Sample records for ultraviolet uv treatment

  1. Occupational Skin Hazards From Ultraviolet (UV) Exposures

    NASA Astrophysics Data System (ADS)

    Urbach, F.; Wolbarsht, M. L.

    1980-10-01

    The various types of UV effects on the skin are classified according to the part of the spectrum and their beneficial or deleterious nature. Some hazardous ultraviolet sources used in industrial processes are described, and examples of photoallergy, phototoxicity, and photosensitization resulting from UV exposures are given. The incidence of skin cancer as a function of geographical location and exposure to sunlight is discussed in relation to natural and artificial exposures to long and short wavelength UV, especially in connection with tanning booths. The conclusion is reached that there is enough ultraviolet in a normal environment to propose a hazard, and additional ultraviolet exposure from industrial or consumer sources is not necessary, and should be eliminated wherever possible.

  2. Occupational Skin Hazards From Ultraviolet (UV) Exposures

    NASA Astrophysics Data System (ADS)

    Urbach, F.; Wolbarsht, M. L.

    1981-11-01

    The various types of UV effects on the skin are classified according to the part of the spectrum and their beneficial or deleterious nature. Some hazardous ultraviolet sources used in industrial processes are described, and examples of photoallergy, phototoxicity, and photosensitization resulting from UV exposures are given. The incidence of skin cancer as a function of geographical location and exposure to sunlight is discussed in relation to natural and artificial exposures to long and short wavelength UV, especially in connection with tanning booths. The conclusion is reached that there is enough ultraviolet in a normal environment to propose a hazard, and additional ultraviolet exposure from industrial or consumer sources is not necessary, and should be eliminated wherever possible.

  3. [Effect of long-wave ultraviolet light (UV-A) and medium-wave ultraviolet rays (UV-B) on human skin. Critical comparison].

    PubMed

    Raab, W

    1980-04-15

    When discussing the effects of ultraviolet radiation on human skin, one should carefully distinguish between the long wave ultraviolet light (UV-A) and the short wave radiations (UV-B and UV-C). Ultraviolet A induces immediate pigmentation but, if high energies are applied, a permanent pigmentation is elicited. This type of ultraviolet A-induced pigmentation has been called "spontaneous" pigmentation as no erythematous reaction is necessary to induce or accelerate melanine formation. Ultraviolet B provokes erythema and consecutive pigmentation. Upon chronic exposure, ultraviolet B causes the wellknown actinic damage of the skin and even provokes carcinoma. With exposures to the sunlight (global radiation), one should be most careful. The public must be informed extensively about the dangers of excessive sunbaths. The use of artificial "suns" with spectra between 260 and 400 nm is limited as it may cause the same type of damage as the global radiation. An exact schedule for use of artificial lamps is strongly recommended. After one cycle of exposures, an interruption is necessary until the next cycle of irradiations may start. Upon continual use for tanning of the skin, artificial lamps may provoke irreversible damage of the skin. Radiation sources with emission spectra of wavelengths between 315 and 400 nm exclusively are well suited for the induction of skin pigmentation (cosmetic use). Potent radiation such as UVASUN systems provoke a "pleasant" permanent pigmentation after exposures for less than one hour. The use of ultraviolet A (UV-A) does not carry any risk for the human skin.

  4. Impact of shortwave ultraviolet (UV-C) radiation on the antioxidant activity of thyme (Thymus vulgaris L.).

    PubMed

    Dogu-Baykut, Esra; Gunes, Gurbuz; Decker, Eric Andrew

    2014-08-15

    Thyme is a good source of antioxidant compounds but it can be contaminated by microorganisms. An experimental fluid bed ultraviolet (UV) reactor was designed for microbial decontamination of thyme samples and the effect of shortwave ultraviolet light (UV-C) radiation on antioxidant properties of thyme was studied. Samples were exposed to UV-C radiation for 16 or 64 min. UV-C treatment led to 1.04 and 1.38 log CFU/g reduction of total aerobic mesophilic bacteria (TAMB) counts. Hunter a(∗) value was the most sensitive colour parameter during UV-C treatment. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging activity of extracts was not significantly affected by UV-C. Addition of thyme extracts at 0.15 and 0.3 μmol GAE/ml emulsion delayed the formation of lipid hydroperoxides and headspace hexanal in the 5.0%(wt) corn oil-in-water emulsion from 4 to 9 and 14 days, respectively. No significant changes in oxidation rates were observed between UV-C treated and untreated samples at same concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Effects of ultraviolet light (UV-C) and heat treatment on the quality of fresh-cut Chokanan mango and Josephine pineapple.

    PubMed

    George, Dominic Soloman; Razali, Zuliana; Santhirasegaram, Vicknesha; Somasundram, Chandran

    2015-02-01

    The effects of ultraviolet (UV-C) and medium heat (70 °C) treatments on the quality of fresh-cut Chokanan mango and Josephine pineapple were investigated. Quality attributes included physicochemical properties (pH, titratable acidity, and total soluble solids), ascorbic acid content (vitamin C), antioxidant activity, as well as microbial inactivation. Consumers' acceptance was also investigated through sensory evaluation of the attributes (appearance, texture, aroma and taste). Furthermore, shelf-life study of samples stored at 4 ± 1 °C was conducted for 15 d. The fresh-cut fruits were exposed to UV-C for 0, 15, 30, and 60 min while heat treatments were carried out at 70 °C for 0, 5, 10 and 20 min. Both UV-C and medium heat treatments resulted in no significant changes to the physicochemical attributes of both fruits. The ascorbic acid content of UV-C treated fruits was unaffected; however, medium heat treatment resulted in deterioration of ascorbic acids in both fruits. The antioxidants were enhanced with UV-C treatment which could prove invaluable to consumers. Heat treatments on the other hand resulted in decreased antioxidant activities. Microbial count in both fruits was significantly reduced by both treatments. The shelf life of the fresh-cut fruits were also successfully extended to a maximum of 15 d following treatments. As for consumers' acceptance, UV-C treated fruits were the most accepted as compared to their heat-treated counterparts. The results obtained through this study support the use of UV-C treatment for better retention of quality, effective microbial inactivation and enhancement of health promoting compounds for the benefit of consumers. © 2015 Institute of Food Technologists®

  6. The World Space Observatory Ultraviolet (WSO-UV), as a bridge to future UV astronomy

    NASA Astrophysics Data System (ADS)

    Shustov, B.; Gómez de Castro, A. I.; Sachkov, M.; Vallejo, J. C.; Marcos-Arenal, P.; Kanev, E.; Savanov, I.; Shugarov, A.; Sichevskii, S.

    2018-04-01

    Ultraviolet (UV) astronomy is a vital branch of space astronomy. Many dozens of short-term UV-experiments in space, as well as long-term observatories, have brought a very important knowledge on the physics and chemistry of the Universe during the last decades. Unfortunately, no large UV-observatories are planned to be launched by most of space agencies in the coming 10-15 years. Conversely, the large UVOIR observatories of the future will appear not earlier than in 2030s. This paper briefly describes the projects that have been proposed by various groups. We conclude that the World Space Observatory-Ultraviolet (WSO-UV) will be the only 2-m class UV telescope with capabilities similar to those of the HST for the next decade. The WSO-UV has been described in detail in previous publications, and this paper updates the main characteristics of its instruments and the current state of the whole project. It also addresses the major science topics that have been included in the core program of the WSO-UV, making this core program very relevant to the current state of the UV-astronomy. Finally, we also present here the ground segment architecture that will implement this program.

  7. The Ultraviolet Spectrograph (UVS) on Juno

    NASA Astrophysics Data System (ADS)

    Gladstone, G. R.; Persyn, S.; Eterno, J.; Slater, D. C.; Davis, M. W.; Versteeg, M. H.; Persson, K. B.; Siegmund, O. H.; Marquet, B.; Gerard, J.; Grodent, D. C.

    2008-12-01

    Juno, a NASA New Frontiers mission, plans for launch in August 2011, a 5-year cruise (including a flyby of Earth in October 2013 for a gravity boost), and 14 months around Jupiter after arriving in August 2016. The spinning (2 RPM), solar-powered Juno will study Jupiter from a highly elliptical orbit, in which the spacecraft (for about 6 hours once every 11 days) dives down over the north pole, skims the outermost atmosphere, and rises back up over the south pole. This orbit allows Juno avoid most of the intense particle radiation surrounding the planet and provides an excellent platform for investigating Jupiter's polar magnetosphere. Part of the exploration of Jupiter's polar magnetosphere will involve remote sensing of the far-ultraviolet H and H2 auroral emissions, plus gases such as methane and acetylene which add their absorption signature to the H2 emissions. This hydrocarbon absorption can be used to estimate the energy of the precipitating electrons; since more energetic electrons penetrate deeper into the atmosphere and the UV emissions they produce will show more absorption. Juno will carry an Ultraviolet Spectrograph (UVS) to make spectral images of Jupiter's aurora. UVS is a UV imaging spectrograph sensitive to both extreme and far ultraviolet emissions in the 70-205~nm range that will characterize the morphology and spectral nature of Jupiter's auroral emissions. Juno UVS consists of two separate sections: a dedicated telescope/spectrograph assembly and a vault electronics box. The telescope/spectrograph assembly contains a telescope which feeds a 0.15-m Rowland circle spectrograph. The telescope has an input aperture 40×40~mm2 and uses an off-axis parabolic primary mirror. A flat scan mirror situated at the front end of the telescope (used to target specific auroral features at up to ±30° perpendicular to the Juno spin plane) directs incoming light to the primary. The light is then focused onto the spectrograph entrance slit, which has a 'dog

  8. Inactivation of Pseudomonas aeruginosa biofilm after ultraviolet light-emitting diode treatment: a comparative study between ultraviolet C and ultraviolet B

    NASA Astrophysics Data System (ADS)

    Argyraki, Aikaterini; Markvart, Merete; Bjørndal, Lars; Bjarnsholt, Thomas; Petersen, Paul Michael

    2017-06-01

    The objective of this study was to test the inactivation efficiency of two different light-based treatments, namely ultraviolet B (UVB) and ultraviolet C (UVC) irradiation, on Pseudomonas aeruginosa biofilms at different growth stages (24, 48, and 72 h grown). In our experiments, a type of AlGaN light-emitting diodes (LEDs) was used to deliver UV irradiation on the biofilms. The effectiveness of the UVB at 296 nm and UVC at 266 nm irradiations was quantified by counting colony-forming units. The survival of less mature biofilms (24 h grown) was studied as a function of UV-radiant exposure. All treatments were performed on three different biological replicates to test reproducibility. It was shown that UVB irradiation was significantly more effective than UVC irradiation in inactivating P. aeruginosa biofilms. UVC irradiation induced insignificant inactivation on mature biofilms. The fact that the UVB at 296 nm exists in daylight and has such disinfection ability on biofilms provides perspectives for the treatment of infectious diseases.

  9. Ultraviolet (UV) disinfection of grey water: particle size effects.

    PubMed

    Winward, G P; Avery, L M; Stephenson, T; Jefferson, B

    2008-02-01

    The impact of water quality on the ultraviolet (UV) disinfection of grey water was investigated with reference to urban water reuse. Direct UV disinfection of grey water did not meet the stringent California State Title 22 criteria for unrestricted urban water reuse due to the presence of particulate material ranging from < 1 to > or = 2000 microm in size. Grey water was manipulated by settling to produce fractions of varying particle size distributions and blending was employed post-disinfection to extract particle-associated coliforms (PACs). The efficacy of UV disinfection was found to be linked to the particle size of the grey water fractions. The larger particle size fractions with a mean particle size of 262 microm and above were observed to shield more coliforms from UV light than did the smaller particles with a mean particle size below 119 microm. Up to 70% of total coliforms in the larger particle size fractions were particle-associated following a UV dose (fluence) of 260 mJ.cm(-2) and would remain undetected by standard coliform enumeration techniques. Implications for urban water reuse are discussed and recommendations made for grey water treatment to ensure removal of particle-associated indicator bacteria and pathogens prior to UV disinfection.

  10. Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp

    NASA Astrophysics Data System (ADS)

    Muramoto, Yoshihiko; Kimura, Masahiro; Nouda, Suguru

    2014-06-01

    Ultraviolet light-emitting diodes (UV-LEDs) have started replacing UV lamps. The power per LED of high-power LED products has reached 12 W (14 A), which is 100 times the values observed ten years ago. In addition, the cost of these high-power LEDs has been decreasing. In this study, we attempt to understand the technologies and potential of UV-LEDs.

  11. Ultraviolet radiation exposure from UV-transilluminators.

    PubMed

    Akbar-Khanzadeh, Farhang; Jahangir-Blourchian, Mahdi

    2005-10-01

    UV-transilluminators use ultraviolet radiation (UVR) to visualize proteins, DNA, RNA, and their precursors in a gel electrophoresis procedure. This study was initiated to evaluate workers' exposure to UVR during their use of UV-transilluminators. The levels of irradiance of UV-A, UV-B, and UV-C were determined for 29 UV-transilluminators at arbitrary measuring locations of 6, 25, 62, and 125 cm from the center of the UV-transilluminator's filter surface in the direction of the operator's head. The operators (faculty, research staff, and graduate students) worked within 62 cm of the transilluminators, with most subjects commonly working at < or =25 cm from the UV-transilluminator's filter surface. Daily exposure time ranged from 1 to 60 min. Actinic hazard (effective irradiance level of UVR) was also determined for three representative UV-transilluminators at arbitrary measuring locations of 2.5, 5, 10, 15, 20, 30, 40, and 50 cm from these sets' filter surface in the direction of the operator's head. The allowable exposure time for these instruments was less than 20 sec within 15 cm, less than 35 sec within 25 cm, and less than 2 min within 50 cm from the UV-transilluminators' filter surface. The results of this study suggest that the use of UV-transilluminators exposes operators to levels of UVR in excess of exposure guidelines. It is recommended that special safety training be provided for the affected employees and that exposure should be controlled by one or the combination of automation, substitution, isolation, posted warning signs, shielding, and/or personal protective equipment.

  12. Next step in Studying the Ultraviolet Universe: WSO-UV

    NASA Astrophysics Data System (ADS)

    Shustov, Boris M.; Sachkov, Mikhail; Gomez De Castro, Ana

    The World Space Observatory-Ultraviolet (WSO-UV) is an international space mission born as a response to the growing up demand for UV facilities by the astronomical community. In the horizon of the next 10 years, the WSO-UV will be the only 2-meters class mission in the after-HST epoch that will guarantee access to UV wavelength domain. The project is managed by an international consortium led by the Federal Space Agency (ROSCOSMOS, Russia). Here we describe the WSO-UV project with its general objectives and main features, the details and status of instrumentation that includes WUVS (spectrographs) and the ISSIS instrument (Field Camera Unit), WSO-UV ground segment, science management plan, the WSO-UV key science issues and prospects of high resolution spectroscopic studies with WSO-UV.

  13. Antioxidant responses of damiana (Turnera diffusa Willd) to exposure to artificial ultraviolet (UV) radiation in an in vitro model; part I; UV-C radiation.

    PubMed

    Soriano-Melgar, Lluvia de Abril Alexandra; Alcaraz-Meléndez, Lilia; Méndez-Rodríguez, Lía C; Puente, María Esther; Rivera-Cabrera, Fernando; Zenteno-Savín, Tania

    2014-05-01

    Ultraviolet type C (UV-C) radiation has higher energy than the UV-B radiation and has been less studied because it is completely absorbed by the ozone layer. However, artificial UV-C radiation can generate diverse modifications in the plants. Given that exposure to UV-C for short periods of time increases the antioxidant content, improving the appearance and shelf-life of products, its potential application in postharvest treatments to modify the antioxidant content of medicinal plants, such as damiana (Turnera diffusa), is novel and relevant. To determine the effects of UV-C radiation on enzymatic and non-enzymatic antioxidant defenses, as well as oxidative damage levels, in damiana (Turnera diffusa) plants in vitro. UV-C radiation decreased superoxide dismutase (SOD, EC 1.15.1.1) and total peroxidases (POX, EC 1.11.1) activities, the concentration of chlorophylls (a and b), carotenes, vitamin C, and total antioxidant capacity. UV-C radiation increased the phenolic compound levels in damiana. Loss of antioxidant defenses was higher in damiana plants exposed to higher UV-C doses and/or for longer periods. This study suggests that UV-C radiation induces oxidative stress, evidenced as increased protein carbonyls and phenolic compound content, in damiana (T. diffusa). Low dose, short exposure to UV-C stimulates phenolic compound content in damiana. Thus, controlled UV-C treatments could be used as postharvest treatment to increase phenolic compound content in damiana plants. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  14. Performance results from in-flight commissioning of the Juno Ultraviolet Spectrograph (Juno-UVS)

    NASA Astrophysics Data System (ADS)

    Greathouse, T. K.; Gladstone, G. R.; Davis, M. W.; Slater, D. C.; Versteeg, M. H.; Persson, K. B.; Walther, B. C.; Winters, G. S.; Persyn, S. C.; Eterno, J. S.

    2013-09-01

    We present a description of the Juno ultraviolet spectrograph (Juno-UVS) and results from its in-flight commissioning performed between December 5th and 13th 2011 and its first periodic maintenance between October 10th and 12th 2012. Juno-UVS is a modest power (9.0 W) ultraviolet spectrograph based on the Alice instruments now in flight aboard the European Space Agency's Rosetta spacecraft, NASA's New Horizons spacecraft, and the LAMP instrument aboard NASA's Lunar Reconnaissance Orbiter. However, unlike the other Alice spectrographs, Juno-UVS sits aboard a spin stabilized spacecraft. The Juno-UVS scan mirror allows for pointing of the slit approximately +/-30° from the spacecraft spin plane. This ability gives Juno-UVS access to half the sky at any given spacecraft orientation. The planned 2 rpm spin rate for the primary mission results in integration times per 0.2° spatial resolution element per spin of only ~17 ms. Thus, for calibration purposes, data were retrieved from many spins and then remapped and co-added to build up exposure times on bright stars to measure the effective area, spatial resolution, scan mirror pointing positions, etc. The primary job of Juno-UVS will be to characterize Jupiter's UV auroral emissions and relate them to in-situ particle measurements. The ability to point the slit will make operations more flexible, allowing Juno-UVS to observe the atmospheric footprints of magnetic field lines through which Juno flies, giving a direct connection between energetic particle measurements on the spacecraft and the far-ultraviolet emissions produced by Jupiter's atmosphere in response to those particles.

  15. Psoralen-ultraviolet A treatment with Psoralen-ultraviolet B therapy in the treatment of psoriasis.

    PubMed

    Ahmed Asim, Sadaf; Ahmed, Sitwat; Us-Sehar, Najam

    2013-05-01

    To compare the conventional psoralen-ultraviolet A treatment with psoralen-ultraviolet B therapy in the treatment of psoriasis. We studied 50 patients of plaque type psoriasis who were selected to receive either conventional psoralen-ultraviolet A or psoralen-ultraviolet B treatment. There was no significant difference between the two treatment groups in the number of patients whose skin cleared of psoriasis or the number of exposures required for clearance. Profile of side effects and disease status was also similar after three months of follow up. Psoralen-ultraviolet B treatment is as effective as conventional psoralen-ultraviolet A in the treatment of psoriasis. Further long term studies are needed to assess the safety of psoralen-ultraviolet B.

  16. The Ultraviolet Spectrograph on the Europa Mission (Europa-UVS)

    NASA Astrophysics Data System (ADS)

    Retherford, K. D.; Gladstone, R.; Greathouse, T. K.; Steffl, A.; Davis, M. W.; Feldman, P. D.; McGrath, M. A.; Roth, L.; Saur, J.; Spencer, J. R.; Stern, S. A.; Pope, S.; Freeman, M. A.; Persyn, S. C.; Araujo, M. F.; Cortinas, S. C.; Monreal, R. M.; Persson, K. B.; Trantham, B. J.; Versteeg, M. H.; Walther, B. C.

    2015-12-01

    NASA's Europa multi-flyby mission is designed to provide a diversity of measurements suited to enrich our understanding of the potential habitability of this intriguing ocean world. The Europa mission's Ultraviolet Spectrograph, Europa-UVS, is the sixth in a series of successful ultraviolet imaging spectrographs (Rosetta-Alice, New Horizons Pluto-Alice, LRO-LAMP) and, like JUICE-UVS (now under Phase B development), is largely based on the most recent of these to fly, Juno-UVS. Europa-UVS observes photons in the 55-210 nm wavelength range, at moderate spectral and spatial resolution along a 7.5° slit. Three distinct apertures send light to the off-axis telescope mirror feeding the long-slit spectrograph: i) a main entrance airglow port is used for most observations (e.g., airglow, aurora, surface mapping, and stellar occultations); ii) a high-spatial-resolution port consists of a small hole in an additional aperture door, and is used for detailed observations of bright targets; and iii) a separate solar port allows for solar occultations, viewing at a 60° offset from the nominal payload boresight. Photon event time-tagging (pixel list mode) and programmable spectral imaging (histogram mode) allow for observational flexibility and optimal science data management. As on Juno-UVS, the effects of penetrating electron radiation on electronic parts and data quality are mitigated through contiguous shielding, filtering of pulse height amplitudes, management of high-voltage settings, and careful use of radiation-hard parts. The science goals of Europa-UVS are to: 1) Determine the composition & chemistry, source & sinks, and structure & variability of Europa's atmosphere, from equator to pole; 2) Search for and characterize active plumes in terms of global distribution, structure, composition, and variability; 3) Explore the surface composition & microphysics and their relation to endogenic & exogenic processes; and 4) Investigate how energy and mass flow in the Europa

  17. Psoralen-ultraviolet A treatment with Psoralen-ultraviolet B therapy in the treatment of psoriasis

    PubMed Central

    Ahmed Asim, Sadaf; Ahmed, Sitwat; us-Sehar, Najam

    2013-01-01

    Objective: To compare the conventional psoralen-ultraviolet A treatment with psoralen-ultraviolet B therapy in the treatment of psoriasis. Methodology: We studied 50 patients of plaque type psoriasis who were selected to receive either conventional psoralen-ultraviolet A or psoralen-ultraviolet B treatment. Results: There was no significant difference between the two treatment groups in the number of patients whose skin cleared of psoriasis or the number of exposures required for clearance. Profile of side effects and disease status was also similar after three months of follow up. Conclusion: Psoralen-ultraviolet B treatment is as effective as conventional psoralen-ultraviolet A in the treatment of psoriasis. Further long term studies are needed to assess the safety of psoralen-ultraviolet B. PMID:24353623

  18. Characteristic correlation study of UV disinfection performance for ballast water treatment

    NASA Astrophysics Data System (ADS)

    Ba, Te; Li, Hongying; Osman, Hafiiz; Kang, Chang-Wei

    2016-11-01

    Characteristic correlation between ultraviolet disinfection performance and operating parameters, including ultraviolet transmittance (UVT), lamp power and water flow rate, was studied by numerical and experimental methods. A three-stage model was developed to simulate the fluid flow, UV radiation and the trajectories of microorganisms. Navier-Stokes equation with k-epsilon turbulence was solved to model the fluid flow, while discrete ordinates (DO) radiation model and discrete phase model (DPM) were used to introduce UV radiation and microorganisms trajectories into the model, respectively. The UV dose statistical distribution for the microorganisms was found to move to higher value with the increase of UVT and lamp power, but moves to lower value when the water flow rate increases. Further investigation shows that the fluence rate increases exponentially with UVT but linearly with the lamp power. The average and minimum resident time decreases linearly with the water flow rate while the maximum resident time decrease rapidly in a certain range. The current study can be used as a digital design and performance evaluation tool of the UV reactor for ballast water treatment.

  19. Role of ultraviolet (UV) disinfection in infection control and environmental cleaning.

    PubMed

    Qureshi, Zubair; Yassin, Mohamed H

    2013-06-01

    Ultraviolet (UV) radiation is capable of disinfecting surfaces, water and air. The UV technology was used for many years. However, safer and more effective delivery systems of UV radiation, make it a very useful option for disinfection. Effective disinfection of environmental surfaces is a key step in the prevention of spread of infectious agents. The traditional manual cleaning is essential in assuring adequate elimination of contamination. However, terminal cleaning is frequently suboptimal or unpredictable in many circumstances. UV-C radiation is an adjunctive disinfectant new technology that could kill a wide array of microorganisms including both vegetative and spore forming pathogens. The technology is getting more affordable and has produced consistent reproducible significant reduction of bacterial contamination.

  20. Development of Ultraviolet (UV) Radiation Protective Fabric Using Combined Electrospinning and Electrospraying Technique

    NASA Astrophysics Data System (ADS)

    Sinha, Mukesh Kumar; Das, B. R.; Kumar, Kamal; Kishore, Brij; Prasad, N. Eswara

    2017-06-01

    The article reports a novel technique for functionization of nanoweb to develop ultraviolet (UV) radiation protective fabric. UV radiation protection effect is produced by combination of electrospinning and electrospraying technique. A nanofibrous web of polyvinylidene difluoride (PVDF) coated on polypropylene nonwoven fabric is produced by latest nanospider technology. Subsequently, web is functionalized by titanium dioxide (TiO2). The developed web is characterized for evaluation of surface morphology and other functional properties; mechanical, chemical, crystalline and thermal. An optimal (judicious) nanofibre spinning condition is achieved and established. The produced web is uniformly coated by defect free functional nanofibres in a continuous form of useable textile structural membrane for ultraviolet (UV) protective clothing. This research initiative succeeds in preparation and optimization of various nanowebs for UV protection. Field Emission Scanning Electron Microscope (FESEM) result reveals that PVDF webs photo-degradative behavior is non-accelerated, as compared to normal polymeric grade fibres. Functionalization with TiO2 has enhanced the photo-stability of webs. The ultraviolet protection factor of functionalized and non-functionalized nanowebs empirically evaluated to be 65 and 24 respectively. The developed coated layer could be exploited for developing various defence, para-military and civilian UV protective light weight clothing (tent, covers and shelter segments, combat suit, snow bound camouflaging nets). This research therefore, is conducted in an attempt to develop a scientific understanding of PVDF fibre coated webs for photo-degradation and applications for defence protective textiles. This technological research in laboratory scale could be translated into bulk productionization.

  1. ULTRAVIOLET DISINFECTION STUDIES WITH CCL LISTED MICROORGANISMS

    EPA Science Inventory

    Resistance to ultraviolet (UV) disinfection is an essential aspect regarding all microbial groups listed on the CCL. The U.S. drinking water industry is interested in including UV light treatment as an amendment to conventional treatment for disinfecting water supplies. UV disi...

  2. Nonthermal combined ultraviolet and vacuum-ultraviolet curing process for organosilicate dielectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, H.; Guo, X.; Pei, D.

    2016-06-13

    Porous SiCOH films are of great interest in semiconductor fabrication due to their low-dielectric constant properties. Post-deposition treatments using ultraviolet (UV) light on organosilicate thin films are required to decompose labile pore generators (porogens) and to ensure optimum network formation to improve the electrical and mechanical properties of low-k dielectrics. The goal of this work is to choose the best vacuum-ultraviolet photon energy in conjunction with vacuum ultraviolet (VUV) photons without the need for heating the dielectric to identify those wavelengths that will have the most beneficial effect on improving the dielectric properties and minimizing damage. VUV irradiation between 8.3more » and 8.9 eV was found to increase the hardness and elastic modulus of low-k dielectrics at room temperature. Combined with UV exposures of 6.2 eV, it was found that this “UV/VUV curing” process is improved compared with current UV curing. We show that UV/VUV curing can overcome drawbacks of UV curing and improve the properties of dielectrics more efficiently without the need for high-temperature heating of the dielectric.« less

  3. Effects of ultraviolet (UV) irradiation in air and under vacuum on low-k dielectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, F. A.; Nguyen, H. M.; Shohet, J. L., E-mail: shohet@engr.wisc.edu

    This work addresses the effect of ultraviolet radiation of wavelengths longer than 250 nm on Si-CH{sub 3} bonds in porous low-k dielectrics. Porous low-k films (k = 2.3) were exposed to 4.9 eV (254 nm) ultraviolet (UV) radiation in both air and vacuum for one hour. Using Fourier Transform Infrared (FTIR) spectroscopy, the chemical structures of the dielectric films were analyzed before and after the UV exposure. UV irradiation in air led to Si-CH{sub 3} bond depletion in the low-k material and made the films hydrophilic. However, no change in Si-CH{sub 3} bond concentration was observed when the same samplesmore » were exposed to UV under vacuum with a similar fluence. These results indicate that UV exposures in vacuum with wavelengths longer than ∼250 nm do not result in Si-CH{sub 3} depletion in low-k films. However, if the irradiation takes place in air, the UV irradiation removes Si-CH{sub 3} although direct photolysis of air species does not occur above ∼242 nm. We propose that photons along with molecular oxygen and, water, synergistically demethylate the low-k films.« less

  4. Juno Ultraviolet Spectrograph (Juno-UVS) Observations of Jupiter during Approach

    NASA Astrophysics Data System (ADS)

    Gladstone, Randy; Versteeg, Maarten; Greathouse, Thomas K.; Hue, Vincent; Davis, Michael; Gerard, Jean-Claude; Grodent, Denis; Bonfond, Bertrand

    2016-10-01

    We present the initial results from Juno Ultraviolet Spectrograph (Juno-UVS) observations of Jupiter obtained during approach in June 2016. Juno-UVS is an imaging spectrograph with a bandpass of 70<λ<205 nm. This wavelength range includes all important ultraviolet (UV) emissions from the H2 bands and the H Lyman series which are produced in Jupiter's auroras, and also the absorption signatures of aurorally-produced hydrocarbons. The Juno-UVS instrument telescope has a 4 x 4 cm2 input aperture and uses an off-axis parabolic primary mirror. A flat scan mirror situated near the entrance of the telescope is used to observe at up to ±30° perpendicular to the Juno spin plane. The light is focused onto the spectrograph entrance slit, which has a "dog-bone" shape 7.2° long, in three sections of 0.2°, 0.025°, and 0.2° width (as projected onto the sky). Light entering the slit is dispersed by a toroidal grating which focuses UV light onto a curved microchannel plate (MCP) cross delay line (XDL) detector with a solar blind UV-sensitive CsI photocathode. Tantalum surrounds the spectrograph assembly to shield the detector and its electronics from high-energy electrons. All other electronics are located in Juno's spacecraft vault, including redundant low-voltage and high-voltage power supplies, command and data handling electronics, heater/actuator electronics, scan mirror electronics, and event processing electronics. The purpose of Juno-UVS is to remotely sense Jupiter's auroral morphology and brightness to provide context for in situ measurements by Juno's particle instruments. Prior to Jupiter Orbit Insertion (JOI) on July 5, Juno approach observations provide a rare opportunity to correlate local solar wind conditions with Jovian auroral emissions. Some of Jupiter's auroral emissions (e.g., polar emissions) may be controlled or at least affected by the solar wind. Here we compare synoptic Juno-UVS observations of Jupiter's auroral emissions (~40 minutes per hour

  5. Impact of ultraviolet radiation treatments on the quality of freshly prepared tomato (Solanum lycopersicum) juice.

    PubMed

    Bhat, Rajeev

    2016-12-15

    Impact of ultraviolet (UV-C) radiation treatments (0, 15, 30 and 60min) on freshly extracted tomato juice quality (physicochemical properties, antioxidant activity and microbial load) was evaluated. On exposure to UV-C, level of water activity, total soluble solids, and titratable acidity exhibited non-significant increase up to 30min of exposure time. Regarding colour analysis, L∗ value significantly increased with subsequent decrease in a∗ and b∗ values post UV-C treatments. Clarity, DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity and total phenolics content significantly increased, whereas ascorbic acid level significantly reduced at 60min of UV-C exposure time. So also, lycopene content exhibited a non-significant decrease after UV-C treatment. Microbial studies showed reduction in total plate count and total mould counts post UV-C treatment. Overall, UV-C treatment being a physical, non-thermal method of food preservation holds the ability to improve or preserve vital quality parameters in freshly prepared tomato juices, and henceforth possesses high scope for commercial exploration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The Ultraviolet Spectrograph (UVS) on ESA’s JUICE Mission

    NASA Astrophysics Data System (ADS)

    Gladstone, Randy; Retherford, K.; Steffl, A.; Eterno, J.; Davis, M.; Versteeg, M.; Greathouse, T.; Araujo, M.; Walther, B.; Persson, K.; Persyn, S.; Dirks, G.; McGrath, M.; Feldman, P.; Bagenal, F.; Spencer, J.; Schindhelm, E.; Fletcher, L.

    2013-10-01

    The Jupiter Icy Moons Explorer (JUICE) was selected in May 2012 as the first L-class mission of ESA’s Cosmic Vision Program. JUICE will launch in 2022 on a 7.6-year journey to the Jovian system, including a Venus and multiple Earth gravity assists, before entering Jupiter orbit in January 2030. JUICE will study the entire Jovian system for 3.5 years, concentrating on Europa, Ganymede, and Callisto, with the last 10 months spent in Ganymede orbit. The Ultraviolet Spectrograph (UVS) on JUICE was jointly selected by NASA and ESA as part of its ~130 kg payload of 11 scientific instruments. UVS is the fifth in a series of successful ultraviolet imaging spectrographs (Rosetta-Alice, New Horizons Pluto-Alice, LRO-LAMP) and is largely based on the most recent of these, Juno-UVS. It observes photons in the 55-210 nm wavelength range, at moderate spectral and spatial resolution along a 7.5-degree slit. A main entrance “airglow port” (AP) is used for most observations (e.g., airglow, aurora, surface mapping, and stellar occultations), while a separate “solar port” (SP) allows for solar occultations. Another aperture door, with a small hole through the centre, is used as a “high-spatial-resolution port” (HP) for detailed observations of bright targets. Time-tagging (pixel list mode) and programmable spectral imaging (histogram mode) allow for observational flexibility and optimal data management. As on Juno-UVS, the effects of penetrating electron radiation on electronic parts and data quality are substantially mitigated through contiguous shielding, filtering of pulse height amplitudes, management of high voltage settings, and careful use of radiation-hard, flight-tested parts. The science goals of UVS are to: 1) explore the atmospheres, plasma interactions, and surfaces of the Galilean satellites; 2) determine the dynamics, chemistry, and vertical structure of Jupiter’s upper atmosphere from equator to pole; and 3) investigate the Jupiter-Io connection by

  7. AlGaN Ultraviolet Detectors for Dual-Band UV Detection

    NASA Technical Reports Server (NTRS)

    Miko, Laddawan; Franz, David; Stahle, Carl M.; Yan, Feng; Guan, Bing

    2010-01-01

    This innovation comprises technology that has the ability to measure at least two ultraviolet (UV) bands using one detector without relying on any external optical filters. This allows users to build a miniature UVA and UVB monitor, as well as to develop compact, multicolor imaging technologies for flame temperature sensing, air-quality control, and terrestrial/counter-camouflage/biosensing applications.

  8. 1Mbps NLOS solar-blind ultraviolet communication system based on UV-LED array

    NASA Astrophysics Data System (ADS)

    Sun, Zhaotian; Zhang, Lijun; Li, Ping'an; Qin, Yu; Bai, Tingzhu

    2018-01-01

    We proposed and demonstrated a high data rate ultraviolet communication system based on a 266nm UV LED array with 50mW luminous power. The emitting source is driven by a three outputs constant-current control circuit, whose driving speed is up to 2Mbps. At the receiving side, in order to achieve the amplification for high-speed signal, a two-stage differential preamplifier is designed to make I-V conversion. The voltage-current gain is up to 140dB and bandwidth is 1.9MHz. An experiment is conducted to test the performance of the UV communication system. The effects of elevation angles and transmission distance are analyzed. It is shown that the ultraviolet communication system has high data rate of up to 921.6kbps and bit error rate of less than 10-7 in 150m, which can beat the best record created by UV-LED communication system in terms of the transmission rate.

  9. Comparison between UV and VUV photolysis for the pre- and post-treatment of coking wastewater.

    PubMed

    Xing, Rui; Zheng, Zhongyuan; Wen, Donghui

    2015-03-01

    In this study, ultraviolet (UV) and vacuum ultraviolet (VUV) photolysis were investigated for the pre-treatment and post-treatment of coking wastewater. First, 6-fold diluted raw coking wastewater was irradiated by UV and VUV. It was found that 15.9%-35.4% total organic carbon (TOC) was removed after 24 hr irradiation. The irradiated effluent could be degraded by the acclimated activated sludge. Even though the VUV photolysis removed more chemical oxygen demand (COD) than UV, the UV-irradiated effluent demonstrated better biodegradability. After 4 hr UV irradiation, the biological oxygen demand BOD5/COD ratio of irradiated coking wastewater increased from 0.163 to 0.224, and its toxicity decreased to the greatest extent. Second, the biologically treated coking wastewater was irradiated by UV and VUV. Both of them were able to remove 37%-47% TOC within 8 hr irradiation. Compared to UV, VUV photolysis could significantly improve the transparency of the bio-treated effluent. VUV also reduced 7% more ammonia nitrogen (NH4+-N), 17% more nitrite nitrogen (NO2--N), and 18% more total nitrogen (TN) than UV, producing 35% less nitrite nitrogen (NO3--N) as a result. In conclusion, UV irradiation was better in improving the biodegradability of coking wastewater, while VUV was more effective at photolyzing the residual organic compounds and inorganic N-species in the bio-treated effluent. Copyright © 2015. Published by Elsevier B.V.

  10. Ultraviolet (UV) Oxidation Final Report CRADA No. TC-0350-92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, F.; Oster, S.

    This CRADA was a collaborative agreement between the above parties to develop a more efficient ultraviolet (UV) oxidation process than the existing commercial processes. The proposed new process would be capable of completely mineralizing the organic constiruents in aqueous mixedwastes (wastes that contain both radioactive and organic constiruents) and converting them into ordinary radioactive wastes, which would mean cheaper and easier disposal.

  11. UV-POSIT: Web-Based Tools for Rapid and Facile Structural Interpretation of Ultraviolet Photodissociation (UVPD) Mass Spectra

    NASA Astrophysics Data System (ADS)

    Rosenberg, Jake; Parker, W. Ryan; Cammarata, Michael B.; Brodbelt, Jennifer S.

    2018-04-01

    UV-POSIT (Ultraviolet Photodissociation Online Structure Interrogation Tools) is a suite of web-based tools designed to facilitate the rapid interpretation of data from native mass spectrometry experiments making use of 193 nm ultraviolet photodissociation (UVPD). The suite includes four separate utilities which assist in the calculation of fragment ion abundances as a function of backbone cleavage sites and sequence position; the localization of charge sites in intact proteins; the calculation of hydrogen elimination propensity for a-type fragment ions; and mass-offset searching of UVPD spectra to identify unknown modifications and assess false positive fragment identifications. UV-POSIT is implemented as a Python/Flask web application hosted at http://uv-posit.cm.utexas.edu. UV-POSIT is available under the MIT license, and the source code is available at https://github.com/jarosenb/UV_POSIT. [Figure not available: see fulltext.

  12. UV-POSIT: Web-Based Tools for Rapid and Facile Structural Interpretation of Ultraviolet Photodissociation (UVPD) Mass Spectra.

    PubMed

    Rosenberg, Jake; Parker, W Ryan; Cammarata, Michael B; Brodbelt, Jennifer S

    2018-06-01

    UV-POSIT (Ultraviolet Photodissociation Online Structure Interrogation Tools) is a suite of web-based tools designed to facilitate the rapid interpretation of data from native mass spectrometry experiments making use of 193 nm ultraviolet photodissociation (UVPD). The suite includes four separate utilities which assist in the calculation of fragment ion abundances as a function of backbone cleavage sites and sequence position; the localization of charge sites in intact proteins; the calculation of hydrogen elimination propensity for a-type fragment ions; and mass-offset searching of UVPD spectra to identify unknown modifications and assess false positive fragment identifications. UV-POSIT is implemented as a Python/Flask web application hosted at http://uv-posit.cm.utexas.edu . UV-POSIT is available under the MIT license, and the source code is available at https://github.com/jarosenb/UV_POSIT . Graphical Abstract.

  13. Performance Results from In-Flight Commissioning of the Juno Ultraviolet Spectrograph (Juno-UVS)

    NASA Astrophysics Data System (ADS)

    Greathouse, Thomas K.; Gladstone, G. R.; Davis, M. W.; Slater, D. C.; Versteeg, M. H.; Persson, K. B.; Winters, G. S.; Persyn, S. C.; Eterno, J. S.

    2012-10-01

    We present a description of the Juno ultraviolet spectrograph (Juno-UVS), results from the successful in-flight commissioning performed between December 5th and 13th 2011, and some predictions of future Jupiter observations. Juno-UVS is a modest power (9.0 W) ultraviolet spectrograph based on the Alice instruments now in flight aboard the European Space Agency’s Rosetta spacecraft, NASA’s New Horizons spacecraft, and the LAMP instrument aboard NASA’s Lunar Reconnaissance Orbiter. However, unlike the other Alice spectrographs, Juno-UVS sits aboard a rotationally stabilized spacecraft. The planned 2 rpm rotation rate for the primary mission results in integration times per spatial resolution element per spin of only 17 ms. Thus, data was retrieved from many spins and then remapped and co-added to build up integration times on bright stars to measure the effective area, spatial resolution, map out scan mirror pointing positions, etc. The Juno-UVS scan mirror allows for pointing of the slit approximately ±30° from the spacecraft spin plane. This ability gives Juno-UVS access to half the sky at any given spacecraft orientation. We will describe our process for solving for the pointing of the scan mirror relative to the Juno spacecraft and present our initial half sky survey of UV bright stars complete with constellation overlays. The primary job of Juno-UVS will be to characterize Jupiter’s UV auroral emissions and relate them to in situ particle measurements. The ability to point the slit will facilitate these measurements, allowing Juno-UVS to observe the surface positions of magnetic field lines Juno is flying through giving a direct connection between the particle measurements on the spacecraft to the observed reaction of Jupiter’s atmosphere to those particles. Finally, we will describe planned observations to be made during Earth flyby in October 2013 that will complete the in-flight characterization.

  14. Long-term lithium-ion battery performance improvement via ultraviolet light treatment of the graphite anode

    DOE PAGES

    An, Seong Jin; Li, Jianlin; Sheng, Yangping; ...

    2016-01-01

    Effects of ultraviolet (UV) light on dried graphite anodes were investigated in terms of the cycle life of lithium ion batteries. The time variations for the UV treatment were 0 (no treatment), 20, 40, and 60 minutes. UV-light-treated graphite anodes were assembled for cycle life tests in pouch cells with pristine Li 1.02Ni 0.50Mn 0.29Co 0.19O 2 (NMC 532) cathodes. UV treatment for 40 minutes resulted in the highest capacity retention and the lowest resistance after the cycle life testing. X-ray photoelectron spectroscopy (XPS) and contact angle measurements on the graphite anodes showed changes in surface chemistry and wetting aftermore » the UV treatment. XPS also showed increases in solvent products and decreases in salt products on the SEI surface when UV-treated anodes were used. In conclusion, the thickness of the surface films and their compositions on the anodes and cathodes were also estimated using survey scans and snapshots from XPS depth profiles.« less

  15. Effect of ultraviolet light irradiation and sandblasting treatment on bond strengths between polyamide and chemical-cured resin.

    PubMed

    Asakawa, Yuya; Takahashi, Hidekazu; Iwasaki, Naohiko; Kobayashi, Masahiro

    2014-01-01

    The aim of this study was to evaluate the effects of ultraviolet light (UV) irradiation and sandblasting treatment on the shear bond strength between polyamide and chemical-cured resin. Three types of commercial polyamides were treated using UV irradiation, sandblasting treatment, and a combining sandblasting and UV irradiation. The shear bond strength was measured and analyzed using the Kruskal-Wallis test (α=0.05). Comparing shear bond strengths without surface treatment, from 4.1 to 5.7 MPa, the UV irradiation significantly increased the shear bond strengths except for Valplast, whose shear bond strengths ranged from 5.2 to 9.3 MPa. The sandblasting treatment also significantly increased the shear bond strengths (8.0 to 11.4 MPa). The combining sandblasting and UV irradiation significantly increased the shear bond strengths (15.2 to 18.3 MPa) comparing without surface treatment. This combined treatment was considered the most effective at improving the shear bond strength between polyamide and chemical-cured resin.

  16. Occupant UV Exposure Measurements for Upper-Room Ultraviolet Germicidal Irradiation

    PubMed Central

    Milonova, Sonya; Rudnick, Stephen; McDevitt, James; Nardell, Edward

    2016-01-01

    The threshold limit value (TLV) guideline for ultraviolet (UV) radiation specifies that irradiance measurements to ensure occupant safety be taken over an angle of 80° at the sensor. The purpose of this study was to evaluate the effect of an 80° field of view (FOV) tube on lower room UV-C irradiation measurements. Measurements were made in an experimental chamber at a height of 1.73 m with and without an FOV tube. The FOV tube reduced the lower room irradiance readings by 18-34%, a statistically significant reduction compared to the bare sensor. An 80° FOV tube should be used for lower room irradiance measurements to comply with the TLV guideline. The resulting lower readings would allow more UV-C radiation in the upper room without compromising occupant safety. More UV-C radiation in the upper room could increase efficacy of UVGI systems for reducing transmission of airborne infectious diseases. In addition, recommendations are made to standardize lower room irradiance measurement techniques. PMID:27038734

  17. Evaluation of Combined Peracetic acid and UV treatment for ...

    EPA Pesticide Factsheets

    The current study evaluates the effectiveness of the combined application of Peracetic acid and ultraviolet radiation as alternative disinfectant agents to the traditional chlorination of wastewater effluents. Various pathogens (E. coli, enterococci and fecal coliforms) were evaluated in the study. Four experiments were conducted using low to high PAA levels and UV dosages. E. coli and enterococci were resistant to low to moderate PAA dosage (0.5- 1 mg/L). These microbes can be removed effectively at high PAA dosage (2.5 mg/L) with 30 min contact time. Fecal coliforms were completely inactivated even at a low PAA dose of 0.7 mg/L. E. coli was more susceptible to UV disinfection than enterococci at low UV dosages. Enterococci required at least 40 mJ/cm2 for 2.5 log inactivation. In combined PAA + UV treatment, low UV intensities between 7 – 40 mJ/cm2 showed poor disinfection performance at a low PAA concentration of 1.5 mg/L. High UV intensities of 120 and 60 mJ/cm2 inactivated all the pathogens to below detection levels even at low to moderate PAA (0.7 mg/L and 1 mg/L) pretreatment concentration. Combined PAA + UV treatment at 1 mg/L (for 15 and 30 min contact time) + 120 and 60 mJ/cm2 did not show any regrowth of microbes, whereas PAA only disinfection with 15 min contact time showed regrowth of enterococci and fecal coliforms. UV only disinfection showed E. coli regrowth. • This pilot scale study was designed for providing necessary parameter optimization

  18. Polycyclic aromatic hydrocarbons (PAHs) skin permeation rates change with simultaneous exposures to solar ultraviolet radiation (UV-S).

    PubMed

    Hopf, Nancy B; Spring, Philipp; Hirt-Burri, Nathalie; Jimenez, Silvia; Sutter, Benjamin; Vernez, David; Berthet, Aurelie

    2018-05-01

    Road construction workers are simultaneously exposed to two carcinogens; solar ultraviolet (UV-S) radiation and polycyclic aromatic hydrocarbons (PAHs) in bitumen emissions. The combined exposure may lead to photogenotoxicity and enhanced PAH skin permeation rates. Skin permeation rates (J) for selected PAHs in a mixture (PAH-mix) or in bitumen fume condensate (BFC) with and without UV-S co-exposures were measured with in vitro flow-through diffusion cells mounted with human viable skin and results compared. Possible biomarkers were explored. Js were greater with UV-S for naphthalene, anthracene, and pyrene in BFC (0.08-0.1 ng/cm 2 /h) compared to without (0.02-0.26 ng/cm 2 /h). This was true for anthracene, pyrene, and chrysene in the PAH-mix. Naphthalene and benzo(a)pyrene (BaP) in the PAH-mix had greater Js without (0.97-13.01 ng/cm 2 /h) compared to with UV-S (0.40-6.35 ng/cm 2 /h). Time until permeation (T lags ) in the PAH-mix were generally shorter compared to the BFC, and they ranged from 1 to 13 h. The vehicle matrix could potentially be the reason for this discrepancy as BFC contains additional not identified substances. Qualitative interpretation of p53 suggested a dose-response with UV-S, and somewhat with the co-exposures. MMP1, p65 and cKIT were not exploitable. Although not statistically different, PAHs permeate human viable skin faster with simultaneous exposures to UV. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Integrated chemical and toxicological investigation of UV-chlorine/chloramine drinking water treatment.

    PubMed

    Lyon, Bonnie A; Milsk, Rebecca Y; DeAngelo, Anthony B; Simmons, Jane Ellen; Moyer, Mary P; Weinberg, Howard S

    2014-06-17

    As the use of alternative drinking water treatment increases, it is important to understand potential public health implications associated with these processes. The objective of this study was to evaluate the formation of disinfection byproducts (DBPs) and cytotoxicity of natural organic matter (NOM) concentrates treated with chlorine, chloramine, and medium pressure ultraviolet (UV) irradiation followed by chlorine or chloramine, with and without nitrate or iodide spiking. The use of concentrated NOM conserved volatile DBPs and allowed for direct analysis of the treated water. Treatment with UV prior to chlorine in ambient (unspiked) samples did not affect cytotoxicity as measured using an in vitro normal human colon cell (NCM460) assay, compared to chlorination alone when toxicity is expressed on the basis of dissolved organic carbon (DOC). Nitrate-spiked UV+chlorine treatment produced greater cytotoxicity than nitrate-spiked chlorine alone or ambient UV+chlorine samples, on both a DOC and total organic halogen basis. Samples treated with UV+chloramine were more cytotoxic than those treated with only chloramine using either dose metric. This study demonstrated the combination of cytotoxicity and DBP measurements for process evaluation in drinking water treatment. The results highlight the importance of dose metric when considering the relative toxicity of complex DBP mixtures formed under different disinfection scenarios.

  20. Ultraviolet (UV) Disinfection for Drinking Water Systems

    EPA Science Inventory

    UV disinfection is an effective process for inactivating many microbial pathogens in water with potential to serve as stand-alone treatment or in combination with other disinfectants. USEPA provided guidance on the validation of UV reactors nearly a decade ago. Since then, lesson...

  1. Monitoring ultraviolet (UV) radiation inactivation of Cronobacter sakazakii in dry infant formula using Fourier transform infrared spectroscopy.

    PubMed

    Liu, Qian; Lu, Xiaonan; Swanson, Barry G; Rasco, Barbara A; Kang, Dong-Hyun

    2012-01-01

    Cronobacter sakazakii is an opportunistic pathogen associated with dry infant formula presenting a high risk to low birth weight neonates. The inactivation of C. sakazakii in dry infant formula by ultraviolet (UV) radiation alone and combined with hot water treatment at temperatures of 55, 60, and 65 °C were applied in this study. UV radiation with doses in a range from 12.1 ± 0.30 kJ/m² to 72.8 ± 1.83 kJ/m² at room temperature demonstrated significant inactivation of C. sakazakii in dry infant formula (P < 0.05). UV radiation combining 60 °C hot water treatment increased inactivation of C. sakazakii cells significantly (P < 0.05) in reconstituted infant formula. Significant effects of UV radiation on C. sakazakii inactivation kinetics (D value) were not observed in infant formula reconstituted in 55 and 65 °C water (P > 0.05). The inactivation mechanism was investigated using vibrational spectroscopy. Infrared spectroscopy detected significant stretching mode changes of macromolecules on the basis of spectral features, such as DNA, proteins, and lipids. Minor changes on cell membrane composition of C. sakazakii under UV radiation could be accurately and correctly monitored by infrared spectroscopy coupled with 2nd derivative transformation and principal component analysis. © 2011 Institute of Food Technologists®

  2. Degradation of chloramphenicol by UV/chlorine treatment: Kinetics, mechanism and enhanced formation of halonitromethanes.

    PubMed

    Dong, Huiyu; Qiang, Zhimin; Hu, Jun; Qu, Jiuhui

    2017-09-15

    Ultraviolet (UV)/chlorine process is considered as an emerging advanced oxidation process for the degradation of micropollutants. This study investigated the degradation of chloramphenicol (CAP) and formation of disinfection by-products (DBPs) during the UV/chlorine treatment. It was found that CAP degradation was enhanced by combined UV/chlorine treatment compared to that of UV and chlorination treatment alone. The pseudo-first-order rate constant of the UV/chlorine process at pH 7.0 reached 0.016 s -1 , which was 10.0 and 2.0 folds that observed from UV and chlorination alone, respectively. The enhancement can be attributed to the formation of diverse radicals (HO and reactive chlorine species (RCSs)), and the contribution of RCSs maintained more stable than that of HO at pH 5.5-8.5. Meanwhile, enhanced DBPs formation during the UV/chlorine treatment was observed. Both the simultaneous formation and 24-h halonitromethanes formation potential (HNMsFP) were positively correlated with the UV/chlorine treatment time. Although the simultaneous trichloronitromethane (TCNM) formation decreased with the prolonged UV irradiation, TCNM dominated the formation of HNMs after 24 h (>97.0%). According to structural analysis of transformation by-products, both the accelerated CAP degradation and enhanced HNMs formation steps were proposed. Overall, the formation of diverse radicals during the UV/chlorine treatment accelerated the degradation of CAP, while also enhanced the formation of DBPs simultaneously, indicating the need for DBPs evaluation before the application of combined UV/chlorine process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Ultraviolet absorbing compounds provide a rapid response mechanism for UV protection in some reef fish.

    PubMed

    Braun, C; Reef, R; Siebeck, U E

    2016-07-01

    The external mucus surface of reef fish contains ultraviolet absorbing compounds (UVAC), most prominently Mycosporine-like Amino Acids (MAAs). MAAs in the external mucus of reef fish are thought to act as sunscreens by preventing the damaging effects of ultraviolet radiation (UVR), however, direct evidence for their protective role has been missing. We tested the protective function of UVAC's by exposing fish with naturally low, Pomacentrus amboinensis, and high, Thalassoma lunare, mucus absorption properties to a high dose of UVR (UVB: 13.4W∗m(-2), UVA: 6.1W∗m(-2)) and measuring the resulting DNA damage in the form of cyclobutane pyrimidine dimers (CPDs). For both species, the amount of UV induced DNA damage sustained following the exposure to a 1h pulse of high UVR was negatively correlated with mucus absorbance, a proxy for MAA concentration. Furthermore, a rapid and significant increase in UVAC concentration was observed in P. amboinensis following UV exposure, directly after capture and after ten days in captivity. No such increase was observed in T. lunare, which maintained relatively high levels of UV absorbance at all times. P. amboinensis, in contrast to T. lunare, uses UV communication and thus must maintain UV transparent mucus to be able to display its UV patterns. The ability to rapidly alter the transparency of mucus could be an important adaptation in the trade off between protection from harmful UVR and UV communication. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Ultraviolet protective properties of branded and unbranded sunglasses available in the Indian market in UV phototherapy chambers.

    PubMed

    Dongre, Atul M; Pai, Gitanjali G; Khopkar, Uday S

    2007-01-01

    Patients receiving phototherapy for various dermatoses are at increased risk of eye damage due to ultraviolet (UV) rays. They are prescribed UV protective sunglasses by dermatologists but their exact protecting effects are not known. To study the ultraviolet protective properties of branded and unbranded UV protective sunglasses available in the Indian market, in UV phototherapy chambers. Sixteen different branded and unbranded UV protective sunglasses were collected from two opticians in Mumbai. Baseline irradiance of the UV chamber was calculated by exposing the photosensitive probe of UV photometer in the chamber. Then, the photosensitive probe of the UV photometer was covered with the UV protective glass to be studied and irradiance was noted. Such readings were taken for each of the UV protective sunglasses. The percentage reduction in the UV rays' penetration of different UV protective sunglasses was calculated. Thirteen sunglasses provided > 80% reduction in UVA rays penetration, of which four were branded (out of the four branded studied) and nine were unbranded (out of the 12 unbranded studied). More than 70% reduction in UVB penetration was provided by 12 sunglasses, which included 10 unbranded and two branded sunglasses. All branded sunglasses provided good protection against UVA penetration, but UVB protection provided by both branded and unbranded sunglasses was not satisfactory. A few unbranded sunglasses had poor efficacy for UVA and UVB spectra; one branded glass had poor efficacy for protection against the UVB spectrum. The efficacy of sunglasses used for phototherapy should be assessed before use.

  5. Ultraviolet (UV)-reflective paint with ultraviolet germicidal irradiation (UVGI) improves decontamination of nosocomial bacteria on hospital room surfaces.

    PubMed

    Jelden, Katelyn C; Gibbs, Shawn G; Smith, Philip W; Hewlett, Angela L; Iwen, Peter C; Schmid, Kendra K; Lowe, John J

    2017-06-01

    An ultraviolet germicidal irradiation (UVGI) generator (the TORCH, ClorDiSys Solutions, Inc.) was used to compare the disinfection of surface coupons (plastic from a bedrail, stainless steel, and chrome-plated light switch cover) in a hospital room with walls coated with ultraviolet (UV)-reflective paint (Lumacept) or standard paint. Each surface coupon was inoculated with methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococcus faecalis (VRE), placed at 6 different sites within a hospital room coated with UV-reflective paint or standard paint, and treated by 10 min UVC exposure (UVC dose of 0-688 mJ/cm 2 between sites with standard paint and 0-553 mJ/cm 2 with UV-reflective paint) in 8 total trials. Aggregated MRSA concentrations on plastic bedrail surface coupons were reduced on average by 3.0 log 10 (1.8 log 10 Geometric Standard Deviation [GSD]) with standard paint and 4.3 log 10 (1.3 log 10 GSD) with UV-reflective paint (p = 0.0005) with no significant reduction differences between paints on stainless steel and chrome. Average VRE concentrations were reduced by ≥4.9 log 10 (<1.2 log 10 GSD) on all surface types with UV-reflective paint and ≤4.1 log 10 (<1.7 log 10 GSD) with standard paint (p < 0.05). At 5 aggregated sites directly exposed to UVC light, MRSA concentrations on average were reduced by 5.2 log 10 (1.4 log 10 GSD) with standard paint and 5.1 log 10 (1.2 log 10 GSD) with UV-reflective paint (p = 0.017) and VRE by 4.4 log 10 (1.4 log 10 GSD) with standard paint and 5.3 log 10 (1.1 log 10 GSD) with UV-reflective paint (p < 0.0001). At one indirectly exposed site on the opposite side of the hospital bed from the UVGI generator, MRSA concentrations on average were reduced by 1.3 log 10 (1.7 log 10 GSD) with standard paint and 4.7 log 10 (1.3 log 10 GSD) with UV-reflective paint (p < 0.0001) and VRE by 1.2 log 10 (1.5 log 10 GSD) with standard paint and 4.6 log 10 (1.1 log 10 GSD) with UV-reflective paint (p < 0

  6. Some Thoughts on Teaching about Ultraviolet Radiation

    ERIC Educational Resources Information Center

    Thumm, Walter

    1975-01-01

    Describes the major obstacles in the study of ultraviolet radiation (UV). Presents the beneficial aspects of UV such as vitamin O production, sterilization, clinical treatment of diseases and wounds, and the marking of patients for radiotherapy. Warns of the dangers of UV exposure such as skin cancer and early aging. (GS)

  7. Ultraviolet-Optical Space Astronomy Beyond HST Conference (Origins Conference and UV-Optical Working Group Support)

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Morse, Jon

    2001-01-01

    This grant supported three major activities, from 1997-2001. (1) Origins Conference. The funds from this grant were used, initially, to support a Conference on "Origins", held May 19-23, 1997 at Estes Park, CO and attended by a wide range of astronomers, planetary scientists, and astrobiologists. The scientific proceedings of this meeting were published in 1998 by the Astronomical Society of the Pacific: "Origins" (1998) "Proceedings of the International Origins Conference". (2) UV-Optical Space Astronomy. Conference Additional funds provided by the NASA Office of Space Science were used to support a meeting held August 5-7, 1998 at Boulder, CO and attended by ultraviolet and optical astronomers and instrumentalists interested in a UV-O successor to the Hubble Space Telescope. The scientific proceedings of this meeting were published in 1999: "Ultraviolet-Optical Space Astronomy Beyond the Hubble Space Telescope" (1999), NASA provided funds and commissioned the UVOWG (Ultraviolet-Optical Working Group), charged with recommending a set of fundamental scientific problems and new space missions in the UV/Optical wavelength bands. The working group was chaired by J. M. Shull, and included ten other astrophysicists. Their report was published as a "White Paper" (Nov. 1999) entitled "The Emergence of the Modern Universe: Tracing the Cosmic Web" available. The results of this report were used in the NASA Strategic Planning ("Roadmap") exercise and by the NRC Astronomy/Astrophysics Decade Committee.

  8. DETECTION OF INFECTIOUS ADENOVIRUS IN TERTIARY TREATED AND UV DISINFECTED WASTEWATER DURING A UV DISINFECTION PILOT STUDY

    EPA Science Inventory

    An infectious enteric adenovirus was isolated from urban wastewater receiving tertiary treatment and ultraviolet (UV) disinfection. A pilot study was undertaken to investigate the efficacy of UV disinfection (low pressure, high intensity radiation) of total and fecal coliform bac...

  9. Pollen sensitivity to ultraviolet-B (UV-B) suggests floral structure evolution in alpine plants.

    PubMed

    Zhang, Chan; Yang, Yong-Ping; Duan, Yuan-Wen

    2014-03-31

    Various biotic and abiotic factors are known to exert selection pressures on floral traits, but the influence of ultraviolet-B (UV-B) light on the evolution of flower structure remains relatively unexplored. We have examined the effectiveness of flower structure in blocking radiation and the effects of UV-B on pollen viability in 42 species of alpine plants in the Hengduan Mountains, China. Floral forms were categorized as either protecting or exposing pollen grains to UV-B. The floral materials of plants with exposed and protected pollen grains were able to block UV-B at similar levels. Exposure to UV-B radiation in vitro resulted in a significantly greater loss of viability in pollen from plant species with protective floral structures. The pronounced sensitivity of protected pollen to UV-B radiation was associated with the type of flower structure. These findings demonstrate that UV-B plays an important role in the evolution of protective floral forms in alpine plants.

  10. Testing Of An Ultraviolet (UV)-Transparent Polymer-Based Passive Sampler for Rapid, Ultra-Low-Cost EDC Screening Applications

    EPA Science Inventory

    A new passive sampling method with rapid low-cost spectral detection has recently been developed. The method makes use of an ultraviolet (UV)-transparent polymer which serves as both a concentrator for dissolved compounds, and an optical cell for UV spectral detection. Because ...

  11. An integrated anaerobic digestion and UV photocatalytic treatment of distillery wastewater.

    PubMed

    Apollo, Seth; Onyango, Maurice S; Ochieng, Aoyi

    2013-10-15

    Anaerobic up-flow fixed bed reactor and annular photocatalytic reactor were used to study the efficiency of integrated anaerobic digestion (AD) and ultraviolet (UV) photodegradation of real distillery effluent and raw molasses wastewater (MWW). It was found that UV photodegradation as a stand-alone technique achieved colour removal of 54% and 69% for the distillery and MWW, respectively, with a COD reduction of <20% and a negligible BOD reduction. On the other hand, AD as a single treatment technique was found to be effective in COD and BOD reduction with efficiencies of above 75% and 85%, respectively, for both wastewater samples. However, the AD achieved low colour removal efficiency, with an increase in colour intensity of 13% recorded when treating MWW while a colour removal of 51% was achieved for the distillery effluent. The application of UV photodegradation as a pre-treatment method to the AD process reduced the COD removal and biogas production efficiency. However, an integration in which UV photodegradation was employed as a post-treatment to the AD process achieved high COD removal of above 85% for both wastewater samples, and colour removal of 88% for the distillery effluent. Thus, photodegradation can be employed as a post-treatment technique to an AD system treating distillery effluent for complete removal of the biorecalcitrant and colour imparting compounds. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Design of tunable ultraviolet (UV) absorbance by controlling the Agsbnd Al co-sputtering deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Xin-Yuan; Chen, Lei; Wang, Yaxin; Zhang, Yongjun; Yang, Jinghai; Choi, Hyun Chul; Jung, Young Mee

    2018-05-01

    Changing the structure and composition of a material can alter its properties; hence, the controlled fabrication of metal nanostructures plays a key role in a wide range of applications. In this study, the structure of Agsbnd Al ordered arrays fabricated by co-sputtering deposition onto a monolayer colloidal crystal significantly increased its ultraviolet (UV) absorbance owing to a tunable localized surface plasmon resonance (LSPR) effect. By increasing the spacing between two nanospheres and the content of aluminum, absorbance in the UV region could be changed from UVA (320-400 nm) to UVC (200-275 nm), and the LSPR peak in the visible region gradually shifted to the UV region. This provides the potential for surface-enhanced Raman scattering (SERS) in both the UV and visible regions.

  13. Influence of ultraviolet irradiation treatment on porcelain bond strength of titanium surfaces.

    PubMed

    Kumasaka, Tomonari; Ohno, Akinori; Hori, Norio; Hoshi, Noriyuki; Maruo, Katsuichiro; Kuwabara, Atsushi; Seimiya, Kazuhide; Toyoda, Minoru; Kimoto, Katsuhiko

    2018-01-26

    To determine the effect of titanium (Ti) surface modification by ultraviolet irradiation (UVI) on the bond strength between Ti and porcelain. Grade 2 Ti plates were allotted to five groups: sandblasted (SA), 15 min UVI (UV), SA+5 min UVI (SA+UV5), SA+10 min UVI (SA+UV10), and SA+15 min UVI (SA+UV15). After surface treatment, porcelain was added. A precious metal (MC) was used for comparison with Ti. The effects of 24-h storage at room temperature versus thermal cycling only at 5 and 55°C in water were evaluated. Subsequently, the tensile strength of each sample was tested. Data were analyzed using one-way analysis of variance and the Tukey test. In both the room temperature and thermal cycling groups, the MC and SA+15 min UVI samples showed significantly greater bond strengths than the other samples (p<0.05). UVI processing efficiently increases the bond strength between porcelain and the Ti surface.

  14. Increased formation of halomethanes during chlorination of chloramphenicol in drinking water by UV irradiation, persulfate oxidation, and combined UV/persulfate pre-treatments.

    PubMed

    Wenhai, Chu; Tengfei, Chu; Erdeng, Du; Deng, Yang; Yingqing, Guo; Naiyun, Gao

    2016-02-01

    Ultraviolet/persulfate (UV/PS) has been widely used to generate sulfate radicals for degradation of water organic pollutants in previous studies. However, its impacts on disinfection byproduct formation during post-chlorination of degraded compounds is unclear. The objective of this study was to evaluate the impacts of UV irradiation, PS oxidation, and the combined UV/PS advanced oxidation process (AOP) pre-treatments on halomethane formation during the following chlorination of chloramphenicol (CAP), a model antibiotic commonly found in wastewater-impacted water. Results showed that CAP could be transformed to more trichloromethane (TCM) than monochloromethane (MCM) and dichloromethane (DCM) in the presence of excess chlorine. UV photolysis, PS oxidation and UV/PS AOP all directly decomposed CAP to produce halomethanes (HMs) before post-chlorination. Moreover, UV and UV/PS pre-treatments both enhanced the formation of all the HMs in the subsequent chlorination. PS pre-oxidation decreased the TCM formation during post-chlorination, but increased the yields of MCM, DCM and total HMs. UV pre-irradiation significantly increased the bromide utilization of HMs, whereas UV/PS pre-oxidation decreased the bromine incorporation and utilization of HMs from the chlorination of CAP in a low-bromide water. UV irradiation, PS oxidation, and UV/PS AOP can inactivate pathogens and degrade organic pollutants, but this benefit should be weighed against a potential risk of the increased halomethane formation from degraded organic pollutants with and without post-chlorination. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Band-Bending of Ga-Polar GaN Interfaced with Al2O3 through Ultraviolet/Ozone Treatment.

    PubMed

    Kim, Kwangeun; Ryu, Jae Ha; Kim, Jisoo; Cho, Sang June; Liu, Dong; Park, Jeongpil; Lee, In-Kyu; Moody, Baxter; Zhou, Weidong; Albrecht, John; Ma, Zhenqiang

    2017-05-24

    Understanding the band bending at the interface of GaN/dielectric under different surface treatment conditions is critically important for device design, device performance, and device reliability. The effects of ultraviolet/ozone (UV/O 3 ) treatment of the GaN surface on the energy band bending of atomic-layer-deposition (ALD) Al 2 O 3 coated Ga-polar GaN were studied. The UV/O 3 treatment and post-ALD anneal can be used to effectively vary the band bending, the valence band offset, conduction band offset, and the interface dipole at the Al 2 O 3 /GaN interfaces. The UV/O 3 treatment increases the surface energy of the Ga-polar GaN, improves the uniformity of Al 2 O 3 deposition, and changes the amount of trapped charges in the ALD layer. The positively charged surface states formed by the UV/O 3 treatment-induced surface factors externally screen the effect of polarization charges in the GaN, in effect, determining the eventual energy band bending at the Al 2 O 3 /GaN interfaces. An optimal UV/O 3 treatment condition also exists for realizing the "best" interface conditions. The study of UV/O 3 treatment effect on the band alignments at the dielectric/III-nitride interfaces will be valuable for applications of transistors, light-emitting diodes, and photovoltaics.

  16. DEMONSTRATION BULLETIN - ULTROX INTERNATIONAL, INC. ULTRAVIOLET RADIATION AND OXIDATION

    EPA Science Inventory

    The ultraviolet (UV) radiation/oxidation treatment technology developed by Ultrox International uses a combination of UV radiation, ozone, and hydrogen peroxide to oxidize organic compounds in water. Various operating parameters can be adjusted in the Ultrox® system to enhan...

  17. Effect and mechanism of a High Gradient Magnetic Separation (HGMS) and Ultraviolet (UV) composite process on the inactivation of microbes in ballast water.

    PubMed

    Ren, Zhijun; Zhang, Lin; Shi, Yue; Leng, Xiaodong; Shao, Jingchao

    2016-07-15

    The patented technology of a High Gradient Magnetic Separation (HGMS)-Ultraviolet (UV) composite process was used to treat ballast water. Staphylococcus aureus (S. aureus) was selected as the reference bacteria. After treatment by the HGMS-UV process, the concentration of S. aureus on the log 10 scale was lower than 2 at different flow rates, S. aureus suffered the most serious damage, and K(+) leakage of the bacteria was 1.73mg/L higher than separate 60min UV irradiation (1.17mg/L) and HGMS (0.12mg/L) processes. These results demonstrated that the HGMS-UV composite process was an effective approach to treat ballast water. Further, the HGMS process had synergistic action on the subsequent UV irradiation process and accelerated cell membrane damage. Meanwhile, the results of superoxide dismutase (SOD) activities of bacteria and DNA band analyses indicated that the inactivation mechanisms were different for HGMS and UV irradiation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Photosynthetically active radiation (PAR) x ultraviolet radiation (UV) interact to initiate solar injury in apple

    USDA-ARS?s Scientific Manuscript database

    Sunburn or solar injury (SI) in apple is associated with high temperature, high visible light and ultraviolet radiation (UV). Fruit surface temperature (FST) thresholds for SI related disorders have been developed but there are no thresholds established for solar radiation. The objectives of the s...

  19. Protocol for Determining Ultraviolet Light Emitting Diode (UV-LED) Fluence for Microbial Inactivation Studies.

    PubMed

    Kheyrandish, Ataollah; Mohseni, Madjid; Taghipour, Fariborz

    2018-06-15

    Determining fluence is essential to derive the inactivation kinetics of microorganisms and to design ultraviolet (UV) reactors for water disinfection. UV light emitting diodes (UV-LEDs) are emerging UV sources with various advantages compared to conventional UV lamps. Unlike conventional mercury lamps, no standard method is available to determine the average fluence of the UV-LEDs, and conventional methods used to determine the fluence for UV mercury lamps are not applicable to UV-LEDs due to the relatively low power output, polychromatic wavelength, and specific radiation profile of UV-LEDs. In this study, a method was developed to determine the average fluence inside a water suspension in a UV-LED experimental setup. In this method, the average fluence was estimated by measuring the irradiance at a few points for a collimated and uniform radiation on a Petri dish surface. New correction parameters were defined and proposed, and several of the existing parameters for determining the fluence of the UV mercury lamp apparatus were revised to measure and quantify the collimation and uniformity of the radiation. To study the effect of polychromatic output and radiation profile of the UV-LEDs, two UV-LEDs with peak wavelengths of 262 and 275 nm and different radiation profiles were selected as the representatives of typical UV-LEDs applied to microbial inactivation. The proper setup configuration for microorganism inactivation studies was also determined based on the defined correction factors.

  20. UV-Surface Treatment of Fungal Resistant Polyether Polyurethane Film-Induced Growth of Entomopathogenic Fungi

    PubMed Central

    Lando, Gabriela Albara; Marconatto, Letícia; Schrank, Augusto; Vainstein, Marilene Henning

    2017-01-01

    Synthetic polymers are the cause of some major environmental impacts due to their low degradation rates. Polyurethanes (PU) are widely used synthetic polymers, and their growing use in industry has produced an increase in plastic waste. A commercial polyether-based thermoplastic PU with hydrolytic stability and fungus resistance was only attacked by an entomopathogenic fungus, Metarhiziumanisopliae, when the films were pre-treated with Ultraviolet (UV) irradiation in the presence of reactive atmospheres. Water contact angle, Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR), scanning electron microscopy (SEM), and profilometer measurements were mainly used for analysis. Permanent hydrophilic PU films were produced by the UV-assisted treatments. Pristine polyether PU films incubated for 10, 30, and 60 days did not show any indication of fungal growth. On the contrary, when using oxygen in the UV pre-treatment a layer of fungi spores covered the sample, indicating a great adherence of the microorganisms to the polymer. However, if acrylic acid vapors were used during the UV pre-treatment, a visible attack by the entomopathogenic fungi was observed. SEM and FTIR-ATR data showed clear evidence of fungal development: growth and ramifications of hyphae on the polymer surface with the increase in UV pre-treatment time and fungus incubation time. The results indicated that the simple UV surface activation process has proven to be a promising alternative for polyether PU waste management. PMID:28718785

  1. UV-Surface Treatment of Fungal Resistant Polyether Polyurethane Film-Induced Growth of Entomopathogenic Fungi.

    PubMed

    Lando, Gabriela Albara; Marconatto, Letícia; Kessler, Felipe; Lopes, William; Schrank, Augusto; Vainstein, Marilene Henning; Weibel, Daniel Eduardo

    2017-07-18

    Synthetic polymers are the cause of some major environmental impacts due to their low degradation rates. Polyurethanes (PU) are widely used synthetic polymers, and their growing use in industry has produced an increase in plastic waste. A commercial polyether-based thermoplastic PU with hydrolytic stability and fungus resistance was only attacked by an entomopathogenic fungus, Metarhiziumanisopliae , when the films were pre-treated with Ultraviolet (UV) irradiation in the presence of reactive atmospheres. Water contact angle, Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR), scanning electron microscopy (SEM), and profilometer measurements were mainly used for analysis. Permanent hydrophilic PU films were produced by the UV-assisted treatments. Pristine polyether PU films incubated for 10, 30, and 60 days did not show any indication of fungal growth. On the contrary, when using oxygen in the UV pre-treatment a layer of fungi spores covered the sample, indicating a great adherence of the microorganisms to the polymer. However, if acrylic acid vapors were used during the UV pre-treatment, a visible attack by the entomopathogenic fungi was observed. SEM and FTIR-ATR data showed clear evidence of fungal development: growth and ramifications of hyphae on the polymer surface with the increase in UV pre-treatment time and fungus incubation time. The results indicated that the simple UV surface activation process has proven to be a promising alternative for polyether PU waste management.

  2. A Study of Local Time Variations of Jupiter's Ultraviolet Aurora using Juno-UVS

    NASA Astrophysics Data System (ADS)

    Greathouse, T. K.; Gladstone, R.; Versteeg, M. H.; Hue, V.; Kammer, J.; Davis, M. W.; Bolton, S. J.; Levin, S.; Connerney, J. E. P.; Gerard, J. C. M. C.; Grodent, D. C.; Bonfond, B.; Bunce, E. J.

    2017-12-01

    Juno's Ultraviolet Spectrograph (Juno-UVS) offers unique views of Jupiter's auroras never before obtained in the UV, observing at all local times (unlike HST observations, limited to the illuminated disk). With Juno's 2-rpm spin period, the UVS long slit rapidly scans across Jupiter observing narrow stripes or swaths of Jupiter's poles, from 5 hours prior to perijove until 5 hours after perijove. By rotating a mirror interior to the instrument, UVS can view objects from 60 to 120 degrees off the spacecraft spin axis. This allows UVS to map out the entire auroral oval over multiple spins, even when Juno is very close to Jupiter. Using the first 8 perijove passes, we take a first look for local time effects in Jupiter's northern and southern auroras. We focus on the strength of auroral oval emissions and polar emissions found poleward of the main oval. Some unique polar emissions of interest include newly discovered polar flare emissions that start off as small localized points of emission but quickly (10's of sec) evolve into rings. These emissions evolve in such a way as to be reminiscent of raindrops striking a pond.

  3. An ultraviolet imager to study bright UV sources

    NASA Astrophysics Data System (ADS)

    Mathew, Joice; Prakash, Ajin; Sarpotdar, Mayuresh; Sreejith, A. G.; Safonova, Margarita; Murthy, Jayant

    2016-07-01

    We have designed and developed a compact ultraviolet imaging payload to y on a range of possible platforms such as high altitude balloon experiments, cubesats, space missions, etc. The primary science goals are to study the bright UV sources (mag < 10) and also to look for transients in the Near UV (200 - 300 nm) domain. Our first choice is to place this instrument on a spacecraft going to the Moon as part of the Indian entry into Google lunar X-Prize competition. The major constraints for the instrument are, it should be lightweight (< 2Kg), compact (length < 50cm) and cost effective. The instrument is an 80 mm diameter Cassegrain telescope with a field of view of around half a degree designated for UV imaging. In this paper we will discuss about the various science cases that can be performed by having observations with the instrument on different platforms. We will also describe the design, development and the current state of implementation of the instrument. This includes opto-mechanical and electrical design of the instrument. We have adopted an all spherical optical design which would make the system less complex to realize and a cost effective solution compared to other telescope configuration. The structural design has been chosen in such a way that it will ensure that the instrument could withstand all the launch load vibrations. An FPGA based electronics board is used for the data acquisition, processing and CCD control. We will also brie y discuss about the hardware implementation of the detector interface and algorithms for the detector readout and data processing.

  4. Daily light integral and day light quality: Potentials and pitfalls of nighttime UV treatments on cucumber powdery mildew.

    PubMed

    Suthaparan, Aruppillai; Solhaug, Knut Asbjørn; Stensvand, Arne; Gislerød, Hans Ragnar

    2017-10-01

    Nighttime ultraviolet (UV) radiation, if applied properly, has a significant potential for management of powdery mildews in many crop species. In this study, the role of growth light duration, irradiance, a combination of both (daily light integral) and light spectral quality (blue or red) on the efficacy of UV treatments against powdery mildew caused by Podosphaera xanthii and the growth performance of cucumber plants was studied in growth chambers. Increasing daily light integral provided by high-pressure sodium lamps (HPS) decreased efficacy of nighttime UV treatments against P. xanthii, but it increased plant growth. Furthermore, the efficacy of nighttime UV decreased when day length was increased from 16 to 20h at a constant daily light integral. The efficacy of nighttime UV increased if red light was applied after UV treatment, showing the possibility of day length extension without reducing the effect of UV. Increasing the dose of blue light during daytime reduced the efficacy of nighttime UV in controlling the disease, whereas blue deficient growth light (<6% of blue) caused UV mediated curling of young leaves. Furthermore, application of blue light after nighttime UV reduced its disease control efficacy. This showed the importance of maintaining a minimum of blue light in the growth light before nighttime UV treatment. Findings from this study showed that optimization of nighttime UV for management of powdery mildew is dependent on the spectral composition of the photosynthetically active radiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Mutagenesis of Trichoderma Viride by Ultraviolet and Plasma

    NASA Astrophysics Data System (ADS)

    Yao, Risheng; Li, Manman; Deng, Shengsong; Hu, Huajia; Wang, Huai; Li, Fenghe

    2012-04-01

    Considering the importance of a microbial strain capable of increased cellulase production, a mutant strain UP4 of Trichoderma viride was developed by ultraviolet (UV) and plasma mutation. The mutant produced a 21.0 IU/mL FPase which was 98.1% higher than that of the parent strain Trichoderma viride ZY-1. In addition, the effect of ultraviolet and plasma mutagenesis was not merely simple superimposition of single ultraviolet mutation and single plasma mutation. Meanwhile, there appeared a capsule around some of the spores after the ultraviolet and plasma treatment, namely, the spore surface of the strain became fuzzy after ultraviolet or ultraviolet and plasma mutagenesis.

  6. Near-visible light and UV photoprotection in the treatment of melasma: a double-blind randomized trial.

    PubMed

    Castanedo-Cazares, Juan Pablo; Hernandez-Blanco, Diana; Carlos-Ortega, Blanca; Fuentes-Ahumada, Cornelia; Torres-Álvarez, Bertha

    2014-02-01

    Melasma is an acquired hyperpigmentation on sun-exposed areas. Multiple approaches are used to treat it, but all include broad ultraviolet (UV)-spectrum sunscreens. Visible light (VL) can induce pigmentary changes similar to those caused by UV radiation on darker-skinned patients. To assess the efficacy of sunscreen with broad-spectrum UV protection that contains iron oxide as a VL-absorbing pigment (UV-VL) compared with a regular UV-only broad-spectrum sunscreen for melasma patients exposed to intense solar conditions. Sixty-eight patients with melasma were randomized in two groups to receive either UV-VL sunscreen or UV-only sunscreen, both with sun protection factor ≥ 50, over 8 weeks. All patients received 4% hydroquinone as a depigmenting treatment. At onset and at conclusion of the study, they were assessed by the Melasma Activity and Severity Index (MASI; a subjective scale), colorimetry (L*) and histological analysis of melanin. Sixty-one patients concluded the study. At 8 weeks, the UV-VL group showed 15%, 28% and 4% greater improvements than the UV-only group in MASI scores, colorimetric values and melanin assessments, respectively. UV-VL sunscreen enhances the depigmenting efficacy of hydroquinone compared with UV-only sunscreen in treatment of melasma. These findings suggest a role for VL in melasma pathogenesis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Novel antioxidant capability of titanium induced by UV light treatment.

    PubMed

    Ueno, Takeshi; Ikeda, Takayuki; Tsukimura, Naoki; Ishijima, Manabu; Minamikawa, Hajime; Sugita, Yoshihiko; Yamada, Masahiro; Wakabayashi, Noriyuki; Ogawa, Takahiro

    2016-11-01

    The intracellular production of reactive oxygen species (ROS) is a representative form of cellular oxidative stress and plays an important role in triggering adverse cellular events, such as the inflammatory reaction and delayed or compromised differentiation. Osteoblastic reaction to titanium with particular focus on ROS production remains unknown. Ultraviolet (UV) light treatment improves the physicochemical properties of titanium, specifically the induction of super hydrophilicity and removal of hydrocarbon, and eventually enhances its osteoconductivity. We hypothesized that there is a favorable regulatory change of ROS production within osteoblasts in contact with UV-treated titanium. Osteoblasts were cultured on titanium disks with or without UV-pretreatment. The intracellular production of ROS was higher on acid-etch-created rough titanium surfaces than on machine-prepared smooth ones. The ROS production was reduced by 40-50% by UV pretreatment of titanium regardless of the surface roughness. Oxidative DNA damage, as detected by 8-OHdG expression, was alleviated by 50% on UV-treated titanium surfaces. The expression of inflammatory cytokines was consistently lower in osteoblasts cultured on UV-treated titanium. ROS scavenger, glutathione, remained more without being depleted in osteoblasts on UV-treated titanium. Bio-burden test further showed that culturing osteoblasts on UV-treated titanium can significantly reduce the ROS production even with the presence of hydrogen peroxide, an oxidative stress inducer. These data suggest that the intracellular production of ROS and relevant inflammatory reaction, which unavoidably occurs in osteoblasts in contact with titanium, can be significantly reduced by UV pretreatment of titanium, implying a novel antioxidant capability of the particular titanium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A comparison of six different ballast water treatment systems based on UV radiation, electrochlorination and chlorine dioxide.

    PubMed

    Stehouwer, Peter Paul; Buma, Anita; Peperzak, Louis

    2015-01-01

    The spread of aquatic invasive species through ballast water is a major ecological and economical threat. Because of this, the International Maritime Organization (IMO) set limits to the concentrations of organisms allowed in ballast water. To meet these limits, ballast water treatment systems (BWTSs) were developed. The main techniques used for ballast water treatment are ultraviolet (UV) radiation and electrochlorination (EC). In this study, phytoplankton regrowth after treatment was followed for six BWTSs. Natural plankton communities were treated and incubated for 20 days. Growth, photosystem II efficiency and species composition were followed. The three UV systems all showed similar patterns of decrease in phytoplankton concentrations followed by regrowth. The two EC and the chlorine dioxide systems showed comparable results. However, UV- and chlorine-based treatment systems showed significantly different responses. Overall, all BWTSs reduced phytoplankton concentrations to below the IMO limits, which represents a reduced risk of aquatic invasions through ballast water.

  9. Ultraviolet-C light inactivation of Penicillium expansum on fruit surfaces

    USDA-ARS?s Scientific Manuscript database

    Understanding the influence of fruit surface morphology on ultraviolet-C (UV-C 254 nm) inactivation of microorganisms is required for designing effective treatment systems. In this study, we analyzed UV-C inactivation of Penicillium expansum that was inoculated onto the surface of organic fruits. Re...

  10. UV disinfection pilot plant study at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huffines, R.L.; Beavers, B.A.

    1993-05-01

    An ultraviolet light disinfection system pilot plant was operated at the Savannah River Site Central Shops sanitary wastewater treatment package plant July 14, 1992 through August 13, 1992. The purpose was to determine the effectiveness of ultraviolet light disinfection on the effluent from the small package-type wastewater treatment plants currently used on-site. This pilot plant consisted of a rack of UV lights suspended in a stainless steel channel through which a sidestream of effluent from the treatment plant clarifier was pumped. Fecal coliform analyses were performed on the influent to and effluent from the pilot unit to verify the disinfectionmore » process. UV disinfection was highly effective in reducing fecal coliform colonies within NPDES permit limitations even under process upset conditions. The average fecal coliform reduction exceeded 99.7% using ultraviolet light disinfection under normal operating conditions at the package treatment plants.« less

  11. UV disinfection pilot plant study at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huffines, R.L.; Beavers, B.A.

    1993-01-01

    An ultraviolet light disinfection system pilot plant was operated at the Savannah River Site Central Shops sanitary wastewater treatment package plant July 14, 1992 through August 13, 1992. The purpose was to determine the effectiveness of ultraviolet light disinfection on the effluent from the small package-type wastewater treatment plants currently used on-site. This pilot plant consisted of a rack of UV lights suspended in a stainless steel channel through which a sidestream of effluent from the treatment plant clarifier was pumped. Fecal coliform analyses were performed on the influent to and effluent from the pilot unit to verify the disinfectionmore » process. UV disinfection was highly effective in reducing fecal coliform colonies within NPDES permit limitations even under process upset conditions. The average fecal coliform reduction exceeded 99.7% using ultraviolet light disinfection under normal operating conditions at the package treatment plants.« less

  12. Combination of UV-C treatment and Metschnikowia pulcherrimas for controlling Alternaria rot in postharvest winter jujube fruit.

    PubMed

    Guo, Dongqi; Zhu, Lixia; Hou, Xujie

    2015-01-01

    The potential of using antagonistic yeast Metschnikowia pulcherrimas alone or in combination with ultraviolet-C (UV-C) treatment for controlling Alternaria rot of winter jujube, and its effects on postharvest quality of fruit was investigated. The results showed that spore germination of Alternaria alternata was significantly inhibited by each of the 3 doses (1, 5, and 10 kJ m(-2) ) in vitro. In vivo, UV-C treatment (5 kJ m(-2) ) or antagonist yeast was capable of reducing the percentage of infected wounds and lesion diameter in artificially inoculated jujube fruits, however, in fruit treated with combination of UV-C treatment and M. pulcherrima, the percentage of infected wounds and lesion diameter was only 16.0% and 0.60 cm, respectively. The decay incidence on winter jujube fruits treated with the combination of UV-C treatment and M. pulcherrima was 23% after storage at 0 ± 1 °C for 45 d followed by 22 °C for 7 d. None of the treatments impaired quality parameters of jujube fruit. Thus, the combination of UV-C radiation and M. pulcherrima could be an alternative to synthetic fungicides for controlling postharvest Alternaria rot of winter jujube. © 2014 Institute of Food Technologists®

  13. Preparation and Characterization of UV Emitting Fluoride Phosphors for Phototherapy Lamps

    NASA Astrophysics Data System (ADS)

    Belsare, P. D.; Moharil, S. V.; Joshi, C. P.; Omanwar, S. K.

    2011-10-01

    The use of ultraviolet radiation for the treatment of various skin diseases is well known for long time. Phototherapy employs ultraviolet-blue radiation to cure skin diseases. The basis of phototherapy is believed to be the direct interaction of light of certain frequencies with tissue to cause a change in immune response. Currently dermatologists use UV lamps having specific emissions in UV region for treating various skin diseases. The treatment of skin diseases using artificial sources of UV radiation is now well established and more than 50 types of skin diseases are treated by phototherapy. This is an effective treatment for many skin disorders, such as psoriasis, vitiligo, ofujis disease, morphea , scleroderma, cutaneous T-cell lymphoma, lupus erythematosus, hyperbilirubinemia commonly known as infant jaundice, acne vulgaris, This paper reports photoluminescence properties of UV emitting fluoride phosphors prepared by wet chemical method. Emission characteristics of these phosphors are found similar to those of commercial UV lamp phosphors with comparable intensities. The usefulness of UV emitting fluoride phosphor is discussed in the paper.

  14. The development of a tunable, single-frequency ultraviolet laser source for UV filtered Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Finkelstein, N.; Gambogi, J.; Lempert, Walter R.; Miles, Richard B.; Rines, G. A.; Finch, A.; Schwarz, R. A.

    1995-01-01

    We present the development of a flexible, high power, narrow line width, tunable ultraviolet source for diagnostic application. By frequency tripling the output of a pulsed titanium-sapphire laser, we achieve broadly tunable (227-360 nm) ultraviolet light with high quality spatial and spectral resolution. We also present the characterization of a mercury vapor cell which provides a narrow band, sharp edge absorption filter at 253.7 nm. These two components form the basis for the extension of the Filtered Rayleigh Scattering technique into the ultraviolet. The UV-FRS system is comprised of four pieces: a single frequency, cw tunable Ti:Sapphire seeding source; a high-powered pulsed Ti:Sapphire oscillator; a third harmonic generator system; and an atomic mercury vapor filter. In this paper we discuss the development and characterization of each of these elements.

  15. Synergistic effect of ultrasonic pre-treatment combined with UV irradiation for secondary effluent disinfection.

    PubMed

    Jin, Xin; Li, Zifu; Xie, Lanlan; Zhao, Yuan; Wang, Tingting

    2013-11-01

    The ultraviolet (UV) disinfection efficiency is often affected by suspended solids (SS). Given their high concentration or large particle size, SS can scatter UV light and provide shielding for bacteria. Thus, ultrasound is often employed as a pre-treatment process to improve UV disinfection. This work investigated the synergistic effect of ultrasound combined with UV for secondary effluent disinfection. Bench-scale experiments were conducted in using samples obtained from secondary sedimentation tanks. These tanks belonged to three wastewater treatment plants in Beijing that use different kinds of biological treatment methods. Several parameters may contribute to the changes in the efficiency of ultrasound and UV disinfection. Thus, the frequency and energy density of ultrasound, as well as the SS, were investigated. Results demonstrated that samples which have relatively higher SS concentrations or higher percentages of larger particles have less disinfection efficiency using UV disinfection alone. However, the presence of ultrasound could improve the disinfection efficiency because it has synergistic effect. Changes in the particle size distribution and SS concentration notably affected the efficiency of UV disinfection. The efficiency of Escherichia coli elimination can be decreased by 1.2 log units as the SS concentration increases from 16.9 mg/l to 25.4 mg/l at a UV energy density of 40 mJ/cm(2). UV disinfection alone reduced the E. coli population by 3.4 log units. However, the synergistic disinfection of ultrasound and UV could reach 5.4 log units during the reduction of E. coli at a 40 kHz frequency and an energy density of 2.64 kJ/l. The additional synergistic effect is 1.1 log units. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Influence of uvA on the erythematogenic and therapeutic effects of uvB irradiation in psoriasis; photoaugmentation effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boer, J.; Schothorst, A.A.; Suurmond, D.

    1981-01-01

    The effect of repeated exposure to an additive dose of long ultraviolet (uvA) radiation on the erythemogenic and therapeutic effects of middle ultraviolet (uvB) irradiation was investigated in 8 patients with psoriasis. The surface of the backs of these patients was divided into 2 parts, 1 of which received only uvB irradiation 4 times a week and the other uvA + uvB. uvB was provided by Philips TL-12 lamps and uvA by glass-filtered Philips TL-09 lamps. uvA was held constantly at 10 J/cm2, whereas uvB alone were evaluated by 4 tests during the treatment to determine the minimal erythema dosemore » (MED). Test I (at the start of the therapy) showed a photoaugmentative effect which was no longer apparent in Test III (third week). Test III showed a reversal of the ratios of the MEDs of the sites irradiated with the uvA + uvB and uvB (MED A + B/MED B). This is ascribed to the marked pigmentation which appeared after repeated irradiation with the uvA + uvB combination. Comparison showed for the improvement of the psoriasis no distinct differences between uvA + uvB irradiation and uvB alone, but the former had the cosmetic advantage of giving pleasing tan.« less

  17. Investigation of optical fibers for gas-phase, ultraviolet laser-induced-fluorescence (UV-LIF) spectroscopy.

    PubMed

    Hsu, Paul S; Kulatilaka, Waruna D; Jiang, Naibo; Gord, James R; Roy, Sukesh

    2012-06-20

    We investigate the feasibility of transmitting high-power, ultraviolet (UV) laser pulses through long optical fibers for laser-induced-fluorescence (LIF) spectroscopy of the hydroxyl radical (OH) and nitric oxide (NO) in reacting and non-reacting flows. The fundamental transmission characteristics of nanosecond (ns)-duration laser pulses are studied at wavelengths of 283 nm (OH excitation) and 226 nm (NO excitation) for state-of-the-art, commercial UV-grade fibers. It is verified experimentally that selected fibers are capable of transmitting sufficient UV pulse energy for single-laser-shot LIF measurements. The homogeneous output-beam profile resulting from propagation through a long multimode fiber is ideal for two-dimensional planar-LIF (PLIF) imaging. A fiber-coupled UV-LIF system employing a 6 m long launch fiber is developed for probing OH and NO. Single-laser-shot OH- and NO-PLIF images are obtained in a premixed flame and in a room-temperature NO-seeded N(2) jet, respectively. Effects on LIF excitation lineshapes resulting from delivering intense UV laser pulses through long fibers are also investigated. Proof-of-concept measurements demonstrated in the current work show significant promise for fiber-coupled UV-LIF spectroscopy in harsh diagnostic environments such as gas-turbine test beds.

  18. Reduction of ultraviolet transmission through cotton T-shirt fabrics with low ultraviolet protection by various laundering methods and dyeing: clinical implications.

    PubMed

    Wang, S Q; Kopf, A W; Marx, J; Bogdan, A; Polsky, D; Bart, R S

    2001-05-01

    The public has long been instructed to wear protective clothing against ultraviolet (UV) damage. Our purpose was to determine the UV protection factor (UPF) of two cotton fabrics used in the manufacture of summer T-shirts and to explore methods that could improve the UPF of these fabrics. Each of the two types of white cotton fabrics (cotton T-shirt and mercerized cotton print cloth) used in this study was divided into 4 treatment groups: (1) water-only (machine washed with water), (2) detergent-only (washed with detergent), (3) detergent-UV absorber (washed with detergent and a UV absorber), and (4) dyes (dyed fabrics). Ultraviolet transmission through the fabrics was measured with a spectrophotometer before and after laundry and dyeing treatments. Based on UV transmission through these fabrics, the UPF values were calculated. Before any treatments, the mean UPFs were 4.94 for the T-shirt fabric and 3.13 for the print cloth. There was greater UVA (320-400 nm) than UVB (280-320 nm) transmission through these fabrics. After 5 washings with water alone and with detergent alone, UPF increased by 51% and 17%, respectively, for the cotton T-shirt fabric. Washing the T-shirt fabrics with detergent plus the UV-absorbing agent increased the UPF by 407% after 5 treatments. Dyeing the fabric blue or yellow increased the UPF by 544% and 212%, respectively. Similar changes in UPFs were observed for the print cloth fabric. The two cotton fabrics used in this study offered limited protection against UV radiation as determined by spectrophotometric analysis. Laundering with detergent and water improves UPF slightly by causing fabric shrinkage. Dyeing fabrics or adding a UV-absorbing agent during laundering substantially reduces UV transmission and increases UPF. More UVA is transmitted through the fabrics than UVB.

  19. Ultraviolet safety assessments of insect light traps.

    PubMed

    Sliney, David H; Gilbert, David W; Lyon, Terry

    2016-01-01

    Near-ultraviolet (UV-A: 315-400 nm), "black-light," electric lamps were invented in 1935 and ultraviolet insect light traps (ILTs) were introduced for use in agriculture around that time. Today ILTs are used indoors in several industries and in food-service as well as in outdoor settings. With recent interest in photobiological lamp safety, safety standards are being developed to test for potentially hazardous ultraviolet emissions. A variety of UV "Black-light" ILTs were measured at a range of distances to assess potential exposures. Realistic time-weighted human exposures are shown to be well below current guidelines for human exposure to ultraviolet radiation. These UV-A exposures would be far less than the typical UV-A exposure in the outdoor environment. Proposals are made for realistic ultraviolet safety standards for ILT products.

  20. Comets in UV

    NASA Astrophysics Data System (ADS)

    Shustov, B.; Sachkov, M.; Gómez de Castro, A. I.; Vallejo, J. C.; Kanev, E.; Dorofeeva, V.

    2018-04-01

    Comets are important "eyewitnesses" of Solar System formation and evolution. Important tests to determine the chemical composition and to study the physical processes in cometary nuclei and coma need data in the UV range of the electromagnetic spectrum. Comprehensive and complete studies require additional ground-based observations and in situ experiments. We briefly review observations of comets in the ultraviolet (UV) and discuss the prospects of UV observations of comets and exocomets with space-borne instruments. A special reference is made to the World Space Observatory-Ultraviolet (WSO-UV) project.

  1. Effect of postharvest ultraviolet-C treatment on the proteome changes in fresh cut mango (Mangifera indica L. cv. Chokanan).

    PubMed

    George, Dominic Soloman; Razali, Zuliana; Santhirasegaram, Vicknesha; Somasundram, Chandran

    2016-06-01

    Postharvest treatments of fruits using techniques such as ultraviolet-C have been linked with maintenance of the fruit quality as well as shelf-life extension. However, the effects of this treatment on the quality of fruits on a proteomic level remain unclear. This study was conducted in order to understand the response of mango fruit to postharvest UV-C irradiation. Approximately 380 reproducible spots were detected following two-dimensional gel electrophoresis. Through gel analysis, 24 spots were observed to be differentially expressed in UV-C treated fruits and 20 were successfully identified via LCMS/MS. Postharvest UV-C treatment resulted in degradative effects on these identified proteins of which 40% were related to stress response, 45% to energy and metabolism and 15% to ripening and senescence. In addition, quality and shelf-life analysis of control and irradiated mangoes was evaluated. UV-C was found to be successful in retention of quality and extension of shelf-life up to 15 days. Furthermore, UV-C was also successful in increasing antioxidants (total flavonoid, reducing power and ABTS scavenging activity) in mangoes. This study provides an overview of the effects of UV-C treatment on the quality of mango on a proteomic level as well as the potential of this treatment in shelf-life extension of fresh-cut fruits. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  2. History of UV Lamps, Types, and Their Applications.

    PubMed

    Ahmad, Shamim I; Christensen, Luisa; Baron, Elma

    2017-01-01

    The use of ultraviolet (UV) light, for the treatment of skin conditions, dates back to the early 1900s. It is well known that sunlight can be of therapeutic value, but it can also lead to deleterious effects such as burning and carcinogenesis. Extensive research has expanded our understanding of UV radiation and its effects in human systems and has led to the development of man-made UV sources that are more precise, safer, and more effective for the treatment of wide variety of dermatologic conditions.

  3. Ultraviolet Communication for Medical Applications

    DTIC Science & Technology

    2015-06-01

    DEI procured several UVC phosphors and tested them with vacuum UV (VUV) excitation. Available emission peaks include: 226 nm, 230 nm, 234 nm, 242...SUPPLEMENTARY NOTES Report contains color. 14. ABSTRACT Under this Phase II SBIR effort, Directed Energy Inc.’s (DEI) proprietary ultraviolet ( UV ...15. SUBJECT TERMS Non-line-of-sight (NLOS), networking, optical communication, plasma-shells, short range, ultraviolet ( UV ) light 16. SECURITY

  4. Efficacy of Inactivation of Legionella pneumophila by Multiple-Wavelength UV LEDs

    EPA Science Inventory

    Background: Ultraviolet (UV) light has been successfully used for treating a broad suite of pathogens without the concomitant formation of carcinogenic disinfection by-products (DBPs). However, conventional mercury UV lamps have some practical limitations in water treatment appli...

  5. Efficacy of Inactivation of Human Enteroviruses by Multiple-Wavelength UV LEDs

    EPA Science Inventory

    Ultraviolet (UV) light has been successfully used for treating a broad suite of pathogens without the concomitant formation of carcinogenic disinfection by-products (DBPs). However, conventional mercury UV lamps have some practical limitations in water treatment applications, suc...

  6. Ultraviolet safety assessments of insect light traps

    PubMed Central

    Sliney, David H.; Gilbert, David W.; Lyon, Terry

    2016-01-01

    ABSTRACT Near-ultraviolet (UV-A: 315–400 nm), “black-light,” electric lamps were invented in 1935 and ultraviolet insect light traps (ILTs) were introduced for use in agriculture around that time. Today ILTs are used indoors in several industries and in food-service as well as in outdoor settings. With recent interest in photobiological lamp safety, safety standards are being developed to test for potentially hazardous ultraviolet emissions. A variety of UV “Black-light” ILTs were measured at a range of distances to assess potential exposures. Realistic time-weighted human exposures are shown to be well below current guidelines for human exposure to ultraviolet radiation. These UV-A exposures would be far less than the typical UV-A exposure in the outdoor environment. Proposals are made for realistic ultraviolet safety standards for ILT products. PMID:27043058

  7. Initial observations of Jupiter's aurora from Juno's Ultraviolet Spectrograph (Juno-UVS)

    NASA Astrophysics Data System (ADS)

    Gladstone, R.; Versteeg, M.; Greathouse, T.; Hue, V.; Davis, M. W.; Gerard, J. C. M. C.; Grodent, D. C.; Bonfond, B.; Bolton, S. J.; Connerney, J. E. P.; Levin, S.; Bagenal, F.; Mauk, B.; Kurth, W. S.; McComas, D. J.; Valek, P. W.

    2016-12-01

    Juno-UVS is an imaging spectrograph with a bandpass of 70<λ<205 nm. This wavelength range includes important far-ultraviolet (FUV) emissions from the H2 bands and the H Lyman series which are produced in Jupiter's auroras, and also the absorption signatures of aurorally-produced hydrocarbons. The Juno-UVS instrument telescope has a 4x4 cm2 input aperture and uses an off-axis parabolic primary mirror. A flat scan mirror situated near the entrance of the telescope is used to observe at up to ±30° perpendicular to the Juno spin plane. The light is focused onto the spectrograph entrance slit, which has a "dog-bone" shape, with three sections of 2.55°x0.2°, 2.0°x0.025°, and 2.55°x0.2° (as projected onto the sky). Light entering the slit is dispersed by a toroidal grating which focuses FUV light onto a curved microchannel plate (MCP) cross delay line (XDL) detector with a solar blind UV-sensitive CsI photocathode. The two mirrors and the grating are coated with MgF2 to improve FUV reflectivity. Tantalum surrounds the spectrograph assembly to shield the detector and its electronics from high-energy electrons. All other electronics are located in Juno's spacecraft vault, including redundant low-voltage and high-voltage power supplies, command and data handling electronics, heater/actuator electronics, scan mirror electronics, and event processing electronics. The purpose of Juno-UVS is to remotely sense Jupiter's auroral morphology and brightness to provide context for in situ measurements by Juno's particle instruments. Here we present the first near-Jupiter results from the UVS instrument following measurements made during PJ1, Juno's first perijove pass with its instruments powered on and taking data.

  8. ASSESSING THE EFFECTIVENESS OF LOW PRESSURE ULTRAVIOLET LIGHT FOR INACTIVATING HELICOBACTER PYLORI

    EPA Science Inventory

    Three strains of Helicobacter pylori were exposed to ultraviolet (UV) light from a low-pressure source to determine log inactivation versus applied fluence. Results indicate that H. pylori is readily inactivated at UV fluences typically used in water treatment r...

  9. Efficacy of Inactivation of Human Enteroviruses by Multiple-Wavelength UV LEDs - abstract

    EPA Science Inventory

    Background: Ultraviolet (UV) light has been successfully used for treating a broad suite of pathogens without the concomitant formation of carcinogenic disinfection by-products (DBPs). However, conventional mercury UV lamps have some practical limitations in water treatment appli...

  10. Development of a method for the characterization and operation of UV-LED for water treatment.

    PubMed

    Kheyrandish, Ataollah; Mohseni, Madjid; Taghipour, Fariborz

    2017-10-01

    Tremendous improvements in semiconductor technology have made ultraviolet light-emitting diodes (UV-LEDs) a viable alternative to conventional UV sources for water treatment. A robust and validated experimental protocol for studying the kinetics of microorganism inactivation is key to the further development of UV-LEDs for water treatment. This study proposes a protocol to operate UV-LEDs and control their output as a polychromatic radiation source. In order to systematically develop this protocol, the results of spectral power distribution, radiation profile, and radiant power measurements of a variety of UV-LEDs are presented. A wide range of UV-LEDs was selected for this study, covering various UVA, UVB, and UVC wavelengths, viewing angles from 3.5° to 135°, and a variety of output powers. The effects of operational conditions and measurement techniques were investigated on these UV-LEDs using a specially designed and fabricated setup. Operating conditions, such as the UV-LED electrical current and solder temperature, were found to significantly affect the power and peak wavelength output. The measurement techniques and equipment, including the detector size, detector distance from the UV-LED, and potential reflection from the environment, were shown to influence the results for many of the UV-LEDs. The results obtained from these studies were analyzed and applied to the development of a protocol for UV-LED characterization. This protocol is presented as a guideline that allows the operation and control of UV-LEDs in any structure, as well as accurately measuring the UV-LED output. Such information is essential for performing a reliable UV-LED assessment for the inactivation of microorganisms and for obtaining precise kinetic data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Analysis of UV-excited fluorochromes by flow cytometry using near-ultraviolet laser diodes.

    PubMed

    Telford, William G

    2004-09-01

    Violet laser diodes have become common and reliable laser sources for benchtop flow cytometers. While these lasers are very useful for a variety of violet and some ultraviolet-excited fluorochromes (e.g., DAPI), they do not efficiently excite most UV-stimulated probes. In this study, the next generation of InGaN near-UV laser diodes (NUVLDs) emitting in the 370-375-nm range have been evaluated as laser sources for cuvette-based flow cytometers. Several NUVLDs, ranging in wavelength from 370 to 374 nm and in power level from 1.5 to 10 mW, were mounted on a BD Biosciences LSR II and evaluated for their ability to excite cells labeled with the UV DNA binding dye DAPI, several UV phenotyping fluorochromes (including Alexa Fluor 350, Marina Blue, and quantum dots), and the fluorescent calcium chelator indo-1. NUVLDs at the 8-10-mW power range gave detection sensitivity levels comparable to more powerful solid-state and ion laser sources, using low-fluorescence microsphere beads as measurement standards. NUVLDs at all tested power levels allowed extremely high-resolution DAPI cell cycle analysis, and sources in the 8-10-mW power range excited Alexa Fluor 350, Marina Blue, and a variety of quantum dots at virtually the same signal-to-noise ratios as more powerful UV sources. These evaluations indicate that near-UV laser diodes installed on a cuvette-based flow cytometer performed nearly as well as more powerful solid-state UV lasers on the same instrumentation, and comparably to more powerful ion lasers on a jet-in-air system, and. Despite their limited power, integration of these small and inexpensive lasers into benchtop flow cytometers should allow the use of flow cytometric applications requiring UV excitation on a wide variety of instruments. Copyright 2004 Wiley-Liss, Inc.

  12. Ultraviolet spectrophotometer for measuring columnar atmospheric ozone from aircraft

    NASA Technical Reports Server (NTRS)

    Hanser, F. A.; Sellers, B.; Briehl, D. C.

    1978-01-01

    An ultraviolet spectrophotometer (UVS) to measure downward solar fluxes from an aircraft or other high altitude platform is described. The UVS uses an ultraviolet diffuser to obtain large angular response with no aiming requirement, a twelve-position filter wheel with narrow (2-nm) and broad (20-nm) bandpass filters, and an ultraviolet photodiode. The columnar atmospheric ozone above the UVS (aircraft) is calculated from the ratios of the measured ultraviolet fluxes. Comparison with some Dobson station measurements gives agreement to 2%. Some UVS measured ozone profiles over the Pacific Ocean for November 1976 are shown to illustrate the instrument's performance.

  13. The endogenous hormones in soybean seedlings under the joint actions of rare earth element La(III) and ultraviolet-B stress.

    PubMed

    Peng, Qi; Zhou, Qing

    2009-12-01

    The dynamic state of endogenous hormone content in soybean seedlings was investigated for a further demonstration of alleviating the damage of the ultraviolet ultraviolet-B (UV-B) radiation in the La(III)-treated soybean seedlings under UV-B stress. Using hydroponics culture, the effects of lanthanum(III) on the contents of endogenous hormone under elevated ultraviolet-B radiation (280–320 nm) was studied. The results showed that the content of indole-3-acetic acid (IAA) in soybean seedlings decreased initially and then increased when the seedlings underwent UV-B treatment during the stress and convalescent period; this was compared with a control; acetic acid oxidase (IAAO) activity increased at first (first to fifth day) and then decreased (sixth to 11th day). A similar change of abscisic acid content and IAAO content in soybean seedlings occurred; gibberellic acid (GA) content decreased during the experiment compared with control. The content of IAA and GA in soybean seedlings with La(III) + UV-B treatment was higher than those of UV-B treatment; IAAO activity and GA content in soybean seedlings with La (III) + UV-B treatment were lower than those of UV-B treatment. It suggested that the regulative effect of La(III) at the optimum concentration on endogenous hormone improved the ability of plant stress resistance, and its protective effect against low UV-B radiation was superior to high UV-B radiation. The defensive effect of La(III) on soybean seedlings under UV-B stress was carried out on the layer of defense system.

  14. Inactivation of Cytomegalovirus in Breast Milk Using Ultraviolet-C Irradiation: Opportunities for a New Treatment Option in Breast Milk Banking.

    PubMed

    Lloyd, Megan L; Hod, Nurul; Jayaraman, Jothsna; Marchant, Elizabeth A; Christen, Lukas; Chiang, Peter; Hartmann, Peter; Shellam, Geoffrey R; Simmer, Karen

    2016-01-01

    Pasteurized donor human milk is provided by milk banks to very preterm babies where their maternal supply is insufficient or unavailable. Donor milk is currently processed by Holder pasteurization, producing a microbiologically safe product but significantly reducing immunoprotective components. Ultraviolet-C (UV-C) irradiation at 254 nm is being investigated as an alternative treatment method and has been shown to preserve components such as lactoferrin, lysozyme and secretory IgA considerably better than Holder pasteurization. We describe the inactivation of cytomegalovirus, a virus commonly excreted into breast milk, using UV-C irradiation. Full replication was ablated by various treatment doses. However, evidence of viral immediate early proteins within the cells was never completely eliminated indicating that some viral gene transcription was still occurring. In conclusion, UV-C may be a safe alternative to pasteurisation for the treatment of human donor milk that preserves the bioactivity. However, our data suggests that CMV inactivation will have to be carefully evaluated for each device designed to treat breast milk using UV-C irradiation.

  15. Inactivation of Cytomegalovirus in Breast Milk Using Ultraviolet-C Irradiation: Opportunities for a New Treatment Option in Breast Milk Banking

    PubMed Central

    Hod, Nurul; Jayaraman, Jothsna; Marchant, Elizabeth A.; Christen, Lukas; Chiang, Peter; Hartmann, Peter; Simmer, Karen

    2016-01-01

    Pasteurized donor human milk is provided by milk banks to very preterm babies where their maternal supply is insufficient or unavailable. Donor milk is currently processed by Holder pasteurization, producing a microbiologically safe product but significantly reducing immunoprotective components. Ultraviolet-C (UV-C) irradiation at 254 nm is being investigated as an alternative treatment method and has been shown to preserve components such as lactoferrin, lysozyme and secretory IgA considerably better than Holder pasteurization. We describe the inactivation of cytomegalovirus, a virus commonly excreted into breast milk, using UV-C irradiation. Full replication was ablated by various treatment doses. However, evidence of viral immediate early proteins within the cells was never completely eliminated indicating that some viral gene transcription was still occurring. In conclusion, UV-C may be a safe alternative to pasteurisation for the treatment of human donor milk that preserves the bioactivity. However, our data suggests that CMV inactivation will have to be carefully evaluated for each device designed to treat breast milk using UV-C irradiation. PMID:27537346

  16. Hyperspectral Surface Analysis for Ripeness Estimation and Quick UV-C Surface Treatments for Preservation of Bananas

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Yang, Zh.; Chen, Zh.; Liu, J.; Wang, W. Ch.; Zheng, W. Yu.

    2016-05-01

    This study aimed to determine the ripeness of bananas using hyperspectral surface analysis and how a rapid UV-C (ultraviolet-C light) surface treatment could reduce decay. The surface of the banana fruit and its stages of maturity were studied using a hyperspectral imaging technique in the visible and near infrared (370-1000 nm) regions. The vselected color ratios from these spectral images were used for classifying the whole banana into immature, ripe, half-ripe and overripe stages. By using a BP neural network, models based on the wavelengths were developed to predict quality attributes. The mean discrimination rate was 98.17%. The surface of the fresh bananas was treated with UV-C at dosages from 15-55 μW/cm2. The visual qualities with or without UV-C treatment were compared using the image, the chromatic aberration test, the firmness test and the area of black spot on the banana skin. The results showed that high dosages of UV-C damaged the banana skin, while low dosages were more efficient at delaying changes in the relative brightness of the skin. The maximum UV-C treatment dose for satisfactory banana preservation was between 21 and 24 μW/cm2. These results could help to improve the visual quality of bananas and to classify their ripeness more easily.

  17. Disinfection of Mycobacterium avium subspecies hominissuis in drinking tap water using ultraviolet germicidal irradiation.

    PubMed

    Schiavano, Giuditta Fiorella; De Santi, Mauro; Sisti, Maurizio; Amagliani, Giulia; Brandi, Giorgio

    2017-09-13

    Nontuberculous mycobacteria are resistant to conventional water treatments, and are opportunistic human pathogen, particularly in hospitalized patients. The aim of this investigation was to assess the effectiveness of an ultraviolet UV-C lamp treatment against Mycobacterium avium subspecies hominissuis in drinking tap water. Ultraviolet treatments (0-192 mJ/cm 2 ) were performed using UV lamp immerged onto cylindrical glass tubes containing artificially contaminated water. The results showed that susceptibility to UV varied considerably according to the strains and the diameter of the tube. With a dose of 32 mJ/cm 2 , a significant inactivation (p < .05) of 3 log (99.9%) or more was obtained in only 5 of the 14 strains. To obtain a complete inactivation of all strains an irradiation of 192 mJ/cm 2 was needed, a dose that is much higher than the limits recommended by the international standards for UV disinfection of drinking water. In conclusion, it may be difficult to standardize a UV dose for the elimination of waterborne mycobacteria.

  18. Ultraviolet Radiation Dose National Standard of México

    NASA Astrophysics Data System (ADS)

    Cardoso, R.; Rosas, E.

    2006-09-01

    We present the Ultraviolet (UV) Radiation Dose National Standard for México. The establishment of this measurement reference at Centro Nacional de Metrología (CENAM) eliminates the need of contacting foreign suppliers in the search for traceability towards the SI units when calibrating instruments at 365 nm. Further more, the UV Radiation Dose National Standard constitutes a highly accurate and reliable source for the UV radiation dose measurements performed in medical and cosmetic treatments as in the the food and pharmaceutics disinfection processes, among other.

  19. Photosynthetic carbon reduction by seagrasses exposed to ultraviolet A radiation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The seagrasses Halophila engelmannii, Halodule wrightii, and Syringodium filiforme were examined for their intrinsic sensitivity to ultraviolet-A-UV-A and ultraviolet-B-UV-B radiation. The effect of UV-A on photosynthetically active radiation (PAR) was also determined. Ultraviolet-A and ultraviolet-B were studied with emphasis on the greater respective environmental consequence in terms of seagrass distribution and abundance. Results indicate that an intrinsic sensitivity to UV-A alone is apparent only in Halophila, while net photosynthesis in Halodule and Syringodium seems unaffected by the level of UV-A provided. The sensitivity of Halophila to UV-A in the absense of (PAR) indicates that the photosynthetic reaction does not need to be in operation for damage to occur. Other significant results are reported.

  20. Hope and challenge: the importance of ultraviolet (UV) radiation for cutaneous vitamin D synthesis and skin cancer.

    PubMed

    Reichrath, Jörg; Reichrath, Sandra

    2012-01-01

    Abstract Solar ultraviolet (UV)-radiation is the most important environmental risk factor for the development of non-melanoma skin cancer (most importantly basal and squamous cell carcinomas), that represent the most common malignancies in Caucasian populations. To prevent these malignancies, public health campaigns were developed to improve the awareness of the general population of the role of UV-radiation. The requirements of vitamin D is mainly achieved by UV-B-induced cutaneous photosynthesis, and the vitamin D-mediated positive effects of UV-radiation were not always adequately considered in these campaigns; a strict "no sun policy" might lead to vitamin D-deficiency. This dilemma represents a serious problem in many populations, for an association of vitamin D-deficiency and multiple independent diseases has been convincingly demonstrated. It is crucial that guidelines for UV-exposure (e.g. in skin cancer prevention campaigns) consider these facts and give recommendations how to prevent vitamin D-deficiency. In this review, we analyze the present literature to help developing well-balanced guidelines on UV-protection that ensure an adequate vitamin D-status without increasing the risk to develop UV-induced skin cancer.

  1. ULTRAVIOLET PROTECTIVE PIGMENTS AND DNA DIMER INDUCTION AS RESPONSES TO ULTRAVIOLET RADIATION

    EPA Science Inventory

    Life on Earth has evolved adaptations to many environmental stresses over the epochs. One consistent stress has been exposure to ultraviolet (UV) radiation. The most basic effect of UV radiation on biological systems is damage to DNA. In response to UV radiation organisms have ad...

  2. Treatment of blood with a pathogen reduction technology using ultraviolet light and riboflavin inactivates Ebola virus in vitro.

    PubMed

    Cap, Andrew P; Pidcoke, Heather F; Keil, Shawn D; Staples, Hilary M; Anantpadma, Manu; Carrion, Ricardo; Davey, Robert A; Frazer-Abel, Ashley; Taylor, Audra L; Gonzales, Richard; Patterson, Jean L; Goodrich, Raymond P

    2016-03-01

    Transfusion of plasma from recovered patients after Ebolavirus (EBOV) infection, typically called "convalescent plasma," is an effective treatment for active disease available in endemic areas, but carries the risk of introducing other pathogens, including other strains of EBOV. A pathogen reduction technology using ultraviolet light and riboflavin (UV+RB) is effective against multiple enveloped, negative-sense, single-stranded RNA viruses that are similar in structure to EBOV. We hypothesized that UV+RB is effective against EBOV in blood products without activating complement or reducing protective immunoglobulin titers that are important for the treatment of Ebola virus disease (EVD). Four in vitro experiments were conducted to evaluate effects of UV+RB on green fluorescent protein EBOV (EBOV-GFP), wild-type EBOV in serum, and whole blood, respectively, and on immunoglobulins and complement in plasma. Initial titers for Experiments 1 to 3 were 4.21 log GFP units/mL, 4.96 log infectious units/mL, and 4.23 log plaque-forming units/mL. Conditions tested in the first three experiments included the following: 1-EBOV-GFP plus UV+RB; 2-EBOV-GFP plus RB only; 3-EBOV-GFP plus UV only; 4-EBOV-GFP without RB or UV; 5-virus-free control plus UV only; and 6-virus-free control without RB or UV. UV+RB reduced EBOV titers to nondetectable levels in both nonhuman primate serum (≥2.8- to 3.2-log reduction) and human whole blood (≥3.0-log reduction) without decreasing protective antibody titers in human plasma. Our in vitro results demonstrate that the UV+RB treatment efficiently reduces EBOV titers to below limits of detection in both serum and whole blood. In vivo testing to determine whether UV+RB can improve convalescent blood product safety is indicated. © 2016 AABB.

  3. Occurrence and fate of benzotriazoles UV filters in a typical residential wastewater treatment plant in Harbin, China.

    PubMed

    Zhao, Xue; Zhang, Zi-Feng; Xu, Lei; Liu, Li-Yan; Song, Wei-Wei; Zhu, Fu-Jie; Li, Yi-Fan; Ma, Wan-Li

    2017-08-01

    Benzotriazoles (BTs) UV filters are widely used as ultraviolet absorbents for our daily products, which received increasing attention in the past decades. Residential wastewater treatment plant (WWTP) is both an important sink for wastewater and a key pollution source for receiving water for these chemicals. In this study, pretreatment and gas chromatography-tandem mass spectrometry analysis method were developed to determine the occurrence and fate of 9 BTs UV filters in wastewater and sludge from the WWTP with anaerobic-oxic treatment process (A/O) and biological aerated filter treatment process (BAF). Totally, 81 wastewater samples and 11 sludge samples were collected in four seasons. In wastewater, UV-326 and UV-329 were frequently detected, while the highest mean concentrations were detected for UV-234 and UV-329. The concentrations were in the range of UV filters was >85% in A/O process and 60-77% in BAF process except for UV-350, which was more difficult to remove with lower removal efficiencies of 33.3% for both A/O and BAF. All the target chemicals except for UV-320 were detected in sludge samples with the mean concentration ranging from 0.90 ng/g to 303.39 ng/g. There was no significant difference with concentrations and removal efficiency among different seasons. Higher detection frequency and concentration of BTs UV filters in downstream of the receiving water system indicated the contribution of effluent of the WWTP. Compared with other rivers, the lower concentrations in surface water in the Songhua River indicated light pollution status with of BTs UV filters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Towards producing novel fish gelatin films by combination treatments of ultraviolet radiation and sugars (ribose and lactose) as cross-linking agents.

    PubMed

    Bhat, Rajeev; Karim, A A

    2014-07-01

    Developing novel fish gelatin films with better mechanical properties than mammalian gelatin is a challenging but promising endeavor. Studies were undertaken to produce fish gelatin films by combining treatments with different sugars (ribose and lactose) followed 'by' 'and' ultraviolet (UV) radiation, as possible cross-linking agents. Increase in tensile strength and percent elongation at break was recorded, which was more significant in films without sugars that were exposed to UV radiation. Films with added ribose showed decreased solubility after UV treatment and exhibited higher swelling percentage than films with added lactose, which readily dissolved in water. FTIR spectra of all the films showed identical patterns, which indicated no major changes to have occurred in the functional groups as a result of interaction between gelatin, sugars and UV irradiation. The results of this study could be explored for commercial use, depending on industrial needs for either production of edible films or for food packaging purposes.

  5. Effects of ultraviolet-B radiation on fungal disease development in Cucumis sativus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orth, A.B.; Teramura, A.H.; Sisler, H.D.

    1990-09-01

    Stratospheric ozone depletion due to increased atmospheric pollutants has received considerable attention because of the potential increase in ultraviolet-B (UV-B, 280-320 nm) radiation that will reach the earth's surface. Three cucumber (Cucumis sativus L.) cultivars were exposed to a daily dose of 11.6 kJ m{sup {minus}2} biologically effective ultraviolet-B (UV-B{sub BE}) radiation in an unshaded greenhouse before and/or after injection by Colletotrichum lagenarium (Pass.) Ell. and Halst. or Cladosporium cucumerinum Ell. and Arth. and analyzed for disease development. Two of these cultivars, Poinsette and Calypso Hybrid, were disease resistant, while the third cultivar, Straight-8, was disease susceptible. Preinfectional treatment ofmore » 1 to 7 days with UV-B{sub BE} in Straight-8 led to greater severity of both diseases. Postinfectional UV treatment did not lead to increased disease severity caused by C. lagenarium, while preinfectional UV treatment in both Straight-8 and Poinsette substantially increased disease severity. Although resistant cultivars Poinsette and Calypso Hybrid showed increased anthracnose disease severity when exposed to UV-B, this effect was apparent only on the cotyledons. Both higher spore concentration and exposure to UV-B radiation resulted in greater disease severity. Of the cucumber cultivars tested for UV-B sensitivity, growth in Poinsette was most sensitive and Calypso Hybrid was least sensitive. These preliminary results indicate that the effects of UV-B radiation on disease development in cucumber vary depending on cultivar, timing and duration of UV-B exposure, inoculation level, and plant age.« less

  6. Photodegradation of pharmaceuticals and personal care products during UV and UV/H2O2 treatments.

    PubMed

    Kim, Ilho; Yamashita, Naoyuki; Tanaka, Hiroaki

    2009-10-01

    Photodegradation characteristics of pharmaceuticals and personal care products (PPCPs) and the effectiveness of H(2)O(2) addition for PPCPs photodegradation during UV treatment were examined in this study. Average k (1st order rate constant) value for all the PPCPs investigated increased by a factor of 1.3 by H(2)O(2) addition during UV treatment using biologically treated water (TW) spiked with the 30 PPCPs. Therefore, the effectiveness of H(2)O(2) addition for PPCPs removal during UV treatment in real wastewater treatment process was expected. It could be also known that H(2)O(2) addition would improve photodegradation rates of PPCPs highly resistant for UV treatment such as DEET, ethenzamide and theophylline. UV dose required for 90% degradation of each PPCP was calculated from k values obtained in UV and UV/H(2)O(2) treatment experiments using TW spiked with 30 PPCPs. For UV treatment, UV dose required for degrading each PPCP by 90% of initial concentration ranged from 38 mJ cm(-2) to 5644 mJ cm(-2), indicating that most of PPCPs will not be removed sufficiently in UV disinfection process in wastewater treatment plant. For UV/H(2)O(2) treatment, all the PPCPs except seven PPCPs including cyclophosphamide and 2-QCA were degraded by more than 90% by UV irradiation for 30 min (UV dose: 691 mJ cm(-2)), indicating that H(2)O(2) addition during UV treatment will be highly effective for improving the degradation of PPCPs by UV, even though much higher UV dose is still necessary comparing to for UV disinfection.

  7. Field efficacy evaluation and post-treatment contamination risk assessment of an ultraviolet disinfection and safe storage system.

    PubMed

    Reygadas, Fermin; Gruber, Joshua S; Ray, Isha; Nelson, Kara L

    2015-11-15

    Inconsistent use of household water treatment and safe storage (HWTS) systems reduces their potential health benefits. Ultraviolet (UV) disinfection is more convenient than some existing HWTS systems, but it does not provide post-treatment residual disinfectant, which could leave drinking water vulnerable to recontamination. In this paper, using as-treated analyses, we report on the field efficacy of a UV disinfection system at improving household drinking water quality in rural Mexico. We further assess the risk of post-treatment contamination from the UV system, and develop a process-based model to better understand household risk factors for recontamination. This study was part of a larger cluster-randomized stepped wedge trial, and the results complement previously published population-level results of the intervention on diarrheal prevalence and water quality. Based on the presence of Escherichia coli (proportion of households with ≥ 1 E. coli/100 mL), we estimated a risk difference of -28.0% (95% confidence interval (CI): -33.9%, -22.1%) when comparing intervention to control households; -38.6% (CI: -48.9%, -28.2%) when comparing post- and pre-intervention results; and -37.1% (CI: -45.2%, -28.9%) when comparing UV disinfected water to alternatives within the household. We found substantial increases in post-treatment E. coli contamination when comparing samples from the UV system effluent (5.0%) to samples taken from the storage container (21.1%) and drinking glasses (26.0%). We found that improved household infrastructure, additional extractions from the storage container, additional time from when the storage container was filled, and increased experience of the UV system operator were associated with reductions in post-treatment contamination. Our results suggest that the UV system is efficacious at improving household water quality when used as intended. Promoting safe storage habits is essential for an effective UV system dissemination. The drinking

  8. Degradation of naproxen by UV, VUV photolysis and their combination.

    PubMed

    Arany, Eszter; Szabó, Rita Katalin; Apáti, László; Alapi, Tünde; Ilisz, István; Mazellier, Patrick; Dombi, András; Gajda-Schrantz, Krisztina

    2013-11-15

    Naproxen is a widely used nonsteroidal anti-inflammatory drug. Recently, this medicine was detected both in natural waters (up to 1.5 μg L(-1)) and in sewage treatment plant effluents (up to 5.2 μg L(-1)). Moreover, naproxen is only partly eliminated by classical processes used in sewage treatment plants. Therefore, its degradation is of utmost interest. Advanced oxidation processes proved to be the most suitable methods for the elimination of persistent organic contaminants. In this work ultraviolet (UV, 254 nm), vacuum ultraviolet photolysis (VUV, 172 nm) and their combination (UV/VUV, 254/185 nm) were investigated. The efficiency of the methods increased in the following order: UV < VUV < UV/VUV photolysis. However, VUV irradiation was found to mineralize the contaminant molecule most effectively. The chemical structures of three out of four aromatic by-products and of some aliphatic carboxylic acids were presumed. The effects of dissolved O2 and the initial concentration of naproxen on the degradation were also investigated. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Riboflavin-ultraviolet light pathogen reduction treatment does not impact the immunogenicity of murine red blood cells.

    PubMed

    Tormey, Christopher A; Santhanakrishnan, Manjula; Smith, Nicole H; Liu, Jingchun; Marschner, Susanne; Goodrich, Raymond P; Hendrickson, Jeanne E

    2016-04-01

    Ultraviolet (UV) illumination/pathogen reduction effectively inactivates white blood cells (WBCs) in whole blood. Given that cotransfused WBCs may impact recipient immune responses, we hypothesized that pathogen reduction of whole blood may alter responses to RBC antigens. Transgenic mice expressing a model (HOD) antigen, authentic human (hGPA or KEL) antigens, or natural fluorescence (uGFP) on their RBCs were utilized as blood donors. Recipients were transfused with fresh whole blood to which riboflavin had been added or fresh whole blood treated by UV illumination/pathogen reduction treatment after the addition of riboflavin. Posttransfusion RBC recovery, survival, and alloimmunization were measured by flow cytometry. UV illumination/pathogen reduction treatment did not alter RBC antigen expression, and recipients of treated syngeneic RBCs had persistently negative direct antiglobulin tests. Greater than 75% of treated and untreated syngeneic RBCs were recovered 24 hours posttransfusion in all experiments, although alterations in the long-term posttransfusion survival of treated RBCs were observed. Treated and untreated KEL RBCs induced similar recipient alloimmune responses, with all recipients making anti-KEL glycoprotein immunoglobulins (p > 0.05). Alloimmune responses to treated HOD or hGPA RBCs were no different from untreated RBCs (p > 0.05). Pathogen inactivation treatment of fresh whole murine blood with riboflavin and UV illumination does not impact the rate or magnitude of RBC alloimmunization to three distinct RBC antigens. Further, UV illumination/pathogen reduction appears safe from an immunohematologic standpoint, with no immunogenic neoantigens detected on treated murine RBCs. Future studies with fresh and stored human RBCs are warranted to confirm these findings. © 2015 AABB.

  10. UV/O3 treatment as a surface modification of rice husk towards preparation of novel biocomposites

    PubMed Central

    Rajendran Royan, Nishata Royan; Sulong, Abu Bakar; Yuhana, Nor Yuliana; Ab Ghani, Mohd Hafizuddin; Ahmad, Sahrim

    2018-01-01

    The use of rice husks (RH) to reinforce polymers in biocomposites are increasing tremendously. However, the incompatibility between the hydrophilic RH fibers and the hydrophobic thermoplastic matrices leads to unsatisfactory biocomposites. Surface modification of the fiber surface was carried out to improve the adhesion between fiber and matrix. In this study, the effect of surface modification of RH via alkali, acid and ultraviolet-ozonolysis (UV/O3) treatments on the properties of composites recycled high density polyethylene (rHDPE) composites was investigated. The untreated and treated RH were characterized by Fourier Transform Infrared (FTIR) and Scanning Electron Microscope (SEM). The composites containing 30 wt% of RH (treated and untreated) were then prepared via extrusion and followed by compression molding. As compared to untreated RH, all surface treated RH exhibited rougher surface and showed improved adhesion with rHDPE matrix. Tensile strength of UV/O3-treated RH composites showed an optimum result at 18.37 MPa which improved about 5% in comparison to the composites filled with untreated RH. UV/O3 treatment promotes shorter processing time and lesser raw material waste during treatment process where this is beneficial for commercialization in the future developments of wood plastic composites (WPCs). Therefore, UV/O3 treatment can be served as an alternative new method to modify RH surface in order to improve the adhesion between hydrophilic RH fibre and hydrophobic rHDPE polymer matrix. PMID:29847568

  11. Ultraviolet radiation changes

    NASA Technical Reports Server (NTRS)

    Mckenzie, Richard L.; Frederick, John E.; Ilyas, Mohammad; Filyushkin, V.; Wahner, Andreas; Stamnes, K.; Muthusubramanian, P.; Blumthaler, M.; Roy, Colin E.; Madronich, Sasha

    1991-01-01

    A major consequence of ozone depletion is an increase in solar ultraviolet (UV) radiation received at the Earth's surface. This chapter discusses advances that were made since the previous assessment (World Meteorological Organization (WMO)) to our understanding of UV radiation. The impacts of these changes in UV on the biosphere are not included, because they are discussed in the effects assessment.

  12. How does solar ultraviolet-B radiation improve drought tolerance of silver birch (Betula pendula Roth.) seedlings?

    PubMed

    Robson, T Matthew; Hartikainen, Saara M; Aphalo, Pedro J

    2015-05-01

    We hypothesized that solar ultraviolet (UV) radiation would protect silver birch seedlings from the detrimental effects of water stress through a coordinated suite of trait responses, including morphological acclimation, improved control of water loss through gas exchange and hydraulic sufficiency. To better understand how this synergetic interaction works, plants were grown in an experiment under nine treatment combinations attenuating ultraviolet-A and ultraviolet-B (UVB) from solar radiation together with differential watering to create water-deficit conditions. In seedlings under water deficit, UV attenuation reduced height growth, leaf production and leaf length compared with seedlings receiving the full spectrum of solar radiation, whereas the growth and morphology of well-watered seedlings was largely unaffected by UV attenuation. There was an interactive effect of the treatment combination on water relations, which was more apparent as a change in the water potential at which leaves wilted or plants died than through differences in gas exchange. This suggests that changes occur in the cell wall elastic modulus or accumulation of osmolites in cells under UVB. Overall, the strong negative effects of water deficit are partially ameliorated by solar UV radiation, whereas well-watered silver birch seedlings are slightly disadvantaged by the solar UV radiation they receive. © 2014 John Wiley & Sons Ltd.

  13. Exploring Mercury's Surface in UltraViolet from Orbit

    NASA Astrophysics Data System (ADS)

    Izenberg, N.

    2017-12-01

    The MESSENGER Mission's Ultraviolet and Visible Spectrometer (UVVS) component of its Mercury Atmosphere and Surface Composition Spectrometer (MASCS) instrument obtained approximately 4600 point observations of Mercury's surface in middle ultraviolet (MUV; 210 nm - 300 nm) and far ultraviolet (FUV; 119.1 - 122.5 nm and 129.2 - 131.5 nm) wavelengths over the course of its orbital mission, mostly in Mercury's southern hemisphere. Given the very low (<1 to 2 wt %) average abundance of iron in the silicates of Mercury observed by multiple MESSENGER instruments, the near- to middle-ultraviolet wavelengths encompassing the oxygen metal charge transfer band (<400 nm), which is more sensitive to the presence of iron than the classic 1 micron absorption band, provides potentially useful additional compositional insight into the top layer of Mercury's regolith. The presence of nano- and microphase carbon also has potentially significant expression in the ultraviolet, and the interplay and variation between carbon and iron in mercury surface materials is an active area of investigation. Analysis of middle-UV surface reflectance and parameters appear to support the presence of varying amounts of carbon in different spectral or geologic units on Mercury. Far-UV reflectance data is currently under-utilized, but analysis of lunar surface by the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) indicate that the data are sensitive to both composition and space weathering. The far-UV reflectance from MASCS may provide similar information for the Mercury surface, complementing results from longer wavelengths. MESSENGER data products for surface reflectance include middle-UV reflectance spectra, ultraviolet far-UV reflectance values, combined middle-UV through near-infrared spectra (210 nm - 1450 nm), a global `spectral cube' of near-UV to near-IR, and an upcoming UV spectral cube.

  14. Ultraviolet radiation, human health, and the urban forest

    Treesearch

    Gordon M. Heisler; Richard H. Grant

    2000-01-01

    Excess exposure to ultraviolet (UV) radiation from the sun, particularly the ultraviolet B (UVB) portion, has been linked with adverse effects on human health ranging from skin cancers to eye diseases such as cataracts. Trees may prevent even greater disease rates in humans by reducing UV exposure. Tree shade greatly reduces UV irradiance when both the sun and sky are...

  15. pH induced polychromatic UV treatment for the removal of a mixture of SMX, OTC and CIP from water.

    PubMed

    Avisar, D; Lester, Y; Mamane, H

    2010-03-15

    Water and wastewater effluents contain a vast range of chemicals in mixtures that have different chemical structures and characteristics. This study presents a treatment technology for the removal of mixtures of antibiotic residues (sulfamethoxazole (SMX), oxytetracycline (OTC) and ciprofloxacin (CIP)) from contaminated water. The treatment combines pH modification of the water to an optimal value, followed by a photolytic treatment using direct polychromatic ultraviolet (UV) irradiation by medium pressure UV lamp. The pH adjustment of the treated water leads to structural modifications of the pollutant's molecule thus may enhance direct photolysis by UV light. Results showed that an increase of water pH from 5 to 7 leads to a decrease in degradation rate of SMX and an increase in degradation rate of OTC and CIP, when studied separately and not in a mixture. Thus, the optimal pH values for UV photodegradation in a mixture, involve initial photolysis at pH 5 and then gradually changing the pH from 5 to 7 during the UV exposure. For example, this resulted in 99% degradation of SMX at pH 5 and enhanced degradation of OTC and CIP from 54% and 26% to 91% and 96% respectively when pH was increased from 5 to 7. Thus the pH induced photolytic treatment has a potential in improving treatment of antibiotics in mixtures. (c) 2009 Elsevier B.V. All rights reserved.

  16. Sensor system development for the WSO-UV (World Space Observatory-Ultraviolet) space-based astronomical telescope

    NASA Astrophysics Data System (ADS)

    Hayes-Thakore, Chris; Spark, Stephen; Pool, Peter; Walker, Andrew; Clapp, Matthew; Waltham, Nick; Shugarov, Andrey

    2015-10-01

    As part of a strategy to provide increasingly complex systems to customers, e2v is currently developing the sensor solution for focal plane array for the WSO-UV (World Space Observatory - Ultraviolet) programme, a Russian led 170 cm space astronomical telescope. This is a fully integrated sensor system for the detection of UV light across 3 channels: 2 high resolution spectrometers covering wavelengths of 115 - 176 nm and 174 - 310 nm and a Long-Slit Spectrometer covering 115 nm - 310 nm. This paper will describe the systematic approach and technical solution that has been developed based on e2v's long heritage, CCD experience and expertise. It will show how this approach is consistent with the key performance requirements and the overall environment requirements that the delivered system will experience through ground test, integration, storage and flight.

  17. Ultraviolet Imaging with Low Cost Smartphone Sensors: Development and Application of a Raspberry Pi-Based UV Camera.

    PubMed

    Wilkes, Thomas C; McGonigle, Andrew J S; Pering, Tom D; Taggart, Angus J; White, Benjamin S; Bryant, Robert G; Willmott, Jon R

    2016-10-06

    Here, we report, for what we believe to be the first time, on the modification of a low cost sensor, designed for the smartphone camera market, to develop an ultraviolet (UV) camera system. This was achieved via adaptation of Raspberry Pi cameras, which are based on back-illuminated complementary metal-oxide semiconductor (CMOS) sensors, and we demonstrated the utility of these devices for applications at wavelengths as low as 310 nm, by remotely sensing power station smokestack emissions in this spectral region. Given the very low cost of these units, ≈ USD 25, they are suitable for widespread proliferation in a variety of UV imaging applications, e.g., in atmospheric science, volcanology, forensics and surface smoothness measurements.

  18. Ultraviolet Imaging with Low Cost Smartphone Sensors: Development and Application of a Raspberry Pi-Based UV Camera

    PubMed Central

    Wilkes, Thomas C.; McGonigle, Andrew J. S.; Pering, Tom D.; Taggart, Angus J.; White, Benjamin S.; Bryant, Robert G.; Willmott, Jon R.

    2016-01-01

    Here, we report, for what we believe to be the first time, on the modification of a low cost sensor, designed for the smartphone camera market, to develop an ultraviolet (UV) camera system. This was achieved via adaptation of Raspberry Pi cameras, which are based on back-illuminated complementary metal-oxide semiconductor (CMOS) sensors, and we demonstrated the utility of these devices for applications at wavelengths as low as 310 nm, by remotely sensing power station smokestack emissions in this spectral region. Given the very low cost of these units, ≈ USD 25, they are suitable for widespread proliferation in a variety of UV imaging applications, e.g., in atmospheric science, volcanology, forensics and surface smoothness measurements. PMID:27782054

  19. Tertiary treatment using microfiltration and UV disinfection for water reclamation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolis, D.; Hirano, R.; Pitt, P.

    Microfiltration and UV disinfection are two alternative technologies for water reclamation. The results of a pilot study combining these two processes are presented. In addition to producing filtrate turbidites averaging 0.06 nephelometric turbidity units, microfiltration was an effective barrier to pathogens, demonstrating average log reductions of 4.5 for total coliforms and 2.9 for MS2 bacteriophage. Ultraviolet disinfection following microfiltration reliably met the California Wastewater Reclamation Criteria (Title 22) total coliform standard of 2.2 colony-forming units/100 mL at a UV dose of 450 J/m{sup 2}. The MS2 bacteriophage standard, which requires a 5-log reduction, was achieved by microfiltration and a UVmore » dose of 880 J/m{sup 2}. A model of the kinetics of inactivation of MS2 bacteriophage was used in further analysis of disinfection data. The model indicated that considerable backmixing occurred in the pilot UV disinfection unit, and observed UV doses could be reduced with improved hydraulics.« less

  20. Replicated mesocosm study on the role of natural ultraviolet radiation in high CDOM, shallow lakes.

    PubMed

    Pérez, A Patricia; Diaz, Mónica M; Ferraro, Marcela A; Cusminsky, Gabriela C; Zagarese, Horacio E

    2003-02-01

    The role of ultraviolet radiation on shallow, high CDOM (colored dissolved organic matter) lakes was investigated during two consecutive summers (1999 and 2000) in replicated mesocosms (rectangular fiberglass tanks). Each tank (volume: 300 L; depth: 40 cm) was covered with a layer (approximately 3 cm) of sediment from lake El Toro (40 degrees 14' S; 70 degrees 22' W) and filled with filtered water. The experimental design consisted of two treatments: full natural radiation (UV-exposed) and natural radiation without ultraviolet radiation (UV-shielded). UV-exposed and UV-shielded treatments differed in most studied variables as revealed by repeated measures ANOVA. UV-exposed tanks displayed lower CDOM levels (dissolved absorbance) of lower average molecular size (absorbance ratio between 250 and 365 nm), higher bacterial biomass, and lower chlorophyll a concentration. The effect on consumers (rotifers and crustaceans) was less noticeable. The results are consistent with UV stimulation of bacteria production mediated by higher rates of CDOM photobleaching, and the photoinhibition of planktonic algae. Thus, a major effect of UVR in shallow, high CDOM ecosystems appears to be the stimulation of heterotrophic pathways and a simultaneous inhibition of photoautotrophs.

  1. Effect of ultraviolet light on water- and fat-soluble vitamins in cow and goat milk.

    PubMed

    Guneser, O; Karagul Yuceer, Y

    2012-11-01

    The objective of this study was to investigate and compare the effects of UV light and heat treatment on vitamins A, B(2), C, and E in cow and goat milk. Vitamins were analyzed by reverse-phase high-pressure liquid chromatography. Ultraviolet and pasteurization treatments caused loss in vitamin C in milk. Pasteurization did not have any significant effect on vitamin B(2). However, UV light treatment decreased the amount of vitamin B(2) after several passes of milk through the UV system. In addition, UV light treatment decreased the amount of vitamins A and E. Vitamins C and E are more sensitive to UV light. UV light sensitivities of vitamins were C>E>A>B(2). These results show that UV light treatment decreases the vitamin content in milk. Also, the number of passes through the UV system and the initial amount of vitamins in milk are important factors affecting vitamin levels. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Accelerated Solar-UV Test Chamber

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Laue, E. G.

    1984-01-01

    Medium-pressure mercury-vapor lamps provide high ratio of ultraviolet to total power. Chamber for evaluating solar-ultraviolet (UV) radiation damage permits accelerated testing without overheating test specimens.

  3. Galileo Ultraviolet Spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Hord, C. W.; Mcclintock, W. E.; Stewart, A. I. F.; Barth, C. A.; Esposito, L. W.; Thomas, G. E.; Sandel, B. R.; Hunten, D. M.; Broadfoot, A. L.; Shemansky, D. E.

    1992-01-01

    The Galileo ultraviolet spectrometer experiment uses data obtained by the Ultraviolet Spectrometer (UVS) mounted on the pointed orbiter scan platform and from the Extreme Ultraviolet Spectrometer (EUVS) mounted on the spinning part of the orbiter with the field of view perpendicular to the spin axis. The UVS is a Ebert-Fastie design that covers the range 113-432 nm with a wavelength resolution of 0.7 nm below 190 and 1.3 nm at longer wavelengths. The UVS spatial resolution is 0.4 deg x 0.1 deg for illuminated disk observations and 1 deg x 0.1 deg for limb geometries. The EUVS is a Voyager design objective grating spectrometer, modified to cover the wavelength range from 54 to 128 nm with wavelength resolution 3.5 nm for extended sources and 1.5 nm for point sources and spatial resolution of 0.87 deg x 0.17 deg. The EUVS instrument will follow up on the many Voyager UVS discoveries, particularly the sulfur and oxygen ion emissions in the Io torus and molecular and atomic hydrogen auroral and airglow emissions from Jupiter. The UVS will obtain spectra of emission, absorption, and scattering features in the unexplored, by spacecraft, 170-432 nm wavelength region. The UVS and EUVS instruments will provide a powerful instrument complement to investigate volatile escape and surface composition of the Galilean satellites, the Io plasma torus, micro- and macro-properties of the Jupiter clouds, and the composition structure and evolution of the Jupiter upper atmosphere.

  4. Antioxidant responses of damiana (Turnera diffusa Willd) to exposure to artificial ultraviolet (UV) radiation in an in vitro model; part ii; UV-B radiation.

    PubMed

    Soriano-Melgar, Lluvia de Abril Alexandra; Alcaraz-Meléndez, Lilia; Méndez-Rodríguez, Lía C; Puente, María Esther; Rivera-Cabrera, Fernando; Zenteno-Savín, Tania

    2014-05-01

    Ultraviolet type B (UV-B) radiation effects on medicinal plants have been recently investigated in the context of climate change, but the modifications generated by UV-B radiation might be used to increase the content of antioxidants, including phenolic compounds. To generate information on the effect of exposure to artificial UV-B radiation at different highdoses in the antioxidant content of damiana plants in an in vitro model. Damiana plantlets (tissue cultures in Murashige- Skoog medium) were irradiated with artificial UV-B at 3 different doses (1) 0.5 ± 0.1 mW cm-2 (high) for 2 h daily, (2) 1 ± 0,1 mW cm-2 (severe) for 2 h daily, or (3) 1 ± 0.1 mW cm-2 for 4 h daily during 3 weeks. The concentration of photosynthetic pigments (chlorophylls a and b, carotenoids), vitamins (C and E) and total phenolic compounds, the enzymatic activity of superoxide dismutase (SOD, EC 1.15.1.1) and total peroxidases (POX, EC 1.11.1), as well as total antioxidant capacity and lipid peroxidation levels were quantified to assess the effect of high artificial UV-B radiation in the antioxidant content of in vitro damiana plants. Severe and high doses of artificial UV-B radiation modified the antioxidant content by increasing the content of vitamin C and decreased the phenolic compound content, as well as modified the oxidative damage of damiana plants in an in vitro model. UV-B radiation modified the antioxidant content in damiana plants in an in vitro model, depending on the intensity and duration of the exposure. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  5. Treatment of erosive oral lichen planus with local ultraviolet B phototherapy.

    PubMed

    Kassem, Riad; Yarom, Noam; Scope, Alon; Babaev, Meir; Trau, Henri; Pavlotzky, Felix

    2012-05-01

    Oral lichen planus (OLP) is a chronic inflammatory disease that can significantly affect the patient's quality of life. We sought to demonstrate the therapeutic efficacy of local ultraviolet (UV) B phototherapy in OLP. Patients with biopsy-confirmed erosive OLP recalcitrant to previous medical therapy were treated with the TheraLight UV 120-2 system (TheraLight Inc, Carlsbad, CA). Lesions were accessed directly using a flexible fiber guide. Local phototherapy was delivered 3 times a week, with gradual increase in UVB dose every other session. Affected oral mucosa was defined as the area showing erosions or symptomatic reticular lesions. Complete response was defined as reduction of at least 80% in the affected mucosal area, and partial response was defined as a reduction of 50% to 80% in the affected mucosal area. The primary end point was efficacy after 8 weeks of treatment. Fourteen patients were included in the study. Nine achieved complete response and 5 partial response after 8 weeks. Ten patients were continued on maintenance therapy and were able to maintain their response for another 29 weeks. None of the patients showed any serious side effects from local UVB therapy. The study was performed in a small series of patients at a single medical center. Further studies with larger patient samples are required to validate our findings. Local UVB phototherapy may be a promising treatment modality for erosive OLP. Copyright © 2011 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  6. CR-39 (PADC) Reflection and Transmission of Light in the Ultraviolet-Near-Infrared (UV-NIR) Range.

    PubMed

    Traynor, Nathan B J; McLauchlin, Christopher; Dodge, Kenneth; McGarrah, James E; Padalino, Stephen J; McCluskey, Michelle; Sangster, T C; McLean, James G

    2018-04-01

    The spectral reflection (specular and diffuse) and transmission of Columbia Resin 39 (CR-39) were measured for incoherent light with wavelengths in the range of 200-2500 nm. These results will be of use for the optical characterization of CR-39, as well as in investigations of the chemical modifications of the polymer caused by ultraviolet (UV) exposure. A Varian Cary 5000 was used to perform spectroscopy on several different thicknesses of CR-39. With proper analysis for the interdependence of reflectance and transmittance, results are consistent across all samples. The reflectivity from each CR-39-air boundary reveals an increase in the index of refraction in the near-UV. Absorption observations are consistent with the Beer-Lambert law. Strong absorption of UV light of wavelength shorter than 350 nm suggests an optical band gap of 3.5 eV, although the standard analysis is not conclusive. Absorption features observed in the near infrared are assigned to molecular vibrations, including some that are new to the literature.

  7. Ultraviolet light treatment for the restoration of age-related degradation of titanium bioactivity.

    PubMed

    Hori, Norio; Ueno, Takeshi; Suzuki, Takeo; Yamada, Masahiro; Att, Wael; Okada, Shunsaku; Ohno, Akinori; Aita, Hideki; Kimoto, Katsuhiko; Ogawa, Takahiro

    2010-01-01

    To examine the bioactivity of differently aged titanium (Ti) disks and to determine whether ultraviolet (UV) light treatment reverses the possible adverse effects of Ti aging. Ti disks with three different surface topographies were prepared: machined, acid-etched, and sandblasted. The disks were divided into three groups: disks tested for biologic capacity immediately after processing (fresh surfaces), disks stored under dark ambient conditions for 4 weeks, and disks stored for 4 weeks and treated with UV light. The protein adsorption capacity of Ti was examined using albumin and fibronectin. Cell attraction to Ti was evaluated by examining migration, attachment, and spreading behaviors of human osteoblasts on Ti disks. Osteoblast differentiation was evaluated by examining alkaline phosphatase activity, the expression of bone-related genes, and mineralized nodule area in the culture. Four-week-old Ti disks showed = or < 50% protein adsorption after 6 hours of incubation compared with fresh disks, regardless of surface topography. Total protein adsorption for 4-week-old surfaces did not reach the level of fresh surfaces, even after 24 hours of incubation. Fifty percent fewer human osteoblasts migrated and attached to 4-week-old surfaces compared with fresh surfaces. Alkaline phosphatase activity, gene expression, and mineralized nodule area were substantially reduced on the 4-week-old surfaces. The reduction of these biologic parameters was associated with the conversion of Ti disks from superhydrophilicity to hydrophobicity during storage for 4 weeks. UV-treated 4-week-old disks showed even higher protein adsorption, osteoblast migration, attachment, differentiation, and mineralization than fresh surfaces, and were associated with regenerated superhydrophilicity. Time-related degradation of Ti bioactivity is substantial and impairs the recruitment and function of human osteoblasts as compared to freshly prepared Ti surfaces, suggesting a "biologic aging

  8. Near-ultraviolet laser diodes for brilliant ultraviolet fluorophore excitation.

    PubMed

    Telford, William G

    2015-12-01

    Although multiple lasers are now standard equipment on most modern flow cytometers, ultraviolet (UV) lasers (325-365 nm) remain an uncommon excitation source for cytometry. Nd:YVO4 frequency-tripled diode pumped solid-state lasers emitting at 355 nm are now the primary means of providing UV excitation on multilaser flow cytometers. Although a number of UV excited fluorochromes are available for flow cytometry, the cost of solid-state UV lasers remains prohibitively high, limiting their use to all but the most sophisticated multilaser instruments. The recent introduction of the brilliant ultraviolet (BUV) series of fluorochromes for cell surface marker detection and their importance in increasing the number of simultaneous parameters for high-dimensional analysis has increased the urgency of including UV sources in cytometer designs; however, these lasers remain expensive. Near-UV laser diodes (NUVLDs), a direct diode laser source emitting in the 370-380 nm range, have been previously validated for flow cytometric analysis of most UV-excited probes, including quantum nanocrystals, the Hoechst dyes, and 4',6-diamidino-2-phenylindole. However, they remain a little-used laser source for cytometry, despite their significantly lower cost. In this study, the ability of NUVLDs to excite the BUV dyes was assessed, along with their compatibility with simultaneous brilliant violet (BV) labeling. A NUVLD emitting at 375 nm was found to excite most of the available BUV dyes at least as well as a UV 355 nm source. This slightly longer wavelength did produce some unwanted excitation of BV dyes, but at sufficiently low levels to require minimal additional compensation. NUVLDs are compact, relatively inexpensive lasers that have higher power levels than the newest generation of small 355 nm lasers. They can, therefore, make a useful, cost-effective substitute for traditional UV lasers in multicolor analysis involving the BUV and BV dyes. Published 2015 Wiley Periodicals Inc. on

  9. EFFECTS OF ULTRAVIOLET-B IRRADIANCE IN SOYBEAN. 6. INFLUENCE OF PHOSPHORUS NUTRITION ON GROWTH AND FLAVONIID CONTENT

    EPA Science Inventory

    Soybeans Glycine max Essex were hydroponically grown in a greenhouse at 2 levels of ultraviolet-B(UV-B) radiation and 4 levels of P. Plants were grown in each treatment combination to the complete expansion of the 4th trifoliolate leaf. UV-B radiation and reduced P supply general...

  10. Ultraviolet Imaging Telescope observations of the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Hennessy, Gregory S.; O'Connell, Robert W.; Cheng, Kwang P.; Bohlin, Ralph C.; Collins, Nicholas R.; Gull, Theodore P.; Hintzen, Paul; Isensee, Joan E.; Landsman, Wayne B.; Roberts, Morton S.

    1992-01-01

    We obtained ultraviolet images of the Crab Nebula with the Ultraviolet Imaging Telescope during the Astro-1 Space Shuttle mission in 1990 December. The UV continuum morphology of the Crab is generally similar to that in the optical region, but the wispy structures are less conspicuous in the UV and X-ray. UV line emission from the thermal filaments is not strong. UV spectral index maps with a resolution of 10 arcsecs show a significant gradient across the nebula, with the outer parts being redder, as expected from synchrotron losses. The location of the bluest synchrotron continuum does not coincide with the pulsar.

  11. SR-71 Ship #1 - Ultraviolet Experiment

    NASA Technical Reports Server (NTRS)

    1994-01-01

    NASA's SR-71 streaks into the twilight on a night/science flight from the Dryden Flight Research Center, Edwards, California. Mounted in the nose of the SR-71 was an ultraviolet video camera aimed skyward to capture images of stars, asteroids and comets. The science portion of the flight is a project of the Jet Propulsion Laboratory, Pasadena, California. Two SR-71 aircraft have been used by NASA as test beds for high-speed and high-altitude aeronautical research. One early research project flown on one of Dryden's SR-71s consisted of a proposal for a series of flights using the SR-71 as a science camera platform for the Jet Propulsion Laboratory (JPL) of the California Institute of Technology, which operates under contract to NASA in much the way that NASA centers do. In March 1993, an upward-looking ultraviolet (UV) video camera placed in the SR-71's nosebay studied a variety of celestial objects in the ultraviolet light spectrum. The SR-71 was proposed as a test bed for the experiment because it is capable of flying at altitudes above 80,000 feet for an extended length of time. Observation of ultraviolet radiation is not possible from the Earth's surface because the atmosphere's ozone layer absorbs UV rays. Study of UV radiation is important because it is known to cause skin cancer with prolonged exposure. UV radiation is also valuable to study from an astronomical perspective. Satellite study of ultraviolet radiation is very expensive. As a result, the South West Research Institute (SWRI) in Texas developed the hypothesis of using a high-flying aircraft such as the SR-71 to conduct UV observations. The SR-71 is capable of flying above 90 percent of the Earth's atmosphere. The flight program was also designed to test the stability of the aircraft as a test bed for UV observation. A joint flight program was developed between the JPL and NASA's Ames-Dryden Flight Research Facility (redesignated the Dryden Flight Research Center, Edwards, California, in 1994) in

  12. Photocatalytic antibacterial effects on TiO2-anatase upon UV-A and UV-A/VIS threshold irradiation.

    PubMed

    Wu, Yanyun; Geis-Gerstorfer, Jürgen; Scheideler, Lutz; Rupp, Frank

    2016-01-01

    Photocatalysis mediated by the anatase modification of titanium dioxide (TiO2) has shown antibacterial effects in medical applications. The aim of this study was to investigate the possibility of expanding the excitation wavelengths for photocatalytic antibacterial effects from ultraviolet (UV) into the visible light range. After deposition of salivary pellicle and adhesion of Streptococcus gordonii on anatase, different irradiation protocols were applied to induce photocatalysis: ultraviolet A (UV-A) > 320 nm; ultraviolet/visible (UV-A/VIS) light > 380 nm and > 390 nm; and VIS light 400-410 nm. A quartz crystal microbalance with dissipation (QCM-D) tests and microscopic examination were used to observe the photoinduced antibacterial effects. Salivary pellicle could be photocatalytically decomposed under all irradiation protocols. In contrast, effective photocatalytic attack of bacteria could be observed by UV-A as well as by UV-A/VIS at 380 nm < λ < 390 nm only. Wavelengths above 380 nm show promise for in situ therapeutic antifouling applications.

  13. Design Considerations for a Water Treatment System Utilizing Ultra-Violet Light Emitting Diodes

    DTIC Science & Technology

    2014-03-27

    DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING DIODES...the United States. ii AFIT-ENV-14-M-58 DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING DIODES...DISTRIBUTION UNLIMITED. iii AFIT-ENV-14-M-58 DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING

  14. Ultraviolet Light (UV) Inactivation of Porcine Parvovirus in Liquid Plasma and Effect of UV Irradiated Spray Dried Porcine Plasma on Performance of Weaned Pigs

    PubMed Central

    Polo, Javier; Rodríguez, Carmen; Ródenas, Jesús; Russell, Louis E.; Campbell, Joy M.; Crenshaw, Joe D.; Torrallardona, David; Pujols, Joan

    2015-01-01

    A novel ultraviolet light irradiation (UV-C, 254 nm) process was designed as an additional safety feature for manufacturing of spray dried porcine plasma (SDPP). In Exp. 1, three 10-L batches of bovine plasma were inoculated with 105.2±0.12 tissue culture infectious dose 50 (TCID50) of porcine parvovirus (PPV) per mL of plasma and subjected to UV-C ranging from 0 to 9180 J/L. No viable PPV was detected in bovine plasma by micro-titer assay in SK6 cell culture after UV-C at 2295 J/L. In Exp. 2, porcine plasma was subjected to UV-C (3672 J/L), then spray dried and mixed in complete mash diets. Diets were a control without SDPP (Control), UV-C SDPP either at 3% (UVSDPP3) or 6% (UVSDPP6) and non-UV-C SDPP at 3% (SDPP3) or 6% (SDPP6). Diets were fed ad libitum to 320 weaned pigs (26 d of age; 16 pens/diet; 4 pigs/pen) for 14 d after weaning and a common diet was fed d 15 to 28. During d 0 to 14, pigs fed UVSDPP3, UVSDPP6, or SDPP6 had higher (P < 0.05) weight gain and feed intake than control. During d 0 to 28, pigs fed UVSDPP3 and UVSDPP6 had higher (P < 0.05) weight gain and feed intake than control and SDPP3, and SDPP6 had higher (P < 0.05) feed intake than control. Also, pigs fed UVSDPP had higher (P < 0.05) weight gain than pigs fed SDPP. In conclusion, UV-C inactivated PPV in liquid plasma and UVSDPP used in pig feed had no detrimental effects on pig performance. PMID:26171968

  15. UV clothing and skin cancer.

    PubMed

    Tarbuk, Anita; Grancarić, Ana Marija; Situm, Mirna; Martinis, Mladen

    2010-04-01

    Skin cancer incidence in Croatia is steadily increasing in spite of public and governmental permanently measurements. It is clear that will soon become a major public health problem. The primary cause of skin cancer is believed to be a long exposure to solar ultraviolet (UV) radiation. The future designers of UV protective materials should be able to block totally the ultraviolet radiation. The aim of this paper is to present results of measurements concerning UV protecting ability of garments and sun-screening textiles using transmission spectrophotometer Cary 50 Solarscreen (Varian) according to AS/NZS 4399:1996; to show that standard clothing materials are not always adequate to prevent effect of UV radiation to the human skin; and to suggest the possibilities for its improvement for this purpose.

  16. Antioxidant capacity of flavonoid in soybean seedlings under the joint actions of rare earth element La(III) and ultraviolet-B stress.

    PubMed

    Peng, Qi; Zhou, Qing

    2009-01-01

    The dynamic state of antioxidant capacity of flavonoid was investigated for a further demonstration of alleviating the damage of the ultraviolet (UV)-B radiation in the La-treated soybean seedlings under UV-B stress. Using hydroponics culture, the effects of lanthanum on the contents of flavonoid and its ability of antioxidant under elevated ultraviolet-B radiation (280-320 nm) was studied. The results showed flavonoid content in soybean seedlings with UV-B treatment during the stress and convalescent period was increased initially and then decreased, compared with control. Membrane permeability and MDA contents increase at first (first to fifth day) and then decrease (6th-11th day). A similar change of flavonoid content and clearance of flavonoid scavenging O2- and *OH in soybean seedlings occurred. Flavonoid content and ability of flavonoid scavenging O2- and *OH in soybean seedlings with La(III) + UV-B treatment were higher than those of UV-B treatment. Meanwhile, membrane permeability and MDA contents in soybean seedlings were lower than those of UV-B treatment. Compared with control, phenylalanine content in soybean seedlings with UV-B treatment is depressed, phenylalanine content in soybean seedlings with La(III) treatment was enhanced. However, phenylalanine content in La(III) + UV-B treatment is not decreased but slightly increased, compared with UV-B treatment. It suggested that the regulative effect of La(III) of the optimum concentration on flavonoid improved the metabolism of ROS, diminished the concentration of MDA and maintained normal plasma membrane permeability, and that its protective effect against low UV-B radiation is superior to that of high UV-B radiation. The defensive effect of La(III) on soybean seedlings under UV-B stress is carried out on the layer of defense system.

  17. UV-B radiation and photosynthetic irradiance acclimate eggplant for outdoor exposure

    NASA Technical Reports Server (NTRS)

    Latimer, J. G.; Mitchell, C. A.; Mitchell, G. A.

    1987-01-01

    Treatment of greenhouse-grown eggplant (Solanum melongena L. var. esculentum Nees. 'Burpee's Black Beauty') seedlings with supplemental photosynthetically active radiation from cool-white fluorescent lamps increased growth of plants subsequently transferred outdoors relative to growth of plants that received no supplemental radiation or were shaded to 45% of solar irradiation in the greenhouse before transfer outdoors. Eggplant seedlings transferred outdoors were placed under plastic tarps either to provide relative protection from solar ultraviolet-B (UV-B) radiation (280-315 nm) using Mylar film or to allow exposure to UV-B using cellulose acetate. Protection of seedlings from UV-B radiation resulted in greater leaf expansion than for UV-B-exposed seedlings, but no change in leaf or shoot dry weight occurred after 9 days of treatment. Specific leaf weight increased in response to UV-B exposure outdoors. Exposure of eggplant to UV-B radiation from fluorescent sunlamps in the greenhouse also decreased leaf expansion and leaf and shoot dry weight gain after 5 days of treatment. However, there were no differences in leaf or shoot dry weight relative to control plants after 12 days of UV-B treatment, indicating that UV-B treated plants had acclimated to the treatment and actually had caught up with non-UV-B-irradiated plants in terms of growth.

  18. UV-B radiation and photosynthetic irradiance acclimate eggplant for outdoor exposure.

    PubMed

    Latimer, J G; Mitchell, C A; Mitchell, G A

    1987-06-01

    Treatment of greenhouse-grown eggplant (Solanum melongena L. var. esculentum Nees. 'Burpee's Black Beauty') seedlings with supplemental photosynthetically active radiation from cool-white fluorescent lamps increased growth of plants subsequently transferred outdoors relative to growth of plants that received no supplemental radiation or were shaded to 45% of solar irradiation in the greenhouse before transfer outdoors. Eggplant seedlings transferred outdoors were placed under plastic tarps either to provide relative protection from solar ultraviolet-B (UV-B) radiation (280-315 nm) using Mylar film or to allow exposure to UV-B using cellulose acetate. Protection of seedlings from UV-B radiation resulted in greater leaf expansion than for UV-B-exposed seedlings, but no change in leaf or shoot dry weight occurred after 9 days of treatment. Specific leaf weight increased in response to UV-B exposure outdoors. Exposure of eggplant to UV-B radiation from fluorescent sunlamps in the greenhouse also decreased leaf expansion and leaf and shoot dry weight gain after 5 days of treatment. However, there were no differences in leaf or shoot dry weight relative to control plants after 12 days of UV-B treatment, indicating that UV-B treated plants had acclimated to the treatment and actually had caught up with non-UV-B-irradiated plants in terms of growth.

  19. The influence of oxidation reduction potential and water treatment processes on quartz lamp sleeve fouling in ultraviolet disinfection reactors.

    PubMed

    Wait, Isaac W; Johnston, Cliff T; Blatchley, Ernest R

    2007-06-01

    Ultraviolet (UV) disinfection systems are incorporated into drinking water production facilities because of their broad-spectrum antimicrobial capabilities, and the minimal disinfection by-product formation that generally accompanies their use. Selection of an optimal location for a UV system within a drinking water treatment facility depends on many factors; a potentially important consideration is the effect of system location on operation and maintenance issues, including the potential for fouling of quartz surfaces. To examine the effect of system location on fouling, experiments were conducted at a groundwater treatment facility, wherein aeration, chlorination, and sand filtration were applied sequentially for treatment. In this facility, access to the water stream was available prior to and following each of the treatment steps. Therefore, it was possible to examine the effects of each of these unit operations on fouling dynamics within a UV system. Results indicated zero-order formation kinetics for the fouling reactions at all locations. Increases in oxidation reduction potential, caused by water treatment steps such as aeration and chlorination, increased the rate of sleeve fouling and the rate of irradiance loss within the reactor. Analysis of metals in the sleeve foulant showed that calcium and iron predominate, and relative comparisons of foulant composition to water chemistry highlighted a high affinity for incorporation into the foulant matrix for both iron and manganese, particularly after oxidizing treatment steps. Fouling behavior was observed to be in qualitative agreement with representations of the degree of saturation, relative to the metal:ligand combinations that are believed to comprise a large fraction of the foulants that accumulate on the surfaces of quartz jackets in UV systems used to treat water.

  20. Treatment of blood with a pathogen reduction technology using UV light and riboflavin inactivates Ebola virus in vitro

    PubMed Central

    Cap, Andrew P.; Pidcoke, Heather F.; Keil, Shawn D.; Staples, Hilary M.; Anantpadma, Manu; Carrion, Ricardo; Davey, Robert A.; Frazer-Abel, Ashley; Taylor, Audra L.; Gonzales, Richard; Patterson, Jean L.; Goodrich, Raymond P.

    2018-01-01

    BACKGROUND Transfusion of plasma from recovered patients after Ebolavirus (EBOV) infection, typically called ‘convalescent plasma,’ is an effective treatment for active disease available in endemic areas, but carries the risk of introducing other pathogens, including other strains of EBOV. A pathogen reduction technology using ultraviolet light and riboflavin (UV + RB) is effective against multiple enveloped, negative-sense, single-stranded RNA viruses that are similar in structure to EBOV. We hypothesized that UV + RB is effective against EBOV in blood products without activating complement or reducing protective immunoglobulin titers that are important for the treatment of ebolavirus disease (EVD). STUDY DESIGN AND METHODS Four in vitro experiments were conducted to evaluate effects of UV + RB on green fluorescent protein EBOV (EBOV-GFP), wild-type EBOV in serum and whole blood, respectively, and on immunoglobulins and complement in plasma. Initial titers for Experiments 1–3 were: 4.21 log10 GFP units/mL, 4.96 log10 infectious units per mL, and 4.23 log10 plaque forming units per mL (PFU/mL). Conditions tested in the first three experiments included: 1. EBOV-GFP + UV + RB; 2. EBOV-GFP + RB only; 3 EBOV-GFP + UV only; 4. EBOV-GFP without RB or UV; 5. Virus-free control + UV only; and 6. Virus-free control without RB or UV. RESULTS UV + RB reduced EBOV titers to non-detectable levels in both non-human primate serum (≥ 2.8 to 3.2 log reduction) and human whole blood (≥ 3.0 log reduction) without decreasing protective antibody titers in human plasma. CONCLUSION Our in vitro results demonstrate that the UV + RB treatment efficiently reduces EBOV titers to below limits of detection in both serum and whole blood. In vivo testing to determine whether UV + RB can improve convalescent blood product safety is indicated. PMID:27001363

  1. Implementation of innovative pulsed xenon ultraviolet (PX-UV) environmental cleaning in an acute care hospital.

    PubMed

    Fornwalt, Lori; Riddell, Brad

    2014-01-01

    It is widely acknowledged that the hospital environment is an important reservoir for many of the pathogenic microbes associated with health care-associated infections (HAIs). Environmental cleaning plays an important role in the prevention and containment of HAIs, in patient safety, and the overall experience of health care facilities. New technologies, such as pulsed xenon ultraviolet (PX-UV) light systems are an innovative development for enhanced cleaning and decontamination of hospital environments. A portable PX-UV disinfection device delivers pulsed UV light to destroy microbial pathogens and spores, and can be used in conjunction with manual environmental cleaning. In addition, this technology facilitates thorough disinfection of hospital rooms in 10-15 minutes. The current study was conducted to evaluate whether the introduction of the PX-UV device had a positive impact on patient satisfaction. Satisfaction was measured using the Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) survey. In 2011, prior to the introduction of the PX-UV system, patient HCAHPS scores for cleanliness averaged 75.75%. In the first full quarter after enhanced cleaning of the facility was introduced, this improved to 83%. Overall scores for the hospital rose from 76% (first quarter, 2011) to 87.6% (fourth quarter, 2012). As a result of this improvement, the hospital received 1% of at-risk reimbursement from the inpatient prospective payment system as well as additional funding. Cleanliness of the hospital environment is one of the questions included in the HCAHPS survey and one measure of patient satisfaction. After the introduction of the PX-UV system, the score for cleanliness and the overall rating of the hospital rose from below the fiftieth to the ninety-ninth percentile. This improvement in the patient experience was associated with financial benefits to the hospital.

  2. Protective effect of rare earth against oxidative stress under ultraviolet-B radiation.

    PubMed

    Wang, Lihong; Huang, Xiaohua; Zhou, Qing

    2009-04-01

    The effects of lanthanum (III) (La(III)) in protecting soybean leaves against oxidative stress induced by ultraviolet-B (UV-B) radiation were investigated. The increase in contents of hydrogen peroxide (H(2)O(2)) and superoxide (O2*-) due to UV-B radiation suggested oxidative stress. The increase in the content of malondialdehyde (MDA) and the decrease in the index of unsaturated fatty acid (IUFA) indicated oxidative damage on cell membrane induced by UV-B radiation. La(III) partially reversed UV-B-radiation-induced damage of plant growth. The reduction in the contents of H(2)O(2), O2*-, and MDA and increase in the content of IUFA, compared with UV-B treatment, also indicated that La(III) alleviated the oxidative damage induced by UV-B radiation. The increase in the activities of superoxide dismutase and peroxidase and the contents of ascorbate, carotenoids, and flavonoids were observed in soybean leaves with La(III) + UV-B treatment, compared with UV-B treatment. Our data suggested that La(III) could protect soybean plants from UV-B-radiation-induced oxidative stress by reacting with reactive oxygen species directly or by improving the defense system of plants.

  3. ADVANCED OXIDATION PROCESS TECHNOLOGY (ULTRAVIOLET RADIATION/OZONE TREATMENT) FOR REMOVAL OF METHYL TERTIARY BUTYL ETHER (MTBE) IN GROUND WATER SUPPLIES.

    EPA Science Inventory

    U.S. EPA’s Office of Research and Development in Cincinnati, Ohio has been testing and evaluating MTBE removal in dechlorinated tap water using three oxidant combinations: hydrogen peroxide/ozone, ultraviolet irradiation (UV)/ozone, and UV/ozone/hydrogen peroxide. Pilot-scale st...

  4. [When sunscreens do not help: allergic contact dermatitis to UV filters].

    PubMed

    Ludriksone, L; Tittelbach, J; Schliemann, S; Goetze, S; Elsner, P

    2018-06-07

    Ultraviolet (UV) filters may cause allergic and more frequently photoallergic contact dermatitis. Therefore, a photopach test should always be performed in case of a suspected contact sensitivity to UV filters. We report a case of a 65-year-old woman with a recurrent erythema of the face and décolleté after sun exposure despite application of a sunscreen. The (photo)patch test revealed a contact sensitivity to the UV filter butyl-methoxybenzoylmethane. Treatment with a topical glucocorticoid and avoidance of the particular UV filter led to a rapid improvement.

  5. Preparation and characterization of functional poly(vinylidene fluoride) (PVDF) membranes with ultraviolet-absorbing property

    NASA Astrophysics Data System (ADS)

    Dong, Li; Liu, Xiangdong; Xiong, Zhengrong; Sheng, Dekun; Lin, Changhong; Zhou, Yan; Yang, Yuming

    2018-06-01

    We first reported a strategy to prepare functional poly(vinylidene fluoride) (PVDF) membranes with excellent ultraviolet-absorbing property through chemically induced grafting. Herein, the polymerizable ultraviolet (UV) absorber 2-hydroxy-4-(3-methacryloxy-2-hydroxylpropoxy) benzophenone (BPMA) made by ourselves was grafted onto the PVDF chains that have been pretreated with tetraethylammonium hydroxide (TEAH) alkaline solution. Moreover, the effect of experiment conditions such as the alkali and monomer concentrations, alkali treatment time on the UV-absorbing property of the obtained PVDF-g-PBPMA membranes were studied in detail. The chemical structure of the modified membranes was confirmed by 1H NMR, FT-IR and XPS measurements. Meanwhile, the thermal and UV-absorbing properties were characterized by TGA, DSC and UV-Vis spectrophotometer, respectively. The results indicated that BPMA side chains were successfully introduced onto PVDF backbones. Most importantly, the obtained PVDF-g-PBPMA membranes exhibited excellent UV-absorbing property. The transmittance of UV light at 300 nm decreased to as low as 0.02% and the UV light below 388 nm could be completely absorbed by the PVDF-g-PBPMA membrane made under optimal condition.

  6. Efficacy of Ultraviolet (UV-C) Light in a Thin-Film Turbulent Flow for the Reduction of Milkborne Pathogens.

    PubMed

    Crook, Jennifer A; Rossitto, Paul V; Parko, Jared; Koutchma, Tatiana; Cullor, James S

    2015-06-01

    Nonthermal technologies are being investigated as viable alternatives to, or supplemental utilization, with thermal pasteurization in the food-processing industry. In this study, the effect of ultraviolet (UV)-C light on the inactivation of seven milkborne pathogens (Listeria monocytogenes, Serratia marcescens, Salmonella Senftenberg, Yersinia enterocolitica, Aeromonas hydrophila, Escherichia coli, and Staphylococcus aureus) was evaluated. The pathogens were suspended in ultra-high-temperature whole milk and treated at UV doses between 0 and 5000 J/L at a flow rate of 4300 L/h in a thin-film turbulent flow-through pilot system. Of the seven milkborne pathogens tested, L. monocytogenes was the most UV resistant, requiring 2000 J/L of UV-C exposure to reach a 5-log reduction. The most sensitive bacterium was S. aureus, requiring only 1450 J/L to reach a 5-log reduction. This study demonstrated that the survival curves were nonlinear. Sigmoidal inactivation curves were observed for all tested bacterial strains. Nonlinear modeling of the inactivation data was a better fit than the traditional log-linear approach. Results obtained from this study indicate that UV illumination has the potential to be used as a nonthermal method to reduce microorganism populations in milk.

  7. Modelling a man-portable air-defence (MANPAD) system with a rosette scan two-colour infrared (IR) and ultraviolet (UV) seeker

    NASA Astrophysics Data System (ADS)

    Kumar, Devinder; Smith, Leon; Richardson, Mark A.; Ayling, Richard; Barlow, Nick

    2014-10-01

    The Ultraviolet (UV) band of the electromagnetic (EM) spectrum has the potential to be used as the host medium for the operation of guided weapons. Unlike in the Infrared (IR), a target propelled by an air breathing jet engine produces no detectable radiation in the UV band, and is opaque to the background UV produced by the Sun. Successful engineering of spectral airborne IR countermeasures (CM) against existing two colour IR seekers has encouraged missile counter-countermeasure (CCM) designers to utilise the silhouette signature of an aircraft in the UV as a means of distinguishing between a true target and a flare CM. In this paper we describe the modelling process of a dual band IR and UV rosette scan seeker using CounterSim, a missile engagement and countermeasure simulation software package developed by Chemring Countermeasures Ltd. Results are shown from various simulated engagements of the dual band MANPAD with a C-130 Hercules modelled by Chemring Countermeasures. These results have been used to estimate the aircrafts' vulnerability to this MANPAD threat. A discussion on possible future optical countermeasures against dual band IR-UV seekers is given in conclusion to the simulation results.

  8. Research on the calibration of ultraviolet energy meters

    NASA Astrophysics Data System (ADS)

    Lin, Fangsheng; Yin, Dejin; Li, Tiecheng; Lai, Lei; Xia, Ming

    2016-10-01

    Ultraviolet (UV) radiation is a kind of non-lighting radiation with the wavelength range from 100nm to 400nm. Ultraviolet irradiance meters are now widely used in many areas. However, as the development of science and technology, especially in the field of light-curing industry, there are more and more UV energy meters or UV-integrators need to be measured. Because the structure, wavelength band and measured power intensity of UV energy meters are different from traditional UV irradiance meters, it is important for us to take research on the calibration. With reference to JJG879-2002, we SIMT have independently developed the UV energy calibration device and the standard of operation and experimental methods for UV energy calibration in detail. In the calibration process of UV energy meter, many influencing factors will affect the final results, including different UVA-band UV light sources, different spectral response for different brands of UV energy meters, instability and no uniformity of UV light source and temperature. Therefore we need to take all of these factors into consideration to improve accuracy in UV energy calibration.

  9. INACTIVATION OF MS2 VIRUS IN DRINKING WATER: ATLANTIC ULTRAVIOLET CORPORATION MEGATRON UNIT, MODEL M250 AT CHULA VISTA, CALIFORNIA

    EPA Science Inventory

    Verification testing of the Atlantic Ultraviolet Megatron M250 system was conducted over a 48-day period from 11/01/01 to 12/18/01. The feedwater to the ultraviolet (UV) unit during the testing was effluent from the Otay Water Treatment Plant (OWTP), a conventional plant with fl...

  10. TOMS UV Algorithm: Problems and Enhancements. 2

    NASA Technical Reports Server (NTRS)

    Krotkov, Nickolay; Herman, Jay; Bhartia, P. K.; Seftor, Colin; Arola, Antti; Kaurola, Jussi; Kroskinen, Lasse; Kalliskota, S.; Taalas, Petteri; Geogdzhaev, I.

    2002-01-01

    Satellite instruments provide global maps of surface ultraviolet (UV) irradiance by combining backscattered radiance measurements with radiative transfer models. The models are limited by uncertainties in input parameters of the atmosphere and the surface. We evaluate the effects of possible enhancements of the current Total Ozone Mapping Spectrometer (TOMS) surface UV irradiance algorithm focusing on effects of diurnal variation of cloudiness and improved treatment of snow/ice. The emphasis is on comparison between the results of the current (version 1) TOMS UV algorithm and each of the changes proposed. We evaluate different approaches for improved treatment of pixel average cloud attenuation, with and without snow/ice on the ground. In addition to treating clouds based only on the measurements at the local time of the TOMS observations, the results from other satellites and weather assimilation models can be used to estimate attenuation of the incident UV irradiance throughout the day. A new method is proposed to obtain a more realistic treatment of snow covered terrain. The method is based on a statistical relation between UV reflectivity and snow depth. The new method reduced the bias between the TOMS UV estimations and ground-based UV measurements for snow periods. The improved (version 2) algorithm will be applied to re-process the existing TOMS UV data record (since 1978) and to the future satellite sensors (e.g., Quik/TOMS, GOME, OMI on EOS/Aura and Triana/EPIC).

  11. Phototransformation of selected pharmaceuticals during UV treatment of drinking water.

    PubMed

    Canonica, Silvio; Meunier, Laurence; von Gunten, Urs

    2008-01-01

    The kinetics of Ultraviolet C (UV-C)-induced direct phototransformation of four representative pharmaceuticals, i.e., 17alpha-ethinylestradiol (EE2), diclofenac, sulfamethoxazole, and iopromide, was investigated in dilute solutions of pure water buffered at various pH values using a low-pressure and a medium-pressure mercury arc lamp. Except for iopromide, pH-dependent rate constants were observed, which could be related to acid-base equilibria. Quantum yields for direct phototransformation were found to be largely wavelength-independent, except for EE2. This compound, which also had a rather inefficient direct phototransformation, mainly underwent indirect phototransformation in natural water samples, while the UV-induced depletion of the other pharmaceuticals appeared to be unaffected by the presence of natural water components. At the UV-C (254 nm) drinking-water disinfection fluence (dose) of 400 Jm(-2), the degree of depletion of the select pharmaceuticals at pH=7.0 in pure water was 0.4% for EE2, 27% for diclofenac, 15% for sulfamethoxazole, and 15% for iopromide, indicating that phototransformation should be seriously taken into account when evaluating the possibility of formation of UV transformation products from pharmaceuticals present as micropollutants.

  12. Medium pressure UV combined with chlorine advanced oxidation for trichloroethylene destruction in a model water.

    PubMed

    Wang, Ding; Bolton, James R; Hofmann, Ron

    2012-10-01

    The effectiveness of ultraviolet (UV) combined with chlorine as a novel advanced oxidation process (AOP) for drinking water treatment was evaluated in a bench scale study by comparing the rate of trichloroethylene (TCE) decay when using UV/chlorine to the rates of decay by UV alone and UV/hydrogen peroxide (H₂O₂) at various pH values. A medium pressure mercury UV lamp was used. The UV/chlorine process was more efficient than the UV/H₂O₂ process at pH 5, but in the neutral and alkaline pH range, the UV/H₂O₂ process became more efficient. The pH effect was probably controlled by the increasing concentration of OCl⁻ at higher pH values. A mechanistic kinetic model of the UV/chlorine treatment of TCE showed good agreement with the experimental data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Development of deep-ultraviolet metal vapor lasers

    NASA Astrophysics Data System (ADS)

    Sabotinov, Nikola V.

    2004-06-01

    Deep ultraviolet laser generation is of great interest in connection with both the development of new industrial technologies and applications in medicine, biology, chemistry, etc. The development of metal vapor UV lasers oscillating in the pulsed mode with high pulse repetition frequencies and producing high average output powers is of particular interest for microprocessing of polymers, photolithography and fluorescence applications. At present, metal vapor lasers generate deep-UV radiation on the base of two methods. The first method is non-linear conversion of powerful laser generation from the visible region into the deep ultraviolet region. The second method is direct UV laser action on ion and atomic transitions of different metals.

  14. Use of UV-C treatments to maintain quality and extend the shelf life of green fresh-cut bell pepper (Capsicum annuum L.).

    PubMed

    Rodoni, Luis M; Concellón, Analía; Chaves, Alicia R; Vicente, Ariel R

    2012-06-01

    The objective of this work was to select a Ultraviolet-C (UV-C) treatment for fresh-cut mature green bell pepper, and to evaluate the effect of its combination with refrigeration on quality maintenance. Bell pepper sticks were treated with 0, 3, 10, or 20 kJ/m² UV-C in the outer (O), inner (I), or both sides of the pericarp (I/O) and stored for 8 d at 10 °C. During the first 5 d of storage, all UV-C treatments reduced deterioration as compared to the control. The treatment with 20 kJ/m² I/O was the most effective to reduce deterioration, and was used for further evaluations. In a second group of experiments, mature green bell pepper sticks were treated with 20 kJ/m² I/O, stored at 5 °C for 7 or 12 d and assessed for physical and chemical analysis, and microbiological quality. UV-C-treated fruit showed lower exudates and shriveling than the control. UV exposure also reduced decay, tissue damage, and electrolyte leakage. After 12 d at 5 °C, UV-C irradiated peppers remained firmer and had higher resistance to deformation than the control. The UV-C treatments also reduced weight loss and pectin solubilization. UV-C exposure decreased the counts of mesophile bacteria and molds, and did not affect acidity or sugars. UV-C-treated fruit stored for 0 or 7 d at 5 °C did not show major differences in antioxidants from the control as measured against DPPH(•) or ABTS(•)⁺ radicals. Results suggest that UV-C exposure is useful to maintain quality of refrigerated fresh-cut green pepper. Exposure to UV-C radiation before packing and refrigeration could be a useful nonchemical alternative to maintain quality and reduce postharvest losses in the fresh-cut industry. © 2012 Institute of Food Technologists®

  15. Multiple Roles for UV RESISTANCE LOCUS8 in Regulating Gene Expression and Metabolite Accumulation in Arabidopsis under Solar Ultraviolet Radiation1[W][OA

    PubMed Central

    Morales, Luis O.; Brosché, Mikael; Vainonen, Julia; Jenkins, Gareth I.; Wargent, Jason J.; Sipari, Nina; Strid, Åke; Lindfors, Anders V.; Tegelberg, Riitta; Aphalo, Pedro J.

    2013-01-01

    Photomorphogenic responses triggered by low fluence rates of ultraviolet B radiation (UV-B; 280–315 nm) are mediated by the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8). Beyond our understanding of the molecular mechanisms of UV-B perception by UVR8, there is still limited information on how the UVR8 pathway functions under natural sunlight. Here, wild-type Arabidopsis (Arabidopsis thaliana) and the uvr8-2 mutant were used in an experiment outdoors where UV-A (315–400 nm) and UV-B irradiances were attenuated using plastic films. Gene expression, PYRIDOXINE BIOSYNTHESIS1 (PDX1) accumulation, and leaf metabolite signatures were analyzed. The results show that UVR8 is required for transcript accumulation of genes involved in UV protection, oxidative stress, hormone signal transduction, and defense against herbivores under solar UV. Under natural UV-A irradiance, UVR8 is likely to interact with UV-A/blue light signaling pathways to moderate UV-B-driven transcript and PDX1 accumulation. UVR8 both positively and negatively affects UV-A-regulated gene expression and metabolite accumulation but is required for the UV-B induction of phenolics. Moreover, UVR8-dependent UV-B acclimation during the early stages of plant development may enhance normal growth under long-term exposure to solar UV. PMID:23250626

  16. Solar UV variability

    NASA Technical Reports Server (NTRS)

    Donnelly, Richard F.

    1989-01-01

    Measurements from the Solar Backscatter Ultraviolet (SBUV) provide solar UV flux in the 160 to 400 nm wavelength range, backed up by independent measurement in the 115 to 305 nm range from the Solar Mesosphere Explorer (SME). The full disc UV flux from spatially resolved measurements of solar activity was modeled, which provides a better understanding of why the UV variations have their observed temporal and wavelength dependencies. Long term, intermediate term, and short term variations are briefly examined.

  17. The Effects of Ultraviolet Radiation on Attached Wetland Algae and Bacteria

    NASA Astrophysics Data System (ADS)

    Thomas, V. K.; Kuehn, K. A.; Francoeur, S. N.

    2005-05-01

    Despite the well-known increases in ultraviolet radiation (UV-R) reaching the Earth's surface due to the destruction of the ozone layer, little is known about effects of UV-R on wetland periphyton. To study the effects of UV-R on wetland periphyton, artificial substrata were placed under acrylic mesocosms in the Paint Creek Wetland, Ypsilanti, MI. One treatment mesocosm excluded light in the UV range (<340nm) and the other allowed the passage of full light. Periphyton attached to artificial substrata was collected on 4 dates during August and September 2004 and analyzed for Chlorophyll a, ash-free dry mass (AFDM), bacterial density, colloidal extracellular polysaccharides (EPS) and algal community composition. Over the length of the experiment the proportion of dead to live bacteria (p<0.02), EPS accrual (μgram glucose equivalents/cm2) (p=0.046), and the ratio of EPS to AFDM (p=0.027) were significantly greater in the UV-R-exposed treatment. These results suggest that ambient levels of UV-R damage periphytic bacteria and increase EPS production by periphyton.

  18. Sensitivity of two salamander (Ambystoma) species to ultraviolet radiation

    USGS Publications Warehouse

    Calfee, R.D.; Bridges, C.M.; Little, E.E.

    2006-01-01

    Increased ultraviolet-B (UV-B) radiation reaching the Earth's surface has been implicated in amphibian declines. Recent studies have shown that many amphibian species have differences in sensitivity depending on developmental stage. Embryos and larvae of Ambystoma maculatum (Spotted Salamander) and larvae of Ambystoma talpoideum (Mole Salamander) were exposed to five simulated UV-B treatments in controlled laboratory experiments to determine the relative sensitivity of different lifestages. Hatching success of the embryos exceeded 95% in all treatments; however, the larvae of both species exhibited greater sensitivity to UV-B exposure. Older larvae of A. maculatum that were not exposed to UV-B as embryos were more sensitive than larvae that had hatched during exposure to UV-B. Growth of surviving larvae of A. maculatum was significantly reduced as UV-B intensity increased, whereas growth of A. talpoideum was unaffected. These results were compared to ambient UV-B conditions in natural environments. It appears that the embryo stage is relatively unaffected by UV-B levels observed in natural habitats, probably because of protection from vegetation, organic matter in the water column, oviposition depth, and egg jelly. The larval stage of these species may be at greater risk, particularly if there is an increase in UV-B radiation exposure caused by increases in water clarity and/or decreases in dissolved organic carbon.

  19. The effect of inorganic precursors on disinfection byproduct formation during UV-chlorine/chloramine drinking water treatment.

    PubMed

    Lyon, Bonnie A; Dotson, Aaron D; Linden, Karl G; Weinberg, Howard S

    2012-10-01

    Ultraviolet (UV) disinfection is being increasingly used in drinking water treatment. It is important to understand how its application to different types of water may influence finished water quality, particularly as anthropogenic activity continues to impact the quality of source waters. The objective of this study was to evaluate the effect of inorganic precursors on the formation of regulated and unregulated disinfection byproducts (DBPs) during UV irradiation of surface waters when combined with chlorination or chloramination. Samples were collected from three drinking water utilities supplied by source waters with varying organic and inorganic precursor content. The filtered samples were treated in the laboratory with a range of UV doses delivered from low pressure (LP, UV output at 253.7 nm) and medium pressure (MP, polychromatic UV output 200-400 nm) mercury lamps followed by chlorination or chloramination, in the presence and absence of additional bromide and nitrate. The regulated trihalomethanes and haloacetic acids were not affected by UV pretreatment at disinfection doses (40-186 mJ/cm²). With higher doses (1000 mJ/cm²), trihalomethane formation was increased 30-40%. While most effects on DBPs were only observed with doses much higher than typically used for UV disinfection, there were some effects on unregulated DBPs at lower doses. In nitrate-spiked samples (1-10 mg N/L), chloropicrin formation doubled and increased three- to six-fold with 40 mJ/cm² MP UV followed by chloramination and chlorination, respectively. Bromopicrin formation was increased in samples containing bromide (0.5-1 mg/L) and nitrate (1-10 mg N/L) when pretreated with LP or MP UV (30-60% with 40 mJ/cm² LP UV and four- to ten-fold increase with 40 mJ/cm² MP UV, after subsequent chlorination). The formation of cyanogen chloride doubled and increased three-fold with MP UV doses of 186 and 1000 mJ/cm², respectively, when followed by chloramination in nitrate-spiked samples but

  20. Innovative Approach to Validation of Ultraviolet (UV) Reactors ...

    EPA Pesticide Factsheets

    Slide presentation at Conference: ASCE 7th Civil Engineering Conference in the Asian Region. USEPA in partnership with the Cadmus Group, Carollo Engineers, and other State & Industry collaborators, are evaluating new approaches for validating UV reactors to meet groundwater & surface water pathogen inactivation including viruses for low-pressure and medium-pressure UV systems. Evaluation objectives of the study: Practical approach for validating LP and MP UV reactors for virus & cryptosporidium inactivation using various test microbes, i.e., MS2, B. pumilus, AD2, T1; Apply UV dose algorithms based on theory vs empirical that predict log-I and RED as a function of the UV sensitivity of the microbe (combined variable criteria), flow, lamp-sensor output, DL-ASCFs, w/wo UVT; Assess capabilities of test microbe for predicting target pathogen, assess credibility with second test microbe vs bracketing; Evaluate UV lamp sensor technology that accounts for germicidal contributions of low-and high-wavelength UV light within MP reactors; Address approaches for propagating and assaying AD2, B. pumilus, MS2, and methods for determining low and high wavelength ASCFs using collimated beam LP & MP UV lamps; Determine & apply low and high wavelength ASCFs to predict cryptosporidium and adenovirus credit using MS2, or B. pumilus, T1 test data; Simplify Validation-Factor (VF) analysis of uncertainties/biases; Develop recommendations document from recent lessons learned applicabl

  1. Degradation of polycyclic aromatic hydrocarbons in a coking wastewater treatment plant residual by an O3/ultraviolet fluidized bed reactor.

    PubMed

    Lin, Chong; Zhang, Wanhui; Yuan, Mengyang; Feng, Chunhua; Ren, Yuan; Wei, Chaohai

    2014-09-01

    Coking wastewater treatment plant (CWWTP) represents a typical point source of polycyclic aromatic hydrocarbons (PAHs) to the water environment and threatens the safety of drinking water in downstream regions. To enhance the removal of residual PAHs from bio-treated coking wastewater, a pilot-scale O3/ultraviolet (UV) fluidized bed reactor (O3/UV FBR) was designed and different operating factors including UV irradiation intensity, pH, initial concentration, contact time, and hydraulic retention time (HRT) were investigated at an ozone level of 240 g h(-1) and 25 ± 3 °C. A health risk evaluation and cost analysis were also carried out under the continuous-flow mode. As far as we know, this is the first time an O3/UV FBR has been explored for PAHs treatment. The results indicated that between 41 and 75 % of 18 target PAHs were removed in O3/UV FBR due to synergistic effects of UV irradiation. Both increased reaction time and increased pH were beneficial for the removal of PAHs. The degradation of the target PAHs within 8 h can be well fitted by the pseudo-first-order kinetics (R (2) > 0.920). The reaction rate was also positively correlated with the initial concentrations of PAHs. The health risk assessment showed that the total amount of carcinogenic substance exposure to surface water was reduced by 0.432 g day(-1). The economic analysis showed that the O3/UV FBR was able to remove 18 target PAHs at a cost of US$0.34 m(-3). These results suggest that O3/UV FBR is efficient in removing residuals from CWWTP, thus reducing the accumulation of persistent pollutant released to surface water.

  2. Ultraviolet Light Surface Treatment as an Environmentally Benign Process for Production, Maintenance and Repair of Military Composite Structures

    NASA Astrophysics Data System (ADS)

    Drzal, Lawrence T.

    2002-02-01

    The principal objective of this work is to develop a low-cost, high-speed, environmentally benign, dry surface treatment method for production, and repair of military composite structures using ultraviolet (UV) light in ambient air. The potential advantage of this method is that it would eliminate volatile organic wastes (VOCs), reduce or eliminate the use of solutions and detergents, and provide a robust surface that would enhance or eliminate the use of solutions and detergents, and provide a robust surface that would enhance the wetting and spreading of paints, coatings and adhesives on polymeric and inorganic surfaces treated by this method. A manufacturing base for UV production equipment is in place although not for this application. There is a need for development of an environmentally friendly, cost effective as well as a robust surface treatment method that can clean a surface as well as create a beneficial chemistry for painting and produce optimum adhesive bonding of polymers, polymer composites and metal surfaces. With this in mind, three main technical objectives were sought in the work. The first objective was to determine the usefulness of UV and UV/O(3) to surface treatments to clean and chemically modify the surface of typical PMCs used in DOD systems. The second objective was to determine the effectiveness of this surface preparation for production and/or repair of adhesively bonded, painted and/or coated polymer matrix composite structures. Finally, a determination of the environmental and performance benefits of this method as a new environmentally benign processing method for the production and/or re air of adhesively SERDP, SERDP collection, robust surface, polymeric surface, inorganic surface, volatile organic compounds (VOC) emissions.

  3. Quality attributes of starfruit (Averrhoa carambola L.) juice treated with ultraviolet radiation.

    PubMed

    Bhat, Rajeev; Ameran, Suhaida Binti; Voon, Han Ching; Karim, A A; Tze, Liong Min

    2011-07-15

    Starfruit juice were exposed to ultraviolet (UV-C) light for 0, 30 and 60min at room temperature (25±1°C). On exposure, the titratable acidity significantly decreased, while the decrease in °Brix and pH were not significant. With regard to colorimetric parameters, L(∗) value increased significantly with a subsequent decrease in a(∗) and b(∗) values corresponding to UV treatment time. Except for the ascorbic acid, other antioxidants measured (% DPPH inhibition, total phenols, flavonols, flavonoids and antioxidant capacity) showed enhancement on expsoure to UV (significant at 60min). Microbial studies showed reduction in APC, yeasts and mould counts by 2-log cycle on UV treatments. These results supports the application of UV as a measure of non-thermal and physical food preservation technique for starfruit juice that can be explored commercially to benefit both the producers and consumers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Disinfection of Spacecraft Potable Water Systems by Photocatalytic Oxidation Using UV-A Light Emitting Diodes

    NASA Technical Reports Server (NTRS)

    Birmele, Michele N.; O'Neal, Jeremy A.; Roberts, Michael S.

    2011-01-01

    Ultraviolet (UV) light has long been used in terrestrial water treatment systems for photodisinfection and the removal of organic compounds by several processes including photoadsorption, photolysis, and photocatalytic oxidation/reduction. Despite its effectiveness for water treatment, UV has not been explored for spacecraft applications because of concerns about the safety and reliability of mercury-containing UV lamps. However, recent advances in ultraviolet light emitting diodes (UV LEDs) have enabled the utilization of nanomaterials that possess the appropriate optical properties for the manufacture of LEDs capable of producing monochromatic light at germicidal wavelengths. This report describes the testing of a commercial-off-the-shelf, high power Nichia UV-A LED (250mW A365nnJ for the excitation of titanium dioxide as a point-of-use (POD) disinfection device in a potable water system. The combination of an immobilized, high surface area photocatalyst with a UV-A LED is promising for potable water system disinfection since toxic chemicals and resupply requirements are reduced. No additional consumables like chemical biocides, absorption columns, or filters are required to disinfect and/or remove potentially toxic disinfectants from the potable water prior to use. Experiments were conducted in a static test stand consisting of a polypropylene microtiter plate containing 3mm glass balls coated with titanium dioxide. Wells filled with water were exposed to ultraviolet light from an actively-cooled UV-A LED positioned above each well and inoculated with six individual challenge microorganisms recovered from the International Space Station (ISS): Burkholderia cepacia, Cupriavidus metallidurans, Methylobacterium fujisawaense, Pseudomonas aeruginosa, Sphingomonas paucimobilis and Wautersia basilensis. Exposure to the Nichia UV-A LED with photocatalytic oxidation resulted in a complete (>7-log) reduction of each challenge bacteria population in <180 minutes of contact

  5. Using CeSiC for UV spectrographs for the WSO/UV

    NASA Astrophysics Data System (ADS)

    Reutlinger, A.; Gál, C.; Brandt, C.; Haberler, P.; Zuknik, K.-H.; Sedlmaier, T.; Shustov, B.; Sachkov, M.; Moisheev, A.; Kappelmann, N.; Barnstedt, J.; Werner, K.

    2017-11-01

    The World Space Observatory Ultraviolet (WSO/UV) is a multi-national project lead by the Russian Federal Space Agency (Roscosmos) with the objective of high performance observations in the ultraviolet range. The 1.7 m WSO/UV telescope feeds UV spectrometers and UV imagers. The UV spectrometers comprise two high resolution Echelle spectrographs for the 100 - 170 nm and 170 - 300 nm wavelength range and a long slit spectrograph for the 100 - 300 nm band. All three spectrometers represent individual instruments that are assembled and aligned separately. In order to save mass while maintaining high stiffness, the instruments are combined to a monoblock. Cesic has been selected to reduce CTE related distortions of the instruments. In contrast to aluminium, the stable structure of Cesic is significantly less sensitive to thermal gradients. No further mechanism for focus correction with high functional, technical and operational complexity and dedicated System costs are necessary. Using Cesic also relaxes the thermal control requirements of +/-5°C, which represents a considerable cost driver for the S/C design. The WUVS instrument is currently studied in the context of a phase B2 study by Kayser-Threde GmbH including a Structural Thermal Model (STM) for verification of thermal and mechanical loads, stability due to thermal distortions and Cesic manufacturing feasibility.

  6. ULTRAVIOLET HALOS AROUND SPIRAL GALAXIES. I. MORPHOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodges-Kluck, Edmund; Cafmeyer, Julian; Bregman, Joel N., E-mail: hodgeskl@umich.edu

    2016-12-10

    We examine ultraviolet halos around a sample of highly inclined galaxies within 25 Mpc to measure their morphology and luminosity. Despite contamination from galactic light scattered into the wings of the point-spread function, we find that ultraviolet (UV) halos occur around each galaxy in our sample. Around most galaxies the halos form a thick, diffuse disk-like structure, but starburst galaxies with galactic superwinds have qualitatively different halos that are more extensive and have filamentary structure. The spatial coincidence of the UV halos above star-forming regions, the lack of consistent association with outflows or extraplanar ionized gas, and the strong correlationmore » between the halo and galaxy UV luminosity suggest that the UV light is an extragalactic reflection nebula. UV halos may thus represent 10{sup 6}–10{sup 7} M {sub ⊙} of dust within 2–10 kpc of the disk, whose properties may change with height in starburst galaxies.« less

  7. UV RADIATION MEASUREMENTS/ATMOSPHERIC CHARACTERIZATION

    EPA Science Inventory

    Because exposure to ultraviolet (UV) radiation is an ecosystem stressor and poses a human health risk, the National Exposure Research Laboratory (NERL) has undertaken a research program to measure the intensity of UV-B radiation at various locations throughout the U.S. In Septem...

  8. Effect of pentacene/Ag anode buffer and UV-ozone treatment on durability of small-molecule organic solar cells

    NASA Astrophysics Data System (ADS)

    Inagaki, S.; Sueoka, S.; Harafuji, K.

    2017-06-01

    Three surface modifications of indium tin oxide (ITO) are experimentally investigated to improve the performance of small-molecule organic solar cells (OSCs) with an ITO/anode buffer layer (ABL)/copper phthalocyanine (CuPc)/fullerene/bathocuproine/Ag structure. An ultrathin Ag ABL and ultraviolet (UV)-ozone treatment of ITO independently improve the durability of OSCs against illumination stress. The thin pentacene ABL provides good ohmic contact between the ITO and the CuPc layer, thereby producing a large short-circuit current. The combined use of the abovementioned three modifications collectively achieves both better initial performance and durability against illumination stress.

  9. Two ultraviolet radiation datasets that cover China

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Hu, Bo; Wang, Yuesi; Liu, Guangren; Tang, Liqin; Ji, Dongsheng; Bai, Yongfei; Bao, Weikai; Chen, Xin; Chen, Yunming; Ding, Weixin; Han, Xiaozeng; He, Fei; Huang, Hui; Huang, Zhenying; Li, Xinrong; Li, Yan; Liu, Wenzhao; Lin, Luxiang; Ouyang, Zhu; Qin, Boqiang; Shen, Weijun; Shen, Yanjun; Su, Hongxin; Song, Changchun; Sun, Bo; Sun, Song; Wang, Anzhi; Wang, Genxu; Wang, Huimin; Wang, Silong; Wang, Youshao; Wei, Wenxue; Xie, Ping; Xie, Zongqiang; Yan, Xiaoyuan; Zeng, Fanjiang; Zhang, Fawei; Zhang, Yangjian; Zhang, Yiping; Zhao, Chengyi; Zhao, Wenzhi; Zhao, Xueyong; Zhou, Guoyi; Zhu, Bo

    2017-07-01

    Ultraviolet (UV) radiation has significant effects on ecosystems, environments, and human health, as well as atmospheric processes and climate change. Two ultraviolet radiation datasets are described in this paper. One contains hourly observations of UV radiation measured at 40 Chinese Ecosystem Research Network stations from 2005 to 2015. CUV3 broadband radiometers were used to observe the UV radiation, with an accuracy of 5%, which meets the World Meteorology Organization's measurement standards. The extremum method was used to control the quality of the measured datasets. The other dataset contains daily cumulative UV radiation estimates that were calculated using an all-sky estimation model combined with a hybrid model. The reconstructed daily UV radiation data span from 1961 to 2014. The mean absolute bias error and root-mean-square error are smaller than 30% at most stations, and most of the mean bias error values are negative, which indicates underestimation of the UV radiation intensity. These datasets can improve our basic knowledge of the spatial and temporal variations in UV radiation. Additionally, these datasets can be used in studies of potential ozone formation and atmospheric oxidation, as well as simulations of ecological processes.

  10. UV Tanning Equipment | Radiation Protection | US EPA

    EPA Pesticide Factsheets

    2017-08-07

    Sun lamps and tanning equipment emit ultraviolet (UV) rays. People who are exposed to UV rays over a long period of time are more likely to develop skin cancer. People with light skin are in more danger because their skin is more sensitive to UV rays.

  11. N-nitrosodimethylamine (NDMA) removal by reverse osmosis and UV treatment and analysis via LC-MS/MS.

    PubMed

    Plumlee, Megan H; López-Mesas, Montserrat; Heidlberger, Andy; Ishida, Kenneth P; Reinhard, Martin

    2008-01-01

    N-nitrosodimethylamine (NDMA) is a probable human carcinogen found in ng/l concentrations in chlorinated and chloraminated water. A method was developed for the determination of ng/l levels of NDMA using liquid chromatography-tandem mass spectrometry (LC-MS/MS) preceded by sample concentration via solid-phase extraction with activated charcoal. Recoveries were greater than 90% and allowed a method reporting limit as low as 2ng/l. Using this method, the removal of NDMA was determined for the Interim Water Purification Facility (IWPF), an advanced wastewater treatment facility operated by the Orange County Water District (OCWD) in Southern California. The facility treats effluent from an activated sludge treatment plant with microfiltration (MF), reverse osmosis (RO), and an ultraviolet-hydrogen peroxide advanced oxidation process (UV-AOP). Six nitrosamines were surveyed: NDMA, N-nitrosomethylethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitrosodi-n-propylamine (NDPA), N-nitrosopiperidine (NPip), and N-nitrosopyrrolidine (NPyr). Only NDMA was detected and at all treatment steps in the IWPF, with influent concentrations ranging from 20 to 59 ng/l. Removals for RO and UV ranged from 24% to 56% and 43% to 66%, respectively. Overall, 69+/-7% of the original NDMA concentration was removed from the product water across the advanced treatment process and, in combination with blending, the final concentration did not exceed the California drinking water notification level of 10 ng/l. NDMA removal data are consistent with findings reviewed for other advanced treatment facilities and laboratory studies.

  12. Performance optimization of AlGaN-based LEDs by use of ultraviolet-transparent indium tin oxide: Effect of in situ contact treatment

    NASA Astrophysics Data System (ADS)

    Tu, Wenbin; Chen, Zimin; Zhuo, Yi; Li, Zeqi; Ma, Xuejin; Wang, Gang

    2018-05-01

    Ultraviolet (UV)-transparent indium tin oxide (ITO) grown by metal–organic chemical vapor deposition (MOCVD) is used as the current-spreading layer for 368 nm AlGaN-based light-emitting diodes (LEDs). By performing in situ contact treatment on the LED/ITO interface, the morphology, resistivity, and contact resistance of electrodes become controllable. Resistivity of 2.64 × 10‑4 Ω cm and transmittance at 368 nm of 95.9% are realized for an ITO thin film grown with Sn-purge in situ treatment. Therefore, the high-power operating voltage decreases from 3.94 V (without treatment) to 3.83 V (with treatment). The improved performance is attributed to the lowering of the tunneling barrier at the LED/ITO interface.

  13. Iron-based radiochromic systems for UV dosimetry applications

    NASA Astrophysics Data System (ADS)

    Lee, Hannah J.; Alqathami, Mamdooh; Blencowe, Anton; Ibbott, Geoffrey

    2018-01-01

    Phototherapy treatment using ultraviolet (UV) A and B light sources has long existed as a treatment option for various skin conditions. Quality control for phototherapy treatment recommended by the British Association of Dermatologists and British Photodermatology Group generally focused on instrumentation-based dosimetry measurements. The purpose of this study was to present an alternative, easily prepared dosimeter system for the measurement of UV dose and as a simple quality assurance technique for phototherapy treatments. Five different UVA-sensitive radiochromic dosimeter formulations were investigated and responded with a measurable and visible optical change both in solution and in gel form. Iron(III) reduction reaction formulations were found to be more sensitive to UVA compared to iron(II) oxidation formulations. One iron(III) reduction formulation was found to be especially promising due to its sensitivity to UVA dose, ease of production, and linear response up to a saturation point.

  14. Removal of organic matter from a variety of water matrices by UV photolysis and UV/H2O2 method.

    PubMed

    Vilhunen, Sari; Vilve, Miia; Vepsäläinen, Mikko; Sillanpää, Mika

    2010-07-15

    A re-circulated flow-through photoreactor was used to evaluate the ultraviolet (UV) photolysis and UV/H(2)O(2) oxidation process in the purification of three different water matrices. Chemically coagulated and electrocoagulated surface water, groundwater contaminated with creosote wood preservative and 1,2-dichloroethane (DCE) containing washing water from the plant manufacturing tailor-made ion-exchange resins were used as sample waters. The organic constituents of creosote consist mainly of harmful polycyclic aromatic hydrocarbons (PAH) whereas 1,2-DCE is a toxic volatile organic compound (VOC). Besides analyzing the specific target compounds, total organic carbon (TOC) analysis and measurement of change in UV absorbance at 254 nm (UV(254)) were performed. Initial TOC, UV(254) and pH varied significantly among treated waters. Initial H(2)O(2) concentrations 0-200 mg/l were used. The UV/H(2)O(2) treatment was efficient in removing the hazardous target pollutants (PAHs and 1,2-DCE) and natural organic matter (NOM). In addition, high removal efficiency for TOC was achieved for coagulated waters and groundwater. Also, the efficiency of direct photolysis in UV(254) removal was significant except in the treatment of 1,2-DCE containing washing water. Overall, UV(254) and TOC removal rates were high, except in case of washing water, and the target pollutants were efficiently decomposed with the UV/H(2)O(2) method. 2010 Elsevier B.V. All rights reserved.

  15. Discrimination of corn from monocotyledonous weeds with ultraviolet (UV) induced fluorescence.

    PubMed

    Panneton, Bernard; Guillaume, Serge; Samson, Guy; Roger, Jean-Michel

    2011-01-01

    In production agriculture, savings in herbicides can be achieved if weeds can be discriminated from crop, allowing the targeting of weed control to weed-infested areas only. Previous studies demonstrated the potential of ultraviolet (UV) induced fluorescence to discriminate corn from weeds and recently, robust models have been obtained for the discrimination between monocots (including corn) and dicots. Here, we developed a new approach to achieve robust discrimination of monocot weeds from corn. To this end, four corn hybrids (Elite 60T05, Monsanto DKC 26-78, Pioneer 39Y85 (RR), and Syngenta N2555 (Bt, LL)) and four monocot weeds (Digitaria ischaemum (Schreb.) I, Echinochloa crus-galli (L.) Beauv., Panicum capillare (L.), and Setaria glauca (L.) Beauv.) were grown either in a greenhouse or in a growth cabinet and UV (327 nm) induced fluorescence spectra (400 to 755 nm) were measured under controlled or uncontrolled ambient light intensity and temperature. This resulted in three contrasting data sets suitable for testing the robustness of discrimination models. In the blue-green region (400 to 550 nm), the shape of the spectra did not contain any useful information for discrimination. Therefore, the integral of the blue-green region (415 to 455 nm) was used as a normalizing factor for the red fluorescence intensity (670 to 755 nm). The shape of the normalized red fluorescence spectra did not contribute to the discrimination and in the end, only the integral of the normalized red fluorescence intensity was left as a single discriminant variable. Applying a threshold on this variable minimizing the classification error resulted in calibration errors ranging from 14.2% to 15.8%, but this threshold varied largely between data sets. Therefore, to achieve robustness, a model calibration scheme was developed based on the collection of a calibration data set from 75 corn plants. From this set, a new threshold can be estimated as the 85% quantile on the cumulative frequency

  16. Observation of abnormal mobility enhancement in multilayer MoS2 transistor by synergy of ultraviolet illumination and ozone plasma treatment

    NASA Astrophysics Data System (ADS)

    Guo, Junjie; Yang, Bingchu; Zheng, Zhouming; Jiang, Jie

    2017-03-01

    Mobility engineering through physical or chemical process is a fruitful approach for the atomically-layered two-dimensional electronic applications. Unfortunately, the usual process with either illumination or oxygen treatment would greatly deteriorate the mobility in two-dimensional MoS2 field-effect transistor (FET). Here, in this work, we report that the mobility can be abnormally enhanced to an order of magnitude by the synergy of ultraviolet illumination (UV) and ozone plasma treatment in multilayer MoS2 FET. This abnormal mobility enhancement is attributed to the trap passivation due to the photo-generated excess carriers during UV/ozone plasma treatment. An energy band model based on Schottky barrier modulation is proposed to understand the underlying mechanism. Raman spectra results indicate that the oxygen ions are incorporated into the surface of MoS2 (some of them are in the form of ultra-thin Mo-oxide) and can further confirm this proposed mechanism. Our results can thus provide a simple approach for mobility engineering in MoS2-based FET and can be easily expanded to other 2D electronic devices, which represents a significant step toward applications of 2D layered materials in advanced cost-effective electronics.

  17. Development of action levels for MED/MPD skin-testing units in ultraviolet phototherapy

    NASA Astrophysics Data System (ADS)

    O'Connor, Una M.; O'Hare, Neil J.

    2003-03-01

    Ultraviolet (UV) Phototherapy is commonly used for treatment of skin diseases such as psoriasis and eczema. Treatment is carried out using UV phototherapy units, exposing all or part of the body for a certain exposure time. Prior to exposure in treatment units, an unaffected area of skin may be tested using UV skin-testing units in order to determine a suitable treatment regime. The exposure time at which barely perceptible erythema has developed is known as the Minimal Erythemal Dose (MED) for UVB therapy and Minimal Phototoxic Dose (MPD) for UVA therapy. This is used to determine the starting dose in the treatment regime. The presence of 'hotspots' and 'coldspots' in UV skin-testing units can result in inaccurate determination of MED/MPD. This could give rise to severe burns during treatment, or in a sub-optimal dose regime being used. Quality assurance protocols for UV phototherapy equipment have recently been developed and these protocols have highlighted the need for action levels for skin-testing units. An action level is a reference value, which is used to determine whether the difference in irradiance output level across a UV unit is acceptable. Current methodologies for skin-testing in Ireland have been characterised and errors introduced during testing have been estimated. Action levels have been developed based on analysis of errors and requirements of skin-testing.

  18. Antiradiation UV Vaccine: UV Radiation, Biological effects, lesions and medical management - immune-therapy and immune-protection.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    Key Words: Ultraviolet radiation,Standard Erythema Dose(SED), Minimal Erythema Dose(MED), Sun Burns, Solar Dermatitis, Sun Burned Disease, DNA Damage,Cell Damage, Antiradiation UV Vaccine, Immune-Prophylaxis of Sun Burned Diseases, Immune-Prophylaxis of Sun Burns, Immune-Therapy of Sun-Burned Disease and Sun Burns,Basal Cell Carcinoma (BCC), Squamous Cell Carcinoma (SCC), Toxic Epidermal Necrolysis(TEN). Introduction: High doses of UV generated by solar source and artificial sources create an exposure of mammals and other species which can lead to ultraviolet(UV)radiation- associated disease (including erythema, epilation, keratitis, etc.). UV radiation belongs to the non-ionizing part of the electromagnetic spectrum and ranges between 100 nm and 400 nm with 100 nm having been chosen arbitrarily as the boundary between non-ionizing and ionizing radiation, however EMR is a spectrum and UV can produce molecular ionization. UV radiation is conventionally categorized into 3 areas: UV-A (>315-400 nm),UV-B (>280-315 nm)and UV-C (>100-280 nm) [IARC,Working Group Reports,2005] An important consequence of stratospheric ozone depletion is the increased transmission of solar ultraviolet (UV)radiation to the Earth's lower atmosphere and surface. Stratospheric ozone levels have been falling, in certain areas, for the past several decades, so current surface ultraviolet-B (UV-B) radiation levels are thought to be close to their modern day maximum. [S.Madronich et al.1998] Overexposure of ultraviolet radiation a major cause of skin cancer including basal cell carcinoma (BCC), squamous cell carcinoma (SCC) { collectively referred to as “non-melanoma" skin cancer (NMSC) and melanoma as well, with skin cancers being the most common cancer in North America. [Armstrong et al. 1993, Gallagher et al. 2005] Methods and Experimental Design: Our experiments and testing of a novel UV “Antiradiation Vaccine” have employed a wide variety of laboratory animals which include : Chinchilla

  19. Solar ultraviolet radiation cataract.

    PubMed

    Löfgren, Stefan

    2017-03-01

    Despite being a treatable disease, cataract is still the leading cause for blindness in the world. Solar ultraviolet radiation is epidemiologically linked to cataract development, while animal and in vitro studies prove a causal relationship. However, the pathogenetic pathways for the disease are not fully understood and there is still no perfect model for human age related cataract. This non-comprehensive overview focus on recent developments regarding effects of solar UV radiation wavebands on the lens. A smaller number of fundamental papers are also included to provide a backdrop for the overview. Future studies are expected to further clarify the cellular and subcellular mechanisms for UV radiation-induced cataract and especially the isolated or combined temporal and spatial effects of UVA and UVB in the pathogenesis of human cataract. Regardless of the cause for cataract, there is a need for advances in pharmaceutical or other treatment modalities that do not require surgical replacement of the lens. Copyright © 2016. Published by Elsevier Ltd.

  20. Ultraviolet Irradiation Effect on Apple Juice Bioactive Compounds during Shelf Storage

    PubMed Central

    Juarez-Enriquez, Edmundo; Salmerón, Ivan; Gutierrez-Mendez, Nestor; Ortega-Rivas, Enrique

    2016-01-01

    Clarified and standardized apple juice was ultraviolet-irradiated to inactivate polyphenol oxidase enzyme and microbiota, and its effect on bioactive compounds and stability during storage was also evaluated. Apple juice was irradiated with 345.6 J/cm2 and treatment effect was evaluated in terms of color, antioxidant capacity, polyphenol content, pH, titratable acidity and total soluble solids. Using a linear regression design, inactivation kinetic of polyphenol oxidase enzyme was also described. In addition, a repeated measures design was carried out to evaluate apple juice during 24 days of storage at 4 °C and 20 °C. After irradiation, reduction of antioxidant capacity was observed while during storage, ascorbic acid content decreased up to 40% and total polyphenol content remain stable. Ultraviolet irradiation achieved a complete inactivation of polyphenol oxidase enzyme and microbiota, keeping apple juice antioxidants during ultraviolet treatment and storage available until juice consumption. UV-treated apple juice can be used as a regular beverage, ensuring antioxidant intake. PMID:28231106

  1. The Ultraviolet Sky: final catalogs of unique UV sources from GALEX, and characterization of the UV-emitting sources across the sky, and of the Milky Way extinction

    NASA Astrophysics Data System (ADS)

    Bianchi, Luciana; Conti, A.; Shiao, B.; Keller, G. R.; Thilker, D. A.

    2014-01-01

    The legacy of the Galaxy Evolution Explorer (GALEX), which imaged the sky at Ultraviolet (UV) wavelengths for about 9 years, is its unprecedented database with more than 200 million source measurements in far-UV (FUV) and near-UV (NUV), as well as wide-field imaging of extended objects. GALEX's data, the first substantial sky surveys at UV wavelengths, offer an unprecedented view of the sky and a unique opportunity for an unbiased characterization of several classes of astrophysical objects, such as hot stars, QSOs at red-shift about 1, UV-peculiar QSOs, star-forming galaxies, among others. Bianchi et al. (2013, J. Adv. Space Res. (2013), DOI: http://dx.doi.org/10.1016/j.asr.2013.07.045) have constructed final catalogs of UV sources, with homogeneous quality, eliminating duplicate measurements of the same source ('unique' source catalogs), and excluding rim artifacts and bad photometry. The catalogs are constructed improving on the recipe of Bianchi et al. 2011 (MNRAS, 411, 2770, which presented the earlier version of these catalogs) and include all data for the major surveys, AIS and MIS. Considering the fields where both FUV and NUV detectors were exposed, the catalogs contain about 71 and 16.6 million unique sources respectively. We show several maps illustrating the content of UV sources across the sky, globally, and separately for bright/faint, hot, stellar/extragalactic objects. We matched the UV-source catalogs with optical-IR data from the SDSS, GSC2, 2MASS surveys. We are also in the process of matching the catalogs with preliminary PanSTARRS1 (PS1) 3pi survey photometry which already provides twice the sky coverage of SDSS, at slightly fainter magnitude limits. The sources' SED from FUV to optical wavelengths enables classification, derivation of the object physical parameters, and ultimately also a map of the Milky Way extinction. The catalogs will be available on MAST, Vizier (where the previous version already is), and in reduced form (for agile

  2. Topical or oral treatment of peach flower extract attenuates UV-induced epidermal thickening, matrix metalloproteinase-13 expression and pro-inflammatory cytokine production in hairless mice skin

    PubMed Central

    Yang, Jiwon; Shin, Chang-Yup; Chung, Jin Ho

    2018-01-01

    BACKGROUND/OBJECTIVES Ultraviolet radiation (UV) is a major cause of skin photoaging. Previous studies reported that ethanol extract (PET) of Prunus persica (L.) Batsch flowers (PPF, peach flowers) and its subfractions, particularly the ethylacetate (PEA) and n-butanol extracts (PBT), have potent antioxidant activity and attenuate the UV-induced matrix metalloproteinase (MMP) expression in human skin cells. In this study, we investigated the protective activity of PPF extract against UV-induced photoaging in a mouse model. MATERIALS/METHODS Hairless mice were treated with PET or a mixture of PEA and PBT either topically or orally along with UV irradiation. Histological changes and biochemical alterations of mouse skin were examined. Major phenolic compounds in PPF extract were analyzed using an ACQUITY UPLC system. RESULTS The overall effects of topical and oral treatments with PPF extract on the UV-induced skin responses exhibited similar patterns. In both experiments, the mixture of PEA and PBT significantly inhibited the UV-induced skin and epidermal thickening, while PET inhibited only the UV-induced epidermal thickening. Treatment of PET or the mixture of PEA and PBT significantly inhibited the UV-induced MMP-13 expression, but not typeⅠ collagen expression. Topical treatment of the mixture of PEA and PBT with UV irradiation significantly elevated catalase, superoxide dismutase (SOD) and glutathione-peroxidase (GPx) activities in the skin compared to those in the UV irradiated control group, while oral treatment of the mixture of PEA and PBT or PET elevated only catalase and SOD activities, but not GPx. Thirteen phytochemical compounds including 4-O-caffeoylquinic acid, cimicifugic acid E and B, quercetin-3-O-rhamnoside and kaempferol glycoside derivatives were identified in the PPF extract. CONCLUSIONS These results demonstrate that treatment with PET or the mixture of PEA and PBT, both topically or orally, attenuates UV-induced photoaging via the

  3. Photomorphogenic responses to ultraviolet-B light.

    PubMed

    Jenkins, Gareth I

    2017-11-01

    Exposure to ultraviolet B (UV-B) light regulates numerous aspects of plant metabolism, morphology and physiology through the differential expression of hundreds of genes. Photomorphogenic responses to UV-B are mediated by the photoreceptor UV RESISTANCE LOCUS8 (UVR8). Considerable progress has been made in understanding UVR8 action: the structural basis of photoreceptor function, how interaction with CONSTITUTIVELY PHOTOMORPHOGENIC 1 initiates signaling and how REPRESSOR OF UV-B PHOTOMORPHOGENESIS proteins negatively regulate UVR8 action. In addition, recent research shows that UVR8 mediates several responses through interaction with other signaling pathways, in particular auxin signaling. Nevertheless, many aspects of UVR8 action remain poorly understood. Most research to date has been undertaken with Arabidopsis, and it is important to explore the functions and regulation of UVR8 in diverse plant species. Furthermore, it is essential to understand how UVR8, and UV-B signaling in general, regulates processes under natural growth conditions. Ultraviolet B regulates the expression of many genes through UVR8-independent pathways, but the activity and importance of these pathways in plants growing in sunlight are poorly understood. © 2017 John Wiley & Sons Ltd.

  4. Do spotless starlings place feathers at their nests by ultraviolet color?

    PubMed

    Avilés, Jesús M; Parejo, Deseada; Pérez-Contreras, Tomás; Navarro, Carlos; Soler, Juan J

    2010-02-01

    A considerable number of bird species carry feathers to their nests. Feathers' presence in the nests has traditionally been explained by their insulating properties. Recently, however, it has been suggested that feathers carried to the nests by females of the spotted starling (Sturnus unicolor L.) could have an ornamental function based on their ultraviolet (300-400 nm) and human-visible longer wavelength (400-700 nm) coloration. In our population, 95.7% of feathers found inside next-boxes occupied by nesting starlings were rock dove fly feathers. Of these feathers, 82.7% were naturally positioned with their reverse side oriented toward the entrance hole and 42.4% of all found feathers were situated within the nest-cup. Here we experimentally assess the signaling function of ultraviolet coloration of feathers in nests of spotless starlings by providing nests with a number of pigeon flight feathers that were respectively treated on their obverse, reverse, both, or neither side with a UV blocker. Starlings placed 42.5% of the experimental feathers in the nest-cup irrespective of the UV block treatment. Orientation of feathers toward the entrance hole was not related with their ultraviolet radiation. However, feathers placed within the nest-cup were more likely found with their reverse side oriented toward the entrance hole confirming our correlative findings. These results suggest a minor role of ultraviolet coloration on feather location by spotless starlings.

  5. Do spotless starlings place feathers at their nests by ultraviolet color?

    NASA Astrophysics Data System (ADS)

    Avilés, Jesús M.; Parejo, Deseada; Pérez-Contreras, Tomás; Navarro, Carlos; Soler, Juan J.

    2010-02-01

    A considerable number of bird species carry feathers to their nests. Feathers’ presence in the nests has traditionally been explained by their insulating properties. Recently, however, it has been suggested that feathers carried to the nests by females of the spotted starling ( Sturnus unicolor L.) could have an ornamental function based on their ultraviolet (300-400 nm) and human-visible longer wavelength (400-700 nm) coloration. In our population, 95.7% of feathers found inside next-boxes occupied by nesting starlings were rock dove fly feathers. Of these feathers, 82.7% were naturally positioned with their reverse side oriented toward the entrance hole and 42.4% of all found feathers were situated within the nest-cup. Here we experimentally assess the signaling function of ultraviolet coloration of feathers in nests of spotless starlings by providing nests with a number of pigeon flight feathers that were respectively treated on their obverse, reverse, both, or neither side with a UV blocker. Starlings placed 42.5% of the experimental feathers in the nest-cup irrespective of the UV block treatment. Orientation of feathers toward the entrance hole was not related with their ultraviolet radiation. However, feathers placed within the nest-cup were more likely found with their reverse side oriented toward the entrance hole confirming our correlative findings. These results suggest a minor role of ultraviolet coloration on feather location by spotless starlings.

  6. UV Treatment for Small Systems

    EPA Science Inventory

    The Center for Environmental Education, Conservation and Research (CECIA) at InterAmerican University of Puerto Rico (IAUPR) has organized the 10th CECIA-IAUPR Biennial Symposium on Potable Water Issues in Puerto Rico. This presentation on UV Treatment for Small Systems will be ...

  7. Recolonization by heterotrophic bacteria after UV irradiation or ozonation of seawater; a simulation of ballast water treatment.

    PubMed

    Hess-Erga, Ole-Kristian; Blomvågnes-Bakke, Bente; Vadstein, Olav

    2010-10-01

    Transport of ballast water with ships represents a risk for introduction of foreign species. If ballast water is treated during uptake, there will be a recolonization of the ballast water by heterotrophic bacteria during transport. We investigated survival and succession of heterotrophic bacteria after disinfection of seawater in the laboratory, representing a model system of ballast water treatment and transport. The seawater was exposed to ultraviolet (UV) irradiation, ozone (2 doses) or no treatment, incubated for 16 days and examined with culture-dependent and -independent methods. The number of colony-forming units (CFU) was reduced below the detection level after disinfection with UV and high ozone dose (700 mV), and 1% of the initial level for the low ozone dose (400 mV). After less than 3 days, the CFU was back or above the starting point for the control, UV and low ozone treatment, whereas it took slightly more than 6 days for the high ozone treatment. Disinfection increased substrate availability and reduced cell densities. Lack of competition and predation induced the recolonization by opportunistic bacteria (r-strategists), with significant increase in bacterial numbers and a low diversity (based on DGGE band pattern). All cultures stabilized after the initial recolonization phase (except Oz700) where competition due to crowding and nutrient limitation favoured bacteria with high substrate affinity (K-strategists), resulting in higher species richness and diversity (based on DGGE band pattern). The bacterial community was significantly altered qualitatively and quantitatively and may have a higher potential as invaders in the recipient depending on disinfection method and the time of release. These results have implications for the treatment strategy used for ballast water. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Thin film optical coatings for the ultraviolet spectral region

    NASA Astrophysics Data System (ADS)

    Torchio, P.; Albrand, G.; Alvisi, M.; Amra, C.; Rauf, H.; Cousin, B.; Otrio, G.

    2017-11-01

    The applications and innovations related to the ultraviolet field are today in strong growth. To satisfy these developments which go from biomedical to the large equipment like the Storage Ring Free Electron Laser, it is crucial to control with an extreme precision the optical performances, in using the substrates and the thin film materials impossible to circumvent in this spectral range. In particular, the reduction of the losses by electromagnetic diffusion, Joule effect absorption, or the behavior under UV luminous flows of power, resistance to surrounding particulate flows... become top priority which concerns a broad European and international community. Our laboratory has the theoretical, experimental and technological tools to design and fabricate numerous multilayer coatings with desirable optical properties in the visible and infrared spectral ranges. We have extended our expertise to the ultraviolet. We present here some results on high reflectivity multidielectric mirrors towards 250 nm in wavelength, produced by Ion Plating Deposition. The latter technique allows us to obtain surface treatments with low absorption and high resistance. We give in this study the UV transparent materials and the manufacturing technology which have been the best suited to meet requirements. Single UV layers were deposited and characterized. HfO2/SiO2 mirrors with a reflectance higher than 99% at 300 nm were obtained. Optical and non-optical characterizations such as UV spectrophotometric measurements, X-Ray Diffraction spectra, Scanning Electron Microscope and Atomic Force Microscope images were performed

  9. Secondary formation of disinfection by-products by UV treatment of swimming pool water.

    PubMed

    Spiliotopoulou, Aikaterini; Hansen, Kamilla M S; Andersen, Henrik R

    2015-07-01

    Formation of disinfection by-products (DBPs) during experimental UV treatment of pool water has previously been reported with little concurrence between laboratory studies, field studies and research groups. In the current study, changes in concentration of seven out of eleven investigated volatile DBPs were observed in experiments using medium pressure UV treatment, with and without chlorine and after post-UV chlorination. Results showed that post-UV chlorine consumption increased, dose-dependently, with UV treatment dose. A clear absence of trihalomethane formation by UV and UV with chlorine was observed, while small yet statistically significant increases in dichloroacetonitrile and dichloropropanone concentrations were detected. Results indicate that post-UV chlorination clearly induced secondary formation of several DBPs. However, the formation of total trihalomethanes was no greater than what could be replicated by performing the DBP formation assay with higher chlorine concentrations to simulate extended chlorination. Post-UV chlorination of water from a swimming pool that continuously uses UV treatment to control combined chlorine could not induce secondary formation for most DBPs. Concurrence for induction of trihalomethanes was identified between post-UV chlorination treatments and simulated extended chlorination time treatment. Trihalomethanes could not be induced by UV treatment of water from a continuously UV treated pool. This indicates that literature reports of experimentally induced trihalomethane formation by UV may be a result of kinetic increase in formation by UV. However, this does not imply that higher trihalomethane concentrations would occur in pools that apply continuous UV treatment. The bromine fraction of halogens in formed trihalomethanes increased with UV dose. This indicates that UV removes bromine atoms from larger molecules that participate in trihalomethane production during post-UV chlorination. Additionally, no significant

  10. In situ measurement of VUV/UV radiation from low-pressure microwave-produced plasma in Ar/O2 gas mixtures

    NASA Astrophysics Data System (ADS)

    Iglesias, E. J.; Mitschker, F.; Fiebrandt, M.; Bibinov, N.; Awakowicz, P.

    2017-08-01

    Ultraviolet (UV) and vacuum ultraviolet (VUV) spectral irradiance is determined in low-pressure microwave-produced plasma, which is regularly used for polymer surface treatment. The re-emitted fluorescence in the UV/VIS spectral range from a sodium salicylate layer is measured. This fluorescence is related to VUV/UV radiation in different spectral bands based on cut-off filters. The background produced by direct emitted radiation in the fluorescence spectral region is quantified using a specific background filter, thus enabling the use of the whole fluorescence spectral range. A novel procedure is applied to determine the absolute value of the VUV/UV irradiance on a substrate. For that, an independent measurement of the absolute spectral emissivity of the plasma in the UV is performed. The measured irradiances on a substrate from a 25 Pa Ar/O2-produced plasma are in the range of 1015-1016 (photon~ s-1 cm-2). These values include the contribution from impurities present in the discharge.

  11. Ultraviolet-C Light Sanitization of English Cucumber (Cucumis sativus) Packaged in Polyethylene Film.

    PubMed

    Tarek, Abdussamad R; Rasco, Barbara A; Sablani, Shyam S

    2016-06-01

    Food safety is becoming an increasing concern in the United States. This study investigated the effects of ultraviolet-C (UV-C) light as a postpackaging bactericidal treatment on the quality of English cucumber packaged in polyethylene (PE) film. Escherichia coli k-12 was used as a surrogate microbe. The microbial growth and physical properties of packaged cucumbers were analyzed during a 28-d storage period at 5 °C. Inoculating packaged cucumbers treated at 23 °C for 6 min with UV-C (560 mJ/cm(2) ) resulted in a 1.60 log CFU/g reduction. However, this treatment had no significant effect (P > 0.05) on the water vapor transmission rate or oxygen transmission rate of the PE film. Results show that UV-C light treatment delayed the loss of firmness and yellowing of English cucumber up to 28 d at 5 °C. In addition, UV-C light treatment extended the shelf life of treated cucumber 1 wk longer compared to untreated cucumbers. Electron microscopy images indicate that UV-C light treatment influences the morphology of the E. coli k-12 cells. Findings demonstrate that treating cucumbers with UV-C light following packaging in PE film can reduce bacterial populations significantly and delay quality loss. This technology may also be effective for other similarly packaged fresh fruits and vegetables. © 2016 Institute of Food Technologists®

  12. Design and bidding of UV disinfection equipment -- Case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akyurek, M.

    1998-07-01

    Ultraviolet (UV) disinfection systems are being widely considered for application to treated wastewaters, in lieu of conventional chlorination facilities. The number of UV systems operating in the US was approximately 50 in 1984. In 1990 there were over 500 systems, a ten-fold increase. The use of UV disinfection has increased since 1990, and will likely to increase in the future. It is anticipated that as many chlorine disinfection facilities reach their useful life, most of them will be replaced with UV disinfection systems. Several manufacturers offer different UV disinfection equipment. Each offers something different for the designer. There are alsomore » different approaches used in estimating the number of lamps needed for the disinfection system. The lack of standardization in determination of the number of lamps for a UV system poses problems for the designer. Such was the case during the design of the disinfection system for the Watertown, SD Wastewater Treatment Plant (WWRP). The purpose of this paper is to present a case study for the design and bidding of UV disinfection equipment.« less

  13. Plasma Jet (V)UV-Radiation Impact on Biologically Relevant Liquids and Cell Suspension

    NASA Astrophysics Data System (ADS)

    Tresp, H.; Bussiahn, R.; Bundscherer, L.; Monden, A.; Hammer, M. U.; Masur, K.; Weltmann, K.-D.; Woedtke, Th. V.; Reuter, S.

    2014-10-01

    In this study the generation of radicals in plasma treated liquids has been investigated. To quantify the contribution of plasma vacuum ultraviolet (VUV) and ultraviolet (UV) radiation on the species investigated, three cases have been studied: UV of plasma jet only, UV and VUV of plasma jet combined, and the plasma effluent including all reactive components. The emitted VUV has been observed by optical emission spectroscopy and its effect on radical formation in liquids has been analyzed by electron spin resonance spectroscopy. Radicals have been determined in ultrapure water (dH2O), as well as in more complex, biorelevant solutions like phosphate buffered saline (PBS) solution, and two different cell culture media. Various compositions lead to different reactive species formation, e.g. in PBS superoxide anion and hydroxyl radicals have been detected, in cell suspension also glutathione thiyl radicals have been found. This study highlights that UV has no impact on radical generation, whereas VUV is relevant for producing radicals. VUV treatment of dH2O generates one third of the radical concentration produced by plasma-effluent treatment. It is relevant for plasma medicine because although plasma sources are operated in open air atmosphere, still VUV can lead to formation of biorelevant radicals. This work is funded by German Federal Ministry of Education a Research (BMBF) (Grant # 03Z2DN12+11).

  14. Graphene Oxide Transparent Hybrid Film and Its Ultraviolet Shielding Property.

    PubMed

    Xie, Siyuan; Zhao, Jianfeng; Zhang, Bowu; Wang, Ziqiang; Ma, Hongjuan; Yu, Chuhong; Yu, Ming; Li, Linfan; Li, Jingye

    2015-08-19

    Herein, we first reported a facile strategy to prepare functional Poly(vinyl alcohol) (PVA) hybrid film with well ultraviolet (UV) shielding property and visible light transmittance using graphene oxide nanosheets as UV-absorber. The absorbance of ultraviolet light at 300 nm can be up to 97.5%, while the transmittance of visible light at 500 nm keeps 40% plus. This hybrid film can protect protein from UVA light induced photosensitive damage, remarkably.

  15. Interactive lethal and mutagenic effects of ultraviolet light and bleomycin in yeast: synergism or antagonism?

    PubMed

    Lillo, O L; Severgnini, A A; Nunes, E M

    1997-11-01

    The mutagenic interactions of ultraviolet light and bleomycin in haploid populations of Saccharomyces cerevisiae were analyzed. Survival and mutation frequency as a function of different bleomycin concentrations after one conditioning dose of UV radiation were determined. Furthermore, corresponding interaction functions and sensitization factors were calculated. A synergistic interaction between UV light and bleomycin was shown for both lethal and mutagenic events when the cells were in nutrient broth during the treatments. Conversely, the interaction between UV light and bleomycin was antagonistic when the cells were in deionized water during the treatment. The magnitude of lethal and mutagenic interactions depends on dose, and thus presumably on the number of lesions. The observed interactions between UV light and bleomycin suggest that the mechanism that is most likely involved is the induction of repair systems with different error probabilities during the delay of cell division.

  16. ULTRAVIOLET RADIATION AND ARSENIC INTERACTIONS: EFFECTS ON CLADOCERANS

    EPA Science Inventory

    The effects of arsenic and ultraviolet radiation (UV) on cladocerans have been examined separately, however the interaction of these two stresses has not been explored. Potential synergism between these two stresses is possible as arsenic is known to inhibit repair of UV induced ...

  17. UV SEDs of early-type cluster galaxies: a new look at the UV upturn

    NASA Astrophysics Data System (ADS)

    Ali, S. S.; Bremer, M. N.; Phillipps, S.; De Propris, R.

    2018-05-01

    Using GALEX, Ultraviolet Optical Telescope (UVOT), and optical photometry, we explore the prevalence and strength of the Ultraviolet (UV) upturn in the spectra of quiescent early-type galaxies in several nearby clusters. Even for galaxies with completely passive optical colours, there is a large spread in vacuum UV colour consistent with almost all having some UV upturn component. Combining GALEX and UVOT data below 3000 Å, we generate for the first time comparatively detailed UV spectral energy distributions for Coma cluster galaxies. Fitting the UV upturn component with a blackbody, 26 of these show a range of characteristic temperatures (10 000-21 000K) for the UV upturn population. Assuming a single temperature to explain GALEX-optical colours could underestimate the fraction of galaxies with UV upturns and mis-classify some as systems with residual star formation. The UV upturn phenomenon is not an exclusive feature found only in giant galaxies; we identify galaxies with similar (or even bluer) FUV - V colours to the giants with upturns over a range of fainter luminosities. The temperature and strength of the UV upturn are correlated with galaxy mass. Under the plausible hypothesis that the sources of the UV upturn are blue horizontal branch stars, the most likely mechanism for this is the presence of a substantial (between 4 per cent and 20 per cent) Helium-rich (Y > 0.3) population of stars in these galaxies, potentially formed at z ˜ 4 and certainly at z > 2; this plausibly sets a lower limit of {˜ } {0.3- 0.8} × 10^{10} M⊙ to the in situ stellar mass of ˜L* galaxies at this redshift.

  18. UV lasers for drilling and marking applications.

    PubMed

    Hannon, T

    1999-10-01

    Lasers emitting ultraviolet (UV) light have unique capabilities for precision micromachining and marking plastic medical devices. This review of the benefits offered by laser technology includes a look at recently developed UV diode-pumped solid-state lasers and their key features.

  19. The role of a generalized ultraviolet cue for blackbird food selection.

    PubMed

    Werner, Scott J; Tupper, Shelagh K; Carlson, James C; Pettit, Susan E; Ellis, Jeremy W; Linz, George M

    2012-07-16

    Birds utilize ultraviolet (UV) wavelengths for plumage signaling and sexual selection. Ultraviolet cues may also be used for the process of avian food selection. The aim of our study was to investigate whether a UV cue and a postingestive repellent can be used to condition food avoidance in red-winged blackbirds (Agelaius phoeniceus). We found that birds conditioned with an UV-absorbent, postingestive repellent subsequently avoided UV-absorbent food. Thus, the UV-absorbent cue (coupled with 0-20% of the conditioned repellent concentration) was used to maintain avoidance for up to 18 days post-conditioning. Similarly, birds conditioned with the UV-absorbent, postingestive repellent subsequently avoided UV-reflective food. Thus, conditioned avoidance of an UV-absorbent cue can be generalized to an unconditioned, UV-reflective cue for nutrient selection and toxin avoidance. These findings support the hypothesized function of UV vision for avian food selection, the implications of which remain to be explored for the sensory and behavioral ecology within agronomic and natural environments. Published by Elsevier Inc.

  20. Seasonal occurrence, removal efficiencies and preliminary risk assessment of multiple classes of organic UV filters in wastewater treatment plants.

    PubMed

    Tsui, Mirabelle M P; Leung, H W; Lam, Paul K S; Murphy, Margaret B

    2014-04-15

    Organic ultraviolet (UV) filters are applied widely in personal care products (PCPs), but the distribution and risks of these compounds in the marine environment are not well known. In this study, the occurrence and removal efficiencies of 12 organic UV filters in five wastewater treatment plants (WWTPs) equipped with different treatment levels in Hong Kong, South China, were investigated during one year and a preliminary environmental risk assessment was carried out. Using a newly developed simultaneous multiclass quantification liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, butyl methoxydibenzoylmethane (BMDM), 2,4-dihydroxybenzophenone (BP-1), benzophenone-3 (BP-3), benzophenone-4 (BP-4) and 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) were frequently (≥80%) detected in both influent and effluent with mean concentrations ranging from 23 to 1290 ng/L and 18-1018 ng/L, respectively; less than 2% of samples contained levels greater than 1000 ng/L. Higher concentrations of these frequently detected compounds were found during the wet/summer season, except for BP-4, which was the most abundant compound detected in all samples in terms of total mass. The target compounds behaved differently depending on the treatment level in WWTPs; overall, removal efficiencies were greater after secondary treatment when compared to primary treatment with >55% and <20% of compounds showing high removal (defined as >70% removal), respectively. Reverse osmosis was found to effectively eliminate UV filters from effluent (>99% removal). A preliminary risk assessment indicated that BP-3 and EHMC discharged from WWTPs may pose high risk to fishes in the local environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Ultraviolet spectrophotometry as an index parameter for estimating the biochemical oxygen demand of domestic wastewater.

    PubMed

    Nataraja, M; Qin, Y; Seagren, E A

    2006-07-01

    The relationship between ultraviolet absorbance at 280 nm (UV280) and the 5-day Biochemical Oxygen Demand (BOD5) test was evaluated using wastewater samples collected during March - December 1998 from the Fort Meade wastewater treatment plant (Maryland, U.S.A.). Three types of samples were collected: raw influent wastewater, primary effluent, and the effluent from the nitrification settling basin. A regression of BOD5 on UV280 was obtained using half of the data, with the other half of the data used to test application of the equation. The presence of NO3 and NO2, did not interfere with the BOD5/UV relationship. However, the relative fraction of organic compounds that absorb at UV280 and are biodegradable did appear to decrease across the treatment plant, thereby reducing the strength of the association between BOD5 and UV280 further along the treatment train. Interestingly, the exclusion of solids > 1 microm from the BOD5 test did not strengthen the association between BOD5 and UV280. These results suggest that simple UV absorbance measurements may be a useful analytical tool for wastewater treatment personnel, allowing them to quickly monitor for changes in the BOD5 during the treatment process and to quickly estimate the BOD5 when determining what dilutions to use in the standard BOD5 test. However, such relationships are likely to be wastewater and treatment plant specific and variable with time and treatment.

  2. Stellar Activity in the Broadband Ultraviolet

    NASA Astrophysics Data System (ADS)

    Findeisen, K.; Hillenbrand, L.; Soderblom, D.

    2011-07-01

    The completion of the GALEX All-Sky Survey in the ultraviolet allows activity measurements to be acquired for many more stars than is possible with the limited sensitivity of ROSAT or the limited sky coverage of Chandra, XMM, or spectroscopic surveys for line emission in the optical or ultraviolet. We have explored the use of GALEX photometry as an activity indicator, using stars within 50 pc as a calibration sample representing the field and in selected nearby associations representing the youngest stages of stellar evolution. We present preliminary relations between UV flux and the optical activity indicator R'HK and between UV flux and age. We demonstrate that far-UV (FUV, 1350-1780 Å) excess flux is roughly proportional to R'HK. We also detect a correlation between near-UV (NUV, 1780-2830 Å) flux and activity or age, but the effect is much more subtle, particularly for stars older than ~0.5-1 Gyr. Both the FUV and NUV relations show large scatter, ~0.2 mag when predicting UV flux, ~0.18 dex when predicting R'HK, and ~0.4 dex when predicting age. This scatter appears to be evenly split between observational errors in current state-of-the-art data and long-term activity variability in the sample stars.

  3. Ultraviolet emissions from the upper atmospheres of the planets

    NASA Technical Reports Server (NTRS)

    Moos, H. W.

    1981-01-01

    Some recent results on planetary upper atmospheres obtained by means of orbiting ultraviolet observatories are reviewed with emphasis on Jupiter and Io torus. Consideration is given to long-term variation in Jovian Ly alpha emission, UV polar auroras on Jupiter, and UV emission from the Io torus. Requirements for UV planetary astronomy are briefly discussed.

  4. ESTIMATION OF UV-B EXPOSURE IN AMPHIBIAN AQUATIC ENVIRONMENTS

    EPA Science Inventory

    Estimation of ultraviolet radiation B (UV-B; 280 to 320 nm wavelenghts) dose is essential for determining whether UV-B contributes to amphibian population declines and malformations. UV-B dose in wetlands is effected by location, time of day and year, atmospheric levels of ozone,...

  5. Is ultraviolet radiation on haemodialysis RO water beneficial?

    PubMed

    Stragier, A

    2005-01-01

    The quality of dialysis fluids has become increasingly important in the treatment of HD patients. Purified water represents over 95% of its volume. Bacterial and endotoxin content of Reverse Osmosis (RO) water is usually kept under control by bacterial filters, inserted in the distribution departure loop, and by monthly disinfection of the distribution circuit; the simpler the circuit, the better. This paper reports 12 years experience during which Ultraviolet Irradiation (UV) has replaced bacterial filters. To keep the bacterial growth under control in a complex RO water circuit (including a tank and multiple loops) a simple UV lamp was inserted in the departure line. It proved sufficient to keep bacterial count within AAMI norms. Failure of the UV lamp was associated with a rise of up to 500 cfu/ml in the last (fourth week) before routine disinfection. Normal levels were again obtained after replacement of the UV lamp. Six years later, a second UV lamp was added on the return loop. Bacterial counts and endotoxin levels in RO water promptly fell to <1 cfu/ml and <0.125 EU, till today. It is concluded that UV lamps should be favoured over bacterial filters in systems that are not disinfected daily, such as the RO water circuit. The principle of UV irradiation is explained and its advantage over bacterial filters is discussed. Future possible applications of UV are presented.

  6. Ultraviolet-ozone treatment reduces levels of disease-associated prion protein and prion infectivity

    USGS Publications Warehouse

    Johnson, C.J.; Gilbert, P.; McKenzie, D.; Pedersen, J.A.; Aiken, Judd M.

    2009-01-01

    Background. Transmissible spongiform encephalopathies (TSEs) are a group of fatal neurodegenerative diseases caused by novel infectious agents referred to as prions. Prions appear to be composed primarily, if not exclusively, of a misfolded isoform of the cellular prion protein. TSE infectivity is remarkably stable and can resist many aggressive decontamination procedures, increasing human, livestock and wildlife exposure to TSEs. Findings. We tested the hypothesis that UV-ozone treatment reduces levels of the pathogenic prion protein and inactivates the infectious agent. We found that UV-ozone treatment decreased the carbon and prion protein content in infected brain homogenate to levels undetectable by dry-ashing carbon analysis or immunoblotting, respectively. After 8 weeks of ashing, UV-ozone treatment reduced the infectious titer of treated material by a factor of at least 105. A small amount of infectivity, however, persisted despite UV-ozone treatment. When bound to either montmorillonite clay or quartz surfaces, PrPTSE was still susceptible to degradation by UV-ozone. Conclusion. Our findings strongly suggest that UV-ozone treatment can degrade pathogenic prion protein and inactivate prions, even when the agent is associated with surfaces. Using larger UV-ozone doses or combining UV-ozone treatment with other decontaminant methods may allow the sterilization of TSE-contaminated materials. ?? 2009 Aiken et al; licensee BioMed Central Ltd.

  7. Spectral transmittance of UV-blocking soft contact lenses: a comparative study.

    PubMed

    Rahmani, Saeed; Mohammadi Nia, Mohadeseh; Akbarzadeh Baghban, Alireza; Nazari, Mohammad Reza; Ghassemi-Broumand, Mohammad

    2014-12-01

    Three major parts of sunlight consist of visible, ultraviolet and infrared radiation. Exposure to ultraviolet radiation (UVR) can result in a spectrum of skin and ocular diseases. UV-blocking contact lenses help provide protection against harmful UV radiation. We studied the ultraviolet and visible light rays transmission in some soft UV-blocking contact lenses. Four available tinted soft lenses (Acuvue Moist, Zeiss CONTACT Day 30 Air spheric, Pretty Eyes and Sauflon 56 UV) have been evaluated for UV and visible transmission. One-way ANOVA testing was performed to establish is there a statistically significant difference between the UV regions and visible spectra means for the contact lenses (α=0.05). Pretty Eyes, Zeiss CONTACT, Acuvue Moist and Sauflon 56 UV showed UV-B transmittance value of 0.65%, 10.69%, 1.22%, and 5.78%, respectively. Pretty Eyes and Acuvue Moist had UV-A transmittance values of 32% and 34%, Sauflon 56 UV and Zeiss CONTACT had transmittance values of 48% and 43%, respectively. All of the studied lenses transmitted at least 94.6% on the visible spectrum. The results of the one-way ANOVA statistical analysis show that a statistically significant difference exists within the group of contact lenses tested for the visible (p<0.001), UV-B (p<0.001) and UV-A (p<0.001) portions of the spectrum (α=0.05). Acuvue Moist has the best UV-blocking property and also visible transmission between other tested contact lenses in this study. Copyright © 2014 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  8. Catalogue of UV sources in the Galaxy

    NASA Astrophysics Data System (ADS)

    Beitia-Antero, L.; Gómez de Castro, A. I.

    2017-03-01

    The Galaxy Evolution Explorer (GALEX) ultraviolet (UV) database contains the largest photometric catalogue in the ultraviolet range; as a result GALEX photometric bands, Near UV band (NUV) and the Far UV band (FUV), have become standards. Nevertheless, the GALEX catalogue does not include bright UV sources due to the high sensitivity of its detectors, neither sources in the Galactic plane. In order to extend the GALEX database for future UV missions, we have obtained synthetic FUV and NUV photometry using the database of UV spectra generated by the International Ultraviolet Explorer (IUE). This database contains 63,755 spectra in the low dispersion mode (λ / δ λ ˜ 300) obtained during its 18-year lifetime. For stellar sources in the IUE database, we have selected spectra with high Signal-To-NoiseRatio (SNR) and computed FUV and NUV magnitudes using the GALEX transmission curves along with the conversion equations between flux and magnitudes provided by the mission. Besides, we have performed variability tests to determine whether the sources were variable (during the IUE observations). As a result, we have generated two different catalogues: one for non-variable stars and another one for variable sources. The former contains FUV and NUV magnitudes, while the latter gives the basic information and the FUV magnitude for each observation. The consistency of the magnitudes has been tested using White Dwarfs contained in both GALEX and IUE samples. The catalogues are available through the Centre des Donées Stellaires. The sources are distributed throughout the whole sky, with a special coverage of the Galactic plane.

  9. Effect of prestorage UV-A, -B, and -C radiation on fruit quality and anthocyanin of 'Duke' blueberries during cold storage.

    PubMed

    Nguyen, Chau T T; Kim, Jeongyun; Yoo, Kil Sun; Lim, Sooyeon; Lee, Eun Jin

    2014-12-17

    Ultraviolet (UV)-A, -B, and -C were radiated to full-ripe blueberries (cv. 'Duke'), and their effects on fruit qualities and phytonutrients during subsequent cold storage were investigated. The blueberries were exposed to each UV light at 6 kJ/m(2) and then stored at 0 °C for 28 days. Weight loss and decay of the fruits after UV treatment were significantly decreased during the cold storage. The total phenolics and antioxidant activities of blueberries after UV-B and -C treatments were always higher than those of the control and UV-A treatment. Individual anthocyanins were markedly increased during the 3 h after the UV-B and -C treatments. The correlation matrix between total phenolics, anthocyanins, and antioxidant activity measured by the 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) assay indicated a significantly close correlation with the individual anthocyanin contents. It was confirmed that the prestorage treatments of UV-B and -C increased the storability and phytochemical accumulation of the full-ripe 'Duke' blueberries during cold storage.

  10. Trace Element Removal in Distributed Drinking Water Treatment Systems by Cathodic H2O2 Production and UV Photolysis

    PubMed Central

    2017-01-01

    As water scarcity intensifies, point-of-use and point-of-entry treatment may provide a means of exploiting locally available water resources that are currently considered to be unsafe for human consumption. Among the different classes of drinking water contaminants, toxic trace elements (e.g., arsenic and lead) pose substantial operational challenges for distributed drinking water treatment systems. Removal of toxic trace elements via adsorption onto iron oxides is an inexpensive and robust treatment method; however, the presence of metal-complexing ligands associated with natural organic matter (NOM) often prevents the formation of iron precipitates at the relatively low concentrations of dissolved iron typically present in natural water sources, thereby requiring the addition of iron which complicates the treatment process and results in a need to dispose of relatively large amounts of accumulated solids. A point-of-use treatment device consisting of a cathodic cell that produced hydrogen peroxide (H2O2) followed by an ultraviolet (UV) irradiation chamber was used to decrease colloid stabilization and metal-complexing capacity of NOM present in groundwater. Exposure to UV light altered NOM, converting ∼6 μM of iron oxides into settable forms that removed between 0.5 and 1 μM of arsenic (As), lead (Pb), and copper (Cu) from solution via adsorption. After treatment, changes in NOM consistent with the loss of iron-complexing carboxylate ligands were observed, including decreases in UV absorbance and shifts in the molecular composition of NOM to higher H/C and lower O/C ratios. Chronoamperometric experiments conducted in synthetic groundwater revealed that the presence of Ca2+ and Mg2+ inhibited intramolecular charge-transfer within photoexcited NOM, leading to substantially increased removal of iron and trace elements. PMID:29240414

  11. Trace Element Removal in Distributed Drinking Water Treatment Systems by Cathodic H2O2 Production and UV Photolysis.

    PubMed

    Barazesh, James M; Prasse, Carsten; Wenk, Jannis; Berg, Stephanie; Remucal, Christina K; Sedlak, David L

    2018-01-02

    As water scarcity intensifies, point-of-use and point-of-entry treatment may provide a means of exploiting locally available water resources that are currently considered to be unsafe for human consumption. Among the different classes of drinking water contaminants, toxic trace elements (e.g., arsenic and lead) pose substantial operational challenges for distributed drinking water treatment systems. Removal of toxic trace elements via adsorption onto iron oxides is an inexpensive and robust treatment method; however, the presence of metal-complexing ligands associated with natural organic matter (NOM) often prevents the formation of iron precipitates at the relatively low concentrations of dissolved iron typically present in natural water sources, thereby requiring the addition of iron which complicates the treatment process and results in a need to dispose of relatively large amounts of accumulated solids. A point-of-use treatment device consisting of a cathodic cell that produced hydrogen peroxide (H 2 O 2 ) followed by an ultraviolet (UV) irradiation chamber was used to decrease colloid stabilization and metal-complexing capacity of NOM present in groundwater. Exposure to UV light altered NOM, converting ∼6 μM of iron oxides into settable forms that removed between 0.5 and 1 μM of arsenic (As), lead (Pb), and copper (Cu) from solution via adsorption. After treatment, changes in NOM consistent with the loss of iron-complexing carboxylate ligands were observed, including decreases in UV absorbance and shifts in the molecular composition of NOM to higher H/C and lower O/C ratios. Chronoamperometric experiments conducted in synthetic groundwater revealed that the presence of Ca 2+ and Mg 2+ inhibited intramolecular charge-transfer within photoexcited NOM, leading to substantially increased removal of iron and trace elements.

  12. Effects of enhanced ultraviolet-B radiation, water deficit, and their combination on UV-absorbing compounds and osmotic adjustment substances in two different moss species.

    PubMed

    Hui, Rong; Zhao, Ruiming; Song, Guang; Li, Yixuan; Zhao, Yang; Wang, Yanli

    2018-05-01

    A simulation experiment was conducted to explore the influence of enhanced ultraviolet-B (UV-B) radiation, water deficit, and their combination on UV-absorbing compounds and osmotic adjustment substances of mosses Bryum argenteum and Didymodon vinealis isolated from biological soil crusts (BSCs) growing in a revegetated area of the Tengger Desert, China. Four levels of UV-B radiation and two gradients of water regime were employed. Compared with their controls, amounts of total flavonoids, chlorophyll, carotenoids, soluble sugars, and soluble proteins significantly decreased (p < 0.05), but proline content significantly increased (p < 0.05), when exposed to either enhanced UV-B or water deficit. The negative effects of enhanced UV-B were alleviated when water deficit was applied. There were increases in UV-absorbing compounds and osmotic adjustment substances when exposed to a combination of enhanced UV-B and water deficit compared with single stresses, except for the proline content in D. vinealis. In addition, our results also indicated interspecific differences in response to enhanced UV-B, water deficit, and their combination. Compared with B. argenteum, D. vinealis was more resistant to enhanced UV-B and water deficit singly and in combination. These results suggest that the damage of enhanced UV-B on both species might be alleviated by water deficit. This alleviation is important for understanding the response of BSCs to UV-B radiation in future global climate change. This also provides novel insights into assessment damages of UV-B to BSC stability in arid and semiarid regions.

  13. First UK trial of Xenex PX-UV, an automated ultraviolet room decontamination device in a clinical haematology and bone marrow transplantation unit.

    PubMed

    Beal, A; Mahida, N; Staniforth, K; Vaughan, N; Clarke, M; Boswell, T

    2016-06-01

    There is growing interest in the use of no-touch automated room decontamination devices within healthcare settings. Xenex PX-UV is an automated room disinfection device using pulsed ultraviolet (UV) C radiation with a short cycle time. To investigate the microbiological efficacy of this device when deployed for terminal decontamination of isolation rooms within a clinical haematology unit. The device was deployed in isolation rooms in a clinical haematology unit. Contact plates were applied to common touch points to determine aerobic total colony counts (TCCs) and samples collected using Polywipe™ sponges for detection of vancomycin-resistant enterococci (VRE). The device was easy to transport, easy to use, and it disinfected rooms rapidly. There was a 76% reduction in the TCCs following manual cleaning, with an additional 14% reduction following UV disinfection, resulting in an overall reduction of 90% in TCCs. There was a 38% reduction in the number of sites where VRE was detected, from 26 of 80 sites following manual cleaning to 16 of 80 sites with additional UV disinfection. The Xenex PX-UV device can offer a simple and rapid additional decontamination step for terminal disinfection of patient rooms. However, the microbiological efficacy against VRE was somewhat limited. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  14. Ultraviolet-Visible (UV-Vis) Microspectroscopic System Designed for the In Situ Characterization of the Dehydrogenation Reaction Over Platinum Supported Catalytic Microchannel Reactor.

    PubMed

    Suarnaba, Emee Grace Tabares; Lee, Yi Fuan; Yamada, Hiroshi; Tagawa, Tomohiko

    2016-11-01

    An ultraviolet visible (UV-Vis) microspectroscopic system was designed for the in situ characterization of the activity of the silica supported platinum (Pt) catalyst toward the dehydrogenation of 1-methyl-1,4-cyclohexadiene carried out in a custom-designed catalytic microreactor cell. The in situ catalytic microreactor cell (ICMC) with inlet/outlet ports was prepared using quartz cover as the optical window to facilitate UV-Vis observation. A fabricated thermometric stage was adapted to the UV-Vis microspectrophotometer to control the reaction temperature inside the ICMC. The spectra were collected by focusing the UV-Vis beam on a 30 × 30 µm area at the center of ICMC. At 393 K, the sequential measurement of the spectra recorded during the reaction exhibited a broad absorption peak with maximum absorbance at 260 nm that is characteristic for gaseous toluene. This result indicates that the silica supported Pt catalyst is active towards the dehydrogenation of 1-methyl-1,4-cyclohexadiene at the given experimental conditions. The onset of coke formation was also detected based on the appearance of absorption bands at 300 nm. The UV-Vis microspectroscopic system developed can be used further in studying the mechanism of the dehydrogenation reaction. © The Author(s) 2016.

  15. Fine structural dependence of ultraviolet reflections in the King Penguin beak horn.

    PubMed

    Dresp, Birgitta; Langley, Keith

    2006-03-01

    The visual perception of many birds extends into the near-ultraviolet (UV) spectrum and ultraviolet is used by some to communicate. The beak horn of the King Penguin (Aptenodytes patagonicus) intensely reflects in the ultraviolet and this appears to be implicated in partner choice. In a preliminary study, we recently demonstrated that this ultraviolet reflectance has a structural basis, resulting from crystal-like photonic structures, capable of reflecting in the near-UV. The present study attempted to define the origin of the photonic elements that produce the UV reflectance and to better understand how the UV signal is optimized by their fine structure. Using light and electron microscopic analysis combined with new spectrophotometric data, we describe here in detail the fine structure of the entire King Penguin beak horn in addition to that of its photonic crystals. The data obtained reveal a one-dimensional structural periodicity within this tissue and demonstrate a direct relationship between its fine structure and its function. In addition, they suggest how the photonic structures are produced and how they are stabilized. The measured lattice dimensions of the photonic crystals, together with morphological data on its composition, permit predictions of the wavelength of reflected light. These correlate well with experimentally observed values. The way the UV signal is optimized by the fine structure of the beak tissue is discussed with regard to its putative biological role.

  16. Ultraviolet /UV/ sensitive phosphors for silicon imaging detectors

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Cowens, M. W.; Butner, C. L.

    1981-01-01

    The fluorescence properties of UV sensitive organic phosphors and the radiometric properties of phosphor coated silicon detectors in the VUV, UV, and visible wavelengths are described. With evaporated films of coronene and liumogen, effective quantum efficiencies of up to 20% have been achieved on silicon photodiodes in the vacuum UV. With thin films of methylmethacrylate (acrylic), which are doped with organic laser dyes and deposited from solution, detector quantum efficiencies of the order of 15% for wavelengths of 120-165 nm and of 40% for wavelengths above 190 nm have been obtained. The phosphor coatings also act as antireflection coatings and thereby enhance the response of coated devices throughout the visible and near IR.

  17. The Ultraviolet Spectrograph on NASA's Juno Mission

    NASA Astrophysics Data System (ADS)

    Gladstone, G. Randall; Persyn, Steven C.; Eterno, John S.; Walther, Brandon C.; Slater, David C.; Davis, Michael W.; Versteeg, Maarten H.; Persson, Kristian B.; Young, Michael K.; Dirks, Gregory J.; Sawka, Anthony O.; Tumlinson, Jessica; Sykes, Henry; Beshears, John; Rhoad, Cherie L.; Cravens, James P.; Winters, Gregory S.; Klar, Robert A.; Lockhart, Walter; Piepgrass, Benjamin M.; Greathouse, Thomas K.; Trantham, Bradley J.; Wilcox, Philip M.; Jackson, Matthew W.; Siegmund, Oswald H. W.; Vallerga, John V.; Raffanti, Rick; Martin, Adrian; Gérard, J.-C.; Grodent, Denis C.; Bonfond, Bertrand; Marquet, Benoit; Denis, François

    2017-11-01

    The ultraviolet spectrograph instrument on the Juno mission (Juno-UVS) is a long-slit imaging spectrograph designed to observe and characterize Jupiter's far-ultraviolet (FUV) auroral emissions. These observations will be coordinated and correlated with those from Juno's other remote sensing instruments and used to place in situ measurements made by Juno's particles and fields instruments into a global context, relating the local data with events occurring in more distant regions of Jupiter's magnetosphere. Juno-UVS is based on a series of imaging FUV spectrographs currently in flight—the two Alice instruments on the Rosetta and New Horizons missions, and the Lyman Alpha Mapping Project on the Lunar Reconnaissance Orbiter mission. However, Juno-UVS has several important modifications, including (1) a scan mirror (for targeting specific auroral features), (2) extensive shielding (for mitigation of electronics and data quality degradation by energetic particles), and (3) a cross delay line microchannel plate detector (for both faster photon counting and improved spatial resolution). This paper describes the science objectives, design, and initial performance of the Juno-UVS.

  18. Characterisation of ultraviolet-absorbing recalcitrant organics in landfill leachate for treatment process optimisation.

    PubMed

    Keen, Olya S

    2017-03-01

    Organics in leachate from municipal solid waste landfills are notoriously difficult to treat by biological processes. These organics have high ultraviolet absorbance and can interfere with the ultraviolet disinfection process at the wastewater treatment plant that receives leachate if the leachate flow contribution is large enough. With more wastewater treatment plants switching to ultraviolet disinfection, landfills face increased pressure to treat leachate further. This study used size exclusion chromatography, fluorescence spectroscopy and ultraviolet/Vis spectrophotometry to characterise the bulk organic matter in raw landfill leachate and the biorecalcitrant organic matter in biologically treated leachate from the same site. The results indicate that biorecalcitrant organics have the polyphenolic absorbance peak at 280 nm, fluorescence peak at 280 nm excitation and 315 nm emission, and molecular size range of 1000-7000 Da, all of which are consistent with lignin. The lignin-like nature of biorecalcitrant leachate organics is supported by the fact that 30%-50% of municipal solid waste consists of plant debris and paper products. These findings shed light on the nature of biorecalcitrant organics in leachate and will be useful for the design of leachate treatment processes and further research on leachate treatment methods.

  19. Ultraviolet 320 nm laser excitation for flow cytometry.

    PubMed

    Telford, William; Stickland, Lynn; Koschorreck, Marco

    2017-04-01

    Although multiple lasers and high-dimensional analysis capability are now standard on advanced flow cytometers, ultraviolet (UV) lasers (usually 325-365 nm) remain an uncommon excitation source for cytometry. This is primarily due to their cost, and the small number of applications that require this wavelength. The development of the Brilliant Ultraviolet (BUV fluorochromes, however, has increased the importance of this formerly niche excitation wavelength. Historically, UV excitation was usually provided by water-cooled argon- and krypton-ion lasers. Modern flow cytometers primary rely on diode pumped solid state lasers emitting at 355 nm. While useful for all UV-excited applications, DPSS UV lasers are still large by modern solid state laser standards, and remain very expensive. Smaller and cheaper near UV laser diodes (NUVLDs) emitting at 375 nm make adequate substitutes for 355 nm sources in many situations, but do not work as well with very short wavelength probes like the fluorescent calcium chelator indo-1. In this study, we evaluate a newly available UV 320 nm laser for flow cytometry. While shorter in wavelength that conventional UV lasers, 320 is close to the 325 nm helium-cadmium wavelength used in the past on early benchtop cytometers. A UV 320 nm laser was found to excite almost all Brilliant Ultraviolet dyes to nearly the same level as 355 nm sources. Both 320 nm and 355 nm sources worked equally well for Hoechst and DyeCycle Violet side population analysis of stem cells in mouse hematopoetic tissue. The shorter wavelength UV source also showed excellent excitation of indo-1, a probe that is not compatible with NUVLD 375 nm sources. In summary, a 320 nm laser module made a suitable substitute for conventional 355 nm sources. This laser technology is available in a smaller form factor than current 355 nm units, making it useful for small cytometers with space constraints. © 2017 International Society for Advancement of Cytometry. © 2017 International

  20. An ESR study of the UV degradation of FEP

    NASA Technical Reports Server (NTRS)

    George, G. A.; Hill, D. J. T.; Odonnell, J. H.; Pomery, P. J.; Rasoul, F.

    1992-01-01

    Spacecraft in low earth orbit are subjected to significant levels of high energy radiation, including ultraviolet (UV) and visible ultraviolet (VUV) wavelengths. The effects of UV radiation are enhanced over those at the surface of the earth, where the only incident wavelengths are greater than 290 nm. In low earth orbit the incident UV wavelengths extend below 290 nm into the VUV region, where the Lyman alpha-emissions of atomic hydrogen occur at 121 nm. In addition to electromagnetic radiation, in low earth orbit polymer materials may also be subjected to atomic oxygen particle radiation, which will result in direct oxidation of the polymer.

  1. Inactivation of Escherichia Coli O157:H7 and Salmonella Enterica on Blueberries in Water Using Ultraviolet Light.

    PubMed

    Liu, Chuhan; Huang, Yaoxin; Chen, Haiqiang

    2015-07-01

    Ultraviolet light (UV) has antimicrobial effects, but the shadowing effect has limited its application. In this study, a novel setup using UV processing in agitated water was developed to inactivate Escherichia coli O157:H7 and Salmonella on blueberries. Blueberries were dip- or spot-inoculated with E. coli or Salmonella. Blueberries inoculated with E. coli were treated for 2 to 10 min with UV directly (dry UV) or immersed in agitated water during UV treatment (wet UV). E. coli was most easily killed on spot-inoculated blueberries with a 5.2-log reduction after 10-min wet UV treatment. Dip-inoculated blueberries were the most difficult to be decontaminated with only 1.6-log reduction after 10-min wet UV treatment. Wet UV treatment generally showed higher efficacies than dry UV treatment, achieving an average of 1.4 log more reduction for spot-inoculated blueberries. For dip-inoculated blueberries, chlorine washing and UV treatments were less effective, achieving <2 log reductions of E. coli. Thus, the efficacy of combinations of wet UV with sodium dodecyl sulfate (SDS), levulinic acid, or chlorine was evaluated. Inoculated blueberries were UV-treated while being immersed in agitated water containing 100 ppm SDS, 0.5% levulinic acid or 10 ppm chlorine. The 3 chemicals did not significantly enhance the wet UV treatment. Findings of this study suggest that UV treatment could be used as an alternative to chlorine washing for blueberries and potentially for other fresh produce. A novel UV light system for decontamination of blueberries in water was developed and evaluated. Results demonstrated that the decontamination efficacy of this system was generally as effective as chlorine washing, indicating that it could potentially be used as an alternative to chlorine washing for blueberries and other fresh produce. © 2015 Institute of Food Technologists®

  2. Application of pulsed UV-irradiation and pre-coagulation to control ultrafiltration membrane fouling in the treatment of micro-polluted surface water.

    PubMed

    Yu, Wenzheng; Campos, Luiza C; Graham, Nigel

    2016-12-15

    A major cause of ultrafiltration (UF) membrane fouling is the accumulation of microorganisms and their associated soluble products. To mitigate fouling the application of pulsed short-wavelength ultraviolet (UVC) light (around 254 nm) within the membrane tank together with pre-coagulation was investigated. In mini-pilot-scale tests carried out in parallel with conventional pre-treatment (CUF), the impact of pulsed UV (CUF-UV) at different UV irradiances and fluxes on the increase of trans-membrane pressure (TMP) was evaluated and explained in terms of the quantity and nature of membrane deposits in the membrane cake layer and pores. The results indicated that at a flux of 20 L m -2  h -1 , the pulsed UV (1 min within 31 min cycle) at 3.17 × 10 -2  W/cm 2 prevented any measureable increase in TMP over a period of 32 days, while there was a fourfold increase in TMP for the conventional pre-treatment. For the CUF-UV system the concentration of bacteria and soluble microbial products was much less than the conventional CUF system, and the cake layer was thinner and contained less biopolymers (proteins and polysaccharides). In addition, the pores of the CUF-UV membrane appeared to have less organic deposits, and particularly fractions with a high molecular weight (>10 kDa). At a lower UV irradiance (1.08 × 10 -2  W/cm 2 ), or higher flux (40 L m -2  h -1 ) with the same UV irradiance, there was a measurable increase in TMP, indicating some fouling of the CUF-UV membrane, but the rate of TMP development was significantly lower (∼50%) than the conventional CUF membrane system. Overall, the results show the potential advantages of applying intermittent (pulsed) UVC irradiation with coagulation to control UF membrane fouling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Ultraviolet disinfection of potable water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, R.L.

    Because of upcoming surface and groundwater regulations regarding the control of microbiological and chemical contaminants, there is a need to evaluate the feasibility and effectiveness of ultraviolet (UV) radiation for primary disinfection of potable water supplies. Data is presented on microbicidal wavelengths of UV and distribution of energy output for low and medium-pressure arc lamps. Both systems were found to perform equally well for inactivating microorganisms, but each had distinct advantages in different applications. Approximate dosages for 90% inactivation of selected microorganisms by UV is presented in a table. Cost analysis for disinfection is presented in two tables as wellmore » as the advantages and disadvantages of UV disinfection. 38 refs.« less

  4. UV Disinfection of Wastewater and Combined Sewer Overflows.

    PubMed

    Gibson, John; Drake, Jennifer; Karney, Bryan

    2017-01-01

    Municipal wastewater contains bacteria, viruses, and other pathogens that adversely affect the environment, human health, and economic activity. One way to mitigate these effects is a final disinfection step using ultraviolet light (UVL). The advantages of UVL disinfection, when compared to the more traditional chlorine, include no chlorinated by-products, no chemical residual, and relatively compact size. The design of most UV reactors is complex. It involves lamp selection, power supply design, optics, and hydraulics. In general, medium pressure lamps are more compact, powerful, and emit over a wider range of light than the more traditional low pressure lamps. Low pressure lamps, however, may be electrically more efficient. In UV disinfection, the fraction of surviving organisms (e.g. E. coli) will decrease exponentially with increasing UV dose. However, the level of disinfection that can be achieved is often limited by particle-associated organisms. Efforts to remove or reduce the effects of wastewater particles will often improve UV disinfection effectiveness. Regrowth, photoreactivation, or dark repair after UV exposure are sometimes cited as disadvantages of UV disinfection. Research is continuing in this area, however there is little evidence that human pathogens can photoreactivate in environmental conditions, at doses used in wastewater treatment. The UV disinfection of combined sewer overflows, a form of wet weather pollution, is challenging and remains largely at the research phase. Pre-treatment of combined sewer overflows (CSOs) with a cationic polymer to induce fast settling, and a low dose of alum to increase UV transmittance, has shown promise at the bench scale.

  5. Temperature Effects of Ultraviolet Irradiation on Material Degradation

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyuki; Ishizawa, Junichiro

    Ultraviolet rays (UV) cause organic materials to deteriorate. UV irradiation ground testing is therefore important to understand the “adequate lifetime assessment” and the “end-of-life (EOL) characteristic” of materials used in space. In previous experiments, high temperatures were found to accelerate the UV degradation of cross-linked ethylene tetrafluoroethylene (X-ETFE). This causes concern of potentially similar effects in other materials. In this study, we evaluated UV degradation at high temperatures and subsequently determined materials usable in space that had shown accelerated degradation due to UV irradiation at high temperatures.

  6. ULTRAVIOLET LIGHT DISINFECTION OF COMBINED SEWER OVERFLOW (NEW ORLEANS)

    EPA Science Inventory

    The objective of this state-of-the-art review is to examine the performance and effectiveness of ultraviolet (UV) light disinfection for combined sewer overflow (CSO) applications. Topics presented include the use of UV light as a disinfecting agent, its practical applications, d...

  7. Molecular response of nasal mucosa to therapeutic exposure to broad-band ultraviolet radiation

    PubMed Central

    Mitchell, David; Paniker, Lakshmi; Sanchez, Guillermo; Bella, Zsolt; Garaczi, Edina; Szell, Marta; Hamid, Qutayba; Kemeny, Lajos; Koreck, Andrea

    2010-01-01

    Abstract Ultraviolet radiation (UVR) phototherapy is a promising new treatment for inflammatory airway diseases. However, the potential carcinogenic risks associated with this treatment are not well understood. UV-specific DNA photoproducts were used as biomarkers to address this issue. Radioimmunoassay was used to quantify cyclobutane pyrimidine dimers (CPDs) and (6–4) photoproducts in DNA purified from two milieus: nasal mucosa samples from subjects exposed to intranasal phototherapy and human airway (EpiAirway™) and human skin (EpiDerm™) tissue models. Immunohistochemistry was used to detect CPD formation and persistence in human nasal biopsies and human tissue models. In subjects exposed to broadband ultraviolet radiation, DNA damage frequencies were determined prior to as well as immediately after treatment and at increasing times post-treatment. We observed significant levels of DNA damage immediately after treatment and efficient removal of the damage within a few days. No residual damage was observed in human subjects exposed to multiple UVB treatments several weeks after the last treatment. To better understand the molecular response of the nasal epithelium to DNA damage, parallel experiments were conducted in EpiAirway and EpiDerm model systems. Repair rates in these two tissues were very similar and comparable to that observed in human skin. The data suggest that the UV-induced DNA damage response of respiratory epithelia is very similar to that of the human epidermis and that nasal mucosa is able to efficiently repair UVB induced DNA damage. PMID:18671762

  8. Ultraviolet radiation-blocking characteristics of contact lenses: relevance to eye protection for psoralen-sensitised patients.

    PubMed

    Anstey, A; Taylor, D; Chalmers, I; Ansari, E

    1999-10-01

    Nine brands of contact lens marketed as "UV protective" were tested for ultraviolet (UV) transmission in order to assess potential suitability for psoralen-sensitised patients. UV-transmission characteristics of hydrated lenses was tested with a Bentham monochromator spectro-radiometer system. All lenses showed minimal transmission loss in the visible band. The performance of the nine lenses was uniform for ultraviolet B radiation with negligible transmission, but showed variation in transmission for ultraviolet A radiation. None of the lenses complied with UV-transmission criteria used previously to assess UV-blocking spectacles. Only two lenses had UV-blocking characteristics which came close to the arbitrary criteria used. The performance of ordinary soft and hard lenses was very similar, with negligible blocking of UV radiation. None of the nine contact lenses marketed as "UV protective" excluded sufficient UVA to comply with criteria in current use to assess UV protection in spectacles for psoralen-sensitised patients. However, the improved UV-blocking characteristics of contact lenses identified in this paper compared to previous studies suggests that such a contact lens will soon become available. Meanwhile, contact lens-wearing systemically sensitised PUVA patients should continue to wear approved spectacles for eye protection whilst photosensitised with psoralen.

  9. Design, fabrication, and measurement of two silicon-based ultraviolet and blue-extended photodiodes

    NASA Astrophysics Data System (ADS)

    Chen, Changping; Wang, Han; Jiang, Zhenyu; Jin, Xiangliang; Luo, Jun

    2014-12-01

    Two silicon-based ultraviolet (UV) and blue-extended photodiodes are presented, which were fabricated for light detection in the ultraviolet/blue spectral range. Stripe-shaped and octagon-ring-shaped structures were designed to verify parameters of the UV-responsivity, UV-selectivity, breakdown voltage, and response time. The ultra-shallow lateral pn junction had been successfully realized in a standard 0.5-μm complementary metal oxide semiconductor (CMOS) process to enlarge the pn junction area, enhance the absorption of UV light, and improve the responsivity and quantum efficiency. The test results illustrated that the stripe-shaped structure has the lower breakdown voltage, higher UV-responsicity, and higher UV-selectivity. But the octagon-ring-shaped structure has the lower dark current. The response time of both structures was almost the same.

  10. Galactic Astronomy in the Ultraviolet

    NASA Astrophysics Data System (ADS)

    Rastorguev, A. S.; Sachkov, M. E.; Zabolotskikh, M. V.

    2017-12-01

    We propose a number of prospective observational programs for the ultraviolet space observatory WSO-UV, which seem to be of great importance to modern galactic astronomy. The programs include the search for binary Cepheids; the search and detailed photometric study and the analysis of radial distribution of UV-bright stars in globular clusters ("blue stragglers", blue horizontal-branch stars, RR Lyrae variables, white dwarfs, and stars with UV excesses); the investigation of stellar content and kinematics of young open clusters and associations; the study of spectral energy distribution in hot stars, including calculation of the extinction curves in the UV, optical and NIR; and accurate definition of the relations between the UV-colors and effective temperature. The high angular resolution of the observatory allows accurate astrometric measurements of stellar proper motions and their kinematic analysis.

  11. Prospects for Near Ultraviolet Astronomical Observations from the Lunar Surface — LUCI

    NASA Astrophysics Data System (ADS)

    Mathew, J.; Kumar, B.; Sarpotdar, M.; Suresh, A.; Nirmal, K.; Sreejith, A. G.; Safonova, M.; Murthy, J.; Brosch, N.

    2018-04-01

    We have explored the prospects for UV observations from the lunar surface and developed a UV telescope (LUCI-Lunar Ultraviolet Cosmic Imager) to put on the Moon, with the aim to detect bright UV transients such as SNe, novae, TDE, etc.

  12. Spectral transmission of the pig lens: effect of ultraviolet A+B radiation.

    PubMed

    Artigas, C; Navea, A; López-Murcia, M-M; Felipe, A; Desco, C; Artigas, J-M

    2014-12-01

    To determine the spectral transmission curve of the crystalline lens of the pig. To analyse how this curve changes when the crystalline lens is irradiated with ultraviolet A+B radiation similar to that of the sun. To compare these results with literature data from the human crystalline lens. We used crystalline lenses of the common pig from a slaughterhouse, i.e. genetically similar pigs, fed with the same diet, and slaughtered at six months old. Spectral transmission was measured with a Perkin-Elmer Lambda 35 UV/VIS spectrometer. The lenses were irradiated using an Asahi Spectra Lax-C100 ultraviolet source, which made it possible to select the spectral emission band as well as the intensity and exposure time. The pig lens transmits all the visible spectrum (95%) and lets part of the ultraviolet A through (15%). Exposure to acute UV (A+B) irradiation causes a decrease in its transmission as the intensity or exposure time increases: this decrease is considerable in the UV region. We were able to determine the mean spectral transmission curve of the pig lens. It appears to be similar to that of the human lens in the visible spectrum, but different in the ultraviolet. Pig lens transmission is reduced by UV (A+B) irradiation and its transmission in the UV region can even disappear as the intensity or exposure time increases. An adequate exposure intensity and time of UV (A+B) radiation always causes an anterior subcapsular cataract (ASC). Copyright © 2014. Published by Elsevier Masson SAS.

  13. Microwave-driven ultraviolet light sources

    DOEpatents

    Manos, Dennis M.; Diggs, Jessie; Ametepe, Joseph D.

    2002-01-29

    A microwave-driven ultraviolet (UV) light source is provided. The light source comprises an over-moded microwave cavity having at least one discharge bulb disposed within the microwave cavity. At least one magnetron probe is coupled directly to the microwave cavity.

  14. Footprints of the sun: memory of UV and light stress in plants

    PubMed Central

    Müller-Xing, Ralf; Xing, Qian; Goodrich, Justin

    2014-01-01

    Sunlight provides the necessary energy for plant growth via photosynthesis but high light and particular its integral ultraviolet (UV) part causes stress potentially leading to serious damage to DNA, proteins, and other cellular components. Plants show adaptation to environmental stresses, sometimes referred to as “plant memory.” There is growing evidence that plants memorize exposure to biotic or abiotic stresses through epigenetic mechanisms at the cellular level. UV target genes such as CHALCONE SYNTHASE (CHS) respond immediately to UV treatment and studies of the recently identified UV-B receptor UV RESISTANCE LOCUS 8 (UVR8) confirm the expedite nature of UV signaling. Considering these findings, an UV memory seems redundant. However, several lines of evidence suggest that plants may develop an epigenetic memory of UV and light stress, but in comparison to other abiotic stresses there has been relatively little investigation. Here we summarize the state of knowledge about acclimation and adaptation of plants to UV light and discuss the possibility of chromatin based epigenetic memory. PMID:25278950

  15. Development of a low cost UV index datalogger and comparison between UV index sensors

    NASA Astrophysics Data System (ADS)

    Gomes, L. M.; Ventura, L.

    2018-02-01

    Ultraviolet radiation (UVR) is the part of radiation emitted by the Sun, with range between 280 nm and 400 nm, and that reaches the Earth's surface. The UV rays are essential to the human because it stimulates the production of vitamin D but this radiation may be related to several health problems, including skin cancer and ocular diseases like pterygium, photokeratitis, cataract and more. To inform people about UV radiation, it is adopted the Ultraviolet Index (UVI). This UVI consists in a measure of solar UV radiation level, which contributes to cause sunburn on skin, also known as Erythema, and is indicated as an integer number between 1 and 14, associated to categories from low to extreme respectively. The aim of this work was to develop a low cost UVI datalogger capable of measuring three different UVI sensors simultaneously, record their data with timestamp and serve the measures online through a dedicated server, so general public can access their data and see the current UV radiation conditions. We also compared three different UVI sensors (SGlux UV cosine, Skye SKU440 and SiLabs SI1145) between them and with meteorological models during a period of months to verify their compliance. With five months data, we could verify the sensors working characteristics and decide which among them are the most suitable for research purposes.

  16. Identification of intermediates, acute toxicity removal, and kinetics investigation to the Ametryn treatment by direct photolysis (UV254), UV254/H2O2, Fenton, and photo-Fenton processes.

    PubMed

    de Oliveira, Dirce Martins; Cavalcante, Rodrigo Pereira; da Silva, Lucas de Melo; Sans, Carme; Esplugas, Santiago; de Oliveira, Silvio Cesar; Junior, Amilcar Machulek

    2018-02-09

    This paper reports the degradation of 10 mg L -1 Ametryn solution with different advanced oxidation processes and by ultraviolet (UV 254 ) irradiation alone with the main objective of reducing acute toxicity and increase biodegradability. The investigated factors included Fe 2+ and H 2 O 2 concentrations. The effectiveness of the UV 254 and UV 254 /H 2 O 2 processes were investigated using a low-pressure mercury UV lamp (254 nm). Photo-Fenton process was explored using a blacklight blue lamp (BLB, λ = 365 nm). The UV 254 irradiation process achieved complete degradation of Ametryn solution after 60 min. The degradation time of Ametryn was greatly improved by the addition of H 2 O 2 . It is worth pointing out that a high rate of Ametryn removal was attained even at low concentrations of H 2 O 2 . The kinetic constant of the reaction between Ametryn and HO ● for UV 254 /H 2 O 2 was 3.53 × 10 8  L mol -1  s -1 . The complete Ametryn degradation by the Fenton and photo-Fenton processes was observed following 10 min of reaction for various combinations of Fe 2+ and H 2 O 2 under investigation. Working with the highest concentration (150 mg L -1 H 2 O 2 and 10 mg L -1 Fe 2+ ), around 30 and 70% of TOC removal were reached within 120 min of treatment by Fenton and photo-Fenton processes, respectively. Although it did not obtain complete mineralization, the intermediates formed in the degradation processes were hydroxylated and did not promote acute toxicity of Vibrio fischeri. Furthermore, a substantial improvement of biodegradability was obtained for all studied processes.

  17. Web-Resources for Astronomical Data in the Ultraviolet

    NASA Astrophysics Data System (ADS)

    Sachkov, M. E.; Malkov, O. Yu.

    2017-12-01

    In this paper we describe databases of space projects that are operating or have operated in the ultraviolet spectral region. We give brief descriptions and links to major sources for UV data on the web: archives, space mission sites, databases, catalogues. We pay special attention to the World Space Observatory—Ultraviolet mission that will be launched in 2021.

  18. Nitric oxide alleviates oxidative damage induced by enhanced ultraviolet-B radiation in cyanobacterium.

    PubMed

    Xue, Lingui; Li, Shiweng; Sheng, Hongmei; Feng, Huyuan; Xu, Shijian; An, Lizhe

    2007-10-01

    To study the role of nitric oxide (NO) on enhanced ultraviolet-B (UV-B) radiation (280-320 nm)-induced damage of Cyanobacterium, the growth, pigment content, and antioxidative activity of Spirulina platensis-794 cells were investigated under enhanced UV-B radiation and under different chemical treatments with or without UV-B radiation for 6 h. The changes in chlorophyll-a, malondialdehyde content, and biomass confirmed that 0.5 mM: sodium nitroprusside (SNP), a donor of nitric oxide (NO), could markedly alleviate the damage caused by enhanced UV-B. Specifically, the biomass and the chlorophyll-a content in S. platensis-794 cells decreased 40% and 42%, respectively under enhanced UV-B stress alone, but they only decreased 10% and 18% in the cells treated with UV-B irradiation and 0.5 mM: SNP. Further experiments suggested that NO treatment significantly increased the activities of superoxide dismutase (SOD) and catalase (CAT), and decreased the accumulation of O (2)(-) in enhanced UV-B-irradiated cells. SOD and CAT activity increased 0.95- and 6.73-fold, respectively. The accumulation of reduced glutathione (GSH) increased during treatment with 0.5 mM: SNP in normal S. platensis cells, but SNP treatment could inhibit the increase of GSH in enhanced UV-B-stressed S. platensis cells. Thus, these results suggest that NO can strongly alleviate oxidative damage caused by UV-B stress by increasing the activities of SOD, peroxidase, CAT, and the accumulation of GSH, and by eliminating O (2)(-) in S. platensis-794 cells. In addition, the difference of NO origin between plants and cyanobacteria are discussed.

  19. Microgap ultra-violet detector

    DOEpatents

    Wuest, Craig R.; Bionta, Richard M.

    1994-01-01

    A microgap ultra-violet detector of photons with wavelengths less than 400 run (4000 Angstroms) which comprises an anode and a cathode separated by a gas-filled gap and having an electric field placed across the gap. Either the anode or the cathode is semi-transparent to UV light. Upon a UV photon striking the cathode an electron is expelled and accelerated across the gap by the electric field causing interactions with other electrons to create an electron avalanche which contacts the anode. The electron avalanche is detected and converted to an output pulse.

  20. Visible-blind ultraviolet photodetectors on porous silicon carbide substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naderi, N.; Hashim, M.R., E-mail: roslan@usm.my

    2013-06-01

    Highlights: • Highly reliable UV detectors are fabricated on porous silicon carbide substrates. • The optical properties of samples are enhanced by increasing the current density. • The optimized sample exhibits enhanced sensitivity to the incident UV radiation. - Abstract: Highly reliable visible-blind ultraviolet (UV) photodetectors were successfully fabricated on porous silicon carbide (PSC) substrates. High responsivity and high photoconductive gain were observed in a metal–semiconductor–metal ultraviolet photodetector that was fabricated on an optimized PSC substrate. The PSC samples were prepared via the UV-assisted photo-electrochemical etching of an n-type hexagonal silicon carbide (6H-SiC) substrate using different etching current densities. Themore » optical results showed that the current density is an outstanding etching parameter that controls the porosity and uniformity of PSC substrates. A highly porous substrate was synthesized using a suitable etching current density to enhance its light absorption, thereby improving the sensitivity of UV detector with this substrate. The electrical characteristics of fabricated devices on optimized PSC substrates exhibited enhanced sensitivity and responsivity to the incident radiation.« less

  1. Effect of UV-B light on total soluble phenolic contents of various whole and fresh-cut specialty crops

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: The effect of ultraviolet-B (UV-B) light treatment on total soluble phenolic contents (TSP) of various whole and fresh-cut specialty crops was evaluated. Whole fruits (strawberries, blueberries, grapes), vegetables (cherry tomatoes, white sweet corn) and root crops (sweet potatoes, colo...

  2. CHALLENGES OF COMBINED SEWER OVERFLOW DISINFECTION BY ULTRAVIOLET LIGHT IRRADIATION

    EPA Science Inventory

    This article examines the performance and effectiveness of ultraviolet (UV) light irradiation for disinfection of combined sewer overflow (CSO). Due to the negative impact of conventional water disinfectants on aquatic life, new agents (e.g., UV light) are being investigated for ...

  3. An Ultraviolet/Optical Atlas of Bright Galaxies

    NASA Astrophysics Data System (ADS)

    Marcum, Pamela M.; O'Connell, Robert W.; Fanelli, Michael N.; Cornett, Robert H.; Waller, William H.; Bohlin, Ralph C.; Neff, Susan G.; Roberts, Morton S.; Smith, Andrew M.; Cheng, K.-P.; Collins, Nicholas R.; Hennessy, Gregory S.; Hill, Jesse K.; Hill, Robert S.; Hintzen, Paul; Landsman, Wayne B.; Ohl, Raymond G.; Parise, Ronald A.; Smith, Eric P.; Freedman, Wendy L.; Kuchinski, Leslie E.; Madore, Barry; Angione, Ronald; Palma, Christopher; Talbert, Freddie; Stecher, Theodore P.

    2001-02-01

    We present wide-field imagery and photometry of 43 selected nearby galaxies of all morphological types at ultraviolet and optical wavelengths. The ultraviolet (UV) images, in two broad bands at 1500 and 2500 Å, were obtained using the Ultraviolet Imaging Telescope (UIT) during the Astro-1 Spacelab mission. The UV images have ~3" resolution, and the comparison sets of ground-based CCD images (in one or more of B, V, R, and Hα) have pixel scales and fields of view closely matching the UV frames. The atlas consists of multiband images and plots of UV/optical surface brightness and color profiles. Other associated parameters, such as integrated photometry and half-light radii, are tabulated. In an appendix, we discuss the sensitivity of different wavebands to a galaxy's star formation history in the form of ``history weighting functions'' and emphasize the importance of UV observations as probes of evolution during the past 10-1000 Myr. We find that UV galaxy morphologies are usually significantly different from visible band morphologies as a consequence of spatially inhomogeneous stellar populations. Differences are quite pronounced for systems in the middle range of Hubble types, Sa through Sc, but less so for ellipticals or late-type disks. Normal ellipticals and large spiral bulges are fainter and more compact in the UV. However, they typically exhibit smooth UV profiles with far-UV/optical color gradients which are larger than any at optical/IR wavelengths. The far-UV light in these cases is probably produced by extreme horizontal branch stars and their descendants in the dominant, low-mass, metal-rich population. The cool stars in the large bulges of Sa and Sb spirals fade in the UV while hot OB stars in their disks brighten, such that their Hubble classifications become significantly later. In the far-UV, early-type spirals often appear as peculiar, ringlike systems. In some spiral disks, UV-bright structures closely outline the spiral pattern; in others, the

  4. Studies on the resistance/reactivation of Giardia muris cysts and Cryptosporidium parvum oocysts exposed to medium-pressure ultraviolet radiation.

    PubMed

    Belosevic, M; Craik, S A; Stafford, J L; Neumann, N F; Kruithof, J; Smith, D W

    2001-10-16

    The ex vivo and in vivo reactivation of Giardia muris cysts and Cryptosporidium parvum oocysts after exposure to different doses of ultraviolet (UV) radiation was determined using animal infectivity. The infectivity of UV-treated parasites stored for 1-4 days (G. muris) or 1-17 days (C. parvum) at room temperature in the dark was similar to that of organisms administered immediately after UV treatment, indicating that the parasites did not reactivate ex vivo. In contrast, we observed in vivo reactivation of G. muris in three of seven independent animal infectivity experiments, when parasites were treated with relatively low doses of medium-pressure UV (<25 mJ/cm(2)). Our observations indicate that G. muris cysts and C. parvum oocysts exposed to medium-pressure UV doses of 60 mJ/cm(2) or higher did not exhibit resistance to and/or reactivation following treatment. This suggests that when appropriate doses of UV are used, significant and permanent inactivation of these parasites may be achieved.

  5. Temperature, but Not Available Energy, Affects the Expression of a Sexually Selected Ultraviolet (UV) Colour Trait in Male European Green Lizards

    PubMed Central

    Bajer, Katalin; Molnár, Orsolya; Török, János; Herczeg, Gábor

    2012-01-01

    Background Colour signals are widely used in intraspecific communication and often linked to individual fitness. The development of some pigment-based (e.g. carotenoids) colours is often environment-dependent and costly for the signaller, however, for structural colours (e.g. ultraviolet [UV]) this topic is poorly understood, especially in terrestrial ectothermic vertebrates. Methodology/Principal Findings In a factorial experiment, we studied how available energy and time at elevated body temperature affects the annual expression of the nuptial throat colour patch in male European green lizards (Lacerta viridis) after hibernation and before mating season. In this species, there is a female preference for males with high throat UV reflectance, and males with high UV reflectance are more likely to win fights. We found that (i) while food shortage decreased lizards' body condition, it did not affect colour development, and (ii) the available time for maintaining high body temperature affected the development of UV colour without affecting body condition or other colour traits. Conclusions/Significance Our results demonstrate that the expression of a sexually selected structural colour signal depends on the time at elevated body temperature affecting physiological performance but not on available energy gained from food per se in an ectothermic vertebrate. We suggest that the effect of high ambient temperature on UV colour in male L. viridis makes it an honest signal, because success in acquiring thermally favourable territories and/or effective behavioural thermoregulation can both be linked to individual quality. PMID:22479611

  6. Inactivation of microorganisms in apple juice using an ultraviolet silica-fiber optical device.

    PubMed

    Lu, Gang; Li, Chaolin; Liu, Peng; Cui, Haibo; Xia, Yong; Wang, Jianfeng

    2010-09-02

    Most juices are opaque to ultraviolet (UV) due to the high-suspended solids in them and therefore the conventional UV treatment, generally used for water treatment, cannot be used for treating juices. In order to achieve a high germicidal efficiency of UV processing, an optical device with silica optical fibers for UV light delivery was designed. Its suitability for application could be shown in experiments with Escherichia coli, Lactobacillus brevis, Saccharomyces cerevisiae and naturally contaminating microorganisms as test microorganisms. The thin-film thickness for treating apple juice was optimized. At 2.0-mm film thickness, E. coli and L. brevis were reduced by up to 6 log orders with the UV dose of 23.7 m J/cm(2) and the optical-fiber distribution density of 15 fibers/cm(2), while only about 4-log reduction of S. cerevisiae was achieved under the same condition. Naturally contaminating lactic acid bacteria, Enterobacteriaceae and yeasts and moulds in freshly extracted apple juice were reduced to below 10 CFU/ml. These results indicate that this optical device could be used to improve microbial safety and extend shelf-life of apple juice. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  7. Establishing a ultraviolet radiation observational network and enhancing the study on ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Bai, Jianhui; Wang, Gengchen

    2003-09-01

    On the basis of analyzing observational data on solar radiation, meteorological parameters, and total ozone amount for the period of January 1990 to December 1991 in the Beijing area, an empirical calculation method for ultraviolet radiation (UV) in clear sky is obtained. The results show that the calculated values agree well with the observed, with maximum relative bias of 6.2% and mean relative bias for 24 months of 1.9%. Good results are also obtained when this method is applied in Guangzhou and Mohe districts. The long-term variation of UV radiation in clear sky over the Beijing area from 1979 to 1998 is calculated, and the UV variation trends and causes are discussed: direct and indirect UV energy absorption by increasing pollutants in the troposphere may have caused the UV decrease in clear sky in the last 20 years. With the enhancement of people’s quality of life and awareness of health, it will be valuable and practical to provid UV forecasts for typical cities and rural areas. So, we should develop and enhance UV study in systematic monitoring, forecasting, and developing a good and feasible method for UV radiation reporting in China, especially for big cities.

  8. Ultraviolet reflectance properties of asteroids

    NASA Astrophysics Data System (ADS)

    Butterworth, P. S.; Meadows, A. J.

    1985-05-01

    An analysis of the UV spectra of 28 asteroids obtained with the Internal Ultraviolet Explorer (IUE) satellite is presented. The spectra lie within the range 2100-3200 A. The results are examined in terms of both asteroid classification and of current ideas concerning the surface mineralogy of asteroids. For all the asteroids examined, UV reflectivity declines approximately linearly toward shorter wavelengths. In general, the same taxonomic groups are seen in the UV as in the visible and IR, although there is some evidence for asteroids with anomalous UV properties and for UV subclasses within the S class. No mineral absorption features are reported of strength similar to the strongest features in the visible and IR regions, but a number of shallow absorptions do occur and may provide valuable information on the surface composition of many asteroids.

  9. Evaluation of a teflon based ultraviolet light system on the disinfection of water in a textile air washer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, J.E.; Whisnant, R.B.

    The report provides an in-depth evaluation of an ultraviolet (UV) disinfection unit as applied to the treatment of cooling water in a textile air washer system. The UV unit tests used a teflon tube to transport the aquatic phase. The unit reduced microbial populations and maintained an average level of 10,000 Colony formed unites/mL for the 6-month testing period, without the addition of biocides. No cleaning or other maintenance was required of the wetted surfaces during the testing period. Slime deposits observed on walls of the air washer during chemical treatment were also eliminated. The UV unit can be utilizedmore » on both cooling towers and air washers without extensive installation.« less

  10. Aluminum nanostructures for ultraviolet plasmonics

    NASA Astrophysics Data System (ADS)

    Martin, Jérôme; Khlopin, Dmitry; Zhang, Feifei; Schuermans, Silvère; Proust, Julien; Maurer, Thomas; Gérard, Davy; Plain, Jérôme

    2017-08-01

    An electromagnetic field is able to produce a collective oscillation of free electrons at a metal surface. This allows light to be concentrated in volumes smaller than its wavelength. The resulting waves, called surface plasmons can be applied in various technological applications such as ultra-sensitive sensing, Surface Enhanced Raman Spectroscopy, or metal-enhanced fluorescence, to name a few. For several decades plasmonics has been almost exclusively studied in the visible region by using nanoparticles made of gold or silver as these noble metals support plasmonic resonances in the visible and near-infrared range. Nevertheless, emerging applications will require the extension of nano-plasmonics toward higher energies, in the ultraviolet range. Aluminum is one of the most appealing metal for pushing plasmonics up to ultraviolet energies. The subsequent applications in the field of nano-optics are various. This metal is therefore a highly promising material for commercial applications in the field of ultraviolet nano-optics. As a consequence, aluminum (or ultraviolet, UV) plasmonics has emerged quite recently. Aluminium plasmonics has been demonstrated efficient for numerous potential applications including non-linear optics, enhanced fluorescence, UV-Surface Enhanced Raman Spectroscopy, optoelectronics, plasmonic assisted solid-state lasing, photocatalysis, structural colors and data storage. In this article, different preparation methods developed in the laboratory to obtain aluminum nanostructures with different geometries are presented. Their optical and morphological characterizations of the nanostructures are given and some proof of principle applications such as fluorescence enhancement are discussed.

  11. Near-simultaneous ultraviolet and optical spectrophotometry of T Tauri stars

    NASA Technical Reports Server (NTRS)

    Goodrich, Robert W.; Herbig, G. H.

    1986-01-01

    A set of near-simultaneous ultraviolet and optical spectra and UBVR(J)I(J) photometry of five T Tauri stars has been analyzed for the shape of the energy distribution shortward of 3000 A. The far-ultraviolet continua of these stars are very much stronger than the level of light scattered from longer wavelengths in the IUE spectrograph. The results, expressed as two-color plots, show that the UV colors of T Tauri stars differ significantly from those expected from their optical spectral types. Although these particular K-type T Tauri stars are not extreme members of the class, they have the UV colors of A stars. The spectral shape of this UV excess is approximately that expected from published chromospheric models of T Tauri stars.

  12. LOW PRESSURE ULTRAVIOLET STUDIES FOR INACTIVATION OF GIARDIA MURIS CYSTS

    EPA Science Inventory

    This research was initiated to confirm and expand the current database for the inactivation of Giardia spp. using ultraviolet (UV) radiation. Initially, previous research that used in vitro excystation as the indicator for UV effectiveness was confirmed. Later, the in vitro excys...

  13. Uric acid detection using uv-vis spectrometer

    NASA Astrophysics Data System (ADS)

    Norazmi, N.; Rasad, Z. R. Abdul; Mohamad, M.; Manap, H.

    2017-10-01

    The aim of this research is to detect uric acid (UA) concentration using Ultraviolet-Visible (UV-Vis) spectrometer in the Ultraviolet (UV) region. Absorption technique was proposed to detect different uric acid concentrations and its UV absorption wavelength. Current practices commonly take a lot of times or require complicated structures for the detection process. By this proposed spectroscopic technique, every concentration can be detected and interpreted into an absorbance value at a constant wavelength peak in the UV region. This is due to the chemical characteristics belong to the uric acid since it has a particular absorption cross-section, σ which can be calculated using Beer’s Lambert law formula. The detection performance was displayed using Spectrasuite sofware. It showed fast time response about 3 seconds. The experiment proved that the concentrations of uric acid were successfully detected using UV-Vis spectrometer at a constant absorption UV wavelength, 294.46 nm in a low time response. Even by an artificial sample of uric acid, it successfully displayed a close value as the ones reported with the use of the medical sample. It is applicable in the medical field and can be implemented in the future for earlier detection of abnormal concentration of uric acid.

  14. Structural characterization of native high-methoxylated pectin using nuclear magnetic resonance spectroscopy and ultraviolet matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Comparative use of 2,5-dihydroxybenzoic acid and nor-harmane as UV-MALDI matrices.

    PubMed

    Monge, María Eugenia; Negri, R Martín; Kolender, Adriana A; Erra-Balsells, Rosa

    2007-01-01

    The successful analysis by ultraviolet matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (UV-MALDI-TOF MS) of native and hydrolyzed high-methoxylated pectin samples is described. In order to find the optimal conditions for UV-MALDI-TOF MS analysis several experimental variables were studied such as: different UV-MALDI matrices (nor-harmane, 2,5-dihydroxybenzoic acid), sample preparation methods (mixture, sandwich), inorganic salt addition (doping salts, NaCl, KCl, NH(4)Cl), ion mode (positive, negative), linear and reflectron mode, etc. nor-Harmane has never been used as a UV-MALDI matrix for the analysis of pectins but its use avoids pre-treatment of the sample, such as an enzymatic digestion or an acid hydrolysis, and there is no need to add salts, making the analysis easier and faster. This study suggested an alternative way of analyzing native high-methoxylated pectins, with UV-MALDI-TOF MS, by using nor-harmane as the matrix in negative ion mode. The analysis by (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopy of the native and hydrolyzed pectin is also briefly described. Copyright (c) 2007 John Wiley & Sons, Ltd.

  15. Detection of ultraviolet radiation using tissue equivalent radiochromic gel materials

    NASA Astrophysics Data System (ADS)

    Bero, M. A.; Abukassem, I.

    2009-05-01

    Ferrous Xylenol-orange Gelatin gel (FXG) is known to be sensitive to ionising radiation such as γ and X-rays. The effect of ionising radiation is to produce an increase in the absorption over a wide region of the visible spectrum, which is proportional to the absorbed dose. This study demonstrates that FXG gel is sensitive to ultraviolet radiation and therefore it could functions as UV detector. Short exposure to UV radiation produces linear increase in absorption measured at 550nm, however high doses of UV cause the ion indicator colour to fad away in a manner proportional to the incident UV energy. Light absorbance increase at the rate of 1.1% per minute of irradiation was monitored. The exposure level at which the detector has linear response is comparable to the natural summer UV radiation. Evaluating the UV ability to pass through tissue equivalent gel materials shows that most of the UV gets absorbed in the first 5mm of the gel materials, which demonstrate the damaging effects of this radiation type on human skin and eyes. It was concluded that FXG gel dosimeter has the potential to offer a simple, passive ultraviolet radiation detector with sensitivity suitable to measure and visualises the natural sunlight UV exposure directly by watching the materials colour changes.

  16. UV Filters and Toursim: Their Impact on the Environment

    EPA Science Inventory

    Ultraviolet (UV) filters are widely used in cosmetics, sunscreens, and plastics to block UV radiation from the sun. Studies show that some sunscreens demonstrate estrogenicity and multiple hormonal activities in vitro. Because of the high consumption volume and high lipophilicity...

  17. Ultraviolet radiation as an ant repellent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorvilson, H.G.; Russell, S.A.; Green, B.

    1996-12-31

    In an effort to repel red imported fire ants (RIFA) from electrical devices, such as transformers, ultraviolet (UV) light was tested. Initial tests determined if RIFA`s tolerate a UV-irradiated environment when given a choice between UV-irradiated and non-irradiated. All replications in this test indicated that RIFA`s are intolerant of UV-irradiation and sought to escape it. RIFA`s moved to shaded environments and transported their brood out its well. A second test sought to determine if long-term UV-irradiation of the entire colonies cause increased RIFA mortality. Queenright colonies were exposed to UV irradiation of 254nm constantly for 115 days and colonies hadmore » a higher mortality rate than did a control colony. RIFA`s attempted to escape UV light and had increased rate when exposed to UV (254nm), but a practical application of this technique may be detrimental to insulation on electrical wiring.« less

  18. Durable Corrosion and Ultraviolet-Resistant Silver Mirror

    DOEpatents

    Jorgensen, G. J.; Gee, R.

    2006-01-24

    A corrosion and ultra violet-resistant silver mirror for use in solar reflectors; the silver layer having a film-forming protective polymer bonded thereto, and a protective shield overlay comprising a transparent multipolymer film that incorporates a UV absorber. The corrosion and ultraviolet resistant silver mirror retains spectral hemispherical reflectance and high optical clarity throughout the UV and visible spectrum when used in solar reflectors.

  19. Autonomous portable solar ultraviolet spectroradiometer (APSUS) - a new CCD spectrometer system for localized, real-time solar ultraviolet (280-400 nm) radiation measurement.

    PubMed

    Hooke, Rebecca; Pearson, Andy; O'Hagan, John

    2014-01-01

    Terrestrial solar ultraviolet (UV) radiation has significant implications for human health and increasing levels are a key concern regarding the impact of climate change. Monitoring solar UV radiation at the earth's surface is therefore of increasing importance. A new prototype portable CCD (charge-coupled device) spectrometer-based system has been developed that monitors UV radiation (280-400 nm) levels at the earth's surface. It has the ability to deliver this information to the public in real time. Since the instrument can operate autonomously, it is called the Autonomous Portable Solar Ultraviolet Spectroradiometer (APSUS). This instrument incorporates an Ocean Optics QE65000 spectrometer which is contained within a robust environmental housing. The APSUS system can gather reliable solar UV spectral data from approximately April to October inclusive (depending on ambient temperature) in the UK. In this study the new APSUS unit and APSUS system are presented. Example solar UV spectra and diurnal UV Index values as measured by the APSUS system in London and Weymouth in the UK in summer 2012 are shown. © 2014 Crown copyright. Photochemistry and Photobiology © 2014 The American Society of Photobiology. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland and Public Health England.

  20. Comparative effectiveness of membrane bioreactors, conventional secondary treatment, and chlorine and UV disinfection to remove microorganisms from municipal wastewaters.

    PubMed

    Francy, Donna S; Stelzer, Erin A; Bushon, Rebecca N; Brady, Amie M G; Williston, Ashley G; Riddell, Kimberly R; Borchardt, Mark A; Spencer, Susan K; Gellner, Terry M

    2012-09-01

    Log removals of bacterial indicators, coliphage, and enteric viruses were studied in three membrane bioreactor (MBR) activated-sludge and two conventional secondary activated-sludge municipal wastewater treatment plants during three recreational seasons (May-Oct.) when disinfection of effluents is required. In total, 73 regular samples were collected from key locations throughout treatment processes: post-preliminary, post-MBR, post-secondary, post-tertiary, and post-disinfection (UV or chlorine). Out of 19 post-preliminary samples, adenovirus by quantitative polymerase chain reaction (qPCR) was detected in all 19, enterovirus by quantitative reverse transcription polymerase chain reaction (qRT-PCR) was detected in 15, and norovirus GI by qRT-PCR was detected in 11. Norovirus GII and Hepatitis A virus were not detected in any samples, and rotavirus was detected in one sample but could not be quantified. Although culturable viruses were found in 12 out of 19 post-preliminary samples, they were not detected in any post-secondary, post-MBR, post-ultraviolet, or post-chlorine samples. Median log removals for all organisms were higher for MBR secondary treatment (3.02 to >6.73) than for conventional secondary (1.53-4.19) treatment. Ultraviolet disinfection after MBR treatment provided little additional log removal of any organism except for somatic coliphage (>2.18), whereas ultraviolet or chlorine disinfection after conventional secondary treatment provided significant log removals (above the analytical variability) of all bacterial indicators (1.18-3.89) and somatic and F-specific coliphage (0.71 and >2.98). Median log removals of adenovirus across disinfection were low in both MBR and conventional secondary plants (no removal detected and 0.24), and few removals of individual samples were near or above the analytical variability of 1.2 log genomic copies per liter. Based on qualitative examinations of plots showing reductions of organisms throughout treatment

  1. Comparative effectiveness of membrane bioreactors, conventional secondary treatment, and chlorine and UV disinfection to remove microorganisms from municipal wastewaters

    USGS Publications Warehouse

    Francy, Donna S.; Erin, A. Stelzer; Bushon, Rebecca N.; Brady, Amie M.G.; Williston, Ashley G.; Riddell, Kimberly R.; Borchardt, Mark A.; Spencer, Susan K.; Gellner, Terry M.

    2012-01-01

    Log removals of bacterial indicators, coliphage, and enteric viruses were studied in three membrane bioreactor (MBR) activated-sludge and two conventional secondary activated-sludge municipal wastewater treatment plants during three recreational seasons (May-Oct.) when disinfection of effluents is required. In total, 73 regular samples were collected from key locations throughout treatment processes: post-preliminary, post-MBR, post-secondary, post-tertiary, and post-disinfection (UV or chlorine). Out of 19 post-preliminary samples, adenovirus by quantitative polymerase chain reaction (qPCR) was detected in all 19, enterovirus by quantitative reverse transcription polymerase chain reaction (qRT-PCR) was detected in 15, and norovirus GI by qRT-PCR was detected in 11. Norovirus GII and Hepatitis A virus were not detected in any samples, and rotavirus was detected in one sample but could not be quantified. Although culturable viruses were found in 12 out of 19 post-preliminary samples, they were not detected in any post-secondary, post-MBR, post-ultraviolet, or post-chlorine samples. Median log removals for all organisms were higher for MBR secondary treatment (3.02 to >6.73) than for conventional secondary (1.53-4.19) treatment. Ultraviolet disinfection after MBR treatment provided little additional log removal of any organism except for somatic coliphage (>2.18), whereas ultraviolet or chlorine disinfection after conventional secondary treatment provided significant log removals (above the analytical variability) of all bacterial indicators (1.18-3.89) and somatic and F-specific coliphage (0.71 and >2.98). Median log removals of adenovirus across disinfection were low in both MBR and conventional secondary plants (no removal detected and 0.24), and few removals of individual samples were near or above the analytical variability of 1.2 log genomic copies per liter. Based on qualitative examinations of plots showing reductions of organisms throughout treatment

  2. New UV-source catalogs, UV spectral database, UV variables and science tools from the GALEX surveys

    NASA Astrophysics Data System (ADS)

    Bianchi, Luciana; de la Vega, Alexander; Shiao, Bernard; Bohlin, Ralph

    2018-03-01

    We present a new, expanded and improved catalog of Ultraviolet (UV) sources from the GALEX All-Sky Imaging survey: GUVcat_AIS (Bianchi et al. in Astrophys. J. Suppl. Ser. 230:24, 2017). The catalog includes 83 million unique sources (duplicate measurements and rim artifacts are removed) measured in far-UV and near-UV. With respect to previous versions (Bianchi et al. in Mon. Not. R. Astron. Soc. 411:2770 2011a, Adv. Space Res. 53:900-991, 2014), GUVcat_AIS covers a slightly larger area, 24,790 square degrees, and includes critical corrections and improvements, as well as new tags, in particular to identify sources in the footprint of extended objects, where pipeline source detection may fail and custom-photometry may be necessary. The UV unique-source catalog facilitates studies of density of sources, and matching of the UV samples with databases at other wavelengths. We also present first results from two ongoing projects, addressing respectively UV variability searches on time scales from seconds to years by mining the GALEX photon archive, and the construction of a database of ˜120,000 GALEX UV spectra (range ˜1300-3000 Å), including quality and calibration assessment and classification of the grism, hence serendipitous, spectral sources.

  3. LOW PRESSURE ULTRAVIOLET STUDIES FOR INACTIVIATION OF GIARDIA MURIS CYSTS

    EPA Science Inventory

    This research was initiated to confirm and expand the current database for the inactiviation of Giardia spp. using ultraviolet (UV) radiation. The path taken was to confirm earlier UV research that used excystation as the indication of viability. In this study, an in vitro excyst...

  4. Characteristics of ultraviolet light and radicals formed by pulsed discharge in water

    NASA Astrophysics Data System (ADS)

    Sun, Bing; Kunitomo, Shinta; Igarashi, Chiaki

    2006-09-01

    In this investigation, the ultraviolet light characteristics and OH radical properties produced by a pulsed discharge in water were studied. For the plate-rod reactor, it was found that the ultraviolet light energy has a 3.2% total energy injected into the reactor. The ultraviolet light changed with the peak voltage and electrode distance. UV characteristics in tap water and the distilled water are given. The intensity of the OH radicals was the highest for the 40 mm electrode distance reactor. In addition, the properties of hydrogen peroxide and ozone were also studied under arc discharge conditions. It was found that the OH radicals were in the ground state and the excited state when a pulsed arc discharge was used. The ozone was produced by the arc discharge even if the oxygen gas is not bubbled into the reactor. The ozone concentration produces a maximum value with treatment time.

  5. Evaluation of tourists' UV exposure in Paris.

    PubMed

    Mahé, E; Corrêa, M P; Godin-Beekmann, S; Haeffelin, M; Jégou, F; Saiag, P; Beauchet, A

    2013-03-01

    Ultraviolet (UV) exposure is one of the most important risk factor for skin cancers. If UV hazard has been evaluated in tropical countries or in some population - children, outdoor activities - little information is available about UV hazard in high latitude towns like Paris, considered as the most 'charismatic city' in the world. To evaluate UV exposure in Paris in spring, in sun and shade, in real life conditions. We evaluated erythemal UV exposure, during four sunny days in May-June in eight Paris touristic sites during peak hours (2 days), and during two walks in touristic downtown of Paris. Measures were performed in sun and shade. UV radiation exposure was evaluated with UV index performed with a 'Solarmeter ultraviolet index (UVI)' and UV dose with 'standard erythema dose' (SED) and 'minimal erythema dose' (MED) calculations. Despite 'average' UVI in sunny conditions, a 4-h sun exposure reaches 13-20 SED and 3-10 MED according to phototype. Clouds were inefficient to protect against UV. Shade of places reduces moderately UVI (50-60%) in forecourts. Exposure during 1-h walk reach at least one MED in real life conditions for skin phototypes I-IV. UV risk for tourist is quite high in spring in Paris. UVI remains high despite high cloud fraction. Shade reduces UVI, but UV protection factor is only 2-3 in large places such as Place Notre Dame and Place Charles de Gaulle. So sun protection campaigns should be proposed, and sun protective strategies could be integrated in urban planning. © 2012 The Authors. Journal of the European Academy of Dermatology and Venereology © 2012 European Academy of Dermatology and Venereology.

  6. Physical and biological characterization of a seawater ultraviolet radiation sterilizer

    NASA Astrophysics Data System (ADS)

    Torrentera, Laura; Uribe, Roberto M.; Rodríguez, Romana R.; Carrillo, Ricardo E.

    1994-03-01

    The physical and biological characterization of a seawater ultraviolet (UV) sterilizer is described. The physical characterization was performed using radiochromic dye films by evaluating the uniformity of the radiant exposure along each lamp, the effect of the radiation from one lamp on the array of adjacent lamps, and by measuring the UV radiation absorption of seawater with respect to distilled water. The biological characterization was performed by measuring the amount of reduction of bacteria in stored seawater after different filtration and UV treatments. Among the filtration methods tested, differential filtration (5, 3 and 0.45 μm filters connected in series) caused the highest bacterial reduction factor of 60%. UV radiant exposures of 212, 424, 636 and 848 J m -2 yielded bacteria reduction factors of 99.86, 99.969, 99.997 and 100%, respectively, for populations of Vibrio and Pseudomonas bacteria present in stored seawater. It is concluded that the system is useful for water disinfection when 1, 2 or 3 lamps are on; when 4 lamps are used the treated water becomes sterile.

  7. Measurement of the solar ultraviolet radiation at ground level in Bangi, Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aljawi, Ohoud; Gopir, Geri; Duay, Abdul Basit

    2015-04-24

    Understanding the amount of ultraviolet (UV) radiation received by human, plant, and animal organisms near the earth’s surface is important to a wide range of fields such as cancer research, agriculture and forestry. The solar ultraviolet spectral irradiance at ground level was measured using the Avantes spectrometer for the period of January to March 2014 at Bangi (2°55´N, 101°46´E, 50 m above sea level) in Malaysia. These data were used to estimate the diurnal variation of UV irradiance (300 – 400 nm). The maximum irradiance of UV radiation was 45 W m{sup −2} on horizontal surface. The maximum irradiance ofmore » UV received in the local noon time, and the minimum values of UV irradiance was received in the local morning time. It is found a bigger value of UV radiation was observed on clear sky in January. The estimation of daily flux average of UV irradiance was (921± 91) kJ m{sup −2}.« less

  8. The effects of ultraviolet radiation on photosynthetic performance, growth and sunscreen compounds in aeroterrestrial biofilm algae isolated from building facades.

    PubMed

    Karsten, U; Lembcke, S; Schumann, R

    2007-03-01

    The effects of artificial ultraviolet radiation [UVR; 8 W m(-2) ultraviolet-A (UVA), 0.4 W m(-2) ultraviolet-B (UVB)] on photosynthetic performance, growth and the capability to synthesise mycosporine-like amino acids (MAAs) was investigated in the aeroterrestrial green algae Stichococcus sp. and Chlorella luteoviridis forming biofilms on building facades, and compared with the responses of two green algae, from soil (Myrmecia incisa) and brackish water (Desmodesmus subspicatus). All species exhibited decreasing quantum efficiency (Fv/Fm) after 1-3 days exposure to UVR. After 8-12 days treatment, however, all aeroterrestrial isolates exhibited full recovery under UVA and UVA/B. In contrast, D. subspicatus showed only 80% recovery after treatment with UVB. While Stichococcus sp. and C. luteoviridis exhibited a broad tolerance in growth under all radiation conditions tested, M. incisa showed a significant decrease in growth rate after exposure to UVA and UVA/B. Similarly D. subspicatus grew with a reduced rate under UVA, but UVA/B led to full inhibition. Using HPLC, an UV-absorbing MAA (324 nm-MAA) was identified in Stichococcus sp. and C. luteoviridis. While M. incisa contained a specific 322 nm-MAA, D. subspicatus lacked any trace of such compounds. UV-exposure experiments indicated that all MAA-containing species are capable of synthesizing and accumulating these compounds, thus supporting their function as an UV-sunscreen. All data well explain the conspicuous ecological success of aeroterrestrial green algae in biofilms on facades. Biosynthesis and accumulation of MAAs under UVR seem to result in a reduced UV-sensitivity of growth and photosynthesis, which consequently may enhance survival in the environmentally harsh habitat.

  9. High Throughput, High Yield Fabrication of High Quantum Efficiency Back-Illuminated Photon Counting, Far UV, UV, and Visible Detector Arrays

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh; Hoenk, M. E.; Carver, A. G.; Jones, T. J.; Greer, F.; Hamden, E.; Goodsall, T.

    2013-01-01

    In this paper we discuss the high throughput end-to-end post fabrication processing of high performance delta-doped and superlattice-doped silicon imagers for UV, visible, and NIR applications. As an example, we present our results on far ultraviolet and ultraviolet quantum efficiency (QE) in a photon counting, detector array. We have improved the QE by nearly an order of magnitude over microchannel plates (MCPs) that are the state-of-the-art UV detectors for many NASA space missions as well as defense applications. These achievements are made possible by precision interface band engineering of Molecular Beam Epitaxy (MBE) and Atomic Layer Deposition (ALD).

  10. Effects of ultraviolet-B exposure of Arabidopsis thaliana on herbivory by two crucifer-feeding insects (Lepidoptera)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant-Petersson, J.; Renwick, J.A.A.

    1996-02-01

    Larvae of Pieris rapae (L.) (Lepidoptera: Pieridae) and Trichoplusia ni (Huebner) (Lepidoptera: Noctuidae) were fed foliage from Arabidopsis thaliana (L.) Heynh. plants that had received a high dose of ultraviolet-B (UV-B) or from control plants. Treatments were compared using the Student independent t-test. P. rapae larvae consumed less of the foliage exposed to UV-B than control foliage. This difference as significant in older but not younger larvae, and the older P. rapae larvae fed foliage exposed to UV-B weighed significantly less. For T. ni, however, consumption and larval weights were approximately equal for UV-exposed and control foliage. No significant differencesmore » in growth rates per unit consumption on UV-exposed versus control foliage were found for either species. Chemical analysis showed that flavonoid levels increased in response to UV-B. Results suggested that UV-inducible flavonoids may act as feeding deterrents to P. rapae but not to T. ni. 56 refs., 6 figs.« less

  11. Transparent ultraviolet photovoltaic cells.

    PubMed

    Yang, Xun; Shan, Chong-Xin; Lu, Ying-Jie; Xie, Xiu-Hua; Li, Bing-Hui; Wang, Shuang-Peng; Jiang, Ming-Ming; Shen, De-Zhen

    2016-02-15

    Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future.

  12. Microgap ultra-violet detector

    DOEpatents

    Wuest, C.R.; Bionta, R.M.

    1994-09-20

    A microgap ultra-violet detector of photons with wavelengths less than 400 run (4,000 Angstroms) which comprises an anode and a cathode separated by a gas-filled gap and having an electric field placed across the gap is disclosed. Either the anode or the cathode is semi-transparent to UV light. Upon a UV photon striking the cathode an electron is expelled and accelerated across the gap by the electric field causing interactions with other electrons to create an electron avalanche which contacts the anode. The electron avalanche is detected and converted to an output pulse. 2 figs.

  13. ULTRAVIOLET DISINFECTION OF A SECONDARY EFFLUENT: MEASUREMENT OF DOSE AND EFFECTS OF FILTRATION

    EPA Science Inventory

    Ultraviolet (UV) disinfection of wastewater secondary effluent was investigated in a two-phase study to develop methods for measuring UV dose and to determine the effects of filtration on UV disinfection. The first phase of this study involved a pilot plant study comparing filtra...

  14. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids

    NASA Astrophysics Data System (ADS)

    Jablonowski, H.; Bussiahn, R.; Hammer, M. U.; Weltmann, K.-D.; von Woedtke, Th.; Reuter, S.

    2015-12-01

    Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100-400 nm) and, in particular, vacuum ultraviolet (VUV, 10-200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH2O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stable reactive oxygen species, hydrogen peroxide (H2O2) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O2•-) and hydroxyl radicals (•OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.

  15. Effect of grape bunch sunlight exposure and UV radiation on phenolics and volatile composition of Vitis vinifera L. cv. Pinot noir wine.

    PubMed

    Song, Jianqiang; Smart, Richard; Wang, Hua; Dambergs, Bob; Sparrow, Angela; Qian, Michael C

    2015-04-15

    The effect of canopy leaf removal and ultraviolet (UV) on Pinot noir grape and wine composition was investigated in this study. Limited basal leaf removal in the fruit zone was conducted, compared to shaded bunches. The UV exposure was controlled using polycarbonate screens to block UV radiation, and acrylic screens to pass the UV. The results showed that bunch sunlight and UV exposure significantly increased the Brix and pH in the grape juice, and increased substantially wine colour density, anthocyanins, total pigment, total phenolics and tannin content. Bunch sunlight and UV exposure affected terpene alcohols, C13-norisprenoids and other volatile composition of the wine differently. Sunlight exposure and UV resulted in increase of nerol, geraniol and citronellol but not linalool. Sunlight exposure slightly increased the concentration of β-ionone, but the increase was not statistically significant for UV treatment. Neither sunlight nor UV treatment showed any impact on the concentration of β-damascenone. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Combined effects of Lanthanum(III) and elevated Ultraviolet-B radiation on root nitrogen nutrient in soybean seedlings.

    PubMed

    Huang, Guangrong; Wang, Lihong; Sun, Zhaoguo; Li, Xiaodong; Zhou, Qing; Huang, Xiaohua

    2015-02-01

    Rare earth element pollution and elevated ultraviolet-B (UV-B) radiation occur simultaneously in some regions, but the combined effects of these two factors on plants have not attracted enough attention. Nitrogen nutrient is vital to plant growth. In this study, the combined effects of lanthanum(III) and elevated UV-B radiation on nitrate reduction and ammonia assimilation in soybean (Glycine max L.) roots were investigated. Treatment with 0.08 mmol L(-1) La(III) did not change the effects of elevated UV-B radiation on nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), nitrate, ammonium, amino acids, or soluble protein in the roots. Treatment with 0.24 mmol L(-1) La(III) and elevated UV-B radiation synergistically decreased the NR, NiR, GS, and GOGAT activities as well as the nitrate, amino acid, and soluble protein levels, except for the GDH activity and ammonium content. Combined treatment with 1.20 mmol L(-1) La(III) and elevated UV-B radiation produced severely deleterious effects on all test indices, and these effects were stronger than those induced by La(III) or elevated UV-B radiation treatment alone. Following the withdrawal of La(III) and elevated UV-B radiation, all test indices for the combined treatments with 0.08/0.24 mmol L(-1) La(III) and elevated UV-B radiation recovered to a certain extent, but they could not recover for treatments with 1.20 mmol L(-1) La(III) and elevated UV-B radiation. In summary, combined treatment with La(III) and elevated UV-B radiation seriously affected nitrogen nutrition in soybean roots through the inhibition of nitrate reduction and ammonia assimilation.

  17. Assessment of the impact of increased solar ultraviolet radiation upon marine ecosystems

    NASA Technical Reports Server (NTRS)

    Worrest, R. C.; Vandyke, H.

    1978-01-01

    Reduction of the earth's ozone layer, with a resultant increase in transmission of solar ultraviolet radiation in the 290 to 320nm waveband (UV-B), via space shuttle operations through the stratosphere is considered. It is shown that simulated solar ultraviolet radiation can, under experimental conditions, detrimentally affect the marine organisms that form the base of the food web of oceanic and estuarine ecosystems. Whether a small increase in biologically harmful ultraviolet radiation might overwhelm these mechanisms and produce changes that will have damaging consequences to the biosphere is discussed. The potential for irreversible damage to the productivity, structure and/or functioning of a model estuarine ecosystem by increased UV-B radiation and whether these ecosystems are highly stable or amenable to adaptive change is studied. Data are provided to assess the potential impact upon marine ecosystems if space shuttle operations contribute to a reduction of the stratospheric ozone layer and the sensitivity of key community components to increased UV-B radiation is examined.

  18. UV-Assisted Photochemical Synthesis of Reduced Graphene Oxide/ZnO Nanowires Composite for Photoresponse Enhancement in UV Photodetectors

    PubMed Central

    Zhou, Peng; Wang, Na; Ma, Yang

    2018-01-01

    The weak photon absorption and high recombination rate of electron-hole pairs in disordered zinc oxide nanowires (ZNWs) limit its application in UV photodetection. This limitation can be overcome by introducing graphene sheets to the ZNWs. Herein we report a high-performance photodetector based on one-dimensional (1D) wide band-gap semiconductor disordered ZNWs composited with reduced graphene oxide (RGO) for ultraviolet (UV) photoresponse enhancement. The RGO/ZNWs composites have been successfully synthetized through UV-assisted photochemical reduction of GO in ZNWs suspension. The material characterizations in morphology, Raman scattering, and Ultraviolet-visible light absorption verified the formation of graphene sheets attached in ZNWs network and the enhancement of UV absorption due to the introduction of graphene. In comparison with photodetectors based on pure ZNWs, the photodetectors based on RGO/ZNWs composite exhibit enhanced photoresponse with photocurrent density of 5.87 mA·cm−2, on/off current ratio of 3.01 × 104, and responsivity of 1.83 A·W−1 when a UV irradiation of 3.26 mW·cm−2 and 1.0 V bias were used. Theory analysis is also presented to get insight into the inherent mechanisms of separation and transportation of photo-excited carriers in RGO/ZNWs composite. PMID:29303994

  19. UV-Assisted Photochemical Synthesis of Reduced Graphene Oxide/ZnO Nanowires Composite for Photoresponse Enhancement in UV Photodetectors.

    PubMed

    Chen, Changsong; Zhou, Peng; Wang, Na; Ma, Yang; San, Haisheng

    2018-01-05

    The weak photon absorption and high recombination rate of electron-hole pairs in disordered zinc oxide nanowires (ZNWs) limit its application in UV photodetection. This limitation can be overcome by introducing graphene sheets to the ZNWs. Herein we report a high-performance photodetector based on one-dimensional (1D) wide band-gap semiconductor disordered ZNWs composited with reduced graphene oxide (RGO) for ultraviolet (UV) photoresponse enhancement. The RGO/ZNWs composites have been successfully synthetized through UV-assisted photochemical reduction of GO in ZNWs suspension. The material characterizations in morphology, Raman scattering, and Ultraviolet-visible light absorption verified the formation of graphene sheets attached in ZNWs network and the enhancement of UV absorption due to the introduction of graphene. In comparison with photodetectors based on pure ZNWs, the photodetectors based on RGO/ZNWs composite exhibit enhanced photoresponse with photocurrent density of 5.87 mA·cm -2 , on/off current ratio of 3.01 × 10⁴, and responsivity of 1.83 A·W -1 when a UV irradiation of 3.26 mW·cm -2 and 1.0 V bias were used. Theory analysis is also presented to get insight into the inherent mechanisms of separation and transportation of photo-excited carriers in RGO/ZNWs composite.

  20. UV RADIATION EFFECTS ON MICROBES AND MICROBIAL PROCESSES

    EPA Science Inventory

    The ultraviolet (UV) region of solar radiation is defined as wavelengths in the range of 200 to 400 nm. In contrast to visible radiation (400 - 800 nm), which has a well-defined role as the energy source for most of the Earth's primary production, the effects of UV radiation on b...

  1. Treatment of Arctic wastewater by chemical coagulation, UV and peracetic acid disinfection.

    PubMed

    Chhetri, Ravi Kumar; Klupsch, Ewa; Andersen, Henrik Rasmus; Jensen, Pernille Erland

    2017-02-16

    Conventional wastewater treatment is challenging in the Arctic region due to the cold climate and scattered population. Thus, no wastewater treatment plant exists in Greenland, and raw wastewater is discharged directly to nearby waterbodies without treatment. We investigated the efficiency of physicochemical wastewater treatment, in Kangerlussuaq, Greenland. Raw wastewater from Kangerlussuaq was treated by chemical coagulation and UV disinfection. By applying 7.5 mg Al/L polyaluminium chloride (PAX XL100), 73% of turbidity and 28% phosphate was removed from raw wastewater. E. coli and Enterococcus were removed by 4 and 2.5 log, respectively, when UV irradiation of 0.70 kWh/m 3 was applied to coagulated wastewater. Furthermore, coagulated raw wastewater in Denmark, which has a chemical quality similar to Greenlandic wastewater, was disinfected by peracetic acid or UV irradiation. Removal of heterotrophic bacteria by applying 6 and 12 mg/L peracetic acid was 2.8 and 3.1 log, respectively. Similarly, removal of heterotrophic bacteria by applying 0.21 and 2.10 kWh/m 3 for UV irradiation was 2.1 and greater than 4 log, respectively. Physicochemical treatment of raw wastewater followed by UV irradiation and/or peracetic acid disinfection showed the potential for treatment of arctic wastewater.

  2. Implementing Ultraviolet (UV) Disinfection for Treatment of Groundwater for Small and Medium Sized Utilities - abstract

    EPA Science Inventory

    This presentation will focus on validation testing performed on a three-lamp low-pressure high-output (LPHO) TrojanUVSwiftTM UV reactor using MS2, Bacillus Pumilus, and live adenovirus as the test microbes. An adjustable sensor was used to help determine the optimal sensor locati...

  3. Ultraviolet Spectra of Two Magnetic White Dwarfs and Ultraviolet Spectra of Subluminous Objects Found in the Kiso Schmidt Survey and Ultraviolet Absorptions in the Spectra of DA White Dwarfds

    NASA Technical Reports Server (NTRS)

    Wegner, Gary A.

    1988-01-01

    Research under NASA Grant NAG5-287 has carried out a number of projects in conjunction with the International Ultraviolet Explorer (IUE) satellite. These include: (1) studies of the UV spectra of DA white dwarfs which show quasi-molecular bands of H2 and H2(+); (2) the peculiar star HR6560; (3) the UV spectra of two magnetic white dwarfs that also show the quasi-molecular features; (4) investigations of the UV spectra of subluminous stars, primarily identified from visual wavelength spectroscopy in the Kiso survey of UV excess stars, some of which show interesting metal lines in their UV spectra; and (5) completion of studies of UV spectra of DB stars. The main result of this research has been to further knowledge of the structure and compositions of subluminous stars which helps cast light on their formation and evolution.

  4. The effects of quercetin-loaded PLGA-TPGS nanoparticles on ultraviolet B-induced skin damages in vivo.

    PubMed

    Zhu, Xianbing; Zeng, Xiaowei; Zhang, Xudong; Cao, Wei; Wang, Yilin; Chen, Houjie; Wang, Teng; Tsai, Hsiang-I; Zhang, Ran; Chang, Danfeng; He, Shuai; Mei, Lin; Shi, Xiaojun

    2016-04-01

    Ultraviolet (UV) radiation has deleterious effects on living organisms, and functions as a tumor initiator and promoter. Multiple natural compounds, like quercetin, have been shown the protective effects on UV-induced damage. However, quercetin is extremely hydrophobic and limited by its poor percutaneous permeation and skin deposition. Here, we show that quercetin-loaded PLGA-TPGS nanoparticles could overcome low hydrophilicity of quercetin and improve its anti-UVB effect. Quercetin-loaded NPs can significantly block UVB irradiation induced COX-2 up-expression and NF-kB activation in Hacat cell line. Moreover, PLGA-TPGS NPs could efficiently get through epidermis and reach dermis. Treatment of mice with quercetin-loaded NPs also attenuates UVB irradiation-associated macroscopic and histopathological changes in mice skin. These results demonstrated that copolymer PLGA-TPGS could be used as drug nanocarriers against skin damage and disease. The findings provide an external use of PLGA-TPGS nanocarriers for application in the treatment of skin diseases. Skin is the largest organ in the body and is subjected to ultraviolet (UV) radiation damage daily from the sun. Excessive exposure has been linked to the development of skin cancer. Hence, topically applied agents can play a major role in skin protection. In this article, the authors developed quercetin-loaded PLGA-TPGS nanoparticles and showed their anti-UVB effect. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Application of water-assisted ultraviolet light in combination of chlorine and hydrogen peroxide to inactivate Salmonella on fresh produce.

    PubMed

    Guo, Shuanghuan; Huang, Runze; Chen, Haiqiang

    2017-09-18

    With the demand for fresh produce increases in recent decades, concerns for microbiological safety of fresh produce are also raised. To identify effective ultraviolet (UV) light treatment for fresh produce decontamination, we first determined the effect of three forms of UV treatment, dry UV (samples were treated by UV directly), wet UV (samples were dipped in water briefly and then exposed to UV), and water-assisted UV (samples were treated by UV while being immersed in agitated water) on inactivation of Salmonella inoculated on tomatoes and fresh-cut lettuce. In general, the water-assisted UV treatment was found to be the most effective for both produce items. Chlorine and hydrogen peroxide were then tested to determine whether they could be used to enhance the decontamination efficacy of water-assisted UV treatment and prevent transfer of Salmonella via wash water by completely eliminating it. Neither of them significantly enhanced water-assisted UV inactivation of Salmonella on tomatoes. Chlorine significantly improved the decontamination effectiveness of the water-assisted UV treatment for baby-cut carrots and lettuce, but not for spinach. In general, the single water-assisted UV treatment and the combined treatment of water-assisted UV and chlorine were similar or more effective than the chlorine washing treatment. In most of the cases, no Salmonella was detected in the wash water when the single water-assisted UV treatment was used to decontaminate tomatoes. In a few cases when Salmonella was detected in the wash water, the populations were very low,≤2CFU/mL, and the wash water contained an extremely high level of organic load and soil level. Therefore, the single water-assisted UV treatment could potentially be used as an environmentally friendly and non-chemical alternative to chlorine washing for tomatoes after validation in industrial scale. For lettuce, spinach and baby-cut carrots, the combined treatment of water-assisted UV treatment and chlorine

  6. UV-B photoreceptor-mediated signalling in plants.

    PubMed

    Heijde, Marc; Ulm, Roman

    2012-04-01

    Ultraviolet-B radiation (UV-B) is a key environmental signal that is specifically perceived by plants to promote UV acclimation and survival in sunlight. Whereas the plant photoreceptors for visible light are rather well characterised, the UV-B photoreceptor UVR8 was only recently described at the molecular level. Here, we review the current understanding of the UVR8 photoreceptor-mediated pathway in the context of UV-B perception mechanism, early signalling components and physiological responses. We further outline the commonalities in UV-B and visible light signalling as well as highlight differences between these pathways. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Comparative effect of simulated solar light, UV, UV/H2O2 and photo-Fenton treatment (UV-Vis/H2O2/Fe2+,3+) in the Escherichia coli inactivation in artificial seawater.

    PubMed

    Rubio, D; Nebot, E; Casanueva, J F; Pulgarin, C

    2013-10-15

    Innovative disinfection technologies are being studied for seawater, seeking a viable alternative to chlorination. This study proposes the use of H2O2/UV254 and photo-Fenton as disinfection treatment in seawater. The irradiations were carried out using a sunlight simulator (Suntest) and a cylindrical UV reactor. The efficiency of the treatment was compared for Milli-Q water, Leman Lake water and artificial seawater. The presence of bicarbonates and organic matter was investigated in order to evaluate possible effects on the photo-Fenton disinfection treatment. The photo-Fenton treatment, employing 1 mg L(-1) Fe(2+) and 10 mg L(-1) of H2O2, led to the fastest bacterial inactivation kinetics. Using H2O2/UV254 high disinfection rates were obtained similar to those obtained with photo-Fenton under UV254 light. In Milli-Q water, the rate of inactivation for Escherichia coli was higher than in Leman Lake water and seawater due to the lack of inorganic ions affecting negatively bacteria inactivation. The presence of bicarbonate showed scavenging of the OH(•) radicals generated in the treatment of photo-Fenton and H2O2/UV254. Despite the negative effect of inorganic ions, especially HCO3(-), the disinfection treatments with AOPs in lake water and seawater improved significantly the disinfection compared to light alone (simulated sunlight and UV254). In the treatment of photo-Fenton with simulated sunlight, dissolved organic matter had a beneficial effect by increasing the rate of inactivation. This is associated with the formation of Fe(3+)-organo photosensitive complexes leading to the formation of ROS able to inactivate bacteria. This effect was not observed in the photo-Fenton with UV254. Growth of E. coli surviving in seawater was observed 24 and 48 h after treatment with UV light. However, growth of surviving bacteria was not detected after photo-Fenton with UV254 and H2O2/UV254 treatments. This study suggests H2O2/UV254 and photo-Fenton treatments for the

  8. DEMONSTRATION BULLETIN: PEROX-PURE CHEMICAL OXIDATION TREATMENT

    EPA Science Inventory

    Technology Description: The perox-pure™ chemical oxidation treatment technology was developed by Peroxidation Systems, Inc. (PSI), to destroy dissolved organic contaminants in water. The technology uses ultraviolet (UV) radiation and hydrogen peroxide to oxidize organic co...

  9. UV testing of solar cells: Effects of antireflective coating, prior irradiation, and UV source

    NASA Technical Reports Server (NTRS)

    Meulenberg, A.

    1993-01-01

    Short-circuit current degradation of electron irradiated double-layer antireflective-coated cells after 3000 hours ultraviolet (UV) exposure exceeds 3 percent; extrapolation of the data to 10(exp 5) hours (11.4 yrs.) gives a degradation that exceeds 10 percent. Significant qualitative and quantitative differences in degradation were observed in cells with double- and single-layer antireflective coatings. The effects of UV-source age were observed and corrections were made to the data. An additional degradation mechanism was identified that occurs only in previously electron-irradiated solar cells since identical unirradiated cells degrade to only 6 +/- 3 percent when extrapolated 10(exp 5) hours of UV illumination.

  10. Solar UV exposure among outdoor workers in Denmark measured with personal UV-B dosimeters: technical and practical feasibility.

    PubMed

    Grandahl, Kasper; Mortensen, Ole Steen; Sherman, David Zim; Køster, Brian; Lund, Paul-Anker; Ibler, Kristina Sophie; Eriksen, Paul

    2017-10-10

    Exposure to solar ultraviolet radiation is a well-known cause of skin cancer. This is problematic for outdoor workers. In Denmark alone, occupational skin cancer poses a significant health and safety risk for around 400,000 outdoor workers. Objective measures of solar ultraviolet radiation exposure are needed to help resolve this problem. This can be done using personal ultraviolet radiation dosimeters. We consider technical and practical feasibility of measuring individual solar ultraviolet exposure at work and leisure in professions with different á priori temporal high-level outdoor worktime, using aluminium gallium nitride (AlGaN) photodiode detector based personal UV-B dosimeters. Essential technical specifications including the spectral and angular responsivity of the dosimeters are described and pre-campaign dosimeter calibration applicability is verified. The scale and conduct of dosimeter deployment and campaign in-field measurements including failures and shortcomings affecting overall data collection are presented. Nationwide measurements for more than three hundred and fifty workers from several different professions were collected in the summer of 2016. On average, each worker's exposure was measured for a 2-week period, which included both work and leisure. Data samples of exposure at work during a Midsummer day show differences across professions. A construction worker received high-level occupational UV exposure most of the working day, except during lunch hour, accumulating to 5.1 SED. A postal service worker was exposed intermittently around noon and in the afternoon, preceded by no exposure forenoon when packing mail, accumulating to 1.6 SED. A crane fitter was exposed only during lunch hour, accumulating to 0.7 SED. These findings are in line with our specialist knowledge as occupational physicians. Large-scale use of personal UV-B dosimeters for measurement of solar ultraviolet radiation exposure at work and leisure in Denmark is indeed

  11. Vacuum ultraviolet imagery of the Virgo Cluster region. II - Total far-ultraviolet flux of galaxies

    NASA Astrophysics Data System (ADS)

    Kodaira, K.; Watanabe, T.; Onaka, T.; Tanaka, W.

    1990-11-01

    The total flux in the far-ultraviolet region around 150 nm was measured for more than 40 galaxies in the central region of the Virgo Cluster, using two imaging telescopes on board a sounding rocket. The observed far-ultraviolet flux shows positive correlations with the H I 21 cm flux and the far-infrared flux for spiral galaxies, and with the X-ray flux and the radio continuum flux for elliptical galaxies. The former correlations of spiral galaxies are interpreted in terms of star formation activity, which indicates substantial depletion in the Virgo galaxies in accordance with the H I stripping. The latter correlations of elliptical galaxies indicate possible far-ultraviolet sources of young population, in addition to evolved hot stars. Far-ultraviolet fluxes from two dwarf elliptical galaxies were obtained tentatively, indicating star formation activity in elliptical galaxies. A high-resolution UV imagery by HST would be effective to distinguish the young population and the old population in elliptical galaxies.

  12. Ultraviolet Polariton Laser

    DTIC Science & Technology

    2015-09-17

    Ultraviolet Polariton Laser Significant progress was achieved in the epitaxy of deep UV AlN/ AlGaN Bragg mirrors and microcavity structures paving...the way to the successful fabrication of vertical cavity emitting laser structures and polariton lasers. For the first time DBRs providing sufficient...high reflectivity for polariton emission were demonstrated. Thanks to a developed strain balanced Al0.85Ga0.15N template, the critical thickness

  13. Photodynamic therapy improves the ultraviolet-irradiated hairless mice skin

    NASA Astrophysics Data System (ADS)

    Jorge, Ana Elisa S.; Hamblin, Michael R.; Parizotto, Nivaldo A.; Kurachi, Cristina; Bagnato, Vanderlei S.

    2014-03-01

    Chronic exposure to ultraviolet (UV) sunlight causes premature skin aging. In light of this fact, photodynamic therapy (PDT) is an emerging modality for treating cancer and other skin conditions, however its response on photoaged skin has not been fully illustrated by means of histopathology. For this reason, the aim of this study was analyze whether PDT can play a role on a mouse model of photoaging. Hence, SKH-1 hairless mice were randomly allocated in two groups, UV and UV/PDT. The mice were daily exposed to an UV light source (280-400 nm: peak at 350 nm) for 8 weeks followed by a single PDT session using 20% 5-aminolevulinic acid (ALA) topically. After the proper photosensitizer accumulation within the tissue, a non-coherent red (635 nm) light was performed and, after 14 days, skin samples were excised and processed for light microscopy, and their sections were stained with hematoxylin-eosin (HE) and Masson's Trichrome. As a result, we observed a substantial epidermal thickening and an improvement in dermal collagen density by deposition of new collagen fibers on UV/PDT group. These findings strongly indicate epidermal and dermal restoration, and consequently skin restoration. In conclusion, this study provides suitable evidences that PDT improves the UV-irradiated hairless mice skin, supporting this technique as an efficient treatment for photoaged skin.

  14. A dense plasma ultraviolet source

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.

    1978-01-01

    The intense ultraviolet emission from the NASA Hypocycloidal-Pinch (HCP) plasma is investigated. The HCP consists of three disk electrodes whose cross section has a configuration similar to the cross section of a Mather-type plasma focus. Plasma foci were produced in deuterium, helium, xenon, and krypton gases in order to compare their emission characteristics. Time-integrated spectra in the wavelength range from 200 nm to 350 nm and temporal variations of the uv emission were obtained with a uv spectrometer and a photomultiplier system. Modifications to enhance uv emission in the iodine-laser pump band (250 to 290 nm) and preliminary results produced by these modifications are presented. Finally, the advantages of the HCP as a uv over use of conventional xenon lamps with respect to power output limit, spectral range, and lifetime are discussed.

  15. Efficacy of on-farm use of ultraviolet light for inactivation of bacteria in milk for calves.

    PubMed

    Gelsinger, S L; Heinrichs, A J; Jones, C M; Van Saun, R J; Wolfgang, D R; Burns, C M; Lysczek, H R

    2014-05-01

    Ultraviolet light is being employed for bacterial inactivation in milk for calves; however, limited evidence is available to support the claim that UV light effectively inactivates bacteria found in milk. Thus, the objective of this observational study was to investigate the efficacy of on-farm UV light treatment in reducing bacteria populations in waste milk used for feeding calves. Samples of nonsaleable milk were collected from 9 Pennsylvania herds, twice daily for 15 d, both before and after UV light treatment (n=60 samples per farm), and analyzed for standard plate count, coliforms, noncoliform, gram-negative bacteria, environmental and contagious streptococci, coagulase-negative staphylococci, Streptococcus agalactiae, Staphylococcus aureus count, and total solids percentage, and log reduction and percentage log reduction were calculated. Data were analyzed using the mixed procedure in SAS. In all bacteria types, samples collected after UV treatment contained significantly fewer bacteria compared with samples collected before UV treatment. Weighted least squares means for log reduction (percentage log reduction) were 1.34 (29%), 1.27 (58%), 1.48 (53%), 1.85 (55%), 1.37 (72%), 1.92 (63%), 1.07 (33%), and 1.67 (82%) for standard plate count, coliforms, noncoliform, gram-negative bacteria, environmental and contagious streptococci, Strep. agalactiae, coagulase-negative staphylococci, and Staph. aureus, respectively. A percentage log reduction greater than 50% was achieved in 6 of 8 bacteria types, and 43 and 94% of samples collected after UV treatment met recommended bacterial standards for milk for feeding calves. Based on these results, UV light treatment may be effective for some, but not all bacteria types found in nonsaleable waste milk. Thus, farmers should take into account the bacteria types that may need to be reduced when considering the purchase of a UV-treatment system. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc

  16. Optical Technologies for UV Remote Sensing Instruments

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, R. A. M.; Osantowski, J. F.; Leviton, D. B.; Saha, T. T.; Content, D. A.; Boucarut, R. A.; Gum, J. S.; Wright, G. A.; Fleetwood, C. M.; Madison, T. J.

    1993-01-01

    Over the last decade significant advances in technology have made possible development of instruments with substantially improved efficiency in the UV spectral region. In the area of optical coatings and materials, the importance of recent developments in chemical vapor deposited (CVD) silicon carbide (SiC) mirrors, SiC films, and multilayer coatings in the context of ultraviolet instrumentation design are discussed. For example, the development of chemically vapor deposited (CVD) silicon carbide (SiC) mirrors, with high ultraviolet (UV) reflectance and low scatter surfaces, provides the opportunity to extend higher spectral/spatial resolution capability into the 50-nm region. Optical coatings for normal incidence diffraction gratings are particularly important for the evolution of efficient extreme ultraviolet (EUV) spectrographs. SiC films are important for optimizing the spectrograph performance in the 90 nm spectral region. The performance evaluation of the flight optical components for the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) instrument, a spectroscopic instrument to fly aboard the Solar and Heliospheric Observatory (SOHO) mission, designed to study dynamic processes, temperatures, and densities in the plasma of the upper atmosphere of the Sun in the wavelength range from 50 nm to 160 nm, is discussed. The optical components were evaluated for imaging and scatter in the UV. The performance evaluation of SOHO/CDS (Coronal Diagnostic Spectrometer) flight gratings tested for spectral resolution and scatter in the DGEF is reviewed and preliminary results on resolution and scatter testing of Space Telescope Imaging Spectrograph (STIS) technology development diffraction gratings are presented.

  17. Intercalation of anionic organic ultraviolet ray absorbers into layered zinc hydroxide nitrate.

    PubMed

    Cursino, Ana Cristina Trindade; Gardolinski, José Eduardo Ferreira da Costa; Wypych, Fernando

    2010-07-01

    Layered zinc hydroxide nitrate (ZHN) was synthesized and nitrate ions were topotactically exchanged with three different anionic species of commercial organic ultraviolet (UV) ray absorbers: 2-mercaptobenzoic acid, 2-aminobenzoic acid, and 4-aminobenzoic acid. The exchange reactions were confirmed by X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR), ultraviolet visible (UV-Vis) spectroscopy, and thermal analysis (thermogravimetry, TGA, and differential thermal analysis, DTA). In all the anionic exchanged products, evidence of grafting of the organic species onto the inorganic matrix was obtained. In general, after intercalation/grafting, the UV absorption ability was improved in relation to the use of the parent organic material, showing that layered hydroxide salts (LHS) can be good alternative matrixes for the immobilization of organic species with UV-blocking properties in cosmetic products. Copyright 2010 Elsevier Inc. All rights reserved.

  18. The Space Weather and Ultraviolet Solar Variability (SWUSV) Microsatellite Mission

    PubMed Central

    Damé, Luc; Meftah, Mustapha; Hauchecorne, Alain; Keckhut, Philippe; Sarkissian, Alain; Marchand, Marion; Irbah, Abdenour; Quémerais, Éric; Bekki, Slimane; Foujols, Thomas; Kretzschmar, Matthieu; Cessateur, Gaël; Shapiro, Alexander; Schmutz, Werner; Kuzin, Sergey; Slemzin, Vladimir; Urnov, Alexander; Bogachev, Sergey; Merayo, José; Brauer, Peter; Tsinganos, Kanaris; Paschalis, Antonis; Mahrous, Ayman; Khaled, Safinaz; Ghitas, Ahmed; Marzouk, Besheir; Zaki, Amal; Hady, Ahmed A.; Kariyappa, Rangaiah

    2013-01-01

    We present the ambitions of the SWUSV (Space Weather and Ultraviolet Solar Variability) Microsatellite Mission that encompasses three major scientific objectives: (1) Space Weather including the prediction and detection of major eruptions and coronal mass ejections (Lyman-Alpha and Herzberg continuum imaging); (2) solar forcing on the climate through radiation and their interactions with the local stratosphere (UV spectral irradiance from 180 to 400 nm by bands of 20 nm, plus Lyman-Alpha and the CN bandhead); (3) simultaneous radiative budget of the Earth, UV to IR, with an accuracy better than 1% in differential. The paper briefly outlines the mission and describes the five proposed instruments of the model payload: SUAVE (Solar Ultraviolet Advanced Variability Experiment), an optimized telescope for FUV (Lyman-Alpha) and MUV (200–220 nm Herzberg continuum) imaging (sources of variability); UPR (Ultraviolet Passband Radiometers), with 64 UV filter radiometers; a vector magnetometer; thermal plasma measurements and Langmuir probes; and a total and spectral solar irradiance and Earth radiative budget ensemble (SERB, Solar irradiance & Earth Radiative Budget). SWUSV is proposed as a small mission to CNES and to ESA for a possible flight as early as 2017–2018. PMID:25685424

  19. The Space Weather and Ultraviolet Solar Variability (SWUSV) Microsatellite Mission.

    PubMed

    Damé, Luc

    2013-05-01

    We present the ambitions of the SWUSV (Space Weather and Ultraviolet Solar Variability) Microsatellite Mission that encompasses three major scientific objectives: (1) Space Weather including the prediction and detection of major eruptions and coronal mass ejections (Lyman-Alpha and Herzberg continuum imaging); (2) solar forcing on the climate through radiation and their interactions with the local stratosphere (UV spectral irradiance from 180 to 400 nm by bands of 20 nm, plus Lyman-Alpha and the CN bandhead); (3) simultaneous radiative budget of the Earth, UV to IR, with an accuracy better than 1% in differential. The paper briefly outlines the mission and describes the five proposed instruments of the model payload: SUAVE (Solar Ultraviolet Advanced Variability Experiment), an optimized telescope for FUV (Lyman-Alpha) and MUV (200-220 nm Herzberg continuum) imaging (sources of variability); UPR (Ultraviolet Passband Radiometers), with 64 UV filter radiometers; a vector magnetometer; thermal plasma measurements and Langmuir probes; and a total and spectral solar irradiance and Earth radiative budget ensemble (SERB, Solar irradiance & Earth Radiative Budget). SWUSV is proposed as a small mission to CNES and to ESA for a possible flight as early as 2017-2018.

  20. The Cloud Detection and Ultraviolet Monitoring Experiment (CLUE)

    NASA Technical Reports Server (NTRS)

    Barbier, Louis M.; Loh, Eugene C.; Krizmanic, John F.; Sokolsky, Pierre; Streitmatter, Robert E.

    2004-01-01

    In this paper we describe a new balloon instrument - CLUE - which is designed to monitor ultraviolet (uv) nightglow levels and determine cloud cover and cloud heights with a CO2 slicing technique. The CO2 slicing technique is based on the MODIS instrument on NASA's Aqua and Terra spacecraft. CLUE will provide higher spatial resolution (0.5 km) and correlations between the uv and the cloud cover.

  1. International Ultraviolet Explorer (IUE)

    NASA Technical Reports Server (NTRS)

    Boehm, Karl-Heinz

    1992-01-01

    The observation, data reduction, and interpretation of ultraviolet spectra (obtained with the International Ultraviolet Explorer) of Herbig-Haro objects, stellar jets, and (in a few cases) reflection nebulae in star-forming regions is discussed. Intermediate results have been reported in the required semi-annual reports. The observations for this research were obtained in 23 (US1) IUE shifts. The spectra were taken in the low resolution mode with the large aperture. The following topics were investigated: (1) detection of UV spectra of high excitation Herbig-Haro (HH) objects, identification of emission lines, and a preliminary study of the energy distribution of the ultraviolet continuum; (2) details of the continuum energy distribution of these spectra and their possible interpretation; (3) the properties of the reddening (extinction) of HH objects; (4) the possible time variation of strong emission lines in high excitation HH objects; (5) the ultraviolet emission of low excitation HH objects, especially in the fluorescent lines of the H2 molecule; (6) the ultraviolet emission in the peculiar object HH24; (7) the spatial emission distribution of different lines and different parts of the continuum in different HH objects; and (8) some properties of reflection nebula, in the environment of Herbig-Haro objects. Each topic is discussed.

  2. Rapid Reversion from Monomer to Dimer Regenerates the Ultraviolet-B Photoreceptor UV RESISTANCE LOCUS8 in Intact Arabidopsis Plants1[W][OA

    PubMed Central

    Heilmann, Monika; Jenkins, Gareth I.

    2013-01-01

    Arabidopsis (Arabidopsis thaliana) UV RESISTANCE LOCUS8 (UVR8) is a photoreceptor that specifically mediates photomorphogenic responses to ultraviolet (UV)-B in plants. UV-B photoreception induces the conversion of the UVR8 dimer into a monomer that interacts with the CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) protein to regulate gene expression. However, it is not known how the dimeric photoreceptor is regenerated in plants. Here, we show, by using inhibitors of protein synthesis and degradation via the proteasome, that the UVR8 dimer is not regenerated by rapid de novo synthesis following destruction of the monomer. Rather, regeneration occurs by reversion from the monomer to the dimer. However, regeneration of dimeric UVR8 in darkness following UV-B exposure occurs much more rapidly in vivo than in vitro with illuminated plant extracts or purified UVR8, indicating that rapid regeneration requires intact cells. Rapid dimer regeneration in vivo requires protein synthesis, the presence of a carboxyl-terminal 27-amino acid region of UVR8, and the presence of COP1, which is known to interact with the carboxyl-terminal region. However, none of these factors can account fully for the difference in regeneration kinetics in vivo and in vitro, indicating that additional proteins or processes are involved in UVR8 dimer regeneration in vivo. PMID:23129206

  3. Microbial selectivity of UV treatment on antibiotic-resistant heterotrophic bacteria in secondary effluents of a municipal wastewater treatment plant.

    PubMed

    Guo, Mei-Ting; Yuan, Qing-Bin; Yang, Jian

    2013-10-15

    Little is known about the microbial selectivity of UV treatment for antibiotic resistant bacteria, and the results of limited studies are conflicting. To understand the effect of UV disinfection on antibiotic resistant bacteria, both total heterotrophic bacteria and antibiotic resistant bacteria (including cephalexin-, ciprofloxacin-, erythromycin-, gentamicin-, vancomycin-, sulfadiazine-, rifampicin-, tetracycline- and chloramphenicol-resistant bacteria) were examined in secondary effluent samples from a municipal wastewater treatment plant. Bacteria resistant to both erythromycin and tetracycline were chosen as the representative of multiple-antibiotic-resistant bacteria and their characteristics after UV treatment were also investigated. UV disinfection results in effective inactivation for total heterotrophic bacteria, as well as all antibiotic resistant bacteria. After UV treatment at a fluence of 5 mJ/cm(2), the log reductions of nine types of antibiotic resistant bacteria varied from 1.0 ± 0.1 to 2.4 ± 0.1. Bacteria resistant to both erythromycin and tetracycline had a similar fluence response as did total heterotrophic bacteria. The findings suggest that UV disinfection could eliminate antibiotic resistance in wastewater treatment effluents and thus ensure public health security. Our experimental results indicated that UV disinfection led to enrichment of bacteria with resistance to sulfadiazine, vancomycin, rifampicin, tetracycline and chloramphenicol, while the proportions of cephalexin-, erythromycin-, gentamicin- and ciprofloxacin-resistant bacteria in the wastewater decreased. This reveals the microbial selectivity of UV disinfection for antibiotic resistant bacteria. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Ultraviolet reflectance by the cere of raptors

    PubMed Central

    Mougeot, François; Arroyo, Beatriz E

    2006-01-01

    Ultraviolet (UV) signals have been shown to play key roles in social and sexual signalling in birds. Using a spectrophotometer, we analysed the colour of the cere (skin above the beak) of a diurnal raptor, the Montagu's harrier (Circus pygargus), and show that it reflects in the UV part of the spectrum. The cere is a well-known sexual signal in raptors, with carotenoid based pigmentation being indicative of quality. We thus hypothesized that UV reflectance also signals quality. Accordingly, we found that in our sample of wild males, the location of the UV peak was related to the orangeness of cere and correlated with male body mass and condition (mass corrected for size). Also, males with brighter UV were mated to females that laid earlier, as expected if UV reflectance relates to a male's quality and attractiveness. Future studies should investigate the relationships between UV reflectance and carotenoid pigmentation of cere, and test how UV reflectance influences mate choice. PMID:17148356

  5. Treatment of whole blood with riboflavin plus ultraviolet light, an alternative to gamma irradiation in the prevention of transfusion-associated graft-versus-host disease?

    PubMed

    Fast, Loren D; Nevola, Martha; Tavares, Jennifer; Reddy, Heather L; Goodrich, Ray P; Marschner, Susanne

    2013-02-01

    Exposure of blood products to gamma irradiation is currently the standard of care in the prevention of transfusion-associated graft-versus-host disease (TA-GVHD). Regulatory, technical, and clinical challenges associated with the use of gamma irradiators are driving efforts to develop alternatives. Pathogen reduction methods were initially developed to reduce the risk of microbial transmission by blood components. Through modifications of nucleic acids, these technologies interfere with the replication of both pathogens and white blood cells (WBCs). To date, systems for pathogen and WBC inactivation of products containing red blood cells are less well established than those for platelets and plasma. In this study, the in vitro and in vivo function of WBCs present in whole blood after exposure to riboflavin plus ultraviolet light (Rb-UV) was examined and compared to responses of WBCs obtained from untreated or gamma-irradiated blood by measuring proliferation, cytokine production, activation, and antigen presentation and xenogeneic (X-)GVHD responses in an in vivo mouse model. In vitro studies demonstrated that treatment of whole blood with Rb-UV was as effective as gamma irradiation in preventing WBC proliferation, but was more effective in preventing antigen presentation, cytokine production, and T-cell activation. Consistent with in vitro findings, treatment with Rb-UV was as effective as gamma irradiation in preventing X-GVHD, a mouse model for TA-GVHD. The ability to effectively inactivate WBCs in fresh whole blood using Rb-UV, prior to separation into components, provides the transfusion medicine community with a potential alternative to gamma irradiation. © 2012 American Association of Blood Banks.

  6. Protective mechanisms and acclimation to solar ultraviolet-B radiation in Oenothera stricta

    NASA Technical Reports Server (NTRS)

    Robberecht, R.; Caldwell, M. M.

    1981-01-01

    Plant adaptations ameliorating or repairing the damaging effects of ultraviolet-B (UV-B) radiation on plant tissue were investigated. The degree of phenotype plasticity in UV protective mechanisms and acclimation in relation to the natural solar UV-B radiation flux and in an enhanced UV-B irradiance environment was also examined. Mechanisms by which plants avoid radiation, adaptations altering the path of radiation incident on the leaf, and repair processes were considered. Attenuation of UV-B by tissues, UV-B irradiation into the leaf, and the effects of UV-B on photosynthesis were investigated.

  7. NASA Ames UV-LED Poster Overview

    NASA Technical Reports Server (NTRS)

    Jaroux, Belgacem Amar

    2015-01-01

    UV-LED is a small satellite technology demonstration payload being flown on the Saudisat-4 spacecraft that is demonstrating non-contacting charge control of an isolated or floating mass using new solid-state ultra-violet light emitting diodes (UV-LEDs). Integrated to the rest of the spacecraft and launched on a Dnepr in June 19, 2014, the project is a collaboration between the NASA Ames Research Center (ARC), Stanford University, and King Abdulaziz City for Science and Technology (KACST). Beginning with its commissioning in December, 2015, the data collected by UV-LED have validated a novel method of charge control that will improve the performance of drag-free spacecraft allowing for concurrent science collection during charge management operations as well as reduce the mass, power and volume required while increasing lifetime and reliability of a charge management subsystem. UV-LED continues to operate, exploring new concepts in non-contacting charge control and collecting data crucial to understanding the lifetime of ultra-violet light emitting diodes in space. These improvements are crucial to the success of ground breaking missions such as LISA and BBO, and demonstrates the ability of low cost small satellite missions to provide technological advances that far exceed mission costs.

  8. LADEE UVS (UltraViolet Visible Spectrometer) and the Search for Lunar Exospheric Dust: A Detailed Spectral Analysis

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Cook, Amanda; Colaprete, Anthony; Shirley, Mark; Vargo, Kara; Elphic, Richard C.; Hermalyn, Brendan; Stubbs, Timothy John; Glenar, David A.

    2014-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) executed science observations in lunar orbit spanning 2013-Oct-16- 2014-04-18 UT. LADEE's Ultraviolet/Visible Spectrometer (UVS) studies the composition and temporal variations of the tenuous lunar exosphere and dust environment, utilizing two sets of optics: a limb-viewing telescope, and a solar-viewer. The limb-viewing telescope observes illuminated dust and emitting gas species while the Sun is just behind the lunar limb. The solar viewer, with its diffuser, allows UVS to also stare directly at the solar disk as it approaches the limb, sampling progressively lower exosphere altitudes. Solar viewer "Occultation" activities occur at the lunar sunrise limb, as the LADEE spacecraft passes into the lunar night side, facing the Sun (the spacecraft orbit is near-equatorial retrograde). A loss of transmission of sunlight occurs by the occultation of dust grains along the line-of-sight. So-called "Inertial Limb" activities have the limb-viewing telescope pointed at the lit exosphere just after the Sun has set. Inertial Limb activities follow a similar progression of diminishing sampling altitudes but hold the solar elongation angle constant so the zodiacal light contribution remains constant while seeking to observe the weak lunar horizon glow. On the dark side of the moon, "Sodium Tail" activities pointed the limb-viewing telescope in the direction of the Moon's sodium tail (similar to anti-sunward), during different lunar phases. Of the UVS data sets, these show the largest excess of scattered blue light, indicative of the presence of small (approximately 100 nm) dust grains in the tail. Correlations are sought between dust in the sodium tail and meteor streams and magnetotail crossings to investigate impact- versus electrostatic-lofting. Once lofted, nanoparticles can become charged and picked up by the solar wind. The LADEE UVS Occultation, Inertial Limb, and Sodium Tail spectral datasets provide evidence of

  9. Reduction in cab and psb A RNA transcripts in response to supplementary ultraviolet-B radiation.

    PubMed

    Jordan, B R; Chow, W S; Strid, A; Anderson, J M

    1991-06-17

    The cab and psb A RNA transcript levels have been determined in Pisum sativum leaves exposed to supplementary ultraviolet-B radiation. The nuclear-encoded cab transcripts are reduced to low levels after only 4 h of UV-B treatment and are undetectable after 3 days exposure. In contrast, the chloroplast-encoded psb A transcript levels, although reduced, are present for at least 3 days. After short periods of UV-B exposure (4 h or 8 h), followed by recovery under control conditions, cab RNA transcript levels had not recovered after 1 day, but were re-established to ca. 60% of control levels after 2 more days. Increased irradiance during exposure to UV-B reduced the effect upon cab transcripts, although the decrease was still substantial. These results indicate rapid changes in the cellular regulation of gene expression in response to supplementary UV-B and suggest increased UV-B radiation may have profound consequences for future productivity of sensitive crop species.

  10. Ultraviolet Radiation in Wound Care: Sterilization and Stimulation

    PubMed Central

    Gupta, Asheesh; Avci, Pinar; Dai, Tianhong; Huang, Ying-Ying; Hamblin, Michael R.

    2013-01-01

    Significance Wound care is an important area of medicine considering the increasing age of the population who may have diverse comorbidities. Light-based technology comprises a varied set of modalities of increasing relevance to wound care. While low-level laser (or light) therapy and photodynamic therapy both have wide applications in wound care, this review will concentrate on the use of ultraviolet (UV) radiation. Recent Advances UVC (200–280 nm) is highly antimicrobial and can be directly applied to acute wound infections to kill pathogens without unacceptable damage to host tissue. UVC is already widely applied for sterilization of inanimate objects. UVB (280–315 nm) has been directly applied to the wounded tissue to stimulate wound healing, and has been widely used as extracorporeal UV radiation of blood to stimulate the immune system. UVA (315–400 nm) has distinct effects on cell signaling, but has not yet been widely applied to wound care. Critical Issues Penetration of UV light into tissue is limited and optical technology may be employed to extend this limit. UVC and UVB can damage DNA in host cells and this risk must be balanced against beneficial effects. Chronic exposure to UV can be carcinogenic and this must be considered in planning treatments. Future Directions New high-technology UV sources, such as light-emitting diodes, lasers, and microwave-generated UV plasma are becoming available for biomedical applications. Further study of cellular signaling that occurs after UV exposure of tissue will allow the benefits in wound healing to be better defined. PMID:24527357

  11. Ultraviolet carcinogenesis in the hairless mouse skin. Influence of the sunscreen 2-ethylhexyl-p-methoxycinnamate.

    PubMed

    Gallagher, C H; Greenoak, G E; Reeve, V E; Canfield, P J; Baker, R S; Bonin, A M

    1984-10-01

    The mutagenicity of some samples of a commonly used sunscreen, 2-ethylhexyl-p-methoxycinnamate (2-EHMC), led to these studies of its potential carcinogenicity in the HRA/Skh hairless mouse. In a daily treatment regime, repeated for 9 weeks, groups of mice were painted on the dorsum with 2-EHMC, and were then exposed to low doses of one of two artificial ultraviolet (UV) light sources. Mice were also treated with UV alone and with 2-EHMC alone. The accumulated UV exposure alone produced tumours in 40-100% of mice. However, 2-EHMC-treated mice were protected. Subsequent treatment of the 2-EHMC-protected mice, and mice previously treated with 2-EHMC alone, with the tumour promoter, croton oil, produced tumours on a significant number of animals. We conclude that 2-EHMC protects from UV tumorigenesis in the absence of a tumour promoter. However, although tumours appeared on only 4 out of 160 2-EHMC-treated mice exposed to UV, the carcinogenic process had been initiated in others, as application of the tumour promoter, croton oil, produced tumours. Statistical analysis of the incidence of promoted tumours inferred that prior irradiation with UV may not have been implicated. Therefore, 2-EHMC itself may initiate tumours in this strain of hairless mouse.

  12. Comparison of UV-C and Pulsed UV Light Treatments for Reduction of Salmonella, Listeria monocytogenes, and Enterohemorrhagic Escherichia coli on Eggs.

    PubMed

    Holck, Askild L; Liland, Kristian H; Drømtorp, Signe M; Carlehög, Mats; McLEOD, Anette

    2018-01-01

    Ten percent of all strong-evidence foodborne outbreaks in the European Union are caused by Salmonella related to eggs and egg products. UV light may be used to decontaminate egg surfaces and reduce the risk of human salmonellosis infections. The efficiency of continuous UV-C (254 nm) and pulsed UV light for reducing the viability of Salmonella Enteritidis, Listeria monocytogenes, and enterohemorrhagic Escherichia coli on eggs was thoroughly compared. Bacterial cells were exposed to UV-C light at fluences from 0.05 to 3.0 J/cm 2 (10 mW/cm 2 , for 5 to 300 s) and pulsed UV light at fluences from 1.25 to 18.0 J/cm 2 , resulting in reductions ranging from 1.6 to 3.8 log, depending on conditions used. Using UV-C light, it was possible to achieve higher reductions at lower fluences compared with pulsed UV light. When Salmonella was stacked on a small area or shielded in feces, the pulsed UV light seemed to have a higher penetration capacity and gave higher bacterial reductions. Microscopy imaging and attempts to contaminate the interior of the eggs with Salmonella through the eggshell demonstrated that the integrity of the eggshell was maintained after UV light treatments. Only minor sensory changes were reported by panelists when the highest UV doses were used. UV-C and pulsed UV light treatments appear to be useful decontamination technologies that can be implemented in continuous processing.

  13. The fate of mitochondrial loci in rho minus mutants induced by ultraviolet irradiation of Saccharomyces cerevisiae: effects of different post-irradiation treatments.

    PubMed

    Heude, M; Moustacchi, E

    1979-09-01

    Three main features regarding the loss of mitochondrial genetic markers among rho- mutants induced by ultraviolet irradiation are reported: (a) the frequency of loss of six loci examined increases with UV dose; (b) preferential loss of one region of the mitochondrial genome observed in spontaneous rho- mutants is enhanced by UV; and (c) the loss of each marker results from large deletions. Marker loss in rho- mutants was also investigated under conditions that modulate rho- induction. Liquid holding of irradiated exponential or stationary phase cells, as well as a split-dose regime applied to stationary phase cells, results in rho- mutants in which the loss of markers is correlated with rho- induction: the more sensitive the cells are to rho- induction, the more frequent are the marker losses among rho- clones derived from these cells. This correlation is not found in exponential-phase cells submitted to a split-dose treatment, suggesting that a different mechanism is involved in the latter case. It is known that UV-induced pyrimidine dimers are not excised in a controlled manner in mitochondrial DNA. However, our studies indicate that an accurate repair mechanism (of the recombinational type ?) can lead to the restoration of mitochondrial genetic information in growing cells.

  14. Estimation of pedestrian level UV exposure under trees

    Treesearch

    Richard H. Grant; Gordon M. Heisler; Wei Gao

    2002-01-01

    Trees influence the amount of solar UV radiation that reaches pedestrians. A three-dimensional model was developed to predict the ultraviolet-B (UV-B) irradiance fields in open-tree canopies where the spacing between trees is equal to or greater than the width of individual tree crowns. The model predicted the relative irradiance (fraction of above-canopy irradiance)...

  15. Transmittance of tinted and UV-blocking disposable contact lenses.

    PubMed

    Harris, M G; Haririfar, M; Hirano, K Y

    1999-03-01

    Tinted and ultraviolet (UV)-blocking disposable contact lenses have become increasingly popular over the last decade. Wearers of UV-blocking contact lenses could benefit greatly by protecting their eyes from potential UV radiation damage. A Uvikon 930 dual beam spectrophotometer was used to measure three enhancement-tinted lenses (royal blue, evergreen, and aqua), two types of UV-blocking lenses, and two types of non-UV-blocking lenses. Enhancement-tinted lenses did show a decrease in transmittance at certain wavelengths on the visible spectrum, but they did not reduce the transmittance of UV radiation to the extent of the UV-blocking lenses designed specifically for this purpose.

  16. Using ultraviolet absorbance and color to assess pharmaceutical oxidation during ozonation of wastewater.

    PubMed

    Wert, Eric C; Rosario-Ortiz, Fernando L; Snyder, Shane A

    2009-07-01

    The reduction of ultraviolet (UV) absorbance at 254 nm (UV254) and true color were identified as appropriate surrogates to assess the oxidation of six pharmaceuticals (i.e., carbamazepine, meprobamate, dilantin, primidone, atenolol, and iopromide) during ozonation of wastewater. Three tertiary-treated wastewaters were evaluated during oxidation with ozone (O3) and O3 coupled with hydrogen peroxide (O3/H2O2). The correlation between pharmaceutical oxidation and removal of UV254 was dependent upon the reactivity of each specific compound toward ozone, as measured by the second-order rate constant (k'(O3)). Oxidation of compounds with k'(O3) > 10(3) M(-1) s(-1) correlated well (R2 > 0.73) with UV254 reduction between 0-50%. Oxidation of compounds with apparent k'(O3) < 10 M(-1) s(-1) resulted primarily from hydroxyl radicals and correlated well (R2 > 0.80) with the UV254 reduction of 15-85%. The removal of true color also correlated well (R2 > 0.85) with the oxidation of pharmaceuticals during the ozonation of two wastewaters. These correlations demonstrate that UV254 reduction and true color removal may be used as surrogates to evaluate pharmaceutical oxidation in the presence or absence of dissolved ozone residual during advanced wastewater treatment with O3 or O3/H2O2. The use of online UV254 measurements would allow wastewater utilities to optimize the ozone dose required to meet their specific treatment objectives.

  17. Postreplication Repair of Ultraviolet Damage in Haemophilus influenzae

    PubMed Central

    Leclerc, J. Eugene; Setlow, Jane K.

    1972-01-01

    The deoxyribonucleic acid (DNA) synthesized following ultraviolet (UV) irradiation of wild-type (Rd) and recombination-defective strains of Haemophilus influenzae has been analyzed by alkaline sucrose gradient sedimentation. Strain Rd and a UV-resistant, recombination-defective strain Rd(DB117) rec− are able to carry out postreplication repair, i.e., close the single-strand gaps in the newly synthesized DNA; in the UV-sensitive, recombination-defective strain DB117, the gaps remain open. The lack of postreplication repair in this strain may be the result of degradation of the newly synthesized DNA. PMID:4537422

  18. Low pressure ultraviolet studies for inactivation of Giardia muris cysts.

    PubMed

    Hayes, S L; Rice, E W; Ware, M W; Schaefer, F W

    2003-01-01

    The research was initiated to confirm earlier ultraviolet (u.v.) light inactivation studies performed on Giardia cysts using excystation as the viability indicator. Following this, a comparison of in vitro excystation and animal infectivity was performed for assessing cyst viability after exposure to low-pressure u.v. irradiation. Cysts of Giardia muris were inactivated using a low-pressure u.v. light source. Giardia muris was employed as a surrogate for the human pathogen Giardia lamblia. Cyst viability was determined by both in vitro excystation and animal infectivity. Cyst doses were counted using a flow cytometer for the animal infectivity experiments. Using in vitro excystation as the viability indicator, fluences as high as approximately 200 mJ cm(-2) did not prevent some cysts from excysting, thus verifying earlier work. Using animal infectivity, u.v. fluences of 1.4, 1.9 and 2.3 mJ cm(-2) yielded log10 reductions ranging from 0.3 to >or= 4.4. Results indicate that in vitro excystation is not a reliable indicator of G. muris cyst viability after u.v. disinfection. Very low doses of u.v. light rendered G. muris cysts non-infective in the mouse model employed. Data presented represent the only complete u.v. inactivation curve for G. muris. This research provides evidence that u.v. can be an effective barrier against Giardia spp. in the treatment of drinking water supplies.

  19. How do environmental and behavioral factors impact ultraviolet radiation effects on health: the RISC-UV Project

    NASA Astrophysics Data System (ADS)

    Correa, M. P.; Godin-Beekmann, S.; Haeffelin, M.; Saiag, P.; Mahe, E.; Brogniez, C.; Dupont, J. C.; Pazmiño, A.; Auriol, F.; Bonnel, B.

    2009-04-01

    Introduction: RISC-UV is a research project on "Impact of climate change on ultraviolet radiation and risks for health", a research project in which physicists, meteorologists and physicians work together to assess the relative role played by environmental and behavioral factors in the UV-related diseases as skin cancer and vitamin D deficiency. Environmental factors are related to the role played by the alteration in intensity of UV radiation at the Earth's surface resulting from variation in several factors affected by climate change and human activities: stratospheric ozone, cloud cover, aerosols and the reflectivity of the surface. On the other hand, behavioral factors are related to the sun over/underexposure and the correct use of sun-protection (hats, caps, sunglasses, sunscreen lotion, etc.). RISC-UV is organized around three main areas: 1) Organization of a workshop, scheduled for January 2009, which aims to describe the state of the art in the subject within each community and define the requirements of pathologists for epidemiological studies; 2) A pilot study intended to evaluate the consistency between UV measurements delivered simultaneously by satellite-based instruments, ground instruments, radiometers and individual dosimeters. This study is based on measurements campaigns and an analysis of the long-term consistency of data series relating to UV radiation and associated parameters; and 3) Analysis of the weights of medical, behavioral and environmental parameters involved in skin carcinogenesis. A detailed description of these areas can be found in http://www.gisclimat.fr/Doc/GB/D_projects/RISC-UV_GB.html. This presentation focuses on the first results of the UV experimental measurements performed between September 8th and October 8th 2008 in Palaiseau, France (48.7˚ N; 2.2˚ E; 170m - Haeffelin et al., 2005). A second campaign is foreseen for the spring of 2009. The purpose of these campaigns is to obtain, analyze and quantitatively link the

  20. Effect of smokeless tobacco and tobacco-related chemical carcinogens on survival of ultraviolet light-inactivated herpes simplex virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dokko, H.; Min, P.S.; Cherrick, H.M.

    1991-04-01

    Low doses of ultraviolet (UV) light, x-rays, photodynamic treatment, or aflatoxins increase the survival of UV-irradiated virus in cells. This effect is postulated to occur by enhancement of the error-prone cellular repair function, which could also be associated with oncogenic cell transformation. The present study was designed to investigate whether treatment of green monkey kidney cells with water extract of snuff (snuff extract), benzo(a)pyrene, nicotine, or tobacco-specific N'-nitrosamines would result in enhanced survival of UV-irradiated herpes simplex virus (HSV). Exposure of the cells with snuff extract, benzo(a)pyrene, N'-nitrosonornicotine, or 4-(N-methyl-N'-nitrosamino)-1-(3-pyridyl)-1-butanone resulted in an enhancement of survival of UV-irradiated HSV typemore » 1 compared with the control whereas exposure of the cells with nicotine did not. These data indicate that the water-extractable component of snuff and tobacco-related chemical carcinogens increase the cellular repair mechanism and provides for increased survival of UV-irradiated HSV.« less

  1. Control of browning of minimally processed mangoes subjected to ultraviolet radiation pulses.

    PubMed

    de Sousa, Aline Ellen Duarte; Fonseca, Kelem Silva; da Silva Gomes, Wilny Karen; Monteiro da Silva, Ana Priscila; de Oliveira Silva, Ebenézer; Puschmann, Rolf

    2017-01-01

    The pulsed ultraviolet radiation (UV P ) has been used as an alternative strategy for the control of microorganisms in food. However, its application causes the browning of minimally processed fruits and vegetables. In order to control the browning of the 'Tommy Atkins' minimally processed mango and treated with UV P (5.7 J cm -2 ) it was used 1-methylcyclopropene (1-MCP) (0.5 μL L -1 ), an ethylene action blocker in separate stages, comprising five treatments: control, UV P (U), 1-MCP + UV P (M + U), UV P  + 1-MCP (U + M) e 1-MCP + UV P  + 1-MCP (M + U + M). At the 1st, 7th and 14th days of storage at 12 °C, we evaluated the color (L* and b*), electrolyte leakage, polyphenol oxidase, total extractable polyphenols, vitamin C and total antioxidant activity. The 1-MCP, when applied before UV P , prevented the loss of vitamin C and when applied in a double dose, retained the yellow color (b*) of the cubes. However, the 1-MCP reduced lightness (L*) of independent mango cubes whatever applied before and/or after the UV P . Thus, the application of 1-MCP did not control, but intensified the browning of minimally processed mangoes irradiated with UV P .

  2. The effects of enhanced UV-B radiation on growth, stomata, flavonoid, and ABA content in cucumber leaves

    NASA Astrophysics Data System (ADS)

    An, Lizhe; Wang, Jianhui; Liu, Yanhong; Chen, Tuo; Xu, Shijian; Feng, Huyuan; Wang, Xunling

    2003-06-01

    Cucumber plants (Cucumis sativus L. cv. Jinchun No 3) grown in a greenhouse were treated with three different biologically effective ultraviolet-B (UV-B) radiation levels: 1.28 kJ. m-2 (CK), 8.82kJ.m-2 (T1) and 12.6 kJ. m-2 (T2). Irradiances corresponded to 8% and 21% reduction in stratospheric ozone in Lanzhou. Plants at three-leaf stage were irradiated 7 h daily for 25 days. The growth, stomata, flavonoid and ABA content in cucumber leaves exposed to 3 levels of UV-B radiation were determined in this paper. The results indicated that, compared with the control after 25 days UV-B radiation, RI of cucumber under T1 treatment is -18.0% and RI under T2 treatment is -48% mostly because of the reduce of leave area and dry weight accompanying with the increase of SLW; the rate of stomata closure under the treatments of T1 and T2 on the 6th day was up to respectively 70% and 89%, and amounted to 90% and 100% on the 18th day, and the guard cells in some stomata apparatus became permanent pores and lost their function at the same time; with the duration of UV-B radiation, the rise of the absorbance to ultraviolet light (305nm) showed the content increase of flavonoid; Abscisic acid (ABA) was determined by means of ELISA which showed that under the T1 treatment, the content of ABA was up to maximum to 510% higher than that of the control on the 21st day, meanwhile, under the treatment of T2, it was the highest on the 18th day to 680% of the control, and then had a decrease tendency on 21st day. The result still indicated that ABA accumulation could be induced by enhanced UV-B the radiation. The bigger was the dose of radiation, the higher was the accumulation of ABA. When intensity of UV-B radiation went beyond the degree of endurance of cucumber plants, ABA content descended then. Cucumber plants resist enhanced UV-B radiation by means of improving the contents of ABA and flavonoid. The increase of ABA content in cucumber leaves could lead to the stomata closure. Therefore

  3. Microbial UV fluence-response assessment using a novel UV-LED collimated beam system.

    PubMed

    Bowker, Colleen; Sain, Amanda; Shatalov, Max; Ducoste, Joel

    2011-02-01

    A research study has been performed to determine the ultraviolet (UV) fluence-response of several target non-pathogenic microorganisms to UV light emitting diodes (UV-LEDs) by performing collimated beam tests. UV-LEDs do not contain toxic mercury, offer design flexibility due to their small size, and have a longer operational life than mercury lamps. Comsol Multiphysics was utilized to create an optimal UV-LED collimated beam design based on number and spacing of UV-LEDs and distance of the sample from the light source while minimizing the overall cost. The optimized UV-LED collimated beam apparatus and a low-pressure mercury lamp collimated beam apparatus were used to determine the UV fluence-response of three surrogate microorganisms (Escherichia coli, MS-2, T7) to 255 nm UV-LEDs, 275 nm UV-LEDs, and 254 nm low-pressure mercury lamps. Irradiation by low-pressure mercury lamps produced greater E. coli and MS-2 inactivation than 255 nm and 275 nm UV-LEDs and similar T7 inactivation to irradiation by 275 nm UV-LEDs. The 275 nm UV-LEDs produced more efficient T7 and E. coli inactivation than 255 nm UV-LEDs while both 255 nm and 275 nm UV-LEDs produced comparable microbial inactivation for MS-2. Differences may have been caused by a departure from the time-dose reciprocity law due to microbial repair mechanisms. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Ultraviolet-B radiation causes an upregulation of survivin in human keratinocytes and mouse skin.

    PubMed

    Aziz, Moammir Hasan; Ghotra, Amaninderapal S; Shukla, Yogeshwer; Ahmad, Nihal

    2004-01-01

    Understanding of the mechanism of ultraviolet (UV)-mediated cutaneous damages is far from complete. The cancer-specific expression of Survivin, a member of the inhibitor of apoptosis family of proteins, coupled with its importance in inhibiting cell death and in regulating cell division, makes it a target for cancer treatment. This study was designed to investigate the modulation of Survivin during UV response, both in vitro and in vivo. We used UV-B-mediated damages in normal human epidermal keratinocytes (NHEK) cells as an in vitro model and SKH-1 hairless mouse model for the in vivo studies. For in vitro studies, NHEK were treated with UV-B and samples were processed at 5, 15, 30 min, 1, 3, 6, 12 and 24 h after treatment. Our data demonstrated that UV-B exposure (50 mJ/cm2) to NHEK resulted in a significant upregulation in Survivin messenger RNA (mRNA) and protein levels. We also observed that UV-B exposure to NHEK resulted in significant (1) decrease in Smac/DIABLO and (2) increase in p53. For in vivo studies, the SKH-1 hairless mice were subjected to a single exposure of UV-B (180 mJ/cm2), and samples were processed at 3, 6, 12 and 24 h after UV-B exposure. UV-B treatment resulted in a significant increase in protein or mRNA levels (or both) of Survivin, phospho-Survivin and p53 and a concomitant decrease in Smac/DIABLO in mouse skin. This study demonstrated, for the first time, the involvement of Survivin (and the associated events) in UV-B response in vitro and in vivo in experimental models regarded to have relevance to human situations.

  5. Infectivity of Giardia duodenalis Cysts from UV Light-Disinfected Wastewater Effluent Using a Nude BALB/c Mouse Model

    PubMed Central

    dos Santos, Luciana Urbano; Alves, Delma Pegolo; Guaraldo, Ana Maria Aparecida; Cantusio Neto, Romeu; Durigan, Mauricio; Franco, Regina Maura Bueno

    2013-01-01

    Giardia duodenalis is a protozoan of public health interest that causes gastroenteritis in humans and other animals. In the city of Campinas in southeast Brazil, giardiasis is endemic, and this pathogen is detected at high concentrations in wastewater effluents, which are potential reservoirs for transmission. The Samambaia wastewater treatment plant (WWTP) in the city of Campinas employs an activated sludge system for sewage treatment and ultraviolet (UV) light for disinfection of effluents. To evaluate this disinfection process with respect to inactivating G. duodenalis cysts, two sample types were investigated: (i) effluent without UV disinfection (EFL) and (ii) effluent with UV disinfection (EFL+UV). Nude immunodeficient BALB/c mice were intragastrically inoculated with a mean dose of 14 cysts of G. duodenalis recovered from effluent from this WWTP, EFL, or EFL+UV. All animals inoculated with G. duodenalis cysts developed the infection, but animals inoculated with UV-exposed cysts released a lower average concentration of cysts in their faeces than animals inoculated with cysts that were not UV disinfected. Trophozoites were also observed in both groups of animals. These findings suggest that G. duodenalis cysts exposed to UV light were damaged but were still able to cause infection. PMID:27335858

  6. Bias Selectable Dual Band AlGaN Ultra-violet Detectors

    NASA Technical Reports Server (NTRS)

    Yan, Feng; Miko, Laddawan; Franz, David; Guan, Bing; Stahle, Carl M.

    2007-01-01

    Bias selectable dual band AlGaN ultra-violet (UV) detectors, which can separate UV-A and UV-B using one detector in the same pixel by bias switching, have been designed, fabricated and characterized. A two-terminal n-p-n photo-transistor-like structure was used. When a forward bias is applied between the top electrode and the bottom electrode, the detectors can successfully detect W-A and reject UV-B. Under reverse bias, they can detect UV-B and reject UV-A. The proof of concept design shows that it is feasible to fabricate high performance dual-band UV detectors based on the current AlGaN material growth and fabrication technologies.

  7. Ultraviolet laser effects on the cornea

    NASA Astrophysics Data System (ADS)

    Zuclich, Joseph A.

    1990-07-01

    Ultraviolet radiation in the ambient environment or from artificial sources may pose both acute and chronic hazards to the skin and the ocular tissues. In general terrestrial conditions have evolved such that there are only narrow safety margins between ambient UV levels and exposure levels harmful to the human. Obvious examples of acute consequences ofUV overexposure are sunburn and snowblindness as well as analogous conditions induced by artificial sources such as the welder''s arc mercury vapor lamps and UV-emitting lasers. Further chronic UV exposure is strongly implicated as a causative agent in certain types of cataract and skin cancer. This presentation will summarize a number of specific cases where UV radiation affected the primate cornea. Data presented will include the action spectra for far- and near-UV induced ocular damage the pulsewidth and total energy dependencies of ocular thresholds studies of cumulative effects of repeated UV exposures and quantitative determinations of tissue repair or recovery rates. Depending on the exposure parameters utilized photochemical thermal or photoablative damage mechanisms may prevail. 1.

  8. Facile Dry Surface Cleaning of Graphene by UV Treatment

    NASA Astrophysics Data System (ADS)

    Kim, Jin Hong; Haidari, Mohd Musaib; Choi, Jin Sik; Kim, Hakseong; Yu, Young-Jun; Park, Jonghyurk

    2018-05-01

    Graphene has been considered an ideal material for application in transparent lightweight wearable electronics due to its extraordinary mechanical, optical, and electrical properties originating from its ordered hexagonal carbon atomic lattice in a layer. Precise surface control is critical in maximizing its performance in electronic applications. Graphene grown by chemical vapor deposition is widely used but it produces polymeric residue following wet/chemical transfer process, which strongly affects its intrinsic electrical properties and limits the doping efficiency by adsorption. Here, we introduce a facile dry-cleaning method based on UV irradiation to eliminate the organic residues even after device fabrication. Through surface topography, Raman analysis, and electrical transport measurement characteristics, we confirm that the optimized UV treatment can recover the clean graphene surface and improve graphene-FET performance more effectively than thermal treatment. We propose our UV irradiation method as a systematically controllable and damage-free post process for application in large-area devices.

  9. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jablonowski, H.; Hammer, M. U.; Reuter, S.

    Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100–400 nm) and, in particular, vacuum ultraviolet (VUV, 10–200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH{sub 2}O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stablemore » reactive oxygen species, hydrogen peroxide (H{sub 2}O{sub 2}) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O{sub 2}{sup •−}) and hydroxyl radicals ({sup •}OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.« less

  10. Modularized and water-cooled photo-catalyst cleaning devices for aquaponics based on ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Yang, Henglong; Lung, Louis; Wei, Yu-Chien; Huang, Yi-Bo; Chen, Zi-Yu; Chou, Yu-Yang; Lin, Anne-Chin

    2017-08-01

    The feasibility of applying ultraviolet light-emitting diodes (UV-LED's) as triggering sources of photo-catalyst based on titanium dioxide (TiO2) nano-coating specifically for water-cleaning process in an aquaponics system was designed and proposed. The aquaponics system is a modern farming system to integrate aquaculture and hydroponics into a single system to establish an environmental-friendly and lower-cost method for farming fish and vegetable all together in urban area. Water treatment in an aquaponics system is crucial to avoid mutual contamination. we proposed a modularized watercleaning device composed of all commercially available components and parts to eliminate organic contaminants by using UV-LED's for TiO2 photo-catalyst reaction. This water-cleaning module consisted of two coaxial hollowed cylindrical pipes can be submerged completely in water for water treatment and cooling UV-LED's. The temperature of the UV-LED after proper thermal management can be reduced about 16% to maintain the optimal operation condition. Our preliminary experimental result by using Methylene Blue solution to simulate organic contaminants indicated that TiO2 photo-catalyst triggered by UV-LED's can effectively decompose organic compound and decolor Methylene Blue solution.

  11. Comparison of ultraviolet light-emitting diodes and low-pressure mercury-arc lamps for disinfection of water.

    PubMed

    Sholtes, Kari A; Lowe, Kincaid; Walters, Glenn W; Sobsey, Mark D; Linden, Karl G; Casanova, Lisa M

    2016-09-01

    Ultraviolet (UV) light-emitting diodes (LEDs) emitting at 260 nm were evaluated to determine the inactivation kinetics of bacteria, viruses, and spores compared to low-pressure (LP) UV irradiation. Test microbes were Escherichia coli B, a non-enveloped virus (MS-2), and a bacterial spore (Bacillus atrophaeus). For LP UV, 4-log10 reduction doses were: E. coli B, 6.5 mJ/cm(2); MS-2, 59.3 mJ/cm(2); and B. atrophaeus, 30.0 mJ/cm(2). For UV LEDs, the 4-log10 reduction doses were E. coli B, 6.2 mJ/cm(2); MS-2, 58 mJ/cm(2); and B. atrophaeus, 18.7 mJ/cm(2). Microbial inactivation kinetics of the two UV technologies were not significantly different for E. coli B and MS-2, but were different for B. atrophaeus spores. UV LEDs at 260 nm are at least as effective for inactivating microbes in water as conventional LP UV sources and should undergo further development in treatment systems to disinfect drinking water.

  12. Ultraviolet corona detection sensor study

    NASA Technical Reports Server (NTRS)

    Schmitt, R. J.; MATHERN

    1976-01-01

    The feasibility of detecting electrical corona discharge phenomena in a space simulation chamber via emission of ultraviolet light was evaluated. A corona simulator, with a hemispherically capped point to plane electrode geometry, was used to generate corona glows over a wide range of pressure, voltage, current, electrode gap length and electrode point radius. Several ultraviolet detectors, including a copper cathode gas discharge tube and a UV enhanced silicon photodiode detector, were evaluated in the course of the spectral intensity measurements. The performance of both silicon target vidicons and silicon intensified target vidicons was evaluated analytically using the data generated by the spectroradiometer scans and the performance data supplied by the manufacturers.

  13. Time-dependent effects of ultraviolet and nonthermal atmospheric pressure plasma on the biological activity of titanium

    NASA Astrophysics Data System (ADS)

    Choi, Sung-Hwan; Jeong, Won-Seok; Cha, Jung-Yul; Lee, Jae-Hoon; Yu, Hyung-Seog; Choi, Eun-Ha; Kim, Kwang-Mahn; Hwang, Chung-Ju

    2016-09-01

    Here, we evaluated time-dependent changes in the effects of ultraviolet (UV) and nonthermal atmospheric pressure plasma (NTAPPJ) on the biological activity of titanium compared with that of untreated titanium. Grade IV machined surface titanium discs (12-mm diameter) were used immediately and stored up to 28 days after 15-min UV or 10-min NTAPPJ treatment. Changes of surface characteristics over time were evaluated using scanning electron microscopy, surface profiling, contact angle analysis, X-ray photoelectron spectroscopy, and surface zeta-potential. Changes in biological activity over time were as determined by analysing bovine serum albumin adsorption, MC3T3-E1 early adhesion and morphometry, and alkaline phosphatase (ALP) activity between groups. We found no differences in the effects of treatment on titanium between UV or NTAPPJ over time; both treatments resulted in changes from negatively charged hydrophobic (bioinert) to positively charged hydrophilic (bioactive) surfaces, allowing enhancement of albumin adsorption, osteoblastic cell attachment, and cytoskeleton development. Although this effect may not be prolonged for promotion of cell adhesion until 4 weeks, the effects were sufficient to maintain ALP activity after 7 days of incubation. This positive effect of UV and NTAPPJ treatment can enhance the biological activity of titanium over time.

  14. Solar ultraviolet-B radiation increases phenolic content and ferric reducing antioxidant power in Avena sativa.

    PubMed

    Ruhland, Christopher T; Fogal, Mitchell J; Buyarski, Christopher R; Krna, Matthew A

    2007-06-29

    We examined the influence of solar ultraviolet-B radiation (UV-B; 280-320 nm) on the maximum photochemical efficiency of photosystem II (F(v)/F(m)), bulk-soluble phenolic concentrations, ferric-reducing antioxidant power (FRAP) and growth of Avena sativa. Treatments involved placing filters on frames over potted plants that reduced levels of biologically effective UV-B by either 71% (reduced UV-B) or by 19% (near-ambient UV-B) over the 52 day experiment (04 July-25 August 2002). Plants growing under near-ambient UV-B had 38% less total biomass than those under reduced UV-B. The reduction in biomass was mainly the result of a 24% lower leaf elongation rate, resulting in shorter leaves and less total leaf area than plants under reduced UV-B. In addition, plants growing under near-ambient UV-B had up to 17% lower F(v)/F(m) values early in the experiment, and this effect declined with plant age. Concentrations of bulk-soluble phenolics and FRAP values were 17 and 24% higher under near-ambient UV-B than under reduced UV-B, respectively. There was a positive relationship between bulk-soluble phenolic concentrations and FRAP values. There were no UV-B effects on concentrations of carotenoids (carotenes + xanthophylls).

  15. Preharvest UV-C radiation influences physiological, biochemical, and transcriptional changes in strawberry cv. Camarosa.

    PubMed

    de Oliveira, Isadora Rubin; Crizel, Giseli Rodrigues; Severo, Joseana; Renard, Catherine M G C; Chaves, Fabio Clasen; Rombaldi, Cesar Valmor

    2016-11-01

    Ultraviolet C (UV-C) radiation is known for preventing fungal decay and enhancing phytochemical content in fruit when applied postharvest. However, limited knowledge is available regarding fruit responses to preharvest application of UV-C radiation. Thus, the effects of UV-C radiation on photosynthetic efficiency, dry matter accumulation and partitioning, fruit yield and decay, phytochemical content, and relative transcript accumulation of genes associated with these metabolic pathways were monitored in strawberry (Fragaria x ananassa Duch.) cv. Camarosa. A reduction in photosynthetic efficiency was followed by a decrease in light harvesting complex LhcIIb-1 mRNA accumulation as well as a decrease in yield per plant. Phenylalanine ammonia lyase activity, phenolic, anthocyanin, and L-ascorbic acid contents were higher in UV-C treated fruit. In addition, preharvest UV-C treatment reduced microorganism incidence in the greenhouse and on the fruit surface, increased the accumulation of β-1,3-Gluc and PR-1 mRNA, and prevented fruit decay. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Innovative Approach to Validation of Ultraviolet (UV) Reactors for Disinfection in Drinking Water Systems - presentation

    EPA Science Inventory

    UV disinfection is an effective process for inactivating many microbial pathogens found in source waters with the potential as stand-alone treatment or in combination with other disinfectants. For surface and groundwater sourced drinking water applications, the U.S. Environmental...

  17. Resistance of a lizard (the green anole, Anolis carolinensis; Polychridae) to ultraviolet radiation-induced immunosuppression

    USGS Publications Warehouse

    Cope, R.B.; Fabacher, D.L.; Lieske, C.; Miller, C.A.

    2001-01-01

    The green anole (Anolis carolinensis) is the most northerly distributed of its Neotropical genus. This lizard avoids a winter hibernation phase by the use of sun basking behaviors. Inevitably, this species is exposed to high doses of ambient solar ultraviolet radiation (UVR). Increases in terrestrial ultraviolet-B (UV-B) radiation secondary to stratospheric ozone depletion and habitat perturbation potentially place this species at risk of UVR-induced immunosuppression. Daily exposure to subinflammatory UVR (8 kJ/m2/day UV-B, 85 kJ/m2/day ultraviolet A [UV-A]), 6 days per week for 4 weeks (total cumulative doses of 192 kJ/m2 UV-B, 2.04 × 103 kJ/m2 UV-A) did not suppress the anole's acute or delayed type hypersensitivity (DTH) response to horseshoe crab hemocyanin. In comparison with the available literature UV-B doses as low as 0.1 and 15.9 kJ/m2 induced suppression of DTH responses in mice and humans, respectively. Exposure of anoles to UVR did not result in the inhibition of ex vivo splenocyte phagocytosis of fluorescein labeled Escherichia coli or ex vivo splenocyte nitric oxide production. Doses of UV-B ranging from 0.35 to 45 kJ/m2 have been reported to suppress murine splenic/peritoneal macrophage phagocytosis and nitric oxide production. These preliminary studies demonstrate the resistance of green anoles to UVR-induced immunosuppression. Methanol extracts of anole skin contained two peaks in the ultraviolet wavelength range that could be indicative of photoprotective substances. However, the resistance of green anoles to UVR is probably not completely attributable to absorption by UVR photoprotective substances in the skin but more likely results from a combination of other factors including absorption by the cutis and absorption and reflectance by various components of the dermis.

  18. High-throughput ultraviolet photoacoustic microscopy with multifocal excitation

    NASA Astrophysics Data System (ADS)

    Imai, Toru; Shi, Junhui; Wong, Terence T. W.; Li, Lei; Zhu, Liren; Wang, Lihong V.

    2018-03-01

    Ultraviolet photoacoustic microscopy (UV-PAM) is a promising intraoperative tool for surgical margin assessment (SMA), one that can provide label-free histology-like images with high resolution. In this study, using a microlens array and a one-dimensional (1-D) array ultrasonic transducer, we developed a high-throughput multifocal UV-PAM (MF-UV-PAM). Our new system achieved a 1.6 ± 0.2 μm lateral resolution and produced images 40 times faster than the previously developed point-by-point scanning UV-PAM. MF-UV-PAM provided a readily comprehensible photoacoustic image of a mouse brain slice with specific absorption contrast in ˜16 min, highlighting cell nuclei. Individual cell nuclei could be clearly resolved, showing its practical potential for intraoperative SMA.

  19. Fungal Gene Mutation Analysis Elucidating Photoselective Enhancement of UV-C Disinfection Efficiency Toward Spoilage Agents on Fruit Surface.

    PubMed

    Zhu, Pinkuan; Li, Qianwen; Azad, Sepideh M; Qi, Yu; Wang, Yiwen; Jiang, Yina; Xu, Ling

    2018-01-01

    Short-wave ultraviolet (UV-C) treatment represents a potent, clean and safe substitute to chemical sanitizers for fresh fruit preservation. However, the dosage requirement for microbial disinfection may have negative effects on fruit quality. In this study, UV-C was found to be more efficient in killing spores of Botrytis cinerea in dark and red light conditions when compared to white and blue light. Loss of the blue light receptor gene Bcwcl1 , a homolog of wc-1 in Neurospora crassa , led to hypersensitivity to UV-C in all light conditions tested. The expression of Bcuve1 and Bcphr1 , which encode UV-damage endonuclease and photolyase, respectively, were strongly induced by white and blue light in a Bcwcl1 -dependent manner. Gene mutation analyses of Bcuve1 and Bcphr1 indicated that they synergistically contribute to survival after UV-C treatment. In vivo assays showed that UV-C (1.0 kJ/m 2 ) abolished decay in drop-inoculated fruit only if the UV-C treatment was followed by a dark period or red light, while in contrast, typical decay appeared on UV-C irradiated fruits exposed to white or blue light. In summary, blue light enhances UV-C resistance in B. cinerea by inducing expression of the UV damage repair-related enzymes, while the efficiency of UV-C application for fruit surface disinfection can be enhanced in dark or red light conditions; these principles seem to be well conserved among postharvest fungal pathogens.

  20. Combined effects of lanthanum(III) and elevated ultraviolet-B radiation on root growth and ion absorption in soybean seedlings.

    PubMed

    Huang, Guang Rong; Wang, Li Hong; Zhou, Qing

    2014-03-01

    Rare earth element accumulation in the soil and elevated ultraviolet (UV)-B radiation (280-315 nm) are important environmental issues worldwide. To date, there have been no reports concerning the combined effects of lanthanum (La)(III) and elevated UV-B radiation on plant roots in regions where the two issues occur simultaneously. Here, the combined effects of La(III) and elevated UV-B radiation on the growth, biomass, ion absorption, activities, and membrane permeability of roots in soybean (Glycine max L.) seedlings were investigated. A 0.08 mmol L(-1) La(III) treatment improved the root growth and biomass of soybean seedlings, while ion absorption, activities, and membrane permeability were obviously unchanged; a combined treatment with 0.08 mmol L(-1) La(III) and elevated UV-B radiation (2.63/6.17 kJ m(-2) day(-1)) exerted deleterious effects on the investigated indices. The deleterious effects were aggravated in the other combined treatments and were stronger than those of treatments with La(III) or elevated UV-B radiation alone. The combined treatment with 0.24/1.20 mmol L(-1) La(III) and elevated UV-B radiation exerted synergistically deleterious effects on the growth, biomass, ion absorption, activities, and membrane permeability of roots in soybean seedlings. In addition, the deleterious effects of the combined treatment on the root growth were due to the inhibition of ion absorption induced by the changes in the root activity and membrane permeability.

  1. Coal tar phototherapy for psoriasis reevaluated: erythemogenic versus suberythemogenic ultraviolet with a tar extract in oil and crude coal tar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, N.J.; Wortzman, M.S.; Breeding, J.

    1983-06-01

    Recent studies have questioned the therapeutic value of coal tar versus ultraviolet (UV) radiation and their relative necessity in phototherapy for psoriasis. In this investigation, different aspects of tar phototherapy have been studied in single-blind bilateral paired comparison studies. The effects of 1% crude coal tar were compared with those of petrolatum in conjunction with erythemogenic and suberythemogenic doses of ultraviolet light (UVB) using a FS72 sunlamp tubed cabinet. Crude coal tar was clinically superior to petrolatum with suberythemogenic ultraviolet. With the erythemogenic UVB, petrolatum was equal in efficacy to crude coal tar. Suberythemogenic UVB was also used adjunctively tomore » compare the effects of a 5% concentration of a tar extract in an oil base to 5% crude coal tar in petrolatum or the oil base without tar. The tar extract in oil plus suberythemogenic UVB produced significantly more rapid improvement than the oil base plus UVB. The direct bilateral comparison of equal concentrations of tar extract in oil base versus crude coal tar in petrolatum in a suberythemogenic UV photo regimen revealed no statistical differences between treatments. In a study comparing tar extract in oil and the oil base without ultraviolet radiation, the tar extract in oil side responded more rapidly.« less

  2. Tailoring of TiO2 films by H2SO4 treatment and UV irradiation to improve anticoagulant ability and endothelial cell compatibility.

    PubMed

    Liao, Yuzhen; Li, Linhua; Chen, Jiang; Yang, Ping; Zhao, Ansha; Sun, Hong; Huang, Nan

    2017-07-01

    Surfaces with dual functions that simultaneously exhibit good anticoagulant ability and endothelial cell (EC) compatibility are desirable for blood contact materials. However, these dual functions have rarely been achieved by inorganic materials. In this study, titanium dioxide (TiO 2 ) films were treated by sulphuric acid (H 2 SO 4 ) and ultraviolet (UV) irradiation successively (TiO 2 H 2 SO 4 -UV), resulting in good anticoagulant ability and EC compatibility simultaneously. We found that UV irradiation improved the anticoagulant ability of TiO 2 films significantly while enhancing EC compatibility, though not significantly. The enhanced anticoagulant ability could be related to the oxidation of surface-adsorbed hydrocarbons and increased hydrophilicity. The H 2 SO 4 treatment improved the anticoagulant ability of TiO 2 films slightly, while UV irradiation improved the anticoagulant ability strongly. The enhanced EC compatibility could be related to the increased surface roughness and positive charges on the surface of the TiO 2 films. Furthermore, the time-dependent degradation of the enhanced EC compatibility and anticoagulant ability of TiO 2 H 2 SO 4 -UV was observed. In summary, TiO 2 H 2 SO 4 -UV expressed both excellent anticoagulant ability and good EC compatibility at the same time, which could be desirable for blood contact materials. However, the compatibility of TiO 2 H 2 SO 4 -UV with smooth muscle cells (SMCs) and macrophages was also improved. More effort is still needed to selectively improve EC compatibility on TiO 2 films for better re-endothelialization. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Sources and measurement of ultraviolet radiation.

    PubMed

    Diffey, Brian L

    2002-09-01

    Ultraviolet (UV) radiation is part of the electromagnetic spectrum. The biological effects of UV radiation vary enormously with wavelength and for this reason the UV spectrum is further subdivided into three regions: UVA, UVB, and UVC. Quantities of UV radiation are expressed using radiometric terminology. A particularly important term in clinical photobiology is the standard erythema dose (SED), which is a measure of the erythemal effectiveness of a UV exposure. UV radiation is produced either by heating a body to an incandescent temperature, as is the case with solar UV, or by passing an electric current through a gas, usually vaporized mercury. The latter process is the mechanism whereby UV radiation is produced artificially. Both the quality (spectrum) and quantity (intensity) of terrestrial UV radiation vary with factors including the elevation of the sun above the horizon and absorption and scattering by molecules in the atmosphere, notably ozone, and by clouds. For many experimental studies in photobiology it is simply not practicable to use natural sunlight and so artificial sources of UV radiation designed to simulate the UV component of sunlight are employed; these are based on either optically filtered xenon arc lamps or fluorescent lamps. The complete way to characterize an UV source is by spectroradiometry, although for most practical purposes a detector optically filtered to respond to a limited portion of the UV spectrum normally suffices.

  4. Effect of some ultraviolet light absorbers on photo-stabilization of azadirachtin-A.

    PubMed

    Deota, P T; Upadhyay, P R; Patel, K B; Mehta, K J; Varshney, A K; Mehta, M H

    2002-10-01

    The effect of photo-stabilization of Azadirachtin-A (Aza-A) was examined when exposed to sunlight and ultraviolet light in the presence of four structurally different ultraviolet stabilizers namely 4-aminobenzoic acid, 2,4-dihydroxybenzophenone, 4,4'-dihydroxybenzophenone and phenyl salicylate. The percentages of Aza-A recovered at different time intervals from slides exposed to different light conditions with and without UV stabilizers as well as kinetic studies indicated that the addition of phenyl salicylate in methanolic solution of Aza-A (in 1:1 mole ratio) provides the best photo-stabilization of Aza-A molecule among the four UV stabilizers studied.

  5. REPRESSOR OF ULTRAVIOLET-B PHOTOMORPHOGENESIS function allows efficient phototropin mediated ultraviolet-B phototropism in etiolated seedlings.

    PubMed

    Vanhaelewyn, Lucas; Schumacher, Paolo; Poelman, Dirk; Fankhauser, Christian; Van Der Straeten, Dominique; Vandenbussche, Filip

    2016-11-01

    Ultraviolet B (UV-B) light is a part of the solar radiation which has significant effects on plant morphology, even at low doses. In Arabidopsis, many of these morphological changes have been attributed to a specific UV-B receptor, UV resistance locus 8 (UVR8). Recent findings showed that next to phototropin regulated phototropism, UVR8 mediated signaling is able of inducing directional bending towards UV-B light in etiolated seedlings of Arabidopsis, in a phototropin independent manner. In this study, kinetic analysis of phototropic bending was used to evaluate the relative contribution of each of these pathways in UV-B mediated phototropism. Diminishing UV-B light intensity favors the importance of phototropins. Molecular and genetic analyses suggest that UV-B is capable of inducing phototropin signaling relying on phototropin kinase activity and regulation of NPH3. Moreover, enhanced UVR8 responses in the UV-B hypersensitive rup1rup2 mutants interferes with the fast phototropin mediated phototropism. Together the data suggest that phototropins are the most important receptors for UV-B induced phototropism in etiolated seedlings, and a RUP mediated negative feedback pathway prevents UVR8 signaling to interfere with the phototropin dependent response. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. INACTIVATION OF MS2 VIRUS IN DRINKING WATER: TROJAN TECHNOLOGIES, INC., UVSWIFT ULTRAVIOLET SYSTEM MODEL 4L12, AT CHULA VISTA, CALIFORNIA.

    EPA Science Inventory

    Verification testing of the Trojan Technologies UVSwift 4L12 system was conducted over a 45 day period from 9/1/01 to 10/15/01. The feedwater to the ultraviolet (UV) unit during the testing was the effluent from the Otay Water Treatment Plant (OWTP), a conventional plant with fl...

  7. Are You UV Safe?

    ERIC Educational Resources Information Center

    Capobianco, Brenda; Thiel, Elizabeth Andrew

    2006-01-01

    Students may be slathered with SPF 30 sunscreen all summer at the beach or pool, but what do they know about ultraviolet (UV) light radiation and absorption? The authors of this article found the perfect opportunity to help students find out the science behind this important health precaution, when they developed a series of practical strategies…

  8. Thin film transistor performance of amorphous indium–zinc oxide semiconductor thin film prepared by ultraviolet photoassisted sol–gel processing

    NASA Astrophysics Data System (ADS)

    Kodzasa, Takehito; Nobeshima, Taiki; Kuribara, Kazunori; Yoshida, Manabu

    2018-05-01

    We have fabricated an amorphous indium–zinc oxide (IZO, In/Zn = 3/1) semiconductor thin-film transistor (AOS-TFT) by the sol–gel technique using ultraviolet (UV) photoirradiation and post-treatment in high-pressure O2 at 200 °C. The obtained TFT showed a hole carrier mobility of 0.02 cm2 V‑1 s‑1 and an on/off current ratio of 106. UV photoirradiation leads to the decomposition of the organic agents and hydroxide group in the IZO gel film. Furthermore, the post-treatment annealing at a high O2 pressure of more than 0.6 MPa leads to the filling of the oxygen vacancies in a poor metal–oxygen network in the IZO film.

  9. Photo-enhanced toxicity of fluoranthene to Gulf of Mexico marine organisms at different larval ages and ultraviolet light intensities.

    PubMed

    Finch, Bryson E; Stubblefield, William A

    2016-05-01

    Significant increases in toxicity have been observed as a result of polycyclic aromatic hydrocarbon (PAH) absorption of ultraviolet (UV) radiation in aquatic organisms. Early life stage aquatic organisms are predicted to be more susceptible to PAH photo-enhanced toxicity as a result of their translucence and tendency to inhabit shallow littoral or surface waters. The objective of the present study was to evaluate the sensitivity of varying ages of larval mysid shrimp (Americamysis bahia), inland silverside (Menidia beryllina), sheepshead minnow (Cyprinodon variegatus), and Gulf killifish (Fundulus grandis) to photo-enhanced toxicity and to examine the correlation between photo-enhanced toxicity and organism pigmentation. Organisms were exposed to fluoranthene and artificial UV light at different larval ages and results were compared using median lethal concentrations (LC50s) and the lethal time-to-death (LT50s). In addition, a high UV light intensity, short-duration (4-h) experiment was conducted at approximately 24 W/m(2) of ultraviolet radiation A (UV-A) and compared with a low-intensity, long-duration (12-h) experiment at approximately 8 W/m(2) of UV-A. The results indicated decreased toxicity with increasing age for all larval organisms. The amount of organism pigmentation was correlated with observed LC50 and LT50 values. High-intensity short-duration exposure resulted in greater toxicity than low-intensity long-duration UV treatments for mysid shrimp, inland silverside, and sheepshead minnow. Data from these experiments suggest that toxicity is dependent on age, pigmentation, UV light intensity, and fluoranthene concentration. © 2015 SETAC.

  10. Hybrid 2D patterning using UV laser direct writing and aerosol jet printing of UV curable polydimethylsiloxane

    NASA Astrophysics Data System (ADS)

    Obata, Kotaro; Schonewille, Adam; Slobin, Shayna; Hohnholz, Arndt; Unger, Claudia; Koch, Jürgen; Suttmann, Oliver; Overmeyer, Ludger

    2017-09-01

    The hybrid technique of aerosol jet printing and ultraviolet (UV) laser direct writing was developed for 2D patterning of thin film UV curable polydimethylsiloxane (PDMS). A dual atomizer module in an aerosol jet printing system generated aerosol jet streams from material components of the UV curable PDMS individually and enables the mixing in a controlled ratio. Precise control of the aerosol jet printing achieved the layer thickness of UV curable PDMS as thin as 1.6 μm. This aerosol jet printing system is advantageous because of its ability to print uniform thin-film coatings of UV curable PDMS on planar surfaces as well as free-form surfaces without the use of solvents. In addition, the hybrid 2D patterning using the combination of UV laser direct writing and aerosol jet printing achieved selective photo-initiated polymerization of the UV curable PDMS layer with an X-Y resolution of 17.5 μm.

  11. Removal of Emerging Contaminants and Estrogenic Activity from Wastewater Treatment Plant Effluent with UV/Chlorine and UV/H₂O₂ Advanced Oxidation Treatment at Pilot Scale.

    PubMed

    Rott, Eduard; Kuch, Bertram; Lange, Claudia; Richter, Philipp; Kugele, Amélie; Minke, Ralf

    2018-05-07

    Effluent of a municipal wastewater treatment plant (WWTP) was treated on-site with the UV/chlorine (UV/HOCl) advanced oxidation process (AOP) using a pilot plant equipped with a medium pressure UV lamp with an adjustable performance of up to 1 kW. Results obtained from parallel experiments with the same pilot plant, where the state of the art UV/H₂O₂ AOP was applied, were compared regarding the removal of emerging contaminants (EC) and the formation of adsorbable organohalogens (AOX). Furthermore, the total estrogenic activity was measured in samples treated with the UV/chlorine AOP. At an energy consumption of 0.4 kWh/m³ (0.4 kW, 1 m³/h) and in a range of oxidant concentrations from 1 to 6 mg/L, the UV/chlorine AOP had a significantly higher EC removal yield than the UV/H₂O₂ AOP. With free available chlorine concentrations (FAC) in the UV chamber influent of at least 5 mg/L (11 mg/L of dosed Cl₂), the total estrogenic activity could be reduced by at least 97%. To achieve a certain concentration of FAC in the UV chamber influent, double to triple the amount of dosed Cl₂ was needed, resulting in AOX concentrations of up to 520 µg/L.

  12. Effect of Lot Variability on Ultraviolet Radiation Inactivation Kinetics of Cryptosporidium parvum Oocysts

    EPA Science Inventory

    Numerous studies have demonstrated the efficiency of ultraviolet (UV) radiation for the inactivation of oocysts of Cryptosporidium parvum. In these studies inactivation is measured as reduction in oocysts. A primary goal is to estimate the UV radiation required to achiev...

  13. UV-induced effects on chlorination of creatinine.

    PubMed

    Weng, Shih Chi; Li, Jing; Wood, Karl V; Kenttämaa, Hilkka I; Williams, Peggy E; Amundson, Lucas M; Blatchley, Ernest R

    2013-09-15

    Ultraviolet (UV) irradiation is commonly employed for water treatment in swimming pools to complement conventional chlorination, and to reduce the concentration of inorganic chloramine compounds. The approach of combining UV irradiation and chlorination has the potential to improve water quality, as defined by microbial composition. However, relatively little is known about the effects of this process on water chemistry. To address this issue, experiments were conducted to examine the effects of sequential UV254 irradiation/chlorination, as will occur in recirculating system of swimming pools, on disinfection byproduct (DBP) formation. Creatinine, which is present in human sweat and urine, was selected as the target precursor for these experiments. Enhanced formation of dichloromethylamine (CH3NCl2) and inorganic chloramines was observed to result from post-chlorination of UV-irradiated samples. Chlorocreatinine was found to be more sensitive to UV254 irradiation than creatinine; UV254 irradiation of chlorocreatinine resulted in opening of the ring structure, thereby yielding a series of intermediates that were more susceptible to free chlorine attack than their parent compound. The quantum yields for photodegradation of creatinine and chlorocreatinine at 254 nm were estimated at 0.011 ± 0.002 mol/E and 0.144 ± 0.011 mol/E, respectively. The N-Cl bond was found to be common to UV-sensitive chlorinated compounds (e.g., inorganic chloramines, CH3NCl2, and chlorocreatinine); compounds that were less susceptible to UV-based attack generally lacked the N-Cl bond. This suggested that the N-Cl bond is susceptible to UV254 irradiation, and cleavage of the N-Cl bond appears to open or promote reaction pathways that involve free chlorine, thereby enhancing formation of some DBPs and promoting loss of free chlorine. Proposed reaction mechanisms to describe this behavior based on creatinine as a precursor are presented. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Isolation and characterization of ultraviolet light-sensitive mutants of the blue-green alga Anacystis nidulans.

    NASA Technical Reports Server (NTRS)

    Asato, Y.

    1972-01-01

    Three independently isolated ultraviolet light sensitive (uvs) mutants of Anacystis nidulans were characterized. Strain uvs-1 showed the highest sensitivity to UV by its greatly reduced photoreactivation capacity following irradiation. Pretreatment with caffeine suppressed the dark-survival curve of strain uvs-1, thus indicating the presence of excision enzymes involved in dark repair. Under 'black' and 'white' illumination, strain uvs-1 shows photorecovery properties comparable with wild-type cultures. Results indicate that strains uvs-1, uvs-35, and uvs-88 are probably genetically distinct UV-sensitive mutants.

  15. Balloon Borne Ultraviolet Spectrometer.

    DTIC Science & Technology

    1978-12-28

    n.c.aaary ond lden lfy by block numb.r) ultraviolet ground support equipment (GSE) spectrometers flight electronics instrumentation balloons \\ solar ...Assembly 4 Fig. 3 Solar Balloon Experiment Ass ’y 7 Fig. 4 Mechanical Interface , UV Spectrometer 8 Fig . 5 Spectrometer Body Assemb ly 10 Fig. 6...Diagram, GSE )bnitor 48 Selector and Battery Charger Fig. 25 Schematic Diagram, GSE Serial to 49 Parallel Data Converter Fig. 26 Schematic Diagram

  16. Synergistic effects of sodium hypochlorite and ultraviolet radiation in reducing the levels of selected foodborne pathogenic bacteria.

    PubMed

    Ha, Ji-Hyoung; Ha, Sang-Do

    2011-05-01

    The purpose of this study was to determine whether combined treatment would produce synergistic effects to facilitate the sterilization of food products during production relative to single treatment. To assess this hypothesis, we investigated the bactericidal effects of ultraviolet (UV) irradiation and a commercial chemical disinfectant, sodium hypochlorite (NaClO), on Bacillus cereus F4810/72, Cronobacter sakazakii KCTC 2949, Staphylococcus aureus ATCC 35556, Escherichia coli ATCC 10536, and Salmonella Typhimurium novobiocin/nalidixic acid in vitro. Various concentrations of NaClO (20, 60, 100, and 200 ppm NaClO) were tested along with exposure to UV radiation at various doses (6, 96, 216, 360, and 504 mW s/cm(2)). The combined NaClO/UV treatments resulted in greater reductions in bacterial counts than either treatment alone. The synergy values against B. cereus, C. sakazakii, S. aureus, Salmonella Typhimurium, and E. coli were 0.25-1.17, 0.33-1.97, 0.42-1.72, 0.02-1.44, and 0.01-0.85 log(10) CFU/mL, respectively. The results of this study suggest that a significant synergistic benefit results from combined NaClO/UV processing against food-borne pathogenic bacteria in vitro.

  17. Thread Embedding Acupuncture Inhibits Ultraviolet B Irradiation-Induced Skin Photoaging in Hairless Mice.

    PubMed

    Kim, Yoon-Jung; Kim, Ha-Neui; Shin, Mi-Sook; Choi, Byung-Tae

    2015-01-01

    Thread embedding acupuncture (TEA) is an acupuncture treatment applied to many diseases in Korean medical clinics because of its therapeutic effects by continuous stimulation to tissues. It has recently been used to enhance facial skin appearance and antiaging, but data from evidence-based medicine are limited. To investigate whether TEA therapy can inhibit skin photoaging by ultraviolet B (UVB) irradiation, we performed analyses for histology, histopathology, in situ zymography and western blot analysis in HR-1 hairless mice. TEA treatment resulted in decreased wrinkle formation and skin thickness (Epidermis; P = 0.001 versus UV) in UVB irradiated mice and also inhibited degradation of collagen fibers (P = 0.010 versus normal) by inhibiting proteolytic activity of gelatinase matrix-metalloproteinase-9 (MMP-9). Western blot data showed that activation of c-Jun N-terminal kinase (JNK) induced by UVB (P = 0.002 versus normal group) was significantly inhibited by TEA treatment (P = 0.005 versus UV) with subsequent alleviation of MMP-9 activation (P = 0.048 versus UV). These results suggest that TEA treatment can have anti-photoaging effects on UVB-induced skin damage by maintenance of collagen density through regulation of expression of MMP-9 and related JNK signaling. Therefore, TEA therapy may have potential roles as an alternative treatment for protection against skin damage from aging.

  18. Thread Embedding Acupuncture Inhibits Ultraviolet B Irradiation-Induced Skin Photoaging in Hairless Mice

    PubMed Central

    Kim, Yoon-Jung; Kim, Ha-Neui; Shin, Mi-Sook; Choi, Byung-Tae

    2015-01-01

    Thread embedding acupuncture (TEA) is an acupuncture treatment applied to many diseases in Korean medical clinics because of its therapeutic effects by continuous stimulation to tissues. It has recently been used to enhance facial skin appearance and antiaging, but data from evidence-based medicine are limited. To investigate whether TEA therapy can inhibit skin photoaging by ultraviolet B (UVB) irradiation, we performed analyses for histology, histopathology, in situ zymography and western blot analysis in HR-1 hairless mice. TEA treatment resulted in decreased wrinkle formation and skin thickness (Epidermis; P = 0.001 versus UV) in UVB irradiated mice and also inhibited degradation of collagen fibers (P = 0.010 versus normal) by inhibiting proteolytic activity of gelatinase matrix-metalloproteinase-9 (MMP-9). Western blot data showed that activation of c-Jun N-terminal kinase (JNK) induced by UVB (P = 0.002 versus normal group) was significantly inhibited by TEA treatment (P = 0.005 versus UV) with subsequent alleviation of MMP-9 activation (P = 0.048 versus UV). These results suggest that TEA treatment can have anti-photoaging effects on UVB-induced skin damage by maintenance of collagen density through regulation of expression of MMP-9 and related JNK signaling. Therefore, TEA therapy may have potential roles as an alternative treatment for protection against skin damage from aging. PMID:26185518

  19. [Experimental research of turbidity influence on water quality monitoring of COD in UV-visible spectroscopy].

    PubMed

    Tang, Bin; Wei, Biao; Wu, De-Cao; Mi, De-Ling; Zhao, Jing-Xiao; Feng, Peng; Jiang, Shang-Hai; Mao, Ben-Jiang

    2014-11-01

    Eliminating turbidity is a direct effect spectroscopy detection of COD key technical problems. This stems from the UV-visible spectroscopy detected key quality parameters depend on an accurate and effective analysis of water quality parameters analytical model, and turbidity is an important parameter that affects the modeling. In this paper, we selected formazine turbidity solution and standard solution of potassium hydrogen phthalate to study the turbidity affect of UV--visible absorption spectroscopy detection of COD, at the characteristics wavelength of 245, 300, 360 and 560 nm wavelength point several characteristics with the turbidity change in absorbance method of least squares curve fitting, thus analyzes the variation of absorbance with turbidity. The results show, In the ultraviolet range of 240 to 380 nm, as the turbidity caused by particle produces compounds to the organics, it is relatively complicated to test the turbidity affections on the water Ultraviolet spectra; in the visible region of 380 to 780 nm, the turbidity of the spectrum weakens with wavelength increases. Based on this, this paper we study the multiplicative scatter correction method affected by the turbidity of the water sample spectra calibration test, this method can correct water samples spectral affected by turbidity. After treatment, by comparing the spectra before, the results showed that the turbidity caused by wavelength baseline shift points have been effectively corrected, and features in the ultraviolet region has not diminished. Then we make multiplicative scatter correction for the three selected UV liquid-visible absorption spectroscopy, experimental results shows that on the premise of saving the characteristic of the Ultraviolet-Visible absorption spectrum of water samples, which not only improve the quality of COD spectroscopy detection SNR, but also for providing an efficient data conditioning regimen for establishing an accurate of the chemical measurement methods.

  20. Why is it advantageous for animals to detect celestial polarization in the ultraviolet? Skylight polarization under clouds and canopies is strongest in the UV.

    PubMed

    Barta, András; Horváth, Gábor

    2004-02-21

    The perception of skylight polarization in the ultraviolet (UV) by many insect species for orientation purposes is rather surprising, because both the degree of linear polarization and the radiance of light from the clear sky are considerably lower in the UV than in the blue or green. In this work we call this the "UV-sky-pol paradox". Although in the past, several attempts have been made to resolve this paradox, none of them was convincing. We present here a possible quantitative resolution to the paradox. We show by a model calculation that if the air layer between a cloud and a ground-based observer is partly sunlit, the degree of linear polarization p of skylight originating from the cloudy region is highest in the UV, because in this spectral range the unpolarized UV-deficient cloudlight dilutes least the polarized light scattered in the air beneath the cloud. Similarly, if the air under foliage is partly sunlit, p of downwelling light from the canopied region is maximal in the UV, because in this part of spectrum the unpolarized UV-deficient green canopylight dilutes least the polarized light scattered in the air beneath the canopy. Therefore, the detection of polarization of downwelling light under clouds or canopies is most advantageous in the UV, in which spectral range the risk is the smallest that the degree of polarization p is lower than the threshold p(tr) of polarization sensitivity in animals. On the other hand, under clear skies there is no favoured wavelength for perception of celestial polarization, because p of skylight is high enough (p > p(tr)) at all wavelengths. We show that there is an analogy between the detection of UV skylight polarization and the polarotactic water detection in the UV. However, insects perceive skylight polarization by UV or blue or green receptors. The question, why they differ in the spectral channel used for the detection of celestial polarization cannot be answered at the present time, because data are insufficient

  1. Ultraviolet-B Protective Effect of Flavonoids from Eugenia caryophylata on Human Dermal Fibroblast Cells.

    PubMed

    Patwardhan, Juilee; Bhatt, Purvi

    2015-10-01

    The exposure of skin to ultraviolet-B (UV-B) radiations leads to deoxyribonucleic acid (DNA) damage and can induce production of free radicals which imbalance the redox status of the cell and lead to increased oxidative stress. Clove has been traditionally used for its analgesic, anti-inflammatory, anti-microbial, anti-viral, and antiseptic effects. To evaluate the UV-B protective activity of flavonoids from Eugenia caryophylata (clove) buds on human dermal fibroblast cells. Protective ability of flavonoid-enriched (FE) fraction of clove was studied against UV-B induced cytotoxicity, anti-oxidant regulation, oxidative DNA damage, intracellular reactive oxygen species (ROS) generation, apoptotic morphological changes, and regulation of heme oxygenase-1 (HO-1) gene through nuclear factor E2-related factor 2 antioxidant response element (Nrf2 ARE) pathway. FE fraction showed a significant antioxidant potential. Pretreatment of cells with FE fraction (10-40 μg/ml) reversed the effects of UV-B induced cytotoxicity, depletion of endogenous enzymatic antioxidants, oxidative DNA damage, intracellular ROS production, apoptotic changes, and overexpression of Nrf2 and HO-1. The present study demonstrated for the first time that the FE fraction from clove could confer UV-B protection probably through the Nrf2-ARE pathway, which included the down-regulation of Nrf2 and HO-1. These findings suggested that the flavonoids from clove could potentially be considered as UV-B protectants and can be explored further for its topical application to the area of the skin requiring protection. Pretreatment of human dermal fibroblast with flavonoid-enriched fraction of Eugenia caryophylata attenuated effects of ultraviolet-B radiationsIt also conferred protection through nuclear factor E2-related factor 2-antioxidant response pathway and increased tolerance of cells against oxidative stressFlavonoid-enriched fraction can be explored further for topical application to the skin as a

  2. Ultraviolet resources over Northern Eurasia.

    PubMed

    Chubarova, Natalia; Zhdanova, Yekaterina

    2013-10-05

    We propose a new climatology of UV resources over Northern Eurasia, which includes the assessments of both detrimental (erythema) and positive (vitamin D synthesis) effects of ultraviolet radiation on human health. The UV resources are defined by using several classes and subclasses - UV deficiency, UV optimum, and UV excess - for 6 different skin types. To better quantifying the vitamin D irradiance threshold we accounted for an open body fraction S as a function of effective air temperature. The spatial and temporal distribution of UV resources was estimated by radiative transfer (RT) modeling (8 stream DISORT RT code) with 1×1° grid and monthly resolution. For this purpose special datasets of main input geophysical parameters (total ozone content, aerosol characteristics, surface UV albedo, UV cloud modification factor) have been created over the territory of Northern Eurasia. The new approaches were used to retrieve aerosol parameters and cloud modification factor in the UV spectral region. As a result, the UV resources were obtained for clear-sky and mean cloudy conditions for different skin types. We show that the distribution of UV deficiency, UV optimum and UV excess is regulated by various geophysical parameters (mainly, total ozone, cloudiness and open body fraction) and can significantly deviate from latitudinal dependence. We also show that the UV optimum conditions can be simultaneously observed for people with different skin types (for example, for 4-5 skin types at the same time in spring over Western Europe). These UV optimum conditions for different skin types occupy a much larger territory over Europe than that over Asia. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Molecular Mechanisms of UV-Induced Apoptosis and Its Effects on Skin Residential Cells: The Implication in UV-Based Phototherapy

    PubMed Central

    Lee, Chih-Hung; Wu, Shi-Bei; Hong, Chien-Hui; Yu, Hsin-Su; Wei, Yau-Huei

    2013-01-01

    The human skin is an integral system that acts as a physical and immunological barrier to outside pathogens, toxicants, and harmful irradiations. Environmental ultraviolet rays (UV) from the sun might potentially play a more active role in regulating several important biological responses in the context of global warming. UV rays first encounter the uppermost epidermal keratinocytes causing apoptosis. The molecular mechanisms of UV-induced apoptosis of keratinocytes include direct DNA damage (intrinsic), clustering of death receptors on the cell surface (extrinsic), and generation of ROS. When apoptotic keratinocytes are processed by adjacent immature Langerhans cells (LCs), the inappropriately activated Langerhans cells could result in immunosuppression. Furthermore, UV can deplete LCs in the epidermis and impair their migratory capacity, leading to their accumulation in the dermis. Intriguingly, receptor activator of NF-κB (RANK) activation of LCs by UV can induce the pro-survival and anti-apoptotic signals due to the upregulation of Bcl-xL, leading to the generation of regulatory T cells. Meanwhile, a physiological dosage of UV can also enhance melanocyte survival and melanogenesis. Analogous to its effect in keratinocytes, a therapeutic dosage of UV can induce cell cycle arrest, activate antioxidant and DNA repair enzymes, and induce apoptosis through translocation of the Bcl-2 family proteins in melanocytes to ensure genomic integrity and survival of melanocytes. Furthermore, UV can elicit the synthesis of vitamin D, an important molecule in calcium homeostasis of various types of skin cells contributing to DNA repair and immunomodulation. Taken together, the above-mentioned effects of UV on apoptosis and its related biological effects such as proliferation inhibition, melanin synthesis, and immunomodulations on skin residential cells have provided an integrated biochemical and molecular biological basis for phototherapy that has been widely used in the

  4. Optimization of curved drift tubes for ultraviolet-ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Ni, Kai; Ou, Guangli; Zhang, Xiaoguo; Yu, Zhou; Yu, Quan; Qian, Xiang; Wang, Xiaohao

    2015-08-01

    Ion mobility spectrometry (IMS) is a key trace detection technique for toxic pollutants and explosives in the atmosphere. Ultraviolet radiation photoionization source is widely used as an ionization source for IMS due to its advantages of high selectivity and non-radioactivity. However, UV-IMS bring problems that UV rays will be launched into the drift tube which will cause secondary ionization and lead to the photoelectric effect of the Faraday disk. So air is often used as working gas to reduce the effective distance of UV rays, but it will limit the application areas of UV-IMS. In this paper, we propose a new structure of curved drift tube, which can avoid abnormally incident UV rays. Furthermore, using curved drift tube may increase the length of drift tube and then improve the resolution of UV-IMS according to previous research. We studied the homogeneity of electric field in the curved drift tube, which determined the performance of UV-IMS. Numerical simulation of electric field in curved drift tube was conducted by SIMION in our study. In addition, modeling method and homogeneity standard for electric field were also presented. The influences of key parameters include radius of gyration, gap between electrode as well as inner diameter of curved drift tube, on the homogeneity of electric field were researched and some useful laws were summarized. Finally, an optimized curved drift tube is designed to achieve homogenous drift electric field. There is more than 98.75% of the region inside the curved drift tube where the fluctuation of the electric field strength along the radial direction is less than 0.2% of that along the axial direction.

  5. The role of natural organic matter in nitrite formation by LP-UV/H2O2 treatment of nitrate-rich water.

    PubMed

    Semitsoglou-Tsiapou, Sofia; Mous, Astrid; Templeton, Michael R; Graham, Nigel J D; Hernández Leal, Lucía; Kruithof, Joop C

    2016-12-01

    The role of natural organic matter (NOM) on nitrite formation from nitrate photolysis by low pressure ultraviolet lamp (LP-UV) photolysis and LP-UV/H 2 O 2 treatment was investigated. Nitrate levels up to the WHO guideline maximum of 50 mg NO 3 - /L were used in tests. The presence of 4 mg/L Suwannee River natural organic matter (NOM) led to increased nitrite yields compared to NOM-free controls. This was caused partly by NOM scavenging of OH radicals, preserving the produced NO 2 - as well as the ONOO - that leads to NO 2 - formation, but also via the production of radical species ( 1 O 2 , O 2 - and OH) by the photolysis of NOM. In addition, solvated electrons formed by NOM photolysis may reduce nitrate directly to nitrite. For comparison, Nordic Lake NOM, representative of aquatic NOM, as well as Pony Lake NOM, which had a greater nitrogen content (6.51% w/w) than the other two types of NOM, were investigated, yielding similar nitrite levels as Suwannee River NOM. The results suggest that neither the type nor the nitrogen content of the NOM have an effect on the nitrite yields obtained over the range of UV/H 2 O 2 doses applied (UV fluences of 500-2100 mJ/cm 2 and hydrogen peroxide doses of 10, 25, and 50 mg/L). The findings indicate that for UV fluences above 1500 mJ/cm 2 the resulting nitrite concentration can exceed the 0.1 mg/L EU regulatory limit for nitrite, suggesting that nitrite formation by LP-UV advanced oxidation of nitrate-rich waters is important to consider. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. ASSESSMENT OF THE RISK OF SOLAR ULTRAVIOLET RADIATION TO AMPHIBIANS. II: IN SITU CHARACTERIZATION OF SOLAR ULTRAVIOLET RADIATION IN AMPHIBIAN HABITATS

    EPA Science Inventory

    Ultraviolet B (UVB) radiation has been hypothesized as a potential cause of amphibian population declines and increased incidences of malformations. Realistic studies documenting UV irradiance or dose have rarely been conducted in wetlands used by amphibians. We demonstrate that ...

  7. Far Ultraviolet Spectroscopic Explorer Observations of the Seyfert 1.5 Galaxy NGC 5548 in a Low State

    NASA Technical Reports Server (NTRS)

    Brotherton, M. S.; Green, R. F.; Kriss, G. A.; Oegerle, W.; Kaiser, M. E.; Zheng, W.; Hutchings, J. B.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We present far-ultraviolet spectra of the Seyfert 1.5 galaxy NGC 5548 obtained in 2000 June with the Far Ultraviolet Spectroscopic Explorer (FUSE). Our data span the observed wavelength range 915-1185 A at a resolution of approximately 20 km s(exp -1). The spectrum shows a weak continuum and emission from O VI (lambda)(lambda)1032, 1038, C III (lambda)977, and He II (lambda)1085. The FUSE data were obtained when the AGN (Active Galactic Nuclei) was in a low state, which has revealed strong, narrow O VI emission lines. We also resolve intrinsic, associated absorption lines of O VI and the Lyman series. Several distinct kinematic components are present, spanning a velocity range of approximately 0 to -1300 km s(exp -1) relative to systemic, with kinematic structure similar to that seen in previous observations of longer wavelength ultraviolet (UV) lines. We explore the relationships between the far-UV (ultraviolet) absorbers and those seen previously in the UV and X-rays. We find that the high-velocity UV absorption component is consistent with being low-ionization, contrary to some previous claims, and is consistent with its non-detection in high-resolution X-ray spectra. The intermediate velocity absorbers, at -300 to -400 km s(exp -1), show H I and O VI column densities consistent with having contributions from both a high-ionization X-ray absorber and a low-ionization UV absorber. No single far-UV absorbing component can be solely identified with the X-ray absorber.

  8. Effect of UV-C treatment on inactivation of Escherichia coli O157:H7, microbial loads, and quality of button mushrooms

    USDA-ARS?s Scientific Manuscript database

    This study investigated the effects of ultraviolet-C (UV-C) light applied to both sides of mushrooms on microbial loads and product quality during storage for 21 days at 4 C. Microflora populations, color, antioxidant activity, total phenolics, and ascorbic acid were measured at 1, 7, 14 and 21 days...

  9. Challenges of UV light processing of low UVT foods and beverages

    NASA Astrophysics Data System (ADS)

    Koutchma, Tatiana

    2010-08-01

    Ultraviolet (UV) technology holds promise as a low cost non-thermal alternative to heat pasteurization of liquid foods and beverages. However, its application for foods is still limited due to low UV transmittance (LUVT). LUVT foods have a diverse range of chemical (pH, Brix, Aw), physical (density and viscosity) and optical properties (absorbance and scattering) that are critical for systems and process designs. The commercially available UV sources tested for foods include low and medium pressure mercury lamps (LPM and MPM), excimer and pulsed lamps (PUV). The LPM and excimer lamps are monochromatic sources whereas emission of MPM and PUV is polychromatic. The optimized design of UV-systems and UV-sources with parameters that match to specific product spectra have a potential to make UV treatments of LUVT foods more effective and will serve its further commercialization. In order to select UV source for specific food application, processing effects on nutritional, quality, sensorial and safety markers have to be evaluated. This paper will review current status of UV technology for food processing along with regulatory requirements. Discussion of approaches and results of measurements of chemico-physical and optical properties of various foods (fresh juices, milk, liquid whey proteins and sweeteners) that are critical for UV process and systems design will follow. Available UV sources did not prove totally effective either resulting in low microbial reduction or UV over-dosing of the product thereby leading to sensory changes. Beam shaping of UV light presents new opportunities to improve dosage uniformity and delivery of UV photons in LUVT foods.

  10. A private ultraviolet channel in visual communication.

    PubMed

    Cummings, Molly E; Rosenthal, Gil G; Ryan, Michael J

    2003-05-07

    Although private communication is considered an important diversifying force in evolution, there is little direct behavioural evidence to support this notion. Here, we show that ultraviolet (UV) signalling in northern swordtails (Xiphophorus) affords a channel for communication that is not accessible to their major predator, Astyanax mexicanus, the Mexican tetra. Laboratory and field behavioural experiments with swordtails (X. nigrensis) and predators (A. mexicanus) demonstrate that male UV ornamentation significantly increases their attractiveness to females but not to this predator, which is less sensitive to UV. UV reflectance among swordtail species correlates positively with tetra densities across habitats, and visual contrast estimates suggest that UV signals are highly conspicuous to swordtails in their natural environment. Cross-species comparisons also support the hypothesis that natural selection drives the use of UV communication. We compared two species, one with high (X. nigrensis) and one with low (X. malinche) Mexican tetra densities. Xiphophorus nigrensis males reflect significantly more UV than X. malinche, exhibit significant UV sexual dimorphism, and UV is a salient component of the sexual communication system. In X. malinche, however, males reflect minimally in the UV, there is no UV sexual dimorphism, and UV does not play a part in its communication system.

  11. A private ultraviolet channel in visual communication.

    PubMed Central

    Cummings, Molly E; Rosenthal, Gil G; Ryan, Michael J

    2003-01-01

    Although private communication is considered an important diversifying force in evolution, there is little direct behavioural evidence to support this notion. Here, we show that ultraviolet (UV) signalling in northern swordtails (Xiphophorus) affords a channel for communication that is not accessible to their major predator, Astyanax mexicanus, the Mexican tetra. Laboratory and field behavioural experiments with swordtails (X. nigrensis) and predators (A. mexicanus) demonstrate that male UV ornamentation significantly increases their attractiveness to females but not to this predator, which is less sensitive to UV. UV reflectance among swordtail species correlates positively with tetra densities across habitats, and visual contrast estimates suggest that UV signals are highly conspicuous to swordtails in their natural environment. Cross-species comparisons also support the hypothesis that natural selection drives the use of UV communication. We compared two species, one with high (X. nigrensis) and one with low (X. malinche) Mexican tetra densities. Xiphophorus nigrensis males reflect significantly more UV than X. malinche, exhibit significant UV sexual dimorphism, and UV is a salient component of the sexual communication system. In X. malinche, however, males reflect minimally in the UV, there is no UV sexual dimorphism, and UV does not play a part in its communication system. PMID:12803903

  12. The budget of biologically active ultraviolet radiation in the earth-atmosphere system

    NASA Technical Reports Server (NTRS)

    Frederick, John E.; Lubin, Dan

    1988-01-01

    This study applies the concept of a budget to describe the interaction of solar ultraviolet (UV) radiation with the earth-atmosphere system. The wavelength ranges of interest are the biologically relevant UV-B between 280 and 320 nm and the UV-A from 32000 to 400 nm. The Nimbus 7 solar backscattered ultraviolet (SBUV) instrument provides measurements of total column ozone and information concerning cloud cover which, in combination with a simple model of radiation transfer, define the fractions of incident solar irradiance absorbed in the atmosphere, reflected to space, and absorbed at the ground. Results for the month of July quantify the contribution of fractional cloud cover and cloud optical thickness to the radiation budget's three components. Scattering within a thick cloud layer makes the downward radiation field at the cloud base more isotropic than is the case for clear skies. For small solar zenith angles, typical of summer midday conditions, the effective pathlength of this diffuse irradiance through tropospheric ozone is greater than that under clear-sky conditions. The result is an enhanced absorption of UV-B radiation in the troposphere during cloud-covered conditions. Major changes in global cloud cover or cloud optical thicknesses could alter the ultraviolet radiation received by the biosphere by an amount comparable to that predicted for long-term trends in ozone.

  13. Modeling Ultraviolet (UV) Light Emitting Diode (LED) Energy Propagation in Reactor Vessels

    DTIC Science & Technology

    2014-03-27

    21 Table 4: UV Mercury Lamps , UV LED Bulbs, and Visible LED Bulb Advantages and Disadvantages...over low pressure mercury lamps include smaller size, minimal start up time, and no hazardous material. Projections show UV LEDs will follow similar

  14. The influence of UV radiation on protistan evolution

    NASA Technical Reports Server (NTRS)

    Rothschild, L. J.

    1999-01-01

    Ultraviolet radiation has provided an evolutionary challenge to life on Earth. Recent increases in surficial ultraviolet B fluxes have focused attention on the role of UV radiation in protistan ecology, cancer, and DNA damage. Exploiting this new wealth of data, I examine the possibility that ultraviolet radiation may have played a significant role in the evolution of the first eukaryotes, that is, protists. Protists probably arose well before the formation of a significant ozone shield, and thus were probably subjected to substantial ultraviolet A, ultraviolet B, and ultraviolet C fluxes early in their evolution. Evolution consists of the generation of heritable variations and the subsequent selection of these variants. Ultraviolet radiation has played a role both as a mutagen and as a selective agent. In its role as a mutagen, it may have been crucial in the origin of sex and as a driver of molecular evolution. As a selective agent, its influence has been broad. Discussed in this paper are the influence of ultraviolet radiation on biogeography, photosynthesis, and desiccation resistance.

  15. On an improvement of UV index forecast: UV index diagnosis and forecast for Belsk, Poland, in Spring/Summer 1999

    NASA Astrophysics Data System (ADS)

    Krzyścin, J. W.; Jaroslawski, J.; Sobolewski, P.

    2001-10-01

    A forecast of the UV index for the following day is presented. The standard approach to the UV index modelling is applied, i.e., the clear-sky UV index is multiplied by the UV cloud transmission factor. The input to the clear-sky model (tropospheric ultraviolet and visible-TUV model, Madronich, in: M. Tevini (Ed.), Environmental Effects of Ultraviolet Radiation, Lewis Publisher, Boca Raton, /1993, p. 17) consists of the total ozone forecast (by a regression model using the observed and forecasted meteorological variables taken as the initial values of aviation (AVN) global model and their 24-hour forecasts, respectively) and aerosols optical depth (AOD) forecast (assumed persistence). The cloud transmission factor forecast is inferred from the 24-h AVN model run for the total (Sun/+sky) solar irradiance at noon. The model is validated comparing the UV index forecasts with the observed values, which are derived from the daily pattern of the UV erythemal irradiance taken at Belsk (52°N,21°E), Poland, by means of the UV Biometer Solar model 501A for the period May-September 1999. Eighty-one percent and 92% of all forecasts fall into /+/-1 and /+/-2 index unit range, respectively. Underestimation of UV index occurs only in 15%. Thus, the model gives a high security in Sun protection for the public. It is found that in /~35% of all cases a more accurate forecast of AOD is needed to estimate the daily maximum of clear-sky irradiance with the error not exceeding 5%. The assumption of the persistence of the cloud characteristics appears as an alternative to the 24-h forecast of the cloud transmission factor in the case when the AVN prognoses are not available.

  16. Radiation-damage-induced phasing: a case study using UV irradiation with light-emitting diodes.

    PubMed

    de Sanctis, Daniele; Zubieta, Chloe; Felisaz, Franck; Caserotto, Hugo; Nanao, Max H

    2016-03-01

    Exposure to X-rays, high-intensity visible light or ultraviolet radiation results in alterations to protein structure such as the breakage of disulfide bonds, the loss of electron density at electron-rich centres and the movement of side chains. These specific changes can be exploited in order to obtain phase information. Here, a case study using insulin to illustrate each step of the radiation-damage-induced phasing (RIP) method is presented. Unlike a traditional X-ray-induced damage step, specific damage is introduced via ultraviolet light-emitting diodes (UV-LEDs). In contrast to UV lasers, UV-LEDs have the advantages of small size, low cost and relative ease of use.

  17. Influence of hydrophilic pre-treatment on resin bonding to zirconia ceramics.

    PubMed

    Noro, Akio; Kameyama, Atsushi; Haruyama, Akiko; Takahashi, Toshiyuki

    2015-01-01

    Atmospheric plasma or ultraviolet (UV) treatment alters the surface characteristics of tetragonal zirconia polycrystal (TZP), increasing its hydrophilicity by reducing the contact angle against water to zero. This suggests that such treatment would increase the wettability of bonding resin. The purpose of this study was to determine how increasing the hydrophilicity of TZP through plasma irradiation, UV treatment, or application of ceramic primer affected initial bonding with resin composites. Here, the effect of each pre-treatment on the hydrophilicity of TZP surfaces was determined by evaluating change in shear bond strength. Plasma irradiation, UV, or ceramic primer pre-treatment showed no significant effect on bonding strength between TZP surfaces and resin composites. In addition, alumina blasting yielded no significant increase in bond strength. Plasma irradiation, UV treatment, or ceramic primer pre-treatment did not lead to significant increase in bond strength between TZP and resin composites.

  18. The ultraviolet radiation environment of pollen and its effect on pollen germination

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The damage to pollen caused by natural ultraviolet radiation was investigated. Experimental and literature research into the UV radiation environment is reported. Viability and germination of wind and insect pollinated species were determined. Physiological, developmental, and protective factors influencing UV sensitivity of binucleate, advanced binucleate, and trinucleate pollen grains are compared.

  19. Rapid modulation of ultraviolet shielding in plants is influenced by solar ultraviolet radiation and linked to alterations in flavonoids.

    PubMed

    Barnes, Paul W; Tobler, Mark A; Keefover-Ring, Ken; Flint, Stephan D; Barkley, Anne E; Ryel, Ronald J; Lindroth, Richard L

    2016-01-01

    The accumulation of ultraviolet (UV)-absorbing compounds (flavonoids and related phenylpropanoids) and the resultant decrease in epidermal UV transmittance (TUV ) are primary protective mechanisms employed by plants against potentially damaging solar UV radiation and are critical components of the overall acclimation response of plants to changing solar UV environments. Whether plants can adjust this UV sunscreen protection in response to rapid changes in UV, as occurs on a diurnal basis, is largely unexplored. Here, we use a combination of approaches to demonstrate that plants can modulate their UV-screening properties within minutes to hours, and these changes are driven, in part, by UV radiation. For the cultivated species Abelmoschus esculentus, large (30-50%) and reversible changes in TUV occurred on a diurnal basis, and these adjustments were associated with changes in the concentrations of whole-leaf UV-absorbing compounds and several quercetin glycosides. Similar results were found for two other species (Vicia faba and Solanum lycopersicum), but no such changes were detected in Zea mays. These findings reveal a much more dynamic UV-protection mechanism than previously recognized, raise important questions concerning the costs and benefits of UV-protection strategies in plants and have practical implications for employing UV to enhance crop vigor and quality in controlled environments. © 2015 John Wiley & Sons Ltd.

  20. Is UV-induced DNA damage greater at higher elevation?

    PubMed

    Wang, Qing-Wei; Hidema, Jun; Hikosaka, Kouki

    2014-05-01

    • Although ultraviolet radiation (UV) is known to have negative effects on plant growth, there has been no direct evidence that plants growing at higher elevations are more severely affected by ultraviolet-B (UV-B) radiation, which is known to increase with elevation. We examined damage to DNA, a primary target of UV-B, in the widespread species Polygonum sachalinense (Fallopia sachalinensis) and Plantago asiatica at two elevations.• We sampled leaves of both species at 300 and 1700 m above sea level every 2 h for 11 d across the growing season and determined the level of cyclobutane pyrimidine dimer (CPD), a major product of UV damage to DNA.• The CPD level was significantly influenced by the time of day, date, elevation, and their interactions in both species. The CPD level tended to be higher at noon or on sunny days. DNA damage was more severe at 1700 m than at 300 m: on average, 8.7% greater at high elevation in P. asiatica and 7.8% greater in P. sachalinense Stepwise multiple regression analysis indicated that the CPD level was explained mainly by UV-B and had no significant relationship with other environmental factors such as temperature and photosynthetically active radiation.• UV-induced DNA damage in plants is greater at higher elevations. © 2014 Botanical Society of America, Inc.

  1. Ultraviolet radiation in the Atacama Desert.

    PubMed

    Cordero, R R; Damiani, A; Jorquera, J; Sepúlveda, E; Caballero, M; Fernandez, S; Feron, S; Llanillo, P J; Carrasco, J; Laroze, D; Labbe, F

    2018-03-31

    The world's highest levels of surface ultraviolet (UV) irradiance have been measured in the Atacama Desert. This area is characterized by its high altitude, prevalent cloudless conditions, and a relatively low total ozone column. In this paper, we provide estimates of the surface UV (monthly UV index at noon and annual doses of UV-B and UV-A) for all sky conditions in the Atacama Desert. We found that the UV index at noon during the austral summer is expected to be greater than 11 in the whole desert. The annual UV-B (UV-A) doses were found to range from about 3.5 kWh/m 2 (130 kWh/m 2 ) in coastal areas to 5 kWh/m 2 (160 kWh/m 2 ) on the Andean plateau. Our results confirm significant interhemispherical differences. Typical annual UV-B doses in the Atacama Desert are about 40% greater than typical annual UV-B doses in northern Africa. Mostly due to seasonal changes in the ozone, the differences between the Atacama Desert and northern Africa are expected to be about 60% in the case of peak UV-B levels (i.e. the UV-B irradiances at noon close to the summer solstice in each hemisphere). Interhemispherical differences in the UV-A are significantly lower since the effect of the ozone in this part of the spectrum is minor.

  2. A geometric ultraviolet-B radiation transfer model applied to vegetation canopies

    Treesearch

    Wei Gao; Richard H. Grant; Gordon M. Heisler; James R. Slusser

    2002-01-01

    The decrease in stratospheric ozone (O3) has prompted continued efforts to assess the potential damage to plant and animal life due to enhanced levels of solar ultraviolet (UV)-B (280-320 nm) radiation. The objective of this study was to develop and evaluate an analytical model to simulate the UV-B irradiance loading on horizontal below- canopy...

  3. INTERACTIONS OF SOLAR UV RADIATION AND DISSOLVED ORGANIC MATTER IN AQUATIC ENVIRONMENTS

    EPA Science Inventory

    Changes in the ozone layer over the past two decades have resulted in increases in solar ultraviolet (UV) radiation that reaches the surface of aquatic environments. Recent studies have demonstrated that these UV increases cause changes in photochemical reactions that affect the...

  4. ZnO-based ultraviolet photodetectors.

    PubMed

    Liu, Kewei; Sakurai, Makoto; Aono, Masakazu

    2010-01-01

    Ultraviolet (UV) photodetection has drawn a great deal of attention in recent years due to a wide range of civil and military applications. Because of its wide band gap, low cost, strong radiation hardness and high chemical stability, ZnO are regarded as one of the most promising candidates for UV photodetectors. Additionally, doping in ZnO with Mg elements can adjust the bandgap largely and make it feasible to prepare UV photodetectors with different cut-off wavelengths. ZnO-based photoconductors, Schottky photodiodes, metal-semiconductor-metal photodiodes and p-n junction photodetectors have been developed. In this work, it mainly focuses on the ZnO and ZnMgO films photodetectors. We analyze the performance of ZnO-based photodetectors, discussing recent achievements, and comparing the characteristics of the various photodetector structures developed to date.

  5. Early exposure to ultraviolet-B radiation decreases immune function later in life

    PubMed Central

    Ceccato, Emma; Cramp, Rebecca L.; Seebacher, Frank; Franklin, Craig E.

    2016-01-01

    Amphibians have declined dramatically worldwide. Many of these declines are occurring in areas where no obvious anthropogenic stressors are present. It is proposed that in these areas, environmental factors such as elevated solar ultraviolet-B (UV-B) radiation could be responsible. Ultraviolet-B levels have increased in many parts of the world as a consequence of the anthropogenic destruction of the ozone layer. Amphibian tadpoles are particularly sensitive to the damaging effects of UV-B radiation, with exposure disrupting growth and fitness in many species. Given that UV-B can disrupt immune function in other animals, we tested the hypothesis that early UV-B exposure suppresses the immune responses of amphibian tadpoles and subsequent juvenile frogs. We exposed Limnodynastes peronii tadpoles to sublethal levels of UV-B radiation for 6 weeks after hatching, then examined indices of immune function in both the tadpoles and the subsequent metamorphs. There was no significant effect of UV-B on tadpole leucocyte counts or on their response to an acute antigen (phytohaemagglutinin) challenge. However, early UV-B exposure resulted in a significant reduction in both metamorph leucocyte abundance and their response to an acute phytohaemagglutinin challenge. These data demonstrate that early UV-B exposure can have carry-over effects on later life-history traits even if the applied stressor has no immediately discernible effect. These findings have important implications for our understanding of the effects of UV-B exposure on amphibian health and susceptibility to diseases such as chytridiomycosis. PMID:27668081

  6. Wavelength dependent recovery of UV-mediated damage: Tying up the loose ends of optical based powdery mildew management.

    PubMed

    Suthaparan, Aruppillai; Pathak, Ranjana; Solhaug, Knut Asbjørn; Gislerød, Hans Ragnar

    2018-01-01

    Controlled environment chamber experiments at Petri dish level were conducted to examine the wavelength and dose dependent efficacy of ultraviolet (UV) radiation, the recovery action potential of optical radiation applied concomitantly/subsequently to effective UV treatment, and the lapse time between UV treatment and subsequent exposure to recovery wavelength on germination efficiency of Oidium neolycopersici conidia. Conidia of eight- to nine-day-old colonies were dusted on water agar surface in Petri dishes and exposed to UV treatments (without lid). Immediately after UV treatments, Petri dishes were sealed and incubated in darkness or differing optical environments generated using seven different radiation sources (range 290nm to 780nm). Twenty-four hours after UV treatment, fifty conidia from each sample were assessed for germination. Compared to non-UV controls, <10% of the conidia germinated after 30s of exposure to 254nm or 283nm UV and subsequent dark incubation. Conidia germination was almost negligible if the exposure duration increased to 4min. Germination was about 60% with broad spectrum UV after 1min of exposure, and about 35% after 2 to 4min of exposure. There was no reduction of conidia germination with the exposure of ≤4min with 310nm. With the tested wavelength and dose ranges, germination recovery was effective in the 350nm to 500nm range. Germination efficiency of conidia treated with effective UV was significantly higher (>73%) if incubated subsequently in the 350nm to 500nm range (germination recovery). Furthermore, germination recovery depends on the characteristics of UV treatment (wavelength, and duration of exposure) and the lapse time between UV treatment and subsequent exposure to optical radiation in the recovery range. The findings of this study provide key criteria for wavelength selection, combination and application time in the optical radiation range, enabling improved design of optical based management strategies against

  7. Analysis of the UV-B Regime and Potential Effects on Alfalfa

    NASA Technical Reports Server (NTRS)

    Seitz, Jeffery C.

    1998-01-01

    Life at the surface of the Earth, over the last 400 m.y., evolved under conditions of decreased short-wave radiation (i.e., ultraviolet) relative to solar output due to absorption and scattering by constituents (e.g., ozone, water vapor, aerosols) in the upper atmosphere. However, a significant amount of ultraviolet radiation in the range from 280-320 nm, known as ultraviolet-B radiation, reaches the Earth's surface and has sufficient energy to be damaging to biologic tissue. Natural fluctuations in atmospheric constituents (seasonal variation, volcanic eruptions, etc.), changes in the orbital attitude of the Earth (precession, axial tilt, orbital eccentricity), and long-term solar variability contribute to changes in the total amount of ultraviolet radiation reaching the surface of the Earth, and thus, the biosphere. More recently, the atmospheric release of commercial propellants and refrigerants, known as chlorofluorocarbons (CFCs), has contributed to a significant depletion in naturally occurring ozone in the stratosphere. Thus, decreased stratospheric ozone has resulted in an increased UV-B flux at the Earth's surface which may have profound effects on terrestrial and marine organisms. In this study, we are investigating the effects of differing solar UV-B fluxes on alfalfa (Medicago sativa L.), an important agricultural crop. A long-term goal of this research is to develop spectral signatures to detect plant response to increased UV-B radiation from remote sensor platforms.

  8. UV/chlorine treatment of carbamazepine: Transformation products and their formation kinetics.

    PubMed

    Pan, Yanheng; Cheng, ShuangShuang; Yang, Xin; Ren, Jingyue; Fang, Jingyun; Shang, Chii; Song, Weihua; Lian, Lushi; Zhang, Xinran

    2017-06-01

    Carbamazepine (CBZ) is one of the pharmaceuticals most frequently detected in the aqueous environment. This study investigated the transformation products when CBZ is degraded by chlorine under ultraviolet (UV) irradiation (the UV/chlorine process). Detailed pathways for the degradation of CBZ were elucidated using ultra-high performance liquid chromatography (UHPLC)-quadrupole time-of-flight mass spectrometry (QTOF-MS). CBZ is readily degraded by hydroxyl radicals (HO) and chlorine radicals (Cl) in the UV/chlorine process, and 24 transformation products were identified. The products indicate that the 10,11-double bond and aromatic ring in CBZ are the sites most susceptible to attack by HO and Cl. Subsequent reaction produces hydroxylated and chlorinated aromatic ring products. Four specific products were quantified and their evolution was related with the chlorine dose, pH, and natural organic matter concentration. Their yields showed an increase followed by a decreasing trend with prolonged reaction time. CBZ-10,11-epoxide (I), the main quantified transformation product from HO oxidation, was observed with a peak transformation yield of 3-32% depending on the conditions. The more toxic acridine (IV) was formed involving both HO and Cl with peak transformation yields of 0.4-1%. All four quantified products together amounted to a peak transformation yield of 34.5%. The potential toxicity of the transformation products was assayed by evaluating their inhibition of the bioluminescence of the bacterium Vibrio Fischeri. The inhibition increased at first and the decreased at longer reaction times, which was in parallel with the evolution of transformation products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Reference ultraviolet wavelengths of CrIII measured by Fourier transform spectrometry

    NASA Astrophysics Data System (ADS)

    Smillie, D. G.; Pickering, J. C.; Smith, P. L.

    2008-10-01

    We report CrIII ultraviolet (UV) transition wavelengths measured using a high-resolution Fourier transform spectrometer (FTS), for the first time, available for use as wavelength standards. The doubly ionized iron group element spectra dominate the observed opacity of hot B stars in the UV, and improved, accurate, wavelengths are required for the analysis of astronomical spectra. The spectrum was excited using a chromium-neon Penning discharge lamp and measured with the Imperial College vacuum ultraviolet FTS. 140 classified 3d34s-3d34p CrIII transition lines, in the spectral range 38000 to 49000 cm-1 (2632 to 2041 Å), the strongest having wavelength uncertainties less than one part in 107, are presented.

  10. Application of ultraviolet, ozone, and advanced oxidation treatments to washwaters to destroy nitrosamines, nitramines, amines, and aldehydes formed during amine-based carbon capture.

    PubMed

    Shah, Amisha D; Dai, Ning; Mitch, William A

    2013-03-19

    Although amine-based CO(2) absorption is a leading contender for full-scale postcombustion CO(2) capture at power plants, concerns have been raised about the potential release of carcinogenic N-nitrosamines and N-nitramines formed by reaction of exhaust gas NO(x) with the amines. Experiments with a laboratory-scale pilot unit suggested that washwater units meant to scrub contaminants from absorber unit exhaust could potentially serve as a source of N-nitrosamines via reactions of residual NO(x) with amines accumulating in the washwater. Dosage requirements for the continuous treatment of the washwater recycle line with ultraviolet (UV) light for destruction of N-nitrosamines and N-nitramines, and with ozone or hydroxyl radical-based advanced oxidation processes (AOPs) for destruction of amines and aldehydes, were evaluated. Although <1000 mJ/cm(2) UV fluence was generally needed for 90% removal of a series of model N-nitrosamines and N-nitramines, 280-1000 mJ/cm(2) average fluence was needed for 90% removal of total N-nitrosamines in pilot washwaters associated with two different solvents. While AOPs were somewhat more efficient than ozone for acetaldehyde destruction, ozone was more efficient for amine destruction. Ozone achieved 90% amine removal in washwaters at 5-12 molar excess of ozone, indicating transferred dosage levels of ∼100 mg/L for 90% removal in a first-stage washwater unit, but likely only ∼10 mg/L if applied to a second-stage washwater. Accurate dosage and cost estimates would require pilot testing to capture synergies between UV and ozone treatments.

  11. UV Observations of Atomic Oxygen in the Cusp Region

    NASA Astrophysics Data System (ADS)

    Fritz, B.; Lessard, M.; Dymond, K.; Kenward, D. R.; Lynch, K. A.; Clemmons, J. H.; Hecht, J. H.; Hysell, D. L.; Crowley, G.

    2017-12-01

    The Rocket Experiment for Neutral Upwelling (RENU) 2 launched into the dayside cusp on 13 December, 2015. The sounding rocket payload carried a comprehensive suite of particle, field, and remote sensing instruments to characterize the thermosphere in a region where pockets of enhanced neutral density have been detected [Lühr et al, 2004]. An ultraviolet photomultiplier tube (UV PMT) was oriented to look along the magnetic field line and remotely detect neutral atomic oxygen (OI) above the payload. The UV PMT measured a clear enhancement as the payload descended through a poleward moving auroral form, an indicator of structure in both altitude and latitude. Context for the UV PMT measurement is provided by the Special Sensor Ultraviolet Imager (SSULI) instrument on the Defense Meteorological Space Program (DMSP) satellite, which also measured OI as it passed through the cusp. UV tomography of SSULI observations produces a two-dimensional cross-section of volumetric emission rates in the high-latitude thermosphere prior to the RENU 2 flight. The volume emission rate may then be inverted to produce a profile of neutral density in the thermosphere. A similar technique is used to interpret the UV PMT measurement and determine structure in the thermosphere as RENU 2 descended through the cusp.

  12. Ultra-wide band electromagnetic radiation does not affect UV-induced recombination and mutagenesis in yeast.

    PubMed

    Pakhomova, O N; Belt, M L; Mathur, S P; Lee, J C; Akyel, Y

    1998-01-01

    Cell samples of the yeast Saccharomyces cerevisiae were exposed to 100 J/m2 of 254 nm ultraviolet (UV) radiation followed by a 30 min treatment with ultra-wide band (UWB) electromagnetic pulses. The UWB pulses (101-104 kV/m, 1.0 ns width, 165 ps rise time) were applied at the repetition rates of 0 Hz (sham), 16 Hz, or 600 Hz. The effect of exposures was evaluated from the colony-forming ability of the cells on complete and selective media and the number of aberrant colonies. The experiments established no effect of UWB exposure on the UV-induced reciprocal and non-reciprocal recombination, mutagenesis, or cell survival.

  13. Far Ultraviolet Spectroscopy of Saturn's Icy Moon Rhea

    NASA Astrophysics Data System (ADS)

    Elowitz, Mark; Hendrix, Amanda; Mason, Nigel J.; Sivaraman, Bhalamurugan

    2018-01-01

    We present an analysis of spatially resolved, far-UV reflectance spectra of Saturn’s icy satellite Rhea, collected by the Cassini Ultraviolet Imaging Spectrograph (UVIS). In recent years ultraviolet spectroscopy has become an important tool for analysing the icy satellites of the outer solar system (1Hendrix & Hansen, 2008). Far-UV spectroscopy provides unique information about the molecular structure and electronic transitions of chemical species. Many molecules that are suspected to be present in the icy surfaces of moons in the outer solar system have broad absorption features due to electronic transitions that occur in the far-UV portion of the spectrum. The studies show that Rhea, like the other icy satellites of the Saturnian system are dominated by water-ice as evident by the 165-nm absorption edge, with minor UV absorbing contaminants. Far-UV spectra of several Saturnian icy satellites, including Rhea and Dione, show an unexplained weak absorption feature centered near 184 nm. To carry out the geochemical survey of Rhea’s surface, the UVIS observations are compared with vacuum-UV spectra of thin-ice samples measured in laboratory experiments. Thin film laboratory spectra of water-ice and other molecular compounds in the solid phase were collected at near-vacuum conditions and temperatures identical to those at the surface of Rhea. Comparison between the observed far-UV spectra of Rhea’s surface ice and modelled spectra based on laboratory absorption measurements of different non-water-ice compounds show that two possible chemical compounds could explain the 184-nm absorption feature. The two molecular compounds include simple chlorine molecules and hydrazine monohydrate. Attempts to explain the source(s) of these compounds on Rhea and the scientific implications of their possible discovery will be summarized.[1] Hendrix, A. R. & Hansen, C. J. (2008). Icarus, 193, pp. 323-333.

  14. Generation mechanism of hydroxyl radical species and its lifetime prediction during the plasma-initiated ultraviolet (UV) photolysis

    PubMed Central

    Attri, Pankaj; Kim, Yong Hee; Park, Dae Hoon; Park, Ji Hoon; Hong, Young J.; Uhm, Han Sup; Kim, Kyoung-Nam; Fridman, Alexander; Choi, Eun Ha

    2015-01-01

    Through this work, we have elucidated the mechanism of hydroxyl radicals (OH•) generation and its life time measurements in biosolution. We observed that plasma-initiated ultraviolet (UV) photolysis were responsible for the continues generation of OH• species, that resulted in OH• to be major reactive species (RS) in the solution. The density and lifetime of OH• species acted inversely proportional to each other with increasing depth inside the solution. The cause of increased lifetime of OH• inside the solution is predicted using theoretical and semiempirical calculations. Further, to predict the mechanism of conversion of hydroxide ion (OH−) to OH• or H2O2 (hydrogen peroxide) and electron, we determined the current inside the solution of different pH. Additionally, we have investigated the critical criterion for OH• interaction on cancer cell inducing apoptosis under effective OH• exposure time. These studies are innovative in the field of plasma chemistry and medicine. PMID:25790968

  15. UV Signatures of Ices: Moons in the Solar System

    NASA Astrophysics Data System (ADS)

    Hendrix, A. R.; Hansen, C. J.; Retherford, K. D.; Vilas, F.

    2017-12-01

    Using Earth-orbiting telescopes such as the International Ultraviolet Explorer and the Hubble Space Telescope, significant advances have been made in the area of ultraviolet observations of solar system objects. More in-depth studies have been made using interplanetary probes such as Galileo, Cassini and Lunar Reconnaissance Orbiter (LRO). While the UV spectral range has traditionally been used to study atmospheric and auroral processes, there is much to be learned by examining solid surfaces in the UV, including surface composition, weathering processes and effects, and the generation of thin atmospheres. Here we focus on moons in the solar system, including Earth's moon and the Saturnian satellites. The diagnostic UV signature of H2O is used to study ice in the lunar polar regions as well as hydration at lower latitudes, in observations from LRO LAMP. The water ice signature is nearly ubiquitous in the Saturn system; Cassini UVIS datasets are used to study grain sizes, exogenic processes/effects and non-ice species.

  16. Scattered UV irradiation during VISX excimer laser keratorefractive surgery.

    PubMed

    Hope, R J; Weber, E D; Bower, K S; Pasternak, J P; Sliney, D H

    2008-04-01

    To evaluate the potential occupational health hazards associated with scattered ultraviolet (UV) radiation during photorefractive keratectomy (PRK) using the VISX Star S3 excimer laser. The Laser Vision Center, National Naval Medical Center, Bethesda, Maryland, USA. Intraoperative radiometric measurements were made with the Ophir Power/Energy Meter (LaserStar Model PD-10 with silicon detector) during PRK treatments as well as during required calibration procedures at a distance of 20.3 cm from the left cornea. These measurements were evaluated using a worst-case scenario for exposure, and then compared with the American Conference of Governmental Industrial Hygeinists (ACGIH) Threshold Value Limits (TVL) to perform a risk/hazard analysis. During the PRK procedures, the highest measured value was 248.4 nJ/pulse. During the calibration procedures, the highest measured UV scattered radiation level was 149.6 nJ/pulse. The maximum treatment time was 52 seconds. Using a worst-case scenario in which all treatments used the maximum power and time, the total energy per eye treated was 0.132 mJ/cm2 and the total UV radiation at close range (80 cm from the treated eye) was 0.0085 mJ/cm2. With a workload of 20 patients, the total occupational exposure at 80 cm to actinic UV radiation in an 8-hour period would be 0.425 mJ/cm2. The scattered actinic UV laser radiation from the VISX Star S3 excimer laser did not exceed occupational exposure limits during a busy 8-hour workday, provided that operating room personnel were at least 80 cm from the treated eye. While the use of protective eyewear is always prudent, this study demonstrates that the trace amounts of scattered laser emissions produced by this laser do not pose a serious health risk even without the use of protective eyewear.

  17. Extending the use of ultraviolet light for fruit quality sorting in citrus packinghouses

    USDA-ARS?s Scientific Manuscript database

    Illumination with ultraviolet light (UV) is commonly used in citrus packinghouses as a means to aid in the identification and removal of decayed oranges from the packline. This technique is effective because areas of decay strongly fluoresce under UV illumination. It was observed that oranges often ...

  18. Pregnancy outcome and ultraviolet radiation; A systematic review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Megaw, Lauren, E-mail: lauren.megaw@ed.ac.uk

    Background: Season and vitamin D are indirect and direct correlates of ultraviolet (UV) radiation and are associated with pregnancy outcomes. Further to producing vitamin D, UV has positive effects on cardiovascular and immune health that may support a role for UV directly benefitting pregnancy. Objectives: To investigate the effects of UV exposure on pregnancy; specifically fetal growth, preterm birth and hypertensive complications. Methods: We conducted a systematic review of Medline, EMBASE, DoPHER, Global Health, ProQuest Public Health, AustHealth Informit, SCOPUS and Google Scholar to identify 537 citations, 8 of which are included in this review. This review was registered onmore » PROSPERO and a. narrative synthesis is presented following PRISMA guidance. Results: All studies were observational and assessed at high risk of bias. Higher first trimester UV was associated with and improved fetal growth and increased hypertension in pregnancy. Interpretation is limited by study design and quality. Meta-analysis was precluded by the variety of outcomes and methods. Discussion: The low number of studies and risk of bias limit the validity of any conclusions. Environmental health methodological issues are discussed with consideration given to design and analytical improvements to further address this reproductive environmental health question. Conclusions: The evidence for UV having benefits for pregnancy hypertension and fetal growth is limited by the methodological approaches utilized. Future epidemiological efforts should focus on improving the methods of modeling and linking widely available environmental data to reproductive health outcomes. - Highlights: • Biologically plausible pathways support an association between ultraviolet radiation (UV) and pregnancy outcomes. • This study is the first systematic review of prevailing literature on the relationship between UV and singleton pregnancy outcomes. • It focuses on both substantive findings and the

  19. Does Temperature and UV Exposure History Modulate the Effects of Temperature and UV Stress on Symbiodinium Growth Rates?

    EPA Science Inventory

    Temperature and ultraviolet radiation (UV) alone or in combination are known to inhibit the growth of Symbiodinium isolates. This conclusion was drawn from a number of studies having widely different exposure scenarios. Here we have examined the effects of pre-exposure acclimat...

  20. Ultraviolet-C irradiation for inactivation of viruses in foetal bovine serum.

    PubMed

    Vaidya, Vivek; Dhere, Rajeev; Agnihotri, Snehal; Muley, Ravindra; Patil, Sanjay; Pawar, Amit

    2018-07-05

    Foetal Bovine Serum (FBS) and porcine trypsin are one of the essential raw materials used in the manufacturing of cell culture based viral vaccines. Being from animal origin, these raw materials can potentially contaminate the final product by known or unknown adventitious agents. The issue is more serious in case of live attenuated viral vaccines, where there is no inactivation step which can take care of such adventitious agents. It is essential to design production processes which can offer maximum viral clearance potential for animal origin products. Ultraviolet-C irradiation is known to inactivate various adventitious viral agents; however there are limited studies on ultraviolet inactivation of viruses in liquid media. We obtained a recently developed UVivatec ultraviolet-C (UV-C) irradiation based viral clearance system for evaluating its efficacy to inactivate selected model viruses. This system has a unique design with spiral path of liquid allowing maximum exposure to UV-C light of a short wavelength of 254 nm. Five live attenuated vaccine viruses and four other model viruses were spiked in tissue culture media and exposed to UV-C irradiation. The pre and post UV-C irradiation samples were analyzed for virus content to find out the extent of inactivation of various viruses. These experiments showed substantial log reduction for the majority of the viruses with few exceptions based on the characteristics of these viruses. Having known the effect of UV irradiation on protein structure, we also evaluated the post irradiation samples of culture media for growth promoting properties using one of the most fastidious human diploid cells (MRC-5). UV-C exposure did not show any notable impact on the nutritional properties of culture media. The use of an UV-C irradiation based system is considered to be promising approach to mitigate the risk of adventitious agents in cell culture media arising through animal derived products. Copyright © 2018 Elsevier Ltd. All

  1. Validity of a Sun Safety Diary Using UV Monitors in Middle School Children

    ERIC Educational Resources Information Center

    Yaroch, Amy L.; Reynolds, Kim D.; Buller, David B.; Maloy, Julie A.; Geno, Cristy R.

    2006-01-01

    This article describes a validity study conducted among middle school students comparing self-reported sun safety behaviors from a diary with readings from ultraviolet (UV) monitors worn on different body sites. The UV monitors are stickers with panels that turn increasingly darker shades of blue in the presence of increasing amounts of UV light.…

  2. Potential link between fruit yield, quality parameters and phytohormonal changes in preharvest UV-C treated strawberry.

    PubMed

    Xu, Yanqun; Charles, Marie Thérèse; Luo, Zisheng; Roussel, Dominique; Rolland, Daniel

    2017-07-01

    Preharvest ultraviolet-C (UV-C) treatment of strawberry is a very new approach, and little information is available on the effect of this treatment on plant growth regulators. In this study, the effect of preharvest UV-C irradiations at three different doses on strawberry yield, fruit quality parameters and endogenous phytohormones was investigated simultaneously. The overall marketable yield of strawberry was not affected by the preharvest UV-C treatments, although more aborted and misshapen fruits were found in UV-C treated groups than in the untreated control. The fruits in the high dose group were firmer and had approximately 20% higher sucrose content and 15% higher ascorbic acid content than the control, while fruits from the middle and low dose groups showed no significant changes in these parameters. The lower abscisic acid (ABA) content found in the fruits in the high UV-C group may be associated with those quality changes. The citric acid content decreased only in the low dose group (reduction of 5.8%), with a concomitant 37% reduction in jasmonic acid (JA) content, compared to the control. The antioxidant status of fruits that received preharvest UV-C treatment was considered enhanced based on their oxygen radical absorbance capacity (ORAC) and malondialdehyde (MDA) content. In terms of aroma, three volatile alcohols differed significantly among the various treatments with obvious activation of alcohol acyltransferase (AAT) activity. The observed synchronous influence on physiological indexes and related phytohormones suggests that preharvest UV-C might affect fruit quality via the action of plant hormones. Crown Copyright © 2017. Published by Elsevier Masson SAS. All rights reserved.

  3. Temporal variation in epidermal flavonoids due to altered solar UV radiation is moderated by the leaf position in Betula pendula.

    PubMed

    Morales, Luis O; Tegelberg, Riitta; Brosché, Mikael; Lindfors, Anders; Siipola, Sari; Aphalo, Pedro J

    2011-11-01

    The physiological mechanisms controlling plant responses to dynamic changes in ambient solar ultraviolet (UV) radiation are not fully understood: this information is important to further comprehend plant adaptation to their natural habitats. We used the fluorimeter Dualex to estimate in vivo the epidermal flavonoid contents by measuring epidermal UV absorbance (A(375) ) in Betula pendula Roth (silver birch) leaves of different ages under altered UV. Seedlings were grown in a greenhouse for 15 days without UV and transferred outdoors under three UV treatments (UV-0, UV-A and UV-A+B) created by three types of plastic film. After 7 and 13 days, Dualex measurements were taken at adaxial and abaxial epidermis of the first three leaves (L1, L2 and L3) of the seedlings. After 14 days, some of the seedlings were reciprocally swapped amongst the treatments to study the accumulation of epidermal flavonoids in the youngest unfolded leaves (L3) during leaf expansion under changing solar UV environments. A(375) of the leaves responded differently to the UV treatment depending on their position. UV-B increased the A(375) in the leaves independently of leaf position. L3 quickly adjusted A(375) in their epidermis according to the UV they received and these adjustments were affected by previous UV exposure. The initial absence of UV-A+B or UV-A, followed by exposure to UV-A+B, particularly enhanced leaf A(375) . Silver birch leaves modulate their protective pigments in response to changes in the UV environment during their expansion, and their previous UV exposure history affects the epidermal-absorbance achieved during later UV exposure. Copyright © Physiologia Plantarum 2011.

  4. Apparatus and method for treating pollutants in a gas using hydrogen peroxide and UV light

    NASA Technical Reports Server (NTRS)

    Cooper, Charles David (Inventor); Clausen, Christian Anthony (Inventor)

    2005-01-01

    An apparatus for treating pollutants in a gas may include a source of hydrogen peroxide, and a treatment injector for creating and injecting dissociated hydrogen peroxide into the flow of gas. The treatment injector may further include an injector housing having an inlet, an outlet, and a hollow interior extending therebetween. The inlet may be connected in fluid communication with the source of hydrogen peroxide so that hydrogen peroxide flows through the hollow interior and toward the outlet. At least one ultraviolet (UV) lamp may be positioned within the hollow interior of the injector housing. The at least one UV lamp may dissociate the hydrogen peroxide flowing through the tube. The dissociated hydrogen peroxide may be injected into the flow of gas from the outlet for treating pollutants, such as nitrogen oxides.

  5. APPARATUS AND METHOD FOR TREATING POLLUTANTS IN A GAS USING HYDROGEN PEROXIDE AND UV LIGHT

    NASA Technical Reports Server (NTRS)

    Cooper, Charles David (Inventor); Clauseu, christian Anthony (Inventor)

    2005-01-01

    An apparatus for treating pollutants in a gas may include a source of hydrogen peroxide, and a treatment injector for creating and injecting dissociated hydrogen peroxide into the flow of gas. The treatment injector may further include an injector housing having an inlet, an outlet, and a hollow interior extending there between. The inlet may be connected in fluid communication with the source of hydrogen peroxide so that hydrogen peroxide flows through the hollow interior and toward the outlet. At least one ultraviolet (UV) lamp may be positioned within the hollow interior of the injector housing. The at least one UV lamp may dissociate the hydrogen peroxide flowing through the tube. The dissociated hydrogen peroxide may be injected into the flow of gas from the outlet for treating pollutants, such as nitrogen oxides.

  6. Ultraviolet-C Irradiation: A Novel Pasteurization Method for Donor Human Milk.

    PubMed

    Christen, Lukas; Lai, Ching Tat; Hartmann, Ben; Hartmann, Peter E; Geddes, Donna T

    2013-01-01

    Holder pasteurization (milk held at 62.5°C for 30 minutes) is the standard treatment method for donor human milk. Although this method of pasteurization is able to inactivate most bacteria, it also inactivates important bioactive components. Therefore, the objective of this study was to investigate ultraviolet irradiation as an alternative treatment method for donor human milk. Human milk samples were inoculated with five species of bacteria and then UV-C irradiated. Untreated and treated samples were analysed for bacterial content, bile salt stimulated lipase (BSSL) activity, alkaline phosphatase (ALP) activity, and fatty acid profile. All five species of bacteria reacted similarly to UV-C irradiation, with higher dosages being required with increasing concentrations of total solids in the human milk sample. The decimal reduction dosage was 289±17 and 945±164 J/l for total solids of 107 and 146 g/l, respectively. No significant changes in the fatty acid profile, BSSL activity or ALP activity were observed up to the dosage required for a 5-log10 reduction of the five species of bacteria. UV-C irradiation is capable of reducing vegetative bacteria in human milk to the requirements of milk bank guidelines with no loss of BSSL and ALP activity and no change of FA.

  7. Pre-oxidation of low-density polyethylene (LDPE) by ultraviolet light (UV) promotes enhanced degradation of LDPE in soil.

    PubMed

    Tribedi, Prosun; Dey, Samrat

    2017-11-09

    Polyethylene represents nearly 64% of all the synthetic plastics produced and are mainly used for domestic and industrial applications. Their extensive use poses a serious environmental threat because of their non-biodegradable nature. Among all the polyethylene remediation strategies, in situ bioremediation happens to be the safest and efficient one. In the current study, efforts had been given to compare the extent of LDPE degradation under UV-treated and UV-untreated conditions by soil microcosm. Landfill soil was collected and UV-treated and UV-untreated LDPE were added separately to the soil following incubation under similar conditions. Electron microscopic images as well as the weight loss and the tensile strength results clearly revealed that UV-treated LDPE showed better degradation than the non-treated ones in soil. To elucidate the mechanism of this enhanced biodegradation, the bond spectra of differentially treated LDPE were analyzed by FTIR. The results obtained from bond spectra studies revealed that UV treatment increases both carbonyl and terminal double-bond index of the LDPE, thereby making it highly susceptible for microbial degradation. Moreover, incubation of UV-treated LDPE with soil favors better adherence of metabolically active and significantly higher number of microorganisms on it. Taken together, all these results demonstrate the higher microbial association and their better metabolic potential to the UV-treated LDPE that lead to enhanced degradation of the LDPE by the soil microorganisms.

  8. First ultraviolet spectropolarimetry of Be stars from the Wisconsin Ultraviolet Photo-Polarimeter Experiment

    NASA Technical Reports Server (NTRS)

    Bjorkman, K. S.; Nordsieck, K. H.; Code, A. D.; Anderson, C. M.; Babler, B. L.; Clayton, G. C.; Magalhaes, A. M.; Meade, M. R.; Nook, M. A.; Schulte-Ladbeck, R. E.

    1991-01-01

    The first UV spectropolarimetric observations of Be stars are presented. They were obtained with the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE) aboard the Astro-1 mission. WUPPE data on the Be stars Zeta Tau and Pi Aqr, along with near-simultaneous optical data obtained at the Pine Bluff Observatory (PBO). Combined WUPPE and PBO data give polarization as a function of wavelength across a very broad spectral region, from 1400 to 7600 A. Existing Be star models predicted increasing polarization toward shorter wavelengths in the UV, but this is not supported by the WUPPE observations. Instead, the observations show a constant or slightly declining continuum polarization shortward of the Balmer jump, and broad UV polarization dips around 1700 and 1900 A, which may be a result of Fe-line-attenuation effects on the polarized flux. Supporting evidence for this conclusion comes from the optical data, in which decreases in polarization across Fe II lines in Zeta Tau were discovered.

  9. UIT ultraviolet imaging of 30 Doradus

    NASA Astrophysics Data System (ADS)

    Hintzen, P.; Cheng, K.-P.; Michalitsianos, A.; Bohlin, R.; O'Connell, R.; Cornett, R.; Roberts, M.; Smith, A.; Smith, E.; Stecher, T.

    During the Astro-1 mission, near- and far-UV images of the 30 Doradus region were obtained using the Ultraviolet Imaging Telescope (UIT). These wide-field, 40 min in diameter, high spatial resolution, 2-3 sec, UIT UV images reveal a rich field of luminous UV-bright stars, clusters, and associations. There are 181 stars brighter than m2558A = 16.5 and 197 stars brighter than m1615A = 16.4 within 3 min diameter of the 30 Doradus central cluster. We have derived UV fluxes emitted from the 30 Doradus central cluster and from its UV bright core, R136. The region within 5 sec of R136 produces approximately 14% of the far-UV flux (lambda = 1892 A) and approximately 16% of the near-UV flux (lambda = 2558 A) emitted from the 3 min diameter central cluster. The derived UV luminosity of R136 at 1892 A is only 7.8 times that of the nearby O6-7 Iaf star, R139, and the m1892 - mv colors of R136 are similar to other O or Wolf-Rayet stars in the same region. These UIT data, combined with other published observations at longer wavelengths, indicate that there is no observational evidence for a supermassive star in R136.

  10. CHARACTERIZATION OF RELATIVE SENSITIVITY OF AMPHIBIANS TO ULTRAVIOLET RADIATION

    EPA Science Inventory

    Different studies have demonstrated that solar ultraviolet (UV) radiation can adversely affect survival and development of embryonic and larval amphibians. However, because of among-laboratory variations in exposure profiles (artificial vs. natural sunlight; natural sunlight at d...

  11. Impact of UV-B radiation on the digestive enzymes and immune system of larvae of Indian major carp Catla catla.

    PubMed

    Sharma, Jaigopal; Rao, Y Vasudeva; Kumar, S; Chakrabarti, Rina

    2010-03-01

    Ultraviolet radiation is a potent threat to the aquatic animals. Exposure to such stressor affects metabolic and immunological processes. The present investigation aims to study the effect of UV-B radiation on digestive enzymes and immunity of larvae of Catla catla. Larvae were exposed to ultraviolet-B (UV-B, 280-320 nm) radiation (145 microW/cm(2)) for three different exposure times of 5, 10 and 15 min on every other day. After 55 days, important digestive enzymes were assayed. For immunological study, lysozyme, glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) levels were measured. Then the fish were kept for one month without radiation and lysozyme level was measured. Protein concentration varied directly with the duration of exposure and was highest among fish that had received the 15 min UV-B irradiation. Significantly higher amylase, protease, trypsin and chymotrypsin activities were found in 5 min exposed fish compared to others. Lysozyme level was significantly higher in control group compared to the UV-B treated fish. The lysozyme level decreased with the increasing duration of UV-B radiation. When fish were kept without UV-B radiation for one month, lysozyme level was brought to the normal level in all treatments, except 15 min exposed fish. The GOT and GPT levels were significantly higher in the 15 min exposed group than others. The effects of UV-B radiation on the digestive physiology and immune system of catla have been clearly observed in the present study. The decreased enzyme activities in UV-B radiated fish results into improper digestion and poor growth.

  12. Growth and phenolic compounds of Lactuca sativa L. grown in a closed-type plant production system with UV-A, -B, or -C lamp.

    PubMed

    Lee, Min-Jeong; Son, Jung Eek; Oh, Myung-Min

    2014-01-30

    The production of high-quality crops based on phytochemicals is a strategy for accelerating the practical use of plant factories. Previous studies have demonstrated that ultraviolet (UV) light is effective in improving phytochemical production. This study aimed to determine the effect of various UV wavelengths on growth and phenolic compound accumulation in lettuce (Lactuca sativa L.) grown in a closed-type plant production system. Seven days, 1 day and 0.25 day were determined as the upper limit of the irradiation periods for UV-A, -B, and -C, respectively, in the lettuce based on physiological disorders and the fluorescence parameter F(v)/F(m). Continuous UV-A treatment significantly induced the accumulation of phenolic compounds and antioxidants until 4 days of treatment without growth inhibition, consistent with an increase in phenylalanine ammonia lyase (PAL) gene expression and PAL activity. Repeated or gradual UV-B exposure yielded approximately 1.4-3.6 times more total phenolics and antioxidants, respectively, than the controls did 2 days after the treatments, although both treatments inhibited lettuce growth. Repeated UV-C exposure increased phenolics but severely inhibited the growth of lettuce plants. Our data suggest that UV irradiation can improve the accumulation of phenolic compounds with antioxidant properties in lettuce cultivated in plant factories. © 2013 Society of Chemical Industry.

  13. Calibration of the Voyager Ultraviolet Spectrometers and the Composition of the Heliosphere Neutrals: Reassessment

    NASA Astrophysics Data System (ADS)

    Ben-Jaffel, Lotfi; Holberg, J. B.

    2016-06-01

    The data harvest from the Voyagers’ (V 1 and V 2) Ultraviolet Spectrometers (UVS) covers encounters with the outer planets, measurements of the heliosphere sky-background, and stellar spectrophotometry. Because their period of operation overlaps with many ultraviolet missions, the calibration of V1 and V2 UVS with other spectrometers is invaluable. Here we revisit the UVS calibration to assess the intriguing sensitivity enhancements of 243% (V1) and 156% (V2) proposed recently. Using the Lyα airglow from Saturn, observed in situ by both Voyagers, and remotely by International Ultraviolet Explorer (IUE), we match the Voyager values to IUE, taking into account the shape of the Saturn Lyα line observed with the Goddard High Resolution Spectrograph on board the Hubble Space Telescope. For all known ranges of the interplanetary hydrogen density, we show that the V1 and V2 UVS sensitivities cannot be enhanced by the amounts thus far proposed. The same diagnostic holds for distinct channels covering the diffuse He I 58.4 nm emission. Our prescription is to keep the original calibration of the Voyager UVS with a maximum uncertainty of 30%, making both instruments some of the most stable EUV/FUV spectrographs in the history of space exploration. In that frame, we reassess the excess Lyα emission detected by Voyager UVS deep in the heliosphere, to show its consistency with a heliospheric but not galactic origin. Our finding confirms results obtained nearly two decades ago—namely, the UVS discovery of the distortion of the heliosphere and the corresponding obliquity of the local interstellar magnetic field (˜ 40^\\circ from upwind) in the solar system neighborhood—without requiring any revision of the Voyager UVS calibration.

  14. Human enteric viruses in a wastewater treatment plant: evaluation of activated sludge combined with UV disinfection process reveals different removal performances for viruses with different features.

    PubMed

    Lizasoain, A; Tort, L F L; García, M; Gillman, L; Alberti, A; Leite, J P G; Miagostovich, M P; Pou, S A; Cagiao, A; Razsap, A; Huertas, J; Berois, M; Victoria, M; Colina, R

    2018-03-01

    This study assess the quality of wastewater through the detection and quantification of important viruses causing gastroenteritis at different stages of the wastewater treatment process in an activated-sludge wastewater treatment plant with ultraviolet disinfection. Ten sampling events were carried out in a campaign along a period of 18 months collecting wastewater samples from the influent, after the activated-sludge treatment, and after the final disinfection with UV radiation. Samples were concentrated through ultracentrifugation and analysed using retro-transcription, PCR and real time quantitative PCR protocols, for detection and quantification of Group A Rotavirus (RVA), Human Astrovirus (HAstV), Norovirus Genogroup II (NoV GII) and Human Adenovirus (HAdV). HAdV (100%), NoV GII (90%), RVA (70%) and HAstV (60%) were detected in influent samples with concentration from 1·4 (NoV GII) to 8·0 (RVA) log 10  gc l -1 . Activated-sludge treatment reached well quality effluents with low organic material concentration, although nonstatistical significant differences were registered among influent and postactivated sludge treatment samples, regarding the presence and concentration for most viruses. All post-UV samples were negative for NoV GII and HAstV, although RVA and HAdV were detected in 38% and 63% of those samples respectively, with concentration ranging from 2·2 to 5·5 and 3·1 to 3·4 log 10  gc l -1 . This study demonstrates that an activated-sludge wastewater treatment plant with UV disinfection reduces to levels below the detection limit those single-stranded RNA viruses as noroviruses and astroviruses and reach significant lower levels of rotaviruses and adenoviruses after the complete treatment process. © 2017 The Society for Applied Microbiology.

  15. Interface Properties of Atomic-Layer-Deposited Al2O3 Thin Films on Ultraviolet/Ozone-Treated Multilayer MoS2 Crystals.

    PubMed

    Park, Seonyoung; Kim, Seong Yeoul; Choi, Yura; Kim, Myungjun; Shin, Hyunjung; Kim, Jiyoung; Choi, Woong

    2016-05-11

    We report the interface properties of atomic-layer-deposited Al2O3 thin films on ultraviolet/ozone (UV/O3)-treated multilayer MoS2 crystals. The formation of S-O bonds on MoS2 after low-power UV/O3 treatment increased the surface energy, allowing the subsequent deposition of uniform Al2O3 thin films. The capacitance-voltage measurement of Au-Al2O3-MoS2 metal oxide semiconductor capacitors indicated n-type MoS2 with an electron density of ∼10(17) cm(-3) and a minimum interface trap density of ∼10(11) cm(-2) eV(-1). These results demonstrate the possibility of forming a high-quality Al2O3-MoS2 interface by proper UV/O3 treatment, providing important implications for their integration into field-effect transistors.

  16. Ultraviolet Radiations: Skin Defense-Damage Mechanism.

    PubMed

    Mohania, Dheeraj; Chandel, Shikha; Kumar, Parveen; Verma, Vivek; Digvijay, Kumar; Tripathi, Deepika; Choudhury, Khushboo; Mitten, Sandeep Kumar; Shah, Dilip

    2017-01-01

    UV-radiations are the invisible part of light spectra having a wavelength between visible rays and X-rays. Based on wavelength, UV rays are subdivided into UV-A (320-400 nm), UV-B (280-320 nm) and UV-C (200-280 nm). Ultraviolet rays can have both harmful and beneficial effects. UV-C has the property of ionization thus acting as a strong mutagen, which can cause immune-mediated disease and cancer in adverse cases. Numbers of genetic factors have been identified in human involved in inducing skin cancer from UV-radiations. Certain heredity diseases have been found susceptible to UV-induced skin cancer. UV radiations activate the cutaneous immune system, which led to an inflammatory response by different mechanisms. The first line of defense mechanism against UV radiation is melanin (an epidermal pigment), and UV absorbing pigment of skin, which dissipate UV radiation as heat. Cell surface death receptor (e.g. Fas) of keratinocytes responds to UV-induced injury and elicits apoptosis to avoid malignant transformation. In addition to the formation of photo-dimers in the genome, UV also can induce mutation by generating ROS and nucleotides are highly susceptible to these free radical injuries. Melanocortin 1 receptor (MC1R) has been known to be implicated in different UV-induced damages such as pigmentation, adaptive tanning, and skin cancer. UV-B induces the formation of pre-vitamin D3 in the epidermal layer of skin. UV-induced tans act as a photoprotection by providing a sun protection factor (SPF) of 3-4 and epidermal hyperplasia. There is a need to prevent the harmful effects and harness the useful effects of UV radiations.

  17. The linear polarization of 3C 345 in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Dolan, Joseph F.; Boyd, Patricia T.; Wolinski, Karen G.; Smith, Paul S.; Impey, C. D.; Bless, Robert C.; Nelson, M. J.; Percival, J. W.; Taylor, M. J.; Elliot, J. L.

    1994-01-01

    The linear polarization of 3C 345, a superluminal radio source and OVV quasar, was observed in two bandpasses in the ultraviolet (centered at 2160 A and 2770 A) in 1993 April using the High Speed Photometer on the Hubble Space Telescope. The quasar is significantly polarized in the UV (p greater than 5%). Ground-based polarimetry was obtained 11 days later, but a difference in the position angle between the observations in the visible and those in the UV indicate that the magnitude of the polarization of 3C 345 may have changed over that time. If the two observation sets represent the same state of spectral polarization, then the large UV flux implies that either the polarization of the synchrotron continuum must stop decreasing in the UV, or that there is an additional source of polarized flux in the ultraviolet. Only if the UV observations represent a spectral polarization state with the same position angle in the visible seen previously in 3C 345 can the polarized flux be represented by a single power law consistent with the three-component model of Smith et al. This model consists of a polarized synchrotron component, an unpolarized component from the broad-line region, and an unpolarized component attributed to thermal radiation from an optically thick accretion disk. Additional simultaneous polarimetry in the UV and visible will be required to further constrain models of the continuum emission processes in 3C 345 and determine if the UV polarized flux is synchrotron in origin.

  18. Effect of UV-ozone treatment on poly(dimethylsiloxane) membranes: surface characterization and gas separation performance.

    PubMed

    Fu, Ywu-Jang; Qui, Hsuan-zhi; Liao, Kuo-Sung; Lue, Shingjiang Jessie; Hu, Chien-Chieh; Lee, Kueir-Rarn; Lai, Juin-Yih

    2010-03-16

    A thin SiO(x) selective surface layer was formed on a series of cross-linked poly(dimethylsiloxane) (PDMS) membranes by exposure to ultraviolet light at room temperature in the presence of ozone. The conversion of the cross-linked polysiloxane to SiO(x) was monitored by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray (EDX) microanalysis, contact angle analysis, and atomic force microscopy (AFM). The conversion of the cross-linked polysiloxane to SiO(x) increased with UV-ozone exposure time and cross-linking agent content, and the surface possesses highest conversion. The formation of a SiO(x) layer increased surface roughness, but it decreased water contact angle. Gas permeation measurements on the UV-ozone exposure PDMS membranes documented interesting gas separation properties: the O(2) permeability of the cross-linked PDMS membrane before UV-ozone exposure was 777 barrer, and the O(2)/N(2) selectivity was 1.9; after UV-ozone exposure, the permeability decreased to 127 barrer while the selectivity increased to 5.4. The free volume depth profile of the SiO(x) layer was investigated by novel slow positron beam. The results show that free volume size increased with the depth, yet the degree of siloxane conversion to SiO(x) does not affect the amount of free volume.

  19. Toxicity of cobalt-complexed cyanide to Oncorhynchus mykiss, Daphnia magna, and Ceriodaphnia dubia: Potentiation by ultraviolet radiation and attenuation by dissolved organic carbon and adaptive UV tolerance

    USGS Publications Warehouse

    Little, Edward E.; Calfee, Robin D.; Theodorakos, Peter M.; Brown, Zoe Ann; Johnson, Craig A.

    2007-01-01

    BackgroundCobalt cyanide complexes often result when ore is treated with cyanide solutions to extract gold and other metals. These have recently been discovered in low but significant concentrations in effluents from gold leach operations. This study was conducted to determine the potential toxicity of cobalt-cyanide complexes to freshwater organisms and the extent to which ultraviolet radiation (UV) potentiates this toxicity. Tests were also conducted to determine if humic acids or if adaptation to UV influenced sensitivity to the cyanide complexes.MethodsRainbow trout (Oncorhynchus mykiss), Daphnia magna, and Ceriodaphnia dubia were exposed to potassium hexacyanocobaltate in the presence and absence of UV radiation, in the presence and absence of humic acids. Cyano-cobalt exposures were also conducted with C. dubia from cultures adapted to elevated UV.ResultsWith an LC50 concentration of 0.38 mg/L, cyanocobalt was over a 1000 times more toxic to rainbow trout in the presence of UV at a low, environmentally relevant irradiance level (4 μW/cm2 as UVB) than exposure to this compound in the absence of UV with an LC50 of 112.9 mg/L. Toxicity was immediately apparent, with mortality occurring within an hour of the onset of exposure at the highest concentration. Fish were unaffected by exposure to UV alone. Weak-acid dissociable cyanide concentrations were observed in irradiated aqueous solutions of cyanocobaltate within hours of UV exposure and persisted in the presence of UV for at least 96 hours, whereas negligible concentrations were observed in the absence of UV. The presence of humic acids significantly diminished cyanocobalt toxicity to D. magna and reduced mortality from UV exposure. Humic acids did not significantly influence survival among C. dubia. C. dubia from UV-adapted populations were less sensitive to metallocyanide compounds than organisms from unadapted populations.ConclusionsThe results indicate that metallocyanide complexes may pose a hazard to

  20. A new UV-A/B protecting pigment in the terrestrial cyanobacterium Nostoc commune

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherer, S.; Chen, T.W.; Boeger, P.

    1988-12-01

    A new ultraviolet (UV)-A/B absorbing pigment with maxima at 312 and 330 nanometers from the cosmopolitan terrestrial cyanobacterium Nostoc commune is described. The pigment is found in high amounts (up to 10% of dry weight) in colonies grown under solar UV radiation but only in low concentrations in laboratory cultures illuminated by artificial light without UV. Its experimental induction by UV as well as its capacity to efficiently protect Nostoc against UV radiation is reported.

  1. Simple Ultraviolet Short-Pulse Intensity Diagnostic Method Using Atmosphere

    NASA Astrophysics Data System (ADS)

    Aota, Tatsuya; Takahashi, Eiichi; Losev, Leonid L.; Tabuchi, Takeyuki; Kato, Susumu; Matsumoto, Yuji; Okuda, Isao; Owadano, Yoshiro

    2005-05-01

    An ultraviolet (UV) short-pulse intensity diagnostic method using atmosphere as a nonlinear medium was developed. This diagnostic method is based on evaluating the ion charge of the two-photon ionization of atmospheric oxygen upon irradiation with a UV (238-299 nm) short-pulse laser. The observed ion signal increased proportionally to the input intensity to the power of ˜2.2, during the two-photon ionization of atmospheric oxygen. An autocorrelator was constructed and used to successfully measure a UV laser pulse of ˜400 fs duration. Since this diagnostic system is used in the open-air under windowless conditions, it can be set along the beam path and used as a UV intensity monitor.

  2. The effect of UV-C exposure on larval survival of the dreissenid quagga mussel

    USGS Publications Warehouse

    Stewart-Malone, Alecia; Misamore, Michael; Wilmoth, Siri K.; Reyes, Alejandro; Wong, Wai Hing; Gross, Jackson

    2015-01-01

    The rapid spread of quagga mussels (Dreissena rostriformis bugensis) has lead to their invasion of Lake Mead, Nevada, the largest reservoir in North America and partially responsible for providing water to millions of people in the southwest. Current strategies for mitigating the growth and spread of quagga mussels primarily include physical and chemical means of removing adults within water treatment, delivery, and hydropower facilities. In the present study, germicidal ultraviolet light (UV-C) was used to target the larval stage of wild-caught quagga mussel. The lethal effect of UV-C was evaluated at four different doses, 0.0, 13.1, 26.2, and 79.6 mJ/cm2. Tested doses were determined based on results from preliminary trials. The results demonstrate that germicidal UV-C is effective in controlling the free-swimming life history stages of larval quagga mussels.

  3. The Effect of UV-C Exposure on Larval Survival of the Dreissenid Quagga Mussel

    PubMed Central

    Stewart-Malone, Alecia; Misamore, Michael; Wilmoth, Siri; Reyes, Alejandro; Wong, Wai Hing; Gross, Jackson

    2015-01-01

    The rapid spread of quagga mussels (Dreissena rostriformis bugensis) has lead to their invasion of Lake Mead, Nevada, the largest reservoir in North America and partially responsible for providing water to millions of people in the southwest. Current strategies for mitigating the growth and spread of quagga mussels primarily include physical and chemical means of removing adults within water treatment, delivery, and hydropower facilities. In the present study, germicidal ultraviolet light (UV-C) was used to target the larval stage of wild-caught quagga mussel. The lethal effect of UV-C was evaluated at four different doses, 0.0, 13.1, 26.2, and 79.6 mJ/cm2. Tested doses were determined based on results from preliminary trials. The results demonstrate that germicidal UV-C is effective in controlling the free-swimming life history stages of larval quagga mussels. PMID:26186734

  4. Research on APD-based non-line-of-sight UV communication system

    NASA Astrophysics Data System (ADS)

    Wang, Rongyang; Wang, Ling; Li, Chao; Zhang, Wenjing; Yuan, Yonggang; Xu, Jintong; Zhang, Yan; Li, Xiangyang

    2010-10-01

    In this paper, specific issues in designing an avalanche photodiode (APD)-based non-line-of-sight (NLOS) ultraviolet (UV) communication system are investigated. A proper wavelength of the UV LEDs and a system configuration should be considered carefully to assure the feasibility of this system. Using the single scattering model, the received optical power at the sensitive area of the APD can be calculated. According to the calculation, it revealed that the scattered ultraviolet signal level was very low; therefore, a post signal processing circuit was necessary. The authors put forward the key components of the circuit based on the compromise between signal bandwidth and gain. The performance of this circuit was evaluated by means of software simulation, and continued work was involved to improve its signal noise ratio (SNR). The transmitter used in this system was 365 nm UV LED array. Strictly speaking, this was not the practical outdoor UV communication system. Since the scattering coefficient of 365 nm UV only drops a little compared with solar blind UV, the research-grade UV communication could be carried out in a darkroom without a great influence. By combining an APD with a compound parabolic concentrator (CPC) optical system, the effective collection area and field of view (FOV) of the detector could be adjusted. Several issues were also raised to improve the performance of UV communication system, including using more powerful UV LEDs and choosing suitable modulation schemes.

  5. Changes in the ultraviolet spectrum of EG Andromedae

    NASA Technical Reports Server (NTRS)

    Stencel, R. E.

    1984-01-01

    Ultraviolet observations of EG Andromedae, a symbiotic star, are reported which clearly show pronounced eclipse-like effects on the high-temperature far-UV continuum. Continuum and emission-line variations with phase are reported and related to synoptic hydrogen alpha data. System parameters are characterized.

  6. Effect of medium-pressure UV-lamp treatment on disinfection by-products in chlorinated seawater swimming pool waters.

    PubMed

    Cheema, Waqas A; Manasfi, Tarek; Kaarsholm, Kamilla M S; Andersen, Henrik R; Boudenne, Jean-Luc

    2017-12-01

    Several brominated disinfection by-products (DBPs) are formed in chlorinated seawater pools, due to the high concentration of bromide in seawater. UV irradiation is increasingly employed in freshwater pools, because UV treatment photodegrades harmful chloramines. However, in freshwater pools it has been reported that post-UV chlorination promotes the formation of other DBPs. To date, UV-based processes have not been investigated for DBPs in seawater pools. In this study, the effects of UV, followed by chlorination, on the concentration of three groups of DBPs were investigated in laboratory batch experiments using a medium-pressure UV lamp. Chlorine consumption increased following post-UV chlorination, most likely because UV irradiation degraded organic matter in the pool samples to more chlorine-reactive organic matter. Haloacetic acid (HAA) concentrations decreased significantly, due to photo-degradation, but the concentrations of trihalomethanes (THMs) and haloacetonitriles (HANs) increased with post-UV chlorination. Bromine incorporation in HAAs was significantly higher in the control samples chlorinated without UV irradiation but decreased significantly with UV treatment. Bromine incorporation was promoted in THM and HAN after UV and chlorine treatment. Overall, the accumulated bromine incorporation level in DBPs remained essentially unchanged in comparison with the control samples. Toxicity estimates increased with single-dose UV and chlorination, mainly due to increased HAN concentrations. However, brominated HANs are known in the literature to degrade following further UV treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Further comparison of MODTRAN 5 to measured data in the UV band

    NASA Astrophysics Data System (ADS)

    Smith, Leon; Richardson, Mark; Ayling, Richard; Barlow, Nick

    2014-10-01

    The ability to accurately model background radiation from the sun is important in understanding the operation of missile systems with ultraviolet (UV) guard channels. In theory a missile system's UV channel detects a target's silhouette, caused by its `negative contrast' with respect to background UV radiation. The variation in background levels of UV will therefore have an effect on the operability of a missile system that utilises a UV channel. In this paper an update on the measurement and comparison of background UV-A radiation to data produced by Moderate Resolution Atmospheric Transmission 5 (MODTRAN®5) is given. In the past surface flux and radiance data calculated using MODTRAN®5 has been compared to data from the World Ozone and Ultraviolet Data Centre (WOUDC) archive, and measurements taken by the author at the Defence Academy of the UK. With the aid of spectral measurement equipment, new measurements have been made and compared with the radiance profiles produced by MODTRAN®5, including measurements made throughout both winter and summer months. Also discussed are the effects of scattering and absorption by different cloud types on the amount of radiation observed at the Earth's surface.

  8. QUALITY ASSURANCE AND SITE MANAGEMENT FOR PRIMENET AND URBAN ULTRAVIOLET RADIATION RESEARCH MONITORING PROGRAM.

    EPA Science Inventory

    Because exposure to ultraviolet (UV) radiation is an ecosystem stressor and poses a human health risk, the National Exposure Research Laboratory (NERL) has undertaken a research program to measure the intensity of UV-B radiation at various locations throughout the U.S. In Septem...

  9. Artist concept of Solar Backscatter UV (SBUV) measurement technique on TIROS

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Artist concept titled OZONE MEASUREMENT TECHNIQUE shows how the Solar Backscatter Ultraviolet (UV) 2 (SBUV-2) on the National Oceanic and Atmospheric Administration's (NOAA's) TIROS satellites (NOAA-9 and NOAA-11) works. Ozone is derived from the 'SBUV' instrument from the ratio of the observed backscattered radiance to the solar irradiance in the ultraviolet. This is called the ultraviolet albedo. During STS-34 Shuttle Solar Backscatter Ultraviolet (SSBUV) instruments in Atlantis', Orbiter Vehicle (OV) 104's, payload bay (PLB) will calibrate the instruments onboard the TIROS satellites. SSBUV is managed by Goddard Space Flight Center (GSFC).

  10. UV protection for sunglasses: revisiting the standards

    NASA Astrophysics Data System (ADS)

    Masili, Mauro; Schiabel, Homero; Ventura, Liliane

    2014-02-01

    In a continuing work of establishing safe limits for UV protection on sunglasses, we have estimated the incident UV radiation for the 280 nm - 400 nm range for 5500 locations in Brazil. Current literature establishes safe limits regarding ultraviolet radiation exposure in the spectral region 180nm-400nm for weighted and unweighted UV radiant exposure. British Standard BSEN1836(2005) and American Standard ANZI Z80.3(2009) require the UV protection in the spectral range 280nm-380nm, and The Brazilian Standard for sunglasses protection, NBR15111(20013), currently requires protection for the 280nm - 400nm range as established by literature. However, none of them take into account the total (unweighted) UVA radiant exposure.Calculations of these limits have been made for 5500 Brazilian locations which included the geographic position of the city; altitude, inclination angle of the Earth; typical atmospheric data (ozone column; water vapor and others) as well as scattering from concrete, grass, sand, water, etc.. Furthermore, regarding UV safety for the ocular media, the resistance to irradiance test required on this standard of irradiating the lenses for 25 continuous hours with a 450W sunlight simulator leads to a correspondence of 26 hours and 10 minutes of continuous exposure to the Sun. Moreover, since the sun irradiance in Brazil is quite large, integrations made for the 280-400 nm range shows an average of 45% of greater ultraviolet radiant exposure than for the 280-380 nm range. Suggestions on the parameters of these tests are made in order to establish safe limits according to the UV irradiance in Brazil.

  11. Ultraviolet-B radiation modifies the quantitative and qualitative profile of flavonoids and amino acids in grape berries.

    PubMed

    Martínez-Lüscher, J; Torres, N; Hilbert, G; Richard, T; Sánchez-Díaz, M; Delrot, S; Aguirreolea, J; Pascual, I; Gomès, E

    2014-06-01

    Grapevine cv. Tempranillo fruit-bearing cuttings were exposed to supplemental ultraviolet-B (UV-B) radiation under controlled conditions, in order to study its effect on grape traits, ripening, amino acids and flavonoid profile. The plants were exposed to two doses of UV-B biologically effective (5.98 and 9.66kJm(-2)d(-1)), applied either from fruit set to ripeness or from the onset of veraison to ripeness. A 0kJm(-2)d(-1) treatment was included as a control. UV-B did not significantly modify grape berry size, but increased the relative mass of berry skin. Time to reach ripeness was not affected by UV-B, which may explain the lack of changes in technological maturity. The concentration of must extractable anthocyanins, colour density and skin flavonols were enhanced by UV-B, especially in plants exposed from fruit set. The quantitative and qualitative profile of grape skin flavonols were modified by UV-B radiation. Monosubstituted flavonols relative abundance increased proportionally to the accumulated UV-B doses. Furthermore, trisubstituted forms, which where predominant in non-exposed berries, were less abundant as UV-B exposure increased. Although total free amino acid content remained unaffected by the treatments, the increased levels of gamma-aminobutyric acid (GABA), as well as the decrease in threonine, isoleucine, methionine, serine and glycine, revealed a potential influence of UV-B on the GABA-mediated signalling and amino acid metabolism. UV-B had an overall positive impact on grape berry composition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Natural dyeing and UV protection of plasma treated cotton

    NASA Astrophysics Data System (ADS)

    Gorjanc, Marija; Mozetič, Miran; Vesel, Alenka; Zaplotnik, Rok

    2018-03-01

    Raw cotton fabrics have been exposed to low-pressure non-equilibrium gaseous plasma to improve the adsorption of natural dyes as well as ultraviolet (UV) protection factor. Plasma created in a glass tube by an electrodeless radiofrequency (RF) discharge was created either in oxygen or ammonia at the pressure of 50 Pa to stimulate formation of oxygen and nitrogen groups, respectively. The type and concentration of functional groups was determined by X-ray photoelectron spectroscopy (XPS) and morphological modifications by scanning electron microscopy (SEM). The colour yield for curcumin dye was improved significantly for samples treated with ammonia plasma what was explained by bonding of the dye to surface of amino groups. Contrary, the yield decreased when oxygen plasma treatment was applied due to the negatively charged surface that repels the negatively charged dye molecules. The effect was even more pronounced when using green tea extract as the colouring agent. The colour difference between the untreated and ammonia plasma treated sample increased linearly with plasma treatment time reaching the factor of 3.5 for treatment time of 300 s. The ultraviolet protection factor (UPF) was over 50 indicating excellent protection due to improved adsorption of the dye on the ammonia plasma treated samples.

  13. Changes in antigen-presenting cell function in the spleen and lymph nodes of ultraviolet-irradiated mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurish, M.F.; Lynch, D.H.; Daynes, R.A.

    1982-03-01

    It has been previously reported that mice exposed to ultraviolet (UV) radiation exhibit a decrease in splenic antigen-presenting cell (APC) function. The results presented here confirm this observation and further demonstrate that animals exposed daily to UV for extended periods of time (5 weeks instead of 6 days) no longer exhibit this depressed capability. In spite of the depression in splenic APC activity found in 6-day UV-irradiated mice, lymph node APC function from these same animals was elevated compared with that found in the lymph nodes from normal animals. Lymph node APC activity in animals that were splenectomized prior tomore » the UV irradiation, however, was not enhanced over controls. Treatment of animals with a chemical irritant (turpentine) also caused a depression in splenic APC function without modifying lymph node activity. Collectively, our findings suggest that the observed decrease in splenic APC activity, found after the first week of UV exposures, may be attributable to the migration of splenic APC to peripheral lymphoid tissue which drain the site of epidermal inflammation.« less

  14. Skin β-endorphin mediates addiction to ultraviolet light

    PubMed Central

    Fell, Gillian L.; Robinson, Kathleen C.; Mao, Jianren; Woolf, Clifford J.; Fisher, David E.

    2014-01-01

    SUMMARY Ultraviolet light is an established carcinogen yet evidence suggests that UV-seeking behavior has addictive features. Following UV exposure, epidermal keratinocytes synthesize Proopiomelanocortin that is processed to Melanocyte Stimulating Hormone, inducing tanning. We show that in rodents another POMC-derived peptide, β-endorphin, is coordinately synthesized in skin, elevating plasma levels after low-dose UV. Increases in pain-related thresholds are observed, and reversed by pharmacologic opioid antagonism. Opioid blockade also elicits withdrawal signs after chronic UV exposure. This effect was sufficient to guide operant behavioral choices to avoidance of opioid withdrawal (conditioned place aversion). These UV-induced nociceptive and behavioral effects were absent in β-endorphin knockout mice and in mice lacking p53-mediated POMC induction in epidermal keratinocytes. While primordial UV addiction, mediated by the hedonic action of β-endorphin and anhedonic effects of withdrawal, may theoretically have enhanced evolutionary vitamin D biosynthesis, it now may contribute to the relentless rise in skin cancer incidence in man. PMID:24949966

  15. The effect of melatonin on eye lens of rats exposed to ultraviolet radiation.

    PubMed

    Anwar, M M; Moustafa, M A

    2001-05-01

    We investigated the influence of exogenously administered melatonin on adult rats eye lenses exposed to ultraviolet radiation (UV) A and B ranging from 356-254 nm irradiation at 8 microW/cm(2). Rats exposed to this range of UV for 15 min for one week showed a significant (P<0.05) reduction in antioxidant enzymes activities; superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and elevated (P<0.001) lipid peroxidation served as an index of cellular damage by free radicals. UV-radiation significantly (P<0.001) elevated calcium ions (Ca(2+)) and lactate dehydrogenase (LDH) activity in lenses. Depleting animals of their stores of important intracellular antioxidant and elevating lenticular Ca(2+) by UV irradiation, may be the main cause of lens opacification. Melatonin injection with radiation significantly reduced (P<0.05) lipid peroxidation, Ca(2+) and (P<0.001) for LDH. When melatonin was injected after radiation, SOD and GSH-Px enzyme activities increased significantly (P<0.01), and lipid peroxidation, Ca(2+) levels and LDH activities were reduced significantly. Melatonin injection after UV radiation was as effective as melatonin treatment concurrent with UV irradiation. We conclude that melatonin may protect the eye lens from the damaging effects of UV exposure, and its actions protect lens from oxidative stress, elevating Ca(2+) levels, which are considered as an important causes of cataractogenesis.

  16. EVALUATING A COMPOSITE CARTRIDGE FOR SMALL SYSTEM DRINKING WATER TREATMENT

    EPA Science Inventory

    A multi-layer, cartridge-based system that combines physical filtration with carbon adsorption and ultraviolet (UV) light disinfection has been developed to perform as a water treatment security device to protect homes against accidental or intentional contaminant events. A seri...

  17. Caffeine Eye Drops Protect Against UV-B Cataract

    PubMed Central

    Kronschläger, Martin; Löfgren, Stefan; Yu, Zhaohua; Talebizadeh, Nooshin; Varma, Shambhu D.; Söderberg, Per

    2013-01-01

    The purpose of this study was to investigate if topically applied caffeine protects against in vivo ultraviolet radiation cataract and if so, to estimate the protection factor. Three experiments were carried out. First, two groups of Sprague-Dawley rats were pre-treated with a single application of either placebo or caffeine eye drops in both eyes. All animals were then unilaterally exposed in vivo to 8 kJ/m2 UV-B radiation for 15 min. One week later, the lens GSH levels were measured and the degree of cataract was quantified by measurement of in vitro lens light scattering. In the second experiment, placebo and caffeine pre-treated rats were divided in five UV-B radiation dose groups, receiving 0.0, 2.6, 3.7, 4.5 or 5.2 kJ/m2 UV-B radiation in one eye. Lens light scattering was determined after one week. In the third experiment, placebo and caffeine pre-treated rats were UV-B-exposed and the presence of activated caspase-3 was visualized by immunohistochemistry. There was significantly less UV-B radiation cataract in the caffeine group than in the placebo group (95% confidence interval for mean difference in lens light scattering between the groups = 0.10 ± 0.05 tEDC), and the protection factor for caffeine was 1.23. There was no difference in GSH levels between the placebo- and the caffeine group. There was more caspase-3 staining in UV-B-exposed lenses from the placebo group than in UV-B-exposed lenses from the caffeine group. Topically applied caffeine protects against ultraviolet radiation cataract, reducing lens sensitivity 1.23 times. PMID:23644096

  18. Reference Ultraviolet Wavelengths of Cr III Measured by Fourier Transform Spectrometry

    NASA Technical Reports Server (NTRS)

    Smillie, D.G.; Pickering, J.C.; Smith, P.L.

    2008-01-01

    We report Cr III ultraviolet (UV) transition wavelengths measured using a high-resolution Fourier transform spectrometer (FTS), for the first time, available for use as wavelength standards. The doubly ionized iron group element spectra dominate the observed opacity of hot B stars in the UV, and improved, accurate, wavelengths are required for the analysis of astronomical spectra. The spectrum was excited using a chromium-neon Penning discharge lamp and measured with the Imperial College vacuum ultraviolet FTS. 140 classified 3d(exp 3)4s- 3d(exp 3)4p Cr III transition lines, in the spectral range 38,000 to 49,000 cm(exp -1) (2632 to 2041 A), the strongest having wavelength uncertainties less than one part in 10(exp 7), are presented.

  19. A combination of He-Ne laser irradiation and exogenous NO application efficiently protect wheat seedling from oxidative stress caused by elevated UV-B stress.

    PubMed

    Li, Yongfeng; Gao, Limei; Han, Rong

    2016-12-01

    The elevated ultraviolet-B (UV-B) stress induces the accumulation of a variety of intracellular reactive oxygen species (ROS), which seems to cause oxidative stress for plants. To date, very little work has been done to evaluate the biological effects of a combined treatment with He-Ne laser irradiation and exogenous nitric oxide (NO) application on oxidative stress resulting from UV-B radiation. Thus, our study investigated the effects of a combination with He-Ne laser irradiation and exogenous NO treatment on oxidative damages in wheat seedlings under elevated UV-B stress. Our data showed that the reductions in ROS levels, membrane damage parameters, while the increments in antioxidant contents and antioxidant enzyme activity caused by a combination with He-Ne laser and exogenous NO treatment were greater than those of each individual treatment. Furthermore, these treatments had a similar effect on transcriptional activities of plant antioxidant enzymes. This implied that the protective effects of a combination with He-Ne laser irradiation and exogenous NO treatment on oxidative stress resulting from UV-B radiation was more efficient than each individual treatment with He-Ne laser or NO molecule. Our findings might provide beneficial theoretical references for identifying some effective new pathways for plant UV-B protection.

  20. UV-activated persulfate oxidation and regeneration of NOM-Saturated granular activated carbon.

    PubMed

    An, Dong; Westerhoff, Paul; Zheng, Mengxin; Wu, Mengyuan; Yang, Yu; Chiu, Chao-An

    2015-04-15

    A new method of ultraviolet light (UV) activated persulfate (PS) oxidation was investigated to regenerate granular activated carbon (GAC) in drinking water applications. The improvements in iodine and methylene blue numbers measured in the GAC after ultraviolet- (UV) activated persulfate suggested that the GAC preloaded with natural organic matter (NOM) was chemically regenerated. An experimental matrix for UV-activated persulfate regeneration included a range of persulfate doses and different UV wavelengths. Over 87% of the initial iodine number for GAC was restored under the optimum conditions, perfulfate dosage 60 g/L and UV exposure 1.75 × 10(4) mJ/cm(2). The persulfate dosages had little effect on the recovery of the methylene blue number, which was approximately 65%. Persulfate activation at 185 nm was superior to activation at 254 nm. UV activation of persulfate in the presence of GAC produced acid, lowering the solution pH. Higher persulfate concentrations and UV exposure resulted in greater GAC regeneration. Typical organic and inorganic byproducts (e.g., benzene compounds and sulfate ions) were measured as a component of treated water quality safety. This study provides a proof-of-concept that can be used to optimize pilot-scale and full-scale UV-activated persulfate for regeneration of NOM-saturated GAC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. UV emissions from low energy artificial light sources.

    PubMed

    Fenton, Leona; Moseley, Harry

    2014-01-01

    Energy efficient light sources have been introduced across Europe and many other countries world wide. The most common of these is the Compact Fluorescent Lamp (CFL), which has been shown to emit ultraviolet (UV) radiation. Light Emitting Diodes (LEDs) are an alternative technology that has minimal UV emissions. This brief review summarises the different energy efficient light sources available on the market and compares the UV levels and the subsequent effects on the skin of normal individuals and those who suffer from photodermatoses. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Ultraviolet radiation properties as applied to photoclimatherapy at the Dead Sea.

    PubMed

    Kudish, A I; Abels, D; Harari, M

    2003-05-01

    The Dead Sea basin, the lowest terrestrial point on earth, is recognized as a natural treatment center for patients with various cutaneous and rheumatic diseases. Psoriasis is the major skin disease treated at the Dead Sea with excellent improvement to complete clearance exceeding 85% after 4 weeks of treatment. These results were postulated to be associated with a unique spectrum of ultraviolet radiation present in the Dead Sea area. The UVB and UVA radiation at two sites is measured continuously by identical sets of broad-band Solar Light Co. Inc. meters (Philadelphia, PA). The spectral selectivity within the UVB and UVA spectrum was determined using a narrow-band spectroradiometer, UV-Optronics 742 (Orlando, FL). The optimum exposure time intervals for photoclimatherapy, defined as the minimum ratio of erythema to therapeutic radiation intensities, were also determined using a Solar Light Co. Inc. Microtops II, Ozone Monitor-Sunphotometer. The ultraviolet radiation at the Dead Sea is attenuated relative to Beer Sheva as a result of the increased optical path length and consequent enhanced scattering. The UVB radiation is attenuated to a greater extent than UVA and the shorter erythema UVB spectral range decreased significantly compared with the longer therapeutic UVB wavelengths. It was demonstrated that the relative attenuation within the UVB spectral range is greatest for the shorter erythema rays and less for the longer therapeutic UVB wavelengths, thus producing a greater proportion of the longer therapeutic UVB wavelengths in the ultraviolet spectrum. These measurements can be utilized to minimize the exposure to solar radiation by correlating the cumulative UVB radiation dose to treatment efficacy and by formulating a patient sun exposure treatment protocol for Dead Sea photoclimatherapy.

  3. Nanostructured Titanium Oxide Film- And Membrane-Based Photocatalysis For Water Treatment

    EPA Science Inventory

    Titanium Oxide (TiO2) photocatalysis, one of the ultraviolet (UV)-based advanced oxidation technologies (AOTs) and nanotechnologies (AONs), has attracted great attention for the development of efficient water treatment and purification systems due to the effectiveness ...

  4. Survival of Poliovirus in Flowing Turbid Seawater Treated with Ultraviolet Light

    PubMed Central

    Hill, W. F.; Hamblet, F. E.; Akin, E. W.

    1967-01-01

    The effectiveness of a model ultraviolet (UV) radiation unit for treating flowing turbid seawater contaminated with poliovirus was determined. At a turbidity of 70 ppm, the observed survival ratios ranged from 1.9 × 10-3 (99.81% reduction) to 1.5 × 10-4 (99.98% reduction) at flow rates ranging from 25 to 15 liters/min; no virus was recovered at flow rates of 10 and 5 liters/min. At a turbidity of 240 ppm, the observed survival ratios ranged from 3.2 × 10-2 (96.80% reduction) to 2.1 × 10-4 (99.98% reduction) at flow rates ranging from 25 to 5 liters/min. As expected, turbidity had an adverse influence on the effectiveness of UV radiation; however, by adjusting the flow rate of the seawater through the treatment unit, adequate disinfection was shown to be predictable. Images Fig. 1 PMID:4291955

  5. TECHNIQUES FOR DETERMINING UV EXPOSURE IN COASTAL WATERS: CASE STUDY IN SOUTH FLORIDA

    EPA Science Inventory

    The photosynthesis of coral reefs is inhibited by solar ultraviolet (UV) radiation and UV in combination with unusually high sea surface temperatures is believed to play an important role in coral bleaching. In this presentation we use a new technique based on remotely sensed oce...

  6. Leather Coated with Mixtures of Humectant and Antioxidants to Improve UV and Heat Resistance

    USDA-ARS?s Scientific Manuscript database

    Ultraviolet (UV) and heat resistance are very important qualities for leather products. We recently developed an environmentally friendly finishing process for improving the UV- and heat resistance of automobile upholstery leather. We previously reported and demonstrated some promising results fro...

  7. UIT ultraviolet imaging of 30 Doradus

    NASA Technical Reports Server (NTRS)

    Hintzen, P.; Cheng, K.-P.; Michalitsianos, A.; Bohlin, R.; O'Connell, R.; Cornett, R.; Roberts, M.; Smith, A.; Smith, E.; Stecher, T.

    1992-01-01

    During the Astro-1 mission, near- and far-UV images of the 30 Doradus region were obtained using the Ultraviolet Imaging Telescope (UIT). These wide-field, 40 min in diameter, high spatial resolution, 2-3 sec, UIT UV images reveal a rich field of luminous UV-bright stars, clusters, and associations. There are 181 stars brighter than m(sub 2558A) = 16.5 and 197 stars brighter than m(sub 1615A) = 16.4 within 3 min diameter of the 30 Doradus central cluster. We have derived UV fluxes emitted from the 30 Doradus central cluster and from its UV bright core, R136. The region within 5 sec of R136 produces approximately 14% of the far-UV flux (lambda = 1892 A) and approximately 16% of the near-UV flux (lambda = 2558 A) emitted from the 3 min diameter central cluster. The derived UV luminosity of R136 at 1892 A is only 7.8 times that of the nearby O6-7 Iaf star, R139, and the m(sub 1892) - m(sub v) colors of R136 are similar to other O or Wolf-Rayet stars in the same region. These UIT data, combined with other published observations at longer wavelengths, indicate that there is no observational evidence for a supermassive star in R136.

  8. Color change of tourmaline by heat treatment and electron beam irradiation: UV-Visible, EPR, and Mid-IR spectroscopic analyses

    NASA Astrophysics Data System (ADS)

    Maneewong, Apichate; Seong, Baek Seok; Shin, Eun Joo; Kim, Jeong Seog; Kajornrith, Varavuth

    2016-01-01

    The color of pink tourmaline gemstone changed to colorless when heating at temperature of 600 °C in air. This colorless tourmaline recovered its pink color when irradiated with an electron beam (e-beam) of 800 kGy. The origin of the color change was investigated in three types of tourmaline gemstones, two pink are from Afghanistan and one green are from Nigeria, by using Ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), Electron paramagnetic resonance (EPR), and Energy Dispersive X-ray Fluorescence (EDXRF). The UV-Vis absorption spectrum of the pink tourmaline with higher Mn concentration (T2, 0.24 wt%) showed characteristic absorption peaks originating from the Mn3+ color center: two absorption bands centered at wavelength of 396 and 520 nm, respectively. Both absorption bands disappeared when heated in air at 600 °C and then reappeared when irradiated with an e-beam at 800 kGy. EPR T2 spectra showed that the color change was related to the valence change of Mn3+ to Mn2+ and vice versa. The pink tourmaline of lower MnO content (T1, 0.08 wt%) also became colorless when heated, but the color was not recovered when the gemstone underwent e-beam irradiation. Instead, a yellow color was obtained. UV-Vis and FTIR spectra indicated that this yellow color originated from a decomposition of the hydroxyl group (-OH) into O- and Ho by the e-beam irradiation. Green tourmaline did not show any color change with either heat treatment or e-beam irradiation.

  9. Ultraviolet B-Sensitive Rice Cultivar Deficient in Cyclobutyl Pyrimidine Dimer Repair.

    PubMed Central

    Hidema, J.; Kumagai, T.; Sutherland, J. C.; Sutherland, B. M.

    1997-01-01

    Repair of cyclobutyl pyrimidine dimers (CPDs) in DNA is essential in most organisms to prevent biological damage by ultraviolet (UV) light. In higher plants tested thus far, UV-sensitive strains had higher initial damage levels or deficient repair of nondimer DNA lesions but normal CPD repair. This suggested that CPDs might not be important for biological lesions. The photosynthetic apparatus has also been proposed as a critical target. We have analyzed CPD induction and repair in the UV-sensitive rice (Oryza sativa L.) cultivar Norin 1 and its close relative UV-resistant Sasanishiki using alkaline agarose gel electrophoresis. Norin 1 is deficient in cyclobutyl pyrimidine dimer photoreactivation and excision; thus, UV sensitivity correlates with deficient dimer repair. PMID:12223592

  10. UV exposure in cars.

    PubMed

    Moehrle, Matthias; Soballa, Martin; Korn, Manfred

    2003-08-01

    There is increasing knowledge about the hazards of solar and ultraviolet (UV) radiation to humans. Although people spend a significant time in cars, data on UV exposure during traveling are lacking. The aim of this study was to obtain basic information on personal UV exposure in cars. UV transmission of car glass samples, windscreen, side and back windows and sunroof, was determined. UV exposure of passengers was evaluated in seven German middle-class cars, fitted with three different types of car windows. UV doses were measured with open or closed windows/sunroof of Mercedes-Benz E 220 T, E 320, and S 500, and in an open convertible car (Mercedes-Benz CLK). Bacillus subtilis spore film dosimeters (Viospor) were attached to the front, vertex, cheeks, upper arms, forearms and thighs of 'adult' and 'child' dummies. UV wavelengths longer than >335 nm were transmitted through car windows, and UV irradiation >380 nm was transmitted through compound glass windscreens. There was some variation in the spectral transmission of side windows according to the type of glass. On the arms, UV exposure was 3-4% of ambient radiation when the car windows were shut, and 25-31% of ambient radiation when the windows were open. In the open convertible car, the relative personal doses reached 62% of ambient radiation. The car glass types examined offer substantial protection against short-wave UV radiation. Professional drivers should keep car windows closed on sunny days to reduce occupational UV exposure. In individuals with polymorphic light eruption, produced by long-wave UVA, additional protection by plastic films, clothes or sunscreens appears necessary.

  11. International Ultraviolet Explorer (IUE) ultraviolet spectral atlas of selected astronomical objects

    NASA Technical Reports Server (NTRS)

    Wu, Chi-Chao; Reichert, Gail A.; Ake, Thomas B.; Boggess, Albert; Holm, Albert V.; Imhoff, Catherine L.; Kondo, Yoji; Mead, Jaylee M.; Shore, Steven N.

    1992-01-01

    The IUE Ultraviolet Spectral Atlas of Selected Astronomical Objects (or 'the Atlas'), is based on the data that were available in the IUE archive in 1986, and is intended to be a quick reference for the ultraviolet spectra of many categories of astronomical objects. It shows reflected sunlight from the Moon, planets, and asteroids, and also shows emission from comets. Comprehensive compilations of UV spectra for main sequence, subgiant, giant, bright giant, and supergiant stars are published elsewhere. This Atlas contains the spectra for objects occupying other areas of the Hertzsprung-Russell diagram: pre-main sequence stars, chemically peculiar stars, pulsating variables, subluminous stars, and Wolf-Rayet stars. This Atlas also presents phenomena such as the chromospheric and transition region emissions from late-type stars; composite spectra of stars, gas streams, accretion disks and gas envelopes of binary systems; the behavior of gas ejecta shortly after the outburst of novac and supernovac; and the H II regions, planetary nebulae, and supernova remnants. Population 2 stars, globular clusters, and luminous stars in the Magellanic Clouds, M31, and M33, are also included in this publication. Finally, the Atlas gives the ultraviolet spectra of galaxies of different Hubble types and of active galaxies.

  12. Influence of clouds on UV-B penetration to the earth's surface

    NASA Technical Reports Server (NTRS)

    Green, A. E. S.

    1979-01-01

    Radiometric measurements of cloud influence on ultraviolet B radiation (UV-B) were obtained. Mathematical models of the influence were defined to lay the groundwork for the construction of the global UV-B climatology from satellite determined ozone data. More refined measurements comparing UV-B radiation with total solar radiation were carried out. The cloudy case is referred to the cloudless sky irradiance and convenient transmission ratios are given An approach to the inversion of scattering data is summarized. An improved characterization of the UV-B radiation from a cloudless sky is also presented.

  13. Understanding possible underlying mechanism in declining germicidal efficiency of UV-LED reactor.

    PubMed

    Lee, Hyunkyung; Jin, Yongxun; Hong, Seungkwan

    2018-06-07

    Since ultraviolet light emitting diodes (UV-LEDs) have emerged as an alternative light source for UV disinfection systems, enhancement of reactor performance is a demanding challenge to promote its practical application in water treatment process. This study explored the underlying mechanism of the inefficiency observed in flow-through mode UV disinfection tests to improve the light utilization of UV-LED applications. In particular, the disinfection performance of UV-LED reactors was evaluated using two different flow channel types, reservoir and pathway systems, in order to elucidate the impact of physical circumstances on germicidal efficiency as the light profile was adjusted. Overall, a significant reduction in germicidal efficiency was observed when exposure time was prolonged or a mixing chamber was integrated. Zeta analysis revealed that the repulsion rate between microorganisms decreased with UV fluence transfer, and that change might cause the shielding effect of UV delivery to target microorganisms. In line with the above findings, the reduction in efficiency intensified when opportunities for microbial collision increased. Thus, UV induced microbial aggregation was implicated as being a disinfection hindering factor, exerting its effect through uneven UV illumination. Ultimately, the results refuted the prevailing belief that UV has a cumulative effect. We found that the reservoir system achieved worse performance than the pathway system despite it providing 15 times higher UV fluence: the differences in germicidal efficiency were 1-log, 1.4-log and 1.7-log in the cases of P.aeruginosa, E.coli and S.aureus, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Wavelength of ultraviolet radiation that enhances onset of clinical infectious bovine keratoconjunctivitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopecky, K.E.; Pugh, G.W. Jr.; Hughes, D.E.

    1980-09-01

    Cellulose acetate filtered ultraviolet (uv) radiation and unfiltered uv radiation were used on calves that were subsequently challenge exposed with Moraxella bovis. The onset, course, and severity of infectious bovine keratoconjunctivitis (IBK) were studied. Ten calves irradiated with unfiltered uv had the disease 1 to 2 days after M bovis challenge exposure. Ten calves irradiated with filtered uv and 10 calves not irradiated manifested IBK in a similar manner. Evidence is presented to support the contention that the wavelengths (around 270 nm) which are eliminated by cellulose acetate enhance the course of IBK. The effects on IBK of environmentally increasedmore » solar uv radiation is also discussed.« less

  15. Recent Advances on Endocrine Disrupting Effects of UV Filters.

    PubMed

    Wang, Jiaying; Pan, Liumeng; Wu, Shenggan; Lu, Liping; Xu, Yiwen; Zhu, Yanye; Guo, Ming; Zhuang, Shulin

    2016-08-03

    Ultraviolet (UV) filters are used widely in cosmetics, plastics, adhesives and other industrial products to protect human skin or products against direct exposure to deleterious UV radiation. With growing usage and mis-disposition of UV filters, they currently represent a new class of contaminants of emerging concern with increasingly reported adverse effects to humans and other organisms. Exposure to UV filters induce various endocrine disrupting effects, as revealed by increasing number of toxicological studies performed in recent years. It is necessary to compile a systematic review on the current research status on endocrine disrupting effects of UV filters toward different organisms. We therefore summarized the recent advances on the evaluation of the potential endocrine disruptors and the mechanism of toxicity for many kinds of UV filters such as benzophenones, camphor derivatives and cinnamate derivatives.

  16. Removal of Emerging Contaminants and Estrogenic Activity from Wastewater Treatment Plant Effluent with UV/Chlorine and UV/H2O2 Advanced Oxidation Treatment at Pilot Scale

    PubMed Central

    Kuch, Bertram; Lange, Claudia; Richter, Philipp; Kugele, Amélie; Minke, Ralf

    2018-01-01

    Effluent of a municipal wastewater treatment plant (WWTP) was treated on-site with the UV/chlorine (UV/HOCl) advanced oxidation process (AOP) using a pilot plant equipped with a medium pressure UV lamp with an adjustable performance of up to 1 kW. Results obtained from parallel experiments with the same pilot plant, where the state of the art UV/H2O2 AOP was applied, were compared regarding the removal of emerging contaminants (EC) and the formation of adsorbable organohalogens (AOX). Furthermore, the total estrogenic activity was measured in samples treated with the UV/chlorine AOP. At an energy consumption of 0.4 kWh/m3 (0.4 kW, 1 m3/h) and in a range of oxidant concentrations from 1 to 6 mg/L, the UV/chlorine AOP had a significantly higher EC removal yield than the UV/H2O2 AOP. With free available chlorine concentrations (FAC) in the UV chamber influent of at least 5 mg/L (11 mg/L of dosed Cl2), the total estrogenic activity could be reduced by at least 97%. To achieve a certain concentration of FAC in the UV chamber influent, double to triple the amount of dosed Cl2 was needed, resulting in AOX concentrations of up to 520 µg/L. PMID:29735959

  17. A study of meteor spectroscopy and physics from earth-orbit: A preliminary survey into ultraviolet meteor spectra

    NASA Technical Reports Server (NTRS)

    Meisel, D. D.

    1976-01-01

    Preliminary data required to extrapolate available meteor physics information (obtained in the photographic, visual and near ultraviolet spectral regions) into the middle and far ultraviolet are presented. Wavelength tables, telluric attenuation factors, meteor rates, and telluric airglow data are summarized in the context of near-earth observation vehicle parameters using moderate to low spectral resolution instrumentation. Considerable attenuation is given to the problem of meteor excitation temperatures since these are required to predict the strength of UV features. Relative line intensities are computed for an assumed chondritic composition. Features of greatest predicted intensities, the major problems in meteor physics, detectability of UV meteor events, complications of spacecraft motion, and UV instrumentation options are summarized.

  18. The effects of ultraviolet-B radiation on the toxicity of fire-fighting chemicals

    USGS Publications Warehouse

    Calfee, R.D.; Little, E.E.

    2003-01-01

    The interactive effects of ultraviolet (UV) and fire-retardant chemicals were evaluated by exposing rainbow trout (Oncorhyncus mykiss) juveniles and tadpoles of southern leopard frogs (Rana sphenocephala) to six fire-retardant formulations with and without sodium ferrocyanide (yellow prussiate of soda [YPS]) and to YPS alone under three simulated UV light treatments. Yellow prussiate of soda is used as a corrosion inhibitor in some of the fire-retardant chemical formulations. The underwater UV intensities measured were about 2 to 10% of surface irradiance measured in various aquatic habitats and were within tolerance limits for the species tested. Mortality of trout and tadpoles exposed to Fire-Trol?? GTS-R, Fire-Trol 300-F, Fire-Trol LCA-R, and Fire-Trol LCA-F was significantly increased in the presence of UV radiation when YPS was present in the formulation. The boreal toad (Bufo boreas), listed as endangered by the state of Colorado (USA), and southern leopard frog were similar in their sensitivity to these chemicals. Photoenhancement of fire-retardant chemicals can occur in a range of aquatic habitats and may be of concern even when optical clarity of water is low; however, other habitat characteristics can also reduce fire retardant toxicity.

  19. Impact of Room Location on UV-C Irradiance and UV-C Dosage and Antimicrobial Effect Delivered by a Mobile UV-C Light Device.

    PubMed

    Boyce, John M; Farrel, Patricia A; Towle, Dana; Fekieta, Renee; Aniskiewicz, Michael

    2016-06-01

    OBJECTIVE To evaluate ultraviolet C (UV-C) irradiance, UV-C dosage, and antimicrobial effect achieved by a mobile continuous UV-C device. DESIGN Prospective observational study. METHODS We used 6 UV light sensors to determine UV-C irradiance (W/cm2) and UV-C dosage (µWsec/cm2) at various distances from and orientations relative to the UV-C device during 5-minute and 15-minute cycles in an ICU room and a surgical ward room. In both rooms, stainless-steel disks inoculated with methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), and Clostridium difficile spores were placed next to sensors, and UV-C dosages and log10 reductions of target organisms achieved during 5-minute and 15-minute cycles were determined. Mean irradiance and dosage readings were compared using ANOVA. RESULTS Mean UV-C irradiance was nearly 1.0E-03 W/cm2 in direct sight at a distance of 1.3 m (4 ft) from the device but was 1.12E-05 W/cm2 on a horizontal surface in a shaded area 3.3 m (10 ft) from the device (P4 to 1-3 for MRSA, >4 to 1-2 for VRE and >4 to 0 log10 for C. difficile spores, depending on the distance from, and orientation relative to, the device with 5-minute and 15-minute cycles. CONCLUSION UV-C irradiance, dosage, and antimicrobial effect received from a mobile UV-C device varied substantially based on location in a room relative to the UV-C device. Infect Control Hosp Epidemiol 2016;37:667-672.

  20. Influence of UV lamp, sulfur(IV) concentration, and pH on bromate degradation in UV/sulfite systems: Mechanisms and applications.

    PubMed

    Xiao, Qian; Wang, Ting; Yu, Shuili; Yi, Peng; Li, Lei

    2017-03-15

    Bromate (BrO 3 - ) is a possible human carcinogen regulated worldwide at a strict standard of 10 μg/L in drinking water. Removal of BrO 3 - by advanced reduction processes (ARPs) has attracted much attention due to its high reduction efficiency and easier combination with ultraviolet (UV) disinfection. In this study, we employed a UV/sulfite process to degrade BrO 3 - and studied the effects of UV lamp, sulfur(IV) concentration, and pH on effectiveness of the system in degrading BrO 3 - . Low-pressure UV lamps (UV-L) instead of medium-pressure UV lamps (UV-M) were selected because of the high ultraviolet-C (UV-C) efficiency of UV-L. The increased sulfur(IV) concentration is proportionally correlated with enhanced degradation kinetics. BrO 3 - reduction was improved by increasing pH when pH is within 6.0-9.0, and principal component analysis demonstrated that pH is the most influential factor over sulfur(IV) concentration and type of UV lamp. Degradation mechanisms at different pH levels were subsequently investigated. Results showed that the reduction reactions are induced by hydrated electron (e aq - ) at pH > 9.0, by H at pH 4.0, and by both e aq - and H at pH 7.0. Effective quantum efficiency for the formation of e aq - and H in the photocatalytic systems was determined to be 0.109 ± 0.001 and 0.034 ± 0.001 mol E -1 , respectively. Furthermore, mass balance calculation of bromine and sulfur at pH 7 showed that bromide, sulfate and possibly dithionate ions were the major products, and a degradation pathway was proposed accordingly. Moreover, UV/sulfite processes could reduce the initial bromate concentration of 0.1 mM by 82% and 95% in the presence and absence of O 2 in tap water respectively, and 99% in the absence of O 2 in deionized water within 20 min at pH 9.0 and 2.0 mM sulfur (IV). Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Evaluation of an Innovative Approach to Validation of Ultraviolet (UV) Reactors for Disinfection in Drinking Water Systems

    EPA Science Inventory

    UV disinfection is an effective process for inactivating many microbial pathogens found in source waters with the potential as stand-alone treatment or in combination with other disinfectants. For surface and groundwater sourced drinking water applications, the U.S. Environmental...

  2. The TROPOMI surface UV algorithm

    NASA Astrophysics Data System (ADS)

    Lindfors, Anders V.; Kujanpää, Jukka; Kalakoski, Niilo; Heikkilä, Anu; Lakkala, Kaisa; Mielonen, Tero; Sneep, Maarten; Krotkov, Nickolay A.; Arola, Antti; Tamminen, Johanna

    2018-02-01

    The TROPOspheric Monitoring Instrument (TROPOMI) is the only payload of the Sentinel-5 Precursor (S5P), which is a polar-orbiting satellite mission of the European Space Agency (ESA). TROPOMI is a nadir-viewing spectrometer measuring in the ultraviolet, visible, near-infrared, and the shortwave infrared that provides near-global daily coverage. Among other things, TROPOMI measurements will be used for calculating the UV radiation reaching the Earth's surface. Thus, the TROPOMI surface UV product will contribute to the monitoring of UV radiation by providing daily information on the prevailing UV conditions over the globe. The TROPOMI UV algorithm builds on the heritage of the Ozone Monitoring Instrument (OMI) and the Satellite Application Facility for Atmospheric Composition and UV Radiation (AC SAF) algorithms. This paper provides a description of the algorithm that will be used for estimating surface UV radiation from TROPOMI observations. The TROPOMI surface UV product includes the following UV quantities: the UV irradiance at 305, 310, 324, and 380 nm; the erythemally weighted UV; and the vitamin-D weighted UV. Each of these are available as (i) daily dose or daily accumulated irradiance, (ii) overpass dose rate or irradiance, and (iii) local noon dose rate or irradiance. In addition, all quantities are available corresponding to actual cloud conditions and as clear-sky values, which otherwise correspond to the same conditions but assume a cloud-free atmosphere. This yields 36 UV parameters altogether. The TROPOMI UV algorithm has been tested using input based on OMI and the Global Ozone Monitoring Experiment-2 (GOME-2) satellite measurements. These preliminary results indicate that the algorithm is functioning according to expectations.

  3. Ultraviolet reflecting photonic microstructures in the King Penguin beak.

    PubMed

    Dresp, Birgitta; Jouventin, Pierre; Langley, Keith

    2005-09-22

    King and emperor penguins (Aptenodytes patagonicus and Aptenodytes forsteri) are the only species of marine birds so far known to reflect ultraviolet (UV) light from their beaks. Unlike humans, most birds perceive UV light and several species communicate using the near UV spectrum. Indeed, UV reflectance in addition to the colour of songbird feathers has been recognized as an important signal when choosing a mate. The king penguin is endowed with several highly coloured ornaments, notably its beak horn and breast and auricular plumage, but only its beak reflects UV, a property considered to influence its sexual attraction. Because no avian UV-reflecting pigments have yet been identified, the origin of such reflections is probably structural. In an attempt to identify the structures that give rise to UV reflectance, we combined reflectance spectrophotometry and morphological analysis by both light and electron microscopy, after experimental removal of surface layers of the beak horn. Here, we characterize for the first time a multilayer reflector photonic microstructure that produces the UV reflections in the king penguin beak.

  4. Effects of UV/Ag-TiO2/O3 advanced oxidation on unicellular green alga Dunaliella salina: implications for removal of invasive species from ballast water.

    PubMed

    Wu, Donghai; You, Hong; Du, Jiaxuan; Chen, Chuan; Jin, Darui

    2011-01-01

    The UV/Ag-TiO2/O3 process was investigated for ballast water treatment using Dunaliella salina as an indicator. Inactivation curves were obtained, and the toxicity of effluent was determined. Compared with individual unit processes using ozone or UV/Ag-TiO2, the inactivation efficiency of D. salina by the combined UV/Ag-TiO2/O3 process was enhanced. The presence of ozone caused an immediate decrease in chlorophyll a (chl-a) concentration. Inactivation efficiency and ch1-a removal efficiency were positively correlated with ozone dose and ultraviolet intensity. The initial total residual oxidant (TRO) concentration of effluent increased with increasing ozone dose, and persistence of TRO resulted in an extended period of toxicity. The results suggest that UV/Ag-TiO2/O3 has potential for ballast water treatment.

  5. Effect of enhanced UV-B radiation on pollen quantity, quality, and seed yield in Brassica rapa (Brassicaceae)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demchik, S.M.; Day, T.A.

    Three experiments examined the influence of ultraviolet-B radiation (UV-B; 280-320 nm) exposure on reproduction in Brassica rapa (Brassicacaeae). Plants were grown in a greenhouse under three biologically effective UV-B levels that stimulated either an ambient stratospheric ozone level (control), 16% ({open_quotes}low enhanced{close_quotes}), or 32% ({open_quotes}high enhanced{close_quotes}) ozone depletion levels at Morgantown, WV, USA in mid-March. In the first experiment,pollen production and viability per flower were reduced by {approx}50% under both enhanced UV-B levels relative to ambient controls. While plants under high-enhanced UV-B produced over 40% more flowers than plants under the two lower UV-B treatments, whole-plant production of viable pollenmore » was reduced under low-enhanced UV-B to 34% of ambient controls. In the second experiment, the influence of source-plant UV-B exposure on in vitro pollen from plants was examined and whether source-plant UV-B exposure influenced in vitro pollen germination and viability. Pollen from plants under both enhanced-UV-B was reduced from 65 to 18%. Viability of the pollen from plants grown under both enhanced UV-B treatments was reduced to a much lesser extent: only from {approx}43 to 22%. Thus, ambient source-plant pollen was more sensitive to enhanced UV-B levels to fertilize plants growing under ambient-UV-B levels, and assessed subsequent seed production and germination. Seed abortion rates were higher in plants pollinated with pollen from the enhanced UV-B treatments, than from ambient UV-B. Despite this, seed yield (number and mass) per plant was similar, regardless of the UV-B exposure of their pollen source. Our findings demonstrate that enhanced UV-B levels associated with springtime ozone depletion events have the capacity to substantially reduce viable pollen production, and could ultimately reduce reproductive success of B. rapa. 37 refs., 4 figs., 2 tabs.« less

  6. GaN ultraviolet p-i-n photodetectors with enhanced deep ultraviolet quantum efficiency

    NASA Astrophysics Data System (ADS)

    Wang, Guosheng; Xie, Feng; Wang, Jun; Guo, Jin

    2017-10-01

    GaN ultraviolet (UV) p-i-n photodetectors (PDs) with a thin p-AlGaN/GaN contact layer are designed and fabricated. The PD exhibits a low dark current density of˜7 nA/cm2 under -5 V, and a zero-bias peak responsivity of ˜0.16 A/W at 360 nm, which corresponds to a maximum quantum efficiency of 55%. It is found that, in the wavelength range between 250 and 365 nm, the PD with thin p-AlGaN/GaN contact layer exhibits enhanced quantum efficiency especially in a deep-UV wavelength range, than that of the control PD with conventional thin p-GaN contact layer. The improved quantum efficiency of the PD with thin p-AlGaN/GaN contact layer in the deep-UV wavelength range is mainly attributed to minority carrier reflecting properties of thin p-AlGaN/GaN heterojunction which could reduce the surface recombination loss of photon-generated carriers and improve light current collection efficiency.

  7. DEMONSTRATION BULLETIN: CAV-OX ULTRAVIOLET OXIDATION PROCESS MAGNUM WATER TECHNOLOGY

    EPA Science Inventory

    The CAV-OX® technology (see Fig- ure 1) destroys organic contaminants, including chlorinated hy- drocarbons, in water. The process uses hydrogen peroxide, hy- drodynamic cavitation, and ultraviolet (UV) radiation to photolyze and oxidize organic compounds present in water at ...

  8. QUANTIFYING ULTRAVIOLET RADIATION DOSE RELATIVE TO WETLAND HABITAT VARIABLES FOR THE ASSESSMENT OF RISK TO AMPHIBIANS

    EPA Science Inventory

    Ultraviolet B radiation (UV-B) has increased globally over the last several decades due to reduction of stratospheric ozone. UV-B may also increase when climate change alters cloud cover, rainfall, and distributions of vegetation. In aquatic systems, these factors can also intera...

  9. Ultraviolet-B radiation in a row-crop canopy: an extended 1-D model

    Treesearch

    Wei Gao; Richard H. Grant; Gordon M. Heisler; James R. Slusser

    2003-01-01

    A decrease in stratospheric ozone may result in a serious threat to plants, since biologically active short-wavelength ultraviolet-B (UV-B 280-320 nm) radiation will increase even with a relatively small decrease in ozone. Numerous investigations have demonstrated that the effect of UV-B enhancements on plants includes reduction in grain yield, alteration in species...

  10. Ultraviolet-C Irradiation: A Novel Pasteurization Method for Donor Human Milk

    PubMed Central

    Christen, Lukas; Lai, Ching Tat; Hartmann, Ben; Hartmann, Peter E.; Geddes, Donna T.

    2013-01-01

    Background Holder pasteurization (milk held at 62.5°C for 30 minutes) is the standard treatment method for donor human milk. Although this method of pasteurization is able to inactivate most bacteria, it also inactivates important bioactive components. Therefore, the objective of this study was to investigate ultraviolet irradiation as an alternative treatment method for donor human milk. Methods Human milk samples were inoculated with five species of bacteria and then UV-C irradiated. Untreated and treated samples were analysed for bacterial content, bile salt stimulated lipase (BSSL) activity, alkaline phosphatase (ALP) activity, and fatty acid profile. Results All five species of bacteria reacted similarly to UV-C irradiation, with higher dosages being required with increasing concentrations of total solids in the human milk sample. The decimal reduction dosage was 289±17 and 945±164 J/l for total solids of 107 and 146 g/l, respectively. No significant changes in the fatty acid profile, BSSL activity or ALP activity were observed up to the dosage required for a 5-log10 reduction of the five species of bacteria. Conclusion UV-C irradiation is capable of reducing vegetative bacteria in human milk to the requirements of milk bank guidelines with no loss of BSSL and ALP activity and no change of FA. PMID:23840820

  11. Impact of nanostructured thin ZnO film in ultraviolet protection.

    PubMed

    Sasani Ghamsari, Morteza; Alamdari, Sanaz; Han, Wooje; Park, Hyung-Ho

    2017-01-01

    Nanoscale ZnO is one of the best choices for ultraviolet (UV) protection, not only because of its antimicrobial properties but also due to its potential application for UV preservation. However, the behavior of nanostructured thin ZnO films and long-term effects of UV-radiation exposure have not been studied yet. In this study, we investigated the UV-protection ability of sol gel-derived thin ZnO films after different exposure times. Scanning electron microscopy, atomic force microscopy, and UV-visible optical spectroscopy were carried out to study the structure and optical properties of the ZnO films as a function of the UV-irradiation time. The results obtained showed that the prepared thin ZnO films were somewhat transparent under the visible wavelength region and protective against UV radiation. The UV-protection factor was 50+ for the prepared samples, indicating that they were excellent UV protectors. The deposited thin ZnO films demonstrated promising antibacterial potential and significant light absorbance in the UV range. The experimental results suggest that the synthesized samples have potential for applications in the health care field.

  12. Experimental evaluation of optimization method for developing ultraviolet barrier coatings

    NASA Astrophysics Data System (ADS)

    Gonome, Hiroki; Okajima, Junnosuke; Komiya, Atsuki; Maruyama, Shigenao

    2014-01-01

    Ultraviolet (UV) barrier coatings can be used to protect many industrial products from UV attack. This study introduces a method of optimizing UV barrier coatings using pigment particles. The radiative properties of the pigment particles were evaluated theoretically, and the optimum particle size was decided from the absorption efficiency and the back-scattering efficiency. UV barrier coatings were prepared with zinc oxide (ZnO) and titanium dioxide (TiO2). The transmittance of the UV barrier coating was calculated theoretically. The radiative transfer in the UV barrier coating was modeled using the radiation element method by ray emission model (REM2). In order to validate the calculated results, the transmittances of these coatings were measured by a spectrophotometer. A UV barrier coating with a low UV transmittance and high VIS transmittance could be achieved. The calculated transmittance showed a similar spectral tendency with the measured one. The use of appropriate particles with optimum size, coating thickness and volume fraction will result in effective UV barrier coatings. UV barrier coatings can be achieved by the application of optical engineering.

  13. Improved Astronomical Instrumentation for the Far Ultra-Violet

    NASA Astrophysics Data System (ADS)

    Witt, Emily M.; Fleming, Brian; Egan, Arika; Tyler, Rachel; Wiley, James

    2018-06-01

    Recent technological advances have opened up new instrument capabilities in the ultraviolet. Of particular interest are advanced deposition processes that have made lithium fluoride (LiF) based mirrors more accessible, achieving greater than 80% broadband reflectivity down into the Lyman UV (100 nm). Traditional MgF2 protected aluminum mirrors cut off at 115 nm, missing crucial tracers of warm gas and molecules. The hygroscopic sensitivity of LiF, which adds mission risk and cost, has also been mitigated with a thin capping layer of a more durable substance, making LiF mirrors accessible without onerous environmental procedures. These advances open up a new paradigm in UV astronomy by enabling multi-reflection systems in the Lyman UV. We present recent progress in the testing of eLiF-based optics, and then discuss the potential scientific avenues this opens up in UV astronomy.

  14. A synthetic peptide blocking TRPV1 activation inhibits UV-induced skin responses.

    PubMed

    Kang, So Min; Han, Sangbum; Oh, Jang-Hee; Lee, Young Mee; Park, Chi-Hyun; Shin, Chang-Yup; Lee, Dong Hun; Chung, Jin Ho

    2017-10-01

    Transient receptor potential type 1 (TRPV1) can be activated by ultraviolet (UV) irradiation, and mediates UV-induced matrix metalloproteinase (MMP)-1 and proinflammatory cytokines in keratinocytes. Various chemicals and compounds targeting TRPV1 activation have been developed, but are not in clinical use mostly due to their safety issues. We aimed to develop a novel TRPV1-targeting peptide to inhibit UV-induced responses in human skin. We designed and generated a novel TRPV1 inhibitory peptide (TIP) which mimics the specific site in TRPV1 (aa 701-709: Gln-Arg-Ala-Ile-Thr-Ile-Leu-Asp-Thr, QRAITILDT), Thr 705 , and tested its efficacy of blocking UV-induced responses in HaCaT, mouse, and human skin. TIP effectively inhibited capsaicin-induced calcium influx and TRPV1 activation. Treatment of HaCaT with TIP prevented UV-induced increases of MMP-1 and pro-inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor-α. In mouse skin in vivo, TIP inhibited UV-induced skin thickening and prevented UV-induced expression of MMP-13 and MMP-9. Moreover, TIP attenuated UV-induced erythema and the expression of MMP-1, MMP-2, IL-6, and IL-8 in human skin in vivo. The novel synthetic peptide targeting TRPV1 can ameliorate UV-induced skin responses in vitro and in vivo, providing a promising therapeutic approach against UV-induced inflammation and photoaging. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  15. Moderate salt treatment alleviates ultraviolet-B radiation caused impairment in poplar plants

    NASA Astrophysics Data System (ADS)

    Ma, Xuan; Ou, Yong-Bin; Gao, Yong-Feng; Lutts, Stanley; Li, Tao-Tao; Wang, Yang; Chen, Yong-Fu; Sun, Yu-Fang; Yao, Yin-An

    2016-09-01

    The effects of moderate salinity on the responses of woody plants to UV-B radiation were investigated using two Populus species (Populus alba and Populus russkii). Under UV-B radiation, moderate salinity reduced the oxidation pressure in both species, as indicated by lower levels of cellular H2O2 and membrane peroxidation, and weakened the inhibition of photochemical efficiency expressed by O-J-I-P changes. UV-B-induced DNA lesions in chloroplast and nucleus were alleviated by salinity, which could be explained by the higher expression levels of DNA repair system genes under UV-B&salt condition, such as the PHR, DDB2, and MutSα genes. The salt-induced increase in organic osmolytes proline and glycine betaine, afforded more efficient protection against UV-B radiation. Therefore moderate salinity induced cross-tolerance to UV-B stress in poplar plants. It is thus suggested that woody plants growing in moderate salted condition would be less affected by enhanced UV-B radiation than plants growing in the absence of salt. Our results also showed that UV-B signal genes in poplar plants PaCOP1, PaSTO and PaSTH2 were quickly responding to UV-B radiation, but not to salt. The transcripts of PaHY5 and its downstream pathway genes (PaCHS1, PaCHS4, PaFLS1 and PaFLS2) were differently up-regulated by these treatments, but the flavonoid compounds were not involved in the cross-tolerance since their concentration increased to the same extent in both UV-B and combined stresses.

  16. Whales Use Distinct Strategies to Counteract Solar Ultraviolet Radiation

    PubMed Central

    Martinez-Levasseur, Laura M.; Birch-Machin, Mark A.; Bowman, Amy; Gendron, Diane; Weatherhead, Elizabeth; Knell, Robert J.; Acevedo-Whitehouse, Karina

    2013-01-01

    A current threat to the marine ecosystem is the high level of solar ultraviolet radiation (UV). Large whales have recently been shown to suffer sun-induced skin damage from continuous UV exposure. Genotoxic consequences of such exposure remain unknown for these long-lived marine species, as does their capacity to counteract UV-induced insults. We show that UV exposure induces mitochondrial DNA damage in the skin of seasonally sympatric fin, sperm, and blue whales and that this damage accumulates with age. However, counteractive molecular mechanisms are markedly different between species. For example, sperm whales, a species that remains for long periods at the sea surface, activate genotoxic stress pathways in response to UV exposure whereas the paler blue whale relies on increased pigmentation as the season progresses. Our study also shows that whales can modulate their responses to fluctuating levels of UV, and that different evolutionary constraints may have shaped their response strategies. PMID:23989080

  17. UNLAMINATED GAFCHROMIC EBT3 FILM FOR ULTRAVIOLET RADIATION MONITORING.

    PubMed

    Welch, David; Randers-Pehrson, Gerhard; Spotnitz, Henry M; Brenner, David J

    2017-11-01

    Measurement of ultraviolet (UV) radiation is important for human health, especially with the expanded usage of short wavelength UV for sterilization purposes. This work examines unlaminated Gafchromic EBT3 film for UV radiation monitoring. The authors exposed the film to select wavelengths in the UV spectrum, ranging from 207 to 328 nm, and measured the change in optical density. The response of the film is wavelength dependent, and of the wavelengths tested, the film was most sensitive to 254 nm light, with measurable values as low as 10 µJ/cm2. The film shows a dose-dependent response that extends over more than four orders of magnitude. The response of the film to short wavelength UV is comparable to the daily safe exposure limits for humans, thus making it valuable as a tool for passive UV radiation monitoring. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. EXPERIMENT - APOLLO 16 (UV)

    NASA Image and Video Library

    1972-06-06

    S72-40820 (21 April 1972) --- A color enhancement of a photograph taken on ultra-violet light showing the spectrum of the upper atmosphere of Earth and geocorona. The bright horizontal line is far ultra-violet emission (1216 angstrom) of hydrogen extending 10 degrees (40,000 miles) either side of Earth. The knobby vertical line shows several ultra-violet emissions from Earth's sunlit atmosphere, each "lump" being produced by one type gas (oxygen, nitrogen, helium, etc.). The spectral dispersion is about 10 angstrom per millimeter on this enlargement. The UV camera/spectrograph was operated on the lunar surface by astronaut John W. Young, commander of the Apollo 16 lunar landing mission. It was designed and built at the Naval Research Laboratory, Washington, D.C. While astronauts Young and Charles M. Duke Jr., lunar module pilot, descended in the Lunar Module (LM) "Orion" to explore the Descartes highlands region of the moon, astronaut Thomas K. Mattingly II, command module pilot, remained with the Command and Service Modules (CSM) "Casper" in lunar orbit.

  19. Supreme EnLIGHTenment: Damage Recognition and Signaling in the Mammalian UV Response

    PubMed Central

    Herrlich, Peter; Karin, Michael; Weiss, Carsten

    2009-01-01

    Like their prokaryotic counterparts, mammalian cells can sense light, especially in the ultraviolet (UV) range of the spectrum. Following UV exposure cells mount an elaborate response – called the UV response, which mimics physiological signaling responses except that it targets multiple pathways thereby lacking the defined specificity of receptor-triggered signal transduction. Despite many years of research it is still not fully clear how UV radiation is sensed and converted into the „language of cells“ - signal reception and transduction. This review focuses on how photonic energy and its primary cellular products are sensed to elicit the UV response. PMID:18280234

  20. Extreme sensitivity to ultraviolet light in the fungal pathogen causing white-nose syndrome of bats.

    PubMed

    Palmer, Jonathan M; Drees, Kevin P; Foster, Jeffrey T; Lindner, Daniel L

    2018-01-02

    Bat white-nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans, has decimated North American hibernating bats since its emergence in 2006. Here, we utilize comparative genomics to examine the evolutionary history of this pathogen in comparison to six closely related nonpathogenic species. P. destructans displays a large reduction in carbohydrate-utilizing enzymes (CAZymes) and in the predicted secretome (~50%), and an increase in lineage-specific genes. The pathogen has lost a key enzyme, UVE1, in the alternate excision repair (AER) pathway, which is known to contribute to repair of DNA lesions induced by ultraviolet (UV) light. Consistent with a nonfunctional AER pathway, P. destructans is extremely sensitive to UV light, as well as the DNA alkylating agent methyl methanesulfonate (MMS). The differential susceptibility of P. destructans to UV light in comparison to other hibernacula-inhabiting fungi represents a potential "Achilles' heel" of P. destructans that might be exploited for treatment of bats with WNS.

  1. An operational retrieval algorithm for determining aerosol optical properties in the ultraviolet

    NASA Astrophysics Data System (ADS)

    Taylor, Thomas E.; L'Ecuyer, Tristan S.; Slusser, James R.; Stephens, Graeme L.; Goering, Christian D.

    2008-02-01

    This paper describes a number of practical considerations concerning the optimization and operational implementation of an algorithm used to characterize the optical properties of aerosols across part of the ultraviolet (UV) spectrum. The algorithm estimates values of aerosol optical depth (AOD) and aerosol single scattering albedo (SSA) at seven wavelengths in the UV, as well as total column ozone (TOC) and wavelength-independent asymmetry factor (g) using direct and diffuse irradiances measured with a UV multifilter rotating shadowband radiometer (UV-MFRSR). A novel method for cloud screening the irradiance data set is introduced, as well as several improvements and optimizations to the retrieval scheme which yield a more realistic physical model for the inversion and increase the efficiency of the algorithm. Introduction of a wavelength-dependent retrieval error budget generated from rigorous forward model analysis as well as broadened covariances on the a priori values of AOD, SSA and g and tightened covariances of TOC allows sufficient retrieval sensitivity and resolution to obtain unique solutions of aerosol optical properties as demonstrated by synthetic retrievals. Analysis of a cloud screened data set (May 2003) from Panther Junction, Texas, demonstrates that the algorithm produces realistic values of the optical properties that compare favorably with pseudo-independent methods for AOD, TOC and calculated Ångstrom exponents. Retrieval errors of all parameters (except TOC) are shown to be negatively correlated to AOD, while the Shannon information content is positively correlated, indicating that retrieval skill improves with increasing atmospheric turbidity. When implemented operationally on more than thirty instruments in the Ultraviolet Monitoring and Research Program's (UVMRP) network, this retrieval algorithm will provide a comprehensive and internally consistent climatology of ground-based aerosol properties in the UV spectral range that can be used

  2. Physical Conditions in the Ultraviolet Absorbers of IRAS F22456-5125

    NASA Astrophysics Data System (ADS)

    Dunn, Jay P.; Crenshaw, D. Michael; Kraemer, S. B.; Trippe, M. L.

    2010-04-01

    We present the ultraviolet (UV) and X-ray spectra observed with the Far Ultraviolet Spectroscopic Explorer (FUSE) and the XMM-Newton satellite, respectively, of the low-z Seyfert 1 galaxy IRAS F22456 - 5125. This object shows absorption from five distinct, narrow kinematic components that span a significant range in velocity (~0 to -700 km s-1) and ionization (Lyman series, C III, N III, and O VI). We also show that three of the five kinematic components in these lines appear to be saturated in Lyβ λ1026 and that all five components show evidence of saturation in the O VI doublet lines λλ1032, 1038. Further, all five components show evidence for partial covering due to the absorption seen in the O VI doublet. This object is peculiar because it shows no evidence for corresponding X-ray absorption to the UV absorption in the X-ray spectrum, which violates the 1:1 correlation known for low-z active galactic nuclei (AGNs). We perform photoionization modeling of the UV absorption lines and predict that the O VII column density should be small, which would produce little to no absorption in agreement with the X-ray observation. We also examine the UV variability of the continuum flux for this object (an increase of a factor of 6). As the absorption components lack variability, we find a lower limit of ~20 kpc for the distance for the absorbers from the central AGN. Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer. FUSE is operated for NASA by the Johns Hopkins University under NASA contract NAS5-32985.

  3. An Evaluation of UV-Monitoring Enhanced Skin Cancer Prevention among Farm Youth in Rural Virginia

    ERIC Educational Resources Information Center

    Chen, Yi-Chun; Ohanehi, Donatus C.; Redican, Kerry J.

    2015-01-01

    Background: Health districts in southwest Virginia have one of the highest ultraviolet (UV) radiation exposure and sunburn rate. Due to higher levels of UV exposure, rural farm youth are at higher risk for skin cancer than non-farm youth. Few studies have been published that explore best practices for decreasing UV exposure among this population.…

  4. Highly reproducible and reliable metal/graphene contact by ultraviolet-ozone treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899; Hacker, Christina A.

    2014-03-21

    Resist residue from the device fabrication process is a significant source of contamination at the metal/graphene contact interface. Ultraviolet Ozone (UVO) treatment is proven here, by X-ray photoelectron spectroscopy and Raman measurement, to be an effective way of cleaning the metal/graphene interface. Electrical measurements of devices that were fabricated by using UVO treatment of the metal/graphene contact region show that stable and reproducible low resistance metal/graphene contacts are obtained and the electrical properties of the graphene channel remain unaffected.

  5. Ultraviolet vision may be widespread in bats

    USGS Publications Warehouse

    Gorresen, P. Marcos; Cryan, Paul; Dalton, David C.; Wolf, Sandy; Bonaccorso, Frank

    2015-01-01

    Insectivorous bats are well known for their abilities to find and pursue flying insect prey at close range using echolocation, but they also rely heavily on vision. For example, at night bats use vision to orient across landscapes, avoid large obstacles, and locate roosts. Although lacking sharp visual acuity, the eyes of bats evolved to function at very low levels of illumination. Recent evidence based on genetics, immunohistochemistry, and laboratory behavioral trials indicated that many bats can see ultraviolet light (UV), at least at illumination levels similar to or brighter than those before twilight. Despite this growing evidence for potentially widespread UV vision in bats, the prevalence of UV vision among bats remains unknown and has not been studied outside of the laboratory. We used a Y-maze to test whether wild-caught bats could see reflected UV light and whether such UV vision functions at the dim lighting conditions typically experienced by night-flying bats. Seven insectivorous species of bats, representing five genera and three families, showed a statistically significant ‘escape-toward-the-light’ behavior when placed in the Y-maze. Our results provide compelling evidence of widespread dim-light UV vision in bats.

  6. Sensing and Responding to UV-A in Cyanobacteria

    PubMed Central

    Moon, Yoon-Jung; Kim, Seung Il; Chung, Young-Ho

    2012-01-01

    Ultraviolet (UV) radiation can cause stresses or act as a photoregulatory signal depending on its wavelengths and fluence rates. Although the most harmful effects of UV on living cells are generally attributed to UV-B radiation, UV-A radiation can also affect many aspects of cellular processes. In cyanobacteria, most studies have concentrated on the damaging effect of UV and defense mechanisms to withstand UV stress. However, little is known about the activation mechanism of signaling components or their pathways which are implicated in the process following UV irradiation. Motile cyanobacteria use a very precise negative phototaxis signaling system to move away from high levels of solar radiation, which is an effective escape mechanism to avoid the detrimental effects of UV radiation. Recently, two different UV-A-induced signaling systems for regulating cyanobacterial phototaxis were characterized at the photophysiological and molecular levels. Here, we review the current understanding of the UV-A mediated signaling pathways in the context of the UV-A perception mechanism, early signaling components, and negative phototactic responses. In addition, increasing evidences supporting a role of pterins in response to UV radiation are discussed. We outline the effect of UV-induced cell damage, associated signaling molecules, and programmed cell death under UV-mediated oxidative stress. PMID:23208372

  7. Invisible Misconceptions: Student Understanding of Ultraviolet and Infrared Radiation

    ERIC Educational Resources Information Center

    Libarkin, Julie C.; Asghar, Anila; Crockett, C.; Sadler, Philip

    2011-01-01

    The importance of nonvisible wavelengths for the study of astronomy suggests that student understanding of nonvisible light is an important consideration in astronomy classrooms. Questionnaires, interviews, and panel discussions were used to investigate 6-12 student and teacher conceptions of ultraviolet (UV) and infrared (IR). Alternative…

  8. UV Resonant Raman Spectrometer with Multi-Line Laser Excitation

    NASA Technical Reports Server (NTRS)

    Lambert, James L.; Kohel, James M.; Kirby, James P.; Morookian, John Michael; Pelletier, Michael J.

    2013-01-01

    A Raman spectrometer employs two or more UV (ultraviolet) laser wavel engths to generate UV resonant Raman (UVRR) spectra in organic sampl es. Resonant Raman scattering results when the laser excitation is n ear an electronic transition of a molecule, and the enhancement of R aman signals can be several orders of magnitude. In addition, the Ra man cross-section is inversely proportional to the fourth power of t he wavelength, so the UV Raman emission is increased by another fact or of 16, or greater, over visible Raman emissions. The Raman-scatter ed light is collected using a high-resolution broadband spectrograph . Further suppression of the Rayleigh-scattered laser light is provi ded by custom UV notch filters.

  9. UV irradiation and autoclave treatment for elimination of contaminating DNA from laboratory consumables.

    PubMed

    Gefrides, Lisa A; Powell, Mark C; Donley, Michael A; Kahn, Roger

    2010-02-01

    Laboratories employ various approaches to ensure that their consumables are free of DNA contamination. They may purchase pre-treated consumables, perform quality control checks prior to casework, and use in-house profile databases for contamination detection. It is better to prevent contamination prior to DNA typing than identify it after samples are processed. To this end, laboratories may UV irradiate or autoclave consumables prior to use but treatment procedures are typically based on killing microorganisms and not on the elimination of DNA. We report a systematic study of UV and autoclave treatments on the persistence of DNA from saliva. This study was undertaken to determine the best decontamination strategy for the removal of DNA from laboratory consumables. We have identified autoclave and UV irradiation procedures that can eliminate nanogram quantities of contaminating DNA contained within cellular material. Autoclaving is more effective than UV irradiation because it can eliminate short fragments of contaminating DNA more effectively. Lengthy autoclave or UV irradiation treatments are required. Depending on bulb power, a UV crosslinker may take a minimum of 2h to achieve an effective dose for elimination of nanogram quantities of contaminating DNA (>7250mJ/cm(2)). Similarly autoclaving may also take 2h to eliminate similar quantities of contaminating DNA. For this study, we used dried saliva stains to determine the effective dose. Dried saliva stains were chosen because purified DNA as well as fresh saliva are less difficult to eradicate than dried stains and also because consumable contamination is more likely to be in the form of a collection of dry cells.

  10. Satellite estimation of surface spectral ultraviolet irradiance using OMI data in East Asia

    NASA Astrophysics Data System (ADS)

    Lee, H.; Kim, J.; Jeong, U.

    2017-12-01

    Due to a strong influence to the human health and ecosystem environment, continuous monitoring of the surface ultraviolet (UV) irradiance is important nowadays. The amount of UVA (320-400 nm) and UVB (290-320 nm) radiation at the Earth surface depends on the extent of Rayleigh scattering by atmospheric gas molecules, the radiative absorption by ozone, radiative scattering by clouds, and both absorption and scattering by airborne aerosols. Thus advanced consideration of these factors is the essential part to establish the process of UV irradiance estimation. Also UV index (UVI) is a simple parameter to show the strength of surface UV irradiance, therefore UVI has been widely utilized for the purpose of UV monitoring. In this study, we estimate surface UV irradiance at East Asia using realistic input based on OMI Total Ozone and reflectivity, and then validate this estimated comparing to UV irradiance from World Ozone and Ultraviolet Radiation Data Centre (WOUDC) data. In this work, we also try to develop our own retrieval algorithm for better estimation of surface irradiance. We use the Vector Linearized Discrete Ordinate Radiative Transfer (VLIDORT) model version 2.6 for our UV irradiance calculation. The input to the VLIDORT radiative transfer calculations are the total ozone column (TOMS V7 climatology), the surface albedo (Herman and Celarier, 1997) and the cloud optical depth. Based on these, the UV irradiance is calculated based on look-up table (LUT) approach. To correct absorbing aerosol, UV irradiance algorithm added climatological aerosol information (Arola et al., 2009). The further study, we analyze the comprehensive uncertainty analysis based on LUT and all input parameters.

  11. Lanthanum (III) regulates the nitrogen assimilation in soybean seedlings under ultraviolet-B radiation.

    PubMed

    Huang, Guangrong; Wang, Lihong; Zhou, Qing

    2013-01-01

    Ultraviolet-B (UV-B, 280-320 nm) radiation has seriously affected the growth of plants. Finding the technology/method to alleviate the damage of UV-B radiation has become a frontal topic in the field of environmental science. The pretreatment with rare earth elements (REEs) is an effective method, but the regulation mechanism of REEs is unknown. Here, the regulation effects of lanthanum (La(III)) on nitrogen assimilation in soybean seedlings (Glycine max L.) under ultraviolet-B radiation were investigated to elucidate the regulation mechanism of REEs on plants under UV-B radiation. UV-B radiation led to the inhibition in the activities of the key enzymes (nitrate reductase, glutamine synthetase, glutamate synthase) in the nitrogen assimilation, the decrease in the contents of nitrate and soluble proteins, as well as the increase in the content of amino acid in soybean seedlings. The change degree of UV-B radiation at the high level (0.45 W m(-2)) was higher than that of UV-B radiation at the low level (0.15 W m(-2)). The pretreatment with 20 mg L(-1) La(III) could alleviate the effects of UV-B radiation on the activities of nitrate reductase, glutamine synthetase, glutamate synthase, and glutamate dehydrogenase, promoting amino acid conversion and protein synthesis in soybean seedlings. The regulation effect of La(III) under UV-B radiation at the low level was better than that of UV-B radiation at the high level. The results indicated that the pretreatment with 20 mg L(-1) La(III) could alleviate the inhibition of UV-B radiation on nitrogen assimilation in soybean seedlings.

  12. Recent Advances on Endocrine Disrupting Effects of UV Filters

    PubMed Central

    Wang, Jiaying; Pan, Liumeng; Wu, Shenggan; Lu, Liping; Xu, Yiwen; Zhu, Yanye; Guo, Ming; Zhuang, Shulin

    2016-01-01

    Ultraviolet (UV) filters are used widely in cosmetics, plastics, adhesives and other industrial products to protect human skin or products against direct exposure to deleterious UV radiation. With growing usage and mis-disposition of UV filters, they currently represent a new class of contaminants of emerging concern with increasingly reported adverse effects to humans and other organisms. Exposure to UV filters induce various endocrine disrupting effects, as revealed by increasing number of toxicological studies performed in recent years. It is necessary to compile a systematic review on the current research status on endocrine disrupting effects of UV filters toward different organisms. We therefore summarized the recent advances on the evaluation of the potential endocrine disruptors and the mechanism of toxicity for many kinds of UV filters such as benzophenones, camphor derivatives and cinnamate derivatives. PMID:27527194

  13. Drinking water treatment with ultraviolet light for travelers -- Evaluation of a mobile lightweight system.

    PubMed

    Timmermann, Lisa F; Ritter, Klaus; Hillebrandt, David; Küpper, Thomas

    2015-01-01

    The SteriPEN(®) is a handheld device for disinfecting water with ultraviolet (UV) radiation. The manufacturer claims a reduction of at least 99.9% of bacteria, viruses, and protozoa. The present study intends to verify the general effectiveness of the device. Furthermore, the influence of bottle geometry and water movement is examined and the issue of user safety with regard to UV-C radiation is addressed. The device was applied on water containing a known number of microorganisms (Escherichia coli, Staphylococcus aureus, and the spore of Geobacillusstearothermophilus) and the survival rate was examined. Three different types of bottles commonly used among travelers served as test containers. All tests were conducted with and without agitating the water during irradiation. Furthermore, a spectral analysis was performed on the light of the device. The SteriPEN(®) reached a mean reduction of more than 99.99% of bacteria and 99.57% of the spores when applied correctly. However, the results of the trials without agitating the water only yielded a 94.98% germ reduction. The device's maximal radiation intensity lies at 254 nm which is the wavelength most efficient in inactivating bacteria. The UV-C fraction is filtered out completely by common bottle materials. However, when applied in larger containers a portion of the UV-C rays exits the water surface. If applied according to the instructions the device manages a satisfactory inactivation of bacteria. However, it bears the danger of user errors relevant to health. Therefore, education on the risks of incorrect application should be included in the travel medical consultation. Also there are still aspects that need to be subject to further independent research. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Harmful and favourable ultraviolet conditions for human health over Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Chubarova, Nataly; Zhdanova, Ekaterina

    2014-05-01

    We provide the analysis of the spatial and temporal distribution of ultraviolet (UV) radiation over Northern Eurasia taking into account for both its detrimental (erythema and eye-damage effects) and favourable (vitamin D synthesis) influence on human health. The UV effects on six different skin types are considered in order to cover the variety of skin types of European and Asian inhabitants. To better quantifying the vitamin D irradiance threshold we accounted for an open body fraction S as a function of effective air temperature. The spatial and temporal distribution of UV resources was estimated by radiative transfer (RT) modeling (8 stream DISORT RT code) with 1x 1 degree grid and monthly resolution. For this purpose special datasets of main input geophysical parameters (total ozone content, aerosol characteristics, surface UV albedo, UV cloud modification factor) have been created over the territory of Northern Eurasia, which can be of separate interest for the different multidisciplinary scientific applications over the PEEX domain. The new approaches were used to retrieve aerosol and cloud transmittance from different satellite and re-analysis datasets for calculating the solar UV irradiance at ground. Using model simulations and some experimental data we provide the altitude parameterization for different types of biologically active irradiance in mountainous area taking into account not only for the effects of molecular scattering but for the altitude dependence of aerosol parameters and surface albedo. Based on the new classification of UV resources (Chubarova, Zhdanova, 2013) we show that the distribution of harmful (UV deficiency and UV excess) and favorable UV conditions is regulated by various geophysical parameters (mainly, total ozone, cloudiness and open body fraction) and can significantly deviate from latitudinal dependence. The interactive tool for providing simulations of biologically active irradiance and its attribution to the different

  15. Emulsifying and foaming properties of ultraviolet-irradiated egg white protein and sodium caseinate.

    PubMed

    Kuan, Yau-Hoong; Bhat, Rajeev; Karim, Alias A

    2011-04-27

    The physicochemical and functional properties of ultraviolet (UV)-treated egg white protein (EW) and sodium caseinate (SC) were investigated. UV irradiation of the proteins was carried out for 30, 60, 90, and 120 min. However, the SC samples were subjected to extended UV irradiation for 4 and 6 h as no difference was found on the initial UV exposure time. Formol titration, SDS-PAGE, and FTIR analyses indicated that UV irradiation could induce cross-linking on proteins and led to improved emulsifying and foaming properties (P < 0.05). These results indicated that the UV-irradiated EW and SC could be used as novel emulsifier and foaming agents in broad food systems for stabilizing and foaming purposes.

  16. Ultraviolet spectrophotometry of three LINERs

    NASA Technical Reports Server (NTRS)

    Goodrich, R. W.; Keel, W. C.

    1986-01-01

    Three galaxies known to be LINERs were observed spectroscopically in the ultraviolet in an attempt to detect the presumed nonthermal continuum source thought to be the source of photoionization in the nuclei. NGC 4501 was found to be too faint for study with the IUE spectrographs, while NGC 5005 had an extended ultraviolet light profile. Comparison with the optical light profile of NGC 5005 indicates that the ultraviolet source is distributed spatially in the same manner as the optical starlight, probably indicating that the ultraviolet excess is due to a component of hot stars in the nucleus. These stars contribute detectable absorption features longward of 2500 A; together with optical data, the IUE spectra suggest a burst of star formation about 1 billion yr ago, with a lower rate continuing to produce a few OB stars. In NGC 4579, a point source contributing most of the ultraviolet excess is found that is much different than the optical light distribution. Furthermore, the ultraviolet to X-ray spectral index in NGC 4579 is 1.4, compatible with the UV to X-ray indices found for samples of Seyfert galaxies. This provides compelling evidence for the detection of the photoionizing continuum in NGC 4579 and draws the research fields of normal galaxies and active galactic nuclei closer together. The emission-line spectrum of NGC 4579 is compared with calculations from a photoionization code, CLOUDY, and several shock models. The photoionization code is found to give superior results, adding to the increasing weight of evidence that the LINER phenomenon is essentially a scaled-down version of the Seyfert phenomenon.

  17. NGF protects corneal, retinal, and cutaneous tissues/cells from phototoxic effect of UV exposure.

    PubMed

    Rocco, Maria Luisa; Balzamino, Bijorn Omar; Aloe, Luigi; Micera, Alessandra

    2018-04-01

    Based on evidence that nerve growth factor (NGF) exerts healing action on damaged corneal, retinal, and cutaneous tissues, the present study sought to assess whether topical NGF application can prevent and/or protect epithelial cells from deleterious effects of ultraviolet (UV) radiation. Eyes from 40 young-adult Sprague Dawley rats and cutaneous tissues from 36 adult nude mice were exposed to UVA/B lamp for 60 min, either alone or in the presence of murine NGF. Corneal, retinal, and cutaneous tissues were sampled/processed for morphological, immunohistochemical, and biomolecular analysis, and results were compared statistically. UV exposure affected both biochemical and molecular expression of NGF and trkA NGFR in corneal, retinal, and cutaneous tissues while UV exposure coupled to NGF treatment enhanced NGF and trkA NGFR expression as well as reduced cell death. Overall, the findings of this in vivo/ex vivo study show the NGF ability to reduce the potential UV damage. Although the mechanism underneath this effect needs further investigation, these observations prospect the development of a pharmacological NGF-based therapy devoted to maintain cell function when exposed to phototoxic UV radiation.

  18. Ultraviolet Observations of Three Dwarf Cepheids

    NASA Astrophysics Data System (ADS)

    Sturch, Conrad R.

    Ultraviolet observations of three dwarf Cepheids (VZ Cnc, SX Phe, and AI Vel) have been obtained with the ANS. Analysis of these observations (Sturch and WU 1982) reveals that the flux distributions observed for each of these objects exhibit UV deficiencies which increase monotonically with decreasing wavelengths. The largest UV deficiencies are noted for SX Phe which has been identified with group of dwarf Cepheids with low metallicity and low luminosity, two attributes that are expected to have opposite effects on the UV flux distribution. It is proposed to obtain low dispersion IUE spectra of the three stars throughout each of their light cycles. Such observations will identify spectral features responsible for the flux deficiencies and will provide data necessary for a detailed comparison with model atmospheres. Knowledge of atmospheric parameters will lead to a better understanding of the evolutionary status of dwarf Cepheids.

  19. UV Induced Epigenetic Field Effect as a Target for Melanoma Therapy and Prevention

    DTIC Science & Technology

    2017-06-01

    initiators or selected for during disease progression highlighting our lack in knowledge of the critical molecular targets in the initiation of UV...changes in the underlying molecular mechanisms of UV-induced melanoma. This would be the first evidence epigenetic alterations from UV-induced...i di id l i k d h l d fi li d i i15. SUBJECT TERMS Skin-cancer, melanoma, ultraviolet-radiation, epigenetics, methylation, genetics , melanomagenesis

  20. UV-C light inactivation and modeling kinetics of Alicyclobacillus acidoterrestris spores in white grape and apple juices.

    PubMed

    Baysal, Ayse Handan; Molva, Celenk; Unluturk, Sevcan

    2013-09-16

    In the present study, the effect of short wave ultraviolet light (UV-C) on the inactivation of Alicyclobacillus acidoterrestris DSM 3922 spores in commercial pasteurized white grape and apple juices was investigated. The inactivation of A. acidoterrestris spores in juices was examined by evaluating the effects of UV light intensity (1.31, 0.71 and 0.38 mW/cm²) and exposure time (0, 3, 5, 7, 10, 12 and 15 min) at constant depth (0.15 cm). The best reduction (5.5-log) was achieved in grape juice when the UV intensity was 1.31 mW/cm². The maximum inactivation was approximately 2-log CFU/mL in apple juice under the same conditions. The results showed that first-order kinetics were not suitable for the estimation of spore inactivation in grape juice treated with UV-light. Since tailing was observed in the survival curves, the log-linear plus tail and Weibull models were compared. The results showed that the log-linear plus tail model was satisfactorily fitted to estimate the reductions. As a non-thermal technology, UV-C treatment could be an alternative to thermal treatment for grape juices or combined with other preservation methods for the pasteurization of apple juice. © 2013 Elsevier B.V. All rights reserved.