 microm. However, underwater organisms will be restricted to wavelengths shorter than 1.4 microm and more likely below 1.1 microm. M star planets without oxygenic photosynthesis will have photon fluxes above 1.6 microm curtailed by methane. Longer-wavelength, multi-photo-system series would reduce the quantum yield but could allow for oxygenic photosystems at longer wavelengths. A wavelength of 1.1 microm is a possible upper cutoff for electronic transitions versus only vibrational energy; however, this cutoff is not strict, since such energetics depend on molecular configuration. M star planets could be a half to a tenth as productive as Earth in the visible, but exceed Earth if useful photons extend to 1.1 microm for anoxygenic photosynthesis. Under water, organisms would still be able to survive ultraviolet flares from young M stars and acquire adequate light for growth.

  5. Spectral irradiance standard for the ultraviolet - The deuterium lamp

    NASA Technical Reports Server (NTRS)

    Saunders, R. D.; Ott, W. R.; Bridges, J. M.

    1978-01-01

    A set of deuterium lamps is calibrated as spectral irradiance standards in the 200-350-nm spectral region utilizing both a high accuracy tungsten spectral irradiance standard and a newly developed argon mini-arc spectral radiance standard. The method which enables a transfer from a spectral radiance to a spectral irradiance standard is described. The following characteristics of the deuterium lamp irradiance standard are determined: sensitivity to alignment; dependence on input power and solid angle; reproducibility; and stability. The absolute spectral radiance is also measured in the 167-330-nm region. Based upon these measurements, values of the spectral irradiance below 200 nm are obtained through extrapolation.

  6. The gaseous debris disk of the white dwarf SDSS J1228+1040. HST/COS search for far-ultraviolet signatures

    NASA Astrophysics Data System (ADS)

    Hartmann, S.; Nagel, T.; Rauch, T.; Werner, K.

    2016-09-01

    Context. Gaseous and dust debris disks around white dwarfs (WDs) are formed from tidally disrupted planetary bodies. This offers an opportunity to determine the composition of exoplanetary material by measuring element abundances in the accreting WD's atmosphere. A more direct way to do this is through spectral analysis of the disks themselves. Aims: Currently, the number of chemical elements detected through disk emission-lines is smaller than that of species detected through lines in the WD atmospheres. We assess the far-ultraviolet (FUV) spectrum of one well-studied object (SDSS J122859.93+104032.9) to search for disk signatures at wavelengths < 1050 Å, where the broad absorption lines of the Lyman series effectively block the WD photospheric flux. In addition, we investigate the Ca II infrared triplet (IRT) line profiles to constrain disk geometry and composition. Methods: We performed FUV observations (950-1240 Å) with the Hubble Space Telescope/Cosmic Origins Spectrograph and used archival optical spectra. We compared them with non-local thermodynamic equilibrium model spectra. Results: No disk emission-lines were detected in the FUV spectrum, indicating that the disk effective temperature is Teff ≈ 5000 K. The long-time variability of the Ca II IRT was reproduced with a precessing disk model of bulk Earth-like composition, having a surface mass density of 0.3 g cm-2 and an extension from 55 to 90 WD radii. The disk has a spiral shape that precesses with a period of approximately 37 years, confirming previous results. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26666.

  7. LWIR signature from EXCEDE SPECTRAL

    NASA Astrophysics Data System (ADS)

    Bien, F.

    1984-03-01

    EXCEDE/SPECTRAL was launched from Poker Flat Research Range, Alaska, on 19 October 1979. This report presents selected LWIR data obtained both during electron gun operation and non-operation. It presents a simplified outgassing model and discusses CO2(v2) emissions measured.

  8. Spectral observations of the extreme ultraviolet background.

    PubMed

    Labov, S E; Bowyer, S

    1991-04-20

    A grazing incidence spectrometer was designed to measure the diffuse extreme ultraviolet background. It was flown on a sounding rocket, and data were obtained on the diffuse background between 80 and 650 angstroms. These are the first spectral measurements of this background below 520 angstroms. Several emission features were detected, including interplanetary He I 584 angstroms emission and geocoronal He II 304 angstroms emission. Other features observed may originate in a hot ionized interstellar gas, but if this interpretation is correct, gas at several different temperatures is present. The strongest of these features is consistent with O V emission at 630 angstroms. This emission, when combined with upper limits for other lines, restricts the temperature of this component to 5.5 < log T < 5.7, in agreement with temperatures derived from O VI absorption studies. A power-law distribution of temperatures is consistent with this feature only if the power-law coefficient is negative, as is predicted for saturated evaporation of clouds in a hot medium. In this case, the O VI absorption data confine the filling factor of the emission of f < or = 4% and the pressure to more than 3.7 x 10(4) cm-3 K, substantially above ambient interstellar pressure. Such a pressure enhancement has been predicted for clouds undergoing saturated evaporation. Alternatively, if the O V emission covers a considerable fraction of the sky, it would be a major source of ionization. A feature centered at about 99 angstroms is well fitted by a cluster of Fe XVIII and Fe XIX lines from gas at log T = 6.6-6.8. These results are consistent with previous soft X-ray observations with low-resolution detectors. A feature found near 178 angstroms is consistent with Fe X and Fe XI emission from gas at log T = 6; this result is consistent with results from experiments employing broad-band soft X-ray detectors.

  9. Ultraviolet reflectance spectroscopy measurements of carbonaceous meteorites and planetary analog materials

    NASA Astrophysics Data System (ADS)

    Hibbitts, Charles A.; Stockstill-Cahill, Karen; Takir, Driss

    2017-10-01

    The compositions of airless solar system objects tell us about the origin and evolutionary processes that are responsible for the current state of our solar system and that shape our environment. Spectral reflectance measurements in the ultraviolet are being used more frequently for providing compositional information of airless solid surfaces. Most minerals absorb in the UV making studying surface composition both informative but also challenging [e.g. 1]. The UV region is sensitive to atomic and molecular electronic absorptions such as the ligand-metal charge transfer band that is present in oxides and silicates and the conduction band at vacuum UV wavelengths. At the JHU-APL, bidirectional UV reflectance measurements are obtained under vacuum using a McPherson monochrometer with a PMT detector to achieve measurements over the range from ~ 140 nm to ~ 570 nm. Sample temperature can also be controlled from ~ 100K to ~ 600K, which enables the exploring the interaction of water ice and other volatiles with refractory samples. We have measured the UV spectra of many carbonaceous chondrites, including Mokoia, Vigarano, Warrenton, Orgueil, SaU290, and Essebi. In addition to being dark, some also possess on OMCT band. We have also obtained IR measurement of these meteorites to explore possible correlations between their UV and IR spectral signatures. In addition, we have also measured the UV spectra of low water content lunar analog glasses and have found a correlation between the spectral nature of the OMCT band and the abundance of iron [3]. Also, the spectral signature of mineralic and adsorbed water in the UV has been investigated. While water-ice has a known strong absorption feature near 180 nm (e.g. 4], adsorbed molecular and disassociatively adsorbed OH appear to not be optically active in this spectral region [5]. References: [1] Wagner et al. (1987) Icarus, 69, 14-28.1987; [2] Cloutis et al. (2008) Icarus, 197, 321-347; [3] Greenspon et al. (2012), 43rd LPSC

  10. The stellar content of 30 doradus derived from spatially integrated ultraviolet spectra: A test of spectral synthesis models

    NASA Technical Reports Server (NTRS)

    Vacca, William D.; Robert, Carmelle; Leitherer, Claus; Conti, Peter S.

    1995-01-01

    Using the IUE satellite, we have obtained spatially integrated ultraviolet spectra of three areas within the giant H II region 30 Dor in the Large Magellanic Cloud. The spectra correspond to spatial reginswith sizes of 20 sec x 20 sec, 1 min x 1 min, and 3 min x 3 min, all of which are approximately centered on R136. We have performed a spectral synthesis analysis of the spectra of the two larger regions and compared the results with the known stellar content in these regions. The spectral synthesis models are sensitive to the ultraviolet continuum level, the P Cygni profile of the C Iv wavelength 1550 line, the absorption strength of the Si IV wavelength 1400 line, and the emission strength of the He II wavelength 1640 line. The intrinsic continuum levels and the profiles of these stellar wind lines provide constraints on the age and duration of the starburst episode within a region, as well as on the upper curoff mass of the initial mass function. From our analysis we find that the present-day value of the upper cutoff mass in the 1 min x 1 min and 3 min x 3 min regions has a lower limit of approximately 50 solar mass, a result which is in good agreement with several other recent determinations. The age of the starburst episode must be less than approximately 3 Myr, also in agreement with other estimates. Comparison of the observed total numbers of O and W-R stars with those predicted from the various models favors an instantaneous burst of star formation in the regions. However, the differences between the two burst scenarios we investigated (instantaneous and continuous) are small at such a young age, and distinguishing between the two is difficult. We are now confident that these spectral synthesis models can be used to determine the stellar content of more distant star-forming regions.

  11. Spectral shifts of mammalian ultraviolet-sensitive pigments (short wavelength-sensitive opsin 1) are associated with eye length and photic niche evolution

    PubMed Central

    Emerling, Christopher A.; Huynh, Hieu T.; Nguyen, Minh A.; Meredith, Robert W.; Springer, Mark S.

    2015-01-01

    Retinal opsin photopigments initiate mammalian vision when stimulated by light. Most mammals possess a short wavelength-sensitive opsin 1 (SWS1) pigment that is primarily sensitive to either ultraviolet or violet light, leading to variation in colour perception across species. Despite knowledge of both ultraviolet- and violet-sensitive SWS1 classes in mammals for 25 years, the adaptive significance of this variation has not been subjected to hypothesis testing, resulting in minimal understanding of the basis for mammalian SWS1 spectral tuning evolution. Here, we gathered data on SWS1 for 403 mammal species, including novel SWS1 sequences for 97 species. Ancestral sequence reconstructions suggest that the most recent common ancestor of Theria possessed an ultraviolet SWS1 pigment, and that violet-sensitive pigments evolved at least 12 times in mammalian history. We also observed that ultraviolet pigments, previously considered to be a rarity, are common in mammals. We then used phylogenetic comparative methods to test the hypotheses that the evolution of violet-sensitive SWS1 is associated with increased light exposure, extended longevity and longer eye length. We discovered that diurnal mammals and species with longer eyes are more likely to have violet-sensitive pigments and less likely to possess UV-sensitive pigments. We hypothesize that (i) as mammals evolved larger body sizes, they evolved longer eyes, which limited transmittance of ultraviolet light to the retina due to an increase in Rayleigh scattering, and (ii) as mammals began to invade diurnal temporal niches, they evolved lenses with low UV transmittance to reduce chromatic aberration and/or photo-oxidative damage. PMID:26582021

  12. Wheat signature modeling and analysis for improved training statistics

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Malila, W. A.; Cicone, R. C.; Gleason, J. M.

    1976-01-01

    The author has identified the following significant results. The spectral, spatial, and temporal characteristics of wheat and other signatures in LANDSAT multispectral scanner data were examined through empirical analysis and simulation. Irrigation patterns varied widely within Kansas; 88 percent of wheat acreage in Finney was irrigated and 24 percent in Morton, as opposed to less than 3 percent for western 2/3's of the State. The irrigation practice was definitely correlated with the observed spectral response; wheat variety differences produced observable spectral differences due to leaf coloration and different dates of maturation. Between-field differences were generally greater than within-field differences, and boundary pixels produced spectral features distinct from those within field centers. Multiclass boundary pixels contributed much of the observed bias in proportion estimates. The variability between signatures obtained by different draws of training data decreased as the sample size became larger; also, the resulting signatures became more robust and the particular decision threshold value became less important.

  13. Exploring Mercury's Surface in UltraViolet from Orbit

    NASA Astrophysics Data System (ADS)

    Izenberg, N.

    2017-12-01

    The MESSENGER Mission's Ultraviolet and Visible Spectrometer (UVVS) component of its Mercury Atmosphere and Surface Composition Spectrometer (MASCS) instrument obtained approximately 4600 point observations of Mercury's surface in middle ultraviolet (MUV; 210 nm - 300 nm) and far ultraviolet (FUV; 119.1 - 122.5 nm and 129.2 - 131.5 nm) wavelengths over the course of its orbital mission, mostly in Mercury's southern hemisphere. Given the very low (<1 to 2 wt %) average abundance of iron in the silicates of Mercury observed by multiple MESSENGER instruments, the near- to middle-ultraviolet wavelengths encompassing the oxygen metal charge transfer band (<400 nm), which is more sensitive to the presence of iron than the classic 1 micron absorption band, provides potentially useful additional compositional insight into the top layer of Mercury's regolith. The presence of nano- and microphase carbon also has potentially significant expression in the ultraviolet, and the interplay and variation between carbon and iron in mercury surface materials is an active area of investigation. Analysis of middle-UV surface reflectance and parameters appear to support the presence of varying amounts of carbon in different spectral or geologic units on Mercury. Far-UV reflectance data is currently under-utilized, but analysis of lunar surface by the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) indicate that the data are sensitive to both composition and space weathering. The far-UV reflectance from MASCS may provide similar information for the Mercury surface, complementing results from longer wavelengths. MESSENGER data products for surface reflectance include middle-UV reflectance spectra, ultraviolet far-UV reflectance values, combined middle-UV through near-infrared spectra (210 nm - 1450 nm), a global `spectral cube' of near-UV to near-IR, and an upcoming UV spectral cube.

  14. The 1996 North American Interagency Intercomparison of Ultraviolet Monitoring Spectroradiometers

    PubMed Central

    Early, Edward; Thompson, Ambler; Johnson, Carol; DeLuisi, John; Disterhoft, Patrick; Wardle, David; Wu, Edmund; Mou, Wanfeng; Ehramjian, James; Tusson, John; Mestechkina, Tanya; Beaubian, Mark; Gibson, James; Hayes, Douglass

    1998-01-01

    Concern over stratospheric ozone depletion has prompted several government agencies in North America to establish networks of spectroradiometers for monitoring solar ultraviolet irradiance at the surface of the Earth. To assess the ability of spectroradiometers to accurately measure solar ultraviolet irradiance, and to compare the results between instruments of different monitoring networks, the third North American Interagency Intercomparison of Ultraviolet Monitoring Spectroradiometers was held June 17–25, 1996 at Table Mountain outside Boulder, Colorado, USA. This Intercomparison was coordinated by the National Institute of Standards and Technology (NIST) and the National Oceanic and Atmospheric Administration (NOAA). Participating agencies were the Environmental Protection Agency; the National Science Foundation; the Smithsonian Environmental Research Center; the Department of Agriculture; and the Atmospheric Environment Service, Canada. The spectral irradiances of participants’ calibrated standard lamps were measured at NIST prior to the Intercomparison. The spectral irradiance scales used by the participants agreed with the NIST scale within the combined uncertainties, and for all lamps the spectral irradiance in the horizontal position was lower than that in the vertical position. Instruments were characterized for wavelength uncertainty, bandwidth, stray-light rejection, and spectral irradiance responsivity, the latter with NIST standard lamps operating in specially designed field calibration units. The spectral irradiance responsivity demonstrated instabilities for some instruments. Synchronized spectral scans of the solar irradiance were performed over several days. Using the spectral irradiance responsivities determined with the NIST standard lamps, the measured solar irradiances had some unexplained systematic differences between instruments. PMID:28009358

  15. Comparison of spectral ultraviolet irradiance measured from satellite and ground-based instrument at Nakhon Pathom province

    NASA Astrophysics Data System (ADS)

    Sriwongsa, J.; Buntoung, S.

    2017-09-01

    In this study, comparisons of spectral ultraviolet irradiance at 305, 310, 324 and 380 nm at the overpass time retrieved from OMI/AURA satellite with that from ground-based measurements were performed at Nakhon Pathom (13.82°N,100.04°E), Thailand. The analyzed data period comprised from 1 January 2010 to 31 December 2015. The comparison results clearly showed the overestimation of satellite data with root mean square difference (RMSD) between 22.9 and 48.9%, and mean bias difference (MBD) between 5.3 and 39.8% for all sky conditions, and reduced to 10.6-40.5% and 0.18-34.9% for clear sky conditions. Further results showed that the differences between the two datasets depend on atmospheric aerosol loads and clouds.

  16. Web-Resources for Astronomical Data in the Ultraviolet

    NASA Astrophysics Data System (ADS)

    Sachkov, M. E.; Malkov, O. Yu.

    2017-12-01

    In this paper we describe databases of space projects that are operating or have operated in the ultraviolet spectral region. We give brief descriptions and links to major sources for UV data on the web: archives, space mission sites, databases, catalogues. We pay special attention to the World Space Observatory—Ultraviolet mission that will be launched in 2021.

  17. A restricted signature normal form for Hermitian matrices, quasi-spectral decompositions, and applications

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.; Huckle, Thomas

    1989-01-01

    In recent years, a number of results on the relationships between the inertias of Hermitian matrices and the inertias of their principal submatrices appeared in the literature. We study restricted congruence transformation of Hermitian matrices M which, at the same time, induce a congruence transformation of a given principal submatrix A of M. Such transformations lead to concept of the restricted signature normal form of M. In particular, by means of this normal form, we obtain short proofs of most of the known inertia theorems and also derive some new results of this type. For some applications, a special class of almost unitary restricted congruence transformations turns out to be useful. We show that, with such transformations, M can be reduced to a quasi-diagonal form which, in particular, displays the eigenvalues of A. Finally, applications of this quasi-spectral decomposition to generalize inverses and Hermitian matrix pencils are discussed.

  18. Ultraviolet, visible, and infrared rays

    NASA Technical Reports Server (NTRS)

    Taylor, J. H.; Letavet, A. A.

    1975-01-01

    Sources of infrared, visible and ultraviolet radiation are discussed, and important associated biological and psychophysiological effects are described. The problem of protection from excessively high or low levels of radiant energy in these spectral regions is considered and optimal levels are suggested.

  19. Spectral shifts of mammalian ultraviolet-sensitive pigments (short wavelength-sensitive opsin 1) are associated with eye length and photic niche evolution.

    PubMed

    Emerling, Christopher A; Huynh, Hieu T; Nguyen, Minh A; Meredith, Robert W; Springer, Mark S

    2015-11-22

    Retinal opsin photopigments initiate mammalian vision when stimulated by light. Most mammals possess a short wavelength-sensitive opsin 1 (SWS1) pigment that is primarily sensitive to either ultraviolet or violet light, leading to variation in colour perception across species. Despite knowledge of both ultraviolet- and violet-sensitive SWS1 classes in mammals for 25 years, the adaptive significance of this variation has not been subjected to hypothesis testing, resulting in minimal understanding of the basis for mammalian SWS1 spectral tuning evolution. Here, we gathered data on SWS1 for 403 mammal species, including novel SWS1 sequences for 97 species. Ancestral sequence reconstructions suggest that the most recent common ancestor of Theria possessed an ultraviolet SWS1 pigment, and that violet-sensitive pigments evolved at least 12 times in mammalian history. We also observed that ultraviolet pigments, previously considered to be a rarity, are common in mammals. We then used phylogenetic comparative methods to test the hypotheses that the evolution of violet-sensitive SWS1 is associated with increased light exposure, extended longevity and longer eye length. We discovered that diurnal mammals and species with longer eyes are more likely to have violet-sensitive pigments and less likely to possess UV-sensitive pigments. We hypothesize that (i) as mammals evolved larger body sizes, they evolved longer eyes, which limited transmittance of ultraviolet light to the retina due to an increase in Rayleigh scattering, and (ii) as mammals began to invade diurnal temporal niches, they evolved lenses with low UV transmittance to reduce chromatic aberration and/or photo-oxidative damage. © 2015 The Author(s).

  20. Intrinsic chirality and prochirality at Air/R-(+)- and S-(-)-limonene interfaces: spectral signatures with interference chiral sum-frequency generation vibrational spectroscopy.

    PubMed

    Fu, Li; Zhang, Yun; Wei, Zhe-Hao; Wang, Hong-Fei

    2014-09-01

    We report in this work detailed measurements of the chiral and achiral sum-frequency vibrational spectra in the C-H stretching vibration region (2800-3050 cm(-1)) of the air/liquid interfaces of R-(+)-limonene and S-(-)-limonene, using the recently developed high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The achiral SFG spectra of R-limonene and S-limonene, as well as the RS racemic mixture (50/50 equal amount mixture), show that the corresponding molecular groups of the R and S enantiomers are with the same interfacial orientations. The interference chiral SFG spectra of the limonene enantiomers exhibit a spectral signature from the chiral response of the Cα-H stretching mode, and a spectral signature from the prochiral response of the CH(2) asymmetric stretching mode, respectively. The chiral spectral feature of the Cα-H stretching mode changes sign from R-(+)-limonene to S-(-)-limonene surfaces, and disappears for the RS racemic mixture surface. While the prochiral spectral feature of the CH(2) asymmetric stretching mode is the same for R-(+)-limonene and S-(-)-limonene surfaces, and also surprisingly remains the same for the RS racemic mixture surface. Therefore, the structures of the R-(+)-limonene and the S-(-)-limonene at the liquid interfaces are nevertheless not mirror images to each other, even though the corresponding groups have the same tilt angle from the interfacial normal, i.e., the R-(+)-limonene and the S-(-)-limonene at the surface are diastereomeric instead of enantiomeric. These results provide detailed information in understanding the structure and chirality of molecular interfaces and demonstrate the sensitivity and potential of SFG-VS as a unique spectroscopic tool for chirality characterization and chiral recognition at the molecular interface. © 2014 Wiley Periodicals, Inc.

  1. Real time gamma-ray signature identifier

    DOEpatents

    Rowland, Mark [Alamo, CA; Gosnell, Tom B [Moraga, CA; Ham, Cheryl [Livermore, CA; Perkins, Dwight [Livermore, CA; Wong, James [Dublin, CA

    2012-05-15

    A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

  2. Hubble Space Telescope studies of low-redshift Type Ia supernovae: evolution with redshift and ultraviolet spectral trends

    NASA Astrophysics Data System (ADS)

    Maguire, K.; Sullivan, M.; Ellis, R. S.; Nugent, P. E.; Howell, D. A.; Gal-Yam, A.; Cooke, J.; Mazzali, P.; Pan, Y.-C.; Dilday, B.; Thomas, R. C.; Arcavi, I.; Ben-Ami, S.; Bersier, D.; Bianco, F. B.; Fulton, B. J.; Hook, I.; Horesh, A.; Hsiao, E.; James, P. A.; Podsiadlowski, P.; Walker, E. S.; Yaron, O.; Kasliwal, M. M.; Laher, R. R.; Law, N. M.; Ofek, E. O.; Poznanski, D.; Surace, J.

    2012-11-01

    We present an analysis of the maximum light, near-ultraviolet (NUV; 2900 < λ < 5500 Å) spectra of 32 low-redshift (0.001 < z < 0.08) Type Ia supernovae (SNe Ia), obtained with the Hubble Space Telescope (HST) using the Space Telescope Imaging Spectrograph. We combine this spectroscopic sample with high-quality gri light curves obtained with robotic telescopes to measure SN Ia photometric parameters, such as stretch (light-curve width), optical colour and brightness (Hubble residual). By comparing our new data to a comparable sample of SNe Ia at intermediate redshift (0.4 < z < 0.9), we detect modest spectral evolution (3σ), in the sense that our mean low-redshift NUV spectrum has a depressed flux compared to its intermediate-redshift counterpart. We also see a strongly increased dispersion about the mean with decreasing wavelength, confirming the results of earlier surveys. We show that these trends are consistent with changes in metallicity as predicted by contemporary SN Ia spectral models. We also examine the properties of various NUV spectral diagnostics in the individual SN spectra. We find a general correlation between SN stretch and the velocity (or position) of many NUV spectral features. In particular, we observe that higher stretch SNe have larger Ca II H&K velocities, which also correlate with host galaxy stellar mass. This latter trend is probably driven by the well-established correlation between stretch and host galaxy stellar mass. We find no significant trends between UV spectral features and optical colour. Mean spectra constructed according to whether the SN has a positive or negative Hubble residual show very little difference at NUV wavelengths, indicating that the NUV evolution and variation we identify does not directly correlate with Hubble diagram residuals. Our work confirms and strengthens earlier conclusions regarding the complex behaviour of SNe Ia in the NUV spectral region, but suggests the correlations we find are more useful in

  3. The Physics and Diagnostic Potential of Ultraviolet Spectropolarimetry

    NASA Astrophysics Data System (ADS)

    Trujillo Bueno, Javier; Landi Degl'Innocenti, Egidio; Belluzzi, Luca

    2017-09-01

    The empirical investigation of the magnetic field in the outer solar atmosphere is a very important challenge in astrophysics. To this end, we need to identify, measure and interpret observable quantities sensitive to the magnetism of the upper chromosphere, transition region and corona. This paper provides an overview of the physics and diagnostic potential of spectropolarimetry in permitted spectral lines of the ultraviolet solar spectrum, such as the Mg ii h and k lines around 2800 Å, the hydrogen Lyman-α line at 1216 Å, and the Lyman-α line of He ii at 304 Å. The outer solar atmosphere is an optically pumped vapor and the linear polarization of such spectral lines is dominated by the atomic level polarization produced by the absorption and scattering of anisotropic radiation. Its modification by the action of the Hanle and Zeeman effects in the inhomogeneous and dynamic solar atmosphere needs to be carefully understood because it encodes the magnetic field information. The circular polarization induced by the Zeeman effect in some ultraviolet lines (e.g., Mg ii h & k) is also of diagnostic interest, especially for probing the outer solar atmosphere in plages and more active regions. The few (pioneering) observational attempts carried out so far to measure the ultraviolet spectral line polarization produced by optically pumped atoms in the upper chromosphere, transition region and corona are also discussed. We emphasize that ultraviolet spectropolarimetry is a key gateway to the outer atmosphere of the Sun and of other stars.

  4. Future Directions in Ultraviolet Spectroscopy

    NASA Technical Reports Server (NTRS)

    Sonneborn, George (Editor); Moos, Warren; VanSteenberg, Michael

    2009-01-01

    The 'Future Directions in Ultraviolet Spectroscopy' conference was inspired by the accomplishments of the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission. The FUSE mission was launched in June 1999 and spent over eight years exploring the far-ultraviolet universe, gathering over 64 million seconds of high-resolution spectral data on nearly 3000 astronomical targets. The goal of this conference was not only to celebrate the accomplishments of FUSE, but to look toward the future and understand the major scientific drivers for the ultraviolet capabilities of the next generation fo space observatories. Invited speakers presented discussions based on measurements made by FUSE and other ultraviolet instruments, assessed their connection with measurements made with other techniques and, where appropriate, discussed the implications of low-z measurements for high-z phenomena. In addition to the oral presentations, many participants presented poster papers. The breadth of these presentation made it clear that much good science is still in progress with FUSE data and that these result will continue to have relevance in many scientific areas.

  5. Spectral Measurements of PMCs from SBUV/2 Instruments

    NASA Technical Reports Server (NTRS)

    DeLand, Matthew T.; Shettle, Eric P.; Thomas, Gary E.; Olivero, John J.

    2006-01-01

    The SBUV/2 (Solar Backscattered Ultraviolet, model 2) instrument is designed to monitor ozone stratospheric profile and total column ozone using measurements of the Earth's backscattered ultraviolet albedo. We have previously demonstrated that the normal radiance measurements from SBUV/2 instruments, which sample 12 discrete wavelengths between 252 and 340 nm during each scan, can be used to identify polar mesospheric clouds (PMCs). Some SBUV/2 instruments also periodically view the earth in continuous scan mode, covering the wavelength range 160-400 nm with 0.15 nm sampling. Analysis of these data show PMC occurrence rates similar to the normal discrete scan results, although the observation technique reduces the number of daily measurements by a factor of six. PMC observed by SBUV/2 instruments show a monotonic variation in the residual spectral albedo over the wavelength range 250 300 nm, with maximum enhancements of 10 15% at 250 nm. This result is consistent with microphysical model predictions from Jensen [1989. A numerical model of polar mesospheric cloud formation and evolution, Ph. D. Thesis, University of Colorado]. We find no evidence for a systematic localized increase in PMC residual albedo for wavelengths near 260 nm, in contrast to the recently reported results from the MSX UVISI instrument [Carbary J.F., et al., 2004. Evidence for bimodal particle distribution from the spectra of polar mesospheric clouds. Geophysics Research. Letters 31, L13108]. This result is observed for three different SBUV/2 instruments in both Northern and Southern Hemisphere data over a 13-year span. Our Mie scattering calculations show that the location and magnitude of the 260 nm hump feature is dependent upon the specific scattering angles appropriate to the MSX measurements. Although it explains the MSX spectrum, the bimodal size distribution proposed by Carbary et al. (2004), cannot explain the lack of scattering angle dependence of the SBUV/2 spectral shapes. The

  6. Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands

    NASA Astrophysics Data System (ADS)

    Lavigne, Daniel A.; Breton, Mélanie; Fournier, Georges; Charette, Jean-François; Pichette, Mario; Rivet, Vincent; Bernier, Anne-Pier

    2011-10-01

    Surveillance operations and search and rescue missions regularly exploit electro-optic imaging systems to detect targets of interest in both the civilian and military communities. By incorporating the polarization of light as supplementary information to such electro-optic imaging systems, it is possible to increase their target discrimination capabilities, considering that man-made objects are known to depolarized light in different manner than natural backgrounds. As it is known that electro-magnetic radiation emitted and reflected from a smooth surface observed near a grazing angle becomes partially polarized in the visible and infrared wavelength bands, additional information about the shape, roughness, shading, and surface temperatures of difficult targets can be extracted by processing effectively such reflected/emitted polarized signatures. This paper presents a set of polarimetric image processing algorithms devised to extract meaningful information from a broad range of man-made objects. Passive polarimetric signatures are acquired in the visible, shortwave infrared, midwave infrared, and longwave infrared bands using a fully automated imaging system developed at DRDC Valcartier. A fusion algorithm is used to enable the discrimination of some objects lying in shadowed areas. Performance metrics, derived from the computed Stokes parameters, characterize the degree of polarization of man-made objects. Field experiments conducted during winter and summer time demonstrate: 1) the utility of the imaging system to collect polarized signatures of different objects in the visible and infrared spectral bands, and 2) the enhanced performance of target discrimination and fusion algorithms to exploit the polarized signatures of man-made objects against cluttered backgrounds.

  7. Littoral assessment of mine burial signatures (LAMBS): buried-landmine hyperspectral data collections

    NASA Astrophysics Data System (ADS)

    Kenton, Arthur C.; Geci, Duane M.; McDonald, James A.; Ray, Kristofer J.; Thomas, Clayton M.; Holloway, John H., Jr.; Petee, Danny A.; Witherspoon, Ned H.

    2003-09-01

    The objective of the Office of Naval Research (ONR) Rapid Overt Reconnaissance (ROR) program and the Airborne Littoral Reconnaissance Technologies project's Littoral Assessment of Mine Burial Signatures (LAMBS) contract is to determine if electro-optical spectral discriminants exist that are useful for the detection of land mines located in littoral regions. Statistically significant buried mine overburden and background signature data were collected over a wide spectral range (0.35 to 14 μm) to identify robust spectral features that might serve as discriminants for new airborne sensor concepts. The LAMBS program further expands the hyperspectral database previously collected and analyzed on the U.S. Army's Hyperspectral Mine Detection Phenomenology program [see "Detection of Land Mines with Hyperspectral Data," and "Hyperspectral Mine Detection Phenomenology Program," Proc. SPIE Vol. 3710, pp 917-928 and 819-829, AeroSense April 1999] to littoral areas where tidal, surf, and wind action can additionally modify spectral signatures. This work summarizes the LAMBS buried mine collections conducted at three beach sites - an inland bay beach site (Eglin AFB, FL, Site A-22), an Atlantic beach site (Duck, NC), and a Gulf beach site (Eglin AFB, FL, Site A-15). Characteristics of the spectral signatures of the various dry and damp beach sands are presented. These are then compared to buried land mine signatures observed for the tested background types, burial ages, and environmental conditions experienced.

  8. Shuttle-based measurements: GLO ultraviolet earthlimb view

    NASA Astrophysics Data System (ADS)

    Gardner, James A.; Murad, Edmond; Viereck, Rodney A.; Knecht, David J.; Pike, Charles P.; Broadfoot, A. Lyle

    1996-11-01

    The GLO experiment is an on-going shuttle-based spectrograph/imager project that has returned ultraviolet (100 - 400 nm) limb views. High spectral (0.35 nm FWHM) and temporal (4 s) resolution spectra include simultaneous altitude profiles (in the range of 80 - 400 km tangent height with 10 km resolution) of dayglow and nightglow features. Measured emissions include the NO gamma, N2 Vegard-Kaplan and second positive, N2+ first negative, and O2 Herzberg I band systems and both atomic and cation lines of N, O, and Mg. This data represents a low solar activity benchmark for future observations. We report on the status of the GLO project, which included three space flights in 1995, and present spectral data on important ultraviolet band systems.

  9. Spectral Properties of Gas-phase Condensed Fullerene-like Carbon Nanoparticles from Far-ultraviolet to Infrared Wavelengths

    NASA Astrophysics Data System (ADS)

    Jäger, C.; Mutschke, H.; Henning, Th.; Huisken, F.

    2008-12-01

    Carbon solids are ubiquitous material in interstellar space. However, the formation pathway of carbonaceous matter in astrophysical environments, as well as in terrestrial gas-phase condensation reactions, is not yet understood. Laser ablation of graphite in different quenching gas atmospheres, such as pure He, He/H2, and He/H2O at varying pressures, is used to synthesize very small, fullerene-like carbon nanoparticles. The particles are characterized by very small diameters between 1 and 4 nm and a disturbed onion-like structure. The soot particles extracted from the condensation zone obviously represent a very early stage of particle condensation. The spectral properties have been measured from the far-ultraviolet (FUV; λ = 120 nm) to the mid-infrared (MIR; λ = 15 μm). The seedlike soot particles show strong absorption bands in the 3.4 μm range. The profile and the intensity pattern of the 3.4 μm band of the diffuse interstellar medium can be well reproduced by the measured 3.4 μm profile of the condensed particles; however, all the carbon which is left to form solids is needed to fit the intensity of the interstellar bands. In contrast to the assumption that onion-like soot particles could be the carriers of the interstellar ultraviolet (UV) bump, our very small onion-like carbon nanoparticles do not show distinct UV bands due to (π-π*) transitions.

  10. Ultraviolet photometry from the Orbiting Astronomical Observatory. XXXII - An atlas of ultraviolet stellar spectra

    NASA Technical Reports Server (NTRS)

    Code, A. D.; Meade, M. R.

    1979-01-01

    Ultraviolet stellar fluxes are presented in graphs and tables for 164 bright stars in the spectral region from 1200 to 3600 A. The spectra represent a subset of OAO 2 spectrometer data on file at the National Space Science Data Center. The monochromatic flux is given in units of erg per (sq cm-s-A) with a spectral resolution of about 22 A in the region from 3600 to 1850 A and of approximately 12 A in the region from 1850 to 1160 A.

  11. Comparing performance of standard and iterative linear unmixing methods for hyperspectral signatures

    NASA Astrophysics Data System (ADS)

    Gault, Travis R.; Jansen, Melissa E.; DeCoster, Mallory E.; Jansing, E. David; Rodriguez, Benjamin M.

    2016-05-01

    Linear unmixing is a method of decomposing a mixed signature to determine the component materials that are present in sensor's field of view, along with the abundances at which they occur. Linear unmixing assumes that energy from the materials in the field of view is mixed in a linear fashion across the spectrum of interest. Traditional unmixing methods can take advantage of adjacent pixels in the decomposition algorithm, but is not the case for point sensors. This paper explores several iterative and non-iterative methods for linear unmixing, and examines their effectiveness at identifying the individual signatures that make up simulated single pixel mixed signatures, along with their corresponding abundances. The major hurdle addressed in the proposed method is that no neighboring pixel information is available for the spectral signature of interest. Testing is performed using two collections of spectral signatures from the Johns Hopkins University Applied Physics Laboratory's Signatures Database software (SigDB): a hand-selected small dataset of 25 distinct signatures from a larger dataset of approximately 1600 pure visible/near-infrared/short-wave-infrared (VIS/NIR/SWIR) spectra. Simulated spectra are created with three and four material mixtures randomly drawn from a dataset originating from SigDB, where the abundance of one material is swept in 10% increments from 10% to 90%with the abundances of the other materials equally divided amongst the remainder. For the smaller dataset of 25 signatures, all combinations of three or four materials are used to create simulated spectra, from which the accuracy of materials returned, as well as the correctness of the abundances, is compared to the inputs. The experiment is expanded to include the signatures from the larger dataset of almost 1600 signatures evaluated using a Monte Carlo scheme with 5000 draws of three or four materials to create the simulated mixed signatures. The spectral similarity of the inputs to the

  12. Unmixing the Materials and Mechanics Contributions in Non-resolved Object Signatures

    DTIC Science & Technology

    2008-09-01

    abundances from hyperspectral or multi-spectral time - resolved signatures. A Fourier analysis of temporal variation of material abundance provides...factorization technique to extract the temporal variation of material abundances from hyperspectral or multi-spectral time - resolved signatures. A Fourier...approximately one hundred wavelengths in the visible spectrum. The frame rate for the instrument was not large enough to collect time resolved data. However

  13. Coherent control schemes for the photoionization of neon and helium in the Extreme Ultraviolet spectral region.

    PubMed

    Giannessi, Luca; Allaria, Enrico; Prince, Kevin C; Callegari, Carlo; Sansone, Giuseppe; Ueda, Kiyoshi; Morishita, Toru; Liu, Chien Nan; Grum-Grzhimailo, Alexei N; Gryzlova, Elena V; Douguet, Nicolas; Bartschat, Klaus

    2018-05-17

    The seeded Free-Electron Laser (FEL) FERMI is the first source of short-wavelength light possessing the full coherence of optical lasers, together with the extreme power available from FELs. FERMI provides longitudinally coherent radiation in the Extreme Ultraviolet and soft x-ray spectral regions, and therefore opens up wide new fields of investigation in physics. We first propose experiments exploiting this property to provide coherent control of the photoionization of neon and helium, carry out numerical calculations to find optimum experimental parameters, and then describe how these experiments may be realized. The approach uses bichromatic illumination of a target and measurement of the products of the interaction, analogous to previous Brumer-Shapiro-type experiments in the optical spectral range. We describe operational schemes for the FERMI FEL, and simulate the conditions necessary to produce light at the fundamental and second or third harmonic frequencies, and to control the phase with respect to the fundamental. We conclude that a quantitative description of the phenomena is extremely challenging for present state-of-the-art theoretical and computational methods, and further development is necessary. Furthermore, the intensity available may already be excessive for the experiments proposed on helium. Perspectives for further development are discussed.

  14. Radiometric and spectral stray light correction for the portable remote imaging spectrometer (PRISM) coastal ocean sensor

    NASA Astrophysics Data System (ADS)

    Haag, Justin M.; Van Gorp, Byron E.; Mouroulis, Pantazis; Thompson, David R.

    2017-09-01

    The airborne Portable Remote Imaging Spectrometer (PRISM) instrument is based on a fast (F/1.8) Dyson spectrometer operating at 350-1050 nm and a two-mirror telescope combined with a Teledyne HyViSI 6604A detector array. Raw PRISM data contain electronic and optical artifacts that must be removed prior to radiometric calibration. We provide an overview of the process transforming raw digital numbers to calibrated radiance values. Electronic panel artifacts are first corrected using empirical relationships developed from laboratory data. The instrument spectral response functions (SRF) are reconstructed using a measurement-based optimization technique. Removal of SRF effects from the data improves retrieval of true spectra, particularly in the typically low-signal near-ultraviolet and near-infrared regions. As a final step, radiometric calibration is performed using corrected measurements of an object of known radiance. Implementation of the complete calibration procedure maximizes data quality in preparation for subsequent processing steps, such as atmospheric removal and spectral signature classification.

  15. Ultraviolet Spectral Behavior of TVCol During and After Flaring Activity

    NASA Astrophysics Data System (ADS)

    Sanad, M. R.; Abdel-Sabour, M. A.

    2018-01-01

    We studied the intermediate polar TVCol during and after its flare in November 1982 observed in the ultraviolet range with the International Ultraviolet Explorer. Two spectra revealing the variations of emission lines at different times are presented. We have estimated a new value of the reddening from the 2200 Å absorption feature, E ( B - V ) = 0.12 ± 0.02, and calculated the line fluxes of C IV and He II emission lines produced in the outer accretion disk. The average ultraviolet luminosity of emitting region during and after the flare is approximately 4 × 1032 erg s-1 and 9 × 1030 erg s-1, the corresponding average mass accretion rate is nearly 3 × 1015 erg s-1 (4.76 × 10-11 M ⊙ yr-1) and 5 × 1013 erg s-1 (7.93 × 10-13 M ⊙ yr-1), and the average temperature of the emitting region during and after flare is estimated to be of about 3.5 × 103 K and 2 × 103 K. We attribute this flare to a sudden increase in the mass accretion rate leading to the outburst activity.

  16. SUMER: Solar Ultraviolet Measurements of Emitted Radiation

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Axford, W. I.; Curdt, W.; Gabriel, A. H.; Grewing, M.; Huber, M. C. E.; Jordan, S. D.; Kuehne, M.; Lemaire, P.; Marsch, E.

    1992-01-01

    The experiment Solar Ultraviolet Measurements of Emitted Radiation (SUMER) is designed for the investigations of plasma flow characteristics, turbulence and wave motions, plasma densities and temperatures, structures and events associated with solar magnetic activity in the chromosphere, the transition zone and the corona. Specifically, SUMER will measure profiles and intensities of Extreme Ultraviolet (EUV) lines emitted in the solar atmosphere ranging from the upper chromosphere to the lower corona; determine line broadenings, spectral positions and Doppler shifts with high accuracy, provide stigmatic images of selected areas of the Sun in the EUV with high spatial, temporal and spectral resolution and obtain full images of the Sun and the inner corona in selectable EUV lines, corresponding to a temperature from 10,000 to more than 1,800,000 K.

  17. UVMAS: Venus ultraviolet-visual mapping spectrometer

    NASA Astrophysics Data System (ADS)

    Bellucci, G.; Zasova, L.; Altieri, F.; Nuccilli, F.; Ignatiev, N.; Moroz, V.; Khatuntsev, I.; Korablev, O.; Rodin, A.

    This paper summarizes the capabilities and technical solutions of an Ultraviolet Visual Mapping Spectrometer designed for remote sensing of Venus from a planetary orbiter. The UVMAS consists of a multichannel camera with a spectral range 0.19 << 0.49 μm which acquires data in several spectral channels (up to 400) with a spectral resolution of 0.58 nm. The instantaneous field of view of the instrument is 0.244 × 0.244 mrad. These characteristics allow: a) to study the upper clouds dynamics and chemistry; b) giving constraints on the unknown absorber; c) observation of the night side airglow.

  18. A synchrotron-radiation-based variable angle ellipsometer for the visible to vacuum ultraviolet spectral range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neumann, M. D., E-mail: maciej.neumann@isas.de; Cobet, C.; Esser, N.

    2014-05-15

    A rotating analyzer spectroscopic polarimeter and ellipsometer with a wide-range θ-2θ goniometer installed at the Insertion Device Beamline of the Metrology Light Source in Berlin is presented. With a combination of transmission- and reflection-based polarizing elements and the inherent degree of polarization of the undulator radiation, this ellipsometer is able to cover photon energies from about 2 eV up to 40 eV. Additionally, a new compensator design based on a CaF{sub 2} Fresnel rhomb is presented. This compensator allows ellipsometric measurements with circular polarization in the vacuum ultraviolet spectral range and thus, for example, the characterization of depolarizing samples. The new instrumentmore » was initially used for the characterization of the polarization of the beamline. The technical capabilities of the ellipsometer are demonstrated by a cohesive wide-range measurement of the dielectric function of epitaxially grown ZnO.« less

  19. The 1995 North American Interagency Intercomparison of Ultraviolet Monitoring Spectroradiometers

    PubMed Central

    Early, Edward; Thompson, Ambler; Johnson, Carol; DeLuisi, John; Disterhoft, Patrick; Wardle, David; Wu, Edmund; Mou, Wanfeng; Sun, Yongchen; Lucas, Timothy; Mestechkina, Tanya; Harrison, Lee; Berndt, Jerry; Hayes, Douglas S.

    1998-01-01

    Concern over stratospheric ozone depletion has prompted several government agencies in North America to establish networks of spectroradiometers for monitoring solar ultraviolet irradiance at the surface of the Earth. To assess the ability of spectroradiometers to accurately measure solar ultraviolet irradiance, and to compare the results between instruments of different monitoring networks, the second North American Intercomparison of Ultraviolet Monitoring Spectroradiometers was held June 12 to 23, 1995 at Table Mountain outside Boulder, Colorado, USA. This Intercomparison was coordinated by the National Institute of Standards and Technology (NIST) and the National Oceanic and Atmospheric Administration (NOAA). Participating agencies were the Environmental Protection Agency; the National Science Foundation; the Smithsonian Environmental Research Center; the Department of Agriculture; and the Atmospheric Environment Service, Canada. Instruments were characterized for wavelength uncertainty, bandwidth, stray-light rejection, and spectral irradiance responsivity, the latter with a NIST standard lamp operating in a specially designed field calibration unit. The spectral irradiance responsivity, determined once indoors and twice outdoors, demonstrated that while the responsivities changed upon moving the instruments, they were relatively stable when the instruments remained outdoors. Synchronized spectral scans of the solar irradiance were performed over several days. Using the spectral irradiance responsivities determined with the NIST standard lamp and three different convolution functions to account for the different bandwidths of the instruments, the measured solar irradiances generally agreed to within 3 %. PMID:28009371

  20. The 1994 North American Interagency Intercomparison of Ultraviolet Monitoring Spectroradiometers

    PubMed Central

    Thompson, Ambler; Early, Edward A.; DeLuisi, John; Disterhoft, Patrick; Wardle, David; Kerr, James; Rives, John; Sun, Yongchen; Lucas, Timothy; Mestechkina, Tanya; Neale, Patrick

    1997-01-01

    Concern over stratospheric ozone depletion has prompted several government agencies in North America to establish networks of spectroradiometers for monitoring solar ultraviolet irradiance at the surface of the Earth. To assess the ability of spectroradiometers to accurately measure solar ultraviolet irradiance, and to compare the results between instruments of different monitoring networks, the first North American Intercomparison of Ultraviolet Monitoring Spectroradiometers was held September 19–29, 1994 at Table Mountain outside Boulder, Colorado, USA. This Intercomparison was coordinated by the National Institute of Standards and Technology and the National Oceanic and Atmospheric Administration (NOAA). Participating agencies were the Environmental Protection Agency, National Science Foundation, Smithsonian Environmental Research Center, and Atmospheric Environment Service, Canada. Instruments were characterized for wavelength accuracy, bandwidth, stray-light rejection, and spectral irradiance responsivity, the latter with a NIST standard lamp calibrated to operate in the horizontal position. The spectral irradiance responsivity was determined once indoors and twice outdoors, and demonstrated that, while the responsivities changed upon moving the instruments, they were relatively stable when the instruments remained outdoors. Synchronized spectral scans of the solar irradiance were performed over several days. Using the spectral irradiance responsivities determined with the NIST standard lamp, and a simple convolution technique to account for the different bandwidths of the instruments, the measured solar irradiances agreed within 5 %. PMID:27805148

  1. Spectral lines and characteristic of temporal variations in photoionized plasmas induced with laser-produced plasma extreme ultraviolet source

    NASA Astrophysics Data System (ADS)

    Saber, I.; Bartnik, A.; Wachulak, P.; Skrzeczanowski, W.; Jarocki, R.; Fiedorowicz, H.

    2017-11-01

    Spectral lines for Kr/Ne/H2 photoionized plasma in the ultraviolet and visible (UV/Vis) wavelength ranges have been created using a laser-produced plasma (LPP) EUV source. The source is based on a double-stream gas puff target irradiated with a commercial Nd:YAG laser. The laser pulses were focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Spectral lines from photoionization in neutral Kr/Ne/H2 and up to few charged states were observed. The intense emission lines were associated with the Kr transition lines. Experimental and theoretical investigations on intensity variations for some ionic lines are presented. A decrease in the intensity with the delay time between the laser pulse and the spectrum acquisition was revealed. Electron temperature and electron density in the photoionized plasma have been estimated from the characteristic emission lines. Temperature was obtained using Boltzmann plot method, assuming that the population density of atoms and ions are considered in a local thermodynamic equilibrium (LTE). Electron density was calculated from the Stark broadening profile. The temporal evaluation of the plasma and the way of optimizing the radiation intensity of LPP EUV sources is discussed.

  2. Ultraviolet corona detection sensor study

    NASA Technical Reports Server (NTRS)

    Schmitt, R. J.; MATHERN

    1976-01-01

    The feasibility of detecting electrical corona discharge phenomena in a space simulation chamber via emission of ultraviolet light was evaluated. A corona simulator, with a hemispherically capped point to plane electrode geometry, was used to generate corona glows over a wide range of pressure, voltage, current, electrode gap length and electrode point radius. Several ultraviolet detectors, including a copper cathode gas discharge tube and a UV enhanced silicon photodiode detector, were evaluated in the course of the spectral intensity measurements. The performance of both silicon target vidicons and silicon intensified target vidicons was evaluated analytically using the data generated by the spectroradiometer scans and the performance data supplied by the manufacturers.

  3. Ultraviolet photometry from the orbiting astronomical observatory. 8: The blue Ap stars

    NASA Technical Reports Server (NTRS)

    Leckrone, D. S.

    1973-01-01

    The filter photometers in the Wisconsin Experiment Package on OAO-2 were used to obtain data for a carefully selected set of 24 blue Ap stars and 31 comparison standard B and A dwarfs and giants for a program of relative photometry. Observations were made in seven bandpasses over the effective wavelength range 1430A-4250A. The Ap stars observed include members of the Si, Hg-Mn and Sr-Cr-Eu peculiarity classes. Most of them are too blue in B-V for their published MK spectral classes. The blue Ap stars are markedly deficient in emitted ultraviolet flux and are underluminous as compared to normal stars with the same UBV colors. The Hg-Mn stars appear less flux deficient in the ultraviolet for their UBV colors than do Si or Sr-cr-Eu stars. Most of the Ap stars observed possess ultraviolet flux distributions, or ultraviolet color temperatures, consistent with their published MK spectral classes to well within the classification uncertainties.

  4. Detection of Extraterrestrial Civilizations via the Spectral Signature of Advanced Interstellar Spacecraft

    NASA Astrophysics Data System (ADS)

    Zubrin, Robert

    1994-07-01

    This paper examines the possibility of detecting extraterrestrial civilizations by means of searching for the spectral signature of their interstellar transportation systems. The advantage of such an approach is that the characteristic power levels associated with interstellar transportation systems are many orders of magnitude greater than those required for communication, and so the signal strength may be much greater. Furthermore, unlike communication which is governed by a fairly arbitrary selection of technology and mutually agreed upon conventions, interstellar transportation systems are governed much more stringently by the laws of physics. For purposes of the present analysis we consider 4 methods of interstellar propulsion, the principles of which are fairly well understood. These are anti-matter rockets, fusion rockets, fission rockets, all of which can be used to either accelerate or decelerate a spacecraft, and magnetic sails, which can be used to decelerate a spacecraft by creating drag against the interstellar medium. The types of radiation emitted by each of these propulsion systems is described, and the signal strength for starships of a characteristic mass of 1 million tonnes traveling at speeds and acceleration levels characteristic of the various propulsion systems is estimated. It is shown that for the power level of ships considered, the high energy gamma radiation emitted by the anti-matter, fusion and fission propulsion systems would be undetectable at interstellar distances. Better opportunities for detection would be the bremsstrahlung radiation from the plasma confinement systems of fusion devices, which might be detectable at distances of about 1 light year, and visible light emitted from the radiators of anti-matter driven photon rocket, which might be detectable by the Hubble Space Telescope at a distance of several hundred light years provided the rocket nozzle is oriented towards the Earth. The most detectable form of starship

  5. Ultraviolet Source For Testing Hydrogen-Fire Detectors

    NASA Technical Reports Server (NTRS)

    Hall, Gregory A.; Larson, William E.; Youngquist, Robert C.; Moerk, John S.; Haskell, William D.; Cox, Robert B.; Polk, Jimmy D.; Stout, Stephen J.; Strobel, James P.

    1995-01-01

    Hand-held portable unit emits ultraviolet light similar to that emitted by hydrogen burning in air. Developed for use in testing optoelectronic hydrogen-fire detectors, which respond to ultraviolet light at wavelengths from 180 to 240 nanometers. Wavelength range unique in that within it, hydrogen fires emit small but detectable amounts of radiation, light from incandescent lamps and Sun almost completely absent, and air sufficiently transmissive to enable detection of hydrogen fire from distance. Consequently, this spectral region favorable for detecting hydrogen fires while minimizing false alarms.

  6. Unique spectral signatures of the nucleic acid dye acridine orange can distinguish cell death by apoptosis and necroptosis

    PubMed Central

    Caprariello, Andrew V.; Henry, Tyler J.; Tsutsui, Shigeki; Chu, Tak H.; Schenk, Geert J.; Yong, V. Wee

    2017-01-01

    Cellular injury and death are ubiquitous features of disease, yet tools to detect them are limited and insensitive to subtle pathological changes. Acridine orange (AO), a nucleic acid dye with unique spectral properties, enables real-time measurement of RNA and DNA as proxies for cell viability during exposure to various noxious stimuli. This tool illuminates spectral signatures unique to various modes of cell death, such as cells undergoing apoptosis versus necrosis/necroptosis. This new approach also shows that cellular RNA decreases during necrotic, necroptotic, and apoptotic cell death caused by demyelinating, ischemic, and traumatic injuries, implying its involvement in a wide spectrum of tissue pathologies. Furthermore, cells with pathologically low levels of cytoplasmic RNA are detected earlier and in higher numbers than with standard markers including TdT-mediated dUTP biotin nick-end labeling and cleaved caspase 3 immunofluorescence. Our technique highlights AO-labeled cytoplasmic RNA as an important early marker of cellular injury and a sensitive indicator of various modes of cell death in a range of experimental models. PMID:28264914

  7. The composition of phobos: evidence for carbonaceous chondrite surface from spectral analysis.

    PubMed

    Pang, K D; Pollack, J B; Veverka, J; Lane, A L; Ajello, J M

    1978-01-06

    A reflectance spectrum of Phobos (from 200 to 1100 nanometers) has been compiled from the Mariner 9 ultraviolet spectrometer, Viking lander imaging, and ground-based photometric data. The reflectance of the martian satellite is approximately constant at 5 percent from 1100 to 400 nanometers but drops sharply below 400 nanometers, reaching a value of 1 percent at 200 nanometers. The spectral albedo of Phobos bears a striking resemblance to that of asteroids (1) Ceres and (2) Pallas. Comparison of the reflectance spectra of asteroids with those of meteorites has shown that the spectral signature of Ceres is indicative of a carbonaceous chondritic composition. A physical explanation of how the compositional information is imposed on the reflectance spectrum is given. On the basis of a good match between the reflectance spectra of Phobos and Ceres and the extensive research that has been done to infer the composition of Ceres, it seems reasonable to believe that the surface composition of Phobos is similar to that of carbonaceous chondrites. This suggestion is consistent with the recently determined low density of Mars's inner satellite. Our result and recent Viking noble gas measurements suggest different modes of origin for Mars and Phobos.

  8. Hubble's Next Generation Spectral Library

    NASA Astrophysics Data System (ADS)

    Heap, Sara R.; Lindler, D.

    2008-03-01

    Spectroscopic surveys of galaxies at z 1 or more bring the rest-frame ultraviolet into view of large, ground-based telescopes. This spectral region is rich in diagnostics, but these diagnostics have not yet been calibrated in terms of the properties of the responsible stellar population(s). Such calibrations are now possible with Hubble's Next Generation Spectral Library (NGSL). This library contains UV-optical spectra (0.2-1.0 microns) of 378 stars having a wide range in temperature, luminosity, and metallicity. We have derived the basic stellar parameters from the optical spectral region (0.35 - 1.0 microns) and are using them to calibrate UV spectral diagnostic indices and colors.

  9. Ultraviolet Spectroscopy of the Surfaces of the Inner Icy Saturnian Satellites

    NASA Astrophysics Data System (ADS)

    Hendrix, A. R.; Hansen, C. J.

    2008-12-01

    The Cassini mission has provided a unique opportunity to make high-resolution, multi-spectral measurements of Saturn's icy moons, to investigate their surface compositions, processes and evolution. Here we present results from the Ultraviolet Imaing Spectrograph (UVIS). This instrument allows for the first measurements of the icy satellites in the extreme ultraviolet (EUV) to far-ultraviolet (FUV) wavelength range. The icy satellites of the Saturn system exhibit a remarkable amount of variability: Dark, battered Phoebe orbiting at a distant 200 RS, black-and-white Iapetus, the wispy streaks of Dione, cratered Rhea and Mimas, bright Tethys and geologically active Enceladus. Phoebe, Iapetus and Hyperion all orbit largely outside Saturn's magnetosphere, while the inner icy satellites Mimas, Enceladus, Dione Tethys and Rhea all orbit within the magnetosphere. Furthermore, the inner icy satellites all orbit within the E-ring - so the extent of exogenic effects on these icy satellites is wide-ranging. We present an overview of UVIS results from Tethys, Dione, Mimas, Enceladus and Rhea, focusing on surface investigations. We expect that the UV signatures of these icy satellites are strongly influenced not only by their water ice composition, but by external effects and magnetospheric environments. We study the FUV reflectance spectra to learn about the surface composition, map out water ice grain size variations, investigate effects of coating by E-ring grains, examine disk-resolved and hemispheric compositional and brightness variations, and investigate the presence of radiation products. This is new work: FUV spectra of surfaces have not been well-studied in the past. Spectra of the inner icy moons have been used to better develop spectral models, to further understand existing lab data of water ice and to help with understanding instrument performance. Analysis is challenged by a lack of laboratory data in this wavelength region, but intriguing results are being found

  10. Filtering and polychromatic vision in mantis shrimps: themes in visible and ultraviolet vision.

    PubMed

    Cronin, Thomas W; Bok, Michael J; Marshall, N Justin; Caldwell, Roy L

    2014-01-01

    Stomatopod crustaceans have the most complex and diverse assortment of retinal photoreceptors of any animals, with 16 functional classes. The receptor classes are subdivided into sets responsible for ultraviolet vision, spatial vision, colour vision and polarization vision. Many of these receptor classes are spectrally tuned by filtering pigments located in photoreceptors or overlying optical elements. At visible wavelengths, carotenoproteins or similar substances are packed into vesicles used either as serial, intrarhabdomal filters or lateral filters. A single retina may contain a diversity of these filtering pigments paired with specific photoreceptors, and the pigments used vary between and within species both taxonomically and ecologically. Ultraviolet-filtering pigments in the crystalline cones serve to tune ultraviolet vision in these animals as well, and some ultraviolet receptors themselves act as birefringent filters to enable circular polarization vision. Stomatopods have reached an evolutionary extreme in their use of filter mechanisms to tune photoreception to habitat and behaviour, allowing them to extend the spectral range of their vision both deeper into the ultraviolet and further into the red.

  11. Phycoerythrin Signatures in the Littoral Zone

    DTIC Science & Technology

    2000-09-30

    grey-green pigment allophycocyanin alsways present in the core of the PBS and the blue-green pigment phycocyanin (PC) always present in the proximal...and different spectral forms of Synechococcus can be obtained from optical data, particularly hyperspectral data. IMPACT/ APPLICATION It is commonly...projects, “Spectral Signatures of Optical Processes” (NRL 6.1 core funding) and “ Applications of the SeaWiFS for coastal monitoring of harmful algal

  12. IAR signatures in the ionosphere: Modeling and observations at the Chibis-M microsatellite

    NASA Astrophysics Data System (ADS)

    Pilipenko, V.; Dudkin, D.; Fedorov, E.; Korepanov, V.; Klimov, S.

    2017-02-01

    A peculiar feature of geomagnetic variations at middle/low latitudes in the ULF band, just below the fundamental tone of the Schumann resonance, is the occurrence of a multi-band spectral resonant structure, observed by high-sensitivity induction magnetometers during nighttime. The occurrence of such spectral structure was commonly attributed to the Ionospheric Alfvén Resonator (IAR) in the upper ionosphere. Rather surprisingly, while ground observations of the IAR are ubiquitous, there are practically no reports on the IAR signatures from space missions. According to the new paradigm, the multi-band spectral structure excited by a lightning discharge is in fact produced by a regular sequence of an original pulse from a stroke and echo-pulses reflected from the IAR upper boundary. Upon the interaction of initial lightning-generated pulse with the anisotropic lower ionosphere, it partially penetrates into the ionosphere, travels up the ionosphere as an Alfvén pulse, and reflects back from the upper IAR boundary. The superposition of the initial pulse and echo-pulses produces spectra with multiple spectral peaks. Our modeling of Alfvénic pulse propagation in a system with the altitude profile of Alfven velocity modeling the realistic ionosphere has shown that IAR spectral signatures are to be evident only on the ground and above the IAR. Inside the IAR, the superposition of upward and downward propagating pulses produces a more complicated spectral pattern and the IAR spectral signatures deteriorate. We have used electric field data from the low-orbit Chibis-M microsatellite to search for IAR signatures in the ionosphere. We found evidence that the multi-band structure revealed by spectral analysis in the frequency range of interest is indeed the result of a sequence of lightning-produced pulses. According to the proposed conception it seems possible to comprehend why the IAR signatures are less evident in the ionosphere than on the ground.

  13. The Ultraviolet Spectrograph (UVS) on Juno

    NASA Astrophysics Data System (ADS)

    Gladstone, G. R.; Persyn, S.; Eterno, J.; Slater, D. C.; Davis, M. W.; Versteeg, M. H.; Persson, K. B.; Siegmund, O. H.; Marquet, B.; Gerard, J.; Grodent, D. C.

    2008-12-01

    Juno, a NASA New Frontiers mission, plans for launch in August 2011, a 5-year cruise (including a flyby of Earth in October 2013 for a gravity boost), and 14 months around Jupiter after arriving in August 2016. The spinning (2 RPM), solar-powered Juno will study Jupiter from a highly elliptical orbit, in which the spacecraft (for about 6 hours once every 11 days) dives down over the north pole, skims the outermost atmosphere, and rises back up over the south pole. This orbit allows Juno avoid most of the intense particle radiation surrounding the planet and provides an excellent platform for investigating Jupiter's polar magnetosphere. Part of the exploration of Jupiter's polar magnetosphere will involve remote sensing of the far-ultraviolet H and H2 auroral emissions, plus gases such as methane and acetylene which add their absorption signature to the H2 emissions. This hydrocarbon absorption can be used to estimate the energy of the precipitating electrons; since more energetic electrons penetrate deeper into the atmosphere and the UV emissions they produce will show more absorption. Juno will carry an Ultraviolet Spectrograph (UVS) to make spectral images of Jupiter's aurora. UVS is a UV imaging spectrograph sensitive to both extreme and far ultraviolet emissions in the 70-205~nm range that will characterize the morphology and spectral nature of Jupiter's auroral emissions. Juno UVS consists of two separate sections: a dedicated telescope/spectrograph assembly and a vault electronics box. The telescope/spectrograph assembly contains a telescope which feeds a 0.15-m Rowland circle spectrograph. The telescope has an input aperture 40×40~mm2 and uses an off-axis parabolic primary mirror. A flat scan mirror situated at the front end of the telescope (used to target specific auroral features at up to ±30° perpendicular to the Juno spin plane) directs incoming light to the primary. The light is then focused onto the spectrograph entrance slit, which has a 'dog

  14. Commission 45: Spectral Classification

    NASA Astrophysics Data System (ADS)

    Giridhar, Sunetra; Gray, Richard O.; Corbally, Christopher J.; Bailer-Jones, Coryn A. L.; Eyer, Laurent; Irwin, Michael J.; Kirkpatrick, J. Davy; Majewski, Steven; Minniti, Dante; Nordström, Birgitta

    This report gives an update of developments (since the last General Assembly at Prague) in the areas that are of relevance to the commission. In addition to numerous papers, a new monograph entitled Stellar Spectral Classification with Richard Gray and Chris Corbally as leading authors will be published by Princeton University Press as part of their Princeton Series in Astrophysics in April 2009. This book is an up-to-date and encyclopedic review of stellar spectral classification across the H-R diagram, including the traditional MK system in the blue-violet, recent extensions into the ultraviolet and infrared, the newly defined L-type and T-type spectral classes, as well as spectral classification of carbon stars, S-type stars, white dwarfs, novae, supernovae and Wolf-Rayet stars.

  15. DDT: participation in ultraviolet-detectable, charge-transfer complexation.

    PubMed

    Wilson, W E; Fishbein, L; Clements, S T

    1971-01-15

    The chlorophenyl groups of DDT and several of its metabolites are capable of participating in a charge-transfer interaction with tetracyanoethylene detectable in the ultraviolet region of the spectrum. In addition, during a change of state DDT undergoes ultraviolet spectral alterations that closely resemble those previously claimed to support the hypothesis suggesting charge-transfer interaction between this pesticide and a component of insect nerve tissue. The pesticide DDT possesses structural characteristics that would permit it to participate in several types of molecular association.

  16. Spectral synthesis in the ultraviolet. II - Stellar populations and star formation in blue compact galaxies

    NASA Technical Reports Server (NTRS)

    Fanelli, Michael N.; O'Connell, Robert W.; Thuan, Trinh X.

    1988-01-01

    An initial attempt to apply optimizing spectral synthesis techniques to the far-UV spectra of blue compact galaxies (BCGs) is presented. The far-UV absorption-line spectra of the galaxies are clearly composite, with the signatures of the main-sequence types between O3 and mid-A. Most of the low-ionization absorption lines have a stellar origin. The Si IV and C IV features in several objects have P Cygni profiles. In Haro I the strength of Si IV indicates a significant blue supergiant population. The metal-poor blue compact dwarf Mrk 209 displays weak absorption lines, evidence that the stellar component has the same low metallicity as observed in the ionized gas. Good fits to the data are obtained the technique of optimizing population synthesis. The solutions yield stellar luminosity functions which display large discontinuities, indicative of discrete star formation episodes or bursts. The amount of UV extinction is low.

  17. Measurements of cavity ringdown spectroscopy of acetone in the ultraviolet and near-infrared spectral regions: potential for development of a breath analyzer.

    PubMed

    Wang, Chuji; Scherrer, Susan T; Hossain, Delwar

    2004-07-01

    We report a study on the cavity ringdown spectroscopy of acetone in both the ultraviolet (UV) and the near-infrared (NIR) spectral regions to explore the potential for development of a breath analyzer for disease diagnostics. The ringdown spectrum of acetone in the UV (282.4-285.0 nm) region is recorded and the spectrum is in good agreement with those obtained by other spectral techniques reported in the literature. The absorption cross-section of the C-H stretching overtone of acetone in the NIR (1632.7-1672.2 nm) is reported for the first time and the maximum absorption cross-section located at 1666.7 nm is 1.2 x 10(-21) cm(2). A novel, compact, atmospheric cavity with a cavity length of 10 cm has been constructed and implemented to investigate the technical feasibility of the potential instrument size, optical configuration, and detection sensitivity. The detection limit of such a mini cavity employing ringdown mirrors of reflectivity of 99.85% at 266 nm, where acetone has the strongest absorption, is approximately 1.5 ppmv based on the standard 3 criteria. No real breath gas samples are used in the present study. Discussions on the detection sensitivity and background spectral interferences for the instrument development are presented. This study demonstrates the potential of developing a portable, sensitive breath analyzer for medical applications using the cavity ringdown spectral technique.

  18. ULTRAVIOLET SPECTROSCOPY OF PQ Gem AND V405 Aur FROM THE HST AND IUE SATELLITES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanad, M. R., E-mail: mrsanad1@yahoo.com

    Ultraviolet spectra of two intermediate polars (IPs), PQ Gem and V405 Aur, observed with Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph and Faint Object Spectrograph and International Ultraviolet Explorer (IUE) satellites were analyzed during the period between 1994–2000. We estimated the reddening of the two systems from the 2200 Å feature. Six spectra of the two systems revealing modulations of line fluxes at different times are presented. PQ Gem and V405 Aur are featured by spectral lines in different ionization states. This paper focuses on the third ionized carbon emission line at 1550 Å and the first ionized heliummore » emission line at 1640 Å produced in the optically thin outer region of the accretion curtain for the two systems by calculating spectral line fluxes. From HST and IUE data, we deduced ultraviolet luminosities and ultraviolet accretion rates for the two binary stars. The average temperature of the accretion streams for PQ Gem and V405 Aur are ∼4500 K and 4100 K, respectively. The results reveal that there are modulations in fluxes of spectral lines, ultraviolet luminosities, and ultraviolet accretion rates with time for both systems. These modulations are referred to the changes of both density and temperature as a result of the variations of mass transfer rate from the secondary star to the primary star. The current results are consistent with an accretion curtain model for IPs.« less

  19. SPAM- SPECTRAL ANALYSIS MANAGER (UNIX VERSION)

    NASA Technical Reports Server (NTRS)

    Solomon, J. E.

    1994-01-01

    The Spectral Analysis Manager (SPAM) was developed to allow easy qualitative analysis of multi-dimensional imaging spectrometer data. Imaging spectrometers provide sufficient spectral sampling to define unique spectral signatures on a per pixel basis. Thus direct material identification becomes possible for geologic studies. SPAM provides a variety of capabilities for carrying out interactive analysis of the massive and complex datasets associated with multispectral remote sensing observations. In addition to normal image processing functions, SPAM provides multiple levels of on-line help, a flexible command interpretation, graceful error recovery, and a program structure which can be implemented in a variety of environments. SPAM was designed to be visually oriented and user friendly with the liberal employment of graphics for rapid and efficient exploratory analysis of imaging spectrometry data. SPAM provides functions to enable arithmetic manipulations of the data, such as normalization, linear mixing, band ratio discrimination, and low-pass filtering. SPAM can be used to examine the spectra of an individual pixel or the average spectra over a number of pixels. SPAM also supports image segmentation, fast spectral signature matching, spectral library usage, mixture analysis, and feature extraction. High speed spectral signature matching is performed by using a binary spectral encoding algorithm to separate and identify mineral components present in the scene. The same binary encoding allows automatic spectral clustering. Spectral data may be entered from a digitizing tablet, stored in a user library, compared to the master library containing mineral standards, and then displayed as a timesequence spectral movie. The output plots, histograms, and stretched histograms produced by SPAM can be sent to a lineprinter, stored as separate RGB disk files, or sent to a Quick Color Recorder. SPAM is written in C for interactive execution and is available for two different

  20. Attempts to probe the ozone layer and the ultraviolet-B levels of the past.

    PubMed

    Björn, Lars Olof; McKenzie, Richard L

    2007-07-01

    To get a proper perspective on the current status of atmospheric ozone, which protects the biosphere from ultraviolet-B (UV-B; 280-315 nm) radiation, it would be of value to know how ozone and UV-B radiation have varied in the past. The record of worldwide ozone monitoring goes back only a few decades, and the record of reliable UV-B measurements is even shorter. Here we review indirect methods to assess their status further back in time. These include variations in the Sun's emission and how these affect the atmosphere, changes in the Earth's orbit, geologic imprints of atmospheric ozone, effects of catastrophic events such as volcanic eruptions, biological proxies of UV-B radiation, the spectral signature of terrestrial ozone in old recordings of star spectra, and the modeling of UV-B irradiance from ozone data and meteorological recordings. Although reliable reconstructions do not yet extend far into the past, there is some hope for future progress.

  1. Image-Based Airborne Sensors: A Combined Approach for Spectral Signatures Classification through Deterministic Simulated Annealing

    PubMed Central

    Guijarro, María; Pajares, Gonzalo; Herrera, P. Javier

    2009-01-01

    The increasing technology of high-resolution image airborne sensors, including those on board Unmanned Aerial Vehicles, demands automatic solutions for processing, either on-line or off-line, the huge amountds of image data sensed during the flights. The classification of natural spectral signatures in images is one potential application. The actual tendency in classification is oriented towards the combination of simple classifiers. In this paper we propose a combined strategy based on the Deterministic Simulated Annealing (DSA) framework. The simple classifiers used are the well tested supervised parametric Bayesian estimator and the Fuzzy Clustering. The DSA is an optimization approach, which minimizes an energy function. The main contribution of DSA is its ability to avoid local minima during the optimization process thanks to the annealing scheme. It outperforms simple classifiers used for the combination and some combined strategies, including a scheme based on the fuzzy cognitive maps and an optimization approach based on the Hopfield neural network paradigm. PMID:22399989

  2. LHEA contributions to the Future of Ultraviolet Astronomy Based on Six Years of IUE Research

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.; Urry, C. M.

    1984-01-01

    Astronomical models of galactic nuclei emission spectra are reassessed in light of ultraviolet and X-ray spectroscopic observations. Spectral analysis of BL Lacertae objects using data collected by the International Ultraviolet Explorer (IUE) and other astronomical observatories is presented.

  3. Effect of device package on optical, spectral, and thermal properties of InGaN/GaN near-ultraviolet lateral light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lee, Soo Hyun; Guan, Xiang-Yu; Jeon, Soo-Kun; Yu, Jae Su

    2017-09-01

    We investigated the package effect on the temperature-dependent optical and spectral characteristics of InGaN/GaN near-ultraviolet (NUV) lateral light-emitting diodes (LLEDs) on the metal heatsink (MH) and package (PKG) in the injection current range of 0 - 500 mA at 298 and 358 K. For the NUV LLEDs on the MH, the device characteristics reflected directly its chip performance. For the NUV LLEDs on the PKG, the rapidly varied spectral shift as well as the reduced device efficiency was observed due to the increased number of layers with relatively low thermal conductivities. The junction temperature ( T j ) and thermal resistance of the NUV LLEDs on the PKG were also significantly increased compared to the NUV LLEDs on the MH. The three-dimensional heat transfer simulations for both the devices were carried out to obtain the temperature distributions by finite element method. The theoretically calculated T j values showed a good agreement with the experimentally measured T j values.

  4. Characteristics of active spectral sensor for plant sensing

    USDA-ARS?s Scientific Manuscript database

    Plant stress has been estimated by spectral signature using both passive and active sensors. As optical sensors measure reflected light from a target, changes in illumination conditions critically affect sensor response. Active spectral sensors minimize the illumination effects by producing their ...

  5. Spectral singularities and Bragg scattering in complex crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longhi, S.

    2010-02-15

    Spectral singularities that spoil the completeness of Bloch-Floquet states may occur in non-Hermitian Hamiltonians with complex periodic potentials. Here an equivalence is established between spectral singularities in complex crystals and secularities that arise in Bragg diffraction patterns. Signatures of spectral singularities in a scattering process with wave packets are elucidated for a PT-symmetric complex crystal.

  6. Near-simultaneous ultraviolet and optical spectrophotometry of T Tauri stars

    NASA Technical Reports Server (NTRS)

    Goodrich, Robert W.; Herbig, G. H.

    1986-01-01

    A set of near-simultaneous ultraviolet and optical spectra and UBVR(J)I(J) photometry of five T Tauri stars has been analyzed for the shape of the energy distribution shortward of 3000 A. The far-ultraviolet continua of these stars are very much stronger than the level of light scattered from longer wavelengths in the IUE spectrograph. The results, expressed as two-color plots, show that the UV colors of T Tauri stars differ significantly from those expected from their optical spectral types. Although these particular K-type T Tauri stars are not extreme members of the class, they have the UV colors of A stars. The spectral shape of this UV excess is approximately that expected from published chromospheric models of T Tauri stars.

  7. Solar cycle signatures in the NCEP equatorial annual oscillation

    NASA Astrophysics Data System (ADS)

    Mayr, H. G.; Mengel, J. G.; Huang, F. T.; Nash, E. R.

    2009-08-01

    Our analysis of temperature and zonal wind data (1958 to 2006) from the National Center for Atmospheric Research (NCAR) reanalysis (Re-1), supplied by the National Centers for Environmental Prediction (NCEP), shows that the hemispherically symmetric 12-month equatorial annual oscillation (EAO) contains spectral signatures with periods around 11 years. Moving windows of 44 years show that, below 20 km, the 11-year modulation of the EAO is phase locked to the solar cycle (SC). The spectral features from the 48-year data record reveal modulation signatures of 9.6 and 12 years, which produce EAO variations that mimic in limited altitude regimes the varying maxima and minima of the 10.7 cm flux solar index. Above 20 km, the spectra also contain modulation signatures with periods around 11 years, but the filtered variations are too irregular to suggest that systematic SC forcing is the principal agent.

  8. The ultraviolet variations of iota Cas

    NASA Technical Reports Server (NTRS)

    Molnar, M. R.; Mallama, A. D.; Soskey, D. G.; Holm, A. V.

    1976-01-01

    The Ap variable star iota Cas was observed with the photometers on OAO-2 covering the spectral range 1430-4250 A. The ultraviolet light curves show a double wave with primary minimum and maximum at phase ? 0.00 and 0.35, respectively. Secondary minimum light is at phase ? 0.65 with secondary maximum at phase ? 0.85. The light curves longward of 3150 A vary in opposition to those shortward of this 'null region'. Ground-based coude spectra show that the Fe II and Cr II line strengths have a double-wave variation such that maximum strength occurs at minimum ultraviolet light. We suggest that the strong ultraviolet opacities due to photoionization and line blanketing by these metals may cause the observed photometric variations. We have also constructed an oblique-rotator model which shows iron and chromium lying in a great circle band rather than in circular spots.

  9. Characteristic vector analysis as a technique for signature extraction of remote ocean color data

    NASA Technical Reports Server (NTRS)

    Grew, G. W.

    1977-01-01

    Characteristic vector analysis is being used to extract spectral signatures of suspended matter in the ocean from remote ocean color data collected with MOCS (Multichannel Ocean Color Sensor), a multispectral scanner. Spectral signatures appear to be obtainable either directly from characteristic vectors or through a transformation of these eigenvectors. Quantification of the suspended matter associated with each resulting signature seems feasible using associated coefficients generated by the technique. This paper presents eigenvectors associated with algae, 'sediment', acid waste, sewage sludge, and oil. The results suggest an efficient method of transmitting from satellites multispectral data of pollution in our oceans.

  10. Cloud effects on ultraviolet photoclimatology

    NASA Technical Reports Server (NTRS)

    Green, A. E. S.; Spinhirne, J. D.

    1978-01-01

    The purpose of this study is to quantify for the needs of photobiology the influence of clouds upon the ultraviolet spectral irradiance reaching the ground. Towards this end, analytic formulas are developed which approximately characterize the influence of clouds upon total solar radiation. These may be used in conjunction with a solar pyranometer to assign an effective visual optical depth for the cloud cover. A formula is also developed which characterizes the influence of the optical depth of clouds upon the UV spectral irradiance in the 280-340 nm region. Thus total solar energy observations to assign cloud optical properties can be used to calculate the UV spectral irradiance at the ground in the presence of these clouds. As incidental by-products of this effort, convenient formulas are found for the direct and diffuse components of total solar energy.

  11. 2D signature for detection and identification of drugs

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Shen, Jingling; Zhang, Cunlin; Zhou, Qingli; Shi, Yulei

    2011-06-01

    The method of spectral dynamics analysis (SDA-method) is used for obtaining the2D THz signature of drugs. This signature is used for the detection and identification of drugs with similar Fourier spectra by transmitted THz signal. We discuss the efficiency of SDA method for the identification problem of pure methamphetamine (MA), methylenedioxyamphetamine (MDA), 3, 4-methylenedioxymethamphetamine (MDMA) and Ketamine.

  12. Evaluation criteria for spectral design of camouflage

    NASA Astrophysics Data System (ADS)

    Škerlind, Christina; Fagerström, Jan; Hallberg, Tomas; Kariis, Hans

    2015-10-01

    In development of visual (VIS) and infrared (IR) camouflage for signature management, the aim is the design of surface properties of an object to spectrally match or adapt to a background and thereby minimizing the contrast perceived by a threatening sensor. The so called 'ladder model" relates the requirements for task measure of effectiveness with surface structure properties through the steps signature effectiveness and object signature. It is intended to link materials properties via platform signature to military utility and vice versa. Spectral design of a surface intends to give it a desired wavelength dependent optical response to fit a specific application of interest. Six evaluation criteria were stated, with the aim to aid the process to put requirement on camouflage and for evaluation. The six criteria correspond to properties such as reflectance, gloss, emissivity, and degree of polarization as well as dynamic properties, and broadband or multispectral properties. These criteria have previously been exemplified on different kinds of materials and investigated separately. Anderson and Åkerlind further point out that the six criteria rarely were considered or described all together in one and same publication previously. The specific level of requirement of the different properties must be specified individually for each specific situation and environment to minimize the contrast between target and a background. The criteria or properties are not totally independent of one another. How they are correlated is part of the theme of this paper. However, prioritization has been made due to the limit of space. Therefore all of the interconnections between the six criteria will not be considered in the work of this report. The ladder step previous to digging into the different material composition possibilities and choice of suitable materials and structures (not covered here), includes the object signature and decision of what the spectral response should be

  13. Dynamic Changes in Spectral and Spatial Signatures of High Frequency Oscillations in Rat Hippocampi during Epileptogenesis in Acute and Chronic Stages.

    PubMed

    Song, Pan-Pan; Xiang, Jing; Jiang, Li; Chen, Heng-Sheng; Liu, Ben-Ke; Hu, Yue

    2016-01-01

    To analyze spectral and spatial signatures of high frequency oscillations (HFOs), which include ripples and fast ripples (FRs, >200 Hz) by quantitatively assessing average and peak spectral power in a rat model of different stages of epileptogenesis. The lithium-pilocarpine model of temporal lobe epilepsy was used. The acute phase of epilepsy was assessed by recording intracranial electroencephalography (EEG) activity for 1 day after status epilepticus (SE). The chronic phase of epilepsy, including spontaneous recurrent seizures (SRSs), was assessed by recording EEG activity for 28 days after SE. Average and peak spectral power of five frequency bands of EEG signals in CA1, CA3, and DG regions of the hippocampus were analyzed with wavelet and digital filter. FRs occurred in the hippocampus in the animal model. Significant dynamic changes in the spectral power of FRS were identified in CA1 and CA3. The average spectral power of ripples increased at 20 min before SE ( p  < 0.05), peaked at 10 min before diazepam injection. It decreased at 10 min after diazepam ( p  < 0.05) and returned to baseline after 1 h. The average spectral power of FRs increased at 30 min before SE ( p  < 0.05) and peaked at 10 min before diazepam. It decreased at 10 min after diazepam ( p  < 0.05) and returned to baseline at 2 h after injection. The dynamic changes were similar between average and peak spectral power of FRs. Average and peak spectral power of both ripples and FRs in the chronic phase showed a gradual downward trend compared with normal rats 14 days after SE. The spectral power of HFOs may be utilized to distinguish between normal and pathologic HFOs. Ictal average and peak spectral power of FRs were two parameters for predicting acute epileptic seizures, which could be used as a new quantitative biomarker and early warning marker of seizure. Changes in interictal HFOs power in the hippocampus at the chronic stage may be not related to

  14. Development of ultraviolet- and visible-light one-shot spectral domain optical coherence tomography and in situ measurements of human skin

    NASA Astrophysics Data System (ADS)

    Hirayama, Heijiro; Nakamura, Sohichiro

    2015-07-01

    We have developed ultraviolet (UV)- and visible-light one-shot spectral domain (SD) optical coherence tomography (OCT) that enables in situ imaging of human skin with an arbitrary wavelength in the UV-visible-light region (370-800 nm). We alleviated the computational burden for each color OCT image by physically dispersing the irradiating light with a color filter. The system consists of SD-OCT with multicylindrical lenses; thus, mechanical scanning of the mirror or stage is unnecessary to obtain an OCT image. Therefore, only a few dozens of milliseconds are necessary to obtain single-image data. We acquired OCT images of one subject's skin in vivo and of a skin excision ex vivo for red (R, 650±20 nm), green (G, 550±20 nm), blue (B, 450±20 nm), and UV (397±5 nm) light. In the visible-light spectrum, R light penetrated the skin and was reflected at a lower depth than G or B light. On the skin excision, we demonstrated that UV light reached the dermal layer. We anticipated that basic knowledge about the spectral properties of human skin in the depth direction could be acquired with this system.

  15. Development of ultraviolet- and visible-light one-shot spectral domain optical coherence tomography and in situ measurements of human skin.

    PubMed

    Hirayama, Heijiro; Nakamura, Sohichiro

    2015-07-01

    We have developed ultraviolet (UV)- and visible-light one-shot spectral domain (SD) optical coherence tomography (OCT) that enables in situ imaging of human skin with an arbitrary wavelength in the UV-visible-light region (370-800 nm). We alleviated the computational burden for each color OCT image by physically dispersing the irradiating light with a color filter. The system consists of SD-OCT with multicylindrical lenses; thus, mechanical scanning of the mirror or stage is unnecessary to obtain an OCT image. Therefore, only a few dozens of milliseconds are necessary to obtain single-image data. We acquired OCT images of one subject's skin in vivo and of a skin excision ex vivo for red (R, 650 ± 20 nm), green (G, 550 ± 20 nm), blue (B, 450 ± 20 nm), and UV (397 ± 5 nm) light. In the visible-light spectrum, R light penetrated the skin and was reflected at a lower depth than G or B light. On the skin excision, we demonstrated that UV light reached the dermal layer. We anticipated that basic knowledge about the spectral properties of human skin in the depth direction could be acquired with this system.

  16. Infrared signature modelling of a rocket jet plume - comparison with flight measurements

    NASA Astrophysics Data System (ADS)

    Rialland, V.; Guy, A.; Gueyffier, D.; Perez, P.; Roblin, A.; Smithson, T.

    2016-01-01

    The infrared signature modelling of rocket plumes is a challenging problem involving rocket geometry, propellant composition, combustion modelling, trajectory calculations, fluid mechanics, atmosphere modelling, calculation of gas and particles radiative properties and of radiative transfer through the atmosphere. This paper presents ONERA simulation tools chained together to achieve infrared signature prediction, and the comparison of the estimated and measured signatures of an in-flight rocket plume. We consider the case of a solid rocket motor with aluminized propellant, the Black Brant sounding rocket. The calculation case reproduces the conditions of an experimental rocket launch, performed at White Sands in 1997, for which we obtained high quality infrared signature data sets from DRDC Valcartier. The jet plume is calculated using an in-house CFD software called CEDRE. The plume infrared signature is then computed on the spectral interval 1900-5000 cm-1 with a step of 5 cm-1. The models and their hypotheses are presented and discussed. Then the resulting plume properties, radiance and spectra are detailed. Finally, the estimated infrared signature is compared with the spectral imaging measurements. The discrepancies are analyzed and discussed.

  17. Analytical design of a hyper-spectral imaging spectrometer utilizing a convex grating

    NASA Astrophysics Data System (ADS)

    Kim, Seo H.; Kong, Hong J.; Ku, Hana; Lee, Jun H.

    2012-09-01

    This paper describes about the new design method for hyper-spectral Imaging spectrometers utilizing convex grating. Hyper-spectral imaging systems are power tools in the field of remote sensing. HSI systems collect at least 100 spectral bands of 10~20 nm width. Because the spectral signature is different and induced unique for each material, it should be possible to discriminate between one material and another based on difference in spectral signature of material. I mathematically analyzed parameters for the intellectual initial design. Main concept of this is the derivative of "ring of minimum aberration without vignetting". This work is a kind of analytical design of an Offner imaging spectrometer. Also, several experiment methods will be contrived to evaluate the performance of imaging spectrometer.

  18. DoE Phase II SBIR: Spectrally-Assisted Vehicle Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villeneuve, Pierre V.

    2013-02-28

    The goal of this Phase II SBIR is to develop a prototype software package to demonstrate spectrally-aided vehicle tracking performance. The primary application is to demonstrate improved target vehicle tracking performance in complex environments where traditional spatial tracker systems may show reduced performance. Example scenarios in Figure 1 include a) the target vehicle obscured by a large structure for an extended period of time, or b), the target engaging in extreme maneuvers amongst other civilian vehicles. The target information derived from spatial processing is unable to differentiate between the green versus the red vehicle. Spectral signature exploitation enables comparison ofmore » new candidate targets with existing track signatures. The ambiguity in this confusing scenario is resolved by folding spectral analysis results into each target nomination and association processes. Figure 3 shows a number of example spectral signatures from a variety of natural and man-made materials. The work performed over the two-year effort was divided into three general areas: algorithm refinement, software prototype development, and prototype performance demonstration. The tasks performed under this Phase II to accomplish the program goals were as follows: 1. Acquire relevant vehicle target datasets to support prototype. 2. Refine algorithms for target spectral feature exploitation. 3. Implement a prototype multi-hypothesis target tracking software package. 4. Demonstrate and quantify tracking performance using relevant data.« less

  19. Apollo-16 far-ultraviolet spectra in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Carruthers, G. R.; Page, T.

    1977-01-01

    Spectra in the wavelength ranges from 900 to 1600 A and 1050 to 1600 A of some OB associations in the Large Magellanic Cloud were obtained from the lunar surface by the Apollo-16 far-ultraviolet camera/spectrograph on April 22, 1972. The observed spectral distributions appear consistent with a stellar model having an effective temperature of 30,000 K, reddened by E(B-V) = 0.3, and characterized by the average far-ultraviolet extinction curve of Bless and Savage (1972). However, the absolute intensity of the far-ultraviolet spectrum of the associations NGC 2050 and 2055 seems somewhat too bright in comparison with ground-based photometry.

  20. Synthetic Absorption Lines for a Clumpy Medium: A Spectral Signature for Cloud Acceleration in AGN?

    NASA Technical Reports Server (NTRS)

    Waters, Tim; Proga, Daniel; Dannen, Randall; Kallman, Timothy R.

    2017-01-01

    There is increasing evidence that the highly ionized multiphase components of AGN disc winds may be due to thermal instability. The ions responsible for forming the observed X-ray absorption lines may only exist in relatively cool clumps that can be identified with the so-called warm absorbers. Here we calculate synthetic absorption lines for such warm absorbers from first principles by combining 2D hydrodynamic solutions of a two-phase medium with a dense grid of photoionization models to determine the detailed ionization structure of the gas. Our calculations reveal that cloud disruption, which leads to a highly complicated velocity field (i.e. a clumpy flow), will only mildly affect line shapes and strengths when the warm gas becomes highly mixed but not depleted. Prior to complete disruption, clouds that are optically thin to the driving UV resonance lines will cause absorption at an increasingly blueshifted line-of-sight velocity as they are accelerated. This behavior will imprint an identifiable signature on the line profile if warm absorbers are enshrouded in an even broader absorption line produced by a high column of intercloud gas. Interestingly, we show that it is possible to develop a spectral diagnostic for cloud acceleration by differencing the absorption components of a doublet line, a result that can be qualitatively understood using a simple partial covering model. Our calculations also permit us to comment on the spectral differences between cloud disruption and ionization changes driven by flux variability. Notably, cloud disruption offers another possibility for explaining absorption line variability.

  1. Spatial-spectral preprocessing for endmember extraction on GPU's

    NASA Astrophysics Data System (ADS)

    Jimenez, Luis I.; Plaza, Javier; Plaza, Antonio; Li, Jun

    2016-10-01

    Spectral unmixing is focused in the identification of spectrally pure signatures, called endmembers, and their corresponding abundances in each pixel of a hyperspectral image. Mainly focused on the spectral information contained in the hyperspectral images, endmember extraction techniques have recently included spatial information to achieve more accurate results. Several algorithms have been developed for automatic or semi-automatic identification of endmembers using spatial and spectral information, including the spectral-spatial endmember extraction (SSEE) where, within a preprocessing step in the technique, both sources of information are extracted from the hyperspectral image and equally used for this purpose. Previous works have implemented the SSEE technique in four main steps: 1) local eigenvectors calculation in each sub-region in which the original hyperspectral image is divided; 2) computation of the maxima and minima projection of all eigenvectors over the entire hyperspectral image in order to obtain a candidates pixels set; 3) expansion and averaging of the signatures of the candidate set; 4) ranking based on the spectral angle distance (SAD). The result of this method is a list of candidate signatures from which the endmembers can be extracted using various spectral-based techniques, such as orthogonal subspace projection (OSP), vertex component analysis (VCA) or N-FINDR. Considering the large volume of data and the complexity of the calculations, there is a need for efficient implementations. Latest- generation hardware accelerators such as commodity graphics processing units (GPUs) offer a good chance for improving the computational performance in this context. In this paper, we develop two different implementations of the SSEE algorithm using GPUs. Both are based on the eigenvectors computation within each sub-region of the first step, one using the singular value decomposition (SVD) and another one using principal component analysis (PCA). Based

  2. Interstellar extinction in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Savage, B. D.

    1972-01-01

    Interstellar extinction curves over the region 3600-1100 A for 17 stars are presented. The observations were made by the two Wisconsin spectrometers onboard the OAO-2 with spectral resolutions of 10 A and 20 A. The extinction curves generally show a pronounced maximum at 2175 plus or minus 25 A, a broad minimum in the region 1800-1350 A, and finally a rapid rise to the far ultraviolet. Large extinction variations from star to star are found, especially in the far ultraviolet; however, with only two possible exceptions in this sample, the wavelength at the maximum of the extinction bump is essentially constant. These data are combined with visual and infrared observations to display the extinction behavior over a range in wavelength of about a factor of 20.

  3. Ultraviolet spectrophotometry of three LINERs

    NASA Technical Reports Server (NTRS)

    Goodrich, R. W.; Keel, W. C.

    1986-01-01

    Three galaxies known to be LINERs were observed spectroscopically in the ultraviolet in an attempt to detect the presumed nonthermal continuum source thought to be the source of photoionization in the nuclei. NGC 4501 was found to be too faint for study with the IUE spectrographs, while NGC 5005 had an extended ultraviolet light profile. Comparison with the optical light profile of NGC 5005 indicates that the ultraviolet source is distributed spatially in the same manner as the optical starlight, probably indicating that the ultraviolet excess is due to a component of hot stars in the nucleus. These stars contribute detectable absorption features longward of 2500 A; together with optical data, the IUE spectra suggest a burst of star formation about 1 billion yr ago, with a lower rate continuing to produce a few OB stars. In NGC 4579, a point source contributing most of the ultraviolet excess is found that is much different than the optical light distribution. Furthermore, the ultraviolet to X-ray spectral index in NGC 4579 is 1.4, compatible with the UV to X-ray indices found for samples of Seyfert galaxies. This provides compelling evidence for the detection of the photoionizing continuum in NGC 4579 and draws the research fields of normal galaxies and active galactic nuclei closer together. The emission-line spectrum of NGC 4579 is compared with calculations from a photoionization code, CLOUDY, and several shock models. The photoionization code is found to give superior results, adding to the increasing weight of evidence that the LINER phenomenon is essentially a scaled-down version of the Seyfert phenomenon.

  4. Multi-wavelength Spectral Analysis of Ellerman Bombs Observed by FISS and IRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Jie; Ding, M. D.; Cao, Wenda, E-mail: dmd@nju.edu.cn

    Ellerman bombs (EBs) are a kind of solar activity that is suggested to occur in the lower solar atmosphere. Recent observations using the Interface Region Imaging Spectrograph (IRIS) show connections between EBs and IRIS bombs (IBs), which imply that EBs might be heated to a much higher temperature (8 × 10{sup 4} K) than previous results. Here we perform a spectral analysis of EBs simultaneously observed by the Fast Imaging Solar Spectrograph and IRIS. The observational results show clear evidence of heating in the lower atmosphere, indicated by the wing enhancement in H α , Ca ii 8542 Å, andmore » Mg ii triplet lines and also by brightenings in images of the 1700 Å and 2832 Å ultraviolet continuum channels. Additionally, the intensity of the Mg ii triplet line is correlated with that of H α when an EB occurs, suggesting the possibility of using the triplet as an alternative way to identify EBs. However, we do not find any signal in IRIS hotter lines (C ii and Si iv). For further analysis, we employ a two-cloud model to fit the two chromospheric lines (H α and Ca ii 8542 Å) simultaneously, and obtain a temperature enhancement of 2300 K for a strong EB. This temperature is among the highest of previous modeling results, albeit still insufficient to produce IB signatures at ultraviolet wavelengths.« less

  5. USGS Digital Spectral Library splib05a

    USGS Publications Warehouse

    Clark, Roger N.; Swayze, Gregg A.; Wise, Richard K.; Livo, Eric; Hoefen, Todd M.; Kokaly, Raymond F.; Sutley, Steve J.

    2003-01-01

    We have assembled a digital reflectance spectral library of spectra that covers wavelengths from the ultraviolet to near-infrared along with sample documentation. The library includes samples of minerals, rocks, soils, physically constructed as well as mathematically computed mixtures, vegetation, microorganisms, and man-made materials. The samples and spectra collected were assembled for the purpose of using spectral features for the remote detection of these and similar materials.

  6. Ultraviolet Imaging Telescope observations of the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Hennessy, Gregory S.; O'Connell, Robert W.; Cheng, Kwang P.; Bohlin, Ralph C.; Collins, Nicholas R.; Gull, Theodore P.; Hintzen, Paul; Isensee, Joan E.; Landsman, Wayne B.; Roberts, Morton S.

    1992-01-01

    We obtained ultraviolet images of the Crab Nebula with the Ultraviolet Imaging Telescope during the Astro-1 Space Shuttle mission in 1990 December. The UV continuum morphology of the Crab is generally similar to that in the optical region, but the wispy structures are less conspicuous in the UV and X-ray. UV line emission from the thermal filaments is not strong. UV spectral index maps with a resolution of 10 arcsecs show a significant gradient across the nebula, with the outer parts being redder, as expected from synchrotron losses. The location of the bluest synchrotron continuum does not coincide with the pulsar.

  7. Ultraviolet spectrophotometry from Gemini 11 of stars in Orion

    NASA Technical Reports Server (NTRS)

    Morgan, T. H.; Spear, G. G.; Kondo, Y.; Henize, K. G.

    1975-01-01

    Ultraviolet spectrophotometry in the wavelength region 2600-3600 A is reported for the bright early-type stars beta, eta, gamma, delta, iota, epsilon, sigma, zeta, and kappa Ori. The results are in good agreement with other observations, and, with the possible exception of the supergiants, are in good agreement with recent line-blanketed model atmospheres. There is evidence that the supergiants possess a small ultraviolet deficiency shortward of 3000 A relative to main-sequence stars of similar spectral type. The most extreme example of this phenomenon is the star kappa Ori.

  8. The Extreme Ultraviolet spectrometer on bard the Hisaki satellite

    NASA Astrophysics Data System (ADS)

    Yoshioka, K.; Murakami, G.; Yamazaki, A.; Tsuchiya, F.; Kagitani, M.; Kimura, T.; Yoshikawa, I.

    2017-12-01

    The extreme ultraviolet spectroscope EXCEED (EXtrem ultraviolet spetrosCope for ExosphEric Dynamics) on board the Hisaki satellite was launched in September 2013 from the Uchinoura space center, Japan. It is orbiting around the Earth with an orbital altitude of around 950-1150 km. This satellite is dedicated to and optimized for observing the atmosphere and magnetosphere of terrestrial planets such as Mercury, Venus, Mars, as well as Jupiter. The instrument consists of an off axis parabolic entrance mirror, switchable slits with multiple filters and shapes, a toroidal grating, and a photon counting detector, together with a field of view guiding camera. The design goal is to achieve a large effective area but with high spatial and spectral resolution. Based on the after-launch calibration, the spectral resolution of EXCEED is found to be 0.3-0.5 nm FWHM (Full Width at Half Maximum) over the entire spectral band, and the spatial resolution is around 17". The evaluated effective area is larger than 1cm2. In this presentation, the basic concept of the instrument design and the observation technique are introduced. The current status of the spacecraft and its future observation plan are also shown.

  9. Wetlands delineation by spectral signature analysis and legal implications

    NASA Technical Reports Server (NTRS)

    Anderon, R. R.; Carter, V.

    1972-01-01

    High altitude analysis of wetland resources and the use of such information in an operational mode to address specific problems of wetland preservation at a state level are discussed. Work efforts were directed toward: (1) developing techniques for using large scale color IR photography in state wetlands mapping program, (2) developing methods for obtaining wetlands ecology information from high altitude photography, (3) developing means by which spectral data can be more accurately analyzed visually, and (4) developing spectral data for automatic mapping of wetlands.

  10. Are leaf chemistry signatures preserved at the canopy level?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borel, C.C.; Gerstl, S.A.W.

    1994-05-01

    Imaging spectrometers have the potential to be very useful in remote sensing of canopy chemistry constituents such as nitrogen and lignin. In this study under the HIRIS project the question of how leaf chemical composition which is reflected in leaf spectral features in the reflectance and transmittance is affected by canopy architecture was investigated. Several plants were modeled with high fidelity and a radiosity model was used to compute the canopy spectral signature over the visible and near infrared. We found that chemical constituent specific signatures such as absorptions are preserved and in the case of low absorption are actuallymore » enhanced. For moderately dense canopies the amount of a constituent depends also on the total leaf area.« less

  11. The Apollo 17 far ultraviolet spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Fastie, W. G.

    1972-01-01

    The Apollo 17 command service module in lunar orbit will carry a far ultraviolet scanning spectrometer whose prime mission will be to measure the composition of the lunar atmosphere. Additional observations will include the spectral lunar albedo, the temporary atmosphere injected by the engines of the lunar exploration module, the solar system atmosphere, the galactic atmosphere and the spectra of astronomical sources, including the earth. A detailed description of the experimental equipment which observes the spectral range 1180 to 1680 A, the observing program and broad speculation about the possible results of the experiment, are presented.

  12. The Space Weather and Ultraviolet Solar Variability (SWUSV) Microsatellite Mission

    PubMed Central

    Damé, Luc; Meftah, Mustapha; Hauchecorne, Alain; Keckhut, Philippe; Sarkissian, Alain; Marchand, Marion; Irbah, Abdenour; Quémerais, Éric; Bekki, Slimane; Foujols, Thomas; Kretzschmar, Matthieu; Cessateur, Gaël; Shapiro, Alexander; Schmutz, Werner; Kuzin, Sergey; Slemzin, Vladimir; Urnov, Alexander; Bogachev, Sergey; Merayo, José; Brauer, Peter; Tsinganos, Kanaris; Paschalis, Antonis; Mahrous, Ayman; Khaled, Safinaz; Ghitas, Ahmed; Marzouk, Besheir; Zaki, Amal; Hady, Ahmed A.; Kariyappa, Rangaiah

    2013-01-01

    We present the ambitions of the SWUSV (Space Weather and Ultraviolet Solar Variability) Microsatellite Mission that encompasses three major scientific objectives: (1) Space Weather including the prediction and detection of major eruptions and coronal mass ejections (Lyman-Alpha and Herzberg continuum imaging); (2) solar forcing on the climate through radiation and their interactions with the local stratosphere (UV spectral irradiance from 180 to 400 nm by bands of 20 nm, plus Lyman-Alpha and the CN bandhead); (3) simultaneous radiative budget of the Earth, UV to IR, with an accuracy better than 1% in differential. The paper briefly outlines the mission and describes the five proposed instruments of the model payload: SUAVE (Solar Ultraviolet Advanced Variability Experiment), an optimized telescope for FUV (Lyman-Alpha) and MUV (200–220 nm Herzberg continuum) imaging (sources of variability); UPR (Ultraviolet Passband Radiometers), with 64 UV filter radiometers; a vector magnetometer; thermal plasma measurements and Langmuir probes; and a total and spectral solar irradiance and Earth radiative budget ensemble (SERB, Solar irradiance & Earth Radiative Budget). SWUSV is proposed as a small mission to CNES and to ESA for a possible flight as early as 2017–2018. PMID:25685424

  13. The Space Weather and Ultraviolet Solar Variability (SWUSV) Microsatellite Mission.

    PubMed

    Damé, Luc

    2013-05-01

    We present the ambitions of the SWUSV (Space Weather and Ultraviolet Solar Variability) Microsatellite Mission that encompasses three major scientific objectives: (1) Space Weather including the prediction and detection of major eruptions and coronal mass ejections (Lyman-Alpha and Herzberg continuum imaging); (2) solar forcing on the climate through radiation and their interactions with the local stratosphere (UV spectral irradiance from 180 to 400 nm by bands of 20 nm, plus Lyman-Alpha and the CN bandhead); (3) simultaneous radiative budget of the Earth, UV to IR, with an accuracy better than 1% in differential. The paper briefly outlines the mission and describes the five proposed instruments of the model payload: SUAVE (Solar Ultraviolet Advanced Variability Experiment), an optimized telescope for FUV (Lyman-Alpha) and MUV (200-220 nm Herzberg continuum) imaging (sources of variability); UPR (Ultraviolet Passband Radiometers), with 64 UV filter radiometers; a vector magnetometer; thermal plasma measurements and Langmuir probes; and a total and spectral solar irradiance and Earth radiative budget ensemble (SERB, Solar irradiance & Earth Radiative Budget). SWUSV is proposed as a small mission to CNES and to ESA for a possible flight as early as 2017-2018.

  14. A Movie of PKS 2155-304 in Living Ultraviolet Color

    NASA Astrophysics Data System (ADS)

    Urry, C. M.; Welsh, W.; Berry, D.; Levay, Z.; Feimer, W.; Koratkar, A.; Maraschi, L.; Madejski, G.; Edelson, R.

    1993-05-01

    Extensive monitoring of PKS 2155-304 with IUE in November 1991 revealed rapid large-amplitude variations in the ultraviolet flux of this BL Lac object. Many small, rapid flares are superimposed on a general doubling of the intensity. Spectral changes during the intensity variations are surprisingly small --- the whole spectrum rises and falls more or less uniformly. The ultraviolet and optical (FES) results are described by Urry \\ea (1993, ApJ, 411, in press). Here we present these results in a new way, using a movie to convey the dramatic flaring and nearly imperceptible spectral variations. The movie runs at various speeds relative to real time, as well as backwards, the latter demonstrating the approximate time symmetry of the rapid flaring. The ultraviolet luminosity of this active galaxy is ~ 10(46) ergs s(-1) , so the observed 30% changes over a period of 1 day correspond to Delta L / Delta t ~ 5 times 10(40) ergs s(-2) , only a factor of 4 below the fiducial limit for Eddington-limited accretion with efficiency eta =0.1. Given the estimated bolometric correction of ~ 10, it is likely that relativistic beaming is important.

  15. SPAM- SPECTRAL ANALYSIS MANAGER (DEC VAX/VMS VERSION)

    NASA Technical Reports Server (NTRS)

    Solomon, J. E.

    1994-01-01

    The Spectral Analysis Manager (SPAM) was developed to allow easy qualitative analysis of multi-dimensional imaging spectrometer data. Imaging spectrometers provide sufficient spectral sampling to define unique spectral signatures on a per pixel basis. Thus direct material identification becomes possible for geologic studies. SPAM provides a variety of capabilities for carrying out interactive analysis of the massive and complex datasets associated with multispectral remote sensing observations. In addition to normal image processing functions, SPAM provides multiple levels of on-line help, a flexible command interpretation, graceful error recovery, and a program structure which can be implemented in a variety of environments. SPAM was designed to be visually oriented and user friendly with the liberal employment of graphics for rapid and efficient exploratory analysis of imaging spectrometry data. SPAM provides functions to enable arithmetic manipulations of the data, such as normalization, linear mixing, band ratio discrimination, and low-pass filtering. SPAM can be used to examine the spectra of an individual pixel or the average spectra over a number of pixels. SPAM also supports image segmentation, fast spectral signature matching, spectral library usage, mixture analysis, and feature extraction. High speed spectral signature matching is performed by using a binary spectral encoding algorithm to separate and identify mineral components present in the scene. The same binary encoding allows automatic spectral clustering. Spectral data may be entered from a digitizing tablet, stored in a user library, compared to the master library containing mineral standards, and then displayed as a timesequence spectral movie. The output plots, histograms, and stretched histograms produced by SPAM can be sent to a lineprinter, stored as separate RGB disk files, or sent to a Quick Color Recorder. SPAM is written in C for interactive execution and is available for two different

  16. Single particle mass spectral signatures from vehicle exhaust particles and the source apportionment of on-line PM2.5 by single particle aerosol mass spectrometry.

    PubMed

    Yang, Jian; Ma, Shexia; Gao, Bo; Li, Xiaoying; Zhang, Yanjun; Cai, Jing; Li, Mei; Yao, Ling'ai; Huang, Bo; Zheng, Mei

    2017-09-01

    In order to accurately apportion the many distinct types of individual particles observed, it is necessary to characterize fingerprints of individual particles emitted directly from known sources. In this study, single particle mass spectral signatures from vehicle exhaust particles in a tunnel were performed. These data were used to evaluate particle signatures in a real-world PM 2.5 apportionment study. The dominant chemical type originating from average positive and negative mass spectra for vehicle exhaust particles are EC species. Four distinct particle types describe the majority of particles emitted by vehicle exhaust particles in this tunnel. Each particle class is labeled according to the most significant chemical features in both average positive and negative mass spectral signatures, including ECOC, NaK, Metal and PAHs species. A single particle aerosol mass spectrometry (SPAMS) was also employed during the winter of 2013 in Guangzhou to determine both the size and chemical composition of individual atmospheric particles, with vacuum aerodynamic diameter (d va ) in the size range of 0.2-2μm. A total of 487,570 particles were chemically analyzed with positive and negative ion mass spectra and a large set of single particle mass spectra was collected and analyzed in order to identify the speciation. According to the typical tracer ions from different source types and classification by the ART-2a algorithm which uses source fingerprints for apportioning ambient particles, the major sources of single particles were simulated. Coal combustion, vehicle exhaust, and secondary ion were the most abundant particle sources, contributing 28.5%, 17.8%, and 18.2%, respectively. The fraction with vehicle exhaust species particles decreased slightly with particle size in the condensation mode particles. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Modification of spectral ultraviolet doses by different types of overcast cloudiness and atmospheric aerosol.

    PubMed

    Aun, Margit; Eerme, Kalju; Ansko, Ilmar; Veismann, Uno; Lätt, Silver

    2011-01-01

    Wavelength-dependent attenuation of ground-level ultraviolet (UV) dose by different cloud and aerosol situations at the Tartu Observatory site (58°15' N, 26°28' E, 70 m a.s.l) is under scrutiny. The spectra at wavelengths ranging below 400 nm have been recorded by the simple Avantes, Inc. array spectrometer AvaSpec-256 in 2004-2009. The spectral information was supported by the conventional broadband solar irradiance and by the necessary meteorological data. The average cloud modification factor (CMF) on overcast days from May to August has been quite low, 0.36 in UVA and 0.35 in UVB. In the UVA range, the reduction of the daily dose with increasing noon solar zenith angle (SZA) from 35-50° to 65-80° in overcast days has been about 20% more than in clear days, while in the UVB range it was 45% larger. No clear difference in the influence of SZA on CMF between low level (St, Ns) and medium level (As, Ac) overcast cloudiness has been found. The aerosol attenuation during large aerosol optical depth (AOD) episode has been comparable with that of medium level clouds with the wavelength dependency in the UVA range different from that of clouds. © 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  18. Fluoride coatings for vacuum ultraviolet reflection filters.

    PubMed

    Guo, Chun; Kong, Mingdong; Lin, Dawei; Li, Bincheng

    2015-12-10

    LaF3/MgF2 reflection filters with a high spectral-discrimination capacity of the atomic-oxygen lines at 130.4 and 135.6 nm, which were employed in vacuum ultraviolet imagers, were prepared by molybdenum-boat thermal evaporation. The optical properties of reflection filters were characterized by a high-precision vacuum ultraviolet spectrophotometer. The vulnerability of the filter's microstructures to environmental contamination and the recovery of the optical properties of the stored filter samples with ultraviolet ozone cleaning were experimentally demonstrated. For reflection filters with the optimized nonquarter-wave multilayer structures, the reflectance ratios R135.6 nm/R130.4 nm of 92.7 and 20.6 were achieved for 7° and 45° angles of incidence, respectively. On the contrary, R135.6 nm/R130.4 nm ratio of 12.4 was obtained for a reflection filter with a standard π-stack multilayer structure with H/L=1/4 at 7° AOI.

  19. Spectral Data Reduction via Wavelet Decomposition

    NASA Technical Reports Server (NTRS)

    Kaewpijit, S.; LeMoigne, J.; El-Ghazawi, T.; Rood, Richard (Technical Monitor)

    2002-01-01

    The greatest advantage gained from hyperspectral imagery is that narrow spectral features can be used to give more information about materials than was previously possible with broad-band multispectral imagery. For many applications, the new larger data volumes from such hyperspectral sensors, however, present a challenge for traditional processing techniques. For example, the actual identification of each ground surface pixel by its corresponding reflecting spectral signature is still one of the most difficult challenges in the exploitation of this advanced technology, because of the immense volume of data collected. Therefore, conventional classification methods require a preprocessing step of dimension reduction to conquer the so-called "curse of dimensionality." Spectral data reduction using wavelet decomposition could be useful, as it does not only reduce the data volume, but also preserves the distinctions between spectral signatures. This characteristic is related to the intrinsic property of wavelet transforms that preserves high- and low-frequency features during the signal decomposition, therefore preserving peaks and valleys found in typical spectra. When comparing to the most widespread dimension reduction technique, the Principal Component Analysis (PCA), and looking at the same level of compression rate, we show that Wavelet Reduction yields better classification accuracy, for hyperspectral data processed with a conventional supervised classification such as a maximum likelihood method.

  20. Temperature measurement using ultraviolet laser absorption of carbon dioxide behind shock waves.

    PubMed

    Oehlschlaeger, Matthew A; Davidson, David F; Jeffries, Jay B

    2005-11-01

    A diagnostic for microsecond time-resolved temperature measurements behind shock waves, using ultraviolet laser absorption of vibrationally hot carbon dioxide, is demonstrated. Continuous-wave laser radiation at 244 and 266 nm was employed to probe the spectrally smooth CO2 ultraviolet absorption, and an absorbance ratio technique was used to determine temperature. Measurements behind shock waves in both nonreacting and reacting (ignition) systems were made, and comparisons with isentropic and constant-volume calculations are reported.

  1. Signature simulation of mixed materials

    NASA Astrophysics Data System (ADS)

    Carson, Tyler D.; Salvaggio, Carl

    2015-05-01

    Soil target signatures vary due to geometry, chemical composition, and scene radiometry. Although radiative transfer models and function-fit physical models may describe certain targets in limited depth, the ability to incorporate all three signature variables is difficult. This work describes a method to simulate the transient signatures of soil by first considering scene geometry synthetically created using 3D physics engines. Through the assignment of spectral data from the Nonconventional Exploitation Factors Data System (NEFDS), the synthetic scene is represented as a physical mixture of particles. Finally, first principles radiometry is modeled using the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model. With DIRSIG, radiometric and sensing conditions were systematically manipulated to produce and record goniometric signatures. The implementation of this virtual goniometer allows users to examine how a target bidirectional reflectance distribution function (BRDF) will change with geometry, composition, and illumination direction. By using 3D computer graphics models, this process does not require geometric assumptions that are native to many radiative transfer models. It delivers a discrete method to circumnavigate the significant cost of time and treasure associated with hardware-based goniometric data collections.

  2. Characterizing ultraviolet and infrared observational properties for galaxies. II. Features of attenuation law

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Ye-Wei; Kong, Xu; Lin, Lin, E-mail: ywmao@pmo.ac.cn, E-mail: xkong@ustc.edu.cn, E-mail: linlin@shao.ac.cn

    Variations in the attenuation law have a significant impact on observed spectral energy distributions for galaxies. As one important observational property for galaxies at ultraviolet and infrared wavelength bands, the correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color index (or ultraviolet spectral slope), i.e., the IRX-UV relation (or IRX-β relation), offered a widely used formula for correcting dust attenuation in galaxies, but the usability appears to be in doubt now because of considerable dispersion in this relation found by many studies. In this paper, on the basis of spectral synthesis modeling and spatially resolved measurements of four nearby spiral galaxies,more » we provide an interpretation of the deviation in the IRX-UV relation with variations in the attenuation law. From both theoretical and observational viewpoints, two components in the attenuation curve, the linear background and the 2175 Å bump, are suggested to be the parameters in addition to the stellar population age (addressed in the first paper of this series) in the IRX-UV function; different features in the attenuation curve are diagnosed for the galaxies in our sample. Nevertheless, it is often difficult to ascertain the attenuation law for galaxies in actual observations. Possible reasons for preventing the successful detection of the parameters in the attenuation curve are also discussed in this paper, including the degeneracy of the linear background and the 2175 Å bump in observational channels, the requirement for young and dust-rich systems to study, and the difficulty in accurate estimates of dust attenuations at different wavelength bands.« less

  3. Characterizing Ultraviolet and Infrared Observational Properties for Galaxies. II. Features of Attenuation Law

    NASA Astrophysics Data System (ADS)

    Mao, Ye-Wei; Kong, Xu; Lin, Lin

    2014-07-01

    Variations in the attenuation law have a significant impact on observed spectral energy distributions for galaxies. As one important observational property for galaxies at ultraviolet and infrared wavelength bands, the correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color index (or ultraviolet spectral slope), i.e., the IRX-UV relation (or IRX-β relation), offered a widely used formula for correcting dust attenuation in galaxies, but the usability appears to be in doubt now because of considerable dispersion in this relation found by many studies. In this paper, on the basis of spectral synthesis modeling and spatially resolved measurements of four nearby spiral galaxies, we provide an interpretation of the deviation in the IRX-UV relation with variations in the attenuation law. From both theoretical and observational viewpoints, two components in the attenuation curve, the linear background and the 2175 Å bump, are suggested to be the parameters in addition to the stellar population age (addressed in the first paper of this series) in the IRX-UV function; different features in the attenuation curve are diagnosed for the galaxies in our sample. Nevertheless, it is often difficult to ascertain the attenuation law for galaxies in actual observations. Possible reasons for preventing the successful detection of the parameters in the attenuation curve are also discussed in this paper, including the degeneracy of the linear background and the 2175 Å bump in observational channels, the requirement for young and dust-rich systems to study, and the difficulty in accurate estimates of dust attenuations at different wavelength bands.

  4. Information theory, spectral geometry, and quantum gravity.

    PubMed

    Kempf, Achim; Martin, Robert

    2008-01-18

    We show that there exists a deep link between the two disciplines of information theory and spectral geometry. This allows us to obtain new results on a well-known quantum gravity motivated natural ultraviolet cutoff which describes an upper bound on the spatial density of information. Concretely, we show that, together with an infrared cutoff, this natural ultraviolet cutoff beautifully reduces the path integral of quantum field theory on curved space to a finite number of ordinary integrations. We then show, in particular, that the subsequent removal of the infrared cutoff is safe.

  5. Spectral measurements of muzzle flash with multispectral and hyperspectral sensor

    NASA Astrophysics Data System (ADS)

    Kastek, M.; Dulski, R.; Trzaskawka, P.; Piątkowski, T.; Polakowski, H.

    2011-08-01

    The paper presents some practical aspects of the measurements of muzzle flash signatures. Selected signatures of sniper shot in typical scenarios has been presented. Signatures registered during all phases of muzzle flash were analyzed. High precision laboratory measurements were made in a special ballistic laboratory and as a result several flash patterns were registered. The field measurements of a muzzle flash were also performed. During the tests several infrared cameras were used, including the measurement class devices with high accuracy and frame rates. The registrations were made in NWIR, SWIR and LWIR spectral bands simultaneously. An ultra fast visual camera was also used for visible spectra registration. Some typical infrared shot signatures were presented. Beside the cameras, the LWIR imaging spectroradiometer HyperCam was also used during the laboratory experiments and the field tests. The signatures collected by the HyperCam device were useful for the determination of spectral characteristics of the muzzle flash, whereas the analysis of thermal images registered during the tests provided the data on temperature distribution in the flash area. As a result of the measurement session the signatures of several types handguns, machine guns and sniper rifles were obtained which will be used in the development of passive infrared systems for sniper detection.

  6. Spectral signatures of polar stratospheric clouds and sulfate aerosol

    NASA Technical Reports Server (NTRS)

    Massie, S. T.; Bailey, P. L.; Gille, J. C.; Lee, E. C.; Mergenthaler, J. L.; Roche, A. E.; Kumer, J. B.; Fishbein, E. F.; Waters, J. W.; Lahoz, W. A.

    1994-01-01

    Multiwavelength observations of Antarctic and midlatitude aerosol by the Cryogenic Limb Array Etalon Spectrometer (CLAES) experiment on the Upper Atmosphere Research Satellite (UARS) are used to demonstrate a technique that identifies the location of polar stratospheric clouds. The technique discussed uses the normalized area of the triangle formed by the aerosol extinctions at 925, 1257, and 1605/cm (10.8, 8.0, and 6.2 micrometers) to derive a spectral aerosol measure M of the aerosol spectrum. Mie calculations for spherical particles and T-matrix calculations for spheriodal particles are used to generate theoretical spectral extinction curves for sulfate and polar stratospheric cloud particles. The values of the spectral aerosol measure M for the sulfate and polar stratospheric cloud particles are shown to be different. Aerosol extinction data, corresponding to temperatures between 180 and 220 K at a pressure of 46 hPa (near 21-km altitude) for 18 August 1992, are used to demonstrate the technique. Thermodynamic calculations, based upon frost-point calculations and laboratory phase-equilibrium studies of nitric acid trihydrate, are used to predict the location of nitric acid trihydrate cloud particles.

  7. Solar CIV Vacuum-Ultraviolet Fabry-Perot Interferometers

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; West, Edward A.; Rees, David; McKay, Jack A.; Zukic, Maumer; Herman, Peter

    2006-01-01

    Aims: A tunable, high spectral resolution, high effective finesse, vacuum ultraviolet (VUV) Fabry-Perot interferometer (PPI) is designed for obtaining narrow-passband images, magnetograms, and Dopplergrams of the transition region emission line of CIV (155 nm). Methods: The integral part of the CIV narrow passband filter package (with a 2-10 pm FWHM) consists of a multiple etalon system composed of a tunable interferometer that provides high-spectral resolution and a static low-spectral resolution interferometer that allows a large effective free spectral range. The prefilter for the interferometers is provided by a set of four mirrors with dielectric high-reflective coatings. A tunable interferometer, a VUV piezoelectric-control etalon, has undergone testing using the surrogate F2 eximer laser line at 157 nm for the CIV line. We present the results of the tests with a description of the overall concept for a complete narrow-band CIV spectral filter. The static interferometer of the filter is envisioned as being hudt using a set of fixed MgF2 plates. The four-mirror prefilter is designed to have dielectric multilayer n-stacks employing the design concept used in the Ultraviolet Imager of NASA's Polar Spacecraft. A dual etalon system allows the effective free spectral range to be commensurate with the prefilter profile. With an additional etalon, a triple etalon system would allow a spectrographic resolution of 2 pm. The basic strategy has been to combine the expertise of spaceflight etalon manufacturing with VUV coating technology to build a VUV FPI which combines the best attributes of imagers and spectrographs into a single compact instrument. Results. Spectro-polarimetry observations of the transition region CIV emission can be performed to increase the understanding of the magnetic forces, mass motion, evolution, and energy release within the solar atmosphere at the base of the corona where most of the magnetic field is approximately force-free. The 2D imaging

  8. Camouflage in thermal IR: spectral design

    NASA Astrophysics Data System (ADS)

    Pohl, Anna; Fagerström, Jan; Kariis, Hans; Lindell, Roland; Hallberg, Tomas; Högström, Herman

    2016-10-01

    In this work a spectral designed coating from SPECTROGON is evaluated. Spectral design in this case means that the coating has a reflectivity equal to one at 3-5 and 8-12 microns were sensors operate and a much lower reflectivity in the other wave length regions. Three boxes are evaluated: one metallic, one black-body and one with a spectral designed surface, all with a 15 W radiator inside the box. It is shown that the box with the spectral designed surface can combine the two good characteristics of the other boxes: low signature from the metallic box and reasonable inside temperature from the black-body box. The measurements were verified with calculations using RadThermIR.

  9. Experiment research on infrared targets signature in mid and long IR spectral bands

    NASA Astrophysics Data System (ADS)

    Wang, Chensheng; Hong, Pu; Lei, Bo; Yue, Song; Zhang, Zhijie; Ren, Tingting

    2013-09-01

    Since the infrared imaging system has played a significant role in the military self-defense system and fire control system, the radiation signature of IR target becomes an important topic in IR imaging application technology. IR target signature can be applied in target identification, especially for small and dim targets, as well as the target IR thermal design. To research and analyze the targets IR signature systematically, a practical and experimental project is processed under different backgrounds and conditions. An infrared radiation acquisition system based on a MWIR cooled thermal imager and a LWIR cooled thermal imager is developed to capture the digital infrared images. Furthermore, some instruments are introduced to provide other parameters. According to the original image data and the related parameters in a certain scene, the IR signature of interested target scene can be calculated. Different background and targets are measured with this approach, and a comparison experiment analysis shall be presented in this paper as an example. This practical experiment has proved the validation of this research work, and it is useful in detection performance evaluation and further target identification research.

  10. Development of a rapid method for the automatic classification of biological agents' fluorescence spectral signatures

    NASA Astrophysics Data System (ADS)

    Carestia, Mariachiara; Pizzoferrato, Roberto; Gelfusa, Michela; Cenciarelli, Orlando; Ludovici, Gian Marco; Gabriele, Jessica; Malizia, Andrea; Murari, Andrea; Vega, Jesus; Gaudio, Pasquale

    2015-11-01

    Biosecurity and biosafety are key concerns of modern society. Although nanomaterials are improving the capacities of point detectors, standoff detection still appears to be an open issue. Laser-induced fluorescence of biological agents (BAs) has proved to be one of the most promising optical techniques to achieve early standoff detection, but its strengths and weaknesses are still to be fully investigated. In particular, different BAs tend to have similar fluorescence spectra due to the ubiquity of biological endogenous fluorophores producing a signal in the UV range, making data analysis extremely challenging. The Universal Multi Event Locator (UMEL), a general method based on support vector regression, is commonly used to identify characteristic structures in arrays of data. In the first part of this work, we investigate fluorescence emission spectra of different simulants of BAs and apply UMEL for their automatic classification. In the second part of this work, we elaborate a strategy for the application of UMEL to the discrimination of different BAs' simulants spectra. Through this strategy, it has been possible to discriminate between these BAs' simulants despite the high similarity of their fluorescence spectra. These preliminary results support the use of SVR methods to classify BAs' spectral signatures.

  11. Far-UV Spectral Mapping of Lunar Composition, Porosity, and Space Weathering: LRO Lyman Alpha Mapping Project (LAMP)

    NASA Astrophysics Data System (ADS)

    Retherford, K. D.; Greathouse, T. K.; Mandt, K.; Gladstone, R.; Liu, Y.; Hendrix, A. R.; Hurley, D.; Cahill, J. T.; Stickle, A. M.; Egan, A.; Kaufmann, D. E.; Grava, C.; Pryor, W. R.

    2016-12-01

    Far ultraviolet reflectance measurements of the Moon, icy satellites, comets, and asteroids obtained within the last decade have ushered in a new era of scientific advancement for UV surface investigations. The Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) has demonstrated an innovative nightside observing technique, putting a new light on permanently shadowed regions (PSRs) and other features on the Moon. Dayside far-UV albedo maps complement the nightside data, and LRO's polar orbit and high data downlink capabilities enable searches for diurnal variations in spectral signals. We'll discuss the strengths of the far-UV reflectance imaging spectroscopy technique with respect to several new LAMP results. Detections of water frost and hydration signatures near 165 nm, for example, provide constraints on composition that complement infrared spectroscopy, visible imaging, neutron spectroscopy, radar, and other techniques. At far-UV wavelengths a relatively blue spectral slope is diagnostic of space weathering, which is opposite of the spectral reddening indicator of maturity at wavelengths longward of 180 nm. By utilizing natural diffuse illumination sources on the nightside the far-UV technique is able to identify relative increases in porosity within the PSRs, and provides an additional tool for determining relative surface ages. Prospects for future studies are further enabled by a new, more sensitive dayside operating mode enacted during the present LRO mission extension.

  12. A possible signature of annihilating dark matter

    NASA Astrophysics Data System (ADS)

    Chan, Man Ho

    2018-02-01

    In this article, we report a new signature of dark matter annihilation based on the radio continuum data of NGC 1569 galaxy detected in the past few decades. After eliminating the thermal contribution of the radio signal, an abrupt change in the spectral index is shown in the radio spectrum. Previously, this signature was interpreted as an evidence of convective outflow of cosmic ray. However, we show that the cosmic ray contribution is not enough to account for the observed radio flux. We then discover that if dark matter annihilates via the 4-e channel with the thermal relic cross-section, the electrons and positrons produced would emit a strong radio flux which can provide an excellent agreement with the observed signature. The best-fitting dark matter mass is 25 GeV.

  13. Vacuum ultraviolet instrumentation for solar irradiance and thermospheric airglow

    NASA Technical Reports Server (NTRS)

    Woods, Thomas N.; Rottman, Gary J.; Bailey, Scott M.; Solomon, Stanley C.

    1993-01-01

    A NASA sounding rocket experiment was developed to study the solar extreme ultraviolet (EUV) spectral irradiance and its effect on the upper atmosphere. Both the solar flux and the terrestrial molecular nitrogen via the Lyman-Birge-Hopfield bands in the far ultraviolet (FUV) were measured remotely from a sounding rocket on October 27, 1992. The rocket experiment also includes EUV instruments from Boston University (Supriya Chakrabarti), but only the National Center for Atmospheric Research (NCAR)/University of Colorado (CU) four solar instruments and one airglow instrument are discussed here. The primary solar EUV instrument is a 1/4 meter Rowland circle EUV spectrograph which has flown on three rockets since 1988 measuring the solar spectral irradiance from 30 to 110 nm with 0.2 nm resolution. Another solar irradiance instrument is an array of six silicon XUV photodiodes, each having different metallic filters coated directly on the photodiodes. This photodiode system provides a spectral coverage from 0.1 to 80 nm with about 15 nm resolution. The other solar irradiance instrument is a silicon avalanche photodiode coupled with pulse height analyzer electronics. This avalanche photodiode package measures the XUV photon energy providing a solar spectrum from 50 to 12,400 eV (25 to 0.1 nm) with an energy resolution of about 50 eV. The fourth solar instrument is an XUV imager that images the sun at 17.5 nm with a spatial resolution of 20 arc-seconds. The airglow spectrograph measures the terrestrial FUV airglow emissions along the horizon from 125 to 160 nm with 0.2 nm spectral resolution. The photon-counting CODACON detectors are used for three of these instruments and consist of coded arrays of anodes behind microchannel plates. The one-dimensional and two-dimensional CODACON detectors were developed at CU by Dr. George Lawrence. The pre-flight and post-flight photometric calibrations were performed at our calibration laboratory and at the Synchrotron Ultraviolet

  14. Label free aggressive prostate cancer identification with ultraviolet photoacoustic spectral analysis (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xu, Guan; Davis, Mandy A.; Siddiqui, Javed; Chao, Wan-yu; Tomlins, Scott A.; Wei, John T.; Wang, Xueding

    2017-03-01

    Prostate cancer (PCa) is the most commonly diagnosed cancer in American men for the past decades. PCa has a relatively low progression rate but the 5 year survival rate decreases dramatically once the cancer has metastasized. Differentiating aggressive from indolent PCa is critical for improving PCa patient outcomes and preventing metastasis and death. Prostate biopsy is the standard procedure for evaluating the presence and aggressiveness of PCa. The microarchitecture of the biopsied tissues visualized by histology process is evaluated by pathologists and assigned a Gleason score as a quantification of the aggressiveness. In our previous study, we have shown that photoacoustic spectral analysis (PASA) is capable of quantifying the Gleason scores of the H&E stained human prostate tissues. In this study, we attempt to assess the Gleason scores without any staining by taking advantage of the strong optical absorption of nucleic acid at ultraviolet wavelengths. PA signals were generated by wide field illumination at 266 nm and received by a hydrophone with a bandwidth of 0-20 MHz. DU145 prostate cancer cells at the concentrations of 0.8, 0.4, 0.05, 0.025 and 0.0125 million per cm3 simulating those in cancerous and normal tissues were first attempted. The measurements were repeated for 10 times at each concentration. A correlation of 0.86 was observed between the PA signal intensities and the cell concentrations. Human PCa tissues with Gleason score 6, 7 and 8 and normal tissues were assessed. With 11 samples, a correlation of 0.89 was found between the Gleason scores and PASA slopes.

  15. Visible and near-ultraviolet spectra of low-pressure rare-gas microwave discharges

    NASA Technical Reports Server (NTRS)

    Campbell, J. P.; Spisz, E. W.; Bowman, R. L.

    1971-01-01

    The spectral emission characteristics of three commercial low pressure rare gas discharge lamps wire obtained in the near ultraviolet and visible wavelength range. All three lamps show a definite continuum over the entire wavelength range from 0.185 to 0.6 micrometers. Considerable line emission is superimposed on much of the continuum for wavelengths greater than 0.35 micrometers. These sources were used to make transmittance measurements on quartz samples in the near ultraviolet wavelength range.

  16. Durable Corrosion and Ultraviolet-Resistant Silver Mirror

    DOEpatents

    Jorgensen, G. J.; Gee, R.

    2006-01-24

    A corrosion and ultra violet-resistant silver mirror for use in solar reflectors; the silver layer having a film-forming protective polymer bonded thereto, and a protective shield overlay comprising a transparent multipolymer film that incorporates a UV absorber. The corrosion and ultraviolet resistant silver mirror retains spectral hemispherical reflectance and high optical clarity throughout the UV and visible spectrum when used in solar reflectors.

  17. THE INFLUENCE OF THE EXTREME ULTRAVIOLET SPECTRAL ENERGY DISTRIBUTION ON THE STRUCTURE AND COMPOSITION OF THE UPPER ATMOSPHERE OF EXOPLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, J. H.; Ben-Jaffel, Lotfi, E-mail: guojh@ynao.ac.cn, E-mail: bjaffel@iap.fr

    2016-02-20

    By varying the profiles of stellar extreme ultraviolet (EUV) spectral energy distributions (SEDs), we tested the influences of stellar EUV SEDs on the physical and chemical properties of an escaping atmosphere. We apply our model to study four exoplanets: HD 189733b, HD 209458b, GJ 436b, and Kepler-11b. We find that the total mass loss rates of an exoplanet, which are determined mainly by the integrated fluxes, are moderately affected by the profiles of the EUV SED, but the composition and species distributions in the atmosphere can be dramatically modified by the different profiles of the EUV SED. For exoplanets withmore » a high hydrodynamic escape parameter (λ), the amount of atomic hydrogen produced by photoionization at different altitudes can vary by one to two orders of magnitude with the variation of stellar EUV SEDs. The effect of photoionization of H is prominent when the EUV SED is dominated by the low-energy spectral region (400–900 Å), which pushes the transition of H/H{sup +} to low altitudes. In contrast, the transition of H/H{sup +} moves to higher altitudes when most photons are concentrated in the high-energy spectral region (50–400 Å). For exoplanets with a low λ, the lower temperatures of the atmosphere make many chemical reactions so important that photoionization alone can no longer determine the composition of the escaping atmosphere. For HD 189733b, it is possible to explain the time variability of Lyα between 2010 and 2011 by a change in the EUV SED of the host K-type star, yet invoking only thermal H i in the atmosphere.« less

  18. The 1997 North American Interagency Intercomparison of Ultraviolet Spectroradiometers Including Narrowband Filter Radiometers

    PubMed Central

    Lantz, Kathleen; Disterhoft, Patrick; Early, Edward; Thompson, Ambler; DeLuisi, John; Berndt, Jerry; Harrison, Lee; Kiedron, Peter; Ehramjian, James; Bernhard, Germar; Cabasug, Lauriana; Robertson, James; Mou, Wanfeng; Taylor, Thomas; Slusser, James; Bigelow, David; Durham, Bill; Janson, George; Hayes, Douglass; Beaubien, Mark; Beaubien, Arthur

    2002-01-01

    The fourth North American Intercomparison of Ultraviolet Monitoring Spectroradiometers was held September 15 to 25, 1997 at Table Mountain outside of Boulder, Colorado, USA. Concern over stratospheric ozone depletion has prompted several government agencies in North America to establish networks of spectroradiometers for monitoring solar ultraviolet irradiance at the surface of the Earth. The main purpose of the Intercomparison was to assess the ability of spectroradiometers to accurately measure solar ultraviolet irradiance, and to compare the results between instruments of different monitoring networks. This Intercomparison was coordinated by NIST and NOAA, and included participants from the ASRC, EPA, NIST, NSF, SERC, USDA, and YES. The UV measuring instruments included scanning spectroradiometers, spectrographs, narrow band multi-filter radiometers, and broadband radiometers. Instruments were characterized for wavelength accuracy, bandwidth, stray-light rejection, and spectral irradiance responsivity. The spectral irradiance responsivity was determined two to three times outdoors to assess temporal stability. Synchronized spectral scans of the solar irradiance were performed over several days. Using the spectral irradiance responsivities determined with the NIST traceable standard lamp, and a simple convolution technique with a Gaussian slit-scattering function to account for the different bandwidths of the instruments, the measured solar irradiance from the spectroradiometers excluding the filter radiometers at 16.5 h UTC had a relative standard deviation of ±4 % for wavelengths greater than 305 nm. The relative standard deviation for the solar irradiance at 16.5 h UTC including the filter radiometer was ±4 % for filter functions above 300 nm. PMID:27446717

  19. Decomposition of Spectral Signatures of Coloured Dissolved Organic Matter Absorption and its Spatial Distribution Along Southeastern Arabian Sea

    NASA Astrophysics Data System (ADS)

    Muhamed Ashraf, P.; Souda, V. P.; Minu, P.

    2016-02-01

    The process of photosynthesis involves the conversion of inorganic carbon into organic carbon and the light availability is the crucial factor affecting photosynthesis in case 2 waters. Coloured dissolved organic matter (CDOM) is a major competitor for light apart from suspended sediments and phytoplankton. The objective was 1) to understand the spatial, vertical and seasonal variability of CDOM by decomposing spectral signatures of absorption in the UV region and to identify the source of CDOM in the study area. The study was carried out for the period 2013 May to 2014 December on monthly basis. Samples from 9 spatial stations, covering estuarine, barmouth and marine region were collected along coastal waters off Kochi, Southeastern Arabian Sea. Two spectral range from 200nm to 400nm were selected for the study, ie. between 275-295 and 350-400. Slope between 275-295nm (S275-295) showed no variation spatially and seasonally except for estuarine station. But slope between 350-400nm (S350-400) exhibited considerable variations spatially, seasonally and vertically. Lower values of ratio between S275-295 and S350-400 in surface waters during monsoon season indicated presence of CDOM with heavy molecular weight of terrigenous origin. Premonsoon and postmonsoon seasons had higher ratio indicating presence of CDOM with lighter molecular weight. Autocthonous origin and degradation of terrigenous matter produces CDOM with light molecular weight. The ratio is found to be increasing from estuary to offshore stations. Hence it is inferred that, the chemical nature of CDOM is affected by both physical and biological components in dynamically unstable case 2 coastal waters. The results presented here shows difference in spectral slope to estimate optical properties of CDOM which is relevant for the description of underwater optics and to the development of ocean colour remote sensing algorithms in the region.

  20. Feature Transformation Detection Method with Best Spectral Band Selection Process for Hyper-spectral Imaging

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Wen; McGurr, Mike; Brickhouse, Mark

    2015-11-01

    We present a newly developed feature transformation (FT) detection method for hyper-spectral imagery (HSI) sensors. In essence, the FT method, by transforming the original features (spectral bands) to a different feature domain, may considerably increase the statistical separation between the target and background probability density functions, and thus may significantly improve the target detection and identification performance, as evidenced by the test results in this paper. We show that by differentiating the original spectral, one can completely separate targets from the background using a single spectral band, leading to perfect detection results. In addition, we have proposed an automated best spectral band selection process with a double-threshold scheme that can rank the available spectral bands from the best to the worst for target detection. Finally, we have also proposed an automated cross-spectrum fusion process to further improve the detection performance in lower spectral range (<1000 nm) by selecting the best spectral band pair with multivariate analysis. Promising detection performance has been achieved using a small background material signature library for concept-proving, and has then been further evaluated and verified using a real background HSI scene collected by a HYDICE sensor.

  1. Theoretical Characterizaiton of Visual Signatures

    NASA Astrophysics Data System (ADS)

    Kashinski, D. O.; Chase, G. M.; di Nallo, O. E.; Scales, A. N.; Vanderley, D. L.; Byrd, E. F. C.

    2015-05-01

    We are investigating the accuracy of theoretical models used to predict the visible, ultraviolet, and infrared spectra, as well as other properties, of product materials ejected from the muzzle of currently fielded systems. Recent advances in solid propellants has made the management of muzzle signature (flash) a principle issue in weapons development across the calibers. A priori prediction of the electromagnetic spectra of formulations will allow researchers to tailor blends that yield desired signatures and determine spectrographic detection ranges. Quantum chemistry methods at various levels of sophistication have been employed to optimize molecular geometries, compute unscaled vibrational frequencies, and determine the optical spectra of specific gas-phase species. Electronic excitations are being computed using Time Dependent Density Functional Theory (TD-DFT). A full statistical analysis and reliability assessment of computational results is currently underway. A comparison of theoretical results to experimental values found in the literature is used to assess any affects of functional choice and basis set on calculation accuracy. The status of this work will be presented at the conference. Work supported by the ARL, DoD HPCMP, and USMA.

  2. Everything you ever wanted to know about the ultraviolet spectra of star-forming galaxies but were afraid to ask

    NASA Technical Reports Server (NTRS)

    Kinney, A. L.; Bohlin, R.; Calzetti, D.; Panagia, N.; Wyse, R.

    1993-01-01

    We present ultraviolet spectra of 143 star-forming galaxies of different morphological types and activity classes including S0, Sa, Sb, Sc, Sd, irregular, starburst, blue compact, blue compact dwarf, Liner, and Seyfert 2 galaxies. These IUE spectra cover the wavelength range from 1200 to 3200 A and are taken in a large aperture (10 x 20 inch). The ultraviolet spectral energy distributions are shown for a subset of the galaxies, ordered by spectral index, and separated by type for normal galaxies, Liners, starburst galaxies, blue compact (BCG) and blue compact dwarf (BCDG) galaxies, and Seyfert 2 galaxies. The ultraviolet spectra of Liners are, for the most part, indistinguishable from the spectra of normal galaxies. Starburst galaxies have a large range of ultraviolet slope, from blue to red. The star-forming galaxies which are the bluest in the optical (BCG and BCDG), also have the 'bluest' average ultraviolet slope of beta = -1.75 +/- 0.63. Seyfert 2 galaxies are the only galaxies in the sample that consistently have detectable UV emission lines.

  3. Amorphous silicon carbide coatings for extreme ultraviolet optics

    NASA Technical Reports Server (NTRS)

    Kortright, J. B.; Windt, David L.

    1988-01-01

    Amorphous silicon carbide films formed by sputtering techniques are shown to have high reflectance in the extreme ultraviolet spectral region. X-ray scattering verifies that the atomic arrangements in these films are amorphous, while Auger electron spectroscopy and Rutherford backscattering spectroscopy show that the films have composition close to stoichiometric SiC, although slightly C-rich, with low impurity levels. Reflectance vs incidence angle measurements from 24 to 1216 A were used to derive optical constants of this material, which are presented here. Additionally, the measured extreme ultraviolet efficiency of a diffraction grating overcoated with sputtered amorphous silicon carbide is presented, demonstrating the feasibility of using these films as coatings for EUV optics.

  4. Radar spectral measurements of vegetation

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Moore, R. K.

    1973-01-01

    Spectral data of 4-8 GHz radar backscatter were gathered during the 1972 growing season at look angles between 0 and 70 deg and for all four possible polarization linear combinations. The data covers four crop types (corn, milo, alfalfa, and soybeans) and a wide range of soil moisture content. To insure statistical representation of the results, measurements were conducted over 128 fields corresponding to a total of about 40,000 data points. The use of spectral response signatures to separate different crop types and to separate healthy corn from blighted corn was investigated.

  5. Spectroscopic ellipsometry in vacuum ultraviolet spectral area

    NASA Astrophysics Data System (ADS)

    Fuchs, Detlef

    An ellipsometer is developed and built, which allows the direct spectroscopic evaluation of dielectric function of solid bodies in the energy area 5 to 35 eV. A linear polarized synchrotron radiation was used as light source. The Stokes parameters and the Mueller matrices were used for the mathematical modeling, which take into account the properties of the synchrotron light and the analyzer, which depend on the wavelength. The crystals of the semiconductor bindings GaAs, GaP, InP and ZnS were examined. Ellipsometric measurements and reflection spectra show a displacement of spectral structures towards lower photon energies after the storage.

  6. Making Ultraviolet Spectro-Polarimetry Polarization Measurements with the MSFC Solar Ultraviolet Magnetograph Sounding Rocket

    NASA Technical Reports Server (NTRS)

    West, Edward; Cirtain, Jonathan; Kobayashi, Ken; Davis, John; Gary, Allen

    2011-01-01

    This paper will describe the Marshall Space Flight Center's Solar Ultraviolet Magnetograph Investigation (SUMI) sounding rocket program. This paper will concentrate on SUMI's VUV optics, and discuss their spectral, spatial and polarization characteristics. While SUMI's first flight (7/30/2010) met all of its mission success criteria, there are several areas that will be improved for its second and third flights. This paper will emphasize the MgII linear polarization measurements and describe the changes that will be made to the sounding rocket and how those changes will improve the scientific data acquired by SUMI.

  7. The Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS)

    NASA Technical Reports Server (NTRS)

    Oegerle, William (Technical Monitor); Rabin, D.; Davila, J.; Thomas, R. J.; Engler, C.; Irish, S.; Keski-Kuha, R.; Novello, J.; Nowak, M.; Payne, L.; hide

    2003-01-01

    EUNIS (Extreme Ultraviolet Normal Incidence Spectrograph) is a high-efficiency extreme ultraviolet spectrometer that is expected to fly for the first time in 2004 as a sounding rocket payload. Using two independent optical systems, EUNIS will probe the structure and dynamics of the inner solar corona high spectral resolution in two wavelength regions: 17-21 nm with 3.5 pm resolution and 30-37 nm with 7 pm resolution. The long wavelength channel includes He II 30.4 nm and strong lines from Fe XI-XVI; the short wavelength channel includes strong lines of Fe IX-XIII. Angular resolution of 2 arcsec is maintained along a slit covering a full solar radius. EUNIS will have 100 times the throughput of the highly successful SERTS payloads that have preceded it. There are only two reflections in each optical channel, from the superpolished, off-axis paraboloidal primary and the toroidal grating. Each optical element is coated with a high-efficiency multilayer coating optimized for its spectral bandpass. The detector in each channel is a microchannel plate image intensifier fiber- coupled to three 1K x 1K active pixel sensors. EUNIS will obtain spectra with a cadence as short as 1 sec, allowing unprecedented studies of the physical properties of evolving and transient structures. Diagnostics of wave heating and reconnection wil be studied at heights above 2 solar radii, in the wind acceleration region. The broad spectral coverage and high spectral resolution will provide superior temperature and density diagnostics and will enable underflight calibration of several orbital instruments, including SOHO/CDS and EIT, TRACE, Solar-B/EIS, and STEREO/EUVI. EUNIS is supported by NASA through the Low Cost Access to Space Program in Solar and Heliospheric Physics.

  8. Special Nuclear Material Gamma-Ray Signatures for Reachback Analysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpius, Peter Joseph; Myers, Steven Charles

    2016-08-29

    These are slides on special nuclear material gamma-ray signatures for reachback analysts for an LSS Spectroscopy course. The closing thoughts for this presentation are the following: SNM materials have definite spectral signatures that should be readily recognizable to analysts in both bare and shielded configurations. One can estimate burnup of plutonium using certain pairs of peaks that are a few keV apart. In most cases, one cannot reliably estimate uranium enrichment in an analogous way to the estimation of plutonium burnup. The origin of the most intense peaks from some SNM items may be indirect and from ‘associated nuclides.' Indirectmore » SNM signatures sometimes have commonalities with the natural gamma-ray background.« less

  9. Results from the calibration of the Extreme Ultraviolet Explorer instruments

    NASA Technical Reports Server (NTRS)

    Welsh, Barry Y.; Jelinsky, Pat; Vedder, Peter W.; Vallerga, John V.; Finley, David S.; Malina, Roger F.

    1991-01-01

    The paper describes the main features and selected results of the calibration of the scientific instruments to be flown on the Extreme Ultraviolet Explorer in 1991. The instrument payload includes three grazing incidence scanning telescopes and an EUV spectrometer/deep survey instrument covering the spectral region 70-800 A. The measured imaging characteristics, the effective areas, and the details of spectral responses of the instruments are presented. Diagrams of the cross-sectional views of the scanning telescope and the deep-survey/spectrometer telescope are included.

  10. The ultraviolet reflectance of Enceladus: Implications for surface composition

    NASA Astrophysics Data System (ADS)

    Hendrix, Amanda R.; Hansen, Candice J.; Holsclaw, Greg M.

    2010-04-01

    The reflectance of Saturn's moon Enceladus has been measured at far ultraviolet (FUV) wavelengths (115-190 nm) by Cassini's Ultraviolet Imaging Spectrograph (UVIS). At visible and near infrared (VNIR) wavelengths Enceladus' reflectance spectrum is very bright, consistent with a surface composed primarily of H 2O ice. At FUV wavelengths, however, Enceladus is surprisingly dark - darker than would be expected for pure water ice. Previous analyses have focused on the VNIR spectrum, comparing it to pure water ice (Cruikshank, D.P., Owen, T.C., Dalle Ore, C., Geballe, T.R., Roush, T.L., de Bergh, C., Sandford, S.A., Poulet, F., Benedix, G.K., Emery, J.P. [2005] Icarus, 175, 268-283) or pure water ice plus a small amount of NH 3 (Emery, J.P., Burr, D.M., Cruikshank, D.P., Brown, R.H., Dalton, J.B. [2005] Astron. Astrophys., 435, 353-362) or NH 3 hydrate (Verbiscer, A.J., Peterson, D.E., Skrutskie, M.F., Cushing, M., Helfenstein, P., Nelson, M.J., Smith, J.D., Wilson, J.C. [2006] Icarus, 182, 211-223). We compare Enceladus' FUV spectrum to existing laboratory measurements of the reflectance spectra of candidate species, and to spectral models. We find that the low FUV reflectance of Enceladus can be explained by the presence of a small amount of NH 3 and a small amount of a tholin in addition to H 2O ice on the surface. The presence of these three species (H 2O, NH 3, and a tholin) appears to satisfy not only the low FUV reflectance and spectral shape, but also the middle-ultraviolet to visible wavelength brightness and spectral shape. We expect that ammonia in the Enceladus plume is transported across the surface to provide a global coating.

  11. Infrared signature characteristic of a microturbine engine exhaust plume

    NASA Astrophysics Data System (ADS)

    Gu, Bonchan; Baek, Seung Wook; Jegal, Hyunwook; Choi, Seong Man; Kim, Won Cheol

    2017-11-01

    This research investigates the infrared signature of the exhaust plume ejected from a microturbine engine. Circular and square nozzles are designed and tested to study their effects on the resultant infrared signature of the plume. A microturbine engine is operated under steady conditions with a kerosene added lubricant oil as a fuel. The measurements of the infrared signature are conducted using a spectroradiometer. Blackbody radiance is also measured at an arbitrary temperature and compared to theoretical values to validate the reference and to calibrate the raw spectrum. The infrared signatures emitted from the plume are measured at three measurement locations along the plume for two nozzle configurations. The results are grouped into sub-bands to examine and discuss their specific spectral characteristics. The infrared signatures are shown to decrease as the distance from the nozzle exit increases, which is attributed to the hot exhaust plume mixing with ambient air. The degree to which the signature is reduced at the different the measurement locations was dependent on the sub-band. Comparison of the results shows that the infrared signature of the square nozzle is lower than that of the circular nozzle in specific bands.

  12. Spectral photometry of extreme helium stars: Ultraviolet fluxes and effective temperature

    NASA Technical Reports Server (NTRS)

    Drilling, J. S.; Schoenberner, D.; Heber, U.; Lynas-Gray, A. E.

    1982-01-01

    Ultraviolet flux distributions are presented for the extremely helium rich stars BD +10 deg 2179, HD 124448, LSS 3378, BD -9 deg 4395, LSE 78, HD 160641, LSIV -1 deg 2, BD 1 deg 3438, HD 168476, MV Sgr, LS IV-14 deg 109 (CD -35 deg 11760), LSII +33 deg 5 and BD +1 deg 4381 (LSIV +2 deg 13) obtained with the International Ultraviolet Explorer (IUE). Broad band photometry and a newly computed grid of line blanketed model atmospheres were used to determine accurate angular diameters and total stellar fluxes. The resultant effective temperatures are in most cases in satisfactory agreement with those based on broad band photometry and/or high resolution spectroscopy in the visible. For two objects, LSII +33 deg 5 and LSE 78, disagreement was found between the IUE observations and broadband photometry: the colors predict temperatures around 20,000 K, whereas the UV spectra indicate much lower photospheric temperatures of 14,000 to 15,000 K. The new temperature scale for extreme helium stars extends to lower effective temperatures than that of Heber and Schoenberner (1981) and covers the range from 8,500 K to 32,000 K.

  13. Testing Of An Ultraviolet (UV)-Transparent Polymer-Based Passive Sampler for Rapid, Ultra-Low-Cost EDC Screening Applications

    EPA Science Inventory

    A new passive sampling method with rapid low-cost spectral detection has recently been developed. The method makes use of an ultraviolet (UV)-transparent polymer which serves as both a concentrator for dissolved compounds, and an optical cell for UV spectral detection. Because ...

  14. Spectroscopic survey of the far-ultraviolet /1160-1700 A/ emissions of Capella

    NASA Technical Reports Server (NTRS)

    Vitz, R. C.; Weiser, H.; Moos, H. W.; Weinstein, A.; Warden, E. S.

    1976-01-01

    A far-ultraviolet spectral survey of Capella (Alpha Aur, G5 III + G0 III) has been obtained using a highly sensitive rocketborne spectrograph with a microchannel plate detector. The spectral distribution is very similar to that of the sun; however, if the line surface fluxes are due to the primary (G5 III), then, except for Ly-alpha, they are about an order of magnitude greater than those of the quiet sun

  15. Concept Study Report: Extreme-Ultraviolet Imaging Spectrometer Solar-B

    NASA Technical Reports Server (NTRS)

    Doschek, George, A.; Brown, Charles M.; Davila, Joseph M.; Dere, Kenneth P.; Korendyke, Clarence M.; Mariska, John T.; Seely, John F.

    1999-01-01

    We propose a next generation Extreme-ultraviolet Imaging Spectrometer (EIS) that for the first time combines high spectral, spatial, and temporal resolution in a single solar spectroscopic instrument. The instrument consists of a multilayer-coated off-axis telescope mirror and a multilayer-coated grating spectrometer. The telescope mirror forms solar images on the spectrometer entrance slit assembly. The spectrometer forms stigmatic spectra of the solar region located at the slit. This region is selected by the articulated telescope mirror. Monochromatic images are obtained either by rastering the solar region across a narrow entrance slit, or by using a very wide slit (called a slot) in place of the slit. Monochromatic images of the region centered on the slot are obtained in a single exposure. Half of each optic is coated to maximize reflectance at 195 Angstroms; the other half to maximize reflectance at 270 Angstroms. The two Extreme Ultraviolet (EUV) wavelength bands have been selected to maximize spectral and dynamical and plasma diagnostic capabilities. Spectral lines are observed that are formed over a temperature range from about 0.1 MK to about 20 MK. The main EIS instrument characteristics are: wavelength bands - 180 to 204 Angstroms; 250 to 290 Angstroms; spectral resolution - 0.0223 Angstroms/pixel (34.3km/s at 195 Angstroms and 23.6 km/s at 284 Angstroms); slit dimensions - 4 slits, two currently specified dimensions are 1" x 1024" and 50" x 1024" (the slot); largest spatial field of view in a single exposure - 50" x 1024"; highest time resolution for active region velocity studies - 4.4 s.

  16. Ultraviolet spectroscopy of meteoric debris of comets

    NASA Technical Reports Server (NTRS)

    Wdowiak, T. J.; Kubinec, W. R.; Nuth, J. A.

    1986-01-01

    It is proposed to carry out slitless spectroscopy at ultraviolet wavelengths from orbit of meteoric debris associated with comets. The Eta Aquarid and Orionid/Halley and the Perseid/1962 862 Swift-Tuttle showers would be principal targets. Low light level, ultraviolet video technique will be used during night side of the orbit in a wide field, earthward viewing mode. Data will be stored in compact video cassette recorders. The experiment may be configured as a GAS package or in the HITCHHIKER mode. The latter would allow flexible pointing capability beyond that offered by shuttle orientation of the GAS package, and doubling of the data record. The 1100 to 3200 A spectral region should show emissions of atomic, ionic, and molecular species of interest on cometary and solar system studies.

  17. [Study on the arc spectral information for welding quality diagnosis].

    PubMed

    Li, Zhi-Yong; Gu, Xiao-Yan; Li, Huan; Yang, Li-Jun

    2009-03-01

    Through collecting the spectral signals of TIG and MIG welding arc with spectrometer, the arc light radiations were analyzed based on the basic theory of plasma physics. The radiation of welding arc distributes over a broad range of frequency, from infrared to ultraviolet. The arc spectrum is composed of line spectra and continuous spectra. Due to the variation of metal density in the welding arc, there is great difference between the welding arc spectra of TIG and MIG in both their intensity and distribution. The MIG welding arc provides more line spectra of metal and the intensity of radiation is greater than TIG. The arc spectrum of TIG welding is stable during the welding process, disturbance factors that cause the spectral variations can be reflected by the spectral line related to the corresponding element entering the welding arc. The arc spectrum of MIG welding will fluctuate severely due to droplet transfer, which produces "noise" in the line spectrum aggregation zone. So for MIG welding, the spectral zone lacking spectral line is suitable for welding quality diagnosis. According to the characteristic of TIG and MIG, special spectral zones were selected for welding quality diagnosis. For TIG welding, the selected zone is in ultraviolet zone (230-300 nm). For MIG welding, the selected zone is in visible zone (570-590 nm). With the basic theory provided for welding quality diagnosis, the integral intensity of spectral signal in the selected zone of welding process with disturbing factor was studied to prove the theory. The results show that the welding quality and disturbance factors can be diagnosed with good signal to noise ratio in the selected spectral zone compared with signal in other spectral zone. The spectral signal can be used for real-time diagnosis of the welding quality.

  18. Improved image classification with neural networks by fusing multispectral signatures with topological data

    NASA Technical Reports Server (NTRS)

    Harston, Craig; Schumacher, Chris

    1992-01-01

    Automated schemes are needed to classify multispectral remotely sensed data. Human intelligence is often required to correctly interpret images from satellites and aircraft. Humans suceed because they use various types of cues about a scene to accurately define the contents of the image. Consequently, it follows that computer techniques that integrate and use different types of information would perform better than single source approaches. This research illustrated that multispectral signatures and topographical information could be used in concert. Significantly, this dual source tactic classified a remotely sensed image better than the multispectral classification alone. These classifications were accomplished by fusing spectral signatures with topographical information using neural network technology. A neural network was trained to classify Landsat mulitspectral signatures. A file of georeferenced ground truth classifications were used as the training criterion. The network was trained to classify urban, agriculture, range, and forest with an accuracy of 65.7 percent. Another neural network was programmed and trained to fuse these multispectral signature results with a file of georeferenced altitude data. This topological file contained 10 levels of elevations. When this nonspectral elevation information was fused with the spectral signatures, the classifications were improved to 73.7 and 75.7 percent.

  19. X-ray and extreme ultraviolet spectroscopy on DIII-D

    NASA Astrophysics Data System (ADS)

    Victor, B. S.; Allen, S. L.; Beiersdorfer, P.; Magee, E. W.

    2017-06-01

    Two spectrometers were installed to measure tungsten emission in the core of DIII-D plasmas during a metal rings experimental campaign. The spectral range of the high-resolution (1340 spectral channels), variable-ruled grating X-ray and Extreme Ultraviolet Spectrometer (XEUS) extends from 10-71 dot A. The spectral range of the second spectrometer, the Long-Wavelength Extreme Ultraviolet Spectrometer (LoWEUS), measures between 31-174 dot A. Three groups of tungsten lines were identified with XEUS: W38+-W45+ from 47-63 dot A, W27+-W35+ from 45-55 dot A, and W28+-W33+ from 16-30 dot A. Emission lines from tungsten charge states W28+, W43+, W44+, and W45+ are identified and the line amplitude is presented versus time. Peak emission of W43+-W45+ occurs between core Te=2.5-3 keV, and peak emission of W28+ occurs at core Te<=1.3 keV. One group of tungsten lines, W40+-W45+, between 120-140 dot A, was identified with LoWEUS. W43+-W45+ lines measured with LoWEUS track the sawtooth cycle. Sensitivity to the sawtooth cycle and the correlation of the peak emission with core electron temperature show that these spectrometers track the on-axis tungsten emission of DIII-D plasmas.

  20. Can the circadian system of a diurnal and a nocturnal rodent entrain to ultraviolet light?

    PubMed

    Hut, R A; Scheper, A; Daan, S

    2000-01-01

    Spectral measurements of sunlight throughout the day show close correspondence between the timing of above ground activity of the European ground squirrel and the presence of ultraviolet light in the solar spectrum. However, in a standard entrainment experiment ground squirrels show no entrainment to ultraviolet light, while Syrian hamsters do entrain under the same protocol. Presented transmittance spectra for lenses, corneas, and vitreous bodies may explain the different results of the entrainment experiment. We found ultraviolet light transmittance in the colourless hamster lens (50% cut-off at 341 nm), but not in the yellow ground squirrel lens (50% cut-off around 493 nm). Ultraviolet sensitivity in the ground squirrels based upon possible fluorescence mechanisms was not evident. Possible functions of ultraviolet lens filters in diurnal mammals are discussed, and compared with nocturnal mammals and diurnal birds. Species of the latter two groups lack ultraviolet filtering properties of their lenses and their circadian system is known to respond to ultraviolet light, a feature that does not necessarily has to depend on ultraviolet photoreceptors. Although the circadian system of several species responds to ultraviolet light, we argue that the role of ultraviolet light as a natural Zeitgeber is probably limited.

  1. Active spectral sensor evaluation under varying conditions

    USDA-ARS?s Scientific Manuscript database

    Plant stress has been estimated by spectral signature using both passive and active sensors. As optical sensors measure reflected light from a target, changes in illumination characteristics critically affect sensor response. Active sensors are of benefit in minimizing uncontrolled illumination effe...

  2. Ultraviolet Spectra of Two Magnetic White Dwarfs and Ultraviolet Spectra of Subluminous Objects Found in the Kiso Schmidt Survey

    NASA Technical Reports Server (NTRS)

    Wegner, Gary A.

    1987-01-01

    Low resolution International Ultraviolet Explorer (IUE) spectroscopic observations of two magnetic white dwarfs BPM25114 and K813-14 were obtained using both the SWP and LWP cameras. The first object has an observed magnetic field of 4 x 10(7) Gauss and the second has one of 3 x 10(7) Gauss. Both objects have overall spectral energy distributions appropriate for cool DA white dwarfs with T(eff) near 10,000 K and accordingly show strong lambda lambda 1400 and 1600 absorption in their spectra. Compared to non-magnetic DA white dwarfs of comparable effective temperature, there are some differences in the profiles, presumably produced by the magnetic fields in these objects. In addition, the ultraviolet spectra of a number of hot subluminous stars in the Kiso Schmidt survey were observed.

  3. Theoretical Characterizaiton of Visual Signatures (Muzzle Flash)

    NASA Astrophysics Data System (ADS)

    Kashinski, D. O.; Scales, A. N.; Vanderley, D. L.; Chase, G. M.; di Nallo, O. E.; Byrd, E. F. C.

    2014-05-01

    We are investigating the accuracy of theoretical models used to predict the visible, ultraviolet and infrared spectra of product materials ejected from the muzzle of currently fielded systems. Recent advances in solid propellants has made the management of muzzle signature (flash) a principle issue in weapons development across the calibers. A priori prediction of the electromagnetic spectra of formulations will allow researchers to tailor blends that yield desired signatures and determine spectrographic detection ranges. We are currently employing quantum chemistry methods at various levels of sophistication to optimize molecular geometries, compute vibrational frequencies, and determine the optical spectra of specific gas-phase molecules and radicals of interest. Electronic excitations are being computed using Time Dependent Density Functional Theory (TD-DFT). A comparison of computational results to experimental values found in the literature is used to assess the affect of basis set and functional choice on calculation accuracy. The current status of this work will be presented at the conference. Work supported by the ARL, and USMA.

  4. Observations and analysis activities of the International Ultraviolet Explorer satellite telescope

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael

    1996-01-01

    The funds from this grant were used to support observations and analysis with the International Ultraviolet Explorer (IUE) satellite telescope. The main area of scientific research concerned the variability analyses of ultraviolet spectra of Active Galactic Nuclei, primarily quasars, Seyfert galaxies, and BL Lacertae objects. The Colorado group included, at various times, the P.I. (J.M. Shull), Research Associate Dr. Rick Edelson, and graduate students Jon Saken, Elise Sachs, and Steve Penton. A portion of the work was also performed by CU undergraduate student Cheong-ming Fu. A major product of the effort was a database of all IUE spectra of active galactic nuclei. This database is being analyzed to obtain spectral indices, line fluxes, and continuum fluxes for over 500 AGN. As a by-product of this project, we implemented a new, improved technique of spectral extraction of IUE spectra, which has been used in several AGN-WATCH campaigns (on the Seyfert galaxy NGC 4151 and on the BL Lac object PKS 2155-304).

  5. Absolute calibration of a hydrogen discharge lamp in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Nealy, J. E.

    1975-01-01

    A low-pressure hydrogen discharge lamp was calibrated for radiant intensity in the vacuum ultraviolet spectral region on an absolute basis and was employed as a laboratory standard source in spectrograph calibrations. This calibration was accomplished through the use of a standard photodiode detector obtained from the National Bureau of Standards together with onsite measurements of spectral properties of optical components used. The stability of the light source for use in the calibration of vacuum ultraviolet spectrographs and optical systems was investigated and found to be amenable to laboratory applications. The lamp was studied for a range of operating parameters; the results indicate that with appropriate peripheral instrumentation, the light source can be used as a secondary laboratory standard source when operated under preset controlled conditions. Absolute intensity measurements were recorded for the wavelengths 127.7, 158.0, 177.5, and 195.0 nm for a time period of over 1 month, and the measurements were found to be repeatable to within 11 percent.

  6. Cloud classification in polar regions using AVHRR textural and spectral signatures

    NASA Technical Reports Server (NTRS)

    Welch, R. M.; Sengupta, S. K.; Weger, R. C.; Christopher, S. A.; Kuo, K. S.; Carsey, F. D.

    1990-01-01

    Arctic clouds and ice-covered surfaces are classified on the basis of textural and spectral features obtained with AVHRR 1.1-km spatial resolution imagery over the Beaufort Sea during May-October, 1989. Scenes were acquired about every 5 days, for a total of 38 cases. A list comprising 20 arctic-surface and cloud classes is compiled using spectral measures defined by Garand (1988).

  7. Modified tandem gratings anastigmatic imaging spectrometer with oblique incidence for spectral broadband

    NASA Astrophysics Data System (ADS)

    Cui, Chengguang; Wang, Shurong; Huang, Yu; Xue, Qingsheng; Li, Bo; Yu, Lei

    2015-09-01

    A modified spectrometer with tandem gratings that exhibits high spectral resolution and imaging quality for solar observation, monitoring, and understanding of coastal ocean processes is presented in this study. Spectral broadband anastigmatic imaging condition, spectral resolution, and initial optical structure are obtained based on geometric aberration theory. Compared with conventional tandem gratings spectrometers, this modified design permits flexibility in selecting gratings. A detailed discussion of the optical design and optical performance of an ultraviolet spectrometer with tandem gratings is also included to explain the advantage of oblique incidence for spectral broadband.

  8. Vehicle/Atmosphere Interaction Glows: Far Ultraviolet, Visible, and Infrared

    NASA Technical Reports Server (NTRS)

    Swenson, G.

    1999-01-01

    Spacecraft glow information has been gathered from a number of spacecraft including Atmospheric and Dynamic satellites, and Space Shuttles (numerous flights) with dedicated pallet flow observations on STS-39 (DOD) and STS-62 (NASA). In addition, a larger number of laboratory experiments with low energy oxygen beam studies have made important contributions to glow understanding. The following report provides information on three engineering models developed for spacecraft glow including the far ultraviolet to ultraviolet (1400-4000 A), and infrared (0.9-40 microns) spectral regions. The models include effects resulting from atmospheric density/altitude, spacecraft temperature, spacecraft material, and ram angle. Glow brightness would be predicted as a function of distance from surfaces for all wavelengths.

  9. Development and testing of the ultraviolet spectrometer for the Mariner Mars 1971 spacecraft

    NASA Technical Reports Server (NTRS)

    Farrar, J. W.

    1972-01-01

    The Mariner Mars 1971 ultraviolet spectrometer is an Ebert-Fastie type of the same basic design as the Mariner Mars 1969 instrument. Light enters the instrument and is split into component wavelengths by a scanning reflection diffraction grating. Two monochrometer exit slits allow the use of two independent photomultiplier tube sensors. Channel 1 has a spectral range of 1100 to 1692 A with a fixed gain, while Channel 2 has a spectral range of 1450 to 3528 A with an automatic step gain control, providing a dynamic range over the expected atmosphere and surface brightness of Mars. The scientific objectives, basic operation, design, testing, and calibration for the Mariner Mars 1971 ultraviolet spectrometer are described. The design discussion includes those modifications that were necessary to extend the lifetime of the instrument in order to accomplish the Mariner Mars 1971 mission objectives.

  10. Detecting and visualizing weak signatures in hyperspectral data

    NASA Astrophysics Data System (ADS)

    MacPherson, Duncan James

    This thesis evaluates existing techniques for detecting weak spectral signatures from remotely sensed hyperspectral data. Algorithms are presented that successfully detect hard-to-find 'mystery' signatures in unknown cluttered backgrounds. The term 'mystery' is used to describe a scenario where the spectral target and background endmembers are unknown. Sub-Pixel analysis and background suppression are used to find deeply embedded signatures which can be less than 10% of the total signal strength. Existing 'mystery target' detection algorithms are derived and compared. Several techniques are shown to be superior both visually and quantitatively. Detection performance is evaluated using confidence metrics that are developed. A multiple algorithm approach is shown to improve detection confidence significantly. Although the research focuses on remote sensing applications, the algorithms presented can be applied to a wide variety of diverse fields such as medicine, law enforcement, manufacturing, earth science, food production, and astrophysics. The algorithms are shown to be general and can be applied to both the reflective and emissive parts of the electromagnetic spectrum. The application scope is a broad one and the final results open new opportunities for many specific applications including: land mine detection, pollution and hazardous waste detection, crop abundance calculations, volcanic activity monitoring, detecting diseases in food, automobile or airplane target recognition, cancer detection, mining operations, extracting galactic gas emissions, etc.

  11. International Ultraviolet Explorer observations of the peculiar variable spectrum of the eclipsing binary R Arae

    NASA Technical Reports Server (NTRS)

    Mccluskey, G. E.; Kondo, Y.

    1983-01-01

    The eclipsing binary system R Arae = HD 149730 is a relatively bright southern system with an orbital period of about 4.4 days. It is a single-lined spectroscopic binary. The spectral class of the primary component is B9 Vp. The system was included in a study of mass flow and evolution in close binary systems using the International Ultraviolet Explorer satellite (IUE). Four spectra in the wavelength range from 1150 to 1900 A were obtained with the far-ultraviolet SWP camera, and six spectra in the range from 1900 to 3200 range were obtained with the mid-ultraviolet LWR camera. The close binary R Arae exhibits very unusual ultraviolet spectra. It appears that no other close binary system, observed with any of the orbiting satellites, shows outside-eclipse ultraviolet continuum flux variations of this nature.

  12. Coordinated ultraviolet and radio observations of selected nearby stars

    NASA Technical Reports Server (NTRS)

    Lang, Kenneth R.

    1987-01-01

    All of the US2 shifts assigned were successfully completed with simultaneous International Ultraviolet Explorer (IUE) and the Very Large Array (VLA) observations of the proposed target stars. The target stars included dwarf M flare stars and RS CVn stars. The combined ultraviolet (IUE) and microwave (VLA) observations have provided important new insights to the radiation mechanisms at these two widely-separated regions of the electromagnetic spectrum. The VLA results included the discovery of narrow-band microwave radiation and rapid time variations in the microwave radiation of dwarf M flare stars. The results indicate that conventional radiation mechanisms cannot explain the microwave emission from these stars. In general, ultraviolet variations and bursts occur when no similar variations are detected at microwave wavelengths and vice versa. Although these is some overlap, the variations in these two spectral regions are usually uncorrelated, suggesting that there is little interaction between the activity centers at the two associated atmospheric levels.

  13. Polarization signatures of airborne particulates

    NASA Astrophysics Data System (ADS)

    Raman, Prashant; Fuller, Kirk A.; Gregory, Don A.

    2013-07-01

    Exploratory research has been conducted with the aim of completely determining the polarization signatures of selected particulates as a function of wavelength. This may lead to a better understanding of the interaction between electromagnetic radiation and such materials, perhaps leading to the point detection of bio-aerosols present in the atmosphere. To this end, a polarimeter capable of measuring the complete Mueller matrix of highly scattering samples in transmission and reflection (with good spectral resolution from 300 to 1100 nm) has been developed. The polarization properties of Bacillus subtilis (surrogate for anthrax spore) are compared to ambient particulate matter species such as pollen, dust, and soot. Differentiating features in the polarization signatures of these samples have been identified, thus demonstrating the potential applicability of this technique for the detection of bio-aerosol in the ambient atmosphere.

  14. Ultraviolet radiation properties as applied to photoclimatherapy at the Dead Sea.

    PubMed

    Kudish, A I; Abels, D; Harari, M

    2003-05-01

    The Dead Sea basin, the lowest terrestrial point on earth, is recognized as a natural treatment center for patients with various cutaneous and rheumatic diseases. Psoriasis is the major skin disease treated at the Dead Sea with excellent improvement to complete clearance exceeding 85% after 4 weeks of treatment. These results were postulated to be associated with a unique spectrum of ultraviolet radiation present in the Dead Sea area. The UVB and UVA radiation at two sites is measured continuously by identical sets of broad-band Solar Light Co. Inc. meters (Philadelphia, PA). The spectral selectivity within the UVB and UVA spectrum was determined using a narrow-band spectroradiometer, UV-Optronics 742 (Orlando, FL). The optimum exposure time intervals for photoclimatherapy, defined as the minimum ratio of erythema to therapeutic radiation intensities, were also determined using a Solar Light Co. Inc. Microtops II, Ozone Monitor-Sunphotometer. The ultraviolet radiation at the Dead Sea is attenuated relative to Beer Sheva as a result of the increased optical path length and consequent enhanced scattering. The UVB radiation is attenuated to a greater extent than UVA and the shorter erythema UVB spectral range decreased significantly compared with the longer therapeutic UVB wavelengths. It was demonstrated that the relative attenuation within the UVB spectral range is greatest for the shorter erythema rays and less for the longer therapeutic UVB wavelengths, thus producing a greater proportion of the longer therapeutic UVB wavelengths in the ultraviolet spectrum. These measurements can be utilized to minimize the exposure to solar radiation by correlating the cumulative UVB radiation dose to treatment efficacy and by formulating a patient sun exposure treatment protocol for Dead Sea photoclimatherapy.

  15. Real-time detection of organic contamination events in water distribution systems by principal components analysis of ultraviolet spectral data.

    PubMed

    Zhang, Jian; Hou, Dibo; Wang, Ke; Huang, Pingjie; Zhang, Guangxin; Loáiciga, Hugo

    2017-05-01

    The detection of organic contaminants in water distribution systems is essential to protect public health from potential harmful compounds resulting from accidental spills or intentional releases. Existing methods for detecting organic contaminants are based on quantitative analyses such as chemical testing and gas/liquid chromatography, which are time- and reagent-consuming and involve costly maintenance. This study proposes a novel procedure based on discrete wavelet transform and principal component analysis for detecting organic contamination events from ultraviolet spectral data. Firstly, the spectrum of each observation is transformed using discrete wavelet with a coiflet mother wavelet to capture the abrupt change along the wavelength. Principal component analysis is then employed to approximate the spectra based on capture and fusion features. The significant value of Hotelling's T 2 statistics is calculated and used to detect outliers. An alarm of contamination event is triggered by sequential Bayesian analysis when the outliers appear continuously in several observations. The effectiveness of the proposed procedure is tested on-line using a pilot-scale setup and experimental data.

  16. Spectrum Analyzers Incorporating Tunable WGM Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry; Maleki, Lute

    2009-01-01

    A photonic instrument is proposed to boost the resolution for ultraviolet/ optical/infrared spectral analysis and spectral imaging allowing the detection of narrow (0.00007-to-0.07-picometer wavelength resolution range) optical spectral signatures of chemical elements in space and planetary atmospheres. The idea underlying the proposal is to exploit the advantageous spectral characteristics of whispering-gallery-mode (WGM) resonators to obtain spectral resolutions at least three orders of magnitude greater than those of optical spectrum analyzers now in use. Such high resolutions would enable measurement of spectral features that could not be resolved by prior instruments.

  17. Ultraviolet Spectra of Normal Spiral Galaxies

    NASA Technical Reports Server (NTRS)

    Kinney, Anne

    1997-01-01

    The data related to this grant on the Ultraviolet Spectra of Normal Spiral Galaxies have been entirely reduced and analyzed. It is incorporated into templates of Spiral galaxies used in the calculation of K corrections towards the understanding of high redshift galaxies. The main paper was published in the Astrophysical Journal, August 1996, Volume 467, page 38. The data was also used in another publication, The Spectral Energy Distribution of Normal Starburst and Active Galaxies, June 1997, preprint series No. 1158. Copies of both have been attached.

  18. Divertor electron temperature and impurity diffusion measurements with a spectrally resolved imaging radiometer.

    PubMed

    Clayton, D J; Jaworski, M A; Kumar, D; Stutman, D; Finkenthal, M; Tritz, K

    2012-10-01

    A divertor imaging radiometer (DIR) diagnostic is being studied to measure spatially and spectrally resolved radiated power P(rad)(λ) in the tokamak divertor. A dual transmission grating design, with extreme ultraviolet (~20-200 Å) and vacuum ultraviolet (~200-2000 Å) gratings placed side-by-side, can produce coarse spectral resolution over a broad wavelength range covering emission from impurities over a wide temperature range. The DIR can thus be used to evaluate the separate P(rad) contributions from different ion species and charge states. Additionally, synthetic spectra from divertor simulations can be fit to P(rad)(λ) measurements, providing a powerful code validation tool that can also be used to estimate electron divertor temperature and impurity transport.

  19. Proposal for ultrasmall deep ultraviolet diamond Raman nanolaser

    NASA Astrophysics Data System (ADS)

    Kim, Kwang-Hyon; Choe, Song-Hyok

    2016-10-01

    We propose diamond nanoparticle Raman laser operating in the spectral range of deep ultraviolet. High Raman gain and low cavity loss of diamond nanoparticles enable low-threshold Raman lasing. Based on the coupled-mode theory, we numerically study its lasing dynamics. For the diamond nanoparticle with a radius of about 130 nm, the lasing threshold energy is below 10 pJ for a pump spot size of 1 μm.

  20. The influence of charge stratification on the spectral signature of partially premixed combustion in a light-duty optical engine

    NASA Astrophysics Data System (ADS)

    Najafabadi, M. Izadi; Egelmeers, Luc; Somers, Bart; Deen, Niels; Johansson, Bengt; Dam, Nico

    2017-04-01

    The origin of light emission during low-temperature combustion in a light-duty IC engine is investigated by high-speed spectroscopy in both HCCI and PPC regimes. Chemiluminescence and thermal radiation are expected to be the dominant sources of light emission during combustion. A method has been developed to distinguish chemiluminescence from thermal radiation, and different chemiluminescing species could be identified. Different combustion modes and global equivalence ratios are analyzed in this manner. The results indicate that the spectral signature (270-540 nm range) of the combustion is highly dependent on the stratification level. A significant broadband chemiluminescence signal is detected and superimposed on all spectra. This broadband chemiluminescence signal can reach up to 100 percent of the total signal in HCCI combustion, while it drops to around 80 percent for stratified combustion (PPC). We show that this broadband signal can be used as a measure for the heat release rate. The broadband chemiluminescence did also correlate with the equivalence ratio quite well in both HCCI and PPC regimes, suggesting that the total emission in the spectral region of 330-400 nm can serve as a proxy of equivalence ratio and the rate of heat release. Regarding C2* chemiluminescence, we see two different chemical mechanisms for formation of C2* in the PPC regime: first during the early stage of combustion by the breakup of bigger molecules and the second during the late stage of combustion when soot particles are forming.

  1. Infrared Spectral Observations While Drilling into a Frozen Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Colaprete, Anthony; Thompson, Sarah; Cook, Amanda; Kleinhenz, Julie

    2014-01-01

    Past and continuing observations indicate an enrichment of volatile materials in lunar polar regions. While these volatiles may be located near the surface, access to them will likely require subsurface sampling, during which it is desirable to monitor the volatile content. In a simulation of such activities, a multilayer lunar simulant was prepared with differing water content, and placed inside a thermal vacuum chamber at Glenn Research Center (GRC). The soil profile was cooled using liquid nitrogen. In addition to the soil, a drill and infrared (IR) spectrometer (1600-3400 nm) were also located in the GRC chamber. We report the spectral observations obtained during a sequence where the drill was repeatedly inserted and extracted, to different depths, at the same location. We observe an overall increase in the spectral signature of water ice over the duration of the test. Additionally, we observe variations in the water ice spectral signature as the drill encounters different layers.

  2. Spectral characterization of natural backgrounds

    NASA Astrophysics Data System (ADS)

    Winkelmann, Max

    2017-10-01

    As the distribution and use of hyperspectral sensors is constantly increasing, the exploitation of spectral features is a threat for camouflaged objects. To improve camouflage materials at first the spectral behavior of backgrounds has to be known to adjust and optimize the spectral reflectance of camouflage materials. In an international effort, the NATO CSO working group SCI-295 "Development of Methods for Measurements and Evaluation of Natural Background EO Signatures" is developing a method how this characterization of backgrounds has to be done. It is obvious that the spectral characterization of a background will be quite an effort. To compare and exchange data internationally the measurements will have to be done in a similar way. To test and further improve this method an international field trial has been performed in Storkow, Germany. In the following we present first impressions and lessons learned from this field campaign and describe the data that has been measured.

  3. Spectral Unmixing With Multiple Dictionaries

    NASA Astrophysics Data System (ADS)

    Cohen, Jeremy E.; Gillis, Nicolas

    2018-02-01

    Spectral unmixing aims at recovering the spectral signatures of materials, called endmembers, mixed in a hyperspectral or multispectral image, along with their abundances. A typical assumption is that the image contains one pure pixel per endmember, in which case spectral unmixing reduces to identifying these pixels. Many fully automated methods have been proposed in recent years, but little work has been done to allow users to select areas where pure pixels are present manually or using a segmentation algorithm. Additionally, in a non-blind approach, several spectral libraries may be available rather than a single one, with a fixed number (or an upper or lower bound) of endmembers to chose from each. In this paper, we propose a multiple-dictionary constrained low-rank matrix approximation model that address these two problems. We propose an algorithm to compute this model, dubbed M2PALS, and its performance is discussed on both synthetic and real hyperspectral images.

  4. Modelling Stellar Optical and Mid-Ultraviolet Spectra from First Principles

    NASA Astrophysics Data System (ADS)

    Peterson, R. C.; Carney, B. W.; Dorman, B.; Green, E. M.; Landsman, W.; Liebert, J.; O'Connell, R. W.; Rood, R. T.; Schiavon, R. P.

    2004-05-01

    We present comparisons of theoretical and observational high-resolution spectra for a half-dozen stars of a wide range of temperature and abundance, from A star to K giant. These show the fits achieved to date by our ab initio spectral calculations. These comparisons form the first phase of our three-year Hubble Treasury program GO-9455/9974, aimed at providing mid-ultraviolet spectral templates to improve the determination of the age and metallicity of old stellar systems. From matches such as these, we have modified the input atomic-line parameters and guessed the identifications of spectral lines missing from the calculations, as described by Peterson, Dorman, & Rood (2001, ApJ, 559, 372). With this new line list, we now match well the optical spectra of stars of all line strengths. We have begun to calculate a grid of optical indices from the theoretical spectra. In the mid-UV, while the fits at solar abundance are much improved, we are still missing very weak absorption lines near 2650Å and 2900Å. This will be addressed as additional mid-ultraviolet spectra are taken for a larger range of stellar targets during Cycle 13. Support for this work includes grants GO-9455 and GO-9974 from the Hubble Space Telescope Science Institute, and an award from the NASA-OSS Long Term Space Astrophysics program.

  5. The extreme ultraviolet spectroscope for planetary science, EXCEED

    NASA Astrophysics Data System (ADS)

    Yoshioka, K.; Murakami, G.; Yamazaki, A.; Tsuchiya, F.; Kagitani, M.; Sakanoi, T.; Kimura, T.; Uemizu, K.; Uji, K.; Yoshikawa, I.

    2013-09-01

    The extreme ultraviolet spectroscope EXtrem ultraviolet spetrosCope for ExosphEric Dynamics (EXCEED) on board the SPRINT-A mission will be launched in the summer of 2013 by the new Japanese solid propulsion rocket Epsilon as its first attempt, and it will orbit around the Earth with an orbital altitude of around 1000 km. EXCEED is dedicated to and optimized for observing the terrestrial planets Mercury, Venus and Mars, as well as Jupiter for several years. The instrument consists of an off axis parabolic entrance mirror, switchable slits with multiple filters and shapes, a toroidal grating, and a photon counting detector, together with a field of view guiding camera. The design goal is to achieve a large effective area but with high spatial and spectral resolution. In this paper, the performance of each optical component will be described as determined from the results of test evaluation of flight models. In addition, the results of the optical calibration of the overall instrument are also shown. As a result, the spectral resolution of EXCEED is found to be 0.3-0.5 nm Full Width at Half Maximum (FWHM) over the entire spectral band (52-148 nm) and the spatial resolution achieve was 10". The evaluated effective area is around 3 cm2. Based on these specifications, the possibility of EXCEED detecting atmospheric ions or atoms around Mercury, Venus, and Mars will be discussed. In addition, we estimate the spectra that might be detected from the Io plasma torus around Jupiter for various hypothetical plasma parameters.

  6. A study of meteor spectroscopy and physics from earth-orbit: A preliminary survey into ultraviolet meteor spectra

    NASA Technical Reports Server (NTRS)

    Meisel, D. D.

    1976-01-01

    Preliminary data required to extrapolate available meteor physics information (obtained in the photographic, visual and near ultraviolet spectral regions) into the middle and far ultraviolet are presented. Wavelength tables, telluric attenuation factors, meteor rates, and telluric airglow data are summarized in the context of near-earth observation vehicle parameters using moderate to low spectral resolution instrumentation. Considerable attenuation is given to the problem of meteor excitation temperatures since these are required to predict the strength of UV features. Relative line intensities are computed for an assumed chondritic composition. Features of greatest predicted intensities, the major problems in meteor physics, detectability of UV meteor events, complications of spacecraft motion, and UV instrumentation options are summarized.

  7. a UV Spectral Library of Metal-Poor Massive Stars

    NASA Astrophysics Data System (ADS)

    Robert, Carmelle

    1994-01-01

    We propose to use the FOS to build a snapshot library of UV spectra of a sample of about 50 metal-poor massive stars located in the Magellanic Clouds. The majority of libraries already existing contains spectra of hot stars with chemical abundances close to solar. The high spectral resolution achieves with the FOS will be a major factor for the uniqueness of this new library. UV spectral libraries represent fundamental tools for the study of the massive star populations of young star-forming regions. Massive stars, which are impossible to identify directly in the optical-IR part of a composite spectrum, display on the other hand key signatures in the UV region. These signatures are mainly broad, metallicity dependent spectral features formed in the hot star winds. They require a high spectral resolution (of the order of 200-300 km/s) for an adequate study. A spectral library of metal-poor massive stars represents also a unique source of data for a stellar atmosphere analysis. Within less then 10 min we will obtain a high signal-to-noise ratio of at least 30. Finally, since short exposure times are possible, this proposal makes extremely good use of the capabilities of HST. We designed an observing strategy which yields a maximum scientific return at a minimum cost of spacecraft time.

  8. Prediction of meat spectral patterns based on optical properties and concentrations of the major constituents.

    PubMed

    ElMasry, Gamal; Nakauchi, Shigeki

    2016-03-01

    A simulation method for approximating spectral signatures of minced meat samples was developed depending on concentrations and optical properties of the major chemical constituents. Minced beef samples of different compositions scanned on a near-infrared spectroscopy and on a hyperspectral imaging system were examined. Chemical composition determined heuristically and optical properties collected from authenticated references were simulated to approximate samples' spectral signatures. In short-wave infrared range, the resulting spectrum equals the sum of the absorption of three individual absorbers, that is, water, protein, and fat. By assuming homogeneous distributions of the main chromophores in the mince samples, the obtained absorption spectra are found to be a linear combination of the absorption spectra of the major chromophores present in the sample. Results revealed that developed models were good enough to derive spectral signatures of minced meat samples with a reasonable level of robustness of a high agreement index value more than 0.90 and ratio of performance to deviation more than 1.4.

  9. Thermal signature characteristics of vehicle/terrain interaction disturbances: implications for battlefield vehicle classification.

    PubMed

    Eastes, John W; Mason, George L; Kusinger, Alan E

    2004-05-01

    Thermal emissivity spectra (8-14 microm) of track impressions/background were determined in conjunction with operation of six military vehicle types, T-72 and M1 Tanks, an M2 Bradley Fighting Vehicle, a 5-ton truck, a D7 tractor, and a High Mobility Multipurpose Wheeled Vehicle (HMMWV), over diverse soil surfaces to determine if vehicle type could be related to track thermal signatures. Results suggest soil compaction and fragmentation/pulverization are primary parameters affecting track signatures and that soil and vehicle/terrain-contact type determine which parameter dominates. Steel-tracked vehicles exert relatively low ground-contact pressure but tend to fragment/pulverize soil more so than do rubber-tired vehicles, which tend mainly to compact. In quartz-rich, lean clay soil tracked vehicles produced impressions with spectral contrast of the quartz reststrahlen features decreased from that of the background. At the same time, 5-ton truck tracks exhibited increased contrast on the same surface, suggesting that steel tracks fragmented soil while rubber tires mainly produced compaction. The structure of materials such as sand and moist clay-rich river sediment makes them less subject to further fragmentation/pulverization; thus, compaction was the main factor affecting signatures in these media, and both tracked and wheeled vehicles created impressions with increased spectral contrast on these surfaces. These results suggest that remotely sensed thermal signatures could differentiate tracked and wheeled vehicles on terrain in many areas of the world of strategic interest. Significant applications include distinguishing visually/spectrally identical lightweight decoys from actual threat vehicles.

  10. X-ray and extreme ultraviolet spectroscopy on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor, Brian S.; Allen, Steve L.; Beiersdorfer, P.

    Two spectrometers were installed to measure tungsten emission in the core of DIII-D plasmas during a metal rings experimental campaign. The spectral range of the high-resolution (1340 spectral channels), variable-ruled grating X-ray and Extreme Ultraviolet Spectrometer (XEUS) extends from10–71more » $$\\dot{A}$$ . The spectral range of the second spectrometer, the Long-Wavelength Extreme Ultraviolet Spectrometer (LoWEUS), measures between 31–174$$\\dot{A}$$ . Three groups of tungsten lines were identified with XEUS: W 38+-W 45+ from 47–63$$\\dot{A}$$ , W 27+-W 35+ from 45–55$$\\dot{A}$$ , and W 28+-W 33+ from 16–30$$\\dot{A}$$ . Emission lines from tungsten charge states W 28+, W 43+, W 44+, and W 45+ are identified and the line amplitude is presented versus time. Peak emission of W 43+-W 45+ occurs between core Te=2.5-3 keV, and peak emission of W28+ occurs at core Te 1:3 keV. One group of tungsten lines, W 40+-W 45+, between 120–140$$\\dot{A}$$ , was identified with LoWEUS. W 43+- W 45+ lines measured with LoWEUS track the sawtooth cycle. Furthermore, sensitivity to the sawtooth cycle and the correlation of the peak emission with core electron temperature show that these spectrometers track the on-axis tungsten emission of DIII-D plasmas.« less

  11. X-ray and extreme ultraviolet spectroscopy on DIII-D

    DOE PAGES

    Victor, Brian S.; Allen, Steve L.; Beiersdorfer, P.; ...

    2017-06-14

    Two spectrometers were installed to measure tungsten emission in the core of DIII-D plasmas during a metal rings experimental campaign. The spectral range of the high-resolution (1340 spectral channels), variable-ruled grating X-ray and Extreme Ultraviolet Spectrometer (XEUS) extends from10–71more » $$\\dot{A}$$ . The spectral range of the second spectrometer, the Long-Wavelength Extreme Ultraviolet Spectrometer (LoWEUS), measures between 31–174$$\\dot{A}$$ . Three groups of tungsten lines were identified with XEUS: W 38+-W 45+ from 47–63$$\\dot{A}$$ , W 27+-W 35+ from 45–55$$\\dot{A}$$ , and W 28+-W 33+ from 16–30$$\\dot{A}$$ . Emission lines from tungsten charge states W 28+, W 43+, W 44+, and W 45+ are identified and the line amplitude is presented versus time. Peak emission of W 43+-W 45+ occurs between core Te=2.5-3 keV, and peak emission of W28+ occurs at core Te 1:3 keV. One group of tungsten lines, W 40+-W 45+, between 120–140$$\\dot{A}$$ , was identified with LoWEUS. W 43+- W 45+ lines measured with LoWEUS track the sawtooth cycle. Furthermore, sensitivity to the sawtooth cycle and the correlation of the peak emission with core electron temperature show that these spectrometers track the on-axis tungsten emission of DIII-D plasmas.« less

  12. Three new extreme ultraviolet spectrometers on NSTX-U for impurity monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weller, M. E., E-mail: weller4@llnl.gov; Beiersdorfer, P.; Soukhanovskii, V. A.

    2016-11-15

    Three extreme ultraviolet (EUV) spectrometers have been mounted on the National Spherical Torus Experiment–Upgrade (NSTX-U). All three are flat-field grazing-incidence spectrometers and are dubbed X-ray and Extreme Ultraviolet Spectrometer (XEUS, 8–70 Å), Long-Wavelength Extreme Ultraviolet Spectrometer (LoWEUS, 190–440 Å), and Metal Monitor and Lithium Spectrometer Assembly (MonaLisa, 50–220 Å). XEUS and LoWEUS were previously implemented on NSTX to monitor impurities from low- to high-Z sources and to study impurity transport while MonaLisa is new and provides the system increased spectral coverage. The spectrometers will also be a critical diagnostic on the planned laser blow-off system for NSTX-U, which will bemore » used for impurity edge and core ion transport studies, edge-transport code development, and benchmarking atomic physics codes.« less

  13. The Extreme Ultraviolet Explorer Mission

    NASA Technical Reports Server (NTRS)

    Bowyer, S.; Malina, R. F.

    1991-01-01

    The Extreme Ultraviolet Explorer (EUVE) mission, currently scheduled from launch in September 1991, is described. The primary purpose of the mission is to survey the celestial sphere for astronomical sources of extreme ultraviolet (EUV) radiation with the use of three EUV telescope, each sensitive to a different segment of the EUV band. A fourth telescope is planned to perform a high-sensitivity search of a limited sample of the sky in the shortest wavelength bands. The all-sky survey is planned to be carried out in the first six months of the mission in four bands, or colors, 70-180 A, 170-250 A, 400-600 A, and 500-700 A. The second phase of the mission is devoted to spectroscopic observations of EUV sources. A high-efficiency grazing-incidence spectrometer using variable line-space gratings is planned to provide spectral data with about 1-A resolution. An end-to-end model of the mission, from a stellar source to the resulting scientific data, is presented. Hypothetical data from astronomical sources were processed through this model and are shown.

  14. Comparison of Neural Networks and Tabular Nearest Neighbor Encoding for Hyperspectral Signature Classification in Unresolved Object Detection

    NASA Astrophysics Data System (ADS)

    Schmalz, M.; Ritter, G.; Key, R.

    Accurate and computationally efficient spectral signature classification is a crucial step in the nonimaging detection and recognition of spaceborne objects. In classical hyperspectral recognition applications using linear mixing models, signature classification accuracy depends on accurate spectral endmember discrimination [1]. If the endmembers cannot be classified correctly, then the signatures cannot be classified correctly, and object recognition from hyperspectral data will be inaccurate. In practice, the number of endmembers accurately classified often depends linearly on the number of inputs. This can lead to potentially severe classification errors in the presence of noise or densely interleaved signatures. In this paper, we present an comparison of emerging technologies for nonimaging spectral signature classfication based on a highly accurate, efficient search engine called Tabular Nearest Neighbor Encoding (TNE) [3,4] and a neural network technology called Morphological Neural Networks (MNNs) [5]. Based on prior results, TNE can optimize its classifier performance to track input nonergodicities, as well as yield measures of confidence or caution for evaluation of classification results. Unlike neural networks, TNE does not have a hidden intermediate data structure (e.g., the neural net weight matrix). Instead, TNE generates and exploits a user-accessible data structure called the agreement map (AM), which can be manipulated by Boolean logic operations to effect accurate classifier refinement algorithms. The open architecture and programmability of TNE's agreement map processing allows a TNE programmer or user to determine classification accuracy, as well as characterize in detail the signatures for which TNE did not obtain classification matches, and why such mis-matches occurred. In this study, we will compare TNE and MNN based endmember classification, using performance metrics such as probability of correct classification (Pd) and rate of false

  15. Changes in spectral signatures of red lettuce regards to Zinc uptake

    NASA Astrophysics Data System (ADS)

    Shin, J.; Yu, J.; Koh, S. M.; Park, G.; Kim, S.

    2017-12-01

    Heavy metal contaminations caused by human activities such as mining and industrial activities caused serious soil contamination. Soil contaminations causes secondary impact on vegetation by uptake processes. Intakes of vegetables harvested from heavy metal contaminated soil may cause serious health problems. It would be very effective if screening tool could be developed before the vegetables are distributed over the market. This study investigated spectral response of red lettuce regards to Zn uptake from the treated soil in a laboratory condition. Zn solutions at different levels of concentration are injected to potted lettuce. The chemical composition and spectral characteristics of the leaves are analyzed every 2 days and the correlation between the Zn concentration and spectral reflectance is investigated. The experiment reveals that Zn uptake of red lettuce is significantly higher for the leaves from treated pot compared to untreated pot showing highly contaminated concentrations beyond the standard Zn concentrations for food. The spectral response regards to Zn is manifested at certain level of concentration threshold. Below the threshold, reflectance at NIR regions increases regards to increase in Zn concentration. On the other hand, above the threshold, IR reflectance decreases and slope of NIR shoulder increases regards to higher Zn concentration. We think this result may contribute for development of screening tools for heavy metal contaminations in vegetables.

  16. Nearly simultaneous optical, ultraviolet, and x ray observations of three PG quasars

    NASA Technical Reports Server (NTRS)

    Kriss, Gerard A.

    1990-01-01

    Nearly simultaneous optical, ultraviolet, and x ray observations of three low redshift quasars are presented. The EXOSAT x ray spectra span the range of observed spectral indices for quasars from the canonical 0.7 energy index typical of Seyfert galaxies for PG0923+129 (Mrk 705) to the steep spectral indices frequently seen in higher luminosity quasars with an index of 1.58 for PG0844+349 (Ton 951). None of the quasars exhibits any evidence for a soft x ray excess. This is consistent with accretion disk spectra fit to the IR through UV continua of the quasars -- the best fitting disk spectra peak at approximately 6 eV with black hole masses in the range 5 x 10(exp 7) to 1 x 10(exp 9) solar mass and mass accretion rates of approximately 0.1 times the Eddington-limited rate. These rather soft disk spectra are also compatible with the observed optical and ultraviolet line ratios.

  17. The Inherent Visible Light Signature of an Intense Underwater Ultraviolet Light Source Due to Combined Raman and Fluorescence Effects

    DTIC Science & Technology

    2000-01-01

    Humans cannot see ultraviolet light. The blue-sensitive cones in the retina would respond weakly to ultraviolet wavelengths if exposed to them, but...545, 1992. 3. C. S. Yentsch, and D. A. Phinney, " Autofluorescence and Raman scattering in the marine underwater environment," Ocean Optics X, SPIE

  18. Calculating Solar Ultraviolet Irradiation Of The Human Cornea And Corresponding Required Sunglass Lens Transmittances

    NASA Astrophysics Data System (ADS)

    Hoover, Herbert L.; Marsaud, Serge G.

    1986-05-01

    Tinted ophthalmic lenses are used primarily for eye comfort in a brightly lit environment. An ancillary benefit is the attenuation of ultraviolet radiation. Some national product standards specify quantitative limits for ultraviolet transmittances. Such limits ought to be founded on quantitative estimates of solar irradiances of ocular tissues, with actinic effectiveness taken into account. We use the equations of Green and coworkers for direct and diffuse solar irradiance at the earth's surface to calculate average sky and ground spectral radiances. We use the geometric factors derived by us for the coupling of radiation from these sources to the human cornea. Actinically weighted corneal spectral irradiances integrated over wavelength and time yield peak irradiances and accumulated exposure doses that are compared with recommended exposure limits. This provides the maximal effective ultraviolet transmittances of tinted ophthalmic lenses such that these exposure limits will not be exceeded in the selected exposure environment. The influences on corneal irradiation of such exposure parameters as solar zenith angle, altitude of the exposure site, characteristics of atmospheric aerosols, and ground reflectances are illustrated. The relationships between the effective transmittance (which is a function of the environmental radiation and any actinicweighting function) and readily determined characteristics of the lens itself, viz., its mean transmittance, and a selected spectral transmittance, are derived for three lens transmittance curves. Limits of lens transmittance for the UV-B and UV-A wavelength regions are presented for several representative exposure sites in Europe and the U.S.A.

  19. MgII Observations Using the MSFC Solar Ultraviolet Magnetograph

    NASA Technical Reports Server (NTRS)

    West, Edward; Cirtain, Jonathan; Kobayashi, Ken; Davis, John; Gary, Allen; Adams, Mitzi

    2011-01-01

    This paper will describe the scientific goals of our sounding rocket program, the Solar Ultraviolet Magnetograph Investigation (SUMI). This paper will present a brief description of the optics that were developed to meet SUMI's scientific goals, discuss the spectral, spatial and polarization characteristics of SUMI s optics, describe SUMI's flight which was launched 7/30/2010, and discuss what we have learned from that flight.

  20. Hyperspectral image classification by a variable interval spectral average and spectral curve matching combined algorithm

    NASA Astrophysics Data System (ADS)

    Senthil Kumar, A.; Keerthi, V.; Manjunath, A. S.; Werff, Harald van der; Meer, Freek van der

    2010-08-01

    Classification of hyperspectral images has been receiving considerable attention with many new applications reported from commercial and military sectors. Hyperspectral images are composed of a large number of spectral channels, and have the potential to deliver a great deal of information about a remotely sensed scene. However, in addition to high dimensionality, hyperspectral image classification is compounded with a coarse ground pixel size of the sensor for want of adequate sensor signal to noise ratio within a fine spectral passband. This makes multiple ground features jointly occupying a single pixel. Spectral mixture analysis typically begins with pixel classification with spectral matching techniques, followed by the use of spectral unmixing algorithms for estimating endmembers abundance values in the pixel. The spectral matching techniques are analogous to supervised pattern recognition approaches, and try to estimate some similarity between spectral signatures of the pixel and reference target. In this paper, we propose a spectral matching approach by combining two schemes—variable interval spectral average (VISA) method and spectral curve matching (SCM) method. The VISA method helps to detect transient spectral features at different scales of spectral windows, while the SCM method finds a match between these features of the pixel and one of library spectra by least square fitting. Here we also compare the performance of the combined algorithm with other spectral matching techniques using a simulated and the AVIRIS hyperspectral data sets. Our results indicate that the proposed combination technique exhibits a stronger performance over the other methods in the classification of both the pure and mixed class pixels simultaneously.

  1. Determination of lateral size distribution of type-II ZnTe/ZnSe stacked submonolayer quantum dots via spectral analysis of optical signature of the Aharanov-Bohm excitons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Haojie; Dhomkar, Siddharth; Roy, Bidisha

    2014-10-28

    For submonolayer quantum dot (QD) based photonic devices, size and density of QDs are critical parameters, the probing of which requires indirect methods. We report the determination of lateral size distribution of type-II ZnTe/ZnSe stacked submonolayer QDs, based on spectral analysis of the optical signature of Aharanov-Bohm (AB) excitons, complemented by photoluminescence studies, secondary-ion mass spectroscopy, and numerical calculations. Numerical calculations are employed to determine the AB transition magnetic field as a function of the type-II QD radius. The study of four samples grown with different tellurium fluxes shows that the lateral size of QDs increases by just 50%, evenmore » though tellurium concentration increases 25-fold. Detailed spectral analysis of the emission of the AB exciton shows that the QD radii take on only certain values due to vertical correlation and the stacked nature of the QDs.« less

  2. SSUSI-Lite: a far-ultraviolet hyper-spectral imager for space weather remote sensing

    NASA Astrophysics Data System (ADS)

    Ogorzalek, Bernard; Osterman, Steven; Carlsson, Uno; Grey, Matthew; Hicks, John; Hourani, Ramsey; Kerem, Samuel; Marcotte, Kathryn; Parker, Charles; Paxton, Larry J.

    2015-09-01

    SSUSI-Lite is a far-ultraviolet (115-180nm) hyperspectral imager for monitoring space weather. The SSUSI and GUVI sensors, its predecessors, have demonstrated their value as space weather monitors. SSUSI-Lite is a refresh of the Special Sensor Ultraviolet Spectrographic Imager (SSUSI) design that has flown on the Defense Meteorological Satellite Program (DMSP) spacecraft F16 through F19. The refresh updates the 25-year-old design and insures that the next generation of SSUSI/GUVI sensors can be accommodated on any number of potential platforms. SSUSI-Lite maintains the same optical layout as SSUSI, includes updates to key functional elements, and reduces the sensor volume, mass, and power requirements. SSUSI-Lite contains an improved scanner design that results in precise mirror pointing and allows for variable scan profiles. The detector electronics have been redesigned to employ all digital pulse processing. The largest decrease in volume, mass, and power has been obtained by consolidating all control and power electronics into one data processing unit.

  3. INTERACTIONS OF SOLAR ULTRAVIOLET RADIATION AND DISSOLVED ORGANIC MATTER IN FRESHWATER AND MARINE ENVIRONMENTS

    EPA Science Inventory

    Solar radiation provides the primary driving force for the biogeochemical cycles upon which life and climate depend. Recent studies have demonstrated that the absorption of solar radiation, especially 'm the ultraviolet spectral region, results in photochemical reactions that can...

  4. Using hyperspectral plant signatures for CO2 leak detection during the 2008 ZERT CO2 sequestration field experiment in Bozeman, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Male, E.J.; Pickles, W.L.; Silver, E.A.

    2009-11-01

    Hyperspectral plant signatures can be used as a short-term, as well as long-term (100-yr timescale) monitoring technique to verify that CO2 sequestration fields have not been compromised. An influx of CO2 gas into the soil can stress vegetation, which causes changes in the visible to nearinfrared reflectance spectral signature of the vegetation. For 29 days, beginning on July 9th, 2008, pure carbon dioxide gas was released through a 100-meter long horizontal injection well, at a flow rate of 300 kg/day. Spectral signatures were recorded almost daily from an unmown patch of plants over the injection with a ''FieldSpec Pro'' spectrometermore » by Analytical Spectral Devices, Inc. Measurements were taken both inside and outside of the CO2 leak zone to normalize observations for other environmental factors affecting the plants.« less

  5. Magnetic fluorescent lamp having reduced ultraviolet self-absorption

    DOEpatents

    Berman, Samuel M.; Richardson, Robert W.

    1985-01-01

    The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly (10) is enhanced by providing means (30) for establishing a magnetic field with lines of force along the path of electron flow through the bulb (12) of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.

  6. Proton exchange membrane fuel cell diagnosis by spectral characterization of the electrochemical noise

    NASA Astrophysics Data System (ADS)

    Maizia, R.; Dib, A.; Thomas, A.; Martemianov, S.

    2017-02-01

    Electrochemical noise analysis (ENA) has been performed for the diagnosis of proton-exchange membrane fuel cell (PEMFC) under various operating conditions. Its interest is related with the possibility of a non-invasive on-line diagnosis of a commercial fuel cell. A methodology of spectral analysis has been developed and an evaluation of the stationarity of the signal has been proposed. It has been revealed that the spectral signature of fuel cell, is a linear slope with a fractional power dependence 1/fα where α = 2 for different relative humidities and current densities. Experimental results reveal that the electrochemical noise is sensitive to the water management, especially under dry conditions. At RHH2 = 20% and RHair = 20%, spectral analysis shows a three linear slopes signature on the spectrum at low frequency range (f < 100 Hz). This results indicates that power spectral density, calculated thanks to FFT, can be used for the detection of an incorrect fuel cell water balance.

  7. Complete particle-pair annihilation as a dynamical signature of the spectral singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, G.R.; Zhang, X.Z.; Song, Z., E-mail: nkquantum@gmail.com

    2014-10-15

    Motivated by the physical relevance of a spectral singularity of interacting many-particle system, we explore the dynamics of two bosons as well as fermions in one-dimensional system with imaginary delta interaction strength. Based on the exact solution, it shows that the two-particle collision leads to amplitude-reduction of the wave function. For fermion pair, the amplitude-reduction depends on the spin configuration of two particles. In both cases, the residual amplitude can vanish when the relative group velocity of two single-particle Gaussian wave packets with equal width reaches the magnitude of the interaction strength, exhibiting complete particle-pair annihilation at the spectral singularity.more » - Highlights: • We investigate the physical relevance of a spectral singularity. • The two-particle collision leads to amplitude-reduction of the wave function. • There is a singularity spectrum which leads to complete particle-pair annihilation. • Complete particle-pair annihilation can only occur for two distinguishable bosons and singlet fermions. • Pair annihilation provides a detection method of the spectral singularity in the experiment.« less

  8. Far Ultraviolet Astronomy

    NASA Technical Reports Server (NTRS)

    Sonneborn, George; Rabin, Douglas M. (Technical Monitor)

    2002-01-01

    The Far Ultraviolet Spectroscopic Explorer (FUSE) is studying a wide range of astronomical problems in the 905-1187 Angstrom wavelength region through the use of high resolution spectroscopy. The FUSE bandpass forms a nearly optimal complement to the spectral coverage provided by the Hubble Space Telescope (HST), which extends down to approximately 1170 Angstroms. The photoionization threshold of atomic hydrogen (911 Angstroms) sets a natural short-wavelength limit for the FUV. FUSE was launched in June 1999 from Cape Canaveral, Florida, on a Delta II rocket into a 768 km circular orbit. Scientific observations started later that year. This spectral region is extremely rich in spectral diagnostics of astrophysical gases over a wide range of temperatures (100 K to over 10 million K). Important strong spectral lines in this wavelength range include those of neutral hydrogen, deuterium, nitrogen, oxygen, and argon (H I, D I, N I, O I, and Ar I), molecular hydrogen (H2), five-times ionized oxygen (O VI), and several ionization states of sulfur (S III - S VI). These elements are essential for understanding the origin and evolution of the chemical elements, the formation of stars and our Solar System, and the structure of galaxies, including our Milky Way. FUSE is one of NASA's Explorer missions and a cooperative project of NASA and the space agencies of Canada and France. These missions are smaller, more scientifically focused missions than the larger observatories, like Hubble and Chandra. FUSE was designed, built and operated for NASA by the Department of Physics and Astronomy at Johns Hopkins University. Hundreds of astronomers world-wide are using FUSE for a wide range of scientific research. Some of the important scientific discoveries from the first two years of the mission are described.

  9. Improving Ramsey spectroscopy in the extreme-ultraviolet region with a random-sampling approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eramo, R.; Bellini, M.; European Laboratory for Non-linear Spectroscopy

    2011-04-15

    Ramsey-like techniques, based on the coherent excitation of a sample by delayed and phase-correlated pulses, are promising tools for high-precision spectroscopic tests of QED in the extreme-ultraviolet (xuv) spectral region, but currently suffer experimental limitations related to long acquisition times and critical stability issues. Here we propose a random subsampling approach to Ramsey spectroscopy that, by allowing experimentalists to reach a given spectral resolution goal in a fraction of the usual acquisition time, leads to substantial improvements in high-resolution spectroscopy and may open the way to a widespread application of Ramsey-like techniques to precision measurements in the xuv spectral region.

  10. High-power ultra-broadband frequency comb from ultraviolet to infrared by high-power fiber amplifiers.

    PubMed

    Yang, Kangwen; Li, Wenxue; Yan, Ming; Shen, Xuling; Zhao, Jian; Zeng, Heping

    2012-06-04

    A high-power ultra-broadband frequency comb covering the spectral range from ultraviolet to infrared was generated directly by nonlinear frequency conversion of a multi-stage high-power fiber comb amplifier. The 1030-nm infrared spectral fraction of a broadband Ti:sapphire femtosecond frequency comb was power-scaled up to 100 W average power by using a large-mode-area fiber chirped-pulse amplifier. We obtained a frequency-doubled green comb at 515 nm and frequency-quadrupled ultraviolet pulses at 258 nm with the average power of 12.8 and 1.62 W under the input infrared power of 42.2 W, respectively. The carrier envelope phase stabilization was accomplished with an ultra-narrow line-width of 1.86 mHz and a quite low accumulated phase jitter of 0.41 rad, corresponding to a timing jitter of 143 as.

  11. Multi-spectral endogenous fluorescence imaging for bacterial differentiation

    NASA Astrophysics Data System (ADS)

    Chernomyrdin, Nikita V.; Babayants, Margarita V.; Korotkov, Oleg V.; Kudrin, Konstantin G.; Rimskaya, Elena N.; Shikunova, Irina A.; Kurlov, Vladimir N.; Cherkasova, Olga P.; Komandin, Gennady A.; Reshetov, Igor V.; Zaytsev, Kirill I.

    2017-07-01

    In this paper, the multi-spectral endogenous fluorescence imaging was implemented for bacterial differentiation. The fluorescence imaging was performed using a digital camera equipped with a set of visual bandpass filters. Narrowband 365 nm ultraviolet radiation passed through a beam homogenizer was used to excite the sample fluorescence. In order to increase a signal-to-noise ratio and suppress a non-fluorescence background in images, the intensity of the UV excitation was modulated using a mechanical chopper. The principal components were introduced for differentiating the samples of bacteria based on the multi-spectral endogenous fluorescence images.

  12. Long-wave, infrared laser-induced breakdown (LIBS) spectroscopy emissions from energetic materials.

    PubMed

    Yang, Clayton S-C; Brown, Ei E; Hommerich, Uwe; Jin, Feng; Trivedi, Sudhir B; Samuels, Alan C; Snyder, A Peter

    2012-12-01

    Laser-induced breakdown spectroscopy (LIBS) has shown great promise for applications in chemical, biological, and explosives sensing and has significant potential for real-time standoff detection and analysis. In this study, LIBS emissions were obtained in the mid-infrared (MIR) and long-wave infrared (LWIR) spectral regions for potential applications in explosive material sensing. The IR spectroscopy region revealed vibrational and rotational signatures of functional groups in molecules and fragments thereof. The silicon-based detector for conventional ultraviolet-visible LIBS operations was replaced with a mercury-cadmium-telluride detector for MIR-LWIR spectral detection. The IR spectral signature region between 4 and 12 μm was mined for the appearance of MIR and LWIR-LIBS emissions directly indicative of oxygenated breakdown products as well as dissociated, and/or recombined sample molecular fragments. Distinct LWIR-LIBS emission signatures from dissociated-recombination sample molecular fragments between 4 and 12 μm are observed for the first time.

  13. Ultraviolet reflectance spectroscopy measurements of planetary materials and their analogs

    NASA Astrophysics Data System (ADS)

    Hibbitts, C.; Stockstill-Cahill, K.

    2017-12-01

    The compositions of airless solar system objects tell us about the origin and evolutionary processes that are responsible for the current state of our solar system and that shape our environment. Spacecraft have obtained UV reflectance measurements of the surfaces of Mercury, the Moon, asteroids, comets, icy satellites, and Pluto from which composition is being inferred. Most minerals absorb in the UV making studying surface composition both informative but also challenging [e.g. 1]. The UV region is sensitive to atomic and molecular electronic absorptions such as the ligand-metal charge transfer band that is present in oxides and silicates and the conduction band at vacuum UV wavelengths. Unfortunately, limited laboratory reflectance measurements in the ultraviolet hampers the interpretation of some of these planetary UV reflectance datasets. However, several laboratory efforts have been developed [e.g. 2,3] to fill the need for laboratory UV measurements. These are difficult measurements to make, being complicated by the absorptive nature of the atmosphere, requiring measurements to be conducted under vacuum or over very short path lengths of a N2-purged system. Also, the lack of a widely accepted UV diffuse reflectance standard is problematic. At the JHU-APL, bidirectional UV reflectance measurements are obtained under vacuum from 140 nm to 570 nm. Sample temperature can be controlled from 100K to 600K, which enables the study of the interaction of water ice and other volatiles with the refractory samples. Results from our laboratory research include the development of a correlation between the spectral nature of the OMCT band and the abundance of iron in low water content lunar analog glasses [3]. Also, the spectral signature of water in the UV has been investigated. While water-ice has a known strong absorption feature near 180 nm [e.g. 4], adsorbed molecular and disassociatively adsorbed OH apparently are not optically active in this spectral region [5]. We

  14. Mapping target signatures via partial unmixing of AVIRIS data

    NASA Technical Reports Server (NTRS)

    Boardman, Joseph W.; Kruse, Fred A.; Green, Robert O.

    1995-01-01

    A complete spectral unmixing of a complicated AVIRIS scene may not always be possible or even desired. High quality data of spectrally complex areas are very high dimensional and are consequently difficult to fully unravel. Partial unmixing provides a method of solving only that fraction of the data inversion problem that directly relates to the specific goals of the investigation. Many applications of imaging spectrometry can be cast in the form of the following question: 'Are my target signatures present in the scene, and if so, how much of each target material is present in each pixel?' This is a partial unmixing problem. The number of unmixing endmembers is one greater than the number of spectrally defined target materials. The one additional endmember can be thought of as the composite of all the other scene materials, or 'everything else'. Several workers have proposed partial unmixing schemes for imaging spectrometry data, but each has significant limitations for operational application. The low probability detection methods described by Farrand and Harsanyi and the foreground-background method of Smith et al are both examples of such partial unmixing strategies. The new method presented here builds on these innovative analysis concepts, combining their different positive attributes while attempting to circumvent their limitations. This new method partially unmixes AVIRIS data, mapping apparent target abundances, in the presence of an arbitrary and unknown spectrally mixed background. It permits the target materials to be present in abundances that drive significant portions of the scene covariance. Furthermore it does not require a priori knowledge of the background material spectral signatures. The challenge is to find the proper projection of the data that hides the background variance while simultaneously maximizing the variance amongst the targets.

  15. Spectral Induced Polarization Signatures of Ethanol in Sand-Clay Medium

    EPA Science Inventory

    The spectral Induced Polarization (SIP) method has previously been investigated as a tool for detecting physicochemical changes occurring as result of clay-organic interactions in porous media. We performed SIP measurements with a dynamic signal analyzer (NI-4551) on laboratory ...

  16. Far-ultraviolet spectral images of comet Halley from sounding rockets

    NASA Technical Reports Server (NTRS)

    Mccoy, R. P.; Carruthers, G. R.; Opal, C. B.

    1986-01-01

    Far-ultraviolet images of comet Halley obtained from sounding rockets launched from White Sands Missile Range, New Mexico, on 24 February and 13 March, 1986, are presented. Direct electrographic images of the hydrogen coma of the comet were obtained at the Lyman-alpha wavelength along with objective spectra containing images of the coma at the oxygen, carbon, and sulfur resonance multiplets. Analysis of the Lyman-alpha images yields hydrogen atom production rates of 1.9 x 10 to the 30th/s and 1.4 x 120 to the 30th/s for the two observations. Images of oxygen, carbon, and sulfur emissions obtained with the objective grating spectrograph are presented for the first set of observations and preliminary production rates are derived for these elements.

  17. Estimating solar ultraviolet irradiance (290-385 nm) by means of the spectral parametric models: SPCTRAL2 and SMARTS2

    NASA Astrophysics Data System (ADS)

    Foyo-Moreno, I.; Vida, J.; Olmo, F. J.; Alados-Arboledas, L.

    2000-11-01

    Since the discovery of the ozone depletion in Antarctic and the globally declining trend of stratospheric ozone concentration, public and scientific concern has been raised in the last decades. A very important consequence of this fact is the increased broadband and spectral UV radiation in the environment and the biological effects and heath risks that may take place in the near future. The absence of widespread measurements of this radiometric flux has lead to the development and use of alternative estimation procedures such as the parametric approaches. Parametric models compute the radiant energy using available atmospheric parameters. Some parametric models compute the global solar irradiance at surface level by addition of its direct beam and diffuse components. In the present work, we have developed a comparison between two cloudless sky parametrization schemes. Both methods provide an estimation of the solar spectral irradiance that can be integrated spectrally within the limits of interest. For this test we have used data recorded in a radiometric station located at Granada (37.180°N, 3.580°W, 660 m a.m.s.l.), an inland location. The database includes hourly values of the relevant variables covering the years 1994-95. The performance of the models has been tested in relation to their predictive capability of global solar irradiance in the UV range (290-385 nm). After our study, it appears that information concerning the aerosol radiative effects is fundamental in order to obtain a good estimation. The original version of SPCTRAL2 provides estimates of the experimental values with negligible mean bias deviation. This suggests not only the appropriateness of the model but also the convenience of the aerosol features fixed in it to Granada conditions. SMARTS2 model offers increased flexibility concerning the selection of different aerosol models included in the code and provides the best results when the selected models are those considered as urban

  18. SUMER: Solar Ultraviolet Measurements of Emitted Radiation

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Axford, W. I.; Curdt, W.; Gabriel, A. H.; Grewing, M.; Huber, M. C. E.; Jordan, M. C. E.; Lemaire, P.; Marsch, E.; Poland, A. I.

    1988-01-01

    The SUMER (solar ultraviolet measurements of emitted radiation) experiment is described. It will study flows, turbulent motions, waves, temperatures and densities of the plasma in the upper atmosphere of the Sun. Structures and events associated with solar magnetic activity will be observed on various spatial and temporal scales. This will contribute to the understanding of coronal heating processes and the solar wind expansion. The instrument will take images of the Sun in EUV (extreme ultra violet) light with high resolution in space, wavelength and time. The spatial resolution and spectral resolving power of the instrument are described. Spectral shifts can be determined with subpixel accuracy. The wavelength range extends from 500 to 1600 angstroms. The integration time can be as short as one second. Line profiles, shifts and broadenings are studied. Ratios of temperature and density sensitive EUV emission lines are established.

  19. The Far-Ultraviolet Spectra of "Cool" PG1159 Stars

    NASA Technical Reports Server (NTRS)

    Werner, K.; Rauch, T.; Kruk, J. W.

    2015-01-01

    We present a comprehensive study of Far Ultraviolet Spectroscopic Explorer (FUSE) spectra (912-1190 A) of two members of the PG1159 spectral class, which consists of hydrogen-deficient (pre-) white dwarfs with effective temperatures in the range T(sub eff) = 75000-200000 K. As two representatives of the cooler objects, we have selected PG1707+427 (T(sub eff) = 85000 K) and PG1424+535 (T(sub eff) = 110000 K), complementing a previous study of the hotter prototype PG1159-035 (T(sub eff) = 140000 K). The helium-dominated atmospheres are strongly enriched in carbon and oxygen, therefore, their spectra are dominated by lines from C III-IV and O III-VI, many of which were never observed before in hot stars. In addition, lines of many other metals (N, F, Ne, Si, P, S, Ar, Fe) are detectable, demonstrating that observations in this spectral region are most rewarding when compared to the near-ultraviolet and optical wavelength bands. We perform abundance analyses of these species and derive upper limits for several undetected light and heavy metals including iron-group and trans-iron elements. The results are compared to predictions of stellar evolution models for neutron-capture nucleosynthesis and good agreement is found.

  20. Far-Ultraviolet Spectroscopy of Three Long-Period Novalike Variables

    NASA Astrophysics Data System (ADS)

    Bisol, Alexandra C.; Godon, Patrick; Sion, Edward M.

    2012-02-01

    We have selected three novalike variables at the long-period extreme of novalike orbital periods: V363 Aur, RZ Gru, and AC Cnc, all with IUE archival far-ultraviolet spectra. All are UX UMa-type novalike variables and all have Porb > 7 hr. V363 Aur is a bona fide SW Sex star, and AC Cnc is a probable one, while RZ Gru has not proven to be a member of the SW Sex subclass. We have carried out the first synthetic spectral analysis of far-ultraviolet spectra of the three systems using state-of-the-art models of both accretion disks and white dwarf photospheres. We find that the FUV spectral energy distribution of both V363 Aur and RZ Gru are in agreement with optically thick steady-state accretion disk models in which the luminous disk accounts for 100% of the FUV light. We present accretion rates and model-derived distances for V363 Aur and RZ Gru. For AC Cnc, we find that a hot accreting white dwarf accounts for ˜60% of the FUV light, with an accretion disk providing the rest. We compare our accretion rates and model-derived distances with estimates in the literature.

  1. Key issues of ultraviolet radiation of OH at high altitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuhuai; Wan, Tian; Jiang, Jianzheng

    2014-12-09

    Ultraviolet (UV) emissions radiated by hydroxyl (OH) is one of the fundamental elements in the prediction of radiation signature of high-altitude and high-speed vehicle. In this work, the OH A{sup 2}Σ{sup +}→X{sup 2}Π ultraviolet emission band behind the bow shock is computed under the experimental condition of the second bow-shock ultraviolet flight (BSUV-2). Four related key issues are discussed, namely, the source of hydrogen element in the high-altitude atmosphere, the formation mechanism of OH species, efficient computational algorithm of trace species in rarefied flows, and accurate calculation of OH emission spectra. Firstly, by analyzing the typical atmospheric model, the verticalmore » distributions of the number densities of different species containing hydrogen element are given. According to the different dominating species containing hydrogen element, the atmosphere is divided into three zones, and the formation mechanism of OH species is analyzed in the different zones. The direct simulation Monte Carlo (DSMC) method and the Navier-Stokes equations are employed to compute the number densities of the different OH electronically and vibrationally excited states. Different to the previous work, the trace species separation (TSS) algorithm is applied twice in order to accurately calculate the densities of OH species and its excited states. Using a non-equilibrium radiation model, the OH ultraviolet emission spectra and intensity at different altitudes are computed, and good agreement is obtained with the flight measured data.« less

  2. Key issues of ultraviolet radiation of OH at high altitudes

    NASA Astrophysics Data System (ADS)

    Zhang, Yuhuai; Wan, Tian; Jiang, Jianzheng; Fan, Jing

    2014-12-01

    Ultraviolet (UV) emissions radiated by hydroxyl (OH) is one of the fundamental elements in the prediction of radiation signature of high-altitude and high-speed vehicle. In this work, the OH A2Σ+→ X2Π ultraviolet emission band behind the bow shock is computed under the experimental condition of the second bow-shock ultraviolet flight (BSUV-2). Four related key issues are discussed, namely, the source of hydrogen element in the high-altitude atmosphere, the formation mechanism of OH species, efficient computational algorithm of trace species in rarefied flows, and accurate calculation of OH emission spectra. Firstly, by analyzing the typical atmospheric model, the vertical distributions of the number densities of different species containing hydrogen element are given. According to the different dominating species containing hydrogen element, the atmosphere is divided into three zones, and the formation mechanism of OH species is analyzed in the different zones. The direct simulation Monte Carlo (DSMC) method and the Navier-Stokes equations are employed to compute the number densities of the different OH electronically and vibrationally excited states. Different to the previous work, the trace species separation (TSS) algorithm is applied twice in order to accurately calculate the densities of OH species and its excited states. Using a non-equilibrium radiation model, the OH ultraviolet emission spectra and intensity at different altitudes are computed, and good agreement is obtained with the flight measured data.

  3. Modeling of spectral signatures of littoral waters

    NASA Astrophysics Data System (ADS)

    Haltrin, Vladimir I.

    1997-12-01

    The spectral values of remotely obtained radiance reflectance coefficient (RRC) are compared with the values of RRC computed from inherent optical properties measured during the shipborne experiment near the West Florida coast. The model calculations are based on the algorithm developed at the Naval Research Laboratory at Stennis Space Center and presented here. The algorithm is based on the radiation transfer theory and uses regression relationships derived from experimental data. Overall comparison of derived and measured RRCs shows that this algorithm is suitable for processing ground truth data for the purposes of remote data calibration. The second part of this work consists of the evaluation of the predictive visibility model (PVM). The simulated three-dimensional values of optical properties are compared with the measured ones. Preliminary results of comparison are encouraging and show that the PVM can qualitatively predict the evolution of inherent optical properties in littoral waters.

  4. Normal-incidence EXtreme-Ultraviolet imaging Spectrometer - NEXUS

    NASA Astrophysics Data System (ADS)

    Dere, K. P.

    2003-05-01

    NEXUS is the result of a breakthrough optical design that incorporates new technologies to achieve high optical throughput at high spatial (1 arcsec) and spectral (1-2 km s-1) resolution over a wide field of view in an optimal extreme-ultraviolet spectral band. This achievement was made possible primarily by two technical developments. First, a coating of boron-carbide deposited onto a layer of iridium provided a greatly enhanced reflectivity at EUV wavelengths that would enable NEXUS to observe the Sun over a wide temperature range at high cadence. The reflectivity of these coatings have been measured and demonstrated in the laboratory. The second key development was the use of a variable-line-spaced toroidal grating spectrometer. The spectrometer design allowed the Sun to be imaged at high spatial and spectral resolution along a 1 solar radius-long slit and over a wavelength range from 450 to 800 Å, nearly an entire spectral order. Because the spectrograph provided a magnification of about a factor of 6, only 2 optical elements are required to achieved the desired imaging performance. Throughput was enhanced by the use of only 2 reflections. The could all be accomodated within a total instrument length of 1.5m. We would like to acknowledge support from ONR

  5. Tube wave signatures in cylindrically layered poroelastic media computed with spectral method

    NASA Astrophysics Data System (ADS)

    Karpfinger, Florian; Gurevich, Boris; Valero, Henri-Pierre; Bakulin, Andrey; Sinha, Bikash

    2010-11-01

    This paper describes a new algorithm based on the spectral method for the computation of Stoneley wave dispersion and attenuation propagating in cylindrical structures composed of fluid, elastic and poroelastic layers. The spectral method is a numerical method which requires discretization of the structure along the radial axis using Chebyshev points. To approximate the differential operators of the underlying differential equations, we use spectral differentiation matrices. After discretizing equations of motion along the radial direction, we can solve the problem as a generalized algebraic eigenvalue problem. For a given frequency, calculated eigenvalues correspond to the wavenumbers of different modes. The advantage of this approach is that it can very efficiently analyse structures with complicated radial layering composed of different fluid, solid and poroelastic layers. This work summarizes the fundamental equations, followed by an outline of how they are implemented in the numerical spectral schema. The interface boundary conditions are then explained for fluid/porous, elastic/porous and porous interfaces. Finally, we discuss three examples from borehole acoustics. The first model is a fluid-filled borehole surrounded by a poroelastic formation. The second considers an additional elastic layer sandwiched between the borehole and the formation, and finally a model with radially increasing permeability is considered.

  6. Low-resolution ultraviolet spectroscopy of several hot stars observed from Apollo 17

    NASA Technical Reports Server (NTRS)

    Henry, R. C.; Weinstein, A.; Feldman, P. D.; Fastie, W. G.; Moos, H. W.

    1975-01-01

    Low-resolution ultraviolet spectra were obtained for six early-type stars in 1972 December, using an Ebert spectrometer mounted in the service module of the Apollo 17 spacecraft. The spectrometer scanned from 1180 A to 1680 A, with a speed that varied with wavelength according to a program chosen for lunar studies. Spectral resolution was 11 A. The ultraviolet absolute calibration of the instrument was determined by comparison with National Bureau of Standards calibrated photodiodes, and is believed known to plus or minus 10 percent. The absolute intensities are in good general agreement with the observations of other stars and with the predictions of stellar model-atmosphere calculations.

  7. Reference ultraviolet wavelengths of CrIII measured by Fourier transform spectrometry

    NASA Astrophysics Data System (ADS)

    Smillie, D. G.; Pickering, J. C.; Smith, P. L.

    2008-10-01

    We report CrIII ultraviolet (UV) transition wavelengths measured using a high-resolution Fourier transform spectrometer (FTS), for the first time, available for use as wavelength standards. The doubly ionized iron group element spectra dominate the observed opacity of hot B stars in the UV, and improved, accurate, wavelengths are required for the analysis of astronomical spectra. The spectrum was excited using a chromium-neon Penning discharge lamp and measured with the Imperial College vacuum ultraviolet FTS. 140 classified 3d34s-3d34p CrIII transition lines, in the spectral range 38000 to 49000 cm-1 (2632 to 2041 Å), the strongest having wavelength uncertainties less than one part in 107, are presented.

  8. Surface assessment of CaF2 deep-ultraviolet and vacuum-ultraviolet optical components by the quasi-Brewster angle technique.

    PubMed

    Wang, Jue; Maier, Robert L

    2006-08-01

    The requirements for optical components have drastically increased for the deep-ultraviolet and vacuum-ultraviolet spectral regions. Low optical loss, high laser damage threshold, and long lifetime fluoride optics are required for microlithographic applications. A nondestructive quasi-Brewster angle technique (qBAT) has been developed for evaluating the quality of optical surfaces including both top surface and subsurface information. By using effective medium approximation, the negative quasi-Brewster angle shift at wavelengths longer than 200 nm has been used to model the distribution of subsurface damage, whereas the positive quasi-Brewster angle shift for wavelengths shorter than 200 nm has been explained by subsurface contamination. The top surface roughness depicted by the qBAT is consistent with atomic force microscopy measurements. The depth and the microporous structure of the subsurface damage measured by the qBAT has been confirmed by magnetorheological finishing. The technique has been extended to evaluate both polished and antireflection-coated CaF(2) components.

  9. Spectral measurements of ocean-dumped wastes tested in the marine upwelled spectral signature laboratory

    NASA Technical Reports Server (NTRS)

    Witte, W. G.; Usry, J. W.; Whitlock, C. H.; Gurganus, E. A.

    1979-01-01

    Transmission and inherent upwelled radiance measurements were made of various mixtures of three ocean-dumped industrial plant wastes in artificial seawater. Laboratory analyses were made of the physical and chemical properties of the various mixtures. These results and the laboratory measurements of beam attenuation and inherent upwelled radiance indicate a variety of chemical and spectral responses when industrial wastes are added to artificial seawater. In particular, increased levels of turbidity did not always cause increased levels of inherent reflectance.

  10. Measurement device for high-precision spectral transmittance of solar blind filter

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Qian, Yunsheng; Lv, Yang; Feng, Cheng; Liu, Jian

    2017-02-01

    In order to measure spectral transmittance of solar-blind filter ranging from ultraviolet to visible light accurately, a high-precision filter transmittance measuring system based on the ultraviolet photomultiplier is developed. The calibration method is mainly used to measure transmittance in this system, which mainly consists of an ultraviolet photomultiplier as core of the system and a lock-in amplifier combined with an optical modulator as the aided measurement for the system. The ultraviolet photomultiplier can amplify the current signal through the filter and have the characteristics of low dark current and high luminance gain. The optical modulator and the lock-in amplifier can obtain the signal from the photomultiplier and inhibit dark noise and spurious signal effectively. Through these two parts, the low light passing through the filters can be detected and we can calculate the transmittance by the optical power detected. Based on the proposed system, the limit detection of the transmittance can reach 10-12, while the result of the conventional approach is merely 10-6. Therefore, the system can make an effective assessment of solar blind ultraviolet filters.

  11. Application of micro-attenuated total reflectance Fourier transform infrared spectroscopy to ink examination in signatures written with ballpoint pen on questioned documents.

    PubMed

    Nam, Yun Sik; Park, Jin Sook; Lee, Yeonhee; Lee, Kang-Bong

    2014-05-01

    Questioned documents examined in a forensic laboratory sometimes contain signatures written with ballpoint pen inks; these signatures were examined to assess the feasibility of micro-attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy as a forensic tool. Micro-ATR FTIR spectra for signatures written with 63 ballpoint pens available commercially in Korea were obtained and used to construct an FTIR spectral database. A library-searching program was utilized to identify the manufacturer, blend, and model of each black ballpoint pen ink based upon their FTIR peak intensities, positions, and patterns in the spectral database. This FTIR technique was also successfully used in determining the sequence of homogeneous line intersections from the crossing lines of two ballpoint pen signatures. We have demonstrated with a set of sample documents that micro-ATR FTIR is a viable nondestructive analytical method that can be used to identify the origin of the ballpoint pen ink used to mark signatures. © 2014 American Academy of Forensic Sciences.

  12. Ultraviolet to Infrared SED (Spectral Energy Distribution) Analysis of Nearby Late-Stage Mergers

    NASA Astrophysics Data System (ADS)

    Weiner, Aaron S.; Smith, Howard A.; Ashby, Matthew; Martínez-Galarza, Juan Rafael; Ramos Padilla, Andres; Hung, Chao-Ling; Dietrich, Jeremy; Lanz, Lauranne; Hayward, Christopher; Rosenthal, Lee; Willner, Steven; Zezas, Andreas

    2018-01-01

    We present an analysis of the fundamental properties of nearby merging galaxies based on an in-depth analysis of their spectral energy distributions. The Late-Stage Interacting Galaxy Sample (LSIGS) cross-correlates the Revised IRAS-FSC Redshift Catalogue (Wang et al. 2014) with Galaxy Zoo (Lintott et al. 2008, 2011). LSIGS builds on and extends SIGS (Spitzer Interacting Galaxy Sample; Lanz et al. 2013, Brassington et al. 2015) in two ways. First it enlarges the sample considerably to 453 systems, increasing the statistical power of the analysis significantly. Second, it includes galaxies in the most advanced merger stage, during coalescence, filling a gap in the SIGS sample. We present full ultraviolet (UV) to far-infrared (FIR) aperture photometry for 50 galaxies in this sample, 40 of which are late-stage mergers, selecting based on availability of both UV and SPIRE observations. These have subsequently been fit and analyzed by CIGALE (Code Investigating Galaxy Emission; Burgarella 2005) in order to retrieve key physical properties of the galaxies including star-formation rate (SFR), AGN fraction, dust luminosity, bolometric luminosity, and stellar and gas mass. We use this same analysis on hydrodynamical simulations created with GADGET-3 and using SUNRISE for the radiative transfer. Using the observations in conjunction with the simulations, CIGALE fits the simulated values accurately for fAGN>0.3. Additionally galaxies in the midst of coalescence have significantly increased sSFR compared to both early and late-stage mergers, while finding that the gas mass and alpha significantly increase from early stage mergers to those in coalescence. Furthermore, we find a linear anti-correlation between alpha and both the log(60/100μm) flux, and, more interestingly, the compactness. Lastly we bring forth the idea of using the best fit age of the oldest stars and the folding time of the stellar population, τmain, in conjunction to predict the likelihood of a galaxy being

  13. Coherent ultra-violet to near-infrared generation in silica ridge waveguides

    PubMed Central

    Yoon Oh, Dong; Yang, Ki Youl; Fredrick, Connor; Ycas, Gabriel; Diddams, Scott A.; Vahala, Kerry J.

    2017-01-01

    Short duration, intense pulses of light can experience dramatic spectral broadening when propagating through lengths of optical fibre. This continuum generation process is caused by a combination of nonlinear optical effects including the formation of dispersive waves. Optical analogues of Cherenkov radiation, these waves allow a pulse to radiate power into a distant spectral region. In this work, efficient and coherent dispersive wave generation of visible to ultraviolet light is demonstrated in silica waveguides on a silicon chip. Unlike fibre broadeners, the arrays provide a wide range of emission wavelength choices on a single, compact chip. This new capability is used to simplify offset frequency measurements of a mode-locked frequency comb. The arrays can also enable mode-locked lasers to attain unprecedented tunable spectral reach for spectroscopy, bioimaging, tomography and metrology. PMID:28067233

  14. Impact of soil moisture and winter wheat height from the Loess Plateau in Northwest China on surface spectral albedo

    NASA Astrophysics Data System (ADS)

    Li, Zhenchao; Yang, Jiaxi; Gao, Xiaoqing; Zheng, Zhiyuan; Yu, Ye; Hou, Xuhong; Wei, Zhigang

    2018-02-01

    The understanding of surface spectral radiation and reflected radiation characteristics of different surfaces in different climate zones aids in the interpretation of regional surface energy transfers and the development of land surface models. This study analysed surface spectral radiation variations and corresponding surface albedo characteristics at different wavelengths as well as the relationship between 5-cm soil moisture and surface albedo on typical sunny days during the winter wheat growth period. The analysis was conducted using observational Loess Plateau winter wheat data from 2015. The results show that the ratio of atmospheric downward radiation to global radiation on typical sunny days is highest for near-infrared wavelengths, followed by visible wavelengths and ultraviolet wavelengths, with values of 57.3, 38.7 and 4.0%, respectively. The ratio of reflected spectral radiation to global radiation varies based on land surface type. The visible radiation reflected by vegetated surfaces is far less than that reflected by bare ground, with surface albedos of 0.045 and 0.27, respectively. Thus, vegetated surfaces absorb more visible radiation than bare ground. The atmospheric downward spectral radiation to global radiation diurnal variation ratios vary for near-infrared wavelengths versus visible and ultraviolet wavelengths on typical sunny days. The near-infrared wavelengths ratio is higher in the morning and evening and lower at noon. The visible and ultraviolet wavelengths ratios are lower in the morning and evening and higher at noon. Visible and ultraviolet wavelength surface albedo is affected by 5-cm soil moisture, demonstrating a significant negative correlation. Excluding near-infrared wavelengths, correlations between surface albedo and 5-cm soil moisture pass the 99% confidence test at each wavelength. The correlation with 5-cm soil moisture is more significant at shorter wavelengths. However, this study obtained surface spectral radiation

  15. Some spectral and spatial characteristics of LANDSAT data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Activities are provided for: (1) developing insight into the way in which the LANDSAT MSS produces multispectral data; (2) promoting understanding of what a "pixel" means in a LANDSAT image and the implications of the term "mixed pixel"; (3) explaining the concept of spectral signatures; (4) deriving a simple signature for a class or feature by analysis: of the four band images; (5) understanding the production of false color composites; (6) appreciating the use of color additive techniques; (7) preparing Diazo images; and (8) making quick visual identifications of major land cover types by their characteristic gray tones or colors in LANDSAT images.

  16. Relationship between anaerobic digestion of biodegradable solid waste and spectral characteristics of the derived liquid digestate.

    PubMed

    Zheng, Wei; Lü, Fan; Phoungthong, Khamphe; He, Pinjing

    2014-06-01

    The evolution of spectral properties during anaerobic digestion (AD) of 29 types of biodegradable solid waste was investigated to determine if spectral characteristics could be used for assessment of biological stabilization during AD. Biochemical methane potential tests were conducted and spectral indicators (including the ratio of ultraviolet-visible absorbance at 254nm to dissolved organic carbon concentration (SUVA254), the ratio of ultraviolet-visible absorbance measured at 465nm and 665nm (E4/E6), and the abundance of fluorescence peaks) were measured at different AD phases. Inter-relationship between organic degradation and spectral indicators were analyzed by principle component analysis. The results shows that from methane production phase to the end of methane production phase, SUVA254 increased by 0.16-10.93 times, the abundance of fulvic acid-like compounds fluorescence peak increased by 0.01-0.54 times, the abundance of tyrosine fluorescence peak decreased by 0.03-0.64 times. Therefore, these indicators were useful to judge the course of mixed waste digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Toward a hyperspectral optical signature of extra virgin olive oil

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Thienpont, H.; Ottevaere, H.; Attilio, C.; Cimato, A.

    2007-05-01

    Italian extra virgin olive oils bearing labels of certified area of origin were considered. Their multispectral digital signature was measured by means of absorption spectroscopy in the 200-1700 nm spectral range. The instrumentation was a fiber optic-based, cheap, and compact device. The spectral data were processed by means of multivariate analysis and plotted on a 2D classification map. The map showed sharp clusters according to the geographical origin of the oils, thus demonstrating the potentials of UV-VIS-NIR spectroscopy for optical fingerprinting. Then, the spectral data were correlated to the content of the most important fatty acids. The good fitting achieved demonstrated that the optical fingerprinting can be used also for predicting nutritional and chemical parameters.

  18. Linear spectral unmixing to monitor crop growth in typical organic and inorganic amended arid soil

    NASA Astrophysics Data System (ADS)

    El Battay, A.; Mahmoudi, H.

    2016-06-01

    The soils of the GCC countries are dominantly sandy which is typical of arid regions such as the Arabian Peninsula. Such soils are low in nutrients and have a poor water holding capacity associated with a high infiltration rate. Soil amendments may rehabilitate these soils by restoring essential soil properties and hence enable site revegetation and revitalization for crop production, especially in a region where food security is a priority. In this study, two inorganic amendments; AustraHort and Zeoplant pellet, and one organic locally produced compost were tested as soil amendments at the experimental field of the International Center for Biosaline Agriculture in Dubai, UAE. The main objective is to assess the remote sensing ability to monitor crop growth, for instance Okra (Abelmoschus esculentus), having these amendments, as background with the soil. Three biomass spectral vegetation indices were used namely; NDVI, TDVI and SAVI. Pure spectral signatures of the soil and the three amendments were collected, using a field spectroradiometer, in addition to the spectral signatures of Okra in two growing stages (vegetative and flowering) in the field with a mixed F.O.V of the plant and amended soil during March and May 2015. The spectral signatures were all collected using the FieldSpec® HandHeld 2 (HH2) in the spectral range 325 nm - 1075 nm over 12 plots. A set of 4 plots were assigned for each of the three amendments as follow: three replicates of a 1.5 by 1.5 meter plot with 3kg/m2 of each amendment and 54 plants, one plot as control and all plots were given irrigation treatments at 100% based on ETc. Spectra collected over the plots were inversed in the range of 400-900 nm via a Linear Mixture Model using pure soil and amendments spectral signatures as reference. Field pictures were used to determine the vegetation fraction (in term of area of the F.O.V). Hence, the Okra spectral signatures were isolated for all plots with the three types of amendments. The

  19. Overview of Key Results from SDO Extreme ultraviolet Variability Experiment (EVE)

    NASA Astrophysics Data System (ADS)

    Woods, Tom; Eparvier, Frank; Jones, Andrew; Mason, James; Didkovsky, Leonid; Chamberlin, Phil

    2016-10-01

    The SDO Extreme ultraviolet Variability Experiment (EVE) includes several channels to observe the solar extreme ultraviolet (EUV) spectral irradiance from 1 to 106 nm. These channels include the Multiple EUV Grating Spectrograph (MEGS) A, B, and P channels from the University of Colorado (CU) and the EUV SpectroPhometer (ESP) channels from the University of Southern California (USC). The solar EUV spectrum is rich in many different emission lines from the corona, transition region, and chromosphere. The EVE full-disk irradiance spectra are important for studying the solar impacts in Earth's ionosphere and thermosphere and are useful for space weather operations. In addition, the EVE observations, with its high spectral resolution of 0.1 nm and in collaboration with AIA solar EUV images, have proven valuable for studying active region evolution and explosive energy release during flares and coronal eruptions. These SDO measurements have revealed interesting results such as understanding the flare variability over all wavelengths, discovering and classifying different flare phases, using coronal dimming measurements to predict CME properties of mass and velocity, and exploring the role of nano-flares in continual heating of active regions.

  20. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV

    PubMed Central

    Wang, He; Xu, Yiming; Ulonska, Stefan; Robinson, Joseph S.; Ranitovic, Predrag; Kaindl, Robert A.

    2015-01-01

    Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. Here, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s−1 is generated at 22.3 eV, with 5 × 10−5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications. PMID:26067922

  1. Fourier transform infra-red spectroscopic signatures for lung cells' epithelial mesenchymal transition: A preliminary report

    NASA Astrophysics Data System (ADS)

    Sarkar, Atasi; Sengupta, Sanghamitra; Mukherjee, Anirban; Chatterjee, Jyotirmoy

    2017-02-01

    Infra red (IR) spectral characterization can provide label-free cellular metabolic signatures of normal and diseased circumstances in a rapid and non-invasive manner. Present study endeavoured to enlist Fourier transform infra red (FTIR) spectroscopic signatures for lung normal and cancer cells during chemically induced epithelial mesenchymal transition (EMT) for which global metabolic dimension is not well reported yet. Occurrence of EMT was validated with morphological and immunocytochemical confirmation. Pre-processed spectral data was analyzed using ANOVA and principal component analysis-linear discriminant analysis (PCA-LDA). Significant differences observed in peak area corresponding to biochemical fingerprint (900-1800 cm- 1) and high wave-number (2800-3800 cm- 1) regions contributed to adequate PCA-LDA segregation of cells undergoing EMT. The findings were validated by re-analysis of data using another in-house built binary classifier namely vector valued regularized kernel approximation (VVRKFA), in order to understand EMT progression. To improve the classification accuracy, forward feature selection (FFS) tool was employed in extracting potent spectral signatures by eliminating undesirable noise. Gradual increase in classification accuracy with EMT progression of both cell types indicated prominence of the biochemical alterations. Rapid changes in cellular metabolome noted in cancer cells within first 24 h of EMT induction along with higher classification accuracy for cancer cell groups in comparison to normal cells might be attributed to inherent differences between them. Spectral features were suggestive of EMT triggered changes in nucleic acid, protein, lipid and bound water contents which can emerge as the useful markers to capture EMT related cellular characteristics.

  2. On the change in the spectral composition of solar ultraviolet emission preceding proton flares, and its connection with the preflare fluctuations in the horizontal component of the geomagnetic field

    NASA Astrophysics Data System (ADS)

    Sheiner, Olga; Snegirev, Sergei; Smirnova, Anna

    The importance problem of Solar-terrestrial physics is regular forecasting of solar activity phenomena, which negatively influence the human’s health, operating safety, communication, radar sets and others. We previously reported the existence of long-period pulsations of H component of the geomagnetic field recorded at stations tested 2-3 days before the proton solar flares. There are the increasing of pulsation amplitude of the horizontal component of the magnetic field with periods of 30-60 minutes. The spectrum of the flux of ultraviolet solar radiation on the eve of proton flares was conducted to determine the presence of oscillations - precursors of flares, as one of the possible agents causing amplification of large periods pulsations of H component of the geomagnetic field. Used data on ultraviolet radiation of the sun with a wavelength of 115-127 nm are obtained from a geostationary satellite GOES 15, the method of wavelet analysis is used. It is found the congruence in the behavior of spectral components with periods of 30-60 minutes in the ground-based measurements and in UV emission for 3-1 days before the proton flare.

  3. Extreme Ultraviolet Explorer. Long look at the next window

    NASA Technical Reports Server (NTRS)

    Maran, Stephen P.

    1991-01-01

    The Extreme Ultraviolet Explorer (EUVE) will map the entire sky to determine the existence, direction, brightness, and temperature of thousands of objects that are sources of so-called extreme ultraviolet (EUV) radiation. The EUV spectral region is located between the x-ray and ultraviolet regions of the electromagnetic spectrum. From the sky survey by EUVE, astronomers will determine the nature of sources of EUV light in our galaxy, and infer the distribution of interstellar gas for hundreds of light years around the solar system. It is from this gas and the accompanying dust in space that new stars and solar systems are born and to which evolving and dying stars return much of their material in an endless cosmic cycle of birth, death, and rebirth. Besides surveying the sky, astronomers will make detailed studies of selected objects with EUVE to determine their physical properties and chemical compositions. Also, they will learn about the conditions that prevail and the processes at work in stars, planets, and other sources of EUV radiation, maybe even quasars. The EUVE mission and instruments are described. The objects that EUVE will likely find are described.

  4. Vibration signature analysis of multistage gear transmission

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Tu, Y. K.; Savage, M.; Townsend, D. P.

    1989-01-01

    An analysis is presented for multistage multimesh gear transmission systems. The analysis predicts the overall system dynamics and the transmissibility to the gear box or the enclosed structure. The modal synthesis approach of the analysis treats the uncoupled lateral/torsional model characteristics of each stage or component independently. The vibration signature analysis evaluates the global dynamics coupling in the system. The method synthesizes the interaction of each modal component or stage with the nonlinear gear mesh dynamics and the modal support geometry characteristics. The analysis simulates transient and steady state vibration events to determine the resulting torque variations, speeds, changes, rotor imbalances, and support gear box motion excitations. A vibration signature analysis examines the overall dynamic characteristics of the system, and the individual model component responses. The gear box vibration analysis also examines the spectral characteristics of the support system.

  5. MgII Linear Polarization Measurements Using the MSFC Solar Ultraviolet Magnetograph

    NASA Technical Reports Server (NTRS)

    West, Edward; Cirtain, Jonathan; Kobayahsi, Ken; Davis, John; Gary, Allen; Adams, Mitzi

    2011-01-01

    This paper will describe the Marshall Space Flight Center's Solar Ultraviolet Magnetograph (SUMI) sounding rocket program, with emphasis on the polarization characteristics of the VUV optics and their spectral, spatial and polarization resolution. SUMI's first flight (7/30/2010) met all of its mission success criteria and this paper will describe the data that was acquired with emphasis on the MgII linear polarization measurements.

  6. Multistep Ionization of Argon Clusters in Intense Femtosecond Extreme Ultraviolet Pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostedt, C.; Thomas, H.; Hoener, M.

    The interaction of intense extreme ultraviolet femtosecond laser pulses ({lambda}=32.8 nm) from the FLASH free electron laser (FEL) with clusters has been investigated by means of photoelectron spectroscopy and modeled by Monte Carlo simulations. For laser intensities up to 5x10{sup 13} W/cm{sup 2}, we find that the cluster ionization process is a sequence of direct electron emission events in a developing Coulomb field. A nanoplasma is formed only at the highest investigated power densities where ionization is frustrated due to the deep cluster potential. In contrast with earlier studies in the IR and vacuum ultraviolet spectral regime, we find nomore » evidence for electron emission from plasma heating processes.« less

  7. Reference Ultraviolet Wavelengths of Cr III Measured by Fourier Transform Spectrometry

    NASA Technical Reports Server (NTRS)

    Smillie, D.G.; Pickering, J.C.; Smith, P.L.

    2008-01-01

    We report Cr III ultraviolet (UV) transition wavelengths measured using a high-resolution Fourier transform spectrometer (FTS), for the first time, available for use as wavelength standards. The doubly ionized iron group element spectra dominate the observed opacity of hot B stars in the UV, and improved, accurate, wavelengths are required for the analysis of astronomical spectra. The spectrum was excited using a chromium-neon Penning discharge lamp and measured with the Imperial College vacuum ultraviolet FTS. 140 classified 3d(exp 3)4s- 3d(exp 3)4p Cr III transition lines, in the spectral range 38,000 to 49,000 cm(exp -1) (2632 to 2041 A), the strongest having wavelength uncertainties less than one part in 10(exp 7), are presented.

  8. Test of the decaying dark matter hypothesis using the Hopkins Ultraviolet Telescope

    NASA Technical Reports Server (NTRS)

    Davidsen, A. F.; Kriss, G. A.; Ferguson, H. C.; Blair, W. P.; Bowers, C. W.; Kimble, R. A.

    1991-01-01

    Sciama's hypothesis that the dark matter associated with galaxies, galaxy clusters, and the intergalactic medium consists of tau neutrinos of rest mass 28-30 eV whose decay generates ultraviolet photons of energy roughly 14-15 eV, has been tested using the Hopkins Ultraviolet Telescope flows aboard the Space Shuttle Columbia. A straightforward application of Sciama's model predicts that a spectral line from neutrino decay photons should be observed from the rich galaxy cluster Abell 665 with an SNR of about 30. No such emission was detected. For neutrinos in the mass range 27.2-32.1 eV, the observations set a lower lifetime limit significantly greater than Sciama's model requires.

  9. Documentation for the machine-readable version of the ANS Ultraviolet Photometry Catalogue of Point Sources (Wesselius et al 1982)

    NASA Technical Reports Server (NTRS)

    Warren, W. H., Jr.

    1984-01-01

    The machine-readable version of the Astronomical Netherlands Satellite ultraviolet photometry catalog is described in detail, with a byte-by-byte format description and characteristics of the data file given. The catalog is a compilation of ultraviolet photometry in five bands, within the wavelength range 155 nm to 330 nm, for 3573 mostly stellar objects. Additional cross reference data (object identification, UBV photometry and MK spectral types) are included in the catalog.

  10. Capability of detecting ultraviolet counterparts of gravitational waves with GLUV

    NASA Astrophysics Data System (ADS)

    Ridden-Harper, Ryan; Tucker, B. E.; Sharp, R.; Gilbert, J.; Petkovic, M.

    2017-12-01

    With the discovery of gravitational waves (GWs), attention has turned towards detecting counterparts to these sources. In discussions on counterpart signatures and multimessenger follow-up strategies to the GW detections, ultraviolet (UV) signatures have largely been neglected, due to UV facilities being limited to SWIFT, which lacks high-cadence UV survey capabilities. In this paper, we examine the UV signatures from merger models for the major GW sources, highlighting the need for further modelling, while presenting requirements and a design for an effective UV survey telescope. Using the u΄-band models as an analogue, we find that a UV survey telescope requires a limiting magnitude of m_{u^' }}(AB)≈ 24 to fully complement the aLIGO range and sky localization. We show that a network of small, balloon-based UV telescopes with a primary mirror diameter of 30 cm could be capable of covering the aLIGO detection distance from ∼60 to 100 per cent for BNS events and ∼40 per cent for the black hole and a neutron star events. The sensitivity of UV emission to initial conditions suggests that a UV survey telescope would provide a unique data set, which can act as an effective diagnostic to discriminate between models.

  11. Spectral Invariance Principles Observed in Spectral Radiation Measurements of the Transition Zone

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander

    2011-01-01

    The main theme for our research is the understanding and closure of the surface spectral shortwave radiation problem in fully 3D cloud situations by combining the new ARM scanning radars, shortwave spectrometers, and microwave radiometers with the arsenal of radiative transfer tools developed by our group. In particular, we define first a large number of cloudy test cases spanning all 3D possibilities not just the customary uniform-overcast ones. Second, for each case, we define a "Best Estimate of Clouds That Affect Shortwave Radiation" using all relevant ARM instruments, notably the new scanning radars, and contribute this to the ARM Archive. Third, we test the ASR-signature radiative transfer model RRTMG_SW for those cases, focusing on the near-IR because of long-standing problems in this spectral region, and work with the developers to improve RRTMG_SW in order to increase its penetration into the modeling community.

  12. Detection of Unexploded Ordnance Using Airborne LWIR Emissivity Signatures

    DTIC Science & Technology

    2015-11-25

    glass and wood, are spectrally distinct and would not appear as false alarms. Index Terms— Hyperspectral, Long Wave Infrared , Emissivity, Target...hyperspectral; radar). Because of previous successes using thermal infrared bands for UXO [3, 4] and landmine detection [5], this paper aims at...potential false alarms. They included materials made of rubber , cardboard, metal, wood, glass and plastic (Figure 1). 2.2. Laboratory LWIR signature

  13. Differential Fe I Line Shifts as Convective Signatures in R = 40000 Échelle Spectra

    NASA Astrophysics Data System (ADS)

    Gullberg, D.

    Stellar surface convection causes spectral lines to become asymmetric and wavelength shifted. At moderate spectral resolution, some convective signatures remain visible, in particular wavelength shifts between different classes of spectral lines. Spectra obtained from the Moon, the Hyades and Ursa Major open-cluster stars, several IAU radial-velocity standards and some other stars were observed during 1997. The observations were made at the Observatoire de Haute-Provence using the echelle spectrograph Elodie (R=40,000). Even if the resolution and noise would prevent measurements of asymmetries in the lines, the shift of the entire line is measurable. In solar-type stars, deep FeI lines have less convective shift than shallow ones. To search for such signatures, synthetic correlation masks with FeI lines were created for only deep and only shallow lines respectively, where the line-depth breakpoint was set at 60% of the continuum. The line wavelengths were taken from the best empirical FeI linelist available. 287 largely unblended lines were selected, divided as 137 deep and 150 shallow ones. The spectra were correlated with the synthetic FeI templates, yielding separate velocities for the deep and shallow line groups. The results show a distinct inversion in the convective signature for F stars, as well as for one G0 supergiant, as compared to the Sun. This is compatible with bisector analyses found elsewhere in the literature. The granulation boundary for main-sequence stars is believed to lie around F0, although we see a convective signature inversion beginning already for late F stars. Future work will include incrementing the number of lines used, using also FeII and other species. Selection of line subsets will be based on atomic parameters, e.g. the lower excitation level and log gf. With a careful selection of lines, even extraction of bisector shapes might become possible from modest-resolution spectra.

  14. Spectral downshifting in MBO3:Nd3+ (M=Y, La) phosphor

    NASA Astrophysics Data System (ADS)

    Omanwar, S. K.; Sawala, N. S.

    2017-11-01

    The spectral downshifting (DS) from ultra-violet (UV)/visible (VIS) light to near infra-red (NIR) radiation in Nd3+ doped YBO3 and LaBO3 phosphors is reported. The prepared materials were characterized by X-ray powder diffraction (XRD) and photoluminescence (PL) properties along with time-decay curves were studied which confirmed the spectral DS from VIS to NIR radiation. This can be employed to overcome the spectral mismatch of crystalline silicon (c-Si) solar cell with solar spectrum. The prepared Nd3+ doped as prepared phosphors provide NIR emission (1052 nm) at excitation of 586 nm where response of c-Si solar cell was optimum. Thus spectral modification by mentioned phosphor can be utilized to improve solar cells performance. Hence these phosphors have potential application for photovoltaic (PV) technology.

  15. Ultraviolet Extensions

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Side-by-Side Comparison Click on image for larger view

    This ultraviolet image from NASA's Galaxy Evolution Explorer shows the Southern Pinwheel galaxy, also know as Messier 83 or M83. It is located 15 million light-years away in the southern constellation Hydra.

    Ultraviolet light traces young populations of stars; in this image, young stars can be seen way beyond the main spiral disk of M83 up to 140,000 light-years from its center. Could life exist around one of these far-flung stars? Scientists say it's unlikely because the outlying regions of a galaxy are lacking in the metals required for planets to form.

    The image was taken at scheduled intervals between March 15 and May 20, 2007. It is one of the longest-exposure, or deepest, images ever taken of a nearby galaxy in ultraviolet light. Near-ultraviolet light (or longer-wavelength ultraviolet light) is colored yellow, and far-ultraviolet light is blue.

    What Lies Beyond the Edge of a Galaxy The side-by-side comparison shows the Southern Pinwheel galaxy, or M83, as seen in ultraviolet light (right) and at both ultraviolet and radio wavelengths (left). While the radio data highlight the galaxy's long, octopus-like arms stretching far beyond its main spiral disk (red), the ultraviolet data reveal clusters of baby stars (blue) within the extended arms.

    The ultraviolet image was taken by NASA's Galaxy Evolution Explorer between March 15 and May 20, 2007, at scheduled intervals. Back in 2005, the telescope first photographed M83 over a shorter period of time. That picture was the first to reveal far-flung baby stars forming up to 63,000 light-years from the edge of the main spiral disk. This came as a surprise to astronomers because a galaxy's outer territory typically lacks high densities of star-forming materials.

    The newest picture of M83 from the Galaxy Evolution Explorer is shown at the right, and was taken over a longer period of

  16. The Spartan-281 Far Ultraviolet Imaging Spectrograph

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.; Heckathorn, Harry M.; Dufour, Reginald J.; Opal, Chet B.; Raymond, John C.

    1988-01-01

    The U.S. Naval Research Laboratory's Far Ultraviolet Imaging Spectrograph (FUVIS), currently under development for flight as a Spartan shuttle payload, is designed to perform spectroscopy of diffuse sources in the FUV with very high sensitivity and moderate spatial and spectral resolution. Diffuse nebulae, the general galactic background radiation, and artificially induced radiation associated with the Space Shuttle vehicle are sources of particular interest. The FUVIS instrument will cover the wavelength range of 970-2000 A with selectable resolutions of 5 and 30 A. It is a slit imaging spectrograph having 3 arcmin spatial resolution along its 2.7 deg long slit.

  17. The MUSCLES Treasury Survey: Temporally- and Spectrally-Resolved Irradiance from Low-mass Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    France, Kevin; Loyd, R. O. Parke; Youngblood, Allison; Linsky, Jeffrey; MUSCLES Treasury Survey Team

    2016-01-01

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. High-energy photons (X-ray to near-UV; 5 - 3200 Ang) from these stars regulate the atmospheric temperature profiles and photochemistry on orbiting planets, influencing the production of potential "biomarker" gases. It has been shown that the atmospheric signatures of potentially habitable planets around low-mass stars may be significantly different from planets orbiting Sun-like stars owing to the different UV spectral energy distribution. I will present results from a panchromatic survey (Hubble/Chandra/XMM/optical) of M and K dwarf exoplanet hosts, the MUSCLES Treasury Survey (Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanetary Systems). We reconstruct the Lyman-alpha and extreme-UV (100-900 Ang) radiation lost to interstellar attenuation and create 5 Angstrom to 5 micron stellar irradiance spectra; these data will be publically available as a High-Level Science Product on MAST. We find that all low-mass exoplanet host stars exhibit significant chromospheric/transition region/coronal emission -- no "UV inactive" M dwarfs are observed. The F(far-UV)/F(near-UV) flux ratio, a driver for possible abiotic production of the suggested biomarkers O2 and O3, increases by ~3 orders of magnitude as the habitable zone moves inward from 1 to 0.1 AU, while the incident far-UV (912 - 1700 Ang) and XUV (5 - 900 Ang) radiation field strengths decrease by factors of a few across this range. Far-UV flare activity is common in 'optically inactive' M dwarfs; statistics from the entire sample indicate that large UV flares (E(300 - 1700 Ang) >= 10^31 erg) occur several times per day on typical M dwarf exoplanet hosts.

  18. Airborne measurements of solar and planetary near ultraviolet radiation during the NASA/ESA CV-900 spacelab simulation

    NASA Technical Reports Server (NTRS)

    Sivjee, G. G.

    1977-01-01

    Results from a comparative study of the feasibility of employing experiment operators on the space shuttle to acquire scientifically worthwhile data are presented. The experiments performed during these tests included spectral observations of the Sun and Venus in the near ultraviolet region. The solar measurements were analyzed to determine ozone abundance in the terrestrial atmosphere. Using a detailed spectral matching technique to compare airborne solar UV measurements with synthetic spectral profiles of sunlight, it is deduced that in winter the total atmospheric ozone abundance is about 0.33 atm/cm at midlatitudes in the northern hemisphere.

  19. Spectral luminescence analysis of amniotic fluid

    NASA Astrophysics Data System (ADS)

    Slobozhanina, Ekaterina I.; Kozlova, Nataly M.; Kasko, Leonid P.; Mamontova, Marina V.; Chernitsky, Eugene A.

    1997-12-01

    It is shown that the amniotic fluid has intensive ultra-violet luminescence caused by proteins. Along with it amniotic fluid radiated in the field of 380 - 650 nm with maxima at 430 - 450 nm and 520 - 560 nm. The first peak of luminescence ((lambda) exc equals 350 nm; (lambda) em equals 430 - 440 nm) is caused (most probably) by the presence in amniotic fluid of some hormones, NADH2 and NADPH2. A more long-wave component ((lambda) exc equals 460 nm; (lambda) em equals 520 - 560 nm) is most likely connected with the presence in amniotic fluid pigments (bilirubin connected with protein and other). It is shown that intensity and maximum of ultra-violet luminescence spectra of amniotic fluid in normality and at pathology are identical. However both emission spectra and excitation spectra of long-wave ((lambda) greater than 450 nm) luminescence of amniotic fluid from pregnant women with such prenatal abnormal developments of a fetus as anencephaly and spina bifida are too long-wave region in comparison with the norm. Results of research testify that spectral luminescent analysis of amniotic fluid can be used for screening of malformations of the neural tube. It is very difficult for a practical obstetrician to reveal pregnant women with a high risk of congenital malformations of the fetus. Apart from ultrasonic examination, cytogenetic examination of amniotic fluid and defumination of concentrations of alpha-fetoprotein and acetylcholin-esterases in the amniotic fluid and blood plasma are the most widely used diagnostic approaches. However, biochemical and cytogenetic diagnostic methods are time-consuming. In the present work spectral luminescence properties of the amniotic fluid are investigated to determine spectral parameters that can be used to reveal pregnant women with a high risk of congenital malformations of their offsprings.

  20. Analysis of Human Plasma Metabolites across Different Liquid Chromatography - Mass Spectrometry Platforms: Cross-platform Transferable Chemical Signatures

    PubMed Central

    Telu, Kelly H.; Yan, Xinjian; Wallace, William E.; Stein, Stephen E.; Simón-Manso, Yamil

    2016-01-01

    RATIONALE The metabolite profiling of a NIST plasma Standard Reference Material (SRM 1950) on different LC-MS platforms showed significant differences. Although these findings suggest caution when interpreting metabolomics results, the degree of overlap of both profiles allowed us to use tandem mass spectral libraries of recurrent spectra to evaluate to what extent these results are transferable across platforms and to develop cross-platform chemical signatures. METHODS Non-targeted global metabolite profiles of SRM 1950 were obtained on different LC-MS platforms using reversed phase chromatography and different chromatographic scales (nano, conventional and UHPLC). The data processing and the metabolite differential analysis were carried out using publically available (XCMS), proprietary (Mass Profiler Professional) and in-house software (NIST pipeline). RESULTS Repeatability and intermediate precision showed that the non-targeted SRM 1950 profiling was highly reproducible when working on the same platform (RSD < 2%); however, substantial differences were found in the LC-MS patterns originating on different platforms or even using different chromatographic scales (conventional HPLC, UHPLC and nanoLC) on the same platform. A substantial degree of overlap (common molecular features) was also found. A procedure to generate consistent chemical signatures using tandem mass spectral libraries of recurrent spectra is proposed. CONLUSIONS Different platforms rendered significantly different metabolite profiles, but the results were highly reproducible when working within one platform. Tandem mass spectral libraries of recurrent spectra are proposed to evaluate the degree of transferability of chemical signatures generated on different platforms. Chemical signatures based on our procedure are most likely cross-platform transferable. PMID:26842580

  1. Ultraviolet spectral morphology of the O stars. IV - The OB supergiant sequence

    NASA Technical Reports Server (NTRS)

    Walborn, Nolan R.; Nichols-Bohlin, Joy

    1987-01-01

    An atlas of 25 O3-B8 supergiant spectra in the wavelength ranges 1320-1580 A and 1620-1880 A is presented, based on high-resolution data from the IUE archives. The remarkably detailed relationship between the stellar-wind profiles and the optical spectral classifications throughout this sequence is emphasized. For instance, the (Si IV)/(C IV) ratio reverses between O4 and O6.5; and the B0, B0.5, and B0.7 Ia wind characteristics are each qualitatively unique and distinct from one another. The systematic behavior of nine stellar-wind features with ionization potentials ranging from 114 to 19 eV is summarized as a function of advancing spectral type.

  2. Wide-Field Ultraviolet Spectrometer for Planetary Exospheres and Thermospheres

    NASA Astrophysics Data System (ADS)

    Fillingim, M. O.; Wishnow, E. H.; Miller, T.; Edelstein, J.; Lillis, R. J.; Korpela, E.; England, S.; Shourt, W. V.; Siegmund, O.; McPhate, J.; Courtade, S.; Curtis, D. W.; Deighan, J.; Chaffin, M.; Harmoul, A.; Almatroushi, H. R.

    2016-12-01

    Understanding the composition, structure, and variability of a planet's upper atmosphere - the exosphere and thermosphere - is essential for understanding how the upper atmosphere is coupled to the lower atmosphere, magnetosphere and near-space environment, and the Sun. Ultraviolet spectroscopy can directly observe emissions from constituents in the exosphere and thermosphere. From such observations, the structure, composition, and variability can be determined.We will present the preliminary design for a wide field ultraviolet imaging spectrometer for remote sensing of planetary atmospheres. The imaging spectrometer achieves an extremely large instantaneous 110 degree field of view with no moving scanning mirror. The imaging resolution is very appropriate for extended atmospheric emission studies, with a resolution of better than 0.3 degrees at the center to 0.4 degrees at the edges of the field. The spectral range covers 120 - 170 nm, encompassing emissions from H, O, C, N, CO, and N2, with an average spectral resolution of 1.5 nm. The instrument is composed of a 2-element wide-field telescope, a 3-element Offner spectrometer, and a sealed MCP detector system contained within a compact volume of about 40 x 25 x 20 cm. We will present the optical and mechanical design as well as the predicted optical performance.The wide instantaneous FOV simplifies instrument and spacecraft operations by removing the need for multiple scans (either from a scan mirror or spacecraft slews) to cover the regions of interest. This instrumentation can allow for two-dimensional spectral information to be built up with simple spacecraft operation or just using spacecraft motion. Applications to the terrestrial geocorona and thermosphere will be addressed as well as applications to the upper atmospheres of other planetary objects.

  3. Ultraviolet to optical spectral distributions of northern star-forming galaxies

    NASA Technical Reports Server (NTRS)

    Mcquade, Kerry; Calzetti, Daniela; Kinney, Anne L.

    1995-01-01

    We report spectral energy distribution from the UV to the optical for a sample of 31 northern star-forming galaxies. We also present measurements for emission-line fluxes, continuum levels, and equivalent widths of absorption features for each individual spectrum as well as averages for the eight galactic activity classes, including normal, starburst, Seyfert 2, blue compact dwarf, blue compact, Low-Inonization Nuclear Emission Regions (LINER), H II, and combination LINER-H II galaxies.

  4. Ultraviolet photometry from the Orbiting Astronomical Observatory. XXXIII - The symbiotic star AG Pegasi

    NASA Technical Reports Server (NTRS)

    Gallagher, J. S.; Webbink, R. F.; Holm, A. V.; Anderson, C. M.

    1979-01-01

    Ultraviolet broadband photometry obtained with the Wisconsin Experiment Package on OAO 2 is presented for the symbiotic binary star AG Peg. The hot component of the binary is found to be a luminous ultraviolet source, with an energy distribution consistent with its WN6 optical spectral type. Total luminosities of 1000 and 17,000 suns are found for the hot star by assuming, respectively, that the giant primary of AG Peg is a normal M3 III star and that it fills its Roche lobe. The eruptive behavior of AG Peg is shown to require the higher luminosity, and the activity in AG Peg is discussed in terms of a very slow novalike nuclear-powered event.

  5. Measurements of scene spectral radiance variability

    NASA Astrophysics Data System (ADS)

    Seeley, Juliette A.; Wack, Edward C.; Mooney, Daniel L.; Muldoon, Michael; Shey, Shen; Upham, Carolyn A.; Harvey, John M.; Czerwinski, Richard N.; Jordan, Michael P.; Vallières, Alexandre; Chamberland, Martin

    2006-05-01

    Detection performance of LWIR passive standoff chemical agent sensors is strongly influenced by various scene parameters, such as atmospheric conditions, temperature contrast, concentration-path length product (CL), agent absorption coefficient, and scene spectral variability. Although temperature contrast, CL, and agent absorption coefficient affect the detected signal in a predictable manner, fluctuations in background scene spectral radiance have less intuitive consequences. The spectral nature of the scene is not problematic in and of itself; instead it is spatial and temporal fluctuations in the scene spectral radiance that cannot be entirely corrected for with data processing. In addition, the consequence of such variability is a function of the spectral signature of the agent that is being detected and is thus different for each agent. To bracket the performance of background-limited (low sensor NEDN), passive standoff chemical sensors in the range of relevant conditions, assessment of real scene data is necessary1. Currently, such data is not widely available2. To begin to span the range of relevant scene conditions, we have acquired high fidelity scene spectral radiance measurements with a Telops FTIR imaging spectrometer 3. We have acquired data in a variety of indoor and outdoor locations at different times of day and year. Some locations include indoor office environments, airports, urban and suburban scenes, waterways, and forest. We report agent-dependent clutter measurements for three of these backgrounds.

  6. Signature Optical Cues: Emerging Technologies for Monitoring Plant Health

    PubMed Central

    Liew, Oi Wah; Chong, Pek Ching Jenny; Li, Bingqing; Asundi, Anand K.

    2008-01-01

    Optical technologies can be developed as practical tools for monitoring plant health by providing unique spectral signatures that can be related to specific plant stresses. Signatures from thermal and fluorescence imaging have been used successfully to track pathogen invasion before visual symptoms are observed. Another approach for non-invasive plant health monitoring involves elucidating the manner with which light interacts with the plant leaf and being able to identify changes in spectral characteristics in response to specific stresses. To achieve this, an important step is to understand the biochemical and anatomical features governing leaf reflectance, transmission and absorption. Many studies have opened up possibilities that subtle changes in leaf reflectance spectra can be analyzed in a plethora of ways for discriminating nutrient and water stress, but with limited success. There has also been interest in developing transgenic phytosensors to elucidate plant status in relation to environmental conditions. This approach involves unambiguous signal creation whereby genetic modification to generate reporter plants has resulted in distinct optical signals emitted in response to specific stressors. Most of these studies are limited to laboratory or controlled greenhouse environments at leaf level. The practical translation of spectral cues for application under field conditions at canopy and regional levels by remote aerial sensing remains a challenge. The movement towards technology development is well exemplified by the Controlled Ecological Life Support System under development by NASA which brings together technologies for monitoring plant status concomitantly with instrumentation for environmental monitoring and feedback control. PMID:27879874

  7. Spectral quality requirements for effluent identification

    NASA Astrophysics Data System (ADS)

    Czerwinski, R. N.; Seeley, J. A.; Wack, E. C.

    2005-11-01

    We consider the problem of remotely identifying gaseous materials using passive sensing of long-wave infrared (LWIR) spectral features at hyperspectral resolution. Gaseous materials are distinguishable in the LWIR because of their unique spectral fingerprints. A sensor degraded in capability by noise or limited spectral resolution, however, may be unable to positively identify contaminants, especially if they are present in low concentrations or if the spectral library used for comparisons includes materials with similar spectral signatures. This paper will quantify the relative importance of these parameters and express the relationships between them in a functional form which can be used as a rule of thumb in sensor design or in assessing sensor capability for a specific task. This paper describes the simulation of remote sensing datacontaining a gas cloud.In each simulation, the spectra are degraded in spectral resolution and through the addition of noise to simulate spectra collected by sensors of varying design and capability. We form a trade space by systematically varying the number of sensor spectral channels and signal-to-noise ratio over a range of values. For each scenario, we evaluate the capability of the sensor for gas identification by computing the ratio of the F-statistic for the truth gas tothe same statistic computed over the rest of the library.The effect of the scope of the library is investigated as well, by computing statistics on the variability of the identification capability as the library composition is varied randomly.

  8. Spectral methods to detect surface mines

    NASA Astrophysics Data System (ADS)

    Winter, Edwin M.; Schatten Silvious, Miranda

    2008-04-01

    Over the past five years, advances have been made in the spectral detection of surface mines under minefield detection programs at the U. S. Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD). The problem of detecting surface land mines ranges from the relatively simple, the detection of large anti-vehicle mines on bare soil, to the very difficult, the detection of anti-personnel mines in thick vegetation. While spatial and spectral approaches can be applied to the detection of surface mines, spatial-only detection requires many pixels-on-target such that the mine is actually imaged and shape-based features can be exploited. This method is unreliable in vegetated areas because only part of the mine may be exposed, while spectral detection is possible without the mine being resolved. At NVESD, hyperspectral and multi-spectral sensors throughout the reflection and thermal spectral regimes have been applied to the mine detection problem. Data has been collected on mines in forest and desert regions and algorithms have been developed both to detect the mines as anomalies and to detect the mines based on their spectral signature. In addition to the detection of individual mines, algorithms have been developed to exploit the similarities of mines in a minefield to improve their detection probability. In this paper, the types of spectral data collected over the past five years will be summarized along with the advances in algorithm development.

  9. Advanced materials for multilayer mirrors for extreme ultraviolet solar astronomy.

    PubMed

    Bogachev, S A; Chkhalo, N I; Kuzin, S V; Pariev, D E; Polkovnikov, V N; Salashchenko, N N; Shestov, S V; Zuev, S Y

    2016-03-20

    We provide an analysis of contemporary multilayer optics for extreme ultraviolet (EUV) solar astronomy in the wavelength ranges: λ=12.9-13.3  nm, λ=17-21  nm, λ=28-33  nm, and λ=58.4  nm. We found new material pairs, which will make new spaceborne experiments possible due to the high reflection efficiencies, spectral resolution, and long-term stabilities of the proposed multilayer coatings. In the spectral range λ=13  nm, Mo/Be multilayer mirrors were shown to demonstrate a better ratio of reflection efficiency and spectral resolution compared with the commonly used Mo/Si. In the spectral range λ=17-21  nm, a new multilayer structure Al/Si was proposed, which had higher spectral resolution along with comparable reflection efficiency compared with the commonly used Al/Zr multilayer structures. In the spectral range λ=30  nm, the Si/B4C/Mg/Cr multilayer structure turned out to best obey reflection efficiency and long-term stability. The B4C and Cr layers prevented mutual diffusion of the Si and Mg layers. For the spectral range λ=58  nm, a new multilayer Mo/Mg-based structure was developed; its reflection efficiency and long-term stability have been analyzed. We also investigated intrinsic stresses inherent for most of the multilayer structures and proposed possibilities for stress elimination.

  10. Modelling a man-portable air-defence (MANPAD) system with a rosette scan two-colour infrared (IR) and ultraviolet (UV) seeker

    NASA Astrophysics Data System (ADS)

    Kumar, Devinder; Smith, Leon; Richardson, Mark A.; Ayling, Richard; Barlow, Nick

    2014-10-01

    The Ultraviolet (UV) band of the electromagnetic (EM) spectrum has the potential to be used as the host medium for the operation of guided weapons. Unlike in the Infrared (IR), a target propelled by an air breathing jet engine produces no detectable radiation in the UV band, and is opaque to the background UV produced by the Sun. Successful engineering of spectral airborne IR countermeasures (CM) against existing two colour IR seekers has encouraged missile counter-countermeasure (CCM) designers to utilise the silhouette signature of an aircraft in the UV as a means of distinguishing between a true target and a flare CM. In this paper we describe the modelling process of a dual band IR and UV rosette scan seeker using CounterSim, a missile engagement and countermeasure simulation software package developed by Chemring Countermeasures Ltd. Results are shown from various simulated engagements of the dual band MANPAD with a C-130 Hercules modelled by Chemring Countermeasures. These results have been used to estimate the aircrafts' vulnerability to this MANPAD threat. A discussion on possible future optical countermeasures against dual band IR-UV seekers is given in conclusion to the simulation results.

  11. The development of a tunable, single-frequency ultraviolet laser source for UV filtered Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Finkelstein, N.; Gambogi, J.; Lempert, Walter R.; Miles, Richard B.; Rines, G. A.; Finch, A.; Schwarz, R. A.

    1995-01-01

    We present the development of a flexible, high power, narrow line width, tunable ultraviolet source for diagnostic application. By frequency tripling the output of a pulsed titanium-sapphire laser, we achieve broadly tunable (227-360 nm) ultraviolet light with high quality spatial and spectral resolution. We also present the characterization of a mercury vapor cell which provides a narrow band, sharp edge absorption filter at 253.7 nm. These two components form the basis for the extension of the Filtered Rayleigh Scattering technique into the ultraviolet. The UV-FRS system is comprised of four pieces: a single frequency, cw tunable Ti:Sapphire seeding source; a high-powered pulsed Ti:Sapphire oscillator; a third harmonic generator system; and an atomic mercury vapor filter. In this paper we discuss the development and characterization of each of these elements.

  12. Novel full-spectral flow cytometry with multiple spectrally-adjacent fluorescent proteins and fluorochromes and visualization of in vivo cellular movement.

    PubMed

    Futamura, Koji; Sekino, Masashi; Hata, Akihiro; Ikebuchi, Ryoyo; Nakanishi, Yasutaka; Egawa, Gyohei; Kabashima, Kenji; Watanabe, Takeshi; Furuki, Motohiro; Tomura, Michio

    2015-09-01

    Flow cytometric analysis with multicolor fluoroprobes is an essential method for detecting biological signatures of cells. Here, we present a new full-spectral flow cytometer (spectral-FCM). Unlike conventional flow cytometer, this spectral-FCM acquires the emitted fluorescence for all probes across the full-spectrum from each cell with 32 channels sequential PMT unit after dispersion with prism, and extracts the signals of each fluoroprobe based on the spectral shape of each fluoroprobe using unique algorithm in high speed, high sensitive, accurate, automatic and real-time. The spectral-FCM detects the continuous changes in emission spectra from green to red of the photoconvertible protein, KikGR with high-spectral resolution and separates spectrally-adjacent fluoroprobes, such as FITC (Emission peak (Em) 519 nm) and EGFP (Em 507 nm). Moreover, the spectral-FCM can measure and subtract autofluorescence of each cell providing increased signal-to-noise ratios and improved resolution of dim samples, which leads to a transformative technology for investigation of single cell state and function. These advances make it possible to perform 11-color fluorescence analysis to visualize movement of multilinage immune cells by using KikGR-expressing mice. Thus, the novel spectral flow cytometry improves the combinational use of spectrally-adjacent various FPs and multicolor fluorochromes in metabolically active cell for the investigation of not only the immune system but also other research and clinical fields of use. © 2015 International Society for Advancement of Cytometry.

  13. EUNIS; Extreme-Ultraviolet Normal-Incidence Spectrometer

    NASA Technical Reports Server (NTRS)

    Thomas, Roger J.; Davila, Joseph M.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    GSFC is in the process of assembling an Extreme-Ultraviolet Normal Incidence Spectrometer called EUNIS, to be flown as a sounding rocket payload. The instrument builds on the many technical innovations pioneered by our highly successful SERTS experiment, which has now flown a total of ten times, most recently last summer. The new design will have somewhat improved spatial and spectral resolutions, as well as two orders of magnitude greater sensitivity, permitting high signal/noise EUV spectroscopy with a temporal resolution near 1 second for the first time ever. In order to achieve such high time cadence, a novel detector system is being developed, based on Active-Pixel-Sensor electronics, a key component of our design.

  14. Investigation of the effect of atmospheric dust on the determination of total ozone from the earth's ultraviolet reflectivity measurements

    NASA Technical Reports Server (NTRS)

    Dave, J. V.

    1977-01-01

    Results are presented on the effect of atmospheric aerosols on the value of total ozone, in an atmospheric column of the terrestrial atmosphere, estimated from the simulated measurements of the ultraviolet radiation back scattered by the earth atmosphere models. Simulated measurements were used in five (configuration of the BUV experiment of Nimbus-4 satellite), and in six (configuration of the TOMS section of the SBUV/TOMS experiment on Nimbus-G) narrow spectral regions in the ultraviolet part of the spectrum.

  15. Spectral properties of plant leaves pertaining to urban landscape design of broad-spectrum solar ultraviolet radiation reduction

    NASA Astrophysics Data System (ADS)

    Yoshimura, Haruka; Zhu, Hui; Wu, Yunying; Ma, Ruijun

    2010-03-01

    Human exposure to harmful ultraviolet (UV) radiation has important public health implications. Actual human exposure to solar UV radiation depends on ambient UV irradiance, and the latter is influenced by ground reflection. In urban areas with higher reflectivity, UV exposure occurs routinely. To discover the solar UV radiation regulation mechanism of vegetation, the spectral reflectance and transmittance of plant leaves were measured with a spectrophotometer. Typically, higher plants have low leaf reflectance (around 5%) and essentially zero transmittance throughout the UV region regardless of plant species and seasonal change. Accordingly, incident UV radiation decreases to 5% by being reflected and is reduced to zero by passing through a leaf. Therefore, stratified structures of vegetation are working as another terminator of UV rays, protecting whole terrestrial ecosystems, while vegetation at waterfronts contributes to protect aquatic ecosystems. It is possible to protect the human population from harmful UV radiation by urban landscape design of tree shade and the botanical environment. Even thin but uniformly distributed canopy is effective in attenuating UV radiation. To intercept diffuse radiation, UV screening by vertical structures such as hedges should be considered. Reflectivity of vegetation is around 2%, as foliage surfaces reduce incident UV radiation via reflection, while also eliminating it by transmittance. Accordingly, vegetation reduces incident UV radiation to around 2% by reflection. Vegetation influence on ambient UV radiation is broad-spectrum throughout the UV region. Only trees provide cool UV protective shade. Urban landscapes aimed at abating urban heat islands integrated with a reduction of human UV over-exposure would contribute to mitigation of climate change.

  16. Revived STIS. II. Properties of Stars in the Next Generation Spectral Library

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, D.

    2010-01-01

    Spectroscopic surveys of galaxies at high redshift will bring the rest-frame ultraviolet into view of large, ground-based telescopes. The UV-blue spectral region is rich in diagnostics, but these diagnostics have not yet been calibrated in terms of the properties of the responsible stellar population(s). Such calibrations are now possible with Hubble's Next Generation Spectral Library (NGSL). The NGSL contains UV-optical spectra (0.2 - 1.0 microns) of 374 stars having a wide range in temperature, luminosity, and metallicity. We will describe our work to derive basic stellar parameters from NGSL spectra using modern model spectra and to use these stellar parameters to develop UV-blue spectral diagnostics.

  17. Infrared Signature Modeling and Analysis of Aircraft Plume

    NASA Astrophysics Data System (ADS)

    Rao, Arvind G.

    2011-09-01

    In recent years, the survivability of an aircraft has been put to task more than ever before. One of the main reasons is the increase in the usage of Infrared (IR) guided Anti-Aircraft Missiles, especially due to the availability of Man Portable Air Defence System (MANPADS) with some terrorist groups. Thus, aircraft IR signatures are gaining more importance as compared to their radar, visual, acoustic, or any other signatures. The exhaust plume ejected from the aircraft is one of the important sources of IR signature in military aircraft that use low bypass turbofan engines for propulsion. The focus of the present work is modelling of spectral IR radiation emission from the exhaust jet of a typical military aircraft and to evaluate the aircraft susceptibility in terms of the aircraft lock-on range due to its plume emission, for a simple case against a typical Surface to Air Missile (SAM). The IR signature due to the aircraft plume is examined in a holistic manner. A comprehensive methodology of computing IR signatures and its affect on aircraft lock-on range is elaborated. Commercial CFD software has been used to predict the plume thermo-physical properties and subsequently an in-house developed code was used for evaluating the IR radiation emitted by the plume. The LOWTRAN code has been used for modeling the atmospheric IR characteristics. The results obtained from these models are in reasonable agreement with some available experimental data. The analysis carried out in this paper succinctly brings out the intricacy of the radiation emitted by various gaseous species in the plume and the role of atmospheric IR transmissivity in dictating the plume IR signature as perceived by an IR guided SAM.

  18. Prototype simulates remote sensing spectral measurements on fruits and vegetables

    NASA Astrophysics Data System (ADS)

    Hahn, Federico

    1998-09-01

    A prototype was designed to simulate spectral packinghouse measurements in order to simplify fruit and vegetable damage assessment. A computerized spectrometer is used together with lenses and an externally controlled illumination in order to have a remote sensing simulator. A laser is introduced between the spectrometer and the lenses in order to mark the zone where the measurement is being taken. This facilitates further correlation work and can assure that the physical and remote sensing measurements are taken in the same place. Tomato ripening and mango anthracnose spectral signatures are shown.

  19. Copernicus ultraviolet spectra of OB supergiants with strong stellar winds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchings, J.B.

    1976-03-01

    Spectral scans at approximately 0.2 A resolution have been obtained in the far-ultraviolet of eight stars which have high mass-loss rates from stellar winds. The P Cygni characteristics of the line profiles appear to vary inversely as the mass flow rate, and in P Cygni itself the C III lambda 1175 line shows no velocity shift, or emission. It is suggested that higher mass flow rates occur through a denser, slower moving envelope in which collisional interactions are important. (auth)

  20. Ultraviolet photometry from the Orbiting Astronomical Observatory. II Interstellar extinction.

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Savage, B. D.

    1972-01-01

    Evaluation of interstellar extinction curves over the region from 3600 to 1100 A for 17 stars. The observations were made by the two Wisconsin spectrometers on board the Orbiting Astronomical Observatory 2, with spectral resolutions of 10 and 20 A. The extinction curves generally show a pronounced maximum at 2175 plus or minus 25 A, a broad minimum in the region from 1800 to 1350 A, and finally a rapid rise to the far-ultraviolet. Large extinction variations from star to star are found, especially in the far-ultraviolet; however, with only two possible exceptions in this sample, the wavelength at the maximum of the extinction bump is essentially constant. These data are combined with visual and infrared observations to display the extinction behavior over a range in wavelength of about a factor of 20. The observations appear to require a multicomponent model of the interstellar dust.

  1. Research in extreme ultraviolet and far ultraviolet astronomy

    NASA Technical Reports Server (NTRS)

    Labov, S. E.

    1985-01-01

    Instruments designed to explore different aspects of far and extreme ultraviolet cosmic radiation were studied. The far ultraviolet imager (FUVI) was flown on the Aries sounding rocket. Its unique large format 75mm detector mapped out the far ultraviolet background radiation with a resolution of only a few arc minutes. Analysis of this data indicates to what extent the FUVI background is extra galactic in origin. A power spectrum of the spatial fluctuations will have direct consequences for galactic evolution.

  2. Solar Spectral Irradiance and Climate

    NASA Technical Reports Server (NTRS)

    Pilewskie, P.; Woods, T.; Cahalan, R.

    2012-01-01

    Spectrally resolved solar irradiance is recognized as being increasingly important to improving our understanding of the manner in which the Sun influences climate. There is strong empirical evidence linking total solar irradiance to surface temperature trends - even though the Sun has likely made only a small contribution to the last half-century's global temperature anomaly - but the amplitudes cannot be explained by direct solar heating alone. The wavelength and height dependence of solar radiation deposition, for example, ozone absorption in the stratosphere, absorption in the ocean mixed layer, and water vapor absorption in the lower troposphere, contribute to the "top-down" and "bottom-up" mechanisms that have been proposed as possible amplifiers of the solar signal. New observations and models of solar spectral irradiance are needed to study these processes and to quantify their impacts on climate. Some of the most recent observations of solar spectral variability from the mid-ultraviolet to the near-infrared have revealed some unexpected behavior that was not anticipated prior to their measurement, based on an understanding from model reconstructions. The atmospheric response to the observed spectral variability, as quantified in climate model simulations, have revealed similarly surprising and in some cases, conflicting results. This talk will provide an overview on the state of our understanding of the spectrally resolved solar irradiance, its variability over many time scales, potential climate impacts, and finally, a discussion on what is required for improving our understanding of Sun-climate connections, including a look forward to future observations.

  3. The Influence of Forming Companions on the Spectral Energy Distributions of Stars with Circumstellar Discs

    NASA Astrophysics Data System (ADS)

    Zakhozhay, Olga V.

    2017-04-01

    We study a possibility to detect signatures of brown dwarf companions in a circumstellar disc based on spectral energy distributions. We present the results of spectral energy distribution simulations for a system with a 0.8 M⊙ central object and a companion with a mass of 30 M J embedded in a typical protoplanetary disc. We use a solution to the one-dimensional radiative transfer equation to calculate the protoplanetary disc flux density and assume, that the companion moves along a circular orbit and clears a gap. The width of the gap is assumed to be the diameter of the brown dwarf Hill sphere. Our modelling shows that the presence of such a gap can initiate an additional minimum in the spectral energy distribution profile of a protoplanetary disc at λ = 10-100 μm. We found that it is possible to detect signatures of the companion when it is located within 10 AU, even when it is as small as 3 M J. The spectral energy distribution of a protostellar disc with a massive fragment (of relatively cold temperature 400 K) might have a similar double peaked profile to the spectral energy distribution of a more evolved disc that contains a gap.

  4. Spectral reflectance properties of iridescent pierid butterfly wings.

    PubMed

    Wilts, Bodo D; Pirih, Primož; Stavenga, Doekele G

    2011-06-01

    The wings of most pierid butterflies exhibit a main, pigmentary colouration: white, yellow or orange. The males of many species have in restricted areas of the wing upper sides a distinct structural colouration, which is created by stacks of lamellae in the ridges of the wing scales, resulting in iridescence. The amplitude of the reflectance is proportional to the number of lamellae in the ridge stacks. The angle-dependent peak wavelength of the observed iridescence is in agreement with classical multilayer theory. The iridescence is virtually always in the ultraviolet wavelength range, but some species have a blue-peaking iridescence. The spectral properties of the pigmentary and structural colourations are presumably tuned to the spectral sensitivities of the butterflies' photoreceptors.

  5. WUVS simulator: detectability of spectral lines with the WSO-UV spectrographs

    NASA Astrophysics Data System (ADS)

    Marcos-Arenal, Pablo; de Castro, Ana I. Gómez; Abarca, Belén Perea; Sachkov, Mikhail

    2017-04-01

    The World Space Observatory Ultraviolet telescope is equipped with high dispersion (55,000) spectrographs working in the 1150 to 3100 Å spectral range. To evaluate the impact of the design on the scientific objectives of the mission, a simulation software tool has been developed. This simulator builds on the development made for the PLATO space mission and it is designed to generate synthetic time-series of images by including models of all important noise sources. We describe its design and performance. Moreover, its application to the detectability of important spectral features for star formation and exoplanetary research is addressed.

  6. Ultraviolet absorption cross-sections of hot carbon dioxide

    NASA Astrophysics Data System (ADS)

    Oehlschlaeger, Matthew A.; Davidson, David F.; Jeffries, Jay B.; Hanson, Ronald K.

    2004-12-01

    The temperature-dependent ultraviolet absorption cross-section for CO 2 has been measured in shock-heated gases between 1500 and 4500 K at 216.5, 244, 266, and 306 nm. Continuous-wave lasers provide the spectral brightness to enable precise time-resolved measurements with the microsecond time-response needed to monitor thermal decomposition of CO 2 at temperatures above 3000 K. The photophysics of the highly temperature dependent cross-section is discussed. The new data allows the extension of CO 2 absorption-based temperature sensing methods to higher temperatures, such as those found in behind detonation waves.

  7. Characteristics of extreme ultraviolet emission from high-Z plasmas

    NASA Astrophysics Data System (ADS)

    Ohashi, H.; Higashiguchi, T.; Suzuki, Y.; Kawasaki, M.; Suzuki, C.; Tomita, K.; Nishikino, M.; Fujioka, S.; Endo, A.; Li, B.; Otsuka, T.; Dunne, P.; O'Sullivan, G.

    2016-03-01

    We demonstrate the extreme ultraviolet (EUV) and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6.x nm and the water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on high-Z plasma UTA source, coupled to multilayer mirror optics.

  8. Analysis of human plasma metabolites across different liquid chromatography/mass spectrometry platforms: Cross-platform transferable chemical signatures.

    PubMed

    Telu, Kelly H; Yan, Xinjian; Wallace, William E; Stein, Stephen E; Simón-Manso, Yamil

    2016-03-15

    The metabolite profiling of a NIST plasma Standard Reference Material (SRM 1950) on different liquid chromatography/mass spectrometry (LC/MS) platforms showed significant differences. Although these findings suggest caution when interpreting metabolomics results, the degree of overlap of both profiles allowed us to use tandem mass spectral libraries of recurrent spectra to evaluate to what extent these results are transferable across platforms and to develop cross-platform chemical signatures. Non-targeted global metabolite profiles of SRM 1950 were obtained on different LC/MS platforms using reversed-phase chromatography and different chromatographic scales (conventional HPLC, UHPLC and nanoLC). The data processing and the metabolite differential analysis were carried out using publically available (XCMS), proprietary (Mass Profiler Professional) and in-house software (NIST pipeline). Repeatability and intermediate precision showed that the non-targeted SRM 1950 profiling was highly reproducible when working on the same platform (relative standard deviation (RSD) <2%); however, substantial differences were found in the LC/MS patterns originating on different platforms or even using different chromatographic scales (conventional HPLC, UHPLC and nanoLC) on the same platform. A substantial degree of overlap (common molecular features) was also found. A procedure to generate consistent chemical signatures using tandem mass spectral libraries of recurrent spectra is proposed. Different platforms rendered significantly different metabolite profiles, but the results were highly reproducible when working within one platform. Tandem mass spectral libraries of recurrent spectra are proposed to evaluate the degree of transferability of chemical signatures generated on different platforms. Chemical signatures based on our procedure are most likely cross-platform transferable. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA.

  9. Stage-dependent teratogenic and lethal effects exerted by ultraviolet B radiation on Rhinella (Bufo) arenarum embryos.

    PubMed

    Castañaga, Luis A; Asorey, Cynthia M; Sandoval, María T; Pérez-Coll, Cristina S; Argibay, Teresa I; Herkovits, Jorge

    2009-02-01

    The adverse effects of ultraviolet B radiation from 547.2 to 30,096 J/m2 on morphogenesis, cell differentiation, and lethality of amphibian embryos at six developmental stages were evaluated from 24 up to 168 h postexposure. The ultraviolet B radiation lethal dose 10, 50, and 90 values were obtained for all developmental stages evaluated. The lethal dose 50 values, considered as the dose causing lethality in the 50% of the organisms exposed, in J/m2 at 168 h postexposure, ranged from 2,307 to 18,930; gill circulation and blastula were the most susceptible and resistant stages, respectively. Ultraviolet B radiation caused malformations in all developmental stages but was significantly more teratogenic at the gill circulation and complete operculum stages. Moreover, at the gill circulation stage, even the lowest dose (547.2 J/m2) resulted in malformations to 100% of embryos. The most common malformations were persistent yolk plug, bifid spine, reduced body size, delayed development, asymmetry, microcephaly and anencephaly, tail and body flexures toward the irradiated side, agenesia or partial gill development, abnormal pigment distribution, and hypermotility. The stage-dependent susceptibility to ultraviolet B radiation during amphibian embryogenesis could be explained in the framework of evoecotoxicology, considering ontogenic features as biomarkers of environmental signatures of living forms ancestors during the evolutionary process. The stage-dependent susceptibility to ultraviolet B radiation on Rhinella (Bufo) arenarum embryos for both lethal and teratogenic effects could contribute to a better understanding of the role of the increased ultraviolet B radiation on worldwide amphibian populations decline.

  10. Absolute sensitivity calibration of an extreme ultraviolet spectrometer for tokamak measurements

    NASA Astrophysics Data System (ADS)

    Guirlet, R.; Schwob, J. L.; Meyer, O.; Vartanian, S.

    2017-01-01

    An extreme ultraviolet spectrometer installed on the Tore Supra tokamak has been calibrated in absolute units of brightness in the range 10-340 Å. This has been performed by means of a combination of techniques. The range 10-113 Å was absolutely calibrated by using an ultrasoft-X ray source emitting six spectral lines in this range. The calibration transfer to the range 113-182 Å was performed using the spectral line intensity branching ratio method. The range 182-340 Å was calibrated thanks to radiative-collisional modelling of spectral line intensity ratios. The maximum sensitivity of the spectrometer was found to lie around 100 Å. Around this wavelength, the sensitivity is fairly flat in a 80 Å wide interval. The spatial variations of sensitivity along the detector assembly were also measured. The observed trend is related to the quantum efficiency decrease as the angle of the incoming photon trajectories becomes more grazing.

  11. Research on the calibration of ultraviolet energy meters

    NASA Astrophysics Data System (ADS)

    Lin, Fangsheng; Yin, Dejin; Li, Tiecheng; Lai, Lei; Xia, Ming

    2016-10-01

    Ultraviolet (UV) radiation is a kind of non-lighting radiation with the wavelength range from 100nm to 400nm. Ultraviolet irradiance meters are now widely used in many areas. However, as the development of science and technology, especially in the field of light-curing industry, there are more and more UV energy meters or UV-integrators need to be measured. Because the structure, wavelength band and measured power intensity of UV energy meters are different from traditional UV irradiance meters, it is important for us to take research on the calibration. With reference to JJG879-2002, we SIMT have independently developed the UV energy calibration device and the standard of operation and experimental methods for UV energy calibration in detail. In the calibration process of UV energy meter, many influencing factors will affect the final results, including different UVA-band UV light sources, different spectral response for different brands of UV energy meters, instability and no uniformity of UV light source and temperature. Therefore we need to take all of these factors into consideration to improve accuracy in UV energy calibration.

  12. Galactic Astronomy in the Ultraviolet

    NASA Astrophysics Data System (ADS)

    Rastorguev, A. S.; Sachkov, M. E.; Zabolotskikh, M. V.

    2017-12-01

    We propose a number of prospective observational programs for the ultraviolet space observatory WSO-UV, which seem to be of great importance to modern galactic astronomy. The programs include the search for binary Cepheids; the search and detailed photometric study and the analysis of radial distribution of UV-bright stars in globular clusters ("blue stragglers", blue horizontal-branch stars, RR Lyrae variables, white dwarfs, and stars with UV excesses); the investigation of stellar content and kinematics of young open clusters and associations; the study of spectral energy distribution in hot stars, including calculation of the extinction curves in the UV, optical and NIR; and accurate definition of the relations between the UV-colors and effective temperature. The high angular resolution of the observatory allows accurate astrometric measurements of stellar proper motions and their kinematic analysis.

  13. Mosaic-Detector-Based Fluorescence Spectral Imager

    NASA Technical Reports Server (NTRS)

    Son, Kyung-Ah; Moon, Jeong

    2007-01-01

    A battery-powered, pen-sized, portable instrument for measuring molecular fluorescence spectra of chemical and biological samples in the field has been proposed. Molecular fluorescence spectroscopy is among the techniques used most frequently in laboratories to analyze compositions of chemical and biological samples. Heretofore, it has been possible to measure fluorescence spectra of molecular species at relative concentrations as low as parts per billion (ppb), with a few nm spectral resolution. The proposed instrument would include a planar array (mosaic) of detectors, onto which a fluorescence spectrum would be spatially mapped. Unlike in the larger laboratory-type molecular fluorescence spectrometers, mapping of wavelengths to spatial positions would be accomplished without use of relatively bulky optical parts. The proposed instrument is expected to be sensitive enough to enable measurement of spectra of chemical species at relative concentrations <1 ppb, with spectral resolution that could be tailored by design to be comparable to a laboratory molecular fluorescence spectrometer. The proposed instrument (see figure) would include a button-cell battery and a laser diode, which would generate the monochromatic ultraviolet light needed to excite fluorescence in a sample. The sample would be held in a cell bounded by far-ultraviolet-transparent quartz or optical glass. The detector array would be, more specifically, a complementary metal oxide/ semiconductor or charge-coupled- device imaging photodetector array, the photodetectors of which would be tailored to respond to light in the wavelength range of the fluorescence spectrum to be measured. The light-input face of the photodetector array would be covered with a matching checkerboard array of multilayer thin film interference filters, such that each pixel in the array would be sensitive only to light in a spectral band narrow enough so as not to overlap significantly with the band of an adjacent pixel. The

  14. Plans for the extreme ultraviolet explorer data base

    NASA Technical Reports Server (NTRS)

    Marshall, Herman L.; Dobson, Carl A.; Malina, Roger F.; Bowyer, Stuart

    1988-01-01

    The paper presents an approach for storage and fast access to data that will be obtained by the Extreme Ultraviolet Explorer (EUVE), a satellite payload scheduled for launch in 1991. The EUVE telescopes will be operated remotely from the EUVE Science Operation Center (SOC) located at the University of California, Berkeley. The EUVE science payload consists of three scanning telescope carrying out an all-sky survey in the 80-800 A spectral region and a Deep Survey/Spectrometer telescope performing a deep survey in the 80-250 A spectral region. Guest Observers will remotely access the EUVE spectrometer database at the SOC. The EUVE database will consist of about 2 X 10 to the 10th bytes of information in a very compact form, very similar to the raw telemetry data. A history file will be built concurrently giving telescope parameters, command history, attitude summaries, engineering summaries, anomalous events, and ephemeris summaries.

  15. Three spectrally distinct photoreceptors in diurnal and nocturnal Australian ants.

    PubMed

    Ogawa, Yuri; Falkowski, Marcin; Narendra, Ajay; Zeil, Jochen; Hemmi, Jan M

    2015-06-07

    Ants are thought to be special among Hymenopterans in having only dichromatic colour vision based on two spectrally distinct photoreceptors. Many ants are highly visual animals, however, and use vision extensively for navigation. We show here that two congeneric day- and night-active Australian ants have three spectrally distinct photoreceptor types, potentially supporting trichromatic colour vision. Electroretinogram recordings show the presence of three spectral sensitivities with peaks (λmax) at 370, 450 and 550 nm in the night-active Myrmecia vindex and peaks at 370, 470 and 510 nm in the day-active Myrmecia croslandi. Intracellular electrophysiology on individual photoreceptors confirmed that the night-active M. vindex has three spectral sensitivities with peaks (λmax) at 370, 430 and 550 nm. A large number of the intracellular recordings in the night-active M. vindex show unusually broad-band spectral sensitivities, suggesting that photoreceptors may be coupled. Spectral measurements at different temporal frequencies revealed that the ultraviolet receptors are comparatively slow. We discuss the adaptive significance and the probability of trichromacy in Myrmecia ants in the context of dim light vision and visual navigation. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Ultraviolet spectroscopy of meteoric debris: In situ calibration experiments from Earth orbit

    NASA Technical Reports Server (NTRS)

    Nuth, J. A., III; Wdowiak, T. J.; Kubinec, W. R.

    1986-01-01

    It is proposed to carry out slitless spectroscopy at ultraviolet wavelengths from orbit of meteoric debris associated with comets. The Eta Aquarid, Orionid/Halley, and the Persied/1962 862 Swift-Tuttle showers would be principal targets. Low light level, ultraviolet video technique will be used during night side of the orbit in a wide field, earthward viewing mode. Data will be stored in compact video cassette recorders. The experiment may be configured as a GAS package or in the HITCHHIKER mode. The latter would allow flexible pointing capability beyond that offered by shuttle orientation of the GAS package, and doubling of the data record. The 1100 to 3200 A spectral region should show emissions of atomic, ionic, and molecular species of interest on cometary and solar system studies.

  17. Ultraviolet spectroscopy of meteoric debris: In situ calibration experiments from earth orbit

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.; Wdowiak, Thomas J.; Kubinec, William R.

    1987-01-01

    It is proposed to carry out slitless spectroscopy at ultraviolet wavelengths from orbit of meteoric debris associated with comets. The Eta Aquarid, Orionid/Halley, and the Persied/1962 862 Swift-Tuttle showers would be principal targets. Low light level, ultraviolet video technique will be used during the night side of the orbit in a wide field, earthward viewing mode. Data will be stored in compact video cassette recorders. The experiment may be configured as a GAS package or in the HITCHHIKER mode. The latter would allow flexible pointing capability beyond that offered by shuttle orientation of the GAS package, and doubling of the data record. The 1100 to 3200 A spectral region should show emissions of atomic, ionic, and molecular species of interest on cometary and solar system studies.

  18. Ultraviolet filters in stomatopod crustaceans: diversity, ecology and evolution.

    PubMed

    Bok, Michael J; Porter, Megan L; Cronin, Thomas W

    2015-07-01

    Stomatopod crustaceans employ unique ultraviolet (UV) optical filters in order to tune the spectral sensitivities of their UV-sensitive photoreceptors. In the stomatopod species Neogonodactylus oerstedii, we previously found four filter types, produced by five distinct mycosporine-like amino acid pigments in the crystalline cones of their specialized midband ommatidial facets. This UV-spectral tuning array produces receptors with at least six distinct spectral sensitivities, despite expressing only two visual pigments. Here, we present a broad survey of these UV filters across the stomatopod order, examining their spectral absorption properties in 21 species from seven families in four superfamilies. We found that UV filters are present in three of the four superfamilies, and evolutionary character reconstruction implies that at least one class of UV filter was present in the ancestor of all modern stomatopods. Additionally, postlarval stomatopods were observed to produce the UV filters simultaneously alongside development of the adult eye. The absorbance properties of the filters are consistent within a species; however, between species we found a great deal of diversity, both in the number of filters and in their spectral absorbance characteristics. This diversity correlates with the habitat depth ranges of these species, suggesting that species living in shallow, UV-rich environments may tune their UV spectral sensitivities more aggressively. We also found additional, previously unrecognized UV filter types in the crystalline cones of the peripheral eye regions of some species, indicating the possibility for even greater stomatopod visual complexity than previously thought. © 2015. Published by The Company of Biologists Ltd.

  19. Three-dimensional nanoscale molecular imaging by extreme ultraviolet laser ablation mass spectrometry

    PubMed Central

    Kuznetsov, Ilya; Filevich, Jorge; Dong, Feng; Woolston, Mark; Chao, Weilun; Anderson, Erik H.; Bernstein, Elliot R.; Crick, Dean C.; Rocca, Jorge J.; Menoni, Carmen S.

    2015-01-01

    Analytical probes capable of mapping molecular composition at the nanoscale are of critical importance to materials research, biology and medicine. Mass spectral imaging makes it possible to visualize the spatial organization of multiple molecular components at a sample's surface. However, it is challenging for mass spectral imaging to map molecular composition in three dimensions (3D) with submicron resolution. Here we describe a mass spectral imaging method that exploits the high 3D localization of absorbed extreme ultraviolet laser light and its fundamentally distinct interaction with matter to determine molecular composition from a volume as small as 50 zl in a single laser shot. Molecular imaging with a lateral resolution of 75 nm and a depth resolution of 20 nm is demonstrated. These results open opportunities to visualize chemical composition and chemical changes in 3D at the nanoscale. PMID:25903827

  20. The ultraviolet variability of early-type supergiants

    NASA Technical Reports Server (NTRS)

    Underhill, A. B.

    1984-01-01

    Four early-type supergiants - HD 79186 (B5 Ia), HD 96919 (B9 Ia), HD 105056 (ON9.7 Iae), and HD 148379 (B2 Iae) - have been observed with the low-resolution spectrographs of IUE in the large aperture on 14 days. The behavior of the ultraviolet fluxes with time is studied. The light from all four stars seems to vary. Typically the dispersion about the mean magnitude at any wavelength corresponds to + or - 0.085, + or - 0.080, + or - 0.101, and + or - 0.106 mag, respectively. These amplitudes exceed the typical uncertainty in an IUE measurement of flux by about a factor of 3; they are somewhat larger than the variations known in the visible wavelength range. There are insufficient data to investigate periodicity in the observed light changes. The effective temperatures and angular diameters of the stars have been estimated using the present ultraviolet photometry, published UBV and uvby photometry, and the model-atmosphere fluxes reported by Kurucz in 1979. The program stars have dimensions typical for their spectral types. A brief discussion is given of possible causes of the variability of hot supergiants.

  1. Observations of the Magnetic Cataclysmic Variable VV Puppis with the Far Ultraviolet Spectroscopic Explorer

    NASA Astrophysics Data System (ADS)

    Hoard, D. W.; Szkody, Paula; Ishioka, Ryoko; Ferrario, L.; Gänsicke, B. T.; Schmidt, Gary D.; Kato, Taichi; Uemura, Makoto

    2002-10-01

    We present the first far-ultraviolet (FUV) observations of the magnetic cataclysmic variable VV Puppis, obtained with the Far Ultraviolet Spectroscopic Explorer satellite. In addition, we have obtained simultaneous ground-based optical photometric observations of VV Pup during part of the FUV observation. The shapes of the FUV and optical light curves are consistent with each other and with those of past observations at optical, extreme-ultraviolet, and X-ray wavelengths. Time-resolved FUV spectra during the portion of VV Pup's orbit when the accreting magnetic pole of the white dwarf can be seen show an increasing continuum level as the accretion spot becomes more directly visible. The most prominent features in the spectrum are the O VI λλ1031.9, 1037.6 emission lines. We interpret the shape and velocity shift of these lines in the context of an origin in the accretion funnel near the white dwarf surface. A blackbody function with Tbb>~90,000 K provides an adequate fit to the FUV spectral energy distribution of VV Pup. Based on observations with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer. FUSE is operated for NASA by Johns Hopkins University under NASA contract NAS 5-32985.

  2. Project STOP (Spectral Thermal Optimization Program)

    NASA Technical Reports Server (NTRS)

    Goldhammer, L. J.; Opjorden, R. W.; Goodelle, G. S.; Powe, J. S.

    1977-01-01

    The spectral thermal optimization of solar cell configurations for various solar panel applications is considered. The method of optimization depends upon varying the solar cell configuration's optical characteristics to minimize panel temperatures, maximize power output and decrease the power delta from beginning of life to end of life. Four areas of primary investigation are: (1) testing and evaluation of ultraviolet resistant coverslide adhesives, primarily FEP as an adhesive; (2) examination of solar cell absolute spectral response and corresponding cell manufacturing processes that affect it; (3) experimental work with solar cell manufacturing processes that vary cell reflectance (solar absorptance); and (4) experimental and theoretical studies with various coverslide filter designs, mainly a red rejection filter. The Hughes' solar array prediction program has been modified to aid in evaluating the effect of each of the above four areas on the output of a solar panel in orbit.

  3. Low temperature plasmas induced in SF6 by extreme ultraviolet (EUV) pulses

    NASA Astrophysics Data System (ADS)

    Bartnik, A.; Skrzeczanowski, W.; Czwartos, J.; Kostecki, J.; Fiedorowicz, H.; Wachulak, P.; Fok, T.

    2018-06-01

    In this work, a comparative study of extreme ultraviolet (EUV) induced low temperature SF6-based plasmas, created using two different irradiation systems, was performed. Both systems utilized laser-produced plasma (LPP) EUV sources. The essential difference between the systems concerned the formation of the driving EUV beam. The first one contained an efficient ellipsoidal EUV collector allowing for focusing of the EUV radiation at a large distance from the LPP source. The spectrum of focused radiation was limited to the long-wavelength part of the total LPP emission, λ > 8 nm, due to the reflective properties of the collector. The second system did not contain any EUV collector. The gas to be ionized was injected in the vicinity of the LPP, at a distance of the order of 10 mm. In both systems, energies of the driving photons were high enough for dissociative ionization of the SF6 molecules and ionization of atoms or even singly charged ions. Plasmas, created due to these processes, were investigated by spectral measurements in the EUV, ultraviolet (UV), and visible (VIS) spectral ranges. These low temperature plasmas were employed for preliminary experiments concerning surface treatment. The formation of pronounced nanostructures on the silicon surface after plasma treatment was demonstrated.

  4. An All-reflective Integral Field Spectrograph for Far Ultraviolet Astrophysics

    NASA Astrophysics Data System (ADS)

    Kendrick, Stephen; Ebbets, D.; Hardesty, C.; Sembach, K.; Beasley, M.; Woodgate, B.

    2010-01-01

    This paper overviews the supporting optical technologies for an ultraviolet integral field spectrograph (IFS) that will be used for future space astrophysics missions. The new technology is an all-reflective image slicer that directs light to an array of imaging diffraction gratings. Previous UV instruments recorded the spectra of point sources or spatially resolved elements along a long slit. Our IFS has only one reflection more than the Cosmic Origins Spectrograph for Hubble Space Telescope, which is the most sensitive UV spectrograph yet built, but is limited to point sources. An efficient UV IFS enables simultaneous spectroscopy of many spatially resolved elements within a contiguous two dimensional field of view in diagnostically important ultraviolet lines. The output is thus a data cube having one spectral and two spatial coordinates. This is the astrophysical analog to hyperspectral imaging in Earth sciences. The scientific benefits of such an instrument were developed during Vision Missions, Origins Probes, and Astrophysics Strategic Mission Concept Studies between 2004 and 2009. Implementation can be scaled for a small payload such as a sounding rocket or Explorer-class mission, leading to a flight experiment within the next few years. Of particular interest would be the application of this technology for an instrument on a version of the Advanced Technology Large-Aperture Space Telescope (ATLAST) which will have an 8+-m aperture. We will focus on the spectral region near Lyman alpha, but the all-reflective approach is applicable to other spectral regions when matched with wavelength appropriate gratings and detectors. Our project is a collaboration between Ball Aerospace & Technologies Corp., the University of Colorado, NASA Goddard Space Flight Center and the Space Telescope Science Institute, all of which have extensive experience with the science and instrumentation for UV astrophysics.

  5. The observation of spectral variation indicative of porphyrin biomarkers in reflectance spectra of source rock - The application of remote sensing technology to petroleum geochemistry

    NASA Technical Reports Server (NTRS)

    Holden, Peter Newhall; Gaffey, Michael J.

    1990-01-01

    The spectral signature of porphyrin compounds, considered to be biomarkers of depositional environment and thermal maturity, have been identified in reflectance spectra of oil shales. The key bands identified, in order of intensity, are the Soret (0.40 microns), alpha (0.57 microns), and beta (0.53 microns) bands. The observed bands represent the composite spectral signature of all porphyrin compounds present in the sample and, therefore, change position and intensity in accordance with changes in porphyrin chemistry.

  6. Emirates Mars Ultraviolet Spectrometer (EMUS) Overview from the Emirates Mars Mission

    NASA Astrophysics Data System (ADS)

    Lootah, F. H.; Almatroushi, H. R.; AlMheiri, S.; Holsclaw, G.; Deighan, J.; Chaffin, M.; Reed, H.; Lillis, R. J.; Fillingim, M. O.; England, S.

    2017-12-01

    The Emirates Mars Ultraviolet Spectrometer (EMUS) instrument is one of three science instruments on board the "Hope Probe" of the Emirates Mars Mission (EMM). EMM is a United Arab Emirates' (UAE) mission to Mars, launching in 2020, to explore the global dynamics of the Martian atmosphere, while sampling on both diurnal and seasonal timescales. The EMUS instrument is a far-ultraviolet imaging spectrograph that measures emissions in the spectral range 100-170 nm. Using a combination of its one-dimensional imaging and spacecraft motion, it will build up two-dimensional far-ultraviolet images of the Martian disk and near-space environment at several important wavelengths: the Lyman beta atomic hydrogen emission (102.6 nm), the Lyman alpha atomic hydrogen emission (121.6 nm), two atomic oxygen emissions (130.4 nm and 135.6 nm), and the carbon monoxide fourth positive group band emission (140 nm-170 nm). Radiances at these wavelengths will be used to derive the column abundance of atomic oxygen, and carbon monoxide in the Martian thermosphere, and the density of atomic oxygen and atomic hydrogen in the Martian exosphere both with spatial and sub-seasonal variability. The EMUS instrument consists of a single telescope mirror feeding a Rowland circle imaging spectrograph with selectable spectral resolution (1.3 nm, 1.8 nm, or 5 nm), and a photon-counting and locating detector (provided by the Space Sciences Laboratory at the University of California, Berkeley). The EMUS spatial resolution of less than 300 km on the disk is sufficient to characterize spatial variability in the Martian thermosphere (100-200 km altitude) and exosphere (>200 km altitude). The instrument is jointly developed by the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder and Mohammed Bin Rashid Space Centre (MBRSC) in Dubai, UAE.

  7. Emirates Mars Ultraviolet Spectrometer (EMUS) Overview from the Emirates Mars Mission

    NASA Astrophysics Data System (ADS)

    Almatroushi, Hessa; Lootah, Fatma; Holsclaw, Greg; Deighan, Justin; Chaffin, Michael; Lillis, Robert; Fillingim, Matthew; England, Scott; AlMheiri, Suhail; Reed, Heather

    2017-04-01

    The Emirates Mars Ultraviolet Spectrometer (EMUS) instrument is one of three science instruments to be carried on board the Emirate Mars Mission (EMM), the "Hope Probe". EMM is a United Arab Emirates' (UAE) mission to Mars launching in 2020 to explore the dynamics in the Martian atmosphere globally, while sampling on both diurnal and seasonal timescales. The EMUS instrument is a far-ultraviolet imaging spectrograph that measures emissions in the spectral range 100-170 nm. Using spacecraft motion, it will build up two-dimensional far-ultraviolet images of the Martian disk and near-space environment at several important wavelengths: Lyman beta atomic hydrogen emission (102.6 nm), Lyman alpha atomic hydrogen emission (121.6 nm), atomic oxygen emission (130.4 nm and 135.6 nm), and carbon monoxide fourth positive group band emission (140 nm-170 nm). Radiances at these wavelengths will be used to derive the column abundance of atomic oxygen, and carbon monoxide in the Martian thermosphere, and the density of atomic oxygen and atomic hydrogen in the Martian exosphere both with spatial and sub-seasonal variability. EMUS consists of a single telescope mirror feeding a Rowland circle imaging spectrograph capable of selectable spectral resolution (1.3 nm, 1.8 nm, or 5 nm) with a photon-counting and locating detector (provided by the Space Sciences Laboratory at the University of California, Berkeley). The EMUS spatial resolution of less than 300km on the disk is sufficient to characterize spatial variability in the Martian thermosphere (100-200 km altitude) and exosphere (>200 km altitude). The instrument is jointly developed by the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder and Mohammed Bin Rashid Space Centre (MBRSC) in Dubai, UAE

  8. A study of marine luminescence signatures, part 1

    NASA Technical Reports Server (NTRS)

    Hornig, A. W.; Eastwood, D.

    1973-01-01

    Fluorescent excitation and emission spectral data on chlorophyll and Gelbstoff in natural sea waters from the Atlantic, Gulf, and Pacific coasts show that algae particulates are totally absorbing over much of the near ultraviolet and visible spectra and act approximately as quantum counters; plant pigments absorb energy and transfer a large portion to chlorophyll where some fraction is emitted as chlorophyll fluorescence. Gelbstoff data do not exhibit quantum counter action because of their low concentration. It is concluded that luminescence data of natural sea waters are useful in monitoring algal and Gelbstoff as well as pollutant concentrations.

  9. Extreme ultraviolet spectroscopy of low pressure helium microwave driven discharges

    NASA Astrophysics Data System (ADS)

    Espinho, Susana; Felizardo, Edgar; Tatarova, Elena; Alves, Luis Lemos

    2016-09-01

    Surface wave driven discharges are reliable plasma sources that can produce high levels of vacuum and extreme ultraviolet radiation (VUV and EUV). The richness of the emission spectrum makes this type of discharge a possible alternative source in EUV/VUV radiation assisted applications. However, due to challenging experimental requirements, publications concerning EUV radiation emitted by microwave plasmas are scarce and a deeper understanding of the main mechanisms governing the emission of radiation in this spectral range is required. To this end, the EUV radiation emitted by helium microwave driven plasmas operating at 2.45 GHz has been studied for low pressure conditions. Spectral lines from excited helium atoms and ions were detected via emission spectroscopy in the EUV/VUV regions. Novel data concerning the spectral lines observed in the 23 - 33 nm wavelength range and their intensity behaviour with variation of the discharge operational conditions are presented. The intensity of all the spectral emissions strongly increases with the microwave power delivered to the plasma up to 400 W. Furthermore, the intensity of all the ion spectral emissions in the EUV range decreases by nearly one order of magnitude as the pressure was raised from 0.2 to 0.5 mbar. Work funded by FCT - Fundacao para a Ciencia e a Tecnologia, under Project UID/FIS/50010/2013 and grant SFRH/BD/52412/2013 (PD-F APPLAuSE).

  10. Catalog of far-ultraviolet objective-prism spectrophotometry: Skylab experiment S-019, ultraviolet steller astronomy

    NASA Technical Reports Server (NTRS)

    Henize, K. G.; Wray, J. D.; Parsons, S. B.; Benedict, G. F.

    1979-01-01

    Ultraviolet stellar spectra in the wavelength region from 1300 to 5000 A (130 to 500) were photographed during the three manned Skylab missions using a 15 cm aperture objective-prism telescope. The prismatic dispersion varied from 58 A mm/1 at 1400 A to 1600 A mm/1 at 3000 A. Approximately 1000 spectra representing 500 stars were measured and reduced to observed fluxes. About 100 stars show absorption lines of Si IV, C IV, or C II. Numerous line features are also recorded in supergiant stars, shell stars, A and F stars, and Wolf-Rayet stars. Most of the stars in the catalog are of spectral class B, with a number of O and A type stars and a sampling of WC, WN, F and C type stars. Spectrophotometric results are tabulated for these 500 stars.

  11. Note: Enhancement of the extreme ultraviolet emission from a potassium plasma by dual laser irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higashiguchi, Takeshi, E-mail: higashi@cc.utsunomiya-u.ac.jp; Yamaguchi, Mami; Otsuka, Takamitsu

    2014-09-15

    Emission spectra from multiply charged potassium ions ranging from K{sup 3+} to K{sup 5+} have been obtained in the extreme ultraviolet (EUV) spectral region. A strong emission feature peaking around 38 nm, corresponding to a photon energy of 32.6 eV, is the dominant spectral feature at time-averaged electron temperatures in the range of 8−12 eV. The variation of this emission with laser intensity and the effects of pre-pulses on the relative conversion efficiency (CE) have been explored experimentally and indicate that an enhancement of about 30% in EUV CE is readily attainable.

  12. Mutation signatures of carcinogen exposure: genome-wide detection and new opportunities for cancer prevention

    PubMed Central

    2014-01-01

    Exposure to environmental mutagens is an important cause of human cancer, and measures to reduce mutagenic and carcinogenic exposures have been highly successful at controlling cancer. Until recently, it has been possible to connect the chemical characteristics of mutagens to actual mutations observed in human tumors only indirectly. Now, next-generation sequencing technology enables us to observe in detail the DNA-sequence-level effects of well-known mutagens, such as ultraviolet radiation and tobacco smoke, as well as endogenous mutagenic processes, such as those involving activated DNA cytidine deaminases (APOBECs). We can also observe the effects of less well-known but potent mutagens, including those recently found to be present in some herbal remedies. Crucially, we can now tease apart the superimposed effects of several mutational exposures and processes and determine which ones occurred during the development of individual tumors. Here, we review advances in detecting these mutation signatures and discuss the implications for surveillance and prevention of cancer. The number of sequenced tumors from diverse cancer types and multiple geographic regions is growing explosively, and the genomes of these tumors will bear the signatures of even more diverse mutagenic exposures. Thus, we envision development of wide-ranging compendia of mutation signatures from tumors and a concerted effort to experimentally elucidate the signatures of a large number of mutagens. This information will be used to link signatures observed in tumors to the exposures responsible for them, which will offer unprecedented opportunities for prevention. PMID:25031618

  13. Spectral Phasor approach for fingerprinting of photo-activatable fluorescent proteins Dronpa, Kaede and KikGR

    PubMed Central

    Cutrale, Francesco; Salih, Anya; Gratton, Enrico

    2013-01-01

    The phasor global analysis algorithm is common for fluorescence lifetime applications, but has only been recently proposed for spectral analysis. Here the phasor representation and fingerprinting is exploited in its second harmonic to determine the number and spectra of photo-activated states as well as their conversion dynamics. We follow the sequence of photo-activation of proteins over time by rapidly collecting multiple spectral images. The phasor representation of the cumulative images provides easy identification of the spectral signatures of each photo-activatable protein. PMID:24040513

  14. An Empirical Model of the Variation of the Solar Lyman-α Spectral Irradiance

    NASA Astrophysics Data System (ADS)

    Kretzschmar, Matthieu; Snow, Martin; Curdt, Werner

    2018-03-01

    We propose a simple model that computes the spectral profile of the solar irradiance in the hydrogen Lyman alpha line, H Ly-α (121.567 nm), from 1947 to present. Such a model is relevant for the study of many astronomical environments, from planetary atmospheres to interplanetary medium. This empirical model is based on the SOlar Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation observations of the Ly-α irradiance over solar cycle 23 and the Ly-α disk-integrated irradiance composite. The model reproduces the temporal variability of the spectral profile and matches the independent SOlar Radiation and Climate Experiment/SOLar-STellar Irradiance Comparison Experiment spectral observations from 2003 to 2007 with an accuracy better than 10%.

  15. Dissociable neural response signatures for slow amplitude and frequency modulation in human auditory cortex.

    PubMed

    Henry, Molly J; Obleser, Jonas

    2013-01-01

    Natural auditory stimuli are characterized by slow fluctuations in amplitude and frequency. However, the degree to which the neural responses to slow amplitude modulation (AM) and frequency modulation (FM) are capable of conveying independent time-varying information, particularly with respect to speech communication, is unclear. In the current electroencephalography (EEG) study, participants listened to amplitude- and frequency-modulated narrow-band noises with a 3-Hz modulation rate, and the resulting neural responses were compared. Spectral analyses revealed similar spectral amplitude peaks for AM and FM at the stimulation frequency (3 Hz), but amplitude at the second harmonic frequency (6 Hz) was much higher for FM than for AM. Moreover, the phase delay of neural responses with respect to the full-band stimulus envelope was shorter for FM than for AM. Finally, the critical analysis involved classification of single trials as being in response to either AM or FM based on either phase or amplitude information. Time-varying phase, but not amplitude, was sufficient to accurately classify AM and FM stimuli based on single-trial neural responses. Taken together, the current results support the dissociable nature of cortical signatures of slow AM and FM. These cortical signatures potentially provide an efficient means to dissect simultaneously communicated slow temporal and spectral information in acoustic communication signals.

  16. Performance Assessment of a Plate Beam Splitter for Deep-Ultraviolet Raman Measurements with a Spatial Heterodyne Raman Spectrometer.

    PubMed

    Lamsal, Nirmal; Angel, S Michael

    2017-06-01

    In earlier works, we demonstrated a high-resolution spatial heterodyne Raman spectrometer (SHRS) for deep-ultraviolet (UV) Raman measurements, and showed its ability to measure UV light-sensitive compounds using a large laser spot size. We recently modified the SHRS by replacing the cube beam splitter (BS) with a custom plate beam splitter with higher light transmission, an optimized reflectance/transmission ratio, higher surface flatness, and better refractive index homogeneity than the cube beam splitter. Ultraviolet Raman measurements were performed using a SHRS modified to use the plate beam splitter and a matching compensator plate and compared to the previously described cube beam splitter setup. Raman spectra obtained using the modified SHRS exhibit much higher signals and signal-to-noise (S/N) ratio and show fewer spectral artifacts. In this paper, we discuss the plate beam splitter SHRS design features, the advantages over previous designs, and discuss some general SHRS issues such as spectral bandwidth, S/N ratio characteristics, and optical efficiency.

  17. Simulation of Two Dimensional Ultraviolet (2DUV) Spectroscopy of Amyloid Fibrils

    PubMed Central

    Jiang, Jun; Abramavicius, Darius; Falvo, Cyril; Bulheller, Benjamin M.; Hirst, Jonathan D.; Mukamel, Shaul

    2010-01-01

    Revealing the structure and aggregation mechanism of amyloid fibrils is essential for the treatment of over 20 diseases related to protein misfolding. Coherent two dimensional (2D) infrared spectroscopy is a novel tool that provides a wealth of new insight into the structure and dynamics of biomolecular systems. Recently developed ultrafast laser sources are extending multidimensional spectroscopy into the ultraviolet (UV) region, and this opens up new opportunities for probing fibrils. In a simulation study, we show that 2DUV spectra of the backbone of a 32-residue β-amyloid (Aβ9–40) fibril associated with Alzheimer’s disease, and two intermediate prefibrillar structures carry characteristic signatures of fibril size and geometry that could be used to monitor its formation kinetics. The dependence of these signals on the fibril size and geometry is explored. We demonstrate that the dominant features of the β-amyloid fibril spectra are determined by intramolecular interactions within a single Aβ9–40, while intermolecular interactions at the “external interface” have clear signatures in the fine details of these signals. PMID:20795695

  18. Variability in spectral signatures of terrestrial volcanic rocks and implications for volcanology on Mars

    NASA Technical Reports Server (NTRS)

    Francis, P. W.

    1987-01-01

    The LANDSAT Thematic Mapper (TM) studies of 2.2 my old ignimbrites in a test area around the Cerro Galan Caldera, N. W. Argentina, show that the ignimbrites exhibit a remarkable range of spectral characteristics dependent both on intrinsic and extrinsic properties resulting from aeolian weathering processes. Spectral profiles of the ignimbrite in four contrasted environments were constructed using 6 TM bands. The textural and structural characteristics of ignimbrites on Mars were evaluated.

  19. Remote Sensing of Spectral Aerosol Properties: A Classroom Experience

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Pinker, Rachel T.

    2006-01-01

    Bridging the gap between current research and the classroom is a major challenge to today s instructor, especially in the sciences where progress happens quickly. NASA Goddard Space Flight Center and the University of Maryland teamed up in designing a graduate class project intended to provide a hands-on introduction to the physical basis for the retrieval of aerosol properties from state-of-the-art MODIS observations. Students learned to recognize spectral signatures of atmospheric aerosols and to perform spectral inversions. They became acquainted with the operational MODIS aerosol retrieval algorithm over oceans, and methods for its evaluation, including comparisons with groundbased AERONET sun-photometer data.

  20. Signature modelling and radiometric rendering equations in infrared scene simulation systems

    NASA Astrophysics Data System (ADS)

    Willers, Cornelius J.; Willers, Maria S.; Lapierre, Fabian

    2011-11-01

    The development and optimisation of modern infrared systems necessitates the use of simulation systems to create radiometrically realistic representations (e.g. images) of infrared scenes. Such simulation systems are used in signature prediction, the development of surveillance and missile sensors, signal/image processing algorithm development and aircraft self-protection countermeasure system development and evaluation. Even the most cursory investigation reveals a multitude of factors affecting the infrared signatures of realworld objects. Factors such as spectral emissivity, spatial/volumetric radiance distribution, specular reflection, reflected direct sunlight, reflected ambient light, atmospheric degradation and more, all affect the presentation of an object's instantaneous signature. The signature is furthermore dynamically varying as a result of internal and external influences on the object, resulting from the heat balance comprising insolation, internal heat sources, aerodynamic heating (airborne objects), conduction, convection and radiation. In order to accurately render the object's signature in a computer simulation, the rendering equations must therefore account for all the elements of the signature. In this overview paper, the signature models, rendering equations and application frameworks of three infrared simulation systems are reviewed and compared. The paper first considers the problem of infrared scene simulation in a framework for simulation validation. This approach provides concise definitions and a convenient context for considering signature models and subsequent computer implementation. The primary radiometric requirements for an infrared scene simulator are presented next. The signature models and rendering equations implemented in OSMOSIS (Belgian Royal Military Academy), DIRSIG (Rochester Institute of Technology) and OSSIM (CSIR & Denel Dynamics) are reviewed. In spite of these three simulation systems' different application focus

  1. Estimation of Soil Moisture Content from the Spectral Reflectance of Bare Soils in the 0.4–2.5 μm Domain

    PubMed Central

    Fabre, Sophie; Briottet, Xavier; Lesaignoux, Audrey

    2015-01-01

    This work aims to compare the performance of new methods to estimate the Soil Moisture Content (SMC) of bare soils from their spectral signatures in the reflective domain (0.4–2.5 μm) in comparison with widely used spectral indices like Normalized Soil Moisture Index (NSMI) and Water Index SOIL (WISOIL). Indeed, these reference spectral indices use wavelengths located in the water vapour absorption bands and their performance are thus very sensitive to the quality of the atmospheric compensation. To reduce these limitations, two new spectral indices are proposed which wavelengths are defined using the determination matrix tool by taking into account the atmospheric transmission: Normalized Index of Nswir domain for Smc estimatiOn from Linear correlation (NINSOL) and Normalized Index of Nswir domain for Smc estimatiOn from Non linear correlation (NINSON). These spectral indices are completed by two new methods based on the global shape of the soil spectral signatures. These methods are the Inverse Soil semi-Empirical Reflectance model (ISER), using the inversion of an existing empirical soil model simulating the soil spectral reflectance according to soil moisture content for a given soil class, and the convex envelope model, linking the area between the envelope and the spectral signature to the SMC. All these methods are compared using a reference database built with 32 soil samples and composed of 190 spectral signatures with five or six soil moisture contents. Half of the database is used for the calibration stage and the remaining to evaluate the performance of the SMC estimation methods. The results show that the four new methods lead to similar or better performance than the one obtained by the reference indices. The RMSE is ranging from 3.8% to 6.2% and the coefficient of determination R2 varies between 0.74 and 0.91 with the best performance obtained with the ISER model. In a second step, simulated spectral radiances at the sensor level are used to

  2. Characterizing Non-Resolved Debris Through Spectral and Photometric Ground-Based Telescopic Data: What Can Laboratory Ground-truth Data Do for You?

    NASA Technical Reports Server (NTRS)

    Lederer, Susan

    2017-01-01

    NASA's ODPO has recently collected data of unresolved objects at GEO with the 3.8m UKIRT infrared telescope on Mauna Kea and the 1.3m MCAT visible telescope on Ascension Island. Analyses of SWIR data of rocket bodies and HS-376 solar-panel covered buses demonstrate the uniqueness of spectral signatures. Data of 3 classes of rocket bodies show similarities amongst a given class, but distinct differences from one class to another, suggesting that infrared reflectance spectra could effectively be used toward characterizing and constraining potential parent bodies of uncorrelated targets (UCTs). The Optical Measurements Center (OMC) at NASA JSC is designed to collect photometric signatures in the laboratory that can be used for comparison with telescopic data. NASA also has a spectral database of spacecraft materials for use with spectral unmixing models. Spectral unmixing of the HS-376 bus data demonstrates how absorption features and slopes can be used to constrain material characteristics of debris. Broadband photometry likewise can be compared with MCAT data of non-resolved debris images. Similar studies have been applied to IDCSP satellites to demonstrate how color-color photometry can be compared with lab data to constrain bulk materials signatures of spacecraft and debris.

  3. Expected scientific performance of the three spectrometers on the extreme ultraviolet explorer

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Jelinsky, P.; Vedder, P. W.; Malina, R. F.

    1990-01-01

    The expected in-orbit performance of the three spectrometers included on the Extreme Ultraviolet Explorer astronomical satellite is presented. Recent calibrations of the gratings, mirrors and detectors using monochromatic and continuum EUV light sources allow the calculation of the spectral resolution and throughput of the instrument. An effective area range of 0.2 to 2.8 sq cm is achieved over the wavelength range 70-600 A with a peak spectral resolution (FWHM) of 360 assuming a spacecraft pointing knowledge of 10 arc seconds (FWHM). For a 40,000 sec observation, the average 3 sigma sensitivity to a monochromatic line source is 0.003 photons/sq cm s. Simulated observations of known classes of EUV sources, such as hot white dwarfs, and cataclysmic variables are also presented.

  4. Towards the implementation of a spectral database for the detection of biological warfare agents

    NASA Astrophysics Data System (ADS)

    Carestia, M.; Pizzoferrato, R.; Gelfusa, M.; Cenciarelli, O.; D'Amico, F.; Malizia, A.; Scarpellini, D.; Murari, A.; Vega, J.; Gaudio, P.

    2014-10-01

    The deliberate use of biological warfare agents (BWA) and other pathogens can jeopardize the safety of population, fauna and flora, and represents a concrete concern from the military and civil perspective. At present, the only commercially available tools for fast warning of a biological attack can perform point detection and require active or passive sampling collection. The development of a stand-off detection system would be extremely valuable to minimize the risk and the possible consequences of the release of biological aerosols in the atmosphere. Biological samples can be analyzed by means of several optical techniques, covering a broad region of the electromagnetic spectrum. Strong evidence proved that the informative content of fluorescence spectra could provide good preliminary discrimination among those agents and it can also be obtained through stand-off measurements. Such a system necessitates a database and a mathematical method for the discrimination of the spectral signatures. In this work, we collected fluorescence emission spectra of the main BWA simulants, to implement a spectral signature database and apply the Universal Multi Event Locator (UMEL) statistical method. Our preliminary analysis, conducted in laboratory conditions with a standard UV lamp source, considers the main experimental setups influencing the fluorescence signature of some of the most commonly used BWA simulants. Our work represents a first step towards the implementation of a spectral database and a laser-based biological stand-off detection and identification technique.

  5. The spectral properties of uranium hexafluoride and its thermal decomposition products

    NASA Technical Reports Server (NTRS)

    Krascella, N. L.

    1976-01-01

    This investigation was initiated to provide basic spectral data for gases of interest to the plasma core reactor concept. The attenuation of vacuum ultraviolet (VUV) radiation by helium at pressures up to 20 atm over path lengths of about 61 cm and in the approximate wavelength range between 80 and 300 nm was studied. Measurements were also conducted to provide basic VUV data with respect to UF6 and UF6/argon mixtures in the wavelength range between 80 and 120 nm. Finally, an investigation was initiated to provide basic spectral emission and absorption data for UF6 and possible thermal decomposition products of UF6 at elevated temperatures.

  6. The spectral energy distribution of Zeta Puppis and HD 50896

    NASA Technical Reports Server (NTRS)

    Holm, A. V.; Cassinelli, J. P.

    1977-01-01

    The ultraviolet spectral energy distribution of the O5f star Zeta Pup and the WN5 star HD 50896 are derived from OAO-2 observations with the calibration of Bless, Code, and Fairchild (1976). An estimate of the interstellar reddening (0.12 magnitude) of the Wolf-Rayet star is determined from the size of the characteristic interstellar extinction bump at 4.6 inverse microns. After correction for extinction, both stars show a flat energy distribution in the ultraviolet. The distribution of HD 50896 from 1100 A to 2 microns is in good agreement with results of extended model atmospheres, but some uncertainty remains because of the interstellar-extinction correction. The absolute energy distribution of Zeta Pup is fitted by a 42,000-K plane-parallel model if the model's flux is adjusted for the effects of electron scattering in the stellar wind and for UV line blanketing that was determined empirically from high-resolution Copernicus satellite observations. To achieve this fit, it is necessary to push both the spectroscopically determined temperature and the ultraviolet calibration to the limits of their probable errors.

  7. A dense plasma ultraviolet source

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.

    1978-01-01

    The intense ultraviolet emission from the NASA Hypocycloidal-Pinch (HCP) plasma is investigated. The HCP consists of three disk electrodes whose cross section has a configuration similar to the cross section of a Mather-type plasma focus. Plasma foci were produced in deuterium, helium, xenon, and krypton gases in order to compare their emission characteristics. Time-integrated spectra in the wavelength range from 200 nm to 350 nm and temporal variations of the uv emission were obtained with a uv spectrometer and a photomultiplier system. Modifications to enhance uv emission in the iodine-laser pump band (250 to 290 nm) and preliminary results produced by these modifications are presented. Finally, the advantages of the HCP as a uv over use of conventional xenon lamps with respect to power output limit, spectral range, and lifetime are discussed.

  8. Hermite scatterers in an ultraviolet sky

    NASA Astrophysics Data System (ADS)

    Parker, Kevin J.

    2017-12-01

    The scattering from spherical inhomogeneities has been a major historical topic in acoustics, optics, and electromagnetics and the phenomenon shapes our perception of the world including the blue sky. The long wavelength limit of ;Rayleigh scattering; is characterized by intensity proportional to k4 (or λ-4) where k is the wavenumber and λ is the wavelength. With the advance of nanotechnology, it is possible to produce scatterers that are inhomogeneous with material properties that are functions of radius r, such as concentric shells. We demonstrate that with proper choice of material properties linked to the Hermite polynomials in r, scatterers can have long wavelength scattering behavior of higher powers: k8, k16, and higher. These ;Hermite scatterers; could be useful in providing unique signatures (or colors) to regions where they are present. If suspended in air under white light, the back-scattered spectrum would be shifted from blue towards violet and then ultraviolet as the higher order Hermite scatterers were illuminated.

  9. Simplifying BRDF input data for optical signature modeling

    NASA Astrophysics Data System (ADS)

    Hallberg, Tomas; Pohl, Anna; Fagerström, Jan

    2017-05-01

    Scene simulations of optical signature properties using signature codes normally requires input of various parameterized measurement data of surfaces and coatings in order to achieve realistic scene object features. Some of the most important parameters are used in the model of the Bidirectional Reflectance Distribution Function (BRDF) and are normally determined by surface reflectance and scattering measurements. Reflectance measurements of the spectral Directional Hemispherical Reflectance (DHR) at various incident angles can normally be performed in most spectroscopy labs, while measuring the BRDF is more complicated or may not be available at all in many optical labs. We will present a method in order to achieve the necessary BRDF data directly from DHR measurements for modeling software using the Sandford-Robertson BRDF model. The accuracy of the method is tested by modeling a test surface by comparing results from using estimated and measured BRDF data as input to the model. These results show that using this method gives no significant loss in modeling accuracy.

  10. Spectral Analysis of the sdO Standard Star Feige 34

    NASA Astrophysics Data System (ADS)

    Latour, M.; Chayer, P.; Green, E. M.; Fontaine, G.

    2017-03-01

    We present our current work on the spectral analysis of the hot sdO star Feige 34. We combine high S/N optical spectra and fully-blanketed non-LTE model atmospheres to derive its fundamental parameters (Teff, log g) and helium abundance. Our best fits indicate Teff = 63 000 K, log g = 6.0 and log N(He)/N(H) = -1.8. We also use available ultraviolet spectra (IUE and FUSE) to measure metal abundances. We find the star to be enriched in iron and nickel by a factor of ten with respect to the solar values, while lighter elements have subsolar abundances. The FUSE spectrum suggests that the spectral lines could be broadened by rotation.

  11. Horizontal and sun-normal spectral biologically effective ultraviolet irradiances.

    PubMed

    Parisi, A V; Kimlin, M G

    1999-01-01

    The dependence of the spectral biologically effective solar UV irradiance on the orientation of the receiver with respect to the sun has been determined for relatively cloud-free days at a sub-tropical Southern Hemisphere latitude for the solar zenith angle range 35-64 degrees. For the UV and biologically effective irradiances, the sun-normal to horizontal ratio for the total UV ranges from 1.18 +/- 0.05 to 1.27 +/- 0.06. The sun-normal to horizontal ratio for biologically effective irradiance is dependent on the relative effectiveness of the relevant action spectrum in the UV-A waveband. In contrast to the total UV, the diffuse UV and diffuse biologically effective irradiances are reduced in a sun-normal compared with a horizontal orientation by a factor ranging from 0.70 +/- 0.05 to 0.76 +/- 0.03.

  12. Diffractive shear interferometry for extreme ultraviolet high-resolution lensless imaging

    NASA Astrophysics Data System (ADS)

    Jansen, G. S. M.; de Beurs, A.; Liu, X.; Eikema, K. S. E.; Witte, S.

    2018-05-01

    We demonstrate a novel imaging approach and associated reconstruction algorithm for far-field coherent diffractive imaging, based on the measurement of a pair of laterally sheared diffraction patterns. The differential phase profile retrieved from such a measurement leads to improved reconstruction accuracy, increased robustness against noise, and faster convergence compared to traditional coherent diffractive imaging methods. We measure laterally sheared diffraction patterns using Fourier-transform spectroscopy with two phase-locked pulse pairs from a high harmonic source. Using this approach, we demonstrate spectrally resolved imaging at extreme ultraviolet wavelengths between 28 and 35 nm.

  13. Improved Lyman Ultraviolet Astronomy Capabilities through Enhanced Coatings

    NASA Technical Reports Server (NTRS)

    Quijada, Manuel A.; del Hoyo, Javier; Boris, David; Walton, Scott

    2017-01-01

    This paper will describe efforts at developing broadband mirror coatings with high performance that will extend from infrared wavelengths down to the Far-Ultraviolet (FUV) spectral region. These mirror coatings would be realized by passivating the surface of freshly made aluminum coatings with XeF2 gas in order to form a thin AlF$_3$ overcoat that will protect the aluminum from oxidation and, hence, realize the high-reflectance of this material down to its intrinsic cut-off wavelength of 90 nm. Improved reflective coatings for optics, particularly in the FUV region (90-120 nm), could yield dramatically more sensitive instruments and permit more instrument design freedom.

  14. Design, fabrication, and measurement of two silicon-based ultraviolet and blue-extended photodiodes

    NASA Astrophysics Data System (ADS)

    Chen, Changping; Wang, Han; Jiang, Zhenyu; Jin, Xiangliang; Luo, Jun

    2014-12-01

    Two silicon-based ultraviolet (UV) and blue-extended photodiodes are presented, which were fabricated for light detection in the ultraviolet/blue spectral range. Stripe-shaped and octagon-ring-shaped structures were designed to verify parameters of the UV-responsivity, UV-selectivity, breakdown voltage, and response time. The ultra-shallow lateral pn junction had been successfully realized in a standard 0.5-μm complementary metal oxide semiconductor (CMOS) process to enlarge the pn junction area, enhance the absorption of UV light, and improve the responsivity and quantum efficiency. The test results illustrated that the stripe-shaped structure has the lower breakdown voltage, higher UV-responsicity, and higher UV-selectivity. But the octagon-ring-shaped structure has the lower dark current. The response time of both structures was almost the same.

  15. X-ray signatures: New time scales and spectral features

    NASA Technical Reports Server (NTRS)

    Boldt, E. A.

    1977-01-01

    The millisecond bursts from Cyg X-1 are investigated and the overall chaotic variability for the bulk of the Cyg X-1 emission is compared to that of Sco X-1, showing that the essential character is remarkably similar (i.e. shot noise) although the fundamental time scales involved differ widely, from a fraction of a second (for Cyg X-1) to a fraction of a day (for Sco X-1). Recent OSO-8 observations of spectra features attributable to iron are reviewed. In particular, line emission is discussed within the context of a model for thermal radiation by a hot evolved gas in systems as different as supernova remnants and clusters of galaxies. Newly observed spectral structure in the emission from the X-ray pulsar Her X-1 is reported.

  16. A novel edge-preserving nonnegative matrix factorization method for spectral unmixing

    NASA Astrophysics Data System (ADS)

    Bao, Wenxing; Ma, Ruishi

    2015-12-01

    Spectral unmixing technique is one of the key techniques to identify and classify the material in the hyperspectral image processing. A novel robust spectral unmixing method based on nonnegative matrix factorization(NMF) is presented in this paper. This paper used an edge-preserving function as hypersurface cost function to minimize the nonnegative matrix factorization. To minimize the hypersurface cost function, we constructed the updating functions for signature matrix of end-members and abundance fraction respectively. The two functions are updated alternatively. For evaluation purpose, synthetic data and real data have been used in this paper. Synthetic data is used based on end-members from USGS digital spectral library. AVIRIS Cuprite dataset have been used as real data. The spectral angle distance (SAD) and abundance angle distance(AAD) have been used in this research for assessment the performance of proposed method. The experimental results show that this method can obtain more ideal results and good accuracy for spectral unmixing than present methods.

  17. The Extreme Ultraviolet Explorer mission - Instrumentation and science goals

    NASA Technical Reports Server (NTRS)

    Bowyer, Stuart; Malina, Roger F.; Marshall, Herman L.

    1988-01-01

    NASA's Extreme Ultraviolet Explorer (EUVE) will carry out an all-sky survey from 80 to 800A in four bandpasses. It is expected that many types of sources will be detected, including white dwarfs and late type stars. A deep survey will also be carried out along the ecliptic which will have a limiting sensitivity a factor of 10 better than the all-sky survey in the bandpass from 80 to 300A. The payload includes a spectrometer to observe the brigher sources found in the surveys with a spectral resolution of 1 to 2A.

  18. Search for sharp and smooth spectral signatures of μνSSM gravitino dark matter with Fermi-LAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gómez-Vargas, Germán A.; López-Fogliani, Daniel E.; Perez, Andres D.

    The μνSSM solves the μ problem of supersymmetric models and reproduces neutrino data, simply using couplings with right-handed neutrinos ν's. Given that these couplings break explicitly R parity, the gravitino is a natural candidate for decaying dark matter in the μνSSM. In this work we carry out a complete analysis of the detection of μνSSM gravitino dark matter through γ-ray observations. In addition to the two-body decay producing a sharp line, we include in the analysis the three-body decays producing a smooth spectral signature. We perform first a deep exploration of the low-energy parameter space of the μνSSM taking intomore » account that neutrino data must be reproduced. Then, we compare the γ-ray fluxes predicted by the model with Fermi -LAT observations. In particular, with the 95% CL upper limits on the total diffuse extragalactic γ-ray background using 50 months of data, together with the upper limits on line emission from an updated analysis using 69.9 months of data. For standard values of bino and wino masses, gravitinos with masses larger than about 4 GeV, or lifetimes smaller than about 10{sup 28} s, produce too large fluxes and are excluded as dark matter candidates. However, when limiting scenarios with large and close values of the gaugino masses are considered, the constraints turn out to be less stringent, excluding masses larger than 17 GeV and lifetimes smaller than 4 × 10{sup 25} s.« less

  19. Search for sharp and smooth spectral signatures of μνSSM gravitino dark matter with Fermi-LAT

    NASA Astrophysics Data System (ADS)

    Gómez-Vargas, Germán A.; López-Fogliani, Daniel E.; Muñoz, Carlos; Perez, Andres D.; Ruiz de Austri, Roberto

    2017-03-01

    The μνSSM solves the μ problem of supersymmetric models and reproduces neutrino data, simply using couplings with right-handed neutrinos ν's. Given that these couplings break explicitly R parity, the gravitino is a natural candidate for decaying dark matter in the μνSSM. In this work we carry out a complete analysis of the detection of μνSSM gravitino dark matter through γ-ray observations. In addition to the two-body decay producing a sharp line, we include in the analysis the three-body decays producing a smooth spectral signature. We perform first a deep exploration of the low-energy parameter space of the μνSSM taking into account that neutrino data must be reproduced. Then, we compare the γ-ray fluxes predicted by the model with Fermi-LAT observations. In particular, with the 95% CL upper limits on the total diffuse extragalactic γ-ray background using 50 months of data, together with the upper limits on line emission from an updated analysis using 69.9 months of data. For standard values of bino and wino masses, gravitinos with masses larger than about 4 GeV, or lifetimes smaller than about 1028 s, produce too large fluxes and are excluded as dark matter candidates. However, when limiting scenarios with large and close values of the gaugino masses are considered, the constraints turn out to be less stringent, excluding masses larger than 17 GeV and lifetimes smaller than 4 × 1025 s.

  20. A Study on Spectral Signature Analysis of Wetland Vegetation Based on Ground Imaging Spectrum Data

    NASA Astrophysics Data System (ADS)

    Ling, Chengxing; Liu, Hua; Ju, Hongbo; Zhang, Huaiqing; You, Jia; Li, Weina

    2017-10-01

    The objective of this study was to verify the application of imaging spectrometer in wetland vegetation remote sensing monitoring, based on analysis of wetland vegetation spectral features. Spectral information of Carex vegetation spectral data under different water environment was collected bySOC710VP and ASD FieldSpec 3; Meanwhile, the chlorophyll contents of wheat leaves were tested in the lab. A total 9 typical vegetation indices were calculated by using two instruments’ data which were spectral values from 400nm to 1000 nm. Then features between the same vegetation indices and soil water contents for two applications were analyzed and compared. The results showed that there were same spectrum curve trends of Carex vegetation (soil moisture content of 51%, 32%, 14% and three regional comparative analysis)reflectance between SOC710VP and ASD FieldSpec 3, including the two reflectance peak of 550nm and 730 nm, two reflectance valley of 690 nm and 970nm, and continuous near infrared reflectance platform. However, The two also have a very clear distinction: (1) The reflection spectra of SOC710VP leaves of Carex Carex leaf spectra in the three soil moisture environment values are greater than ASD FieldSpec 3 collected value; (2) The SOC710VP reflectivity curve does not have the smooth curve of the original spectrum measured by the ASD FieldSpec 3, the amplitude of fluctuation is bigger, and it is more obvious in the near infrared band. It is concluded that SOC710VP spectral data are reliable, with the image features, spectral curve features reliable. It has great potential in the research of hyperspectral remote sensing technology in the development of wetland near earth, remote sensing monitoring of wetland resources.

  1. A multispectral, high-speed, low-cost device in the UV-MWIR spectral range

    NASA Astrophysics Data System (ADS)

    Svensson, Thomas; Lindell, Roland; Carlsson, Leif

    2011-10-01

    This paper presents the design and performance of a multispectral, high-speed, low-cost device. It is composed of six separate single element detectors covering the spectral range from UV to MWIR. Due to the wide spectral ranges of the detectors, these are used in conjunction with spectral filters. The device is a tool to spectrally and temporally resolve large field of view angularly integrated signatures from very fast events and get a total amplitude measure. One application has been to determine the maximal amplitude signal in muzzle flashes. Since the pulse width of a muzzle flash is on the order of 1 ms, a sensor with a bandwidth significantly higher than 1000 Hz is needed to resolve the flash. Examples from experimental trials are given.

  2. Psoralen-ultraviolet A treatment with Psoralen-ultraviolet B therapy in the treatment of psoriasis.

    PubMed

    Ahmed Asim, Sadaf; Ahmed, Sitwat; Us-Sehar, Najam

    2013-05-01

    To compare the conventional psoralen-ultraviolet A treatment with psoralen-ultraviolet B therapy in the treatment of psoriasis. We studied 50 patients of plaque type psoriasis who were selected to receive either conventional psoralen-ultraviolet A or psoralen-ultraviolet B treatment. There was no significant difference between the two treatment groups in the number of patients whose skin cleared of psoriasis or the number of exposures required for clearance. Profile of side effects and disease status was also similar after three months of follow up. Psoralen-ultraviolet B treatment is as effective as conventional psoralen-ultraviolet A in the treatment of psoriasis. Further long term studies are needed to assess the safety of psoralen-ultraviolet B.

  3. Optical ID Tags for Secure Verification of Multispectral Visible and NIR Signatures

    NASA Astrophysics Data System (ADS)

    Pérez-Cabré, Elisabet; Millán, María S.; Javidi, Bahram

    2008-04-01

    We propose to combine information from visible (VIS) and near infrared (NIR) spectral bands to increase robustness on security systems and deter from unauthorized use of optical tags that permit the identification of a given person or object. The signature that identifies the element under surveillance will be only obtained by the appropriate combination of the visible content and the NIR data. The fully-phase encryption technique is applied to avoid an easy recognition of the resultant signature at the naked eye and an easy reproduction using conventional devices for imaging or scanning. The obtained complex-amplitude encrypted distribution is encoded on an identity (ID) tag. Spatial multiplexing of the encrypted signature allows us to build a distortion-invariant ID tag, so that remote authentication can be achieved even if the tag is captured under rotation or at different distances. We explore the possibility of using partial information of the encrypted distribution. Simulation results are provided and discussed.

  4. Long-term calibration monitoring of Spectralon diffusers BRDF in the air-ultraviolet.

    PubMed

    Georgiev, Georgi T; Butler, James J

    2007-11-10

    Long-term calibration monitoring of the bidirectional reflectance distribution function (BRDF) of Spectralon diffusers in the air-ultraviolet is presented. Four Spectralon diffusers were monitored in this study. Three of the diffusers, designated as H1, H2, and H3, were used in the prelaunch radiance calibration of the Solar Backscatter Ultraviolet/2 (SBUV/2) satellite instruments on National Oceanic and Atmospheric Administration (NOAA) 14 and 16. A fourth diffuser, designated as the 400 diffuser, was used in the prelaunch calibration of the Ozone Mapping and Profiler Suite (OMPS) instrument scheduled for initial flight in 2009 on the National Polar Orbiting Environmental Satellite System Preparatory Project. The BRDF data of this study were obtained between 1994 and 2005 using the scatterometer located in the National Aeronautics and Space Administration Goddard Space Flight Center Diffuser Calibration Laboratory. The diffusers were measured at 13 wavelengths between 230 and 425 nm at the incident and scatter angles used in the prelaunch calibrations of SBUV/2 and OMPS. Spectral features in the BRDF of Spectralon are also discussed. The comparison shows how the air-ultraviolet BRDF of these Spectralon samples changed over time under clean room deployment conditions.

  5. Satellite estimation of surface spectral ultraviolet irradiance using OMI data in East Asia

    NASA Astrophysics Data System (ADS)

    Lee, H.; Kim, J.; Jeong, U.

    2017-12-01

    Due to a strong influence to the human health and ecosystem environment, continuous monitoring of the surface ultraviolet (UV) irradiance is important nowadays. The amount of UVA (320-400 nm) and UVB (290-320 nm) radiation at the Earth surface depends on the extent of Rayleigh scattering by atmospheric gas molecules, the radiative absorption by ozone, radiative scattering by clouds, and both absorption and scattering by airborne aerosols. Thus advanced consideration of these factors is the essential part to establish the process of UV irradiance estimation. Also UV index (UVI) is a simple parameter to show the strength of surface UV irradiance, therefore UVI has been widely utilized for the purpose of UV monitoring. In this study, we estimate surface UV irradiance at East Asia using realistic input based on OMI Total Ozone and reflectivity, and then validate this estimated comparing to UV irradiance from World Ozone and Ultraviolet Radiation Data Centre (WOUDC) data. In this work, we also try to develop our own retrieval algorithm for better estimation of surface irradiance. We use the Vector Linearized Discrete Ordinate Radiative Transfer (VLIDORT) model version 2.6 for our UV irradiance calculation. The input to the VLIDORT radiative transfer calculations are the total ozone column (TOMS V7 climatology), the surface albedo (Herman and Celarier, 1997) and the cloud optical depth. Based on these, the UV irradiance is calculated based on look-up table (LUT) approach. To correct absorbing aerosol, UV irradiance algorithm added climatological aerosol information (Arola et al., 2009). The further study, we analyze the comprehensive uncertainty analysis based on LUT and all input parameters.

  6. Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof

    DOEpatents

    Funsten, H.O.; McComas, D.J.

    1999-06-15

    Apparatus and method are disclosed for rapid detection of explosives residue from the deflagration signature thereof. A property inherent to most explosives is their stickiness, resulting in a strong tendency of explosive particulate to contaminate the environment of a bulk explosive. An apparatus for collection of residue particulate, burning the collected particulate, and measurement of the ultraviolet emission produced thereby, is described. The present invention can be utilized for real-time screening of personnel, cars, packages, suspected devices, etc., and provides an inexpensive, portable, and noninvasive means for detecting explosives. 4 figs.

  7. Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof

    DOEpatents

    Funsten, Herbert O.; McComas, David J.

    1999-01-01

    Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof. A property inherent to most explosives is their stickiness, resulting in a strong tendency of explosive particulate to contaminate the environment of a bulk explosive. An apparatus for collection of residue particulate, burning the collected particulate, and measurement of the ultraviolet emission produced thereby, is described. The present invention can be utilized for real-time screening of personnel, cars, packages, suspected devices, etc., and provides an inexpensive, portable, and noninvasive means for detecting explosives.

  8. Spectral State Evolution of 4U 1820-30: the Stability of the Spectral Index of Comptonization Tail

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev G.; Seifina, Elena; Frontera, Filippo

    2013-01-01

    We analyze the X-ray spectra and their timing properties of the compact Xray binary 4U 1820-30. We establish spectral transitions in this source seen with BeppoSAX and the Rossi X-ray Timing Explorer (RXTE). During the RXTE observations (1996 - 2009), the source were approximately approximately 75% of its time in the soft state making the lower banana and upper banana transitions combined with long-term low-high state transitions. We reveal that all of the X-ray spectra of 4U 1820-30 are fit by a composition of a thermal (blackbody) component, a Comptonization component (COMPTB) and a Gaussian-line component. Thus using this spectral analysis we find that the photon power-law index Gamma of the Comptonization component is almost unchangeable (Gamma approximately 2) while the electron temperature kTe changes from 2.9 to 21 keV during these spectral events. We also establish that for these spectral events the normalization of COMPTB component (which is proportional to mass accretion rate ?M) increases by factor 8 when kTe decreases from 21 keV to 2.9 keV. Before this index stability effect was also found analyzing X-ray data for Z-source GX 340+0 and for atolls, 4U 1728-34, GX 3+1. Thus, we can suggest that this spectral stability property is a spectral signature of an accreting neutron star source. On the other hand in a black hole binary G monotonically increases with ?Mand ultimately its value saturates at large ?M.

  9. Insights on the Spectral Signatures of Stellar Activity and Planets from PCA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Allen B.; Fischer, Debra A.; Cisewski, Jessi

    Photospheric velocities and stellar activity features such as spots and faculae produce measurable radial velocity signals that currently obscure the detection of sub-meter-per-second planetary signals. However, photospheric velocities are imprinted differently in a high-resolution spectrum than are Keplerian Doppler shifts. Photospheric activity produces subtle differences in the shapes of absorption lines due to differences in how temperature or pressure affects the atomic transitions. In contrast, Keplerian Doppler shifts affect every spectral line in the same way. With a high enough signal-to-noise (S/N) and resolution, statistical techniques can exploit differences in spectra to disentangle the photospheric velocities and detect lower-amplitude exoplanetmore » signals. We use simulated disk-integrated time-series spectra and principal component analysis (PCA) to show that photospheric signals introduce spectral line variability that is distinct from that of Doppler shifts. We quantify the impact of instrumental resolution and S/N for this work.« less

  10. First ultraviolet spectropolarimetry of Be stars from the Wisconsin Ultraviolet Photo-Polarimeter Experiment

    NASA Technical Reports Server (NTRS)

    Bjorkman, K. S.; Nordsieck, K. H.; Code, A. D.; Anderson, C. M.; Babler, B. L.; Clayton, G. C.; Magalhaes, A. M.; Meade, M. R.; Nook, M. A.; Schulte-Ladbeck, R. E.

    1991-01-01

    The first UV spectropolarimetric observations of Be stars are presented. They were obtained with the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE) aboard the Astro-1 mission. WUPPE data on the Be stars Zeta Tau and Pi Aqr, along with near-simultaneous optical data obtained at the Pine Bluff Observatory (PBO). Combined WUPPE and PBO data give polarization as a function of wavelength across a very broad spectral region, from 1400 to 7600 A. Existing Be star models predicted increasing polarization toward shorter wavelengths in the UV, but this is not supported by the WUPPE observations. Instead, the observations show a constant or slightly declining continuum polarization shortward of the Balmer jump, and broad UV polarization dips around 1700 and 1900 A, which may be a result of Fe-line-attenuation effects on the polarized flux. Supporting evidence for this conclusion comes from the optical data, in which decreases in polarization across Fe II lines in Zeta Tau were discovered.

  11. Visible and near-infrared spectral signatures for adulteration assessment of extra virgin olive oil

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Ottevaere, H.; Thienpont, H.; Conte, L.; Marega, M.; Cichelli, A.; Attilio, C.; Cimato, A.

    2010-04-01

    Because of its high price, the extra virgin olive oil is frequently target for adulteration with lower quality oils. This paper presents an innovative optical technique capable of quantifying the adulteration of extra virgin olive oil caused by lowergrade olive oils. It relies on spectral fingerprinting the test liquid by means of diffuse-light absorption spectroscopy carried out by optical fiber technology in the wide 400-1700 nm spectral range. Then, a smart multivariate processing of spectroscopic data is applied for immediate prediction of adulterant concentration.

  12. Psoralen-ultraviolet A treatment with Psoralen-ultraviolet B therapy in the treatment of psoriasis

    PubMed Central

    Ahmed Asim, Sadaf; Ahmed, Sitwat; us-Sehar, Najam

    2013-01-01

    Objective: To compare the conventional psoralen-ultraviolet A treatment with psoralen-ultraviolet B therapy in the treatment of psoriasis. Methodology: We studied 50 patients of plaque type psoriasis who were selected to receive either conventional psoralen-ultraviolet A or psoralen-ultraviolet B treatment. Results: There was no significant difference between the two treatment groups in the number of patients whose skin cleared of psoriasis or the number of exposures required for clearance. Profile of side effects and disease status was also similar after three months of follow up. Conclusion: Psoralen-ultraviolet B treatment is as effective as conventional psoralen-ultraviolet A in the treatment of psoriasis. Further long term studies are needed to assess the safety of psoralen-ultraviolet B. PMID:24353623

  13. Ultraviolet Radiation Round-Robin Testing of Various Backsheets for Photovoltaic Modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koehl, Michael; Ballion, Amal; Lee, Yu-Hsien

    2015-06-14

    Durability testing of materials exposed to natural weathering requires testing of the ultraviolet (UV) stability, especially for polymeric materials. The type approval testing of photovoltaic (PV) modules according to standards IEC 61215 and IEC 61646, which includes a so-called UV preconditioning test with a total UV dose of 15 kWh/m2, does not correspond to the real loads during lifetime. Between 3%-10% of the UV radiation has to be in the spectral range between 280 and 320 nm (UV-B) in the recent editions of the standards. However, the spectral distribution of the radiation source is very important because different samples showmore » very individual spectral sensitivity for the radiation offered. Less than 6% of the intensity of solar radiation exists in the UV range. In the case of an increase of the intensity of the light source for accelerating the UV test, overheating of the samples would have to be prevented more rigorously and the temperature of the samples have to be measured to avoid misinterpretation of the test results.« less

  14. Combined ultraviolet studies of astronomical source

    NASA Technical Reports Server (NTRS)

    Dupress, A. K.; Baliunas, S. L.; Blair, W. P.; Hartmann, L. W.; Huchra, J. P.; Raymond, J. C.; Smith, G. H.; Soderblom, D. R.

    1985-01-01

    As part of its Ultraviolet Studies of Astronomical Sources the Smithsonian Astrophysical Observatory for the period 1 Feb. 1985 to 31 July 1985 observed the following: the Cygnus Loop; oxygen-rich supernova remnants in 1E0102-72; the Large Magellanic Cloud supernova remnants; P Cygni profiles in dwarf novae; soft X-ray photoionization of interstellar gas; spectral variations in AM Her stars; the mass of Feige 24; atmospheric inhomogeneities in Lambda Andromedae and FF Aquarii; photometric and spectroscopic observation of Capella; Alpha Orionis; metal deficient giant stars; M 67 giants; high-velocity winds from giant stars; accretion disk parameters in cataclysmic variables; chromospheric emission of late-type dwarfs in visual binaries; chromospheres and transient regions of stars in the Ursa Major group; and low-metallicity blue galaxies.

  15. The Hopkins Ultraviolet Telescope: The Final Archive

    NASA Technical Reports Server (NTRS)

    Dixon, William V.; Blair, William P.; Kruk, Jeffrey W.; Romelfanger, Mary L.

    2013-01-01

    The Hopkins Ultraviolet Telescope (HUT) was a 0.9 m telescope and moderate-resolution (Delta)lambda equals 3 A) far-ultraviolet (820-1850 Å) spectrograph that flew twice on the space shuttle, in 1990 December (Astro-1, STS-35) and 1995 March (Astro-2, STS-67). The resulting spectra were originally archived in a nonstandard format that lacked important descriptive metadata. To increase their utility, we have modified the original datareduction software to produce a new and more user-friendly data product, a time-tagged photon list similar in format to the Intermediate Data Files (IDFs) produced by the Far Ultraviolet Spectroscopic Explorer calibration pipeline. We have transferred all relevant pointing and instrument-status information from locally-archived science and engineering databases into new FITS header keywords for each data set. Using this new pipeline, we have reprocessed the entire HUT archive from both missions, producing a new set of calibrated spectral products in a modern FITS format that is fully compliant with Virtual Observatory requirements. For each exposure, we have generated quicklook plots of the fully-calibrated spectrum and associated pointing history information. Finally, we have retrieved from our archives HUT TV guider images, which provide information on aperture positioning relative to guide stars, and converted them into FITS-format image files. All of these new data products are available in the new HUT section of the Mikulski Archive for Space Telescopes (MAST), along with historical and reference documents from both missions. In this article, we document the improved data-processing steps applied to the data and show examples of the new data products.

  16. The Hopkins Ultraviolet Telescope: The Final Archive

    NASA Astrophysics Data System (ADS)

    Dixon, William V.; Blair, William P.; Kruk, Jeffrey W.; Romelfanger, Mary L.

    2013-04-01

    The Hopkins Ultraviolet Telescope (HUT) was a 0.9 m telescope and moderate-resolution (Δλ = 3 Å) far-ultraviolet (820-1850 Å) spectrograph that flew twice on the space shuttle, in 1990 December (Astro-1, STS-35) and 1995 March (Astro-2, STS-67). The resulting spectra were originally archived in a nonstandard format that lacked important descriptive metadata. To increase their utility, we have modified the original data-reduction software to produce a new and more user-friendly data product, a time-tagged photon list similar in format to the Intermediate Data Files (IDFs) produced by the Far Ultraviolet Spectroscopic Explorer calibration pipeline. We have transferred all relevant pointing and instrument-status information from locally-archived science and engineering databases into new FITS header keywords for each data set. Using this new pipeline, we have reprocessed the entire HUT archive from both missions, producing a new set of calibrated spectral products in a modern FITS format that is fully compliant with Virtual Observatory requirements. For each exposure, we have generated quick-look plots of the fully-calibrated spectrum and associated pointing history information. Finally, we have retrieved from our archives HUT TV guider images, which provide information on aperture positioning relative to guide stars, and converted them into FITS-format image files. All of these new data products are available in the new HUT section of the Mikulski Archive for Space Telescopes (MAST), along with historical and reference documents from both missions. In this article, we document the improved data-processing steps applied to the data and show examples of the new data products.

  17. THE THIRD SIGNATURE OF GRANULATION IN BRIGHT-GIANT AND SUPERGIANT STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, David F.; Pugh, Teznie, E-mail: dfgray@uwo.ca

    2012-04-15

    We investigated third-signature granulation plots for 18 bright giants and supergiants and one giant of spectral classes G0 to M3. These plots reveal the net granulation velocities, averaged over the stellar disk, as a function of depth. Supergiants show significant differences from the 'standard' shape seen for lower-luminosity stars. Most notable is a striking reversal of slope seen for three of the nine supergiants, i.e., stronger lines are more blueshifted than weaker lines, opposite the solar case. Changes in the third-signature plot of {alpha} Sco (M1.5 Iab) with time imply granulation cells that penetrate only the lower portion of themore » photosphere. For those stars showing the standard shape, we derive scaling factors relative to the Sun that serve as a first-order measure of the strength of the granulation relative to the Sun. For G-type stars, the third-signature scale of the bright giants and supergiants is approximately 1.5 times as strong as in dwarfs, but for K stars, there in no discernible difference between higher-luminosity stars and dwarfs. Classical macroturbulence, a measure of the velocity dispersion of the granulation, increases with the third-signature-plot scale factors, but at different rates for different luminosity classes.« less

  18. Semiconductor Laser Multi-Spectral Sensing and Imaging

    PubMed Central

    Le, Han Q.; Wang, Yang

    2010-01-01

    Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO). These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers. PMID:22315555

  19. Semiconductor laser multi-spectral sensing and imaging.

    PubMed

    Le, Han Q; Wang, Yang

    2010-01-01

    Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO). These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers.

  20. Ultraviolet Raman Wide-Field Hyperspectral Imaging Spectrometer for Standoff Trace Explosive Detection.

    PubMed

    Hufziger, Kyle T; Bykov, Sergei V; Asher, Sanford A

    2017-02-01

    We constructed the first deep ultraviolet (UV) Raman standoff wide-field imaging spectrometer. Our novel deep UV imaging spectrometer utilizes a photonic crystal to select Raman spectral regions for detection. The photonic crystal is composed of highly charged, monodisperse 35.5 ± 2.9 nm silica nanoparticles that self-assemble in solution to produce a face centered cubic crystalline colloidal array that Bragg diffracts a narrow ∼1.0 nm full width at half-maximum (FWHM) UV spectral region. We utilize this photonic crystal to select and image two different spectral regions containing resonance Raman bands of pentaerythritol tetranitrate (PETN) and NH 4 NO 3 (AN). These two deep UV Raman spectral regions diffracted were selected by angle tuning the photonic crystal. We utilized this imaging spectrometer to measure 229 nm excited UV Raman images containing ∼10-1000 µg/cm 2 samples of solid PETN and AN on aluminum surfaces at 2.3 m standoff distances. We estimate detection limits of ∼1 µg/cm 2 for PETN and AN films under these experimental conditions.

  1. Automated road network extraction from high spatial resolution multi-spectral imagery

    NASA Astrophysics Data System (ADS)

    Zhang, Qiaoping

    For the last three decades, the Geomatics Engineering and Computer Science communities have considered automated road network extraction from remotely-sensed imagery to be a challenging and important research topic. The main objective of this research is to investigate the theory and methodology of automated feature extraction for image-based road database creation, refinement or updating, and to develop a series of algorithms for road network extraction from high resolution multi-spectral imagery. The proposed framework for road network extraction from multi-spectral imagery begins with an image segmentation using the k-means algorithm. This step mainly concerns the exploitation of the spectral information for feature extraction. The road cluster is automatically identified using a fuzzy classifier based on a set of predefined road surface membership functions. These membership functions are established based on the general spectral signature of road pavement materials and the corresponding normalized digital numbers on each multi-spectral band. Shape descriptors of the Angular Texture Signature are defined and used to reduce the misclassifications between roads and other spectrally similar objects (e.g., crop fields, parking lots, and buildings). An iterative and localized Radon transform is developed for the extraction of road centerlines from the classified images. The purpose of the transform is to accurately and completely detect the road centerlines. It is able to find short, long, and even curvilinear lines. The input image is partitioned into a set of subset images called road component images. An iterative Radon transform is locally applied to each road component image. At each iteration, road centerline segments are detected based on an accurate estimation of the line parameters and line widths. Three localization approaches are implemented and compared using qualitative and quantitative methods. Finally, the road centerline segments are grouped into a

  2. Modelling ultraviolet-line diagnostics of stars, the ionized and the neutral interstellar medium in star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Vidal-García, A.; Charlot, S.; Bruzual, G.; Hubeny, I.

    2017-09-01

    We combine state-of-the-art models for the production of stellar radiation and its transfer through the interstellar medium (ISM) to investigate ultraviolet-line diagnostics of stars, the ionized and the neutral ISM in star-forming galaxies. We start by assessing the reliability of our stellar population synthesis modelling by fitting absorption-line indices in the ISM-free ultraviolet spectra of 10 Large Magellanic Cloud clusters. In doing so, we find that neglecting stochastic sampling of the stellar initial mass function in these young (∼10-100 Myr), low-mass clusters affects negligibly ultraviolet-based age and metallicity estimates but can lead to significant overestimates of stellar mass. Then, we proceed and develop a simple approach, based on an idealized description of the main features of the ISM, to compute in a physically consistent way the combined influence of nebular emission and interstellar absorption on ultraviolet spectra of star-forming galaxies. Our model accounts for the transfer of radiation through the ionized interiors and outer neutral envelopes of short-lived stellar birth clouds, as well as for radiative transfer through a diffuse intercloud medium. We use this approach to explore the entangled signatures of stars, the ionized and the neutral ISM in ultraviolet spectra of star-forming galaxies. We find that, aside from a few notable exceptions, most standard ultraviolet indices defined in the spectra of ISM-free stellar populations are prone to significant contamination by the ISM, which increases with metallicity. We also identify several nebular-emission and interstellar-absorption features, which stand out as particularly clean tracers of the different phases of the ISM.

  3. Broadband measurements of aerosol extinction in the ultraviolet spectral region

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Flores, J. M.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2013-04-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross sections and complex refractive indices. We describe a new laboratory instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We determined aerosol extinction cross sections and directly observed Mie scattering resonances for aerosols that are purely scattering (polystyrene latex spheres and ammonium sulfate), slightly absorbing (Suwannee River fulvic acid), and strongly absorbing (nigrosin dye). We describe an approach for retrieving refractive indices as a function of wavelength from the measured extinction cross sections over the 360-420 nm wavelength region. The retrieved refractive indices for PSL and ammonium sulfate agree within uncertainty with the literature values for this spectral region. The refractive index determined for nigrosin is 1.78 (± 0.03) + 0.19 (± 0.08)i at 360 nm and 1.63 (± 0.03) + 0.21 (± 0.05)i at 420 nm. The refractive index determined for Suwannee River fulvic acid is 1.71 (± 0.02) + 0.07 (± 0.06)i at 360 nm and 1.66 (± 0.02) + 0.06 (± 0.04)i at 420 nm. These laboratory results support the potential for a field instrument capable of determining ambient aerosol optical extinction, average aerosol extinction cross section, and complex refractive index as a function of wavelength.

  4. Broadband measurements of aerosol extinction in the ultraviolet spectral region

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Flores, J. M.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2013-01-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross-sections and complex refractive indices. We describe a new laboratory instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We determined aerosol extinction cross-sections and directly observed Mie scattering resonances for aerosols that are purely scattering (polystyrene latex spheres and ammonium sulfate), slightly absorbing (Suwannee River fulvic acid), and strongly absorbing (nigrosin dye). We describe an approach for retrieving refractive indices as a function of wavelength from the measured extinction cross-sections over the 360-420 nm wavelength region. The retrieved refractive indices for PSL and ammonium sulfate agree within uncertainty with literature values for this spectral region. The refractive index determined for nigrosin is 1.78 (±0.03) + 0.19 (±0.08) i at 360 nm and 1.53 (±0.03) + 0.21 (±0.05) i at 420 nm. The refractive index determined for Suwannee River fulvic acid is 1.71 (±0.02) + 0.07 (±0.06) i at 360 nm and 1.66 (±0.02) + 0.06 (±0.04) i at 420 nm. These laboratory results support the potential for a field instrument capable of determining ambient aerosol optical extinction, average aerosol extinction cross-section, and complex refractive index as a function of wavelength.

  5. Improving Spectral Image Classification through Band-Ratio Optimization and Pixel Clustering

    NASA Astrophysics Data System (ADS)

    O'Neill, M.; Burt, C.; McKenna, I.; Kimblin, C.

    2017-12-01

    The Underground Nuclear Explosion Signatures Experiment (UNESE) seeks to characterize non-prompt observables from underground nuclear explosions (UNE). As part of this effort, we evaluated the ability of DigitalGlobe's WorldView-3 (WV3) to detect and map UNE signatures. WV3 is the current state-of-the-art, commercial, multispectral imaging satellite; however, it has relatively limited spectral and spatial resolutions. These limitations impede image classifiers from detecting targets that are spatially small and lack distinct spectral features. In order to improve classification results, we developed custom algorithms to reduce false positive rates while increasing true positive rates via a band-ratio optimization and pixel clustering front-end. The clusters resulting from these algorithms were processed with standard spectral image classifiers such as Mixture-Tuned Matched Filter (MTMF) and Adaptive Coherence Estimator (ACE). WV3 and AVIRIS data of Cuprite, Nevada, were used as a validation data set. These data were processed with a standard classification approach using MTMF and ACE algorithms. They were also processed using the custom front-end prior to the standard approach. A comparison of the results shows that the custom front-end significantly increases the true positive rate and decreases the false positive rate.This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy. DOE/NV/25946-3283.

  6. Spectral images of HD 199178

    NASA Technical Reports Server (NTRS)

    Neff, J. E.; Vilhu, O.; Walter, F. M.

    1988-01-01

    High-resolution IUE spectra of the Mg II k line of HD 199178 were analyzed, applying spectral imaging techniques to derive an image of the chromospheric structure and to study the transient behavior of the chromosphere. All spectra in the IUE archives were uniformly reduced and analyzed. Results are compared with ground-based observations of the photosphere. Four ultraviolet flares on HD 199178 are observed; 3 of these occurred at roughly the same rotational phase. There is no clear phase-dependence of the SWP line fluxes, but there is for the Mg II k flux. The emission centroid of the Mg II k line varies in a quasi-sinusoidal fashion, presumably due to the rotation of a nonuniform chromosphere.

  7. Solution and solid trinitrotoluene (TNT) photochemistry: persistence of TNT-like ultraviolet (UV) resonance Raman bands.

    PubMed

    Gares, Katie L; Bykov, Sergei V; Godugu, Bhaskar; Asher, Sanford A

    2014-01-01

    We examined the 229 nm deep-ultraviolet resonance Raman (DUVRR) spectra of solution and solid-state trinitrotoluene (TNT) and its solution and solid-state photochemistry. Although TNT photodegrades with a solution quantum yield of ϕ ∼ 0.015, the initial photoproducts show DUVRR spectra extraordinarily similar to pure TNT, due to the similar photoproduct enhancement of the -NO2 stretching vibrations. This results in TNT-like DUVRR spectra even after complete TNT photolysis. These ultraviolet resonance Raman spectral bands enable DUVRR of trace as well as DUVRR standoff TNT detection. We determined the structure of various initial TNT photoproducts by using liquid chromatography-mass spectrometry and tandem mass spectrometry. Similar TNT DUVRR spectra and photoproducts are observed in the solution and solid states.

  8. Simple Refractometers for Index Measurements by Minimum Deviation Method from Far-ultraviolet to Near Infrared

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Madison, Timothy J.; Petrone, Peter

    1998-01-01

    The focal shift of an optical filter used in non-collimated light depends directly on substrate thickness and index of refraction. The HST Advanced Camera for Surveys (ACS) requires a set of filters whose focal shifts are tightly matched. Knowing the index of refraction for substrate glasses allows precise substrate thicknesses to be specified. Two refractometers have been developed at the Goddard Space Flight Center (GSFC) to determine the indices of refraction of materials from which ACS filters are made. Modem imaging detectors for the near infrared, visible, and far ultraviolet spectral regions make these simple yet sophisticated refractometers possible. A new technology, high accuracy, angular encoder also developed at GSFC makes high precision index measurement possible in the vacuum ultraviolet.

  9. A comparison of digital multi-spectral imagery versus conventional photography for mapping seagrass in Indian River Lagoon, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virnstein, R.; Tepera, M.; Beazley, L.

    1997-06-01

    A pilot study is very briefly summarized in the article. The study tested the potential of multi-spectral digital imagery for discrimination of seagrass densities and species, algae, and bottom types. Imagery was obtained with the Compact Airborne Spectral Imager (casi) and two flight lines flown with hyper-spectral mode. The photogrammetric method used allowed interpretation of the highest quality product, eliminating limitations caused by outdated or poor quality base maps and the errors associated with transfer of polygons. Initial image analysis indicates that the multi-spectral imagery has several advantages, including sophisticated spectral signature recognition and classification, ease of geo-referencing, and rapidmore » mosaicking.« less

  10. Dissociable Neural Response Signatures for Slow Amplitude and Frequency Modulation in Human Auditory Cortex

    PubMed Central

    Henry, Molly J.; Obleser, Jonas

    2013-01-01

    Natural auditory stimuli are characterized by slow fluctuations in amplitude and frequency. However, the degree to which the neural responses to slow amplitude modulation (AM) and frequency modulation (FM) are capable of conveying independent time-varying information, particularly with respect to speech communication, is unclear. In the current electroencephalography (EEG) study, participants listened to amplitude- and frequency-modulated narrow-band noises with a 3-Hz modulation rate, and the resulting neural responses were compared. Spectral analyses revealed similar spectral amplitude peaks for AM and FM at the stimulation frequency (3 Hz), but amplitude at the second harmonic frequency (6 Hz) was much higher for FM than for AM. Moreover, the phase delay of neural responses with respect to the full-band stimulus envelope was shorter for FM than for AM. Finally, the critical analysis involved classification of single trials as being in response to either AM or FM based on either phase or amplitude information. Time-varying phase, but not amplitude, was sufficient to accurately classify AM and FM stimuli based on single-trial neural responses. Taken together, the current results support the dissociable nature of cortical signatures of slow AM and FM. These cortical signatures potentially provide an efficient means to dissect simultaneously communicated slow temporal and spectral information in acoustic communication signals. PMID:24205309

  11. The MPI-Mainz UV/VIS Spectral Atlas of Gaseous Molecules of Atmospheric Interest

    NASA Astrophysics Data System (ADS)

    Keller-Rudek, H.; Moortgat, G. K.; Sander, R.; Sörensen, R.

    2013-08-01

    We present the MPI-Mainz UV/VIS Spectral Atlas, which is a large collection of absorption cross sections and quantum yields in the ultraviolet and visible (UV/VIS) wavelength region for gaseous molecules and radicals primarily of atmospheric interest. The data files contain results of individual measurements, covering research of almost a whole century. To compare and visualize the data sets, multicoloured graphical representations have been created. The Spectral Atlas is available on the internet at spectral-atlas-mainz.org"target="_blank">http://www.uv-vis-spectral-atlas-mainz.org. It now appears with improved browse and search options, based on new database software. In addition to the web pages, which are continuously updated, a frozen version of the data is available under the doi:10.5281/zenodo.6951.

  12. The linear polarization of 3C 345 in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Dolan, Joseph F.; Boyd, Patricia T.; Wolinski, Karen G.; Smith, Paul S.; Impey, C. D.; Bless, Robert C.; Nelson, M. J.; Percival, J. W.; Taylor, M. J.; Elliot, J. L.

    1994-01-01

    The linear polarization of 3C 345, a superluminal radio source and OVV quasar, was observed in two bandpasses in the ultraviolet (centered at 2160 A and 2770 A) in 1993 April using the High Speed Photometer on the Hubble Space Telescope. The quasar is significantly polarized in the UV (p greater than 5%). Ground-based polarimetry was obtained 11 days later, but a difference in the position angle between the observations in the visible and those in the UV indicate that the magnitude of the polarization of 3C 345 may have changed over that time. If the two observation sets represent the same state of spectral polarization, then the large UV flux implies that either the polarization of the synchrotron continuum must stop decreasing in the UV, or that there is an additional source of polarized flux in the ultraviolet. Only if the UV observations represent a spectral polarization state with the same position angle in the visible seen previously in 3C 345 can the polarized flux be represented by a single power law consistent with the three-component model of Smith et al. This model consists of a polarized synchrotron component, an unpolarized component from the broad-line region, and an unpolarized component attributed to thermal radiation from an optically thick accretion disk. Additional simultaneous polarimetry in the UV and visible will be required to further constrain models of the continuum emission processes in 3C 345 and determine if the UV polarized flux is synchrotron in origin.

  13. Antarctic Ultraviolet Radiation Climatology from Total Ozone Mapping Spectrometer Data

    NASA Technical Reports Server (NTRS)

    Lubin, Dan

    2004-01-01

    This project has successfully produced a climatology of local noon spectral surface irradiance covering the Antarctic continent and the Southern Ocean, the spectral interval 290-700 nm (UV-A, UV-B, and photosynthetically active radiation, PAR), and the entire sunlit part of the year for November 1979-December 1999. Total Ozone Mapping Spectrometer (TOMS) data were used to specify column ozone abundance and UV-A (360- or 380-nm) reflectivity, and passive microwave (MW) sea ice concentrations were used to specify the surface albedo over the Southern Ocean. For this latter task, sea ice concentration retrievals from the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) and its successor, the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I) were identified with ultraviolet/visible-wavelength albedos based on an empirical TOMS/MW parameterization developed for this purpose (Lubin and Morrow, 2001). The satellite retrievals of surface albedo and UV-A reflectivity were used in a delta-Eddington radiative transfer model to estimate cloud effective optical depth. These optical depth estimates were then used along with the total ozone and surface albedo to calculate the downwelling spectral UV and PAR irradiance at the surface. These spectral irradiance maps were produced for every usable day of TOMS data between 1979-1999 (every other day early in the TOMS program, daily later on).

  14. Examining spectral variations in localized lunar dark mantle deposits

    USGS Publications Warehouse

    Jawin, Erica; Besse, Sebastien; Gaddis, Lisa R.; Sunshine, Jessica; Head, James W.; Mazrouei, Sara

    2015-01-01

    The localized lunar dark mantle deposits (DMDs) in Alphonsus, J. Herschel, and Oppenheimer craters were analyzed using visible-near-infrared spectroscopy data from the Moon Mineralogy Mapper. Spectra of these localized DMDs were analyzed for compositional and mineralogical variations within the deposits and were compared with nearby mare basalt units. Spectra of the three localized DMDs exhibited mafic absorption features indicating iron-rich compositions, although the DMDs were spectrally distinct from nearby mare basalts. All of the DMDs contained spectral signatures of glassy materials, suggesting the presence of volcanic glass in varying concentrations across the individual deposits. In addition, the albedo and spectral signatures were variable within the Alphonsus and Oppenheimer crater DMDs, suggesting variable deposit thickness and/or variations in the amount of mixing with the local substrate. Two previously unidentified localized DMDs were discovered to the northeast of Oppenheimer crater. The identification of high concentrations of volcanic glass in multiple localized DMDs in different locations suggests that the distribution of volcanic glass across the lunar surface is much more widespread than has been previously documented. The presence of volcanic glass implies an explosive, vulcanian eruption style for localized DMDs, as this allows volcanic glass to rapidly quench, inhibiting crystallization, compared to the larger hawaiian-style eruptions typical of regional DMD emplacement where black beads indicate a higher degree of crystallization. Improved understanding of the local and global distributions of volcanic glass in lunar DMDs will further constrain lunar degassing and compositional evolution throughout lunar volcanic history.

  15. Spectral stability of supercontinuum generation in condensed mediums

    NASA Astrophysics Data System (ADS)

    Wang, Jier; Zhang, Yizhu; Shen, Huifeng; Jiang, Yuhai; Wang, Zhongyang

    2017-07-01

    The features of the supercontinuum generation (SCG) using intense femtosecond pulses are systematically investigated in condensed mediums [sapphire, BK7 glass, ultraviolet (UV)-fused silica, and fluoride crystals]. By optimizing the experimental conditions and choosing suitable mediums, the bandwidth of the SCG can be extended to the UV regime with good spectral stability. This study demonstrates that materials with high bandgap present high efficiency for SCG, particularly in the short wavelength region. The achievable short wavelength and low power-density threshold of the SCG exhibit complicated correlations with the bandgap of condensed mediums.

  16. Signatures support program

    NASA Astrophysics Data System (ADS)

    Hawley, Chadwick T.

    2009-05-01

    The Signatures Support Program (SSP) leverages the full spectrum of signature-related activities (collections, processing, development, storage, maintenance, and dissemination) within the Department of Defense (DOD), the intelligence community (IC), other Federal agencies, and civil institutions. The Enterprise encompasses acoustic, seismic, radio frequency, infrared, radar, nuclear radiation, and electro-optical signatures. The SSP serves the war fighter, the IC, and civil institutions by supporting military operations, intelligence operations, homeland defense, disaster relief, acquisitions, and research and development. Data centers host and maintain signature holdings, collectively forming the national signatures pool. The geographically distributed organizations are the authoritative sources and repositories for signature data; the centers are responsible for data content and quality. The SSP proactively engages DOD, IC, other Federal entities, academia, and industry to locate signatures for inclusion in the distributed national signatures pool and provides world-wide 24/7 access via the SSP application.

  17. Transferrable monolithic multicomponent system for near-ultraviolet optoelectronics

    NASA Astrophysics Data System (ADS)

    Qin, Chuan; Gao, Xumin; Yuan, Jialei; Shi, Zheng; Jiang, Yuan; Liu, Yuhuai; Wang, Yongjin; Amano, Hiroshi

    2018-05-01

    A monolithic near-ultraviolet multicomponent system is implemented on a 0.8-mm-diameter suspended membrane by integrating a transmitter, waveguide, and receiver into a single chip. Two identical InGaN/Al0.10Ga0.90N multiple-quantum well (MQW) diodes are fabricated using the same process flow, which separately function as a transmitter and receiver. There is a spectral overlap between the emission and detection spectra of the MQW diodes. Therefore, the receiver can respond to changes in the emission of the transmitter. The multicomponent system is mechanically transferred from silicon, and the wire-bonded transmitter on glass experimentally demonstrates spatial light transmission at 200 Mbps using non-return-to-zero on–off keying modulation.

  18. A Plasma Ultraviolet Source for Short Wavelength Lasers.

    DTIC Science & Technology

    1988-04-15

    plasma focus (DPF) device was evaluated for the feasibility of blue-green and near ultraviolet laser pumping. As the result of optimizing the operating conditions of DPF and laser system, the maximum untuned laser output exceeded 4.0mJ corresponding to the energy density 8.3J/liter which is much higher than the typical flashlamp dye laser. The spectral irradiance of DPF at the absorption bands for LD390 and LD490 were 5.5W/sq cm-nm, 0.3W.sq cm-nm, respectively. Due to the lower pump power of DPF at 355nm than the threshold of LD390, the laser pumping of LD390 dye was not

  19. Real Traceable Signatures

    NASA Astrophysics Data System (ADS)

    Chow, Sherman S. M.

    Traceable signature scheme extends a group signature scheme with an enhanced anonymity management mechanism. The group manager can compute a tracing trapdoor which enables anyone to test if a signature is signed by a given misbehaving user, while the only way to do so for group signatures requires revealing the signer of all signatures. Nevertheless, it is not tracing in a strict sense. For all existing schemes, T tracing agents need to recollect all N' signatures ever produced and perform RN' “checks” for R revoked users. This involves a high volume of transfer and computations. Increasing T increases the degree of parallelism for tracing but also the probability of “missing” some signatures in case some of the agents are dishonest.

  20. Theoretical Characterization of Visual Signatures and Calculation of Approximate Global Harmonic Frequency Scaling Factors

    NASA Astrophysics Data System (ADS)

    Kashinski, D. O.; Nelson, R. G.; Chase, G. M.; di Nallo, O. E.; Byrd, E. F. C.

    2016-05-01

    We are investigating the accuracy of theoretical models used to predict the visible, ultraviolet, and infrared spectra, as well as other properties, of product materials ejected from the muzzle of currently fielded systems. Recent advances in solid propellants has made the management of muzzle signature (flash) a principle issue in weapons development across the calibers. A priori prediction of the electromagnetic spectra of formulations will allow researchers to tailor blends that yield desired signatures and determine spectrographic detection ranges. Quantum chemistry methods at various levels of sophistication have been employed to optimize molecular geometries, compute unscaled harmonic frequencies, and determine the optical spectra of specific gas-phase species. Electronic excitations are being computed using Time Dependent Density Functional Theory (TD-DFT). Calculation of approximate global harmonic frequency scaling factors for specific DFT functionals is also in progress. A full statistical analysis and reliability assessment of computational results is currently underway. Work supported by the ARL, DoD-HPCMP, and USMA.

  1. Characterizing Resident Space Object Earthshine Signature Variability

    NASA Astrophysics Data System (ADS)

    Van Cor, Jared D.

    There are three major sources of illumination on objects in the near Earth space environment: Sunshine, Moonshine, and Earthshine. For objects in this environment (satellites, orbital debris, etc.) known as Resident Space Objects (RSOs), the sun and the moon have consistently small illuminating solid angles and can be treated as point sources; this makes their incident illumination easily modeled. The Earth on the other hand has a large illuminating solid angle, is heterogeneous, and is in a constant state of change. The objective of this thesis was to characterize the impact and variability of observed RSO Earthshine on apparent magnitude signatures in the visible optical spectral region. A key component of this research was creating Earth object models incorporating the reflectance properties of the Earth. Two Earth objects were created: a homogeneous diffuse Earth object and a time sensitive heterogeneous Earth object. The homogeneous diffuse Earth object has a reflectance equal to the average global albedo, a standard model used when modeling Earthshine. The time sensitive heterogeneous Earth object was created with two material maps representative of the dynamic reflectance of the surface of the earth, and a shell representative of the atmosphere. NASA's Moderate-resolution Imaging Spectroradiometer (MODIS) Earth observing satellite product libraries, MCD43C1 global surface BRDF map and MOD06 global fractional cloud map, were utilized to create the material maps, and a hybridized version of the Empirical Line Method (ELM) was used to create the atmosphere. This dynamic Earth object was validated by comparing simulated color imagery of the Earth to that taken by: NASAs Earth Polychromatic Imaging Camera (EPIC) located on the Deep Space Climate Observatory (DSCOVR), and by MODIS located on the Terra satellite. The time sensitive heterogeneous Earth object deviated from MODIS imagery by a spectral radiance root mean square error (RMSE) of +/-14.86 [watts/m. 2sr

  2. Broadband stimulated Raman spectroscopy in the deep ultraviolet region

    NASA Astrophysics Data System (ADS)

    Kuramochi, Hikaru; Fujisawa, Tomotsumi; Takeuchi, Satoshi; Tahara, Tahei

    2017-09-01

    We report broadband stimulated Raman measurements in the deep ultraviolet (DUV) region, which enables selective probing of the aromatic amino acid residues inside proteins through the resonance enhancement. We combine the narrowband DUV Raman pump pulse (<10 cm-1) at wavelengths as short as 240 nm and the broadband DUV probe pulse (>1000 cm-1) to realize stimulated Raman measurements covering a >1500 cm-1 spectral window. The stimulated Raman measurements for neat solvents, tryptophan, tyrosine, and glucose oxidase are performed using 240- and 290-nm Raman pump, highlighting the high potential of the DUV stimulated Raman probe for femtosecond time-resolved study of proteins.

  3. Resolution of isomeric new designer stimulants using gas chromatography - Vacuum ultraviolet spectroscopy and theoretical computations.

    PubMed

    Skultety, Ludovit; Frycak, Petr; Qiu, Changling; Smuts, Jonathan; Shear-Laude, Lindsey; Lemr, Karel; Mao, James X; Kroll, Peter; Schug, Kevin A; Szewczak, Angelica; Vaught, Cory; Lurie, Ira; Havlicek, Vladimir

    2017-06-08

    Distinguishing isomeric representatives of "bath salts", "plant food", "spice", or "legal high" remains a challenge for analytical chemistry. In this work, we used vacuum ultraviolet spectroscopy combined with gas chromatography to address this issue on a set of forty-three designer drugs. All compounds, including many isomers, returned differentiable vacuum ultraviolet/ultraviolet spectra. The pair of 3- and 4-fluoromethcathinones (m/z 181.0903), as well as the methoxetamine/meperidine/ethylphenidate (m/z 247.1572) triad, provided very distinctive vacuum ultraviolet spectral features. On the contrary, spectra of 4-methylethcathinone, 4-ethylmethcathinone, 3,4-dimethylmethcathinone triad (m/z 191.1310) displayed much higher similarities. Their resolution was possible only if pure standards were probed. A similar situation occurred with the ethylone and butylone pair (m/z 221.1052). On the other hand, majority of forty-three drugs was successfully separated by gas chromatography. The detection limits for all the drug standards were in the 2-4 ng range (on-column amount), which is sufficient for determinations of seized drugs during forensics analysis. Further, state-of-the-art time-dependent density functional theory was evaluated for computation of theoretical absorption spectra in the 125-240 nm range as a complementary tool. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. SPECTRAL VARIATIONS OF Of?p OBLIQUE MAGNETIC ROTATOR CANDIDATES IN THE MAGELLANIC CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walborn, Nolan R.; Morrell, Nidia I.; Nazé, Yaël

    2015-10-15

    Optical spectroscopic monitoring has been conducted of two O stars in the SMC and one in the LMC, the spectral characteristics of which place them in the Of?p category, which has been established in the Galaxy to consist of oblique magnetic rotators. All of these Magellanic stars show systematic spectral variations typical of the Of?p class, further strengthening their magnetic candidacy to the point of virtual certainty. The spectral variations are related to photometric variations derived from Optical Gravitational Lensing Experiment data by Nazé et al. in a parallel study, which yields rotational periods for two of them. Now circularmore » spectropolarimetry is required to measure their fields, and ultraviolet spectroscopy to further characterize their low-metallicity, magnetically confined winds, in support of hydrodynamical analyses.« less

  5. A multi-wavelength study of the evolution of early-type galaxies in groups: the ultraviolet view

    NASA Astrophysics Data System (ADS)

    Rampazzo, R.; Mazzei, P.; Marino, A.; Bianchi, L.; Plana, H.; Trinchieri, G.; Uslenghi, M.; Wolter, A.

    2018-04-01

    The ultraviolet-optical colour magnitude diagram of rich galaxy groups is characterised by a well developed Red Sequence, a Blue Cloud and the so-called Green Valley. Loose, less evolved groups of galaxies which are probably not virialised yet may lack a well defined Red Sequence. This is actually explained in the framework of galaxy evolution. We are focussing on understanding galaxy migration towards the Red Sequence, checking for signatures of such a transition in their photometric and morphological properties. We report on the ultraviolet properties of a sample of early-type (ellipticals+S0s) galaxies inhabiting the Red Sequence. The analysis of their structures, as derived by fitting a Sérsic law to their ultraviolet luminosity profiles, suggests the presence of an underlying disk. This is the hallmark of dissipation processes that still must have a role to play in the evolution of this class of galaxies. Smooth particle hydrodynamic simulations with chemo-photometric implementations able to match the global properties of our targets are used to derive their evolutionary paths through ultraviolet-optical colour magnitude diagrams, providing some fundamental information such as the crossing time through the Green Valley, which depends on their luminosity. The transition from the Blue Cloud to the Red Sequence takes several Gyrs, being about 3-5 Gyr for the brightest galaxies and longer for fainter ones, if occurring. The photometric study of nearby galaxy structures in the ultraviolet is seriously hampered by either the limited field of view of the cameras (e.g., in Hubble Space Telescope) or by the low spatial resolution of the images (e.g., in the Galaxy Evolution Explorer). Current missions equipped with telescopes and cameras sensitive to ultraviolet wavelengths, such as Swift- UVOT and Astrosat-UVIT, provide a relatively large field of view and a better resolution than the Galaxy Evolution Explorer. More powerful ultraviolet instruments (size, resolution

  6. Vacuum Ultraviolet Photoionization of Complex Chemical Systems

    DOE PAGES

    Kostko, Oleg; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2016-02-24

    Tunable vacuum ultraviolet (VUV) radiation coupled to mass spectrometry is applied to the study of complex chemical systems in this paper. The identification of novel reactive intermediates and radicals is revealed in flame, pulsed photolysis, and pyrolysis reactors, leading to the elucidation of spectroscopy, reaction mechanisms, and kinetics. Mass-resolved threshold photoelectron photoion coincidence measurements provide unprecedented access to vibrationally resolved spectra of free radicals present in high-temperature reactors. Photoionization measurements in water clusters, nucleic acid base dimers, and their complexes with water provide signatures of proton transfer in hydrogen-bonded and π-stacked systems. Experimental and theoretical methods to track ion–molecule reactionsmore » and fragmentation pathways in intermolecular and intramolecular hydrogen-bonded systems in sugars and alcohols are described. Photoionization of laser-ablated molecules, clusters, and their reaction products inform thermodynamics and spectroscopy that are relevant to astrochemistry and catalysis. Finally, new directions in coupling VUV radiation to interrogate complex chemical systems are discussed.« less

  7. Explosive Events in the Quiet Sun: Extreme Ultraviolet Imaging Spectroscopy Instrumentation and Observations

    NASA Astrophysics Data System (ADS)

    Rust, Thomas Ludwell

    Explosive event is the name given to slit spectrograph observations of high spectroscopic velocities in solar transition region spectral lines. Explosive events show much variety that cannot yet be explained by a single theory. It is commonly believed that explosive events are powered by magnetic reconnection. The evolution of the line core appears to be an important indicator of which particular reconnection process is at work. The Multi-Order Solar Extreme Ultraviolet Spectrograph (MOSES) is a novel slitless spectrograph designed for imaging spectroscopy of solar extreme ultraviolet (EUV) spectral lines. The spectrograph design forgoes a slit and images instead at three spectral orders of a concave grating. The images are formed simultaneously so the resulting spatial and spectral information is co-temporal over the 20' x 10' instrument field of view. This is an advantage over slit spectrographs which build a field of view one narrow slit at a time. The cost of co-temporal imaging spectroscopy with the MOSES is increased data complexity relative to slit spectrograph data. The MOSES data must undergo tomographic inversion for recovery of line profiles. I use the unique data from the MOSES to study transition region explosive events in the He ii 304 A spectral line. I identify 41 examples of explosive events which include 5 blue shifted jets, 2 red shifted jets, and 10 bi-directional jets. Typical doppler speeds are approximately 100kms-1. I show the early development of one blue jet and one bi-directional jet and find no acceleration phase at the onset of the event. The bi-directional jets are interesting because they are predicted in models of Petschek reconnection in the transition region. I develop an inversion algorithm for the MOSES data and test it on synthetic observations of a bi-directional jet. The inversion is based on a multiplicative algebraic reconstruction technique (MART). The inversion successfully reproduces synthetic line profiles. I then use

  8. Spectral studies of cosmic X-ray sources

    NASA Astrophysics Data System (ADS)

    Blissett, R. J.

    1980-01-01

    The conventional "indirect" method of reduction and data analysis of spectral data from non-dispersive X-ray detectors, by the fitting of assumed spectral models, is examined. The limitations of this procedure are presented, and alternative schemes are considered in which the derived spectra are not biased to an astrophysical source model. A new method is developed in detail to directly restore incident photon spectra from the detected count histograms. This Spectral Restoration Technique allows an increase in resolution, to a degree dependent on the statistical precision of the data. This is illustrated by numerical simulations. Proportional counter data from Ariel 5 are analysed using this technique. The results obtained for the sources Cas A and the Crab Nebula are consistent with previous analyses and show that increases in resolution of up to a factor three are possible in practice. The source Cyg X-3 is closely examined. Complex spectral variability is found, with the continuum and iron-line emission modulated with the 4.8 hour period of the source. The data suggest multi-component emission in the source. Comparing separate Ariel 5 observations and published data from other experiments, a correlation between the spectral shape and source intensity is evident. The source behaviour is discussed with reference to proposed source models. Data acquired by the low-energy detectors on-board HEAO-1 are analysed using the Spectral Restoration Technique. This treatment explicitly demonstrates the existence of oxygen K-absorption edges in the soft X-ray spectra of the Crab Nebula and Sco X-1. These results are considered with reference to current theories of the interstellar medium. The thesis commences with a review of cosmic X-ray sources and the mechanisms responsible for their spectral signatures, and continues with a discussion of the instruments appropriate for spectral studies in X-ray astronomy.

  9. Far-ultraviolet spectra and flux distributions of some Orion stars

    NASA Technical Reports Server (NTRS)

    Carruthers, G. R.; Heckathorn, H. M.; Opal, C. B.

    1981-01-01

    Far-ultraviolet (950-1800 A) spectra with about 2 A resolution were obtained of a number of stars in Orion during a sounding-rocket flight 1975 December 6. These spectra have been reduced to absolute flux distributions with the aid of preflight calibrations. The derived fluxes are in good agreement with model-atmosphere predictions and previous observations down to about 1200 A. In the 1200-1080 A range, the present results are in good agreement with model predictions but fall above the rocket measurements of Brune, Mount and Feldman. Below 1080 A, our measurements fall below the model predictions, reaching a deviation of a factor of 2 near 1010 A and a factor of 4 near 950 A. The present results are compared with those of Brune et al. via Copernicus U2 observations in this spectral range, and possible sources of discrepancies between the various observations and model-atmosphere predictions are discussed. Other aspects of the spectra, particularly with regard to spectral classification, are briefly discussed.

  10. Electromagnetic signatures of the preclinical and prodromal stages of Alzheimer's disease.

    PubMed

    Nakamura, Akinori; Cuesta, Pablo; Fernández, Alberto; Arahata, Yutaka; Iwata, Kaori; Kuratsubo, Izumi; Bundo, Masahiko; Hattori, Hideyuki; Sakurai, Takashi; Fukuda, Koji; Washimi, Yukihiko; Endo, Hidetoshi; Takeda, Akinori; Diers, Kersten; Bajo, Ricardo; Maestú, Fernando; Ito, Kengo; Kato, Takashi

    2018-05-01

    Biomarkers useful for the predementia stages of Alzheimer's disease are needed. Electroencephalography and magnetoencephalography (MEG) are expected to provide potential biomarker candidates for evaluating the predementia stages of Alzheimer's disease. However, the physiological relevance of EEG/MEG signal changes and their role in pathophysiological processes such as amyloid-β deposition and neurodegeneration need to be elucidated. We evaluated 28 individuals with mild cognitive impairment and 38 cognitively normal individuals, all of whom were further classified into amyloid-β-positive mild cognitive impairment (n = 17, mean age 74.7 ± 5.4 years, nine males), amyloid-β-negative mild cognitive impairment (n = 11, mean age 73.8 ± 8.8 years, eight males), amyloid-β-positive cognitively normal (n = 13, mean age 71.8 ± 4.4 years, seven males), and amyloid-β-negative cognitively normal (n = 25, mean age 72.5 ± 3.4 years, 11 males) individuals using Pittsburgh compound B-PET. We measured resting state MEG for 5 min with the eyes closed, and investigated regional spectral patterns of MEG signals using atlas-based region of interest analysis. Then, the relevance of the regional spectral patterns and their associations with pathophysiological backgrounds were analysed by integrating information from Pittsburgh compound B-PET, fluorodeoxyglucose-PET, structural MRI, and cognitive tests. The results demonstrated that regional spectral patterns of resting state activity could be separated into several types of MEG signatures as follows: (i) the effects of amyloid-β deposition were expressed as the alpha band power augmentation in medial frontal areas; (ii) the delta band power increase in the same region was associated with disease progression within the Alzheimer's disease continuum and was correlated with entorhinal atrophy and an Alzheimer's disease-like regional decrease in glucose metabolism; and (iii) the global theta power augmentation, which was previously

  11. Ultraviolet-radiation-induced methane emissions from meteorites and the Martian atmosphere.

    PubMed

    Keppler, Frank; Vigano, Ivan; McLeod, Andy; Ott, Ulrich; Früchtl, Marion; Röckmann, Thomas

    2012-05-30

    Almost a decade after methane was first reported in the atmosphere of Mars there is an intensive discussion about both the reliability of the observations--particularly the suggested seasonal and latitudinal variations--and the sources of methane on Mars. Given that the lifetime of methane in the Martian atmosphere is limited, a process on or below the planet's surface would need to be continuously producing methane. A biological source would provide support for the potential existence of life on Mars, whereas a chemical origin would imply that there are unexpected geological processes. Methane release from carbonaceous meteorites associated with ablation during atmospheric entry is considered negligible. Here we show that methane is produced in much larger quantities from the Murchison meteorite (a type CM2 carbonaceous chondrite) when exposed to ultraviolet radiation under conditions similar to those expected at the Martian surface. Meteorites containing several per cent of intact organic matter reach the Martian surface at high rates, and our experiments suggest that a significant fraction of the organic matter accessible to ultraviolet radiation is converted to methane. Ultraviolet-radiation-induced methane formation from meteorites could explain a substantial fraction of the most recently estimated atmospheric methane mixing ratios. Stable hydrogen isotope analysis unambiguously confirms that the methane released from Murchison is of extraterrestrial origin. The stable carbon isotope composition, in contrast, is similar to that of terrestrial microbial origin; hence, measurements of this signature in future Mars missions may not enable an unambiguous identification of biogenic methane.

  12. Mechanistic considerations on the wavelength-dependent variations of UVR genotoxicity and mutagenesis in skin: the discrimination of UVA-signature from UV-signature mutation.

    PubMed

    Ikehata, Hironobu

    2018-05-31

    Ultraviolet radiation (UVR) predominantly induces UV-signature mutations, C → T and CC → TT base substitutions at dipyrimidine sites, in the cellular and skin genome. I observed in our in vivo mutation studies of mouse skin that these UVR-specific mutations show a wavelength-dependent variation in their sequence-context preference. The C → T mutation occurs most frequently in the 5'-TCG-3' sequence regardless of the UVR wavelength, but is recovered more preferentially there as the wavelength increases, resulting in prominent occurrences exclusively in the TCG sequence in the UVA wavelength range, which I will designate as a "UVA signature" in this review. The preference of the UVB-induced C → T mutation for the sequence contexts shows a mixed pattern of UVC- and UVA-induced mutations, and a similar pattern is also observed for natural sunlight, in which UVB is the most genotoxic component. In addition, the CC → TT mutation hardly occurs at UVA1 wavelengths, although it is detected rarely but constantly in the UVC and UVB ranges. This wavelength-dependent variation in the sequence-context preference of the UVR-specific mutations could be explained by two different photochemical mechanisms of cyclobutane pyrimidine dimer (CPD) formation. The UV-signature mutations observed in the UVC and UVB ranges are known to be caused mainly by CPDs produced through the conventional singlet/triplet excitation of pyrimidine bases after the direct absorption of the UVC/UVB photon energy in those bases. On the other hand, a novel photochemical mechanism through the direct absorption of the UVR energy to double-stranded DNA, which is called "collective excitation", has been proposed for the UVA-induced CPD formation. The UVA photons directly absorbed by DNA produce CPDs with a sequence context preference different from that observed for CPDs caused by the UVC/UVB-mediated singlet/triplet excitation, causing CPD formation preferentially at thymine-containing dipyrimidine

  13. Spectral classifying base on color of live corals and dead corals covered with algae

    NASA Astrophysics Data System (ADS)

    Nurdin, Nurjannah; Komatsu, Teruhisa; Barille, Laurent; Akbar, A. S. M.; Sawayama, Shuhei; Fitrah, Muh. Nur; Prasyad, Hermansyah

    2016-05-01

    Pigments in the host tissues of corals can make a significant contribution to their spectral signature and can affect their apparent color as perceived by a human observer. The aim of this study is classifying the spectral reflectance of corals base on different color. It is expected that they can be used as references in discriminating between live corals, dead coral covered with algae Spectral reflectance data was collected in three small islands, Spermonde Archipelago, Indonesia by using a hyperspectral radiometer underwater. First and second derivative analysis resolved the wavelength locations of dominant features contributing to reflectance in corals and support the distinct differences in spectra among colour existed. Spectral derivative analysis was used to determine the specific wavelength regions ideal for remote identification of substrate type. The analysis results shown that yellow, green, brown and violet live corals are spectrally separable from each other, but they are similar with dead coral covered with algae spectral.

  14. The MPI-Mainz UV/VIS Spectral Atlas of Gaseous Molecules of Atmospheric Interest

    NASA Astrophysics Data System (ADS)

    Keller-Rudek, H.; Moortgat, G. K.; Sander, R.; Sörensen, R.

    2013-12-01

    We present the MPI-Mainz UV/VIS Spectral Atlas of Gaseous Molecules, which is a large collection of absorption cross sections and quantum yields in the ultraviolet and visible (UV/VIS) wavelength region for gaseous molecules and radicals primarily of atmospheric interest. The data files contain results of individual measurements, covering research of almost a whole century. To compare and visualize the data sets, multicoloured graphical representations have been created. The MPI-Mainz UV/VIS Spectral Atlas is available on the Internet at spectral-atlas-mainz.org"target="_blank">http://www.uv-vis-spectral-atlas-mainz.org. It now appears with improved browse and search options, based on new database software. In addition to the Web pages, which are continuously updated, a frozen version of the data is available under the doi:10.5281/zenodo.6951.

  15. Investigation of radiant millimeter wave/terahertz radiation from low-infrared signature targets

    NASA Astrophysics Data System (ADS)

    Aytaç, B.; Alkuş, Ü.; Sivaslıgil, M.; Şahin, A. B.; Altan, H.

    2017-10-01

    Millimeter (mm) and sub-mm wave radiation is increasingly becoming a region of interest as better methods are developed to detect in this wavelength range. The development of sensitive focal plane array (FPA) architectures as well as single pixel scanners has opened up a new field of passive detection and imaging. Spectral signatures of objects, a long standing area of interest in the Short Wave Infrared (SWIR), Mid-Wave (MWIR) and Long Wave-IR (LWIR) bands can now be assessed in the mm-wave/terahertz (THz) region. The advantage is that this form of radiation is not as adversely affected by poor atmospheric conditions compared to other bands. In this study, a preliminary experiment in a laboratory environment is performed to assess the radiance from targets with low infrared signatures in the millimeter wave/terahertz (THz) band (<1 THz). The goal of this approach is to be able to model the experimental results to better understand the mm-wave/THz signature of targets with low observability in the IR bands.

  16. The use of spectral skin reflectivity and laser doppler vibrometry data to determine the optimal site and wavelength to collect human vital sign signatures

    NASA Astrophysics Data System (ADS)

    Byrd, Kenneth A.; Kaur, Balvinder; Hodgkin, Van A.

    2012-06-01

    The carotid artery has been used extensively by researchers to demonstrate that Laser Doppler Vibrometry (LDV) is capable of exploiting vital sign signatures from cooperative human subjects at stando. Research indicates that, the carotid, although good for cooperative and non-traumatic scenarios, is one of the first vital signs to become absent or irregular when a casualty is hemorrhaging and in progress to circulatory (hypovolemic) shock. In an effort to determine the optimal site and wavelength to measure vital signs off human skin, a human subject data collection was executed whereby 14 subjects had their spectral skin reflectivity and vital signs measured at five collection sites (carotid artery, chest, back, right wrist and left wrist). In this paper, we present our findings on using LDV and re ectivity data to determine the optimal collection site and wavelength that should be used to sense pulse signals from quiet and relatively motionless human subjects at stando. In particular, we correlate maximum levels of re ectivity across the ensemble of 14 subjects with vital sign measurements made with an LDV at two ranges, for two scenarios.

  17. Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Cullen, John J.; Neale, Patrick J.; Lesser, Michael P.

    1992-01-01

    Severe reduction of stratospheric ozone over Antarctica has focused increasing concern on the biological effects of ultraviolet-B (UVB) radiation (280 to 320 nanometers). Measurements of photosynthesis from an experimental system, in which phytoplankton are exposed to a broad range of irradiance treatments, are fit to an analytical model to provide the spectral biological weighting function that can be used to predict the short-term effects of ozone depletion on aquatic photosynthesis. Results show that UVA (320 to 400 nanometers) significantly inhibits the photosynthesis of a marine diatom and a dinoflagellate, and that the effects of UVB are even more severe. Application of the model suggests that the Antarctic ozone hole might reduce near-surface photosynthesis by 12 to 15 percent, but less so at depth. The experimental system makes possible routine estimation of spectral weightings for natural phytoplankton.

  18. Enhanced Aluminum Reflecting and Solar-Blind Filter Coatings for the Far-Ultraviolet

    NASA Technical Reports Server (NTRS)

    Del Hoyo, Javier; Quijada, Manuel

    2017-01-01

    The advancement of far-ultraviolet (FUV) coatings is essential to meet the specified throughput requirements of the Large UV/Optical/IR (LUVOIR) Surveyor Observatory which will cover wavelengths down to the 100 nm range. The biggest constraint in the optical thin film coating design is attenuation in the Lyman-Alpha Ultraviolet range of 100-130 nm in which conventionally deposited thin film materials used in this spectral region (e.g. aluminum [Al] protected with Magnesium fluoride [MgF2]) often have high absorption and scatter properties degrading the throughput in an optical system. We investigate the use of optimally deposited aluminum and aluminum tri-fluoride (AlF3) materials for reflecting and solar blind band-pass filter coatings for use in the FUV. Optical characterization of the deposited designs has been performed using UV spectrometry. The optical thin film design and optimal deposition conditions to produce superior reflectance and transmittance using Al and AlF3 are presented.

  19. Enhanced aluminum reflecting and solar-blind filter coatings for the far-ultraviolet

    NASA Astrophysics Data System (ADS)

    Del Hoyo, Javier; Quijada, Manuel

    2017-09-01

    The advancement of far-ultraviolet (FUV) coatings is essential to meet the specified throughput requirements of the Large UV/Optical/IR (LUVOIR) Surveyor Observatory which will cover wavelengths down to the 100 nm range. The biggest constraint in the optical thin film coating design is attenuation in the Lyman-Alpha Ultraviolet range of 100-130 nm in which conventionally deposited thin film materials used in this spectral region (e.g., aluminum [Al] protected with Magnesium fluoride [MgF2]) often have high absorption and scatter properties degrading the throughput in an optical system. We investigate the use of optimally deposited aluminum and aluminum tri-fluoride (AlF3) materials for reflecting and solar blind band-pass filter coatings for use in the FUV. Optical characterization of the deposited designs has been performed using UV spectrometry. The optical thin film design and optimal deposition conditions to produce superior reflectance and transmittance using Al and AlF3 are presented.

  20. The Relationship between Ultraviolet Line Emission and Magnetic Field Strength in Magnetic Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Howell, Steve B.; Cash, Jennifer; Mason, Keith O.; Herzog, Adrienne E.

    1999-02-01

    We present the first UV spectral observations of six magnetic cataclysmic variables discovered by the ROSAT Wide Field Camera (WFC). Using the^ International Ultraviolet Explorer (IUE), 1200-3400 Å spectra were obtained of the AM Herculis stars RE 0531-46, RE 1149+28, RE 1844-74, QS Tel (RE 1938-46), and HU Aqr (RE 2107-05) and the DQ Herculis star PQ Gem (RE 0751+14). The high-state UV spectra are dominated by strong emission lines. Continuum flux distributions for these stars (from 100 to 5500 Å) reveal that over this entire range, none of the spectral energy distributions can be fitted by a single-valued blackbody. Our new UV observations and additional archival IUE spectra were used to discover a correlation between the strength of the high-state UV emission lines and the strength of the white dwarf magnetic field. Model spectral results are used to confirm the production of the UV emission lines by photoionization from X-ray and EUV photons.