Sample records for ultraviolet type mutations

  1. Ultraviolet Radiation Induction of Mutation in Penicillium Claviforme.

    ERIC Educational Resources Information Center

    New, June; Jolley, Ray

    1986-01-01

    Cites reasons why Penicillium claviforme is an exceptionally good species for ultraviolet induced mutation experiments. Provides a set of laboratory instructions for teachers and students. Includes a discussion section. (ML)

  2. Restricted ultraviolet mutational spectrum in a shuttle vector propagated in xeroderma pigmentosum cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bredberg, A.; Kraemer, K.H.; Seidman, M.M.

    1986-11-01

    A shuttle vector plasmid, pZ189, carrying a bacterial suppressor tRNA marker gene, was treated with ultraviolet radiation and propagated in cultured skin cells from a patient with the skin-cancer-prone, DNA repair-deficient disease xeroderma pigmentosum and in repair-proficient cells. After replication in the human cells, progeny plasmids were purified. Plasmid survival and mutations inactivating the marker gene were scored by transforming an indicator strain of Escherichia coli carrying a suppressible amber mutation in the beta-galactosidase gene. Plasmid survival in the xeroderma pigmentosum cells was less than that of pZ189 harvested from repair-proficient human cells. The point-mutation frequency in the 150-base-pair tRNAmore » marker gene increased up to 100-fold with ultraviolet dose. Sequence analysis of 150 mutant plasmids revealed that mutations were infrequent at potential thymine-thymine dimer sites. Ninety-three percent of the mutant plasmids from the xeroderma pigmentosum cells showed G X C----A X T transitions, compared to 73% in the normal cells (P less than 0.002). There were significantly fewer transversions (P less than 0.002) (especially G X C----T X A) and multiple base substitutions (P less than 0.00001) than when pZ189 was passaged in repair-proficient cells. The subset of mutational changes that are common to ultraviolet-treated plasmids propagated in both repair-proficient and xeroderma pigmentosum skin cells may be associated with the development of ultraviolet-induced skin cancer in humans.« less

  3. Ultraviolet-Sensitive Mutator Strain of Escherichia coli K-12

    PubMed Central

    Siegel, Eli C.

    1973-01-01

    An ultraviolet (UV)-sensitive mutator gene, mutU, was identified in Escherichia coli K-12. The mutation mutU4 is very close to uvrD, between metE and ilv, on the E. coli chromosome. It was recessive as a mutator and as a UV-sensitive mutation. The frequency of reversion of trpA46 on an F episome was increased by mutU4 on the chromosome. The mutator gene did not increase mutation frequencies in virulent phages or in lytically grown phage λ. The mutU4 mutation predominantly induced transitional base changes. Mutator strains were normal for recombination and host-cell reactivation of UV-irradiated phage T1. They were normally resistant to methyl methanesulfonate and were slightly more sensitive to gamma irradiation than Mut+ strains. UV irradiation induced mutations in a mutU4 strain, and phage λ was UV-inducible. Double mutants containing mutU4 and recA, B, or C were extremely sensitive to UV irradiation; a mutU4 uvrA6 double mutant was only slightly more sensitive than a uvrA6 strain. The mutU4 uvrA6 and mutU4 recA, B, or C double mutants had mutation rates similar to that of a mutU4 strain. Two UV-sensitive mutators, mut-9 and mut-10, isolated by Liberfarb and Bryson in E. coli B/UV, were found to be co-transducible with ilv in the same general region as mutU4. PMID:4345920

  4. a/alpha-specific effect on the mms3 mutation on ultraviolet mutagenesis in Saccharomyces cerevisiae.

    PubMed

    Martin, P; Prakash, L; Prakash, S

    1981-05-01

    A new gene involved in error-prone repair of ultraviolet (UV) damage has been identified in Saccharomyces cerevisiae by the mms3-1 mutation. UV-induced reversion is reduced in diploids that are homozygous for mms3-1, only if they are also heterozygous (MATa/MAT alpha) at the mating type locus. The mms3-1 mutation has no effect on UV-induced reversion either in haploids or MATa/MATa or MAT alpha/MAT alpha diploids. The mutation confers sensitivity to UV and methyl methane sulfonate in both haploids and diploids. Even though mutation induction by UV is restored to wild-type levels in MATa/MATa mms3-1/mms3-1 or MAT alpha/MAT alpha mms3-1/mms3-1 diploids, such strains still retain sensitivity to the lethal effects of UV. Survival after UV irradiation in mms3-1 rad double mutant combinations indicates that mms3-1 is epistatic to rad6-1 whereas non-epistatic interactions are observed with rad3 and rad52 mutants. When present in the homozygous state in MATa/MAT alpha his1-1/his1-315 heteroallelic diploids, mms3-1 was found to lower UV-induced mitotic recombination.

  5. NEW TYPE OF STREPTOMYCIN RESISTANCE RESULTING FROM ACTION OF THE EPISOMELIKE MUTATOR FACTOR IN ESCHERICHIA COLI

    PubMed Central

    Gundersen, Wenche B.

    1963-01-01

    Gundersen, Wenche B. (Oslo University, Oslo, Norway). New type of streptomycin resistance resulting from action of the episomelike mutator factor in Escherichia coli. J. Bacteriol. 86:510–516. 1963.—Analyses have been performed to elucidate the genetic nature of the streptomycin resistance that results from the action of the previously described episomelike mutator factor in Escherichia coli. This streptomycin resistance has been found to differ from ordinary one-step streptomycin resistance. The new type of streptomycin resistance, “mutator resistance,” can be lost, either spontaneously or by treatment with ultraviolet light and acriflavine. It is more stable in a K-12 strain than in the original E. coli strain 635. Mutator resistance segregates like a chromosomal marker in genetic crosses, and is located near the ordinary streptomycin locus. The locus for mutator resistance is distinct from that of ordinary streptomycin resistance, apparently located further toward the threonine region. Mutator resistance, unlike ordinary one-step streptomycin resistance, appears as a dominant character. The possibilities of its being a suppressor or regulator mutation are discussed. PMID:14066430

  6. [Decrease of spontaneous mutations in Haemophilus influenzae caused by transformation with its own DNA irradiated with near-ultraviolet light].

    PubMed

    Alarcón-Hernández, E; Cabrera-Juárez, E

    1992-01-01

    Transforming DNA containing the streptomycin resistance marker, was irradiated for 8 h with broad near ultraviolet light (325-400 nm) at pH 4.8, and the inactivation kinetics determined. After selection of streptomycin resistant transformants, they were grown until a turbidity of 150-200 Klett units. In these cultures we looked for new markers coming from the irradiated transforming DNA. We looked and found the novobiocin resistance marker and one that conveys to protoporphyrin IX utilization, measured as an increase in the mutation frequency of these markers in the streptomycin resistant population. In other experiments, we found a decline in spontaneous mutation frequency for the same markers in the cells transformed with irradiated DNA. This last finding rises the possibility of alterations on the mutator genes as a result of near ultraviolet irradiation.

  7. Mutagenesis of Trichoderma Viride by Ultraviolet and Plasma

    NASA Astrophysics Data System (ADS)

    Yao, Risheng; Li, Manman; Deng, Shengsong; Hu, Huajia; Wang, Huai; Li, Fenghe

    2012-04-01

    Considering the importance of a microbial strain capable of increased cellulase production, a mutant strain UP4 of Trichoderma viride was developed by ultraviolet (UV) and plasma mutation. The mutant produced a 21.0 IU/mL FPase which was 98.1% higher than that of the parent strain Trichoderma viride ZY-1. In addition, the effect of ultraviolet and plasma mutagenesis was not merely simple superimposition of single ultraviolet mutation and single plasma mutation. Meanwhile, there appeared a capsule around some of the spores after the ultraviolet and plasma treatment, namely, the spore surface of the strain became fuzzy after ultraviolet or ultraviolet and plasma mutagenesis.

  8. Ultraviolet A within Sunlight Induces Mutations in the Epidermal Basal Layer of Engineered Human Skin

    PubMed Central

    Huang, Xiao Xuan; Bernerd, Françoise; Halliday, Gary Mark

    2009-01-01

    The ultraviolet B (UVB) waveband within sunlight is an important carcinogen; however, UVA is also likely to be involved. By ascribing mutations to being either UVB or UVA induced, we have previously shown that human skin cancers contain similar numbers of UVB- and UVA-induced mutations, and, importantly, the UVA mutations were at the base of the epidermis of the tumors. To determine whether these mutations occurred in response to UV, we exposed engineered human skin (EHS) to UVA, UVB, or a mixture that resembled sunlight, and then detected mutations by both denaturing high-performance liquid chromatography and DNA sequencing. EHS resembles human skin, modeling differential waveband penetration to the basal, dividing keratinocytes. We administered only four low doses of UV exposure. Both UVA and UVB induced p53 mutations in irradiated EHS, suggesting that sunlight doses that are achievable during normal daily activities are mutagenic. UVA- but not UVB-induced mutations predominated in the basal epidermis that contains dividing keratinocytes and are thought to give rise to skin tumors. These studies indicate that both UVA and UVB at physiological doses are mutagenic to keratinocytes in EHS. PMID:19264911

  9. Genome-wide comparison of ultraviolet and ethyl methanesulphonate mutagenesis methods for the brown alga Ectocarpus.

    PubMed

    Godfroy, Olivier; Peters, Akira F; Coelho, Susana M; Cock, J Mark

    2015-12-01

    Ectocarpus has emerged as a model organism for the brown algae and a broad range of genetic and genomic resources are being generated for this species. The aim of the work presented here was to evaluate two mutagenesis protocols based on ultraviolet irradiation and ethyl methanesulphonate treatment using genome resequencing to measure the number, type and distribution of mutations generated by the two methods. Ultraviolet irradiation generated a greater number of genetic lesions than ethyl methanesulphonate treatment, with more than 400 mutations being detected in the genome of the mutagenised individual. This study therefore confirms that the ultraviolet mutagenesis protocol is suitable for approaches that require a high density of mutations, such as saturation mutagenesis or Targeting Induced Local Lesions in Genomes (TILLING). Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Mutation and repair in an ultraviolet-sensitive Chinese hamster ovary cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, R.D.

    1981-11-01

    An ultraviolet (UV) light-sensitive mutant of Chinese hamster ovary cells (CHO) has been isolated and characterized with respect to a number of post-irradiation responses. The UV-sensitive mutant, termed 43-3B, has the same growth rate and chromosome number as the wild-type CHO-9. 43-3B is hypersensitive to the lethal effects of UV light (D/sub 0/ of 0.3 J/m/sup 2/ as compared to 3.2 J/m/sup 2/ for the wild-type). A marked UV-hypermutability is observed in 43-3B as compared to the wild-type, as measured with markers for induced resistance to 6-thioguanine, ouabain, and diphtheria toxin. A factor of 38 to 65 more mutations aremore » induced per unit fluence in 43-3B than in CHO-9. The UV-sensitive mutant is also sensitive to killing by simulated solar light, although the D/sub 0/ ratio is not as great as for germicidal UV. 43-3B exhibits only about 17% of the wild-type level of UV-stimulated DNA repair synthesis, as measured by autoradiography of G/sub 1/ phase cells. A much reduced ability to recover control rates of semiconservative DNA synthesis after UV irradiation was observed in the repair-deficient 43-3B cell line. Recovery of colony-forming ability between fractionated UV exposures was observed in the wild-type CHO-9, but little recovery was seen in 43-3B. The present investigation demonstrates that a sensitive/wild-type pair of CHO cell lines can be used in comparative studies to determine the involvement of repair in a wide range of post-irradiation phenomena.« less

  11. The effects of mutational processes and selection on driver mutations across cancer types.

    PubMed

    Temko, Daniel; Tomlinson, Ian P M; Severini, Simone; Schuster-Böckler, Benjamin; Graham, Trevor A

    2018-05-10

    Epidemiological evidence has long associated environmental mutagens with increased cancer risk. However, links between specific mutation-causing processes and the acquisition of individual driver mutations have remained obscure. Here we have used public cancer sequencing data from 11,336 cancers of various types to infer the independent effects of mutation and selection on the set of driver mutations in a cancer type. First, we detect associations between a range of mutational processes, including those linked to smoking, ageing, APOBEC and DNA mismatch repair (MMR) and the presence of key driver mutations across cancer types. Second, we quantify differential selection between well-known alternative driver mutations, including differences in selection between distinct mutant residues in the same gene. These results show that while mutational processes have a large role in determining which driver mutations are present in a cancer, the role of selection frequently dominates.

  12. Effects of near-ultraviolet light on mutations, intragenic and intergenic recombinations in Saccharomyces cerevisiae.

    PubMed

    Machida, I; Saeki, T; Nakai, S

    1986-03-01

    The effects of far (254 nm) and near (290-350 nm) ultraviolet (UV) light on mutations, intragenic and intergenic recombinations were compared in diploid strains of Saccharomyces cerevisiae. At equivalent survival levels there was not much difference in the induction of nonsense and missense mutations between far- and near-UV radiations. However, frameshift mutations were induced more frequently by near-UV than by far-UV radiation. Near-UV radiation induced intragenic recombination (gene conversion) as efficiently as far-UV radiation and the induced levels were similar in both radiations at equitoxic doses. A strikingly higher frequency was observed for the intergenic recombination induced by near-UV radiation than by far-UV radiation when compared at equivalent survival levels. Photoreactivation reduced the frequency only slightly in far-UV induced intergenic recombination and not at all in near-UV induction. These results indicate that near-UV damage involves strand breakage in addition to pyrimidine dimers and other lesions induced, whereas far-UV damage consists largely of photoreactivable lesions, pyrimidine dimers, and near-UV induced damage is more efficient for the induction of crossing-over.

  13. Method for generating extreme ultraviolet with mather-type plasma accelerators for use in Extreme Ultraviolet Lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassanein, Ahmed; Konkashbaev, Isak

    A device and method for generating extremely short-wave ultraviolet electromagnetic wave uses two intersecting plasma beams generated by two plasma accelerators. The intersection of the two plasma beams emits electromagnetic radiation and in particular radiation in the extreme ultraviolet wavelength. In the preferred orientation two axially aligned counter streaming plasmas collide to produce an intense source of electromagnetic radiation at the 13.5 nm wavelength. The Mather type plasma accelerators can utilize tin, or lithium covered electrodes. Tin, lithium or xenon can be used as the photon emitting gas source.

  14. The ultraviolet variability of early-type supergiants

    NASA Technical Reports Server (NTRS)

    Underhill, A. B.

    1984-01-01

    Four early-type supergiants - HD 79186 (B5 Ia), HD 96919 (B9 Ia), HD 105056 (ON9.7 Iae), and HD 148379 (B2 Iae) - have been observed with the low-resolution spectrographs of IUE in the large aperture on 14 days. The behavior of the ultraviolet fluxes with time is studied. The light from all four stars seems to vary. Typically the dispersion about the mean magnitude at any wavelength corresponds to + or - 0.085, + or - 0.080, + or - 0.101, and + or - 0.106 mag, respectively. These amplitudes exceed the typical uncertainty in an IUE measurement of flux by about a factor of 3; they are somewhat larger than the variations known in the visible wavelength range. There are insufficient data to investigate periodicity in the observed light changes. The effective temperatures and angular diameters of the stars have been estimated using the present ultraviolet photometry, published UBV and uvby photometry, and the model-atmosphere fluxes reported by Kurucz in 1979. The program stars have dimensions typical for their spectral types. A brief discussion is given of possible causes of the variability of hot supergiants.

  15. Modulation of an ultraviolet mutational hotspot in a shuttle vector Xeroderma cells.

    PubMed Central

    Seetharam, S; Seidman, M M

    1991-01-01

    Ultraviolet mutagenesis of the shuttle vector plasmid pZ189 in Xeroderma Pigmentosum cells yields a mutational pattern marked by hotspots at photoproduct sites on both strands of the supF marker gene. In order to test the influence of strand orientation on the appearance of hotspots the mutagenesis study was repeated on a vector with the supF gene in the inverted orientation. We recovered a pattern the same as that in the earlier work and conclude that the nature of the DNA polymerase involved in the replication of specific strands is not a primary determinant of hotspot occurrence in this system. One of the hotspots lies in an 8 base palindrome while the corresponding site on the other strand was not a hotspot. These results were obtained with calcium phosphate transfection of the UV treated vector. When DEAE dextran was used as a transfection agent both sites in the palindrome were hotspots. In a mixing experiment the calcium phosphate pattern was recovered. Our data suggest that the sequence determinants of mutational probability at these two sites lie outside the 8 bases of the palindrome and that mutagenesis at one, but not the other, site is sensitive to perturbation of cellular calcium levels. PMID:2027767

  16. Protein Domain-Level Landscape of Cancer-Type-Specific Somatic Mutations

    PubMed Central

    Yang, Fan; Petsalaki, Evangelia; Rolland, Thomas; Hill, David E.; Vidal, Marc; Roth, Frederick P.

    2015-01-01

    Identifying driver mutations and their functional consequences is critical to our understanding of cancer. Towards this goal, and because domains are the functional units of a protein, we explored the protein domain-level landscape of cancer-type-specific somatic mutations. Specifically, we systematically examined tumor genomes from 21 cancer types to identify domains with high mutational density in specific tissues, the positions of mutational hotspots within these domains, and the functional and structural context where possible. While hotspots corresponding to specific gain-of-function mutations are expected for oncoproteins, we found that tumor suppressor proteins also exhibit strong biases toward being mutated in particular domains. Within domains, however, we observed the expected patterns of mutation, with recurrently mutated positions for oncogenes and evenly distributed mutations for tumor suppressors. For example, we identified both known and new endometrial cancer hotspots in the tyrosine kinase domain of the FGFR2 protein, one of which is also a hotspot in breast cancer, and found new two hotspots in the Immunoglobulin I-set domain in colon cancer. Thus, to prioritize cancer mutations for further functional studies aimed at more precise cancer treatments, we have systematically correlated mutations and cancer types at the protein domain level. PMID:25794154

  17. Identification and functional analysis of CBLB mutations in type 1 diabetes.

    PubMed

    Yokoi, Norihide; Fujiwara, Yuuka; Wang, He-Yao; Kitao, Mai; Hayashi, Chihiro; Someya, Tomohiro; Kanamori, Masao; Oiso, Yutaka; Tajima, Naoko; Yamada, Yuichiro; Seino, Yutaka; Ikegami, Hiroshi; Seino, Susumu

    2008-03-28

    Casitas B-lineage lymphoma b (Cblb) is a negative regulator of T-cell activation and dysfunction of Cblb in rats and mice results in autoimmunity. In particular, a nonsense mutation in Cblb has been identified in a rat model of autoimmune type 1 diabetes. To clarify the possible involvement of CBLB mutation in type 1 diabetes in humans, we performed mutation screening of CBLB and characterized functional properties of the mutations in Japanese subjects. Six missense mutations (A155V, F328L, N466D, K837R, T882A, and R968L) were identified in one diabetic subject each, excepting N466D. Of these mutations, F328L showed impaired suppression of T-cell activation and was a loss-of-function mutation. These data suggest that the F328L mutation is involved in the development of autoimmune diseases including type 1 diabetes, and also provide insight into the structure-function relationship of CBLB protein.

  18. EDNRB mutations cause Waardenburg syndrome type II in the heterozygous state.

    PubMed

    Issa, Sarah; Bondurand, Nadege; Faubert, Emmanuelle; Poisson, Sylvain; Lecerf, Laure; Nitschke, Patrick; Deggouj, Naima; Loundon, Natalie; Jonard, Laurence; David, Albert; Sznajer, Yves; Blanchet, Patricia; Marlin, Sandrine; Pingault, Veronique

    2017-05-01

    Waardenburg syndrome (WS) is a genetic disorder characterized by sensorineural hearing loss and pigmentation anomalies. The clinical definition of four WS types is based on additional features due to defects in structures mostly arising from the neural crest, with type I and type II being the most frequent. While type I is tightly associated to PAX3 mutations, WS type II (WS2) remains partly enigmatic with mutations in known genes (MITF, SOX10) accounting for only 30% of the cases. We performed exome sequencing in a WS2 index case and identified a heterozygous missense variation in EDNRB. Interestingly, homozygous (and very rare heterozygous) EDNRB mutations are already described in type IV WS (i.e., in association with Hirschsprung disease [HD]) and heterozygous mutations in isolated HD. Screening of a WS2 cohort led to the identification of an overall of six heterozygous EDNRB variations. Clinical phenotypes, pedigrees and molecular segregation investigations unraveled a dominant mode of inheritance with incomplete penetrance. In parallel, cellular and functional studies showed that each of the mutations impairs the subcellular localization of the receptor or induces a defective downstream signaling pathway. Based on our results, we now estimate EDNRB mutations to be responsible for 5%-6% of WS2. © 2017 Wiley Periodicals, Inc.

  19. Wild-type and mutated IDH1/2 enzymes and therapy responses.

    PubMed

    Molenaar, Remco J; Maciejewski, Jaroslaw P; Wilmink, Johanna W; van Noorden, Cornelis J F

    2018-04-01

    Isocitrate dehydrogenase 1 and 2 (IDH1/2) are key enzymes in cellular metabolism, epigenetic regulation, redox states, and DNA repair. IDH1/2 mutations are causal in the development and/or progression of various types of cancer due to supraphysiological production of D-2-hydroxyglutarate. In various tumor types, IDH1/2-mutated cancers predict for improved responses to treatment with irradiation or chemotherapy. The present review discusses the molecular basis of the sensitivity of IDH1/2-mutated cancers with respect to the function of mutated IDH1/2 in cellular processes and their interactions with novel IDH1/2-mutant inhibitors. Finally, lessons learned from IDH1/2 mutations for future clinical applications in IDH1/2 wild-type cancers are discussed.

  20. Survival of Patients with Cystic Fibrosis Depending on Mutation Type and Nutritional Status.

    PubMed

    Szwed, A; John, A; Goździk-Spychalska, J; Czaiński, W; Czerniak, W; Ratajczak, J; Batura-Gabryel, H

    2018-01-01

    The purpose of the study was to evaluate the influence of nutrition and of the severity of mutation type on survival rate in cystic fibrosis (CF) patients. Data were longitudinally collected from 60 hospitalized adult CF patients, aged 18-50. The variables consisted of body mass index (BMI) ratio, Cole's BMI cut-off points, severity of mutation type, and survival rate of CF patients. We found that the mean BMI was strongly associated with the severity of mutation type and was significantly lower in patients with severe mutations of grade I and II. The mutation type significantly affected the patients' survival rate; survival was greater in patients with mild and undefined mutation types. The BMI and Cole's cut-off points also had a significant influence on survival rate. CF patients, who suffered from malnutrition and emaciation, had a shorter survival rate than those with proper nutritional status. In conclusion, the study findings confirmed a significant effect of nutritional status and of mutation type on survival rate of CF patients.

  1. Muscle RAS oncogene homolog (MRAS) recurrent mutation in Borrmann type IV gastric cancer.

    PubMed

    Yasumoto, Makiko; Sakamoto, Etsuko; Ogasawara, Sachiko; Isobe, Taro; Kizaki, Junya; Sumi, Akiko; Kusano, Hironori; Akiba, Jun; Torimura, Takuji; Akagi, Yoshito; Itadani, Hiraku; Kobayashi, Tsutomu; Hasako, Shinichi; Kumazaki, Masafumi; Mizuarai, Shinji; Oie, Shinji; Yano, Hirohisa

    2017-01-01

    The prognosis of patients with Borrmann type IV gastric cancer (Type IV) is extremely poor. Thus, there is an urgent need to elucidate the molecular mechanisms underlying the oncogenesis of Type IV and to identify new therapeutic targets. Although previous studies using whole-exome and whole-genome sequencing have elucidated genomic alterations in gastric cancer, none has focused on comprehensive genetic analysis of Type IV. To discover cancer-relevant genes in Type IV, we performed whole-exome sequencing and genome-wide copy number analysis on 13 patients with Type IV. Exome sequencing identified 178 somatic mutations in protein-coding sequences or at splice sites. Among the mutations, we found a mutation in muscle RAS oncogene homolog (MRAS), which is predicted to cause molecular dysfunction. MRAS belongs to the Ras subgroup of small G proteins, which includes the prototypic RAS oncogenes. We analyzed an additional 46 Type IV samples to investigate the frequency of MRAS mutation. There were eight nonsynonymous mutations (mutation frequency, 17%), showing that MRAS is recurrently mutated in Type IV. Copy number analysis identified six focal amplifications and one homozygous deletion, including insulin-like growth factor 1 receptor (IGF1R) amplification. The samples with IGF1R amplification had remarkably higher IGF1R mRNA and protein expression levels compared with the other samples. This is the first report of MRAS recurrent mutation in human tumor samples. Our results suggest that MRAS mutation and IGF1R amplification could drive tumorigenesis of Type IV and could be new therapeutic targets. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  2. P16 UV mutations in human skin epithelial tumors.

    PubMed

    Soufir, N; Molès, J P; Vilmer, C; Moch, C; Verola, O; Rivet, J; Tesniere, A; Dubertret, L; Basset-Seguin, N

    1999-09-23

    The p16 gene expresses two alternative transcripts (p16alpha and p16beta) involved in tumor suppression via the retinoblastoma (Rb) or p53 pathways. Disruption of these pathways can occur through inactivation of p16 or p53, or activating mutations of cyclin dependant kinase 4 gene (Cdk4). We searched for p16, Cdk4 and p53 gene mutations in 20 squamous cell carcinomas (SSCs), 1 actinic keratosis (AK), and 28 basal cell carcinomas (BCCs), using PCR-SSCP. A deletion and methylation analysis of p16 was also performed. Six different mutations (12%) were detected in exon 2 of p16 (common to p16alpha and p16beta), in five out of 21 squamous lesions (24%) (one AK and four SCCs) and one out of 28 BCCs (3.5%). These included four (66%) ultraviolet (UV)-type mutations (two tandems CC : GG to TT : AA transitions and two C : G to T : A transitions at dipyrimidic site) and two transversions. P53 mutations were present in 18 samples (37%), mostly of UV type. Of these, only two (one BCC and one AK) harboured simultaneously mutations of p16, but with no consequence on p16beta transcript. Our data demonstrate for the first time the presence of p16 UV induced mutations in non melanoma skin cancer, particularly in the most aggressive SCC type, and support that p16 and p53 are involved in two independent pathways in skin carcinogenesis.

  3. A case of thanatophoric dysplasia type 2: a novel mutation.

    PubMed

    Gülaşı, Selvi; Atıcı, Aytuğ; Çelik, Yalçın

    2015-03-01

    Thanatophoric dysplasia (TD) is a lethal form of skeletal dysplasia with short-limb dwarfism. Two types distinguished with their radiological characteristics have been defined clinically. The femur is curved in type 1, while it is straight in type 2. TD is known to be due to a mutation in the fibroblast growth factor receptor 3 (FGFR3) gene. We report a male patient who showed clinical findings congruent with TD type 2 and a new mutation in the FGFR3 gene, a finding which has not been reported previously.

  4. [Genetic mutation and clinical features of osteogenesis imperfecta type V].

    PubMed

    Guan, Shizhen; Bai, Xue; Wang, Yi; Liu, Zhigang; Ren, Xiuzhi; Zhang, Tianke; Ju, Mingyan; Li, Keqiu; Li, Guang

    2017-12-10

    To explore genetic mutations and clinical features of osteogenesis imperfecta type V. Clinical record of five patients (including one familial case) with osteogenesis imperfecta type V were retrospectively analyzed. Peripheral blood samples of the patients, one family member, as well as healthy controls were collected. Mutation of IFITM5 gene was identified by PCR amplification and Sanger sequencing. A heterozygous mutation (c.-14C>T) in the 5-UTR of the IFITM5 gene was identified in all of the patients and one mother. The clinical findings included frequent fractures and spine and/or extremities deformities, absence of dentinogenesis imperfecta, absence of hearing impairment, and blue sclera in 1 case. Radiographic findings revealed calcification of the interosseous membrane between the radius-ulna in all cases. Hyperplastic callus formation was found in 3 cases. Four had radial-head dislocation. A single heterozygous mutation c.-14C>T was found in the 5-UTR of the IFITM5 gene in 5 patients with osteogensis imperfecta type V. The patients showed specific radiological features including calcification of interosseous membrane, hyperplastic callus formation, and radial-head dislocation.

  5. THE COMPARATIVE MUTAGENIC EFFECT OF ETHYLENIMINE, ULTRAVIOLET AND X-RAYS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alikhanyan, S.I.; Zhdanova, N.I.

    1960-07-11

    The mutagenic effects of ethylenimine were determined by the use of Actinomyces alivaceus (the product of B/sub 12/ vitamin) and compared with ultraviolet, and x ray effects. The spores were exposed to high concentrations of ethylenimine (solution of 1: 1000) for various times (30 min, 1, 2, 3, 4, and 5 hr) and to diluted concentrations (1: 3000, produced by short-time exposure to a concentrated solution; lethality at various treatments is nearly identical. The results of the comparison with ultraviolet and x rays indicate a large advantage in the use of ethylenimine. Curves of reverse mutation frequencies indicate prevailing frequenciesmore » of ethylenimine mutations over ultraviolet. This shows that regardless of genetic background changes. the advantages of ethylenimine are retained. (R.V.J.)« less

  6. Common mutation underlying primary hyperoxaluria type1 in three Indian children

    PubMed Central

    Chanchlani, R.; Sinha, A.; Gulati, A.; Agarwal, V.; Bagga, A.

    2012-01-01

    Primary hyperoxaluria is an autosomal recessive disorder caused by deficiency of alanine-glyoxylate aminotransferase, which is encoded by the AGXT gene. We report three Indian children with primary hyperoxaluria type1 having a common mutation in this gene. All patients had evidence of chronic kidney disease at the time of diagnosis, with subsequent progression to end-stage renal disease. The detection of an identical mutation in the AGXT gene suggests that specific genetic screening for this mutation may be useful when considering the diagnosis of primary hyperoxaluria type1. PMID:23439734

  7. Common mutation underlying primary hyperoxaluria type1 in three Indian children.

    PubMed

    Chanchlani, R; Sinha, A; Gulati, A; Agarwal, V; Bagga, A

    2012-11-01

    Primary hyperoxaluria is an autosomal recessive disorder caused by deficiency of alanine-glyoxylate aminotransferase, which is encoded by the AGXT gene. We report three Indian children with primary hyperoxaluria type1 having a common mutation in this gene. All patients had evidence of chronic kidney disease at the time of diagnosis, with subsequent progression to end-stage renal disease. The detection of an identical mutation in the AGXT gene suggests that specific genetic screening for this mutation may be useful when considering the diagnosis of primary hyperoxaluria type1.

  8. Psoralen-ultraviolet A treatment with Psoralen-ultraviolet B therapy in the treatment of psoriasis.

    PubMed

    Ahmed Asim, Sadaf; Ahmed, Sitwat; Us-Sehar, Najam

    2013-05-01

    To compare the conventional psoralen-ultraviolet A treatment with psoralen-ultraviolet B therapy in the treatment of psoriasis. We studied 50 patients of plaque type psoriasis who were selected to receive either conventional psoralen-ultraviolet A or psoralen-ultraviolet B treatment. There was no significant difference between the two treatment groups in the number of patients whose skin cleared of psoriasis or the number of exposures required for clearance. Profile of side effects and disease status was also similar after three months of follow up. Psoralen-ultraviolet B treatment is as effective as conventional psoralen-ultraviolet A in the treatment of psoriasis. Further long term studies are needed to assess the safety of psoralen-ultraviolet B.

  9. Cancerouspdomains: comprehensive analysis of cancer type-specific recurrent somatic mutations in proteins and domains.

    PubMed

    Hashemi, Seirana; Nowzari Dalini, Abbas; Jalali, Adrin; Banaei-Moghaddam, Ali Mohammad; Razaghi-Moghadam, Zahra

    2017-08-16

    Discriminating driver mutations from the ones that play no role in cancer is a severe bottleneck in elucidating molecular mechanisms underlying cancer development. Since protein domains are representatives of functional regions within proteins, mutations on them may disturb the protein functionality. Therefore, studying mutations at domain level may point researchers to more accurate assessment of the functional impact of the mutations. This article presents a comprehensive study to map mutations from 29 cancer types to both sequence- and structure-based domains. Statistical analysis was performed to identify candidate domains in which mutations occur with high statistical significance. For each cancer type, the corresponding type-specific domains were distinguished among all candidate domains. Subsequently, cancer type-specific domains facilitated the identification of specific proteins for each cancer type. Besides, performing interactome analysis on specific proteins of each cancer type showed high levels of interconnectivity among them, which implies their functional relationship. To evaluate the role of mitochondrial genes, stem cell-specific genes and DNA repair genes in cancer development, their mutation frequency was determined via further analysis. This study has provided researchers with a publicly available data repository for studying both CATH and Pfam domain regions on protein-coding genes. Moreover, the associations between different groups of genes/domains and various cancer types have been clarified. The work is available at http://www.cancerouspdomains.ir .

  10. Germinal mosaicism of PAX3 mutation caused Waardenburg syndrome type I.

    PubMed

    Chen, Kaitian; Zhan, Yuan; Wu, Xuan; Zong, Ling; Jiang, Hongyan

    2018-01-01

    Waardenburg syndrome mutations are most often recurrent or de novo. The rate of familial recurrence is low and families with several affected children are extremely rare. In this study, we aimed to clarify the underlying hereditary cause of Waardenburg syndrome type I in two siblings in a Chinese family, with a mother affected by prelingual mild hearing loss and a father who was negative for clinical symptoms of Waardenburg syndrome and had a normal hearing threshold. Complete characteristic features of the family members were recorded and genetic sequencing and parent-child relationship analyses were performed. The two probands were found to share double mutations in the PAX3/GJB2 genes that caused concurrent hearing loss in Waardenburg syndrome type I. Their mother carried the GJB2 c.109G > A homozygous mutation; however, neither the novel PAX3 c.592delG mutation, nor the Waardenburg syndrome phenotype, was observed in either parent. These previously unreported digenic mutations in PAX3/GJB2 resulted in deafness associated with Waardenburg syndrome type I in this family. To our knowledge, this is the first report describing germinal mosaicism in Waardenburg syndrome. This concept is important because it complicates genetic counseling of this family regarding the risk of recurrence of the mutations in subsequent pregnancies. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Expanding the phenotypic and mutational spectrum in microcephalic osteodysplastic primordial dwarfism type I.

    PubMed

    Abdel-Salam, Ghada M H; Abdel-Hamid, Mohamed S; Issa, Mahmoud; Magdy, Ahmed; El-Kotoury, Ahmed; Amr, Khalda

    2012-06-01

    Mutations in the RNU4ATAC gene cause microcephalic osteodysplastic primordial dwarfism type I. It encodes U4atac, a small nuclear RNA that is a component of the minor spliceosome. Six distinct mutations in 30 patients diagnosed as microcephalic osteodysplastic primordial dwarfism type I have been described. We report on three additional patients from two unrelated families presenting with a milder phenotype of microcephalic osteodysplastic primordial dwarfism type I and metopic synostosis. Patient 1 had two novel heterozygous mutations in the 3' prime stem-loop, g.66G > C and g.124G > A while Patients 2 and 3 had a homozygous mutation g.55G > A in the 5' prime stem-loop. Although they manifested the known spectrum of clinical features of microcephalic osteodysplastic primordial dwarfism type I, they lacked evidence of severe developmental delay and neurological symptoms. These findings expand the mutational and phenotypic spectrum of this syndrome. Copyright © 2012 Wiley Periodicals, Inc.

  12. Abnormal ultraviolet mutagenic spectrum in plasmid DNA replicated in cultured fibroblasts from a patient with the skin cancer-prone disease, xeroderma pigmentosum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seetharam, S.; Protic-Sabljic, M.; Seidman, M.M.

    1987-12-01

    A shuttle vector plasmid, pZ189, was utilized to assess the types of mutations that cells from a patient with xeroderma pigmentosum, complementation group D, introduce into ultraviolet (UV) damaged, replicating DNA. Patients with xeroderma pigmentosum have clinical and cellular UV hypersensitivity, increased frequency of sun-induced skin cancer, and deficient DNA repair. In comparison to UV-treated pZ189 replicated in DNA repair-proficient cells, there were fewer surviving plasmids, a higher frequency of plasmids with mutations, fewer plasmids with two or more mutations in the marker gene, and a new mutagenic hotspot. The major type of base substitution mutation was the G:C tomore » A:T transition with both cell lines. These results, together with similar findings published earlier with cells from a xeroderma pigmentosum patient in complementation group A, suggest that isolated G:C to A:T somatic mutations may be particularly important in generation of human skin cancer by UV radiation.« less

  13. [Mechanism of mutant induction in the ade2 gene of diploid Saccharomyces cerevisiae yeasts by ultraviolet rays].

    PubMed

    Gordenin, D A; Inge-Vechtomov, S G

    1981-01-01

    Ultraviolet light (UV) at 3000 ergs/mm-2 induces ade2 mutants with a frequency about 10(-4) in wild-type haploid strains of yeast and about 10(-5) in diploid wild-type strains. UV irradiation effectively induced mitotic segregation of ade2 in the heterozygous diploid (the frequency of segregation is 6%). Interallelic complementation and localization spectra are similar for mutations induced both in haploids and diploids. The occurrence of ade2 mutants in diploids correlated with mitotic segregation of the marker his8 which is situated in the same arm of XY chromosome as ade2 is, distal to the centromere. Our data about the frequency of ade2 mutants in diploids and haploids, the frequency of ade2 mitotic segregation, mitotic segregation of other markers and genetic characteristics of ade2 mutations confirm the suggestion that the major mechanism of diploid ade2 mutants appearance is mutation in one of the two ADE2 alleles and consequent mitotic homozygotisation of mutation as a result of mitotic crossingover between ade2 and the centromere.

  14. A de novo mutation in the AGXT gene causing primary hyperoxaluria type 1.

    PubMed

    Williams, Emma L; Kemper, Markus J; Rumsby, Gill

    2006-09-01

    Primary hyperoxaluria type 1 is caused by mutations in the alanine-glyoxylate aminotransferase (AGXT) gene. In cases in which no mutation was identified, linkage analysis can be used to confirm or exclude the diagnosis in other siblings. We present a family in which a sibling of the index case predicted to have primary hyperoxaluria type 1 by means of linkage analysis failed to show hyperoxaluria during the following 7 years, putting the diagnosis into question. Whole-gene sequence analysis identified 2 causative mutations in the index case, of which only 1, c.646A (Gly216Arg), was inherited. The other sequence change, c.33_34insC, was a de novo mutation occurring on the paternal allele. This particular mutation is a relatively common cause of primary hyperoxaluria type 1. It occurs in a run of 8 cytosines and therefore potentially is susceptible to polymerase slippage. This case illustrates 2 important points. First, biochemical confirmation of a genetic diagnosis should always be made in siblings diagnosed by using genetic tests. Second, de novo mutations should be considered as a potential, albeit rare, cause of primary hyperoxaluria type 1.

  15. Psoralen-ultraviolet A treatment with Psoralen-ultraviolet B therapy in the treatment of psoriasis

    PubMed Central

    Ahmed Asim, Sadaf; Ahmed, Sitwat; us-Sehar, Najam

    2013-01-01

    Objective: To compare the conventional psoralen-ultraviolet A treatment with psoralen-ultraviolet B therapy in the treatment of psoriasis. Methodology: We studied 50 patients of plaque type psoriasis who were selected to receive either conventional psoralen-ultraviolet A or psoralen-ultraviolet B treatment. Results: There was no significant difference between the two treatment groups in the number of patients whose skin cleared of psoriasis or the number of exposures required for clearance. Profile of side effects and disease status was also similar after three months of follow up. Conclusion: Psoralen-ultraviolet B treatment is as effective as conventional psoralen-ultraviolet A in the treatment of psoriasis. Further long term studies are needed to assess the safety of psoralen-ultraviolet B. PMID:24353623

  16. Novel NTRK1 mutations cause hereditary sensory and autonomic neuropathy type IV: demonstration of a founder mutation in the Turkish population.

    PubMed

    Tüysüz, Beyhan; Bayrakli, Fatih; DiLuna, Michael L; Bilguvar, Kaya; Bayri, Yasar; Yalcinkaya, Cengiz; Bursali, Aysegul; Ozdamar, Elif; Korkmaz, Baris; Mason, Christopher E; Ozturk, Ali K; Lifton, Richard P; State, Matthew W; Gunel, Murat

    2008-05-01

    Hereditary sensory and autonomic neuropathy type IV (HSAN IV), or congenital insensitivity to pain with anhidrosis, is an autosomal recessive disorder characterized by insensitivity to noxious stimuli, anhidrosis from deinnervated sweat glands, and delayed mental and motor development. Mutations in the neurotrophic tyrosine kinase receptor type 1 (NTRK1), a receptor in the neurotrophin signaling pathway phosphorylated in response to nerve growth factor, are associated with this disorder. We identified six families from Northern Central Turkey with HSAN IV. We screened the NTRK1 gene for mutations in these families. Microsatellite and single nucleotide polymorphism (SNP) markers on the Affymetrix 250K chip platform were used to determine the haplotypes for three families harboring the same mutation. Screening for mutations in the NTRK1 gene demonstrated one novel frameshift mutation, two novel nonsense mutations, and three unrelated kindreds with the same splice-site mutation. Genotyping of the three families with the identical splice-site mutation revealed that they share the same haplotype. This report broadens the spectrum of mutations in NTRK1 that cause HSAN IV and demonstrates a founder mutation in the Turkish population.

  17. The 1448C mutation in Chinese with type 1 and 2 Gaucher disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, F.J.; Tsai, C.H.

    1994-09-01

    Gaucher disease (GD) is the most common glycolipid storage disorder. Just 5 mutations account for over 97% of all the alleles that produce enzyme deficiency in the Ashkenazic Jewish population. However, GD occurs in all populations but with a much lower frequency, as is the case with other mutations that are common in a single ethnic group. To characterize the molecular basis of Chinese with GD, two cases of GD was analyzed (type 1 and type 2) by selective amplification and restriction endonuclease analysis. Homozygosity of this mutation seems to result in neuronopathic GD (type 2 or 3), but somemore » exceptional cases have been reported. Our results show that the existence of the 1448C mutation in Chinese patients is similar to that of other ethnic groups. In our case 2, who had a homozygotic 1448C mutation but without any CNS manifestation, type 1 GD was diagnosed. In view of the young age of the patient (11 year old), he may develop neurological disease later in life. We suggest that such a case should be followed to observe if any neurological sign becomes present. Patients with GD sharing identical genotypes can exhibit different phenotypic pictures. Thus one cannot rely solely on DNA mutation analysis to predict prognosis in GD. The Chinese mutation data of GD presented here can support this hypothesis.« less

  18. Novel insertion mutation in a non-Jewish Caucasian type 1 Gaucher disease patient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choy, F.Y.M.; Humphries, M.L.; Ferreira, P.

    1997-01-20

    Gaucher disease is the most prevalent lysosomal storage disorder. It is autosomal recessive, resulting in lysosomal glucocerebrosidase deficiency. Three clinical forms of Gaucher disease have been described: type 1 (nonneuronopathic), type 2 (acute neuronopathic), and type 3 (subacute neuronopathic). We performed PCR-thermal cycle sequence analysis of glucocerebrosidase genomic DNA and identified a novel mutation in a non-Jewish type 1 Gaucher disease patient. It is a C insertion in exon 3 at cDNA nucleotide position 122 and genomic nucleotide position 1626. This mutation causes a frameshift and, subsequently, four of the five codons immediately downstream of the insertion were changed whilemore » the sixth was converted to a stop codon, resulting in premature termination of protein translation. The 122CC insertion abolishes a Cac81 restriction endonuclease cleavage site, allowing a convenient and reliable method for detection using RFLP analysis of PCR-amplified glucocerebrosidase genomic DNA. The mutation in the other Gaucher allele was found to be an A{r_arrow}G substitution at glucocerebrosidase cDNA nucleotide position 1226 that so far has only been reported among type 1 Gaucher disease patients. Since mutation 122CC causes a frameshift and early termination of protein translation, it most likely results in a meaningless transcript and subsequently no residual glucocerebrosidase enzyme activity. We speculate that mutation 122CC may result in a worse prognosis than mutations associated with partial activity. When present in the homozygous form, it could be a lethal allele similar to what has been postulated for the other known insertion mutation, 84GG. Our patient, who is a compound heterozygote 122CC/1226G, has moderately severe type 1 Gaucher disease. Her clinical response to Ceredase{reg_sign} therapy that began 31 months ago has been favorable, though incomplete. 30 refs., 3 figs., 2 tabs.« less

  19. Novel and Recurrent MYO7A Mutations in Usher Syndrome Type 1 and Type 2

    PubMed Central

    Liu, Yani; Liu, Xiaoxing; Ha, Shaoping; Liu, Wenzhou; Kang, Xiaoli; Sheng, Xunlun; Zhao, Chen

    2014-01-01

    Usher syndrome (USH) is a group of disorders manifested as retinitis pigmentosa and bilateral sensorineural hearing loss, with or without vestibular dysfunction. Here, we recruited three Chinese families affected with autosomal recessive USH for detailed clinical evaluations and for mutation screening in the genes associated with inherited retinal diseases. Using targeted next-generation sequencing (NGS) approach, three new alleles and one known mutation in MYO7A gene were identified in the three families. In two families with USH type 1, novel homozygous frameshift variant p.Pro194Hisfs*13 and recurrent missense variant p.Thr165Met were demonstrated as the causative mutations respectively. Crystal structural analysis denoted that p.Thr165Met would very likely change the tertiary structure of the protein encoded by MYO7A. In another family affected with USH type 2, novel biallelic mutations in MYO7A, c.[1343+1G>A];[2837T>G] or p.[?];[Met946Arg], were identified with clinical significance. Because MYO7A, to our knowledge, has rarely been correlated with USH type 2, our findings therefore reveal distinguished clinical phenotypes associated with MYO7A. We also conclude that targeted NGS is an effective approach for genetic diagnosis for USH, which can further provide better understanding of genotype-phenotype relationship of the disease. PMID:24831256

  20. Novel and recurrent MYO7A mutations in Usher syndrome type 1 and type 2.

    PubMed

    Rong, Weining; Chen, Xue; Zhao, Kanxing; Liu, Yani; Liu, Xiaoxing; Ha, Shaoping; Liu, Wenzhou; Kang, Xiaoli; Sheng, Xunlun; Zhao, Chen

    2014-01-01

    Usher syndrome (USH) is a group of disorders manifested as retinitis pigmentosa and bilateral sensorineural hearing loss, with or without vestibular dysfunction. Here, we recruited three Chinese families affected with autosomal recessive USH for detailed clinical evaluations and for mutation screening in the genes associated with inherited retinal diseases. Using targeted next-generation sequencing (NGS) approach, three new alleles and one known mutation in MYO7A gene were identified in the three families. In two families with USH type 1, novel homozygous frameshift variant p.Pro194Hisfs*13 and recurrent missense variant p.Thr165Met were demonstrated as the causative mutations respectively. Crystal structural analysis denoted that p.Thr165Met would very likely change the tertiary structure of the protein encoded by MYO7A. In another family affected with USH type 2, novel biallelic mutations in MYO7A, c.[1343+1G>A];[2837T>G] or p.[?];[Met946Arg], were identified with clinical significance. Because MYO7A, to our knowledge, has rarely been correlated with USH type 2, our findings therefore reveal distinguished clinical phenotypes associated with MYO7A. We also conclude that targeted NGS is an effective approach for genetic diagnosis for USH, which can further provide better understanding of genotype-phenotype relationship of the disease.

  1. Mutational analysis of AGXT in two Chinese families with primary hyperoxaluria type 1

    PubMed Central

    2014-01-01

    Background Primary hyperoxaluria type 1 is a rare autosomal recessive disease of glyoxylate metabolism caused by a defect in the liver-specific peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT) that leads to hyperoxaluria, recurrent urolithiasis, and nephrocalcinosis. Methods Two unrelated patients with recurrent urolithiasis, along with members of their families, exhibited mutations in the AGXT gene by PCR direct sequencing. Results Two heterozygous mutations that predict truncated proteins, p.S81X and p.S275delinsRAfs, were identified in one patient. The p.S81X mutation is novel. Two heterozygous missense mutations, p.M1T and p.I202N, were detected in another patient but were not identified in her sibling. These four mutations were confirmed to be of paternal and maternal origin. Conclusions These are the first cases of primary hyperoxaluria type 1 to be diagnosed by clinical manifestations and AGXT gene mutations in mainland China. The novel p.S81X and p.I202N mutations detected in our study extend the spectrum of known AGXT gene mutations. PMID:24934730

  2. Mutational analysis of AGXT in two Chinese families with primary hyperoxaluria type 1.

    PubMed

    Li, Guo-min; Xu, Hong; Shen, Qian; Gong, Yi-nv; Fang, Xiao-yan; Sun, Li; Liu, Hai-mei; An, Yu

    2014-06-17

    Primary hyperoxaluria type 1 is a rare autosomal recessive disease of glyoxylate metabolism caused by a defect in the liver-specific peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT) that leads to hyperoxaluria, recurrent urolithiasis, and nephrocalcinosis. Two unrelated patients with recurrent urolithiasis, along with members of their families, exhibited mutations in the AGXT gene by PCR direct sequencing. Two heterozygous mutations that predict truncated proteins, p.S81X and p.S275delinsRAfs, were identified in one patient. The p.S81X mutation is novel. Two heterozygous missense mutations, p.M1T and p.I202N, were detected in another patient but were not identified in her sibling. These four mutations were confirmed to be of paternal and maternal origin. These are the first cases of primary hyperoxaluria type 1 to be diagnosed by clinical manifestations and AGXT gene mutations in mainland China. The novel p.S81X and p.I202N mutations detected in our study extend the spectrum of known AGXT gene mutations.

  3. Wild-type presenilin 1 protects against Alzheimer disease mutation-induced amyloid pathology.

    PubMed

    Wang, Runsheng; Wang, Baiping; He, Wanxia; Zheng, Hui

    2006-06-02

    Mutations in presenilin 1 (PS1) lead to dominant inheritance of early onset familial Alzheimer disease (FAD). These mutations are known to alter the gamma-secretase cleavage of the amyloid precursor protein, resulting in increased ratio of Abeta42/Abeta40 and accelerated amyloid plaque pathology in transgenic mouse models. To investigate the factors that drive the Abeta42/Abeta40 ratio and amyloid pathogenesis and to investigate the possible interactions between wild-type and FAD mutant PS1, which are co-expressed in transgenic animals, we expressed the PS1 M146V knock-in allele either on wild-type PS1 (PS1M146V/+) or PS1 null (PS1M146V/-) background and crossed these alleles with the Tg2576 APP transgenic mice. Introduction of the PS1 M146V mutation on Tg2576 background resulted in earlier onset of plaque pathology. Surprisingly, removing the wild-type PS1 in the presence of the PS1 M146V mutation (PS1M146V/-) greatly exacerbated the amyloid burden; and this was attributed to a reduction of gamma-secretase activity rather than an increase in Abeta42. Our findings establish a protective role of the wild-type PS1 against the FAD mutation-induced amyloid pathology through a partial loss-of-function mechanism.

  4. PHENOTYPIC VARIABILITY IN INDIVIDUALS WITH TYPE V OSTEOGENESIS IMPERFECTA WITH IDENTICAL IFITM5 MUTATIONS

    PubMed Central

    Fitzgerald, Jamie; Holden, Paul; Wright, Hollis; Wilmot, Beth; Hata, Abigail; Steiner, Robert D.; Basel, Don

    2016-01-01

    Background Osteogenesis imperfecta (OI) type V is a dominantly inherited skeletal dysplasia characterized by fractures and progressive deformity of long bones. In addition, patients often present with radial head dislocation, hyperplastic callus, and calcification of the forearm interosseous membrane. Recently, a specific mutation in the IFITM5 gene was found to be responsible for OI type V. This mutation, a C to T transition 14 nucleotides upstream from the endogenous start codon, creates a new start methionine that appears to be preferentially used by the translational machinery. However, the mechanism by which the lengthened protein results in a dominant type of OI is unknown. Methods and Results We report 7 ethnically diverse (African-American, Caucasian, Hispanic, and African) individuals with OI type V from 2 families and 2 sporadic cases. Exome sequencing failed to identify a causative mutation. Using Sanger sequencing, we found that all affected individuals in our cohort possess the c.−14 IFITM5 variant, further supporting the notion that OI type V is caused by a single, discrete mutation. Our patient cohort demonstrated inter-and intrafamilial phenotypic variability, including a father with classic OI type V whose daughter had a phenotype similar to OI type I. This clinical variability suggests that modifier genes influence the OI type V phenotype. We also confirm that the mutation creates an aberrant IFITM5 protein containing an additional 5 amino acids at the N-terminus. Conclusions The variable clinical signs in these cases illustrate the significant variability of the OI type V phenotype caused by the c.−14 IFITM5 mutation. The affected individuals are more ethnically diverse than previously reported. PMID:28824928

  5. Development of potent in vivo mutagenesis plasmids with broad mutational spectra

    PubMed Central

    Badran, Ahmed H.; Liu, David R.

    2015-01-01

    Methods to enhance random mutagenesis in cells offer advantages over in vitro mutagenesis, but current in vivo methods suffer from a lack of control, genomic instability, low efficiency and narrow mutational spectra. Using a mechanism-driven approach, we created a potent, inducible, broad-spectrum and vector-based mutagenesis system in E. coli that enhances mutation 322,000-fold over basal levels, surpassing the mutational efficiency and spectra of widely used in vivo and in vitro methods. We demonstrate that this system can be used to evolve antibiotic resistance in wild-type E. coli in <24 h, outperforming chemical mutagens, ultraviolet light and the mutator strain XL1-Red under similar conditions. This system also enables the continuous evolution of T7 RNA polymerase variants capable of initiating transcription using the T3 promoter in <10 h. Our findings enable broad-spectrum mutagenesis of chromosomes, episomes and viruses in vivo, and are applicable to both bacterial and bacteriophage-mediated laboratory evolution platforms. PMID:26443021

  6. Development of potent in vivo mutagenesis plasmids with broad mutational spectra.

    PubMed

    Badran, Ahmed H; Liu, David R

    2015-10-07

    Methods to enhance random mutagenesis in cells offer advantages over in vitro mutagenesis, but current in vivo methods suffer from a lack of control, genomic instability, low efficiency and narrow mutational spectra. Using a mechanism-driven approach, we created a potent, inducible, broad-spectrum and vector-based mutagenesis system in E. coli that enhances mutation 322,000-fold over basal levels, surpassing the mutational efficiency and spectra of widely used in vivo and in vitro methods. We demonstrate that this system can be used to evolve antibiotic resistance in wild-type E. coli in <24 h, outperforming chemical mutagens, ultraviolet light and the mutator strain XL1-Red under similar conditions. This system also enables the continuous evolution of T7 RNA polymerase variants capable of initiating transcription using the T3 promoter in <10 h. Our findings enable broad-spectrum mutagenesis of chromosomes, episomes and viruses in vivo, and are applicable to both bacterial and bacteriophage-mediated laboratory evolution platforms.

  7. Association of BRCA Mutation Types, Imaging Features, and Pathologic Findings in Patients With Breast Cancer With BRCA1 and BRCA2 Mutations.

    PubMed

    Ha, Su Min; Chae, Eun Young; Cha, Joo Hee; Kim, Hak Hee; Shin, Hee Jung; Choi, Woo Jung

    2017-10-01

    The purpose of this study is to retrospectively evaluate the relationships between the BRCA mutation types, imaging features, and pathologic findings of breast cancers in BRCA1 and BRCA2 mutation carriers. We identified patients with breast cancer with BRCA gene mutations from January 2000 to December 2014. After excluding patients who underwent lesion excision before MRI, 99 BRCA1 and 103 BRCA2 lesions in 187 women (mean age, 39.7 and 40.4 years, respectively) were enrolled. Mammographic, sonographic, and MRI scans were reviewed according to the BI-RADS lexicon (5th edition). Pathologic data were reviewed, including the immunohistochemistry findings. The relationships between the BRCA mutations and both imaging and pathologic findings were analyzed. The distribution of molecular subtypes of tumors significantly differed by the mutation type. BRCA1 tumors were associated with the triple-negative subtype, whereas BRCA2 tumors were associated with the luminal B subtype (p = 0.002). At MRI, breast cancers with BRCA1 mutations exhibited a circumscribed margin (p = 0.032) and rim enhancement (p = 0.013). No significant differences in mass shape or kinetic features were observed at MRI. Cancers in BRCA1 mutation carriers tended to develop in the posterior location in the breast (p = 0.034). At mammography, no significant difference in the prevalence of calcifications was observed according to the mutation type. At sonography, BRCA1 lesions were found to be associated with posterior acoustic enhancement (p < 0.0001). Breast cancers with BRCA1 mutations tend to exhibit benign morphologic features at MRI, mammography, and sonography, compared with BRCA2 mutations. Lesion location may represent another difference on imaging among various genetic phenotypes.

  8. Homozygous EDNRB mutation in a patient with Waardenburg syndrome type 1.

    PubMed

    Morimoto, Noriko; Mutai, Hideki; Namba, Kazunori; Kaneko, Hiroki; Kosaki, Rika; Matsunaga, Tatsuo

    2018-04-01

    To examine and expand the genetic spectrum of Waardenburg syndrome type 1 (WS1). Clinical features related to Waardenburg syndrome (WS) were examined in a five-year old patient. Mutation analysis of genes related to WS was performed in the proband and her parents. Molecular modeling of EDNRB and the p.R319W mutant was conducted to predict the pathogenicity of the mutation. The proband showed sensorineural hearing loss, heterochromia iridis, and dystopia canthorum, fulfilling the clinical criteria of WS1. Genetic analyses revealed that the proband had no mutation in PAX3 which has been known as the cause of WS1, but had a homozygous missense mutation (p.R319W) in endothelin receptor type B (EDNRB) gene. The asymptomatic parents had the mutation in a heterozygote state. This mutation has been previously reported in a heterozygous state in a patient with Hirschsprung's disease unaccompanied by WS, but the patient and her parents did not show any symptoms in gastrointestinal tract. Molecular modeling of EDNRB with the p.R319W mutation demonstrated reduction of the positively charged surface area in this region, which might reduce binding ability of EDNRB to G protein and lead to abnormal signal transduction underlying the WS phenotype. Our findings suggested that autosomal recessive mutation in EDNRB may underlie a part of WS1 with the current diagnostic criteria, and supported that Hirschsprung's disease is a multifactorial genetic disease which requires additional factors. Further molecular analysis is necessary to elucidate the gene interaction and to reappraise the current WS classification. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Expanding the spectrum of genetic mutations in antenatal Bartter syndrome type II.

    PubMed

    Fretzayas, Andreas; Gole, Evangelia; Attilakos, Achilleas; Daskalaki, Anna; Nicolaidou, Polyxeni; Papadopoulou, Anna

    2013-06-01

    Bartter syndrome (BS) is a group of genetic disorders characterized by hypokalemic metabolic alkalosis, hyponatremia and elevated renin and aldosterone plasma concentrations. BS type II is caused by mutations in the KCNJ1 gene and usually presents with transient hyperkalemia. We report here a novel KCNJ1 mutation in a male neonate, prematurely born after a pregnancy complicated by polyhydramnios. The infant presented with typical clinical and laboratory findings of BS type II, such as hyponatremia, hypochloremic metabolic alkalosis, severe weight loss, elevated renin and aldosterone levels and transient hyperkalemia in the early postnatal period, which were later normalized. Molecular analysis revealed a compound heterozygous mutation in the KCNJ1 gene, consisting of a novel K76E and an already described V315G mutation, both affecting functional domains of the channel protein. Typical manifestations of antenatal BS in combination with hyperkalemia should prompt the clinician to search for mutations in the KCNJ1 gene first. © 2013 The Authors. Pediatrics International © 2013 Japan Pediatric Society.

  10. Next generation sequencing of Cytokeratin 20-negative Merkel cell carcinoma reveals ultraviolet-signature mutations and recurrent TP53 and RB1 inactivation.

    PubMed

    Harms, Paul W; Collie, Angela M B; Hovelson, Daniel H; Cani, Andi K; Verhaegen, Monique E; Patel, Rajiv M; Fullen, Douglas R; Omata, Kei; Dlugosz, Andrzej A; Tomlins, Scott A; Billings, Steven D

    2016-03-01

    Merkel cell carcinoma is a rare but highly aggressive cutaneous neuroendocrine carcinoma. Cytokeratin 20 (CK20) is expressed in ~95% of Merkel cell carcinomas and is useful for distinction from morphologically similar entities including metastatic small-cell lung carcinoma. Lack of CK20 expression may make diagnosis of Merkel cell carcinoma more challenging, and has unknown biological significance. Approximately 80% of CK20-positive Merkel cell carcinomas are associated with the oncogenic Merkel cell polyomavirus. Merkel cell carcinomas lacking Merkel cell polyomavirus display distinct genetic changes from Merkel cell polyomavirus-positive Merkel cell carcinoma, including RB1 inactivating mutations. Unlike CK20-positive Merkel cell carcinoma, the majority of CK20-negative Merkel cell carcinomas are Merkel cell polyomavirus-negative, suggesting CK20-negative Merkel cell carcinomas predominantly arise through virus-independent pathway(s) and may harbor additional genetic differences from conventional Merkel cell carcinoma. Hence, we analyzed 15 CK20-negative Merkel cell carcinoma tumors (10 Merkel cell polyomavirus-negative, four Merkel cell polyomavirus-positive, and one undetermined) using the Ion Ampliseq Comprehensive Cancer Panel, which assesses copy number alterations and mutations in 409 cancer-relevant genes. Twelve tumors displayed prioritized high-level chromosomal gains or losses (average 1.9 per tumor). Non-synonymous high-confidence somatic mutations were detected in 14 tumors (average 11.9 per tumor). Assessing all somatic coding mutations, an ultraviolet-signature mutational profile was present, and more prevalent in Merkel cell polyomavirus-negative tumors. Recurrent deleterious tumor suppressor mutations affected TP53 (9/15, 60%), RB1 (3/15, 20%), and BAP1 (2/15, 13%). Oncogenic activating mutations included PIK3CA (3/15, 20%), AKT1 (1/15, 7%) and EZH2 (1/15, 7%). In conclusion, CK20-negative Merkel cell carcinoma display overlapping genetic changes

  11. Next Generation Sequencing of Cytokeratin 20-Negative Merkel Cell Carcinoma Reveals Ultraviolet Signature Mutations and Recurrent TP53 and RB1 Inactivation

    PubMed Central

    Harms, Paul W.; Collie, Angela M. B.; Hovelson, Daniel H.; Cani, Andi K.; Verhaegen, Monique E.; Patel, Rajiv M.; Fullen, Douglas R.; Omata, Kei; Dlugosz, Andrzej A.; Tomlins, Scott A.; Billings, Steven D.

    2016-01-01

    Merkel cell carcinoma is a rare but highly aggressive cutaneous neuroendocrine carcinoma. Cytokeratin-20 (CK20) is expressed in approximately 95% of Merkel cell carcinomas and is useful for distinction from morphologically similar entities including metastatic small cell lung carcinoma. Lack of CK20 expression may make diagnosis of Merkel cell carcinoma more challenging, and has unknown biological significance. Approximately 80% of CK20-positive Merkel cell carcinomas are associated with the oncogenic Merkel cell polyomavirus. Merkel cell carcinomas lacking Merkel cell polyomavirus display distinct genetic changes from Merkel cell polyomavirus-positive Merkel cell carcinoma, including RB1 inactivating mutations. Unlike CK20-positive Merkel cell carcinoma, the majority of CK20-negative Merkel cell carcinomas are Merkel cell polyomavirus-negative, suggesting CK20-negative Merkel cell carcinomas predominantly arise through virus-independent pathway(s) and may harbor additional genetic differences from conventional Merkel cell carcinoma. Hence, we analyzed 15 CK20-negative Merkel cell carcinoma tumors (ten Merkel cell polyomavirus-negative, four Merkel cell polyomavirus-positive, and one undetermined) using the Ion Ampliseq Comprehensive Cancer Panel, which assesses copy number alterations and mutations in 409 cancer-relevant genes. Twelve tumors displayed prioritized high-level chromosomal gains or losses (average 1.9 per tumor). Non-synonymous high confidence somatic mutations were detected in 14 tumors (average 11.9 per tumor). Assessing all somatic coding mutations, an ultraviolet-signature mutational profile was present, and more prevalent in Merkel cell polyomavirus-negative tumors. Recurrent deleterious tumor suppressor mutations affected TP53 (9/15, 60%), RB1 (3/15, 20%), and BAP1 (2/15, 13%). Oncogenic activating mutations included PIK3CA (3/15, 20%), AKT1 (1/15, 7%)) and EZH2 (1/15, 7%). In conclusion, CK20-negative Merkel cell carcinoma display overlapping

  12. Vascular Ehlers-Danlos syndrome mutations in type III collagen differently stall the triple helical folding.

    PubMed

    Mizuno, Kazunori; Boudko, Sergei; Engel, Jürgen; Bächinger, Hans Peter

    2013-06-28

    Vascular Ehlers-Danlos syndrome (EDS) type IV is the most severe form of EDS. In many cases the disease is caused by a point mutation of Gly in type III collagen. A slower folding of the collagen helix is a potential cause for over-modifications. However, little is known about the rate of folding of type III collagen in patients with EDS. To understand the molecular mechanism of the effect of mutations, a system was developed for bacterial production of homotrimeric model polypeptides. The C-terminal quarter, 252 residues, of the natural human type III collagen was attached to (GPP)7 with the type XIX collagen trimerization domain (NC2). The natural collagen domain forms a triple helical structure without 4-hydroxylation of proline at a low temperature. At 33 °C, the natural collagenous part is denatured, but the C-terminal (GPP)7-NC2 remains intact. Switching to a low temperature triggers the folding of the type III collagen domain in a zipper-like fashion that resembles the natural process. We used this system for the two known EDS mutations (Gly-to-Val) in the middle at Gly-910 and at the C terminus at Gly-1018. In addition, wild-type and Gly-to-Ala mutants were made. The mutations significantly slow down the overall rate of triple helix formation. The effect of the Gly-to-Val mutation is much more severe compared with Gly-to-Ala. This is the first report on the folding of collagen with EDS mutations, which demonstrates local delays in the triple helix propagation around the mutated residue.

  13. Clinical implications of mutation analysis in primary hyperoxaluria type 1.

    PubMed

    van Woerden, Christiaan S; Groothoff, Jaap W; Wijburg, Frits A; Annink, Carla; Wanders, Ronald J A; Waterham, Hans R

    2004-08-01

    Primary hyperoxaluria type 1 (PH1) is an inborn error of glyoxylate metabolism with an extensive clinical and genetic heterogeneity. Although over 50 disease-causing mutations have been identified, the relationship between genotype and clinical outcome remains unclear. The aim of this study was to determine this association in order to find clues for improvement of patient care. AGXT mutation analysis and assessment of biochemical characteristics and clinical outcome were performed on patients from a Dutch PH1 cohort. Thirty-three of a cohort of 57 PH1 patients, identified in The Netherlands over a period of 30 years, were analyzed. Ten different mutations were found. The most common mutations were the Gly170Arg, Phe152Ile, and the 33insC mutations, with an allele frequency of 43%, 19%, and 15%, respectively. Homozygous Gly170Arg and Phe152Ile mutations were associated with pyridoxine responsiveness and a preserved renal function over time when treatment was timely initiated. All patients homozygous for the 33insC mutation had end-stage renal disease (ESRD) before the first year of age. In two unrelated patients, a new Val336Asp mutation was found coupled with the Gly170Arg mutation on the minor allele. We also found 3 patients homozygous for a novel Gly82Arg mutation with adverse outcome in 2 of them. Early detection of Gly170Arg and Phe152Ile mutations in PH1 has important clinical implications because of their association with pyridoxine responsiveness and clinical outcome. The association of a homozygous 33insC mutation with severe infantile ESRD, resulting in early deaths in 2 out of 3 cases, warrants a choice for prenatal diagnostics in affected families.

  14. A study of the mutational landscape of pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma.

    PubMed

    Ozawa, Michael G; Bhaduri, Aparna; Chisholm, Karen M; Baker, Steven A; Ma, Lisa; Zehnder, James L; Luna-Fineman, Sandra; Link, Michael P; Merker, Jason D; Arber, Daniel A; Ohgami, Robert S

    2016-10-01

    Pediatric-type follicular lymphoma and pediatric marginal zone lymphoma are two of the rarest B-cell lymphomas. These lymphomas occur predominantly in the pediatric population and show features distinct from their more common counterparts in adults: adult-type follicular lymphoma and adult-type nodal marginal zone lymphoma. Here we report a detailed whole-exome deep sequencing analysis of a cohort of pediatric-type follicular lymphomas and pediatric marginal zone lymphomas. This analysis revealed a recurrent somatic variant encoding p.Lys66Arg in the transcription factor interferon regulatory factor 8 (IRF8) in 3 of 6 cases (50%) of pediatric-type follicular lymphoma. This specific point mutation was not detected in pediatric marginal zone lymphoma or in adult-type follicular lymphoma. Additional somatic point mutations in pediatric-type follicular lymphoma were observed in genes involved in transcription, intracellular signaling, and cell proliferation. In pediatric marginal zone lymphoma, no recurrent mutation was identified; however, somatic point mutations were observed in genes involved in cellular adhesion, cytokine regulatory elements, and cellular proliferation. A somatic variant in AMOTL1, a recurrently mutated gene in splenic marginal zone lymphoma, was also identified in a case of pediatric marginal zone lymphoma. The overall non-synonymous mutational burden was low in both pediatric-type follicular lymphoma and pediatric marginal zone lymphoma (4.6 mutations per exome). Altogether, these findings support a distinctive genetic basis for pediatric-type follicular lymphoma and pediatric marginal zone lymphoma when compared with adult subtypes and to one another. Moreover, identification of a recurrent point mutation in IRF8 provides insight into a potential driver mutation in the pathogenesis of pediatric-type follicular lymphoma with implications for novel diagnostic or therapeutic strategies.

  15. A study of the mutational landscape of pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma

    PubMed Central

    Ozawa, Michael G; Bhaduri, Aparna; Chisholm, Karen M; Baker, Steven A; Ma, Lisa; Zehnder, James L; Luna-Fineman, Sandra; Link, Michael P; Merker, Jason D; Arber, Daniel A; Ohgami, Robert S

    2016-01-01

    Pediatric-type follicular lymphoma and pediatric marginal zone lymphoma are two of the rarest B-cell lymphomas. These lymphomas occur predominantly in the pediatric population and show features distinct from their more common counterparts in adults: adult-type follicular lymphoma and adult-type nodal marginal zone lymphoma. Here we report a detailed whole-exome deep sequencing analysis of a cohort of pediatric-type follicular lymphomas and pediatric marginal zone lymphomas. This analysis revealed a recurrent somatic variant encoding p.Lys66Arg in the transcription factor interferon regulatory factor 8 (IRF8) in 3 of 6 cases (50%) of pediatric-type follicular lymphoma. This specific point mutation was not detected in pediatric marginal zone lymphoma or in adult-type follicular lymphoma. Additional somatic point mutations in pediatric-type follicular lymphoma were observed in genes involved in transcription, intracellular signaling, and cell proliferation. In pediatric marginal zone lymphoma, no recurrent mutation was identified; however, somatic point mutations were observed in genes involved in cellular adhesion, cytokine regulatory elements, and cellular proliferation. A somatic variant in AMOTL1, a recurrently mutated gene in splenic marginal zone lymphoma, was also identified in a case of pediatric marginal zone lymphoma. The overall non-synonymous mutational burden was low in both pediatric-type follicular lymphoma and pediatric marginal zone lymphoma (4.6 mutations per exome). Altogether, these findings support a distinctive genetic basis for pediatric-type follicular lymphoma and pediatric marginal zone lymphoma when compared with adult subtypes and to one another. Moreover, identification of a recurrent point mutation in IRF8 provides insight into a potential driver mutation in the pathogenesis of pediatric-type follicular lymphoma with implications for novel diagnostic or therapeutic strategies. PMID:27338637

  16. Spectral classification with the International Ultraviolet Explorer: An atlas of B-type spectra

    NASA Technical Reports Server (NTRS)

    Rountree, Janet; Sonneborn, George

    1993-01-01

    New criteria for the spectral classification of B stars in the ultraviolet show that photospheric absorption lines in the 1200-1900A wavelength region can be used to classify the spectra of B-type dwarfs, subgiants, and giants on a 2-D system consistent with the optical MK system. This atlas illustrates a large number of such spectra at the scale used for classification. These spectra provide a dense matrix of standard stars, and also show the effects of rapid stellar rotation and stellar winds on the spectra and their classification. The observational material consists of high-dispersion spectra from the International Ultraviolet Explorer archives, resampled to a resolution of 0.25 A, uniformly normalized, and plotted at 10 A/cm. The atlas should be useful for the classification of other IUE high-dispersion spectra, especially for stars that have not been observed in the optical.

  17. No GIST-type c-kit gain of function mutations in neuroblastic tumours

    PubMed Central

    Korja, M; Finne, J; Salmi, T T; Haapasalo, H; Tanner, M; Isola, J

    2005-01-01

    Aims: Neuroblastic tumours (NTs) have been shown to respond to imatinib treatment in vivo and in vitro, possibly via inactivating the c-kit receptor. The purpose of this study was to identify gastrointestinal stromal tumour (GIST)-type c-kit gene associated mutations in exons 9, 11, 13, and 17 in NTs to recognise a subset of tumours that would probably respond to imatinib treatment. Methods: Expression of the c-kit protein was detected immunohistochemically in a total of 37 archival paraffin wax embedded NTs using polyclonal rabbit antihuman c-kit antibody. After immunohistochemistry, c-kit gene associated chromosomal mutations in all cases of NT were detected with denaturing high performance liquid chromatography (HPLC). Results: Denaturing HLPC analysis did not reveal GIST-type mutations in four immunohistochemically detected c-kit positive or in 33 c-kit negative NTs. Conclusions: c-kit receptor expression and GIST-type c-kit gene mutations are rare events in NTs. Oncogenic activation of c-kit in NTs presumably differs from that of GISTs, which may influence their responsiveness to imatinib treatment. Whether c-kit has an essential role in the pathogenesis of NTs remains to be investigated. PMID:15976348

  18. Three mutations switch H7N9 influenza to human-type receptor specificity.

    PubMed

    de Vries, Robert P; Peng, Wenjie; Grant, Oliver C; Thompson, Andrew J; Zhu, Xueyong; Bouwman, Kim M; de la Pena, Alba T Torrents; van Breemen, Marielle J; Ambepitiya Wickramasinghe, Iresha N; de Haan, Cornelis A M; Yu, Wenli; McBride, Ryan; Sanders, Rogier W; Woods, Robert J; Verheije, Monique H; Wilson, Ian A; Paulson, James C

    2017-06-01

    The avian H7N9 influenza outbreak in 2013 resulted from an unprecedented incidence of influenza transmission to humans from infected poultry. The majority of human H7N9 isolates contained a hemagglutinin (HA) mutation (Q226L) that has previously been associated with a switch in receptor specificity from avian-type (NeuAcα2-3Gal) to human-type (NeuAcα2-6Gal), as documented for the avian progenitors of the 1957 (H2N2) and 1968 (H3N2) human influenza pandemic viruses. While this raised concern that the H7N9 virus was adapting to humans, the mutation was not sufficient to switch the receptor specificity of H7N9, and has not resulted in sustained transmission in humans. To determine if the H7 HA was capable of acquiring human-type receptor specificity, we conducted mutation analyses. Remarkably, three amino acid mutations conferred a switch in specificity for human-type receptors that resembled the specificity of the 2009 human H1 pandemic virus, and promoted binding to human trachea epithelial cells.

  19. Three mutations switch H7N9 influenza to human-type receptor specificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Vries, Robert P.; Peng, Wenjie; Grant, Oliver C.

    The avian H7N9 influenza outbreak in 2013 resulted from an unprecedented incidence of influenza transmission to humans from infected poultry. The majority of human H7N9 isolates contained a hemagglutinin (HA) mutation (Q226L) that has previously been associated with a switch in receptor specificity from avian-type (NeuAcα2-3Gal) to human-type (NeuAcα2-6Gal), as documented for the avian progenitors of the 1957 (H2N2) and 1968 (H3N2) human influenza pandemic viruses. While this raised concern that the H7N9 virus was adapting to humans, the mutation was not sufficient to switch the receptor specificity of H7N9, and has not resulted in sustained transmission in humans. Tomore » determine if the H7 HA was capable of acquiring human-type receptor specificity, we conducted mutation analyses. Remarkably, three amino acid mutations conferred a switch in specificity for human-type receptors that resembled the specificity of the 2009 human H1 pandemic virus, and promoted binding to human trachea epithelial cells.« less

  20. Identification of significantly mutated regions across cancer types highlights a rich landscape of functional molecular alterations

    PubMed Central

    Araya, Carlos L.; Cenik, Can; Reuter, Jason A.; Kiss, Gert; Pande, Vijay S.; Snyder, Michael P.; Greenleaf, William J.

    2015-01-01

    Cancer sequencing studies have primarily identified cancer-driver genes by the accumulation of protein-altering mutations. An improved method would be annotation-independent, sensitive to unknown distributions of functions within proteins, and inclusive of non-coding drivers. We employed density-based clustering methods in 21 tumor types to detect variably-sized significantly mutated regions (SMRs). SMRs reveal recurrent alterations across a spectrum of coding and non-coding elements, including transcription factor binding sites and untranslated regions mutated in up to ∼15% of specific tumor types. SMRs reveal spatial clustering of mutations at molecular domains and interfaces, often with associated changes in signaling. Mutation frequencies in SMRs demonstrate that distinct protein regions are differentially mutated among tumor types, as exemplified by a linker region of PIK3CA in which biophysical simulations suggest mutations affect regulatory interactions. The functional diversity of SMRs underscores both the varied mechanisms of oncogenic misregulation and the advantage of functionally-agnostic driver identification. PMID:26691984

  1. GPR98 mutations cause Usher syndrome type 2 in males.

    PubMed

    Ebermann, I; Wiesen, M H J; Zrenner, E; Lopez, I; Pigeon, R; Kohl, S; Löwenheim, H; Koenekoop, R K; Bolz, H J

    2009-04-01

    Mutations in the large GPR98 gene underlie Usher syndrome type 2C (USH2C), and all patients described to date have been female. It was speculated that GPR98 mutations cause a more severe, and eventually lethal, phenotype in males. We describe for the first time two male patients with USH2 with novel GPR98 mutations. Clinical characterization of a male patient and his affected sister revealed a typical USH2 phenotype in both. GPR98 may have been excluded from systematic investigation in previous studies, and the proportion of patients with USH2C probably underestimated. GPR98 should be considered in patients with USH2 of both sexes.

  2. Preparation of Ultraviolet Curing Type Silicone Rubbers Containing Mesoporous Silica Fillers.

    PubMed

    Abdullah, Nawfel; Hossain, Md Shahriar A; Fatehmulla, Amanullah; Farooq, Wazirzada Aslam; Islam, Md Tofazzal; Miyamoto, Nobuyoshi; Bando, Yoshio; Kamachi, Yuichiro; Malgras, Victor; Yamauchi, Yusuke; Suzuki, Norihiro

    2018-01-01

    Here we have been focusing on mesoporous silica (MPS) as inorganic filler material to improve the mechanical strength of silicone rubbers. The MPS particles are more effective in reducing the coefficient of thermal expansion (CTE) and hardening silicone rubber composites when compared to commercially available nonporous silica particles. In this study, we utilize ultraviolet curing type silicone rubbers and prepare MPS composites according to a simple single-step method. From an industrial viewpoint, simplifying the fabrication processes is critical. The thermal stability and mechanical strength are examined in detail in order to showcase the effectiveness of MPS particles as filler materials.

  3. Impacts of Usher syndrome type IB mutations on human myosin VIIa motor function.

    PubMed

    Watanabe, Shinya; Umeki, Nobuhisa; Ikebe, Reiko; Ikebe, Mitsuo

    2008-09-09

    Usher syndrome (USH) is a human hereditary disorder characterized by profound congenital deafness, retinitis pigmentosa, and vestibular dysfunction. Myosin VIIa has been identified as the responsible gene for USH type 1B, and a number of missense mutations have been identified in the affected families. However, the molecular basis of the dysfunction of USH gene, myosin VIIa, in the affected families is unknown to date. Here we clarified the effects of USH1B mutations on human myosin VIIa motor function for the first time. The missense mutations of USH1B significantly inhibited the actin activation of ATPase activity of myosin VIIa. G25R, R212C, A397D, and E450Q mutations abolished the actin-activated ATPase activity completely. P503L mutation increased the basal ATPase activity for 2-3-fold but reduced the actin-activated ATPase activity to 50% of the wild type. While all of the mutations examined, except for R302H, reduced the affinity for actin and the ATP hydrolysis cycling rate, they did not largely decrease the rate of ADP release from actomyosin, suggesting that the mutations reduce the duty ratio of myosin VIIa. Taken together, the results suggest that the mutations responsible for USH1B cause the complete loss of the actin-activated ATPase activity or the reduction of duty ratio of myosin VIIa.

  4. Impacts of Usher Syndrome Type IB Mutations on Human Myosin VIIa Motor Function†

    PubMed Central

    Watanabe, Shinya; Umeki, Nobuhisa; Ikebe, Reiko; Ikebe, Mitsuo

    2010-01-01

    Usher syndrome (USH) is a human hereditary disorder characterized by profound congenital deafness, retinitis pigmentosa and vestibular dysfunction. Myosin VIIa has been identified as the responsible gene for USH type 1B, and a number of missense mutations have been identified in the affected families. However, the molecular basis of the dysfunction of USH gene, myosin VIIa, in the affected families is unknown to date. Here we clarified the effects of USH1B mutations on human myosin VIIa motor function for the first time. The missense mutations of USH1B significantly inhibited the actin activation of ATPase activity of myosin VIIa. G25R, R212C, A397D and E450Q mutations abolished the actin-activated ATPase activity completely. P503L mutation increased the basal ATPase activity for 2-3 fold, but reduced the actin-activated ATPase activity to 50% of the wild type. While all the mutations examined, except for R302H, reduced the affinity for actin and the ATP hydrolysis cycling rate, they did not largely decrease the rate of ADP release from acto-myosin, suggesting that the mutations reduce the duty ratio of myosin VIIa. Taken together, the results suggest that the mutations responsible for USH1B cause the complete loss of the actin-activated ATPase activity or the reduction of duty ratio of myosin VIIa. PMID:18700726

  5. A novel CANT1 mutation in three Indian patients with Desbuquois dysplasia Kim type.

    PubMed

    Singh, Ankur; Kim, Ok-Hwa; Iida, Aritoshi; Park, Woong-Yang; Ikegawa, Shiro; Kapoor, Seema

    2015-02-01

    Desbuquois dysplasia (DBQD) is a rare skeletal dysplasia characterized by severe short stature, laxity, dislocation of multiple joints and developmental delay. DBQD is clinically heterogeneous. Distinct radiographic hand abnormalities such as the presence of extra-ossification distal to the second metacarpal or normal hand has led to its classification into types 1 and 2. Furthermore, the third type of DBQD, Kim type has been reported which is characterized by short metacarpals and elongated phalanges. However, DBQD Kim type has been exclusively reported in Japanese and Korean and its clinical characteristics remain to be delineated. Mutations in the calcium-activated nucleotidase 1 (CANT1) gene have been reported in all three types of DBQD. Previously reported patients with DBQD Kim type had a common mutation c.676G>A (p.Val226Met), which had a common founder between Japanese and Korean. Here, we report 3 Indian patients with DBQD, Kim type from 2 families which were unrelated to each other. We identified a novel mutation of CANT1, c.467C>T (p.Ser156Phe), in all the patients in the homozygous form. Our results show that DBQD Kim type is not exclusive to East Asians and also report a novel mutation from the Indian subcontinent. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Impacts of the Callipyge Mutation on Ovine Plasma Metabolites and Muscle Fibre Type

    PubMed Central

    Li, Juan; Greenwood, Paul L.; Cockett, Noelle E.; Hadfield, Tracy S.; Vuocolo, Tony; Byrne, Keren; White, Jason D.; Tellam, Ross L.; Schirra, Horst Joachim

    2014-01-01

    The ovine Callipyge mutation causes postnatal muscle hypertrophy localized to the pelvic limbs and torso, as well as body leanness. The mechanism underpinning enhanced muscle mass is unclear, as is the systemic impact of the mutation. Using muscle fibre typing immunohistochemistry, we confirmed muscle specific effects and demonstrated that affected muscles had greater prevalence and hypertrophy of type 2X fast twitch glycolytic fibres and decreased representation of types 1, 2C, 2A and/or 2AX fibres. To investigate potential systemic effects of the mutation, proton NMR spectra of plasma taken from lambs at 8 and 12 weeks of age were measured. Multivariate statistical analysis of plasma metabolite profiles demonstrated effects of development and genotype but not gender. Plasma from Callipyge lambs at 12 weeks of age, but not 8 weeks, was characterized by a metabolic profile consistent with contributions from the affected hypertrophic fast twitch glycolytic muscle fibres. Microarray analysis of the perirenal adipose tissue depot did not reveal a transcriptional effect of the mutation in this tissue. We conclude that there is an indirect systemic effect of the Callipyge mutation in skeletal muscle in the form of changes of blood metabolites, which may contribute to secondary phenotypes such as body leanness. PMID:24937646

  7. Impacts of the Callipyge mutation on ovine plasma metabolites and muscle fibre type.

    PubMed

    Li, Juan; Greenwood, Paul L; Cockett, Noelle E; Hadfield, Tracy S; Vuocolo, Tony; Byrne, Keren; White, Jason D; Tellam, Ross L; Schirra, Horst Joachim

    2014-01-01

    The ovine Callipyge mutation causes postnatal muscle hypertrophy localized to the pelvic limbs and torso, as well as body leanness. The mechanism underpinning enhanced muscle mass is unclear, as is the systemic impact of the mutation. Using muscle fibre typing immunohistochemistry, we confirmed muscle specific effects and demonstrated that affected muscles had greater prevalence and hypertrophy of type 2X fast twitch glycolytic fibres and decreased representation of types 1, 2C, 2A and/or 2AX fibres. To investigate potential systemic effects of the mutation, proton NMR spectra of plasma taken from lambs at 8 and 12 weeks of age were measured. Multivariate statistical analysis of plasma metabolite profiles demonstrated effects of development and genotype but not gender. Plasma from Callipyge lambs at 12 weeks of age, but not 8 weeks, was characterized by a metabolic profile consistent with contributions from the affected hypertrophic fast twitch glycolytic muscle fibres. Microarray analysis of the perirenal adipose tissue depot did not reveal a transcriptional effect of the mutation in this tissue. We conclude that there is an indirect systemic effect of the Callipyge mutation in skeletal muscle in the form of changes of blood metabolites, which may contribute to secondary phenotypes such as body leanness.

  8. Prenatal diagnosis of fetal glutaric aciduria type 1 with rare compound heterozygous mutations in GCDH gene.

    PubMed

    Peng, Hsiu-Huei; Shaw, Sheng-Wen; Huang, Kuan-Gen

    2018-02-01

    Glutaric aciduria type 1 is a rare disease, with the estimated prevalence about 1 in 100,000 newborns. GCDH gene mutation can lead to glutaric acid and 3- OH glutaric acid accumulation, with clinical manifestation of neuronal damage, brain atrophy, microencephalic macrocephaly, decreased coordination of swallowing, poor muscle coordination, spasticity, and severe dystonic movement disorder. A 22-year-old female, Gravida 4 Para 2, is pregnancy at 13 weeks of gestational age. Her first child is normal, however, the second child was diagnosed as glutaric aciduria type I after birth. She came to our hospital for prenatal genetic counselling of her fetus at 13 weeks of gestational age. We performed GCDH gene mutation analysis of maternal blood showed IVS 3 + 1 G > A heterozygous mutation, GCDH gene mutation analysis of paternal blood showed c. 1240 G > A heterozygous mutation, and the second child has compound heterozygous IVS 3 + 1 G > A and c. 1240 G > A mutations. Later, we performed amniocentesis at 16 weeks of gestational age for chromosome study and GCDH gene mutation analysis for the fetus. The fetal chromosome study showed normal karyotype, however, GCDH gene mutation analysis showed compound heterozygous IVS 3 + 1 G > A and c. 1240 G > A mutations. The couple decided to termination of pregnancy thereafter. Glutaric acidemia type 1 is an autosomal recessive disorder because of pathogenic mutations in the GCDH gene. Early diagnosis and therapy of glutaric acidemia type 1 can reduce the risk of neuronal damage and acute dystonia. We report a case of prenatal diagnosis of fetal glutaric aciduria type 1 with rare compound heterozygous GCDH gene mutation at IVS 3 + 1 G > A and c. 1240 G > A mutations, which provide better genetic counselling for the couples. Copyright © 2018. Published by Elsevier B.V.

  9. A multi-wavelength study of the evolution of early-type galaxies in groups: the ultraviolet view

    NASA Astrophysics Data System (ADS)

    Rampazzo, R.; Mazzei, P.; Marino, A.; Bianchi, L.; Plana, H.; Trinchieri, G.; Uslenghi, M.; Wolter, A.

    2018-04-01

    The ultraviolet-optical colour magnitude diagram of rich galaxy groups is characterised by a well developed Red Sequence, a Blue Cloud and the so-called Green Valley. Loose, less evolved groups of galaxies which are probably not virialised yet may lack a well defined Red Sequence. This is actually explained in the framework of galaxy evolution. We are focussing on understanding galaxy migration towards the Red Sequence, checking for signatures of such a transition in their photometric and morphological properties. We report on the ultraviolet properties of a sample of early-type (ellipticals+S0s) galaxies inhabiting the Red Sequence. The analysis of their structures, as derived by fitting a Sérsic law to their ultraviolet luminosity profiles, suggests the presence of an underlying disk. This is the hallmark of dissipation processes that still must have a role to play in the evolution of this class of galaxies. Smooth particle hydrodynamic simulations with chemo-photometric implementations able to match the global properties of our targets are used to derive their evolutionary paths through ultraviolet-optical colour magnitude diagrams, providing some fundamental information such as the crossing time through the Green Valley, which depends on their luminosity. The transition from the Blue Cloud to the Red Sequence takes several Gyrs, being about 3-5 Gyr for the brightest galaxies and longer for fainter ones, if occurring. The photometric study of nearby galaxy structures in the ultraviolet is seriously hampered by either the limited field of view of the cameras (e.g., in Hubble Space Telescope) or by the low spatial resolution of the images (e.g., in the Galaxy Evolution Explorer). Current missions equipped with telescopes and cameras sensitive to ultraviolet wavelengths, such as Swift- UVOT and Astrosat-UVIT, provide a relatively large field of view and a better resolution than the Galaxy Evolution Explorer. More powerful ultraviolet instruments (size, resolution

  10. Ultraviolet Detection of the Binary Companion to the Type IIb SN 2001ig

    NASA Astrophysics Data System (ADS)

    Ryder, Stuart D.; Van Dyk, Schuyler D.; Fox, Ori D.; Zapartas, Emmanouil; de Mink, Selma E.; Smith, Nathan; Brunsden, Emily; Azalee Bostroem, K.; Filippenko, Alexei V.; Shivvers, Isaac; Zheng, WeiKang

    2018-03-01

    We present HST/WFC3 ultraviolet imaging in the F275W and F336W bands of the Type IIb SN 2001ig at an age of more than 14 years. A clear point source is detected at the site of the explosion, with m F275W = 25.39 ± 0.10 and m F336W = 25.88 ± 0.13 mag. Despite weak constraints on both the distance to the host galaxy NGC 7424 and the line-of-sight reddening to the supernova, this source matches the characteristics of an early B-type main-sequence star with 19,000 < T eff < 22,000 K and {log}({L}bol}/{L}ȯ )=3.92+/- 0.14. A BPASS v2.1 binary evolution model, with primary and secondary masses of 13 M ⊙ and 9 M ⊙, respectively, is found to simultaneously resemble, in the Hertzsprung–Russell diagram, both the observed location of this surviving companion, and the primary star evolutionary endpoints for other Type IIb supernovae. This same model exhibits highly variable late-stage mass loss, as expected from the behavior of the radio light curves. A Gemini/GMOS optical spectrum at an age of 6 years reveals a narrow He II λ4686 emission line, indicative of continuing interaction with a dense circumstellar medium at large radii from the progenitor. We review our findings on SN 2001ig in the context of binary evolution channels for stripped-envelope supernovae. Owing to the uncrowded nature of its environment in the ultraviolet, this study of SN 2001ig represents one of the cleanest detections to date of a surviving binary companion to a Type IIb supernova.

  11. Novel types of COMP mutations and genotype-phenotype association in pseudoachondroplasia and multiple epiphyseal dysplasia.

    PubMed

    Mabuchi, Akihiko; Manabe, Noriyo; Haga, Nobuhiko; Kitoh, Hiroshi; Ikeda, Toshiyuki; Kawaji, Hiroyuki; Tamai, Kazuya; Hamada, Junichiro; Nakamura, Shigeru; Brunetti-Pierri, Nicola; Kimizuka, Mamori; Takatori, Yoshio; Nakamura, Kozo; Nishimura, Gen; Ohashi, Hirofumi; Ikegawa, Shiro

    2003-01-01

    Mutations in the gene encoding cartilage oligomeric matrix protein ( COMP) cause two skeletal dysplasias, pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED). More than 40 mutations have been identified; however, genotype-phenotype relationships are not well delineated. Further, mutations other than in-frame insertion/deletions and substitutions have not been found, and currently known mutations are clustered within relatively small regions. Here we report the identification of nine novel and three recurrent COMP mutations in PSACH and MED patients. These include two novel types of mutations; the first, a gross deletion spanning an exon-intron junction, causes an exon deletion. The second, a frameshift mutation that results in a truncation of the C-terminal domain, is the first known truncating mutation in the COMP gene. The remaining mutations, other than a novel exon 18 mutation, affected highly conserved aspartate or cysteine residues in the calmodulin-like repeat (CLR) region. Genotype-phenotype analysis revealed a correlation between the position and type of mutations and the severity of short stature. Mutations in the seventh CLR produced more severe short stature compared with mutations elsewhere in the CLRs ( P=0.0003) and elsewhere in the COMP gene ( P=0.0007). Patients carrying mutations within the five-aspartates repeat (aa 469-473) in the seventh CLR were extremely short (below -6 SD). Patients with deletion mutations were significantly shorter than those with substitution mutations ( P=0.0024). These findings expand the mutation spectrum of the COMP gene and highlight genotype-phenotype relationships, facilitating improved genetic diagnosis and analysis of COMP function in humans.

  12. Homozygous factor V Leiden mutation in type IV Ehlers-Danlos patient

    PubMed Central

    Refaat, Marwan; Hotait, Mostafa; Winston, Brion

    2014-01-01

    Ehlers-Danlos syndrome (EDS) is a group of inherited connective tissue disorders caused by collagen synthesis defects. Several hemostatic abnormalities have been described in EDS patients that increase the bleeding tendencies of these patients. This case report illustrates a patient with an unusual presentation of a patient with type IV EDS, platelet δ-storage pool disease and factor V Leiden mutation. Young woman having previous bilateral deep vein thrombosis and pulmonary emboli coexisting with ruptured splenic aneurysm and multiple other aneurysms now presented with myocardial infarction. Presence of factor V Leiden mutation raises the possibility that the infarct was due to acute coronary thrombosis, although coronary artery aneurysm and dissection with myocardial infarction is known to occur in vascular type EDS. This is the first report in the medical literature of factor V Leiden mutation in an EDS patient which made the management of our patient challenging with propensity to both bleeding and clotting. PMID:24653990

  13. Novel USH2A mutations in Japanese Usher syndrome type 2 patients: marked differences in the mutation spectrum between the Japanese and other populations.

    PubMed

    Nakanishi, Hiroshi; Ohtsubo, Masafumi; Iwasaki, Satoshi; Hotta, Yoshihiro; Usami, Shin-Ichi; Mizuta, Kunihiro; Mineta, Hiroyuki; Minoshima, Shinsei

    2011-07-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by retinitis pigmentosa and hearing loss. USH type 2 (USH2) is the most common type of USH and is frequently caused by mutations in USH2A. In a recent mutation screening of USH2A in Japanese USH2 patients, we identified 11 novel mutations in 10 patients and found the possible frequent mutation c.8559-2A>G in 4 of 10 patients. To obtain a more precise mutation spectrum, we analyzed further nine Japanese patients in this study. We identified nine mutations, of which eight were novel. This result indicates that the mutation spectrum for USH2A among Japanese patients largely differs from Caucasian, Jewish and Palestinian patients. Meanwhile, we did not find the c.8559-2A>G in this study. Haplotype analysis of the c.8559-2G (mutated) alleles using 23 single nucleotide polymorphisms surrounding the mutation revealed an identical haplotype pattern of at least 635 kb in length, strongly suggesting that the mutation originated from a common ancestor. The fact that all patients carrying c.8559-2A>G came from western Japan suggests that the mutation is mainly distributed in that area; indeed, most of the patients involved in this study came from eastern Japan, which contributed to the absence of c.8559-2A>G.

  14. Analysis of the GCK gene in 79 MODY type 2 patients: A multicenter Turkish study, mutation profile and description of twenty novel mutations.

    PubMed

    Aykut, Ayça; Karaca, Emin; Onay, Hüseyin; Gökşen, Damla; Çetinkalp, Şevki; Eren, Erdal; Ersoy, Betül; Çakır, Esra Papatya; Büyükinan, Muammer; Kara, Cengiz; Anık, Ahmet; Kırel, Birgül; Özen, Samim; Atik, Tahir; Darcan, Şükran; Özkınay, Ferda

    2018-01-30

    Maturity onset diabetes is a genetic form of diabetes mellitus characterized by an early age at onset and several etiologic genes for this form of diabetes have been identified in many patients. Maturity onset diabetes type 2 [MODY2 (#125851)] caused by mutations in the glucokinase gene (GCK). Although its prevalence is not clear, it is estimated that 1%-2% of patients with diabetes have the monogenic form. The aim of this study was to evaluate the molecular spectrum of GCK gene mutations in 177 Turkish MODY type 2 patients. Mutations in the GCK gene were identified in 79 out of 177. All mutant alleles were identified, including 45 different GCK mutations, 20 of which were novel. Copyright © 2017. Published by Elsevier B.V.

  15. Tooth agenesis in osteogenesis imperfecta related to mutations in the collagen type I genes.

    PubMed

    Malmgren, B; Andersson, K; Lindahl, K; Kindmark, A; Grigelioniene, G; Zachariadis, V; Dahllöf, G; Åström, E

    2017-01-01

    Osteogenesis imperfecta (OI) is a heterogeneous group of disorders of connective tissue, mainly caused by mutations in the collagen type I genes (COL1A1 and COL1A2). Tooth agenesis is a common feature of OI. We investigated the association between tooth agenesis and collagen type I mutations in individuals with OI. In this cohort study, 128 unrelated individuals with OI were included. Panoramic radiographs were analyzed regarding dentinogenesis imperfecta (DGI) and congenitally missing teeth. The collagen I genes were sequenced in all individuals, and in 25, multiplex ligation-dependent probe amplification was performed. Mutations in the COL1A1 and COL1A2 genes were found in 104 of 128 individuals. Tooth agenesis was diagnosed in 17% (hypodontia 11%, oligodontia 6%) and was more frequent in those with DGI (P = 0.016), and in those with OI type III, 47%, compared to those with OI types I, 12% (P = 0.003), and IV, 13% (P = 0.017). Seventy-five percent of the individuals with oligodontia (≥6 missing teeth) had qualitative mutations, but there was no association with OI type, gender, or presence of DGI. The prevalence of tooth agenesis is high (17%) in individuals with OI, and OI caused by a qualitative collagen I mutation is associated with oligodontia. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Identification of new mutations in primary hyperoxaluria type 1 (PH1).

    PubMed

    von Schnakenburg, C; Rumsby, G

    1998-01-01

    Primary hyperoxaluria type 1 (PH1) is caused by deficiency of the hepatic peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT). The AGXT gene, which codes for the 392 amino acid protein, has been mapped to chromosome 2q37.3. In order to identify new mutations in the AGXT gene we studied 79 PH1 patients using single strand conformation polymorphism analysis. In addition to a cluster of new mutations in exon 7 we report five novel mutations in exons 2, 4, 5, 9 and 10. These are T444C, G640A, G690A, 1008-1010delGCG and G1171A. These five new mutations contribute to our knowledge of the AGXT gene. Their possible consequences for PH1 phenotype and enzyme activity are discussed.

  17. Investigation of ultraviolet fluxes of normal and peculiar stars

    NASA Technical Reports Server (NTRS)

    Deutschman, W. A.; Schild, R. E.

    1974-01-01

    Data from Project Celescope, a program that photographed the ultraviolet sky, in order to study several problems in current astrophysics are analyzed. Two star clusters, the Pleiades and the Hyades, reveal differences between the two that we are unable to explain simply from their differences in chemical abundance, rotation, or reddening. Data for Orion show large scatter, which appears to be in the sense that the Orion stars are too faint for their ground-based photometry. Similarly, many supergiants in the association Sco OB1 are too faint in the ultraviolet, but the ultraviolet brightness appears to be only poorly correlated with spectral type. Ultraviolet Celescope data for several groups of peculiar stars have also been analyzed. The strong He I stars are too faint in the ultraviolet, possibly owing to enhancement of O II continuous opacity due to oxygen overabundance. The Be stars appear to have ultraviolet colors normal for their MK spectral types. The P Cygni stars are considerably fainter than main-sequence stars of comparable spectral type, probably owing, at least in part, to line blocking by resonance lines of multiply ionized light metals. The Wolf-Rayet stars have ultraviolet color temperatures of O stars.

  18. Mutation Profile of the CDH23 Gene in 56 Probands with Usher Syndrome Type I

    PubMed Central

    Oshima, A.; Jaijo, T.; Aller, E.; Millan, J.M.; Carney, C.; Usami, S.; Moller, C.; Kimberling, W.J.

    2008-01-01

    Mutations in the human gene encoding cadherin 23 (CDH23) cause Usher syndrome type 1D (USH1D) and nonsyndromic hearing loss. Individuals with Usher syndrome type I have profound congenital deafness, vestibular areflexia and usually begin to exhibit signs of RP in early adolescence. In the present study, we carried out the mutation analysis in all 69 exons of the CDH23 gene in 56 Usher type 1 probands already screened for mutations in MYO7A. A total of 18 of 56 subjects (32.1%) were observed to have one or two CDH23 variants that are presumed to be pathologic. Twenty one different pathologic genome variants were observed of which 15 were novel. Out of a total of 112 alleles, 31 (27.7%) were considered pathologic. Based on our results it is estimated that about 20% of patients with Usher syndrome type I have CDH23 mutations. PMID:18429043

  19. A de novo deletion mutation in SOX10 in a Chinese family with Waardenburg syndrome type 4.

    PubMed

    Wang, Xiong; Zhu, Yaowu; Shen, Na; Peng, Jing; Wang, Chunyu; Liu, Haiyi; Lu, Yanjun

    2017-01-27

    Waardenburg syndrome type 4 (WS4) or Waardenburg-Shah syndrome is a rare genetic disorder with a prevalence of <1/1,000,000 and characterized by the association of congenital sensorineural hearing loss, pigmentary abnormalities, and intestinal aganglionosis. There are three types of WS4 (WS4A-C) caused by mutations in endothelin receptor type B, endothelin 3, and SRY-box 10 (SOX10), respectively. This study investigated a genetic mutation in a Chinese family with one WS4 patient in order to improve genetic counselling. Genomic DNA was extracted, and mutation analysis of the three WS4 related genes was performed using Sanger sequencing. We detected a de novo heterozygous deletion mutation [c.1333delT (p.Ser445Glnfs*57)] in SOX10 in the patient; however, this mutation was absent in the unaffected parents and 40 ethnicity matched healthy controls. Subsequent phylogenetic analysis and three-dimensional modelling of the SOX10 protein confirmed that the c.1333delT heterozygous mutation was pathogenic, indicating that this mutation might constitute a candidate disease-causing mutation.

  20. A de novo deletion mutation in SOX10 in a Chinese family with Waardenburg syndrome type 4

    PubMed Central

    Wang, Xiong; Zhu, Yaowu; Shen, Na; Peng, Jing; Wang, Chunyu; Liu, Haiyi; Lu, Yanjun

    2017-01-01

    Waardenburg syndrome type 4 (WS4) or Waardenburg-Shah syndrome is a rare genetic disorder with a prevalence of <1/1,000,000 and characterized by the association of congenital sensorineural hearing loss, pigmentary abnormalities, and intestinal aganglionosis. There are three types of WS4 (WS4A–C) caused by mutations in endothelin receptor type B, endothelin 3, and SRY-box 10 (SOX10), respectively. This study investigated a genetic mutation in a Chinese family with one WS4 patient in order to improve genetic counselling. Genomic DNA was extracted, and mutation analysis of the three WS4 related genes was performed using Sanger sequencing. We detected a de novo heterozygous deletion mutation [c.1333delT (p.Ser445Glnfs*57)] in SOX10 in the patient; however, this mutation was absent in the unaffected parents and 40 ethnicity matched healthy controls. Subsequent phylogenetic analysis and three-dimensional modelling of the SOX10 protein confirmed that the c.1333delT heterozygous mutation was pathogenic, indicating that this mutation might constitute a candidate disease-causing mutation. PMID:28128317

  1. Phenotypic Variability of Osteogenesis Imperfecta Type V Caused by an IFITM5 Mutation

    PubMed Central

    Shapiro, Jay R; Lietman, Caressa; Grover, Monica; Lu, James T; Nagamani, Sandesh CS; Dawson, Brian C; Baldridge, Dustin M; Bainbridge, Matthew N; Cohn, Dan H; Blazo, Maria; Roberts, Timothy T; Brennen, Feng-Shu; Wu, Yimei; Gibbs, Richard A; Melvin, Pamela; Campeau, Philippe M; Lee, Brendan H

    2013-01-01

    In a large cohort of osteogenesis imperfecta type V (OI type V) patients (17 individuals from 12 families), we identified the same mutation in the 5′ untranslated region (5′UTR) of the interferon-induced transmembrane protein 5 (IFITM5) gene by whole exome and Sanger sequencing (IFITM5 c.–14C > T) and provide a detailed description of their phenotype. This mutation leads to the creation of a novel start codon adding five residues to IFITM5 and was recently reported in several other OI type V families. The variability of the phenotype was quite large even within families. Whereas some patients presented with the typical calcification of the forearm interosseous membrane, radial head dislocation and hyperplastic callus (HPC) formation following fractures, others had only some of the typical OI type V findings. Thirteen had calcification of interosseous membranes, 14 had radial head dislocations, 10 had HPC, 9 had long bone bowing, 11 could ambulate without assistance, and 1 had mild unilateral mixed hearing loss. The bone mineral density varied greatly, even within families. Our study thus highlights the phenotypic variability of OI type V caused by the IFITM5 mutation. PMID:23408678

  2. Clinical Aspects of Type-1 Long-QT Syndrome by Location, Coding Type, and Biophysical Function of Mutations Involving the KCNQ1 Gene

    PubMed Central

    Moss, Arthur J.; Shimizu, Wataru; Wilde, Arthur A.M.; Towbin, Jeffrey A.; Zareba, Wojciech; Robinson, Jennifer L.; Qi, Ming; Vincent, G. Michael; Ackerman, Michael J.; Kaufman, Elizabeth S.; Hofman, Nynke; Seth, Rahul; Kamakura, Shiro; Miyamoto, Yoshihiro; Goldenberg, Ilan; Andrews, Mark L.; McNitt, Scott

    2012-01-01

    Background Type-1 long-QT syndrome (LQTS) is caused by loss-of-function mutations in the KCNQ1-encoded IKs cardiac potassium channel. We evaluated the effect of location, coding type, and biophysical function of KCNQ1 mutations on the clinical phenotype of this disorder. Methods and Results We investigated the clinical course in 600 patients with 77 different KCNQ1 mutations in 101 proband-identified families derived from the US portion of the International LQTS Registry (n=425), the Netherlands’ LQTS Registry (n=93), and the Japanese LQTS Registry (n=82). The Cox proportional hazards survivorship model was used to evaluate the independent contribution of clinical and genetic factors to the first occurrence of time-dependent cardiac events from birth through age 40 years. The clinical characteristics, distribution of mutations, and overall outcome event rates were similar in patients enrolled from the 3 geographic regions. Biophysical function of the mutations was categorized according to dominant-negative (>50%) or haploinsufficiency (≤50%) reduction in cardiac repolarizing IKs potassium channel current. Patients with transmembrane versus C-terminus mutations (hazard ratio, 2.06; P<0.001) and those with mutations having dominant-negative versus haploinsufficiency ion channel effects (hazard ratio, 2.26; P<0.001) were at increased risk for cardiac events, and these genetic risks were independent of traditional clinical risk factors. Conclusions This genotype–phenotype study indicates that in type-1 LQTS, mutations located in the transmembrane portion of the ion channel protein and the degree of ion channel dysfunction caused by the mutations are important independent risk factors influencing the clinical course of this disorder. PMID:17470695

  3. Ultraviolet B irradiation induces expansion of intraepithelial tumor cells in a tissue model of early cancer progression.

    PubMed

    Mudgil, Adarsh V; Segal, Nadav; Andriani, Frank; Wang, Youai; Fusenig, Norbert E; Garlick, Jonathan A

    2003-07-01

    Ultraviolet B irradiation is thought to enable skin cancer progression as clones of genetically damaged keratinocytes escape apoptosis and expand at the expense of adjacent normal cells. Mechanisms through which potentially malignant cells in human skin undergo clonal expansion, however, are not well understood. The goal of this study was to characterize the role of ultraviolet B irradiation on the intraepithelial expansion of early stage human tumor cells in organotypic skin cultures. To accomplish this, we have studied the effect of ultraviolet B irradiation on organotypic cultures that were fabricated by mixing normal human keratinocytes with beta-galactosidase-marked, intraepithelial tumor cells (HaCaT-ras, clone II-4), which bear mutations in both p53 alleles and harbor an activated H-ras oncogene. We found that when organotypic mixtures were exposed to an ultraviolet B dose of 50 mJ per cm2, intraepithelial tumor cells underwent a significant degree of proliferative expansion compared to nonirradiated cultures. To understand this response, organotypic cultures of nor-mal keratinocytes were exposed to ultraviolet B and showed a dose-dependent increase in numbers of sunburn cells and TUNEL-positive cells although their proliferation was suppressed. In contrast, neither the apoptotic nor the proliferative response of II-4 cells was altered by ultraviolet B in organotypic cultures. The differential response of these cell types suggested that II-4 cells were resistant to ultraviolet-B-induced alterations, which allowed these intraepithelial tumor cells to gain a selective growth and survival advantage relative to neighboring normal cells. These findings demonstrate that ultraviolet B exposure can induce the intraepithelial expansion of apoptosis-resistant, p53-mutant, and ras-activated keratinocytes, suggesting that this agent can act to promote the early stages of epithelial carcinogenesis.

  4. Genetic Basis of Glycogen Storage Disease Type 1a: Prevalent Mutations at the Glucose-6-Phosphatase Locus

    PubMed Central

    Lei, Ke-Jian; Chen, Yuan-Tsong; Chen, Hungwen; Wong, Lee-Jun C.; Liu, Ji-Lan; McConkie-Rosell, Allyn; Van Hove, Johan L. K.; Ou, Henry C.-Y.; Yeh, Nan Jung; Pan, Lorraine Y.; Chou, Janice Yang

    1995-01-01

    Diagnosis of glycogen storage disease (GSD) type 1a currently is established by demonstrating the lack of glucose-6-phosphatase (G6Pase) activity in the patient's biopsied liver specimen. Recent cloning of the G6Pase gene and identification of mutations within the gene that causes GSD type 1a allow for the development of a DNA-based diagnostic method. Using SSCP analysis and DNA sequencing, we characterized the G6Pase gene of 70 unrelated patients with enzymatically confirmed diagnosis of GSD type 1a and detected mutations in all except 17 alleles (88%). Sixteen mutations were uncovered that were shown by expression to abolish or greatly reduce G6Pase activity and that therefore are responsible for the GSD type 1a disorder. R83C and Q347X are the most prevalent mutations found in Caucasians, 130X and R83C are most prevalent in Hispanics, and R83H is most prevalent in Chinese. The Q347X mutation has thus far been identified only in Caucasian patients, and the 130X mutation has been identified only in Hispanic patients. Our results demonstrate that the DNA-based analysis can accurately, rapidly, and noninvasively detect the majority of mutations in GSD type 1a. This DNA-based diagnosis now permits prenatal diagnosis among at-risk patients and serves as a database in screening and counseling patients clinically suspected of having this disease. ImagesFigure 1Figure 2 PMID:7573034

  5. Kinetics of mutation induction by ultraviolet light in excision-deficient yeast.

    PubMed

    Eckardt, F; Haynes, R H

    1977-02-01

    We have measured the frequency of UV-induced reversions (locus plus suppressor) for the ochre alleles ade2-1 and lys2-1 and forward mutations (ade2 adex double auxotrophs) in an excision-deficient strain of Saccharomyces cerevisiae (rad2-20). For very low UV doses, both mutational systems exhibit linear induction kinetics. However, as the dose increases, a strikingly different response is observed: in the selective reversion system a transition to higher order induction kinetics occurs near 9 ergs/mm2 (25% survival), whereas in the nonselective forward system the mutation frequency passes through a maximum near 14 ergs/mm2 (4.4% survival) and then declines. This contrast in kinetics cannot be explained in any straightforward way by current models of induced mutagenesis, which have been developed primarily on the basis of bacterial data. The bacterial models are designed to accommodate the quadratic induction kinetics that are frequently observed in these systems. We have derived a mathematical expression for mutation frequency that enables us to fit both the forward and reversion data on the assumptions that mutagenesis is basically a "single event" Poisson process, and that mutation and killing are not necessarily independent of one another. In particular, the dose-response relations are consistent with the idea that the sensitivity of the revertants is about 25% less than that of the original cell population, whereas the sensitivity of the forward mutants is about 29% greater than the population average. We argue that this relatively small differential sensitivity of mutant and nonmutant cells is associated with events that take place during mutation expression and clonal growth.

  6. Mutational Analysis of Agxt in Tunisian Population with Primary Hyperoxaluria Type 1.

    PubMed

    M'dimegh, Saoussen; Omezzine, Asma; M'barek, Ibtihel; Moussa, Amira; Mabrouk, Sameh; Kaarout, Hayet; Souche, Geneviéve; Chemli, Jalel; Aloui, Sabra; Aquaviva-Bourdain, Cécile; Achour, Abdellatif; Abroug, Saoussen; Bouslama, Ali

    2017-01-01

    Primary hyperoxaluria type 1 (PH1) is an autosomal recessive metabolic disorder caused by inherited mutations in the AGXT gene encoding liver peroxisomal alanine:glyoxylate aminotransferase (AGT). PH1 is a clinically and genetically heterogeneous disorder. The aim of our study was to analyze and characterize the mutational spectrum of PH1 in Tunisian patients. Molecular studies of 146 Tunisian patients suspected with PH were performed by PCR/Restriction fragment length polymorphism (RFLP) to detect seven mutations described as the most common. Direct sequencing for the 11 exons was performed in patients in whom any mutation was not identified. The genetic diagnosis of PH1 was confirmed in 62.3% of patients. The first molecular approach based on PCR/restriction enzyme test was positive in 37.6% of patients, whereas the second molecular approach based on whole gene sequencing was successful in 24% of cases. Twelve pathogenic mutations were detected in our cohort. Two mutations were novel, and five were detected for the first time in Tunisians. The three most frequent mutations were p.Ile244Thr, p.Gly190Arg, and c.33dupC, with a frequency of 43.4%, 21.4%, and 13.1%, respectively. The two novel mutations detected in our study extend the spectrum of known AGXT gene mutations. The screen for the mutations identified in this study can provide a useful, cost-effective, and first-line investigation in Tunisian PH1 patients. © 2016 John Wiley & Sons Ltd/University College London.

  7. [Analysis of SOX10 gene mutation in a family affected with Waardenburg syndrome type II].

    PubMed

    Zheng, Lei; Yan, Yousheng; Chen, Xue; Zhang, Chuan; Zhang, Qinghua; Feng, Xuan; Hao, Shen

    2018-02-10

    OBJECTIVE To detect potential mutation of SOX10 gene in a pedigree affected with Warrdenburg syndrome type II. METHODS Genomic DNA was extracted from peripheral blood samples of the proband and his family members. Exons and flanking sequences of MITF, PAX3, SOX10, SNAI2, END3 and ENDRB genes were analyzed by chip capturing and high throughput sequencing. Suspected mutations were verified with Sanger sequencing. RESULTS A c.127C>T (p.R43X) mutation of the SOX10 gene was detected in the proband, for which both parents showed a wild-type genotype. CONCLUSION The c.127C>T (p.R43X) mutation of SOX10 gene probably underlies the ocular symptoms and hearing loss of the proband.

  8. Functional analysis of mutations in SLC7A9, and genotype-phenotype correlation in non-Type I cystinuria.

    PubMed

    Font, M A; Feliubadaló, L; Estivill, X; Nunes, V; Golomb, E; Kreiss, Y; Pras, E; Bisceglia, L; d'Adamo, A P; Zelante, L; Gasparini, P; Bassi, M T; George , A L; Manzoni, M; Riboni, M; Ballabio, A; Borsani, G; Reig, N; Fernández, E; Zorzano, A; Bertran, J; Palacín, M

    2001-02-15

    Cystinuria (OMIM 220100) is a common recessive disorder of renal reabsorption of cystine and dibasic amino acids that results in nephrolithiasis of cystine. Mutations in SLC3A1, which encodes rBAT, cause Type I cystinuria, and mutations in SLC7A9, which encodes a putative subunit of rBAT (b(o,+)AT), cause non-Type I cystinuria. Here we describe the genomic structure of SLC7A9 (13 exons) and 28 new mutations in this gene that, together with the seven previously reported, explain 79% of the alleles in 61 non-Type I cystinuria patients. These data demonstrate that SLC7A9 is the main non-Type I cystinuria gene. Mutations G105R, V170M, A182T and R333W are the most frequent SLC7A9 missense mutations found. Among heterozygotes carrying these mutations, A182T heterozygotes showed the lowest urinary excretion values of cystine and dibasic amino acids. Functional analysis of mutation A182T after co-expression with rBAT in HeLa cells revealed significant residual transport activity. In contrast, mutations G105R, V170M and R333W are associated to a complete or almost complete loss of transport activity, leading to a more severe urinary phenotype in heterozygotes. SLC7A9 mutations located in the putative transmembrane domains of b(o,+)AT and affecting conserved amino acid residues with a small side chain generate a severe phenotype, while mutations in non-conserved residues give rise to a mild phenotype. These data provide the first genotype-phenotype correlation in non-Type I cystinuria, and show that a mild urinary phenotype in heterozygotes may associate with mutations with significant residual transport activity.

  9. Effects of bfp Mutations on Biogenesis of Functional Enteropathogenic Escherichia coli Type IV Pili

    PubMed Central

    Anantha, Ravi P.; Stone, Kelly D.; Donnenberg, Michael S.

    2000-01-01

    Enteropathogenic Escherichia coli expresses a type IV fimbria known as the bundle-forming pilus (BFP) that is required for autoaggregation and localized adherence (LA) to host cells. A cluster of 14 genes is sufficient to reconstitute BFP biogenesis in a laboratory strain of E. coli. We have undertaken a systematic mutagenesis of the individual genes to determine the effect of each mutation on BFP biogenesis and LA. Here we report the construction and analysis of nonpolar mutations in six genes of the bfp cluster, bfpG, bfpB, bfpC, bfpD, bfpP, and bfpH, as well as the further analysis of a previously described bfpA mutant strain that is unable to express bundlin, the pilin protein. We found that mutations in bfpB, which encodes an outer membrane protein; bfpD, which encodes a putative nucleotide-binding protein; and bfpG and bfpC, which do not have sequence homologues in other type IV pilus systems, do not affect prebundlin expression or processing but block both BFP biogenesis and LA. The mutation in bfpP, the prepilin peptidase gene, does not affect prebundlin expression but blocks signal sequence cleavage of prebundlin, BFP biogenesis, and LA. The mutation in bfpH, which is predicted to encode a lytic transglycosylase, has no effect on prebundlin expression, prebundlin processing, BFP biogenesis, or LA. For each mutant for which altered phenotypes were detected, complementation with a plasmid containing the corresponding wild-type allele restored the wild-type phenotypes. We also found that association of prebundlin or bundlin with sucrose density flotation gradient fractions containing both inner and outer membrane proteins does not require any accessory proteins. These studies indicate that many bfp gene products are required for biogenesis of functional type IV pili but that mutations in the individual genes do not lead to the identification of new phases of pilus assembly. PMID:10762251

  10. A Landscape of Driver Mutations in Melanoma

    PubMed Central

    Hodis, Eran; Watson, Ian R.; Kryukov, Gregory V.; Arold, Stefan T.; Imielinski, Marcin; Theurillat, Jean-Philippe; Nickerson, Elizabeth; Auclair, Daniel; Li, Liren; Place, Chelsea; DiCara, Daniel; Ramos, Alex H.; Lawrence, Michael S.; Cibulskis, Kristian; Sivachenko, Andrey; Voet, Douglas; Saksena, Gordon; Stransky, Nicolas; Onofrio, Robert C.; Winckler, Wendy; Ardlie, Kristin; Wagle, Nikhil; Wargo, Jennifer; Chong, Kelly; Morton, Donald L.; Stemke-Hale, Katherine; Chen, Guo; Noble, Michael; Meyerson, Matthew; Ladbury, John E.; Davies, Michael A.; Gershenwald, Jeffrey E.; Wagner, Stephan N.; Hoon, Dave S.B.; Schadendorf, Dirk; Lander, Eric S.; Gabriel, Stacey B.; Getz, Gad; Garraway, Levi A.; Chin, Lynda

    2012-01-01

    SUMMARY Despite recent insights into melanoma genetics, systematic surveys for driver mutations are challenged by an abundance of passenger mutations caused by carcinogenic ultraviolet (UV) light exposure. We developed a permutation-based framework to address this challenge, employing mutation data from intronic sequences to control for passenger mutational load on a per gene basis. Analysis of large-scale melanoma exome data by this approach discovered six novel melanoma genes (PPP6C, RAC1, SNX31, TACC1, STK19 and ARID2), three of which - RAC1, PPP6C and STK19 - harbored recurrent and potentially targetable mutations. Integration with chromosomal copy number data contextualized the landscape of driver mutations, providing oncogenic insights in BRAF- and NRAS-driven melanoma as well as those without known NRAS/BRAF mutations. The landscape also clarified a mutational basis for RB and p53 pathway deregulation in this malignancy. Finally, the spectrum of driver mutations provided unequivocal genomic evidence for a direct mutagenic role of UV light in melanoma pathogenesis. PMID:22817889

  11. Characterization of six mutations in Exon 37 of neurofibromatosis type 1 gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyaya, M.; Osborn, M.; Maynard, J.

    Neurofibromatosis type 1 (NF1) is one of the most common inherited disorders, with an incidence of 1 in 3,000. We screened a total of 320 unrelated NF1 patients for mutations in exon 37 of the NF1 gene. Six independent mutations were identified, of which three are novel, and these include a recurrent nonsense mutation identified in 2 unrelated patients at codon 2281 (G2281X), a 1-bp insertion (6791 ins A) resulting in a change of TAG (tyrosine) to a TAA (stop codon), and a 3-bp deletion (6839 del TAC) which generated a frameshift. Another recurrent nonsense mutation, Y2264X, which was detectedmore » in 2 unrelated patients in this study, was also previously reported in 2 NF1 individuals. All the mutations were identified within a contiguous 49-bp sequence. Further studies are warranted to support the notion that this region of the gene contains highly mutable sequences. 17 refs., 2 figs., 1 tab.« less

  12. A novel deletion mutation is recurrent in von Willebrand disease types 1 and 3.

    PubMed

    Sutherland, Megan S; Cumming, Anthony M; Bowman, Mackenzie; Bolton-Maggs, Paula H B; Bowen, Derrick J; Collins, Peter W; Hay, Charles R M; Will, Andrew M; Keeney, Stephen

    2009-07-30

    Direct sequencing of VWF genomic DNA in 21 patients with type 3 von Willebrand disease (VWD) failed to reveal a causative homozygous or compound heterozygous VWF genotype in 5 cases. Subsequent analysis of VWF mRNA led to the discovery of a deletion (c.221-977_532 + 7059del [p.Asp75_Gly178del]) of VWF in 7 of 12 white type 3 VWD patients from 6 unrelated families. This deletion of VWF exons 4 and 5 was absent in 9 patients of Asian origin. We developed a genomic DNA-based assay for the deletion, which also revealed its presence in 2 of 34 type 1 VWD families, segregating with VWD in an autosomal dominant fashion. The deletion was associated with a specific VWF haplotype, indicating a possible founder origin. Expression studies indicated markedly decreased secretion and defective multimerization of the mutant VWF protein. Further studies have found the mutation in additional type 1 VWD patients and in a family expressing both type 3 and type 1 VWD. The c.221-977_532 + 7059del mutation represents a previously unreported cause of both types 1 and 3 VWD. Screening for this mutation in other type 1 and type 3 VWD patient populations is required to elucidate further its overall contribution to VWD arising from quantitative deficiencies of VWF.

  13. Genetic basis of glycogen storage disease type 1a: Prevalent mutations at the glucose-6-phosphatase locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke-Jian Lei; Hungwen Chen; Ji-Lan Liu

    Diagnosis of glycogen storage disease (GSD) type 1a currently is established by demonstrating the lack of glucose-6-phosphatase (G6Pase) activity in the patient`s biopsied liver specimen. Recent cloning of the G6Pase gene and identification of mutations within the gene that causes GSD type 1a allow for the development of a DNA-based diagnostic method. Using SSCP analysis and DNA sequencing, we characterized the G6Pase gene of 70 unrelated patients with enzymatically confirmed diagnosis of GSD type 1a and detected mutations in all except 17 alleles (88%). Sixteen mutations were uncovered that were shown by expression to abolish or greatly reduce G6Pase activitymore » and that therefore are responsible for the GSD type la disorder. R83C and Q347X are the most prevalent mutations found in Caucasians, 130X and R83C are most prevalent in Hispanics, and R83H is most prevalent in Chinese. The Q347X mutation has thus far been identified only in Caucasian patients, and the 130X mutation has been identified only in Hispanic patients. Our results demonstrate that the DNA-based analysis can accurately, rapidly, and noninvasively detect the majority of mutations in GSD type 1a. This DNA-based diagnosis now permits prenatal diagnosis among at-risk patients and serves as a database in screening and counseling patients clinically suspected of having this disease. 22 refs., 2 figs., 4 tabs.« less

  14. [New mutation in a young woman diagnosed with Niemann-Pick disease type C].

    PubMed

    Lario, Ana; de Miguel, Carlos; Ojeda, Emilio; Gil, Santiago; Coll, María J; Alfonso, Pilar

    2016-06-03

    To describe a new molecular variant of Niemann-Pick disease type C (NPC) in a 27 year-old patient with splenomegaly and abolition of osteotendinous reflexes. NPC1 is the main gene with described mutation in NPC disease. Here we report a case with a new mutation, p.N916S, not described before in a patient diagnosed with NPC. p.N916S was described as a cause of NPC disease by predictive programmes Mutation Master, PolyPhen2 and SIFT. p.N916S is a new mutation detected as a cause of NPC disease in a patient without severe neurological symptoms. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  15. Importance of biologically active aurora-like ultraviolet emission: stochastic irradiation of Earth and Mars by flares and explosions.

    PubMed

    Smith, David S; Scalo, John; Wheeler, J Craig

    2004-10-01

    even in the presence of a narrow-band ultraviolet shield like ozone. We also calculate the surficial transmitted fraction of ionizing radiation and redistributed ultraviolet radiation for two illustrative evolving Mars atmospheres whose initial surface pressures were 1 bar. We discuss the frequency with which redistributed ultraviolet flux from parent star flares exceeds the parent star ultraviolet flux at the planetary surface. We find that the redistributed ultraviolet from parent star flares is probably a fairly rare intermittent event for habitable zone planets orbiting solar-type stars except when they are young, but should completely dominate the direct steady ultraviolet radiation from the parent star for planets orbiting all stars less massive than about 0.5 solar masses. Our results suggest that coding organisms on such planets (and on the early Earth) may evolve very differently than on contemporary Earth, with diversity and evolutionary rate controlled by a stochastically varying mutation rate and frequent hypermutation episodes.

  16. International Ultraviolet Explorer (IUE) ultraviolet spectral atlas of selected astronomical objects

    NASA Technical Reports Server (NTRS)

    Wu, Chi-Chao; Reichert, Gail A.; Ake, Thomas B.; Boggess, Albert; Holm, Albert V.; Imhoff, Catherine L.; Kondo, Yoji; Mead, Jaylee M.; Shore, Steven N.

    1992-01-01

    The IUE Ultraviolet Spectral Atlas of Selected Astronomical Objects (or 'the Atlas'), is based on the data that were available in the IUE archive in 1986, and is intended to be a quick reference for the ultraviolet spectra of many categories of astronomical objects. It shows reflected sunlight from the Moon, planets, and asteroids, and also shows emission from comets. Comprehensive compilations of UV spectra for main sequence, subgiant, giant, bright giant, and supergiant stars are published elsewhere. This Atlas contains the spectra for objects occupying other areas of the Hertzsprung-Russell diagram: pre-main sequence stars, chemically peculiar stars, pulsating variables, subluminous stars, and Wolf-Rayet stars. This Atlas also presents phenomena such as the chromospheric and transition region emissions from late-type stars; composite spectra of stars, gas streams, accretion disks and gas envelopes of binary systems; the behavior of gas ejecta shortly after the outburst of novac and supernovac; and the H II regions, planetary nebulae, and supernova remnants. Population 2 stars, globular clusters, and luminous stars in the Magellanic Clouds, M31, and M33, are also included in this publication. Finally, the Atlas gives the ultraviolet spectra of galaxies of different Hubble types and of active galaxies.

  17. An infant with glutaric aciduria type IIc diagnosed with a novel mutation.

    PubMed

    Işıkay, Sedat; Yaman, Ayhan; Ceylaner, Serdar

    2017-01-01

    Işıkay S, Yaman A, Ceylaner S. An infant with glutaric aciduria type IIc diagnosed with a novel mutation. Turk J Pediatr 2017; 59: 315-317. Glutaric aciduria type II is a rare inborn error of metabolism. The clinical picture is highly variable with symptoms ranging from acute metabolic decompensations to chronic, mainly muscular problems or even asymptomatic cases. Herein we described a 7-month-old female patient presented with respiratory failure and diagnosed with glutaric aciduria type II via whole exome sequencing that exhibited one known and a novel mutation. Her blood and urine analyses were all normal. After the diagnosis, dramatic and sustained improvement on a low-fat, low-protein, and high-carbohydrate diet supplemented with oral riboflavin and carnitine was determined. In especially hypotonic patients with unknown etiologies, though the blood and urine analyses are normal, glutaric aciduria type II should also be kept in mind and genetic tests may be required for the diagnosis.

  18. A novel mutation in the MITF may be digenic with GJB2 mutations in a large Chinese family of Waardenburg syndrome type II.

    PubMed

    Yan, Xukun; Zhang, Tianyu; Wang, Zhengmin; Jiang, Yi; Chen, Yan; Wang, Hongyan; Ma, Duan; Wang, Lei; Li, Huawei

    2011-12-20

    Waardenburg syndrome type II (WS2) is associated with syndromic deafness. A subset of WS2, WS2A, accounting for approximately 15% of patients, is attributed to mutations in the microphthalmia-associated transcription factor (MITF) gene. We examined the genetic basis of WS2 in a large Chinese family. All 9 exons of the MITF gene, the single coding exon (exon 2) of the most common hereditary deafness gene GJB2 and the mitochondrial DNA (mtDNA) 12S rRNA were sequenced. A novel heterozygous mutation c.[742_743delAAinsT;746_747delCA] in exon 8 of the MITF gene co-segregates with WS2 in the family. The MITF mutation results in a premature termination codon and a truncated MITF protein with only 247 of the 419 wild type amino acids. The deaf proband had this MITF gene heterozygous mutation as well as a c.[109G>A]+[235delC] compound heterozygous pathogenic mutation in the GJB2 gene. No pathogenic mutation was found in mtDNA 12S rRNA in this family. Thus, a novel compound heterozygous mutation, c.[742_743delAAinsT;746_747delCA] in MITF exon 8 was the key genetic reason for WS2 in this family, and a digenic effect of MITF and GJB2 genes may contribute to deafness of the proband. Copyright © 2011. Published by Elsevier Ltd.

  19. Mutation screening of the PCDH15 gene in Spanish patients with Usher syndrome type I.

    PubMed

    Jaijo, Teresa; Oshima, Aki; Aller, Elena; Carney, Carol; Usami, Shin-ichi; Millán, José M; Kimberling, William J

    2012-01-01

    PCDH15 codes for protocadherin-15, a cell-cell adhesion protein essential in the morphogenesis and cohesion of stereocilia bundles and in the function or preservation of photoreceptor cells. Mutations in the PCDH15 gene are responsible for Usher syndrome type I (USH1F) and non-syndromic hearing loss (DFNB23). The purpose of this work was to perform PCDH15 mutation screening to identify the genetic cause of the disease in a cohort of Spanish patients with Usher syndrome type I and establish phenotype-genotype correlation. Mutation analysis of PCDH15 included additional exons recently identified and was performed by direct sequencing. The screening was performed in 19 probands with USH already screened for mutations in the most prevalent USH1 genes, myosin VIIA (MYO7A) and cadherin-23 (CDH23), and for copy number variants in PCDH15. Seven different point mutations, five novel, were detected. Including the large PCDH15 rearrangements previously reported in our cohort of patients, a total of seven of 19 patients (36.8%) were carriers of at least one pathogenic allele. Thirteen out of the 38 screened alleles carried pathogenic PCDH15 variants (34.2%). Five out of the seven point mutations reported in the present study are novel, supporting the idea that most PCDH15 mutations are private. Furthermore, no mutational hotspots have been identified. In most patients, detected mutations led to a truncated protein, reinforcing the hypothesis that severe mutations cause the Usher I phenotype and that missense variants are mainly responsible for non-syndromic hearing impairment.

  20. Novel compound heterozygous mutations in SERPINH1 cause rare autosomal recessive osteogenesis imperfecta type X.

    PubMed

    Song, Y; Zhao, D; Xu, X; Lv, F; Li, L; Jiang, Y; Wang, O; Xia, W; Xing, X; Li, M

    2018-03-09

    We identified novel compound heterozygous mutations in SERPINH1 in a Chinese boy suffering from recurrent fractures, femoral deformities, and growth retardation, which resulted in extremely rare autosomal recessive OI type X. Long-term treatment of BPs was effective in increasing BMD Z-score, reducing fracture incidence and reshaping vertebrae compression. Osteogenesis imperfecta (OI) is a heritable bone disorder characterized by low bone mineral density, recurrent fractures, and progressive bone deformities. Mutation in serpin peptidase inhibitor clade H, member 1 (SERPINH1), which encodes heat shock protein 47 (HSP47), leads to rare autosomal recessive OI type X. We aimed to detect the phenotype and the pathogenic mutation of OI type X in a boy from a non-consanguineous Chinese family. We investigated the pathogenic mutations and analyzed their relationship with the phenotype in the patient using next-generation sequencing (NGS) and Sanger sequencing. Moreover, the efficacy of long-term bisphosphonate treatment in this patient was evaluated. The patient suffered from multiple fractures, low bone mass, and bone deformities in the femur, without dentinogenesis imperfecta or hearing loss. Compound heterozygous variants were found in SERPINH1 as follows: c.149 T>G in exon 2 and c.1214G>A in exon 5. His parents were heterozygous carriers of each of these mutations, respectively. Bisphosphonates could be helpful in increasing BMD Z-score, reducing bone fracture risk and reshaping the compressed vertebral bodies of this patient. We reported novel compound heterozygous mutations in SERPINH1 in a Chinese OI patient for the first time, which expanded the spectrum of phenotype and genotype of extremely rare OI type X.

  1. Primary hyperoxaluria type 1 with a novel mutation.

    PubMed

    Sethi, Sidharth Kumar; Waterham, Hans R; Sharma, Sonika; Sharma, Alok; Hari, Pankaj; Bagga, Arvind

    2009-02-01

    Primary hyperoxaluria type 1 [PH1] is an autosomal recessive disorder caused by a deficiency of alanine-glyoxylate aminotransferase AGT, which is encoded by the AGXT gene. We report an Indian family with two affected siblings having a novel mutation in the AGXT gene inherited from the parents. The index case progressed to end stage renal disease at 5 months of age. His 4 month old sibling is presently under follow up with preserved renal function.

  2. Identification of a novel insertion mutation in FGFR3 that causes thanatophoric dysplasia type 1.

    PubMed

    Lindy, Amanda S; Basehore, Monica J; Munisha, Mumingjiang; Williams, Aimee Leanne; Friez, Michael J; Writzl, Karin; Willems, Patrick; Dougan, Scott T

    2016-06-01

    Thanatophoric dysplasia is a type of short-limbed neonatal dwarfism that is usually lethal in the perinatal period. It is characterized by short limbs, a narrow, bell-shaped thorax, macrocephaly with a prominent forehead, and flattened vertebral bodies. These malformations result from autosomal dominant mutations in the fibroblast growth factor receptor 3 (FGFR3) gene. In this report, we describe a novel FGFR3 insertion mutation in a fetus with shortened limbs, curved femurs, and a narrow thorax. The diagnosis of thanatophoric dysplasia type 1 was suspected clinically, and FGFR3 sequencing showed a c.742_743insTGT variant, which predicts p.R248delinsLC. In vivo studies in zebrafish demonstrated that this mutation resulted in the overexpression of zebrafish Fgfr3, leading to the over-activation of downstream signaling and dorsalized embryos. To date, no insertions or deletions in FGFR3 have been reported to cause thanatophoric dysplasia types 1 or 2; therefore, this represents the first report to describe such a mutation. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Competitive amplification of differentially melting amplicons (CADMA) enables sensitive and direct detection of all mutation types by high-resolution melting analysis.

    PubMed

    Kristensen, Lasse S; Andersen, Gitte B; Hager, Henrik; Hansen, Lise Lotte

    2012-01-01

    Sensitive and specific mutation detection is of particular importance in cancer diagnostics, prognostics, and individualized patient treatment. However, the majority of molecular methodologies that have been developed with the aim of increasing the sensitivity of mutation testing have drawbacks in terms of specificity, convenience, or costs. Here, we have established a new method, Competitive Amplification of Differentially Melting Amplicons (CADMA), which allows very sensitive and specific detection of all mutation types. The principle of the method is to amplify wild-type and mutated sequences simultaneously using a three-primer system. A mutation-specific primer is designed to introduce melting temperature decreasing mutations in the resulting mutated amplicon, while a second overlapping primer is designed to amplify both wild-type and mutated sequences. When combined with a third common primer very sensitive mutation detection becomes possible, when using high-resolution melting (HRM) as detection platform. The introduction of melting temperature decreasing mutations in the mutated amplicon also allows for further mutation enrichment by fast coamplification at lower denaturation temperature PCR (COLD-PCR). For proof-of-concept, we have designed CADMA assays for clinically relevant BRAF, EGFR, KRAS, and PIK3CA mutations, which are sensitive to, between 0.025% and 0.25%, mutated alleles in a wild-type background. In conclusion, CADMA enables highly sensitive and specific mutation detection by HRM analysis. © 2011 Wiley Periodicals, Inc.

  4. Primary hyperoxaluria type 1: diagnostic relevance of mutations and polymorphisms in the alanine:glyoxylate aminotransferase gene (AGXT).

    PubMed

    Tarn, A C; von Schnakenburg, C; Rumsby, G

    1997-09-01

    Primary hyperoxaluria type 1 (PH1) is an autosomal recessive disorder of glyoxylate metabolism caused by deficiency of the hepatic peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT). The disease shows considerable phenotypic, enzymatic and genetic heterogeneity. To date, 7 polymorphisms and 11 point mutations have been described in the gene encoding AGT. We report on the prevalence of these polymorphisms and mutations in 79 patients with PH1 with the aim of assessing their diagnostic relevance. A strong association of the C154T, intron 1 insertion and C386T polymorphisms is confirmed and this linkage extends to include the type 1 variant of a polymorphic tandem repeat in intron 4. Only 64 of 158 (40%) PH1 alleles have one of the defined mutations, with the G630A mutation accounting for 39 of these and T853C for 14. Overall only 20 (25%) of the patients studied had the genetic basis of their disease fully explained: 7 were homozygous for the G630A mutation, 5 were homozygous for the T853C mutation, 1 was homozygous for the C819T mutation, and 7 had two different mutations identified and were presumed to be compound heterozygotes. Only the two more frequent G630A and T853C mutations are of general diagnostic relevance for mutation screening. It seems likely that there are a significant number of other mutations, perhaps family-specific, still to be described. There was no apparent difference in the types of mutations in patients presenting in the first year of life (36%), suggesting that other factors, such as periods of dehydration or urinary tract infections, might contribute more to the clinical manifestation than genotype.

  5. Detection of novel NF1 mutations and rapid mutation prescreening with Pyrosequencing.

    PubMed

    Brinckmann, Anja; Mischung, Claudia; Bässmann, Ingelore; Kühnisch, Jirko; Schuelke, Markus; Tinschert, Sigrid; Nürnberg, Peter

    2007-12-01

    Neurofibromatosis type 1 (NF1) is caused by mutations in the neurofibromin (NF1) gene. Mutation analysis of NF1 is complicated by its large size, the lack of mutation hotspots, pseudogenes and frequent de novo mutations. Additionally, the search for NF1 mutations on the mRNA level is often hampered by nonsense-mediated mRNA decay (NMD) of the mutant allele. In this study we searched for mutations in a cohort of 38 patients and investigated the relationship between mutation type and allele-specific transcription from the wild-type versus mutant alleles. Quantification of relative mRNA transcript numbers was done by Pyrosequencing, a novel real-time sequencing method whose signals can be quantified very accurately. We identified 21 novel mutations comprising various mutation types. Pyrosequencing detected a definite relationship between allelic NF1 transcript imbalance due to NMD and mutation type in 24 of 29 patients who all carried frame-shift or nonsense mutations. NMD was absent in 5 patients with missense and silent mutations, as well as in 4 patients with splice-site mutations that did not disrupt the reading frame. Pyrosequencing was capable of detecting NMD even when the effects were only moderate. Diagnostic laboratories could thus exploit this effect for rapid prescreening for NF1 mutations as more than 60% of the mutations in this gene disrupt the reading frame and are prone to NMD.

  6. Mutation screening of the PCDH15 gene in Spanish patients with Usher syndrome type I

    PubMed Central

    Jaijo, Teresa; Oshima, Aki; Aller, Elena; Carney, Carol; Usami, Shin-ichi; Kimberling, William J.

    2012-01-01

    Purpose PCDH15 codes for protocadherin-15, a cell-cell adhesion protein essential in the morphogenesis and cohesion of stereocilia bundles and in the function or preservation of photoreceptor cells. Mutations in the PCDH15 gene are responsible for Usher syndrome type I (USH1F) and non-syndromic hearing loss (DFNB23). The purpose of this work was to perform PCDH15 mutation screening to identify the genetic cause of the disease in a cohort of Spanish patients with Usher syndrome type I and establish phenotype-genotype correlation. Methods Mutation analysis of PCDH15 included additional exons recently identified and was performed by direct sequencing. The screening was performed in 19 probands with USH already screened for mutations in the most prevalent USH1 genes, myosin VIIA (MYO7A) and cadherin-23 (CDH23), and for copy number variants in PCDH15. Results Seven different point mutations, five novel, were detected. Including the large PCDH15 rearrangements previously reported in our cohort of patients, a total of seven of 19 patients (36.8%) were carriers of at least one pathogenic allele. Thirteen out of the 38 screened alleles carried pathogenic PCDH15 variants (34.2%). Conclusions Five out of the seven point mutations reported in the present study are novel, supporting the idea that most PCDH15 mutations are private. Furthermore, no mutational hotspots have been identified. In most patients, detected mutations led to a truncated protein, reinforcing the hypothesis that severe mutations cause the Usher I phenotype and that missense variants are mainly responsible for non-syndromic hearing impairment. PMID:22815625

  7. De novo dominant mutation of SOX10 gene in a Chinese family with Waardenburg syndrome type II.

    PubMed

    Chen, Kaitian; Zong, Ling; Liu, Min; Zhan, Yuan; Wu, Xuan; Zou, Wenting; Jiang, Hongyan

    2014-06-01

    Waardenburg syndrome is a rare genetic disorder, inherited as an autosomal dominant trait. The condition is characterized by sensorineural hearing loss and pigment disturbances of the hair, skin, and iris. The de novo mutation in the SOX10 gene, responsible for Waardenburg syndrome type II, is rarely seen. The present study aimed to identify the genetic causes of Waardenburg syndrome type II in a Chinese family. Clinical and molecular evaluations were conducted in a Chinese family with Waardenburg syndrome type II. A novel SOX10 heterozygous c.259-260delCT mutation was identified. Heterozygosity was not observed in the parents and sister of the proband, indicating that the mutation has arisen de novo. The novel frameshift mutation, located in exon 3 of the SOX10 gene, disrupted normal amino acid coding from Leu87, leading to premature termination at nucleotide 396 (TGA). The high mobility group domain of SOX10 was inferred to be partially impaired. The novel heterozygous c.259-260delCT mutation in the SOX10 gene was considered to be the cause of Waardenburg syndrome in the proband. The clinical and genetic characterization of this family would help elucidate the genetic heterogeneity of SOX10 in Waardenburg syndrome type II. Moreover, the de novo pattern expanded the mutation data of SOX10. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. [Construction and characterization of an epitope-mutated Asia 1 type foot-and-mouth disease virus].

    PubMed

    Zhang, Yan; Hu, Yonghao; Yang, Fan; Yang, Bo; Wang, Songhao; Zhu, Zixiang; Zheng, Haixue

    2015-01-01

    To generate an epitope-mutated foot-and-mouth disease virus (FMDV) as a marker vaccine, the infectious clone pAsia 1-FMDV containing the complete genomic cDNA of Asia 1 type FMDV was used as backbone, the residues at positions 27 and 31 in the 3D gene were mutated (H27Y and N31R). The resulting plasmid pAsia 1-FMDV-3DM encoding a mutated epitope was transfected into BHK-21 cells and the recombinant virus rAsia 1-3DM was rescued. The recombinant virus showed similar biological characteristics comparable with the parental virus. In serological neutralization test the antisera against recombine virus have a good reactivity with parental virus. The antisera against the mutant virus were shown to be reactive with the mutated epitope but not the wild-type one. The results indicated that the two virus strains could be distinguished by western blotting using synthetic peptides. This epitope-mutated FMDV strain will be evaluated as a potential marker vaccine against FMDV infections.

  9. Mutations in the glucose-6-phosphatase gene that cause glycogen storage disease type 1a

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, J.Y.; Lei, K.J.; Shelly, L.L.

    1994-09-01

    Glycogen storage disease (GSD) type la (von Gierke disease) is caused by the deficiency of glucose-6-phosphatase (G6Pase), the key enzyme in glucose homeostasis. The disease presents with clinical manifestations of severe hypoglycemia, hepatomegaly, growth retardation, lactic acidemia, hyperlipidemia, and hyperuricemia. We have succeeded in isolating a murine G6Pase cDNA from a normal mouse liver cDNA library by differentially screening method. We then isolated the human G6Pase cDNA and gene. To date, we have characterized the G6Pase genes of twelve GSD type la patients and uncovered a total of six different mutations. The mutations are comprised of R83C (an Arg atmore » codon 83 to a Cys), Q347X (a Gly at codon 347 to a stop codon), 459insTA (a two basepair insertion at nucleotide 459 yielding a truncated G6Pase of 129 residues), R295C (an Arg at codon 295 to a Cys), G222R (a Gly at codon 222 to an Arg) and {delta}F327 (a codon deletion for Phe-327 at nucleotides 1058 to 1060). The relative incidences of these mutations are 37.5% (R83C), 33.3% (Q347X), 16.6% (459insTA), 4.2% (G222R), 4.2% (R295C) and 4.2% ({delta}F327). Site-directed mutagenesis and transient expression assays demonstrated that the R83C, Q347X, R295C, and {delta}F327 mutations abolished whereas the G222R mutation greatly reduced G6Pase activity. We further characterized the structure-function requirements of amino acids 83, 222, and 295 in G6Pase catalysis. The identification of mutations in GSD type la patients has unequivocally established the molecular basis of the type la disorder. Knowledge of the mutations may be applied to prenatal diagnosis and opens the way for developing and evaluating new therapeutic approaches.« less

  10. Molecular analysis of Cypriot patients with Glutaric aciduria type I: identification of two novel mutations.

    PubMed

    Georgiou, Theodoros; Nicolaidou, Paola; Hadjichristou, Anastasia; Ioannou, Rodothea; Dionysiou, Maria; Siama, Elli; Chappa, Georgia; Anastasiadou, Violetta; Drousiotou, Anthi

    2014-09-01

    The purpose of this study was to identify the mutations in the glutaryl-CoA dehydrogenase gene (GCDH) in ten Cypriot patients with Glutaric aciduria type I (GAI). Molecular analysis of the GCDH gene was performed by direct sequencing of the patients' genomic DNA. In silico tools were applied to predict the effect of the novel variants on the structure and function of the protein. All disease alleles were characterized (mutation detection rate 100%). Five missense mutations were identified: c.192G>T (p.Glu64Asp) and c.803G>T (p.Gly268Val), which are novel, and three previously described mutations, c.1123T>C (p.Cys375Arg), c.1204C>T (p.Arg402Trp) and c.1286C>T (p.Thr429Met). Two novel mutations, p.Glu64Asp and p.Gly268Val, account for the majority of disease alleles (76.5%) in Cypriot patients with Glutaric aciduria type I. A founder effect for the p.Glu64Asp and the p.Gly268Val can be suggested based on the place of origin of the carriers of these mutations. Identification of the causative mutations of GAI in Cypriot patients will facilitate carrier detection as well as post- and pre-natal diagnosis. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  11. A Dentin Sialophosphoprotein Mutation That Partially Disrupts a Splice Acceptor Site Causes Type II Dentin Dysplasia

    PubMed Central

    Lee, Sook-Kyung; Hu, Jan C.-C.; Lee, Kyung-Eun; Simmer, James P.; Kim, Jung-Wook

    2009-01-01

    The dentin sialophosphoprotein (DSPP) gene on chromosome 4q21.3 encodes the major noncollagenous protein in tooth dentin. DSPP mutations are the principal cause of dentin dysplasia type II, dentinogenesis imperfecta type II, and dentinogenesis imperfecta type III. We have identified a DSPP splice junction mutation (IVS2-6T>G) in a family with dentin dysplasia type II. The primary dentition is discolored brown with severe attrition. The mildly discolored permanent dentition has thistle-shaped pulp chambers, pulp stones, and eventual pulp obliteration. The mutation is in the sixth nucleotide from the end of intron 2, perfectly segregates with the disease phenotype, and is absent in 200 normal control chromosomes. An in vitro splicing assay shows that pre-mRNA splicing of the mutant allele generates wild-type mRNA and mRNA lacking exon 3 in approximately equal amounts. Skipping exon 3 might interfere with signal peptide cleavage, causing endoplasmic reticulum stress, and also reduce DSPP secretion, leading to haploinsufficiency. PMID:19026876

  12. Concentration of mutations causing Schmid metaphyseal chondrodysplasia in the NC1 domain of type X collagen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntosh, I.; Abbott, M.H.; Francomano, C.A.

    1994-09-01

    Schmid metaphyseal chondrodysplasia (SMCD, MIM 156500) is an autosomal dominant disorder of the osseous skeleton resulting in short stature, coxa vara and a waddling gait. Type X collagen is an extracellular matrix protein expressed exclusively by hypertrophic chondrocytes. We have previously identified four mutations in the type X collagen gene (COL10A1) in patients with SMCD. Each of these mutations, as well as another three reported by other investigators, are in the carboxy-terminal non-collagenous domain (NC1). Here, we present data for another three mutations each predicted to cause premature termination of translation within the NC1 domain. Two are nonsense mutations, Y628Xmore » and W651X, while the third is a frameshift resulting from the deletion of two nucleotides, 1856delCC. Each of these mutations occurred de novo, resulting in sporadic cases of SMCD. Four frameshift mutations have now been reported to initiate within 10bp of each other in the NC1 domain, namely 1865delC, 1856delCC, 1856del13 and 1866del10. These findings further support the hypothesis that SMCD is the result of the mutant type X collagen molecule being unable to participate in trimerization, although a dominant-negative model of disease pathogenesis has not been formally excluded.« less

  13. [Mutation screening of MITF gene in patients with Waardenburg syndrome type 2].

    PubMed

    Chen, Jing; Yang, Shu-Zhi; Liu, Jun; Han, Bing; Wang, Guo-Jian; Zhang, Xin; Kang, Dong-Yang; Dai, Pu; Young, Wie-Yen; Yuan, Hui-Jun

    2008-04-01

    Warrgenburg syndrome type 2 (WS2) is the most common autosomal dominantly-inherited syndrome with hearing loss. MITF (microphthalmia associated transcription factor)is a basic-helix-loop-helix-luecine zipper (bHLHZip) factor which regulates expression of tyrosinase, and is involved in melanocyte differentiation. Mutations in MITF associated with WS2 have been identified in some but not all affected families. Here, we report a three-generation Chinese family with a point mutation in the MITF gene causing WS2. The proband exhibits congenital severe sensorineural hearing loss, heterochromia iridis and facial freckles. One of family members manifests sensorineural deafness, and the other patients show premature greying or/and freckles. This mutation, heterozygous deletion c.639delA, creates a stop codon in exon 7 and is predicted to result in a truncated protein lacking normal interaction with its target DNA motif. This mutation is a novel mutation and the third case identified in exon 7 of MITF in WS2. Though there is only one base pair distance between this novel mutation and the other two documented cases and similar amino acids change, significant difference is seen in clinical phenotype, which suggests genetic background may play an important role.

  14. VPS53 mutations cause progressive cerebello-cerebral atrophy type 2 (PCCA2).

    PubMed

    Feinstein, Miora; Flusser, Hagit; Lerman-Sagie, Tally; Ben-Zeev, Bruria; Lev, Dorit; Agamy, Orly; Cohen, Idan; Kadir, Rotem; Sivan, Sara; Leshinsky-Silver, Esther; Markus, Barak; Birk, Ohad S

    2014-05-01

    Progressive cerebello-cerebral atrophy (PCCA) leading to profound mental retardation, progressive microcephaly, spasticity and early onset epilepsy, was diagnosed in four non-consanguineous apparently unrelated families of Jewish Moroccan ancestry. Common founder mutation(s) were assumed. Genome-wide linkage analysis and whole exome sequencing were done, followed by realtime PCR and immunofluorescent microscopy. Genome-wide linkage analysis mapped the disease-associated gene to 0.5 Mb on chromosome 17p13.3. Whole exome sequencing identified only two mutations within this locus, which were common to the affected individuals: compound heterozygous mutations in VPS53, segregating as expected for autosomal recessive heredity within all four families, and common in Moroccan Jews (∼1:37 carrier rate). The Golgi-associated retrograde protein (GARP) complex is involved in the retrograde pathway recycling endocytic vesicles to Golgi; c.2084A>G and c.1556+5G>A VPS53 founder mutations are predicted to affect the C-terminal domain of VPS53, known to be critical to its role as part of this complex. Immunofluorescent microscopy demonstrated swollen and abnormally numerous CD63 positive vesicular bodies, likely intermediate recycling/late endosomes, in fibroblasts of affected individuals. Autosomal recessive PCCA type 2 is caused by VPS53 mutations.

  15. Clinical and mutation-type analysis from an international series of 198 probands with a pathogenic FBN1 exons 24–32 mutation

    PubMed Central

    Faivre, L; Collod-Beroud, G; Callewaert, B; Child, A; Binquet, C; Gautier, E; Loeys, B L; Arbustini, E; Mayer, K; Arslan-Kirchner, M; Stheneur, C; Kiotsekoglou, A; Comeglio, P; Marziliano, N; Wolf, J E; Bouchot, O; Khau-Van-Kien, P; Beroud, C; Claustres, M; Bonithon-Kopp, C; Robinson, P N; Adès, L; De Backer, J; Coucke, P; Francke, U; De Paepe, A; Jondeau, G; Boileau, C

    2009-01-01

    Mutations in the FBN1 gene cause Marfan syndrome (MFS) and a wide range of overlapping phenotypes. The severe end of the spectrum is represented by neonatal MFS, the vast majority of probands carrying a mutation within exons 24–32. We previously showed that a mutation in exons 24–32 is predictive of a severe cardiovascular phenotype even in non-neonatal cases, and that mutations leading to premature truncation codons are under-represented in this region. To describe patients carrying a mutation in this so-called ‘neonatal' region, we studied the clinical and molecular characteristics of 198 probands with a mutation in exons 24–32 from a series of 1013 probands with a FBN1 mutation (20%). When comparing patients with mutations leading to a premature termination codon (PTC) within exons 24–32 to patients with an in-frame mutation within the same region, a significantly higher probability of developing ectopia lentis and mitral insufficiency were found in the second group. Patients with a PTC within exons 24–32 rarely displayed a neonatal or severe MFS presentation. We also found a higher probability of neonatal presentations associated with exon 25 mutations, as well as a higher probability of cardiovascular manifestations. A high phenotypic heterogeneity could be described for recurrent mutations, ranging from neonatal to classical MFS phenotype. In conclusion, even if the exons 24–32 location appears as a major cause of the severity of the phenotype in patients with a mutation in this region, other factors such as the type of mutation or modifier genes might also be relevant. PMID:19002209

  16. REEP1 Mutation Spectrum and Genotype/Phenotype Correlation in Hereditary Spastic Paraplegia Type 31

    ERIC Educational Resources Information Center

    Beetz, Christian; Schule, Rebecca; Deconinck, Tine; Tran-Viet, Khanh-Nhat; Zhu, Hui; Kremer, Berry P. H.; Frints, Suzanna G. M.; van Zelst-Stams, Wendy A. G.; Byrne, Paula; Otto, Susanne; Nygren, Anders O. H.; Baets, Jonathan; Smets, Katrien; Ceulemans, Berten; Dan, Bernard; Nagan, Narasimhan; Kassubek, Jan; Klimpe, Sven; Klopstock, Thomas; Stolze, Henning; Smeets, Hubert J. M.; Schrander-Stumpel, Constance T. R. M.; Hutchinson, Michael; van de Warrenburg, Bart P.; Braastad, Corey; Deufel, Thomas; Pericak-Vance, Margaret; Schols, Ludger; de Jonghe, Peter; Zuchner, Stephan

    2008-01-01

    Mutations in the receptor expression enhancing protein 1 (REEP1) have recently been reported to cause autosomal dominant hereditary spastic paraplegia (HSP) type SPG31. In a large collaborative effort, we screened a sample of 535 unrelated HSP patients for "REEP1" mutations and copy number variations. We identified 13 novel and 2 known "REEP1"…

  17. Multiple point mutations in a shuttle vector propagated in human cells: evidence for an error-prone DNA polymerase activity.

    PubMed

    Seidman, M M; Bredberg, A; Seetharam, S; Kraemer, K H

    1987-07-01

    Mutagenesis was studied at the DNA-sequence level in human fibroblast and lymphoid cells by use of a shuttle vector plasmid, pZ189, containing a suppressor tRNA marker gene. In a series of experiments, 62 plasmids were recovered that had two to six base substitutions in the 160-base-pair marker gene. Approximately 20-30% of the mutant plasmids that were recovered after passing ultraviolet-treated pZ189 through a repair-proficient human fibroblast line contained these multiple mutations. In contrast, passage of ultraviolet-treated pZ189 through an excision-repair-deficient (xeroderma pigmentosum) line yielded only 2% multiple base substitution mutants. Introducing a single-strand nick in otherwise unmodified pZ189 adjacent to the marker, followed by passage through the xeroderma pigmentosum cells, resulted in about 66% multiple base substitution mutants. The multiple mutations were found in a 160-base-pair region containing the marker gene but were rarely found in an adjacent 170-base-pair region. Passing ultraviolet-treated or nicked pZ189 through a repair-proficient human B-cell line also yielded multiple base substitution mutations in 20-33% of the mutant plasmids. An explanation for these multiple mutations is that they were generated by an error-prone polymerase while filling gaps. These mutations share many of the properties displayed by mutations in the immunoglobulin hypervariable regions.

  18. Mutations of maturity-onset diabetes of the young (MODY) genes in Thais with early-onset type 2 diabetes mellitus.

    PubMed

    Plengvidhya, Nattachet; Boonyasrisawat, Watip; Chongjaroen, Nalinee; Jungtrakoon, Prapaporn; Sriussadaporn, Sutin; Vannaseang, Sathit; Banchuin, Napatawn; Yenchitsomanus, Pa-thai

    2009-06-01

    Six known genes responsible for maturity-onset diabetes of the young (MODY) were analysed to evaluate the prevalence of their mutations in Thai patients with MODY and early-onset type 2 diabetes. Fifty-one unrelated probands with early-onset type 2 diabetes, 21 of them fitted into classic MODY criteria, were analysed for nucleotide variations in promoters, exons, and exon-intron boundaries of six known MODY genes, including HNF-4alpha, GCK, HNF-1alpha, IPF-1, HNF-1beta, and NeuroD1/beta2, by the polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) method followed by direct DNA sequencing. Missense mutations or mutations located in regulatory region, which were absent in 130 chromosomes of non-diabetic controls, were classified as potentially pathogenic mutations. We found that mutations of the six known MODY genes account for a small proportion of classic MODY (19%) and early-onset type 2 diabetes (10%) in Thais. Five of these mutations are novel including GCK R327H, HNF-1alpha P475L, HNF-1alphaG554fsX556, NeuroD1-1972 G > A and NeuroD1 A322N. Mutations of IPF-1 and HNF-1beta were not identified in the studied probands. Mutations of the six known MODY genes may not be a major cause of MODY and early-onset type 2 diabetes in Thais. Therefore, unidentified genes await discovery in a majority of Thai patients with MODY and early-onset type 2 diabetes.

  19. Digenic mutations involving both the BSND and GJB2 genes detected in Bartter syndrome type IV.

    PubMed

    Wang, Hong-Han; Feng, Yong; Li, Hai-Bo; Wu, Hong; Mei, Ling-Yun; Wang, Xing-Wei; Jiang, Lu; He, Chu-Feng

    2017-01-01

    Bartter syndrome type IV, characterized by salt-losing nephropathies and sensorineural deafness, is caused by mutations of BSND or simultaneous mutations of both CLCNKA and CLCNKB. GJB2 is the primary causative gene for non-syndromic sensorineural deafness and associated with several syndromic sensorineural deafness. Owing to the rarity of Bartter syndrome, only a few mutations have been reported in the abovementioned causative genes. To investigate the underlying mutations in a Chinese patient with Bartter syndrome type IV, genetic analysis of BSND, CLCNKA, CLCNKB and GJB2 were performed by polymerase chain reaction and direct sequencing. Finally, double homozygous mutations c.22C > T (p.Arg8Trp) and c.127G > A (Val43Ile) were detected in exon 1 of BSND. Intriguingly, compound heterozygous mutations c.235delC (p.Leu79CysfsX3) and c.109G > A (p.Val37Ile) were also revealed in exon 2 of GJB2 in the same patient. No pathogenic mutations were found in CLCNKA and CLCNKB. Our results indicated that the homozygous mutation c.22C > T was the key genetic reason for the proband, and a digenic effect of BSND and GJB2 might contributed to sensorineural deafness. To our knowledge, it was the first report showing that the GJB2 gene mutations were detected in Bartter syndrome. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. [Mutational frequencies in usherin(USH2A gene) in 26 Colombian individuals with Usher syndrome type II].

    PubMed

    López, Greizy; Gelvez, Nancy Yaneth; Tamayo, Martalucía

    2011-03-01

    Usher syndrome is a disorder characterized by progressive retinitis pigmentosa, prelingual sensory hearing loss and vestibular dysfunction. It is the most frequent cause of deaf-blindness in humans. Three clinical types and twelve genetic subtypes have been characterized. Type II is the most common, and among these cases, nearly 80% have mutations in the USH2A gene. The aim of the study was to establish the mutational frequencies for the short isoform of USH2A gene in Usher syndrome type II. Twenty-six Colombian individuals with Usher syndrome type II were included. SSCP analysis for 20 exons of the short isoform was performed and abnormal patterns were sequenced. Sequencing of exon 13 of the USH2A gene was performed for all the individuals because the most frequent mutation is located in this exon. The most frequent mutation was c.2299delG, identified in the 27% (n=8) of the sample. The second mutation, p.R334W, showed a frequency of 15%. A new variant identified in the 5’UTR region, g.129G>T, was present in 1 individual (4%). Four polymorphisms were identified; one of them is a new deletion in exon 20, first reported in this study. Mutations in the usherin short isoform were identified in 38% of a sample of 26 USH2 cases. Molecular diagnosis was established in 7 of the 26.

  1. Nonsyndromic recessive deafness DFNB18 and Usher syndrome type IC are allelic mutations of USHIC.

    PubMed

    Ahmed, Zubair M; Smith, Tenesha N; Riazuddin, Saima; Makishima, Tomoko; Ghosh, Manju; Bokhari, Sirosh; Menon, Puthezhath S N; Deshmukh, Dilip; Griffith, Andrew J; Riazuddin, Sheikh; Friedman, Thomas B; Wilcox, Edward R

    2002-06-01

    Human chromosome 11 harbors two Usher type I loci, USHIB and USHIC, which encode myosin VIIA and harmonin, respectively. The USHIC locus overlaps the reported critical interval for nonsyndromic deafness locus DFNB18. We found an IVS12+5G-->C mutation in the USHIC gene, which is associated with nonsyndromic recessive deafness ( DFNB18) segregating in the original family, S-11/12. No other disease-associated mutation was found in the other 27 exons or in the intron-exon boundaries, and the IVS12+5G-->C mutation was not present in 200 representative unaffected individuals ascertained from the same area of India. An exon-trapping assay with a construct harboring IVS12+5G-->C generated wildtype spliced mRNA having exons 11 and 12 and mRNA that skipped exon 12. We conclude that mutations of USHIC can cause both Usher syndrome type IC and nonsyndromic recessive deafness DFNB18.

  2. Primary hyperoxaluria type 1: update and additional mutation analysis of the AGXT gene.

    PubMed

    Williams, Emma L; Acquaviva, Cecile; Amoroso, Antonio; Chevalier, Francoise; Coulter-Mackie, Marion; Monico, Carla G; Giachino, Daniela; Owen, Tricia; Robbiano, Angela; Salido, Eduardo; Waterham, Hans; Rumsby, Gill

    2009-06-01

    Primary hyperoxaluria type 1 (PH1) is an autosomal recessive, inherited disorder of glyoxylate metabolism arising from a deficiency of the alanine:glyoxylate aminotransferase (AGT) enzyme, encoded by the AGXT gene. The disease is manifested by excessive endogenous oxalate production, which leads to impaired renal function and associated morbidity. At least 146 mutations have now been described, 50 of which are newly reported here. The mutations, which occur along the length of the AGXT gene, are predominantly single-nucleotide substitutions (75%), 73 are missense, 19 nonsense, and 18 splice mutations; but 36 major and minor deletions and insertions are also included. There is little association of mutation with ethnicity, the most obvious exception being the p.Ile244Thr mutation, which appears to have North African/Spanish origins. A common, polymorphic variant encoding leucine at codon 11, the so-called minor allele, has significantly lower catalytic activity in vitro, and has a higher frequency in PH1 compared to the rest of the population. This polymorphism influences enzyme targeting in the presence of the most common Gly170Arg mutation and potentiates the effect of several other pathological sequence variants. This review discusses the spectrum of AGXT mutations and polymorphisms, their clinical significance, and their diagnostic relevance.

  3. Low-burden TP53 mutations in chronic phase of myeloproliferative neoplasms: association with age, hydroxyurea administration, disease type and JAK2 mutational status

    PubMed Central

    Kubesova, B; Pavlova, S; Malcikova, J; Kabathova, J; Radova, L; Tom, N; Tichy, B; Plevova, K; Kantorova, B; Fiedorova, K; Slavikova, M; Bystry, V; Kissova, J; Gisslinger, B; Gisslinger, H; Penka, M; Mayer, J; Kralovics, R; Pospisilova, S; Doubek, M

    2018-01-01

    The multistep process of TP53 mutation expansion during myeloproliferative neoplasm (MPN) transformation into acute myeloid leukemia (AML) has been documented retrospectively. It is currently unknown how common TP53 mutations with low variant allele frequency (VAF) are, whether they are linked to hydroxyurea (HU) cytoreduction, and what disease progression risk they carry. Using ultra-deep next-generation sequencing, we examined 254 MPN patients treated with HU, interferon alpha-2a or anagrelide and 85 untreated patients. We found TP53 mutations in 50 cases (0.2–16.3% VAF), regardless of disease subtype, driver gene status and cytoreduction. Both therapy and TP53 mutations were strongly associated with older age. Over-time analysis showed that the mutations may be undetectable at diagnosis and slowly increase during disease course. Although three patients with TP53 mutations progressed to TP53-mutated or TP53-wild-type AML, we did not observe a significant age-independent impact on overall survival during the follow-up. Further, we showed that complete p53 inactivation alone led to neither blast transformation nor HU resistance. Altogether, we revealed patient's age as the strongest factor affecting low-burden TP53 mutation incidence in MPN and found no significant age-independent association between TP53 mutations and hydroxyurea. Mutations may persist at low levels for years without an immediate risk of progression. PMID:28744014

  4. A high-throughput next-generation sequencing-based method for detecting the mutational fingerprint of carcinogens.

    PubMed

    Besaratinia, Ahmad; Li, Haiqing; Yoon, Jae-In; Zheng, Albert; Gao, Hanlin; Tommasi, Stella

    2012-08-01

    Many carcinogens leave a unique mutational fingerprint in the human genome. These mutational fingerprints manifest as specific types of mutations often clustering at certain genomic loci in tumor genomes from carcinogen-exposed individuals. To develop a high-throughput method for detecting the mutational fingerprint of carcinogens, we have devised a cost-, time- and labor-effective strategy, in which the widely used transgenic Big Blue mouse mutation detection assay is made compatible with the Roche/454 Genome Sequencer FLX Titanium next-generation sequencing technology. As proof of principle, we have used this novel method to establish the mutational fingerprints of three prominent carcinogens with varying mutagenic potencies, including sunlight ultraviolet radiation, 4-aminobiphenyl and secondhand smoke that are known to be strong, moderate and weak mutagens, respectively. For verification purposes, we have compared the mutational fingerprints of these carcinogens obtained by our newly developed method with those obtained by parallel analyses using the conventional low-throughput approach, that is, standard mutation detection assay followed by direct DNA sequencing using a capillary DNA sequencer. We demonstrate that this high-throughput next-generation sequencing-based method is highly specific and sensitive to detect the mutational fingerprints of the tested carcinogens. The method is reproducible, and its accuracy is comparable with that of the currently available low-throughput method. In conclusion, this novel method has the potential to move the field of carcinogenesis forward by allowing high-throughput analysis of mutations induced by endogenous and/or exogenous genotoxic agents.

  5. [Effect of long-wave ultraviolet light (UV-A) and medium-wave ultraviolet rays (UV-B) on human skin. Critical comparison].

    PubMed

    Raab, W

    1980-04-15

    When discussing the effects of ultraviolet radiation on human skin, one should carefully distinguish between the long wave ultraviolet light (UV-A) and the short wave radiations (UV-B and UV-C). Ultraviolet A induces immediate pigmentation but, if high energies are applied, a permanent pigmentation is elicited. This type of ultraviolet A-induced pigmentation has been called "spontaneous" pigmentation as no erythematous reaction is necessary to induce or accelerate melanine formation. Ultraviolet B provokes erythema and consecutive pigmentation. Upon chronic exposure, ultraviolet B causes the wellknown actinic damage of the skin and even provokes carcinoma. With exposures to the sunlight (global radiation), one should be most careful. The public must be informed extensively about the dangers of excessive sunbaths. The use of artificial "suns" with spectra between 260 and 400 nm is limited as it may cause the same type of damage as the global radiation. An exact schedule for use of artificial lamps is strongly recommended. After one cycle of exposures, an interruption is necessary until the next cycle of irradiations may start. Upon continual use for tanning of the skin, artificial lamps may provoke irreversible damage of the skin. Radiation sources with emission spectra of wavelengths between 315 and 400 nm exclusively are well suited for the induction of skin pigmentation (cosmetic use). Potent radiation such as UVASUN systems provoke a "pleasant" permanent pigmentation after exposures for less than one hour. The use of ultraviolet A (UV-A) does not carry any risk for the human skin.

  6. Novel PAX3 mutations causing Waardenburg syndrome type 1 in Tunisian patients.

    PubMed

    Trabelsi, Mediha; Nouira, Malek; Maazoul, Faouzi; Kraoua, Lilia; Meddeb, Rim; Ouertani, Ines; Chelly, Imen; Benoit, Valérie; Besbes, Ghazi; Mrad, Ridha

    2017-12-01

    Waardenburg syndrome (WS) is an auditory-pigmentary disease characterized by a clinical and genetic variability. WS is classified into four types depending on the presence or absence of additional symptoms: WS1, WS2, WS3 and WS4. Type 1 and 3 are mostly caused by PAX3 mutations, while type 2 and type 4 are genetically heterogeneous. The aims of this study are to confirm the diagnostic of WS1 by the sequencing of PAX3 gene and to evaluate the genotype phenotype correlation. A clinical classification was established for 14 patients WS, as proposed by the Waardenburg Consortium, and noted a predominance of type 1 and type 2 with 6 patients WS1, 7 patients WS2 and 1 patient WS3. A significant inter and intra-familial clinical heterogeneity was also observed. A sequencing of PAX3 gene in the 6 patients WS1 confirmed the diagnosis in 4 of them by revealing three novel mutations that modify two functional domains of the protein: the c.942delC; the c.933_936dupTTAC and the c.164delTCCGCCACA. These three variations are most likely responsible for the phenotype, however their pathogenic effects need to be confirmed by functional studies. The MLPA analysis of the 2 patients who were sequence negative for PAX3 gene revealed, in one of them, a heterozygous deletion of exons 5 to 9 confirming the WS1 diagnosis. Both clinical and molecular approaches led to the conclusion that there is a lack of genotype-phenotype correlation in WS1, an element that must be taken into account in genetic counseling. The absence of PAX3 mutation in one patient WS1 highlights the fact that the clinical classification is sometimes insufficient to distinguish WS1 from other types WS hence the interest of sequencing the other WS genes in this patient. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Multiple endocrine neoplasia type 1: analysis of germline MEN1 mutations in the Italian multicenter MEN1 patient database.

    PubMed

    Marini, Francesca; Giusti, Francesca; Fossi, Caterina; Cioppi, Federica; Cianferotti, Luisella; Masi, Laura; Boaretto, Francesca; Zovato, Stefania; Cetani, Filomena; Colao, Annamaria; Davì, Maria Vittoria; Faggiano, Antongiulio; Fanciulli, Giuseppe; Ferolla, Piero; Ferone, Diego; Loli, Paola; Mantero, Franco; Marcocci, Claudio; Opocher, Giuseppe; Beck-Peccoz, Paolo; Persani, Luca; Scillitani, Alfredo; Guizzardi, Fabiana; Spada, Anna; Tomassetti, Paola; Tonelli, Francesco; Brandi, Maria Luisa

    2018-03-01

    Multiple endocrine neoplasia type 1 (MEN1) is caused by germline inactivating mutations of the MEN1 gene. Currently, no direct genotype-phenotype correlation is identified. We aim to analyze MEN1 mutation site and features, and possible correlations between the mutation type and/or the affected menin functional domain and clinical presentation in patients from the Italian multicenter MEN1 database, one of the largest worldwide MEN1 mutation series published to date. The study included the analysis of MEN1 mutation profile in 410 MEN1 patients [370 familial cases from 123 different pedigrees (48 still asymptomatic at the time of this study) and 40 single cases]. We identified 99 different mutations: 41 frameshift [small intra-exon deletions (28) or insertions (13)], 13 nonsense, 26 missense and 11 splicing site mutations, 4 in-frame small deletions, and 4 intragenic large deletions spanning more than one exon. One family had two different inactivating MEN1 mutations on the same allele. Gastro-entero-pancreatic tumors resulted more frequent in patients with a nonsense mutation, and thoracic neuroendocrine tumors in individuals bearing a splicing-site mutation. Our data regarding mutation type frequency and distribution are in accordance with previously published data: MEN1 mutations are scattered through the entire coding region, and truncating mutations are the most common in MEN1 syndrome. A specific direct correlation between MEN1 genotype and clinical phenotype was not found in all our families, and wide intra-familial clinical variability and variable disease penetrance were both confirmed, suggesting a role for modifying, still undetermined, factors, explaining the variable MEN1 tumorigenesis.

  8. The influence of the environment and clothing on human exposure to ultraviolet light.

    PubMed

    Liu, Jin; Zhang, Wei

    2015-01-01

    The aim of this study is to determine the effect of clothing and the environment on human exposure to ultraviolet light. The ultraviolet (ultraviolet A and ultraviolet B) light intensity was measured, and air quality parameters were recorded in 2014 in Beijing, China. Three types of clothing (white polyester cloth, pure cotton white T-shirt, and pure cotton black T-shirt) were individually placed on a mannequin. The ultraviolet (ultraviolet A and ultraviolet B) light intensities were measured above and beneath each article of clothing, and the percentage of ultraviolet light transmission through the clothing was calculated. (1) The ultraviolet light transmission was significantly higher through white cloth than through black cloth; the transmission was significantly higher through polyester cloth than through cotton. (2) The weather significantly influenced ultraviolet light transmission through white polyester cloth; transmission was highest on clear days and lowest on overcast days (ultraviolet A: P=0.000; ultraviolet B: P=0.008). (3) Air quality parameters (air quality index and particulate matter 2.5 and 10) were inversely related to the ultraviolet light intensity that reached the earth's surface. Ultraviolet B transmission through white polyester cloth was greater under conditions of low air pollution compared with high air pollution. Clothing color and material and different types of weather affected ultraviolet light transmission; for one particular cloth, the transmission decreased with increasing air pollution.

  9. De novo mutation of PHEX in a type 1 diabetes patient.

    PubMed

    Fang, Chen; Li, Hui; Li, Xiaozhen; Xiao, Wenjin; Huang, Yun; Cai, Wu; Yang, Yi; Hu, Ji

    2016-05-01

    A new missense mutation on the X chromosome (PHEX) at exon 4(c.442C>T) in a 4-generation Chinese Han pedigree is reported. The proband and four family members were clinically identified as the X-linked hypophosphatemic rickets (XLH) which is a dominant inherited disorder characterized by renal phosphate wasting, aberrant vitamin D metabolism, and abnormal bone mineralization. The proband is identified as hemizygous with the four female family members to be heterozygous genotypes. The discovery was made through the complete sequencing of the exons and the intron-exon boundaries of the PHEX gene of this family. The mutation caused the S141 residue to change to Phe from Ser which is perfectly conserved among humans, mice, rats, cows and chickens. PolyPhen-2 software analysis of the mutation indicated it was probably damaging. The proband was also diagnosed with type 1 diabetes (T1D) and the relationship between XLH and diabetes phenotypes was discussed in the paper.

  10. Quantitative evaluation of DNA damage and mutation rate by atmospheric and room-temperature plasma (ARTP) and conventional mutagenesis.

    PubMed

    Zhang, Xue; Zhang, Chong; Zhou, Qian-Qian; Zhang, Xiao-Fei; Wang, Li-Yan; Chang, Hai-Bo; Li, He-Ping; Oda, Yoshimitsu; Xing, Xin-Hui

    2015-07-01

    DNA damage is the dominant source of mutation, which is the driving force of evolution. Therefore, it is important to quantitatively analyze the DNA damage caused by different mutagenesis methods, the subsequent mutation rates, and their relationship. Atmospheric and room temperature plasma (ARTP) mutagenesis has been used for the mutation breeding of more than 40 microorganisms. However, ARTP mutagenesis has not been quantitatively compared with conventional mutation methods. In this study, the umu test using a flow-cytometric analysis was developed to quantify the DNA damage in individual viable cells using Salmonella typhimurium NM2009 as the model strain and to determine the mutation rate. The newly developed method was used to evaluate four different mutagenesis systems: a new ARTP tool, ultraviolet radiation, 4-nitroquinoline-1-oxide (4-NQO), and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) mutagenesis. The mutation rate was proportional to the corresponding SOS response induced by DNA damage. ARTP caused greater DNA damage to individual living cells than the other conventional mutagenesis methods, and the mutation rate was also higher. By quantitatively comparing the DNA damage and consequent mutation rate after different types of mutagenesis, we have shown that ARTP is a potentially powerful mutagenesis tool with which to improve the characteristics of microbial cell factories.

  11. Detection of AGXT bgene mutations by denaturing high-performance liquid chromatography for diagnosis of hyperoxaluria type 1.

    PubMed

    Pirulli, D; Giordano, M; Lessi, M; Spanò, A; Puzzer, D; Zezlina, S; Boniotto, M; Crovella, S; Florian, F; Marangella, M; Momigliano-Richiardi, P; Savoldi, S; Amoroso, A

    2001-06-01

    Primary hyperoxaluria type 1 is an autosomal recessive disorder of glyoxylate metabolism, caused by a deficiency of alanine:glyoxylate aminotransferase, which is encoded by a single copy gene (AGXT. The aim of this research was to standardize denaturing high-performance liquid chromatography, a new, sensitive, relatively inexpensive, and automated technique, for the detection of AGXT mutation. Denaturing high-performance liquid chromatography was used to analyze in blind the AGXT gene in 20 unrelated Italian patients with primary hyperoxaluria type I previously studied by other standard methods (single-strand conformation polymorphism analysis and direct sequencing) and 50 controls. Denaturing high-performance liquid chromatography allowed us to identify 13 mutations and the polymorphism at position 154 in exon I of the AGXT gene. Hence the method is more sensitive and less time consuming than single-strand conformation polymorphism analysis for the detection of AGXT mutations, thus representing a useful and reliable tool for detecting the mutations responsible for primary hyperoxaluria type 1. The new technology could also be helpful in the search for healthy carriers of AGXT mutations amongst family members and their partners, and for screening of AGXT polymorphisms in patients with nephrolithiasis and healthy populations.

  12. Novel APC gene mutations associated with protein alteration in diffuse type gastric cancer.

    PubMed

    Ghatak, Souvik; Chakraborty, Payel; Sarkar, Sandeep Roy; Chowdhury, Biswajit; Bhaumik, Arup; Kumar, Nachimuthu Senthil

    2017-06-02

    The role of adenomatous polyposis coli (APC) gene in mitosis might be critical for regulation of genomic stability and chromosome segregation. APC gene mutations have been associated to have a role in colon cancer and since gastric and colon tumors share some common genetic lesions, it is relevant to investigate the role of APC tumor suppressor gene in gastric cancer. We investigated for somatic mutations in the Exons 14 and 15 of APC gene from 40 diffuse type gastric cancersamples. Rabbit polyclonal anti-APC antibody was used, which detects the wild-type APC protein and was recommended for detection of the respective protein in human tissues. Cell cycle analysis was done from tumor and adjacent normal tissue. APC immunoreactivity showed positive expression of the protein in stages I, II, III and negative expression in Stages III and IV. Two novel deleterious variations (g.127576C > A, g.127583C > T) in exon 14 sequence were found to generate stop codon (Y622* and Q625*)in the tumor samples. Due to the generation of stop codon, the APC protein might be truncated and all the regulatory features could be lost which has led to the down-regulation of protein expression. Our results indicate that aneuploidy might occurdue to the codon 622 and 625 APC-driven gastric tumorigenesis, in agreement with our cell cycle analysis. The APC gene function in mitosis and chromosomal stability might be lost and G1 might be arrested with high quantity of DNA in the S phase. Six missense somatic mutations in tumor samples were detected in exon 15 A-B, twoof which showed pathological and disease causing effects based on SIFT, Polyphen2 and SNPs & GO score and were not previously reported in the literature or the public mutation databases. The two novel pathological somatic mutations (g.127576C > A, g.127583C > T) in exon 14 might be altering the protein expression leading to development of gastric cancer in the study population. Our study showed that mutations in the APC

  13. Impact of Mutation Type and Amplicon Characteristics on Genetic Diversity Measures Generated Using a High-Resolution Melting Diversity Assay

    PubMed Central

    Cousins, Matthew M.; Donnell, Deborah; Eshleman, Susan H.

    2013-01-01

    We adapted high-resolution melting (HRM) technology to measure genetic diversity without sequencing. Diversity is measured as a single numeric HRM score. Herein, we determined the impact of mutation types and amplicon characteristics on HRM diversity scores. Plasmids were generated with single-base changes, insertions, and deletions. Different primer sets were used to vary the position of mutations within amplicons. Plasmids and plasmid mixtures were analyzed to determine the impact of mutation type, position, and concentration on HRM scores. The impact of amplicon length and G/C content on HRM scores was also evaluated. Different mutation types affected HRM scores to varying degrees (1-bp deletion < 1-bp change < 3-bp insertion < 9-bp insertion). The impact of mutations on HRM scores was influenced by amplicon length and the position of the mutation within the amplicon. Mutations were detected at concentrations of 5% to 95%, with the greatest impact at 50%. The G/C content altered melting temperature values of amplicons but had no impact on HRM scores. These data are relevant to the design of assays that measure genetic diversity using HRM technology. PMID:23178437

  14. A recurrent de novo FAM111A mutation causes Kenny-Caffey syndrome type 2.

    PubMed

    Isojima, Tsuyoshi; Doi, Koichiro; Mitsui, Jun; Oda, Yoichiro; Tokuhiro, Etsuro; Yasoda, Akihiro; Yorifuji, Tohru; Horikawa, Reiko; Yoshimura, Jun; Ishiura, Hiroyuki; Morishita, Shinichi; Tsuji, Shoji; Kitanaka, Sachiko

    2014-04-01

    Kenny-Caffey syndrome (KCS) is a rare dysmorphologic syndrome characterized by proportionate short stature, cortical thickening and medullary stenosis of tubular bones, delayed closure of anterior fontanelle, eye abnormalities, and hypoparathyroidism. The autosomal dominant form of KCS (KCS type 2 [KCS2]) is distinguished from the autosomal recessive form of KCS (KCS type 1 [KCS1]), which is caused by mutations of the tubulin-folding cofactor E (TBCE) gene, by the absence of mental retardation. In this study, we recruited four unrelated Japanese patients with typical sporadic KCS2, and performed exome sequencing in three patients and their parents to elucidate the molecular basis of KCS2. The possible candidate genes were explored by a de novo mutation detection method. A single gene, FAM111A (NM_001142519.1), was shared among three families. An identical missense mutation, R569H, was heterozygously detected in all three patients but not in the unaffected family members. This mutation was also found in an additional unrelated patient. These findings are in accordance with those of a recent independent report by a Swiss group that KCS2 is caused by a de novo mutation of FAM111A, and R569H is a hot spot mutation for KCS2. Although the function of FAM111A is not known, this study would provide evidence that FAM111A is a key molecule for normal bone development, height gain, and parathyroid hormone development and/or regulation. © 2014 American Society for Bone and Mineral Research.

  15. A genetic cluster of patients with variant xeroderma pigmentosum with two different founder mutations.

    PubMed

    Munford, V; Castro, L P; Souto, R; Lerner, L K; Vilar, J B; Quayle, C; Asif, H; Schuch, A P; de Souza, T A; Ienne, S; Alves, F I A; Moura, L M S; Galante, P A F; Camargo, A A; Liboredo, R; Pena, S D J; Sarasin, A; Chaibub, S C; Menck, C F M

    2017-05-01

    Xeroderma pigmentosum (XP) is a rare human syndrome associated with hypersensitivity to sunlight and a high frequency of skin tumours at an early age. We identified a community in the state of Goias (central Brazil), a sunny and tropical region, with a high incidence of XP (17 patients among approximately 1000 inhabitants). To identify gene mutations in the affected community and map the distribution of the affected alleles, correlating the mutations with clinical phenotypes. Functional analyses of DNA repair capacity and cell-cycle responses after ultraviolet exposure were investigated in cells from local patients with XP, allowing the identification of the mutated gene, which was then sequenced to locate the mutations. A specific assay was designed for mapping the distribution of these mutations in the community. Skin primary fibroblasts showed normal DNA damage removal but abnormal DNA synthesis after ultraviolet irradiation and deficient expression of the Polη protein, which is encoded by POLH. We detected two different POLH mutations: one at the splice donor site of intron 6 (c.764 +1 G>A), and the other in exon 8 (c.907 C>T, p.Arg303X). The mutation at intron 6 is novel, whereas the mutation at exon 8 has been previously described in Europe. Thus, these mutations were likely brought to the community long ago, suggesting two founder effects for this rare disease. This work describes a genetic cluster involving POLH, and, particularly unexpected, with two independent founder mutations, including one that likely originated in Europe. © 2016 British Association of Dermatologists.

  16. A novel mutation of the MITF gene in a family with Waardenburg syndrome type 2: A case report

    PubMed Central

    SHI, YUNFANG; LI, XIAOZHOU; JU, DUAN; LI, YAN; ZHANG, XIULING; ZHANG, YING

    2016-01-01

    Waardenburg syndrome (WS) is an autosomal dominant disorder with varying degrees of sensorineural hearing loss, and accumulation of pigmentation in hair, skin and iris. There are four types of WS (WS1–4) with differing characteristics. Mutations in six genes [paired box gene 3 (PAX3), microphthalmia-associated transcription factor (MITF), endothelin 3 (END3), endothelin receptor type B (EDNRB), SRY (sex determining region Y)-box 10 (SOX10) and snail homolog 2 (SNAI2)] have been identified to be associated with the various types. This case report describes the investigation of genetic mutations in three patients with WS2 from a single family. Genomic DNA was extracted, and the six WS-related genes were sequenced using next-generation sequencing technology. In addition to mutations in PAX3, EDNRB and SOX10, a novel heterozygous MITF mutation, p.Δ315Arg (c.944_946delGAA) on exon 8 was identified. This is predicted to be a candidate disease-causing mutation that may affect the structure and function of the enzyme. PMID:27073475

  17. A novel mutation of the MITF gene in a family with Waardenburg syndrome type 2: A case report.

    PubMed

    Shi, Yunfang; Li, Xiaozhou; Ju, Duan; Li, Yan; Zhang, Xiuling; Zhang, Ying

    2016-04-01

    Waardenburg syndrome (WS) is an autosomal dominant disorder with varying degrees of sensorineural hearing loss, and accumulation of pigmentation in hair, skin and iris. There are four types of WS (WS1-4) with differing characteristics. Mutations in six genes [paired box gene 3 ( PAX3 ), microphthalmia-associated transcription factor ( MITF ), endothelin 3 ( END3 ), endothelin receptor type B ( EDNRB ), SRY (sex determining region Y)-box 10 ( SOX10 ) and snail homolog 2 ( SNAI2 )] have been identified to be associated with the various types. This case report describes the investigation of genetic mutations in three patients with WS2 from a single family. Genomic DNA was extracted, and the six WS-related genes were sequenced using next-generation sequencing technology. In addition to mutations in PAX3, EDNRB and SOX10, a novel heterozygous MITF mutation, p.Δ315Arg (c.944_946delGAA) on exon 8 was identified. This is predicted to be a candidate disease-causing mutation that may affect the structure and function of the enzyme.

  18. DeepGene: an advanced cancer type classifier based on deep learning and somatic point mutations.

    PubMed

    Yuan, Yuchen; Shi, Yi; Li, Changyang; Kim, Jinman; Cai, Weidong; Han, Zeguang; Feng, David Dagan

    2016-12-23

    With the developments of DNA sequencing technology, large amounts of sequencing data have become available in recent years and provide unprecedented opportunities for advanced association studies between somatic point mutations and cancer types/subtypes, which may contribute to more accurate somatic point mutation based cancer classification (SMCC). However in existing SMCC methods, issues like high data sparsity, small volume of sample size, and the application of simple linear classifiers, are major obstacles in improving the classification performance. To address the obstacles in existing SMCC studies, we propose DeepGene, an advanced deep neural network (DNN) based classifier, that consists of three steps: firstly, the clustered gene filtering (CGF) concentrates the gene data by mutation occurrence frequency, filtering out the majority of irrelevant genes; secondly, the indexed sparsity reduction (ISR) converts the gene data into indexes of its non-zero elements, thereby significantly suppressing the impact of data sparsity; finally, the data after CGF and ISR is fed into a DNN classifier, which extracts high-level features for accurate classification. Experimental results on our curated TCGA-DeepGene dataset, which is a reformulated subset of the TCGA dataset containing 12 selected types of cancer, show that CGF, ISR and DNN all contribute in improving the overall classification performance. We further compare DeepGene with three widely adopted classifiers and demonstrate that DeepGene has at least 24% performance improvement in terms of testing accuracy. Based on deep learning and somatic point mutation data, we devise DeepGene, an advanced cancer type classifier, which addresses the obstacles in existing SMCC studies. Experiments indicate that DeepGene outperforms three widely adopted existing classifiers, which is mainly attributed to its deep learning module that is able to extract the high level features between combinatorial somatic point mutations and

  19. Prevalence of 2314delG mutation in Spanish patients with Usher syndrome type II (USH2).

    PubMed

    Beneyto, M M; Cuevas, J M; Millán, J M; Espinós, C; Mateu, E; González-Cabo, P; Baiget, M; Doménech, M; Bernal, S; Ayuso, C; García-Sandoval, B; Trujillo, M J; Borrego, S; Antiñolo, G; Carballo, M; Nájera, C

    2000-06-01

    The Usher syndrome (USH) is a group of autosomal recessive diseases characterized by congenital sensorineural hearing loss and retinitis pigmentosa. Three clinically distinct forms of Usher syndrome have so far been recognized and can be distinguished from one another by assessing auditory and vestibular function. Usher syndrome type II (USH2) patients have congenital moderate-to-severe nonprogressive hearing loss, retinitis pigmentosa, and normal vestibular function. Genetic linkage studies have revealed genetic heterogeneity among the three types of USH, with the majority of USH2 families showing linkage to the USH2A locus in 1q41. The USH2A gene (MIM 276901) has been identified: three mutations, 2314delG, 2913delG, and 4353-54delC, were initially reported in USH2A patients, the most frequent of which is the 2314delG mutation. It has been reported that this mutation can give rise to typical and atypical USH2 phenotypes. USH2 cases represent 62% of all USH cases in the Spanish population, and 95% of these cases have provided evidence of linkage to the USH2A locus. In the present study, the three reported mutations were analyzed in 59 Spanish families with a diagnosis of USH type II. The 2314delG was the only mutation identified in our population: it was detected in 25% of families and 16% of USH2 chromosomes analyzed. This study attempts to estimate the prevalence of this common mutation in a homogeneous Spanish population.

  20. Novel compound heterozygous mutations in MYO7A in a Chinese family with Usher syndrome type 1

    PubMed Central

    Liu, Fei; Li, Pengcheng; Liu, Ying; Li, Weirong; Wong, Fulton; Du, Rong; Wang, Lei; Li, Chang; Jiang, Fagang; Tang, Zhaohui

    2013-01-01

    Purpose To identify the disease-causing mutation(s) in a Chinese family with autosomal recessive Usher syndrome type 1 (USH1). Methods An ophthalmic examination and an audiometric test were conducted to ascertain the phenotype of two affected siblings. The microsatellite marker D11S937, which is close to the candidate gene MYO7A (USH1B locus), was selected for genotyping. From the DNA of the proband, all coding exons and exon-intron boundaries of MYO7A were sequenced to identify the disease-causing mutation(s). Restriction fragment length polymorphism (RFLP) analysis was performed to exclude the alternative conclusion that the mutations are non-pathogenic rare polymorphisms. Results Based on severe hearing impairment, unintelligible speech, and retinitis pigmentosa, a clinical diagnosis of Usher syndrome type 1 was made. The genotyping results did not exclude the USH1B locus, which suggested that the MYO7A gene was likely the gene associated with the disease-causing mutation(s) in the family. With direct DNA sequencing of MYO7A, two novel compound heterozygous mutations (c.3742G>A and c.6051+1G>A) of MYO7A were identified in the proband. DNA sequence analysis and RFLP analysis of other family members showed that the mutations cosegregated with the disease. Unaffected members, including the parents, uncle, and sister of the proband, carry only one of the two mutations. The mutations were not present in the controls (100 normal Chinese subjects=200 chromosomes) according to the RFLP analysis. Conclusions In this study, we identified two novel mutations, c.3742G>A (p.E1248K) and c.6051+1G>A (donor splice site mutation in intron 44), of MYO7A in a Chinese non-consanguineous family with USH1. The mutations cosegregated with the disease and most likely cause the phenotype in the two affected siblings who carry these mutations compound heterozygously. Our finding expands the mutational spectrum of MYO7A. PMID:23559863

  1. Novel compound heterozygous mutations in MYO7A in a Chinese family with Usher syndrome type 1.

    PubMed

    Liu, Fei; Li, Pengcheng; Liu, Ying; Li, Weirong; Wong, Fulton; Du, Rong; Wang, Lei; Li, Chang; Jiang, Fagang; Tang, Zhaohui; Liu, Mugen

    2013-01-01

    To identify the disease-causing mutation(s) in a Chinese family with autosomal recessive Usher syndrome type 1 (USH1). An ophthalmic examination and an audiometric test were conducted to ascertain the phenotype of two affected siblings. The microsatellite marker D11S937, which is close to the candidate gene MYO7A (USH1B locus), was selected for genotyping. From the DNA of the proband, all coding exons and exon-intron boundaries of MYO7A were sequenced to identify the disease-causing mutation(s). Restriction fragment length polymorphism (RFLP) analysis was performed to exclude the alternative conclusion that the mutations are non-pathogenic rare polymorphisms. Based on severe hearing impairment, unintelligible speech, and retinitis pigmentosa, a clinical diagnosis of Usher syndrome type 1 was made. The genotyping results did not exclude the USH1B locus, which suggested that the MYO7A gene was likely the gene associated with the disease-causing mutation(s) in the family. With direct DNA sequencing of MYO7A, two novel compound heterozygous mutations (c.3742G>A and c.6051+1G>A) of MYO7A were identified in the proband. DNA sequence analysis and RFLP analysis of other family members showed that the mutations cosegregated with the disease. Unaffected members, including the parents, uncle, and sister of the proband, carry only one of the two mutations. The mutations were not present in the controls (100 normal Chinese subjects=200 chromosomes) according to the RFLP analysis. In this study, we identified two novel mutations, c.3742G>A (p.E1248K) and c.6051+1G>A (donor splice site mutation in intron 44), of MYO7A in a Chinese non-consanguineous family with USH1. The mutations cosegregated with the disease and most likely cause the phenotype in the two affected siblings who carry these mutations compound heterozygously. Our finding expands the mutational spectrum of MYO7A.

  2. The Influence of the Environment and Clothing on Human Exposure to Ultraviolet Light

    PubMed Central

    Liu, Jin; Zhang, Wei

    2015-01-01

    Objection The aim of this study is to determine the effect of clothing and the environment on human exposure to ultraviolet light. Methods The ultraviolet (ultraviolet A and ultraviolet B) light intensity was measured, and air quality parameters were recorded in 2014 in Beijing, China. Three types of clothing (white polyester cloth, pure cotton white T-shirt, and pure cotton black T-shirt) were individually placed on a mannequin. The ultraviolet (ultraviolet A and ultraviolet B) light intensities were measured above and beneath each article of clothing, and the percentage of ultraviolet light transmission through the clothing was calculated. Results (1) The ultraviolet light transmission was significantly higher through white cloth than through black cloth; the transmission was significantly higher through polyester cloth than through cotton. (2) The weather significantly influenced ultraviolet light transmission through white polyester cloth; transmission was highest on clear days and lowest on overcast days (ultraviolet A: P=0.000; ultraviolet B: P=0.008). (3) Air quality parameters (air quality index and particulate matter 2.5 and 10) were inversely related to the ultraviolet light intensity that reached the earth’s surface. Ultraviolet B transmission through white polyester cloth was greater under conditions of low air pollution compared with high air pollution. Conclusion Clothing color and material and different types of weather affected ultraviolet light transmission; for one particular cloth, the transmission decreased with increasing air pollution. PMID:25923778

  3. Compound heterozygous MYO7A mutations segregating Usher syndrome type 2 in a Han family.

    PubMed

    Zong, Ling; Chen, Kaitian; Wu, Xuan; Liu, Min; Jiang, Hongyan

    2016-11-01

    Identification of rare deafness genes for inherited congenital sensorineural hearing impairment remains difficult, because a large variety of genes are implicated. In this study we applied targeted capture and next-generation sequencing to uncover the underlying gene in a three-generation Han family segregating recessive inherited hearing loss and retinitis pigmentosa. After excluding mutations in common deafness genes GJB2, SLC26A4 and the mitochondrial gene, genomic DNA of the proband of a Han family was subjected to targeted next-generation sequencing. The candidate mutations were confirmed by Sanger sequencing and subsequently analyzed with in silico tools. An unreported splice site mutation c.3924+1G > C compound with c.6028G > A in the MYO7A gene were detected to cosegregate with the phenotype in this pedigree. Both mutations, located in the evolutionarily conserved FERM domain in myosin VIIA, were predicted to be pathogenic. In this family, profound sensorineural hearing impairment and retinitis pigmentosa without vestibular disorder, constituted the typical Usher syndrome type 2. Identification of novel mutation in compound heterozygosity in MYO7A gene revealed the genetic origin of Usher syndrome type 2 in this Han family. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Pediatric-type nodal follicular lymphoma: a biologically distinct lymphoma with frequent MAPK pathway mutations

    PubMed Central

    Schafernak, Kristian T.; Geyer, Julia T.; Kovach, Alexandra E.; Ghandi, Mahmoud; Gratzinger, Dita; Roth, Christine G.; Paxton, Christian N.; Kim, Sunhee; Namgyal, Chungdak; Morin, Ryan; Morgan, Elizabeth A.; Neuberg, Donna S.; South, Sarah T.; Harris, Marian H.; Hasserjian, Robert P.; Hochberg, Ephraim P.; Garraway, Levi A.; Harris, Nancy Lee; Weinstock, David M.

    2016-01-01

    Pediatric-type nodal follicular lymphoma (PTNFL) is a variant of follicular lymphoma (FL) characterized by limited-stage presentation and invariably benign behavior despite often high-grade histological appearance. It is important to distinguish PTNFL from typical FL in order to avoid unnecessary treatment; however, this distinction relies solely on clinical and pathological criteria, which may be variably applied. To define the genetic landscape of PTNFL, we performed copy number analysis and exome and/or targeted sequencing of 26 PTNFLs (16 pediatric and 10 adult). The most commonly mutated gene in PTNFL was MAP2K1, encoding MEK1, with a mutation frequency of 43%. All MAP2K1 mutations were activating missense mutations localized to exons 2 and 3, which encode negative regulatory and catalytic domains, respectively. Missense mutations in MAPK1 (2/22) and RRAS (1/22) were identified in cases that lacked MAP2K1 mutations. The second most commonly mutated gene in PTNFL was TNFRSF14, with a mutation frequency of 29%, similar to that seen in limited-stage typical FL (P = .35). PTNFL was otherwise genomically bland and specifically lacked recurrent mutations in epigenetic modifiers (eg, CREBBP, KMT2D). Copy number aberrations affected a mean of only 0.5% of PTNFL genomes, compared with 10% of limited-stage typical FL genomes (P < .02). Importantly, the mutational profiles of PTNFLs in children and adults were highly similar. Together, these findings define PTNFL as a biologically and clinically distinct indolent lymphoma of children and adults characterized by a high prevalence of MAPK pathway mutations and a near absence of mutations in epigenetic modifiers. PMID:27325104

  5. Pediatric-type nodal follicular lymphoma: a biologically distinct lymphoma with frequent MAPK pathway mutations.

    PubMed

    Louissaint, Abner; Schafernak, Kristian T; Geyer, Julia T; Kovach, Alexandra E; Ghandi, Mahmoud; Gratzinger, Dita; Roth, Christine G; Paxton, Christian N; Kim, Sunhee; Namgyal, Chungdak; Morin, Ryan; Morgan, Elizabeth A; Neuberg, Donna S; South, Sarah T; Harris, Marian H; Hasserjian, Robert P; Hochberg, Ephraim P; Garraway, Levi A; Harris, Nancy Lee; Weinstock, David M

    2016-08-25

    Pediatric-type nodal follicular lymphoma (PTNFL) is a variant of follicular lymphoma (FL) characterized by limited-stage presentation and invariably benign behavior despite often high-grade histological appearance. It is important to distinguish PTNFL from typical FL in order to avoid unnecessary treatment; however, this distinction relies solely on clinical and pathological criteria, which may be variably applied. To define the genetic landscape of PTNFL, we performed copy number analysis and exome and/or targeted sequencing of 26 PTNFLs (16 pediatric and 10 adult). The most commonly mutated gene in PTNFL was MAP2K1, encoding MEK1, with a mutation frequency of 43%. All MAP2K1 mutations were activating missense mutations localized to exons 2 and 3, which encode negative regulatory and catalytic domains, respectively. Missense mutations in MAPK1 (2/22) and RRAS (1/22) were identified in cases that lacked MAP2K1 mutations. The second most commonly mutated gene in PTNFL was TNFRSF14, with a mutation frequency of 29%, similar to that seen in limited-stage typical FL (P = .35). PTNFL was otherwise genomically bland and specifically lacked recurrent mutations in epigenetic modifiers (eg, CREBBP, KMT2D). Copy number aberrations affected a mean of only 0.5% of PTNFL genomes, compared with 10% of limited-stage typical FL genomes (P < .02). Importantly, the mutational profiles of PTNFLs in children and adults were highly similar. Together, these findings define PTNFL as a biologically and clinically distinct indolent lymphoma of children and adults characterized by a high prevalence of MAPK pathway mutations and a near absence of mutations in epigenetic modifiers. © 2016 by The American Society of Hematology.

  6. TP53 Mutation Status of Tubo-ovarian and Peritoneal High-grade Serous Carcinoma with a Wild-type p53 Immunostaining Pattern.

    PubMed

    Na, Kiyong; Sung, Ji-Youn; Kim, Hyun-Soo

    2017-12-01

    Diffuse and strong nuclear p53 immunoreactivity and a complete lack of p53 expression are regarded as indicative of missense and nonsense mutations, respectively, of the TP53 gene. Tubo-ovarian and peritoneal high-grade serous carcinoma (HGSC) is characterized by aberrant p53 expression induced by a TP53 mutation. However, our experience with some HGSC cases with a wild-type p53 immunostaining pattern led us to comprehensively review previous cases and investigate the TP53 mutational status of the exceptional cases. We analyzed the immunophenotype of 153 cases of HGSC and performed TP53 gene sequencing analysis in those with a wild-type p53 immunostaining pattern. Immunostaining revealed that 109 (71.3%) cases displayed diffuse and strong p53 expression (missense mutation pattern), while 39 (25.5%) had no p53 expression (nonsense mutation pattern). The remaining five cases of HGSC showed a wild-type p53 immunostaining pattern. Direct sequencing analysis revealed that three of these cases harbored nonsense TP53 mutations and two had novel splice site deletions. TP53 mutation is almost invariably present in HGSC, and p53 immunostaining can be used as a surrogate marker of TP53 mutation. In cases with a wild-type p53 immunostaining pattern, direct sequencing for TP53 mutational status can be helpful to confirm the presence of a TP53 mutation. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  7. Different inactivating mutations of the mineralocorticoid receptor in fourteen families affected by type I pseudohypoaldosteronism.

    PubMed

    Sartorato, Paola; Lapeyraque, Anne-Laure; Armanini, Decio; Kuhnle, Ursula; Khaldi, Yasmina; Salomon, Rémi; Abadie, Véronique; Di Battista, Eliana; Naselli, Arturo; Racine, Alain; Bosio, Maurizio; Caprio, Massimiliano; Poulet-Young, Véronique; Chabrolle, Jean-Pierre; Niaudet, Patrick; De Gennes, Christiane; Lecornec, Marie-Hélène; Poisson, Elodie; Fusco, Anna Maria; Loli, Paola; Lombès, Marc; Zennaro, Maria-Christina

    2003-06-01

    We have analyzed the human mineralocorticoid receptor (hMR) gene in 14 families with autosomal dominant or sporadic pseudohypoaldosteronism (PHA1), a rare form of mineralocorticoid resistance characterized by neonatal renal salt wasting and failure to thrive. Six heterozygous mutations were detected. Two frameshift mutations in exon 2 (insT1354, del8bp537) and one nonsense mutation in exon 4 (C2157A, Cys645stop) generate truncated proteins due to premature stop codons. Three missense mutations (G633R, Q776R, L979P) differently affect hMR function. The DNA binding domain mutant R633 exhibits reduced maximal transactivation, although its binding characteristics and ED(50) of transactivation are comparable with wild-type hMR. Ligand binding domain mutants R776 and P979 present reduced or absent aldosterone binding, respectively, which is associated with reduced or absent ligand-dependent transactivation capacity. Finally, P979 possesses a transdominant negative effect on wild-type hMR activity, whereas mutations G633R and Q776R probably result in haploinsufficiency in PHA1 patients. We conclude that hMR mutations are a common feature of autosomal dominant PHA1, being found in 70% of our familial cases. Their absence in some families underscores the importance of an extensive investigation of the hMR gene and the role of precise diagnostic procedures to allow for identification of other genes potentially involved in the disease.

  8. Nonsense mutations in the PAX3 gene cause Waardenburg syndrome type I in two Chinese patients.

    PubMed

    Yang, Shu-Zhi; Cao, Ju-Yang; Zhang, Rui-Ning; Liu, Li-Xian; Liu, Xin; Zhang, Xin; Kang, Dong-Yang; Li, Mei; Han, Dong-Yi; Yuan, Hui-Jun; Yang, Wei-Yan

    2007-01-05

    Waardenburg syndrome type I (WS1) is an autosomal dominant disorder characterized by sensorineural hearing loss, pigmental abnormalities of the eye, hair and skin, and dystopia canthorum. The gene mainly responsible for WS1 is PAX3 which is involved in melanocytic development and survival. Mutations of PAX3 have been reported in familiar or sporadic patients with WS1 in several populations of the world except Chinese. In order to explore the genetic background of Chinese WS1 patients, a mutation screening of PAX3 gene was carried out in four WS1 pedigrees. A questionnaire survey and comprehensive clinical examination were conducted in four Chinese pedigrees of WS1. Genomic DNA from each patient and their family members was extracted and exons of PAX3 were amplified by PCR. PCR fragments were ethanol-purified and sequenced in both directions on an ABI_Prism 3100 DNA sequencer with the BigDye Terminator Cycle Sequencing Ready Reaction Kit. The sequences were obtained and aligned to the wild type sequence of PAX3 with the GeneTool program. Two nonsense PAX3 mutations have been found in the study population. One is heterozygous for a novel nonsense mutation S209X. The other is heterozygous for a previously reported mutation in European population R223X. Both mutations create stop codons leading to truncation of the PAX3 protein. This is the first demonstration of PAX3 mutations in Chinese WS1 patients and one of the few examples of an identical mutation of PAX3 occurred in different populations.

  9. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production

    PubMed Central

    Brehm, Anja; Liu, Yin; Sheikh, Afzal; Marrero, Bernadette; Omoyinmi, Ebun; Zhou, Qing; Montealegre, Gina; Biancotto, Angelique; Reinhardt, Adam; Almeida de Jesus, Adriana; Pelletier, Martin; Tsai, Wanxia L.; Remmers, Elaine F.; Kardava, Lela; Hill, Suvimol; Kim, Hanna; Lachmann, Helen J.; Megarbane, Andre; Chae, Jae Jin; Brady, Jilian; Castillo, Rhina D.; Brown, Diane; Casano, Angel Vera; Gao, Ling; Chapelle, Dawn; Huang, Yan; Stone, Deborah; Chen, Yongqing; Sotzny, Franziska; Lee, Chyi-Chia Richard; Kastner, Daniel L.; Torrelo, Antonio; Zlotogorski, Abraham; Moir, Susan; Gadina, Massimo; McCoy, Phil; Wesley, Robert; Rother, Kristina; Hildebrand, Peter W.; Brogan, Paul; Krüger, Elke; Aksentijevich, Ivona; Goldbach-Mansky, Raphaela

    2015-01-01

    Autosomal recessive mutations in proteasome subunit β 8 (PSMB8), which encodes the inducible proteasome subunit β5i, cause the immune-dysregulatory disease chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE), which is classified as a proteasome-associated autoinflammatory syndrome (PRAAS). Here, we identified 8 mutations in 4 proteasome genes, PSMA3 (encodes α7), PSMB4 (encodes β7), PSMB9 (encodes β1i), and proteasome maturation protein (POMP), that have not been previously associated with disease and 1 mutation in PSMB8 that has not been previously reported. One patient was compound heterozygous for PSMB4 mutations, 6 patients from 4 families were heterozygous for a missense mutation in 1 inducible proteasome subunit and a mutation in a constitutive proteasome subunit, and 1 patient was heterozygous for a POMP mutation, thus establishing a digenic and autosomal dominant inheritance pattern of PRAAS. Function evaluation revealed that these mutations variably affect transcription, protein expression, protein folding, proteasome assembly, and, ultimately, proteasome activity. Moreover, defects in proteasome formation and function were recapitulated by siRNA-mediated knockdown of the respective subunits in primary fibroblasts from healthy individuals. Patient-isolated hematopoietic and nonhematopoietic cells exhibited a strong IFN gene-expression signature, irrespective of genotype. Additionally, chemical proteasome inhibition or progressive depletion of proteasome subunit gene transcription with siRNA induced transcription of type I IFN genes in healthy control cells. Our results provide further insight into CANDLE genetics and link global proteasome dysfunction to increased type I IFN production. PMID:26524591

  10. Human immunodeficiency virus type 1 pol gene mutations which cause decreased susceptibility to 2',3'-dideoxycytidine.

    PubMed Central

    Fitzgibbon, J E; Howell, R M; Haberzettl, C A; Sperber, S J; Gocke, D J; Dubin, D T

    1992-01-01

    To investigate whether human immunodeficiency virus type 1 pol gene mutations are selected during prolonged 2',3'-dideoxycytidine (ddC) therapy, we used the polymerase chain reaction to amplify a portion of the reverse transcriptase segment of the pol gene from the peripheral blood mononuclear cell DNA of a patient with AIDS before and after an 80-week course of ddC therapy. The consensus sequence from the second sample contained a unique double mutation (ACT to GAT) in the codon for reverse transcriptase amino acid 69, causing substitution of aspartic acid (Asp) for the wild-type threonine (Thr). A mutation (ACA to ATA) also occurred in the codon for position 165, causing substitution of isoleucine (Ile) for Thr. The GAT (Asp) codon was introduced into the pol gene of a molecular clone of human immunodeficiency virus via site-directed mutagenesis. Following transfection, mutant and wild-type viruses were tested for susceptibility to ddC by a plaque reduction assay. The mutant virus was fivefold less susceptible to ddC than the wild type; cross-resistance to 3'-azido-3'-deoxythymidine or 2'3'-dideoxyinosine was not found. The Ile-165 mutation did not confer additional ddC resistance. The Asp-69 substitution may have contributed to the generation of resistant virus in this patient. Images PMID:1317143

  11. Consortium for Osteogenesis Imperfecta Mutations in the Helical Domain of Type I Collagen: Regions Rich in Lethal Mutations Align With Collagen Binding Sites for Integrins and Proteoglycans

    PubMed Central

    Marini, Joan C.; Forlino, Antonella; Cabral, Wayne A.; Barnes, Aileen M.; San Antonio, James D.; Milgrom, Sarah; Hyland, James C.; Körkkö, Jarmo; Prockop, Darwin J.; De Paepe, Anne; Coucke, Paul; Symoens, Sofie; Glorieux, Francis H.; Roughley, Peter J.; Lund, Alan M.; Kuurila-Svahn, Kaija; Hartikka, Heini; Cohn, Daniel H.; Krakow, Deborah; Mottes, Monica; Schwarze, Ulrike; Chen, Diana; Yang, Kathleen; Kuslich, Christine; Troendle, James; Dalgleish, Raymond; Byers, Peter H.

    2014-01-01

    Osteogenesis imperfecta (OI) is a generalized disorder of connective tissue characterized by fragile bones and easy susceptibility to fracture. Most cases of OI are caused by mutations in type I collagen. We have identified and assembled structural mutations in type I collagen genes (COL1A1 and COL1A2, encoding the proα1(I) and proα2(I) chains, respectively) that result in OI. Quantitative defects causing type I OI were not included. Of these 832 independent mutations, 682 result in substitution for glycine residues in the triple helical domain of the encoded protein and 150 alter splice sites. Distinct genotype–phenotype relationships emerge for each chain. One-third of the mutations that result in glycine substitutions in α1(I) are lethal, especially when the substituting residues are charged or have a branched side chain. Substitutions in the first 200 residues are nonlethal and have variable outcome thereafter, unrelated to folding or helix stability domains. Two exclusively lethal regions (helix positions 691–823 and 910–964) align with major ligand binding regions (MLBRs), suggesting crucial interactions of collagen monomers or fibrils with integrins, matrix metalloproteinases (MMPs), fibronectin, and cartilage oligomeric matrix protein (COMP). Mutations in COL1A2 are predominantly nonlethal (80%). Lethal substitutions are located in eight regularly spaced clusters along the chain, supporting a regional model. The lethal regions align with proteoglycan binding sites along the fibril, suggesting a role in fibril–matrix interactions. Recurrences at the same site in α2(I) are generally concordant for outcome, unlike α1(I). Splice site mutations comprise 20% of helical mutations identified in OI patients, and may lead to exon skipping, intron inclusion, or the activation of cryptic splice sites. Splice site mutations in COL1A1 are rarely lethal; they often lead to frameshifts and the mild type I phenotype. In α2(I), lethal exon skipping events are

  12. AGXT Gene Mutations and Prevalence of Primary Hyperoxaluria Type 1 in Moroccan Population.

    PubMed

    Boualla, Lamiae; Tajir, Mariam; Oulahiane, Najat; Lyahyai, Jaber; Laarabi, Fatima Zahra; Chafai Elalaoui, Siham; Soulami, Kenza; Ait Ouamar, Hassan; Sefiani, Abdelaziz

    2015-11-01

    Primary hyperoxaluria type 1 (PH1) is an autosomal recessive disorder caused by deficiency of alanine glyoxylate aminotransferase, due to a defect in the AGXT gene. Several mutations in this gene have been reported and some of them have been observed in multiple populations. The aim of our study was to analyze the mutations causing PH1 in the Moroccan population and to estimate its prevalence in Morocco. Molecular studies of 29 unrelated Moroccan patients with PH were performed by direct sequencing of all exons of the AGXT gene. In addition, to estimate the prevalence of PH1, we screened for the recurrent p.Ile244Thr mutation in 250 unrelated Moroccan newborns using real-time polymerase chain reaction. Four pathogenic mutations were detected in 25 unrelated patients. The c.731T>C (p.Ile244Thr) was the most frequent mutation with a frequency of 84%. The other three mutations were c.33delC, c.976delG, and c.331C>T. The prevalence of the PH1 mutation among Moroccans was then estimated to range from 1/7267 to 1/6264. PH1 is one of the most prevalent genetic diseases in the Moroccan population and is probably underdiagnosed. Front line genetic testing for PH1 in Morocco should be initiated using an assay for the recurrent p.Ile244Thr mutation. This strategy would provide a useful tool for precocious diagnosis of presymptomatic individuals and to prevent their rapid progression to renal failure.

  13. DNA polymerase η mutational signatures are found in a variety of different types of cancer.

    PubMed

    Rogozin, Igor B; Goncearenco, Alexander; Lada, Artem G; De, Subhajyoti; Yurchenko, Vyacheslav; Nudelman, German; Panchenko, Anna R; Cooper, David N; Pavlov, Youri I

    2018-01-01

    DNA polymerase (pol) η is a specialized error-prone polymerase with at least two quite different and contrasting cellular roles: to mitigate the genetic consequences of solar UV irradiation, and promote somatic hypermutation in the variable regions of immunoglobulin genes. Misregulation and mistargeting of pol η can compromise genome integrity. We explored whether the mutational signature of pol η could be found in datasets of human somatic mutations derived from normal and cancer cells. A substantial excess of single and tandem somatic mutations within known pol η mutable motifs was noted in skin cancer as well as in many other types of human cancer, suggesting that somatic mutations in A:T bases generated by DNA polymerase η are a common feature of tumorigenesis. Another peculiarity of pol ηmutational signatures, mutations in YCG motifs, led us to speculate that error-prone DNA synthesis opposite methylated CpG dinucleotides by misregulated pol η in tumors might constitute an additional mechanism of cytosine demethylation in this hypermutable dinucleotide.

  14. Solar ultraviolet radiation from cancer induction to cancer prevention: solar ultraviolet radiation and cell biology.

    PubMed

    Tuorkey, Muobarak J

    2015-09-01

    Although decades have elapsed, researchers still debate the benefits and hazards of solar ultraviolet radiation (UVR) exposure. On the one hand, humans derive most of their serum 25-hydroxycholecalciferol [25(OH)D3], which has potent anticancer activity, from solar UVB radiation. On the other hand, people are more aware of the risk of cancer incidence associated with harmful levels of solar UVR from daily sunlight exposure. Epidemiological data strongly implicate UV radiation exposure as a major cause of melanoma and other cancers, as UVR promotes mutations in oncogenes and tumor-suppressor genes. This review highlights the impact of the different mutagenic effects of solar UVR, along with the cellular and carcinogenic challenges with respect to sun exposure.

  15. A high-throughput next-generation sequencing-based method for detecting the mutational fingerprint of carcinogens

    PubMed Central

    Besaratinia, Ahmad; Li, Haiqing; Yoon, Jae-In; Zheng, Albert; Gao, Hanlin; Tommasi, Stella

    2012-01-01

    Many carcinogens leave a unique mutational fingerprint in the human genome. These mutational fingerprints manifest as specific types of mutations often clustering at certain genomic loci in tumor genomes from carcinogen-exposed individuals. To develop a high-throughput method for detecting the mutational fingerprint of carcinogens, we have devised a cost-, time- and labor-effective strategy, in which the widely used transgenic Big Blue® mouse mutation detection assay is made compatible with the Roche/454 Genome Sequencer FLX Titanium next-generation sequencing technology. As proof of principle, we have used this novel method to establish the mutational fingerprints of three prominent carcinogens with varying mutagenic potencies, including sunlight ultraviolet radiation, 4-aminobiphenyl and secondhand smoke that are known to be strong, moderate and weak mutagens, respectively. For verification purposes, we have compared the mutational fingerprints of these carcinogens obtained by our newly developed method with those obtained by parallel analyses using the conventional low-throughput approach, that is, standard mutation detection assay followed by direct DNA sequencing using a capillary DNA sequencer. We demonstrate that this high-throughput next-generation sequencing-based method is highly specific and sensitive to detect the mutational fingerprints of the tested carcinogens. The method is reproducible, and its accuracy is comparable with that of the currently available low-throughput method. In conclusion, this novel method has the potential to move the field of carcinogenesis forward by allowing high-throughput analysis of mutations induced by endogenous and/or exogenous genotoxic agents. PMID:22735701

  16. A novel PAX3 mutation in a Japanese boy with Waardenburg syndrome type 1.

    PubMed

    Yoshida, Yu; Doi, Rieko; Adachi, Kaori; Nanba, Eiji; Kodani, Isamu; Ryoke, Kazuo

    2016-01-01

    Waardenburg syndrome type 1 (WS1) is a rare autosomal dominant disorder characterized by hair hypopigmentation, abnormal iris pigmentation, and congenital hearing loss. WS1 is caused by mutations in paired box gene 3 (PAX3). We identified a novel PAX3 mutation (c.1107 C>G, p.Ser369Arg) in a Japanese WS1 patient showing abnormal right iris pigmentation, right-sided congenital hearing loss, synophrys, incomplete left cleft lip, and cryptorchidism.

  17. Mutation spectrum of primary hyperoxaluria type 1 in Tunisia: implication for diagnosis in North Africa.

    PubMed

    Nagara, Majdi; Tiar, Afaf; Ben Halim, Nizar; Ben Rhouma, Faten; Messaoud, Olfa; Bouyacoub, Yosra; Kefi, Rym; Hassayoun, Saida; Zouari, Noura; Ben Ammar, Mohamed Slim; Abdelhak, Sonia; Chemli, Jalel

    2013-09-15

    Primary hyperoxaluria type 1 (PH1) is an autosomal recessive inherited metabolic disease, characterized by progressive kidney failure due to renal deposition of calcium oxalate. Mutations in the AGXT gene, encoding the liver-specific enzyme alanine glyoxylate aminotransferase, are responsible for the disease. We aimed to determine the mutational spectrum causing PH1 and to provide an accurate tool for diagnosis as well as for prenatal diagnosis in the affected families. Direct sequencing was used to detect mutations in the AGXT gene in DNA samples from 13 patients belonging to 12 Tunisian families. Molecular analysis revealed five mutations causing PH1 in Tunisia. The mutations were identified along exons 1, 2, 4, 5 and 7. The most predominant mutations were the Maghrebian "p.I244T" and the Arabic "p.G190R". Furthermore, three other mutations characteristic of different ethnic groups were found in our study population. These results confirm the mutational heterogeneity related to PH1 in Tunisian population. All the mutations are in a homozygous state, reflecting the high impact of endogamy in our population. Mutation analysis through DNA sequencing can provide a useful first line investigation for PH1. This identification could provide an accurate tool for prenatal diagnosis, genetic counseling and screen for potential presymptomatic individuals. © 2013 Elsevier B.V. All rights reserved.

  18. Recurrent TERT promoter mutations identified in a large-scale study of multiple tumor types are associated with increased TERT expression and telomerase activation

    PubMed Central

    Huang, Dong-Sheng; Wang, Zhaohui; He, Xu-Jun; Diplas, Bill H.; Yang, Rui; Killela, Patrick J.; Liang, Junbo; Meng, Qun; Ye, Zai-Yuan; Wang, Wei; Jiang, Xiao-Ting; Xu, Li; He, Xiang-Lei; Zhao, Zhong-Sheng; Xu, Wen-Juan; Wang, Hui-Ju; Ma, Ying-Yu; Xia, Ying-Jie; Li, Li; Zhang, Ru-Xuan; Jin, Tao; Zhao, Zhong-Kuo; Xu, Ji; Yu, Sheng; Wu, Fang; Wang, Si-Zhen; Jiao, Yu-Chen; Yan, Hai; Tao, Hou-Quan

    2015-01-01

    Background Several somatic mutation hotspots were recently identified in the TERT promoter region in human cancers. Large scale studies of these mutations in multiple tumor types are limited, in particular in Asian populations. This study aimed to: analyze TERT promoter mutations in multiple tumor types in a large Chinese patient cohort, investigate novel tumor types and assess the functional significance of the mutations. Methods TERT promoter mutation status was assessed by Sanger sequencing for 13 different tumor types and 799 tumor tissues from Chinese cancer patients. Thymic epithelial tumors, gastrointestinal leiomyoma, and gastric schwannoma were included, for which the TERT promoter has not been previously sequenced. Functional studies included TERT expression by RT-qPCR, telomerase activity by the TRAP assay, and promoter activity by the luciferase reporter assay. Results TERT promoter mutations were highly frequent in glioblastoma (83.9%), urothelial carcinoma (64.5%), oligodendroglioma (70.0%), medulloblastoma (33.3%), and hepatocellular carcinoma (31.4%). C228T and C250T were the most common mutations. In urothelial carcinoma, several novel rare mutations were identified. TERT promoter mutations were absent in GIST, thymic epithelial tumors, gastrointestinal leiomyoma, gastric schwannoma, cholangiocarcinoma, gastric and pancreatic cancer. TERT promoter mutations highly correlated with upregulated TERT mRNA expression and telomerase activity in adult gliomas. These mutations differentially enhanced the transcriptional activity of the TERT core promoter. Conclusions TERT promoter mutations are frequent in multiple tumor types and have similar distributions in Chinese cancer patients. The functional significance of these mutations reflect the importance to telomere maintenance and hence tumorigenesis, making them potential therapeutic targets. PMID:25843513

  19. Significant associations between driver gene mutations and DNA methylation alterations across many cancer types

    PubMed Central

    Chen, Yun-Ching; Margolin, Gennady

    2017-01-01

    Recent evidence shows that mutations in several driver genes can cause aberrant methylation patterns, a hallmark of cancer. In light of these findings, we hypothesized that the landscapes of tumor genomes and epigenomes are tightly interconnected. We measured this relationship using principal component analyses and methylation-mutation associations applied at the nucleotide level and with respect to genome-wide trends. We found that a few mutated driver genes were associated with genome-wide patterns of aberrant hypomethylation or CpG island hypermethylation in specific cancer types. In addition, we identified associations between 737 mutated driver genes and site-specific methylation changes. Moreover, using these mutation-methylation associations, we were able to distinguish between two uterine and two thyroid cancer subtypes. The driver gene mutation–associated methylation differences between the thyroid cancer subtypes were linked to differential gene expression in JAK-STAT signaling, NADPH oxidation, and other cancer-related pathways. These results establish that driver gene mutations are associated with methylation alterations capable of shaping regulatory network functions. In addition, the methodology presented here can be used to subdivide tumors into more homogeneous subsets corresponding to underlying molecular characteristics, which could improve treatment efficacy. PMID:29125844

  20. Clinical and mutational spectra of 23 Chinese patients with glutaric aciduria type 1.

    PubMed

    Wang, Qiao; Li, Xiyuan; Ding, Yuan; Liu, Yupeng; Song, Jinqing; Yang, Yanling

    2014-10-01

    Glutaric aciduria type 1 (GA1) is a rare neurometabolic disorder caused by glutaryl-CoA dehydrogenase deficiency due to GCDH gene mutations. In this study, the clinical presentation and molecular aspects of 23 Chinese patients (11 males and 12 females) were investigated. All patients were diagnosed by elevated urinary glutaric acid and GCDH gene analysis. Protein-restricted diet supplemented with special formula, l-carnitine and GABA analog were initialed after diagnosis. The clinical and biochemical features were analyzed. Mutational analysis of GCDH was conducted. Clinical manifestations of 23 patients varied from asymptomatic to severe encephalopathy, with notable phenotypic differences between siblings with the same mutations. One case was detected by newborn screening, while 22 Cases were diagnosed between the ages of 5 months and 51 years. 29 mutations in GCDH were identified. Among them, 11 were novel, including seven missense mutations (c.406G > T, C.416C > G, c.442G > A, c.640A > G, c.901G > A, c.979G > A, and c.1207C > T), three frameshift mutations (c.873delC, c.1172-1173insT and c.1282-1285ins71) and one nonsense mutation (c.411C > G). In exon 5, c.553G > A and c.148T > C were found in four alleles (8.7%) and three alleles (6.5%) of the patients, respectively. In 23 Chinese patients with GA1, 11 novel GCDH mutations were identified. This may indicate that the genetic profiles of Chinese patients are different from those of other populations. 23 Chinese GA1 patients with varied clinical manifestations have been reported. 11 novel mutations in their GCDH gene were identified, indicating that the genetic profiles of Chinese GA1 patients differ from those of other populations. Copyright © 2013 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  1. Two novel mutations in the PPIB gene cause a rare pedigree of osteogenesis imperfecta type IX.

    PubMed

    Jiang, Yu; Pan, Jingxin; Guo, Dongwei; Zhang, Wei; Xie, Jie; Fang, Zishui; Guo, Chunmiao; Fang, Qun; Jiang, Weiying; Guo, Yibin

    2017-06-01

    Osteogenesis imperfecta (OI) is a rare genetic skeletal disorder characterized by increased bone fragility and vulnerability to fractures. PPIB is identified as a candidate gene for OI-IX, here we detect two pathogenic mutations in PPIB and analyze the genotype-phenotype correlation in a Chinese family with OI. Next-generation sequencing (NGS) was used to screen the whole exome of the parents of proband. Screening of variation frequency, evolutionary conservation comparisons, pathogenicity evaluation, and protein structure prediction were conducted to assess the pathogenicity of the novel mutations. Sanger sequencing was used to confirm the candidate variants. RTQ-PCR was used to analyze the PPIB gene expression. All mutant genes screened out by NGS were excluded except PPIB. Two novel heterozygous PPIB mutations (father, c.25A>G; mother, c.509G>A) were identified in relation to osteogenesis imperfecta type IX. Both mutations were predicted to be pathogenic by bioinformatics analysis and RTQ-PCR analysis revealed downregulated PPIB expression in the two carriers. We report a rare pedigree with an autosomal recessive osteogenesis imperfecta type IX (OI-IX) caused by two novel PPIB mutations identified for the first time in China. The current study expands our knowledge of PPIB mutations and their associated phenotypes, and provides new information on the genetic defects associated with this disease for clinical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Identification of a novel CLRN1 gene mutation in Usher syndrome type 3: two case reports.

    PubMed

    Yoshimura, Hidekane; Oshikawa, Chie; Nakayama, Jun; Moteki, Hideaki; Usami, Shin-Ichi

    2015-05-01

    This study examines the CLRN1 gene mutation analysis in Japanese patients who were diagnosed with Usher syndrome type 3 (USH3) on the basis of clinical findings. Genetic analysis using massively parallel DNA sequencing (MPS) was conducted to search for 9 causative USH genes in 2 USH3 patients. We identified the novel pathogenic mutation in the CLRN1 gene in 2 patients. The missense mutation was confirmed by functional prediction software and segregation analysis. Both patients were diagnosed as having USH3 caused by the CLRN1 gene mutation. This is the first report of USH3 with a CLRN1 gene mutation in Asian populations. Validating the presence of clinical findings is imperative for properly differentiating among USH subtypes. In addition, mutation screening using MPS enables the identification of causative mutations in USH. The clinical diagnosis of this phenotypically variable disease can then be confirmed. © The Author(s) 2015.

  3. Role of mutations G-480 and C-6203 in the attenuation phenotype of Sabin type 1 poliovirus.

    PubMed

    McGoldrick, A; Macadam, A J; Dunn, G; Rowe, A; Burlison, J; Minor, P D; Meredith, J; Evans, D J; Almond, J W

    1995-12-01

    Of the 55 point mutations which distinguish the type 1 poliovirus vaccine strain (Sabin 1) from its neurovirulent progenitor (P1/Mahoney), two have been strongly implicated by previous studies as determinants of the attenuation phenotype. A change of an A to a G at position 480, located within the 5' noncoding region, has been suggested to be the major attenuating mutation, analogous to the mutations at positions 481 and 472 in poliovirus types 2 and 3, respectively. In addition, the change of a U to a C at position 6203, resulting in an amino acid change in the polymerase protein 3D, has also been implicated as a determinant of attenuation, albeit to a lesser extent. To assess the contributions of these mutations to attenuation and temperature sensitivity, reciprocal changes were generated at these positions in infectious cDNA clones of Sabin 1 and P1/Mahoney. Assays in tissue culture and primates indicated that the two mutations make some contribution to the temperature sensitivity of the Sabin 1 strain but that neither is a strong determinant of attenuation.

  4. Case reports of juvenile GM1 gangliosidosisis type II caused by mutation in GLB1 gene.

    PubMed

    Karimzadeh, Parvaneh; Naderi, Samaneh; Modarresi, Farzaneh; Dastsooz, Hassan; Nemati, Hamid; Farokhashtiani, Tayebeh; Shamsian, Bibi Shahin; Inaloo, Soroor; Faghihi, Mohammad Ali

    2017-07-17

    Type II or juvenile GM1-gangliosidosis is an autosomal recessive lysosomal storage disorder, which is clinically distinct from infantile form of the disease by the lack of characteristic cherry-red spot and hepatosplenomegaly. The disease is characterized by slowly progressive neurodegeneration and mild skeletal changes. Due to the later age of onset and uncharacteristic presentation, diagnosis is frequently puzzled with other ataxic and purely neurological disorders. Up to now, 3-4 types of GM1-gangliosidosis have been reported and among them type I is the most common phenotype with the age of onset around 6 months. Various forms of GM1-gangliosidosis are caused by GLB1 gene mutations but severity of the disease and age of onset are directly related to the position and the nature of deleterious mutations. However, due to its unique genetic cause and overlapping clinical features, some researchers believe that GM1 gangliosidosis represents an overlapped disease spectrum instead of four distinct types. Here, we report a less frequent type of autosomal recessive GM1 gangliosidosis with perplexing clinical presentation in three families in the southwest part of Iran, who are unrelated but all from "Lurs" ethnic background. To identify disease-causing mutations, Whole Exome Sequencing (WES) utilizing next generation sequencing was performed. Four patients from three families were investigated with the age of onset around 3 years old. Clinical presentations were ataxia, gate disturbances and dystonia leading to wheelchair-dependent disability, regression of intellectual abilities, and general developmental regression. They all were born in consanguineous families with no previous documented similar disease in their parents. A homozygote missense mutation in GLB1 gene (c. 601 G > A, p.R201C) was found in all patients. Using Sanger sequencing this identified mutation was confirmed in the proband, their parents, grandparents, and extended family members, confirming

  5. Novel mutations of the AGXT gene causing primary hyperoxaluria type 1.

    PubMed

    Yuen, Yuet-Ping; Lai, Chi-Kong; Tong, Gensy Mei-Wah; Wong, Ping-Nam; Wong, Francis Kim-Ming; Mak, Siu-Ka; Lo, Kin-Yee; Wong, Andrew Kui-Man; Tong, Sui-Fan; Chan, Yan-Wo; Lam, Ching-Wan

    2004-01-01

    Primary hyperoxaluria type 1 (PH1), an inherited cause of nephrolithiasis, is due to a functional defect of the liver-specific peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT). A definitive PH1 diagnosis can be established by analyzing AGT activity in liver tissue or mutation analysis of the AGXT gene. The molecular basis of PH1 in three Chinese patients, two with adult-onset and one with childhood-onset recurrent nephrolithiasis, was established by analyzing the entire AGXT gene. Three novel mutations (c2T>C, c817insAG and c844C>T) and two previously reported mutations (c33insC and 679-IVS6+2delAAgt) were identified. c2T>C converts the initiation codon from ATG to ACG, which predicts significant reduction, if not complete abolition, of protein translation. c817insAG leads to a frameshift and changes the amino acid sequence after codon 274. c844C>T changes glutamine at codon 282 to a termination codon, resulting in protein truncation. This is the first report describing AGXT gene mutations in Chinese patients with PH1. AGXT genotypes cannot fully explain the clinical heterogeneity of PH1, and other factors involved in disease pathogenesis remain to be identified. Our experience emphasizes the importance of excluding PH1 in patients with recurrent nephrolithiasis to avoid delay or inappropriate management.

  6. Novel and recurrent XYLT1 mutations in two Turkish families with Desbuquois dysplasia, type 2.

    PubMed

    Guo, Long; Elcioglu, Nursel H; Iida, Aritoshi; Demirkol, Yasemin K; Aras, Seda; Matsumoto, Naomichi; Nishimura, Gen; Miyake, Noriko; Ikegawa, Shiro

    2017-03-01

    Desbuquois dysplasia (DBQD) is an autosomal recessive skeletal disorder characterized by growth retardation, joint laxity, short extremities, and progressive scoliosis. DBQD is classified into two types based on the presence (DBQD1) or absence (DBQD2) of characteristic hand abnormalities. CANT1 mutations have been reported in both DBQD1 and DBQD2. Recently, mutations in the gene encoding xylosyltransferase 1 (XYLT1) were identified in several families with DBQD2. In this study, we performed whole-exome sequencing in two Turkish families with DBQD2. We found a novel and a recurrent XYLT1 mutation in each family. The patients were homozygous for the mutations. Our results further support that XYLT1 is responsible for a major subset of DBQD2.

  7. Clinical and Mutational Analysis of the GCDH Gene in Malaysian Patients with Glutaric Aciduria Type 1.

    PubMed

    Abdul Wahab, Siti Aishah; Yakob, Yusnita; Abdul Azize, Nor Azimah; Md Yunus, Zabedah; Huey Yin, Leong; Mohd Khalid, Mohd Khairul Nizam; Lock Hock, Ngu

    Glutaric aciduria type 1 (GA1) is an autosomal recessive metabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase enzyme encoded by the GCDH gene. In this study, we presented the clinical and molecular findings of seven GA1 patients in Malaysia. All the patients were symptomatic from infancy and diagnosed clinically from large excretion of glutaric and 3-hydroxyglutaric acids. Bidirectional sequencing of the GCDH gene revealed ten mutations, three of which were novel (Gln76Pro, Glu131Val, and Gly390Trp). The spectrum of mutations included eight missense mutations, a nonsense mutation, and a splice site mutation. Two mutations (Gln76Pro and Arg386Gln) were homozygous in two patients with parental consanguinity. All mutations were predicted to be disease causing by MutationTaster2. In conclusion, this is the first report of both clinical and molecular aspects of GA1 in Malaysian patients. Despite the lack of genotype and phenotype correlation, early diagnosis and timely treatment remained the most important determinant of patient outcome.

  8. Clinical and Mutational Analysis of the GCDH Gene in Malaysian Patients with Glutaric Aciduria Type 1

    PubMed Central

    Yakob, Yusnita; Abdul Azize, Nor Azimah; Md Yunus, Zabedah; Huey Yin, Leong; Mohd Khalid, Mohd Khairul Nizam; Lock Hock, Ngu

    2016-01-01

    Glutaric aciduria type 1 (GA1) is an autosomal recessive metabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase enzyme encoded by the GCDH gene. In this study, we presented the clinical and molecular findings of seven GA1 patients in Malaysia. All the patients were symptomatic from infancy and diagnosed clinically from large excretion of glutaric and 3-hydroxyglutaric acids. Bidirectional sequencing of the GCDH gene revealed ten mutations, three of which were novel (Gln76Pro, Glu131Val, and Gly390Trp). The spectrum of mutations included eight missense mutations, a nonsense mutation, and a splice site mutation. Two mutations (Gln76Pro and Arg386Gln) were homozygous in two patients with parental consanguinity. All mutations were predicted to be disease causing by MutationTaster2. In conclusion, this is the first report of both clinical and molecular aspects of GA1 in Malaysian patients. Despite the lack of genotype and phenotype correlation, early diagnosis and timely treatment remained the most important determinant of patient outcome. PMID:27672653

  9. A novel PAX3 mutation in a Japanese boy with Waardenburg syndrome type 1

    PubMed Central

    Yoshida, Yu; Doi, Rieko; Adachi, Kaori; Nanba, Eiji; Kodani, Isamu; Ryoke, Kazuo

    2016-01-01

    Waardenburg syndrome type 1 (WS1) is a rare autosomal dominant disorder characterized by hair hypopigmentation, abnormal iris pigmentation, and congenital hearing loss. WS1 is caused by mutations in paired box gene 3 (PAX3). We identified a novel PAX3 mutation (c.1107 C>G, p.Ser369Arg) in a Japanese WS1 patient showing abnormal right iris pigmentation, right-sided congenital hearing loss, synophrys, incomplete left cleft lip, and cryptorchidism. PMID:27081571

  10. Recurrent TERT promoter mutations identified in a large-scale study of multiple tumour types are associated with increased TERT expression and telomerase activation.

    PubMed

    Huang, Dong-Sheng; Wang, Zhaohui; He, Xu-Jun; Diplas, Bill H; Yang, Rui; Killela, Patrick J; Meng, Qun; Ye, Zai-Yuan; Wang, Wei; Jiang, Xiao-Ting; Xu, Li; He, Xiang-Lei; Zhao, Zhong-Sheng; Xu, Wen-Juan; Wang, Hui-Ju; Ma, Ying-Yu; Xia, Ying-Jie; Li, Li; Zhang, Ru-Xuan; Jin, Tao; Zhao, Zhong-Kuo; Xu, Ji; Yu, Sheng; Wu, Fang; Liang, Junbo; Wang, Sizhen; Jiao, Yuchen; Yan, Hai; Tao, Hou-Quan

    2015-05-01

    Several somatic mutation hotspots were recently identified in the telomerase reverse transcriptase (TERT) promoter region in human cancers. Large scale studies of these mutations in multiple tumour types are limited, in particular in Asian populations. This study aimed to: analyse TERT promoter mutations in multiple tumour types in a large Chinese patient cohort, investigate novel tumour types and assess the functional significance of the mutations. TERT promoter mutation status was assessed by Sanger sequencing for 13 different tumour types and 799 tumour tissues from Chinese cancer patients. Thymic epithelial tumours, gastrointestinal leiomyoma, and gastric schwannoma were included, for which the TERT promoter has not been previously sequenced. Functional studies included TERT expression by reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR), telomerase activity by the telomeric repeat amplification protocol (TRAP) assay and promoter activity by the luciferase reporter assay. TERT promoter mutations were highly frequent in glioblastoma (83.9%), urothelial carcinoma (64.5%), oligodendroglioma (70.0%), medulloblastoma (33.3%) and hepatocellular carcinoma (31.4%). C228T and C250T were the most common mutations. In urothelial carcinoma, several novel rare mutations were identified. TERT promoter mutations were absent in gastrointestinal stromal tumour (GIST), thymic epithelial tumours, gastrointestinal leiomyoma, gastric schwannoma, cholangiocarcinoma, gastric and pancreatic cancer. TERT promoter mutations highly correlated with upregulated TERT mRNA expression and telomerase activity in adult gliomas. These mutations differentially enhanced the transcriptional activity of the TERT core promoter. TERT promoter mutations are frequent in multiple tumour types and have similar distributions in Chinese cancer patients. The functional significance of these mutations reflect the importance to telomere maintenance and hence tumourigenesis, making them

  11. A systematic comparison of all mutations in hereditary sensory neuropathy type I (HSAN I) reveals that the G387A mutation is not disease associated.

    PubMed

    Hornemann, Thorsten; Penno, Anke; Richard, Stephane; Nicholson, Garth; van Dijk, Fleur S; Rotthier, Annelies; Timmerman, Vincent; von Eckardstein, Arnold

    2009-04-01

    Hereditary sensory neuropathy type 1 (HSAN I) is an autosomal dominant inherited neurodegenerative disorder of the peripheral nervous system associated with mutations in the SPTLC1 subunit of the serine palmitoyltransferase (SPT). Four missense mutations (C133W, C133Y, V144D and G387A) in SPTLC1 were reported to cause HSAN I. SPT catalyses the condensation of Serine and Palmitoyl-CoA, which is the first and rate-limiting step in the de novo synthesis of ceramides. Earlier studies showed that C133W and C133Y mutants have a reduced activity, whereas the impact of the V144D and G387A mutations on the human enzyme was not tested yet. In this paper, we show that none of the HSAN I mutations interferes with SPT complex formation. We demonstrate that also V144D has a reduced SPT activity, however to a lower extent than C133W and C133Y. In contrast, the G387A mutation showed no influence on SPT activity. Furthermore, the growth phenotype of LY-B cells--a SPTLC1 deficient CHO cell line--could be reversed by expressing either the wild-type SPTLC1 or the G387A mutant, but not the C133W mutant. This indicates that the G387A mutation is most likely not directly associated with HSAN I. These findings were genetically confirmed by the identification of a nuclear HSAN family which showed segregation of the G387A variant as a non-synonymous SNP.

  12. [Clinical classification and genetic mutation study of two pedigrees with type II Waardenburg syndrome].

    PubMed

    Chen, Yong; Yang, Fuwei; Zheng, Hexin; Zhu, Ganghua; Hu, Peng; Wu, Weijing

    2015-12-01

    To explore the molecular etiology of two pedigrees affected with type II Waardenburg syndrome (WS2) and to provide genetic diagnosis and counseling. Blood samples were collected from the proband and his family members. Following extraction of genomic DNA, the coding sequences of PAX3, MITF, SOX10 and SNAI2 genes were amplified with PCR and subjected to DNA sequencing to detect potential mutations. A heterozygous deletional mutation c.649_651delAGA in exon 7 of the MITF gene has been identified in all patients from the first family, while no mutation was found in the other WS2 related genes including PAX3, MITF, SOX10 and SNAI2. The heterozygous deletion mutation c.649_651delAGA in exon 7 of the MITF gene probably underlies the disease in the first family. It is expected that other genes may also underlie WS2.

  13. Identification of biallelic EXTL3 mutations in a novel type of spondylo-epi-metaphyseal dysplasia.

    PubMed

    Guo, Long; Elcioglu, Nursel H; Mizumoto, Shuji; Wang, Zheng; Noyan, Bilge; Albayrak, Hatice M; Yamada, Shuhei; Matsumoto, Naomichi; Miyake, Noriko; Nishimura, Gen; Ikegawa, Shiro

    2017-08-01

    Spondylo-epi-metaphyseal dysplasia (SEMD) is a group of inherited skeletal diseases characterized by the anomalies in spine, epiphyses and metaphyses. SEMD is highly heterogeneous and >20 distinct entities have been identified. Here we describe a novel type of SEMD in two unrelated Turkish patients who presented with severe platyspondyly, kyphoscoliosis, pelvic distortion, constriction of the proximal femora and brachydactyly. Although these phenotypes overlap considerably with some known SEMDs, they had a novel causal gene, exostosin-like glycosyltransferase 3 (EXTL3), that encodes a glycosyltransferase involved in the synthesis of heparin and heparan sulfate. The EXTL3 mutation identified in the patients was a homozygous missense mutation (c.953C>T) that caused a substitution in a highly conserved amino acid (p.P318L). The enzyme activity of the mutant EXTL3 protein was significantly decreased compared to the wild-type protein. Both patients had spinal cord compression at the cranio-vertebral junction and multiple liver cysts since early infancy. One of the patients showed severe immunodeficiency, which is considered non-fortuitous association. Our findings would help define a novel type of SEMD caused by EXTL3 mutations.

  14. Ultraviolet Extensions

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Side-by-Side Comparison Click on image for larger view

    This ultraviolet image from NASA's Galaxy Evolution Explorer shows the Southern Pinwheel galaxy, also know as Messier 83 or M83. It is located 15 million light-years away in the southern constellation Hydra.

    Ultraviolet light traces young populations of stars; in this image, young stars can be seen way beyond the main spiral disk of M83 up to 140,000 light-years from its center. Could life exist around one of these far-flung stars? Scientists say it's unlikely because the outlying regions of a galaxy are lacking in the metals required for planets to form.

    The image was taken at scheduled intervals between March 15 and May 20, 2007. It is one of the longest-exposure, or deepest, images ever taken of a nearby galaxy in ultraviolet light. Near-ultraviolet light (or longer-wavelength ultraviolet light) is colored yellow, and far-ultraviolet light is blue.

    What Lies Beyond the Edge of a Galaxy The side-by-side comparison shows the Southern Pinwheel galaxy, or M83, as seen in ultraviolet light (right) and at both ultraviolet and radio wavelengths (left). While the radio data highlight the galaxy's long, octopus-like arms stretching far beyond its main spiral disk (red), the ultraviolet data reveal clusters of baby stars (blue) within the extended arms.

    The ultraviolet image was taken by NASA's Galaxy Evolution Explorer between March 15 and May 20, 2007, at scheduled intervals. Back in 2005, the telescope first photographed M83 over a shorter period of time. That picture was the first to reveal far-flung baby stars forming up to 63,000 light-years from the edge of the main spiral disk. This came as a surprise to astronomers because a galaxy's outer territory typically lacks high densities of star-forming materials.

    The newest picture of M83 from the Galaxy Evolution Explorer is shown at the right, and was taken over a longer period of

  15. Occupational Skin Hazards From Ultraviolet (UV) Exposures

    NASA Astrophysics Data System (ADS)

    Urbach, F.; Wolbarsht, M. L.

    1980-10-01

    The various types of UV effects on the skin are classified according to the part of the spectrum and their beneficial or deleterious nature. Some hazardous ultraviolet sources used in industrial processes are described, and examples of photoallergy, phototoxicity, and photosensitization resulting from UV exposures are given. The incidence of skin cancer as a function of geographical location and exposure to sunlight is discussed in relation to natural and artificial exposures to long and short wavelength UV, especially in connection with tanning booths. The conclusion is reached that there is enough ultraviolet in a normal environment to propose a hazard, and additional ultraviolet exposure from industrial or consumer sources is not necessary, and should be eliminated wherever possible.

  16. Occupational Skin Hazards From Ultraviolet (UV) Exposures

    NASA Astrophysics Data System (ADS)

    Urbach, F.; Wolbarsht, M. L.

    1981-11-01

    The various types of UV effects on the skin are classified according to the part of the spectrum and their beneficial or deleterious nature. Some hazardous ultraviolet sources used in industrial processes are described, and examples of photoallergy, phototoxicity, and photosensitization resulting from UV exposures are given. The incidence of skin cancer as a function of geographical location and exposure to sunlight is discussed in relation to natural and artificial exposures to long and short wavelength UV, especially in connection with tanning booths. The conclusion is reached that there is enough ultraviolet in a normal environment to propose a hazard, and additional ultraviolet exposure from industrial or consumer sources is not necessary, and should be eliminated wherever possible.

  17. Ultraviolet and visible light spectrophotometric approach to blood typing: objective analysis by agglutination index.

    PubMed

    Narayanan, S; Orton, S; Leparc, G F; Garcia-Rubio, L H; Potter, R L

    1999-10-01

    A new blood typing technology based on ultraviolet (UV) and visible light spectroscopy (UV/visible spectroscopy) has been developed. Blood groups and types are determined by quantifying reproducible changes in the UV and visible light spectra of blood in the presence of agglutinating antibodies. Samples of red cells in the presence and absence of agglutinating antibodies were examined by UV/visible spectroscopy. Blood groups and types were determined by comparing the optical density spectra obtained between 665 and 1000 nm. These comparisons generate numbers (agglutination index) ranging from 0 to 100, with smaller numbers corresponding to lack of agglutination and larger numbers corresponding to agglutination. The optical density of agglutinated blood is dramatically different from that of unagglutinated blood. The agglutination index derived from the relative slopes of the spectra is an objective indicator of agglutination strength. An agglutination index greater than 17 consistently and accurately established blood group- and type-specific agglutination. The method accurately predicted A, B, and O blood groups, and D type in over 275 samples. Scattering theory-based calculations of relative volumes of red cells before and after agglutination show a direct correlation with the agglutination index and provide the theoretical basis of the analysis. This quantitative technique is reproducible and has the potential for automation.

  18. Myelin protein zero gene mutated in Charcot-Marie-Tooth type 1B patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Ying; Li, Lanying; Lepercq, J.

    1993-11-15

    The autosomal dominant of Charcot-Marie-Tooth disease (CMT), whose gene is type 1B (CMT1B), has slow nerve conduction with demyelinated Schwann cells. In this study the abundant peripheral myelin protein zero (MPZ) gene, MPZ, was mapped 130 kb centromeric to the Fc receptor immunoglobulin gene cluster in band 1q22, and a major MPZ point mutation was found to cosegregate with CMT1B in one large CMT1B family. The MPZ point mutation in 18 of 18 related CMT1B pedigree 1 patients converts a positively charged lysine in codon 96 to a negatively charged glutamate. The same MPZ locus cosegregates with the CMT1B diseasemore » gene in a second CMT1B family [total multipoint logarithm of odds (lod) = 11.4 at [theta] = 0.00] with a splice junction mutation. Both mutations occur in MPZ protein regions otherwise conserved identically in human, rat, and cow since these species diverged 100 million years ago. MPZ protein, expressed exclusively in myelinated peripheral nerve Schwann cells, constitutes >50% of myelin protein. These mutations are anticipated to disrupt homophilic MPZ binding and result in CMT1B peripheral nerve demyelination.« less

  19. HOGA1 Gene Mutations of Primary Hyperoxaluria Type 3 in Tunisian Patients.

    PubMed

    M'dimegh, Saoussen; Aquaviva-Bourdain, Cécile; Omezzine, Asma; Souche, Geneviéve; M'barek, Ibtihel; Abidi, Kamel; Gargah, Tahar; Abroug, Saoussen; Bouslama, Ali

    2017-05-01

    Primary hyperoxaluria type 3 (PH3) is due to mutations in the recently identified 4-hydroxy-2-oxoglutarate aldolase (HOGA1) gene. PH3 might be the least severe form with a milder phenotype with good preservation of kidney function in most patients. The aim of this study was to report three PH3 cases carrying mutations in HOGA1. Genetic analysis of HOGA1 was performed in patients with a high clinical suspicion of PH after sequencing of AGXT and GRHPR genes, which was negative. Also, a complete AGXT/GRHPR MLPA was performed in these patients in order to detect large deletions/insertions. Two different HOGA1 gene mutations were identified: the p.Pro190Leu in a homozygous state and the p.Gly287Val in two patients in homozygous and heterozygous carriers. The median age at onset of clinical symptoms was 3.93 years. Most of the patients had a positive family history for recurrent urolithiasis. The p.Pro190Leu mutation was reported with impaired renal function at follow-up; however, the p.Gly287Val was presented with normal renal function. All patients were presented with urolithiasis, but only one had a nephrocalcinosis. This study expanded the number of PH3 patients from 63 to 66 cases. The p.Pro190Leu and the p.Gly287Val mutations found in this study can provide a first-line investigation in Tunisian PH1 patients. © 2016 Wiley Periodicals, Inc.

  20. Primary Hyperoxaluria Type 1 with Homozygosity for a Double-mutated AGXT Allele in a 2-year-old Child.

    PubMed

    Krishnamurthy, S; Kartha, G B; Venkateswaran, V S; Prasannakumar, M; Mahadevan, S; Gowda, M; Pelle, A; Giachino, D

    2017-01-01

    Primary hyperoxaluria (PH) Type 1 is a rare, genetic disorder caused by deficiency of the liver enzyme alanine-glyoxylate aminotransferase, which is encoded by AGXT gene. We report a 2-year-old South Indian Tamil child with nephrocalcinosis due to PH Type 1, in whom a homozygous genotype for two missense mutations in the AGXT gene was found: first, a C to G transversion (c. 32C>G) in exon 1 resulting in the amino acid substitution p.Pro11Arg; second, a T to A transversion (c. 167T>A) in exon 2 resulting in p.Ile56Asn. A therapy based on potassium citrate and pyridoxine was started. This is the first report of molecular testing-proven childhood onset-PH Type 1 from South India and is notable for the co-occurrence of two missense mutations in one AGXT allele, which might lead to different and more severe phenotype than each mutation alone. To the best of our knowledge, AGXT allele carrying two already known mutations has not been previously reported.

  1. Primary Hyperoxaluria Type 1 with Homozygosity for a Double-mutated AGXT Allele in a 2-year-old Child

    PubMed Central

    Krishnamurthy, S.; Kartha, G. B.; Venkateswaran, V. S.; Prasannakumar, M.; Mahadevan, S.; Gowda, M.; Pelle, A.; Giachino, D.

    2017-01-01

    Primary hyperoxaluria (PH) Type 1 is a rare, genetic disorder caused by deficiency of the liver enzyme alanine-glyoxylate aminotransferase, which is encoded by AGXT gene. We report a 2-year-old South Indian Tamil child with nephrocalcinosis due to PH Type 1, in whom a homozygous genotype for two missense mutations in the AGXT gene was found: first, a C to G transversion (c. 32C>G) in exon 1 resulting in the amino acid substitution p.Pro11Arg; second, a T to A transversion (c. 167T>A) in exon 2 resulting in p.Ile56Asn. A therapy based on potassium citrate and pyridoxine was started. This is the first report of molecular testing-proven childhood onset-PH Type 1 from South India and is notable for the co-occurrence of two missense mutations in one AGXT allele, which might lead to different and more severe phenotype than each mutation alone. To the best of our knowledge, AGXT allele carrying two already known mutations has not been previously reported. PMID:28904440

  2. Glycogen storage disease type 1a in Israel: biochemical, clinical, and mutational studies.

    PubMed

    Parvari, R; Lei, K J; Bashan, N; Hershkovitz, E; Korman, S H; Barash, V; Lerman-Sagie, T; Mandel, H; Chou, J Y; Moses, S W

    1997-10-31

    Glycogen storage disease type 1a (von Gierke disease, GSD 1a) is caused by the deficiency of microsomal glucose-6-phosphatase (G6Pase) activity which catalyzes the final common step of glycogenolysis and gluconeogenesis. The recent cloning of the G6Pase cDNA and characterization of the human G6Pase gene enabled the characterization of the mutations causing GSD 1a. This, in turn, allows the introduction of a noninvasive DNA-based diagnosis that provides reliable carrier testing and prenatal diagnosis. In this study, we report the biochemical and clinical characteristics as well as mutational analyses of 12 Israeli GSD 1a patients of different families, who represent most GSD 1a patients in Israel. The mutations, G6Pase activity, and glycogen content of 7 of these patients were reported previously. The biochemical data and clinical findings of all patients were similar and compatible with those described in other reports. All 9 Jewish patients, as well as one Muslim Arab patient, presented the R83C mutation. Two Muslim Arab patients had the V166G mutation which was not found in other patients' populations. The V166G mutation, which was introduced into the G6Pase cDNA by site-directed mutagenesis following transient expression in COS-1 cells, was shown to cause complete inactivation of the G6Pase. The characterization of all GSD 1a mutations in the Israeli population lends itself to carrier testing in these families as well as to prenatal diagnosis, which was carried out in 2 families. Since all Ashkenzai Jewish patients harbor the same mutation, our study suggests that DNA-based diagnosis may be used as an initial diagnostic step in Ashkenazi Jews suspected of having GSD 1a, thereby avoiding liver biopsy.

  3. [Mutation analysis of FAH gene in patients with tyrosinemia type 1].

    PubMed

    Dou, Li-Min; Fang, Ling-Juan; Wang, Xiao-Hong; Lu, Wei; Chen, Rui; Li, Li-Ting; Zhao, Jing; Wang, Jian-She

    2013-04-01

    To investigate the clinical features and mutations of the FAH gene. Clinical records of two cases were collected, and diagnosis was made according to the diagnostic criteria of the International Organization for Rare Disorders (NORD). Genomic DNA was extracted from peripheral blood leukocytes with QIAamp DNA Mini Kit. The DNA extracts were subjected to direct sequencing for 14 exons together with adjacent fragments of FAH gene using ABI Prism 3730 Genetic Analyzer (Applied Biosystems, Foster City, CA) after PCR based on genomic DNA. The mutation source was verified by analyzing parents' exons corresponding to patients' mutation exons. The homology between human FAH enzyme and that of other species was surveyed using software Clustal X(European Bioinformatics Institute, Hinxton, Saffron Walde, UK). Polyphen (Polymorphism Phenotyping), available online, were used to predict possible impact of an amino acid substitution on structure and function of FAH enzyme. Polyphen calculates position-specific independent counts (PISC) scores for two amino acid variants in polymorphic position. A PISC scores that differ by > 2 were regarded as indicating the probability of damaging variants. Patient 1 was a 5 months and 21 days-old boy who suffered from persistent diarrhea, hepatomegaly, ascites; Alpha-fetoprotein > 1210 µg/L, levels of tyrosine in blood and succinylacetone in urine were 110.8 µmol/L and 83.7 µmol/L. His sister suffered from tyrosinemia type 1. Direct sequencing showed a G to A transition in CDS position 455 and 1027. He was compound heterozygous for the mutation c.455G > A/c.1027G > A, which predicts a change from tryptophan to a stop codon (TGG > TAG) at position 152 (W152X) and a change from glycine to arginine (GGG > AGG) at position 343 respectively. Patient 2 was a 6 year and 1 month-old girl with late-onset rickets who had signs of hepatosplenomegaly, rachitic rosary, windswept knees. Hypophosphatemia and alkaline phosphatase 1620 IU/L were detected

  4. Characterization of various types of mast cells derived from model mice of familial gastrointestinal stromal tumors with KIT-Asp818Tyr mutation

    PubMed Central

    Kajimoto, Noriko; Nakai, Norihiro; Ohkouchi, Mizuka; Hashikura, Yuka; Liu-Kimura, Ning-Ning; Isozaki, Koji; Hirota, Seiichi

    2015-01-01

    Sporadic mast cell neoplasms and gastrointestinal stromal tumors (GISTs) often have various types of somatic gain-of-function mutations of the c-kit gene which encodes a receptor tyrosine kinase, KIT. Several types of germline gain-of-function mutations of the c-kit gene have been detected in families with multiple GISTs. All three types of model mice for the familial GISTs with germline c-kit gene mutations at exon 11, 13 or 17 show development of GIST, while they are different from each other in skin mast cell number. Skin mast cell number in the model mice with exon 17 mutation was unchanged compared to the corresponding wild-type mice. In the present study, we characterized various types of mast cells derived from the model mice with exon 17 mutation (KIT-Asp818Tyr) corresponding to human familial GIST case with human KIT-Asp820Tyr to clarify the role of the c-kit gene mutation in mast cells. Bone marrow-derived cultured mast cells (BMMCs) derived from wild-type mice, heterozygotes and homozygotes were used for the experiments. Immortalized BMMCs, designated as IMC-G4 cells, derived from BMMCs of a homozygote during long-term culture were also used. Ultrastructure, histamine contents, proliferation profiles and phosphorylation of various signaling molecules in those cells were examined. In IMC-G4 cells, presence of additional mutation(s) of the c-kit gene and effect of KIT inhibitors on both KIT autophosphorylation and cell proliferation were also analyzed. We demonstrated that KIT-Asp818Tyr did not affect ultrastructure and proliferation profiles but did histamine contents in BMMCs. IMC-G4 cells had an additional novel c-kit gene mutation of KIT-Tyr421Cys which is considered to induce neoplastic transformation of mouse mast cells and the mutation appeared to be resistant to a KIT inhibitor of imatinib but sensitive to another KIT inhibitor of nilotinib. IMC-G4 cells might be a useful mast cell line to investigate mast cell biology. PMID:26722383

  5. Point mutation in the MITF gene causing Waardenburg syndrome type II in a three-generation Indian family.

    PubMed

    Lalwani, A K; Attaie, A; Randolph, F T; Deshmukh, D; Wang, C; Mhatre, A; Wilcox, E

    1998-12-04

    Waardenburg syndrome (WS) is an autosomal-dominant neural crest cell disorder phenotypically characterized by hearing impairment and disturbance of pigmentation. A presence of dystopia canthorum is indicative of WS type 1, caused by loss of function mutation in the PAX3 gene. In contrast, type 2 WS (WS2) is characterized by normally placed medial canthi and is genetically heterogeneous; mutations in MITF (microphthalmia associated transcription factor) associated with WS2 have been identified in some but not all affected families. Here, we report on a three-generation Indian family with a point mutation in the MITF gene causing WS2. This mutation, initially reported in a Northern European family, creates a stop codon in exon 7 and is predicted to result in a truncated protein lacking the HLH-Zip or Zip structure necessary for normal interaction with its target DNA motif. Comparison of the phenotype between the two families demonstrates a significant difference in pigmentary disturbance of the eye. This family, with the first documented case of two unrelated WS2 families harboring identical mutations, provides additional evidence for the importance of genetic background on the clinical phenotype.

  6. Mutation analysis of the MYO7A and CDH23 genes in Japanese patients with Usher syndrome type 1.

    PubMed

    Nakanishi, Hiroshi; Ohtsubo, Masafumi; Iwasaki, Satoshi; Hotta, Yoshihiro; Takizawa, Yoshinori; Hosono, Katsuhiro; Mizuta, Kunihiro; Mineta, Hiroyuki; Minoshima, Shinsei

    2010-12-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by retinitis pigmentosa and hearing loss. USH type 1 (USH1), the second common type of USH, is frequently caused by MYO7A and CDH23 mutations, accounting for 70-80% of the cases among various ethnicities, including Caucasians, Africans and Asians. However, there have been no reports of mutation analysis for any responsible genes for USH1 in Japanese patients. This study describes the first mutation analysis of MYO7A and CDH23 in Japanese USH1 patients. Five mutations (three in MYO7A and two in CDH23) were identified in four of five unrelated patients. Of these mutations, two were novel. One of them, p.Tyr1942SerfsX23 in CDH23, was a large deletion causing the loss of 3 exons. This is the first large deletion to be found in CDH23. The incidence of the MYO7A and CDH23 mutations in the study population was 80%, which is consistent with previous findings. Therefore, mutation screening for these genes is expected to be a highly sensitive method for diagnosing USH1 among the Japanese.

  7. Supernova 2009kf: An Ultraviolet Bright Type IIP Supernova Discovered With Pan-Starrs 1 and Galex

    DTIC Science & Technology

    2010-07-01

    The 7 deg2 camera and 1.8 m aperture could allow IIP SNe to be used as cosmological probes at z ∼ 0.2 and the brightest events to be found out to z...ultraviolet (NUV). We discuss the implication of this rare SN for understanding the explosions and the use of Type IIP events for probing cosmology and...SFR at high redshifts. We adopt the cosmological parameters H0 = 70 km s−1 Mpc−1, ΩM = 0.3, ΩΛ = 0.7. 2. DISCOVERY AND OBSERVATIONAL DATA SN 2009kf

  8. A novel CYP27B1 mutation causes a feline vitamin D-dependent rickets type IA.

    PubMed

    Grahn, Robert A; Ellis, Melanie R; Grahn, Jennifer C; Lyons, Leslie A

    2012-08-01

    A 12-week-old domestic cat presented at a local veterinary clinic with hypocalcemia and skeletal abnormalities suggestive of rickets. Osteomalacia (rickets) is a disease caused by impaired bone mineralization leading to an increased prevalence of fractures and deformity. Described in a variety of species, rickets is most commonly caused by vitamin D or calcium deficiencies owing to both environmental and or genetic abnormalities. Vitamin D-dependent rickets type 1A (VDDR-1A) is a result of the enzymatic pathway defect caused by mutations in the 25-hydroxyvitamin D(3)-1-alpha-hydroxylase gene [cytochrome P27 B1 (CYP27B1)]. Calcitriol, the active form of vitamin D(3), regulates calcium homeostasis, which requires sufficient dietary calcium availability and correct hormonal function for proper bone growth and maintenance. Patient calcitriol concentrations were low while calcidiol levels were normal suggestive of VDDR-1A. The entire DNA coding sequencing of CYP27B1 was evaluated. The affected cat was wild type for previously identified VDDR-1A causative mutations. However, six novel mutations were identified, one of which was a nonsense mutation at G637T in exon 4. The exon 4 G637T nonsense mutation results in a premature protein truncation, changing a glutamic acid to a stop codon, E213X, likely causing the clinical presentation of rickets. The previously documented genetic mutation resulting in feline VDDR-1A rickets, as well as the case presented in this research, result from novel exon 4 CYP27B1 mutations, thus exon 4 should be the initial focus of future sequencing efforts.

  9. A novel MYH7 mutation links congenital fiber type disproportion and myosin storage myopathy.

    PubMed

    Ortolano, Saida; Tarrío, Rosa; Blanco-Arias, Patricia; Teijeira, Susana; Rodríguez-Trelles, Francisco; García-Murias, María; Delague, Valerie; Lévy, Nicolas; Fernández, José M; Quintáns, Beatriz; Millán, Beatriz San; Carracedo, Angel; Navarro, Carmen; Sobrido, María-Jesús

    2011-04-01

    This study aimed to identify the genetic defect in a multigenerational family presenting an autosomal dominant myopathy with histological features of congenital fiber type disproportion. Linkage analysis and genetic sequencing identified, in all affected members of the family, the c.5807A>G heterozygous mutation in MYH7, which encodes the slow/β-cardiac myosin heavy chain. This mutation causes skeletal but not cardiac involvement. Myosin heavy chain expression pattern was also characterized by immunohistochemistry, western blot and q-PCR in muscle biopsies from two patients aged 25 and 62, respectively. While only congenital fiber type disproportion was observed in the younger patient, older patient's biopsy presented aggregates of slow myosin heavy chains, in fiber sub-sarcolemmal region. These clinico-pathologic findings suggest a novel phenotype within the emerging group of hereditary myosin myopathies, which in this family presents typical characteristics of congenital fiber type disproportion in early stages and later evolves to myosin storage myopathy. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Mutational analysis of a patient with mucopolysaccharidosis type VII, and identification of pseudogenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shipley, J.M.; Klinkenberg, M.; Wu, B.M.

    1993-03-01

    PCR of cDNA produced from patient fibroblasts allowed the authors to determine the paternal mutation in the first patient reported with [beta]-glucuronidase-deficiency mucopolysaccharidosis type VII (MPS VII). The G[r arrow]T transversion 1,881 bp downstream of the ATG translation initiation codon destroys an MboII restriction site and converts Trp627 to Cys (W627C). Digestion of genomic DNA PCR fragments with MboII indicated that the patient and the father were heterozygous for this missense mutation in exon 12. Failure to find cDNAs from patient RNA which did not contain this mutation suggested that the maternal mutation leads to greatly reduced synthesis or reducedmore » stability of mRNA from the mutant allele. In order to identify the maternal mutation, it was necessary to analyze genomic sequences. This approach was complicated by the finding of multiple unprocessed pseudogenes and/or closely related genes. Using PCR with a panel of human/rodent hybrid cell lines, the authors found that these pseudogenes were present over chromosomes 5-7, 20, and 22 and the Y chromosome. Conditions were defined which allowed them to amplify and characterize genomic sequences for the true [beta]-glucuronidase gene despite this background of related sequences. The patient proved to be heterozygous for a second mutation, in which a C[r arrow]T transition introduces a termination codon (R356STOP) in exon 7. The mother was also heterozygous for this mutation. Expression of a cDNA containing the maternal mutation produced no enzyme activity, as expected. Expression of the paternal mutation in COS-7 cells produced a surprisingly high (65% of control) level of activity. However, activity was 13% of control in transiently transfected murine MPS VII cells. The level of activity of this mutant allele appears to correlate with the level of overexpression. 39 refs., 5 figs., 1 tab.« less

  11. A Detailed Far-ultraviolet Spectral Atlas of O-type Stars

    NASA Astrophysics Data System (ADS)

    Smith, Myron A.

    2012-10-01

    In this paper, we present a spectral atlas covering the wavelength interval 930-1188 Å for O2-O9.5 stars using Far-Ultraviolet Spectroscopic Explorer archival data. The stars selected for the atlas were drawn from three populations: Galactic main-sequence (classes III-V) stars, supergiants, and main-sequence stars in the Magellanic Clouds, which have low metallicities. For several of these stars, we have prepared FITS files comprised of pairs of merged spectra for user access via the Multimission Archive at Space Telescope (MAST). We chose spectra from the first population with spectral types O4, O5, O6, O7, O8, and O9.5 and used them to compile tables and figures with identifications of all possible atmospheric and interstellar medium lines in the region 949-1188 Å. Our identified line totals for these six representative spectra are 821 (500), 992 (663), 1077 (749), 1178 (847), 1359 (1001), and 1798 (1392) lines, respectively, where the numbers in parentheses are the totals of lines formed in the atmospheres, according to spectral synthesis models. The total number of unique atmospheric identifications for the six main-sequence O-star template spectra is 1792, whereas the number of atmospheric lines in common to these spectra is 300. The number of identified lines decreases toward earlier types (increasing effective temperature), while the percentages of "missed" features (unknown lines not predicted from our spectral syntheses) drop from a high of 8% at type B0.2, from our recently published B-star far-UV atlas, to 1%-3% for type O spectra. The percentages of overpredicted lines are similar, despite their being much higher for B-star spectra. We discuss the statistics of line populations among the various elemental ionization states. Also, as an aid to users we list those isolated lines that can be used to determine stellar temperatures and the presence of possible chemical anomalies. Finally, we have prepared FITS files that give pairs of merged spectra for

  12. PAX3 mutations and clinical characteristics in Chinese patients with Waardenburg syndrome type 1

    PubMed Central

    Wang, Juan; Li, Shiqiang; Xiao, Xueshan; Wang, Panfeng; Guo, Xiangming

    2010-01-01

    Purpose To detect paired box gene 3 (PAX3) mutations and associated phenotypes in Chinese patients with Waardenburg syndrome type 1 (WS1). Methods Five unrelated families with suspected WS1 were selected from our Genomic DNA Repository for Hereditary Eye Diseases. The coding and adjacent intronic regions of PAX3 were amplified by polymerase chain reaction and the amplicons were then analyzed by cycle sequencing. Variations detected were further evaluated in available family members as well as one hundred controls with heteroduplex-single strand conformational polymorphism (heteroduplex-SSCP) analysis and/or clone sequencing. Results Three novel and two known mutations in PAX3 were detected in five patients, respectively: c.567_586+17del (p.Asp189_Gln505delinsGluGlyGlyAlaLeuAlaGly), c.456_459dupTTCC (p.Ile154PhefsX162), c.795_800delCTGGTT (p.Trp266_Phe267del), c.799T>A (p.Phe267Ile), and c.667C>T (p.Arg223X). Two novel mutations proved to be de novo as their parents did not carry the mutations. All five patients with PAX3 mutations had dystopia canthorum and different iris color and fundi between their two eyes. However, none had white forelock, skin hypopigmentation, and deafness. Conclusions Our findings expand the frequency and spectrum of PAX3 mutations and ethnic-related phenotypes in Chinese patients with WS1. De novo mutations in PAX3 have not been reported before. PMID:20664692

  13. PAX3 mutations and clinical characteristics in Chinese patients with Waardenburg syndrome type 1.

    PubMed

    Wang, Juan; Li, Shiqiang; Xiao, Xueshan; Wang, Panfeng; Guo, Xiangming; Zhang, Qingjiong

    2010-06-22

    To detect paired box gene 3 (PAX3) mutations and associated phenotypes in Chinese patients with Waardenburg syndrome type 1 (WS1). Five unrelated families with suspected WS1 were selected from our Genomic DNA Repository for Hereditary Eye Diseases. The coding and adjacent intronic regions of PAX3 were amplified by polymerase chain reaction and the amplicons were then analyzed by cycle sequencing. Variations detected were further evaluated in available family members as well as one hundred controls with heteroduplex-single strand conformational polymorphism (heteroduplex-SSCP) analysis and/or clone sequencing. Three novel and two known mutations in PAX3 were detected in five patients, respectively: c.567_586+17del (p.Asp189_Gln505delinsGluGlyGlyAlaLeuAlaGly), c.456_459dupTTCC (p.Ile154PhefsX162), c.795_800delCTGGTT (p.Trp266_Phe267del), c.799T>A (p.Phe267Ile), and c.667C>T (p.Arg223X). Two novel mutations proved to be de novo as their parents did not carry the mutations. All five patients with PAX3 mutations had dystopia canthorum and different iris color and fundi between their two eyes. However, none had white forelock, skin hypopigmentation, and deafness. Our findings expand the frequency and spectrum of PAX3 mutations and ethnic-related phenotypes in Chinese patients with WS1. De novo mutations in PAX3 have not been reported before.

  14. Ultraviolet spectrophotometry from Gemini 11 of stars in Orion

    NASA Technical Reports Server (NTRS)

    Morgan, T. H.; Spear, G. G.; Kondo, Y.; Henize, K. G.

    1975-01-01

    Ultraviolet spectrophotometry in the wavelength region 2600-3600 A is reported for the bright early-type stars beta, eta, gamma, delta, iota, epsilon, sigma, zeta, and kappa Ori. The results are in good agreement with other observations, and, with the possible exception of the supergiants, are in good agreement with recent line-blanketed model atmospheres. There is evidence that the supergiants possess a small ultraviolet deficiency shortward of 3000 A relative to main-sequence stars of similar spectral type. The most extreme example of this phenomenon is the star kappa Ori.

  15. Novel LRPPRC Mutation in a Boy With Mild Leigh Syndrome, French-Canadian Type Outside of Québec.

    PubMed

    Han, Velda Xinying; Tan, Teresa S; Wang, Furene S; Tay, Stacey Kiat-Hong

    2017-01-01

    Leigh syndrome, French-Canadian type is unique to patients from a genetic isolate in the Saguenay-Lac-Saint-Jean region of Québec. It has also been recently described in 10 patients with LRPPRC mutation outside of Québec. It is an autosomal recessive genetic disorder with fatal metabolic crisis and severe neurological morbidity in infancy caused by LRPPRC mutation. The authors report a boy with a novel LRPPRC compound heterozygous missense mutations c.3130C>T, c.3430C>T, and c.4078G>A found on whole-exome sequencing which correlated with isolated cytochrome c-oxidase deficiency found in skeletal muscle. LRPPRC mutation is a rare cause of cytochrome c-oxidase-deficient form of Leigh syndrome outside of Québec. Our patient broadens the spectrum of phenotypes of Leigh syndrome, French-Canadian type. LRPPRC mutation should be considered in children with early childhood neurodegenerative disorder, even in the absence of metabolic crisis. Early evaluation with whole-exome sequencing is useful for early diagnosis and for genetic counseling.

  16. Beta HPV38 oncoproteins act with a hit-and-run mechanism in ultraviolet radiation-induced skin carcinogenesis in mice.

    PubMed

    Viarisio, Daniele; Müller-Decker, Karin; Accardi, Rosita; Robitaille, Alexis; Dürst, Matthias; Beer, Katrin; Jansen, Lars; Flechtenmacher, Christa; Bozza, Matthias; Harbottle, Richard; Voegele, Catherine; Ardin, Maude; Zavadil, Jiri; Caldeira, Sandra; Gissmann, Lutz; Tommasino, Massimo

    2018-01-01

    Cutaneous beta human papillomavirus (HPV) types are suspected to be involved, together with ultraviolet (UV) radiation, in the development of non-melanoma skin cancer (NMSC). Studies in in vitro and in vivo experimental models have highlighted the transforming properties of beta HPV E6 and E7 oncoproteins. However, epidemiological findings indicate that beta HPV types may be required only at an initial stage of carcinogenesis, and may become dispensable after full establishment of NMSC. Here, we further investigate the potential role of beta HPVs in NMSC using a Cre-loxP-based transgenic (Tg) mouse model that expresses beta HPV38 E6 and E7 oncogenes in the basal layer of the skin epidermis and is highly susceptible to UV-induced carcinogenesis. Using whole-exome sequencing, we show that, in contrast to WT animals, when exposed to chronic UV irradiation K14 HPV38 E6/E7 Tg mice accumulate a large number of UV-induced DNA mutations, which increase proportionally with the severity of the skin lesions. The mutation pattern detected in the Tg skin lesions closely resembles that detected in human NMSC, with the highest mutation rate in p53 and Notch genes. Using the Cre-lox recombination system, we observed that deletion of the viral oncogenes after development of UV-induced skin lesions did not affect the tumour growth. Together, these findings support the concept that beta HPV types act only at an initial stage of carcinogenesis, by potentiating the deleterious effects of UV radiation.

  17. Beta HPV38 oncoproteins act with a hit-and-run mechanism in ultraviolet radiation-induced skin carcinogenesis in mice

    PubMed Central

    Müller-Decker, Karin; Accardi, Rosita; Flechtenmacher, Christa; Bozza, Matthias; Harbottle, Richard; Voegele, Catherine; Ardin, Maude; Zavadil, Jiri; Gissmann, Lutz

    2018-01-01

    Cutaneous beta human papillomavirus (HPV) types are suspected to be involved, together with ultraviolet (UV) radiation, in the development of non-melanoma skin cancer (NMSC). Studies in in vitro and in vivo experimental models have highlighted the transforming properties of beta HPV E6 and E7 oncoproteins. However, epidemiological findings indicate that beta HPV types may be required only at an initial stage of carcinogenesis, and may become dispensable after full establishment of NMSC. Here, we further investigate the potential role of beta HPVs in NMSC using a Cre-loxP-based transgenic (Tg) mouse model that expresses beta HPV38 E6 and E7 oncogenes in the basal layer of the skin epidermis and is highly susceptible to UV-induced carcinogenesis. Using whole-exome sequencing, we show that, in contrast to WT animals, when exposed to chronic UV irradiation K14 HPV38 E6/E7 Tg mice accumulate a large number of UV-induced DNA mutations, which increase proportionally with the severity of the skin lesions. The mutation pattern detected in the Tg skin lesions closely resembles that detected in human NMSC, with the highest mutation rate in p53 and Notch genes. Using the Cre-lox recombination system, we observed that deletion of the viral oncogenes after development of UV-induced skin lesions did not affect the tumour growth. Together, these findings support the concept that beta HPV types act only at an initial stage of carcinogenesis, by potentiating the deleterious effects of UV radiation. PMID:29324843

  18. The CDC Hemophilia B mutation project mutation list: a new online resource.

    PubMed

    Li, Tengguo; Miller, Connie H; Payne, Amanda B; Craig Hooper, W

    2013-11-01

    Hemophilia B (HB) is caused by mutations in the human gene F9. The mutation type plays a pivotal role in genetic counseling and prediction of inhibitor development. To help the HB community understand the molecular etiology of HB, we have developed a listing of all F9 mutations that are reported to cause HB based on the literature and existing databases. The Centers for Disease Control and Prevention (CDC) Hemophilia B Mutation Project (CHBMP) mutation list is compiled in an easily accessible format of Microsoft Excel and contains 1083 unique mutations that are reported to cause HB. Each mutation is identified using Human Genome Variation Society (HGVS) nomenclature standards. The mutation types and the predicted changes in amino acids, if applicable, are also provided. Related information including the location of mutation, severity of HB, the presence of inhibitor, and original publication reference are listed as well. Therefore, our mutation list provides an easily accessible resource for genetic counselors and HB researchers to predict inhibitors. The CHBMP mutation list is freely accessible at http://www.cdc.gov/hemophiliamutations.

  19. Structures of the E46K Mutant-Type α-Synuclein Protein and Impact of E46K Mutation on the Structures of the Wild-Type α-Synuclein Protein

    PubMed Central

    2013-01-01

    The E46K genetic missense mutation of the wild-type α-synuclein protein was recently identified in a family of Spanish origin with hereditary Parkinson’s disease. Detailed understanding of the structures of the monomeric E46K mutant-type α-synuclein protein as well as the impact of the E46K missense mutation on the conformations and free energy landscapes of the wild-type α-synuclein are required for gaining insights into the pathogenic mechanism of Parkinson’s disease. In this study, we use extensive parallel tempering molecular dynamics simulations along with thermodynamic calculations to assess the secondary and tertiary structural properties as well as the conformational preferences of the monomeric wild-type and E46K mutant-type α-synuclein proteins in an aqueous solution environment. We also present the residual secondary structure component conversion stabilities with dynamics using a theoretical strategy, which we most recently developed. To the best of our knowledge, this study presents the first detailed comparison of the structural and thermodynamic properties of the wild-type and E46K mutant-type α-synuclein proteins in an aqueous solution environment at the atomic level with dynamics. We find that the E46K mutation results not only in local but also in long-range changes in the structural properties of the wild-type α-synuclein protein. The mutation site shows a significant decrease in helical content as well as a large increase in β-sheet structure formation upon E46K mutation. In addition, the β-sheet content of the C-terminal region increases significantly in the E46K mutant-type αS in comparison to the wild-type αS. Our theoretical strategy developed to assess the thermodynamic preference of secondary structure transitions indicates that this shift in secondary structure is the result of a decrease in the thermodynamic preference of turn to helix conversions while the coil to β-sheet preference increases for these residues. Long

  20. Diffuse reticuloendothelial system involvement in type IV glycogen storage disease with a novel GBE1 mutation: a case report and review.

    PubMed

    Magoulas, Pilar L; El-Hattab, Ayman W; Roy, Angshumoy; Bali, Deeksha S; Finegold, Milton J; Craigen, William J

    2012-06-01

    Glycogen storage disease type IV is a rare autosomal recessive disorder of glycogen metabolism caused by mutations in the GBE1 gene that encodes the 1,4-alpha-glucan-branching enzyme 1. Its clinical presentation is variable, with the most common form presenting in early childhood with primary hepatic involvement. Histologic manifestations in glycogen storage disease type IV typically consist of intracytoplasmic non-membrane-bound inclusions containing abnormally branched glycogen (polyglucosan bodies) within hepatocytes and myocytes. We report a female infant with classic hepatic form of glycogen storage disease type IV who demonstrated diffuse reticuloendothelial system involvement with the spleen, bone marrow, and lymph nodes infiltrated by foamy histiocytes with intracytoplasmic polyglucosan deposits. Sequence analysis of the GBE1 gene revealed compound heterozygosity for a previously described frameshift mutation (c.1239delT) and a novel missense mutation (c.1279G>A) that is predicted to alter a conserved glycine residue. GBE enzyme analysis revealed no detectable activity. A review of the literature for glycogen storage disease type IV patients with characterized molecular defects and deficient enzyme activity reveals most GBE1 mutations to be missense mutations clustering in the catalytic enzyme domain. Individuals with the classic hepatic form of glycogen storage disease type IV tend to be compound heterozygotes for null and missense mutations. Although the extensive reticuloendothelial system involvement that was observed in our patient is not typical of glycogen storage disease type IV, it may be associated with severe enzymatic deficiency and a poor outcome. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Identification of a novel MYO7A mutation in Usher syndrome type 1.

    PubMed

    Cheng, Ling; Yu, Hongsong; Jiang, Yan; He, Juan; Pu, Sisi; Li, Xin; Zhang, Li

    2018-01-05

    Usher syndrome (USH) is an autosomal recessive disease characterized by deafness and retinitis pigmentosa. In view of the high phenotypic and genetic heterogeneity in USH, performing genetic screening with traditional methods is impractical. In the present study, we carried out targeted next-generation sequencing (NGS) to uncover the underlying gene in an USH family (2 USH patients and 15 unaffected relatives). One hundred and thirty-five genes associated with inherited retinal degeneration were selected for deep exome sequencing. Subsequently, variant analysis, Sanger validation and segregation tests were utilized to identify the disease-causing mutations in this family. All affected individuals had a classic USH type I (USH1) phenotype which included deafness, vestibular dysfunction and retinitis pigmentosa. Targeted NGS and Sanger sequencing validation suggested that USH1 patients carried an unreported splice site mutation, c.5168+1G>A, as a compound heterozygous mutation with c.6070C>T (p.R2024X) in the MYO7A gene. A functional study revealed decreased expression of the MYO7A gene in the individuals carrying heterozygous mutations. In conclusion, targeted next-generation sequencing provided a comprehensive and efficient diagnosis for USH1. This study revealed the genetic defects in the MYO7A gene and expanded the spectrum of clinical phenotypes associated with USH1 mutations.

  2. Mutations in a novel gene with transmembrane domains underlie Usher syndrome type 3.

    PubMed

    Joensuu, T; Hämäläinen, R; Yuan, B; Johnson, C; Tegelberg, S; Gasparini, P; Zelante, L; Pirvola, U; Pakarinen, L; Lehesjoki, A E; de la Chapelle, A; Sankila, E M

    2001-10-01

    Usher syndrome type 3 (USH3) is an autosomal recessive disorder characterized by progressive hearing loss, severe retinal degeneration, and variably present vestibular dysfunction, assigned to 3q21-q25. Here, we report on the positional cloning of the USH3 gene. By haplotype and linkage-disequilibrium analyses in Finnish carriers of a putative founder mutation, the critical region was narrowed to 250 kb, of which we sequenced, assembled, and annotated 207 kb. Two novel genes-NOPAR and UCRP-and one previously identified gene-H963-were excluded as USH3, on the basis of mutational analysis. USH3, the candidate gene that we identified, encodes a 120-amino-acid protein. Fifty-two Finnish patients were homozygous for a termination mutation, Y100X; patients in two Finnish families were compound heterozygous for Y100X and for a missense mutation, M44K, whereas patients in an Italian family were homozygous for a 3-bp deletion leading to an amino acid deletion and substitution. USH3 has two predicted transmembrane domains, and it shows no homology to known genes. As revealed by northern blotting and reverse-transcriptase PCR, it is expressed in many tissues, including the retina.

  3. Spatio-temporal genetic heterogeneity of CTNNB1 mutations in sporadic desmoid type fibromatosis lesions.

    PubMed

    Doyen, Jérôme; Duranton-Tanneur, Valérie; Hostein, Isabelle; Karanian-Philippe, Marie; Chevreau, Christine; Breibach, Florence; Coutts, Michael; Dadone, Bérengère; Saint-Paul, Marie-Christine; Gugenheim, Jean; Duffaud, Florence; Pedeutour, Florence

    2016-03-01

    Desmoid type fibromatosis (DT) is a rare lesion of unclear pathogenesis that most often presents a mutation of the (β-catenin) gene. The natural history and clinical evolution are highly variable between patients and to date there is no consensus on optimal therapy. We report two cases of a patient with multiple DT lesions. Molecular investigations performed in both patients on multiple tumors at different anatomical sites revealed non-identical CTNNB1 mutations. The first patient was a 39-year-old man with a history of recurrent DT. In two of the DT lesions, three different mutations were found in codons 41 and 45, respectively. The lesions showed marked inflammatory features, characterized by IgG4 positive lymphoplasmacytic infiltrates and a foreign body reaction, which increased in intensity over time. The patient was eventually treated with a COX-2 inhibitor and the remaining mass was stabilized. In the two DT lesions of the second patient, CTNNB1 mutations S45P and T41A were found. The presence of different mutations in multiple focally recurrent sporadic DT lesions indicates that they do not have a clonal relationship. Our data suggest that a CTNNB1 mutation is a necessary event probably by providing a selective growth advantage. An IgG4 host antigen response is discussed as a potential predisposing factor for one of the patients.

  4. iMARS--mutation analysis reporting software: an analysis of spontaneous cII mutation spectra.

    PubMed

    Morgan, Claire; Lewis, Paul D

    2006-01-31

    The sensitivity of any mutational assay is determined by the level at which spontaneous mutations occur in the corresponding untreated controls. Establishing the type and frequency at which mutations occur naturally within a test system is essential if one is to draw scientifically sound conclusions regarding chemically induced mutations. Currently, mutation-spectra analysis is laborious and time-consuming. Thus, we have developed iMARS, a comprehensive mutation-spectrum analysis package that utilises routinely used methodologies and visualisation tools. To demonstrate the use and capabilities of iMARS, we have analysed the distribution, types and sequence context of spontaneous base substitutions derived from the cII gene mutation assay in transgenic animals. Analysis of spontaneous mutation spectra revealed variation both within and between the transgenic rodent test systems Big Blue Mouse, MutaMouse and Big Blue Rat. The most common spontaneous base substitutions were G:C-->A:T transitions and G:C-->T:A transversions. All Big Blue Mouse spectra were significantly different from each other by distribution and nearly all by mutation type, whereas the converse was true for the other test systems. Twenty-eight mutation hotspots were observed across all spectra generally occurring in CG, GA/TC, GG and GC dinucleotides. A mutation hotspot at nucleotide 212 occurred at a higher frequency in MutaMouse and Big Blue Rat. In addition, CG dinucleotides were the most mutable in all spectra except two Big Blue Mouse spectra. Thus, spontaneous base-substitution spectra showed more variation in distribution, type and sequence context in Big Blue Mouse relative to spectra derived from MutaMouse and Big Blue Rat. The results of our analysis provide a baseline reference for mutation studies utilising the cII gene in transgenic rodent models. The potential differences in spontaneous base-substitution spectra should be considered when making comparisons between these test systems

  5. Brooke-Spiegler syndrome: report of 10 patients from 8 families with novel germline mutations: evidence of diverse somatic mutations in the same patient regardless of tumor type.

    PubMed

    Sima, Radek; Vanecek, Tomas; Kacerovska, Denisa; Trubac, Pavel; Cribier, Bernard; Rutten, Arno; Vazmitel, Marina; Spagnolo, Dominic V; Litvik, Radek; Vantuchova, Yvetta; Weyers, Wolfgang; Pearce, Robert L; Pearn, John; Michal, Michal; Kazakov, Dmitry V

    2010-06-01

    Brooke-Spiegler syndrome (BSS) is an inherited autosomal dominant disease characterized by the development of multiple adnexal cutaneous neoplasms including spiradenoma, cylindroma, spiradenocylindroma, and trichoepithelioma (cribriform trichoblastoma). BSS patients have various mutations in the CYLD gene, a tumor suppressor gene located on chromosome 16q. Our search of the literature revealed 51 germline CYLD mutations reported to date. Somatic CYLD mutations have rarely been investigated. We studied 10 patients from 8 families with BSS. Analysis of germline mutations of the CYLD gene was performed using either peripheral blood or nontumorous tissue. In addition, 19 formalin-fixed paraffin-embedded tumor samples were analyzed for somatic mutations, including loss of heterozygosity studies. A total of 38 tumors were available for histopathologic review. We have identified 8 novel germline mutations, all of which consisted of substitutions, deletions, and insertions/duplications and all except one led to premature stop codons. The substitution mutation in a single case was also predicted to disrupt protein function and seems causally implicated in tumor formation. We demonstrate for the first time that somatic events, loss of heterozygosity, or sequence mutations may differ among multiple neoplasms even of the same histologic type, occurring in the same patient.

  6. Large scale analysis of the mutational landscape in β-glucuronidase: A major player of mucopolysaccharidosis type VII.

    PubMed

    Khan, Faez Iqbal; Shahbaaz, Mohd; Bisetty, Krishna; Waheed, Abdul; Sly, William S; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2016-01-15

    The lysosomal storage disorders are a group of 50 unique inherited diseases characterized by unseemly lipid storage in lysosomes. These malfunctions arise due to genetic mutations that result in deficiency or reduced activities of the lysosomal enzymes, which are responsible for catabolism of biological macromolecules. Sly syndrome or mucopolysaccharidosis type VII is a lysosomal storage disorder associated with the deficiency of β-glucuronidase (EC 3.2.1.31) that catalyzes the hydrolysis of β-D-glucuronic acid residues from the non-reducing terminal of glycosaminoglycan. The effects of the disease causing mutations on the framework of the sequences and structure of β-glucuronidase (GUSBp) were analyzed utilizing a variety of bioinformatic tools. These analyses showed that 211 mutations may result in alteration of the biological activity of GUSBp, including previously experimentally validated mutations. Finally, we refined 90 disease causing mutations, which presumably cause a significant impact on the structure, function, and stability of GUSBp. Stability analyses showed that mutations p.Phe208Pro, p.Phe539Gly, p.Leu622Gly, p.Ile499Gly and p.Ile586Gly caused the highest impact on GUSBp stability and function because of destabilization of the protein structure. Furthermore, structures of wild type and mutant GUSBp were subjected to molecular dynamics simulation to examine the relative structural behaviors in the explicit conditions of water. In a broader view, the use of in silico approaches provided a useful understanding of the effect of single point mutations on the structure-function relationship of GUSBp. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Mutational Analysis of Cell Types in TSC

    DTIC Science & Technology

    2008-01-01

    disability, and autism . TSC1/TSC2 gene mutations lead to developmental alterations in brain structure known as tubers in over 80% of TSC patients. Loss of...that is associated with epilepsy, cognitive disability, and autism . TSC1/TSC2 gene mutations lead to developmental alterations in brain structure...2000). Comorbid neuropsychological disorders such as autism , mental retardation (MR), pervasive developmental disorder, attention deficit disorder (ADD

  8. Novel USH2A mutations in Israeli patients with retinitis pigmentosa and Usher syndrome type 2.

    PubMed

    Kaiserman, Nadia; Obolensky, Alexey; Banin, Eyal; Sharon, Dror

    2007-02-01

    To identify USH2A mutations in Israeli patients with autosomal-recessive Usher syndrome type 2 (USH2) and retinitis pigmentosa (RP). Patients from 95 families with RP and 4 with USH2 were clinically evaluated. USH2A exons 2-72 were scanned for mutations using single-strand conformation and sequencing analyses. The frequency of novel missense changes was determined in patients and controls using restriction endonucleases. The analysis revealed 3 USH2A mutations, 2 of which are novel, in 2 families with USH2 and a large family (MOL0051) with both USH2 and RP. Compound heterozygotes for 2 null mutations (Thr80fs and Arg737stop) in MOL0051 suffered from USH2 while compound heterozygotes for 1 of the null mutations and a novel missense mutation (Gly4674Arg) had nonsyndromic RP. Our results support the involvement of USH2A in nonsyndromic RP and we report here of a second, novel, missense mutation in this gene causing autosomal-recessive RP. Possible involvement of USH2A should be considered in the molecular genetic evaluation of patients with autosomal-recessive RP. Understanding the mechanism by which different USH2A mutations cause either USH2 or RP may assist in the development of novel therapeutic approaches.

  9. Mutation screening of INS and KCNJ11 genes in Taiwanese children with type 1B diabetic onset before the age of 5 years.

    PubMed

    Lo, Fu-Sung

    2018-01-17

    Type 1 diabetes (T1D) is caused by β-cell destruction, usually leading to absolute insulin deficiency. T1D is a heterogeneous disease and is divided into two subtypes according to the presence or absence of pancreatic autoantibodies: type 1A (immune mediated) and type 1B (idiopathic). Genes such as KCNJ11 or INS, which play key roles in β-cell function, provide some insight into the pathogenesis of type 1B diabetes. In this study, we screened 110 Taiwanese children (61 males and 49 females) with T1D onset before the age of 5 years for mutations of INS and KCNJ11. We identified one missense heterozygous mutation in KCNJ11 (c.989A>G, p.Y330C) and no INS mutations among 28 probands. This is the first study to screen patients with autoantibody-negative T1D diagnosed before the age of 5 years for INS and KCNJ11 mutations in Taiwan. Although KCNJ11 mutations are always reported in patients with permanent neonatal diabetes, this gene mutation can be detected after 6 months of age. Further studies in other patients with type 1B diabetes and their families are required to elucidate the contributions of the KCNJ11 mutation to the T1D phenotype. Copyright © 2018. Published by Elsevier B.V.

  10. Hereditary sensory and autonomic neuropathy type 1 (HSANI) caused by a novel mutation in SPTLC2

    PubMed Central

    Murphy, Sinéad M.; Ernst, Daniela; Wei, Yu; Laurà, Matilde; Liu, Yo-Tsen; Polke, James; Blake, Julian; Winer, John; Houlden, Henry; Hornemann, Thorsten

    2013-01-01

    Objective: To describe the clinical and neurophysiologic phenotype of a family with hereditary sensory and autonomic neuropathy type 1 (HSANI) due to a novel mutation in SPTLC2 and to characterize the biochemical properties of this mutation. Methods: We screened 107 patients with HSAN who were negative for other genetic causes for mutations in SPTLC2. The biochemical properties of a new mutation were characterized in cell-free and cell-based activity assays. Results: A novel mutation (A182P) was found in 2 subjects of a single family. The phenotype of the 2 subjects was an ulcero-mutilating sensory-predominant neuropathy as described previously for patients with HSANI, but with prominent motor involvement and earlier disease onset in the first decade of life. Affected patients had elevated levels of plasma 1-deoxysphingolipids (1-deoxySLs). Biochemically, the A182P mutation was associated with a reduced canonical activity but an increased alternative activity with alanine, which results in largely increased 1-deoxySL levels, supporting their pathogenicity. Conclusion: This study confirms that mutations in SPTLC2 are associated with increased deoxySL formation causing HSANI. PMID:23658386

  11. [Clinical features and ETFDH mutations of children with late-onset glutaric aciduria type II: a report of two cases].

    PubMed

    Cheng, Yan-Yang; Tang, Yue; Liu, Ao-Jie; Wei, Li; Lin, Lan; Zhang, Jing; Zhi, Liang

    2017-09-01

    To investigate the clinical and genetic features of two families with late-onset glutaric aciduria type II caused by ETFDH mutations. Target gene sequence capture and next generation sequencing were used for sequencing of suspected patients and their family members. The patients' clinical features were retrospectively analyzed and literature review was performed. The probands of the two families had a clinical onset at the ages of 10 years and 5.5 years respectively, with the clinical manifestations of muscle weakness and muscle pain. Laboratory examinations revealed significant increases in the serum levels of creatine kinase, creatine kinase-MB, and lactate dehydrogenase. Tandem mass spectrometry showed increases in various types of acylcarnitines. The analysis of urine organic acids showed an increase in glutaric acid. Electromyography showed myogenic damage in both patients. Gene detection showed two novel mutations in the ETFDH gene (c.1331T>C from the mother and c.824C>T from the father) in patient 1, and the patient's younger brother carried the c.1331T>C mutation but had a normal phenotype. In patient 2, there was a novel mutation (c.177insT from the father) and a known mutation (c.1474T>C from the mother) in the ETFDH gene. Several family members carried such mutations. Both patients were diagnosed with glutaric aciduria type II. Their symptoms were improved after high-dose vitamin B2 treatment. For patients with unexplained muscle weakness and pain, serum creatine kinase, acylcarnitines, and urinary organic acids should be measured, and the possibility of glutaric aciduria type II should be considered. Genetic detection is helpful to make a confirmed diagnosis.

  12. Reassessment of the putative role of BLK-p.A71T loss-of-function mutation in MODY and type 2 diabetes.

    PubMed

    Bonnefond, A; Yengo, L; Philippe, J; Dechaume, A; Ezzidi, I; Vaillant, E; Gjesing, A P; Andersson, E A; Czernichow, S; Hercberg, S; Hadjadj, S; Charpentier, G; Lantieri, O; Balkau, B; Marre, M; Pedersen, O; Hansen, T; Froguel, P; Vaxillaire, M

    2013-03-01

    MODY is believed to be caused by at least 13 different genes. Five rare mutations at the BLK locus, including only one non-synonymous p.A71T variant, were reported to segregate with diabetes in three MODY families. The p.A71T mutation was shown to abolish the enhancing effect of BLK on insulin content and secretion from pancreatic beta cell lines. Here, we reassessed the contribution of BLK to MODY and tested the effect of BLK-p.A71T on type 2 diabetes risk and variations in related traits. BLK was sequenced in 64 unelucidated MODY samples. The BLK-p.A71T variant was genotyped in a French type 2 diabetes case-control study including 4,901 cases and 4,280 controls, and in the DESIR (Data from an Epidemiological Study on the Insulin Resistance Syndrome) and SUVIMAX (Supplementation en Vitamines et Mineraux Antioxydants) population-based cohorts (n = 6,905). The variant effects were assessed by logistic and linear regression models. No rare non-synonymous BLK mutations were found in the MODY patients. The BLK p.A71T mutation was present in 52 normoglycaemic individuals, making it very unlikely that this loss-of-function mutation causes highly penetrant MODY. We found a nominal association between this variant and increased type 2 diabetes risk, with an enrichment of the mutation in the obese diabetic patients, although no significant association with BMI was identified. No mutation in BLK was found in our MODY cohort. From our findings, the BLK-p.A71T mutation may weakly influence type 2 diabetes risk in the context of obesity; however, this will require further validation.

  13. The mirrors for the Extreme Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Finley, David S.; Green, James C.; Bowyer, Stuart; Malina, Roger F.

    1986-01-01

    Flight mirrors for the Extreme Ultraviolet Explorer satellite are currently under fabrication. The grazing incidence metal mirrors are Wolter-Schwarzschild Type I and II and are figured by diamond turning. Imaging performance is excellent, with the figure after polishing for the best mirror being such that the full width-half maximum is 1.0 arc seconds and the half energy width is 8 arc seconds measured at visible wavelengths. Surface finish, as determined from scattering measurements in the extreme ultraviolet, is about 20 A rms.

  14. A novel TRPS1 mutation in a Moroccan family with Tricho-rhino-phalangeal syndrome type III: case report.

    PubMed

    Smaili, W; Elalaoui, S Chafai; Meier, S; Zerkaoui, M; Sefiani, A; Heinimann, K

    2017-05-03

    Tricho-rhino-phalangeal syndrome (TRPS) is an autosomal dominant disorder characterized by craniofacial and skeletal malformations including short stature, thin scalp hair, sparse lateral eyebrows, pear-shaped nose and cone shaped epiphyses. This condition is caused by haploinsufficiency of the TRPS1 gene. Previous genotype-phenotype studies have correlated exon 6 missense mutations with TRPS type III, a severe form of type I with pronounced, facial characteristics, short stature and brachydactyly and differing from type II by the absence of exostoses and mental retardation. We report the first case of a Moroccan family, a father and his three children, in which the diagnosis of type III TRPS was suspected based on severe clinical and radiological features. Molecular analysis of the TRPS1 gene revealed a novel missense mutation in exon 6, (p.Ala932Ser), located in the GATA-type DNA-binding zinc finger domain. Our observations in this kindred support the previous genotype-phenotype results suggesting that patients with more pronounced facial characteristics and more severe shortening of hands and feet are more likely to have mutation in exon 6 of TRPS1.

  15. Research in extreme ultraviolet and far ultraviolet astronomy

    NASA Technical Reports Server (NTRS)

    Labov, S. E.

    1985-01-01

    Instruments designed to explore different aspects of far and extreme ultraviolet cosmic radiation were studied. The far ultraviolet imager (FUVI) was flown on the Aries sounding rocket. Its unique large format 75mm detector mapped out the far ultraviolet background radiation with a resolution of only a few arc minutes. Analysis of this data indicates to what extent the FUVI background is extra galactic in origin. A power spectrum of the spatial fluctuations will have direct consequences for galactic evolution.

  16. Insights into the binding specificity of wild type and mutated wheat germ agglutinin towards Neu5Acα(2-3)Gal: a study by in silico mutations and molecular dynamics simulations.

    PubMed

    Parasuraman, Ponnusamy; Murugan, Veeramani; Selvin, Jeyasigamani F A; Gromiha, M Michael; Fukui, Kazuhiko; Veluraja, Kasinadar

    2014-08-01

    Wheat germ agglutinin (WGA) is a plant lectin, which specifically recognizes the sugars NeuNAc and GlcNAc. Mutated WGA with enhanced binding specificity can be used as biomarkers for cancer. In silico mutations are performed at the active site of WGA to enhance the binding specificity towards sialylglycans, and molecular dynamics simulations of 20 ns are carried out for wild type and mutated WGAs (WGA1, WGA2, and WGA3) in complex with sialylgalactose to examine the change in binding specificity. MD simulations reveal the change in binding specificity of wild type and mutated WGAs towards sialylgalactose and bound conformational flexibility of sialylgalactose. The mutated polar amino acid residues Asn114 (S114N), Lys118 (G118K), and Arg118 (G118R) make direct and water mediated hydrogen bonds and hydrophobic interactions with sialylgalactose. An analysis of possible hydrogen bonds, hydrophobic interactions, total pair wise interaction energy between active site residues and sialylgalactose and MM-PBSA free energy calculation reveals the plausible binding modes and the role of water in stabilizing different binding modes. An interesting observation is that the binding specificity of mutated WGAs (cyborg lectin) towards sialylgalactose is found to be higher in double point mutation (WGA3). One of the substituted residues Arg118 plays a crucial role in sugar binding. Based on the interactions and energy calculations, it is concluded that the order of binding specificity of WGAs towards sialylgalactose is WGA3 > WGA1 > WGA2 > WGA. On comparing with the wild type, double point mutated WGA (WGA3) exhibits increased specificity towards sialylgalactose, and thus, it can be effectively used in targeted drug delivery and as biological cell marker in cancer therapeutics. Copyright © 2014 John Wiley & Sons, Ltd.

  17. [A clinical and hereditary analysis of novel complex heterozygous KCNJ1 mutation in a Bartter syndrome type Ⅱ patient].

    PubMed

    Li, X Y; Jiang, Y; Xu, L J; Duan, L; Peng, X Y; Chen, L M; Xia, W B; Xing, X P

    2017-10-01

    Bartter syndrome (BS) is a hereditary condition transmitted as an autosomal recessive (Bartter type 1 to 4) or dominant trait (Bartter type 5). The disease associates hypokalemic alkalosis with varying degrees of hypercalciuria. Here we presented a case (BS type Ⅱ) of a 17 years old female presented with polyhydramnios, polyuria, nephrocalcinosis and hypokalemia, which was alleviated after treatment with celecoxib and vitamin D(3). DNA sequencing identified compound heterozygous KCNJ 1 gene mutations, c. 931C >T (p.R311W) and c. 445-446insCCTGAACAC (p.V149Afs, 150X), with the latter a novel mutation. Her father and mother were heterozygous carriers of c. 931C >T (p.R311W) and c. 445-446insCCTGAACAC (p.V149Afs, 150X), respectively. In conclusion, this case of BS type Ⅱ is caused by a novel compound heterozygous KCNJ 1 mutation. Further studies are needed to verify the effect of celecoxib in BS patients.

  18. Hypomorphic mutations of SEC23B gene account for mild phenotypes of congenital dyserythropoietic anemia type II

    PubMed Central

    Russo, Roberta; Langella, Concetta; Esposito, Maria Rosaria; Gambale, Antonella; Vitiello, Francesco; Vallefuoco, Fara; Ek, Torben; Yang, Elizabeth; Iolascon, Achille

    2013-01-01

    Congenital dyserythropoietic anemia type II, a recessive disorder of erythroid differentiation, is due to mutations in SEC23B, a component of the core trafficking machinery COPII. In no case homozygosity or compound heterozygosity for nonsense mutation(s) was found. This study represents the first description of molecular mechanisms underlying SEC23B hypomorphic genotypes by the analysis of five novel mutations. Our findings suggest that reduction of SEC23B gene expression is not associated with CDA II severe clinical presentation; conversely, the combination of a hypomorphic allele with one functionally altered results in more severe phenotypes. We propose a mechanism of compensation SEC23A-mediated which justifies these observations. PMID:23453696

  19. [From gene to disease; primary hyperoxaluria type I caused by mutations in the AGXT gene].

    PubMed

    van Woerden, C S; Groothof, J W; Wanders, R J A; Waterham, H R; Wijburg, F R

    2006-07-29

    Primary hyperoxaluria type I (PH1) is a congenital defect in glyoxylate metabolism caused by a deficiency in the liver-specific peroxisomal enzyme known as alanine glyoxylate aminotransferase (AGT). The deficiency is due to mutations in the AGXT gene, located on chromosome 2q37.3, and results in the conversion of glyoxylate to oxalate. The crystallisation of oxalate with calcium results in symptoms varying from a solitary kidney stone to end-stage renal disease with systemic oxalosis. The diagnosis is based on increased oxalate and glycolate excretion in the urine, reduced AGT activity in liver tissue, and confirmed mutations in the AGXT gene. Over 50 disease-causing mutations have been identified in PH1, which are associated with a wide range of effects on the AGT enzyme. Homozygous Gly170Arg or Phei52Ile mutations are associated with a reduction in urinary oxalate excretion upon pyridoxine administration and long-term preservation of renal function when treatment is initiated in a timely manner. Homozygous 33insC and Gly82Arg mutations result in a much poorer prognosis. Mutational analysis of the AGXT gene in PH1 patients can be a useful tool for establishing the diagnosis and choosing an appropriate therapeutic strategy.

  20. Determination of mutated genes in the presence of wild-type DNA by using molecular beacons as probe

    NASA Astrophysics Data System (ADS)

    Zhang, Yonghua; Ai, Junjie; Gu, Qiaorong; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao

    2017-03-01

    Low-abundance mutations in the presence of wild-type DNA can be determined using molecular beacon (MB) as probe. A MB is generally used as DNA probe because it can distinguish single-base mismatched target DNA from fully matched target DNA. However, the probe can not determine low-abundance mutations in the presence of wild-type DNA. In this study, this limitation is addressed by enhancing the stability of unpaired base-containing dsDNA with a hydrogen-bonding ligand, which was added after hybridization of the MB to the target DNA. The ligand formed hydrogen bonds with unpaired bases and stabilized the unpaired base-containing dsDNA if target DNA is mutated one. As a result, more MBs were opened by the mutant genes in the presence of the ligand and a further increase in the fluorescence intensity was obtained. By contrast, fluorescence intensity did not change if target DNA is wild-type one. Consequent increase in the fluorescence intensity of the MB was regarded as a signal derived from mutant genes. The proposed method was applied in synthetic template systems to determine point mutation in DNA obtained from PCR analysis. The method also allows rapid and simple discrimination of a signal if it is originated in the presence of mutant gene or alternatively by a lower concentration of wild gene.

  1. The Frequency and Type of K-RAS Mutations in Mexican Patients With Colorectal Cancer: A National Study.

    PubMed

    Cárdenas-Ramos, Susana G; Alcázar-González, Gregorio; Reyes-Cortés, Luisa M; Torres-Grimaldo, Abdiel A; Calderón-Garcidueñas, Ana L; Morales-Casas, José; Flores-Sánchez, Patricia; De León-Escobedo, Raúl; Gómez-Díaz, Antonio; Moreno-Bringas, Carmen; Sánchez-Guillén, Jorge; Ramos-Salazar, Pedro; González-de León, César; Barrera-Saldaña, Hugo A

    2017-06-01

    Current metastatic colorectal cancer (mCRC) therapy uses monoclonal antibodies against the epidermal growth factor receptor. This treatment is only useful in the absence of K-RAS gene mutations; therefore the study of such mutations is part of a personalized treatment. The aim of this work is to determine the frequency and type of the most common K-RAS mutations in Mexican patients with metastatic disease by nucleotide sequencing. We studied 888 patients with mCRC from different regions of Mexico. The presence of mutations in exon 2, codons 12 and 13, of the K-RAS gene was determined by nucleotide sequencing. Patients exhibited K-RAS gene mutations in 35% (310/888) of cases. Mutation frequency of codons 12 and 13 was 71% (221/310) and 29% (89/310), respectively. The most common mutation (45.7%) in codon 12 was c.35G>A (p.G12D), whereas the one in codon 13 was c.38G>A (p.G13D) (78.7%). Given the frequency of K-RAS mutations in Mexicans, making a genetic study before deciding to treat mCRC patients with monoclonal antibodies is indispensable.

  2. [Gene mutation analysis of X-linked hypophosphatemic rickets].

    PubMed

    Song, Ying; Ma, Hong-Wei; Li, Fang; Hu, Man; Ren, Shuang; Yu, Ya-Fen; Zhao, Gui-Jie

    2013-11-01

    To investigate the frequency and type of PHEX gene mutations in children with X-linked hypophosphatemic rickets (XLH), the possible presence of mutational hot spots, and the relationship between genotype and clinical phenotype. Clinical data of 10 children with XLH was retrospectively reviewed. The relationship between gene mutation type and severity of XLH was evaluated. PHEX gene mutations were detected in all 10 children with XLH, including 6 cases of missense mutation, 2 cases of splice site mutation, 1 case of frameshift mutation, and 1 case of nonsense mutation. Two new mutations, c.2048T>C and IVS14+1delAG, were found. The type of PHEX gene mutation was not associated with the degree of short stature and leg deformity (P=0.571 and 0.467), and the mutation site was also not associated with the degree of short stature and leg deformity (P=0.400 and 1.000). Missense mutation is the most common type of PHEX gene mutation in children with XLH, and c.2048T>C and IVS14+1delAG are two new PHEX gene mutations. The type and site of PHEX gene mutation are not associated with the severity of XLH.

  3. A novel mutation in the AGXT gene causing primary hyperoxaluria type I: genotype-phenotype correlation.

    PubMed

    M'Dimegh, Saoussen; Aquaviva-Bourdain, Cécile; Omezzine, Asma; M'Barek, Ibtihel; Souche, Geneviéve; Zellama, Dorsaf; Abidi, Kamel; Achour, Abdelattif; Gargah, Tahar; Abroug, Saoussen; Bouslama, Ali

    2016-09-01

    Primary hyperoxaluria type I (PH1) is an autosomal recessive metabolic disorder caused by inherited mutations in the AGXT gene encoding liver peroxisomal alanine : glyoxylate aminotransferase (AGT) which is deficient or mistargeted to mitochondria. PH1 shows considerable phenotypic and genotypic heterogeneity. The incidence and severity of PH1 varies in different geographic regions. DNA samples of the affected members from two unrelated Tunisian families were tested by amplifying and sequencing each of the AGXT exons and intron-exon junctions. We identified a novel frameshift mutation in the AGXT gene, the c.406_410dupACTGC resulting in a truncated protein (p.Gln137Hisfs*19). It is found in homozygous state in two nonconsanguineous unrelated families from Tunisia. These molecular findings provide genotype/phenotype correlations in the intrafamilial phenotypic and permit accurate carrier detection, and prenatal diagnosis. The novel p.Gln137Hisfs*19 mutation detected in our study extend the spectrum of known AGXT gene mutations in Tunisia.

  4. MLH1-deficient Colorectal Carcinoma With Wild-type BRAF and MLH1 Promoter Hypermethylation Harbor KRAS Mutations and Arise From Conventional Adenomas.

    PubMed

    Farchoukh, Lama; Kuan, Shih-Fan; Dudley, Beth; Brand, Randall; Nikiforova, Marina; Pai, Reetesh K

    2016-10-01

    Between 10% and 15% of colorectal carcinomas demonstrate sporadic DNA mismatch-repair protein deficiency as a result of MLH1 promoter methylation and are thought to arise from sessile serrated adenomas, termed the serrated neoplasia pathway. Although the presence of the BRAF V600E mutation is indicative of a sporadic cancer, up to 30% to 50% of colorectal carcinomas with MLH1 promoter hypermethylation will lack a BRAF mutation. We report the clinicopathologic and molecular features of MLH1-deficient colorectal carcinoma with wild-type BRAF and MLH1 promoter hypermethylation (referred to as MLH1-hypermethylated BRAF wild-type colorectal carcinoma, n=36) in comparison with MLH1-deficient BRAF-mutated colorectal carcinoma (n=113) and Lynch syndrome-associated colorectal carcinoma (n=36). KRAS mutations were identified in 31% of MLH1-hypermethylated BRAF wild-type colorectal carcinomas compared with 0% of MLH1-deficient BRAF-mutated colorectal carcinomas and 37% of Lynch syndrome-associated colorectal carcinomas. When a precursor polyp was identified, MLH1-hypermethylated BRAF wild-type colorectal carcinomas arose from precursor polyps resembling conventional tubular/tubulovillous adenomas in contrast to MLH1-deficient BRAF-mutated colorectal carcinomas, which arose from precursor sessile serrated adenomas (P<0.001). Both MLH1-hypermethylated BRAF wild-type colorectal carcinoma and MLH1-deficient BRAF-mutated colorectal carcinoma had a predilection for the right colon compared with Lynch syndrome-associated colorectal carcinoma (86% vs. 92% vs. 49%, P<0.001). There was no significant difference in mucinous differentiation, tumor-infiltrating lymphocytes, Crohn-like reaction, and medullary differentiation between the 3 tumor groups. Using Kaplan-Meier survival functions, there was no significant difference in disease-specific survival between the 3 patient groups (P>0.05). In conclusion, our results indicate that MLH1-hypermethylated BRAF wild-type colorectal carcinomas

  5. HRAS mutations in Costello syndrome: detection of constitutional activating mutations in codon 12 and 13 and loss of wild-type allele in malignancy.

    PubMed

    Estep, Anne L; Tidyman, William E; Teitell, Michael A; Cotter, Philip D; Rauen, Katherine A

    2006-01-01

    Costello syndrome (CS) is a complex developmental disorder involving characteristic craniofacial features, failure to thrive, developmental delay, cardiac and skeletal anomalies, and a predisposition to develop neoplasia. Based on similarities with other cancer syndromes, we previously hypothesized that CS is likely due to activation of signal transduction through the Ras/MAPK pathway [Tartaglia et al., 2003]. In this study, the HRAS coding region was sequenced for mutations in a large, well-characterized cohort of 36 CS patients. Heterogeneous missense point mutations predicting an amino acid substitution were identified in 33/36 (92%) patients. The majority (91%) had a 34G --> A transition in codon 12. Less frequent mutations included 35G --> C (codon 12) and 37G --> T (codon 13). Parental samples did not have an HRAS mutation supporting the hypothesis of de novo heterogeneous mutations. There is phenotypic variability among patients with a 34G --> A transition. The most consistent features included characteristic facies and skin, failure to thrive, developmental delay, musculoskeletal abnormalities, visual impairment, cardiac abnormalities, and generalized hyperpigmentation. The two patients with 35G --> C had cardiac arrhythmias whereas one patient with a 37G --> T transversion had an enlarged aortic root. Of the patients with a clinical diagnosis of CS, neoplasia was the most consistent phenotypic feature for predicating an HRAS mutation. To gain an understanding of the relationship between constitutional HRAS mutations and malignancy, HRAS was sequenced in an advanced biphasic rhabdomyosarcoma/fibrosarcoma from an individual with a 34G --> A mutation. Loss of the wild-type HRAS allele was observed, suggesting tumorigenesis in CS patients is accompanied by additional somatic changes affecting HRAS. Finally, due to phenotypic overlap between CS and cardio-facio-cutaneous (CFC) syndromes, the HRAS coding region was sequenced in a well-characterized CFC cohort

  6. Screening for duplications, deletions and a common intronic mutation detects 35% of second mutations in patients with USH2A monoallelic mutations on Sanger sequencing.

    PubMed

    Steele-Stallard, Heather B; Le Quesne Stabej, Polona; Lenassi, Eva; Luxon, Linda M; Claustres, Mireille; Roux, Anne-Francoise; Webster, Andrew R; Bitner-Glindzicz, Maria

    2013-08-08

    Usher Syndrome is the leading cause of inherited deaf-blindness. It is divided into three subtypes, of which the most common is Usher type 2, and the USH2A gene accounts for 75-80% of cases. Despite recent sequencing strategies, in our cohort a significant proportion of individuals with Usher type 2 have just one heterozygous disease-causing mutation in USH2A, or no convincing disease-causing mutations across nine Usher genes. The purpose of this study was to improve the molecular diagnosis in these families by screening USH2A for duplications, heterozygous deletions and a common pathogenic deep intronic variant USH2A: c.7595-2144A>G. Forty-nine Usher type 2 or atypical Usher families who had missing mutations (mono-allelic USH2A or no mutations following Sanger sequencing of nine Usher genes) were screened for duplications/deletions using the USH2A SALSA MLPA reagent kit (MRC-Holland). Identification of USH2A: c.7595-2144A>G was achieved by Sanger sequencing. Mutations were confirmed by a combination of reverse transcription PCR using RNA extracted from nasal epithelial cells or fibroblasts, and by array comparative genomic hybridisation with sequencing across the genomic breakpoints. Eight mutations were identified in 23 Usher type 2 families (35%) with one previously identified heterozygous disease-causing mutation in USH2A. These consisted of five heterozygous deletions, one duplication, and two heterozygous instances of the pathogenic variant USH2A: c.7595-2144A>G. No variants were found in the 15 Usher type 2 families with no previously identified disease-causing mutations. In 11 atypical families, none of whom had any previously identified convincing disease-causing mutations, the mutation USH2A: c.7595-2144A>G was identified in a heterozygous state in one family. All five deletions and the heterozygous duplication we report here are novel. This is the first time that a duplication in USH2A has been reported as a cause of Usher syndrome. We found that 8 of

  7. A specific collagen type II gene (COL2A1) mutation presenting as spondyloperipheral dysplasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zabel, B.; Hilbert, K.; Spranger, J.

    1996-05-03

    We report on a patient with a skeletal dysplasia characterized by short stature, spondylo-epiphyseal involvement, and brachydactyly E-like changes. This condition has been described as spondyloperipheral dysplasia and the few published cases suggest autosomal dominant inheritance with considerable clinical variability. We found our sporadic case to be due to a collagen type II defect resulting from a specific COL2A1 mutation. This mutation is the first to be located at the C-terminal outside the helical domain of COL2A1. A frameshift as consequence of a 5 bp duplication in exon 51 leads to a stop codon. The resulting truncated C-propeptide region seemsmore » to affect helix formation and produces changes of chondrocyte morphology, collagen type II fibril structure and cartilage matrix composition. Our case with its distinct phenotype adds another chondrodysplasia to the clinical spectrum of type II collagenopathies. 16 refs., 4 figs.« less

  8. MutationAligner: a resource of recurrent mutation hotspots in protein domains in cancer

    PubMed Central

    Gauthier, Nicholas Paul; Reznik, Ed; Gao, Jianjiong; Sumer, Selcuk Onur; Schultz, Nikolaus; Sander, Chris; Miller, Martin L.

    2016-01-01

    The MutationAligner web resource, available at http://www.mutationaligner.org, enables discovery and exploration of somatic mutation hotspots identified in protein domains in currently (mid-2015) more than 5000 cancer patient samples across 22 different tumor types. Using multiple sequence alignments of protein domains in the human genome, we extend the principle of recurrence analysis by aggregating mutations in homologous positions across sets of paralogous genes. Protein domain analysis enhances the statistical power to detect cancer-relevant mutations and links mutations to the specific biological functions encoded in domains. We illustrate how the MutationAligner database and interactive web tool can be used to explore, visualize and analyze mutation hotspots in protein domains across genes and tumor types. We believe that MutationAligner will be an important resource for the cancer research community by providing detailed clues for the functional importance of particular mutations, as well as for the design of functional genomics experiments and for decision support in precision medicine. MutationAligner is slated to be periodically updated to incorporate additional analyses and new data from cancer genomics projects. PMID:26590264

  9. A novel pathogenic mutation of the CYP27B1 gene in a patient with vitamin D-dependent rickets type 1: a case report.

    PubMed

    Babiker, Amir M I; Al Gadi, Iman; Al-Jurayyan, Nasir A M; Al Nemri, Abdulrahman M H; Al Haboob, Ali Abdu N; Al Boukai, Ahmed Amer; Al Zahrani, Ali; Habib, Hanan Ahmed

    2014-11-05

    Rickets can occur due to Vitamin D deficiency or defects in its metabolism. Three rare genetic types of rickets with different alterations of genes have been reported, including: Vitamin D dependent rickets type 1, Vitamin D dependent rickets type 2 or also known as Vitamin D resistant rickets and 25 hydroxylase deficiency rickets. Vitamin D dependent rickets type 1 is inherited in an autosomal recessive pattern, and is caused by mutations in the CYP27B1 gene encoding the 1α-hydroxylase enzyme. We report here a new mutation in CYP27B1, which lead to Vitamin D dependent rickets type 1. We report on a 13-month-old Arabic Saudi girl with Vitamin D dependent rickets type 1 presented with multiple fractures and classic features of rickets. A whole exome sequencing identified a novel pathogenic missense mutation (CYP27B1:Homozygous c.1510C > T(p.Q504X)) which results in a protein truncating alteration. Both parents are heterozygous carriers of the mutation. Based on data search in Human Gene Mutation Database, 63 CYP27B1 alterations were reported: only 28.6% are protein truncating (5 nonsense, 13 frameshift insertions/deletions, 0 gross deletions), while 61.9% are non-truncating (38 missense, 1 small in-frame insertions/deletion), and 9.5% are possible protein-truncating (5 splice, 1 regulatory). The deleterious effect of this alteration, which was the only mutation detected in the CYP27B1 common gene of Vitamin D dependent rickets type 1 in the proband, and its autosomal recessive inheritance fashion, both support a pathogenic nature of this mutation as the cause of Vitamin D dependent rickets type 1.

  10. Identification of a novel mutation in a patient with pseudohypoparathyroidism type Ia

    PubMed Central

    Lee, Ye Seung; Kim, Hui Kwon; Kim, Hye Rim; Lee, Jong Yoon; Choi, Joong Wan; Bae, Eun Ju; Oh, Phil Soo; Park, Won Il; Ki, Chang Seok

    2014-01-01

    Pseudohypoparathyroidism type Ia (PHP Ia) is a disorder characterized by multiform hormonal resistance including parathyroid hormone (PTH) resistance and Albright hereditary osteodystrophy (AHO). It is caused by heterozygous inactivating mutations within the Gs alpha-encoding GNAS exons. A 9-year-old boy presented with clinical and laboratory abnormalities including hypocalcemia, hyperphosphatemia, PTH resistance, multihormone resistance and AHO (round face, short stature, obesity, brachydactyly and osteoma cutis) which were typical of PHP Ia. He had a history of repeated convulsive episodes that started from the age of 2 months. A cranial computed tomography scan showed bilateral calcifications in the basal ganglia and his intelligence quotient testing indicated mild mental retardation. Family history revealed that the patient's maternal relatives, including his grandmother and 2 of his mother's siblings, had features suggestive of AHO. Sequencing of the GNAS gene of the patient identified a heterozygous nonsense mutation within exon 11 (c.637 C>T). The C>T transversion results in an amino acid substitution from Gln to stop codon at codon 213 (p.Gln213*). To our knowledge, this is a novel mutation in GNAS. PMID:25045367

  11. A de novo SOX10 mutation causing severe type 4 Waardenburg syndrome without Hirschsprung disease.

    PubMed

    Sznajer, Yves; Coldéa, Cristina; Meire, Françoise; Delpierre, Isabelle; Sekhara, Tayeb; Touraine, Renaud L

    2008-04-15

    Type 4 Waardenburg syndrome represents a well define entity caused by neural crest derivatives anomalies (melanocytes, intrinsic ganglion cells, central, autonomous and peripheral nervous systems) leading, with variable expressivity, to pigmentary anomalies, deafness, mental retardation, peripheral neuropathy, and Hirschsprung disease. Autosomal dominant mode of inheritance is prevalent when Sox10 gene mutation is identified. We report the natural history of a child who presented with synophrys, vivid blue eye, deafness, bilateral complete semicircular canals agenesis with mental retardation, subtle signs for peripheral neuropathy and lack of Hirschsprung disease. SOX10 gene sequencing identified "de novo" splice site mutation (c.698-2A > C). The present phenotype and the genotype findings underline the wide spectrum of SOX10 gene implication in unusual type 4 Waardenburg syndrome patient. Copyright 2008 Wiley-Liss, Inc.

  12. Distinct Mutations Led to Inactivation of Type 1 Fimbriae Expression in Shigella spp.

    PubMed Central

    Bravo, Verónica; Puhar, Andrea; Sansonetti, Philippe; Parsot, Claude; Toro, Cecilia S.

    2015-01-01

    Shigella spp. are responsible for bacillary dysentery in humans. The acquisition or the modification of the virulence plasmid encoding factors promoting entry of bacteria into and dissemination within epithelial cells was a critical step in the evolution of these bacteria from their Escherichia coli ancestor(s). Incorporation of genomic islands (GI) and gene inactivation also shaped interactions between these pathogens and their human host. Sequence analysis of the GI inserted next to the leuX tRNA gene in S. boydii, S. dysenteriae, S. flexneri, S. sonnei and enteroinvasive E. coli (EIEC) suggests that this region initially carried the fec, yjhATS and fim gene clusters. The fim cluster encoding type I fimbriae is systematically inactivated in both reference strains and clinical isolates and distinct mutations are responsible for this inactivation in at least three phylogenetic groups. To investigate consequences of the presence of fimbriae on the outcome of the interaction of Shigella with host cells, we used a S. flexneri strain harboring a plasmid encoding the E. coli fim operon. Production of fimbriae by this recombinant strain increased the ability of bacteria to adhere to and enter into epithelial cells and had no effect on their ability to disseminate from cell to cell. The observations that production of type I fimbriae increases invasion of epithelial cells and that independent mutations abolish fimbriae production in Shigella suggest that these mutations correspond to pathoadaptive events. PMID:25811616

  13. DDT: participation in ultraviolet-detectable, charge-transfer complexation.

    PubMed

    Wilson, W E; Fishbein, L; Clements, S T

    1971-01-15

    The chlorophenyl groups of DDT and several of its metabolites are capable of participating in a charge-transfer interaction with tetracyanoethylene detectable in the ultraviolet region of the spectrum. In addition, during a change of state DDT undergoes ultraviolet spectral alterations that closely resemble those previously claimed to support the hypothesis suggesting charge-transfer interaction between this pesticide and a component of insect nerve tissue. The pesticide DDT possesses structural characteristics that would permit it to participate in several types of molecular association.

  14. A transparent ultraviolet triggered amorphous selenium p-n junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Ichitaro; Soga, Kenichi; Overend, Mauro

    2011-04-11

    This paper will introduce a semitransparent amorphous selenium (a-Se) film exhibiting photovoltaic effects under ultraviolet light created through a simple and inexpensive method. We found that chlorine can be doped into a-Se through electrolysis of saturated salt water, and converts the weak p-type material into an n-type material. Furthermore, we found that a p-n diode fabricated through this process has shown an open circuit voltage of 0.35 V toward ultraviolet illumination. Our results suggest the possibility of doping control depending on the electric current during electrolysis and the possibility of developing a simple doping method for amorphous photoconductors.

  15. Inactivation of Pseudomonas aeruginosa biofilm after ultraviolet light-emitting diode treatment: a comparative study between ultraviolet C and ultraviolet B

    NASA Astrophysics Data System (ADS)

    Argyraki, Aikaterini; Markvart, Merete; Bjørndal, Lars; Bjarnsholt, Thomas; Petersen, Paul Michael

    2017-06-01

    The objective of this study was to test the inactivation efficiency of two different light-based treatments, namely ultraviolet B (UVB) and ultraviolet C (UVC) irradiation, on Pseudomonas aeruginosa biofilms at different growth stages (24, 48, and 72 h grown). In our experiments, a type of AlGaN light-emitting diodes (LEDs) was used to deliver UV irradiation on the biofilms. The effectiveness of the UVB at 296 nm and UVC at 266 nm irradiations was quantified by counting colony-forming units. The survival of less mature biofilms (24 h grown) was studied as a function of UV-radiant exposure. All treatments were performed on three different biological replicates to test reproducibility. It was shown that UVB irradiation was significantly more effective than UVC irradiation in inactivating P. aeruginosa biofilms. UVC irradiation induced insignificant inactivation on mature biofilms. The fact that the UVB at 296 nm exists in daylight and has such disinfection ability on biofilms provides perspectives for the treatment of infectious diseases.

  16. Glycogen storage disease type 1a in three siblings with the G270V mutation.

    PubMed

    Parvari, R; Isam, J; Moses, S W

    1999-04-01

    Glycogen storage disease type 1a (von Gierke disease, GSD1a) is caused by the deficiency of microsomal glucose-6-phosphatase (G6Pase) activity. The cloning of G6Pase cDNA and characterization of the human G6Pase gene enabled the identification of the mutations causing GSD1a. Here we report on the clinical and biochemical features of three GSD1a siblings of a Muslin Arab family with a G270V mutation. Two older patients presented with an unusually mild clinical and biochemical course.

  17. A novel missense mutation of the TYR gene in a pedigree with oculocutaneous albinism type 1 from China.

    PubMed

    Lin, Yu-Ying; Wei, Ai-Hua; Zhou, Zhi-Yong; Zhu, Wei; He, Xin; Lian, Shi

    2011-10-01

    The mutation of the tyrosinase (TYR) gene results in oculocutaneous albinism type 1 (OCA1), an autosomal recessive genetic disorder. OCA1 is the most common type of OCA in the Chinese population. Hence, the TYR gene was tested in this study. We also delineated the genetic analysis of OCA1 in a Chinese family. Genomic DNA was isolated from the blood leukocytes of a proband and his family. Mutational analysis at the TYR locus by DNA sequencing was used to screen five exons, including the intron/exon junctions. A pedigree chart was drawn and the fundus of the eyes of the proband was also examined. A novel missense mutation p.I151S on exon 1, and homozygous TYR mutant alleles were identified in the proband. None of the mutants was identified among the 100 normal control subjects. Genetic analysis of the proband's wife showed normal alleles in the TYR gene. Thus, the fetus was predicated a carrier of OCA1 with a normal appearance. This study provided new information about a novel mutation, p.I151S, in the TYR gene in a Chinese family with OCA1. Further investigation of the proband would be helpful to determine the effects of this mutation on TYR activity.

  18. Mutation analysis in the long isoform of USH2A in American patients with Usher Syndrome type II.

    PubMed

    Yan, Denise; Ouyang, Xiaomei; Patterson, D Michael; Du, Li Lin; Jacobson, Samuel G; Liu, Xue-Zhong

    2009-12-01

    Usher syndrome type II (USH2) is an autosomal recessive disorder characterized by moderate to severe hearing impairment and progressive visual loss due to retinitis pigmentosa (RP). To identify novel mutations and determine the frequency of USH2A mutations as a cause of USH2, we have carried out mutation screening of all 72 coding exons and exon-intron splice sites of the USH2A gene. A total of 20 USH2 American probands of European descent were analyzed using single strand conformational polymorphism (SSCP) and direct sequencing methods. Ten different USH2A mutations were identified in 55% of the probands, five of which were novel mutations. The detected mutations include three missense, three frameshifts and four nonsense mutations, with c.2299delG/p.E767fs mutation, accounting for 38.9% of the pathological alleles. Two cases were homozygotes, two cases were compound heterozygotes and one case had complex allele with three variants. In seven probands, only one USH2A mutation was detected and no pathological mutation was found in the remaining eight individuals. Altogether, our data support the fact that c.2299delG/p.E767fs is indeed the most common USH2A mutation found in USH2 patients of European Caucasian background. Thus, if screening for mutations in USH2A is considered, it is reasonable to screen for the c.2299delG mutation first.

  19. Mucopolysaccharidosis type I: Identification and characterization of mutations affecting alpha-L-iduronidase activity.

    PubMed

    Lee-Chen, Guey-Jen; Lin, Shuan-Pei; Chen, I-Shen; Chang, Jui-Hung; Yang, Chyau-Wen; Chin, Yi-Wen

    2002-06-01

    Mucopolysaccharidosis type I (MPS I) is caused by a deficiency of the lysosomal enzyme alpha-L-iduronidase (IDUA). MPS I covers a broad spectrum of clinical severity ranging from severe Hurler syndrome through intermediate Hurler/Scheie syndrome to mild Scheie syndrome. Mutation screening was performed in two unrelated Taiwanese MPS I patients. A Hurler/Scheie patient had A79V (C to T transition in codon 79) in exon 2 and R619G (C to G transversion in codon 619) in exon 14. R619G has been shown to cause disease. Expression of A79V in COS-7 cells showed trace amounts of IDUA activity, demonstrating the deleterious nature of the mutation. A79V mutation did not cause a reduction in IDUA mRNA levels. The reduced level of IDUA protein suggests increased degradation of the mutant enzyme. A Hurler patient had 134del12 (in-frame deletion of codons 16-19 in signal peptide) in exon 1 and Q584X (C to T transition in codon 584) in exon 13. Transfection of COS-7 cells with Q584X did not yield active enzyme. Q584X mutation caused an apparent reduction in the IDUA mRNA level and no IDUA protein was detected. Conversely, 134del12 showed 124.6% of normal activity in transfected cells and a 77-kDa precursor protein was observed on Western blot, suggesting biologic activity of precursor IDUA without posttranslational cleavage. These findings provide further evidence of the molecular heterogeneity in mutations in MPS I.

  20. A double mutation in AGXT gene in families with primary hyperoxaluria type 1.

    PubMed

    Kanoun, Houda; Jarraya, Faiçal; Hadj Salem, Ikhlass; Mahfoudh, Hichem; Chaabouni, Yosr; Makni, Fatma; Hachicha, Jamil; Fakhfakh, Faiza

    2013-12-01

    Primary hyperoxaluria type 1 (PH1) is a severe autosomal recessive inherited disorder of glyoxylate metabolism caused by mutations in the AGXT gene on chromosome 2q37.3 that encodes the hepatic peroxisomal enzyme alanine:glyoxylate aminotransferase. These mutations are found throughout the entire gene and cause a wide spectrum of clinical severity. Rare in Europe, PH1 is responsible for 13% of the end stage renal failure in the Tunisian child. In the present work, we identified the double mutation c.32C>T (Pro11Leu) and c.731T>C (p.Ile244Thr) in AGXT gene in five unrelated Tunisian families with PH1 disease. Our results provide evidence regarding the potential involvement of c.32C>T, originally described as common polymorphism, on the resulting phenotype. We also reported an extreme intrafamilial heterogeneity in clinical presentation of PH1. Despite the same genetic background, the outcome of the affected members differs widely. The significant phenotypic heterogeneity observed within a same family, with a same genotype, suggests the existence of relevant modifier factors. © 2013.

  1. A novel homozygous no-stop mutation in G6PC gene from a Chinese patient with glycogen storage disease type Ia.

    PubMed

    Gu, Lei-Lei; Li, Xin-Hua; Han, Yue; Zhang, Dong-Hua; Gong, Qi-Ming; Zhang, Xin-Xin

    2014-02-25

    Glycogen storage disease type Ia (GSD-Ia) is an autosomal recessive genetic disorder resulting in hypoglycemia, hepatomegaly and growth retardation. It is caused by mutations in the G6PC gene encoding Glucose-6-phosphatase. To date, over 80 mutations have been identified in the G6PC gene. Here we reported a novel mutation found in a Chinese patient with abnormal transaminases, hypoglycemia, hepatomegaly and short stature. Direct sequencing of the coding region and splicing-sites in the G6PC gene revealed a novel no-stop mutation, p.*358Yext*43, leading to a 43 amino-acid extension of G6Pase. The expression level of mutant G6Pase transcripts was only 7.8% relative to wild-type transcripts. This mutation was not found in 120 chromosomes from 60 unrelated healthy control subjects using direct sequencing, and was further confirmed by digestion with Rsa I restriction endonuclease. In conclusion, we revealed a novel no-stop mutation in this study which expands the spectrum of mutations in the G6PC gene. The molecular genetic analysis was indispensable to the diagnosis of GSD-Ia for the patient. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Evidence for Type Ia Supernova Diversity from Ultraviolet Observations with the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Wang, Xiaofeng; Wang, Lifan; Filippenko, Alexei; Baron, Eddie; Kromer, Markus; Jack, Dennis; Zhang, Tianmeng; Aldering, Greg; Antilogus, Pierre; Arnett, W. David; hide

    2012-01-01

    We present ultraviolet (UV) spectroscopy and photometry of four Type Ia supernovae (SNe 2004dt, 2004ef, 2005M, and 2005cf) obtained with the UV prism of the Advanced Camera for Surveys on the Hubble Space Telescope, This dataset provides unique spectral time series down to 2000 A. Significant diversity is seen in the near-maximum-light spectra (approx.2000-3500 A) for this small sample. The corresponding photometric data, together with archival data from Swift Ultraviolet/Optical Telescope observations, provide further evidence of increased dispersion in the UV emission with respect to the optical. The peak luminosities measured in the uvw lIF250W filter are found to correlate with the B-band light-curve shape parameter .(Delta)m15(B), but with much larger scatter relative to the correlation in the broad-band B band (e.g., approx. 0.4 mag versus approx. 0.2 mag for those with 0.8 <.(Delta)m15(B) < 1.7 mag). SN 2004dt is found as an outlier of this correlation (at> 3(sigma), being brighter than normal SNe Ia such as SN 2005cf by approx. 0,9 mag and approx. 2.0 mag in the uvwl1F250W and uvm2/F220W filters, respectively. We show that different progenitor metallicity or line-expansion velocities alone cannot explain such a large discrepancy. Viewing-angle effects, such as due to an asymmetric explosion, may have a significant influence on the flux emitted in the UV region. Detailed modeling is needed to disentangle and quantify the above effects

  3. MutationAligner: a resource of recurrent mutation hotspots in protein domains in cancer.

    PubMed

    Gauthier, Nicholas Paul; Reznik, Ed; Gao, Jianjiong; Sumer, Selcuk Onur; Schultz, Nikolaus; Sander, Chris; Miller, Martin L

    2016-01-04

    The MutationAligner web resource, available at http://www.mutationaligner.org, enables discovery and exploration of somatic mutation hotspots identified in protein domains in currently (mid-2015) more than 5000 cancer patient samples across 22 different tumor types. Using multiple sequence alignments of protein domains in the human genome, we extend the principle of recurrence analysis by aggregating mutations in homologous positions across sets of paralogous genes. Protein domain analysis enhances the statistical power to detect cancer-relevant mutations and links mutations to the specific biological functions encoded in domains. We illustrate how the MutationAligner database and interactive web tool can be used to explore, visualize and analyze mutation hotspots in protein domains across genes and tumor types. We believe that MutationAligner will be an important resource for the cancer research community by providing detailed clues for the functional importance of particular mutations, as well as for the design of functional genomics experiments and for decision support in precision medicine. MutationAligner is slated to be periodically updated to incorporate additional analyses and new data from cancer genomics projects. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Primary hyperoxaluria type 1: a cluster of new mutations in exon 7 of the AGXT gene.

    PubMed

    von Schnakenburg, C; Rumsby, G

    1997-06-01

    Primary hyperoxaluria type 1 (PH1) is a severe autosomal recessive inborn error of glyoxylate metabolism caused by deficiency of the hepatic peroxisomal enzyme alanine:glyoxylate aminotransferase. This enzyme is encoded by the AGXT gene on chromosome 2q37.3. DNA samples from 79 PH1 patients were studied using single strand conformation polymorphism analysis to detect sequence variants, which were then characterised by direct sequencing and confirmed by restriction enzyme digestion. Four novel mutations were identified in exon 7 of AGXT: a point mutation T853C, which leads to a predicted Ile244Thr amino acid substitution, occurred in nine patients. Two other mutations in adjacent nucleotides, C819T and G820A, mutated the same codon at residue 233 from arginine to cysteine and histidine, respectively. The fourth mutation, G860A, introduced a stop codon at amino acid residue 246. Enzyme studies in these patients showed that AGT catalytic activity was either very low or absent and that little or no immunoreactive protein was present. Together with a new polymorphism in exon 11 (C1342A) these findings underline the genetic heterogeneity of the AGXT gene. The novel mutation T853C is the second most common mutation found to date with an allelic frequency of 9% and will therefore be of clinical importance for the diagnosis of PH1.

  5. Primary hyperoxaluria type 1: a cluster of new mutations in exon 7 of the AGXT gene.

    PubMed Central

    von Schnakenburg, C; Rumsby, G

    1997-01-01

    Primary hyperoxaluria type 1 (PH1) is a severe autosomal recessive inborn error of glyoxylate metabolism caused by deficiency of the hepatic peroxisomal enzyme alanine:glyoxylate aminotransferase. This enzyme is encoded by the AGXT gene on chromosome 2q37.3. DNA samples from 79 PH1 patients were studied using single strand conformation polymorphism analysis to detect sequence variants, which were then characterised by direct sequencing and confirmed by restriction enzyme digestion. Four novel mutations were identified in exon 7 of AGXT: a point mutation T853C, which leads to a predicted Ile244Thr amino acid substitution, occurred in nine patients. Two other mutations in adjacent nucleotides, C819T and G820A, mutated the same codon at residue 233 from arginine to cysteine and histidine, respectively. The fourth mutation, G860A, introduced a stop codon at amino acid residue 246. Enzyme studies in these patients showed that AGT catalytic activity was either very low or absent and that little or no immunoreactive protein was present. Together with a new polymorphism in exon 11 (C1342A) these findings underline the genetic heterogeneity of the AGXT gene. The novel mutation T853C is the second most common mutation found to date with an allelic frequency of 9% and will therefore be of clinical importance for the diagnosis of PH1. Images PMID:9192270

  6. Identification and functional analysis of a novel mutation in the SOX10 gene associated with Waardenburg syndrome type IV.

    PubMed

    Wang, Hong-Han; Chen, Hong-Sheng; Li, Hai-Bo; Zhang, Hua; Mei, Ling-Yun; He, Chu-Feng; Wang, Xing-Wei; Men, Mei-Chao; Jiang, Lu; Liao, Xin-Bin; Wu, Hong; Feng, Yong

    2014-03-15

    Waardenburg syndrome type IV (WS4) is a rare genetic disorder, characterized by auditory-pigmentary abnormalities and Hirschsprung disease. Mutations of the EDNRB gene, EDN3 gene, or SOX10 gene are responsible for WS4. In the present study, we reported a case of a Chinese patient with clinical features of WS4. In addition, the three genes mentioned above were sequenced in order to identify whether mutations are responsible for the case. We revealed a novel nonsense mutation, c.1063C>T (p.Q355*), in the last coding exon of SOX10. The same mutation was not found in three unaffected family members or 100 unrelated controls. Then, the function and mechanism of the mutation were investigated in vitro. We found both wild-type (WT) and mutant SOX10 p.Q355* were detected at the expected size and their expression levels are equivalent. The mutant protein also localized in the nucleus and retained the DNA-binding activity as WT counterpart; however, it lost its transactivation capability on the MITF promoter and acted as a dominant-negative repressor impairing function of the WT SOX10. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Severe manifestation of Bartter syndrome Type IV caused by a novel insertion mutation in the BSND gene.

    PubMed

    de Pablos, Augusto Luque; García-Nieto, Victor; López-Menchero, Jesús C; Ramos-Trujillo, Elena; González-Acosta, Hilaria; Claverie-Martín, Félix

    2014-05-01

    Bartter syndrome Type IV is a rare subtype of the Bartter syndromes that leads to both severe renal salt wasting and sensorineural deafness. This autosomal recessive disease is caused by mutations in the gene encoding barttin, BSND, an essential subunit of the ClC-K chloride channels expressed in renal and inner ear epithelia. Patients differ in the severity of renal symptoms, which appears to depend on the modification of channel function by the mutant barttin. To date, only a few BSND mutations have been reported, most of which are missense or nonsense mutations. In this study, we report the identification of the first insertion mutation, p.W102Vfs*7, in the BSND gene of a newborn girl with acute clinical symptoms including early-onset chronic renal failure. The results support previous data indicating that mutations that are predicted to abolish barttin expression are associated with a severe phenotype and early onset renal failure.

  8. Ala397Asp mutation of myosin VIIA gene segregating in a Spanish family with type-Ib Usher syndrome.

    PubMed

    Espinós, C; Millán, J M; Sánchez, F; Beneyto, M; Nájera, C

    1998-06-01

    In the current study, 12 Spanish families affected by type-I Usher syndrome, that was previously linked to chromosome 11q, were screened for the presence of mutations in the N-terminal coding portion of the motor domain of the myosin VIIA gene by single-strand conformation polymorphism analysis of the first 14 exons. A mutation (Ala397Asp) segregating with the disease was identified, and several polymorphisms were also detected. It is presumed that the other USHIB mutations in these families could be located in the unscreened regions of the gene.

  9. Glutaric acidemia type II: gene structure and mutations of the electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO) gene.

    PubMed

    Goodman, Stephen I; Binard, Robert J; Woontner, Michael R; Frerman, Frank E

    2002-01-01

    Glutaric acidemia type II is a human inborn error of metabolism which can be due to defects in either subunit of electron transfer flavoprotein (ETF) or in ETF:ubiquinone oxidoreductase (ETF:QO), but few disease-causing mutations have been described. The ETF:QO gene is located on 4q33, and contains 13 exons. Primers to amplify these exons are presented, together with mutations identified by molecular analysis of 20 ETF:QO-deficient patients. Twenty-one different disease-causing mutations were identified on 36 of the 40 chromosomes.

  10. Impact of Fluoroquinolone Resistance Mutations on Gonococcal Fitness and In Vivo Selection for Compensatory Mutations

    PubMed Central

    Kunz, Anjali N.; Begum, Afrin A.; Wu, Hong; D'Ambrozio, Jonathan A.; Robinson, James M.; Shafer, William M.; Bash, Margaret C.; Jerse, Ann E.

    2012-01-01

    Background. Quinolone-resistant Neisseria gonorrhoeae (QRNG) arise from mutations in gyrA (intermediate resistance) or gyrA and parC (resistance). Here we tested the consequence of commonly isolated gyrA91/95 and parC86 mutations on gonococcal fitness. Methods. Mutant gyrA91/95 and parC86 alleles were introduced into wild-type gonococci or an isogenic mutant that is resistant to macrolides due to an mtrR−79 mutation. Wild-type and mutant bacteria were compared for growth in vitro and in competitive murine infection. Results. In vitro growth was reduced with increasing numbers of mutations. Interestingly, the gyrA91/95 mutation conferred an in vivo fitness benefit to wild-type and mtrR−79 mutant gonococci. The gyrA91/95, parC86 mutant, in contrast, showed a slight fitness defect in vivo, and the gyrA91/95, parC86, mtrR−79 mutant was markedly less fit relative to the parent strains. A ciprofloxacin-resistant (CipR) mutant was selected during infection with the gyrA91/95, parC86, mtrR−79 mutant in which the mtrR−79 mutation was repaired and the gyrA91 mutation was altered. This in vivo–selected mutant grew as well as the wild-type strain in vitro. Conclusions. gyrA91/95 mutations may contribute to the spread of QRNG. Further acquisition of a parC86 mutation abrogates this fitness advantage; however, compensatory mutations can occur that restore in vivo fitness and maintain CipR. PMID:22492860

  11. Air-stable, solution-processed oxide p-n heterojunction ultraviolet photodetector.

    PubMed

    Kim, Do Young; Ryu, Jiho; Manders, Jesse; Lee, Jaewoong; So, Franky

    2014-02-12

    Air-stable solution processed all-inorganic p-n heterojunction ultraviolet photodetector is fabricated with a high gain (EQE, 25 300%). Solution-processed NiO and ZnO films are used as p-type and n-type ultraviolet sensitizing materials, respectively. The high gain in the detector is due to the interfacial trap-induced charge injection that occurs at the ITO/NiO interface by photogenerated holes trapped in the NiO film. The gain of the detector is controlled by the post-annealing temperature of the solution-processed NiO films, which are studied by X-ray photoelectron spectroscopy (XPS).

  12. Immunity to herpes simplex virus type 2. Suppression of virus-induced immune responses in ultraviolet B-irradiated mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasumoto, S.; Hayashi, Y.; Aurelian, L.

    1987-10-15

    Ultraviolet B irradiation (280 to 320 nm) of mice at the site of intradermal infection with herpes simplex virus type 2 increased the severity of the herpes simplex virus type 2 disease and decreased delayed-type hypersensitivity (DTH) responses to viral antigen. Decrease in DTH resulted from the induction of suppressor T cells, as evidenced by the ability of spleen cells from UV-irradiated mice to inhibit DTH and proliferative responses after adoptive transfer. Lymph node cells from UV-irradiated animals did not transfer suppression. DTH was suppressed at the induction but not the expression phase. Suppressor T cells were Lyt-1+, L3T4+, andmore » their activity was antigen-specific. However, after in vitro culture of spleen cells from UV-irradiated mice with herpes simplex virus type 2 antigen, suppressor activity was mediated by Lyt-2+ cells. Culture supernatants contained soluble nonantigen-specific suppressive factors.« less

  13. Reddened, Redshifted, or Intrinsically Red? Understanding Near-ultraviolet Colors of Type Ia Supernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Peter J.; Landez, Nancy J.; Milne, Peter A.

    The intrinsic colors of Type Ia supernovae (SNe Ia) are important to understanding their use as cosmological standard candles. Understanding the effects of reddening and redshift on the observed colors are complicated and dependent on the intrinsic spectrum, the filter curves, and the wavelength dependence of reddening. We present ultraviolet and optical data of a growing sample of SNe Ia observed with the Ultraviolet/Optical Telescope on the Swift spacecraft and use this sample to re-examine the near-UV (NUV) colors of SNe Ia. We find that a small amount of reddening ( E ( B − V ) = 0.2 mag)more » could account for the difference between groups designated as NUV-blue and NUV-red, and a moderate amount of reddening ( E ( B − V ) = 0.5 mag) could account for the whole NUV-optical differences. The reddening scenario, however, is inconsistent with the mid-UV colors and color evolution. The effect of redshift alone only accounts for part of the variation. Using a spectral template of SN2011fe, we can forward model the effects of redshift and reddening and directly compare those with the observed colors. We find that some SNe are consistent with reddened versions of SN2011fe, but most SNe Ia are much redder in the uvw 1 − v color than SN2011fe reddened to the same b − v color. The absolute magnitudes show that two out of five NUV-blue SNe Ia are blue because their near-UV luminosity is high, and the other three are optically fainter. We also show that SN 2011fe is not a “normal” SN Ia in the UV, but has colors placing it at the blue extreme of our sample.« less

  14. Identification of a novel nonsense mutation and a missense substitution in the AGPAT2 gene causing congenital generalized lipodystrophy type 1

    PubMed Central

    Haghighi, Amirreza; Razzaghy-Azar, Maryam; Talea, Ali; Sadeghian, Mahnaz; Ellard, Sian; Haghighi, Alireza

    2012-01-01

    Congenital generalized lipodystrophy (CGL) is an autosomal recessive disease characterized by the generalized scant of adipose tissue. CGL type 1 is caused by mutations in gene encoding 1-acylglycerol-3-phosphate O-acyltransferase-2 (AGPAT2). A clinical and molecular genetic investigation was performed in affected and unaffected members of two families with CGL type 1. The AGPAT2 coding region was sequenced in index cases of the two families. The presence of the identified mutations in relevant parents was tested. We identified a novel nonsense mutation (c.685G>T, p.Glu229*) and a missense substitution (c.514G>A, p.Glu172Lys). The unaffected parents in both families were heterozygous carrier of the relevant mutation. The results expand genotype–phenotype spectrum in CGL1 and will have applications in prenatal and early diagnosis of the disease. This is the first report of Persian families identified with AGPAT2 mutations. PMID:22902344

  15. A New COL3A1 Mutation in Ehlers-Danlos Syndrome Vascular Type With Different Phenotypes in the Same Family.

    PubMed

    Cortini, Francesca; Marinelli, Barbara; Romi, Silvia; Seresini, Agostino; Pesatori, Angela Cecilia; Seia, Manuela; Montano, Nicola; Bassotti, Alessandra

    2017-04-01

    Vascular Ehlers-Danlos syndrome (vEDS) is a rare and severe connective tissue disorder caused by mutations in the collagen type III alpha I chain ( COL3A1) gene. We describe a pathogenetic heterozygous COL3A1 mutation c.3140 G>A, p. Gly1047Asp, identified using next-generation sequencing, in a 40-year-old Italian female. The genetic test performed on her relatives, which present different clinical phenotypes, confirmed that they carry the same mutation in heterozygous state. This finding confirms that mutations causing vEDS have an incomplete penetrance.

  16. Analysis of point mutations in an ultraviolet-irradiated shuttle vector plasmid propagated in cells from Japanese xeroderma pigmentosum patients in complementation groups A and F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yagi, T.; Tatsumi-Miyajima, J.; Sato, M.

    1991-06-15

    To assess the contribution to mutagenesis by human DNA repair defects, a UV-treated shuttle vector plasmid, pZ189, was passed through fibroblasts derived from Japanese xeroderma pigmentosum (XP) patients in two different DNA repair complementation groups (A and F). Patients with XP have clinical and cellular UV hypersensitivity, increased frequency of skin cancer, and defects in DNA repair. The XP DNA repair defects represented by complementation groups A (XP-A) and F (XP-F) are more common in Japan than in Europe or the United States. In comparison to results with DNA repair-proficient human cells (W138-VA13), UV-treated pZ189 passed through the XP-A (XP2OS(SV))more » or XP-F (XP2YO(SV)) cells showed fewer surviving plasmids (XP-A less than XP-F) and a higher frequency of mutated plasmids (XP-A greater than XP-F). Base sequence analysis of more than 200 mutated plasmids showed the major type of base substitution mutation to be the G:C----A:T transition with all three cell lines. The XP-A and XP-F cells revealed a higher frequency of G:C----A:T transitions and a lower frequency of transversions among plasmids with single or tandem mutations and a lower frequency of plasmids with multiple point mutations compared to the normal line. The spectrum of mutations in pZ189 with the XP-A cells was similar to that with the XP-F cells. Seventy-six to 91% of the single base substitution mutations occurred at G:C base pairs in which the 5{prime}-neighboring base of the cytosine was thymine or cytosine. These studies indicate that the DNA repair defects in Japanese XP patients in complementation groups A and F result in different frequencies of plasmid survival and mutagenesis but in similar types of mutagenic abnormalities despite marked differences in clinical features.« less

  17. [Severe type A insulin resistance syndrome due to a mutation in the insulin receptor gene].

    PubMed

    Ros, P; Colino-Alcol, E; Grasso, V; Barbetti, F; Argente, J

    2015-01-01

    Insulin resistance syndromes without lipodystrophy are an infrequent and heterogeneous group of disorders with variable clinical phenotypes, associated with hyperglycemia and hyperinsulinemia. The three conditions related to mutations in the insulin receptor gene are leprechaunism or Donohue syndrome, Rabson-Mendenhall syndrome, and Type A syndrome. A case is presented on a patient diagnosed with type A insulin resistance, defined by the triad of extreme insulin resistance, acanthosis nigricans, and hyperandrogenism, carrying a heterozygous mutation in exon 19 of the insulin receptor gene coding for its tyrosine kinase domain that is crucial for the catalytic activity of the receptor. The molecular basis of the syndrome is reviewed, focusing on the structure-function relationships of the insulin receptor, knowing that the criteria for survival are linked to residual insulin receptor function. It is also pointed out that, although type A insulin resistance appears to represent a somewhat less severe condition, these patients have a high morbidity and their treatment is still unsatisfactory. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  18. Mutation analysis of the muscarinic cholinergic receptor genes in isolated growth hormone deficiency type IB.

    PubMed

    Mohamadi, Ali; Martari, Marco; Holladay, Cindy D; Phillips, John A; Mullis, Primus E; Salvatori, Roberto

    2009-07-01

    Isolated GH deficiency (IGHD) is familial in 5-30% of patients. The most frequent form (IGHD-IB) has autosomal recessive inheritance, and it is known that it can be caused by mutations in the GHRH receptor (GHRHR) gene or in the GH gene. However, most forms of IGHD-IB have an unknown genetic cause. In normal subjects, muscarinic cholinergic stimulation causes an increase in pituitary GH release, whereas its blockade has the opposite effect, suggesting that a muscarinic acetylcholine receptor (mAchR) is involved in stimulating GH secretion. Five types of mAchR (M(1)-M(5)) exist. A transgenic mouse in which the function of the M(3) receptor was selectively ablated in the central nervous system has isolated GH deficiency similar to animals with defective GHRH or GHRHR gene. We hypothesized that mAchR mutations may cause a subset of familial IGHD. After confirming the expression of M(1)-M(5) receptor mRNA in human hypothalamus, we analyzed the index cases of 39 families with IGHD-IB for mutations in the genes encoding for the five receptors. Coding sequences for each of the five mAchRs were subjected to direct sequencing. In one family, an affected member was homozygous for a M(3) change in codon 65 that replaces valine with isoleucine (V65I). The V65I receptor was expressed in CHO cells where it had normal ability to transmit methacholine signaling. mAchR mutations are absent or rare (less than 2.6%) in familial IGHD type IB.

  19. Mutation induction in haploid yeast after split-dose radiation exposure. II. Combination of UV-irradiation and X-rays.

    PubMed

    Keller, B; Zölzer, F; Kiefer, J

    2004-01-01

    Split-dose protocols can be used to investigate the kinetics of recovery from radiation damage and to elucidate the mechanisms of cell inactivation and mutation induction. In this study, a haploid strain of the yeast, Saccharomyces cerevisiae, wild-type with regard to radiation sensitivity, was irradiated with 254-nm ultraviolet (UV) light and then exposed to X-rays after incubation for 0-6 hr. The cells were incubated either on nutrient medium or salt agar between the treatments. Loss of reproductive ability and mutation to canavanine resistance were measured. When the X-ray exposure immediately followed UV-irradiation, the X-ray survival curves had the same slope irrespective of the pretreatment, while the X-ray mutation induction curves were changed from linear to linear quadratic with increasing UV fluence. Incubations up to about 3 hr on nutrient medium between the treatments led to synergism with respect to cell inactivation and antagonism with respect to mutation, but after 4-6 hr the two treatments acted independently. Incubation on salt agar did not cause any change in the survival curves, but there was a strong suppression of X-ray-induced mutation with increasing UV fluence. On the basis of these results, we suggest that mutation after combined UV and X-ray exposure is affected not only by the induction and suppression of DNA repair processes, but also by radiation-induced modifications of cell-cycle progression and changes in the expression of the mutant phenotype. Copyright 2004 Wiley-Liss, Inc.

  20. Tietz/Waardenburg type 2A syndrome associated with posterior microphthalmos in two unrelated patients with novel MITF gene mutations.

    PubMed

    Cortés-González, Vianney; Zenteno, Juan Carlos; Guzmán-Sánchez, Martín; Giordano-Herrera, Verónica; Guadarrama-Vallejo, Dalia; Ruíz-Quintero, Narlly; Villanueva-Mendoza, Cristina

    2016-12-01

    Tietz syndrome and Waardenburg syndrome type 2A are allelic conditions caused by MITF mutations. Tietz syndrome is inherited in an autosomal dominant pattern and is characterized by congenital deafness and generalized skin, hair, and eye hypopigmentation, while Waardenburg syndrome type 2A typically includes variable degrees of sensorineural hearing loss and patches of de-pigmented skin, hair, and irides. In this paper, we report two unrelated families with MITF mutations. The first family showed an autosomal dominant pattern and variable expressivity. The second patient was isolated. MITF gene analysis in the first family demonstrated a c.648A>C heterozygous mutation in exon 8 c.648A>C; p. (R216S), while in the isolated patient, an apparently de novo heterozygous c.1183_1184insG truncating mutation was demonstrated in exon 10. All patients except one had bilateral reduced ocular anteroposterior axial length and a high hyperopic refractive error corresponding to posterior microphthalmos, features that have not been described as part of the disease. Our results suggest that posterior microphthalmos might be part of the clinical characteristics of Tietz/Waardenburg syndrome type 2A and expand both the clinical and molecular spectrum of the disease. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Enhanced Human-Type Receptor Binding by Ferret-Transmissible H5N1 with a K193T Mutation.

    PubMed

    Peng, Wenjie; Bouwman, Kim M; McBride, Ryan; Grant, Oliver C; Woods, Robert J; Verheije, Monique H; Paulson, James C; de Vries, Robert P

    2018-05-15

    All human influenza pandemics have originated from avian influenza viruses. Although multiple changes are needed for an avian virus to be able to transmit between humans, binding to human-type receptors is essential. Several research groups have reported mutations in H5N1 viruses that exhibit specificity for human-type receptors and promote respiratory droplet transmission between ferrets. Upon detailed analysis, we have found that these mutants exhibit significant differences in fine receptor specificity compared to human H1N1 and H3N2 and retain avian-type receptor binding. We have recently shown that human influenza viruses preferentially bind to α2-6-sialylated branched N-linked glycans, where the sialic acids on each branch can bind to receptor sites on two protomers of the same hemagglutinin (HA) trimer. In this binding mode, the glycan projects over the 190 helix at the top of the receptor-binding pocket, which in H5N1 would create a stearic clash with lysine at position 193. Thus, we hypothesized that a K193T mutation would improve binding to branched N-linked receptors. Indeed, the addition of the K193T mutation to the H5 HA of a respiratory-droplet-transmissible virus dramatically improves both binding to human trachea epithelial cells and specificity for extended α2-6-sialylated N-linked glycans recognized by human influenza viruses. IMPORTANCE Infections by avian H5N1 viruses are associated with a high mortality rate in several species, including humans. Fortunately, H5N1 viruses do not transmit between humans because they do not bind to human-type receptors. In 2012, three seminal papers have shown how these viruses can be engineered to transmit between ferrets, the human model for influenza virus infection. Receptor binding, among others, was changed, and the viruses now bind to human-type receptors. Receptor specificity was still markedly different compared to that of human influenza viruses. Here we report an additional mutation in ferret

  2. An integrative somatic mutation analysis to identify pathways linked with survival outcomes across 19 cancer types

    PubMed Central

    Park, Sunho; Kim, Seung-Jun; Yu, Donghyeon; Peña-Llopis, Samuel; Gao, Jianjiong; Park, Jin Suk; Chen, Beibei; Norris, Jessie; Wang, Xinlei; Chen, Min; Kim, Minsoo; Yong, Jeongsik; Wardak, Zabi; Choe, Kevin; Story, Michael; Starr, Timothy; Cheong, Jae-Ho; Hwang, Tae Hyun

    2016-01-01

    Motivation: Identification of altered pathways that are clinically relevant across human cancers is a key challenge in cancer genomics. Precise identification and understanding of these altered pathways may provide novel insights into patient stratification, therapeutic strategies and the development of new drugs. However, a challenge remains in accurately identifying pathways altered by somatic mutations across human cancers, due to the diverse mutation spectrum. We developed an innovative approach to integrate somatic mutation data with gene networks and pathways, in order to identify pathways altered by somatic mutations across cancers. Results: We applied our approach to The Cancer Genome Atlas (TCGA) dataset of somatic mutations in 4790 cancer patients with 19 different types of tumors. Our analysis identified cancer-type-specific altered pathways enriched with known cancer-relevant genes and targets of currently available drugs. To investigate the clinical significance of these altered pathways, we performed consensus clustering for patient stratification using member genes in the altered pathways coupled with gene expression datasets from 4870 patients from TCGA, and multiple independent cohorts confirmed that the altered pathways could be used to stratify patients into subgroups with significantly different clinical outcomes. Of particular significance, certain patient subpopulations with poor prognosis were identified because they had specific altered pathways for which there are available targeted therapies. These findings could be used to tailor and intensify therapy in these patients, for whom current therapy is suboptimal. Availability and implementation: The code is available at: http://www.taehyunlab.org. Contact: jhcheong@yuhs.ac or taehyun.hwang@utsouthwestern.edu or taehyun.cs@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26635139

  3. New Splice Site Acceptor Mutation in AIRE Gene in Autoimmune Polyendocrine Syndrome Type 1

    PubMed Central

    Mora, Mireia; Hanzu, Felicia A.; Pradas-Juni, Marta; Aranda, Gloria B.; Halperin, Irene; Puig-Domingo, Manuel; Aguiló, Sira; Fernández-Rebollo, Eduardo

    2014-01-01

    Autoimmune polyglandular syndrome type 1 (APS-1, OMIM 240300) is a rare autosomal recessive disorder, characterized by the presence of at least two of three major diseases: hypoparathyroidism, Addison’s disease, and chronic mucocutaneous candidiasis. We aim to identify the molecular defects and investigate the clinical and mutational characteristics in an index case and other members of a consanguineous family. We identified a novel homozygous mutation in the splice site acceptor (SSA) of intron 5 (c.653-1G>A) in two siblings with different clinical outcomes of APS-1. Coding DNA sequencing revealed that this AIRE mutation potentially compromised the recognition of the constitutive SSA of intron 5, splicing upstream onto a nearby cryptic SSA in intron 5. Surprisingly, the use of an alternative SSA entails the uncovering of a cryptic donor splice site in exon 5. This new transcript generates a truncated protein (p.A214fs67X) containing the first 213 amino acids and followed by 68 aberrant amino acids. The mutation affects the proper splicing, not only at the acceptor but also at the donor splice site, highlighting the complexity of recognizing suitable splicing sites and the importance of sequencing the intron-exon junctions for a more precise molecular diagnosis and correct genetic counseling. As both siblings were carrying the same mutation but exhibited a different APS-1 onset, and one of the brothers was not clinically diagnosed, our finding highlights the possibility to suspect mutations in the AIRE gene in cases of childhood chronic candidiasis and/or hypoparathyroidism otherwise unexplained, especially when the phenotype is associated with other autoimmune diseases. PMID:24988226

  4. Hereditary sensory and autonomic neuropathy type IID caused by an SCN9A mutation.

    PubMed

    Yuan, Junhui; Matsuura, Eiji; Higuchi, Yujiro; Hashiguchi, Akihiro; Nakamura, Tomonori; Nozuma, Satoshi; Sakiyama, Yusuke; Yoshimura, Akiko; Izumo, Shuji; Takashima, Hiroshi

    2013-04-30

    To identify the clinical features of Japanese patients with suspected hereditary sensory and autonomic neuropathy (HSAN) on the basis of genetic diagnoses. On the basis of clinical, in vivo electrophysiologic, and pathologic findings, 9 Japanese patients with sensory and autonomic nervous dysfunctions were selected. Eleven known HSAN disease-causing genes and 5 related genes were screened using a next-generation sequencer. A homozygous mutation, c.3993delGinsTT, was identified in exon 22 of SCN9A from 2 patients/families. The clinical phenotype was characterized by adolescent or congenital onset with loss of pain and temperature sensation, autonomic nervous dysfunctions, hearing loss, and hyposmia. Subsequently, this mutation was discovered in one of patient 1's sisters, who also exhibited sensory and autonomic nervous system dysfunctions, with recurrent fractures being the most predominant feature. Nerve conduction studies revealed definite asymmetric sensory nerve involvement in patient 1. In addition, sural nerve pathologic findings showed loss of large myelinated fibers in patient 1, whereas the younger patient showed normal sural nerve pathology. We identified a novel homozygous mutation in SCN9A from 2 Japanese families with autosomal recessive HSAN. This loss-of-function SCN9A mutation results in disturbances in the sensory, olfactory, and autonomic nervous systems. We propose that SCN9A mutation results in the new entity of HSAN type IID, with additional symptoms including hyposmia, hearing loss, bone dysplasia, and hypogeusia.

  5. Mutation of Chinese Hamster V79 cells and transformation and mutation of mouse fibroblast C3H/10T1/2 clone 8 cells by aflatoxin B1 and four other furocoumarins isolated from two Nigerian medicinal plants.

    PubMed

    Uwaifo, A O; Billings, P C; Heidelberger, C

    1983-03-01

    Mutation by aflatoxin B1 (AFB1), imperatorin, marmesin, chalepin, and 8-methoxypsoralen (MOP), with and without black light (BL; long-wavelength ultraviolet light) activation, was determined at the hypoxanthine-guanine phosphoribosyltransferase locus (8-azaguanine resistance) in Chinese hamster V79 cells and at the ouabain locus in mouse C3H/1OT1/2 cells. Transformation by these furocoumarins under the same activation conditions was also investigated in C3H/1OT1/2 cells. In V79 cells, AFB1 induced a 4-fold maximum mutation frequency over controls under BL activation at a concentration of 5 micrograms/ml; marmesin induced a 2-fold increased mutation frequency at 1.5 micrograms/ml; MOP induced a 19-fold increase at 10 micrograms/ml; chalepin induced a 3-fold increase at 5 micrograms/ml; and imperatorin induced a 20-fold increase at 10 micrograms/ml. Essentially no mutation was observed at the ouabain-resistant (Ouar) locus in C3H/1OT1/2 cells with any of these compounds. In the transformation assays, type II and type III foci were observed at a 1-microgram/ml addition of AFB1 with or without BL activation; while with MOP and imperatorin, these types of foci were observed only with BL activation. Marmesin, although relatively more cytotoxic than the other furocoumarins studied, with a 50% lethal dose of less than 0.5 micrograms/ml, was not as mutagenic or potentially carcinogenic as were AFB1, imperatorin, or MOP with BL activation. These furocoumarins are considered to be involved in the etiology of the high incidence of skin cancer in Nigeria. Our experiments reinforce that concept and suggest that exposure to these furocoumarins may constitute a real carcinogenic hazard.

  6. Glutaric aciduria type 1 in Korea: report of two novel mutations.

    PubMed

    Park, June Dong; Lim, ByungChan; Kim, Ki Joong; Hwang, Yong Seung; Kim, Seung Ki; Kang, Seong-Ho; Cho, Sung Im; Park, Sung Sup; Lee, Joon Soo; Chae, Jong Hee

    2010-06-01

    Glutaric aciduria type I (GA I) is an autosomal recessive disorder caused by a deficiency of glutaryl-CoA dehydrogenase. Although over 400 patients confirmed as GA I have been reported, reports from the Asian population had contributed to the minor proportion. We recently diagnosed two cases of GA I confirmed with mutational analysis. Here, we present their rather atypical clinical presentations with genetic characteristics for the first time in Korea. Profound developmental delay from birth, association of hearing loss, and neurological improvement after surgical intervention, were considered to be different clinical features from most reported cases. One patient was a compound heterozygote for p.Ser139Leu and p.Asp220Tyr, and the other for p.Ser139Leu and Glu160X. The mutations of the two alleles (p.Asp220Tyr and p.Glu160X) were novel and reports of p.Ser139Leu were rare both in Western and other Asian populations. These might suggest different genetic spectrum of Korean GA I patients.

  7. Glutaric Aciduria Type 1 in Korea: Report of Two Novel Mutations

    PubMed Central

    Park, June Dong; Lim, ByungChan; Kim, Ki Joong; Hwang, Yong Seung; Kim, Seung Ki; Kang, Seong-Ho; Cho, Sung Im; Park, Sung Sup; Lee, Joon Soo

    2010-01-01

    Glutaric aciduria type I (GA I) is an autosomal recessive disorder caused by a deficiency of glutaryl-CoA dehydrogenase. Although over 400 patients confirmed as GA I have been reported, reports from the Asian population had contributed to the minor proportion. We recently diagnosed two cases of GA I confirmed with mutational analysis. Here, we present their rather atypical clinical presentations with genetic characteristics for the first time in Korea. Profound developmental delay from birth, association of hearing loss, and neurological improvement after surgical intervention, were considered to be different clinical features from most reported cases. One patient was a compound heterozygote for p.Ser139Leu and p.Asp220Tyr, and the other for p.Ser139Leu and Glu160X. The mutations of the two alleles (p.Asp220Tyr and p.Glu160X) were novel and reports of p.Ser139Leu were rare both in Western and other Asian populations. These might suggest different genetic spectrum of Korean GA I patients. PMID:20514322

  8. [PAX3 gene mutation analysis for two Waardenburg syndrome type Ⅰ families and their prenatal diagnosis].

    PubMed

    Bai, Y; Liu, N; Kong, X D; Yan, J; Qin, Z B; Wang, B

    2016-12-07

    Objective: To analyze the mutations of PAX3 gene in two Waardenburg syndrome type Ⅰ (WS1) pedigrees and make prenatal diagnosis for the high-risk 18-week-old fetus. Methods: PAX3 gene was first analyzed by Sanger sequencing and multiplex ligation-dependent probe amplification(MLPA) for detecting pathogenic mutation of the probands of the two pedigrees. The mutations were confirmed by MLPA and Sanger in parents and unrelated healthy individuals.Prenatal genetic diagnosis for the high-risk fetus was performed by amniotic fluid cell after genotyping. Results: A heterozygous PAX3 gene gross deletion (E7 deletion) was identified in all patients from WS1-01 family, and not found in 20 healthy individuals.Prenatal diagnosis in WS1-01 family indicated that the fetus was normal. Molecular studies identified a novel deletion mutation c. 1385_1386delCT within the PAX3 gene in all affected WS1-02 family members, but in none of the unaffected relatives and 200 healthy individuals. Conclusions: PAX3 gene mutation is etiological for two WS1 families. Sanger sequencing plus MLPA is effective and accurate for making gene diagnosis and prenatal diagnosis.

  9. A novel mutation in PAX3 associated with Waardenburg syndrome type I in a Chinese family.

    PubMed

    Xiao, Yun; Luo, Jianfen; Zhang, Fengguo; Li, Jianfeng; Han, Yuechen; Zhang, Daogong; Wang, Mingming; Ma, Yalin; Xu, Lei; Bai, Xiaohui; Wang, Haibo

    2016-01-01

    The novel compound heterozygous mutation in PAX3 was the key genetic reason for WS1 in this family, which was useful to the molecular diagnosis of WS1. Screening the pathogenic mutations in a four generation Chinese family with Waardenburg syndrome type I (WS1). WS1 was diagnosed in a 4-year-old boy according to the Waardenburg syndrome Consortium criteria. The detailed family history revealed four affected members in the family. Routine clinical, audiological examination, and ophthalmologic evaluation were performed on four affected and 10 healthy members in this family. The genetic analysis was conducted, including the targeted next-generation sequencing of 127 known deafness genes combined with Sanger sequencing, TA clone and bioinformatic analysis. A novel compound heterozygous mutation c.[169_170insC;172_174delAAG] (p.His57ProfsX55) was identified in PAX3, which was co-segregated with WS1 in the Chinese family. This mutation was absent in the unaffected family members and 200 ethnicity-matched controls. The phylogenetic analysis and three-dimensional (3D) modeling of Pax3 protein further confirmed that the novel compound heterozygous mutation was pathogenic.

  10. Mutation signatures of carcinogen exposure: genome-wide detection and new opportunities for cancer prevention

    PubMed Central

    2014-01-01

    Exposure to environmental mutagens is an important cause of human cancer, and measures to reduce mutagenic and carcinogenic exposures have been highly successful at controlling cancer. Until recently, it has been possible to connect the chemical characteristics of mutagens to actual mutations observed in human tumors only indirectly. Now, next-generation sequencing technology enables us to observe in detail the DNA-sequence-level effects of well-known mutagens, such as ultraviolet radiation and tobacco smoke, as well as endogenous mutagenic processes, such as those involving activated DNA cytidine deaminases (APOBECs). We can also observe the effects of less well-known but potent mutagens, including those recently found to be present in some herbal remedies. Crucially, we can now tease apart the superimposed effects of several mutational exposures and processes and determine which ones occurred during the development of individual tumors. Here, we review advances in detecting these mutation signatures and discuss the implications for surveillance and prevention of cancer. The number of sequenced tumors from diverse cancer types and multiple geographic regions is growing explosively, and the genomes of these tumors will bear the signatures of even more diverse mutagenic exposures. Thus, we envision development of wide-ranging compendia of mutation signatures from tumors and a concerted effort to experimentally elucidate the signatures of a large number of mutagens. This information will be used to link signatures observed in tumors to the exposures responsible for them, which will offer unprecedented opportunities for prevention. PMID:25031618

  11. The Phenotype of the Musculocontractural Type of Ehlers-Danlos Syndrome due to CHST14 Mutations

    PubMed Central

    Janecke, Andreas R.; Li, Ben; Boehm, Manfred; Krabichler, Birgit; Rohrbach, Marianne; Müller, Thomas; Fuchs, Irene; Golas, Gretchen; Katagiri, Yasuhiro; Ziegler, Shira G.; Gahl, William A.; Wilnai, Yael; Zoppi, Nicoletta; Geller, Herbert M.; Giunta, Cecilia; Slavotinek, Anne; Steinmann, Beat

    2016-01-01

    The musculocontractural type of Ehlers-Danlos syndrome (MC-EDS) has been recently recognized as a clinical entity. MC-EDS represents a differential diagnosis within the congenital neuromuscular and connective tissue disorders spectrum. Thirty-one and three patients have been reported with MC-EDS so far with biallelic mutations identified in CHST14 and DSE, respectively, encoding two enzymes necessary for dermatan sulfate (DS) biosynthesis. We report seven additional patients with MC-EDS from four unrelated families, including the follow-up of a sib-pair originally reported with the kyphoscoliotic type of EDS in 1975. Brachycephaly, a characteristic facial appearance, an asthenic build, hyperextensible and bruisable skin, tapering fingers, instability of large joints, and recurrent formation of large subcutaneous hematomas are always present. Three of seven patients hadmildly elevated serum creatine kinase. The oldest patient was blind due to retinal detachment at 45 years and died at 59 years from intracranial bleeding; her affected brother died at 28 years from fulminant endocarditis. All patients in this series harbored homozygous, predicted loss-of-function CHST14 mutations. Indeed, DS was not detectable in fibroblasts from two unrelated patients with homozygous mutations. Patient fibroblasts produced higher amounts of chondroitin sulfate, showed intracellular retention of collagen types I and III, and lacked decorin and thrombospondin fibrils compared with control. A great proportion of collagen fibrils were not integrated into fibers, and fiber bundles were dispersed into the ground substance in one patient, all of which is likely to contribute to the clinical phenotype. This report should increase awareness for MC-EDS. PMID:26373698

  12. Prediction of skin cancer occurrence by ultraviolet solar index

    PubMed Central

    Rivas, Miguel; Rojas, Elisa; Calaf, Gloria M.

    2012-01-01

    An increase in the amount of solar ultraviolet light that reaches the Earth is considered to be responsible for the worldwide increase in skin cancer. It has been reported that exposure to excessive levels of solar ultraviolet light has multiple effects, which can be harmful to humans. Experimental ultraviolet light measurements were obtained in several locations in Chile between 2006 and 2009 using wide-band solar light Biometer YES, calibrated according to World Meteorological Organization (WMO) criteria and integrated into the National Meteorological Center of Chile ultraviolet network (DMC). The aim of this study was to determine skin cancer rates in relation to experimental data accumulated during one year of studying the solar ultraviolet index in Chile, in order to explain the possible effect of radiation on skin cancer. The rate of skin cancer per 100,000 persons was considered in Arica, Santiago, Concepción and Valdivia and extrapolated to other cities. Results of the present study showed that the incidence of skin cancer was markedly correlated with accumulative ultraviolet radiation, and rates of skin cancer could be extrapolated to other locations in Chile. There is a steady increase in the rate of skin cancer in cities located nearest to the equator (low latitude) that receive greater accumulated solar ultraviolet radiation, due to the accumulative effects of this type of radiation on the skin. It can be concluded that Arica is a city at sea level that receives higher levels of ultraviolet solar radiation than other locations, which may explain the higher prevalence of skin cancer in the population of this location, compared with other cities in Chile. PMID:22741013

  13. Genetic counseling for a three-generation Chinese family with Waardenburg syndrome type II associated with a rare SOX10 mutation.

    PubMed

    Chen, Kaitian; Zong, Ling; Zhan, Yuan; Wu, Xuan; Liu, Min; Jiang, Hongyan

    2015-05-01

    Waardenburg syndrome is clinically and genetically heterogeneous. The SOX10 mutation related with Waardenburg syndrome type II is rare in Chinese. This study aimed to uncover the genetic causes of Waardenburg syndrome type II in a three-generation family to improve genetic counseling. Complete clinical and molecular evaluations were conducted in a three-generation Han Chinese family with Waardenburg syndrome type II. Targeted genetic counseling was provided to this family. We identified a rare heterozygous dominant mutation c.621C>A (p.Y207X) in SOX10 gene in this family. The premature termination codon occurs in exon 4, 27 residues downstream of the carboxyl end of the high mobility group box. Bioinformatics prediction suggested this variant to be disease-causing, probably due to nonsense-mediated mRNA decay. Useful genetic counseling was given to the family for prenatal guidance. Identification of a rare dominant heterozygous SOX10 mutation c.621C>A in this family provided an efficient way to understand the causes of Waardenburg syndrome type II and improved genetic counseling. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Germ line mutation analysis in families with multiple endocrine neoplasia type 2A or familial medullary thyroid carcinoma.

    PubMed

    Karga, H J; Karayianni, M K; Linos, D A; Tseleni, S C; Karaiskos, K D; Papapetrou, P D

    1998-10-01

    The RET proto-oncogene has been identified as the multiple endocrine neoplasia type 2 disease gene. An association between specific RET mutation and disease phenotype has been reported. We present the phenotype-genotype of 12 Greek families with multiple endocrine neoplasia type 2A (MEN 2A) or familial medullary thyroid carcinoma (FMTC). Seventy members were studied and DNA analysis for RET mutations was performed in fifty-eight of them. Exons 10, 11, 13, 14 and 16 of the RET proto-oncogene were analyzed by single strand conformation polymorphism analysis, direct DNA sequencing and/or restriction enzyme analysis. No mutations of the RET proto-oncogene were identified in 1 of 9 families with MEN 2A and in the 3 families with FMTC. In 7 MEN 2A families, the mutation was demonstrated in codon 634 and in 1 family it was demonstrated in codon 620. There was a low frequency, about 8%, of hyperparathyroidism associated with MEN 2A. The specific causative mutations for pararthyroid disease were C634R or C634Y. Among the MEN 2A individuals there was one case with de novo C634R mutation and one case, C634Y, with cutaneous lichen amyloidosis which predated by 24 years the diagnosis of MEN 2A. In 2 children who were MEN 2A gene carriers, microscopic medullary thyroid carcinomas were found. These data show a low frequency of hyperparathyroidism in our cases and provide further evidence that individuals with C634R as well as with C634Y mutations of the RET proto-oncogene could be at risk for parathyroid disease. Cutaneous lichen amyloidosis could be an early feature of MEN 2A. Additionally, direct DNA testing provided an opportunity to resect medullary thyroid carcinoma at an early stage.

  15. Generation and analysis of knock-in mice carrying pseudohypoaldosteronism type II-causing mutations in the cullin 3 gene.

    PubMed

    Araki, Yuya; Rai, Tatemitsu; Sohara, Eisei; Mori, Takayasu; Inoue, Yuichi; Isobe, Kiyoshi; Kikuchi, Eriko; Ohta, Akihito; Sasaki, Sei; Uchida, Shinichi

    2015-10-21

    Pseudohypoaldosteronism type II (PHAII) is a hereditary hypertensive disease caused by mutations in four different genes: with-no-lysine kinases (WNK) 1 and 4, Kelch-like family member 3 (KLHL3), and cullin 3 (Cul3). Cul3 and KLHL3 form an E3 ligase complex that ubiquitinates and reduces the expression level of WNK4. PHAII-causing mutations in WNK4 and KLHL3 impair WNK4 ubiquitination. However, the molecular pathogenesis of PHAII caused by Cul3 mutations is unclear. In cultured cells and human leukocytes, PHAII-causing Cul3 mutations result in the skipping of exon 9, producing mutant Cul3 protein lacking 57 amino acids. However, whether this phenomenon occurs in the kidneys and is responsible for the pathogenesis of PHAII in vivo is unknown. We generated knock-in mice carrying a mutation in the C-terminus of intron 8 of Cul3, c.1207-1G>A, which corresponds to a PHAII-causing mutation in the human Cul3 gene. Heterozygous Cul3(G(-1)A/+) knock-in mice did not exhibit PHAII phenotypes, and the skipping of exon 9 was not evident in their kidneys. However, the level of Cul3 mRNA expression in the kidneys of heterozygous knock-in mice was approximately half that of wild-type mice. Furthermore, homozygous knock-in mice were nonviable. It suggested that the mutant allele behaved like a knockout allele and did not produce Cul3 mRNA lacking exon 9. A reduction in Cul3 expression alone was not sufficient to develop PHAII in the knock-in mice. Our findings highlighted the pathogenic role of mutant Cul3 protein and provided insight to explain why PHAII-causing mutations in Cul3 cause kidney-predominant PHAII phenotypes. © 2015. Published by The Company of Biologists Ltd.

  16. Primary hyperoxaluria type I: a model for multiple mutations in a monogenic disease within a distinct ethnic group.

    PubMed

    Rinat, C; Wanders, R J; Drukker, A; Halle, D; Frishberg, Y

    1999-11-01

    Primary hyperoxaluria type 1 is an autosomal recessive inherited metabolic disease in which excessive oxalates are formed by the liver and excreted by the kidneys, causing a wide spectrum of phenotypes ranging from renal failure in infancy to mere renal stones in late adulthood. Mutations in the AGXT gene, encoding the liver-specific enzyme alanine:glyoxylate aminotransferase, are responsible for the disease. Seven mutations were detected in eight families in Israel. Four of these mutations are novel and three occur in children living in single-clan villages. The mutations are scattered along various exons (1, 4, 5, 7, 9, 10), and on different alleles comprising at least five different haplotypes. All but one of the mutations are in a homozygous pattern, reflecting the high rate of consanguinity in our patient population. Two affected brothers are homozygous for two different mutations expressed on the same allele. The patients comprise a distinct ethnic group (Israeli Arabs) residing in a confined geographic area. These results, which are supported by previous data, suggest for the first time that the phenomenon of multiple mutations in a relatively closed isolate is common and almost exclusive to the Israeli-Arab population. Potential mechanisms including selective advantage to heterozygotes, digenic inheritance, and the recent emergence of multiple mutations are discussed.

  17. Mutational analysis of AGXT gene in Libyan children with primary hyperoxaluria type 1 at Tripoli Children Hospital.

    PubMed

    Rhuma, Naziha R; Fituri, Omar A; Sabei, Laila T

    2018-01-01

    Primary hyperoxaluria type 1 (PH1) is an inborn error of glyoxylate metabolism. It results from genetic mutation of the AGXT gene. The study objective was to verify the clinical and epidemiological patterns of PH1 in Libyan children at Tripoli Children Hospital confirmed by AGXT gene mutation. A descriptive case series study of 53 children with PH1 diagnosed between 1994 and 2015 was carried out in the Nephrology Unit at Tripoli Children Hospital. Diagnosis of PH1 was based on the clinical presentation (renal stones or nephrocalcinosis), positive family history of PH1, and high 24 h urinary oxalate. Sampling for AGXT gene mutation was collected from April 2012 to December. 2015. Among the 53 children included, males composed of 62.3% of patients. Their age at presentation ranged between two months and 20 years with a mean age of 55.4 ± 48 months. The parents of 81.1% of these patients had positive consanguinity. Forty (75.5%) patients were from South West (mountain area), and 16 (40%) of them were from Yefrin. The most common mutation found in this study was c.731T>C (p.lle244thr) seen in 32 (71%) of children, and interestingly, among these patients, 87.1% were homozygous in gene typing, 86.2% had positive history of consanguinity, 71.4% were from South West (mountain area), 96.6% had family history of PH1, and 20% presented with impaired renal function. The patients with this mutation were younger at presentation than that with other genes, and it was more prevalent among boys (61.3%). Thus, the most common gene mutation found in Libyan children with PH1 was c.731T>C (p.lle244thr) and this is more likely due to the strong genetic pooling caused by the high consanguinity rate which requires an extensive genetic counseling.

  18. Biallelic Mutations of Methionyl-tRNA Synthetase Cause a Specific Type of Pulmonary Alveolar Proteinosis Prevalent on Réunion Island

    PubMed Central

    Hadchouel, Alice; Wieland, Thomas; Griese, Matthias; Baruffini, Enrico; Lorenz-Depiereux, Bettina; Enaud, Laurent; Graf, Elisabeth; Dubus, Jean Christophe; Halioui-Louhaichi, Sonia; Coulomb, Aurore; Delacourt, Christophe; Eckstein, Gertrud; Zarbock, Ralf; Schwarzmayr, Thomas; Cartault, François; Meitinger, Thomas; Lodi, Tiziana; de Blic, Jacques; Strom, Tim M.

    2015-01-01

    Methionyl-tRNA synthetase (MARS) catalyzes the ligation of methionine to tRNA and is critical for protein biosynthesis. We identified biallelic missense mutations in MARS in a specific form of pediatric pulmonary alveolar proteinosis (PAP), a severe lung disorder that is prevalent on the island of Réunion and the molecular basis of which is unresolved. Mutations were found in 26 individuals from Réunion and nearby islands and in two families from other countries. Functional consequences of the mutated alleles were assessed by growth of wild-type and mutant strains and methionine-incorporation assays in yeast. Enzyme activity was attenuated in a liquid medium without methionine but could be restored by methionine supplementation. In summary, identification of a founder mutation in MARS led to the molecular definition of a specific type of PAP and will enable carrier screening in the affected community and possibly open new treatment opportunities. PMID:25913036

  19. The Usher Syndrome Type IIIB Histidyl-tRNA Synthetase Mutation Confers Temperature Sensitivity.

    PubMed

    Abbott, Jamie A; Guth, Ethan; Kim, Cindy; Regan, Cathy; Siu, Victoria M; Rupar, C Anthony; Demeler, Borries; Francklyn, Christopher S; Robey-Bond, Susan M

    2017-07-18

    Histidyl-tRNA synthetase (HARS) is a highly conserved translation factor that plays an essential role in protein synthesis. HARS has been implicated in the human syndromes Charcot-Marie-Tooth (CMT) Type 2W and Type IIIB Usher (USH3B). The USH3B mutation, which encodes a Y454S substitution in HARS, is inherited in an autosomal recessive fashion and associated with childhood deafness, blindness, and episodic hallucinations during acute illness. The biochemical basis of the pathophysiologies linked to USH3B is currently unknown. Here, we present a detailed functional comparison of wild-type (WT) and Y454S HARS enzymes. Kinetic parameters for enzymes and canonical substrates were determined using both steady state and rapid kinetics. Enzyme stability was examined using differential scanning fluorimetry. Finally, enzyme functionality in a primary cell culture was assessed. Our results demonstrate that the Y454S substitution leaves HARS amino acid activation, aminoacylation, and tRNA His binding functions largely intact compared with those of WT HARS, and the mutant enzyme dimerizes like the wild type does. Interestingly, during our investigation, it was revealed that the kinetics of amino acid activation differs from that of the previously characterized bacterial HisRS. Despite the similar kinetics, differential scanning fluorimetry revealed that Y454S is less thermally stable than WT HARS, and cells from Y454S patients grown at elevated temperatures demonstrate diminished levels of protein synthesis compared to those of WT cells. The thermal sensitivity associated with the Y454S mutation represents a biochemical basis for understanding USH3B.

  20. Mutations in Either TUBB or MAPRE2 Cause Circumferential Skin Creases Kunze Type

    PubMed Central

    Isrie, Mala; Breuss, Martin; Tian, Guoling; Hansen, Andi Harley; Cristofoli, Francesca; Morandell, Jasmin; Kupchinsky, Zachari A.; Sifrim, Alejandro; Rodriguez-Rodriguez, Celia Maria; Dapena, Elena Porta; Doonanco, Kurston; Leonard, Norma; Tinsa, Faten; Moortgat, Stéphanie; Ulucan, Hakan; Koparir, Erkan; Karaca, Ender; Katsanis, Nicholas; Marton, Valeria; Vermeesch, Joris Robert; Davis, Erica E.; Cowan, Nicholas J.; Keays, David Anthony; Van Esch, Hilde

    2015-01-01

    Circumferential skin creases Kunze type (CSC-KT) is a specific congenital entity with an unknown genetic cause. The disease phenotype comprises characteristic circumferential skin creases accompanied by intellectual disability, a cleft palate, short stature, and dysmorphic features. Here, we report that mutations in either MAPRE2 or TUBB underlie the genetic origin of this syndrome. MAPRE2 encodes a member of the microtubule end-binding family of proteins that bind to the guanosine triphosphate cap at growing microtubule plus ends, and TUBB encodes a β-tubulin isotype that is expressed abundantly in the developing brain. Functional analyses of the TUBB mutants show multiple defects in the chaperone-dependent tubulin heterodimer folding and assembly pathway that leads to a compromised yield of native heterodimers. The TUBB mutations also have an impact on microtubule dynamics. For MAPRE2, we show that the mutations result in enhanced MAPRE2 binding to microtubules, implying an increased dwell time at microtubule plus ends. Further, in vivo analysis of MAPRE2 mutations in a zebrafish model of craniofacial development shows that the variants most likely perturb the patterning of branchial arches, either through excessive activity (under a recessive paradigm) or through haploinsufficiency (dominant de novo paradigm). Taken together, our data add CSC-KT to the growing list of tubulinopathies and highlight how multiple inheritance paradigms can affect dosage-sensitive biological systems so as to result in the same clinical defect. PMID:26637975

  1. The Type IIP SN 2005ay: An Extensive Study From UltraViolet To Near-IR

    NASA Astrophysics Data System (ADS)

    Bufano, F. M.; Turatto, M.; Zampieri, L.; Gal-Yam, A.

    2006-08-01

    Several supernova types are thought to explode via the gravitational collapse of the core of massive stars at the end of their lifetimes. The great observational diversity has not been fully understood even if it clearly involves the progenitor masses and configurations at the time of explosion. These Supernovae, called Core Collapse Supernovae (CC SNe), are expected to dominate the counts of SNe observed at high redshifts and to be the only observable probe of the first generation stars (Pop III). Recently indicated as reliable distance indicators (Hamuy 02, Pastorello `03), CC SNe are objects of great interest but significantly less studied in comparison with the Termonuclear ones. With the aim to understand better the reasons of the heterogeneous behaviour , we have started an extensive study of the properties of SN II with different observational features (luminosity, velocity, etc..). Here we present the last results on our first observed target, SN2005ay, a Type IIP supernova observed in an extended way from the Ultraviolet wavelengths, provided by the GALEX , to the Optical and near-IR , obtained with IISP (Italian Intensive Supernova Program).

  2. Calreticulin mutation analysis in non-mutated Janus kinase 2 essential thrombocythemia patients in Chiang Mai University: analysis of three methods and clinical correlations.

    PubMed

    Rattarittamrong, Ekarat; Tantiworawit, Adisak; Kumpunya, Noppamas; Wongtagan, Ornkamon; Tongphung, Ratchanoo; Phusua, Arunee; Chai-Adisaksopha, Chatree; Hantrakool, Sasinee; Rattanathammethee, Thanawat; Norasetthada, Lalita; Charoenkwan, Pimlak; Lekawanvijit, Suree

    2018-03-09

    The primary objective was to determine the prevalence of calreticulin (CALR) mutation in patients with non-JAK2V617F mutated essential thrombocythemia (ET). The secondary objectives were to evaluate the accuracy of CALR mutation analysis by high-resolution melting (HRM) analysis and real-time polymerase chain reaction (PCR) compared with DNA sequencing and to compare clinical characteristics of CALR mutated and JAK2V617F mutated ET. This was a prospective cohort study involving ET patients registered at Chiang Mai University in the period September 2015-September 2017 who were aged more than 2 years, and did not harbor JAK2V617F mutation. The presence of CALR mutation was established by DNA sequencing, HRM, and real-time PCR for type 1 and type 2 mutation. Clinical data were compared with that from ET patients with mutated JAK2V617F. Twenty-eight patients were enrolled onto the study. CALR mutations were found in 10 patients (35.7%). Three patients had type 1 mutation, 5 patients had type 2 mutation, 1 patient had type 18 mutation, and 1 patients had novel mutations (c.1093 C-G, c.1098_1131 del, c.1135 G-A). HRM could differentiate between the types of mutation in complete agreement with DNA sequencing. Patients with a CALR mutation showed a significantly greater male predominance and had a higher platelet count when compared with 42 JAK2V617F patients. The prevalence of CALR mutation in JAK2V617F-negative ET in this study is 35.7%. HRM is an effective method of detecting CALR mutation and is a more advantageous method of screening for CALR mutation.

  3. Novel nonnucleoside inhibitors that select nucleoside inhibitor resistance mutations in human immunodeficiency virus type 1 reverse transcriptase.

    PubMed

    Zhang, Zhijun; Walker, Michelle; Xu, Wen; Shim, Jae Hoon; Girardet, Jean-Luc; Hamatake, Robert K; Hong, Zhi

    2006-08-01

    Mutations in and around the catalytic site of the reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIV-1) are associated with resistance to nucleoside RT inhibitors (NRTIs), whereas changes in the hydrophobic pocket of the RT are attributed to nonnucleoside RT inhibitor (NNRTI) resistance. In this study, we report a novel series of nonnucleoside inhibitors of HIV-1, exemplified by VRX-329747 and VRX-413638, which inhibit both NNRTI- and NRTI-resistant HIV-1 isolates. Enzymatic studies indicated that these compounds are HIV-1 RT inhibitors. Surprisingly, however, following prolonged (6 months) tissue culture selection, this series of nonnucleoside inhibitors did not select NNRTI-resistant mutations in HIV-1 RT. Rather, four mutations (M41L, A62T/V, V118I, and M184V) known to cause resistance to NRTIs and two additional novel mutations (S68N and G112S) adjacent to the catalytic site of the enzyme were selected. Although the M184V mutation appears to be the initial mutation to establish resistance, this mutation alone confers only a two- to fourfold decrease in susceptibility to VRX-329747 and VRX-413638. At least two additional mutations must accumulate for significant resistance. Moreover, while VRX-329747-selected viruses are resistant to lamivudine and emtricitabine due to the M184V mutation, they remain susceptible to zidovudine, stavudine, dideoxyinosine, abacavir, tenofovir, and efavirenz. These results directly demonstrate that VRX-329747 and VRX-413638 are novel nonnucleoside inhibitors of HIV-1 RT with the potential to augment current therapies.

  4. Novel Nonnucleoside Inhibitors That Select Nucleoside Inhibitor Resistance Mutations in Human Immunodeficiency Virus Type 1 Reverse Transcriptase

    PubMed Central

    Zhang, Zhijun; Walker, Michelle; Xu, Wen; Shim, Jae Hoon; Girardet, Jean-Luc; Hamatake, Robert K.; Hong, Zhi

    2006-01-01

    Mutations in and around the catalytic site of the reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIV-1) are associated with resistance to nucleoside RT inhibitors (NRTIs), whereas changes in the hydrophobic pocket of the RT are attributed to nonnucleoside RT inhibitor (NNRTI) resistance. In this study, we report a novel series of nonnucleoside inhibitors of HIV-1, exemplified by VRX-329747 and VRX-413638, which inhibit both NNRTI- and NRTI-resistant HIV-1 isolates. Enzymatic studies indicated that these compounds are HIV-1 RT inhibitors. Surprisingly, however, following prolonged (6 months) tissue culture selection, this series of nonnucleoside inhibitors did not select NNRTI-resistant mutations in HIV-1 RT. Rather, four mutations (M41L, A62T/V, V118I, and M184V) known to cause resistance to NRTIs and two additional novel mutations (S68N and G112S) adjacent to the catalytic site of the enzyme were selected. Although the M184V mutation appears to be the initial mutation to establish resistance, this mutation alone confers only a two- to fourfold decrease in susceptibility to VRX-329747 and VRX-413638. At least two additional mutations must accumulate for significant resistance. Moreover, while VRX-329747-selected viruses are resistant to lamivudine and emtricitabine due to the M184V mutation, they remain susceptible to zidovudine, stavudine, dideoxyinosine, abacavir, tenofovir, and efavirenz. These results directly demonstrate that VRX-329747 and VRX-413638 are novel nonnucleoside inhibitors of HIV-1 RT with the potential to augment current therapies. PMID:16870771

  5. Gitelman or Bartter type 3 syndrome? A case of distal convoluted tubulopathy caused by CLCNKB gene mutation

    PubMed Central

    Cruz, António José; Castro, Alexandra

    2013-01-01

    A 32-year-old woman with no significant medical history was sent to our consultation due to hypokalaemia (<3.0 mmol/l). Her main complaints were longstanding polyuria and nocturia. Physical examination was normal. Basic investigations showed normal renal function, low serum potassium (2.7 mmol/l) and magnesium (0.79 mmol/l), metabolic alkalosis (pH 7.54; bicarbonate 32.5 mmol/l), elevated urinary potassium (185 mmol/24 h) and normal urinary calcium (246 mg/24 h). Thiazide test revealed blunted response. Chronic vomiting and the abuse of diuretics were excluded. Genetic tests for SLC12A3 gene mutation described in Gitelman syndrome (GS) came negative. CLCNKB gene mutation analysis present in both GS and Bartter (BS) type 3 syndromes was positive. The patient is now being treated with potassium and magnesium oral supplements, ramipril and spironolactone with stable near-normal potassium and magnesium levels. This article presents the case of a patient with hypokalaemia caused by CLCNKB gene mutation hard to categorise as GS or BS type 3. PMID:23345488

  6. Gitelman or Bartter type 3 syndrome? A case of distal convoluted tubulopathy caused by CLCNKB gene mutation.

    PubMed

    Cruz, António José; Castro, Alexandra

    2013-01-22

    A 32-year-old woman with no significant medical history was sent to our consultation due to hypokalaemia (<3.0 mmol/l). Her main complaints were longstanding polyuria and nocturia. Physical examination was normal. Basic investigations showed normal renal function, low serum potassium (2.7 mmol/l) and magnesium (0.79 mmol/l), metabolic alkalosis (pH 7.54; bicarbonate 32.5 mmol/l), elevated urinary potassium (185 mmol/24 h) and normal urinary calcium (246 mg/24 h). Thiazide test revealed blunted response. Chronic vomiting and the abuse of diuretics were excluded. Genetic tests for SLC12A3 gene mutation described in Gitelman syndrome (GS) came negative. CLCNKB gene mutation analysis present in both GS and Bartter (BS) type 3 syndromes was positive. The patient is now being treated with potassium and magnesium oral supplements, ramipril and spironolactone with stable near-normal potassium and magnesium levels. This article presents the case of a patient with hypokalaemia caused by CLCNKB gene mutation hard to categorise as GS or BS type 3.

  7. Screening for germline mutations in the neurofibromatosis type 2 (NF2) gene in NF2 patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andermann, A.A.; Ruttledge, M.H.; Rangaratnam, A.

    Neurofibromatosis type 2 (NF2) is an autosomal dominant disease with over 95% penetrance which predisposes gene carriers to develop multiple tumors of the central nervous system. The NF2 gene is a putative tumor suppressor gene which was previously mapped to the long arm of chromosome 22, and has recently been identified, using positional cloning techniques. The gene encodes a protein, schwannomin (SCH), which is highly homologous to the band 4.1 protein family. In an attempt to identify and characterize mutations which lead to the manifestation of the disease, we have used single strand conformation analysis (SSCA) to screen for germlinemore » mutations in all 17 exons of the NF2 gene in 59 unrelated NF2 patients, representing both familial and new mutations. A total of 27 migration abnormalities was found in 26 patients. Using direct sequencing analysis, the majority of these variants were found to result in nonsense, splice-site or frameshift mutations. Mutations identified in familial NF2 patients segregate in the family, and may prove to be useful tools for a simple and direct SSCA-based technique of presymptomatic or prenatal diagnosis in relatives of patients with NF2. This may be of particular importance in children of patients who have new mutations in the NF2 gene, where linkage analysis may not be feasible.« less

  8. Comparison of clinical outcome after first-line platinum-based chemotherapy in different types of KRAS mutated advanced non-small-cell lung cancer.

    PubMed

    Mellema, Wouter W; Masen-Poos, Lucie; Smit, Egbert F; Hendriks, Lizza E L; Aerts, Joachim G; Termeer, Arien; Goosens, Martijn J; Smit, Hans J M; van den Heuvel, Michel M; van der Wekken, Anthonie J; Herder, Gerarda J M; Krouwels, Frans H; Stigt, Jos A; van den Borne, Ben E E M; Haitjema, Tjeerd J; Staal-Van den Brekel, Agnes J; van Heemst, Robbert C; Pouw, Ellen; Dingemans, Anne-Marie C

    2015-11-01

    As suggested by in-vitro data, we hypothesize that subtypes of KRAS mutated non-small cell lung cancer (NSCLC) respond differently to chemotherapy regimens. Patients with advanced NSCLC and known KRAS mutation, treated with first-line platinum-based chemotherapy, were retrieved from hospital databases. to investigate overall response rate (ORR), progression free survival (PFS) and overall survival (OS) between different types of platinum-based chemotherapy per type of KRAS mutation. 464 patients from 17 hospitals, treated between 2000 and 2013, were included. The majority of patients had stage IV disease (93%), had a history of smoking (98%) and known with an adenocarcinoma (91%). Most common types of KRAS mutation were G12C (46%), G12V (20%) and G12D (10%). Platinum was combined with pemetrexed (n=334), taxanes (n=68) or gemcitabine (n=62). Patients treated with taxanes had a significant improved ORR (50%) compared to pemetrexed (21%) or gemcitabine (25%; p<0.01). Patients treated with bevacizumab in addition to taxanes (n=38) had the highest ORR (62%). The PFS was significantly improved in patients treated with taxanes compared to pemetrexed (HR=0.72, p=0.02), but not OS (HR=0.87, p=0.41). In patients with G12V, significantly improved ORR (p<0.01) was observed for taxanes, but not PFS or OS. Patients with G12C or G12D mutation had comparable ORR, PFS and OS in all treatment groups. KRAS mutated NSCLC patients treated with taxane-based chemotherapy had best ORR. Response to chemotherapy regimens was different in types of KRAS mutation. Especially patients with G12V had better response to taxane treatment. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Novel splice site mutation in the growth hormone receptor gene in Turkish patients with Laron-type dwarfism.

    PubMed

    Arman, Ahmet; Ozon, Alev; Isguven, Pinar S; Coker, Ajda; Peker, Ismail; Yordam, Nursen

    2008-01-01

    Growth hormone (GH) is involved in growth, and fat and carbohydrate metabolism. Interaction of GH with the GH receptor (GHR) is necessary for systemic and local production of insulin-like growth factor-I (IGF-I) which mediates GH actions. Mutations in the GHR cause severe postnatal growth failure; the disorder is an autosomal recessive genetic disease resulting in GH insensitivity, called Laron syndrome. It is characterized by dwarfism with elevated serum GH and low levels of IGF-I. We analyzed the GHR gene for mutations and polymorphisms in eight patients with Laron-type dwarfism from six families. We found three missense mutations (S40L, V125A, I526L), one nonsense mutation (W157X), and one splice site mutation in the extracellular domain of GHR. Furthermore, G168G and exon 3 deletion polymorphisms were detected in patients with Laron syndrome. The splice site mutation, which is a novel mutation, was located at the donor splice site of exon 2/ intron 2 within GHR. Although this mutation changed the highly conserved donor splice site consensus sequence GT to GGT by insertion of a G residue, the intron splicing between exon 2 and exon 3 was detected in the patient. These results imply that the splicing occurs arthe GT site in intron 2, leaving the extra inserted G residue at the end of exon 2, thus changing the open reading frame of GHR resulting in a premature termination codon in exon 3.

  10. Mutation load in melanoma is affected by MC1R genotype.

    PubMed

    Johansson, Peter A; Pritchard, Antonia L; Patch, Ann-Marie; Wilmott, James S; Pearson, John V; Waddell, Nicola; Scolyer, Richard A; Mann, Graham J; Hayward, Nicholas K

    2017-03-01

    Whole-genome sequencing of matched germline and tumour pairs in a well-characterized cohort of melanoma patients allowed investigation of associations between melanoma body site, age at melanoma onset and MC1R variant status with overall mutation burden and specific base pair changes observed in the corresponding melanoma. We observed statistically significant associations between mutation burden in melanoma and body site, age at onset and MC1R genotype, for both ultraviolet radiation (UVR) signature changes (C>T and CC>TT) and non-UVR base pair substitutions, as well as with overall variant load. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Drosophila type IV collagen mutation associates with immune system activation and intestinal dysfunction.

    PubMed

    Kiss, Márton; Kiss, András A; Radics, Monika; Popovics, Nikoletta; Hermesz, Edit; Csiszár, Katalin; Mink, Mátyás

    2016-01-01

    The basal lamina (BM) contains numerous components with a predominance of type IV collagens. Clinical manifestations associated with mutations of the human COL4A1 gene include perinatal cerebral hemorrhage and porencephaly, hereditary angiopathy, nephropathy, aneurysms and muscle cramps (HANAC), ocular dysgenesis, myopathy, Walker–Warburg syndrome and systemic tissue degeneration. In Drosophila, the phenotype associated with dominant temperature sensitive mutations of col4a1 include severe myopathy resulting from massive degradation of striated muscle fibers, and in the gut, degeneration of circular visceral muscle cells and epithelial cells following detachment from the BM. In order to determine the consequences of altered BMfunctions due to aberrant COL4A1 protein, we have carried out a series of tests using Drosophila DTS-L3 mutants from our allelic series of col4a1 mutations with confirmed degeneration of various cell types and lowest survival rate among the col4a1 mutant lines at restrictive temperature. Results demonstrated epithelial cell degeneration in the gut, shortened gut, enlarged midgut with multiple diverticulae, intestinal dysfunction and shortened life span. Midgut immunohistochemistry analyses confirmed altered expression and distribution of BM components integrin PSI and PSII alpha subunits, laminin gamma 1, and COL4A1 both in larvae and adults. Global gene expression analysis revealed activation of the effector AMP genes of the primary innate immune system including Metchnikowin, Diptericin, Diptericin B, and edin that preceded morphological changes. Attacin::GFP midgut expression pattern further supported these changes. An increase in ROS production and changes in gut bacterial flora were also noted and may have further enhanced an immune response. The phenotypic features of Drosophila col4a1 mutants confirmed an essential role for type IV collagen in maintaining epithelial integrity, gut morphology and intestinal function and suggest that

  12. Metallicity Differences in Type Ia Supernova Progenitors Inferred from Ultraviolet Spectra

    NASA Astrophysics Data System (ADS)

    Foley, Ryan J.; Kirshner, Robert P.

    2013-05-01

    Two "twin" Type Ia supernovae (SNe Ia), SNe 2011by and 2011fe, have extremely similar optical light-curve shapes, colors, and spectra, yet have different ultraviolet (UV) continua as measured in Hubble Space Telescope spectra and measurably different peak luminosities. We attribute the difference in the UV continua to significantly different progenitor metallicities. This is the first robust detection of different metallicities for SN Ia progenitors. Theoretical reasoning suggests that differences in metallicity also lead to differences in luminosity. SNe Ia with higher progenitor metallicities have lower 56Ni yields and lower luminosities for the same light-curve shape. SNe 2011by and 2011fe have different peak luminosities (ΔMV ≈ 0.6 mag), which correspond to different 56Ni yields: M_11fe(^{56}Ni) / M_11by(^{56}Ni) = 1.7^{+0.7}_{-0.5}. From theoretical models that account for different neutron-to-proton ratios in progenitors, the differences in 56Ni yields for SNe 2011by and 2011fe imply that their progenitor stars were above and below solar metallicity, respectively. Although we can distinguish progenitor metallicities in a qualitative way from UV data, the quantitative interpretation in terms of abundances is limited by the present state of theoretical models.

  13. Common variants of the BRCA1 wild-type allele modify the risk of breast cancer in BRCA1 mutation carriers

    PubMed Central

    Cox, David G.; Simard, Jacques; Sinnett, Daniel; Hamdi, Yosr; Soucy, Penny; Ouimet, Manon; Barjhoux, Laure; Verny-Pierre, Carole; McGuffog, Lesley; Healey, Sue; Szabo, Csilla; Greene, Mark H.; Mai, Phuong L.; Andrulis, Irene L.; Thomassen, Mads; Gerdes, Anne-Marie; Caligo, Maria A.; Friedman, Eitan; Laitman, Yael; Kaufman, Bella; Paluch, Shani S.; Borg, Åke; Karlsson, Per; Stenmark Askmalm, Marie; Barbany Bustinza, Gisela; Nathanson, Katherine L.; Domchek, Susan M.; Rebbeck, Timothy R.; Benítez, Javier; Hamann, Ute; Rookus, Matti A.; van den Ouweland, Ans M.W.; Ausems, Margreet G.E.M.; Aalfs, Cora M.; van Asperen, Christi J.; Devilee, Peter; Gille, Hans J.J.P.; Peock, Susan; Frost, Debra; Evans, D. Gareth; Eeles, Ros; Izatt, Louise; Adlard, Julian; Paterson, Joan; Eason, Jacqueline; Godwin, Andrew K.; Remon, Marie-Alice; Moncoutier, Virginie; Gauthier-Villars, Marion; Lasset, Christine; Giraud, Sophie; Hardouin, Agnès; Berthet, Pascaline; Sobol, Hagay; Eisinger, François; Bressac de Paillerets, Brigitte; Caron, Olivier; Delnatte, Capucine; Goldgar, David; Miron, Alex; Ozcelik, Hilmi; Buys, Saundra; Southey, Melissa C.; Terry, Mary Beth; Singer, Christian F.; Dressler, Anne-Catharina; Tea, Muy-Kheng; Hansen, Thomas V.O.; Johannsson, Oskar; Piedmonte, Marion; Rodriguez, Gustavo C.; Basil, Jack B.; Blank, Stephanie; Toland, Amanda E.; Montagna, Marco; Isaacs, Claudine; Blanco, Ignacio; Gayther, Simon A.; Moysich, Kirsten B.; Schmutzler, Rita K.; Wappenschmidt, Barbara; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Niederacher, Dieter; Sutter, Christian; Gadzicki, Dorothea; Fiebig, Britta; Caldes, Trinidad; Laframboise, Rachel; Nevanlinna, Heli; Chen, Xiaoqing; Beesley, Jonathan; Spurdle, Amanda B.; Neuhausen, Susan L.; Ding, Yuan C.; Couch, Fergus J.; Wang, Xianshu; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Radice, Paolo; Easton, Douglas F.; Chenevix-Trench, Georgia; Antoniou, Antonis C.; Stoppa-Lyonnet, Dominique; Mazoyer, Sylvie; Sinilnikova, Olga M.

    2011-01-01

    Mutations in the BRCA1 gene substantially increase a woman's lifetime risk of breast cancer. However, there is great variation in this increase in risk with several genetic and non-genetic modifiers identified. The BRCA1 protein plays a central role in DNA repair, a mechanism that is particularly instrumental in safeguarding cells against tumorigenesis. We hypothesized that polymorphisms that alter the expression and/or function of BRCA1 carried on the wild-type (non-mutated) copy of the BRCA1 gene would modify the risk of breast cancer in carriers of BRCA1 mutations. A total of 9874 BRCA1 mutation carriers were available in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) for haplotype analyses of BRCA1. Women carrying the rare allele of single nucleotide polymorphism rs16942 on the wild-type copy of BRCA1 were at decreased risk of breast cancer (hazard ratio 0.86, 95% confidence interval 0.77–0.95, P = 0.003). Promoter in vitro assays of the major BRCA1 haplotypes showed that common polymorphisms in the regulatory region alter its activity and that this effect may be attributed to the differential binding affinity of nuclear proteins. In conclusion, variants on the wild-type copy of BRCA1 modify risk of breast cancer among carriers of BRCA1 mutations, possibly by altering the efficiency of BRCA1 transcription. PMID:21890493

  14. Novel mutations in the SOX10 gene in the first two Chinese cases of type IV Waardenburg syndrome.

    PubMed

    Jiang, Lu; Chen, Hongsheng; Jiang, Wen; Hu, Zhengmao; Mei, Lingyun; Xue, Jingjie; He, Chufeng; Liu, Yalan; Xia, Kun; Feng, Yong

    2011-05-20

    We analyzed the clinical features and family-related gene mutations for the first two Chinese cases of type IV Waardenburg syndrome (WS4). Two families were analyzed in this study. The analysis included a medical history, clinical analysis, a hearing test and a physical examination. In addition, the EDNRB, EDN3 and SOX10 genes were sequenced in order to identify the pathogenic mutation responsible for the WS4 observed in these patients. The two WS4 cases presented with high phenotypic variability. Two novel heterozygous mutations (c.254G>A and c.698-2A>T) in the SOX10 gene were detected. The mutations identified in the patients were not found in unaffected family members or in 200 unrelated control subjects. This is the first report of WS4 in Chinese patients. In addition, two novel mutations in SOX10 gene have been identified. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  15. Ultraviolet photometry from the Orbiting Astronomical Observatory. XXVIII - Ultraviolet light curves for Alpha Lupi and BW Vulpeculae

    NASA Technical Reports Server (NTRS)

    Lesh, J. R.

    1978-01-01

    Photometric data from the Wisconsin Experiment Package on OAO-2 have been used to construct light curves at three ultraviolet wavelengths for Alpha Lup and at seven wavelengths for BW Vul. Both stars are well-known variables of the Beta Cephei (Beta Canis Majoris) type. The light curves for Alpha Lup are in good agreement with the radial-velocity period. A temperature variation of 400-500 K is derived. The BW Vul light curves confirm recent ephemerides based on a secularly varying period and show a stillstand near light maximum at some wavelengths. Both stars exhibit increasing light amplitude at the shortest ultraviolet wavelengths. There is little evidence for cycle-to-cycle variations on a time scale of the order of 1 day.

  16. Association mining of mutated cancer genes in different clinical stages across 11 cancer types.

    PubMed

    Hu, Wangxiong; Li, Xiaofen; Wang, Tingzhang; Zheng, Shu

    2016-10-18

    Many studies have demonstrated that some genes (e.g. APC, BRAF, KRAS, PTEN, TP53) are frequently mutated in cancer, however, underlying mechanism that contributes to their high mutation frequency remains unclear. Here we used Apriori algorithm to find the frequent mutational gene sets (FMGSs) from 4,904 tumors across 11 cancer types as part of the TCGA Pan-Cancer effort and then mined the hidden association rules (ARs) within these FMGSs. Intriguingly, we found that well-known cancer driver genes such as BRAF, KRAS, PTEN, and TP53 were often co-occurred with other driver genes and FMGSs size peaked at an itemset size of 3~4 genes. Besides, the number and constitution of FMGS and ARs differed greatly among different cancers and stages. In addition, FMGS and ARs were rare in endocrine-related cancers such as breast carcinoma, ovarian cystadenocarcinoma, and thyroid carcinoma, but abundant in cancers contact directly with external environments such as skin melanoma and stomach adenocarcinoma. Furthermore, we observed more rules in stage IV than in other stages, indicating that distant metastasis needed more sophisticated gene regulatory network.

  17. An ultraviolet study of B[e] stars: evidence for pulsations, luminous blue variable type variations and processes in envelopes

    NASA Astrophysics Data System (ADS)

    Krtičková, I.; Krtička, J.

    2018-06-01

    Stars that exhibit a B[e] phenomenon comprise a very diverse group of objects in a different evolutionary status. These objects show common spectral characteristics, including the presence of Balmer lines in emission, forbidden lines and strong infrared excess due to dust. Observations of emission lines indicate illumination by an ultraviolet ionizing source, which is key to understanding the elusive nature of these objects. We study the ultraviolet variability of many B[e] stars to specify the geometry of the circumstellar environment and its variability. We analyse massive hot B[e] stars from our Galaxy and from the Magellanic Clouds. We study the ultraviolet broad-band variability derived from the flux-calibrated data. We determine variations of individual lines and the correlation with the total flux variability. We detected variability of the spectral energy distribution and of the line profiles. The variability has several sources of origin, including light absorption by the disc, pulsations, luminous blue variable type variations, and eclipses in the case of binaries. The stellar radiation of most of B[e] stars is heavily obscured by circumstellar material. This suggests that the circumstellar material is present not only in the disc but also above its plane. The flux and line variability is consistent with a two-component model of a circumstellar environment composed of a dense disc and an ionized envelope. Observations of B[e] supergiants show that many of these stars have nearly the same luminosity, about 1.9 × 105 L⊙, and similar effective temperatures.

  18. Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D.

    PubMed

    Bolz, H; von Brederlow, B; Ramírez, A; Bryda, E C; Kutsche, K; Nothwang, H G; Seeliger, M; del C-Salcedó Cabrera, M; Vila, M C; Molina, O P; Gal, A; Kubisch, C

    2001-01-01

    Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by congenital sensorineural hearing loss, vestibular dysfunction and visual impairment due to early onset retinitis pigmentosa (RP). So far, six loci (USH1A-USH1F) have been mapped, but only two USH1 genes have been identified: MYO7A for USH1B and the gene encoding harmonin for USH1C. We identified a Cuban pedigree linked to the locus for Usher syndrome type 1D (MIM 601067) within the q2 region of chromosome 10). Affected individuals present with congenital deafness and a highly variable degree of retinal degeneration. Using a positional candidate approach, we identified a new member of the cadherin gene superfamily, CDH23. It encodes a protein of 3,354 amino acids with a single transmembrane domain and 27 cadherin repeats. In the Cuban family, we detected two different mutations: a severe course of the retinal disease was observed in individuals homozygous for what is probably a truncating splice-site mutation (c.4488G-->C), whereas mild RP is present in individuals carrying the homozygous missense mutation R1746Q. A variable expression of the retinal phenotype was seen in patients with a combination of both mutations. In addition, we identified two mutations, Delta M1281 and IVS51+5G-->A, in a German USH1 patient. Our data show that different mutations in CDH23 result in USH1D with a variable retinal phenotype. In an accompanying paper, it is shown that mutations in the mouse ortholog cause disorganization of inner ear stereocilia and deafness in the waltzer mouse.

  19. Two Novel HOGA1 Splicing Mutations Identified in a Chinese Patient with Primary Hyperoxaluria Type 3.

    PubMed

    Wang, Xinsheng; Zhao, Xiangzhong; Wang, Xiaoling; Yao, Jian; Zhang, Feifei; Lang, Yanhua; Tuffery-Giraud, Sylvie; Bottillo, Irene; Shao, Leping

    2015-01-01

    Twenty-six HOGA1 mutations have been reported in primary hyperoxaluria (PH) type 3 (PH3) patients with c.700 + 5G>T accounting for about 50% of the total alleles. However, PH3 has never been described in Asians. A Chinese child with early-onset nephrolithiasis was suspected of having PH. We searched for AGXT, GRHPR and HOGA1 gene mutations in this patient and his parents. All coding regions, including intron-exon boundaries, were analyzed using PCR followed by direct sequence analysis. Two heterozygous mutations not previously described in the literature about HOGA1 were identified (compound heterozygous). One mutation was a successive 2 bp substitution at the last nucleotide of exon 6 and at the first nucleotide of intron 6, respectively (c.834_834 + 1GG>TT), while the other one was a guanine to adenine substitution of the last nucleotide of exon 6 (c.834G>A). Direct sequencing analysis failed to find these mutations in 100 unrelated healthy subjects and the functional role on splicing of both variants found in this study was confirmed by a minigene assay based on the pSPL3 exon trapping vector. In addition, we found a SNP in this family (c.715G>A, p.V239I). There were no mutations detected in AGXT and GRHPR. Two novel HOGA1 mutations were identified in association with PH3. This is the first description and investigation on mutant gene analysis of PH3 in an Asian. © 2015 S. Karger AG, Basel

  20. Wavelength-dependent ultraviolet induction of cyclobutane pyrimidine dimers in the human cornea.

    PubMed

    Mallet, Justin D; Rochette, Patrick J

    2013-08-01

    Exposition to ultraviolet (UV) light is involved in the initiation and the progression of skin cancer. The genotoxicity of UV light is mainly attributed to the induction of cyclobutane pyrimidine dimers (CPDs), the most abundant DNA damage generated by all UV types (UVA, B and C). The human cornea is also exposed to the harmful UV radiations, but no UV-related neoplasm has been reported in this ocular structure. The probability that a specific DNA damage leads to a mutation and eventually to cellular transformation is influenced by its formation frequency. To shed light on the genotoxic effect of sunlight in the human eye, we have analyzed CPD induction in the cornea and the iris following irradiation of ex vivo human eyes with UVA, B or C. The extent of CPD induction was used to establish the penetrance of the different UV types in the human cornea. We show that UVB- and UVC-induced CPDs are concentrated in the corneal epithelium and do not penetrate deeply beyond this corneal layer. On the other hand, UVA wavelengths penetrate deeper and induce CPDs in the entire cornea and in the first layers of the iris. Taken together, our results are undoubtedly an important step towards better understanding the consequences of UV exposure to the human eye.

  1. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krauthammer, Michael; Kong, Yong; Ha, Byung Hak

    We characterized the mutational landscape of melanoma, the form of skin cancer with the highest mortality rate, by sequencing the exomes of 147 melanomas. Sun-exposed melanomas had markedly more ultraviolet (UV)-like C>T somatic mutations compared to sun-shielded acral, mucosal and uveal melanomas. Among the newly identified cancer genes was PPP6C, encoding a serine/threonine phosphatase, which harbored mutations that clustered in the active site in 12% of sun-exposed melanomas, exclusively in tumors with mutations in BRAF or NRAS. Notably, we identified a recurrent UV-signature, an activating mutation in RAC1 in 9.2% of sun-exposed melanomas. This activating mutation, the third most frequentmore » in our cohort of sun-exposed melanoma after those of BRAF and NRAS, changes Pro29 to serine (RAC1{sup P29S}) in the highly conserved switch I domain. Crystal structures, and biochemical and functional studies of RAC1{sup P29S} showed that the alteration releases the conformational restraint conferred by the conserved proline, causes an increased binding of the protein to downstream effectors, and promotes melanocyte proliferation and migration. These findings raise the possibility that pharmacological inhibition of downstream effectors of RAC1 signaling could be of therapeutic benefit.« less

  2. Variables that influence BRAF mutation probability: A next-generation sequencing, non-interventional investigation of BRAFV600 mutation status in melanoma.

    PubMed

    Gaiser, Maria Rita; Skorokhod, Alexander; Gransheier, Diana; Weide, Benjamin; Koch, Winfried; Schif, Birgit; Enk, Alexander; Garbe, Claus; Bauer, Jürgen

    2017-01-01

    The incidence of melanoma, particularly in older patients, has steadily increased over the past few decades. Activating mutations of BRAF, the majority occurring in BRAFV600, are frequently detected in melanoma; however, the prognostic significance remains unclear. This study aimed to define the probability and distribution of BRAFV600 mutations, and the clinico-pathological factors that may affect BRAF mutation status, in patients with advanced melanoma using next-generation sequencing. This was a non-interventional, retrospective study of BRAF mutation testing at two German centers, in Heidelberg and Tübingen. Archival tumor samples from patients with histologically confirmed melanoma (stage IIIB, IIIC, IV) were analyzed using PCR amplification and deep sequencing. Clinical, histological, and mutation data were collected. The statistical influence of patient- and tumor-related characteristics on BRAFV600 mutation status was assessed using multiple logistic regression (MLR) and a prediction profiler. BRAFV600 mutation status was assessed in 453 samples. Mutations were detected in 57.6% of patients (n = 261), with 48.1% (n = 102) at the Heidelberg site and 66.0% (n = 159) at the Tübingen site. The decreasing influence of increasing age on mutation probability was quantified. A main effects MLR model identified age (p = 0.0001), center (p = 0.0004), and melanoma subtype (p = 0.014) as significantly influencing BRAFV600 mutation probability; ultraviolet (UV) exposure showed a statistical trend (p = 0.1419). An interaction model of age versus other variables showed that center (p<0.0001) and melanoma subtype (p = 0.0038) significantly influenced BRAF mutation probability; age had a statistically significant effect only as part of an interaction with both UV exposure (p = 0.0110) and melanoma subtype (p = 0.0134). This exploratory study highlights that testing center, melanoma subtype, and age in combination with UV exposure and melanoma subtype significantly

  3. A novel ETFB mutation in a patient with glutaric aciduria type II.

    PubMed

    Sudo, Yosuke; Sasaki, Ayako; Wakabayashi, Takashi; Numakura, Chikahiko; Hayasaka, Kiyoshi

    2015-01-01

    Glutaric aciduria type II (GAII) is a rare inborn error of metabolism clinically classified into a neonatal-onset form with congenital anomalies, a neonatal-onset form without congenital anomalies and a mild and/or late-onset form (MIM #231680). Here, we report on a GAII patient carrying a homozygous novel c.143_145delAGG (p.Glu48del) mutation in the ETFB gene, who presented with a neonatal-onset form with congenital anomalies and rapidly developed cardiomegaly after birth.

  4. A novel ETFB mutation in a patient with glutaric aciduria type II

    PubMed Central

    Sudo, Yosuke; Sasaki, Ayako; Wakabayashi, Takashi; Numakura, Chikahiko; Hayasaka, Kiyoshi

    2015-01-01

    Glutaric aciduria type II (GAII) is a rare inborn error of metabolism clinically classified into a neonatal-onset form with congenital anomalies, a neonatal-onset form without congenital anomalies and a mild and/or late-onset form (MIM #231680). Here, we report on a GAII patient carrying a homozygous novel c.143_145delAGG (p.Glu48del) mutation in the ETFB gene, who presented with a neonatal-onset form with congenital anomalies and rapidly developed cardiomegaly after birth. PMID:27081516

  5. Spectrum of mutations in Glutaryl-CoA dehydrogenase gene in glutaric aciduria type I--Study from South India.

    PubMed

    Radha Rama Devi, A; Ramesh, Vakkalagadda A; Nagarajaram, H A; Satish, S P S; Jayanthi, U; Lingappa, Lokesh

    2016-01-01

    Glutaric aciduria type I is an autosomal recessive organic acid disorder. The primary defect is the deficiency of Glutaryl-CoA dehydrogenase (EC number 1.3.99.7) enzyme that is involved in the catabolic pathways of the amino acids l-lysine, l-hydroxylysine, and l-tryptophan. It is a treatable neuro-metabolic disorder. Early diagnosis and treatment helps in preventing brain damage. The Glutaryl-CoA dehydrogenase gene (GCDH) gene was sequenced to identify disease causing mutations by direct sequencing of all the exons in twelve patients who were biochemically confirmed with GA I. We identified eleven mutations of which nine are homozygous mutations, one heterozygous and two synonymous mutations. Among the eleven mutations, four mutations p.Q162R, p.P286S, p.W225X in two families and p.V410M are novel. A milder clinical presentation is observed in those families who are either heterozygous or with a benign synonymous SNP. Multiple sequence alignment (MSA) of GCDH with its homologues revealed that the observed novel mutations are not tolerated by protein structure and function. The present study indicates genetic heterogeneity in GCDH gene mutations among South Indian population. Genetic analysis is useful in prenatal diagnosis and prevention. Mutation analysis is a useful tool in the absence of non-availability of enzyme assay in GA I. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  6. A novel DSPP mutation causes dentinogenesis imperfecta type II in a large Mongolian family

    PubMed Central

    2010-01-01

    Background Several studies have shown that the clinical phenotypes of dentinogenesis imperfecta type II (DGI-II) may be caused by mutations in dentin sialophosphoprotein (DSPP). However, no previous studies have documented the clinical phenotype and genetic basis of DGI-II in a Mongolian family from China. Methods We identified a large five-generation Mongolian family from China with DGI-II, comprising 64 living family members of whom 22 were affected. Linkage analysis of five polymorphic markers flanking DSPP gene was used to genotype the families and to construct the haplotypes of these families. All five DSPP exons including the intron-exon boundaries were PCR-amplified and sequenced in 48 members of this large family. Results All affected individuals showed discoloration and severe attrition of their teeth, with obliterated pulp chambers and without progressive high frequency hearing loss or skeletal abnormalities. No recombination was found at five polymorphic markers flanking DSPP in the family. Direct DNA sequencing identified a novel A→G transition mutation adjacent to the donor splicing site within intron 3 in all affected individuals but not in the unaffected family members and 50 unrelated Mongolian individuals. Conclusion This study identified a novel mutation (IVS3+3A→G) in DSPP, which caused DGI-II in a large Mongolian family. This expands the spectrum of mutations leading to DGI-II. PMID:20146806

  7. Functional analysis of Waardenburg syndrome-associated PAX3 and SOX10 mutations: report of a dominant-negative SOX10 mutation in Waardenburg syndrome type II.

    PubMed

    Zhang, Hua; Chen, Hongsheng; Luo, Hunjin; An, Jing; Sun, Lin; Mei, Lingyun; He, Chufeng; Jiang, Lu; Jiang, Wen; Xia, Kun; Li, Jia-Da; Feng, Yong

    2012-03-01

    Waardenburg syndrome (WS) is an auditory-pigmentary disorder resulting from melanocyte defects, with varying combinations of sensorineural hearing loss and abnormal pigmentation of the hair, skin, and inner ear. WS is classified into four subtypes (WS1-WS4) based on additional symptoms. PAX3 and SOX10 are two transcription factors that can activate the expression of microphthalmia-associated transcription factor (MITF), a critical transcription factor for melanocyte development. Mutations of PAX3 are associated with WS1 and WS3, while mutations of SOX10 cause WS2 and WS4. Recently, we identified some novel WS-associated mutations in PAX3 and SOX10 in a cohort of Chinese WS patients. Here, we further identified an E248fsX30 SOX10 mutation in a family of WS2. We analyzed the subcellular distribution, expression and in vitro activity of two PAX3 mutations (p.H80D, p.H186fsX5) and four SOX10 mutations (p.E248fsX30, p.G37fsX58, p.G38fsX69 and p.R43X). Except H80D PAX3, which retained partial activity, the other mutants were unable to activate MITF promoter. The H80D PAX3 and E248fsX30 SOX10 were localized in the nucleus as wild type (WT) proteins, whereas the other mutant proteins were distributed in both cytoplasm and nucleus. Furthermore, E248fsX30 SOX10 protein retained the DNA-binding activity and showed dominant-negative effect on WT SOX10. However, E248fsX30 SOX10 protein seems to decay faster than the WT one, which may underlie the mild WS2 phenotype caused by this mutation.

  8. Detection of EGFR Gene Mutation by Mutation-oriented LAMP Method.

    PubMed

    Matsumoto, Naoyuki; Kumasaka, Akira; Ando, Tomohiro; Komiyama, Kazuo

    2018-04-01

    Epidermal growth factor receptor (EGFR) is a target of molecular therapeutics for non-small cell lung cancer. EGFR gene mutations at codons 746-753 promote constitutive EGFR activation and result in worst prognosis. However, these mutations augment the therapeutic effect of EGFR-tyrosine kinase inhibitor. Therefore, the detection of EGFR gene mutations is important for determining treatment planning. The aim of the study was to establish a method to detect EGFR gene mutations at codons 746-753. EGFR gene mutation at codons 746-753 in six cancer cell lines were investigated. A loop-mediated isothermal amplification (LAMP)-based procedure was developed, that employed peptide nucleic acid to suppress amplification of the wild-type allele. This mutation-oriented LAMP can amplify the DNA fragment of the EGFR gene with codons 746-753 mutations within 30 min. Moreover, boiled cells can work as template resources. Mutation oriented-LAMP assay for EGFR gene mutation is sensitive on extracted DNA. This procedure would be capable of detecting EGFR gene mutation in sputum, pleural effusion, broncho-alveolar lavage fluid or trans-bronchial lung biopsy by chair side. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. Mutational Analysis of Cell Types in Tuberous Sclerosis Complex (TSC)

    DTIC Science & Technology

    2007-01-01

    disorder resulting from mutations in the TSC1 or TSC2 genes that is associated with epilepsy, cognitive disability, and autism . TSC1/TSC2 gene mutations...cognitive disability, and autism . TSC1/TSC2 gene mutations lead to developmental alterations in brain structure known as tubers in over 80% of TSC...TSC (Sparagana and Roach, 2000). Comorbid neuropsychological disorders such as autism , mental retardation (MR), pervasive developmental disorder

  10. Mutation analysis of BRCA1/2 mutations with special reference to polymorphic SNPs in Indian breast cancer patients.

    PubMed

    Shah, Nidhi D; Shah, Parth S; Panchal, Yash Y; Katudia, Kalpesh H; Khatri, Nikunj B; Ray, Hari Shankar P; Bhatiya, Upti R; Shah, Sandip C; Shah, Bhavini S; Rao, Mandava V

    2018-01-01

    Germline mutations BRCA1 and BRCA2 contribute almost equally in the causation of breast cancer (BC). The type of mutations in the Indian population that cause this condition is largely unknown. In this cohort, 79 randomized BC patients were screened for various types of BRCA1 and BRCA2 mutations including frameshift, nonsense, missense, in-frame and splice site types. The purified extracted DNA of each referral patient was subjected to Sanger gene sequencing using Codon Code Analyzer and Mutation Surveyor and next-generation sequencing (NGS) methods with Ion torrent software, after appropriate care. The data revealed that 35 cases were positive for BRCA1 or BRCA2 (35/79: 44.3%). BRCA2 mutations were higher (52.4%) than BRCA1 mutations (47.6%). Five novel mutations detected in this study were p.pro163 frameshift, p.asn997 frameshift, p.ser148 frameshift and two splice site single-nucleotide polymorphisms (SNPs). Additionally, four nonsense and one in-frame deletion were identified, which all seemed to be pathogenic. Polymorphic SNPs contributed the highest percentage of mutations (72/82: 87.8%) and contributed to pathogenic, likely pathogenic, likely benign, benign and variant of unknown significance (VUS). Young age groups (20-60 years) had a high frequency of germline mutations (62/82;75.6%) in the Indian population. This study suggested that polymorphic SNPs contributed a high percentage of mutations along with five novel types. Younger age groups are prone to having BC with a higher mutational rate. Furthermore, the SNPs detected in exons 10, 11 and 16 of BRCA1 and BRCA2 were higher than those in other exons 2, 3 and 9 polymorphic sites in two germline genes. These may be contributory for BC although missense types are known to be susceptible for cancer depending on the type of amino acid replaced in the protein and associated with pathologic events. Accordingly, appropriate counseling and treatment may be suggested.

  11. Modeling the effect of 3 missense AGXT mutations on dimerization of the AGT enzyme in primary hyperoxaluria type 1.

    PubMed

    Robbiano, Angela; Frecer, Vladimir; Miertus, Jan; Zadro, Cristina; Ulivi, Sheila; Bevilacqua, Elena; Mandrile, Giorgia; De Marchi, Mario; Miertus, Stanislav; Amoroso, Antonio

    2010-01-01

    Mutations of the AGXT gene encoding the alanine:glyoxylate aminotransferase liver enzyme (AGT) cause primary hyperoxaluria type 1 (PH1). Here we report a molecular modeling study of selected missense AGXT mutations: the common Gly170Arg and the recently described Gly47Arg and Ser81Leu variants, predicted to be pathogenic using standard criteria. Taking advantage of the refined 3D structure of AGT, we computed the dimerization energy of the wild-type and mutated proteins. Molecular modeling predicted that Gly47Arg affects dimerization with a similar effect to that shown previously for Gly170Arg through classical biochemical approaches. In contrast, no effect on dimerization was predicted for Ser81Leu. Therefore, this probably demonstrates pathogenic properties via a different mechanism, similar to that described for the adjacent Gly82Glu mutation that affects pyridoxine binding. This study shows that the molecular modeling approach can contribute to evaluating the pathogenicity of some missense variants that affect dimerization. However, in silico studies--aimed to assess the relationship between structural change and biological effects--require the integrated use of more than 1 tool.

  12. Direct sequencing of FAH gene in Pakistani tyrosinemia type 1 families reveals a novel mutation.

    PubMed

    Ijaz, Sadaqat; Zahoor, Muhammad Yasir; Imran, Muhammad; Afzal, Sibtain; Bhinder, Munir A; Ullah, Ihsan; Cheema, Huma Arshad; Ramzan, Khushnooda; Shehzad, Wasim

    2016-03-01

    Hereditary tyrosinemia type 1 (HT1) is a rare inborn error of tyrosine catabolism with a worldwide prevalence of one out of 100,000 live births. HT1 is clinically characterized by hepatic and renal dysfunction resulting from the deficiency of fumarylacetoacetate hydrolase (FAH) enzyme, caused by recessive mutations in the FAH gene. We present here the first report on identification of FAH mutations in HT1 patients from Pakistan with a novel one. Three Pakistani families, each having one child affected with HT1, were enrolled over a period of 1.5 years. Two of the affected children had died as they were presented late with acute form. All regions of the FAH gene spanning exons and splicing sites were amplified by polymerase chain reaction (PCR) and mutation analysis was carried out by direct sequencing. Results of sequencing were confirmed by restriction fragment length polymorphism (PCR-RFLP) analysis. Three different FAH mutations, one in each family, were found to co-segregate with the disease phenotype. Two of these FAH mutations have been known (c.192G>T and c.1062+5G>A [IVS12+5G>A]), while c.67T>C (p.Ser23Pro) was a novel mutation. The novel variant was not detected in any of 120 chromosomes from normal ethnically matched individuals. Most of the HT1 patients die before they present to hospitals in Pakistan, as is indicated by enrollment of only three families in 1.5 years. Most of those with late clinical presentation do not survive due to delayed diagnosis followed by untimely treatment. This tragic condition advocates the establishment of expanded newborn screening program for HT1 within Pakistan.

  13. AVPR2 variants and mutations in nephrogenic diabetes insipidus: review and missense mutation significance.

    PubMed

    Spanakis, Elias; Milord, Edrice; Gragnoli, Claudia

    2008-12-01

    Almost 90% of nephrogenic diabetes insipidus (NDI) is due to mutations in the arginine-vasopressin receptor 2 gene (AVPR2). We retrospectively examined all the published mutations/variants in AVPR2. We planned to perform a comprehensive review of all the AVPR2 mutations/variants and to test whether any amino acid change causing a missense mutation is significantly more or less common than others. We performed a Medline search and collected detailed information regarding all AVPR2 mutations and variants. We performed a frequency comparison between mutated and wild-type amino acids and codons. We predicted the mutation effect or reported it based on published in vitro studies. We also reported the ethnicity of each mutation/variant carrier. In summary, we identified 211 AVPR2 mutations which cause NDI in 326 families and 21 variants which do not cause NDI in 71 NDI families. We described 15 different types of mutations including missense, frameshift, inframe deletion, deletion, insertion, nonsense, duplication, splicing and combined mutations. The missense mutations represent the 55.83% of all the NDI published families. Arginine and tyrosine are significantly (P = 4.07E-08 and P = 3.27E-04, respectively) the AVPR2 most commonly mutated amino acids. Alanine and glutamate are significantly (P = 0.009 and P = 0.019, respectively) the least mutated AVPR2 amino acids. The spectrum of mutations varies from rare gene variants or polymorphisms not causing NDI to rare mutations causing NDI, among which arginine and tyrosine are the most common missense. The AVPR2 mutations are spread world-wide. Our study may serve as an updated review, comprehensive of all AVPR2 variants and specific gene locations. J. Cell. Physiol. 217: 605-617, 2008. (c) 2008 Wiley-Liss, Inc.

  14. Identification and characterization of the elusive mutation causing the historical von Willebrand Disease type IIC Miami.

    PubMed

    Obser, T; Ledford-Kraemer, M; Oyen, F; Brehm, M A; Denis, C V; Marschalek, R; Montgomery, R R; Sadler, J E; Schneppenheim, S; Budde, U; Schneppenheim, R

    2016-09-01

    Essentials Von Willebrand disease IIC Miami features high von Willebrand factor (VWF) with reduced function. We aimed to identify and characterize the elusive underlying mutation in the original family. An inframe duplication of VWF exons 9-10 was identified and characterized. The mutation causes a defect in VWF multimerization and decreased VWF clearance from the circulation. Background A variant of von Willebrand disease (VWD) type 2A, phenotype IIC (VWD2AIIC), is characterized by recessive inheritance, low von Willebrand factor antigen (VWF:Ag), lack of VWF high-molecular-weight multimers, absence of VWF proteolytic fragments and mutations in the VWF propeptide. A family with dominantly inherited VWD2AIIC but markedly elevated VWF:Ag of > 2 U L(-1) was described as VWD type IIC Miami (VWD2AIIC-Miami) in 1993; however, the molecular defect remained elusive. Objectives To identify the molecular mechanism underlying the phenotype of the original VWD2AIIC-Miami. Patients and Methods We studied the original family with VWD2AIIC-Miami phenotypically and by genotyping. The identified mutation was recombinantly expressed and characterized by standard techniques, confocal imaging and in a mouse model, respectively. Results By Multiplex ligation-dependent probe amplification we identified an in-frame duplication of VWF exons 9-10 (c.998_1156dup; p.Glu333_385dup) in all patients. Recombinant mutant (rm)VWF only presented as a dimer. Co-expressed with wild-type VWF, the multimer pattern was indistinguishable from patients' plasma VWF. Immunofluorescence studies indicated retention of rmVWF in unusually large intracellular granules in the endoplasmic reticulum. ADAMTS-13 proteolysis of rmVWF under denaturing conditions was normal; however, an aberrant proteolytic fragment was apparent. A decreased ratio of VWF propeptide to VWF:Ag and a 1-desamino-8-d-arginine vasopressin (DDAVP) test in one patient indicated delayed VWF clearance, which was supported by clearance data after

  15. Genetic Screening of Selected Disease-Causing Mutations in Glutaryl-CoA Dehydrogenase Gene among Indian Patients with Glutaric Aciduria Type I.

    PubMed

    Tp, Kruthika-Vinod; Muntaj, Shaik; Devaraju, K S; Kamate, M; Vedamurthy, A B

    2017-09-01

    Glutaric aciduria type I (GA-I) is an organic aciduria caused by glutaryl-CoA dehydrogenase (GCDH) deficiency. There are limited studies on GA-I from India. A total of 48 Indian GA-I patients were screened for selected disease-causing mutations such as R402W, A421V, A293T, R227P, and V400M using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP). Among these patients, 9 (18.8%) had R402W mutation, and none had A421V, A293T, R227P, or V400M mutation. One low excretor mutation (P286S) and several novel mutations (I152M, Q144P, and E414X) were also found in this study. We conclude that among selected mutations, R402W is the most common mutation found among Indian GA-I patients.

  16. New advances in protection against solar ultraviolet radiation in textiles for summer clothing.

    PubMed

    Aguilera, José; de Gálvez, María Victoria; Sánchez-Roldán, Cristina; Herrera-Ceballos, Enrique

    2014-01-01

    Clothing is considered one of the most important tools for photoprotection against harmful solar ultraviolet radiation (UVR). The standard for sun-protective clothing is based on erythema despite other biological effects of UVR on the skin. We analyzed the potential protection against UVR in fabrics destined for summer clothing based on several action spectra. We examined 50 garments classified by type of fabric composition, structure of the fiber yarn and color. The ultraviolet protection factor was calculated based on fabric ultraviolet transmittance corrected for erythema according to the EU standard E-13758 as well as the UVA transmittance of fabrics. UVR protection was also analyzed in base of different action spectra as for previtamin D3, nonmelanoma skin cancer, photoimmunosuppression and photoaging. Most knitted fabrics used for sports T-shirts offered excellent ratings for ultraviolet protection while normal shirts showed very low ratings, particularly against photoaging. The cover is the most influential variable in fabric photoprotection, having an exponential relationship with the UPF. The relation between cover and UVA protection was linearly negative. Information about ultraviolet protection in textiles used for summer clothing should be included in labeling as some types of fabrics, especially those used for shirts, offer very low UVR protection. © 2014 The American Society of Photobiology.

  17. A Newly Described Bovine Type 2 Scurs Syndrome Segregates with a Frame-Shift Mutation in TWIST1

    PubMed Central

    Capitan, Aurélien; Grohs, Cécile; Weiss, Bernard; Rossignol, Marie-Noëlle; Reversé, Patrick; Eggen, André

    2011-01-01

    The developmental pathways involved in horn development are complex and still poorly understood. Here we report the description of a new dominant inherited syndrome in the bovine Charolais breed that we have named type 2 scurs. Clinical examination revealed that, despite a strong phenotypic variability, all affected individuals show both horn abnormalities similar to classical scurs phenotype and skull interfrontal suture synostosis. Based on a genome-wide linkage analysis using Illumina BovineSNP50 BeadChip genotyping data from 57 half-sib and full-sib progeny, this locus was mapped to a 1.7 Mb interval on bovine chromosome 4. Within this region, the TWIST1 gene encoding a transcription factor was considered as a strong candidate gene since its haploinsufficiency is responsible for the human Saethre-Chotzen syndrome, characterized by skull coronal suture synostosis. Sequencing of the TWIST1 gene identified a c.148_157dup (p.A56RfsX87) frame-shift mutation predicted to completely inactivate this gene. Genotyping 17 scurred and 20 horned founders of our pedigree as well as 48 unrelated horned controls revealed a perfect association between this mutation and the type 2 scurs phenotype. Subsequent genotyping of 32 individuals born from heterozygous parents showed that homozygous mutated progeny are completely absent, which is consistent with the embryonic lethality reported in Drosophila and mouse suffering from TWIST1 complete insufficiency. Finally, data from previous studies on model species and a fine description of type 2 scurs symptoms allowed us to propose different mechanisms to explain the features of this syndrome. In conclusion, this first report on the identification of a potential causal mutation affecting horn development in cattle offers a unique opportunity to better understand horn ontogenesis. PMID:21814570

  18. Research in extreme ultraviolet and far ultraviolet astronomy

    NASA Technical Reports Server (NTRS)

    Bowyer, C. S.

    1985-01-01

    The Far Ultraviolet imager (FUVI) was flown on the Aries class sounding rocket 24.015, producing outstanding results. The diffuse extreme ultraviolet (EUV) background spectrometer which is under construction is described. It will be launched on the Black Brant sounding rocket flight number 27.086. Ongoing design studies of a high resolution spectrometer are discussed. This instrument incorporates a one meter normal incidence mirror and will be suitable for an advanced Spartan mission.

  19. Microcephalic Osteodysplastic Primordial Dwarfism type I with biallelic mutations in the RNU4ATAC gene

    PubMed Central

    Nagy, Rebecca; Wang, Heng; Albrecht, Beate; Wieczorek, Dagmar; Gillessen-Kaesbach, Gabriele; Haan, Eric; Meinecke, Peter; de la Chapelle, Albert; Westman, Judith A.

    2011-01-01

    Microcephalic osteodysplastic primordial dwarfism type I (MOPD I) is a rare autosomal recessive developmental disorder characterized by extreme intrauterine growth retardation, severe microcephaly, central nervous system abnormalities, dysmorphic facial features, skin abnormalities, skeletal changes, limb deformations, and early death. Recently, mutations in the RNU4ATAC gene, which encodes U4atac, a small nuclear RNA that is a crucial component of the minor spliceosome, were found to cause MOPD I. MOPD I is the first disease known to be associated with a defect in small nuclear RNAs. We describe here the clinical and molecular data for 17 cases of MOPD I, including 15 previously unreported cases, all carrying biallelic mutations in the RNU4ATAC gene. PMID:21815888

  20. Breakout character of islet amyloid polypeptide hydrophobic mutations at the onset of type-2 diabetes

    NASA Astrophysics Data System (ADS)

    Frigori, Rafael B.

    2014-11-01

    Toxic fibrillar aggregates of islet amyloid polypeptide (IAPP) appear as the physical outcome of a peptidic phase transition signaling the onset of type-2 diabetes mellitus in different mammalian species. In particular, experimentally verified mutations on the amyloidogenic segment 20-29 in humans, cats, and rats are highly correlated with the molecular aggregation propensities. Through a microcanonical analysis of the aggregation of IAPP20 -29 isoforms, we show that a minimalist one-bead hydrophobic-polar continuum model for protein interactions properly quantifies those propensities from free-energy barriers. Our results highlight the central role of sequence-dependent hydrophobic mutations on hot spots for stabilization, and thus for the engineering, of such biological peptides.

  1. Mutational analysis of the myelin protein zero (MPZ) gene associated with Charcot-Marie-Tooth neuropathy type 1B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roa, B.B.; Warner, L.E.; Lupski, J.R.

    1994-09-01

    The MPZ gene that maps to chromosome 1q22q23 encodes myelin protein zero, which is the most abundant peripheral nerve myelin protein that functions as a homophilic adhesion molecule in myelin compaction. Association of the MPZ gene with the dysmyelinating peripheral neuropathies Charcot-Marie-Tooth disease type 1B (CMT1B) and the more severe Dejerine-Sottas syndrome (DSS) was previously demonstrated by MPZ mutations identified in CMT1B and in rare DSS patients. In this study, the coding region of the MPZ gene was screened for mutations in a cohort of 74 unrelated patients with either CMT type 1 or DSS who do not carry themore » most common CMT1-associated molecular lesion of a 1.5 Mb DNA duplication on 17p11.2-p12. Heteroduplex analysis detected base mismatches in ten patients that were distributed over three exons of MPZ. Direct sequencing of PCR-amplified genomic DNA identified a de novo MPZ mutation associated with CMT1B that predicts an Ile(135)Thr substitution. This finding further confirms the role of MPZ in the CMT1B disease process. In addition, two polymorphisms were identified within the Gly(200) and Ser(228) codons that do not alter the respective amino acid residues. A fourth base mismatch in MPZ exon 3 detected by heteroduplex analysis is currently being characterized by direct sequence determination. Previously, four unrelated patients in this same cohort were found to have unique point mutations in the coding region of the PMP22 gene. The collective findings on CMT1 point mutations could suggest that regulatory region mutations, and possibly mutations in CMT gene(s) apart from the MPZ, PMP22 and Cx32 genes identified thus far, may prove to be significant for a number of CMT1 cases that do not involve DNA duplication.« less

  2. Allelic Mutations of KITLG, Encoding KIT Ligand, Cause Asymmetric and Unilateral Hearing Loss and Waardenburg Syndrome Type 2

    PubMed Central

    Zazo Seco, Celia; Serrão de Castro, Luciana; van Nierop, Josephine W.; Morín, Matías; Jhangiani, Shalini; Verver, Eva J.J.; Schraders, Margit; Maiwald, Nadine; Wesdorp, Mieke; Venselaar, Hanka; Spruijt, Liesbeth; Oostrik, Jaap; Schoots, Jeroen; van Reeuwijk, Jeroen; Lelieveld, Stefan H.; Huygen, Patrick L.M.; Insenser, María; Admiraal, Ronald J.C.; Pennings, Ronald J.E.; Hoefsloot, Lies H.; Arias-Vásquez, Alejandro; de Ligt, Joep; Yntema, Helger G.; Jansen, Joop H.; Muzny, Donna M.; Huls, Gerwin; van Rossum, Michelle M.; Lupski, James R.; Moreno-Pelayo, Miguel Angel; Kunst, Henricus P.M.; Kremer, Hannie

    2015-01-01

    Linkage analysis combined with whole-exome sequencing in a large family with congenital and stable non-syndromic unilateral and asymmetric hearing loss (NS-UHL/AHL) revealed a heterozygous truncating mutation, c.286_303delinsT (p.Ser96Ter), in KITLG. This mutation co-segregated with NS-UHL/AHL as a dominant trait with reduced penetrance. By screening a panel of probands with NS-UHL/AHL, we found an additional mutation, c.200_202del (p.His67_Cys68delinsArg). In vitro studies revealed that the p.His67_Cys68delinsArg transmembrane isoform of KITLG is not detectable at the cell membrane, supporting pathogenicity. KITLG encodes a ligand for the KIT receptor. Also, KITLG-KIT signaling and MITF are suggested to mutually interact in melanocyte development. Because mutations in MITF are causative of Waardenburg syndrome type 2 (WS2), we screened KITLG in suspected WS2-affected probands. A heterozygous missense mutation, c.310C>G (p.Leu104Val), that segregated with WS2 was identified in a small family. In vitro studies revealed that the p.Leu104Val transmembrane isoform of KITLG is located at the cell membrane, as is wild-type KITLG. However, in culture media of transfected cells, the p.Leu104Val soluble isoform of KITLG was reduced, and no soluble p.His67_Cys68delinsArg and p.Ser96Ter KITLG could be detected. These data suggest that mutations in KITLG associated with NS-UHL/AHL have a loss-of-function effect. We speculate that the mechanism of the mutation underlying WS2 and leading to membrane incorporation and reduced secretion of KITLG occurs via a dominant-negative or gain-of-function effect. Our study unveils different phenotypes associated with KITLG, previously associated with pigmentation abnormalities, and will thereby improve the genetic counseling given to individuals with KITLG variants. PMID:26522471

  3. Allelic Mutations of KITLG, Encoding KIT Ligand, Cause Asymmetric and Unilateral Hearing Loss and Waardenburg Syndrome Type 2.

    PubMed

    Zazo Seco, Celia; Serrão de Castro, Luciana; van Nierop, Josephine W; Morín, Matías; Jhangiani, Shalini; Verver, Eva J J; Schraders, Margit; Maiwald, Nadine; Wesdorp, Mieke; Venselaar, Hanka; Spruijt, Liesbeth; Oostrik, Jaap; Schoots, Jeroen; van Reeuwijk, Jeroen; Lelieveld, Stefan H; Huygen, Patrick L M; Insenser, María; Admiraal, Ronald J C; Pennings, Ronald J E; Hoefsloot, Lies H; Arias-Vásquez, Alejandro; de Ligt, Joep; Yntema, Helger G; Jansen, Joop H; Muzny, Donna M; Huls, Gerwin; van Rossum, Michelle M; Lupski, James R; Moreno-Pelayo, Miguel Angel; Kunst, Henricus P M; Kremer, Hannie

    2015-11-05

    Linkage analysis combined with whole-exome sequencing in a large family with congenital and stable non-syndromic unilateral and asymmetric hearing loss (NS-UHL/AHL) revealed a heterozygous truncating mutation, c.286_303delinsT (p.Ser96Ter), in KITLG. This mutation co-segregated with NS-UHL/AHL as a dominant trait with reduced penetrance. By screening a panel of probands with NS-UHL/AHL, we found an additional mutation, c.200_202del (p.His67_Cys68delinsArg). In vitro studies revealed that the p.His67_Cys68delinsArg transmembrane isoform of KITLG is not detectable at the cell membrane, supporting pathogenicity. KITLG encodes a ligand for the KIT receptor. Also, KITLG-KIT signaling and MITF are suggested to mutually interact in melanocyte development. Because mutations in MITF are causative of Waardenburg syndrome type 2 (WS2), we screened KITLG in suspected WS2-affected probands. A heterozygous missense mutation, c.310C>G (p.Leu104Val), that segregated with WS2 was identified in a small family. In vitro studies revealed that the p.Leu104Val transmembrane isoform of KITLG is located at the cell membrane, as is wild-type KITLG. However, in culture media of transfected cells, the p.Leu104Val soluble isoform of KITLG was reduced, and no soluble p.His67_Cys68delinsArg and p.Ser96Ter KITLG could be detected. These data suggest that mutations in KITLG associated with NS-UHL/AHL have a loss-of-function effect. We speculate that the mechanism of the mutation underlying WS2 and leading to membrane incorporation and reduced secretion of KITLG occurs via a dominant-negative or gain-of-function effect. Our study unveils different phenotypes associated with KITLG, previously associated with pigmentation abnormalities, and will thereby improve the genetic counseling given to individuals with KITLG variants. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  4. Ultraviolet absorption hygrometer

    DOEpatents

    Gersh, M.E.; Bien, F.; Bernstein, L.S.

    1986-12-09

    An ultraviolet absorption hygrometer is provided including a source of pulsed ultraviolet radiation for providing radiation in a first wavelength region where water absorbs significantly and in a second proximate wavelength region where water absorbs weakly. Ultraviolet radiation in the first and second regions which has been transmitted through a sample path of atmosphere is detected. The intensity of the radiation transmitted in each of the first and second regions is compared and from this comparison the amount of water in the sample path is determined. 5 figs.

  5. Data from a large European study indicate that the outcome of primary hyperoxaluria type 1 correlates with the AGXT mutation type.

    PubMed

    Mandrile, Giorgia; van Woerden, Christiaan S; Berchialla, Paola; Beck, Bodo B; Acquaviva Bourdain, Cécile; Hulton, Sally-Anne; Rumsby, Gill

    2014-12-01

    Primary hyperoxaluria type 1 displays a heterogeneous phenotype, likely to be affected by genetic and non-genetic factors, including timeliness of diagnosis and quality of care. As previous genotype-phenotype studies were hampered by limited patient numbers the European OxalEurope Consortium was constituted. This preliminary retrospective report is based on 526 patients of which 410 have the AGXT genotype defined. We grouped mutations by the predicted effect as null, missense leading to mistargeting (G170R), and other missense, and analyzed their phenotypic correlations. Median age of end-stage renal disease increased from 9.9 for 88 homozygous null patients, 11.5 for 42 heterozygous null/missense, 16.9 for 116 homozygous missense patients, 25.1 for 61 G170R/null patients, 31.2 for 32 G170R/missense patients, and 33.9 years for 71 homozygous G170R patients. The outcome of some recurrent missense mutations (p.I244T, p.F152I, p.M195R, p.D201E, p.S81L, p.R36C) and an unprecedented number of G170R homozygotes is described in detail. Diagnosis is still delayed and actions aimed at increasing awareness of primary hyperoxaluria type 1 are recommended. Thus, in addition to G170R, other causative mutations are associated with later onset of end-stage renal disease. The OxalEurope registry will provide necessary tools for characterizing those genetic and non-genetic factors through a combination of genetic, functional, and biostatistical approaches.

  6. Mineralocorticoid Receptor Mutations and a Severe Recessive Pseudohypoaldosteronism Type 1

    PubMed Central

    Hubert, Edwige-Ludiwyne; Teissier, Raphaël; Fernandes-Rosa, Fábio L.; Fay, Michel; Rafestin-Oblin, Marie-Edith; Jeunemaitre, Xavier; Metz, Chantal; Escoubet, Brigitte

    2011-01-01

    Pseudohypoaldosteronism type 1 (PHA1) is a rare genetic disease of mineralocorticoid resistance characterized by salt wasting and failure to thrive in infancy. Here we describe the first case of a newborn with severe recessive PHA1 caused by two heterozygous mutations in NR3C2, gene coding for the mineralocorticoid receptor (MR). Independent segregation of the mutations occurred in the family, with p.Ser166X being transmitted from the affected father and p.Trp806X from the asymptomatic mother Whereas the truncated MR166X protein was degraded, MR806X was expressed both at the mRNA and protein level. Functional studies demonstrated that despite its inability to bind aldosterone, MR806X had partial ligand-independent transcriptional activity. Partial nuclear localization of MR806X in the absence of hormone was identified as a prerequisite to initiate transcription. This exceptional case broadens the spectrum of clinical phenotypes of PHA1 and demonstrates that minimal residual activity of MR is compatible with life. It also suggests that rare hypomorphic NR3C2 alleles may be more common than expected from the prevalence of detected PHA1 cases. This might prove relevant for patient's care in neonatal salt losing disorders and may affect renal salt handling and blood pressure in the general population. PMID:21903996

  7. [Description of Mycobacterium tuberculosis mutations conferring resistance to rifampicin and isoniazid detected by GenoType® MTBDRplus V.2 in Colombia].

    PubMed

    Llerena, Claudia; Medina, Raquel

    2017-01-24

    The GenoType®MTBDRplusV.2 assay is a molecular technique endorsed by the World Health Organization and the Pan American Health Organization that allows for the identification of the Mycobacterium tuberculosis complex and the detection of mutations in the rpoβ gene for rifampicin resistance, and katG and inhA genes for isoniazid resistance. Due to the genetic variability in the circulating strains around the world, the national tuberculosis control programs should assess the performance of these new diagnostic technologies and their use under program conditions as rapid tests. To describe the mutations identified by the GenoType®MTBDRplusV.2 assay in pulmonary samples and Mycobacterium tuberculosis isolates in the Laboratorio Nacional de Referencia of the Instituto Nacional de Salud in 2014. We conducted a retrospective, descriptive study to detect the expression of inhA, KatG and rpoβ genes, responsible for resistence against isoniazid and rifampicin using the GenoType® MTBDRplus V.2 assay in 837 samples and isolates from tuberculosis cases. Several mutations in the rpoβ gene were identified. Ser531Leu was the most frequent (36.6%) followed by Asp516Val (21.6%), while Ser315Thr1 was the most frequent mutation in the katG gene (91.9%). We were able to identify different mutations present in MDR-TB strains in the country, with frequencies similar to those reported in other countries in the South American region.

  8. Far-ultraviolet stellar photometry: A field in Orion

    NASA Astrophysics Data System (ADS)

    Schmidt, Edward G.; Carruthers, George R.

    1993-12-01

    Far-ultraviolet photometry for 625 objects in Orion is presented. These data were extracted from electrographic camera images obtained during sounding rocket flights in 1975 and 1982. The 1975 images were centered close to the belt of Orion while the 1982 images were centered approximately 9 deg further north. One hundred and fifty stars fell in the overlapping region and were observed with both cameras. Sixty-eight percent of the objects were tentatively identified with known stars using the SIMBAD database while another 24% are blends of objects too close together to separate with our resolution. As in previous studies, the majority of the identified ultraviolet sources are early-type stars. However, there are a significant number for which no such identification was possible, and we suggest that these are interesting objects which should be further investigated. Seven stars were found which were bright in the ultraviolet but faint in the visible. We suggest that some of these are nearby white dwarfs.

  9. The National Niemann-Pick Type C1 Disease Database: correlation of lipid profiles, mutations, and biochemical phenotypes

    PubMed Central

    Garver, William S.; Jelinek, David; Meaney, F. John; Flynn, James; Pettit, Kathleen M.; Shepherd, Glen; Heidenreich, Randall A.; Vockley, Cate M. Walsh; Castro, Graciela; Francis, Gordon A.

    2010-01-01

    Niemann-Pick type C1 disease (NPC1) is an autosomal recessive lysosomal storage disorder characterized by neonatal jaundice, hepatosplenomegaly, and progressive neurodegeneration. The present study provides the lipid profiles, mutations, and corresponding associations with the biochemical phenotype obtained from NPC1 patients who participated in the National NPC1 Disease Database. Lipid profiles were obtained from 34 patients (39%) in the survey and demonstrated significantly reduced plasma LDL cholesterol (LDL-C) and increased plasma triglycerides in the majority of patients. Reduced plasma HDL cholesterol (HDL-C) was the most consistent lipoprotein abnormality found in male and female NPC1 patients across age groups and occurred independent of changes in plasma triglycerides. A subset of 19 patients for whom the biochemical severity of known NPC1 mutations could be correlated with their lipid profile showed a strong inverse correlation between plasma HDL-C and severity of the biochemical phenotype. Gene mutations were available for 52 patients (59%) in the survey, including 52 different mutations and five novel mutations (Y628C, P887L, I923V, A1151T, and 3741_3744delACTC). Together, these findings provide novel information regarding the plasma lipoprotein changes and mutations in NPC1 disease, and suggest plasma HDL-C represents a potential biomarker of NPC1 disease severity. PMID:19744920

  10. Identification of two novel mutations in the SLC25A13 gene and detection of seven mutations in 102 patients with adult-onset type II citrullinemia.

    PubMed

    Yasuda, T; Yamaguchi, N; Kobayashi, K; Nishi, I; Horinouchi, H; Jalil, M A; Li, M X; Ushikai, M; Iijima, M; Kondo, I; Saheki, T

    2000-12-01

    Adult-onset type II citrullinemia (CTLN2) is characterized by a liver-specific deficiency of argininosuccinate synthetase (ASS) protein. We have recently identified the gene responsible for CTLN2, viz., SLC25A13, which encodes a calcium-binding mitochondrial carrier protein, designated citrin, and found five mutations of the SLC25A13 gene in CTLN2 patients. In the present study, we have identified two novel mutations, 1800ins1 and R605X, in SLC25A13 mRNA and the SLC25A13 gene. Diagnostic analysis for the seven mutations in 103 CTLN2 patients diagnosed by biochemical and enzymatic studies has revealed that 102 patients had one or two of the seven mutations and 93 patients were homozygotes or compound heterozygotes. These results indicate that CTLN2 is caused by an abnormality in the SLC25A13 gene, and that our criteria for CTLN2 before DNA diagnosis are correct. Five of 22 patients from consanguineous unions have been shown to be compound heterozygotes, suggesting a high frequency of the mutated genes. The frequency of homozygotes is calculated to be more than 1 in 20,000 from carrier detection (6 in 400 individuals tested) in the Japanese population. We have detected no cross-reactive immune materials in the liver of CTLN2 patients with any of the seven mutations by Western blot analysis with anti-human citrin antibody. From these findings, we hypothesize that CTLN2 is caused by a complete deletion of citrin, although the mechanism of ASS deficiency is still unknown.

  11. A Novel Frameshift Mutation of the USH2A Gene in a Korean Patient with Usher Syndrome Type II.

    PubMed

    Boo, Sung Hyun; Song, Min-Jung; Kim, Hee-Jin; Cho, Yang-Sun; Chu, Hosuk; Ko, Moon-Hee; Chung, Won-Ho; Kim, Jong-Won; Hong, Sung Hwa

    2013-03-01

    Usher syndrome type II (USH2) is the most common form of Usher syndrome, characterized by moderate to severe hearing impairment and progressive visual loss due to retinitis pigmentosa. It has been shown that mutations in the USH2A gene are responsible for USH2. The authors herein describe a 34-year-old Korean woman with the typical clinical manifestation of USH2; she had bilateral hearing disturbance and progressive visual deterioration, without vestibular dysfunction. Molecular genetic study of the USH2A gene revealed a novel frameshift mutation (c.2310delA; Glu771LysfsX17). She was heterozygous for this mutation, and no other mutation was found in USH2A, suggesting the possibility of an intronic or large genomic rearrangement mutation. To the best of our knowledge, this is the first report of a genetically confirmed case of USH2 in Korea. More investigations are needed to delineate genotype-phenotype correlations and ethnicity-specific genetic background of Usher syndrome.

  12. A Novel Frameshift Mutation of the USH2A Gene in a Korean Patient with Usher Syndrome Type II

    PubMed Central

    Boo, Sung Hyun; Song, Min-Jung; Cho, Yang-Sun; Chu, Hosuk; Ko, Moon-Hee; Chung, Won-Ho; Kim, Jong-Won

    2013-01-01

    Usher syndrome type II (USH2) is the most common form of Usher syndrome, characterized by moderate to severe hearing impairment and progressive visual loss due to retinitis pigmentosa. It has been shown that mutations in the USH2A gene are responsible for USH2. The authors herein describe a 34-year-old Korean woman with the typical clinical manifestation of USH2; she had bilateral hearing disturbance and progressive visual deterioration, without vestibular dysfunction. Molecular genetic study of the USH2A gene revealed a novel frameshift mutation (c.2310delA; Glu771LysfsX17). She was heterozygous for this mutation, and no other mutation was found in USH2A, suggesting the possibility of an intronic or large genomic rearrangement mutation. To the best of our knowledge, this is the first report of a genetically confirmed case of USH2 in Korea. More investigations are needed to delineate genotype-phenotype correlations and ethnicity-specific genetic background of Usher syndrome. PMID:23526569

  13. Structures and Free Energy Landscapes of the A53T Mutant-Type α-Synuclein Protein and Impact of A53T Mutation on the Structures of the Wild-Type α-Synuclein Protein with Dynamics

    PubMed Central

    2013-01-01

    The A53T genetic missense mutation of the wild-type α-synuclein (αS) protein was initially identified in Greek and Italian families with familial Parkinson’s disease. Detailed understanding of the structures and the changes induced in the wild-type αS structure by the A53T mutation, as well as establishing the direct relationships between the rapid conformational changes and free energy landscapes of these intrinsically disordered fibrillogenic proteins, helps to enhance our fundamental knowledge and to gain insights into the pathogenic mechanism of Parkinson’s disease. We employed extensive parallel tempering molecular dynamics simulations along with thermodynamic calculations to determine the secondary and tertiary structural properties as well as the conformational free energy surfaces of the wild-type and A53T mutant-type αS proteins in an aqueous solution medium using both implicit and explicit water models. The confined aqueous volume effect in the simulations of disordered proteins using an explicit model for water is addressed for a model disordered protein. We also assessed the stabilities of the residual secondary structure component interconversions in αS based on free energy calculations at the atomic level with dynamics using our recently developed theoretical strategy. To the best of our knowledge, this study presents the first detailed comparison of the structural properties linked directly to the conformational free energy landscapes of the monomeric wild-type and A53T mutant-type α-synuclein proteins in an aqueous solution environment. Results demonstrate that the β-sheet structure is significantly more altered than the helical structure upon A53T mutation of the monomeric wild-type αS protein in aqueous solution. The β-sheet content close to the mutation site in the N-terminal region is more abundant while the non-amyloid-β component (NAC) and C-terminal regions show a decrease in β-sheet abundance upon A53T mutation. Obtained

  14. Structures and free energy landscapes of the A53T mutant-type α-synuclein protein and impact of A53T mutation on the structures of the wild-type α-synuclein protein with dynamics.

    PubMed

    Coskuner, Orkid; Wise-Scira, Olivia

    2013-07-17

    The A53T genetic missense mutation of the wild-type α-synuclein (αS) protein was initially identified in Greek and Italian families with familial Parkinson's disease. Detailed understanding of the structures and the changes induced in the wild-type αS structure by the A53T mutation, as well as establishing the direct relationships between the rapid conformational changes and free energy landscapes of these intrinsically disordered fibrillogenic proteins, helps to enhance our fundamental knowledge and to gain insights into the pathogenic mechanism of Parkinson's disease. We employed extensive parallel tempering molecular dynamics simulations along with thermodynamic calculations to determine the secondary and tertiary structural properties as well as the conformational free energy surfaces of the wild-type and A53T mutant-type αS proteins in an aqueous solution medium using both implicit and explicit water models. The confined aqueous volume effect in the simulations of disordered proteins using an explicit model for water is addressed for a model disordered protein. We also assessed the stabilities of the residual secondary structure component interconversions in αS based on free energy calculations at the atomic level with dynamics using our recently developed theoretical strategy. To the best of our knowledge, this study presents the first detailed comparison of the structural properties linked directly to the conformational free energy landscapes of the monomeric wild-type and A53T mutant-type α-synuclein proteins in an aqueous solution environment. Results demonstrate that the β-sheet structure is significantly more altered than the helical structure upon A53T mutation of the monomeric wild-type αS protein in aqueous solution. The β-sheet content close to the mutation site in the N-terminal region is more abundant while the non-amyloid-β component (NAC) and C-terminal regions show a decrease in β-sheet abundance upon A53T mutation. Obtained results

  15. [Molecular pathogenesis of Waardenburg syndrome type II resulting from SOX10 gene mutation].

    PubMed

    Zhang, Hua; Chen, Hongsheng; Feng, Yong; Qian, Minfei; Li, Jiping; Liu, Jun; Zhang, Chun

    2016-08-01

    To explore the molecular mechanism of Waardenburg syndrome type II (WS2) resulting from SOX10 gene mutation E248fs through in vitro experiment. 293T cells were transiently transfected with wild type (WT) SOX10 and mutant type (MT) E248fs plasmids. The regulatory effect of WT/MT SOX10 on the transcriptional activity of MITF gene and influence of E248fs on WT SOX10 function were determined with a luciferase activity assay. The DNA binding capacity of the WT/MT SOX10 with the promoter of the MITF gene was determined with a biotinylated double-stranded oligonucleotide probe containing the SOX10 binding sequence cattgtc to precipitate MITF and E248fs, respectively. The stability of SOX10 and E248fs were also analyzed. As a loss-of-function mutation, the E248fs mutant failed to transactivate the MITF promoter as compared with the WT SOX10 (P<0.01), which also showed a dominant-negative effect on WT SOX10. The WT SOX10 and E248fs mutant were also able to bind specifically to the cattgtc motif in the MITF promoter, whereas E248fs had degraded faster than WT SOX10. Despite the fact that the E248fs has a dominant-negative effect on SOX10, its reduced stability may down-regulate the transcription of MITF and decrease the synthesis of melanin, which may result in haploinsufficiency of SOX10 protein and cause the milder WS2 phenotype.

  16. Near-simultaneous ultraviolet and optical spectrophotometry of T Tauri stars

    NASA Technical Reports Server (NTRS)

    Goodrich, Robert W.; Herbig, G. H.

    1986-01-01

    A set of near-simultaneous ultraviolet and optical spectra and UBVR(J)I(J) photometry of five T Tauri stars has been analyzed for the shape of the energy distribution shortward of 3000 A. The far-ultraviolet continua of these stars are very much stronger than the level of light scattered from longer wavelengths in the IUE spectrograph. The results, expressed as two-color plots, show that the UV colors of T Tauri stars differ significantly from those expected from their optical spectral types. Although these particular K-type T Tauri stars are not extreme members of the class, they have the UV colors of A stars. The spectral shape of this UV excess is approximately that expected from published chromospheric models of T Tauri stars.

  17. Mechanistic Basis for Type 2 Long QT Syndrome Caused by KCNH2 Mutations that Disrupt Conserved Arginine Residue in the Voltage Sensor

    PubMed Central

    McBride, Christie M.; Smith, Ashley M.; Smith, Jennifer L.; Reloj, Allison R.; Velasco, Ellyn J.; Powell, Jonathan; Elayi, Claude S.; Bartos, Daniel C.; Burgess, Don E.

    2013-01-01

    KCNH2 encodes the Kv11.1 channel, which conducts the rapidly activating delayed rectifier K+ current (IKr) in the heart. KCNH2 mutations cause type 2 long QT syndrome (LQT2), which increases the risk for life-threatening ventricular arrhythmias. LQT2 mutations are predicted to prolong the cardiac action potential (AP) by reducing IKr during repolarization. Kv11.1 contains several conserved basic amino acids in the fourth transmembrane segment (S4) of the voltage sensor that are important for normal channel trafficking and gating. This study sought to determine the mechanism(s) by which LQT2 mutations at conserved arginine residues in S4 (R531Q, R531W or R534L) alter Kv11.1 function. Western blot analyses of HEK293 cells transiently expressing R531Q, R531W or R534L suggested that only R534L inhibited Kv11.1 trafficking. Voltage-clamping experiments showed that R531Q or R531W dramatically altered Kv11.1 current (IKv11.1) activation, inactivation, recovery from inactivation and deactivation. Coexpression of wild type (to mimic the patients’ genotypes) mostly corrected the changes in IKv11.1 activation and inactivation, but deactivation kinetics were still faster. Computational simulations using a human ventricular AP model showed that accelerating deactivation rates was sufficient to prolong the AP, but these effects were minimal compared to simply reducing IKr. These are the first data to demonstrate that coexpressing wild type can correct activation and inactivation dysfunction caused by mutations at a critical voltage-sensing residue in Kv11.1. We conclude that some Kv11.1 mutations might accelerate deactivation to cause LQT2 but that the ventricular AP duration is much more sensitive to mutations that decrease IKr. This likely explains why most LQT2 mutations are nonsense or trafficking-deficient. PMID:23546015

  18. A novel UBE2A mutation causes X-linked intellectual disability type Nascimento.

    PubMed

    Tsurusaki, Yoshinori; Ohashi, Ikuko; Enomoto, Yumi; Naruto, Takuya; Mitsui, Jun; Aida, Noriko; Kurosawa, Kenji

    2017-01-01

    X-linked intellectual disability (ID) type Nascimento (MIM #300860), also known as ubiquitin-conjugating enzyme E2 A (UBE2A) deficiency syndrome, is a congenital malformation syndrome characterized by moderate to severe ID, speech impairment, dysmorphic facial features, genital anomalies and skin abnormalities. Here, we report a Japanese patient with severe ID and congenital cataract. We identified a novel hemizygous mutation (c.76G>A, p.Gly26Arg) in UBE2A by whole-exome sequencing.

  19. Two novel mutations of CLCN7 gene in Chinese families with autosomal dominant osteopetrosis (type II).

    PubMed

    Zheng, Hui; Shao, Chong; Zheng, Yan; He, Jin-Wei; Fu, Wen-Zhen; Wang, Chun; Zhang, Zhen-Lin

    2016-07-01

    Autosomal dominant osteopetrosis type II (ADO-II) is a heritable bone disorder characterized by osteosclerosis, predominantly involving the spine (vertebral end-plate thickening, or rugger-jersey spine), the pelvis ("bone-within-bone" structures) and the skull base. Chloride channel 7 (CLCN7) has been reported to be the causative gene. In this study, we aimed to identify the pathogenic mutation in four Chinese families with ADO-II. All 25 exons of the CLCN7 gene, including the exon-intron boundaries, were amplified and sequenced directly in four probands from the Chinese families with ADO-II. The mutation site was then identified in other family members and 250 healthy controls. In family 1, a known missense mutation c.296A>G in exon 4 of CLCN7 was identified in the proband, resulting in a tyrosine (UAU) to cysteine (UGU) substitution at p.99 (Y99C); the mutation was also identified in his affected father. In family 2, a novel missense mutation c.865G>C in exon 10 was identified in the proband, resulting in a valine (GUC) to leucine (CUC) substitution at p.289 (V289L); the mutation was also identified in her healthy mother and sister. In family 3, a novel missense mutation c.1625C>T in exon 17 of CLCN7 was identified in the proband, resulting in an alanine (GCG) to valine (GUG) substitution at p.542 (A542V); the mutation was also identified in her father. In family 4, a hot spot, R767W (c.2299C>T, CGG>TGG), in exon 24 was found in the proband which once again proved the susceptibility of the site or the similar genetic background in different races. Moreover, two novel mutations, V289L and A542V, occurred at a highly conserved position, found by a comparison of the protein sequences from eight vertebrates, and were predicted to have a pathogenic effect by PolyPhen-2 software, which showed "probably damaging" with a score of approximately 1. These mutation sites were not identified in 250 healthy controls. Our present findings suggest that the novel missense

  20. Cone structure in patients with usher syndrome type III and mutations in the Clarin 1 gene.

    PubMed

    Ratnam, Kavitha; Västinsalo, Hanna; Roorda, Austin; Sankila, Eeva-Marja K; Duncan, Jacque L

    2013-01-01

    To study macular structure and function in patients with Usher syndrome type III (USH3) caused by mutations in the Clarin 1 gene (CLRN1). High-resolution macular images were obtained by adaptive optics scanning laser ophthalmoscopy and spectral domain optical coherence tomography in 3 patients with USH3 and were compared with those of age-similar control subjects. Vision function measures included best-corrected visual acuity, kinetic and static perimetry, and full-field electroretinography. Coding regions of the CLRN1 gene were sequenced. CLRN1 mutations were present in all the patients; a 20-year-old man showed compound heterozygous mutations (p.N48K and p.S188X), and 2 unrelated women aged 25 and 32 years had homozygous mutations (p.N48K). Best-corrected visual acuity ranged from 20/16 to 20/40, with scotomas beginning at 3° eccentricity. The inner segment-outer segment junction or the inner segment ellipsoid band was disrupted within 1° to 4° of the fovea, and the foveal inner and outer segment layers were significantly thinner than normal. Cones near the fovea in patients 1 and 2 showed normal spacing, and the preserved region ended abruptly. Retinal pigment epithelial cells were visible in patient 3 where cones were lost. Cones were observed centrally but not in regions with scotomas, and retinal pigment epithelial cells were visible in regions without cones in patients with CLRN1 mutations. High-resolution measures of retinal structure demonstrate patterns of cone loss associated with CLRN1 mutations. These findings provide insight into the effect of CLRN1 mutations on macular cone structure, which has implications for the development of treatments for USH3. clinicaltrials.gov Identifier: NCT00254605.

  1. Cone Structure in Patients With Usher Syndrome Type III and Mutations in the Clarin 1 Gene

    PubMed Central

    Ratnam, Kavitha; Västinsalo, Hanna; Roorda, Austin; Sankila, Eeva-Marja K.; Duncan, Jacque L.

    2015-01-01

    Objective To study macular structure and function in patients with Usher syndrome type III (USH3) caused by mutations in the Clarin 1 gene (CLRN1). Methods High-resolution macular images were obtained by adaptive optics scanning laser ophthalmoscopy and spectral domain optical coherence tomography in 3 patients with USH3 and were compared with those of age-similar control subjects. Vision function measures included best-corrected visual acuity, kinetic and static perimetry, and full-field electroretinography. Coding regions of the CLRN1 gene were sequenced. Results CLRN1 mutations were present in all the patients; a 20-year-old man showed compound heterozygous mutations (p.N48K and p.S188X), and 2 unrelated women aged 25 and 32 years had homozygous mutations (p.N48K). Best-corrected visual acuity ranged from 20/16 to 20/40, with scotomas beginning at 3° eccentricity. The inner segment-outer segment junction or the inner segment ellipsoid band was disrupted within 1° to 4° of the fovea, and the foveal inner and outer segment layers were significantly thinner than normal. Cones near the fovea in patients 1 and 2 showed normal spacing, and the preserved region ended abruptly. Retinal pigment epithelial cells were visible in patient 3 where cones were lost. Conclusions Cones were observed centrally but not in regions with scotomas, and retinal pigment epithelial cells were visible in regions without cones in patients with CLRN1 mutations. High-resolution measures of retinal structure demonstrate patterns of cone loss associated with CLRN1 mutations. Clinical Relevance These findings provide insight into the effect of CLRN1 mutations on macular cone structure, which has implications for the development of treatments for USH3. Trial Registration clinicaltrials.gov Identifier: NCT00254605 PMID:22964989

  2. Identification of two novel compound heterozygous mutations of ADGRV1 in a Chinese family with Usher syndrome type IIC.

    PubMed

    Zhang, Nian; Wang, Juan; Liu, Shuting; Liu, Mugen; Jiang, Fagang

    2018-08-01

    To describe the clinical and genetic findings in a Chinese family with three sibs diagnosed with Usher syndrome type IIC. Four members received ophthalmic and otologic tests to ascertain the clinical characteristics. According to the clinical phenotype, we focused attention on a total of 658 genes associated with them. We screened the possible pathogenic mutation sites, used Sanger to exclude the false positive and verified whether there were co-segregated among the family members. Typical fundus features found in the proband supported the diagnosis of retinitis pigmentosa (RP). Audiometric test indicated moderate to severe sensorineural hearing impairment while the vestibular function was normal. Whole-exome sequencing identified the presence of two novel compound heterozygous mutations in ADGRV1, a known gene responsible for Usher syndrome type IIC. Mutationc.15008delG/p.Gly5003AlafsTer13 was inherited from the mother while c.18383_18386dupACAG/p.His6130GlnfsTer84 was inherited from the father, and they were co-segregated with the disease phenotype in the family. The mutations found in our study not only broaden the mutation spectrum of ADGRV1, but also provide assistances for future genetic diagnosis and treatment for Usher syndrome patients.

  3. A BAP1 Mutation-specific MicroRNA Signature Predicts Clinical Outcomes in Clear Cell Renal Cell Carcinoma Patients with Wild-type BAP1

    PubMed Central

    Ge, Yu-Zheng; Xu, Lu-Wei; Zhou, Chang-Cheng; Lu, Tian-Ze; Yao, Wen-Tao; Wu, Ran; Zhao, You-Cai; Xu, Xiao; Hu, Zhi-Kai; Wang, Min; Yang, Xiao-Bing; Zhou, Liu-Hua; Zhong, Bing; Xu, Zheng; Li, Wen-Cheng; Zhu, Jia-Geng; Jia, Rui-Peng

    2017-01-01

    Background: Clear cell renal cell carcinoma (ccRCC) is the most prevalent histologic subtype of kidney cancers in adults, which could be divided into two distinct subgroups according to the BRCA1 associated protein-1 (BAP1) mutation status. In the current study, we comprehensively analyzed the genome-wide microRNA (miRNA) expression profiles in ccRCC, with the aim to identify the differentially expressed miRNAs between BAP1 mutant and wild-type tumors, and generate a BAP1 mutation-specific miRNA signature for ccRCC patients with wild-type BAP1. Methods: The BAP1 mutation status and miRNA profiles in BAP1 mutant and wild-type tumors were analyzed. Subsequently, the association of the differentially expressed miRNAs with patient survival was examined, and a BAP1 mutation-specific miRNA signature was generated and examined with Kaplan-Meier survival, univariate and multivariate Cox regression analyses. Finally, the bioinformatics methods were adopted for the target prediction of selected miRNAs and functional annotation analyses. Results: A total of 350 treatment-naïve primary ccRCC patients were selected from The Cancer Genome Atlas project, among which 35 (10.0%) subjects carried mutant BAP1 and had a shorter overall survival (OS) time. Furthermore, 33 miRNAs were found to be differentially expressed between BAP1 mutant and wild-type tumors, among which 11 (miR-149, miR-29b-2, miR-182, miR-183, miR-21, miR-365-2, miR-671, miR-365-1, miR-10b, miR-139, and miR-181a-2) were significantly associated with OS in ccRCC patients with wild-type BAP1. Finally, a BAP1 mutation-specific miRNA signature consisting of 11 miRNAs was generated and validated as an independent prognostic parameter. Conclusions: In summary, our study identified a total of 33 miRNAs differentially expressed between BAP1 mutant and wild-type tumors, and generated a BAP1 mutation-specific miRNA signature including eleven miRNAs, which could serve as a novel prognostic biomarker for ccRCC patients with

  4. In vitro and ex vivo suppression by aminoglycosides of PCDH15 nonsense mutations underlying type 1 Usher syndrome.

    PubMed

    Rebibo-Sabbah, Annie; Nudelman, Igor; Ahmed, Zubair M; Baasov, Timor; Ben-Yosef, Tamar

    2007-11-01

    Type 1 Usher syndrome (USH1) is a recessively inherited condition, characterized by profound prelingual deafness, vestibular areflexia, and prepubertal onset of retinitis pigmentosa (RP). While the auditory component of USH1 can be treated by cochlear implants, to date there is no effective treatment for RP. USH1 can be caused by mutations in each of at least six genes. While truncating mutations of these genes cause USH1, some missense mutations of the same genes cause nonsyndromic deafness. These observations suggest that partial or low level activity of the encoded proteins may be sufficient for normal retinal function, although not for normal hearing. In individuals with USH1 due to nonsense mutations, interventions enabling partial translation of a full-length functional protein may delay the onset and/or progression of RP. One such possible therapeutic approach is suppression of nonsense mutations by small molecules such as aminoglycosides. We decided to test this approach as a potential therapy for RP in USH1 patients due to nonsense mutations. We initially focused on nonsense mutations of the PCDH15 gene, underlying USH1F. Here, we show suppression of several PCDH15 nonsense mutations, both in vitro and ex vivo. Suppression was achieved both by commercial aminoglycosides and by NB30, a new aminoglycoside-derivative developed by us. NB30 has reduced cytotoxicity in comparison to commercial aminoglycosides, and thus may be more efficiently used for therapeutic purposes. The research described here has important implications for the development of targeted interventions that are effective for patients with USH1 caused by various nonsense mutations.

  5. Microcephalic osteodysplastic primordial dwarfism type I with biallelic mutations in the RNU4ATAC gene.

    PubMed

    Nagy, R; Wang, H; Albrecht, B; Wieczorek, D; Gillessen-Kaesbach, G; Haan, E; Meinecke, P; de la Chapelle, A; Westman, J A

    2012-08-01

    Microcephalic osteodysplastic primordial dwarfism type I (MOPD I) is a rare autosomal recessive developmental disorder characterized by extreme intrauterine growth retardation, severe microcephaly, central nervous system abnormalities, dysmorphic facial features, skin abnormalities, skeletal changes, limb deformations, and early death. Recently, mutations in the RNU4ATAC gene, which encodes U4atac, a small nuclear RNA that is a crucial component of the minor spliceosome, were found to cause MOPD I. MOPD I is the first disease known to be associated with a defect in small nuclear RNAs. We describe here the clinical and molecular data for 17 cases of MOPD I, including 15 previously unreported cases, all carrying biallelic mutations in the RNU4ATAC gene. © 2011 John Wiley & Sons A/S.

  6. Functional analysis of a nonstop mutation in MITF gene identified in a patient with Waardenburg syndrome type 2

    PubMed Central

    Sun, Jie; Hao, Ziqi; Luo, Hunjin; He, Chufeng; Mei, Lingyun; Liu, Yalan; Wang, Xueping; Niu, Zhijie; Chen, Hongsheng; Li, Jia-Da; Feng, Yong

    2017-01-01

    Waardenburg syndrome (WS) is an autosomal dominant inherited neurogenic disorder with the combination of various degrees of sensorineural deafness and pigmentary abnormalities affecting the skin, hair and eye. The four subtypes of WS were defined on the basis of the presence or absence of additional symptoms. Mutation of human microphthalmia-associated transcription factor (MITF) gene gives rise to WS2. Here, we identified a novel WS-associated mutation at the stop codon of MITF (p.X420Y) in a Chinese WS2 patient. This mutation resulted in an extension of extra 33 amino-acid residues in MITF. The mutant MITF appeared in both the nucleus and the cytoplasm, whereas the wild-type MITF was localized in the nucleus exclusively. The mutation led to a reduction in the transcriptional activities, whereas the DNA-binding activity was not altered. We show that the foremost mechanism was haploinsufficiency for the mild phenotypes of WS2 induced in X420Y MITF. PMID:28356565

  7. Functional analysis of a nonstop mutation in MITF gene identified in a patient with Waardenburg syndrome type 2.

    PubMed

    Sun, Jie; Hao, Ziqi; Luo, Hunjin; He, Chufeng; Mei, Lingyun; Liu, Yalan; Wang, Xueping; Niu, Zhijie; Chen, Hongsheng; Li, Jia-Da; Feng, Yong

    2017-07-01

    Waardenburg syndrome (WS) is an autosomal dominant inherited neurogenic disorder with the combination of various degrees of sensorineural deafness and pigmentary abnormalities affecting the skin, hair and eye. The four subtypes of WS were defined on the basis of the presence or absence of additional symptoms. Mutation of human microphthalmia-associated transcription factor (MITF) gene gives rise to WS2. Here, we identified a novel WS-associated mutation at the stop codon of MITF (p.X420Y) in a Chinese WS2 patient. This mutation resulted in an extension of extra 33 amino-acid residues in MITF. The mutant MITF appeared in both the nucleus and the cytoplasm, whereas the wild-type MITF was localized in the nucleus exclusively. The mutation led to a reduction in the transcriptional activities, whereas the DNA-binding activity was not altered. We show that the foremost mechanism was haploinsufficiency for the mild phenotypes of WS2 induced in X420Y MITF.

  8. Identification of 14 novel mutations in the long isoform of USH2A in Spanish patients with Usher syndrome type II

    PubMed Central

    Aller, E; Jaijo, T; Beneyto, M; Nájera, C; Oltra, S; Ayuso, C; Baiget, M; Carballo, M; Antiñolo, G; Valverde, D; Moreno, F; Vilela, C; Collado, D; Pérez‐Garrigues, H; Navea, A; Millán, J M

    2006-01-01

    Mutations in USH2A gene have been shown to be responsible for Usher syndrome type II, an autosomal recessive disorder characterised by hearing loss and retinitis pigmentosa. USH2A was firstly described as consisting of 21 exons, but 52 novel exons at the 3' end of the gene were recently identified. In this report, a mutation analysis of the new 52 exons of USH2A gene was carried out in 32 unrelated patients in which both disease‐causing mutations could not be found after the screening of the first 21 exons of the USH2A gene. On analysing the new 52 exons, fourteen novel mutations were identified in 14 out of the 32 cases studied, including 7 missense, 5 frameshift, 1 duplication and a putative splice-site mutation. PMID:17085681

  9. Hereditary sensory and autonomic neuropathy type I in a Chinese family: British C133W mutation exists in the Chinese.

    PubMed

    Bi, Hongyan; Gao, Yunying; Yao, Sheng; Dong, Mingrui; Headley, Alexander Peter; Yuan, Yun

    2007-10-01

    Hereditary sensory and autonomic neuropathy type I (HSAN I) is an autosomal dominant disorder of the peripheral nervous system characterized by marked progressive sensory loss, with variable autonomic and motor involvement. The HSAN I locus maps to chromosome 9q22.1-22.3 and is caused by mutations in the gene coding for serine palmitoyltransferase long chain base subunit 1 (SPTLC1). Sequencing in HSAN I families have previously identified mutations in exons 5, 6 and 13 of this gene. Here we report the clinical, electrophysiological and pathological findings of a proband in a Chinese family with HSAN I. The affected members showed almost typical clinical features. Electrophysiological findings showed an axonal, predominantly sensory, neuropathy with motor and autonomic involvement. Sural nerve biopsy showed loss of myelinated and unmyelinated fibers. SPTLC1 mutational analysis revealed the C133W mutation, a mutation common in British HSAN I families.

  10. Spectrum of novel mutations found in Waardenburg syndrome types 1 and 2: implications for molecular genetic diagnostics.

    PubMed

    Wildhardt, Gabriele; Zirn, Birgit; Graul-Neumann, Luitgard M; Wechtenbruch, Juliane; Suckfüll, Markus; Buske, Annegret; Bohring, Axel; Kubisch, Christian; Vogt, Stefanie; Strobl-Wildemann, Gertrud; Greally, Marie; Bartsch, Oliver; Steinberger, Daniela

    2013-03-18

    Till date, mutations in the genes PAX3 and MITF have been described in Waardenburg syndrome (WS), which is clinically characterised by congenital hearing loss and pigmentation anomalies. Our study intended to determine the frequency of mutations and deletions in these genes, to assess the clinical phenotype in detail and to identify rational priorities for molecular genetic diagnostics procedures. Prospective analysis. 19 Caucasian patients with typical features of WS underwent stepwise investigation of PAX3 and MITF. When point mutations and small insertions/deletions were excluded by direct sequencing, copy number analysis by multiplex ligation-dependent probe amplification was performed to detect larger deletions and duplications. Clinical data and photographs were collected to facilitate genotype-phenotype analyses. All analyses were performed in a large German laboratory specialised in genetic diagnostics. 15 novel and 4 previously published heterozygous mutations in PAX3 and MITF were identified. Of these, six were large deletions or duplications that were only detectable by copy number analysis. All patients with PAX3 mutations had typical phenotype of WS with dystopia canthorum (WS1), whereas patients with MITF gene mutations presented without dystopia canthorum (WS2). In addition, one patient with bilateral hearing loss and blue eyes with iris stroma dysplasia had a de novo missense mutation (p.Arg217Ile) in MITF. MITF 3-bp deletions at amino acid position 217 have previously been described in patients with Tietz syndrome (TS), a clinical entity with hearing loss and generalised hypopigmentation. On the basis of these findings, we conclude that sequencing and copy number analysis of both PAX3 and MITF have to be recommended in the routine molecular diagnostic setting for patients, WS1 and WS2. Furthermore, our genotype-phenotype analyses indicate that WS2 and TS correspond to a clinical spectrum that is influenced by MITF mutation type and position.

  11. [Identification of novel compound heterozygous mutations of USH2A gene in a family with Usher syndrome type II].

    PubMed

    Jiang, Haiou; Ge, Chuanqin; Wang, Yiwang; Tang, Genyun; Quan, Qingli

    2015-06-01

    To identify potential mutations in a Chinese family with Usher syndrome type II. Genomic DNA was obtained from two affected and four unaffected members of the family and subjected to amplification of the entire coding sequence and splicing sites of USH2A gene. Mutation detection was conducted by direct sequencing of the PCR products. A total of 100 normal unrelated individuals were used as controls. The patients were identified to be a compound heterozygote for two mutations: c.8272G>T (p.E2758X) in exon 42 from his mother and c.12376-12378ACT>TAA(p.T4126X) in exon 63 of the USH2A gene from his father. Both mutations were not found in either of the two unaffected family members or 100 unrelated controls, and had completely co-segregated with the disease phenotype in the family. Neither mutation has been reported in the HGMD database. The novel compound heterozygous mutations c.8272G>T and c.12376-12378ACT>TAA within the USH2A gene may be responsible for the disease. This result may provide new clues for molecular diagnosis of this disease.

  12. Characterizing mid-ultraviolet to optical light curves of nearby type IIn supernovae

    DOE PAGES

    de la Rosa, Janie; Roming, Pete; Pritchard, Tyler; ...

    2016-03-21

    Here, we present early mid-ultraviolet and optical observations of Type IIn supernovae (SNe IIn) observed from 2007 to 2013. Our results focus on the properties of UV light curves: peak absolute magnitudes, temporal decay, and color evolution. During early times, this sample demonstrates that UV light decays faster than optical, and each event transitions from a predominantly UV-bright phase to an optically bright phase. In order to understand early UV behavior, we generate and analyze the sample's blackbody luminosity, temperature, and radius as the SN ejecta expand and cool. Since most of our observations were detected post maximum luminosity, wemore » introduce a method for estimating the date of peak magnitude. When our observations are compared based on filter, we find that even though these SNe IIn vary in peak magnitudes, there are similarities in UV decay rates. We use a simple semi-analytical SN model in order to understand the effects of the explosion environment on our UV observations. Understanding the UV characteristics of nearby SNe IIn during an early phase can provide valuable information about the environment surrounding these explosions, leading us to evaluating the diversity of observational properties in this subclass.« less

  13. TERT promoter mutations contribute to IDH mutations in predicting differential responses to adjuvant therapies in WHO grade II and III diffuse gliomas

    PubMed Central

    Ding, Xiao-Jie; Qin, Zhi-Yong; Hong, Christopher S.; Chen, Ling-Chao; Zhang, Xin; Zhao, Fang-Ping; Wang, Yin; Wang, Yang; Zhou, Liang-Fu; Zhuang, Zhengping; Ng, Ho-Keung; Yan, Hai; Yao, Yu; Mao, Ying

    2015-01-01

    IDH mutations frequently occur in WHO grade II and III diffuse gliomas and have favorable prognosis compared to wild-type tumors. However, whether IDH mutations in WHO grade II and II diffuse gliomas predict enhanced sensitivity to adjuvant radiation (RT) or chemotherapy (CHT) is still being debated. Recent studies have identified recurrent mutations in the promoter region of telomerase reverse transcriptase (TERT) in gliomas. We previously demonstrated that TERT promoter mutations may be promising biomarkers in glioma survival prognostication when combined with IDH mutations. This study analyzed IDH and TERT promoter mutations in 295 WHO grade II and III diffuse gliomas treated with or without adjuvant therapies to explore their impact on the sensitivity of tumors to genotoxic therapies. IDH mutations were found in 216 (73.2%) patients and TERT promoter mutations were found in 112 (38%) patients. In multivariate analysis, IDH mutations (p < 0.001) were independent prognostic factors for PFS and OS in patients receiving genotoxic therapies while TERT promoter mutations were not. In univariate analysis, IDH and TERT promoter mutations were not significant prognostic factors in patients who did not receive genotoxic therapies. Adjuvant RT and CHT were factors independently impacting PFS (RT p = 0.001, CHT p = 0.026) in IDH mutated WHO grade II and III diffuse gliomas but not in IDH wild-type group. Univariate and multivariate analyses demonstrated TERT promoter mutations further stratified IDH wild-type WHO grade II and III diffuse gliomas into two subgroups with different responses to genotoxic therapies. Adjuvant RT and CHT were significant parameters influencing PFS in the IDH wt/TERT mut subgroup (RT p = 0.015, CHT p = 0.015) but not in the IDH wt/TERT wt subgroup. Our data demonstrated that IDH mutated WHO grade II and III diffuse gliomas had better PFS and OS than their IDH wild-type counterparts when genotoxic therapies were administered after surgery

  14. Nephrolithiasis and osteoporosis associated with hypophosphatemia caused by mutations in the type 2a sodium-phosphate cotransporter.

    PubMed

    Prié, Dominique; Huart, Virginie; Bakouh, Naziha; Planelles, Gabrielle; Dellis, Olivier; Gérard, Bénédicte; Hulin, Philippe; Benqué-Blanchet, François; Silve, Caroline; Grandchamp, Bernard; Friedlander, Gérard

    2002-09-26

    Epidemiologic studies suggest that genetic factors confer a predisposition to the formation of renal calcium stones or bone demineralization. Low serum phosphate concentrations due to a decrease in renal phosphate reabsorption have been reported in some patients with these conditions, suggesting that genetic factors leading to a decrease in renal phosphate reabsorption may contribute to them. We hypothesized that mutations in the gene coding for the main renal sodium-phosphate cotransporter (NPT2a) may be present in patients with these disorders. We studied 20 patients with urolithiasis or bone demineralization and persistent idiopathic hypophosphatemia associated with a decrease in maximal renal phosphate reabsorption. The coding region of the gene for NPT2a was sequenced in all patients. The functional consequences of the mutations identified were analyzed by expressing the mutated RNA in Xenopus laevis oocytes. Two patients, one with recurrent urolithiasis and one with bone demineralization, were heterozygous for two distinct mutations. One mutation resulted in the substitution of phenylalanine for alanine at position 48, and the other in a substitution of methionine for valine at position 147. Phosphate-induced current and sodium-dependent phosphate uptake were impaired in oocytes expressing the mutant NPT2a. Coinjection of oocytes with wild-type and mutant RNA indicated that the mutant protein had altered function. Heterozygous mutations in the NPT2a gene may be responsible for hypophosphatemia and urinary phosphate loss in persons with urolithiasis or bone demineralization. Copyright 2002 Massachusetts Medical Society

  15. Interband Tunneling for Hole Injection in III-Nitride Ultraviolet Emitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuewei; Krishnamoorthy, Sriram; Johnson, Jared M.

    Low p-type conductivity and high contact resistance remain a critical problem in wide band gap AlGaN-based ultraviolet light emitters due to the high acceptor ionization energy. In this work, interband tunneling is demonstrated for non-equilibrium injection of holes through the use of ultra-thin polarization-engineered layers that enhance tunneling probability by several orders of magnitude over a PN homojunction. Al 0.3Ga 0.7N interband tunnel junctions with a lowresistance of 5.6 × 10 -4 Ω cm 2 were obtained and integrated on ultraviolet light emitting diodes.Tunnel injection of holes was used to realize GaN-free ultraviolet light emitters with bottom and top n-typemore » Al 0.3Ga 0.7N contacts. At an emission wavelength of 327 nm, stable output power of 6 W/cm 2 at a current density of 120 A/cm 2 with a forward voltage of 5.9 V was achieved. Our demonstration of efficient interband tunneling could enable device designs for higher efficiency ultraviolet emitters.« less

  16. 21 CFR 872.6350 - Ultraviolet detector.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultraviolet detector. 872.6350 Section 872.6350...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6350 Ultraviolet detector. (a) Identification. An ultraviolet detector is a device intended to provide a source of ultraviolet light which is used...

  17. 21 CFR 872.6350 - Ultraviolet detector.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultraviolet detector. 872.6350 Section 872.6350...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6350 Ultraviolet detector. (a) Identification. An ultraviolet detector is a device intended to provide a source of ultraviolet light which is used...

  18. 21 CFR 872.6350 - Ultraviolet detector.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultraviolet detector. 872.6350 Section 872.6350...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6350 Ultraviolet detector. (a) Identification. An ultraviolet detector is a device intended to provide a source of ultraviolet light which is used...

  19. 21 CFR 872.6350 - Ultraviolet detector.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ultraviolet detector. 872.6350 Section 872.6350...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6350 Ultraviolet detector. (a) Identification. An ultraviolet detector is a device intended to provide a source of ultraviolet light which is used...

  20. 21 CFR 872.6350 - Ultraviolet detector.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultraviolet detector. 872.6350 Section 872.6350...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6350 Ultraviolet detector. (a) Identification. An ultraviolet detector is a device intended to provide a source of ultraviolet light which is used...

  1. Mutational Analysis of the Adaptor Protein 2 Sigma Subunit (AP2S1) Gene: Search for Autosomal Dominant Hypocalcemia Type 3 (ADH3)

    PubMed Central

    Rogers, Angela; Nesbit, M. Andrew; Hannan, Fadil M.; Howles, Sarah A.; Gorvin, Caroline M.; Cranston, Treena; Allgrove, Jeremy; Bevan, John S.; Bano, Gul; Brain, Caroline; Datta, Vipan; Grossman, Ashley B.; Hodgson, Shirley V.; Izatt, Louise; Millar-Jones, Lynne; Pearce, Simon H.; Robertson, Lisa; Selby, Peter L.; Shine, Brian; Snape, Katie; Warner, Justin

    2014-01-01

    Context: Autosomal dominant hypocalcemia (ADH) types 1 and 2 are due to calcium-sensing receptor (CASR) and G-protein subunit-α11 (GNA11) gain-of-function mutations, respectively, whereas CASR and GNA11 loss-of-function mutations result in familial hypocalciuric hypercalcemia (FHH) types 1 and 2, respectively. Loss-of-function mutations of adaptor protein-2 sigma subunit (AP2σ 2), encoded by AP2S1, cause FHH3, and we therefore sought for gain-of-function AP2S1 mutations that may cause an additional form of ADH, which we designated ADH3. Objective: The objective of the study was to investigate the hypothesis that gain-of-function AP2S1 mutations may cause ADH3. Design: The sample size required for the detection of at least one mutation with a greater than 95% likelihood was determined by binomial probability analysis. Nineteen patients (including six familial cases) with hypocalcemia in association with low or normal serum PTH concentrations, consistent with ADH, but who did not have CASR or GNA11 mutations, were ascertained. Leukocyte DNA was used for sequence and copy number variation analysis of AP2S1. Results: Binomial probability analysis, using the assumption that AP2S1 mutations would occur in hypocalcemic patients at a prevalence of 20%, which is observed in FHH patients without CASR or GNA11 mutations, indicated that the likelihood of detecting at least one AP2S1 mutation was greater than 95% and greater than 98% in sample sizes of 14 and 19 hypocalcemic patients, respectively. AP2S1 mutations and copy number variations were not detected in the 19 hypocalcemic patients. Conclusion: The absence of AP2S1 abnormalities in hypocalcemic patients, suggests that ADH3 may not occur or otherwise represents a rare hypocalcemic disorder. PMID:24708097

  2. Disease-associated mutations identify a novel region in human STING necessary for the control of type I interferon signaling.

    PubMed

    Melki, Isabelle; Rose, Yoann; Uggenti, Carolina; Van Eyck, Lien; Frémond, Marie-Louise; Kitabayashi, Naoki; Rice, Gillian I; Jenkinson, Emma M; Boulai, Anaïs; Jeremiah, Nadia; Gattorno, Marco; Volpi, Sefano; Sacco, Olivero; Terheggen-Lagro, Suzanne W J; Tiddens, Harm A W M; Meyts, Isabelle; Morren, Marie-Anne; De Haes, Petra; Wouters, Carine; Legius, Eric; Corveleyn, Anniek; Rieux-Laucat, Frederic; Bodemer, Christine; Callebaut, Isabelle; Rodero, Mathieu P; Crow, Yanick J

    2017-08-01

    Gain-of-function mutations in transmembrane protein 173 (TMEM173) encoding stimulator of interferon genes (STING) underlie a recently described type I interferonopathy called STING-associated vasculopathy with onset in infancy (SAVI). We sought to define the molecular and cellular pathology relating to 3 individuals variably exhibiting the core features of the SAVI phenotype including systemic inflammation, destructive skin lesions, and interstitial lung disease. Genetic analysis, conformational studies, in vitro assays and ex vivo flow-cytometry were performed. Molecular and in vitro data demonstrate that the pathology in these patients is due to amino acid substitutions at positions 206, 281, and 284 of the human STING protein. These mutations confer cGAMP-independent constitutive activation of type I interferon signaling through TBK1 (TANK-binding kinase), independent from the alternative STING pathway triggered by membrane fusion of enveloped RNA viruses. This constitutive activation was abrogated by ex vivo treatment with the janus kinase 1/2 inhibitor ruxolitinib. Structural analysis indicates that the 3 disease-associated mutations at positions 206, 281, and 284 of the STING protein define a novel cluster of amino acids with functional importance in the regulation of type I interferon signaling. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  3. A second mutation in the type II procollagen gene (COL2AI) causing stickler syndrome (arthro-ophthalmopathy) is also a premature termination codon.

    PubMed Central

    Ahmad, N N; McDonald-McGinn, D M; Zackai, E H; Knowlton, R G; LaRossa, D; DiMascio, J; Prockop, D J

    1993-01-01

    Genetic linkage analyses suggest that mutations in type II collagen may be responsible for Stickler syndrome, or arthro-ophthalmopathy (AO), in many families. In the present study oligonucleotide primers were developed to amplify and directly sequence eight of the first nine exons of the gene for type II procollagen (COL2A1). Analysis of the eight exons in 10 unrelated probands with AO revealed that one had a single-base mutation in one allele that changed the codon of -CGA- for arginine at amino acid position alpha 1-9 in exon 7 to a premature termination signal for translation. The second mutation found to cause AO was, therefore, similar to the first in that both created premature termination signals in the COL2A1 gene. Since mutations producing premature termination signals have not previously been detected in genes for fibrillar collagens, the results raise the possibility that such mutations in the COL2A1 gene are a common cause of AO. Images Figure 2 Figure 3 PMID:8434604

  4. Frequency and type of inheritable mutations induced by γ rays in rice as revealed by whole genome sequencing.

    PubMed

    Li, Shan; Zheng, Yun-Chao; Cui, Hai-Rui; Fu, Hao-Wei; Shu, Qing-Yao; Huang, Jian-Zhong

    Mutation breeding is based on the induction of genetic variations; hence knowledge of the frequency and type of induced mutations is of paramount importance for the design and implementation of a mutation breeding program. Although γ ray irradiation has been widely used since the 1960s in the breeding of about 200 economically important plant species, molecular elucidation of its genetic effects has so far been achieved largely by analysis of target genes or genomic regions. In the present study, the whole genomes of six γ-irradiated M 2 rice plants were sequenced; a total of 144-188 million high-quality (Q>20) reads were generated for each M 2 plant, resulting in genome coverage of >45 times for each plant. Single base substitution (SBS) and short insertion/deletion (Indel) mutations were detected at the average frequency of 7.5×10 -6 -9.8×10 -6 in the six M 2 rice plants (SBS being about 4 times more frequent than Indels). Structural and copy number variations, though less frequent than SBS and Indel, were also identified and validated. The mutations were scattered in all genomic regions across 12 rice chromosomes without apparent hotspots. The present study is the first genome-wide single-nucleotide resolution study on the feature and frequency of γ irradiation-induced mutations in a seed propagated crop; the findings are of practical importance for mutation breeding of rice and other crop species.

  5. A novel UBE2A mutation causes X-linked intellectual disability type Nascimento

    PubMed Central

    Tsurusaki, Yoshinori; Ohashi, Ikuko; Enomoto, Yumi; Naruto, Takuya; Mitsui, Jun; Aida, Noriko; Kurosawa, Kenji

    2017-01-01

    X-linked intellectual disability (ID) type Nascimento (MIM #300860), also known as ubiquitin-conjugating enzyme E2 A (UBE2A) deficiency syndrome, is a congenital malformation syndrome characterized by moderate to severe ID, speech impairment, dysmorphic facial features, genital anomalies and skin abnormalities. Here, we report a Japanese patient with severe ID and congenital cataract. We identified a novel hemizygous mutation (c.76G>A, p.Gly26Arg) in UBE2A by whole-exome sequencing. PMID:28611923

  6. alphaT244M mutation affects the redox, kinetic, and in vitro folding properties of Paracoccus denitrificans electron transfer flavoprotein.

    PubMed

    Griffin, K J; Dwyer, T M; Manning, M C; Meyer, J D; Carpenter, J F; Frerman, F E

    1997-04-08

    Threonine 244 in the alpha subunit of Paracoccus denitrificans transfer flavoprotein (ETF) lies seven residues to the amino terminus of a proposed dinucleotide binding motif for the ADP moiety of the FAD prosthetic group. This residue is highly conserved in the alpha subunits of all known ETFs, and the most frequent pathogenic mutation in human ETF encodes a methionine substitution at the corresponding position, alphaT266. The X-ray crystal structures of human and P. denitrificans ETFs are very similar. The hydroxyl hydrogen and a backbone amide hydrogen of alphaT266 are hydrogen bonded to N(5) and C(4)O of the flavin, respectively, and the corresponding alphaT244 has the same structural role in P. denitrificans ETF. We substituted a methionine for T244 in the alpha subunit of P. denitrificans ETF and expressed the mutant ETF in Escherichia coli. The mutant protein was purified, characterized, and compared with wild type P. denitrificans ETF. The mutation has no significant effect on the global structure of the protein as inferred from visible and near-ultraviolet absorption and circular dichroism spectra, far-ultraviolet circular dichroism spectra, and infrared spectra in 1H2O and 2H2O. Intrinsic fluorescence due to tryptophan of the mutant protein is 60% greater than that of the wild type ETF. This increased tryptophan fluorescence is probably due to a change in the environment of the nearby W239. Tyrosine fluorescence is unchanged in the mutant protein, although two tyrosine residues are close to the site of the mutation. These results indicate that a change in structure is minor and localized. Kinetic constants of the reductive half-reaction of ETF with porcine medium chain acyl-CoA dehydrogenase are unaltered when alphaT244M ETF serves as the substrate; however, the mutant ETF fails to exhibit saturation kinetics when the semiquinone form of the protein is used as the substrate in the disproportionation reaction catalyzed by P. denitrificans electron transfer

  7. A nonsense mutation in cGMP-dependent type II protein kinase (PRKG2) causes dwarfism in American Angus cattle.

    PubMed

    Koltes, James E; Mishra, Bishnu P; Kumar, Dinesh; Kataria, Ranjit S; Totir, Liviu R; Fernando, Rohan L; Cobbold, Rowland; Steffen, David; Coppieters, Wouter; Georges, Michel; Reecy, James M

    2009-11-17

    Historically, dwarfism was the major genetic defect in U.S. beef cattle. Aggressive culling and sire testing were used to minimize its prevalence; however, neither of these practices can eliminate a recessive genetic defect. We assembled a 4-generation pedigree to identify the mutation underlying dwarfism in American Angus cattle. An adaptation of the Elston-Steward algorithm was used to overcome small pedigree size and missing genotypes. The dwarfism locus was fine-mapped to BTA6 between markers AFR227 and BM4311. Four candidate genes were sequenced, revealing a nonsense mutation in exon 15 of cGMP-dependant type II protein kinase (PRKG2). This C/T transition introduced a stop codon (R678X) that truncated 85 C-terminal amino acids, including a large portion of the kinase domain. Of the 75 mutations discovered in this region, only this mutation was 100% concordant with the recessive pattern of inheritance in affected and carrier individuals (log of odds score = 6.63). Previous research has shown that PRKG2 regulates SRY (sex-determining region Y) box 9 (SOX9)-mediated transcription of collagen 2 (COL2). We evaluated the ability of wild-type (WT) or R678X PRKG2 to regulate COL2 expression in cell culture. Real-time PCR results confirmed that COL2 is overexpressed in cells that overexpressed R678X PRKG2 as compared with WT PRKG2. Furthermore, COL2 and COL10 mRNA expression was increased in dwarf cattle compared with unaffected cattle. These experiments indicate that the R678X mutation is functional, resulting in a loss of PRKG2 regulation of COL2 and COL10 mRNA expression. Therefore, we present PRKG2 R678X as a causative mutation for dwarfism cattle.

  8. A nonsense mutation in cGMP-dependent type II protein kinase (PRKG2) causes dwarfism in American Angus cattle

    PubMed Central

    Koltes, James E.; Mishra, Bishnu P.; Kumar, Dinesh; Kataria, Ranjit S.; Totir, Liviu R.; Fernando, Rohan L.; Cobbold, Rowland; Steffen, David; Coppieters, Wouter; Georges, Michel; Reecy, James M.

    2009-01-01

    Historically, dwarfism was the major genetic defect in U.S. beef cattle. Aggressive culling and sire testing were used to minimize its prevalence; however, neither of these practices can eliminate a recessive genetic defect. We assembled a 4-generation pedigree to identify the mutation underlying dwarfism in American Angus cattle. An adaptation of the Elston-Steward algorithm was used to overcome small pedigree size and missing genotypes. The dwarfism locus was fine-mapped to BTA6 between markers AFR227 and BM4311. Four candidate genes were sequenced, revealing a nonsense mutation in exon 15 of cGMP-dependant type II protein kinase (PRKG2). This C/T transition introduced a stop codon (R678X) that truncated 85 C-terminal amino acids, including a large portion of the kinase domain. Of the 75 mutations discovered in this region, only this mutation was 100% concordant with the recessive pattern of inheritance in affected and carrier individuals (log of odds score = 6.63). Previous research has shown that PRKG2 regulates SRY (sex-determining region Y) box 9 (SOX9)-mediated transcription of collagen 2 (COL2). We evaluated the ability of wild-type (WT) or R678X PRKG2 to regulate COL2 expression in cell culture. Real-time PCR results confirmed that COL2 is overexpressed in cells that overexpressed R678X PRKG2 as compared with WT PRKG2. Furthermore, COL2 and COL10 mRNA expression was increased in dwarf cattle compared with unaffected cattle. These experiments indicate that the R678X mutation is functional, resulting in a loss of PRKG2 regulation of COL2 and COL10 mRNA expression. Therefore, we present PRKG2 R678X as a causative mutation for dwarfism cattle. PMID:19887637

  9. Identification of HNF4A Mutation p.T130I and HNF1A Mutations p.I27L and p.S487N in a Han Chinese Family with Early-Onset Maternally Inherited Type 2 Diabetes.

    PubMed

    Yang, Ying; Zhou, Tai-Cheng; Liu, Yong-Ying; Li, Xiao; Wang, Wen-Xue; Irwin, David M; Zhang, Ya-Ping

    2016-01-01

    Maturity-onset diabetes of the young (MODY) is characterized by the onset of diabetes before the age of 25 years, positive family history, high genetic predisposition, monogenic mutations, and an autosomal dominant mode of inheritance. Here, we aimed to investigate the mutations and to characterize the phenotypes of a Han Chinese family with early-onset maternally inherited type 2 diabetes. Detailed clinical assessments and genetic screening for mutations in the HNF4α, GCK, HNF-1α, IPF-1, HNF1β, and NEUROD1 genes were carried out in this family. One HNF4A mutation (p.T130I) and two HNF1A polymorphisms (p.I27L and p.S487N) were identified. Mutation p.T130I was associated with both early-onset and late-onset diabetes and caused downregulated HNF4A expression, whereas HNF1A polymorphisms p.I27L and p.S487N were associated with the age of diagnosis of diabetes. We demonstrated that mutation p.T130I in HNF4A was pathogenic as were the predicted polymorphisms p.I27L and p.S487N in HNF1A by genetic and functional analysis. Our results show that mutations in HNF4A and HNF1A genes might account for this early-onset inherited type 2 diabetes.

  10. Sun exposure causes somatic second-hit mutations and angiofibroma development in tuberous sclerosis complex

    PubMed Central

    Tyburczy, Magdalena E.; Wang, Ji-an; Li, Shaowei; Thangapazham, Rajesh; Chekaluk, Yvonne; Moss, Joel; Kwiatkowski, David J.; Darling, Thomas N.

    2014-01-01

    Tuberous sclerosis complex (TSC) is characterized by the formation of tumors in multiple organs and is caused by germline mutation in one of two tumor suppressor genes, TSC1 and TSC2. As for other tumor suppressor gene syndromes, the mechanism of somatic second-hit events in TSC tumors is unknown. We grew fibroblast-like cells from 29 TSC skin tumors from 22 TSC subjects and identified germline and second-hit mutations in TSC1/TSC2 using next-generation sequencing. Eighteen of 22 (82%) subjects had a mutation identified, and 8 of the 18 (44%) subjects were mosaic with mutant allele frequencies of 0 to 19% in normal tissue DNA. Multiple tumors were available from four patients, and in each case, second-hit mutations in TSC2 were distinct indicating they arose independently. Most remarkably, 7 (50%) of the 14 somatic point mutations were CC>TT ultraviolet ‘signature’ mutations, never seen as a TSC germline mutation. These occurred exclusively in facial angiofibroma tumors from sun-exposed sites. These results implicate UV-induced DNA damage as a cause of second-hit mutations and development of TSC facial angiofibromas and suggest that measures to limit UV exposure in TSC children and adults should reduce the frequency and severity of these lesions. PMID:24271014

  11. A novel mouse model of Niemann-Pick type C disease carrying a D1005G-Npc1 mutation comparable to commonly observed human mutations.

    PubMed

    Maue, Robert A; Burgess, Robert W; Wang, Bing; Wooley, Christine M; Seburn, Kevin L; Vanier, Marie T; Rogers, Maximillian A; Chang, Catherine C; Chang, Ta-Yuan; Harris, Brent T; Graber, David J; Penatti, Carlos A A; Porter, Donna M; Szwergold, Benjamin S; Henderson, Leslie P; Totenhagen, John W; Trouard, Theodore P; Borbon, Ivan A; Erickson, Robert P

    2012-02-15

    We have identified a point mutation in Npc1 that creates a novel mouse model (Npc1(nmf164)) of Niemann-Pick type C1 (NPC) disease: a single nucleotide change (A to G at cDNA bp 3163) that results in an aspartate to glycine change at position 1005 (D1005G). This change is in the cysteine-rich luminal loop of the NPC1 protein and is highly similar to commonly occurring human mutations. Genetic and molecular biological analyses, including sequencing the Npc1(spm) allele and identifying a truncating mutation, confirm that the mutation in Npc1(nmf164) mice is distinct from those in other existing mouse models of NPC disease (Npc1(nih), Npc1(spm)). Analyses of lifespan, body and spleen weight, gait and other motor activities, as well as acoustic startle responses all reveal a more slowly developing phenotype in Npc1(nmf164) mutant mice than in mice with the null mutations (Npc1(nih), Npc1(spm)). Although Npc1 mRNA levels appear relatively normal, Npc1(nmf164) brain and liver display dramatic reductions in Npc1 protein, as well as abnormal cholesterol metabolism and altered glycolipid expression. Furthermore, histological analyses of liver, spleen, hippocampus, cortex and cerebellum reveal abnormal cholesterol accumulation, glial activation and Purkinje cell loss at a slower rate than in the Npc1(nih) mouse model. Magnetic resonance imaging studies also reveal significantly less demyelination/dysmyelination than in the null alleles. Thus, although prior mouse models may correspond to the severe infantile onset forms of NPC disease, Npc1(nmf164) mice offer many advantages as a model for the late-onset, more slowly progressing forms of NPC disease that comprise the large majority of human cases.

  12. A novel mouse model of Niemann–Pick type C disease carrying a D1005G-Npc1 mutation comparable to commonly observed human mutations

    PubMed Central

    Maue, Robert A.; Burgess, Robert W.; Wang, Bing; Wooley, Christine M.; Seburn, Kevin L.; Vanier, Marie T.; Rogers, Maximillian A.; Chang, Catherine C.; Chang, Ta-Yuan; Harris, Brent T.; Graber, David J.; Penatti, Carlos A.A.; Porter, Donna M.; Szwergold, Benjamin S.; Henderson, Leslie P.; Totenhagen, John W.; Trouard, Theodore P.; Borbon, Ivan A.; Erickson, Robert P.

    2012-01-01

    We have identified a point mutation in Npc1 that creates a novel mouse model (Npc1nmf164) of Niemann–Pick type C1 (NPC) disease: a single nucleotide change (A to G at cDNA bp 3163) that results in an aspartate to glycine change at position 1005 (D1005G). This change is in the cysteine-rich luminal loop of the NPC1 protein and is highly similar to commonly occurring human mutations. Genetic and molecular biological analyses, including sequencing the Npc1spm allele and identifying a truncating mutation, confirm that the mutation in Npc1nmf164 mice is distinct from those in other existing mouse models of NPC disease (Npc1nih, Npc1spm). Analyses of lifespan, body and spleen weight, gait and other motor activities, as well as acoustic startle responses all reveal a more slowly developing phenotype in Npc1nmf164 mutant mice than in mice with the null mutations (Npc1nih, Npc1spm). Although Npc1 mRNA levels appear relatively normal, Npc1nmf164 brain and liver display dramatic reductions in Npc1 protein, as well as abnormal cholesterol metabolism and altered glycolipid expression. Furthermore, histological analyses of liver, spleen, hippocampus, cortex and cerebellum reveal abnormal cholesterol accumulation, glial activation and Purkinje cell loss at a slower rate than in the Npc1nih mouse model. Magnetic resonance imaging studies also reveal significantly less demyelination/dysmyelination than in the null alleles. Thus, although prior mouse models may correspond to the severe infantile onset forms of NPC disease, Npc1nmf164 mice offer many advantages as a model for the late-onset, more slowly progressing forms of NPC disease that comprise the large majority of human cases. PMID:22048958

  13. Patterns of Novel Alleles and Genotype/Phenotype Correlations Resulting from the Analysis of 108 Previously Undetected Mutations in Patients Affected by Neurofibromatosis Type I

    PubMed Central

    Bonatti, Francesco; Adorni, Alessia; Matichecchia, Annalisa; Mozzoni, Paola; Uliana, Vera; Pisani, Francesco; Garavelli, Livia; Graziano, Claudio; Gnoli, Maria; Bigoni, Stefania; Boschi, Elena; Martorana, Davide; Percesepe, Antonio

    2017-01-01

    Neurofibromatosis type I, a genetic disorder due to mutations in the NF1 gene, is characterized by a high mutation rate (about 50% of the cases are de novo) but, with the exception of whole gene deletions associated with a more severe phenotype, no specific hotspots and few solid genotype/phenotype correlations. After retrospectively re-evaluating all NF1 gene variants found in the diagnostic activity, we studied 108 patients affected by neurofibromatosis type I who harbored mutations that had not been previously reported in the international databases, with the aim of analyzing their type and distribution along the gene and of correlating them with the phenotypic features of the affected patients. Out of the 108 previously unreported variants, 14 were inherited by one of the affected parents and 94 were de novo. Twenty-nine (26.9%) mutations were of uncertain significance, whereas 79 (73.2%) were predicted as pathogenic or probably pathogenic. No differential distribution in the exons or in the protein domains was observed and no statistically significant genotype/phenotype correlation was found, confirming previous evidences. PMID:28961165

  14. Mutations in the novel protocadherin PCDH15 cause Usher syndrome type 1F.

    PubMed

    Alagramam, K N; Yuan, H; Kuehn, M H; Murcia, C L; Wayne, S; Srisailpathy, C R; Lowry, R B; Knaus, R; Van Laer, L; Bernier, F P; Schwartz, S; Lee, C; Morton, C C; Mullins, R F; Ramesh, A; Van Camp, G; Hageman, G S; Woychik, R P; Smith, R J; Hagemen, G S

    2001-08-01

    We have determined the molecular basis for Usher syndrome type 1F (USH1F) in two families segregating for this type of syndromic deafness. By fluorescence in situ hybridization, we placed the human homolog of the mouse protocadherin Pcdh15 in the linkage interval defined by the USH1F locus. We determined the genomic structure of this novel protocadherin, and found a single-base deletion in exon 10 in one USH1F family and a nonsense mutation in exon 2 in the second. Consistent with the phenotypes observed in these families, we demonstrated expression of PCDH15 in the retina and cochlea by RT-PCR and immunohistochemistry. This report shows that protocadherins are essential for maintenance of normal retinal and cochlear function.

  15. CACNA1H missense mutations associated with amyotrophic lateral sclerosis alter Cav3.2 T-type calcium channel activity and reticular thalamic neuron firing.

    PubMed

    Rzhepetskyy, Yuriy; Lazniewska, Joanna; Blesneac, Iulia; Pamphlett, Roger; Weiss, Norbert

    2016-11-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects nerve cells in the brain and the spinal cord. In a recent study by Steinberg and colleagues, 2 recessive missense mutations were identified in the Cav3.2 T-type calcium channel gene (CACNA1H), in a family with an affected proband (early onset, long duration ALS) and 2 unaffected parents. We have introduced and functionally characterized these mutations using transiently expressed human Cav3.2 channels in tsA-201 cells. Both of these mutations produced mild but significant changes on T-type channel activity that are consistent with a loss of channel function. Computer modeling in thalamic reticular neurons suggested that these mutations result in decreased neuronal excitability of thalamic structures. Taken together, these findings implicate CACNA1H as a susceptibility gene in amyotrophic lateral sclerosis.

  16. Unusual clinical outcome of primary Hyperoxaluria type 1 in Tunisian patients carrying 33_34InsC mutation.

    PubMed

    Mbarek, Ibtihel Benhaj; Mdimeg, Saoussen; Moussa, Amira; Zellama, Dorsaf; Kaarout, Hayat; Abdelmoula, Jaouida; Achour, Abdellatif; Abroug, Saoussen; Omezzine, Asma; Bouslama, Ali

    2017-06-15

    Primary hyperoxaluria type 1 (PH1), is a rare and heterogeneous disease and one of major causes of renal insufficiency in Tunisia, caused by mutations in the AGXT gene. 33-34InsC mutation, was mainly described in children with a severe clinical feature leading to early death, but it was uncommonly reported in adult patients. Common mutations in AGXT were tested using PCR/RFLP technique in 111 patients (68 adult, 43 children) with suspected PH1. We described 16 cases (eight adult and eight children) with a 33-34InsC mutation with a median age of 24 years [6 months - 73 years]. All children were in end stage renal disease (ESRD) at the median age of 3 years due to lithiasis and/or nephrocalcinosis. Unfortunately, 75% of them died with a median age of 2.5 years. For the majority of adults only spontaneous elimination of urolithiasis were noted, 37.5% preserved until now a normal renal function and 62.5% of them reached ESRD at the median age of 55.8 ± 12.31 years old. In this study 33-34InsC mutation gives a controversial clinical effect in children and adults. The implication of other genetic and/or environmental factors can play a crucial role in determining the ultimate phenotype.

  17. Ultraviolet radiation, vitamin D and the development of obesity, metabolic syndrome and type-2 diabetes.

    PubMed

    Gorman, Shelley; Lucas, Robyn M; Allen-Hall, Aidan; Fleury, Naomi; Feelisch, Martin

    2017-03-16

    Obesity is increasing in prevalence in many countries around the world. Its causes have been traditionally ascribed to a model where energy intake exceeds energy consumption. Reduced energy output in the form of exercise is associated with less sun exposure as many of these activities occur outdoors. This review explores the potential for ultraviolet radiation (UVR), derived from sun exposure, to affect the development of obesity and two of its metabolic co-morbidities, type-2 diabetes and metabolic syndrome. We here discuss the potential benefits (or otherwise) of exposure to UVR based on evidence from pre-clinical, human epidemiological and clinical studies and explore and compare the potential role of UVR-induced mediators, including vitamin D and nitric oxide. Overall, emerging findings suggest a protective role for UVR and sun exposure in reducing the development of obesity and cardiometabolic dysfunction, but more epidemiological and clinical research is required that focuses on measuring the direct associations and effects of exposure to UVR in humans.

  18. Association of The IDH1 C.395G>A (R132H) Mutation with Histological Type in Malay Brain Tumors

    PubMed

    Mohamed Yusoff, Abdul Aziz; Zulfakhar, Fatin Najwa; Sul’ain, Mohd Dasuki; Idris, Zamzuri; Abdullah, Jafri Malin

    2016-12-01

    Background: Brain tumors, constituting one of the most deadly forms of cancer worldwide, result from the accumulation of multiple genetic and epigenetic alterations in genes and signaling pathways. Isocitrate dehydrogenase enzyme isoform 1 (IDH1) mutations are frequently identified in primary brain tumors and acute myeloid leukemia. Studies on IDH1 gene mutations have been extensively performed in various populations worldwide but not in Malaysia. This work was conducted to study the prevalence of IDH1 c.395G>A (R132H) hotspot mutations in a group of Malaysian patients with brain tumors in order to gain local data for the IDH1 mutation profile in our population. Methods: Mutation analysis of c.395G>A (R132H) of IDH1 was performed in 40 brain tumor specimens by the polymerase chain reaction-restriction fragment length polymorphism method (PCR-RFLP) and then verified by direct sequencing. Associations between the IDH1 c.395G>A (R132H) mutation and clinicopathologic characteristics were also analyzed. Results: The IDH1 c.395G>A (R132H) mutation was detected in 14/40 patients (35%). A significant association was found with histological tumor types, but not with age, gender and race. Conclusions: IDH1 is frequently mutated and associated with histological subtypes in Malay brain tumors. Creative Commons Attribution License

  19. Association of The IDH1 C.395G>A (R132H) Mutation with Histological Type in Malay Brain Tumors

    PubMed Central

    Yusoff, Abdul Aziz Mohamed; Zulfakhar, Fatin Najwa; Sul’ain, Mohd Dasuki; Idris, Zamzuri; Abdullah, Jafri Malin

    2016-01-01

    Background: Brain tumors, constituting one of the most deadly forms of cancer worldwide, result from the accumulation of multiple genetic and epigenetic alterations in genes and signaling pathways. Isocitrate dehydrogenase enzyme isoform 1 (IDH1) mutations are frequently identified in primary brain tumors and acute myeloid leukemia. Studies on IDH1 gene mutations have been extensively performed in various populations worldwide but not in Malaysia. This work was conducted to study the prevalence of IDH1 c.395G>A (R132H) hotspot mutations in a group of Malaysian patients with brain tumors in order to gain local data for the IDH1 mutation profile in our population. Methods: Mutation analysis of c.395G>A (R132H) of IDH1 was performed in 40 brain tumor specimens by the polymerase chain reaction-restriction fragment length polymorphism method (PCR-RFLP) and then verified by direct sequencing. Associations between the IDH1 c.395G>A (R132H) mutation and clinicopathologic characteristics were also analyzed. Results: The IDH1 c.395G>A (R132H) mutation was detected in 14/40 patients (35%). A significant association was found with histological tumor types, but not with age, gender and race. Conclusions: IDH1 is frequently mutated and associated with histological subtypes in Malay brain tumors. PMID:28125199

  20. Four USH2A founder mutations underlie the majority of Usher syndrome type 2 cases among non-Ashkenazi Jews.

    PubMed

    Auslender, Noa; Bandah, Dikla; Rizel, Leah; Behar, Doron M; Shohat, Mordechai; Banin, Eyal; Allon-Shalev, Stavit; Sharony, Reuven; Sharon, Dror; Ben-Yosef, Tamar

    2008-06-01

    Type 2 Usher syndrome (USH2) is a recessively inherited disorder, characterized by the combination of early onset, moderate-to-severe, sensorineural hearing loss, and vision impairment due to retinitis pigmentosa. From 74% to 90% of USH2 cases are caused by mutations of the USH2A gene. USH2A is composed of 72 exons, encoding for usherin, an extracellular matrix protein, which plays an important role in the development and maintenance of neurosensory cells in both retina and cochlea. To date, over 70 pathogenic mutations of USH2A have been reported in individuals of various ethnicities. Many of these mutations are rare private mutations segregating in single families. The aim of the current work was to investigate the genetic basis for USH2 among Jews of various origins. We found that four USH2A mutations (c.239-240insGTAC, c.1000C>T, c.2209C>T, and c.12067-2A>G) account for 64% of mutant alleles underlying USH2 in Jewish families of non-Ashkenazi descent. Considering the very large size of the USH2A gene and the high number of mutations detected in USH2 patients worldwide, our findings have significant implications for genetic counseling and carrier screening in various Jewish populations.

  1. A combination of two truncating mutations in USH2A causes more severe and progressive hearing impairment in Usher syndrome type IIa.

    PubMed

    Hartel, Bas P; Löfgren, Maria; Huygen, Patrick L M; Guchelaar, Iris; Lo-A-Njoe Kort, Nicole; Sadeghi, Andre M; van Wijk, Erwin; Tranebjærg, Lisbeth; Kremer, Hannie; Kimberling, William J; Cremers, Cor W R J; Möller, Claes; Pennings, Ronald J E

    2016-09-01

    Usher syndrome is an inherited disorder that is characterized by hearing impairment (HI), retinitis pigmentosa, and in some cases vestibular dysfunction. Usher syndrome type IIa is caused by mutations in USH2A. HI in these patients is highly heterogeneous and the present study evaluates the effects of different types of USH2A mutations on the audiometric phenotype. Data from two large centres of expertise on Usher Syndrome in the Netherlands and Sweden were combined in order to create a large combined sample of patients to identify possible genotype-phenotype correlations. A retrospective study on HI in 110 patients (65 Dutch and 45 Swedish) genetically diagnosed with Usher syndrome type IIa. We used methods especially designed for characterizing and testing differences in audiological phenotype between patient subgroups. These methods included Age Related Typical Audiograms (ARTA) and a method to evaluate the difference in the degree of HI developed throughout life between subgroups. Cross-sectional linear regression analysis of last-visit audiograms for the best hearing ear demonstrated a gradual decline of hearing over decades. The congenital level of HI was in the range of 16-33 dB at 0.25-0.5 kHz, and in the range of 51-60 dB at 1-8 kHz. The annual threshold deterioration was in the range of 0.4-0.5 dB/year at 0.25-2 kHz and in the range of 0.7-0.8 dB/year at 4-8 kHz. Patients with two truncating mutations, including homozygotes for the common c.2299delG mutation, developed significantly more severe HI throughout life than patients with one truncating mutation combined with one nontruncating mutation, and patients with two nontruncating mutations. The results have direct implications for patient counselling in terms of prognosis of hearing and may serve as baseline measures for future (genetic) therapeutic interventions. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Mechanistic basis for type 2 long QT syndrome caused by KCNH2 mutations that disrupt conserved arginine residues in the voltage sensor.

    PubMed

    McBride, Christie M; Smith, Ashley M; Smith, Jennifer L; Reloj, Allison R; Velasco, Ellyn J; Powell, Jonathan; Elayi, Claude S; Bartos, Daniel C; Burgess, Don E; Delisle, Brian P

    2013-05-01

    KCNH2 encodes the Kv11.1 channel, which conducts the rapidly activating delayed rectifier K+ current (I Kr) in the heart. KCNH2 mutations cause type 2 long QT syndrome (LQT2), which increases the risk for life-threatening ventricular arrhythmias. LQT2 mutations are predicted to prolong the cardiac action potential (AP) by reducing I Kr during repolarization. Kv11.1 contains several conserved basic amino acids in the fourth transmembrane segment (S4) of the voltage sensor that are important for normal channel trafficking and gating. This study sought to determine the mechanism(s) by which LQT2 mutations at conserved arginine residues in S4 (R531Q, R531W or R534L) alter Kv11.1 function. Western blot analyses of HEK293 cells transiently expressing R531Q, R531W or R534L suggested that only R534L inhibited Kv11.1 trafficking. Voltage-clamping experiments showed that R531Q or R531W dramatically altered Kv11.1 current (I Kv11.1) activation, inactivation, recovery from inactivation and deactivation. Coexpression of wild type (to mimic the patients' genotypes) mostly corrected the changes in I Kv11.1 activation and inactivation, but deactivation kinetics were still faster. Computational simulations using a human ventricular AP model showed that accelerating deactivation rates was sufficient to prolong the AP, but these effects were minimal compared to simply reducing I Kr. These are the first data to demonstrate that coexpressing wild type can correct activation and inactivation dysfunction caused by mutations at a critical voltage-sensing residue in Kv11.1. We conclude that some Kv11.1 mutations might accelerate deactivation to cause LQT2 but that the ventricular AP duration is much more sensitive to mutations that decrease I Kr. This likely explains why most LQT2 mutations are nonsense or trafficking-deficient.

  3. Phenotypic expressions of a Gly154Arg mutation in type II collagen in two unrelated patients with spondyloepimetaphyseal dysplasia (SEMD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaitila, I.; Marttinen, E.; Koerkkoe, J.

    1996-05-03

    Type II collagenopathies consist of chondrodysplasia ranging from lethal to mild in severity. A large number of mutations has been found in the COL2A1 gene. Glycine substitutions have been the most common types of mutation. Genotype-phenotype correlations in type II collagenopathies have not been established, partly because of insufficient clinical and radiographic description of the patients. We found a glycine-to-arginine substitution at position 154 in type II collagen in two unrelated isolated propositi with spondyloepimetaphyseal dysplasia and provide a comparative clinical and radiographic analysis from birth to young adulthood for this condition. The clinical phenotype was disproportionate short stature withmore » varus/valgus deformities of the lower limbs requiring corrective osteotomies, and lumbar lordosis. The skeletal radiographs showed an evolution from short tubular bones, delayed epiphyseal development, and mild vertebral involvement to severe metaphyseal dysplasia with dappling irregularities, and hip {open_quotes}dysplasia.{close_quotes} The metaphyseal abnormalities disappeared by adulthood. 27 refs., 11 figs., 1 tab.« less

  4. A splice-site mutation affecting the paired box of PAX3 in a three generation family with Waardenburg syndrome type I (WS1).

    PubMed

    Attaie, A; Kim, E; Wilcox, E R; Lalwani, A K

    1997-06-01

    Waardenburg syndrome, an autosomal dominant disorder characterized by sensorineural hearing loss, pigmentary disturbances and other developmental defects, is the most frequent form of congenital deafness in humans. Mutations in the PAX3 gene, a transcription factor expressed during embryonic development, is associated with WS types I and III. Here we report the identification of a novel acceptor splice site mutation (86-2 A-->G) in the paired domain of the human PAX3 gene causing WS type I in a three generation family.

  5. Performance characteristics of proximity focused ultraviolet image converters

    NASA Technical Reports Server (NTRS)

    Williams, J. T.; Feibelman, W. A.

    1973-01-01

    Performance characteristics of Bendix type BX 8025-4522 proximity focused image tubes for ultraviolet to visible light conversion are presented. Quantum efficiency, resolution, background, geometric distortion, and environmental test results are discussed. The converters use magnesium fluoride input windows with Cs - Te photocathodes, and P-11 phosphors on fiber optic output windows.

  6. Usher syndrome type 1 due to missense mutations on both CDH23 alleles: investigation of mRNA splicing.

    PubMed

    Becirovic, Elvir; Ebermann, Inga; Nagy, Ditta; Zrenner, Eberhart; Seeliger, Mathias Wolfgang; Bolz, Hanno Jörn

    2008-03-01

    Usher syndrome (USH) is an autosomal recessive condition characterized by sensorineural hearing loss, vestibular dysfunction, and visual impairment due to retinitis pigmentosa. Truncating mutations in the cadherin-23 gene (CDH23) result in Usher syndrome type 1D (USH1D), whereas missense mutations affecting strongly conserved motifs of the CDH23 protein cause non-syndromic deafness (DFNB12). Four missense mutations constitute an exception from this genotype-phenotype correlation: they have been described in USH1 patients in homozygous state. Using a minigene assay, we have investigated these changes (c.1450G>C, p.A484P; c.3625A>G, p.T1209A; c.4520G>A, p.R1507Q; and c.5237G>A, p.R1746Q) for a possible impact on mRNA splicing which could explain the syndromic phenotype. While in silico analysis suggested impairment of splicing in all four cases, we found aberrant splicing for only one mutation, p.R1746Q. However, splicing was normal in case of p.A484P, p.T1209A and p.R1507Q. These three latter CDH23 missense mutations could interfere with functions of both, the auditory and the visual system. Alternatively, they could represent rare non-pathogenic polymorphisms.

  7. Identification of a de novo mutation of SOX10 in a Chinese patient with Waardenburg syndrome type IV.

    PubMed

    Liang, Fenghe; Zhao, Min; Fan, Lynn; Zhang, Hongyan; Shi, Yang; Han, Rui; Qu, Chunyan

    2016-12-01

    Waardenburg syndrome is a rare genetic disorder, characterized by the association of sensorineural hearing loss and pigmentation abnormalities. Four subtypes have been classified. The present study aimed to analyze the clinical feature and investigate the genetic cause for a Chinese case of Waardenburg type IV (WS4). The patient and his family members were subjected to mutation detection in the candidate gene SOX10 by Sanger sequencing. The patient has the clinical features of WS4, including sensorineural hearing loss, bright blue irides, premature graying of the hair and Hirschsprung disease. A novel heterozygous frameshift mutation, c.752_753ins7 (p.Gly252Alafs*31) in the exon 5 of SOX10 was detected in the patient, but not found in the unaffected family members and 100 normal controls. This mutation results in a premature stop codon 31 amino acid downstream. The novel mutation c.752_753ins7 (p.Gly252Alafs*31) arose de novo and was considered as the cause of WS4 in the proband. This study further characterized the molecular complexity of WS4 and provided a clinical case for genotype-phenotype correlation studies of different phenotypes caused by SOX10 mutations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. An Usher syndrome type 1 patient diagnosed before the appearance of visual symptoms by MYO7A mutation analysis.

    PubMed

    Yoshimura, Hidekane; Iwasaki, Satoshi; Kanda, Yukihiko; Nakanishi, Hiroshi; Murata, Toshinori; Iwasa, Yoh-ichiro; Nishio, Shin-ya; Takumi, Yutaka; Usami, Shin-ichi

    2013-02-01

    Usher syndrome type 1 (USH1) appears to have only profound non-syndromic hearing loss in childhood and retinitis pigmentosa develops in later years. This study examined the frequency of USH1 before the appearance of visual symptoms in Japanese deaf children by MYO7A mutation analysis. We report the case of 6-year-old male with profound hearing loss, who did not have visual symptoms. The frequency of MYO7A mutations in profound hearing loss children is also discussed. We sequenced all exons of the MYO7A gene in 80 Japanese children with severe to profound non-syndromic HL not due to mutations of the GJB2 gene (ages 0-14 years). A total of nine DNA variants were found and six of them were presumed to be non-pathogenic variants. In addition, three variants of them were found in two patients (2.5%) with deafness and were classified as possible pathogenic variants. Among them, at least one nonsense mutation and one missense mutation from the patient were confirmed to be responsible for deafness. After MYO7A mutation analysis, the patient was diagnosed with RP, and therefore, also diagnosed with USH1. This is the first case report to show the advantage of MYO7A mutation analysis to diagnose USH1 before the appearance of visual symptoms. We believed that MYO7A mutation analysis is valid for the early diagnosis of USH1. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Mutation Analysis of COL1A1 and COL1A2 in Fetuses with Osteogenesis Imperfecta Type II/III.

    PubMed

    Wang, Wenbo; Wu, Qichang; Cao, Lin; Sun, Li; Xu, Yasong; Guo, Qiwei

    2015-01-27

    Aim: To analyze COL1A1/2 mutations in prenatal-onset OI for determine the proportion of mutations in type I collagen genes among prenatal onset OI and to provide additional data for genotype-phenotype analyses. Material and Methods: Ten cases of severe fetal short-limb dwarfism detected by antenatal ultrasonography were referred to our center. Before the termination of pregnancy, cordocentesis was performed for fetal karyotype and COL1A1/2 gene sequencing analysis. Postmortem radiographic examination was performed at all instances for definitive diagnosis. Results: COL1A1 and COL1A2 SNP and mutations were identified in all the cases. Among these, one synonymous SNP and four synonymous SNPs were recognized in COL1A1/2, respectively, seven cases have distinct heterozygous mutations and six new COL1A1/2 gene mutations were identified. Conclusion: There has been substantial progress in the identification of the molecular defects responsible for skeletal dysplasias. With the constant increase in the number of identified mutations in COL1A1 and COL1A2, genotype-phenotype correlation is becoming increasingly pertinent. © 2015 S. Karger AG, Basel.

  10. Spectrum of novel mutations found in Waardenburg syndrome types 1 and 2: implications for molecular genetic diagnostics

    PubMed Central

    Wildhardt, Gabriele; Zirn, Birgit; Graul-Neumann, Luitgard M; Wechtenbruch, Juliane; Suckfüll, Markus; Buske, Annegret; Bohring, Axel; Kubisch, Christian; Vogt, Stefanie; Strobl-Wildemann, Gertrud; Greally, Marie; Bartsch, Oliver; Steinberger, Daniela

    2013-01-01

    that is influenced by MITF mutation type and position. PMID:23512835

  11. Substitution of aspartate for glycine 103 of the type II collagen triple helical domain: Identification of the minimal mutation which can produce Kniest dysplasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkin, D.J.; Rimoin, D.L.; Cohn, D.H.

    1994-09-01

    Kniest dysplasia is an autosomal dominant chondrodysplasia which results from mutations in the gene for type II collagen, COL2A1. Characteristics of the disorder include a short trunk and extremities, mid-face hypoplasia, cleft palate, myopia, retinal detachment, and hearing loss. Recently, deletions of all or part of exon 12 have been identified in individuals with Kniest dysplasia, suggesting that mutations within this region of the protein may primarily result in the Kniest dysplasia phenotype. We used SSCP to analyze an amplified genomic DNA fragment containing exon 12 from 7 individuals with Kniest dysplasia. An abnormality was identified in one patient. DNAmore » sequence analysis demonstrated that the patient was heterozygous for a G to A transition that implied substitution of glycine{sup 103} of the triple helix by aspartate. The mutation was not observed in DNA from either of the proband`s parents. Protein microsequencing demonstrated expression of the abnormal allele in the proband`s cartilage, indicating that the Kniest phenotype results from the presence of abnormal type II collagen molecules in the extracellular matrix. These data demonstrate the minimal mutation which can produce Kniest dysplasia and further support the hypothesis that alteration of a domain which includes the region encoded by exon 12 in the type II collagen protein leads to this disorder. Experiments designed to identify specific effects that mutations in this region have on intermolecular interactions among abnormal type II collagen molecules and other components of the cartilage extracellular matrix may clarify the underlying pathophysiology of Kniest dysplasia.« less

  12. Mutational screening of the USH2A gene in Spanish USH patients reveals 23 novel pathogenic mutations

    PubMed Central

    2011-01-01

    Background Usher Syndrome type II (USH2) is an autosomal recessive disorder, characterized by moderate to severe hearing impairment and retinitis pigmentosa (RP). Among the three genes implicated, mutations in the USH2A gene account for 74-90% of the USH2 cases. Methods To identify the genetic cause of the disease and determine the frequency of USH2A mutations in a cohort of 88 unrelated USH Spanish patients, we carried out a mutation screening of the 72 coding exons of this gene by direct sequencing. Moreover, we performed functional minigene studies for those changes that were predicted to affect splicing. Results As a result, a total of 144 DNA sequence variants were identified. Based upon previous studies, allele frequencies, segregation analysis, bioinformatics' predictions and in vitro experiments, 37 variants (23 of them novel) were classified as pathogenic mutations. Conclusions This report provide a wide spectrum of USH2A mutations and clinical features, including atypical Usher syndrome phenotypes resembling Usher syndrome type I. Considering only the patients clearly diagnosed with Usher syndrome type II, and results obtained in this and previous studies, we can state that mutations in USH2A are responsible for 76.1% of USH2 disease in patients of Spanish origin. PMID:22004887

  13. Single-Tubed Wild-Type Blocking Quantitative PCR Detection Assay for the Sensitive Detection of Codon 12 and 13 KRAS Mutations

    PubMed Central

    Duan, Guang-Jie; Shi, Yan; Deng, Guo-Hong; Xia, Han; Xu, Han-Qing; Zhao, Na; Fu, Wei-Ling; Huang, Qing

    2015-01-01

    The high degree of intra-tumor heterogeneity has meant that it is important to develop sensitive and selective assays to detect low-abundance KRAS mutations in metastatic colorectal carcinoma (mCRC) patients. As a major potential source of tumor DNA in the aforementioned genotyping assays, it was necessary to conduct an analysis on both the quality and quantity of DNA extracted from formalin-fixed paraffin-embedded (FFPE). Therefore, four commercial FFPE DNA extraction kits were initially compared with respect to their ability to facilitate extraction of amplifiable DNA. The results showed that TrimGen kits showed the greatest performance in relation to the quality and quantity of extracted FFPE DNA solutions. Using DNA extracted by TrimGen kits as a template for tumor genotyping, a real-time wild-type blocking PCR (WTB-PCR) assay was subsequently developed to detect the aforementioned KRAS mutations in mCRC patients. The results showed that WTB-PCR facilitated the detection of mutated alleles at a ratio of 1:10,000 (i.e. 0.01%) wild-type alleles. When the assay was subsequently used to test 49 mCRC patients, the results showed that the mutation detection levels of the WTB-PCR assay (61.8%; 30/49) were significantly higher than that of traditional PCR (38.8%; 19/49). Following the use of the real-time WTB-PCR assay, the ΔC q method was used to quantitatively analyze the mutation levels associated with KRAS in each FFPE sample. The results showed that the mutant levels ranged from 53.74 to 0.12% in the patients analyzed. In conclusion, the current real-time WTB-PCR is a rapid, simple, and low-cost method that permits the detection of trace amounts of the mutated KRAS gene. PMID:26701781

  14. Genetic Mutations in Cancer

    Cancer.gov

    Many different types of genetic mutations are found in cancer cells. This infographic outlines certain types of alterations that are present in cancer, such as missense, nonsense, frameshift, and chromosome rearrangements.

  15. DFG-out Mode of Inhibition by an Irreversible Type-1 Inhibitor Capable of Overcoming Gate-Keeper Mutations in FGF Receptors

    PubMed Central

    2015-01-01

    Drug-resistance acquisition through kinase gate-keeper mutations is a major hurdle in the clinic. Here, we determined the first crystal structures of the human FGFR4 kinase domain (FGFR4K) alone and complexed with ponatinib, a promiscuous type-2 (DFG-out) kinase inhibitor, and an oncogenic FGFR4K harboring the V550L gate-keeper mutation bound to FIIN-2, a new type-1 irreversible inhibitor. Remarkably, like ponatinib, FIIN-2 also binds in the DFG-out mode despite lacking a functional group necessary to occupy the pocket vacated upon the DFG-out flip. Structural analysis reveals that the covalent bond between FIIN-2 and a cysteine, uniquely present in the glycine-rich loop of FGFR kinases, facilitates the DFG-out conformation, which together with the internal flexibility of FIIN-2 enables FIIN-2 to avoid the steric clash with the gate-keeper mutation that causes the ponatinib resistance. The structural data provide a blueprint for the development of next generation anticancer inhibitors through combining the salient inhibitory mechanisms of ponatinib and FIIN-2. PMID:25317566

  16. A mutation in the neurofibromatosis type 2 tumor-suppressor gene, giving rise to widely different clinical phenotypes in two unrelated individuals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourn, D.; Carter, S.A.; Goodship, J.

    The authors have sought mutations in the recently identified neurofibromatosis type 2 (NF2) tumor-suppressor gene in a large panel of NF2 patients, using PCR-based SSCP and heteroduplex analysis, followed by cloning and sequencing of appropriate PCR products. Two unrelated NF2 patients were found to have identical nonsense mutations caused by a C-to-T transition in a CpG dinucleotide that is a potential mutational hot spot in the NF2 tumor-suppressor gene. Unexpectedly, the two individuals had widely different clinical phenotypes, representing the severe Wishart and mild Gardner clinical subtypes. Analysis of DNA samples from different tissues of the mildly affected patient suggestsmore » that he is a somatic mosaic for the mutation. 26 refs., 3 figs.« less

  17. Effect of 60-Hz magnetic fields on ultraviolet light-induced mutation and mitotic recombination in Saccharomyces cerevisiae.

    PubMed

    Ager, D D; Radul, J A

    1992-12-01

    The purpose of this study was to examine the effect of extremely low frequency (ELF) magnetic fields on the induction of genetic damage. In general, mutational studies involving ELF magnetic fields have proven negative. However, studies examining sister-chromatid exchange and chromosome aberrations have yielded conflicting results. In this study, we have examined whether 60-Hz magnetic fields are capable of inducing mutation or mitotic recombination in the yeast Saccharomyces cerevisiae. In addition we determined whether magnetic fields were capable of altering the genetic response of S. cerevisiae to UV (254 nm). We measured the frequencies of induced mutation, gene conversion and reciprocal mitotic crossing-over for exposures to magnetic fields alone (1 mT) or in combination with various UV exposures (2-50 J/m2). These experiments were performed using a repair-proficient strain (RAD+), as well as a strain of yeast (rad3) which is incapable of excising UV-induced thymine dimers. Magnetic field exposures did not induce mutation, gene conversion or reciprocal mitotic crossing-over in either of these strains, nor did the fields influence the frequencies of UV-induced genetic events.

  18. Mutations Affecting G-Protein Subunit α11 in Hypercalcemia and Hypocalcemia

    PubMed Central

    Babinsky, Valerie N.; Head, Rosie A.; Cranston, Treena; Rust, Nigel; Hobbs, Maurine R.; Heath, Hunter; Thakker, Rajesh V.

    2013-01-01

    BACKGROUND Familial hypocalciuric hypercalcemia is a genetically heterogeneous disorder with three variants: types 1, 2, and 3. Type 1 is due to loss-of-function mutations of the calcium-sensing receptor, a guanine nucleotide–binding protein (G-protein)–coupled receptor that signals through the G-protein subunit α11 (Gα11). Type 3 is associated with adaptor-related protein complex 2, sigma 1 subunit (AP2S1) mutations, which result in altered calcium-sensing receptor endocytosis. We hypothesized that type 2 is due to mutations effecting Gα11 loss of function, since Gα11 is involved in calcium-sensing receptor signaling, and its gene (GNA11) and the type 2 locus are colocalized on chromosome 19p13.3. We also postulated that mutations effecting Gα11 gain of function, like the mutations effecting calcium-sensing receptor gain of function that cause autosomal dominant hypocalcemia type 1, may lead to hypocalcemia. METHODS We performed GNA11 mutational analysis in a kindred with familial hypocalciuric hypercalcemia type 2 and in nine unrelated patients with familial hypocalciuric hypercalcemia who did not have mutations in the gene encoding the calcium-sensing receptor (CASR) or AP2S1. We also performed this analysis in eight unrelated patients with hypocalcemia who did not have CASR mutations. In addition, we studied the effects of GNA11 mutations on Gα11 protein structure and calcium-sensing receptor signaling in human embryonic kidney 293 (HEK293) cells. RESULTS The kindred with familial hypocalciuric hypercalcemia type 2 had an in-frame deletion of a conserved Gα11 isoleucine (Ile200del), and one of the nine unrelated patients with familial hypocalciuric hypercalcemia had a missense GNA11 mutation (Leu135Gln). Missense GNA11 mutations (Arg181Gln and Phe341Leu) were detected in two unrelated patients with hypocalcemia; they were therefore identified as having autosomal dominant hypocalcemia type 2. All four GNA11 mutations predicted disrupted protein

  19. Clinical features and ryanodine receptor type 1 gene mutation analysis in a Chinese family with central core disease.

    PubMed

    Chang, Xingzhi; Jin, Yiwen; Zhao, Haijuan; Huang, Qionghui; Wang, Jingmin; Yuan, Yun; Han, Ying; Qin, Jiong

    2013-03-01

    Central core disease is a rare inherited neuromuscular disorder caused by mutations in ryanodine receptor type 1 gene. The clinical phenotype of the disease is highly variable. We report a Chinese pedigree with central core disease confirmed by the gene sequencing. All 3 patients in the family presented with mild proximal limb weakness. The serum level of creatine kinase was normal, and electromyography suggested myogenic changes. The histologic analysis of muscle biopsy showed identical central core lesions in almost all of the muscle fibers in the index case. Exon 90-106 in the C-terminal domain of the ryanodine receptor type 1 gene was amplified using polymerase chain reaction. One heterozygous missense mutation G14678A (Arg4893Gln) in exon 102 was identified in all 3 patients. This is the first report of a familial case of central core disease confirmed by molecular study in mainland China.

  20. Exome-wide Sequencing Shows Low Mutation Rates and Identifies Novel Mutated Genes in Seminomas.

    PubMed

    Cutcutache, Ioana; Suzuki, Yuka; Tan, Iain Beehuat; Ramgopal, Subhashini; Zhang, Shenli; Ramnarayanan, Kalpana; Gan, Anna; Lee, Heng Hong; Tay, Su Ting; Ooi, Aikseng; Ong, Choon Kiat; Bolthouse, Jonathan T; Lane, Brian R; Anema, John G; Kahnoski, Richard J; Tan, Patrick; Teh, Bin Tean; Rozen, Steven G

    2015-07-01

    Testicular germ cell tumors are the most common cancer diagnosed in young men, and seminomas are the most common type of these cancers. There have been no exome-wide examinations of genes mutated in seminomas or of overall rates of nonsilent somatic mutations in these tumors. The objective was to analyze somatic mutations in seminomas to determine which genes are affected and to determine rates of nonsilent mutations. Eight seminomas and matched normal samples were surgically obtained from eight patients. DNA was extracted from tissue samples and exome sequenced on massively parallel Illumina DNA sequencers. Single-nucleotide polymorphism chip-based copy number analysis was also performed to assess copy number alterations. The DNA sequencing read data were analyzed to detect somatic mutations including single-nucleotide substitutions and short insertions and deletions. The detected mutations were validated by independent sequencing and further checked for subclonality. The rate of nonsynonymous somatic mutations averaged 0.31 mutations/Mb. We detected nonsilent somatic mutations in 96 genes that were not previously known to be mutated in seminomas, of which some may be driver mutations. Many of the mutations appear to have been present in subclonal populations. In addition, two genes, KIT and KRAS, were affected in two tumors each with mutations that were previously observed in other cancers and are presumably oncogenic. Our study, the first report on exome sequencing of seminomas, detected somatic mutations in 96 new genes, several of which may be targetable drivers. Furthermore, our results show that seminoma mutation rates are five times higher than previously thought, but are nevertheless low compared to other common cancers. Similar low rates are seen in other cancers that also have excellent rates of remission achieved with chemotherapy. We examined the DNA sequences of seminomas, the most common type of testicular germ cell cancer. Our study identified 96

  1. Epilepsy caused by CDKL5 mutations.

    PubMed

    Castrén, Maija; Gaily, Eija; Tengström, Carola; Lähdetie, Jaana; Archer, Hayley; Ala-Mello, Sirpa

    2011-01-01

    Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) have been identified in female patients with early onset epileptic encephalopathy and severe mental retardation with a Rett-like phenotype. Subsequently CDKL5 mutations were shown to be associated with more diverse phenotypes including mild epilepsy and autism without epilepsy. Furthermore, CDKL5 mutations were found in patients with Angelman-like phenotype. The severity of epilepsy associated with CDKL5 mutations was recently shown to correlate with the type of CDKL5 mutations and epilepsy was identified to involve three distinct sequential stages. Here, we describe the phenotype of a severe form of neurodevelopmental disease in a female patient with a de novo nonsense mutation of the CDKL5 gene c.175C > T (p.R59X) affecting the catalytic domain of CDKL5 protein. Mutations in the CDKL5 gene are less common in males and can be associated with a genomic deletion as found in our male patient with a deletion of 0.3 Mb at Xp22.13 including the CDKL5 gene. We review phenotypes associated with CDKL5 mutations and examine putative relationships between the clinical epilepsy phenotype and the type of the mutation in the CDKL5 gene. © 2010 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  2. Two novel AGXT mutations identified in primary hyperoxaluria type-1 and distinct morphological and structural difference in kidney stones

    PubMed Central

    Wang, Cui; Lu, Jingru; Lang, Yanhua; Liu, Ting; Wang, Xiaoling; Zhao, Xiangzhong; Shao, Leping

    2016-01-01

    Primary hyperoxaluria type 1 (PH1) is a rare genetic disease characterized by excessive oxalate accumulation in plasma and urine, resulting in various phenotypes because of allelic and clinical heterogeneity. This study aimed to detect disease-associated genetic mutations in three PH1 patients in a Chinese family. All AGXT exons and 3 common polymorphisms which might synergistically interact with mutations, including P11L, I340 M and IVSI+74 bp were analyzed by direct sequencing in all family members. It demonstrated that in each of three patients, a previously reported nonsense mutation p.R333* was in cis with a novel missense mutation p.M49L in the minor allele characterized by the polymorphism of 74-bp duplication in intron 1, while the other novel missense mutation p.N72I was in trans with both p.R333* and P.M49L in the major allele. Kidney stones from two sibling patients were also observed though stereomicroscopic examination and scanning electron microscopy. Distinct morphological and inner-structure differences in calculi were noticed, suggesting clinical heterozygosity of PH1 to a certain extent. In brief, two novel missense mutations were identified probably in association with PH1, a finding which should provide an accurate tool for prenatal diagnosis, genetic counseling and screening for potential presymptomatic individuals. PMID:27644547

  3. Two novel AGXT mutations identified in primary hyperoxaluria type-1 and distinct morphological and structural difference in kidney stones.

    PubMed

    Wang, Cui; Lu, Jingru; Lang, Yanhua; Liu, Ting; Wang, Xiaoling; Zhao, Xiangzhong; Shao, Leping

    2016-09-20

    Primary hyperoxaluria type 1 (PH1) is a rare genetic disease characterized by excessive oxalate accumulation in plasma and urine, resulting in various phenotypes because of allelic and clinical heterogeneity. This study aimed to detect disease-associated genetic mutations in three PH1 patients in a Chinese family. All AGXT exons and 3 common polymorphisms which might synergistically interact with mutations, including P11L, I340 M and IVSI+74 bp were analyzed by direct sequencing in all family members. It demonstrated that in each of three patients, a previously reported nonsense mutation p.R333(*) was in cis with a novel missense mutation p.M49L in the minor allele characterized by the polymorphism of 74-bp duplication in intron 1, while the other novel missense mutation p.N72I was in trans with both p.R333(*) and P.M49L in the major allele. Kidney stones from two sibling patients were also observed though stereomicroscopic examination and scanning electron microscopy. Distinct morphological and inner-structure differences in calculi were noticed, suggesting clinical heterozygosity of PH1 to a certain extent. In brief, two novel missense mutations were identified probably in association with PH1, a finding which should provide an accurate tool for prenatal diagnosis, genetic counseling and screening for potential presymptomatic individuals.

  4. Detection of latent fingerprints by ultraviolet spectral imaging

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Xu, Xiaojing; Wang, Guiqiang

    2013-12-01

    Spectral imaging technology research is becoming more popular in the field of forensic science. Ultraviolet spectral imaging technology is an especial part of the full spectrum of imaging technology. This paper finished the experiment contents of the ultraviolet spectrum imaging method and image acquisition system based on ultraviolet spectral imaging technology. Ultraviolet spectral imaging experiments explores a wide variety of ultraviolet reflectance spectra of the object material curve and its ultraviolet spectrum of imaging modalities, can not only gives a reference for choosing ultraviolet wavelength to show the object surface potential traces of substances, but also gives important data for the ultraviolet spectrum of imaging technology development.

  5. Transmitting and reflecting diffuser. [for ultraviolet light

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr.; Burcher, E. E.; Kopia, L. P. (Inventor)

    1973-01-01

    A near-Lambertian diffuser is described which transmits and reflects ultraviolet light. An ultraviolet grade fused silica substrate is coated with vaporized fuse silica. The coating thickness is controlled, one thickness causing ultraviolet light to diffuse and another thickness causing ultraviolet light to reflect a near Lambertian pattern.

  6. Mutation in Pyrroline-5-Carboxylate Reductase 1 Gene in Families with Cutis Laxa Type 2

    PubMed Central

    Guernsey, Duane L.; Jiang, Haiyan; Evans, Susan C.; Ferguson, Meghan; Matsuoka, Makoto; Nightingale, Mathew; Rideout, Andrea L.; Provost, Sylvie; Bedard, Karen; Orr, Andrew; Dubé, Marie-Pierre; Ludman, Mark; Samuels, Mark E.

    2009-01-01

    Autosomal-recessive cutis laxa type 2 (ARCL2) is a multisystem disorder characterized by the appearance of premature aging, wrinkled and lax skin, joint laxity, and a general developmental delay. Cutis laxa includes a family of clinically overlapping conditions with confusing nomenclature, generally requiring molecular analyses for definitive diagnosis. Six genes are currently known to mutate to yield one of these related conditions. We ascertained a cohort of typical ARCL2 patients from a subpopulation isolate within eastern Canada. Homozygosity mapping with high-density SNP genotyping excluded all six known genes, and instead identified a single homozygous region near the telomere of chromosome 17, shared identically by state by all genotyped affected individuals from the families. A putative pathogenic variant was identified by direct DNA sequencing of genes within the region. The single nucleotide change leads to a missense mutation adjacent to a splice junction in the gene encoding pyrroline-5-carboxylate reductase 1 (PYCR1). Bioinformatic analysis predicted a pathogenic effect of the variant on splice donor site function. Skipping of the associated exon was confirmed in RNA from blood lymphocytes of affected homozygotes and heterozygous mutation carriers. Exon skipping leads to deletion of the reductase functional domain-coding region and an obligatory downstream frameshift. PYCR1 plays a critical role in proline biosynthesis. Pathogenicity of the genetic variant in PYCR1 is likely, given that a similar clinical phenotype has been documented for mutation carriers of another proline biosynthetic enzyme, pyrroline-5-carboxylate synthase. Our results support a significant role for proline in normal development. PMID:19576563

  7. Mutations in the SPTLC2 Subunit of Serine Palmitoyltransferase Cause Hereditary Sensory and Autonomic Neuropathy Type I

    PubMed Central

    Rotthier, Annelies; Auer-Grumbach, Michaela; Janssens, Katrien; Baets, Jonathan; Penno, Anke; Almeida-Souza, Leonardo; Van Hoof, Kim; Jacobs, An; De Vriendt, Els; Schlotter-Weigel, Beate; Löscher, Wolfgang; Vondráček, Petr; Seeman, Pavel; De Jonghe, Peter; Van Dijck, Patrick; Jordanova, Albena; Hornemann, Thorsten; Timmerman, Vincent

    2010-01-01

    Hereditary sensory and autonomic neuropathy type I (HSAN-I) is an axonal peripheral neuropathy associated with progressive distal sensory loss and severe ulcerations. Mutations in the first subunit of the enzyme serine palmitoyltransferase (SPT) have been associated with HSAN-I. The SPT enzyme catalyzes the first and rate-limiting step in the de novo sphingolipid synthesis pathway. However, different studies suggest the implication of other genes in the pathology of HSAN-I. Therefore, we screened the two other known subunits of SPT, SPTLC2 and SPTLC3, in a cohort of 78 HSAN patients. No mutations were found in SPTLC3, but we identified three heterozygous missense mutations in the SPTLC2 subunit of SPT in four families presenting with a typical HSAN-I phenotype. We demonstrate that these mutations result in a partial to complete loss of SPT activity in vitro and in vivo. Moreover, they cause the accumulation of the atypical and neurotoxic sphingoid metabolite 1-deoxy-sphinganine. Our findings extend the genetic heterogeneity in HSAN-I and enlarge the group of HSAN neuropathies associated with SPT defects. We further show that HSAN-I is consistently associated with an increased formation of the neurotoxic 1-deoxysphinganine, suggesting a common pathomechanism for HSAN-I. PMID:20920666

  8. International Ultraviolet Explorer (IUE)

    NASA Technical Reports Server (NTRS)

    Boehm, Karl-Heinz

    1992-01-01

    The observation, data reduction, and interpretation of ultraviolet spectra (obtained with the International Ultraviolet Explorer) of Herbig-Haro objects, stellar jets, and (in a few cases) reflection nebulae in star-forming regions is discussed. Intermediate results have been reported in the required semi-annual reports. The observations for this research were obtained in 23 (US1) IUE shifts. The spectra were taken in the low resolution mode with the large aperture. The following topics were investigated: (1) detection of UV spectra of high excitation Herbig-Haro (HH) objects, identification of emission lines, and a preliminary study of the energy distribution of the ultraviolet continuum; (2) details of the continuum energy distribution of these spectra and their possible interpretation; (3) the properties of the reddening (extinction) of HH objects; (4) the possible time variation of strong emission lines in high excitation HH objects; (5) the ultraviolet emission of low excitation HH objects, especially in the fluorescent lines of the H2 molecule; (6) the ultraviolet emission in the peculiar object HH24; (7) the spatial emission distribution of different lines and different parts of the continuum in different HH objects; and (8) some properties of reflection nebula, in the environment of Herbig-Haro objects. Each topic is discussed.

  9. Structural and regulatory mutations in Vibrio parahaemolyticus type III secretion systems display variable effects on virulence.

    PubMed

    Calder, Thomas; de Souza Santos, Marcela; Attah, Victoria; Klimko, John; Fernandez, Jessie; Salomon, Dor; Krachler, Anne-Marie; Orth, Kim

    2014-12-01

    The Gram-negative bacterium, Vibrio parahaemolyticus, is a major cause of seafood-derived food poisoning throughout the world. The pathogenicity of V. parahaemolyticus is attributed to several virulence factors, including two type III secretion systems (T3SS), T3SS1 and T3SS2. Herein, we compare the virulence of V. parahaemolyticus POR strains, which harbor a mutation in the T3SS needle apparatus of either system, to V. parahaemolyticus CAB strains, which harbor mutations in positive transcriptional regulators of either system. These strains are derived from the clinical RIMD 2210633 strain. We demonstrate that each mutation affects the virulence of the bacterium in a different manner. POR and CAB strains exhibited similar levels of swarming motility and T3SS effector production and secretion, but the CAB3 and CAB4 strains, which harbor a mutation in the T3SS2 master regulator gene, formed reduced biofilm growth under T3SS2 inducing conditions. Additionally, while the cytotoxicity of the POR and CAB strains was similar, the CAB2 (T3SS1 regulatory mutant) strain was strikingly more invasive than the comparable POR2 (T3SS1 structural mutant) strain. In summary, creating structural or regulatory mutations in either T3SS1 or T3SS2 causes differential downstream effects on other virulence systems. Understanding the biological differences of strains created from a clinical isolate is critical for interpreting and understanding the pathogenic nature of V. parahaemolyticus. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  10. Detection of EGFR mutations with mutation-specific antibodies in stage IV non-small-cell lung cancer

    PubMed Central

    2010-01-01

    Background Immunohistochemistry (IHC) with mutation-specific antibodies may be an ancillary method of detecting EGFR mutations in lung cancer patients. Methods EGFR mutation status was analyzed by DNA assays, and compared with IHC results in five non-small-cell lung cancer (NSCLC) cell lines and tumor samples from 78 stage IV NSCLC patients. Results IHC correctly identified del 19 in the H1650 and PC9 cell lines, L858R in H1975, and wild-type EGFR in H460 and A549, as well as wild-type EGFR in tumor samples from 22 patients. IHC with the mAb against EGFR with del 19 was highly positive for the protein in all 17 patients with a 15-bp (ELREA) deletion in exon 19, whereas in patients with other deletions, IHC was weakly positive in 3 cases and negative in 9 cases. IHC with the mAb against the L858R mutation showed high positivity for the protein in 25/27 (93%) patients with exon 21 EGFR mutations (all with L858R) but did not identify the L861Q mutation in the remaining two patients. Conclusions IHC with mutation-specific mAbs against EGFR is a promising method for detecting EGFR mutations in NSCLC patients. However these mAbs should be validated with additional studies to clarify their possible role in routine clinical practice for screening EGFR mutations in NSCLC patients. PMID:21167064

  11. MSH6 and PMS2 mutation positive Australian Lynch syndrome families: novel mutations, cancer risk and age of diagnosis of colorectal cancer.

    PubMed

    Talseth-Palmer, Bente A; McPhillips, Mary; Groombridge, Claire; Spigelman, Allan; Scott, Rodney J

    2010-05-21

    Approximately 10% of Lynch syndrome families have a mutation in MSH6 and fewer families have a mutation in PMS2. It is assumed that the cancer incidence is the same in families with mutations in MSH6 as in families with mutations in MLH1/MSH2 but that the disease tends to occur later in life, little is known about families with PMS2 mutations. This study reports on our findings on mutation type, cancer risk and age of diagnosis in MSH6 and PMS2 families. A total of 78 participants (from 29 families) with a mutation in MSH6 and 7 participants (from 6 families) with a mutation in PMS2 were included in the current study. A database of de-identified patient information was analysed to extract all relevant information such as mutation type, cancer incidence, age of diagnosis and cancer type in this Lynch syndrome cohort. Cumulative lifetime risk was calculated utilising Kaplan-Meier survival analysis. MSH6 and PMS2 mutations represent 10.3% and 1.9%, respectively, of the pathogenic mutations in our Australian Lynch syndrome families. We identified 26 different MSH6 and 4 different PMS2 mutations in the 35 families studied. We report 15 novel MSH6 and 1 novel PMS2 mutations. The estimated cumulative risk of CRC at age 70 years was 61% (similar in males and females) and 65% for endometrial cancer in MSH6 mutation carriers. The risk of developing CRC is different between males and females at age 50 years, which is 34% for males and 21% for females. Novel MSH6 and PMS2 mutations are being reported and submitted to the current databases for identified Lynch syndrome mutations. Our data provides additional information to add to the genotype-phenotype spectrum for both MSH6 and PMS2 mutations.

  12. Atelosteogenesis type II is caused by mutations in the diastrophic dysplasia sulfate-transporter gene (DTDST): Evidence for a phenotypic series involving three chondrodysplasias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haestbacka, J.; Lander, E.S.; Superti-Furga, A.

    1996-02-01

    Atelosteogenesis type II (AO II) is a neonatally lethal chondrodysplasia whose clinical and histological characteristics resemble those of another chondrodysplasia, the much less severe diastrophic dysplasia (DTD). The similarity suggests a shared pathogenesis involving lesions in the same biochemical pathway and perhaps the same gene. DTD is caused by mutations in the recently identified diastrophic dysplasia sulfate-transporter gene (DTDST). Here, we report that AOII patients also have DTDST mutations, which lead to defective uptake of inorganic sulfate and insufficient sulfation of macromolecules by patient mesenchymal cells in vitro. Together with our recent observation that a third even more severe chondrodysplasia,more » achondrogenesis type IB, is also caused by mutations in DTDST, these results demonstrate a phenotypic series of three chondrodysplasias of increasing severity caused by lesions in a single sulfate-transporter gene. The severity of the phenotype appears to be correlated with the predicted effect of the mutations on the residual activity of the DTDST protein. 24 refs., 6 figs., 1 tab.« less

  13. Advances in computational approaches for prioritizing driver mutations and significantly mutated genes in cancer genomes.

    PubMed

    Cheng, Feixiong; Zhao, Junfei; Zhao, Zhongming

    2016-07-01

    Cancer is often driven by the accumulation of genetic alterations, including single nucleotide variants, small insertions or deletions, gene fusions, copy-number variations, and large chromosomal rearrangements. Recent advances in next-generation sequencing technologies have helped investigators generate massive amounts of cancer genomic data and catalog somatic mutations in both common and rare cancer types. So far, the somatic mutation landscapes and signatures of >10 major cancer types have been reported; however, pinpointing driver mutations and cancer genes from millions of available cancer somatic mutations remains a monumental challenge. To tackle this important task, many methods and computational tools have been developed during the past several years and, thus, a review of its advances is urgently needed. Here, we first summarize the main features of these methods and tools for whole-exome, whole-genome and whole-transcriptome sequencing data. Then, we discuss major challenges like tumor intra-heterogeneity, tumor sample saturation and functionality of synonymous mutations in cancer, all of which may result in false-positive discoveries. Finally, we highlight new directions in studying regulatory roles of noncoding somatic mutations and quantitatively measuring circulating tumor DNA in cancer. This review may help investigators find an appropriate tool for detecting potential driver or actionable mutations in rapidly emerging precision cancer medicine. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  14. Photosynthetic Gas Exchange in the Closed Ecosystem for Space. Phase II, Part III. Screening for Thermophilic Algae and Mutation Studies

    NASA Technical Reports Server (NTRS)

    Richards, N. L.; Benoit, R. J.

    1961-01-01

    An algal screening and mutation study was undertaken to obtain algae superior to Chlorella 71105 for use in a photosynthetic gas exchanger. Of the forty-four thermophilic algae studied, eighteen appeared to have growth rates as great as Chlorella 71105. Optimization of the physical and chemical environments of these strains is recommended as a way to further improve growth rates and concomitant oxygen production. The mutation study revealed that Chlorella 71105 is relatively resistant to germicidal ultraviolet radiation. No high temperature mutants of Chlorella 71105 were found.

  15. The induction of mutation and recombination following UV irradiation during meiosis in Saccharomyces cerevisiae.

    PubMed

    Kelly, S L; Parry, J M

    1983-03-01

    Irradiation of yeast cultures with ultraviolet light at discrete stages during meiosis produces cyclic variations in sensitivity, i.e. cells are more sensitive to the lethal effects of UV light prior to entry into the meiotic DNA synthesis, and this corresponds to a peak of induction of point mutation. Cells become more resistant to both induced point mutation and lethality as they enter meiotic DNA synthesis, but become more sensitive again during spore formation. The induced level of intragenic recombination rises during the period of commitment to recombination to a level indistinguishable from the full meiotic level of spontaneous intragenic recombination. Induced reciprocal recombination remains above the spontaneous level up to the point of commitment to sporulation.

  16. A Comprehensive Functional Analysis of NTRK1 Missense Mutations Causing Hereditary Sensory and Autonomic Neuropathy Type IV (HSAN IV).

    PubMed

    Shaikh, Samiha S; Chen, Ya-Chun; Halsall, Sally-Anne; Nahorski, Michael S; Omoto, Kiyoyuki; Young, Gareth T; Phelan, Anne; Woods, Christopher Geoffrey

    2017-01-01

    Hereditary sensory and autonomic neuropathy type IV (HSAN IV) is an autosomal recessive disorder characterized by a complete lack of pain perception and anhidrosis. Here, we studied a cohort of seven patients with HSAN IV and describe a comprehensive functional analysis of seven novel NTRK1 missense mutations, c.1550G >A, c.1565G >A, c.1970T >C, c.2096T >C, c.2254T >A, c.2288G >C, and c.2311C >T, corresponding to p.G517E, p.G522E, p.L657P, p.I699T, p.C752S, p.C763S, and p.R771C, all of which were predicted pathogenic by in silico analysis. The results allowed us to assess the pathogenicity of each mutation and to gain novel insights into tropomyosin receptor kinase A (TRKA) downstream signaling. Each mutation was systematically analyzed for TRKA glycosylation states, intracellular and cell membrane expression patterns, nerve growth factor stimulated TRKA autophosphorylation, TRKA-Y496 phosphorylation, PLCγ activity, and neurite outgrowth. We showed a diverse range of functional effects: one mutation appeared fully functional, another had partial activity in all assays, one mutation affected only the PLCγ pathway and four mutations were proved null in all assays. Thus, we conclude that complete abolition of TRKA kinase activity is not the only pathogenic mechanism underlying HSAN IV. By corollary, the assessment of the clinical pathogenicity of HSAN IV mutations is more complex than initially predicted and requires a multifaceted approach. © 2016 WILEY PERIODICALS, INC.

  17. A survey of ultraviolet interstellar absorption lines

    NASA Technical Reports Server (NTRS)

    Bohlin, R. C.; Jenkins, E. B.; Spitzer, L., Jr.; York, D. G.; Hill, J. K.; Savage, B. D.; Snow, T. P., Jr.

    1983-01-01

    A telescope-spectrometer on the Copernicus spacecraft made possible the measurement of many ultraviolet absorption lines produced by the interstellar gas. The present survey provides data on ultraviolet absorption lines in the spectra of 88 early-type stars. The stars observed are divided into four classes, including reddened stars, unreddened bright stars, moderately reddened bright stars, and unreddened and moderately reddened faint stars. Data are presented for equivalent width, W, radial velocity V, and rms line width, D, taking into account some 10 to 20 lines of N I, O I, Si II, P II, S II, Cl I, Cl II, Mn II, Fe II, Ni II, Cu II, and H2. The data are based on multiple scans for each line. Attention is given to details of observations, the data reduction procedure, and the computation of equivalent width, mean velocity, and velocity dispersion.

  18. Osteogenesis imperfecta type I: second-trimester diagnosis and incidental identification of a dominant COL1A1 deletion mutation in the paucisymptomatic father.

    PubMed

    Chen, Chih-Ping; Su, Yi-Ning; Chang, Tung-Yao; Chern, Schu-Rern; Chen, Chen-Yu; Su, Jun-Wei; Wang, Wayseen

    2012-06-01

    To present second-trimester ultrasound and molecular diagnosis for osteogenesis imperfecta (OI) type I in a female fetus and incidental identification of a dominant COL1A1 deletion mutation in her paucisymptomatic father. A 30-year-old, primigravid woman was referred for genetic counseling in the second trimester because of bowing of the fetal lower limbs. She and her husband were non-consanguineous, and there was no family history of skeletal dysplasias. Prenatal ultrasound at 22 weeks of gestation revealed short and curved right femur and left tibia, and a short left fibula. The lengths of other long bones were normal. The husband was 158 cm tall, had blue sclerae, a history of habitual subluxation and dislocation of bilateral elbows and left knee, and an episode of left ulna fracture, and was not aware of his being affected with OI type I. The woman underwent amniocentesis. Cytogenetic analysis revealed a karyotype of 46,XX. Molecular analysis of the amniocytes revealed a heterozygous deletion mutation of c.1064_1068delCTGGT in exon 17 of the COL1A1 gene. By genetic testing the husband was found to carry the same mutation. Despite counseling of favorable outcome for OI type I with the parents, the woman elected to terminate the pregnancy. Postnatal skeletal X-ray findings were consistent with OI type I. Prenatal ultrasound diagnosis of mild forms of OI should include molecular analysis of type I collagen genes in both fetus and parents. Molecular genetic analysis of the family may incidentally identify a collagen gene mutation in the paucisymptomatic affected parent. Copyright © 2012. Published by Elsevier B.V.

  19. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer.

    PubMed

    Rebbeck, Timothy R; Mitra, Nandita; Wan, Fei; Sinilnikova, Olga M; Healey, Sue; McGuffog, Lesley; Mazoyer, Sylvie; Chenevix-Trench, Georgia; Easton, Douglas F; Antoniou, Antonis C; Nathanson, Katherine L; Laitman, Yael; Kushnir, Anya; Paluch-Shimon, Shani; Berger, Raanan; Zidan, Jamal; Friedman, Eitan; Ehrencrona, Hans; Stenmark-Askmalm, Marie; Einbeigi, Zakaria; Loman, Niklas; Harbst, Katja; Rantala, Johanna; Melin, Beatrice; Huo, Dezheng; Olopade, Olufunmilayo I; Seldon, Joyce; Ganz, Patricia A; Nussbaum, Robert L; Chan, Salina B; Odunsi, Kunle; Gayther, Simon A; Domchek, Susan M; Arun, Banu K; Lu, Karen H; Mitchell, Gillian; Karlan, Beth Y; Walsh, Christine; Lester, Jenny; Godwin, Andrew K; Pathak, Harsh; Ross, Eric; Daly, Mary B; Whittemore, Alice S; John, Esther M; Miron, Alexander; Terry, Mary Beth; Chung, Wendy K; Goldgar, David E; Buys, Saundra S; Janavicius, Ramunas; Tihomirova, Laima; Tung, Nadine; Dorfling, Cecilia M; van Rensburg, Elizabeth J; Steele, Linda; Neuhausen, Susan L; Ding, Yuan Chun; Ejlertsen, Bent; Gerdes, Anne-Marie; Hansen, Thomas v O; Ramón y Cajal, Teresa; Osorio, Ana; Benitez, Javier; Godino, Javier; Tejada, Maria-Isabel; Duran, Mercedes; Weitzel, Jeffrey N; Bobolis, Kristie A; Sand, Sharon R; Fontaine, Annette; Savarese, Antonella; Pasini, Barbara; Peissel, Bernard; Bonanni, Bernardo; Zaffaroni, Daniela; Vignolo-Lutati, Francesca; Scuvera, Giulietta; Giannini, Giuseppe; Bernard, Loris; Genuardi, Maurizio; Radice, Paolo; Dolcetti, Riccardo; Manoukian, Siranoush; Pensotti, Valeria; Gismondi, Viviana; Yannoukakos, Drakoulis; Fostira, Florentia; Garber, Judy; Torres, Diana; Rashid, Muhammad Usman; Hamann, Ute; Peock, Susan; Frost, Debra; Platte, Radka; Evans, D Gareth; Eeles, Rosalind; Davidson, Rosemarie; Eccles, Diana; Cole, Trevor; Cook, Jackie; Brewer, Carole; Hodgson, Shirley; Morrison, Patrick J; Walker, Lisa; Porteous, Mary E; Kennedy, M John; Izatt, Louise; Adlard, Julian; Donaldson, Alan; Ellis, Steve; Sharma, Priyanka; Schmutzler, Rita Katharina; Wappenschmidt, Barbara; Becker, Alexandra; Rhiem, Kerstin; Hahnen, Eric; Engel, Christoph; Meindl, Alfons; Engert, Stefanie; Ditsch, Nina; Arnold, Norbert; Plendl, Hans Jörg; Mundhenke, Christoph; Niederacher, Dieter; Fleisch, Markus; Sutter, Christian; Bartram, C R; Dikow, Nicola; Wang-Gohrke, Shan; Gadzicki, Dorothea; Steinemann, Doris; Kast, Karin; Beer, Marit; Varon-Mateeva, Raymonda; Gehrig, Andrea; Weber, Bernhard H; Stoppa-Lyonnet, Dominique; Sinilnikova, Olga M; Mazoyer, Sylvie; Houdayer, Claude; Belotti, Muriel; Gauthier-Villars, Marion; Damiola, Francesca; Boutry-Kryza, Nadia; Lasset, Christine; Sobol, Hagay; Peyrat, Jean-Philippe; Muller, Danièle; Fricker, Jean-Pierre; Collonge-Rame, Marie-Agnès; Mortemousque, Isabelle; Nogues, Catherine; Rouleau, Etienne; Isaacs, Claudine; De Paepe, Anne; Poppe, Bruce; Claes, Kathleen; De Leeneer, Kim; Piedmonte, Marion; Rodriguez, Gustavo; Wakely, Katie; Boggess, John; Blank, Stephanie V; Basil, Jack; Azodi, Masoud; Phillips, Kelly-Anne; Caldes, Trinidad; de la Hoya, Miguel; Romero, Atocha; Nevanlinna, Heli; Aittomäki, Kristiina; van der Hout, Annemarie H; Hogervorst, Frans B L; Verhoef, Senno; Collée, J Margriet; Seynaeve, Caroline; Oosterwijk, Jan C; Gille, Johannes J P; Wijnen, Juul T; Gómez Garcia, Encarna B; Kets, Carolien M; Ausems, Margreet G E M; Aalfs, Cora M; Devilee, Peter; Mensenkamp, Arjen R; Kwong, Ava; Olah, Edith; Papp, Janos; Diez, Orland; Lazaro, Conxi; Darder, Esther; Blanco, Ignacio; Salinas, Mónica; Jakubowska, Anna; Lubinski, Jan; Gronwald, Jacek; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Sukiennicki, Grzegorz; Huzarski, Tomasz; Byrski, Tomasz; Cybulski, Cezary; Toloczko-Grabarek, Aleksandra; Złowocka-Perłowska, Elżbieta; Menkiszak, Janusz; Arason, Adalgeir; Barkardottir, Rosa B; Simard, Jacques; Laframboise, Rachel; Montagna, Marco; Agata, Simona; Alducci, Elisa; Peixoto, Ana; Teixeira, Manuel R; Spurdle, Amanda B; Lee, Min Hyuk; Park, Sue K; Kim, Sung-Won; Friebel, Tara M; Couch, Fergus J; Lindor, Noralane M; Pankratz, Vernon S; Guidugli, Lucia; Wang, Xianshu; Tischkowitz, Marc; Foretova, Lenka; Vijai, Joseph; Offit, Kenneth; Robson, Mark; Rau-Murthy, Rohini; Kauff, Noah; Fink-Retter, Anneliese; Singer, Christian F; Rappaport, Christine; Gschwantler-Kaulich, Daphne; Pfeiler, Georg; Tea, Muy-Kheng; Berger, Andreas; Greene, Mark H; Mai, Phuong L; Imyanitov, Evgeny N; Toland, Amanda Ewart; Senter, Leigha; Bojesen, Anders; Pedersen, Inge Sokilde; Skytte, Anne-Bine; Sunde, Lone; Thomassen, Mads; Moeller, Sanne Traasdahl; Kruse, Torben A; Jensen, Uffe Birk; Caligo, Maria Adelaide; Aretini, Paolo; Teo, Soo-Hwang; Selkirk, Christina G; Hulick, Peter J; Andrulis, Irene

    2015-04-07

    Limited information about the relationship between specific mutations in BRCA1 or BRCA2 (BRCA1/2) and cancer risk exists. To identify mutation-specific cancer risks for carriers of BRCA1/2. Observational study of women who were ascertained between 1937 and 2011 (median, 1999) and found to carry disease-associated BRCA1 or BRCA2 mutations. The international sample comprised 19,581 carriers of BRCA1 mutations and 11,900 carriers of BRCA2 mutations from 55 centers in 33 countries on 6 continents. We estimated hazard ratios for breast and ovarian cancer based on mutation type, function, and nucleotide position. We also estimated RHR, the ratio of breast vs ovarian cancer hazard ratios. A value of RHR greater than 1 indicated elevated breast cancer risk; a value of RHR less than 1 indicated elevated ovarian cancer risk. Mutations of BRCA1 or BRCA2. Breast and ovarian cancer risks. Among BRCA1 mutation carriers, 9052 women (46%) were diagnosed with breast cancer, 2317 (12%) with ovarian cancer, 1041 (5%) with breast and ovarian cancer, and 7171 (37%) without cancer. Among BRCA2 mutation carriers, 6180 women (52%) were diagnosed with breast cancer, 682 (6%) with ovarian cancer, 272 (2%) with breast and ovarian cancer, and 4766 (40%) without cancer. In BRCA1, we identified 3 breast cancer cluster regions (BCCRs) located at c.179 to c.505 (BCCR1; RHR = 1.46; 95% CI, 1.22-1.74; P = 2 × 10(-6)), c.4328 to c.4945 (BCCR2; RHR = 1.34; 95% CI, 1.01-1.78; P = .04), and c. 5261 to c.5563 (BCCR2', RHR = 1.38; 95% CI, 1.22-1.55; P = 6 × 10(-9)). We also identified an ovarian cancer cluster region (OCCR) from c.1380 to c.4062 (approximately exon 11) with RHR = 0.62 (95% CI, 0.56-0.70; P = 9 × 10(-17)). In BRCA2, we observed multiple BCCRs spanning c.1 to c.596 (BCCR1; RHR = 1.71; 95% CI, 1.06-2.78; P = .03), c.772 to c.1806 (BCCR1'; RHR = 1.63; 95% CI, 1.10-2.40; P = .01), and c.7394 to c.8904 (BCCR2; RHR = 2.31; 95

  20. Mutation testing in Treacher Collins Syndrome.

    PubMed

    Ellis, P E; Dawson, M; Dixon, M J

    2002-12-01

    To report on a study where 97 subjects were screened for mutations in the Treacher Collins syndrome (TCS) gene TCOF1. Ninety-seven subjects with a clinical diagnosis of TCS were screened for potential mutations in TCOF1, by means of single strand conformation polymorphism (SSCP) analysis. In those subjects where potential mutations were detected, sequence analysis was performed to determine the site and type of mutation present. Thirty-six TCS-specific mutations are reported including 27 deletions, six point mutations, two splice junction mutations, and one insertion/deletion. This brings the total number of mutations reported to date to 105. The importance of detection of these mutations is mainly in postnatal diagnosis and genetic counselling. Knowledge of the family specific mutation may also be used in prenatal diagnosis to confirm whether the foetus is affected or not, and give the parents the choice of whether to continue with the pregnancy.

  1. Mitochondrial G8292A and C8794T mutations in patients with Niemann-Pick disease type C.

    PubMed

    Masserrat, Abbas; Sharifpanah, Fatemeh; Akbari, Leila; Tonekaboni, Seyed Hasan; Karimzadeh, Parvaneh; Asharafi, Mahmood Reza; Mazouei, Safoura; Sauer, Heinrich; Houshmand, Massoud

    2018-07-01

    Niemann-Pick disease type C (NP-C) is a neurovisceral lipid storage disorder. At the cellular level, the disorder is characterized by accumulation of unesterified cholesterol and glycolipids in the lysosomal/late endosomal system. NP-C is transmitted in an autosomal recessive manner and is caused by mutations in either the NPC1 (95% of families) or NPC2 gene. The estimated disease incidence is 1 in 120,000 live births, but this likely represents an underestimate, as the disease may be under-diagnosed due to its highly heterogeneous presentation. Variants of adenosine triphosphatase (ATPase) subunit 6 and ATPase subunit 8 ( ATPase6/8 ) in mitochondrial DNA (mtDNA) have been reported in different types of genetic diseases including NP-C. In the present study, the blood samples of 22 Iranian patients with NP-C and 150 healthy subjects as a control group were analyzed. The DNA of the blood samples was extracted by the salting out method and analyzed for ATPase6/8 mutations using polymerase chain reaction sequencing. Sequence variations in mitochondrial genome samples were determined via the Mitomap database. Analysis of sequencing data confirmed the existence of 11 different single nucleotide polymorphisms (SNPs) in patients with NP-C1. One of the most prevalent polymorphisms was the A8860G variant, which was observed in both affected and non-affected groups and determined to have no significant association with NP-C incidence. Amongst the 11 polymorphisms, only one was identified in the ATPase8 gene, while 9 including A8860G were observed in the ATPase6 gene. Furthermore, two SNPs, G8292A and C8792A, located in the non-coding region of mtDNA and the ATPase6 gene, respectively, exhibited significantly higher prevalence rates in NP-C1 patients compared with the control group (P<0.01). The present study suggests that there may be an association between mitochondrial ATPase6/8 mutations and the incidence of NP-C disease. In addition, the mitochondrial SNPs identified

  2. Significance of duon mutations in cancer genomes

    NASA Astrophysics Data System (ADS)

    Yadav, Vinod Kumar; Smith, Kyle S.; Flinders, Colin; Mumenthaler, Shannon M.; de, Subhajyoti

    2016-06-01

    Functional mutations in coding regions not only affect the structure and function of the protein products, but may also modulate their expression in some cases. This class of mutations, recently dubbed “duon mutations” due to their dual roles, can potentially have major impacts on downstream pathways. However their significance in diseases such as cancer remain unclear. In a survey covering 4606 samples from 19 cancer types, and integrating allelic expression, overall mRNA expression, regulatory motif perturbation, and chromatin signatures in one composite index called REDACT score, we identified potential duon mutations. Several such mutations are detected in known cancer genes in multiple cancer types. For instance a potential duon mutation in TP53 is associated with increased expression of the mutant allelic gene copy, thereby possibly amplifying the functional effects on the downstream pathways. Another potential duon mutation in SF3B1 is associated with abnormal splicing and changes in angiogenesis and matrix degradation related pathways. Our findings emphasize the need to interrogate the mutations in coding regions beyond their obvious effects on protein structures.

  3. Ultraviolet light-absorbing and emitting diodes consisting of a p-type transparent-semiconducting NiO film deposited on an n-type GaN homoepitaxial layer

    NASA Astrophysics Data System (ADS)

    Nakai, Hiroshi; Sugiyama, Mutsumi; Chichibu, Shigefusa F.

    2017-05-01

    Gallium nitride (GaN) and related (Al,Ga,In)N alloys provide practical benefits in the production of light-emitting diodes (LEDs) and laser diodes operating in ultraviolet (UV) to green wavelength regions. However, obtaining low resistivity p-type AlN or AlGaN of large bandgap energies (Eg) is a critical issue in fabricating UV and deep UV-LEDs. NiO is a promising candidate for useful p-type transparent-semiconducting films because its Eg is 4.0 eV and it can be doped into p-type conductivity of sufficiently low resistivity. By using these technologies, heterogeneous junction diodes consisting of a p-type transparent-semiconducting polycrystalline NiO film on an n-type single crystalline GaN epilayer on a low threading-dislocation density, free-standing GaN substrate were fabricated. The NiO film was deposited by using the conventional RF-sputtering method, and the GaN homoepitaxial layer was grown by metalorganic vapor phase epitaxy. They exhibited a significant photovoltaic effect under UV light and also exhibited an electroluminescence peak at 3.26 eV under forward-biased conditions. From the conduction and valence band (EV) discontinuities, the NiO/GaN heterointerface is assigned to form a staggered-type (TYPE-II) band alignment with the EV of NiO higher by 2.0 eV than that of GaN. A rectifying property that is consistent with the proposed band diagram was observed in the current-voltage characteristics. These results indicate that polycrystalline NiO functions as a hole-extracting and injecting layer of UV optoelectronic devices.

  4. Mutations in myosin VIIA (MYO7A) and usherin (USH2A) in Spanish patients with Usher syndrome types I and II, respectively.

    PubMed

    Nájera, Carmen; Beneyto, Magdalena; Blanca, José; Aller, Elena; Fontcuberta, Ana; Millán, José María; Ayuso, Carmen

    2002-07-01

    Usher syndrome is an autosomal recessive disorder characterized by congenital hearing impairment and retinitis pigmentosa. Three clinical types are known (USH1, USH2 and USH3), and there is an extensive genetic heterogeneity, with at least ten genes implicated. The most frequently mutated genes are MYO7A, which causes USH1B, and usherin, which causes USH2A. We carried out a mutation analysis of these two genes in the Spanish population. Analysis of the MYO7A gene in patients from 30 USH1 families and sporadic cases identified 32% of disease alleles, with mutation Q821X being the most frequent. Most of the remaining variants are private mutations. With regard to USH2, mutation 2299delG was detected in 25% of the Spanish patients. Altogether the mutations detected in USH2A families account for 23% of the disease alleles. Copyright 2002 Wiley-Liss, Inc.

  5. Everything you ever wanted to know about the ultraviolet spectra of star-forming galaxies but were afraid to ask

    NASA Technical Reports Server (NTRS)

    Kinney, A. L.; Bohlin, R.; Calzetti, D.; Panagia, N.; Wyse, R.

    1993-01-01

    We present ultraviolet spectra of 143 star-forming galaxies of different morphological types and activity classes including S0, Sa, Sb, Sc, Sd, irregular, starburst, blue compact, blue compact dwarf, Liner, and Seyfert 2 galaxies. These IUE spectra cover the wavelength range from 1200 to 3200 A and are taken in a large aperture (10 x 20 inch). The ultraviolet spectral energy distributions are shown for a subset of the galaxies, ordered by spectral index, and separated by type for normal galaxies, Liners, starburst galaxies, blue compact (BCG) and blue compact dwarf (BCDG) galaxies, and Seyfert 2 galaxies. The ultraviolet spectra of Liners are, for the most part, indistinguishable from the spectra of normal galaxies. Starburst galaxies have a large range of ultraviolet slope, from blue to red. The star-forming galaxies which are the bluest in the optical (BCG and BCDG), also have the 'bluest' average ultraviolet slope of beta = -1.75 +/- 0.63. Seyfert 2 galaxies are the only galaxies in the sample that consistently have detectable UV emission lines.

  6. Detection of Neutral Phosphorus in the Near-ultraviolet Spectra of Late-type Stars

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Jacobson, Heather R.; Thanathibodee, Thanawuth; Frebel, Anna; Toller, Elizabeth

    2014-12-01

    We report the detection of several absorption lines of neutral phosphorus (P, Z = 15) in archival near-ultraviolet spectra obtained with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. We derive phosphorus abundances or interesting upper limits in 14 late-type stars with metallicities spanning -3.8 < [Fe/H] <-0.1. Previously, phosphorus had only been studied in Galactic stars with -1.0 < [Fe/H] <+0.3. Iron lines reveal abundance offsets between the optical and ultraviolet regions, and we discuss and apply a correction factor to account for this offset. In stars with [Fe/H] >-1.0, the [P/Fe] ratio decreases toward the solar value with increasing metallicity, in agreement with previous observational studies. In stars with [Fe/H] <-1.0, lang[P/Fe]rang = +0.04 ± 0.10, which overlaps with the [P/Fe] ratios found in several high-redshift damped Lyman-α systems. This behavior hints at a primary origin in massive stars. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. This work is supported through program AR-13246 and is based on observations associated with programs GO-7348, GO-7433, GO-8197, GO-9048, GO-9049, GO-9455, GO-9804, GO-12268, GO-12554, and GO-12976. Portions of this work are based on data obtained from the European Southern Observatory (ESO) Science Archive Facility. These data are associated with Programs 065.L-0507(A), 067.D-0439(A), 072.B-0179(A), 074.C-0364(A), 076.B-0055(A), and 266.D-5655(A). Portions of this research have also made use of the Keck Observatory Archive (KOA), which is operated by the W.M. Keck Observatory and the NASA Exoplanet Science Institute (NExScI), under contract with the National Aeronautics and Space Administration. These data are associated with Programs H2aH (P.I: Boesgaard), H5aH (P.I: Stephens), and H47a

  7. Early-onset severe hereditary sensory and autonomic neuropathy type 1 with S331F SPTLC1 mutation.

    PubMed

    Suh, Bum Chun; Hong, Young Bin; Nakhro, Khriezhanuo; Nam, Soo Hyun; Chung, Ki Wha; Choi, Byung-Ok

    2014-02-01

    Hereditary sensory and autonomic neuropathy type I (HSAN I) is an autosomal dominant disease characterized by prominent sensory impairment, resulting in foot ulcers or amputations and has a juvenile to adult onset. The major underlying causes of HSAN I are mutations in SPTLC1, which encodes the first subunit of serine palmitoyltransferase (SPT). To date, there have been no reports with regard to an HSAN patient of Korean origin. In this report we discussed an HSAN I patient with a missense mutation in SPTLC1 (c.992C>T: p.S331F). The patient had noticed frequent falls, lower leg weakness and hand tremors at age five. The patient also presented with foot ulcers, muscle hypotrophy, cataracts, hoarseness, vocal cord palsy and respiratory difficulties and succumbed to the condition at the age of 28 years. In accordance with previous reports, a mutation in Ser331 in the present patient was associated with early-onset and a severe phenotype. Therefore, Ser331 in SPTLC1 is a crucial amino acid, which characterizes the HSAN I phenotype.

  8. Future Directions in Ultraviolet Spectroscopy

    NASA Technical Reports Server (NTRS)

    Sonneborn, George (Editor); Moos, Warren; VanSteenberg, Michael

    2009-01-01

    The 'Future Directions in Ultraviolet Spectroscopy' conference was inspired by the accomplishments of the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission. The FUSE mission was launched in June 1999 and spent over eight years exploring the far-ultraviolet universe, gathering over 64 million seconds of high-resolution spectral data on nearly 3000 astronomical targets. The goal of this conference was not only to celebrate the accomplishments of FUSE, but to look toward the future and understand the major scientific drivers for the ultraviolet capabilities of the next generation fo space observatories. Invited speakers presented discussions based on measurements made by FUSE and other ultraviolet instruments, assessed their connection with measurements made with other techniques and, where appropriate, discussed the implications of low-z measurements for high-z phenomena. In addition to the oral presentations, many participants presented poster papers. The breadth of these presentation made it clear that much good science is still in progress with FUSE data and that these result will continue to have relevance in many scientific areas.

  9. Nuclear expression and gain-of-function β-catenin mutation in glomangiopericytoma (sinonasal-type hemangiopericytoma): insight into pathogenesis and a diagnostic marker.

    PubMed

    Lasota, Jerzy; Felisiak-Golabek, Anna; Aly, F Zahra; Wang, Zeng-Feng; Thompson, Lester D R; Miettinen, Markku

    2015-05-01

    Glomangiopericytoma (sinonasal-type hemangiopericytoma) is a rare mesenchymal neoplasm with myoid phenotype (smooth muscle actin-positive), which distinguishes this tumor from soft tissue hemangiopericytoma/solitary fibrous tumor. Molecular genetic changes underlying the pathogenesis of glomangiopericytoma are not known. In this study, 13 well-characterized glomangiopericytomas were immunohistochemically evaluated for β-catenin expression. All analyzed tumors showed strong expression and nuclear accumulation of β-catenin. Following this observation, β-catenin glycogen serine kinase-3 beta phosphorylation region, encoded by exon 3, was PCR amplified in all cases and evaluated for mutations using Sanger sequencing. Heterozygous mutations were identified in 12 of 13 tumors. All mutations consisted of single-nucleotide substitutions: three in codon 32 (c.94G>C (n=2) and c.95A>T), four in codon 33 (two each c.98C>G and c.98C>T), two in codon 37 (c.109T>G), one in codon 41 (c.121A>G), and two in codon 45 (c.133T>C). At the protein level, these substitutions would lead to p.D32H, p.D32V, p.S33C, p.S33F, p.S37A, p.T41A, and p.S45L mutations, respectively. Previously, similar mutations have been reported in different types of cancers and shown to trigger activation of β-catenin signaling. All analyzed glomangiopericytomas showed prominent nuclear expression of cyclin D1, as previously shown for tumors with nuclear expression of β-catenin as a sign of oncogenic activation. These results demonstrate that mutational activation of β-catenin and associated cyclin D1 overexpression may be central events in the pathogenesis of glomangiopericytoma. In additon, nuclear accumulation of β-catenin is a diagnostic marker for glomangiopericytoma.

  10. Splice Site Mutations in the ATP7A Gene

    PubMed Central

    Møller, Lisbeth Birk

    2011-01-01

    Menkes disease (MD) is caused by mutations in the ATP7A gene. We describe 33 novel splice site mutations detected in patients with MD or the milder phenotypic form, Occipital Horn Syndrome. We review these 33 mutations together with 28 previously published splice site mutations. We investigate 12 mutations for their effect on the mRNA transcript in vivo. Transcriptional data from another 16 mutations were collected from the literature. The theoretical consequences of splice site mutations, predicted with the bioinformatics tool Human Splice Finder, were investigated and evaluated in relation to in vivo results. Ninety-six percent of the mutations identified in 45 patients with classical MD were predicted to have a significant effect on splicing, which concurs with the absence of any detectable wild-type transcript in all 19 patients investigated in vivo. Sixty-seven percent of the mutations identified in 12 patients with milder phenotypes were predicted to have no significant effect on splicing, which concurs with the presence of wild-type transcript in 7 out of 9 patients investigated in vivo. Both the in silico predictions and the in vivo results support the hypothesis previously suggested by us and others, that the presence of some wild-type transcript is correlated to a milder phenotype. PMID:21494555

  11. Waardenburg syndrome type II in a Chinese patient caused by a novel nonsense mutation in the SOX10 gene.

    PubMed

    Ma, Jing; Zhang, Tie-Song; Lin, Ken; Sun, Hao; Jiang, Hong-Chao; Yang, Yan-Li; Low, Fan; Gao, Ying-Qin; Ruan, Biao

    2016-06-01

    Waardenburg syndrome is a congenital genetic disorder. It is the most common type of syndromic hearing impairment with highly genetic heterogeneity and proved to be related by 6 genes as follows: PAX3, MITF, SNAI2, EDN3, EDNRB and SOX10. This article aims to identify the genetic causes of a Chinese WS child patient. A Chinese WS child was collected for clinical data collection by questionnaire survey. DNA samples of proband and his parents were extracted from peripheral blood samples. Six candidate genes were sequenced by the Trusight One sequencing panel on the illumina NextSeq 500 platform. A novel nonsense heterozygous mutation was found in the coding region of exon 2 in the SOX10 gene of proband. The novel nonsense heterozygous mutation could cause the replacement of the 55th lysine codon by stop codon (484T > C, C142R) and further more possibly cause terminating the protein translation in advance. However, both proband's parents had no mutation of genes above mentioned. The gene mutation of SOX10 [NM_006941.3 c.163A > T] is a novel nonsense mutation. No record of this mutation has been found in dbSNP, HGMD, 1000 Genomes Project, ClinVar and ESP6500 databases. It meets the condition of PS2 of strong evidence in 2015 ACMG Standards and Guidelines. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Mutation Analysis of IDH1/2 Genes in Unselected De novo Acute Myeloid Leukaemia Patients in India - Identification of A Novel IDH2 Mutation.

    PubMed

    Raveendran, Sureshkumar; Sarojam, Santhi; Vijay, Sangeetha; Geetha, Aswathy Chandran; Sreedharan, Jayadevan; Narayanan, Geetha; Sreedharan, Hariharan

    2015-01-01

    IDH1/2 mutations which result in alternation in DNA methylation pattern are one of the most common methylation associated mutations in Acute myeloid leukaemia. IDH1/2 mutations frequently associated with higher platelet level, normal cytogentics and NPM1 mutations. Here we analyzed IDH1/2 mutations in 200 newly diagnosed unselected Indian adult AML patients and investigated their correlation with clinical, cytogenetic parameters along with cooperating NPM1 mutation. We detected 5.5% and 4% mutations in IDH1/2 genes, respectively. Except IDH2 c.515_516GG>AA mutation, all the other identified mutations were reported mutations. Similar to reported c.515G>A mutation, the novel c.515_516GG>AA mutation replaces 172nd arginine to lysine in the active site of the enzyme. Even though there was a preponderance of IDH1/2 mutations in NK-AML, cytogenetically abnormal patients also harboured IDH1/2 mutations. IDH1 mutations showed significant higher platelet count and NPM1 mutations. IDH2 mutated patients displayed infrequent NPM1 mutations and lower WBC count. All the NPM1 mutations in the IDH1/2 mutated cases showed type A mutation. The present data suggest that IDH1/2 mutations are associated with normal cytogenetics and type A NPM1 mutations in adult Indian AML patients.

  13. Ultraviolet Enceladus

    NASA Image and Video Library

    2004-09-23

    Looking beyond Saturn's south pole, this was the Cassini spacecraft's view of the distant, icy moon Enceladus on July 28, 2004. The planet itself shows few obvious features at these ultraviolet wavelengths, due to scattering of light by molecules of the gases high in the atmosphere. Enceladus is 499 kilometers (310 miles) wide. The image was taken with the Cassini spacecraft narrow angle camera at a distance of 7.4 million kilometers (4.6 million miles) from Saturn through a filter sensitive to ultraviolet wavelengths of light. The image scale is 44 kilometers (27 miles) per pixel of Saturn. http://photojournal.jpl.nasa.gov/catalog/PIA06483

  14. Digital PCR Quantitation of Muscle Mitochondrial DNA: Age, Fiber Type, and Mutation-Induced Changes.

    PubMed

    Herbst, Allen; Widjaja, Kevin; Nguy, Beatrice; Lushaj, Entela B; Moore, Timothy M; Hevener, Andrea L; McKenzie, Debbie; Aiken, Judd M; Wanagat, Jonathan

    2017-10-01

    Definitive quantitation of mitochondrial DNA (mtDNA) and mtDNA deletion mutation abundances would help clarify the role of mtDNA instability in aging. To more accurately quantify mtDNA, we applied the emerging technique of digital polymerase chain reaction to individual muscle fibers and muscle homogenates from aged rodents. Individual fiber mtDNA content correlated with fiber type and decreased with age. We adapted a digital polymerase chain reaction deletion assay that was accurate in mixing experiments to a mutation frequency of 0.03% and quantitated an age-induced increase in deletion frequency from rat muscle homogenates. Importantly, the deletion frequency measured in muscle homogenates strongly correlated with electron transport chain-deficient fiber abundance determined by histochemical analyses. These data clarify the temporal accumulation of mtDNA deletions that lead to electron chain-deficient fibers, a process culminating in muscle fiber loss. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Impact of tissue type and content of neoplastic cells of samples on the quality of epidermal growth factor receptor mutation analysis among patients with lung adenocarcinoma

    PubMed Central

    PALIOGIANNIS, PANAGIOTIS; ATTENE, FEDERICO; COSSU, ANTONIO; DEFRAIA, EFISIO; PORCU, GIUSEPPE; CARTA, ANNAMARIA; SOTGIU, MARIA IGNAZIA; PAZZOLA, ANTONIO; CORDERO, LORENZO; CAPELLI, FRANCESCA; FADDA, GIOVANNI MARIA; ORTU, SALVATORE; SOTGIU, GIOVANNI; PALOMBA, GRAZIA; SINI, MARIA CRISTINA; PALMIERI, GIUSEPPE; COLOMBINO, MARIA

    2015-01-01

    Assessment of the epidermal growth factor receptor (EGFR) mutational status has become crucial in recent years in the molecular classification of patients with lung cancer. The impact of the type and quantity of malignant cells of the neoplastic specimen on the quality of mutation analysis remains to be elucidated, and only empirical and sporadic data are available. The aim of the present study was to investigate the impact of tissue type and content of neoplastic cells in the specimen on the quality of EGFR mutation analysis among patients with lung adenocarcinoma. A total of 515 patients with histologically-confirmed disease were included in the present study. Formalin-fixed paraffin embedded tissue samples were used for the mutation analysis and the content of the neoplastic cells was evaluated using light microscopy. Genomic DNA was isolated using a standard protocol. The coding sequences and splice junctions of exons 18, 19 and 21 in the EGFR gene were then screened for mutations by direct automated sequencing. The mean age of the patients examined was 64.9 years and 357 (69.3%) were male. A total of 429 tissue samples (83.3%) were obtained by biopsy and the remaining samples were obtained by surgery. A total of 456 samples (88.5%) were observed from primary lung adenocarcinomas, while 59 (11.5%) were from metastatic lesions. EGFR mutations occurred in 59 cases (11.5%); exon 18 mutations were detected in one case (1.7%), whereas exon 19 and 21 mutations were detected in 30 (51%) and 28 (47.3%) cases, respectively. EGFR mutations were more frequent in females and patients that had never smoked. The distribution of the mutations among primary and metastatic tissues exhibited no significant differences in the proportions of EGFR mutations detected. However, a statistically significant difference in the number of mutations detected was found between samples with at least 50% of neoplastic cells (450 cases-57 mutations; 12.7%) and those with <50% of neoplastic

  16. A mutational signature in gastric cancer suggests therapeutic strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandrov, Ludmil B.; Nik-Zainal, Serena; Siu, Hoi Cheong

    Targeting defects in the DNA repair machinery of neoplastic cells, for example, those due to inactivating BRCA1 and/or BRCA2 mutations, has been used for developing new therapies in certain types of breast, ovarian and pancreatic cancers. Recently, a mutational signature was associated with failure of double-strand DNA break repair by homologous recombination based on its high mutational burden in samples harbouring BRCA1 or BRCA2 mutations. In pancreatic cancer, all responders to platinum therapy exhibit this mutational signature including a sample that lacked any defects in BRCA1 or BRCA2. Here, we examine 10,250 cancer genomes across 36 types of cancer andmore » demonstrate that, in addition to breast, ovarian and pancreatic cancers, gastric cancer is another cancer type that exhibits this mutational signature. Furthermore, our results suggest that 7–12% of gastric cancers have defective double-strand DNA break repair by homologous recombination and may benefit from either platinum therapy or PARP inhibitors.« less

  17. A mutational signature in gastric cancer suggests therapeutic strategies

    DOE PAGES

    Alexandrov, Ludmil B.; Nik-Zainal, Serena; Siu, Hoi Cheong; ...

    2015-10-29

    Targeting defects in the DNA repair machinery of neoplastic cells, for example, those due to inactivating BRCA1 and/or BRCA2 mutations, has been used for developing new therapies in certain types of breast, ovarian and pancreatic cancers. Recently, a mutational signature was associated with failure of double-strand DNA break repair by homologous recombination based on its high mutational burden in samples harbouring BRCA1 or BRCA2 mutations. In pancreatic cancer, all responders to platinum therapy exhibit this mutational signature including a sample that lacked any defects in BRCA1 or BRCA2. Here, we examine 10,250 cancer genomes across 36 types of cancer andmore » demonstrate that, in addition to breast, ovarian and pancreatic cancers, gastric cancer is another cancer type that exhibits this mutational signature. Furthermore, our results suggest that 7–12% of gastric cancers have defective double-strand DNA break repair by homologous recombination and may benefit from either platinum therapy or PARP inhibitors.« less

  18. Exome Sequencing Identifies a REEP1 Mutation Involved in Distal Hereditary Motor Neuropathy Type V

    PubMed Central

    Beetz, Christian; Pieber, Thomas R.; Hertel, Nicole; Schabhüttl, Maria; Fischer, Carina; Trajanoski, Slave; Graf, Elisabeth; Keiner, Silke; Kurth, Ingo; Wieland, Thomas; Varga, Rita-Eva; Timmerman, Vincent; Reilly, Mary M.; Strom, Tim M.; Auer-Grumbach, Michaela

    2012-01-01

    The distal hereditary motor neuropathies (dHMNs) are a heterogeneous group of neurodegenerative disorders affecting the lower motoneuron. In a family with both autosomal-dominant dHMN and dHMN type V (dHMN/dHMN-V) present in three generations, we excluded mutations in all genes known to be associated with a dHMN phenotype through Sanger sequencing and defined three potential loci through linkage analysis. Whole-exome sequencing of two affected individuals revealed a single candidate variant within the linking regions, i.e., a splice-site alteration in REEP1 (c.304-2A>G). A minigene assay confirmed complete loss of splice-acceptor functionality and skipping of the in-frame exon 5. The resulting mRNA is predicted to be expressed at normal levels and to encode an internally shortened protein (p.102_139del). Loss-of-function REEP1 mutations have previously been identified in dominant hereditary spastic paraplegia (HSP), a disease associated with upper-motoneuron pathology. Consistent with our clinical-genetic data, we show that REEP1 is strongly expressed in the lower motoneurons as well. Upon exogeneous overexpression in cell lines we observe a subcellular localization defect for p.102_139del that differs from that observed for the known HSP-associated missense mutation c.59C>A (p.Ala20Glu). Moreover, we show that p.102_139del, but not p.Ala20Glu, recruits atlastin-1, i.e., one of the REEP1 binding partners, to the altered sites of localization. These data corroborate the loss-of-function nature of REEP1 mutations in HSP and suggest that a different mechanism applies in REEP1-associated dHMN. PMID:22703882

  19. Detection of drug resistance-associated mutations in human immunodeficiency virus type 1 integrase derived from drug-naive individuals in Surabaya, Indonesia.

    PubMed

    Kotaki, Tomohiro; Khairunisa, Siti Qamariyah; Sukartiningrum, Septhia Dwi; Witaningrum, Adiana Mutamsari; Rusli, Musofa; Diansyah, M Noor; Arfijanto, M Vitanata; Rahayu, Retno Pudji; Nasronudin; Kameoka, Masanori

    2014-05-01

    Although human immunodeficiency virus type 1 (HIV-1) infection causes serious health problems in Indonesia, information in regard to drug resistance is limited. We performed a genotypic study on HIV-1 integrase derived from drug-naive individuals in Surabaya, Indonesia. Sequencing analysis revealed that no primary mutations associated with drug resistance to integrase inhibitors were detected; however, secondary mutations, V72I, L74I/M, V165I, V201I, I203M, and S230N, were detected in more than 5% of samples. In addition, V201I was conserved among all samples. Most integrase genes were classified into CRF01_AE genes. Interestingly, 40% of the CRF01_AE genes had an unusual insertion in the C-terminus of integrase. These mutations and insertions were considered natural polymorphisms since these mutations coincided with previous reports, and integrase inhibitors have not been used in Indonesia. Our results indicated that further studies may be required to assess the impact of these mutations on integrase inhibitors prior to their introduction into Indonesia.

  20. Ultraviolet radiation induced discharge laser

    DOEpatents

    Gilson, Verle A.; Schriever, Richard L.; Shearer, James W.

    1978-01-01

    An ultraviolet radiation source associated with a suitable cathode-anode electrode structure, disposed in a gas-filled cavity of a high pressure pulsed laser, such as a transverse electric atmosphere (TEA) laser, to achieve free electron production in the gas by photoelectric interaction between ultraviolet radiation and the cathode prior to the gas-exciting cathode-to-anode electrical discharge, thereby providing volume ionization of the gas. The ultraviolet radiation is produced by a light source or by a spark discharge.

  1. A Recurrent Mutation in CACNA1G Alters Cav3.1 T-Type Calcium-Channel Conduction and Causes Autosomal-Dominant Cerebellar Ataxia

    PubMed Central

    Coutelier, Marie; Blesneac, Iulia; Monteil, Arnaud; Monin, Marie-Lorraine; Ando, Kunie; Mundwiller, Emeline; Brusco, Alfredo; Le Ber, Isabelle; Anheim, Mathieu; Castrioto, Anna; Duyckaerts, Charles; Brice, Alexis; Durr, Alexandra; Lory, Philippe; Stevanin, Giovanni

    2015-01-01

    Hereditary cerebellar ataxias (CAs) are neurodegenerative disorders clinically characterized by a cerebellar syndrome, often accompanied by other neurological or non-neurological signs. All transmission modes have been described. In autosomal-dominant CA (ADCA), mutations in more than 30 genes are implicated, but the molecular diagnosis remains unknown in about 40% of cases. Implication of ion channels has long been an ongoing topic in the genetics of CA, and mutations in several channel genes have been recently connected to ADCA. In a large family affected by ADCA and mild pyramidal signs, we searched for the causative variant by combining linkage analysis and whole-exome sequencing. In CACNA1G, we identified a c.5144G>A mutation, causing an arginine-to-histidine (p.Arg1715His) change in the voltage sensor S4 segment of the T-type channel protein Cav3.1. Two out of 479 index subjects screened subsequently harbored the same mutation. We performed electrophysiological experiments in HEK293T cells to compare the properties of the p.Arg1715His and wild-type Cav3.1 channels. The current-voltage and the steady-state activation curves of the p.Arg1715His channel were shifted positively, whereas the inactivation curve had a higher slope factor. Computer modeling in deep cerebellar nuclei (DCN) neurons suggested that the mutation results in decreased neuronal excitability. Taken together, these data establish CACNA1G, which is highly expressed in the cerebellum, as a gene whose mutations can cause ADCA. This is consistent with the neuropathological examination, which showed severe Purkinje cell loss. Our study further extends our knowledge of the link between calcium channelopathies and CAs. PMID:26456284

  2. Adult siblings with homozygous G6PC3 mutations expand our understanding of the severe congenital neutropenia type 4 (SCN4) phenotype.

    PubMed

    Fernandez, Bridget A; Green, Jane S; Bursey, Ford; Barrett, Brendan; MacMillan, Andrée; McColl, Sarah; Fernandez, Sara; Rahman, Proton; Mahoney, Krista; Pereira, Sergio L; Scherer, Stephen W; Boycott, Kym M; Woods, Michael O

    2012-11-21

    Severe congenital neutropenia type 4 (SCN4) is an autosomal recessive disorder caused by mutations in the third subunit of the enzyme glucose-6-phosphatase (G6PC3). Its core features are congenital neutropenia and a prominent venous skin pattern, and affected individuals have variable birth defects. Oculocutaneous albinism type 4 (OCA4) is caused by autosomal recessive mutations in SLC45A2. We report a sister and brother from Newfoundland, Canada with complex phenotypes. The sister was previously reported by Cullinane et al., 2011. We performed homozygosity mapping, next generation sequencing and conventional Sanger sequencing to identify mutations that cause the phenotype in this family. We have also summarized clinical data from 49 previously reported SCN4 cases with overlapping phenotypes and interpret the medical histories of these siblings in the context of the literature. The siblings' phenotype is due in part to a homozygous mutation in G6PC3, [c.829C > T, p.Gln277X]. Their ages are 38 and 37 years respectively and they are the oldest SCN4 patients published to date. Both presented with congenital neutropenia and later developed Crohn disease. We suggest that the latter is a previously unrecognized SCN4 manifestation and that not all affected individuals have an intellectual disability. The sister also has a homozygous mutation in SLC45A2, which explains her severe oculocutaneous hypopigmentation. Her brother carried one SLC45A2 mutation and was diagnosed with "partial OCA" in childhood. This family highlights that apparently novel syndromes can in fact be caused by two known autosomal recessive disorders.

  3. Bioleaching of Arsenic-Rich Gold Concentrates by Bacterial Flora before and after Mutation

    PubMed Central

    Xie, Xuehui; Yuan, Xuewu; Liu, Na; Chen, Xiaoguang; Abdelgadir, Awad; Liu, Jianshe

    2013-01-01

    In order to improve the bioleaching efficiency of arsenic-rich gold concentrates, a mixed bacterial flora had been developed, and the mutation breeding method was adopted to conduct the research. The original mixed bacterial flora had been enrichedin acid mine drainage of Dexing copper mine, Jiangxi Province, China. It was induced by UV (ultraviolet), ultrasonic, and microwave, and their combination mutation. The most efficient bacterial flora after mutation was collected for further bioleaching of arsenic-rich gold concentrates. Results indicated that the bacterial flora after mutation by UV 60 s combined with ultrasonic 10 min had the best oxidation rate of ferrous, the biggest density of cells, and the most activity of total protein. During bioleaching of arsenic-rich gold concentrates, the density of the mutant bacterial cells reached to 1.13 × 108 cells/mL at 15 days, more than 10 times compared with that of the original culture. The extraction of iron reached to 95.7% after 15 days, increased by 9.9% compared with that of the original culture. The extraction of arsenic reached to 92.6% after 12 days, which was increased by 46.1%. These results suggested that optimum combined mutation could improve leaching ability of the bacterial flora more significantly. PMID:24381948

  4. Novel mutation in the human immunodeficiency virus type 1 reverse transcriptase gene that encodes cross-resistance to 2',3'-dideoxyinosine and 2',3'-dideoxycytidine.

    PubMed Central

    Gu, Z; Gao, Q; Li, X; Parniak, M A; Wainberg, M A

    1992-01-01

    We have used the technique of in vitro selection to generate variants of human immunodeficiency virus type 1 (HIV-1) that are resistant to 2',3'-dideoxyinosine (ddI) and cross-resistant to 2',3'-dideoxycytidine (ddC). The complete reverse transcriptase (RT)-coding regions, plus portions of flanking sequences, of viruses possessing a ddI-resistant phenotype were cloned and sequenced by polymerase chain reaction (PCR)-based methods. We observed that several of these viruses possessed mutations at amino acid sites 184 (Met-->Val; ATG-->GTG) and 294 (Pro-->Ser; CCA-->TCA). These mutations were introduced in the pol gene of infectious, cloned HXB2-D DNA by site-directed mutagenesis. Viral replication assays confirmed the importance of site 184 with regard to resistance to ddI. The recombinant viruses thus generated displayed more than fivefold-greater resistance to ddI than parental HXB2-D did. Moreover, more than fivefold-greater resistance to ddC was also documented; however, the recombinant viruses continued to be inhibited by zidovudine (AZT). No resistance to ddI, ddC, or AZT was introduced by inclusion of mutation site 294 in the pol gene of HXB2-D. PCR analysis performed on viral samples obtained from patients receiving long-term ddI therapy confirmed the presence of mutation site 184 in five of seven cases tested. In three of these five positive cases, the wild-type codon was also detected, indicating that mixtures of viral quasispecies were apparently present. Viruses possessing a ddI resistance phenotype were isolated from both subjects whose viruses contained only the mutated rather than wild-type codon at position 184 as well as from a third individual, whose viruses appeared to be mostly of the mutated variety. Images PMID:1279198

  5. Development of breast tumors in CHEK2, NBN/NBS1 and BLM mutation carriers does not commonly involve somatic inactivation of the wild-type allele.

    PubMed

    Suspitsin, Evgeny N; Yanus, Grigory A; Sokolenko, Anna P; Yatsuk, Olga S; Zaitseva, Olga A; Bessonov, Alexandr A; Ivantsov, Alexandr O; Heinstein, Valeria A; Klimashevskiy, Valery F; Togo, Alexandr V; Imyanitov, Evgeny N

    2014-02-01

    Somatic inactivation of the remaining allele is a characteristic feature of cancers arising in BRCA1 and BRCA2 mutation carriers, which determines their unprecedented sensitivity to some DNA-damaging agents. Data on tumor-specific status of the involved gene in novel varieties of hereditary breast cancer (BC) remain incomplete. We analyzed 32 tumors obtained from 30 patients with non-BRCA1/2 BC-associated germ-line mutations: 25 women were single mutation carriers (7 BLM, 15 CHEK2 and 3 NBN/NBS1) and 5 were double mutation carriers (2 BLM/BRCA1, 1 CHEK2/BLM, 1 CHEK2/BRCA1 and 1 NBN/BLM). Losses of heterozygosity affecting the wild-type allele were detected in none of the tumors from BLM mutation carriers, 3/18 (17 %) CHEK2-associated BC and 1/4 (25 %) NBN/NBS1-driven tumors. The remaining 28 BC were subjected to the sequence analysis of entire coding region of the involved gene; no somatic mutations were identified. We conclude that the tumor-specific loss of the wild-type allele is not characteristic for BC arising in CHEK2, NBN/NBS1 and BLM mutation carriers. Rarity of "second-hit" inactivation of the involved gene in CHEK2-, NBN/NBS1- and BLM-associated BC demonstrates their substantial biological difference from BRCA1/2-driven cancers and makes them poorly suitable for the clinical trials with cisplatin and PARP inhibitors.

  6. Catalog of far-ultraviolet objective-prism spectrophotometry: Skylab experiment S-019, ultraviolet steller astronomy

    NASA Technical Reports Server (NTRS)

    Henize, K. G.; Wray, J. D.; Parsons, S. B.; Benedict, G. F.

    1979-01-01

    Ultraviolet stellar spectra in the wavelength region from 1300 to 5000 A (130 to 500) were photographed during the three manned Skylab missions using a 15 cm aperture objective-prism telescope. The prismatic dispersion varied from 58 A mm/1 at 1400 A to 1600 A mm/1 at 3000 A. Approximately 1000 spectra representing 500 stars were measured and reduced to observed fluxes. About 100 stars show absorption lines of Si IV, C IV, or C II. Numerous line features are also recorded in supergiant stars, shell stars, A and F stars, and Wolf-Rayet stars. Most of the stars in the catalog are of spectral class B, with a number of O and A type stars and a sampling of WC, WN, F and C type stars. Spectrophotometric results are tabulated for these 500 stars.

  7. Population density determines the direction of the association between ambient ultraviolet radiation and type 1 diabetes incidence.

    PubMed

    Elliott, Jane C; Lucas, Robyn M; Clements, Mark S; Bambrick, Hilary J

    2010-09-01

    Type 1 diabetes incidence has increased rapidly over the last 20 years, and ecological studies show inverse latitudinal gradients for both incidence and prevalence. Some studies have found season of birth or season of diagnosis effects. Together these findings suggest an important role for environmental factors in disease etiology. To examine whether type 1 diabetes incidence varies in relation to ambient ultraviolet radiation (UVR) in Australian children. We used case records of 4773 children aged 0-14 yr from the Australian National Diabetes Register to estimate type 1 diabetes incidence in relation to residential ambient UVR, both as a continuous variable and in four categories. We examined season of birth and season of diagnosis and variation in these parameters and in age at diagnosis, in relation to ambient UVR. Overall incidence was 20 per 100 000 population with no sex difference. There was a statistically significant trend toward winter diagnosis (adjusted RR = 1.22, 95% CI 1.13-1.33, p<0.001) but no apparent season of birth effect. Incidence in the highest UVR category was significantly lower than in the lowest UVR category (RR = 0.85, 95% CI 0.75-0.96). We found an inverse association between incidence and ambient UVR that was present only at low population densities; at high population densities type 1 diabetes incidence increased with increasing ambient UVR. In low population density, largely rural environments, ambient UVR may better reflect the personal UV dose, with the latter being protective for the development of type 1 diabetes. This effect is lost or reversed in high population density, largely urban, environments.

  8. Inhibition of seagrass photosynthesis by ultraviolet-B radiation.

    PubMed

    Trocine, R P; Rice, J D; Wells, G N

    1981-07-01

    Effects of ultraviolet-B radiation on the photosynthesis of seagrasses (Halophila engelmanni Aschers, Halodule wrightii Aschers, and Syringodium filiforme Kütz) were examined. The intrinsic tolerance of each seagrass to ultraviolet-B, the presence and effectiveness of photorepair mechanisms to ultraviolet-B-induced photosynthetic inhibition, and the role of epiphytic growth as a shield from ultraviolet-B were investigated.Halodule was found to possess the greatest photosynthetic tolerance for ultraviolet-B. Photosynthesis in Syringodium was slightly more sensitive to ultraviolet-B while Halophila showed relatively little photosynthetic tolerance. Evidence for a photorepair mechanism was found only in Halodule. This mechanism effectively attenuated photosynthetic inhibition induced by ultraviolet-B dose rates and dosages in excess of natural conditions. Syringodium appeared to rely primarily on a thick epidermal cell layer to reduce photosynthetic damage. Halophila seemed to have no morphological or photorepair capabilities to deal with ultraviolet-B. This species appeared to rely on epiphytic and detrital shielding and the shade provided by other seagrasses to reduce ultraviolet-B irradiation to tolerable levels. The presence of epiphytes on leaf surfaces was found to reduce the extent of photosynthetic inhibition from ultraviolet-B exposure in all species.Observations obtained in this study seem to suggest the possibility of anthocyanin and/or other flavonoid synthesis as an adaptation to long term ultraviolet-B irradiation by these species. In addition, Halophila appears to obtain an increased photosynthetic tolerance to ultraviolet-B as an indirect benefit of chloroplast clumping to avoid photo-oxidation by intense levels of photosynthetically active radiation.

  9. Anatomical location differences between mutated and wild-type isocitrate dehydrogenase 1 in low-grade gliomas.

    PubMed

    Yu, Jinhua; Shi, Zhifeng; Ji, Chunhong; Lian, Yuxi; Wang, Yuanyuan; Chen, Liang; Mao, Ying

    2017-10-01

    Anatomical location of gliomas has been considered as a factor implicating the contributions of a specific precursor cells during the tumor growth. Isocitrate dehydrogenase 1 (IDH1) is a pathognomonic biomarker with a significant impact on the development of gliomas and remarkable prognostic effect. The correlation between anatomical location of tumor and IDH1 states for low-grade gliomas was analyzed quantitatively in this study. Ninety-two patients diagnosed of low-grade glioma pathologically were recruited in this study, including 65 patients with IDH1-mutated glioma and 27 patients with wide-type IDH1. A convolutional neural network was designed to segment the tumor from three-dimensional magnetic resonance imaging images. Voxel-based lesion symptom mapping was then employed to study the tumor location distribution differences between gliomas with mutated and wild-type IDH1. In order to characterize the location differences quantitatively, the Automated Anatomical Labeling Atlas was used to partition the standard brain atlas into 116 anatomical volumes of interests (AVOIs). The percentages of tumors with different IDH1 states in 116 AVOIs were calculated and compared. Support vector machine and AdaBoost algorithms were used to estimate the IDH1 status based on the 116 location features of each patient. Experimental results proved that the quantitative tumor location measurement could be a very important group of imaging features in biomarker estimation based on radiomics analysis of glioma.

  10. Mutational Analysis of Cell Types in Tuberous Sclerosis Complex (TSC)

    DTIC Science & Technology

    2009-01-01

    from mutations in the TSC1 or TSC2 genes that is associated with epilepsy, cognitive disability, and autism . TSC1/TSC2 gene mutations lead to...gene inactivation and leads to activation of the mTOR cascade as evidenced by phosphorylation of ribosomal S6 protein (P-S6). We demonstrate that...phosphorylation of the ribosomal S6 protein (phospho-S6 or P-S6), a marker for enhanced mTOR signaling. We find P-S6 expression in cortex as well as

  11. Targeted high-throughput sequencing identifies mutations in atlastin-1 as a cause of hereditary sensory neuropathy type I.

    PubMed

    Guelly, Christian; Zhu, Peng-Peng; Leonardis, Lea; Papić, Lea; Zidar, Janez; Schabhüttl, Maria; Strohmaier, Heimo; Weis, Joachim; Strom, Tim M; Baets, Jonathan; Willems, Jan; De Jonghe, Peter; Reilly, Mary M; Fröhlich, Eleonore; Hatz, Martina; Trajanoski, Slave; Pieber, Thomas R; Janecke, Andreas R; Blackstone, Craig; Auer-Grumbach, Michaela

    2011-01-07

    Hereditary sensory neuropathy type I (HSN I) is an axonal form of autosomal-dominant hereditary motor and sensory neuropathy distinguished by prominent sensory loss that leads to painless injuries. Unrecognized, these can result in delayed wound healing and osteomyelitis, necessitating distal amputations. To elucidate the genetic basis of an HSN I subtype in a family in which mutations in the few known HSN I genes had been excluded, we employed massive parallel exon sequencing of the 14.3 Mb disease interval on chromosome 14q. We detected a missense mutation (c.1065C>A, p.Asn355Lys) in atlastin-1 (ATL1), a gene that is known to be mutated in early-onset hereditary spastic paraplegia SPG3A and that encodes the large dynamin-related GTPase atlastin-1. The mutant protein exhibited reduced GTPase activity and prominently disrupted ER network morphology when expressed in COS7 cells, strongly supporting pathogenicity. An expanded screen in 115 additional HSN I patients identified two further dominant ATL1 mutations (c.196G>C [p.Glu66Gln] and c.976 delG [p.Val326TrpfsX8]). This study highlights an unexpected major role for atlastin-1 in the function of sensory neurons and identifies HSN I and SPG3A as allelic disorders.

  12. Comprehensive genomic profiling reveals inactivating SMARCA4 mutations and low tumor mutational burden in small cell carcinoma of the ovary, hypercalcemic-type.

    PubMed

    Lin, Douglas I; Chudnovsky, Yakov; Duggan, Bridget; Zajchowski, Deborah; Greenbowe, Joel; Ross, Jeffrey S; Gay, Laurie M; Ali, Siraj M; Elvin, Julia A

    2017-12-01

    Small cell carcinoma of the ovary, hypercalcemic-type (SCCOHT) is a rare, extremely aggressive neoplasm that usually occurs in young women and is characterized by deleterious germline or somatic SMARCA4 mutations. We performed comprehensive genomic profiling (CGP) to potentially identify additional clinically and pathophysiologically relevant genomic alterations in SCCOHT. CGP assessment of all classes of coding alterations in up to 406 genes commonly altered in cancer and intronic regions for up to 31 genes commonly rearranged in cancer was performed on 18 SCCOHT cases (16 exhibiting classic morphology and 2 cases exhibiting exclusive a large cell variant morphology). In addition, a retrospective database search for clinically advanced ovarian tumors with genomic profiles similar to SCCOHT yielded 3 additional cases originally diagnosed as non-SCCOHT. CGP revealed inactivating SMARCA4 alterations and low tumor mutational burden (TMB) (<6mutations/Mb) in 94% (15/16) of SCCOHT with classic morphology. In contrast, both (2/2) cases exhibiting only large cell variant morphology were hypermutated (TMB scores of 90 and 360mut/Mb) and were wildtype for SMARCA4. In our retrospective search, an index ovarian cancer patient harboring inactivating SMARCA4 alterations, initially diagnosed as endometrioid carcinoma, was re-classified as SCCOHT and responded to an SCCOHT chemotherapy regimen. The vast majority of SCCOHT demonstrate genomic SMARCA4 loss with only rare co-occurring alterations. Our data support a role for CGP in the diagnosis and management of SCCOHT and of other lesions with overlapping histological and clinical features, since identifying the former by genomic profile suggests benefit from an appropriate regimen and treatment decisions, as illustrated by an index patient. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Characterization of the mutations in the glucose-6-phosphatase gene in Israeli patients with glycogen storage disease type 1a: R83C in six Jews and a novel V166G mutation in a Muslim Arab.

    PubMed

    Parvari, R; Moses, S; Hershkovitz, E; Carmi, R; Bashan, N

    1995-01-01

    Glycogen storage disease type 1a (GSD 1a), an autosomal recessive disease, is caused by the inactivity of glucose-6-phosphatase, the gene of which has been recently cloned. We report on the missense mutation C-->T at nucleotide 326 of the G6Pase gene, causing the change of the Arg codon at position 83 into a Cys codon, as the single mutation detected in six Jewish patients. This finding suggests that this mutation might be prevalent among the Jewish population. A new missense mutation T-->G at nucleotide 576 resulting in V166G was found in an Arab Muslim patient. These families may benefit now from pre- and postnatal diagnosis by analysis of DNA from blood and amniotic fluid or chorionic villus cells rather than liver biopsy. No mutations in the G6Pase gene were detected in two GSD 1b patients.

  14. Mutations affecting gyrase in Haemophilus influenzae.

    PubMed Central

    Setlow, J K; Cabrera-Juárez, E; Albritton, W L; Spikes, D; Mutschler, A

    1985-01-01

    Mutants separately resistant to novobiocin, coumermycin, nalidixic acid, and oxolinic acid contained gyrase activity as measured in vitro that was resistant to the antibiotics, indicating that the mutations represented structural alterations of the enzyme. One Novr mutant contained an altered B subunit of the enzyme, as judged by the ability of a plasmid, pNov1, containing the mutation to complement a temperature-sensitive gyrase B mutation in Escherichia coli and to cause novobiocin resistance in that strain. Three other Novr mutations did not confer antibiotic resistance to the gyrase but appeared to increase the amount of active enzyme in the cell. One of these, novB1, could only act in cis, whereas a new mutation, novC, could act in trans. An RNA polymerase mutation partially substituted for the novB1 mutation, suggesting that novB1 may be a mutation in a promoter region for the B subunit gene. Growth responses of strains containing various combinations of mutations on plasmids or on the chromosome indicated that low-level resistance to novobiocin or coumermycin may have resulted from multiple copies of wild-type genes coding for the gyrase B subunit, whereas high-level resistance required a structural change in the gyrase B gene and was also dependent on alteration in a regulatory region. When there was mismatch at the novB locus, with the novB1 mutation either on a plasmid or the chromosome, and the corresponding wild-type gene present in trans, chromosome to plasmid recombination during transformation was much higher than when the genes matched, probably because plasmid to chromosome recombination, eliminating the plasmid, was inhibited by the mismatch. PMID:2997115

  15. Inhibition of seagrass photosynthesis by ultraviolet-B radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trocine, R.P.; Rice, J.D.; Wells, G.N.

    1981-07-01

    Effects of ultraviolet-B radiation on the photosynthesis of seagrasses (Halophila engelmanni Aschers, Halodule wrightii Aschers, and Syringodium filiforme (Kuetz) were examined. The intrinsic tolerance of each seagrass to ultraviolet-B, the presence and effectiveness of photorepair mechanisms to ultraviolet-B-induced photosynthetic inhibition, and the role of epiphytic growth as a shield from ultraviolet-B were investigated. Halodule was found to possess the greatest photosynthetic tolerance for ultraviolet-B. Photosynthesis in Syringodium was slightly more sensitive to ultraviolet-B while Halophila showed relatively little photosynthetic tolerance. Evidence for a photorepair mechanism was found only in Halodule. Syringodium appeared to rely primarily on a thick epidermal cellmore » layer to reduce photosynthetic damage. Halophila seemed to have no morphological or photorepair capabilities to deal with ultraviolet-B. This species appeared to rely on epiphytic and detrital shielding and the shade provided by other seagrasses to reduce ultraviolet-B irradiation to tolerable levels. The presence of epiphytes on leaf surfaces was found to reduce the extent of photosynthetic inhibition from ultraviolet-B exposure in all species. Halophila appears to obtain an increased photosynthetic tolerance to ultraviolet-B as an indirect benefit of chloroplast clumping to avoid photo-oxidation by intense levels of photosynthetically active radiation.« less

  16. Corona And Ultraviolet Equipment For Testing Materials

    NASA Technical Reports Server (NTRS)

    Laue, Eric G.

    1993-01-01

    Two assemblies of laboratory equipment developed for use in testing abilities of polymers, paints, and other materials to withstand ultraviolet radiation and charged particles. One is vacuum ultraviolet source built around commercial deuterium lamp. Other exposes specimen in partial vacuum to both ultraviolet radiation and brush corona discharge. Either or both assemblies used separately or together to simulate approximately combination of solar radiation and charged particles encountered by materials aboard spacecraft in orbit around Earth. Also used to provide rigorous environmental tests of materials exposed to artificial ultraviolet radiation and charged particles in industrial and scientific settings or to natural ultraviolet radiation and charged particles aboard aircraft at high altitudes.

  17. TRAIP promotes DNA damage response during genome replication and is mutated in primordial dwarfism.

    PubMed

    Harley, Margaret E; Murina, Olga; Leitch, Andrea; Higgs, Martin R; Bicknell, Louise S; Yigit, Gökhan; Blackford, Andrew N; Zlatanou, Anastasia; Mackenzie, Karen J; Reddy, Kaalak; Halachev, Mihail; McGlasson, Sarah; Reijns, Martin A M; Fluteau, Adeline; Martin, Carol-Anne; Sabbioneda, Simone; Elcioglu, Nursel H; Altmüller, Janine; Thiele, Holger; Greenhalgh, Lynn; Chessa, Luciana; Maghnie, Mohamad; Salim, Mahmoud; Bober, Michael B; Nürnberg, Peter; Jackson, Stephen P; Hurles, Matthew E; Wollnik, Bernd; Stewart, Grant S; Jackson, Andrew P

    2016-01-01

    DNA lesions encountered by replicative polymerases threaten genome stability and cell cycle progression. Here we report the identification of mutations in TRAIP, encoding an E3 RING ubiquitin ligase, in patients with microcephalic primordial dwarfism. We establish that TRAIP relocalizes to sites of DNA damage, where it is required for optimal phosphorylation of H2AX and RPA2 during S-phase in response to ultraviolet (UV) irradiation, as well as fork progression through UV-induced DNA lesions. TRAIP is necessary for efficient cell cycle progression and mutations in TRAIP therefore limit cellular proliferation, providing a potential mechanism for microcephaly and dwarfism phenotypes. Human genetics thus identifies TRAIP as a component of the DNA damage response to replication-blocking DNA lesions.

  18. KIF1A, an Axonal Transporter of Synaptic Vesicles, Is Mutated in Hereditary Sensory and Autonomic Neuropathy Type 2

    PubMed Central

    Rivière, Jean-Baptiste; Ramalingam, Siriram; Lavastre, Valérie; Shekarabi, Masoud; Holbert, Sébastien; Lafontaine, Julie; Srour, Myriam; Merner, Nancy; Rochefort, Daniel; Hince, Pascale; Gaudet, Rébecca; Mes-Masson, Anne-Marie; Baets, Jonathan; Houlden, Henry; Brais, Bernard; Nicholson, Garth A.; Van Esch, Hilde; Nafissi, Shahriar; De Jonghe, Peter; Reilly, Mary M.; Timmerman, Vincent; Dion, Patrick A.; Rouleau, Guy A.

    2011-01-01

    Hereditary sensory and autonomic neuropathy type II (HSANII) is a rare autosomal-recessive disorder characterized by peripheral nerve degeneration resulting in a severe distal sensory loss. Although mutations in FAM134B and the HSN2 exon of WNK1 were associated with HSANII, the etiology of a substantial number of cases remains unexplained. In addition, the functions of WNK1/HSN2 and FAM134B and their role in the peripheral nervous system remain poorly understood. Using a yeast two-hybrid screen, we found that KIF1A, an axonal transporter of synaptic vesicles, interacts with the domain encoded by the HSN2 exon. In parallel to this screen, we performed genome-wide homozygosity mapping in a consanguineous Afghan family affected by HSANII and identified a unique region of homozygosity located on chromosome 2q37.3 and spanning the KIF1A gene locus. Sequencing of KIF1A in this family revealed a truncating mutation segregating with the disease phenotype. Subsequent sequencing of KIF1A in a series of 112 unrelated patients with features belonging to the clinical spectrum of ulcero-mutilating sensory neuropathies revealed truncating mutations in three additional families, thus indicating that mutations in KIF1A are a rare cause of HSANII. Similarly to WNK1 mutations, pathogenic mutations in KIF1A were almost exclusively restricted to an alternatively spliced exon. This study provides additional insights into the molecular pathogenesis of HSANII and highlights the potential biological relevance of alternative splicing in the peripheral sensory nervous system. PMID:21820098

  19. The Impact of Cetuximab Plus AKT- or mTOR- Inhibitor in a Patient-Derived Colon Cancer Cell Model with Wild-Type RAS and PIK3CA Mutation.

    PubMed

    Kim, Ju Sun; Kim, Jung Eun; Kim, Kyung; Lee, Jeeyun; Park, Joon Oh; Lim, Ho Yeong; Park, Young Suk; Kang, Won Ki; Kim, Seung Tae

    2017-01-01

    Background: Anti-EGFR therapies have been recommended for advanced colorectal cancer (CRC) with wild-type RAS and PIK3CA mutation. However, PIK3CA mutations are a poor prognostic marker and a negative predictor of response to anti-EGFR therapies in RAS wild-type CRC. Therefore, new and advanced treatment strategies are needed for personalized medical treatment of patients with wild-type RAS and PIK3CA mutation. Methods: Patient-derived tumor cells were collected from the ascites of a refractory colon cancer patient with wild-type RAS and PIK3CA mutation. We performed a cell viability assay for cetuximab, AZD5363 (AKT inhibitor), and everolimus (mTOR inhibitor) using PDCs. We also evaluated combinations of cetuximab plus AZD5363 or everolimus in a cell viability assay. Results: Based on cellular proliferation by MTT assay, tumor cells were significantly inhibited by 1uM cetuximab (control vs. cetuximab, mean growth = 100.0% vs 58.07%, p = 0.0103), 1uM AZD5363 (control vs. AZD5363, mean growth = 100.0% vs 58.22%, p = 0.0123), and 1uM everolimus (control vs. everolimus, mean growth = 100.0% vs 52.17%, p = 0.0011). Tumor cell growth was more profoundly reduced by combinations of cetuximab plus AZD5363 (control vs. cetuximab plus AZD5363, mean growth = 100.0% vs 25.00%, p < 0.0001) or everolimus (control vs. cetuximab+everolimus, mean growth = 100.0% vs 28.24%, p < 0.0001). Conclusions: Taken together, these results indicate that RAS wild-type and PIK3CA mutant PDCs originating from CRC are considerably inhibited by treatment with cetuximab plus AZD5363 or everolimus, with downregulation of the AKT and ERK pathways. These combinations may be considered as new options for advanced CRC patients with wild-type RAS and PIK3CA mutation in the context of clinical trials.

  20. Polymerizable ultraviolet stabilizers for outdoor use

    NASA Technical Reports Server (NTRS)

    Vogl, O.

    1982-01-01

    Polymeric materials that are stable enough to use outdoors without changes in excess of 20 years are investigated. Ultraviolet stabilizers or plastic materials were synthesized, polymerizable ultraviolet stabilizers, particularly of the 2(2-hydroxyphenyl)2H-benzotriazole family were prepared their polymerization, copolymerization and grafting onto other polymers were demonstrated, and ultraviolet stabilizing systems were devised. These materials were evaluated from the photophysical point of view.

  1. On spatial mutation-selection models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondratiev, Yuri, E-mail: kondrat@math.uni-bielefeld.de; Kutoviy, Oleksandr, E-mail: kutoviy@math.uni-bielefeld.de, E-mail: kutovyi@mit.edu; Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139

    2013-11-15

    We discuss the selection procedure in the framework of mutation models. We study the regulation for stochastically developing systems based on a transformation of the initial Markov process which includes a cost functional. The transformation of initial Markov process by cost functional has an analytic realization in terms of a Kimura-Maruyama type equation for the time evolution of states or in terms of the corresponding Feynman-Kac formula on the path space. The state evolution of the system including the limiting behavior is studied for two types of mutation-selection models.

  2. Deletion Mutagenesis Downstream of the 5′ Long Terminal Repeat of Human Immunodeficiency Virus Type 1 Is Compensated for by Point Mutations in both the U5 Region and gag Gene

    PubMed Central

    Liang, Chen; Rong, Liwei; Russell, Rodney S.; Wainberg, Mark A.

    2000-01-01

    We have studied the role of an RNA region at nucleotides (nt) +200 to +233, just downstream of the 5′ long terminal repeat, in encapsidation of human immunodeficiency virus type 1 genomic RNA. Three deletion mutations, namely, BH-D0, BH-D1, and BH-D2, were generated to eliminate sequences at positions nt +200 to +219, +200 to +226, and +200 to +233. The result in each case was decreased levels of packaging of viral RNA into the mutated viruses, with the BH-D2 virus being the most severely affected. Consistently, all three deletions resulted in impaired viral infectiousness and the BH-D2 mutation showed the most dramatic impact in this regard. Further analysis revealed additional defects in Gag precursor processing and in the extension efficiency of the tRNA3Lys primer in reverse transcription reactions performed with these mutated viruses. To shed further light on the function of these deleted sequences in viral replication, the mutated viruses were cultured in MT-2 cells over prolonged periods to enable them to reacquire wild-type replication kinetics. Sequencing of the reverted viruses revealed point mutations in both the noncoding region and the gag gene. In the case of the BH-D0 revertant, two mutations were observed at positions G112A in the U5 region, termed M1, and T24I in the nucleocapsid protein, termed MNC, respectively. Either of these two mutations was able to confer wild-type replication capacity on BH-D0. In the case of BH-D1, each of the M1 mutations, a mutation termed M2, i.e., C227T, just downstream of the primer binding site, a mutation termed MP2 (T12I) in the p2 protein, and the MNC mutation were observed. A combination of either M1 and M2 or MP2 and MNC was able to rescue BH-D1. In the case of the BH-D2 deletion-containing viruses, three point mutations, i.e., M1, MP2, and MNC, were observed and the presence of all three was required to restore viral replication to wild-type levels. PMID:10864634

  3. Gaucher disease: Pseudoreversion of a disease mutation`s effects--implications for structure/function and genotype/phenotype correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponce, E.; Mear, J; Grabowski, G.A.

    1994-09-01

    Numerous mutations ({approximately}45) of the acid {beta}-glucosidase gene have been identified in patients with Gaucher disease. Many of these have been characterized by partial sequencing of cDNAs derived by RT-PCR or PCR of genomic DNA. In addition, genotype/phenotype correlations have been based on screening for known mutations. Thus, only a part of the gene is characterized in any population of affected patients. Several Gaucher disease alleles contain multiple, authentic point mutations that raises concern about conclusions based on only partial genetic characterization. Several wild-type cDNAs for acid {beta}-glucosidase have been sequenced. One contained a cloning artifact encoding R495H. We expressedmore » this cDNA and showed that the R495H enzyme had normal kinetic and stability properties. A disease-associated allele encoding R496H has been found by several groups. The close association and similarities of these two substitutions led us to question the disease casuality of the R496H allele. To evaluate this, we created and/or expressed cDNAs encoding R495, R496 (wild-type), (R495H, R496), (R495, R496H) and (R495H, R496H). The (wild-type) and (R495H, R496) enzymes had indistinguishable properties whereas the (R495, R496H) enzyme was essentially inactive. The introduction of both mutations (R495H, R496H) produced an enzyme whose activity was 25 to 50% of the wild-type. These results indicate that a pseudoreversion to a functional enzyme can occur by introducing a functionally neutral mutation together with a severe mutation. These results have major implications to structure/function and genotype/phenotype correlations in this disease.« less

  4. Novel association of neurofibromatosis type 1-causing mutations in families with neurofibromatosis-Noonan syndrome.

    PubMed

    Ekvall, Sara; Sjörs, Kerstin; Jonzon, Anders; Vihinen, Mauno; Annerén, Göran; Bondeson, Marie-Louise

    2014-03-01

    Neurofibromatosis-Noonan syndrome (NFNS) is a rare condition with clinical features of both neurofibromatosis type 1 (NF1) and Noonan syndrome (NS). All three syndromes belong to the RASopathies, which are caused by dysregulation of the RAS-MAPK pathway. The major gene involved in NFNS is NF1, but co-occurring NF1 and PTPN11 mutations in NFNS have been reported. Knowledge about possible involvement of additional RASopathy-associated genes in NFNS is, however, very limited. We present a comprehensive clinical and molecular analysis of eight affected individuals from three unrelated families displaying features of NF1 and NFNS. The genetic etiology of the clinical phenotypes was investigated by mutation analysis, including NF1, PTPN11, SOS1, KRAS, NRAS, BRAF, RAF1, SHOC2, SPRED1, MAP2K1, MAP2K2, and CBL. All three families harbored a heterozygous NF1 variant, where the first family had a missense variant, c.5425C>T;p.R1809C, the second family a recurrent 4bp-deletion, c.6789_6792delTTAC;p.Y2264Tfs*6, and the third family a splice-site variant, c.2991-1G>A, resulting in skipping of exon 18 and an in-frame deletion of 41 amino acids. These NF1 variants have all previously been reported in NF1 patients. Surprisingly, both c.6789_6792delTTAC and c.2991-1G>A are frequently associated with NF1, but association to NFNS has, to our knowledge, not previously been reported. Our results support the notion that NFNS represents a variant of NF1, genetically distinct from NS, and is caused by mutations in NF1, some of which also cause classical NF1. Due to phenotypic overlap between NFNS and NS, we propose screening for NF1 mutations in NS patients, preferentially when café-au-lait spots are present. © 2013 Wiley Periodicals, Inc.

  5. Lower Plasma Creatinine and Urine Albumin in Individuals at Increased Risk of Type 2 Diabetes with Factor V Leiden Mutation

    PubMed Central

    Fritsche, Andreas; Machicao, Fausto; Nawroth, Peter P.; Häring, Hans-Ulrich; Isermann, Berend

    2014-01-01

    The factor V Leiden (FVL) mutation is the most frequent genetic cause of venous thrombosis in Caucasians. However, protective effects have been suggested to balance the disadvantages. We have recently observed protective effects of FVL mutation on experimental diabetic nephropathy in mice as well as an association with reduced albuminuria in two human cohorts of diabetic patients. In the present study we aimed to reevaluate these findings in an independent, larger cohort of 1905 Caucasians at risk of developing type 2 diabetes and extend possible associations to earlier disease stages of nephropathy. Carriers of FVL mutation had a significantly lower urine albumin excretion (P = 0.03) and tended to have lower plasma creatinine concentrations (P = 0.07). The difference in plasma creatinine concentrations was significant after adjustment for the influencing factors: age, gender, and lean body mass (P = 0.048). These observations at a very early “disease” stage are an important extension of previous findings and suggest that modification of glomerular dysfunction by FVL mutation is relevant during very early stages of diabetic nephropathy. This makes the underlying mechanism an interesting therapeutic target and raises the question whether FVL mutation may also exert protective effects in other glomerulopathies. PMID:24729885

  6. Mutations in exons 10 and 11 of human glucokinase result in conformational variations in the active site of the structure contributing to poor substrate binding - explains hyperglycemia in type 2 diabetic patients.

    PubMed

    Yellapu, Nandakumar; Mahto, Manoj Kumar; Valasani, Koteswara Rao; Sarma, P V G K; Matcha, Bhaskar

    2015-01-01

    Mutations in the glucokinase (GK) gene play a critical role in the establishment of type 2 diabetes. In our earlier study, R308K mutation in GK in a clinically proven type 2 diabetic patient showed, structural and functional variations that contributed immensely to the hyperglycemic condition. In the extension of this work, a cohort of 30 patients with established type 2 diabetic condition were chosen and the exons 10 and 11 of GK were PCR-amplified and sequenced. The sequence alignment showed A379S, D400Y, E300A, E395A, E395G, H380N, I348N, L301M, M298I, M381G, M402R, R308K, R394P, R397S, and S398R mutations in 12 different patients. The structural analysis of these mutated GKs, showed a variable number of β-α-β units, hairpins, β-bulges, strands, helices, helix-helix interactions, β-turns, and γ-turns along with the RMSD variations when compared to wild-type GK. Molecular modeling studies revealed that the substrate showed variable binding orientations and could not fit into the active site of these mutated structures; moreover, it was expelled out of the conformations. Therefore, these structural variations in GK due to mutations could be one of the strongest reasons for the hyperglycemic levels in these type 2 diabetic patients.

  7. Mutations in the nervous system--specific HSN2 exon of WNK1 cause hereditary sensory neuropathy type II.

    PubMed

    Shekarabi, Masoud; Girard, Nathalie; Rivière, Jean-Baptiste; Dion, Patrick; Houle, Martin; Toulouse, André; Lafrenière, Ronald G; Vercauteren, Freya; Hince, Pascale; Laganiere, Janet; Rochefort, Daniel; Faivre, Laurence; Samuels, Mark; Rouleau, Guy A

    2008-07-01

    Hereditary sensory and autonomic neuropathy type II (HSANII) is an early-onset autosomal recessive disorder characterized by loss of perception to pain, touch, and heat due to a loss of peripheral sensory nerves. Mutations in hereditary sensory neuropathy type II (HSN2), a single-exon ORF originally identified in affected families in Quebec and Newfoundland, Canada, were found to cause HSANII. We report here that HSN2 is a nervous system-specific exon of the with-no-lysine(K)-1 (WNK1) gene. WNK1 mutations have previously been reported to cause pseudohypoaldosteronism type II but have not been studied in the nervous system. Given the high degree of conservation of WNK1 between mice and humans, we characterized the structure and expression patterns of this isoform in mice. Immunodetections indicated that this Wnk1/Hsn2 isoform was expressed in sensory components of the peripheral nervous system and CNS associated with relaying sensory and nociceptive signals, including satellite cells, Schwann cells, and sensory neurons. We also demonstrate that the novel protein product of Wnk1/Hsn2 was more abundant in sensory neurons than motor neurons. The characteristics of WNK1/HSN2 point to a possible role for this gene in the peripheral sensory perception deficits characterizing HSANII.

  8. Mutations in the nervous system–specific HSN2 exon of WNK1 cause hereditary sensory neuropathy type II

    PubMed Central

    Shekarabi, Masoud; Girard, Nathalie; Rivière, Jean-Baptiste; Dion, Patrick; Houle, Martin; Toulouse, André; Lafrenière, Ronald G.; Vercauteren, Freya; Hince, Pascale; Laganiere, Janet; Rochefort, Daniel; Faivre, Laurence; Samuels, Mark; Rouleau, Guy A.

    2008-01-01

    Hereditary sensory and autonomic neuropathy type II (HSANII) is an early-onset autosomal recessive disorder characterized by loss of perception to pain, touch, and heat due to a loss of peripheral sensory nerves. Mutations in hereditary sensory neuropathy type II (HSN2), a single-exon ORF originally identified in affected families in Quebec and Newfoundland, Canada, were found to cause HSANII. We report here that HSN2 is a nervous system–specific exon of the with-no-lysine(K)–1 (WNK1) gene. WNK1 mutations have previously been reported to cause pseudohypoaldosteronism type II but have not been studied in the nervous system. Given the high degree of conservation of WNK1 between mice and humans, we characterized the structure and expression patterns of this isoform in mice. Immunodetections indicated that this Wnk1/Hsn2 isoform was expressed in sensory components of the peripheral nervous system and CNS associated with relaying sensory and nociceptive signals, including satellite cells, Schwann cells, and sensory neurons. We also demonstrate that the novel protein product of Wnk1/Hsn2 was more abundant in sensory neurons than motor neurons. The characteristics of WNK1/HSN2 point to a possible role for this gene in the peripheral sensory perception deficits characterizing HSANII. PMID:18521183

  9. Phenotypic Variability in a Family with Acrodysostosis Type 2 Caused by a Novel PDE4D Mutation Affecting the Serine Target of Protein Kinase-A Phosphorylation

    PubMed Central

    Hoppmann, Julia; Gesing, Julia; Silve, Caroline; Leroy, Chrystel; Bertsche, Astrid; Hirsch, Franz Wolfgang; Kiess, Wieland; Pfäffle, Roland; Schuster, Volker

    2017-01-01

    Acrodysostosis is a very rare congenital multisystem condition characterized by skeletal dysplasia with severe brachydactyly, midfacial hypoplasia, and short stature, varying degrees of intellectual disability, and possible resistance to multiple G protein-coupled receptor signalling hormones. Two distinct subtypes are differentiated: acrodysostosis type 1 resulting from defects in protein kinase type 1-α regulatory subunit and acrodysostosis type 2 caused by mutations in phosphodiesterase 4D (PDE4D). Most cases are sporadic. We report on a rare multigenerational familial case of acrodysostosis type 2 due to a novel autosomal dominantly inherited PDE4D mutation. A 3.5-year-old boy presented with short stature, midfacial hypoplasia, severe brachydactyly, developmental delay, and behavioural problems. Laboratory investigations revealed mild thyrotropin resistance. His mother shared some characteristic features, such as midfacial hypoplasia and severe brachydactyly, but did not show short stature, intellectual disability or hormonal resistance. Genetic analysis identified the identical, novel heterozygous missense mutation of the PDE4D gene c.569C>T (p.Ser190Phe) in both patients. This case illustrates the significant phenotypic variability of acrodysostosis even within one family with identical mutations. Hence, a specific clinical diagnosis of acrodysostosis remains challenging because of great interindividual variability and a substantial overlap of the two subtypes as well as with other related Gsα-cAMP-signalling-linked disorders. PMID:28515031

  10. A Missense Mutation in the Aggrecan C-type Lectin Domain Disrupts Extracellular Matrix Interactions and Causes Dominant Familial Osteochondritis Dissecans

    PubMed Central

    Stattin, Eva-Lena; Wiklund, Fredrik; Lindblom, Karin; Önnerfjord, Patrik; Jonsson, Björn-Anders; Tegner, Yelverton; Sasaki, Takako; Struglics, André; Lohmander, Stefan; Dahl, Niklas; Heinegård, Dick; Aspberg, Anders

    2010-01-01

    Osteochondritis dissecans is a disorder in which fragments of articular cartilage and subchondral bone dislodge from the joint surface. We analyzed a five-generation family in which affected members had autosomal-dominant familial osteochondritis dissecans. A genome-wide linkage analysis identified aggrecan (ACAN) as a prime candidate gene for the disorder. Sequence analysis of ACAN revealed heterozygosity for a missense mutation (c.6907G > A) in affected individuals, resulting in a p.V2303M amino acid substitution in the aggrecan G3 domain C-type lectin, which mediates interactions with other proteins in the cartilage extracellular matrix. Binding studies with recombinant mutated and wild-type G3 proteins showed loss of fibulin-1, fibulin-2, and tenascin-R interactions for the V2303M protein. Mass spectrometric analyses of aggrecan purified from patient cartilage verified that V2303M aggrecan is produced and present in the tissue. Our results provide a molecular mechanism for the etiology of familial osteochondritis dissecans and show the importance of the aggrecan C-type lectin interactions for cartilage function in vivo. PMID:20137779

  11. A Novel Mutation of Human Liver Alanine:Glyoxylate Aminotransferase Causes Primary Hyperoxaluria Type 1: Immunohistochemical Quantification and Subcellular Distribution

    PubMed Central

    Kawai, Chikage; Minatogawa, Yohsuke; Akiyoshi, Hidetaka; Hirose, Shinichi; Suehiro, Tsunatoshi; Tone, Shigenobu

    2012-01-01

    A novel alanine:glyoxylate aminotransferase (AGT) mutation involved in primary hyperoxaluria type 1 (PH1) was studied in Japanese patients. Two mutations in exon 7, c.751T>A and c.752G>A, lead to a W251K amino acid substitution. Proband 1 (patient 1) was homozygous for the W251K mutation allele (DDBJ Accession No. AB292648), and AGT-specific activity in the patient’s liver was very low. To reveal the cause of the low enzymatic activity, the intracellular localization of AGT (W251K) was studied using immunohistochemistry and immunoelectron microscopy. The latter analysis showed that patient 2 had only one-fifth of the normal AGT expression per catalase, suggesting impairment of AGT (W251K) dependent transport into peroxisomes. Peroxisomal transport of human AGT is believed to be dependent on the presence of the type 1 peroxisomal targeting sequence. The C-terminal tripeptide of AGT, KKL is necessary for peroxisomal targeting. In cultured cells, EGFP-AGT (W251K) localized both in the peroxisome and cytosol. These results were consistent with the data obtained from liver analysis of patient 2. The subcellular distribution of AGT (W251K) and the results from a random mutagenesis study suggest that KKL is necessary for peroxisomal targeting of human AGT, but additional signal other than KKL may be necessary. PMID:22685354

  12. Two new mutations in the 3' coding region of the glycogen debranching enzyme in a glycogen storage disease type IIIa Ashkenazi Jewish patient.

    PubMed

    Parvari, R; Shen, J; Hershkovitz, E; Chen, Y T; Moses, S W

    1998-04-01

    Glycogen storage disease type III (GSD III) is an autosomal recessive disease caused by the deficiency of glycogen debranching enzyme (AGL). We report the finding of two new mutations in a GSD IIIa Ashkenazi Jewish patient. Both mutations are insertion of an adenine into a stretch of 8 adenines towards the 3' end of the coding region, one at position 3904 (3904insA) in exon 30, the second at position 4214 (4214insA) in exon 32. The mutations cause frameshifts and premature terminations of the glycogen debranching enzyme, the first causing a frameshift at amino acid 1304, the second causing a frameshift at amino acid 1408 of the total of 1532. These mutations demonstrate the importance of the 125 amino acids at the carboxy-terminus of the debrancher enzyme for its activity and support the suggestion that the putative glycogen binding domain is located in the carboxy-terminus of the AGL. The mutations cause distinctive single-strand conformation polymorphism (SSCP) patterns enabling easy detection.

  13. Appearance of Drug Resistance-Associated Mutations in Human Immunodeficiency Virus Type 1 CRF01_AE Integrase Derived from Drug-Naive Thai Patients.

    PubMed

    Isarangkura-Na-Ayuthaya, Panasda; Kaewnoo, Wiyada; Auwanit, Wattana; de Silva, U Chandimal; Ikuta, Kazuyoshi; Sawanpanyalert, Pathom; Kameoka, Masanori

    2010-12-01

    CRF01_AE is a major subtype of human immunodeficiency virus type 1 (HIV-1) circulating in Southeast Asia, including Thailand. We performed genotypic studies on HIV-1 CRF01_AE integrase derived from plasma samples from drug-naive Thai patients. Direct sequencing of amplified CRF01_AE integrase genes revealed that although no primary mutations associated with drug resistance to integrase inhibitors were detected, at least one secondary mutation was found in 96% of samples. Our results indicate that the impact of these mutations on the baseline drug susceptibility of CRF01_AE viruses to integrase inhibitors may need to be addressed prior to the introduction of these drugs in Southeast Asian countries, including Thailand.

  14. Mutations in MARS identified in a specific type of pulmonary alveolar proteinosis alter methionyl-tRNA synthetase activity.

    PubMed

    Comisso, Martine; Hadchouel, Alice; de Blic, Jacques; Mirande, Marc

    2018-05-18

    Biallelic missense mutations in MARS are responsible for rare but severe cases of pulmonary alveolar proteinosis (PAP) prevalent on the island of La Réunion. MARS encodes cytosolic methionyl-tRNA synthetase (MetRS), an essential translation factor. The multisystemic effects observed in patients with this form of PAP are consistent with a loss-of-function defect in an ubiquitously expressed enzyme. The pathophysiological mechanisms involved in MARS-related PAP are currently unknown. In this work, we analyzed the effect of the PAP-related mutations in MARS on the thermal stability and on the catalytic parameters of the MetRS mutants, relative to wild-type. The effect of these mutations on the structural integrity of the enzyme as a member of the cytosolic multisynthetase complex was also investigated. Our results establish that the PAP-related substitutions in MetRS impact the tRNA Met -aminoacylation reaction especially at the level of methionine recognition, and suggest a direct link between the loss of activity of the enzyme and the pathological disorders in PAP. © 2018 Federation of European Biochemical Societies.

  15. Evaluation of ultraviolet spectrophotometry for simultaneous analysis of alkylbenzenes, alkylnaphthalenes, alkylanthracenes/phenanthrenes and total aromatics in mid-distillate fuels

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Seng, G. T.

    1982-01-01

    A rapid ultraviolet spectrophotometric method for the simultaneous determination of aromatics in middistillate fuels was developed and evaluated. In this method, alkylbenzenes, alkylnaphthalenes, alkylanthracenes/phenanthracenes and total aromatics were determined from ultraviolet spectra of the fuels. The accuracy and precision were determined using simulated standard fuels with known compositions. The total aromatics fraction accuracy was 5% for a Jet A type fuel and 0.6% for a broadened properties jet turbine type fuel. Precision, expressed as relative standard deviations, ranged from 2.9% for the alkylanthracenes/phenanthrenes to 15.3% for the alkylbenzenes. The accuracy, however, was less for actual fuel samples when compared to the results obtained by a mass spectrometric method. In addition, the ASTM D-1840 method for naphthalenes by ultraviolet spectroscopy was evaluated.

  16. Targeted exome sequencing identifies novel compound heterozygous mutations in P3H1 in a fetus with osteogenesis imperfecta type VIII.

    PubMed

    Huang, Yanru; Mei, Libin; Lv, Weigang; Li, Haoxian; Zhang, Rui; Pan, Qian; Tan, Hu; Guo, Jing; Luo, Xiaomei; Chen, Chen; Liang, Desheng; Wu, Lingqian

    2017-01-01

    Osteogenesis imperfecta (OI) is a highly clinically and genetically heterogeneous group of disorders. It is difficult to identify severe OI in the perinatal period. Here, a Chinese woman with a suspected history of fetal OI was referred to our institution at 19weeks of gestation, due to ultrasound inspection during antenatal screening, which revealed bulbous metaphyses, short humeri, and short thick bent femora in the fetus. Using targeted exome sequencing of 248 genes known to be involved in skeletal system diseases, we identified novel compound heterozygous mutation in the P3H1 gene in the fetus with OI type VIII: c.105_120del (p.D36Rfs*16) and c.2164C>T (p.Q722*). These two mutations were inherited from the father and mother, respectively. The mRNA level of P3H1 wasn't changed suggested that mRNA with this mutation escaped from nonsense-mediated RNA decay. Besides, the level of P3H1 was absence while the CRTAP was mildly decreased. In conclusion, our findings imply this novel compound heterozygous mutation as the molecular pathogenetic in a Chinese fetus with OI type VIII, and demonstrate that targeted next-generation sequencing (NGS) is an accurate, rapid, and cost-effective method in the genetic diagnosis of fetal skeletal dysplasia with genetic and clinical heterogeneity, especially for autosomal recessive skeletal disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Novel recurrently mutated genes and a prognostic mutation signature in colorectal cancer.

    PubMed

    Yu, Jun; Wu, William K K; Li, Xiangchun; He, Jun; Li, Xiao-Xing; Ng, Simon S M; Yu, Chang; Gao, Zhibo; Yang, Jie; Li, Miao; Wang, Qiaoxiu; Liang, Qiaoyi; Pan, Yi; Tong, Joanna H; To, Ka F; Wong, Nathalie; Zhang, Ning; Chen, Jie; Lu, Youyong; Lai, Paul B S; Chan, Francis K L; Li, Yingrui; Kung, Hsiang-Fu; Yang, Huanming; Wang, Jun; Sung, Joseph J Y

    2015-04-01

    Characterisation of colorectal cancer (CRC) genomes by next-generation sequencing has led to the discovery of novel recurrently mutated genes. Nevertheless, genomic data has not yet been used for CRC prognostication. To identify recurrent somatic mutations with prognostic significance in patients with CRC. Exome sequencing was performed to identify somatic mutations in tumour tissues of 22 patients with CRC, followed by validation of 187 recurrent and pathway-related genes using targeted capture sequencing in additional 160 cases. Seven significantly mutated genes, including four reported (APC, TP53, KRAS and SMAD4) and three novel recurrently mutated genes (CDH10, FAT4 and DOCK2), exhibited high mutation prevalence (6-14% for novel cancer genes) and higher-than-expected number of non-silent mutations in our CRC cohort. For prognostication, a five-gene-signature (CDH10, COL6A3, SMAD4, TMEM132D, VCAN) was devised, in which mutation(s) in one or more of these genes was significantly associated with better overall survival independent of tumor-node-metastasis (TNM) staging. The median survival time was 80.4 months in the mutant group versus 42.4 months in the wild type group (p=0.0051). The prognostic significance of this signature was successfully verified using the data set from the Cancer Genome Atlas study. The application of next-generation sequencing has led to the identification of three novel significantly mutated genes in CRC and a mutation signature that predicts survival outcomes for stratifying patients with CRC independent of TNM staging. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. Identification of two novel mutations in the SLC45A2 gene in a Hungarian pedigree affected by unusual OCA type 4.

    PubMed

    Tóth, Lola; Fábos, Beáta; Farkas, Katalin; Sulák, Adrienn; Tripolszki, Kornélia; Széll, Márta; Nagy, Nikoletta

    2017-03-15

    Oculocutaneous albinism (OCA) is a clinically and genetically heterogenic group of pigmentation abnormalities. OCA type IV (OCA4, OMIM 606574) develops due to homozygous or compound heterozygous mutations in the solute carrier family 45, member 2 (SLC45A2) gene. This gene encodes a membrane-associated transport protein, which regulates tyrosinase activity and, thus, melanin content by changing melanosomal pH and disrupting the incorporation of copper into tyrosinase. Here we report two Hungarian siblings affected by an unusual OCA4 phenotype. After genomic DNA was isolated from peripheral blood of the patients, the coding regions of the SLC45A2 gene were sequenced. In silico tools were applied to identify the functional impact of the newly detected mutations. Direct sequencing of the SLC45A2 gene revealed two novel, heterozygous mutations, one missense (c.1226G > A, p.Gly409Asp) and one nonsense (c.1459C > T, p.Gln437*), which were present in both patients, suggesting the mutations were compound heterozygous. In silico tools suggest that these variations are disease causing mutations. The newly identified mutations may affect the transmembrane domains of the protein, and could impair transport function, resulting in decreases in both melanosomal pH and tyrosinase activity. Our study provides expands on the mutation spectrum of the SLC45A2 gene and the genetic background of OCA4.

  19. Novel cases of Tunisian patients with mutations in the gene encoding 17β-hydroxysteroid dehydrogenase type 3 and a founder effect.

    PubMed

    Ben Rhouma, Bochra; Kallabi, Fakhri; Mahfoudh, Nadia; Ben Mahmoud, Afif; Engeli, Roger T; Kamoun, Hassen; Keskes, Leila; Odermatt, Alex; Belguith, Neila

    2017-01-01

    17β-Hydroxysteroid dehydrogenase type 3 (17β-HSD3) is expressed almost exclusively in the testis and converts Δ4-androstene-3,17-dione to testosterone. Mutations in the HSD17B3 gene causing 17β-HSD3 deficiency are responsible for a rare recessive form of 46, XY Disorders of Sex Development (46, XY DSD). We report novel cases of Tunisian patients with 17β-HSD3 deficiency due to previously reported mutations, i.e. p.C206X and p.G133R, as well as a case with the novel compound heterozygous mutations p.C206X and p.Q176P. Moreover, the previously reported polymorphism p.G289S was identified in a heterozygous state in combination with a novel non-coding variant c.54G>T, also in a heterozygous state, in a male patient presenting with micropenis and low testosterone levels. The identification of four different mutations in a cohort of eight patients confirms the generally observed genetic heterogeneity of 17β-HSD3 deficiency. Nevertheless, analysis of DNA from 272 randomly selected healthy controls from the same geographic area (region of Sfax) revealed a high carrier frequency for the p.C206X mutation of approximately 1 in 40. Genotype reconstruction of the affected pedigree members revealed that all p.C206X mutation carriers harbored the same haplotype, indicating inheritance of the mutation from a common ancestor. Thus, the identification of a founder effect and the elevated carrier frequency of the p.C206X mutation emphasize the importance to consider this mutation in the diagnosis and genetic counseling of affected 17β-HSD3 deficiency pedigrees in Tunisia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Novel PNKP mutation in siblings with ataxia-oculomotor apraxia type 4.

    PubMed

    Schiess, Nicoline; Zee, David S; Siddiqui, Khurram A; Szolics, Miklos; El-Hattab, Ayman W

    The phenotypic and genetic spectrum of ataxia with oculomotor apraxia (AOA) disorders is rapidly evolving and new technologies such as genetic mapping using whole exome sequencing reveal subtle distinctions among the various subtypes. We report a novel PNKP mutation in two siblings with progressive ataxia, abnormal saccades, sensorimotor neuropathy and dystonia consistent with the AOA type 4 phenotype. Laboratory evaluation revealed hypoalbuminemia, hypercholesterolemia with elevated LDL, elevated IgE levels and normal α fetoprotein levels. Eye movement examination demonstrated a marked saccade initiation defect with profound hypometric horizontal saccades. Vertical saccades were also affected but less so. Also present were conspicuous thrusting head movements when attempting to change gaze, but rather than an apraxia these were an adaptive strategy to take advantage of an intact vestibulo-ocular reflex to carry the eyes to a new target of interest. This is demonstrated in accompanying videos.

  1. A Swift Look at SN 2011fe: The Earliest Ultraviolet Observations of a Type Ia Supernova

    NASA Technical Reports Server (NTRS)

    Oates, Samantha; Holland, Stephen; Immler, Stefan; Brown, Peter J.; Dawson, Kyle S.; DePasquale, Massimiliano; Gronwall, Caryl; Kuin, Paul; Mazzali, Paolo; Miline, Peter; hide

    2012-01-01

    We present the earliest ultraviolet (UV) observations of the bright Type Ia supernova SN 2011fe/PTF11kly in the nearby galaxy M101 at a distance of only 6.4 Mpc. It was discovered shortly after explosion by the Palomar Transient Factory and first observed by Swift/UVOT about a day after explosion. The early UV light is well-defined, with approx. 20 data points per filter in the 5 days after explosion. With these early UV observations, we extend the near-UV template of SNe Ia to earlier times for comparison with observations at low and high redshift and report fits from semiempirical models of the explosion. We find the early UV count rates to be well fit by the superposition of two parabolic curves. Finally, we use the early UV flux measurements to examine a possible shock interaction with a non-degenerate companion. We find that even a solar mass companion at a distance of a few solar radii is unlikely at more than 95% confidence.

  2. Neurofibromatosis type 1 molecular diagnosis: what can NGS do for you when you have a large gene with loss of function mutations?

    PubMed Central

    Pasmant, Eric; Parfait, Béatrice; Luscan, Armelle; Goussard, Philippe; Briand-Suleau, Audrey; Laurendeau, Ingrid; Fouveaut, Corinne; Leroy, Chrystel; Montadert, Annelore; Wolkenstein, Pierre; Vidaud, Michel; Vidaud, Dominique

    2015-01-01

    Molecular diagnosis of neurofibromatosis type 1 (NF1) is challenging owing to the large size of the tumour suppressor gene NF1, and the lack of mutation hotspots. A somatic alteration of the wild-type NF1 allele is observed in NF1-associated tumours. Genetic heterogeneity in NF1 was confirmed in patients with SPRED1 mutations. Here, we present a targeted next-generation sequencing (NGS) of NF1 and SPRED1 using a multiplex PCR approach (230 amplicons of ∼150 bp) on a PGM sequencer. The chip capacity allowed mixing 48 bar-coded samples in a 4-day workflow. We validated the NGS approach by retrospectively testing 30 NF1-mutated samples, and then prospectively analysed 279 patients in routine diagnosis. On average, 98.5% of all targeted bases were covered by at least 20X and 96% by at least 100X. An NF1 or SPRED1 alteration was found in 246/279 (88%) and 10/279 (4%) patients, respectively. Genotyping throughput was increased over 10 times, as compared with Sanger, with ∼90€ for consumables per sample. Interestingly, our targeted NGS approach also provided quantitative information based on sequencing depth allowing identification of multiexons deletion or duplication. We then addressed the NF1 somatic mutation detection sensitivity in mosaic NF1 patients and tumours. PMID:25074460

  3. A novel mutation in the MYO7A gene is associated with Usher syndrome type 1 in a Chinese family.

    PubMed

    He, Xiaoguang; Peng, Qi; Li, Siping; Zhu, Pengyuan; Wu, Chunqiu; Rao, Chunbao; Lin, Jingqi; Lu, Xiaomei

    2017-08-01

    We aimed to investigate the genetic causes of hearing loss in a Chinese proband with autosomal recessive congenital deafness. The targeted capture of 159 known deafness genes and next-generation sequencing were performed to study the genetic causes of hearing loss in the Chinese family. Sanger sequencing was employed to verify the variant mutations in members of this family. The proband harbored two mutations in the MYO7A gene in the form of compound heterozygosity. She was found to be heterozygous for a novel insertion mutation c.3847_3848 ins TCTG (p.N1285LfsX24) in exon 30 and for the known mutation c.2239_2240delAG (p.R747S fsX16)in exon 19. The novel mutation was absent in the 1000 Genomes Project. These variants were carried in the heterozygous state by the parents and were therefore co-segregated with the genetic disease. Clinical re-assessment, including detailed audiologic and ocular examinations, revealed congenital deafness and retinitis pigmentosa in the proband. Collectively, the combination of audiometric, ophthalmologic and genetic examinations successfully confirmed the phenotype of Usher syndrome type 1 (USH1). This study demonstrates that the novel mutation c.3847_3848insTCTG (p. N1285LfsX24) in compound heterozygosity with c.2239_2240delAG in the MYO7A gene is the main cause of USH1 in the proband. Our study expands the mutational spectrum of MYO7A and provides a foundation for further investigations elucidating the MYO7A-related mechanisms of USH1. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Far-ultraviolet spectral changes of titanium dioxide with gold nanoparticles by ultraviolet and visible light

    NASA Astrophysics Data System (ADS)

    Tanabe, Ichiro; Kurawaki, Yuji

    2018-05-01

    Attenuated total reflectance spectra including the far-ultraviolet (FUV, ≤ 200 nm) region of titanium dioxide (TiO2) with and without gold (Au) nanoparticles were measured. A newly developed external light-irradiation system enabled to observe spectral changes of TiO2 with Au nanoparticles upon light irradiations. Absorption in the FUV region decreased and increased by the irradiation with ultraviolet and visible light, respectively. These spectral changes may reflect photo-induced electron transfer from TiO2 to Au nanoparticles under ultraviolet light and from Au nanoparticles to TiO2 under visible light, respectively.

  5. Targeted High-Throughput Sequencing Identifies Mutations in atlastin-1 as a Cause of Hereditary Sensory Neuropathy Type I

    PubMed Central

    Guelly, Christian; Zhu, Peng-Peng; Leonardis, Lea; Papić, Lea; Zidar, Janez; Schabhüttl, Maria; Strohmaier, Heimo; Weis, Joachim; Strom, Tim M.; Baets, Jonathan; Willems, Jan; De Jonghe, Peter; Reilly, Mary M.; Fröhlich, Eleonore; Hatz, Martina; Trajanoski, Slave; Pieber, Thomas R.; Janecke, Andreas R.; Blackstone, Craig; Auer-Grumbach, Michaela

    2011-01-01

    Hereditary sensory neuropathy type I (HSN I) is an axonal form of autosomal-dominant hereditary motor and sensory neuropathy distinguished by prominent sensory loss that leads to painless injuries. Unrecognized, these can result in delayed wound healing and osteomyelitis, necessitating distal amputations. To elucidate the genetic basis of an HSN I subtype in a family in which mutations in the few known HSN I genes had been excluded, we employed massive parallel exon sequencing of the 14.3 Mb disease interval on chromosome 14q. We detected a missense mutation (c.1065C>A, p.Asn355Lys) in atlastin-1 (ATL1), a gene that is known to be mutated in early-onset hereditary spastic paraplegia SPG3A and that encodes the large dynamin-related GTPase atlastin-1. The mutant protein exhibited reduced GTPase activity and prominently disrupted ER network morphology when expressed in COS7 cells, strongly supporting pathogenicity. An expanded screen in 115 additional HSN I patients identified two further dominant ATL1 mutations (c.196G>C [p.Glu66Gln] and c.976 delG [p.Val326TrpfsX8]). This study highlights an unexpected major role for atlastin-1 in the function of sensory neurons and identifies HSN I and SPG3A as allelic disorders. PMID:21194679

  6. Mutation in a gene for type I procollagen (COL1A2) in a woman with postmenopausal osteoporosis: Evidence for phenotypic and genotypic overlap with mild osteogenesis imperfecta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spotila, L.D.; Constantinou, C.D.; Sereda, L.

    Mutations in the two genes for type I collagen (COL1A1 or COL1A2) cause osteogenesis imperfecta (OI), a heritable disease characterized by moderate to extreme brittleness of bone early in life. Here, the authors show that a 52-year-old post menopausal woman with severe osteopenia and a compression fracture of a thoracic vertebra had a mutation in the gene for the {alpha}2(I) chain of type I collagen (COL1A2) similar to mutations that cause OI. cDNA was prepared from the woman's skin fibroblast RNA and assayed for the presence of a mutation by treating DNA heteroduplexes with carbodiimide. The results indicated a sequencemore » variation in the region encoding amino acid residues 660-667 of the {alpha}2(I) chain. Further analysis demonstrated a single-base mutation that caused a serine-for-glycine substitution at position 661 of the {alpha}2(I) triple-helical domain. The substitution produced posttranslational overmodification of the collagen triple helix, as is seen with most glycine substitutions that cause OI. The patient had a history of five previous fractures, slightly blue sclerae, and slight hearing loss. Therefore, the results suggest that there may be phenotypic and genotypic overlap between mild osteogenesis imperfecta and postmenopausal osteoporosis, and that a subset of women with postmenopausal osteoporosis may have mutations in the genes for type I procollagen.« less

  7. Waardenburg syndrome type 4: report of two new cases caused by SOX10 mutations in Spain.

    PubMed

    Fernández, Raquel M; Núñez-Ramos, Raquel; Enguix-Riego, M Valle; Román-Rodríguez, Francisco José; Galán-Gómez, Enrique; Blesa-Sánchez, Emilio; Antiñolo, Guillermo; Núñez-Núñez, Ramón; Borrego, Salud

    2014-02-01

    Shah-Waardenburg syndrome or Waardenburg syndrome type 4 (WS4) is a neurocristopathy characterized by the association of deafness, depigmentation and Hirschsprung disease. Three disease-causing genes have been identified so far for WS4: EDNRB, EDN3, and SOX10. SOX10 mutations, found in 45-55% of WS4 patients, are inherited in autosomal dominant way. In addition, mutations in SOX10 are also responsible for an extended syndrome involving peripheral and central neurological phenotypes, referred to as PCWH (peripheral demyelinating neuropathy, central dysmyelinating leucodystrophy, Waardenburg syndrome, Hirschsprung disease). Such mutations are mostly private, and a high intra- and inter-familial variability exists. In this report, we present a patient with WS4 and a second with PCWH due to SOX10 mutations supporting again the genetic and phenotypic heterogeneity of these syndromes. Interestingly, the WS4 family carries an insertion of 19 nucleotides in exon 5 of SOX10, which results in distinct phenotypes along three different generations: hypopigmentation in the maternal grandmother, hearing loss in the mother, and WS4 in the proband. Since mosaicism cannot explain the three different related-WS features observed in this family, we propose as the most plausible explanation the existence of additional molecular events, acting in an additive or multiplicative fashion, in genes or regulatory regions unidentified so far. On the other hand, the PCWH case was due to a de novo deletion in exon 5 of the gene. Efforts should be devoted to unravel the mechanisms underlying the intrafamilial phenotypic variability observed in the families affected, and to identify new genes responsible for the still unsolved WS4 cases. © 2013 Wiley Periodicals, Inc.

  8. KIF1A, an axonal transporter of synaptic vesicles, is mutated in hereditary sensory and autonomic neuropathy type 2.

    PubMed

    Rivière, Jean-Baptiste; Ramalingam, Siriram; Lavastre, Valérie; Shekarabi, Masoud; Holbert, Sébastien; Lafontaine, Julie; Srour, Myriam; Merner, Nancy; Rochefort, Daniel; Hince, Pascale; Gaudet, Rébecca; Mes-Masson, Anne-Marie; Baets, Jonathan; Houlden, Henry; Brais, Bernard; Nicholson, Garth A; Van Esch, Hilde; Nafissi, Shahriar; De Jonghe, Peter; Reilly, Mary M; Timmerman, Vincent; Dion, Patrick A; Rouleau, Guy A

    2011-08-12

    Hereditary sensory and autonomic neuropathy type II (HSANII) is a rare autosomal-recessive disorder characterized by peripheral nerve degeneration resulting in a severe distal sensory loss. Although mutations in FAM134B and the HSN2 exon of WNK1 were associated with HSANII, the etiology of a substantial number of cases remains unexplained. In addition, the functions of WNK1/HSN2 and FAM134B and their role in the peripheral nervous system remain poorly understood. Using a yeast two-hybrid screen, we found that KIF1A, an axonal transporter of synaptic vesicles, interacts with the domain encoded by the HSN2 exon. In parallel to this screen, we performed genome-wide homozygosity mapping in a consanguineous Afghan family affected by HSANII and identified a unique region of homozygosity located on chromosome 2q37.3 and spanning the KIF1A gene locus. Sequencing of KIF1A in this family revealed a truncating mutation segregating with the disease phenotype. Subsequent sequencing of KIF1A in a series of 112 unrelated patients with features belonging to the clinical spectrum of ulcero-mutilating sensory neuropathies revealed truncating mutations in three additional families, thus indicating that mutations in KIF1A are a rare cause of HSANII. Similarly to WNK1 mutations, pathogenic mutations in KIF1A were almost exclusively restricted to an alternatively spliced exon. This study provides additional insights into the molecular pathogenesis of HSANII and highlights the potential biological relevance of alternative splicing in the peripheral sensory nervous system. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  9. A newly detected mutation of the RET protooncogene in exon 8 as a cause of multiple endocrine neoplasia type 2A.

    PubMed

    Bethanis, Sotirios; Koutsodontis, George; Palouka, Theodosia; Avgoustis, Christos; Yannoukakos, Drakoulis; Bei, Thalia; Papadopoulos, Savas; Linos, Dimitrios; Tsagarakis, Stylianos

    2007-01-01

    Multiple endocrine neoplasia type 2A (MEN2A) is a syndrome of familial neoplasias characterized by medullary thyroid carcinoma (MTC), pheochromocytoma and hyperplasia of the parathyroid glands. RET protooncogene mutations are responsible for MEN 2A. Mutations in exons 10 or 11 have been identified in more than 96% of patients with MEN 2A. We herein report for the first time a patient with MEN 2A harboring a mutation (Gly(533)Cys) in exon 8. A 66-year old male patient was referred to our department for bilateral adrenal nodules. The patient's family history was remarkable in that his mother had pheochromocytoma. Biochemical evaluation and findings of the magnetic resonance imaging of the adrenals were compatible with the diagnosis of bilateral pheochromocytomas. The patient underwent laparoscopic bilateral adrenalectomy and histological examination confirmed the preoperative diagnosis of pheochromocytoma. Absence of phenotypic characteristics of VHL or NF1 and elevated calcitonin levels both basal and post pentagastrin stimulation, raised the possibility of MEN 2A syndrome. Total thyroidectomy was performed and histological examination showed the presence of MTC. Direct sequencing of exon 8 from the patient's genomic DNA revealed the mutation c.1,597G-->T (Gly533Cys). Although this missense point mutation has been associated with familial MTC (FMTC), to the best of our knowledge mutations in exon 8 have not previously been identified in patients with MEN 2A. In conclusion, in patients with clinical suspicion of MEN 2A syndrome, analysis of RET exon 8 should be considered when the routine evaluation of MEN 2A-associated mutations is negative. Furthermore, patients with FMTC and exon 8 mutations should also be screened for pheochromocytoma.

  10. [Ultraviolet radiation and long term space flight].

    PubMed

    Wu, H B; Su, S N; Ba, F S

    2000-08-01

    With the prolongation of space flight, influences of various aerospace environmental factors on the astronauts become more and more severe, while ultraviolet radiation is lacking. Some studies indicated that low doses of ultraviolet rays are useful and essential for human body. In space flight, ultraviolet rays can improve the hygienic condition in the space cabin, enhance astronaut's working ability and resistance to unfavorable factors, prevent mineral metabolic disorders, cure purulent skin diseases and deallergize the allergens. So in long-term space flight, moderate amount of ultraviolet rays in the space cabin would be beneficial.

  11. The mouse wellhaarig (we) mutations result from defects in epidermal-type transglutaminase 3 (Tgm3)

    PubMed Central

    Brennan, Brett M.; Huynh, Minh T.; Rabah, Mohammed A.; Shaw, Hailie E.; Bisaillon, Jason J.; Radden, Legairre A.; Nguyen, Tu V.; King, Thomas R.

    2015-01-01

    The recessive wellhaarig (we) mutations, named for the wavy coat and curly whiskers they generate in homozygotes, have previously been mapped on mouse Chromosome 2. To further limit the possible location of the we locus, we crossed hybrid (C57BL/6 x AKR)F1, we4J/+ females with AKR, we4J/we4J mutant males to create a large backcross family that was typed for various microsatellite markers and single-nucleotide polymorphisms (SNPs) that distinguish strains AKR and B6. This analysis restricted the location of we4J between sites that flank only one gene known to be expressed in skin: epidermal-type transglutaminase 3 (Tgm3). To test Tgm3 as a candidate for the basis of the wellhaarig phenotype we took two approaches. First, we sequenced all Tgm3 coding regions in mice homozygous for four independent, naturally-occurring wellhaarig alleles (we, weBkr, we3J and we4J) and found distinct defects in three of these mutants. Second, we crossed mice homozygous for an induced mutant allele of Tgm3 (Tgm3Btlr) with mice heterozygous for one of the wellhaarig alleles we possess (we4J or weBkr) to test for complementation. Because the progeny inheriting both a recessive we allele and a recessive Tgm3Btlr allele displayed wavy hair, we conclude that the classic wellhaarig mutations result from defects in Tgm3. PMID:26194162

  12. Identification and analysis of novel R308K mutation in glucokinase of type 2 diabetic patient and its kinetic correlation.

    PubMed

    Yellapu, Nanda Kumar; Valasani, Koteswara Rao; Pasupuleti, Santhosh Kumar; Gopal, Sowjenya; Potukuchi Venkata Gurunadha Krishna, Sarma; Matcha, Bhaskar

    2014-01-01

    Glucokinase (GK) plays a critical role in glucose homeostasis and the mutations in GK gene result in pathogenic complications known as Maturity Onset Diabetes of the Young 2, an autosomal dominant form of diabetic condition. In the present study, GK was purified from human liver tissue and the pure enzyme showed single band in SDS-PAGE with a molecular weight of 50 kDa. The kinetics of pure GK showed enzyme activity of 0.423±0.02 µM glucose-6-phosphate (G6P)/mL/Min and Km value of 6.66±0.02 µM. These values were compared in the liver biopsy of a clinically proven type 2 diabetic patient, where GK kinetics showed decreased enzyme activity of 0.16±0.025 µM G6P/mL/Min and increased Km of 23±0.9 µM, indicating the hyperglycemic condition in the patient. The genetic analysis of 10th exon of GK gene from this patient showed a R308K mutation. To substantiate these results, comparative molecular dynamics and docking studies were carried out where a higher docking score (-10.218 kcal/mol) was observed in the mutated GK than wild-type GK structure (-12.593 kcal/mol) indicating affinity variations for glucose. During the simulation process, glucose was expelled out from the mutant conformation but not from wild-type GK, making glucose unavailable for phosphorylation. Therefore, these results conclusively explain hyperglycemic condition in this patient. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  13. Mutational landscape, clonal evolution patterns, and role of RAS mutations in relapsed acute lymphoblastic leukemia

    PubMed Central

    Oshima, Koichi; Khiabanian, Hossein; da Silva-Almeida, Ana C.; Tzoneva, Gannie; Abate, Francesco; Ambesi-Impiombato, Alberto; Sanchez-Martin, Marta; Carpenter, Zachary; Penson, Alex; Perez-Garcia, Arianne; Eckert, Cornelia; Nicolas, Concepción; Balbin, Milagros; Sulis, Maria Luisa; Kato, Motohiro; Koh, Katsuyoshi; Paganin, Maddalena; Basso, Giuseppe; Gastier-Foster, Julie M.; Devidas, Meenakshi; Loh, Mignon L.; Kirschner-Schwabe, Renate; Palomero, Teresa; Rabadan, Raul; Ferrando, Adolfo A.

    2016-01-01

    Although multiagent combination chemotherapy is curative in a significant fraction of childhood acute lymphoblastic leukemia (ALL) patients, 20% of cases relapse and most die because of chemorefractory disease. Here we used whole-exome and whole-genome sequencing to analyze the mutational landscape at relapse in pediatric ALL cases. These analyses identified numerous relapse-associated mutated genes intertwined in chemotherapy resistance-related protein complexes. In this context, RAS-MAPK pathway-activating mutations in the neuroblastoma RAS viral oncogene homolog (NRAS), kirsten rat sarcoma viral oncogene homolog (KRAS), and protein tyrosine phosphatase, nonreceptor type 11 (PTPN11) genes were present in 24 of 55 (44%) cases in our series. Interestingly, some leukemias showed retention or emergence of RAS mutant clones at relapse, whereas in others RAS mutant clones present at diagnosis were replaced by RAS wild-type populations, supporting a role for both positive and negative selection evolutionary pressures in clonal evolution of RAS-mutant leukemia. Consistently, functional dissection of mouse and human wild-type and mutant RAS isogenic leukemia cells demonstrated induction of methotrexate resistance but also improved the response to vincristine in mutant RAS-expressing lymphoblasts. These results highlight the central role of chemotherapy-driven selection as a central mechanism of leukemia clonal evolution in relapsed ALL, and demonstrate a previously unrecognized dual role of RAS mutations as drivers of both sensitivity and resistance to chemotherapy. PMID:27655895

  14. Ultraviolet spectrophotometry of three LINERs

    NASA Technical Reports Server (NTRS)

    Goodrich, R. W.; Keel, W. C.

    1986-01-01

    Three galaxies known to be LINERs were observed spectroscopically in the ultraviolet in an attempt to detect the presumed nonthermal continuum source thought to be the source of photoionization in the nuclei. NGC 4501 was found to be too faint for study with the IUE spectrographs, while NGC 5005 had an extended ultraviolet light profile. Comparison with the optical light profile of NGC 5005 indicates that the ultraviolet source is distributed spatially in the same manner as the optical starlight, probably indicating that the ultraviolet excess is due to a component of hot stars in the nucleus. These stars contribute detectable absorption features longward of 2500 A; together with optical data, the IUE spectra suggest a burst of star formation about 1 billion yr ago, with a lower rate continuing to produce a few OB stars. In NGC 4579, a point source contributing most of the ultraviolet excess is found that is much different than the optical light distribution. Furthermore, the ultraviolet to X-ray spectral index in NGC 4579 is 1.4, compatible with the UV to X-ray indices found for samples of Seyfert galaxies. This provides compelling evidence for the detection of the photoionizing continuum in NGC 4579 and draws the research fields of normal galaxies and active galactic nuclei closer together. The emission-line spectrum of NGC 4579 is compared with calculations from a photoionization code, CLOUDY, and several shock models. The photoionization code is found to give superior results, adding to the increasing weight of evidence that the LINER phenomenon is essentially a scaled-down version of the Seyfert phenomenon.

  15. Vacuum ultraviolet imagery of the Virgo Cluster region. II - Total far-ultraviolet flux of galaxies

    NASA Astrophysics Data System (ADS)

    Kodaira, K.; Watanabe, T.; Onaka, T.; Tanaka, W.

    1990-11-01

    The total flux in the far-ultraviolet region around 150 nm was measured for more than 40 galaxies in the central region of the Virgo Cluster, using two imaging telescopes on board a sounding rocket. The observed far-ultraviolet flux shows positive correlations with the H I 21 cm flux and the far-infrared flux for spiral galaxies, and with the X-ray flux and the radio continuum flux for elliptical galaxies. The former correlations of spiral galaxies are interpreted in terms of star formation activity, which indicates substantial depletion in the Virgo galaxies in accordance with the H I stripping. The latter correlations of elliptical galaxies indicate possible far-ultraviolet sources of young population, in addition to evolved hot stars. Far-ultraviolet fluxes from two dwarf elliptical galaxies were obtained tentatively, indicating star formation activity in elliptical galaxies. A high-resolution UV imagery by HST would be effective to distinguish the young population and the old population in elliptical galaxies.

  16. Ultraviolet safety assessments of insect light traps.

    PubMed

    Sliney, David H; Gilbert, David W; Lyon, Terry

    2016-01-01

    Near-ultraviolet (UV-A: 315-400 nm), "black-light," electric lamps were invented in 1935 and ultraviolet insect light traps (ILTs) were introduced for use in agriculture around that time. Today ILTs are used indoors in several industries and in food-service as well as in outdoor settings. With recent interest in photobiological lamp safety, safety standards are being developed to test for potentially hazardous ultraviolet emissions. A variety of UV "Black-light" ILTs were measured at a range of distances to assess potential exposures. Realistic time-weighted human exposures are shown to be well below current guidelines for human exposure to ultraviolet radiation. These UV-A exposures would be far less than the typical UV-A exposure in the outdoor environment. Proposals are made for realistic ultraviolet safety standards for ILT products.

  17. AGXT gene mutations and their influence on clinical heterogeneity of type 1 primary hyperoxaluria.

    PubMed

    Amoroso, A; Pirulli, D; Florian, F; Puzzer, D; Boniotto, M; Crovella, S; Zezlina, S; Spanò, A; Mazzola, G; Savoldi, S; Ferrettini, C; Berutti, S; Petrarulo, M; Marangella, M

    2001-10-01

    Primary hyperoxaluria type 1 (PH1) is an autosomal recessive disorder that is caused by a deficiency of alanine: glyoxylate aminotransferase (AGT), which is encoded by a single copy gene (AGXT). Molecular diagnosis was used in conjunction with clinical, biochemical, and enzymological data to evaluate genotype-phenotype correlation. Twenty-three unrelated, Italian PH1 patients were studied, 20 of which were grouped according to severe form of PH1 (group A), adult form (group B), and mild to moderate decrease in renal function (group C). All 23 patients were analyzed by using the single-strand conformation polymorphism technique followed by the sequencing of the 11 AGXT exons. Relevant chemistries, including plasma, urine and dialyzate oxalate and glycolate assays, liver AGT activity, and pyridoxine responsiveness, were performed. Both mutant alleles were found in 21 out of 23 patients, and 13 different mutations were recognized in exons 1, 2, 4, and 10. Normalized AGT activity was lower in the severe form than in the adult form (P < 0.05). Double heterozygous patients presented a lower age at the onset of the disease (P = 0.025), and they were more frequent in group A (75%) than in the group B (14%; P = 0.0406). The T444C mutation was more frequent in the severe form (P < 0.05), and the opposite was observed for G630A (P < 0.05). G630A mutation homozygotes had a higher AGT residual activity (P = 0.00001). This study confirms the allelic heterogeneity of the AGXT, which could to some extent be responsible for the phenotypic heterogeneity in PH1.

  18. A Korean patient with glutaric aciduria type 1 with a novel mutation in the glutaryl CoA dehydrogenase gene.

    PubMed

    Kim, Hee Su; Yu, Hee Joon; Lee, Jeehun; Park, Hyung-Doo; Kim, Ji Hye; Shin, Hyung-Jin; Jin, Dong Kyu; Lee, Munhyang

    2014-01-01

    Mutations in the glutaryl-CoA dehydrogenase gene can result in Glutaric aciduria type 1(GA 1) by accumulation of glutaric acid, 3-hydroxyglutaric acid (3-OH-GA), and glutarylcarnitine (C5DC). GA 1 is characterized by macrocephaly, subdural hemorrhage (SDH), and dystonic movement disorder after acute encephalopathic crisis. We report a Korean patient with GA1 and a novel mutation. A 16-month-old boy presented with SDH, macrocephaly, and developmental delay. In the neurologic examination, the patient had mild axial hypotonia, but otherwise normal neurologic functions. The brain MRI showed large amounts of bilateral SDH and high signal intensity in both basal ganglia and thalamus. Metabolic screening tests detected highly elevated urinary GA levels but 3-OH-glutaric acid was normal. C5DC was 0.94 μM/L (reference range < 0.3 μM/L). The patient had compound heterozygous mutations of the GCDH gene: p.Arg257Gln (c.770G>A) and p.Cys308Arg (c.922T>C). p.Cys308Arg is a novel mutation; reports of p.Arg257Gln were also rare both in Caucasians and Asian populations. In summary, we hereby report one Korean patient with GA1 with clinical, biochemical, and radiologic characteristics confirmed by genetic analysis.

  19. Modeling the Etiology of p53-mutated Cancer Cells*

    PubMed Central

    Perez, Ricardo E.; Shen, Hong; Duan, Lei; Kim, Reuben H.; Kim, Terresa; Park, No-Hee; Maki, Carl G.

    2016-01-01

    p53 gene mutations are among the most common alterations in cancer. In most cases, missense mutations in one TP53 allele are followed by loss-of-heterozygosity (LOH), so tumors express only mutant p53. TP53 mutations and LOH have been linked, in many cases, with poor therapy response and worse outcome. Despite this, remarkably little is known about how TP53 point mutations are acquired, how LOH occurs, or the cells involved. Nutlin-3a occupies the p53-binding site in MDM2 and blocks p53-MDM2 interaction, resulting in the stabilization and activation of p53 and subsequent growth arrest or apoptosis. We leveraged the powerful growth inhibitory activity of Nutlin-3a to select p53-mutated cells and examined how TP53 mutations arise and how the remaining wild-type allele is lost or inactivated. Mismatch repair (MMR)-deficient colorectal cancer cells formed heterozygote (p53 wild-type/mutant) colonies when cultured in low doses of Nutlin-3a, whereas MMR-corrected counterparts did not. Placing these heterozygotes in higher Nutlin-3a doses selected clones in which the remaining wild-type TP53 was silenced. Our data suggest silencing occurred through a novel mechanism that does not involve DNA methylation, histone methylation, or histone deacetylation. These data indicate MMR deficiency in colorectal cancer can give rise to initiating TP53 mutations and that TP53 silencing occurs via a copy-neutral mechanism. Moreover, the data highlight the use of MDM2 antagonists as tools to study mechanisms of TP53 mutation acquisition and wild-type allele loss or silencing in cells with defined genetic backgrounds. PMID:27022024

  20. Ultraviolet Extensions

    NASA Image and Video Library

    2008-04-16

    This ultraviolet image from NASA Galaxy Evolution Explorer shows the Southern Pinwheel galaxy, also know as Messier 83 or M83. It is located 15 million light-years away in the southern constellation Hydra.