Sample records for ultrawideband electromagnetic interference

  1. Ultrawideband Electromagnetic Interference to Aircraft Radios

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Fuller, Gerald L.; Shaver, Timothy W.

    2002-01-01

    A very recent FCC Final Rule now permits marketing and operation of new products that incorporate Ultrawideband (UWB) technology into handheld devices. Wireless product developers are working to rapidly bring this versatile, powerful and expectedly inexpensive technology into numerous consumer wireless devices. Past studies addressing the potential for passenger-carried portable electronic devices (PEDs) to interfere with aircraft electronic systems suggest that UWB transmitters may pose a significant threat to aircraft communication and navigation radio receivers. NASA, United Airlines and Eagles Wings Incorporated have performed preliminary testing that clearly shows the potential for handheld UWB transmitters to cause cockpit failure indications for the air traffic control radio beacon system (ATCRBS), blanking of aircraft on the traffic alert and collision avoidance system (TCAS) displays, and cause erratic motion and failure of instrument landing system (ILS) localizer and glideslope pointers on the pilot horizontal situation and attitude director displays. This paper provides details of the preliminary testing and recommends further assessment of aircraft systems for susceptibility to UWB electromagnetic interference.

  2. Ultra-Wideband Electromagnetic Pulse Propagation through Causal Media

    DTIC Science & Technology

    2016-03-04

    AFRL-AFOSR-VA-TR-2016-0112 Ultra-Wideband Electromagnetic Pulse Propagation through Causal Media Natalie Cartwright RESEARCH FOUNDATION OF STATE... Electromagnetic Pulse Propagation through Causal Media 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-13-1-0013 5c.  PROGRAM ELEMENT NUMBER 61102F 6...SUPPLEMENTARY NOTES 14. ABSTRACT When an electromagnetic pulse travels through a dispersive material each frequency of the transmitted pulse changes in both

  3. Enhanced Ultra-Wideband (UWB) Circular Monopole Antenna with Electromagnetic Band Gap (EBG) Surface and Director

    DTIC Science & Technology

    2014-08-01

    Enhanced Ultra-Wideband (UWB) Circular Monopole Antenna with Electromagnetic Band Gap (EBG) Surface and Director by Amir I Zaghloul, Youn M... Antenna with Electromagnetic Band Gap (EBG) Surface and Director Amir I Zaghloul, Youn M Lee, Gregory A Mitchell, and Theodore K Anthony...DATES COVERED (From - To) 4. TITLE AND SUBTITLE Enhanced Ultra-Wideband (UWB) Circular Monopole Antenna with Electromagnetic Band Gap (EBG

  4. Study of plasma-based stable and ultra-wideband electromagnetic wave absorption for stealth application

    NASA Astrophysics Data System (ADS)

    Xuyang, CHEN; Fangfang, SHEN; Yanming, LIU; Wei, AI; Xiaoping, LI

    2018-06-01

    A plasma-based stable, ultra-wideband electromagnetic (EM) wave absorber structure is studied in this paper for stealth applications. The stability is maintained by a multi-layer structure with several plasma layers and dielectric layers distributed alternately. The plasma in each plasma layer is designed to be uniform, whereas it has a discrete nonuniform distribution from the overall view of the structure. The nonuniform distribution of the plasma is the key to obtaining ultra-wideband wave absorption. A discrete Epstein distribution model is put forward to constrain the nonuniform electron density of the plasma layers, by which the wave absorption range is extended to the ultra-wideband. Then, the scattering matrix method (SMM) is employed to analyze the electromagnetic reflection and absorption of the absorber structure. In the simulation, the validation of the proposed structure and model in ultra-wideband EM wave absorption is first illustrated by comparing the nonuniform plasma model with the uniform case. Then, the influence of various parameters on the EM wave reflection of the plasma are simulated and analyzed in detail, verifying the EM wave absorption performance of the absorber. The proposed structure and model are expected to be superior in some realistic applications, such as supersonic aircraft.

  5. Propagation of an ultrawideband electromagnetic signal in ionospheric plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soldatov, A. V., E-mail: av-soldatov@vniief.ru; Terekhin, V. A.

    2016-10-15

    The propagation of an ultrawideband electromagnetic signal in the ionosphere—a plasma medium with spatially nonuniform characteristics—is studied analytically in the high-frequency approximation. The effect of the plasma dielectric properties and angular divergence on the shape and frequency spectrum of the propagating signal is investigated. It is shown that the spectral energy density of the signal is preserved if collisions of ionospheric plasma electrons are neglected.

  6. Compact electromagnetic bandgap structures for notch band in ultra-wideband applications.

    PubMed

    Rotaru, Mihai; Sykulski, Jan

    2010-01-01

    This paper introduces a novel approach to create notch band filters in the front-end of ultra-wideband (UWB) communication systems based on electromagnetic bandgap (EBG) structures. The concept presented here can be implemented in any structure that has a microstrip in its configuration. The EBG structure is first analyzed using a full wave electromagnetic solver and then optimized to work at WLAN band (5.15-5.825 GHz). Two UWB passband filters are used to demonstrate the applicability and effectiveness of the novel EBG notch band feature. Simulation results are provided for two cases studied.

  7. Compact Electromagnetic Bandgap Structures for Notch Band in Ultra-Wideband Applications

    PubMed Central

    Rotaru, Mihai; Sykulski, Jan

    2010-01-01

    This paper introduces a novel approach to create notch band filters in the front-end of ultra-wideband (UWB) communication systems based on electromagnetic bandgap (EBG) structures. The concept presented here can be implemented in any structure that has a microstrip in its configuration. The EBG structure is first analyzed using a full wave electromagnetic solver and then optimized to work at WLAN band (5.15–5.825 GHz). Two UWB passband filters are used to demonstrate the applicability and effectiveness of the novel EBG notch band feature. Simulation results are provided for two cases studied. PMID:22163430

  8. Electromagnetic Interference Tests

    DTIC Science & Technology

    1994-05-31

    for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields (300 kHz - 100 GHz), American National Standards Institute...Respect to Human Exposure to Radio Frequency Electromagnetic Fields (300 kHz - 100 GHz), American National Standards Institute, C95.1-1982, 30 July 1980...II il~l I!I 11 lll i 13. ABSTkACT (Waxlrnun 200woruh) This TOP is a general guideline for electromagnetic interference testing of electronic

  9. Electromagnetic interference in electrical systems of motor vehicles

    NASA Astrophysics Data System (ADS)

    Dziubiński, M.; Drozd, A.; Adamiec, M.; Siemionek, E.

    2016-09-01

    Electronic ignition system affects the electronic equipment of the vehicle by electric and magnetic fields. The measurement of radio electromagnetic interference originating from the ignition system affecting the audiovisual test bench was carried out with a variable speed of the ignition system. The paper presents measurements of radio electromagnetic interference in automobiles. In order to determine the level of electromagnetic interference, the audiovisual test bench was equipped with a set of meters for power consumption and assessment of the level of electromagnetic interference. Measurements of the electromagnetic interference level within the audiovisual system were performed on an experimental test bench consisting of the ignition system, starting system and charging system with an alternator and regulator.

  10. FDTD computation of human eye exposure to ultra-wideband electromagnetic pulses.

    PubMed

    Simicevic, Neven

    2008-03-21

    With an increase in the application of ultra-wideband (UWB) electromagnetic pulses in the communications industry, radar, biotechnology and medicine, comes an interest in UWB exposure safety standards. Despite an increase of the scientific research on bioeffects of exposure to non-ionizing UWB pulses, characterization of those effects is far from complete. A numerical computational approach, such as a finite-difference time domain (FDTD) method, is required to visualize and understand the complexity of broadband electromagnetic interactions. The FDTD method has almost no limits in the description of the geometrical and dispersive properties of the simulated material, it is numerically robust and appropriate for current computer technology. In this paper, a complete calculation of exposure of the human eye to UWB electromagnetic pulses in the frequency range of 3.1-10.6, 22-29 and 57-64 GHz is performed. Computation in this frequency range required a geometrical resolution of the eye of 0.1 mm and an arbitrary precision in the description of its dielectric properties in terms of the Debye model. New results show that the interaction of UWB pulses with the eye tissues exhibits the same properties as the interaction of the continuous electromagnetic waves (CWs) with the frequencies from the pulse's frequency spectrum. It is also shown that under the same exposure conditions the exposure to UWB pulses is from one to many orders of magnitude safer than the exposure to CW.

  11. Assessment and control of spacecraft electromagnetic interference

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Design criteria are presented to provide guidance in assessing electromagnetic interference from onboard sources and establishing requisite control in spacecraft design, development, and testing. A comprehensive state-of-the-art review is given which covers flight experience, sources and transmission of electromagnetic interference, susceptible equipment, design procedure, control techniques, and test methods.

  12. Electronic systems failures and anomalies attributed to electromagnetic interference

    NASA Technical Reports Server (NTRS)

    Leach, R. D. (Editor); Alexander, M. B. (Editor)

    1995-01-01

    The effects of electromagnetic interference can be very detrimental to electronic systems utilized in space missions. Assuring that subsystems and systems are electrically compatible is an important engineering function necessary to assure mission success. This reference publication will acquaint the reader with spacecraft electronic systems failures and anomalies caused by electromagnetic interference and will show the importance of electromagnetic compatibility activities in conjunction with space flight programs. It is also hoped that the report will illustrate that evolving electronic systems are increasingly sensitive to electromagnetic interference and that NASA personnel must continue to diligently pursue electromagnetic compatibility on space flight systems.

  13. Reducing Electromagnetic Interference in a Grid Tied Single Phase Power Inverter

    DTIC Science & Technology

    2016-09-01

    ELECTROMAGNETIC INTERFERENCE IN A GRID TIED SINGLE PHASE POWER INVERTER by Jason Hassan Valiani September 2016 Thesis Advisor: Giovanna Oriti...3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE REDUCING ELECTROMAGNETIC INTERFERENCE IN A GRID TIED SINGLE PHASE POWER...explored. The primary goal is to understand the effects each modulation strategy has on the conducted electromagnetic interference (EMI) and then

  14. Comparison of Commercial Electromagnetic Interface Test Techniques to NASA Electromagnetic Interference Test Techniques

    NASA Astrophysics Data System (ADS)

    Smith, V.

    2000-11-01

    This report documents the development of analytical techniques required for interpreting and comparing space systems electromagnetic interference test data with commercial electromagnetic interference test data using NASA Specification SSP 30237A "Space Systems Electromagnetic Emission and Susceptibility Requirements for Electromagnetic Compatibility." The PSpice computer simulation results and the laboratory measurements for the test setups under study compare well. The study results, however, indicate that the transfer function required to translate test results of one setup to another is highly dependent on cables and their actual layout in the test setup. Since cables are equipment specific and are not specified in the test standards, developing a transfer function that would cover all cable types (random, twisted, or coaxial), sizes (gauge number and length), and layouts (distance from the ground plane) is not practical.

  15. Comparison of Commercial Electromagnetic Interface Test Techniques to NASA Electromagnetic Interference Test Techniques

    NASA Technical Reports Server (NTRS)

    Smith, V.; Minor, J. L. (Technical Monitor)

    2000-01-01

    This report documents the development of analytical techniques required for interpreting and comparing space systems electromagnetic interference test data with commercial electromagnetic interference test data using NASA Specification SSP 30237A "Space Systems Electromagnetic Emission and Susceptibility Requirements for Electromagnetic Compatibility." The PSpice computer simulation results and the laboratory measurements for the test setups under study compare well. The study results, however, indicate that the transfer function required to translate test results of one setup to another is highly dependent on cables and their actual layout in the test setup. Since cables are equipment specific and are not specified in the test standards, developing a transfer function that would cover all cable types (random, twisted, or coaxial), sizes (gauge number and length), and layouts (distance from the ground plane) is not practical.

  16. Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms.

    PubMed

    Su, Jianxun; Lu, Yao; Zhang, Hui; Li, Zengrui; Lamar Yang, Yaoqing; Che, Yongxing; Qi, Kainan

    2017-02-09

    In this paper, an ultra-wideband, wide angle and polarization-insensitive metasurface is designed, fabricated, and characterized for suppressing the specular electromagnetic wave reflection or backward radar cross section (RCS). Square ring structure is chosen as the basic meta-atoms. A new physical mechanism based on size adjustment of the basic meta-atoms is proposed for ultra-wideband manipulation of electromagnetic (EM) waves. Based on hybrid array pattern synthesis (APS) and particle swarm optimization (PSO) algorithm, the selection and distribution of the basic meta-atoms are optimized simultaneously to obtain the ultra-wideband diffusion scattering patterns. The metasurface can achieve an excellent RCS reduction in an ultra-wide frequency range under x- and y-polarized normal incidences. The new proposed mechanism greatly extends the bandwidth of RCS reduction. The simulation and experiment results show the metasurface can achieve ultra-wideband and polarization-insensitive specular reflection reduction for both normal and wide-angle incidences. The proposed methodology opens up a new route for realizing ultra-wideband diffusion scattering of EM wave, which is important for stealth and other microwave applications in the future.

  17. Avionics electromagnetic interference immunity and environment

    NASA Technical Reports Server (NTRS)

    Clarke, C. A.

    1986-01-01

    Aircraft electromagnetic spectrum and radio frequency (RF) field strengths are charted, profiling the higher levels of electromagnetic voltages encountered by the commercial aircraft wiring. Selected military, urban, and rural electromagnetic field levels are plotted and provide a comparison of radiation amplitudes. Low frequency magnetic fields and electric fields from 400 H(Z) power systems are charted versus frequency and wire separation to indicate induced voltages on adjacent or neighboring circuits. Induced EMI levels and attenuation characteristics of electric, magnetic, RF fields, and transients are plotted and graphed for common types of wire circuits. The significance of wire circuit returns and shielding is emphasized to highlight the techniques that help block the paths of electromagnetic interference and maintain avionic interface signal quality.

  18. Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms

    PubMed Central

    Su, Jianxun; Lu, Yao; Zhang, Hui; Li, Zengrui; (Lamar) Yang, Yaoqing; Che, Yongxing; Qi, Kainan

    2017-01-01

    In this paper, an ultra-wideband, wide angle and polarization-insensitive metasurface is designed, fabricated, and characterized for suppressing the specular electromagnetic wave reflection or backward radar cross section (RCS). Square ring structure is chosen as the basic meta-atoms. A new physical mechanism based on size adjustment of the basic meta-atoms is proposed for ultra-wideband manipulation of electromagnetic (EM) waves. Based on hybrid array pattern synthesis (APS) and particle swarm optimization (PSO) algorithm, the selection and distribution of the basic meta-atoms are optimized simultaneously to obtain the ultra-wideband diffusion scattering patterns. The metasurface can achieve an excellent RCS reduction in an ultra-wide frequency range under x- and y-polarized normal incidences. The new proposed mechanism greatly extends the bandwidth of RCS reduction. The simulation and experiment results show the metasurface can achieve ultra-wideband and polarization-insensitive specular reflection reduction for both normal and wide-angle incidences. The proposed methodology opens up a new route for realizing ultra-wideband diffusion scattering of EM wave, which is important for stealth and other microwave applications in the future. PMID:28181593

  19. Electromagnetic interference of power conditioners for solar electric propulsion

    NASA Technical Reports Server (NTRS)

    Whittlesey, A. C.; Macie, T. W.

    1973-01-01

    Electrical, multikilowatt power conditioning (PC) equipment needed on board a spacecraft utilizing solar electric propulsion creates an electromagnetic environment that is potentially deterimental to the science, navigation, and radio communication hardware. Within the scope of the solar electric propulsion system technology program, three lightweight, 2.5-kW PCs were evaluated in terms of their electromagnetic characteristics. It was found that the levels of radiated and conducted interference exceeded the levels anticipated for a solar electric propulsion mission. These noise emissions, however, were the result of deficient interference design in these models, rather than a basic inability to control interference in this type of PC.

  20. Electromagnetic interference of bone-anchored hearing aids by cellular phones.

    PubMed

    Kompis, M; Negri, S; Häusler, R

    2000-10-01

    We report a case of electromagnetic interference between a bone-anchored hearing aid (BAHA) and a cellular phone. A 54-year-old women was successfully treated for severe mixed conductive and sensorineural hearing loss with a BAHA. Five years after implantation, the patient experienced a sudden feeling of dizziness, accompanied by a loud buzzing sound and by a sensation of head pressure while examining a digital mobile phone. During a subsequent experiment, the buzzing sound could be reproduced and was identified as electromagnetic interference between the BAHA and digital cellular phones. Seventeen adult BAHA users from our clinic participated in a subsequent survey. Of the 13 patients with some experience of digital cellular phones, 11 reported hearing annoying noises elicited by these devices. However, no other sensation, such as dizziness, was described. Owing to the increasing number of users of both hearing aids and cellular phones, the incidence of electromagnetic interference must be expected to increase as well. Although to date there is no evidence that such interference may be harmful or dangerous to users of conventional or bone-anchored hearing aids, unexpected interference can be a frightening experience.

  1. Electromagnetic interference with pacemakers caused by portable media players.

    PubMed

    Thaker, Jay P; Patel, Mehul B; Jongnarangsin, Krit; Liepa, Valdis V; Thakur, Ranjan K

    2008-04-01

    Electromagnetic fields generated by electrical devices may cause interference with permanent pacemakers. Media players are becoming a common mode of portable entertainment. The most common media players used worldwide are iPods. These devices are often carried in a shirt chest pocket, which may place the devices close to an implanted pacemaker. The purpose of this study was to determine if iPods cause interference with pacemakers. In this prospective, single-blinded study, 100 patients who had cardiac pacemakers were tested with four types of iPods to assess for interference. Patients were monitored by a single-channel ECG monitor as well as the respective pacemaker programmer via the telemetry wand. iPods were tested by placing them 2 inches anterior to the pacemaker and wand for up to 10 seconds. To simulate actual use, standard-issue headphones were plugged into the iPods. To maintain consistency, the volume was turned up maximally, and the equalizer was turned off. A subset of 25 patients underwent testing on 2 separate days to assess for reproducibility of interference. Pacemaker interference was categorized as type I or type II telemetry interference. Type I interference was associated with atrial and/or ventricular high rates on rate histograms. Type II interference did not affect pacemaker rate counters. Electromagnetic emissions from the four iPods also were evaluated in a Faraday cage to determine the mechanism of the observed interference. One hundred patients (63 men and 37 women; mean age 77.1 +/- 7.6 years) with 11 single-chamber pacemakers and 89 dual-chamber pacemakers underwent 800 tests. The incidence of any type of interference was 51% of patients and 20% of tests. Type I interference was seen in 19% of patients and type II in 32% of patients. Reproducibility testing confirmed that interference occurred regardless of pacing configuration (unipolar or bipolar), pacing mode (AAI, VVI, or DDD), and from one day to the next. Electromagnetic emissions

  2. [Lossless ECG compression algorithm with anti- electromagnetic interference].

    PubMed

    Guan, Shu-An

    2005-03-01

    Based on the study of ECG signal features, a new lossless ECG compression algorithm is put forward here. We apply second-order difference operation with anti- electromagnetic interference to original ECG signals and then, compress the result by the escape-based coding model. In spite of serious 50Hz-interference, the algorithm is still capable of obtaining a high compression ratio.

  3. Effects of Sm addition on electromagnetic interference shielding property of Mg-Zn-Zr alloys

    NASA Astrophysics Data System (ADS)

    Yang, Chubin; Pan, Fusheng; Chen, Xianhua; Luo, Ning

    2017-06-01

    The electromagnetic interference (EMI) shielding of Sm-containing magnesium alloys in the 30-1500 MHz testing frequency range was investigated by coaxial cable method. The results demonstrated that Mg-3Zn alloys displayed the best electromagnetic shielding property. When 0.5 wt% of Zr was added for crystal grain refinement, the shielding effectiveness (SE) was apparently reduced. The addition of the rare earth element Sm in ZK magnesium alloys can improve the electromagnetic interference shielding of magnesium alloys. The main reason for the differences in electromagnetic interference shielding of magnesium alloys was the change in conductivity. The addition of Zr in Mg-Zn alloys can refine the grains and consequently improve the grain boundary area significantly. Therefore, the number of irregularly arranged atoms at the grain boundaries increased, decreasing the conductivity of magnesium alloys and leading to a decrease in the electromagnetic interference shielding. Following the Sm addition, the Mg-Zn-Sm phase was precipitated at the grain boundaries and in cores. The precipitation of Sm-containing rare earth phases could consume the solid-soluted Zn atoms within the Mg, resulting in an increase in electrical conductivity and electromagnetic interference shielding improvement.

  4. Prediction of shipboard electromagnetic interference (EMI) problems using artificial intelligence (AI) technology

    NASA Technical Reports Server (NTRS)

    Swanson, David J.

    1990-01-01

    The electromagnetic interference prediction problem is characteristically ill-defined and complicated. Severe EMI problems are prevalent throughout the U.S. Navy, causing both expected and unexpected impacts on the operational performance of electronic combat systems onboard ships. This paper focuses on applying artificial intelligence (AI) technology to the prediction of ship related electromagnetic interference (EMI) problems.

  5. Ultrawideband Electromagnetic Interference to Aircraft Radios: Results of Limited Functional Testing With United Airlines and Eagles Wings Incorporated, in Victorville, California

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Shaver, Timothy W.; Fuller, Gerald L.

    2002-01-01

    On February 14, 2002, the FCC adopted a FIRST REPORT AND ORDER, released it on April 22, 2002, and on May 16, 2002 published in the Federal Register a Final Rule, permitting marketing and operation of new products incorporating UWB technology. Wireless product developers are working to rapidly bring this versatile, powerful and expectedly inexpensive technology into numerous consumer wireless devices. Past studies addressing the potential for passenger-carried portable electronic devices (PEDs) to interfere with aircraft electronic systems suggest that UWB transmitters may pose a significant threat to aircraft communication and navigation radio receivers. NASA, United Airlines and Eagles Wings Incorporated have performed preliminary testing that clearly shows the potential for handheld UWB transmitters to cause cockpit failure indications for the air traffic control radio beacon system (ATCRBS), blanking of aircraft on the traffic alert and collision avoidance system (TCAS) displays, and cause erratic motion and failure of instrument landing system (ILS) localizer and glideslope pointers on the pilot horizontal situation and attitude director displays. This report provides details of the preliminary testing and recommends further assessment of aircraft systems for susceptibility to UWB electromagnetic interference.

  6. The interference of electronic implants in low frequency electromagnetic fields.

    PubMed

    Silny, J

    2003-04-01

    Electronic implants such as cardiac pacemakers or nerve stimulators can be impaired in different ways by amplitude-modulated and even continuous electric or magnetic fields of strong field intensities. For the implant bearer, possible consequences of a temporary electromagnetic interference may range from a harmless impairment of his well-being to a perilous predicament. Electromagnetic interferences in all types of implants cannot be covered here due to their various locations in the body and their different sensing systems. Therefore, this presentation focuses exemplarily on the most frequently used implant, the cardiac pacemaker. In case of an electromagnetic interference the cardiac pacemaker reacts by switching to inhibition mode or to fast asynchronous pacing. At a higher disturbance voltage on the input of the pacemaker, a regular asynchronous pacing is likely to arise. In particular, the first-named interference could be highly dangerous for the pacemaker patient. The interference threshold of cardiac pacemakers depends in a complex way on a number of different factors such as: electromagnetic immunity and adjustment of the pacemaker, the composition of the applied low-frequency fields (only electric or magnetic fields or combinations of both), their frequencies and modulations, the type of pacemaker system (bipolar, unipolar) and its location in the body, as well as the body size and orientation in the field, and last but not least, certain physiological conditions of the patient (e.g. inhalation, exhalation). In extensive laboratory studies we have investigated the interference mechanisms in more than 100 cardiac pacemakers (older types as well as current models) and the resulting worst-case conditions for pacemaker patients in low-frequency electric and magnetic fields. The verification of these results in different practical everyday-life situations, e.g. in the fields of high-voltage overhead lines or those of electronic article surveillance systems is

  7. Electromagnetic interference with cardiac pacemakers and implantable cardioverter-defibrillators from low-frequency electromagnetic fields in vivo.

    PubMed

    Tiikkaja, Maria; Aro, Aapo L; Alanko, Tommi; Lindholm, Harri; Sistonen, Heli; Hartikainen, Juha E K; Toivonen, Lauri; Juutilainen, Jukka; Hietanen, Maila

    2013-03-01

    Electromagnetic interference (EMI) can pose a danger to workers with pacemakers and implantable cardioverter-defibrillators (ICDs). At some workplaces electromagnetic fields are high enough to potentially inflict EMI. The purpose of this in vivo study was to evaluate the susceptibility of pacemakers and ICDs to external electromagnetic fields. Eleven volunteers with a pacemaker and 13 with an ICD were exposed to sine, pulse, ramp, and square waveform magnetic fields with frequencies of 2-200 Hz using Helmholtz coil. The magnetic field flux densities varied to 300 µT. We also tested the occurrence of EMI from an electronic article surveillance (EAS) gate, an induction cooktop, and a metal inert gas (MIG) welding machine. All pacemakers were tested with bipolar settings and three of them also with unipolar sensing configurations. None of the bipolar pacemakers or ICDs tested experienced interference in any of the exposure situations. The three pacemakers with unipolar settings were affected by the highest fields of the Helmholtz coil, and one of them also by the EAS gate and the welding cable. The induction cooktop did not interfere with any of the unipolarly programmed pacemakers. Magnetic fields with intensities as high as those used in this study are rare even in industrial working environments. In most cases, employees can return to work after implantation of a bipolar pacemaker or an ICD, after an appropriate risk assessment. Pacemakers programmed to unipolar configurations can cause danger to their users in environments with high electromagnetic fields, and should be avoided, if possible.

  8. Interference Processes During Reradiation of Attosecond Pulses of Electromagnetic Field by Graphene

    NASA Astrophysics Data System (ADS)

    Makarov, D. N.; Matveev, V. I.; Makarova, K. A.

    2018-05-01

    Interference spectra during reradiation of attosecond pulses of electromagnetic field by graphene sheets are considered. Analytical expressions for calculations of spectral distributions are derived. As an example, the interference spectra of a graphene sheet and a flat rectangular lattice are compared.

  9. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.

  10. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, T.E.

    1996-11-19

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs.

  11. Current facts on pacemaker electromagnetic interference and their application to clinical care

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sager, D.P.

    1987-03-01

    The development of the sensing demand cardiac pacemaker brought with it the problem of interference as a result of extraneous electric current and electromagnetic fields. This problem still deserves consideration, not only because harmful disruption of pacemaker function, while infrequent, can occur but also because myths and misunderstandings have flourished on the subject. Misinformation has often led to needless patient anxiety and unnecessary restrictions in activities of daily living. Similarly, when health care practitioners are misinformed about pacemaker interference, potentially hazardous situations can occur in the clinical environment. This article is a review of current information on the sources andmore » effects of electromagnetic interference (EMI) on pacemakers and includes a discussion of their application to patient care.« less

  12. Ultra-wideband polarization insensitive UT-shaped metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Karampour, Nasrollah; Nozhat, Najmeh

    2017-05-01

    In this paper, an ultra-wideband metamaterial absorber (MMA) with U and T shaped resonators has been proposed. The resonators and the ground plane consist of gold (Au) and titanium (Ti) layers. The resistive sheet effect of Ti layer and the resonance elements in the structure cause a broad absorption spectrum. The simulations are based on the finite element method (FEM) and the results show that the absorption of the proposed structure is more than 90% between 150 and 300 THz that is much larger than previous works. Moreover, by applying the interference theory, we have demonstrated that the simulation results are in good agreement with the theoretical results. The primary proposed MMA is polarization sensitive. Therefore, a polarization insensitive metamaterial absorber has been suggested. Also, because of the extra resonance elements the full width at 90% absorption increases about 35 THz. This ultra-wideband MMA has various applications in microbalometer, imaging, thermal emitters, photovoltaic, and energy harvesting.

  13. Highly Stretchable and Transparent Electromagnetic Interference Shielding Film Based on Silver Nanowire Percolation Network for Wearable Electronics Applications.

    PubMed

    Jung, Jinwook; Lee, Habeom; Ha, Inho; Cho, Hyunmin; Kim, Kyun Kyu; Kwon, Jinhyeong; Won, Phillip; Hong, Sukjoon; Ko, Seung Hwan

    2017-12-27

    Future electronics are expected to develop into wearable forms, and an adequate stretchability is required for the forthcoming wearable electronics considering various motions occurring in human body. Along with stretchability, transparency can increase both the functionality and esthetic features in future wearable electronics. In this study, we demonstrate, for the first time, a highly stretchable and transparent electromagnetic interference shielding layer for wearable electronic applications with silver nanowire percolation network on elastic poly(dimethylsiloxane) substrate. The proposed stretchable and transparent electromagnetic interference shielding layer shows a high electromagnetic wave shielding effectiveness even under a high tensile strain condition. It is expected for the silver nanowire percolation network-based electromagnetic interference shielding layer to be beyond the conventional electromagnetic interference shielding materials and to broaden its application range to various fields that require optical transparency or nonplanar surface environment, such as biological system, human skin, and wearable electronics.

  14. Electromagnetic interference in cardiac rhythm management devices.

    PubMed

    Sweesy, Mark W; Holland, James L; Smith, Kerry W

    2004-01-01

    Clinicians caring for cardiac device patients with implanted pacemakers or cardioverter defibrillators (ICDs) are frequently asked questions by their patients concerning electromagnetic interference (EMI) sources and the devices. EMI may be radiated or conducted and may be present in many different forms including (but not limited to) radiofrequency waves, microwaves, ionizing radiation, acoustic radiation, static and pulsed magnetic fields, and electric currents. Manufacturers have done an exemplary job of interference protection with device features such as titanium casing, signal filtering, interference rejection circuits, feedthrough capacitors, noise reversion function, and programmable parameters. Nevertheless, EMI remains a real concern and a potential danger. Many factors influence EMI including those which the patient can regulate (eg, distance from and duration of exposure) and some the patient cannot control (eg, intensity of the EMI field, signal frequency). Potential device responses are many and range from simple temporary oversensing to permanent device damage Several of the more common EMI-generating devices and their likely effects on cardiac devices are considered in the medical, home, and daily living and work environments.

  15. The electromagnetic interference of mobile phones on the function of a γ-camera.

    PubMed

    Javadi, Hamid; Azizmohammadi, Zahra; Mahmoud Pashazadeh, Ali; Neshandar Asli, Isa; Moazzeni, Taleb; Baharfar, Nastaran; Shafiei, Babak; Nabipour, Iraj; Assadi, Majid

    2014-03-01

    The aim of the present study is to evaluate whether or not the electromagnetic field generated by mobile phones interferes with the function of a SPECT γ-camera during data acquisition. We tested the effects of 7 models of mobile phones on 1 SPECT γ-camera. The mobile phones were tested when making a call, in ringing mode, and in standby mode. The γ-camera function was assessed during data acquisition from a planar source and a point source of Tc with activities of 10 mCi and 3 mCi, respectively. A significant visual decrease in count number was considered to be electromagnetic interference (EMI). The percentage of induced EMI with the γ-camera per mobile phone was in the range of 0% to 100%. The incidence of EMI was mainly observed in the first seconds of ringing and then mitigated in the following frames. Mobile phones are portable sources of electromagnetic radiation, and there is interference potential with the function of SPECT γ-cameras leading to adverse effects on the quality of the acquired images.

  16. The effect of electromagnetic interference from mobile communication on the performance of intensive care ventilators.

    PubMed

    Jones, R P; Conway, D H

    2005-08-01

    Electromagnetic interference produced by wireless communication can affect medical devices and hospital policies exist to address this risk. During the transfer of ventilated patients, these policies may be compromised by essential communication between base and receiving hospitals. Local wireless networks (e.g. Bluetooth) may reduce the 'spaghetti syndrome' of wires and cables seen on intensive care units, but also generate electromagnetic interference. The aim of this study was to investigate these effects on displayed and actual ventilator performance. Five ventilators were tested: Drager Oxylog 2000, BREAS LTV-1000, Respironics BiPAP VISION, Puritan Bennett 7200 and 840. Electromagnetic interference was generated by three devices: Simoco 8020 radio handset, Nokia 7210 and Nokia 6230 mobile phone, Nokia 6230 communicating via Bluetooth with a Palm Tungsten T Personal Digital Assistant. We followed the American National Standard Recommended Practice for On-Site, Ad Hoc Testing (ANSI C63) for electromagnetic interference. We used a ventilator tester, to simulate healthy adult lungs and measure ventilator performance. The communication device under test was moved in towards each ventilator from a distance of 1 m in six axes. Alarms or error codes on the ventilator were recorded, as was ventilator performance. All ventilators tested, except for the Respironics VISION, showed a display error when subjected to electromagnetic interference from the Nokia phones and Simoco radio. Ventilator performance was only affected by the radio which caused the Puritan Bennett 840 to stop functioning completely. The transfer ventilators' performance were not affected by radio or mobile phone, although the mobile phone did trigger a low-power alarm. Effects on intensive care ventilators included display reset, with the ventilator restoring normal display function within 2 s, and low-power/low-pressure alarms. Bluetooth transmission had no effect on the function of all the

  17. Near-field interference for the unidirectional excitation of electromagnetic guided modes.

    PubMed

    Rodríguez-Fortuño, Francisco J; Marino, Giuseppe; Ginzburg, Pavel; O'Connor, Daniel; Martínez, Alejandro; Wurtz, Gregory A; Zayats, Anatoly V

    2013-04-19

    Wave interference is a fundamental manifestation of the superposition principle with numerous applications. Although in conventional optics, interference occurs between waves undergoing different phase advances during propagation, we show that the vectorial structure of the near field of an emitter is essential for controlling its radiation as it interferes with itself on interaction with a mediating object. We demonstrate that the near-field interference of a circularly polarized dipole results in the unidirectional excitation of guided electromagnetic modes in the near field, with no preferred far-field radiation direction. By mimicking the dipole with a single illuminated slit in a gold film, we measured unidirectional surface-plasmon excitation in a spatially symmetric structure. The surface wave direction is switchable with the polarization.

  18. Meridian is a three-dimensional network from bio-electromagnetic radiation interference: an interference hypothesis of meridian.

    PubMed

    Han, Jinxiang

    2012-03-01

    An electromagnetic radiation field within a biological organism is characterized by non-local interference. The interfering beams form a unitary tridimensional network with beams of varying intensity, also called striae, which are distributed on the organism surface. These striae are equivalent to semi-reflectors. The striae carry bio-information of corresponding organs and, thus, integrate all tissues, and organs of the organism. The longitudinal striae are classified as channels, while the transverse striae are collaterals. The acupoints are seen as the points where electromagnetic interfering striae intersect or converge. This hypothesis builds a foundation to understand the traditional Chinese medicine, including acupuncture, from the perspective of scientific knowledge.

  19. Metasurface base on uneven layered fractal elements for ultra-wideband RCS reduction

    NASA Astrophysics Data System (ADS)

    Su, Jianxun; Cui, Yueyang; Li, Zengrui; Yang, Yaoqing Lamar; Che, Yongxing; Yin, Hongcheng

    2018-03-01

    A novel metasurface based on uneven layered fractal elements is designed and fabricated for ultra-wideband radar cross section (RCS) reduction in this paper. The proposed metasurface consists of two fractal subwavelength elements with different layer thickness. The reflection phase difference of 180° (±37°) between two unit cells covers an ultra-wide frequency range. Ultra-wideband RCS reduction results from the phase cancellation between two local waves produced by these two unit cells. The diffuse scattering of electromagnetic (EM) waves is caused by the randomized phase distribution, leading to a low monostatic and bistatic RCS simultaneously. This metasurface can achieve -10dB RCS reduction in an ultra-wide frequency range from 6.6 to 23.9 GHz with a ratio bandwidth (fH/fL) of 3.62:1 under normal incidences for both x- and y-polarized waves. Both the simulation and the measurement results are consistent to verify this excellent RCS reduction performance of the proposed metasurface.

  20. Lightning induced inappropriate ICD shock: an unusual case of electromagnetic interference.

    PubMed

    Anderson, Daniel R; Gillberg, Jeffrey M; Torrey, Jeffrey W; Koneru, Jayanthi N

    2012-06-01

    An unusual case of electromagnetic interference is presented. As a result of a lightning shock to a Shower House, our patient received two shocks. An elucidation of the different mechanisms for the two shocks is presented. ©2010, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  1. Electromagnetic Interference in Implantable Defibrillators in Single-Engine Fixed-Wing Aircraft.

    PubMed

    de Rotte, Alexandra A J; van der Kemp, Peter; Mundy, Peter A; Rienks, Rienk; de Rotte, August A

    2017-01-01

    Little is known about the possible electromagnetic interferences (EMI) in the single-engine fixed-wing aircraft environment with implantable cardio-defibrillators (ICDs). Our hypothesis is that EMI in the cockpit of a single-engine fixed-wing aircraft does not result in erroneous detection of arrhythmias and the subsequent delivery of an inappropriate device therapy. ICD devices of four different manufacturers, incorporated in a thorax phantom, were transported in a Piper Dakota Aircraft with ICAO type designator P28B during several flights. The devices under test were programmed to the most sensitive settings for detection of electromagnetic signals from their environment. After the final flight the devices under test were interrogated with the dedicated programmers in order to analyze the number of tachycardias detected. Cumulative registration time of the devices under test was 11,392 min, with a mean of 2848 min per device. The registration from each one of the devices did not show any detectable "tachycardia" or subsequent inappropriate device therapy. This indicates that no external signals, which could be originating from electromagnetic fields from the aircraft's avionics, were detected by the devices under test. During transport in the cockpit of a single-engine fixed-wing aircraft, the tested ICDs did not show any signs of being affected by electromagnetic fields originating from the avionics of the aircraft. This current study indicates that EMI is not a potential safety issue for transportation of passengers with an ICD implanted in a single-engine fixed-wing aircraft.de Rotte AAJ, van der Kemp P, Mundy PA, Rienks R, de Rotte AA. Electromagnetic interference in implantable defibrillators in single-engine fixed-wing aircraft. Aerosp Med Hum Perform. 2017; 88(1):52-55.

  2. Electromagnetic interference shielding effectiveness of polypropylene/conducting fiber composites

    NASA Astrophysics Data System (ADS)

    Lee, Pyoung-Chan; Kim, Bo-Ram; Jeoung, Sun Kyoung; Kim, Yeung Keun

    2016-03-01

    Electromagnetic released from the automotive electronic parts is harmful to human body. Electromagnetic interference (EMT) shielding refers to the reflection and/or adsorption of electromagnetic radiation by a material, which thereby acts as a shield against the penetration of the radiation through the shield. Polypropylene (PP)/conductive micro fiber composites containing various fiber contents and fiber length were injection-molded. The effect of fiber content and length on electrical properties of the composites was studied by electrical resistivity and EMT shielding measurements. The through-plane electrical conductivity and dielectric permittivity were obtained by measuring dielectric properties. The EMT shielding effectiveness (SE) was investigated by using S-parameter in the range of 100 ~ 1500 MHz. Reflection, absorption and multiple-reflection are the EMT attenuation mechanisms. From the measurement of S-Parameters, the absorption coefficient, reflection coefficient, and the shielding efficiency of the materials were calculated. The EMT SE of PP/conducing fiber composites is 40 dB over a wide frequency range up to 1.5 GHz, which is higher than that of PP/talc composite used automotive parts, viz. 0 dB.

  3. Ultrawideband radar; Proceedings of the Meeting, Los Angeles, CA, Jan. 22, 23, 1992

    NASA Astrophysics Data System (ADS)

    Lahaie, Ivan J.

    1992-05-01

    The present conference discusses a canonical representation of the radar range equation in the time domain, two-way beam patterns fron ultrawideband arrays, modeling of ultrawideband sea clutter, the analysis of time-domain ultrawideband radar signals, a frequency-agile ultrawideband microwave source, and the performance of ultrawideband antennas. Also discussed are the diffraction of ultrawideband radar pulses, sea-clutter measurements with an ultrawideband X-band radar having variable resolution, results from a VHF-impulse SAR, an ultrawideband differential radar, the development of 2D target images from ultrawideband radar systems, ultrawideband generators, and the radiated waveform of a monolithic photoconductive GaAs pulser. (For individual items see A93-28202 to A93-28223)

  4. Electromagnetic Interference in a Private Swimming Pool: Case report.

    PubMed

    Iskandar, Sandia; Lavu, Madhav; Atoui, Moustapha; Lakkireddy, Dhanunjaya

    2015-01-01

    Although current lead design and filtering capabilities have greatly improved, Electromagnetic Interference (EMI) from environmental sources has been increasingly reported in patients with Cardiac Implantable Electronic Device (CIED) [1]. Few cases of inappropriate intracardiac Cardioverter Defibrillator (ICD) associated with swimming pool has been described [2]. Here we present a case of 64 year old male who presented with an interesting EMI signal that was subsequently identified to be related to AC current leak in his swimming pool.

  5. Electromagnetic interference assessment of an ion drive electric propulsion system

    NASA Technical Reports Server (NTRS)

    Whittlesey, A. C.

    1979-01-01

    The electromagnetic interference (EMI) form elements of an ion drive electric propulsion system was analyzed, and the effects of EMI interaction with a typical interplanetary spacecraft engineering and scientific subsystems were predicted. SEMCAP, a computerized electromagnetic compatibility assessment code, was used to analyze the impact of EMI noise sources on 65 engineering/telemetry circuits and 48 plasma wave and planetary radio astronomy channels measuring over the range of 100 Hz to 40 MHz in a spacecraft of the Voyager type; manual methods were used to evaluate electrostatics, magnetics, and communications effects. Results indicate that some conducted and radiated spectra are in excess of electromagnetic compatibility specification limits; direct design changes may be required for filtering and shielding of thrust system elements. The worst source of broadband radiated noise appears to be the power processor. The magnetic field necessary to thruster operation is equivalent to about 18 amp-sq m per amp of beam current at right angles to the axis caused by the neutralizer/plume loop.

  6. AANA Journal Course: update for nurse anesthetists. Arrhythmia management devices and electromagnetic interference.

    PubMed

    Mattingly, Emily

    2005-04-01

    The technological complexity of implantable arrhythmia management devices, specifically pacemakers and defibrillators, has increased dramatically since their introduction only a few decades ago. Patients with such devices are encountered much more frequently in hospitals and surgery centers, yet anesthesia provider knowledge of safe and proper management is often incomplete. Anesthesia textbooks and references may provide only short paragraphs on arrhythmia management devices that do not address important perioperative management strategies for this ever-growing patient population. It is no longer satisfactory to simply place a magnet over an implanted device during surgery and assume that this action protects the patient from harm due to electromagnetic interference from inappropriate device function. This AANA Journal course serves as a concise review of basic device function, the sources and effects of electromagnetic interference in the operative setting, and patient management recommendations from current literature.

  7. Electromagnetic interference shielding effectiveness of polypropylene/conducting fiber composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Pyoung-Chan, E-mail: pclee@katech.re.kr; Kim, Bo-Ram; Jeoung, Sun Kyoung

    Electromagnetic released from the automotive electronic parts is harmful to human body. Electromagnetic interference (EMT) shielding refers to the reflection and/or adsorption of electromagnetic radiation by a material, which thereby acts as a shield against the penetration of the radiation through the shield. Polypropylene (PP)/conductive micro fiber composites containing various fiber contents and fiber length were injection-molded. The effect of fiber content and length on electrical properties of the composites was studied by electrical resistivity and EMT shielding measurements. The through-plane electrical conductivity and dielectric permittivity were obtained by measuring dielectric properties. The EMT shielding effectiveness (SE) was investigated bymore » using S-parameter in the range of 100 ~ 1500 MHz. Reflection, absorption and multiple-reflection are the EMT attenuation mechanisms. From the measurement of S-Parameters, the absorption coefficient, reflection coefficient, and the shielding efficiency of the materials were calculated. The EMT SE of PP/conducing fiber composites is 40 dB over a wide frequency range up to 1.5 GHz, which is higher than that of PP/talc composite used automotive parts, viz. 0 dB.« less

  8. Electromagnetic interference of dental equipment with implantable cardioverter defibrillators.

    PubMed

    Dadalti, Manoela Teixeira de Sant'Anna; da Cunha, Antônio José Ledo Alves; Araújo, Marcos César Pimenta de; Moraes, Luis Gustavo Belo de; Risso, Patrícia de Andrade

    2017-11-01

    Implantable cardioverter defibrillators (ICDs) are subject to electromagnetic interference (EMI). The aim of this study was to assess both the EMI of dental equipments with ICDs and related factors. High- and low-speed handpieces, an electric toothbrush, an implant motor and two types of ultrasonic devices were tested next to an ICD with different sensitivity settings. The ICD was immersed in a saline solution with electrical resistance of 400-800 ohms to simulate the resistance of the human body. The dental equipments were tested in both horizontal (0°) and vertical (90°) positions in relation to the components of the ICD. The tests were performed with a container containing saline solution, which was placed on a dental chair in order to assess the cumulative effect of electromagnetic fields. The dental chair, high- and low-speed handpieces, electric toothbrush, implant motor and ultrasonic devices caused no EMI with the ICD, irrespective of the program set-up or positioning. No cumulative effect of electromagnetic fields was verified. The results of this study suggest that the devices tested are safe for use in patients with an ICD.

  9. BMFO-PVDF electrospun fiber based tunable metamaterial structures for electromagnetic interference shielding in microwave frequency region

    NASA Astrophysics Data System (ADS)

    Revathi, Venkatachalam; Dinesh Kumar, Sakthivel; Subramanian, Venkatachalam; Chellamuthu, Muthamizhchelvan

    2015-11-01

    Metamaterial structures are artificial structures that are useful in controlling the flow of electromagnetic radiation. In this paper, composite fibers of sub-micron thickness of barium substituted magnesium ferrite (Ba0.2Mg0.8Fe2O4) - polyvinylidene fluoride obtained by electrospinning is used as a substrate to design electromagnetic interference shielding structures. While electrospinning improves the ferroelectric properties of the polyvinylidene fluoride, the presence of barium magnesium ferrite modifies the magnetic property of the composite fiber. The dielectric and magnetic properties at microwave frequency measured using microwave cavity perturbation technique are used to design the reflection as well as absorption based tunable metamaterial structures for electromagnetic interference shielding in microwave frequency region. For one of the structures, the simulation indicates that single negative metamaterial structure becomes a double negative metamaterial under the external magnetic field.

  10. Small Unmanned Aircraft Electromagnetic Interference (EMI) Initial Assessment

    NASA Technical Reports Server (NTRS)

    Jung, Jaewoo; Ippolito, Corey; Rogers, Christopher; Kerczewski, Robert; Downey, Alan; Matheou, Konstantin

    2018-01-01

    With many applications envisioned for small Unmanned Aircraft Systems (sUAS), and potentially millions of sUAS expected to be in operation in the future, the electromagnetic interference environment associated with the sUAS is of interest to understanding the potential performance impacts on the sUAS command and control communications link as well as the sUAS payload and payload links. As part of NASA's UAS Traffic Management (UTM) Project, flight experiments are planned to characterize the RF environment at altitudes up to 400 ft to better understand how UTM command and control links can be expected to perform. The flight experiments will use an RF channel sensing payload attached to an sUAS. In terms of the payload being capable of measuring relatively low level signals at altitude, electromagnetic interference (EMI) emanating from the sUAS vehicle itself could potentially complicate the measurement process. For this reason, NASA was interested in measuring the EMI performance of the sUAS planned for these flight experiments, a DJI model S1000. The S1000 was thus measured in a controlled EMI test chamber at the NASA Ames Research Center. The S1000 is a carbon fiber based platform with eight rotors. As such, the EMI test results represent potential performance of a number of similar sUAS types. sUAS platforms significantly different from the S1000 may also require EMI testing, and the method employed for NASA's S1000 EMI tests can be applied to other platforms. In this paper we describe the UTM project, the RF channel sensing payload, the EMI testing method and EMI test results for the S1000, and discuss the implications of these results.

  11. Small Unmanned Aircraft Electromagnetic Interference (EMI) Initial Assessment

    NASA Technical Reports Server (NTRS)

    Jung, Jaewoo; Ippolito, Corey; Rogers, Christopher; Kerczewski, Robert; Downey, Alan; Matheou, Konstantin

    2018-01-01

    With many applications envisioned for small Unmanned Aircraft Systems (sUAS), and potentially millions of sUAS expected to be in operation in the future, the electromagnetic interference environment associated with the sUAS is of interest to understanding the potential performance impacts on the sUAS command and control communications link as well as the sUAS payload and payload links. As part of NASAâ€"TM"s UAS Traffic Management (UTM) Project, flight experiments are planned to characterize the RF environment at altitudes up to 400 ft to better understand how UTM command and control links can be expected to perform. The flight experiments will use an RF channel sensing payload attached to an sUAS. In terms of the payload being capable of measuring relatively low level signals at altitude, electromagnetic interference (EMI) emanating from the sUAS vehicle itself could potentially complicate the measurement process. For this reason, NASA was interested in measuring the EMI performance of the sUAS planned for these flight experiments, a DJI model S1000. The S1000 was thus measured in a controlled EMI test chamber at the NASA Ames Research Center. The S1000 is a carbon fiber based platform with eight rotors. As such, the EMI test results represent potential performance of a number of similar sUAS types. sUAS platforms significantly different from the S1000 may also require EMI testing, and the method employed for NASAâ€"TM"s S1000 EMI tests can be applied to other platforms. In this paper we describe the UTM project, the RF channel sensing payload, the EMI testing method and EMI test results for the S1000, and discuss the implications of these results.

  12. Single phase bi-directional AC-DC converter with reduced passive components size and common mode electro-magnetic interference

    DOEpatents

    Mi, Chris; Li, Siqi

    2017-01-31

    A bidirectional AC-DC converter is presented with reduced passive component size and common mode electro-magnetic interference. The converter includes an improved input stage formed by two coupled differential inductors, two coupled common and differential inductors, one differential capacitor and two common mode capacitors. With this input structure, the volume, weight and cost of the input stage can be reduced greatly. Additionally, the input current ripple and common mode electro-magnetic interference can be greatly attenuated, so lower switching frequency can be adopted to achieve higher efficiency.

  13. Fabrication of single/multi-walled hybrid buckypaper composites and their enhancement of electromagnetic interference shielding performance

    NASA Astrophysics Data System (ADS)

    Lu, Shaowei; Shao, Junyan; Ma, Keming; Wang, Xiaoqiang; Zhang, Lu; Meng, Qingshi

    2016-11-01

    Multi-walled carbon nanotubes and single-walled carbon nanotubes show great potential for the application as an electromagnetic interference shielding material. In this paper, the electromagnetic interference shielding the effectiveness of a composite surface coated single/multi-walled carbon nanotube hybrid buckypaper was measured, which showed an average shielding effectiveness of ~55 dB with a buckypaper thickness of 50 µm, and bukypaper density of 0.76 g cm-3, it is much higher than other carbon nanotube/resin materials when sample thickness is on the similar order. The structural, specific surface area and conductivity of the buckypapers were examined by field-emission scanning electron microscopy, specific surface area analyzer and four probes resistance tester, respectively.

  14. Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies.

    PubMed

    Jiang, Yannan; Wang, Lei; Wang, Jiao; Akwuruoha, Charles Nwakanma; Cao, Weiping

    2017-10-30

    The polarization conversion of electromagnetic (EM) waves, especially linear-to-circular (LTC) polarization conversion, is of great significance in practical applications. In this study, we propose an ultra-wideband high-efficiency reflective LTC polarization converter based on a metasurface in the terahertz regime. It consists of periodic unit cells, each cell of which is formed by a double split resonant square ring, dielectric layer, and fully reflective gold mirror. In the frequency range of 0.60 - 1.41 THz, the magnitudes of the reflection coefficients reach approximately 0.7, and the phase difference between the two orthogonal electric field components of the reflected wave is close to 90° or -270°. The results indicate that the relative bandwidth reaches 80% and the efficiency is greater than 88%, thus, ultra-wideband high-efficiency LTC polarization conversion has been realized. Finally, the physical mechanism of the polarization conversion is revealed. This converter has potential applications in antenna design, EM measurement, and stealth technology.

  15. iPad2(R) use in patients with implantable cardioverter defibrillators causes electromagnetic interference: the EMIT Study.

    PubMed

    Kozik, Teri M; Chien, Gianna; Connolly, Therese F; Grewal, Gurinder S; Liang, David; Chien, Walter

    2014-04-10

    Over 140 million iPads(®) have been sold worldwide. The iPad2(®), with magnets embedded in its frame and Smart Cover and 3G cellular data capability, can potentially cause electromagnetic interference in implantable cardioverter defibrillators. This can lead to potentially life-threatening situations in patients. The goal of this study was to determine whether the iPad2(®) can cause electromagnetic interference in patients with implantable cardioverter defibrillators. Twenty-seven patients with implantable cardioverter defibrillators were studied. The iPad2(®) was held at reading distance and placed directly over the device with cellular data capability activated and deactivated. The manufacturers/models of devices and the patients' body mass index were noted. The presence of electromagnetic interference was detected by using a programmer supplied by each manufacturer. Magnet mode with suspension of anti-tachycardia therapy was triggered in 9 (33%) patients. All occurred when the iPad2(®) was placed directly over the device. The cellular data status did not cause interference and no noise or oversensing was noted. There was no significant difference between the mean body mass index of the groups with or without interference. The iPad2(®) can trigger magnet mode in implantable cardioverter defibrillators when laid directly over the device. This is potentially dangerous if patients should develop life-threatening arrhythmias at the same time. As new electronic products that use magnets are produced, the potential risk to patients with implantable defibrillators needs to be addressed.

  16. [Return to work of a pacemaker bearing worker: the relationship between health problems and electromagnetic interferences].

    PubMed

    Taino, G; Frigerio, F

    2004-01-01

    The potential effects of electromagnetic fields is a problem that interest the public opinion, as the modern society expose all people to electromagnetic non ionizing radiations. The problem has a particular and important meaning facing the return to normal life and work conditions of a cardiopatic subject bearing a pacemaker (PM) or implantable cardioverter defibrillator (ICD). Electromagnetic interferences can produce temporary or permanent malfunctions in these devices. Checking for the absence of electromagnetic interferences is necessary considering that correct functioning of these medical devices is essential for the life of the bearer. Precautions normally adopted by these subjects are generally adequate to ensure protection from interferences present in life environment; for occupational environment, there is often lack of adequate information, also due to late involving of the doctor specialist in occupational health. This work intends to study in depth a specific job, a carpentry-workshop with welding activities, starting with a case of a PM bearer who asked a doctor specialist in occupational health to evaluate the problems involved in his return to work. Electric and magnetic fields produced by equipments present in the workshop were measured and compared to data supplied by the literature to evaluate the possibility of interactions in the normally functioning of implanted electronic devices. On the basis of our experience, we have found some criterions for specific risk assessement to adopt for the definition of operative protocols for return to work of PM or ICD carriers, also considering the lack of specific procedures and indications for the doctor specialist in occupational health. The collected information and data from the literature suggest that welding can be a risk for a subject with PM; as observed in experimental conditions, electromagnetic radiations can alter particular sensitive devices and those with uncorrected settings.

  17. Marshall Space Flight Center Electromagnetic Compatibility Design and Interference Control (MEDIC) handbook

    NASA Astrophysics Data System (ADS)

    Clark, T. L.; McCollum, M. B.; Trout, D. H.; Javor, K.

    1995-06-01

    The purpose of the MEDIC Handbook is to provide practical and helpful information in the design of electrical equipment for electromagnetic compatibility (EMS). Included is the definition of electromagnetic interference (EMI) terms and units as well as an explanation of the basic EMI interactions. An overview of typical NASA EMI test requirements and associated test setups is given. General design techniques to minimize the risk of EMI and EMI suppression techniques at the board and equipment interface levels are presented. The Handbook contains specific EMI test compliance design techniques and retrofit fixes for noncompliant equipment. Also presented are special tests that are useful in the design process or in instances of specification noncompliance.

  18. Marshall Space Flight Center Electromagnetic Compatibility Design and Interference Control (MEDIC) handbook

    NASA Technical Reports Server (NTRS)

    Clark, T. L.; Mccollum, M. B.; Trout, D. H.; Javor, K.

    1995-01-01

    The purpose of the MEDIC Handbook is to provide practical and helpful information in the design of electrical equipment for electromagnetic compatibility (EMS). Included is the definition of electromagnetic interference (EMI) terms and units as well as an explanation of the basic EMI interactions. An overview of typical NASA EMI test requirements and associated test setups is given. General design techniques to minimize the risk of EMI and EMI suppression techniques at the board and equipment interface levels are presented. The Handbook contains specific EMI test compliance design techniques and retrofit fixes for noncompliant equipment. Also presented are special tests that are useful in the design process or in instances of specification noncompliance.

  19. Characteristics of electromagnetic interference generated during discharge of Mylar samples. [spacecraft-environment interaction simulation

    NASA Technical Reports Server (NTRS)

    Leung, P. L.

    1984-01-01

    This paper discusses the measurements of the electromagnetic interference (EMI) generated during discharges of Mylar samples. The two components of EMI, the conducted emission and the radiated emission, are characterized by the replacement current and the radiated RF spectrum respectively. The measured radiated RF spectra reveal important information on the source of the electromagnetic radiation. The possible sources are the replacement current pulse and the discharged generated plasma. The scaling of the amplitudes of the EMI, as a function of the area of the test sample, is also discussed.

  20. Assessment and mitigation of diagnostic-generated electromagnetic interference at the National Ignition Facilitya)

    NASA Astrophysics Data System (ADS)

    Brown, C. G.; Ayers, J.; Felker, B.; Ferguson, W.; Holder, J. P.; Nagel, S. R.; Piston, K. W.; Simanovskaia, N.; Throop, A. L.; Chung, M.; Hilsabeck, T.

    2012-10-01

    Electromagnetic interference (EMI) is an ever-present challenge at laser facilities such as the National Ignition Facility (NIF). The major source of EMI at such facilities is laser-target interaction that can generate intense electromagnetic fields within, and outside of, the laser target chamber. In addition, the diagnostics themselves can be a source of EMI, even interfering with themselves. In this paper we describe EMI generated by ARIANE and DIXI, present measurements, and discuss effects of the diagnostic-generated EMI on ARIANE's CCD and on a PMT nearby DIXI. Finally we present some of the efforts we have made to mitigate the effects of diagnostic-generated EMI on NIF diagnostics.

  1. Defects in regular nanosystems and interference spectra at reemission of electromagnetic field attosecond pulses

    NASA Astrophysics Data System (ADS)

    Matveev, V. I.; Makarov, D. N.

    2017-01-01

    The effect of defects in nanostructured targets on interference spectra at the reemission of attosecond electromagnetic pulses has been considered. General expressions have been obtained for calculations of spectral distributions for one-, two-, and three-dimensional multiatomic nanosystems consisting of identical complex atoms with defects such as bends, vacancies, and breaks. Changes in interference spectra by a linear chain with several removed atoms (chain with breaks) and by a linear chain with a bend have been calculated as examples allowing a simple analytical representation. Generalization to two- and three-dimensional nanosystems has been developed.

  2. A Systems-Based Risk Assessment Framework for Intentional Electromagnetic Interference (IEMI) on Critical Infrastructures.

    PubMed

    Oakes, Benjamin Donald; Mattsson, Lars-Göran; Näsman, Per; Glazunov, Andrés Alayón

    2018-06-01

    Modern infrastructures are becoming increasingly dependent on electronic systems, leaving them more vulnerable to electrical surges or electromagnetic interference. Electromagnetic disturbances appear in nature, e.g., lightning and solar wind; however, they may also be generated by man-made technology to maliciously damage or disturb electronic equipment. This article presents a systematic risk assessment framework for identifying possible, consequential, and plausible intentional electromagnetic interference (IEMI) attacks on an arbitrary distribution network infrastructure. In the absence of available data on IEMI occurrences, we find that a systems-based risk assessment is more useful than a probabilistic approach. We therefore modify the often applied definition of risk, i.e., a set of triplets containing scenario, probability, and consequence, to a set of quadruplets: scenario, resource requirements, plausibility, and consequence. Probability is "replaced" by resource requirements and plausibility, where the former is the minimum amount and type of equipment necessary to successfully carry out an attack scenario and the latter is a subjective assessment of the extent of the existence of attackers who possess the motivation, knowledge, and resources necessary to carry out the scenario. We apply the concept of intrusion areas and classify electromagnetic source technology according to key attributes. Worst-case scenarios are identified for different quantities of attacker resources. The most plausible and consequential of these are deemed the most important scenarios and should provide useful decision support in a countermeasures effort. Finally, an example of the proposed risk assessment framework, based on notional data, is provided on a hypothetical water distribution network. © 2017 Society for Risk Analysis.

  3. Electromagnetic interference of endodontic equipments with cardiovascular implantable electronic device.

    PubMed

    Dadalti, Manoela Teixeira de Sant'Anna; da Cunha, Antônio José Ledo Alves; de Araújo, Marcos César Pimenta; de Moraes, Luis Gustavo Belo; Risso, Patrícia de Andrade

    2016-03-01

    Assess the electromagnetic interference (EMI) of endodontic equipment with cardiovascular implantable electronic devices (CIEDs) and related factors. The laser device, electronic apex locators (EAL), optical microscope, endodontic rotary motors, gutta-percha heat carrier (GH), gutta-percha gun and ultrasonic device were tested next to CIEDs (Medtronic and Biotronik) with varied sensitivity settings and distances. CIEDs were immersed in a saline solution to simulate the electrical resistence of the human body. The endodontic equipment was tested in both horizontal and vertical positions in relation to the components of the CIED. The tests were performed on a dental chair in order to assess the cumulative effect of electromagnetic fields. It was found no EMI with the Biotronik pacemaker. EALs caused EMI with Medtronic PM at a 2 cm distance, with the NSK(®) EAL also affecting the Medtronic defibrillator. GH caused EMI at 2 cm and 5 cm from the Medtronic defibrillator. EMI occurred when devices were horizontally positioned to the CIED. In the majority of the cases, EMI occurred when the pacemaker was set to maximum sensitivity. There was cumulative effect of electromagnetic fields between GH and dental chair. EALs and GH caused EMI which ranged according to type and sensitivity setting of the CIEDs and the distance. However, no endodontic equipment caused permanent damage to the CIED. The use of GH caused a cumulative effect of electromagnetic fields. It suggests that during the treatment of patients with CIEDs, only the necessary equipments should be kept turned on. Patients with CIEDs may be subject to EMI from electronic equipment used in dental offices, as they remain turned on throughout the treatment. This is the first article assessing the cumulative effect of electromagnetic fields. Copyright © 2016. Published by Elsevier Ltd.

  4. Guidelines for Electromagnetic Interference Testing of Power Plant Equipment: Revision 3 to TR-102323

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Cunningham and J. Shank

    2004-11-01

    To continue meeting safety and reliability requirements while controlling costs, operators of nuclear power plants must be able to replace and upgrade equipment in a cost-effective manner. One issue that has been problematic for new plant equipment and especially for digital instrumentation and control (I&C) systems in recent years is electromagnetic compatibility (EMC). The EMC issue usually involves testing to show that critical equipment will not be adversely affected by electromagnetic interference (EMI) in the plant environment. This guide will help nuclear plant engineers address EMC issues and qualification testing in a consistent, comprehensive manner.

  5. Remote Respiration Monitoring Using Ultra-wideband Microwave Sensor

    NASA Astrophysics Data System (ADS)

    Higashikatsuragi, Kenji; Nakahata, Youichiro; Matsunami, Isamu; Kajiwara, Akihiro

    Impulse based ultra-wideband radio has lately attracted considerable attention as medical monitoring sensor since it is expected to measure bio-signals of a patient on a bed such as respiration rate and heartbeat with a remote non-contact approach. It is also friendly to the environment including the human body due to the very low electromagnetic energy emission. Using conventional ranging scheme, however, high speed A/D device should be required in order to detect the small respiratory displacement. This paper suggests a respiratory monitoring scheme where the respiration rate is measured by observing the variation of the path strength from the patient. Therefore, it does not require high speed A/D. It also makes possible to design the simultaneous monitoring of multiple patients in hospital beds, for example. In this paper the measurements were conducted for various scenarios and the feasibility is discussed.

  6. Assessment and Mitigation of Diagnostic-Generated Electromagnetic Interference at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, C G; Ayers, M J; Felker, B

    2012-04-20

    Electromagnetic interference (EMI) is an ever-present challenge at laser facilities such as the National Ignition Facility (NIF). The major source of EMI at such facilities is laser-target interaction that can generate intense electromagnetic fields within, and outside of, the laser target chamber. In addition, the diagnostics themselves can be a source of EMI, even interfering with themselves. In this paper we describe EMI generated by ARIANE and DIXI, present measurements, and discuss effects of the diagnostic-generated EMI on ARIANE's CCD and on a PMT nearby DIXI. Finally we present some of the efforts we have made to mitigate the effectsmore » of diagnostic-generated EMI on NIF diagnostics.« less

  7. Ultrawideband combined antenna with improved matching

    NASA Astrophysics Data System (ADS)

    Balzovsky, E. V.; Buyanov, Yu I.; Koshelev, V. I.; Nekrasov, E. S.

    2018-05-01

    To study the immunity of electronic equipment to ultrawideband irradiation, a combined antenna with improved matching has been created. In contrast to the previously presented, a novel antenna has a modified input node with a flat part instead of a cylindrical one. As a result of optimizing the geometry of the antenna electrodes, a matching band with the feeder of 0.38-2.4 GHz was achieved by the VSWR = 2. The results of the investigations of antenna characteristics in the frequency domain, as well as the waveforms of the radiated short ultrawideband pulses are presented.

  8. Electromagnetic interference and shielding: An introduction (revised version of 1991-23)

    NASA Astrophysics Data System (ADS)

    Dehoop, A. T.; Quak, D.

    The basic equations of the electromagnetic field are summarized as far as they are needed in the theory of electromagnetic interference and shielding. Through the analysis of the planar electric current emitter, the propagation coefficient, attenuation coefficient, phase coefficient, wave-speed, wavelength, wave impedance, wave admittance, and power flow density of a wave are introduced. Next, the shielding effectiveness of a shielding plate and the shielding effectiveness of a shielding parallel-plate box are determined. In the latter, particular attention is given to the occurrence of internal resonance effects, which may degrade the shielding effectiveness. Further, a survey of some fundamental properties of a system of low frequency, multiconductor transmission lines is given. For a three conductor system with a plane of symmetry, the decomposition into the common mode and the differential mode of operation is discussed. Finally, expressions for the voltages and electric currents induced by external sources along a single transmission line are derived.

  9. Modelling natural electromagnetic interference in man-made conductors for space weather applications

    NASA Astrophysics Data System (ADS)

    Trichtchenko, Larisa

    2016-04-01

    Power transmission lines above the ground, cables and pipelines in the ground and under the sea, and in general all man-made long grounded conductors are exposed to the variations of the natural electromagnetic field. The resulting currents in the networks (commonly named geomagnetically induced currents, GIC), are produced by the conductive and/or inductive coupling and can compromise or even disrupt system operations and, in extreme cases, cause power blackouts, railway signalling mis-operation, or interfere with pipeline corrosion protection systems. To properly model the GIC in order to mitigate their impacts it is necessary to know the frequency dependence of the response of these systems to the geomagnetic variations which naturally span a wide frequency range. For that, the general equations of the electromagnetic induction in a multi-layered infinitely long cylinder (representing cable, power line wire, rail or pipeline) embedded in uniform media have been solved utilising methods widely used in geophysics. The derived electromagnetic fields and currents include the effects of the electromagnetic properties of each layer and of the different types of the surrounding media. This exact solution then has been used to examine the electromagnetic response of particular samples of long conducting structures to the external electromagnetic wave for a wide range of frequencies. Because the exact solution has a rather complicated structure, simple approximate analytical formulas have been proposed, analysed and compared with the results from the exact model. These approximate formulas show good coincidence in the frequency range spanning from geomagnetic storms (less than mHz) to pulsations (mHz to Hz) to atmospherics (kHz) and above, and can be recommended for use in space weather applications.

  10. Electromagnetic Interference Assessment of CDMA and GSM Wireless Phones to Aircraft Navigation Radios

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Koppen, Sandra V.; Salud, M. Theresa

    2002-01-01

    To address the concern for cellular phone electromagnetic interference (EMI) to aircraft radios, a radiated emission measurement process for CDMA (IS-95) and GSM (ETSI GSM 11.22) wireless handsets was developed. Spurious radiated emissions were efficiently characterized from devices tested in either a semi-anechoic or reverberation chamber, in terms of effective isotropic radiated power. Eight representative handsets (4 GSM, 4 CDMA) were commanded to operate while varying their radio transmitter parameters (power, modulation, etc.). This report provides a detailed description of the measurement process and resulting data, which may subsequently be used by others as a basis of consistent evaluation for cellular/PCS phones, Bluetooth, IEEE802.11b, IEEE802.11a, FRS/GMRS radios, and other portable transmitters. Aircraft interference path loss (IPL) and navigation radio interference threshold data from numerous reference documents, standards, and NASA partnerships were compiled. Using this data, a preliminary risk assessment is provided for CDMA and GSM wireless phone interference to aircraft localizer, Glideslope, VOR, and GPS radio receivers on typical transport airplanes. The report identifies where existing data for device emissions, IPL, and navigation radio interference thresholds needs to be extended for an accurate risk assessment for wireless transmitters in aircraft.

  11. Test Plan for Experimental Measurements of Radio Noise and Electromagnetic Interference at Logan and Burlington Airports

    DOT National Transportation Integrated Search

    1979-10-01

    A test plan is designed to" (a) evaluate the performance of several types of LORAN-C receivers in the vicinity of both a large metropolitan and a small rural airport, (b) measure the electromagnetic interference in the LORAN-C band (100+/-50 KHZ) at ...

  12. Electromagnetic interference from welding and motors on implantable cardioverter-defibrillators as tested in the electrically hostile work site.

    PubMed

    Fetter, J G; Benditt, D G; Stanton, M S

    1996-08-01

    This study was designed to determine the susceptibility of an implanted cardioverter-defibrillator to electromagnetic interference in an electrically hostile work site environment, with the ultimate goal of allowing the patient to return to work. Normal operation of an implanted cardioverter-defibrillator depends on reliable sensing of the heart's electrical activity. Consequently, there is concern that external electromagnetic interference from external sources in the work place, especially welding equipment or motor-generator systems, may be sensed and produce inappropriate shocks or abnormal reed switch operation, temporarily suspending detection of ventricular tachycardia or ventricular fibrillation. The effects of electromagnetic interference on the operation of one type of implantable cardioverter-defibrillator (Medtronic models 7217 and 7219) was measured by using internal event counter monitoring in 10 patients operating arc welders at up to 900 A or working near 200-hp motors and 1 patient close to a locomotive starter drawing up to 400 A. The electromagnetic interference produced two sources of potential interference on the sensing circuit or reed switch operation, respectively: 1) electrical fields with measured frequencies up to 50 MHz produced by the high currents during welding electrode activation, and 2) magnetic fields produced by the current in the welding electrode and cable. The defibrillator sensitivity was programmed to the highest (most sensitive) value: 0.15 mV (model 7219) or 0.3 mV (model 7217). The ventricular tachycardia and ventricular fibrillation therapies were temporarily turned off but the detection circuits left on. None of the implanted defibrillators tested were affected by oversensing of the electric field as verified by telemetry from the detection circuits. The magnetic field from 225-A welding current produced a flux density of 1.2 G; this density was not adequate to close the reed switch, which requires approximately 10 G

  13. Covert situational awareness with handheld ultrawideband short-pulse radar

    NASA Astrophysics Data System (ADS)

    Barnes, Mark A.; Nag, Soumya; Payment, Tim

    2001-08-01

    Law enforcement and emergency services all face the difficult task of determining the locations of people within a building. A handheld radar able to detect motion through walls and other obstructions has been developed to fill this need. This paper describes the attributes and difficulties of the radar design and includes test results of the radar's performance. This discussion begins by summarizing key user requirements and the electromagnetic losses of typical building materials. Ultra-wideband (UWB) short pulse radars are well suited for a handheld sensor primarily because of their inherit time isolation in high clutter environments and their capability to achieve high resolution at low spectral center frequencies. There are also constraints that complicate the system design. Using a technique referred to as time-modulation allows the radars to reject range ambiguities and enhances electromagnetic compatibility with similar radars and ambient systems. An outline of the specifications of the radar developed and a process diagram on how it generates a motion map showing range and direction of the people moving within structures is included. Images are then presented to illustrate its performance. The images include adults, child, and a dog. The test results also include data showing the radar's performance through a variety of building materials.

  14. Polarization-induced interference within electromagnetically induced transparency for atoms of double-V linkage

    NASA Astrophysics Data System (ADS)

    Sun, Yuan; Liu, Chang; Chen, Ping-Xing; Liu, Liang

    2018-02-01

    People have been paying attention to the role of atoms' complex internal level structures in the research of electromagnetically induced transparency (EIT) for a long time, where the various degenerate Zeeman levels usually generate complex linkage patterns for the atomic transitions. It turns out, with special choices of the atomic states and the atomic transitions' linkage structure, clear signatures of quantum interference induced by the probe and coupling light's polarizations can emerge from a typical EIT phenomena. We propose to study a four-state system with double-V linkage pattern for the transitions and analyze the polarization-induced interference under the EIT condition. We show that such interference arises naturally under mild conditions on the optical field and atom manipulation techniques. Moreover, we construct a variation form of double-M linkage pattern where the polarization-induced interference enables polarization-dependent cross modulation between incident weak lights that can be effective even at the few-photon level. The theme is to gain more insight into the essential question: how can we build a nontrivial optical medium where incident lights experience polarization-dependent nonlinear optical interactions, valid for a wide range of incidence intensities down to the few-photon level?

  15. A Novel Approach to Photonic Generation and Modulation of Ultra-Wideband Pulses

    NASA Astrophysics Data System (ADS)

    Xiang, Peng; Guo, Hao; Chen, Dalei; Zhu, Huatao

    2016-01-01

    A novel approach to photonic generation of ultra-wideband (UWB) signals is proposed in this paper. The proposed signal generator is capable of generating UWB doublet pulses with flexible reconfigurability, and many different pulse modulation formats, including the commonly used pulse-position modulation (PPM) and bi-phase modulation (BPM) can be realized. Moreover, the photonic UWB pulse generator is capable of generating UWB signals with a tunable spectral notch-band, which is desirable to realize the interference avoidance between UWB and other narrow band systems, such as Wi-Fi. A mathematical model describing the proposed system is developed and the generation of UWB signals with different modulation formats is demonstrated via computer simulations.

  16. Highly Efficient and Reliable Transparent Electromagnetic Interference Shielding Film.

    PubMed

    Jia, Li-Chuan; Yan, Ding-Xiang; Liu, Xiaofeng; Ma, Rujun; Wu, Hong-Yuan; Li, Zhong-Ming

    2018-04-11

    Electromagnetic protection in optoelectronic instruments such as optical windows and electronic displays is challenging because of the essential requirements of a high optical transmittance and an electromagnetic interference (EMI) shielding effectiveness (SE). Herein, we demonstrate the creation of an efficient transparent EMI shielding film that is composed of calcium alginate (CA), silver nanowires (AgNWs), and polyurethane (PU), via a facile and low-cost Mayer-rod coating method. The CA/AgNW/PU film with a high optical transmittance of 92% achieves an EMI SE of 20.7 dB, which meets the requirements for commercial shielding applications. A superior EMI SE of 31.3 dB could be achieved, whereas the transparent film still maintains a transmittance of 81%. The integrated efficient EMI SE and high transmittance are superior to those of most previously reported transparent EMI shielding materials. Moreover, our transparent films exhibit a highly reliable shielding ability in a complex service environment, with 98 and 96% EMI SE retentions even after 30 min of ultrasound treatment and 5000 bending cycles (1.5 mm radius), respectively. The comprehensive performance that is associated with the facile fabrication strategy imparts the CA/AgNW/PU film with great potential as an optimized EMI shielding material in emerging optoelectronic devices, such as flexible solar cells, displays, and touch panels.

  17. Synthesis of ultrawideband radiation of combined antenna arrays excited by nanosecond bipolar voltage pulses

    NASA Astrophysics Data System (ADS)

    Koshelev, V. I.; Plisko, V. V.; Sevostyanov, E. A.

    2017-05-01

    To broaden the spectrum of high-power ultrawideband radiation, it is suggested to synthesize an electromagnetic pulse summing the pulses of different length in free space. On the example of model pulses corresponding to radiation of combined antennas excited by bipolar voltage pulses of the length of 2 and 3 ns, the possibility of twofold broadening of the radiation spectrum was demonstrated. Radiation pulses with the spectrum width exceeding three octaves were obtained. Pattern formation by the arrays of different geometry excited by the pulses having different time shifts was considered. Optimum array structure with the pattern maximum in the main direction was demonstrated on the example of a 2×2 array.

  18. Analysis of electromagnetic interference from power system processing and transmission components for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Barber, Peter W.; Demerdash, Nabeel A. O.; Wang, R.; Hurysz, B.; Luo, Z.

    1991-01-01

    The goal is to analyze the potential effects of electromagnetic interference (EMI) originating from power system processing and transmission components for Space Station Freedom.The approach consists of four steps: (1) develop analytical tools (models and computer programs); (2) conduct parameterization studies; (3) predict the global space station EMI environment; and (4) provide a basis for modification of EMI standards.

  19. An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction.

    PubMed

    Su, Pei; Zhao, Yongjiu; Jia, Shengli; Shi, Wenwen; Wang, Hongli

    2016-02-11

    In this paper, an ultra-wideband and polarization-independent metasurface for radar cross section (RCS) reduction is proposed. The unit cell of the metasurface operates in a linear cross-polarization scheme in a broad band. The phase and amplitude of cross-polarized reflection can be separately controlled by its geometry and rotation angle. Based on the diffuse reflection theory, a 3-bit coding metasurface is designed to reduce the RCS in an ultra-wide band. The wideband property of the metasurface benefits from the wideband cross polarization conversion and flexible phase modulation. In addition, the polarization-independent feature of the metasurface is achieved by tailoring the rotation angle of each element. Both the simulated and measured results demonstrate that the proposed metasurface can reduce the RCS significantly in an ultra-wide frequency band for both normal and oblique incidences, which makes it promising in the applications such as electromagnetic cloaking.

  20. Radiation Protection of New Lightweight Electromagnetic Interference Shielding Materials Determined

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Weight savings as high as 80 percent could be achieved by simply switching from aluminum electromagnetic interference (EMI) shielding covers for spacecraft power systems to EMI covers made from intercalated graphite fiber composites. Because EMI covers typically make up about one-fifth of the power system mass, this change would decrease the mass of a spacecraft power system by more than 15 percent. Intercalated graphite fibers are made by diffusing guest atoms or molecules, such as bromine, between the carbon planes of the graphite fibers. The resulting bromine-intercalated fibers have mechanical and thermal properties nearly identical to pristine graphite fibers, but their resistivity is lower by a factor of 5, giving them better electrical conductivity than stainless steel and making these composites suitable for EMI shielding.

  1. No Electromagnetic Interference Occurred in a Patient with a HeartMate II Left Ventricular Assist System and a Subcutaneous Implantable Cardioverter-Defibrillator.

    PubMed

    Raman, Ajay Sundara; Shabari, Farshad Raissi; Kar, Biswajit; Loyalka, Pranav; Hariharan, Ramesh

    2016-04-01

    The use of subcutaneous implantable cardioverter-defibrillators is a novel option for preventing arrhythmia-mediated cardiac death in patients who are at risk of endovascular-device infection or in whom venous access is difficult. However, the potential for electromagnetic interference between subcutaneous defibrillators and left ventricular assist devices is largely unknown. We report the case of a 24-year-old man in whom we observed no electromagnetic interference between a subcutaneous implanted cardioverter-defibrillator and a HeartMate II Left Ventricular Assist System, at 3 different pump speeds. To our knowledge, this is the first report of such findings in this circumstance.

  2. Enhanced electromagnetic interference shielding properties of carbon fiber veil/Fe3O4 nanoparticles/epoxy multiscale composites

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Wang, Jun; Zhang, Bin; Wu, Qilei; Su, Xiaogang

    2017-12-01

    The multiscale approach has been adapted to enhance the electromagnetic interference shielding properties of carbon fiber (CF) veil epoxy-based composites. The Fe3O4 nanoparticles (NPs) were homogeneously dispersed in the epoxy matrix after surface modification by using silane coupling agent. The CF veil/Fe3O4 NPs/epoxy multiscale composites were manufactured by impregnating the CF veils with Fe3O4 NPs/epoxy mixture to prepare prepreg followed by vacuum bagging process. The electromagnetic interference shielding properties combined with the complex permittivity and complex permeability of the composites were investigated in the X-band (8.2-12.4 GHz) range. The total shielding effectiveness (SET) increases with increasing Fe3O4 NPs loadings and the maximum SET is 51.5 dB at low thickness of 1 mm. The incorporation of Fe3O4 NPs into the composites enhances the complex permittivity and complex permeability thus enhancing the electromagnetic wave absorption capability. The increased SET dominated by absorption loss SEA is attributed to the enhanced magnetic loss and dielectric loss generated by Fe3O4 NPs and multilayer construction of the composites. The microwave conductivity increases and the skin depth decreases with increasing Fe3O4 NPs loadings.

  3. Electrical conductivity and electromagnetic interference shielding of epoxy nanocomposite foams containing functionalized multi-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Jiantong; Zhang, Guangcheng; Zhang, Hongming; Fan, Xun; Zhou, Lisheng; Shang, Zhengyang; Shi, Xuetao

    2018-01-01

    Epoxy/functionalized multi-wall carbon nanotube (EP/F-MWCNT) microcellular foams were fabricated through a supercritical CO2 (scCO2) foaming method. MWCNTs with carboxylation treatment were disentangled by using alpha-zirconium phosphate (ZrP) assisting dispersion method and functionalized with sulfanilamide. The F-MWCNTs were redispersed in acetone for mixing with epoxy resins to prepare nanocomposites. It was found that the dispersion of MWCNTs could be improved, thus heterogeneous nucleation effect of F-MWCNTs took place effectively during the foaming process, resulting in the formation of microcellular structure with larger cell density and smaller cell size. The volume conductivity and electromagnetic interference shielding performance of foamed EP/F-MWCNT nanocomposites were studied. When the F-MWCNT addition was 5 wt%, the conductivity of the foamed EP/F-MWCNT nanocomposites was 3.02 × 10-4 S/cm and the EMI shielding effectiveness (SE) reached 20.5 dB, significantly higher than the corresponding results of nanocomposite counterparts, indicating that introducing microcellular structure in EP/F-MWCNT nanocomposites would beneficial to improve their electrical conductivity and electromagnetic interference shielding performance.

  4. New Definitions of Electromagnetic Screening of Cases in Front of Radiates Interferences

    NASA Astrophysics Data System (ADS)

    Garcia Perez, Luis Gines

    Electromagnetic shielding enclosures are simulated in this PhD thesis. Metallic enclosures with a frontal aperture have been implemented and shielding effectiveness has been calculated in frequency and time domains. The CST Microwave Studio application has been used, and necessary electromagnetic shielding measurements have been implemented in order to confirm the simulated results. An anechoic chamber and the network vector analyser ZVA 67 R&S have been employed. There were different set-ups that consist on two shielding enclosures with different apertures on their frontal walls, as well as an electric and a magnetic probes, and an external log-periodic antenna. The electromagnetic field shielding of enclosures against radiated interferences, and its study in the frequency and time domains requires to determine specific parameters for the measurement of the shielding effectiveness (SE). With this target recently it has been essayed indicators based on the peak reduction of electric and magnetic fields and the energy density in the time domain. Although many papers have been published with numeric simulations, rarely real measures in laboratory have been published. In the first part of this study, some important theoretical concepts have been explained, as the high intensity penetration of radiated fields in enclosures with apertures, several ways to define the shielding effectiveness, analytic formulations and different parameters among other concepts, in the frequency and time domains. Then, the system is defined, as from the implementations for simulations and calculations in CST Microwave Studio point of view, as from the set-ups implemented in laboratory point of view. In this section the features and utilization of the network vector analyser ZVA 67 R&S;, anechoic chamber design and dimensions, log-periodic antenna features, and all the different probes, enclosures and apertures employed have been detailed. After de system definition simulated and measured

  5. Polarization of the interference field during reflection of electromagnetic waves from an intermedia boundary

    NASA Astrophysics Data System (ADS)

    Bulakhov, M. G.; Buyanov, Yu. I.; Yakubov, V. P.

    1996-10-01

    It has been shown that a full vector measurement of the total field allows one to uniquely distinguish the incident and reflected waves at each observation point without the use of a spatial difference based on an analysis of the polarization structure of the interference pattern which arises during reflection of electromagnetic waves from an intermedia boundary. We have investigated the stability of these procedures with respect to measurement noise by means of numerical modeling.

  6. Electromagnetic interference may cause false asystole alarms in certain Philips IntelliVue monitoring products.

    PubMed

    2011-09-01

    Electromagnetic interference (EMI) may cause some Philips Healthcare IntelliVue MMS, MP2, MP5, and X2 patient monitoring products to incorrectly display a flat electrocardiogram (ECG) waveform and generate a false asystole alarm. This occurs while the devices' pace pulse rejection feature is enabled. Facilities that suspect such behavior in their inventories should contact Philips to discuss whether installation of firmware version D.02.05 will help address the problem.

  7. Spectrum-averaged Harmonic Path (SHAPA) algorithm for non-contact vital sign monitoring with ultra-wideband (UWB) radar.

    PubMed

    Van Nguyen; Javaid, Abdul Q; Weitnauer, Mary Ann

    2014-01-01

    We introduce the Spectrum-averaged Harmonic Path (SHAPA) algorithm for estimation of heart rate (HR) and respiration rate (RR) with Impulse Radio Ultrawideband (IR-UWB) radar. Periodic movement of human torso caused by respiration and heart beat induces fundamental frequencies and their harmonics at the respiration and heart rates. IR-UWB enables capture of these spectral components and frequency domain processing enables a low cost implementation. Most existing methods of identifying the fundamental component either in frequency or time domain to estimate the HR and/or RR lead to significant error if the fundamental is distorted or cancelled by interference. The SHAPA algorithm (1) takes advantage of the HR harmonics, where there is less interference, and (2) exploits the information in previous spectra to achieve more reliable and robust estimation of the fundamental frequency in the spectrum under consideration. Example experimental results for HR estimation demonstrate how our algorithm eliminates errors caused by interference and produces 16% to 60% more valid estimates.

  8. Analysis of electromagnetic interference from power system processing and transmission components for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Barber, Peter W.; Demerdash, Nabeel A. O.; Hurysz, B.; Luo, Z.; Denny, Hugh W.; Millard, David P.; Herkert, R.; Wang, R.

    1992-01-01

    The goal of this research project was to analyze the potential effects of electromagnetic interference (EMI) originating from power system processing and transmission components for Space Station Freedom. The approach consists of four steps: (1) developing analytical tools (models and computer programs); (2) conducting parameterization (what if?) studies; (3) predicting the global space station EMI environment; and (4) providing a basis for modification of EMI standards.

  9. No Electromagnetic Interference Occurred in a Patient with a HeartMate II Left Ventricular Assist System and a Subcutaneous Implantable Cardioverter-Defibrillator

    PubMed Central

    Raman, Ajay Sundara; Kar, Biswajit; Loyalka, Pranav; Hariharan, Ramesh

    2016-01-01

    The use of subcutaneous implantable cardioverter-defibrillators is a novel option for preventing arrhythmia-mediated cardiac death in patients who are at risk of endovascular-device infection or in whom venous access is difficult. However, the potential for electromagnetic interference between subcutaneous defibrillators and left ventricular assist devices is largely unknown. We report the case of a 24-year-old man in whom we observed no electromagnetic interference between a subcutaneous implanted cardioverter-defibrillator and a HeartMate II Left Ventricular Assist System, at 3 different pump speeds. To our knowledge, this is the first report of such findings in this circumstance. PMID:27127441

  10. Characteristics of electromagnetic interference generated by arc discharges. [in spacecraft

    NASA Technical Reports Server (NTRS)

    Leung, Philip

    1986-01-01

    Electromagnetic interference (EMI) signatures resulting from arc discharges are characterized, and the effects of electrostatic discharges (ESDs) on the design of spacecraft systems are investigated. EMI characterization experiments were performed on Mylar, Teflon, Kapton, fused silica, and fiberglass in a vacuum chamber with acrylic walls; the experimental design and procedures are described. Discharge current pulses and RF spectra generated by the sample materials are examined. The relation between the magnitude of EMI generated during an ESD event and the material, environment, and geometry is studied. The solar-array/plasma interaction is analyzed; particular attention is given to the rate of discharge as a function of plasma density. The physical mechanisms of ESD-generated EMI are discussed. The data reveal that ESD parameters are dependent on the test environment.

  11. An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction

    PubMed Central

    Su, Pei; Zhao, Yongjiu; Jia, Shengli; Shi, Wenwen; Wang, Hongli

    2016-01-01

    In this paper, an ultra-wideband and polarization-independent metasurface for radar cross section (RCS) reduction is proposed. The unit cell of the metasurface operates in a linear cross-polarization scheme in a broad band. The phase and amplitude of cross-polarized reflection can be separately controlled by its geometry and rotation angle. Based on the diffuse reflection theory, a 3-bit coding metasurface is designed to reduce the RCS in an ultra-wide band. The wideband property of the metasurface benefits from the wideband cross polarization conversion and flexible phase modulation. In addition, the polarization-independent feature of the metasurface is achieved by tailoring the rotation angle of each element. Both the simulated and measured results demonstrate that the proposed metasurface can reduce the RCS significantly in an ultra-wide frequency band for both normal and oblique incidences, which makes it promising in the applications such as electromagnetic cloaking. PMID:26864084

  12. Ultra-wideband surface plasmonic Y-splitter.

    PubMed

    Gao, Xi; Zhou, Liang; Yu, Xing Yang; Cao, Wei Ping; Li, Hai Ou; Ma, Hui Feng; Cui, Tie Jun

    2015-09-07

    We present an ultra-wideband Y-splitter based on planar THz plasmonic metamaterials, which consists of a straight waveguide with composite H-shaped structure and two branch waveguides with H-shaped structure. The spoof surface plasmonic polaritons (SSPPs) supported by the straight waveguide occupy the similar dispersion relation and mode characteristic to the ones confined by the branch waveguides. Attributing to these features, the two branch waveguides can equally separate the SSPPs wave propagating along the straight plasmonic waveguide to form a 3dB power divider in an ultra-wideband frequency range. To verify the functionality and performance of the proposed Y-splitter, we scaled down the working frequency to microwave and implemented microwave experiments. The tested device performances have clearly validated the functionality of our designs. It is believed to be applicable for future plasmonic circuit in microwave and THz ranges.

  13. Ultra-wideband reflective polarization converter based on anisotropic metasurface

    NASA Astrophysics Data System (ADS)

    Wu, Jia-Liang; Lin, Bao-Qin; Da, Xin-Yu

    2016-08-01

    In this paper, we propose an ultra-wideband reflective linear cross-polarization converter based on anisotropic metasurface. Its unit cell is composed of a square-shaped resonator with intersectant diagonal and metallic ground sheet separated by dielectric substrate. Simulated results show that the converter can generate resonances at four frequencies under normal incident electromagnetic (EM) wave, leading to the bandwidth expansion of cross-polarization reflection. For verification, the designed polarization converter is fabricated and measured. The measured and simulated results agree well with each other, showing that the fabricated converter can convert x- or y-polarized incident wave into its cross polarized wave in a frequency range from 7.57 GHz to 20.46 GHz with a relative bandwidth of 91.2%, and the polarization conversion efficiency is greater than 90%. The proposed polarization converter has a simple geometry but an ultra wideband compared with the published designs, and hence possesses potential applications in novel polarization-control devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471387, 61271250, and 61571460).

  14. Electromagnetic topology: Characterization of internal electromagnetic coupling

    NASA Technical Reports Server (NTRS)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    1991-01-01

    The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  15. Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio-Inspired Optimization Techniques

    DTIC Science & Technology

    2017-11-01

    ARL-TR-8225 ● NOV 2017 US Army Research Laboratory Methodology for Designing and Developing a New Ultra-Wideband Antenna Based...Research Laboratory Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio-Inspired Optimization Techniques by...SUBTITLE Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio-Inspired Optimization Techniques 5a. CONTRACT NUMBER

  16. Ultra-Wideband Angle-of-Arrival Tracking Systems

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey; Ngo, Phong H.; Phan, Chau T.; Gross, Julia; Ni, Jianjun; Dusl, John

    2010-01-01

    Systems that measure the angles of arrival of ultra-wideband (UWB) radio signals and perform triangulation by use of those angles in order to locate the sources of those signals are undergoing development. These systems were originally intended for use in tracking UWB-transmitter-equipped astronauts and mobile robots on the surfaces of remote planets during early stages of exploration, before satellite-based navigation systems become operational. On Earth, these systems could be adapted to such uses as tracking UWB-transmitter-equipped firefighters inside buildings or in outdoor wildfire areas obscured by smoke. The same characteristics that have made UWB radio advantageous for fine resolution ranging, covert communication, and ground-penetrating radar applications in military and law-enforcement settings also contribute to its attractiveness for the present tracking applications. In particular, the waveform shape and the short duration of UWB pulses make it possible to attain the high temporal resolution (of the order of picoseconds) needed to measure angles of arrival with sufficient precision, and the low power spectral density of UWB pulses enables UWB radio communication systems to operate in proximity to other radio communication systems with little or no perceptible mutual interference.

  17. Manager's Role in Electromagnetic Interference (EMI) Control

    NASA Technical Reports Server (NTRS)

    Sargent, Noel B.; Lewis, Catherine C.

    2013-01-01

    This presentation captures the essence of electromagnetic compatibility (EMC) engineering from a project manager's perspective. It explains the basics of EMC and the benefits to the project of early incorporation of EMC best practices. The EMC requirement products during a project life cycle are identified, along with the requirement verification methods that should be utilized. The goal of the presentation is to raise awareness and simplify the mystique surrounding electromagnetic compatibility for managers that have little or no electromagnetics background

  18. Crew Quarters (CQ) and Electromagnetic Interference (EMI) Measurement Facility Combined Impedance Study

    NASA Technical Reports Server (NTRS)

    Scully, Robert C.

    2011-01-01

    This report documents an investigation into observed failures associated with conducted susceptibility testing of Crew Quarters (CQ) hardware in the Johnson Space Center (JSC) Electromagnetic Interference (EMI) Measurement Facility, and the work accomplished to identify the source of the observed behavior. Investigation led to the conclusion that the hardware power input impedance was interacting with the facility power impedance leading to instability at the observed frequencies of susceptibility. Testing performed in other facilities did not show this same behavior, pointing back to the EMI Measurement Facility power as the potential root cause. A LISN emulating the Station power bus impedance was inserted into the power circuit, and the susceptibility was eliminated from the measurements.

  19. Electromagnetic Interference of Wireless Local Area Network on Electrocardiogram Monitoring System: A Case Report

    PubMed Central

    Chung, Seungmin; Yi, Joohee

    2013-01-01

    Electromagnetic interference (EMI) can affect various medical devices. Herein, we report the case of EMI from wireless local area network (WLAN) on an electrocardiogram (ECG) monitoring system. A patient who had a prior myocardial infarction participated in the cardiac rehabilitation program in the sports medicine center of our hospital under the wireless ECG monitoring system. After WLAN was installed, wireless ECG monitoring system failed to show a proper ECG signal. ECG signal was distorted when WLAN was turned on, but it was normalized after turning off the WLAN. PMID:23613696

  20. A high-power synthesized ultrawideband radiation source

    NASA Astrophysics Data System (ADS)

    Efremov, A. M.; Koshelev, V. I.; Plisko, V. V.; Sevostyanov, E. A.

    2017-09-01

    A high-power ultrawideband radiation source has been developed which is capable of synthesizing electromagnetic pulses with different frequency bands in free space. To this end, a new circuit design comprising a four-channel former of bipolar pulses of durations 2 and 3 ns has been elaborated and conditions for the stable operation of gas gaps of independent channels without external control pulses have been determined. Each element of the 2 × 2 array of combined antennas is driven from an individual channel of the pulse former. Antennas excited by pulses of the same duration are arranged diagonally. Two radiation synthesis modes have been examined: one aimed to attain ultimate field strength and the other aimed to attain an ultimate width of the radiation spectrum. The modes were changed by changing the time delay between the 2-ns and 3-ns pulses. For the first mode, radiation pulses with a frequency band of 0.2-0.8 GHz and an effective potential of 500 kV have been obtained. The synthesized radiation pulses produced in the second mode had an extended frequency band (0.1-1 GHz) and an effective potential of 220 kV. The pulse repetition frequency was 100 Hz.

  1. Ultra-wideband receiver

    DOEpatents

    McEwan, T.E.

    1994-09-06

    An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, [+-] UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals. 16 figs.

  2. Ultra-wideband receiver

    DOEpatents

    McEwan, T.E.

    1996-06-04

    An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, {+-}UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals. 21 figs.

  3. Ultra-wideband receiver

    DOEpatents

    McEwan, Thomas E.

    1994-01-01

    An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, .+-.UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals.

  4. Ultra-wideband receiver

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, .+-.UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals.

  5. Performance Comparison with Different Antenna Properties in Time Reversal Ultra-Wideband Communications for Sensor System Applications

    PubMed Central

    Ding, Shuai

    2017-01-01

    The complexity reduction of receivers in ultrawideband (UWB) communication when time reversal (TR) technique is applied makes it suitable for low-cost and low-power sensor systems. Larger antenna dispersion can generally lead to a less stable phase center and will increase the interference in UWB communications based on pulse radio, whereas a higher antenna gain will result in higher channel gain and further larger channel capacity. To find out the trade-off between antenna gain and dispersion, we performed the channel measurements using different antennas in a dense multipath environment and established the distribution of channel capacities based on the measured channel responses. The results show that the capacity loss caused by antenna dispersion cannot be compensated by antenna gain with line-of-sight transmission to some extent, the effect of phase center on the communication system is negligible, and antennas with smaller time dispersion will have a better energy focusing property and anti-interference performance in TR systems. PMID:29301195

  6. Performance Comparison with Different Antenna Properties in Time Reversal Ultra-Wideband Communications for Sensor System Applications.

    PubMed

    Yang, Yu; Wang, Bing-Zhong; Ding, Shuai

    2017-12-30

    The complexity reduction of receivers in ultrawideband (UWB) communication when time reversal (TR) technique is applied makes it suitable for low-cost and low-power sensor systems. Larger antenna dispersion can generally lead to a less stable phase center and will increase the interference in UWB communications based on pulse radio, whereas a higher antenna gain will result in higher channel gain and further larger channel capacity. To find out the trade-off between antenna gain and dispersion, we performed the channel measurements using different antennas in a dense multipath environment and established the distribution of channel capacities based on the measured channel responses. The results show that the capacity loss caused by antenna dispersion cannot be compensated by antenna gain with line-of-sight transmission to some extent, the effect of phase center on the communication system is negligible, and antennas with smaller time dispersion will have a better energy focusing property and anti-interference performance in TR systems.

  7. Aircraft Electromagnetic Compatibility.

    DTIC Science & Technology

    1987-06-01

    Human Exposure to Radio Frequency Electromagnetic Fields , 300 KiloHertz to 100 GigaHertz." 6. ARINC 429-8, "Digital Information Transfer System (DITS...142 V EXECUTIVE SUMMARY The Aircraft Electromagnetic Compatibility guidelines document deals with electromagnetic compatibility in a... electromagnetic interference paths (figure EI. TYPE PATH 400 Hz Electrostatic MagneticCharge Electric Field Transients 5 R d t Coupling 150/i 300o Wire

  8. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Test Report, Electromagnetic Interference (EMI)/Electromagnetic Radiation(EMR) and Electromagnetic Capability (EMC) for the EOS/AMSU-A1

    NASA Technical Reports Server (NTRS)

    Paliwoda, L.

    1998-01-01

    This document contains the procedure and the test results of the Advanced Microwave Sounding Unit-A (AMSU-A) Earth Observing System (EOS) Project, assembly part number 1356008-1, serial number 202, Electromagnetic Interference (EMI) and Electromagnetic Susceptibility (EMC) qualification test. The test was conducted in accordance with the approved EMI/EMC Test Plan/Procedure, Specification number AE-26151/8B, dated 10 September 1998. Aerojet intends that the presentation and submittal of this document, prepared in accordance with the objectives established by the aforementioned Test Plan/Procedure, document number AE-26151/8B, will satisfy the data requirement with respect to the AMSU-A/EOS instrument operational compliance of the EMI/EMC test requirement. Test for the AMSU-A/EOS instrument have been completed and all the requirements per General Interface Requirement Document (GIRD), GSFC 422-11-12-01, for EOS Common Spacecraft/Instruments, paragraph 10.11, were met with the exceptions of the test methods CE03, RE01, and RE02, as described in this document.

  9. Optimal waveforms design for ultra-wideband impulse radio sensors.

    PubMed

    Li, Bin; Zhou, Zheng; Zou, Weixia; Li, Dejian; Zhao, Chong

    2010-01-01

    Ultra-wideband impulse radio (UWB-IR) sensors should comply entirely with the regulatory spectral limits for elegant coexistence. Under this premise, it is desirable for UWB pulses to improve frequency utilization to guarantee the transmission reliability. Meanwhile, orthogonal waveform division multiple-access (WDMA) is significant to mitigate mutual interferences in UWB sensor networks. Motivated by the considerations, we suggest in this paper a low complexity pulse forming technique, and its efficient implementation on DSP is investigated. The UWB pulse is derived preliminarily with the objective of minimizing the mean square error (MSE) between designed power spectrum density (PSD) and the emission mask. Subsequently, this pulse is iteratively modified until its PSD completely conforms to spectral constraints. The orthogonal restriction is then analyzed and different algorithms have been presented. Simulation demonstrates that our technique can produce UWB waveforms with frequency utilization far surpassing the other existing signals under arbitrary spectral mask conditions. Compared to other orthogonality design schemes, the designed pulses can maintain mutual orthogonality without any penalty on frequency utilization, and hence, are much superior in a WDMA network, especially with synchronization deviations.

  10. Electromagnetic interference from electronic devices used in the management of type 1 diabetes can impair the performance of an avalanche transceiver in search mode.

    PubMed

    Miller, Steven C M

    2015-06-01

    Portable electronic devices play an important role in the management of type 1 diabetes mellitus. Electromagnetic interference from electronic devices has been shown to impair the function of an avalanche transceiver in search mode (but not in transmitting mode). This study investigates the influence of electromagnetic interference from diabetes devices on a searching avalanche beacon. The greatest distance at which an avalanche transceiver (in search mode) could accurately indicate the location of a transmitting transceiver was assessed when portable electronic devices (including an insulin pump and commonly used real-time continuous subcutaneous glucose monitoring system [rtCGMS]) were held in close proximity to each transceiver. The searching transceiver could accurately locate a transmitted signal at a distance of 30 m when used alone. This distance was unchanged by the Dexcom G4 rtCGMS, but was reduced to 10 m when the Medtronic Guardian rtCGMS was held close (within 30 cm) to the receiving beacon. Interference from the Animas Vibe insulin pump reduced this distance to 5 m, impairing the searching transceiver in a manner identical to the effect of a cell phone. Electromagnetic interference produced by some diabetes devices when held within 30 cm of a searching avalanche transceiver can impair the ability to locate a signal. Such interference could significantly compromise the outcome of a companion rescue scenario. Further investigation using other pumps and rtCGMS devices is required to evaluate all available diabetes electronics. Meantime, all electronic diabetes devices including rtCGMS and insulin pumps should not be used within 30 cm of an avalanche transceiver. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  11. An Experimental Study of Ultra-Wide-Band and Ultra-Wide-Aperture Non-Collinear Acousto-Optic Diffraction in an Optically Biaxial Potassium Arsenate Titanyl Crystal

    NASA Astrophysics Data System (ADS)

    Milkov, M. G.; Voloshinov, V. B.; Isaenko, L. I.; Vedenyapin, V. N.

    2018-01-01

    Acousto-optic interaction in an optically biaxial crystalline medium under propagation of light close to one of the optical axes of a potassium arsenate titanyl KTiOAsO4 crystal has been studied. The experimental dependences of the intensity of a diffracted optical beam on the angle of light incidence on an ultrasonic wave have been obtained. It has been shown that a flat cut of a wave-vector surface provides development of an ultra-wide-aperture and ultra-wide-band acousto-optic deflector to control radiation in the visible and infrared electromagnetic spectral ranges.

  12. Comparison of Image Processing Techniques using Random Noise Radar

    DTIC Science & Technology

    2014-03-27

    detection UWB ultra-wideband EM electromagnetic CW continuous wave RCS radar cross section RFI radio frequency interference FFT fast Fourier transform...several factors including radar cross section (RCS), orientation, and material makeup. A single monostatic radar at some position collects only range and...Chapter 2 is to provide the theory behind noise radar and SAR imaging. Section 2.1 presents the basic concepts in transmitting and receiving random

  13. Signal processing techniques for the U.S. Army Research Laboratory stepped frequency ultra-wideband radar

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam

    2017-05-01

    The U.S. Army Research Laboratory (ARL) recently designed and tested a new prototype radar, the Spectrally Agile Frequency-Incrementing Reconfigurable (SAFIRE) radar system, based on a stepped-frequency architecture to address issues associated with our previous impulse-based radars. This is a low-frequency ultra-wideband (UWB) radar with frequencies spanning from 300 to 2000 MHz. Mounted on a vehicle, the radar can be configured in either sidelooking or forward-looking synthetic aperture radar (SAR) mode. We recently conducted our first experiment at Yuma Proving Grounds (YPG). This paper summarizes the radar configurations, parameters, and SAR geometry. The radar data and other noise sources, to include the self-interference signals and radio-frequency interference (RFI) noise sources, are presented and characterized in both the raw (pre-focus) and SAR imagery domains. This paper also describes our signal processing techniques for extracting noise from radar data, as well as the SAR imaging algorithms for forming SAR imagery in both forward- and side-looking modes. Finally, this paper demonstrates our spectral recovery technique and results for a radar operating in a spectrally restricted environment.

  14. Electromagnetic Compatibility for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Scully, Robert C.

    2004-01-01

    This slide presentation reviews the Space Shuttle electromagnetic compatibility (EMC). It includes an overview of the design of the shuttle with the areas that are of concern for the electromagnetic compatibility. It includes discussion of classical electromagnetic interference (EMI) and the work performed to control the electromagnetic interference. Another area of interest is electrostatic charging and the threat of electrostatic discharge and the attempts to reduce damage to the Shuttle from these possible hazards. The issue of electrical bonding is als reviewed. Lastly the presentation reviews the work performed to protect the shuttle from lightning, both in flight and on the ground.

  15. Ultrawideband radar clutter measurements and analysis

    NASA Astrophysics Data System (ADS)

    Tuley, Michael T.; Sheen, David M.; Collins, H. D.; Sager, Earl V.; Schultheis, A. C.

    1993-05-01

    This paper reports the results of ultrawideband radar clutter measurements made by Battelle- Pacific Northwest Laboratories and the System Planning Corporation near Sequim, WA. The measurement area is a mountainous coniferous forest with occasional roads and clear-cut areas. Local grazing angles range from near zero to approximately 40 degree(s). Very limited data are also presented from measurements made in a desert-type terrain near Richland, WA. Two ultrawideband radar systems were employed in the data collection. An impulse system providing an approximate one nanosecond monocycle pulse (bandwidth of 300 MHz - 1000 MHz) acquired data over a 0.7 km2 area (121,000 resolution cells). A step chirp radar with the same total bandwidth as the impulse system collected data over a 6.2 km2 area (780,000 resolution cells), including the area sampled by the impulse system. Wideband TEM horn antennas (log-periodic antennas for the step chirp system) deployed on a 19 m horizontally scanned aperture were used for transmission and reception, providing a 1.5 degree(s) azimuth resolution at 300 MHz for both systems.

  16. Upset susceptibility study employing circuit analysis and digital simulation. [digital systems and electromagnetic interference

    NASA Technical Reports Server (NTRS)

    Carreno, V. A.

    1984-01-01

    An approach to predict the susceptibility of digital systems to signal disturbances is described. Electrical disturbances on a digital system's input and output lines can be induced by activities and conditions including static electricity, lightning discharge, electromagnetic interference (EMI), and electromagnetic pulsation (EMP). The electrical signal disturbances employed for the susceptibility study were limited to nondestructive levels, i.e., the system does not sustain partial or total physical damage and reset and/or reload brings the system to an operational status. The front-end transition from the electrical disturbances to the equivalent digital signals was accomplished by computer-aided circuit analysis. The super-sceptre (system for circuit evaluation of transient radiation effects) programs was used. Gate models were developed according to manufacturers' performance specifications and parameters resulting from construction processes characteristic of the technology. Digital simulation at the gate and functional level was employed to determine the impact of the abnormal signals on system performance and to study the propagation characteristics of these signals through the system architecture. Example results are included for an Intel 8080 processor configuration.

  17. Optimised Spectral Kurtosis for bearing diagnostics under electromagnetic interference

    NASA Astrophysics Data System (ADS)

    Smith, Wade A.; Fan, Zhiqi; Peng, Zhongxiao; Li, Huaizhong; Randall, Robert B.

    2016-06-01

    The selection of the optimal demodulation frequency band is a significant step in bearing fault diagnosis because it determines whether the fault information can be extracted from the demodulated signal via envelope analysis. Two well-known methods for selecting the demodulation band are the Fast Kurtogram, based on the kurtosis of the filtered time signal, and the Protrugram, which uses the kurtosis of the envelope (amplitude) spectrum. Although these two methods have been successfully applied in many cases, the authors have observed that they may fail in specific environments, such as in the presence of electromagnetic interference (EMI) or other impulsive masking signals. In this paper, a simple spectral kurtosis-based approach is proposed for selecting the best demodulation band to extract bearing fault-related impulsive content from vibration signals contaminated with strong EMI. The method is applied to vibration signals obtained from a planetary gearbox test rig with planet bearings seeded with inner and outer race faults. Results from the Fast Kurtogram and Protrugram methods are also included for comparison. The proposed approach is found to exhibit superior diagnostic performance in the presence of intense EMI. Another contribution of the paper is to introduce and explain the issue of EMI to the condition monitoring community. The paper outlines the characteristics of EMI arising from widely-used variable frequency drives, and these characteristics are used to simulate an EMI-contaminated vibration signal to further test the performance of the proposed approach. Although EMI has been acknowledged as a serious problem in many industrial cases, there have been very few studies showing its adverse effects on machine diagnostics. It is important for analysts to be able to identify EMI in measured vibration signals, lest it interfere with the analysis undertaken.

  18. Fuzzification of Electromagnetic Interference Patterns Onboard Commercial Airliners Due to Wireless Technology

    NASA Technical Reports Server (NTRS)

    Jafri, Madiha; Ely, Jay; Vahala, Linda

    2003-01-01

    The use of portable wireless technology has increased dramatically over the past few years. Over the years however, numerous reports have cited portable electronic devices (PEDs) as a possible cause of electromagnetic interference (EMI) to aircraft navigation and communication radio systems. PEDs may act as transmitters and their signals may be detected by the various radio receiver antennas installed on the aircraft. Measurement of the radiated field coupling between passenger cabin locations and aircraft communication and navigation receivers, via their antennas is defined herein as interference path loss (IPL). Personnel from NASA Langley Research Center, Eagles Wings Inc., and United Airlines performed extensive IPL measurements on several Boeing 737 airplanes. In previous work, the IPL data collected was graphically plotted and presented using MATLAB. This paper provides an introductory result of modeling EMI patterns using Fuzzy Logic, using the graphical analysis of the IPL data summarized. The application of fuzzy logic seeks to provide a means of estimating IPL at various locations within an airplane passenger cabin using simple modeling parameters. Fuzzy logic methods may provide a means to assess IPL characteristics of aircraft that have not been subject to expensive measurement or modeling processes and may also be useful for estimating the merit of aircraft design changes intended to minimize the potential for EMI.

  19. Electromagnetic interference modeling and suppression techniques in variable-frequency drive systems

    NASA Astrophysics Data System (ADS)

    Yang, Le; Wang, Shuo; Feng, Jianghua

    2017-11-01

    Electromagnetic interference (EMI) causes electromechanical damage to the motors and degrades the reliability of variable-frequency drive (VFD) systems. Unlike fundamental frequency components in motor drive systems, high-frequency EMI noise, coupled with the parasitic parameters of the trough system, are difficult to analyze and reduce. In this article, EMI modeling techniques for different function units in a VFD system, including induction motors, motor bearings, and rectifierinverters, are reviewed and evaluated in terms of applied frequency range, model parameterization, and model accuracy. The EMI models for the motors are categorized based on modeling techniques and model topologies. Motor bearing and shaft models are also reviewed, and techniques that are used to eliminate bearing current are evaluated. Modeling techniques for conventional rectifierinverter systems are also summarized. EMI noise suppression techniques, including passive filter, Wheatstone bridge balance, active filter, and optimized modulation, are reviewed and compared based on the VFD system models.

  20. [Electromagnetic interference in the current era of cardiac implantable electronic devices designed for magnetic resonance environment].

    PubMed

    Ribatti, Valentina; Santini, Luca; Forleo, Giovanni B; Della Rocca, Domenico; Panattoni, Germana; Scali, Marta; Schirripa, Valentina; Danisi, Nicola; Ammirati, Fabrizio; Santini, Massimo

    2017-04-01

    In the last decades we are observing a continuous increase in the number of patients wearing cardiac implantable electronic devices (CIEDs). At the same time, we face daily with a domestic and public environment featured more and more by the presence and the utilization of new emitters and finally, more medical procedures are based on electromagnetic fields as well. Therefore, the topic of the interaction of devices with electromagnetic interference (EMI) is increasingly a real and actual problem.In the medical environment most attention is paid to magnetic resonance, nevertheless the risk of interaction is present also with ionizing radiation, electrical nerve stimulation and electrosurgery. In the non-medical environment, most studies reported in the literature focused on mobile phones, metal detectors, as well as on headphones or digital players as potential EMI sources, but many other instruments and tools may be intentional or non-intentional sources of electromagnetic fields.CIED manufacturers are more and more focusing on new technological features in order to make implantable devices less susceptible to EMI. However, patients and emitter manufacturers should be aware that limitations exist and that there is not complete immunity to EMI.

  1. Spectrum Management and Electromagnetic Environmental Effects (E3) Business Process

    DTIC Science & Technology

    2010-05-06

    HAZARDS OF ELECTROMAGNETIC RADIATION TO ORDNANCE ( HERO ) SURVEY. XM11: IS THERE A CURRENT ELECTROMAGNETIC INTERFERENCE (EMI) SITE SURVEY. SM & EMI Navy...PERSONNEL (HERP) / FUEL (HERF) SURVEY. XM10: IS THERE A CURRENT HAZARDS OF ELECTROMAGNETIC RADIATION TO ORDNANCE ( HERO ) SURVEY. XM11...OF ALL KNOWN ELECTROMAGNETIC INTERFERENCE (EMI) FIXES INSTALLED ONE YEAR AFTER SURVEY COMPLETION. M05: OF ALL RADIATION HAZARDS

  2. Haystack Ultrawideband Satellite Imaging Radar

    DTIC Science & Technology

    2014-09-01

    SEP 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Haystack Ultrawideband Satellite Imaging Radar 5a...www.ll.mit.edu September 2014 Since the launch of satellites into Earth orbits more than 50 years ago, space has become crowded. Commercial and military... satellites , both active and defunct, share the space environment with an assort- ment of space debris, such as remnants of damaged spacecraft and

  3. Ultra-wideband technology radio frequency interference effects to GPS and interference scenario development : first interim report

    DOT National Transportation Integrated Search

    2000-09-12

    In October, 1999, at the request of the Department of Transportation (DoT), the RTCA undertook an effort to investigate the radio frequency interference (RFI) environment in the vicinity of the new Global Positioning System (GPS) L5 frequency (1176.4...

  4. Low risk of electromagnetic interference between smartphones and contemporary implantable cardioverter defibrillators.

    PubMed

    Burri, Haran; Mondouagne Engkolo, Louis Paulin; Dayal, Nicolas; Etemadi, Abdul; Makhlouf, Anne-Marie; Stettler, Carine; Trentaz, Florence

    2016-05-01

    Manufacturers of implantable cardioverter defibrillators (ICDs) recommend that cell phones be maintained at a distance of ∼15 cm from the implanted device in order to avoid risk of dysfunction due to electromagnetic interference (EMI). Data relating to this issue are outdated and do not reflect modern technology. Our aim was to evaluate whether EMI is still an issue with contemporary ICDs and smartphones. Consecutive patients implanted with a wireless-enabled ICD were tested for potential interference with two models of recent 4G smartphones in conditions intended to maximize risk of EMI. A magnet effect (due to the phone speakers) was tested by placing the smartphones in the standby mode directly over the ICD generator. The presence of EMI artefacts on the real-time electrograms was evaluated by placing the smartphones in the standby, dialling, and operating modes directly over the generator casing and over the parasternal region in the vicinity of the ventricular lead. A total of 63 patients equipped with 29 different models of single, dual, or biventricular ICDs from five major manufacturers were included. None of the patients showed any evidence of interference with the smartphones during any of the 882 tests. The risk of EMI between modern smartphones and contemporary ICDs is low. This is probably due to the filters incorporated in the ICDs and low emission by the phones, as well as the small size of the magnets in the smartphones tested. NCT02330900 (http://www.clinicaltrials.gov). Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  5. Numerical Electromagnetics Simulations of the Leakage Through the Pump-out Holes in the DISC Electromagnetic Interference Shield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Jr., Charles G.; Cooper, Amy; Moore, Alastair S.

    In order to prevent electromagnetic interference (EMI) from affecting the DISC diagnostic, an EMI shield was added. Figure 1 is a cross section from a CAD model of DISC and shows the EMI shield in situ. The shield is orange and at the top of the figure. Figure 2 is a drawing of just the EMI shield. The slit in the center of the EMI shield is covered by a metal mesh, which is not shown in this drawing. The small holes toward the base of the conical portion of the EMI shield are the pump-out holes, and the electromagneticmore » leakage through these holes is the subject of this report1. An alternate design for the EMI shield is considered in order to determine how to increase the EMI effectiveness of the pump-out holes in the shield without compromising the flow rate through the shield. Both the original and alternate designs are simulated and compared.« less

  6. Electromagnetic interference reduction using electromagnetic bandgap structures in packages, enclosures, cavities, and antennas

    NASA Astrophysics Data System (ADS)

    Mohajer Iravani, Baharak

    Electromagnetic interference (EMI) is a source of noise problems in electronic devices. The EMI is attributed to coupling between sources of radiation and components placed in the same media such as package or chassis. This coupling can be either through conducting currents or through radiation. The radiation of electromagnetic (EM) fields is supported by surface currents. Thus, minimizing these surface currents is considered a major and critical step to suppress EMI. In this work, we present novel strategies to confine surface currents in different applications including packages, enclosures, cavities, and antennas. The efficiency of present methods of EM noise suppression is limited due to different drawbacks. For example, the traditional use of lossy materials and absorbers suffers from considerable disadvantages including mechanical and thermal reliability leading to limited life time, cost, volume, and weight. In this work, we consider the use of Electromagnetic Band Gap (EBG) structures. These structures are suitable for suppressing surface currents within a frequency band denoted as the bandgap. Their design is straight forward, they are inexpensive to implement, and they do not suffer from the limitations of the previous methods. A new method of EM noise suppression in enclosures and cavity-backed antennas using mushroom-type EBG structures is introduced. The effectiveness of the EBG as an EMI suppresser is demonstrated using numerical simulations and experimental measurements. To allow integration of EBGs in printed circuit boards and packages, novel miniaturized simple planar EBG structures based on use of high-k dielectric material (epsilonr > 100) are proposed. The design consists of meander lines and patches. The inductive meander lines serve to provide current continuity bridges between the capacitive patches. The high-k dielectric material increases the effective capacitive load substantially in comparison to commonly used material with much lower

  7. Multilayered Electromagnetic Interference Shielding Structures for Suppressing Magnetic Field Coupling

    NASA Astrophysics Data System (ADS)

    Watanabe, Atom O.; Raj, Pulugurtha Markondeya; Wong, Denny; Mullapudi, Ravi; Tummala, Rao

    2018-05-01

    Control of electromagnetic interference (EMI) represents a major challenge for emerging consumer electronics, the Internet of Things, automotive electronics, and wireless communication systems. This paper discusses innovative EMI shielding materials and structures that offer higher shielding effectiveness compared with copper. To create high shielding effectiveness in the frequency range of 1 MHz to 100 MHz, multilayered shielding topologies with electrically conductive and nanomagnetic materials were modeled, designed, fabricated, and characterized. In addition, suppression of out-of-plane and in-plane magnetic-field coupling noise with these structures is compared with that of traditional single-layer copper or nickel-iron films. Compared with single-layered copper shields, multilayered structures consisting of copper, nickel-iron, and titanium showed a 3.9 times increase in shielding effectiveness in suppressing out-of-plane or vertically coupled noise and 1.3 times increase in lateral coupling. The superiority of multilayered thin-film shields over conventional shielding enables greater design flexibility, higher shielding effectiveness, and further miniaturization of emerging radiofrequency (RF) and power modules.

  8. Optimal Waveforms Design for Ultra-Wideband Impulse Radio Sensors

    PubMed Central

    Li, Bin; Zhou, Zheng; Zou, Weixia; Li, Dejian; Zhao, Chong

    2010-01-01

    Ultra-wideband impulse radio (UWB-IR) sensors should comply entirely with the regulatory spectral limits for elegant coexistence. Under this premise, it is desirable for UWB pulses to improve frequency utilization to guarantee the transmission reliability. Meanwhile, orthogonal waveform division multiple-access (WDMA) is significant to mitigate mutual interferences in UWB sensor networks. Motivated by the considerations, we suggest in this paper a low complexity pulse forming technique, and its efficient implementation on DSP is investigated. The UWB pulse is derived preliminarily with the objective of minimizing the mean square error (MSE) between designed power spectrum density (PSD) and the emission mask. Subsequently, this pulse is iteratively modified until its PSD completely conforms to spectral constraints. The orthogonal restriction is then analyzed and different algorithms have been presented. Simulation demonstrates that our technique can produce UWB waveforms with frequency utilization far surpassing the other existing signals under arbitrary spectral mask conditions. Compared to other orthogonality design schemes, the designed pulses can maintain mutual orthogonality without any penalty on frequency utilization, and hence, are much superior in a WDMA network, especially with synchronization deviations. PMID:22163511

  9. Cellulose-derived carbon aerogels supported goethite (α-FeOOH) nanoneedles and nanoflowers for electromagnetic interference shielding.

    PubMed

    Wan, Caichao; Jiao, Yue; Qiang, Tiangang; Li, Jian

    2017-01-20

    We describe a rapid and facile chemical precipitation method to grow goethite (α-FeOOH) nanoneedles and nanoflowers on the carbon aerogels which was obtained from the pyrolysis of cellulose aerogels. When evaluated as electromagnetic interference (EMI) shielding materials, the α-FeOOH/cellulose-derived carbon aerogels composite displays the highest SE total value of 34.0dB at the Fe 3+ /Fe 2+ concentration of 0.01M, which is about 4.8 times higher than that of the individual α-FeOOH (5.9dB). When the higher or lower Fe 3+ /Fe 2+ concentrations were used, the EMI shielding performance deterioration occurred. The integration of α-FeOOH with the carbon aerogels transforms the reflection-dominant mechanism for α-FeOOH into the adsorption-dominant mechanism for the composite. The adsorption-dominant mechanism undoubtedly makes contribution to alleviating secondary radiation, which is regarded as more attractive alternative for developing electromagnetic radiation protection products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Scalable Fabrication of Natural-Fiber Reinforced Composites with Electromagnetic Interference Shielding Properties by Incorporating Powdered Activated Carbon

    PubMed Central

    Xia, Changlei; Zhang, Shifeng; Ren, Han; Shi, Sheldon Q.; Zhang, Hualiang; Cai, Liping; Li, Jianzhang

    2015-01-01

    Kenaf fiber—polyester composites incorporated with powdered activated carbon (PAC) were prepared using the vacuum-assisted resin transfer molding (VARTM) process. The product demonstrates the electromagnetic interference (EMI) shielding function. The kenaf fibers were retted in a pressured reactor to remove the lignin and extractives in the fiber. The PAC was loaded into the freshly retted fibers in water. The PAC loading effectiveness was determined using the Brunauer-Emmett-Teller (BET) specific surface area analysis. A higher BET value was obtained with a higher PAC loading. The transmission energies of the composites were measured by exposing the samples to the irradiation of electromagnetic waves with a variable frequency from 8 GHz to 12 GHz. As the PAC content increased from 0% to 10.0%, 20.5% and 28.9%, the EMI shielding effectiveness increased from 41.4% to 76.0%, 87.9% and 93.0%, respectively. Additionally, the EMI absorption increased from 21.2% to 31.7%, 44.7% and 64.0%, respectively. The ratio of EMI absorption/shielding of the composite at 28.9% of PAC loading was increased significantly by 37.1% as compared with the control sample. It was indicated that the incorporation of PAC into the composites was very effective for absorbing electromagnetic waves, which resulted in a decrease in secondary electromagnetic pollution. PMID:28787808

  11. Electromagnetic Compatibility Analysis Group VA-H3

    NASA Technical Reports Server (NTRS)

    Armanda, Carlos A.

    2008-01-01

    During the eight weeks working at NASA, I was fortunate enough to work with the Expendable Launch Vehicle's (ELV) Electromagnetic Compatibility (EMC) Team, who is responsible for the evaluation and analysis of any EMI risk an ELV mission might face. This group of people concern themselves with practically any form of electromagnetic interference that may risk the safety of a rocket, a mission, or even people. Taking this into consideration, the group investigates natural forms of interference, such as lightning, to manmade interferences, such as antennas.

  12. Electromagnetic interference caused by common surgical energy-based devices on an implanted cardiac defibrillator.

    PubMed

    Paniccia, Alessandro; Rozner, Marc; Jones, Edward L; Townsend, Nicole T; Varosy, Paul D; Dunning, James E; Girard, Guillaume; Weyer, Christopher; Stiegmann, Gregory V; Robinson, Thomas N

    2014-12-01

    Surgical energy-based devices emit energy, which can interfere with other electronic devices (eg, implanted cardiac pacemakers and/or defibrillators). The purpose of this study was to quantify the amount of unintentional energy (electromagnetic interference [EMI]) transferred to an implanted cardiac defibrillator by common surgical energy-based devices. A transvenous cardiac defibrillator was implanted in an anesthetized pig. The primary outcome measure was the average maximum EMI occurring on the implanted cardiac device during activations of multiple different surgical energy-based devices. The EMI transferred to the implanted cardiac device is as follows: traditional bipolar 30 W .01 ± .004 mV, advanced bipolar .004 ± .003 mV, ultrasonic shears .01 ± .004 mV, monopolar Bovie 30 W coagulation .50 ± .20 mV, monopolar Bovie 30 W blend .92 ± .63 mV, monopolar instrument without dispersive electrode .21 ± .07 mV, plasma energy 3.48 ± .78 mV, and argon beam coagulator 2.58 ± .34 mV. Surgeons can minimize EMI on implanted cardiac defibrillators by preferentially utilizing bipolar and ultrasonic devices. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Ag induced electromagnetic interference shielding of Ag-graphite/PVDF flexible nanocomposites thinfilms

    NASA Astrophysics Data System (ADS)

    Kumaran, R.; Alagar, M.; Dinesh Kumar, S.; Subramanian, V.; Dinakaran, K.

    2015-09-01

    We report Ag nanoparticle induced Electromagnetic Interference (EMI) shielding in a flexible composite films of Ag nanoparticles incorporated graphite/poly-vinylidene difluoride (PVDF). PVDF nanocomposite thin-films were synthesized by intercalating Ag in Graphite (GIC) followed by dispersing GIC in PVDF. The X-ray diffraction analysis and the high-resolution transmission electron microscope clearly dictate the microstructure of silver nanoparticles in graphite intercalated composite of PVDF matrix. The conductivity values of nanocomposites are increased upto 2.5 times when compared to neat PVDF having a value of 2.70 S/cm at 1 MHz. The presence of Ag broadly enhanced the dielectric constant and lowers the dielectric loss of PVDF matrix proportional to Ag content. The EMI shielding effectiveness of the composites is 29.1 dB at 12.4 GHz for the sample having 5 wt. % Ag and 10 wt. % graphite in PVDF.

  14. Inductive Interference in Rapid Transit Signaling Systems. Volume 3. Data and Test Results.

    DOT National Transportation Integrated Search

    1986-11-01

    This report presents comparative inductive interference data obtained from four U.S. rapid transit systems employing chopper propulsion control, as part of the Rail Transit Electromagnetic Interference/Electromagnetic Compatibility program conducted ...

  15. Ultra-wideband design of waveguide magneto-optical isolator operating in 1.31mum and 1.55mum band.

    PubMed

    Shoji, Yuya; Mizumoto, Tetsuya

    2007-01-22

    The design of an ultra-wideband waveguide magneto-optical isolator is described. The isolator is based on a Mach-Zehnder interferometer employing nonreciprocal phase shift. The ultra-wideband design is realized by adjusting the wavelength dependence of reciprocal phase difference to compensate for that of nonreciprocal phase difference in the backward direction. We obtained the ultra-wideband design that provides isolation > 35dB from 1.25mum to >1.65mum. This is the proposal of magneto-optical isolator that operates both in 1.31mum band and 1.55mum band.

  16. Ultra-wideband circular-polarization converter with micro-split Jerusalem-cross metasurfaces

    NASA Astrophysics Data System (ADS)

    Gao, Xi; Yu, Xing-Yang; Cao, Wei-Ping; Jiang, Yan-Nan; Yu, Xin-Hua

    2016-12-01

    An ultrathin micro-split Jerusalem-cross metasurface is proposed in this paper, which can efficiently convert the linear polarization of electromagnetic (EM) wave into the circular polarization in ultra-wideband. By symmetrically employing two micro-splits on the horizontal arm (in the x direction) of the Jerusalem-cross structure, the bandwidth of the proposed device is significantly extended. Both simulated and experimental results show that the proposed metasurface is able to convert linearly polarized waves into circularly polarized waves in a frequency range from 12.4 GHz to 21 GHz, with an axis ratio better than 1 dB. The simulated results also show that such a broadband and high-performance are maintained over a wide range of incident angle. The presented polarization converter can be used in a number of areas, such as spectroscopy and wireless communications. Project supported by the National Natural Science Foundation of China (Grant Nos. 61461016 and 61661012), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant Nos. 2014GXNSFAA118366, 2014GXNSFAA118283, and 2015jjBB7002), and the Innovation Project of Graduate Education of Guilin University of Electronic Technology, China (Grant No. 2016YJCX82).

  17. Electromagnetic interference impact of the proposed emitters for the High Frequency Active Auroral Research Program (HAARP). Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertshaw, G.A.; Snyder, A.L.; Weiner, M.M.

    1993-05-14

    The proposed HAARP emitters at the Gakona (Alaska) preferred site and at the Clear AFS (Alaska) alternative site are the Ionospheric Research Instrument (IRI), the Incoherent Scatter Radar (ISR), and the Vertical Incidence Sounder(VIS). The electromagnetic interference (EMI) impact of those emitters on receiving systems in the vicinity of the sites is estimated in this study. The results are intended for use as an input to the Air Force Environmental Impact Statement as part of the Environmental Impact Analysis Process.

  18. The electromagnetic bio-field: clinical experiments and interferences.

    PubMed

    Burnei, G; Hodorogea, D; Georgescu, I; Gavriliu, Ş; Drăghici, I; Dan, D; Vlad, C; Drăghici, L

    2012-06-12

    One of the most important factors is the technical and scientifically rapid development that is continually modifying the world we live in and polluting it with electromagnetic radiations. A functional and structural influence of magnetic and electromagnetic field on living organisms is presented in the literature by many performed experiments. The notion of bio-field represents the electromagnetic field generated by the bio-structures, not only in their normal physiological activities but also in their pathological states. There is a tight interdependency between the bio-field and the bio-structure, which respects the primary notion of an electromagnetic field given by the Maxwell-Faraday laws, in which, the electromagnetic phenomena are simplified to the field variations. These variations can be expressed in a coherent differential equation system that bounds the field vectors to different space points at different time moments. The living organisms cannot contain electrostatic and magneto-static fields due to the intense activity of the bio-structures. The biochemical reactions that have high rhythms and speeds always impose the electrodynamics character of the biologic field that also corresponds to the stability of the protein molecule that can be explained only through a dynamic way. The existent energy is not considered an exciting agent, and it does not lead to any effects. The parameters of these elementary bio-fields cannot yet be fully known due to technical reasons. The biological structures are very complex ones and undergo continuous dynamical activity. That is why the calculus model should be related to the constant dynamics, nowadays being very difficult to express.

  19. Ultra-wideband radar motion sensor

    DOEpatents

    McEwan, Thomas E.

    1994-01-01

    A motion sensor is based on ultra-wideband (UWB) radar. UWB radar range is determined by a pulse-echo interval. For motion detection, the sensors operate by staring at a fixed range and then sensing any change in the averaged radar reflectivity at that range. A sampling gate is opened at a fixed delay after the emission of a transmit pulse. The resultant sampling gate output is averaged over repeated pulses. Changes in the averaged sampling gate output represent changes in the radar reflectivity at a particular range, and thus motion.

  20. Ultra-wideband radar motion sensor

    DOEpatents

    McEwan, T.E.

    1994-11-01

    A motion sensor is based on ultra-wideband (UWB) radar. UWB radar range is determined by a pulse-echo interval. For motion detection, the sensors operate by staring at a fixed range and then sensing any change in the averaged radar reflectivity at that range. A sampling gate is opened at a fixed delay after the emission of a transmit pulse. The resultant sampling gate output is averaged over repeated pulses. Changes in the averaged sampling gate output represent changes in the radar reflectivity at a particular range, and thus motion. 15 figs.

  1. Ag induced electromagnetic interference shielding of Ag-graphite/PVDF flexible nanocomposites thinfilms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumaran, R.; Alagar, M.; Dinesh Kumar, S.

    We report Ag nanoparticle induced Electromagnetic Interference (EMI) shielding in a flexible composite films of Ag nanoparticles incorporated graphite/poly-vinylidene difluoride (PVDF). PVDF nanocomposite thin-films were synthesized by intercalating Ag in Graphite (GIC) followed by dispersing GIC in PVDF. The X-ray diffraction analysis and the high-resolution transmission electron microscope clearly dictate the microstructure of silver nanoparticles in graphite intercalated composite of PVDF matrix. The conductivity values of nanocomposites are increased upto 2.5 times when compared to neat PVDF having a value of 2.70 S/cm at 1 MHz. The presence of Ag broadly enhanced the dielectric constant and lowers the dielectric loss of PVDFmore » matrix proportional to Ag content. The EMI shielding effectiveness of the composites is 29.1 dB at 12.4 GHz for the sample having 5 wt. % Ag and 10 wt. % graphite in PVDF.« less

  2. The electromagnetic bio-field: clinical experiments and interferences

    PubMed Central

    Burnei, G; Hodorogea, D; Georgescu, I; Gavriliu, Ş; Drăghici, I; Dan, D; Vlad, C; Drăghici, L

    2012-01-01

    Introduction: One of the most important factors is the technical and scientifically rapid development that is continually modifying the world we live in and polluting it with electromagnetic radiations. A functional and structural influence of magnetic and electromagnetic field on living organisms is presented in the literature by many performed experiments. Material and methods: The notion of bio-field represents the electromagnetic field generated by the bio-structures, not only in their normal physiological activities but also in their pathological states. There is a tight interdependency between the bio-field and the bio-structure, which respects the primary notion of an electromagnetic field given by the Maxwell-Faraday laws, in which, the electromagnetic phenomena are simplified to the field variations. These variations can be expressed in a coherent differential equation system that bounds the field vectors to different space points at different time moments. Results: The living organisms cannot contain electrostatic and magneto-static fields due to the intense activity of the bio-structures. The biochemical reactions that have high rhythms and speeds always impose the electrodynamics character of the biologic field that also corresponds to the stability of the protein molecule that can be explained only through a dynamic way. The existent energy is not considered an exciting agent, and it does not lead to any effects. Conclusions: The parameters of these elementary bio-fields cannot yet be fully known due to technical reasons. The biological structures are very complex ones and undergo continuous dynamical activity. That is why the calculus model should be related to the constant dynamics, nowadays being very difficult to express. PMID:22802878

  3. Capacity of dental equipment to interfere with cardiac implantable electrical devices.

    PubMed

    Lahor-Soler, Eduard; Miranda-Rius, Jaume; Brunet-Llobet, Lluís; Sabaté de la Cruz, Xavier

    2015-06-01

    Patients with cardiac implantable electrical devices should take precautions when exposed to electromagnetic fields. Possible interference as a result of proximity to electromagnets or electricity flow from electronic tools employed in clinical odontology remains controversial. The objective of this study was to examine in vitro the capacity of dental equipment to provoke electromagnetic interference in pacemakers and implantable cardioverter defibrillators. Six electronic dental instruments were tested on three implantable cardioverter defibrillators and three pacemakers from different manufacturers. A simulator model, submerged in physiological saline, with elements that reproduced life-size anatomic structures was used. The instruments were analyzed at differing distances and for different time periods of application. The dental instruments studied displayed significant differences in their capacity to trigger electromagnetic interference. Significant differences in the quantity of registered interference were observed with respect to the variables manufacturer, type of cardiac implant, and application distance but not with the variable time of application. The electronic dental equipment tested at a clinical application distance (20 cm) provoked only slight interference in the pacemakers and implantable cardioverter defibrillators employed, irrespective of manufacturer. © 2015 Eur J Oral Sci.

  4. Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding.

    PubMed

    Wang, Heyan; Lu, Zhengang; Liu, Yeshu; Tan, Jiubin; Ma, Limin; Lin, Shen

    2017-04-15

    We report a nested multi-ring array metallic mesh (NMA-MM) that shows a highly uniform diffraction pattern theoretically and experimentally. Then a high-performance transparent electromagnetic interference (EMI) shielding structure is constituted by the double-layer interlaced NMA-MMs separated by transparent quartz-glass substrate. Experimental results show that double-layer interlaced NMA-MM structure exhibits a shielding effectiveness (SE) of over 27 dB in the Ku-band, with a maximal SE of 37 dB at 12 GHz, normalized optical transmittance of 90%, and minimal image quality degradation due to the interlaced arrangement. It thus shows great potential for practical applications in transparent EMI shielding devices.

  5. Electromagnetic interference shielding performance of nano-layered Ti3SiC2 ceramics at high-temperatures

    NASA Astrophysics Data System (ADS)

    Li, Sigong; Tan, Yongqiang; Xue, Jiaxiang; Liu, Tong; Zhou, Xiaosong; Zhang, Haibin

    2018-01-01

    The X-band electromagnetic interference (EMI) shielding properties of nano-layered Ti3SiC2 ceramics were evaluated from room temperature up to 800°C in order to explore the feasibility of Ti3SiC2 as efficient high temperature EMI shielding material. It was found that Ti3SiC2 exhibits satisfactory EMI shielding effectiveness (SE) close to 30 dB at room temperature and the EMI SE shows good temperature stability. The remarkable EMI shielding properties of Ti3SiC2 can be mainly attributed to high electrical conductivity, high dielectric loss and more importantly the multiple reflections due to the layered structure.

  6. Electromagnetic Interference to Flight Navigation and Communication Systems: New Strategies in the Age of Wireless

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.

    2005-01-01

    Electromagnetic interference (EMI) promises to be an ever-evolving concern for flight electronic systems. This paper introduces EMI and identifies its impact upon civil aviation radio systems. New wireless services, like mobile phones, text messaging, email, web browsing, radio frequency identification (RFID), and mobile audio/video services are now being introduced into passenger airplanes. FCC and FAA rules governing the use of mobile phones and other portable electronic devices (PEDs) on board airplanes are presented along with a perspective of how these rules are now being rewritten to better facilitate in-flight wireless services. This paper provides a comprehensive overview of NASA cooperative research with the FAA, RTCA, airlines and universities to obtain laboratory radiated emission data for numerous PED types, aircraft radio frequency (RF) coupling measurements, estimated aircraft radio interference thresholds, and direct-effects EMI testing. These elements are combined together to provide high-confidence answers regarding the EMI potential of new wireless products being used on passenger airplanes. This paper presents a vision for harmonizing new wireless services with aeronautical radio services by detecting, assessing, controlling and mitigating the effects of EMI.

  7. Study on the electromagnetic radiation characteristics of discharging excimer laser system

    NASA Astrophysics Data System (ADS)

    Zhao, Duliang; Liang, Xu; Fang, Xiaodong; Wang, Qingsheng

    2016-10-01

    Excimer laser in condition of high voltage, large current and fast discharge will produce strong electromagnetic pulse radiation and electromagnetic interference on the around electrical equipment. The research on characteristics and distribution of excimer laser electromagnetic radiation could provide important basis for electromagnetic shielding and suppressing electromagnetic interference, and further improving the electromagnetic compatibility of system. Firstly, electromagnetic radiation source is analyzed according to the working principle of excimer laser. The key test points of the electromagnetic radiation, hydrogen thyratron, main discharge circuit and laser outlet, are determined by the mechanical structure and the theory of electromagnetic radiation. Secondly, characteristics of electromagnetic field were tested using a near field probe on the key positions of the vertical direction at 20, 50, and 80 cm, respectively. The main radiation frequencies and the radiation field characteristics in the near field are obtained. The experimental results show that the main radiation frequencies distribute in 47, 65, and 130 MHz for electric field and the main radiation frequencies distribute in 34, 100, and 165 MHz for magnetic field. The intensity of electromagnetic field decreases rapidly with the increase of test distance. The higher the frequency increases, the faster the amplitude attenuate. Finally, several electromagnetic interference suppression measurement methods are proposed from the perspective of electromagnetic compatibility according to the test results.

  8. Cost efficient PMMA/NG nanocomposites for electromagnetic interference shielding applications

    NASA Astrophysics Data System (ADS)

    Yadav, Prachi; Rattan, Sunita; Tripathi, Ambuj; Kumar, Sandeep

    2017-06-01

    Cost-efficient polymethylmethacrylate/exfoliated nanographite (PMMA/NG) nanocomposites were prepared through the melt blending technique. The crystalline size of NG in nanocomposites was estimated using Scherrer’s formula and was found to be in the range of 42.4-50.6 nm. Scanning electron micrographs showed the homogeneous dispersion of NG in the PMMA matrix. The thermal degradation temperature (T d) of nanocomposites was found to rise monotonically with increase in the loading of NG. Differential scanning calorimetry measurement showed a significant improvement in glass transition temperature (T g) from 97.2 °C for neat PMMA to 106.4 °C for 4.0 wt% PMMA/NG nanocomposites. DC electrical conductivity measurement revealed that the prepared nanocomposites exhibited a low percolation threshold of 0.45 vol%. The s-parameters (S 11 and S 21) were measured through vector network analyser and were explored in the estimation of electromagnetic interference (EMI) shielding effectiveness (SE). The EMI SE of 19.2 dB (~ 99% attenuation of incoming microwave (MW) power) was attained in the 4.0 wt% PMMA/NG nanocomposite at 12.7 GHz MW frequency. Moreover, the observed broadband EMI SE spectra indicate that the prepared nanocomposites can be employed in lightweight and low-cost commercial EMI shielding applications.

  9. Electromagnetic interference in intraoperative monitoring of motor evoked potentials and a wireless solution.

    PubMed

    Farajidavar, Aydin; Seifert, Jennifer L; Delgado, Mauricio R; Sparagana, Steven; Romero-Ortega, Mario I; Chiao, J-C

    2016-02-01

    Intraoperative neurophysiological monitoring (IONM) is utilized to minimize neurological morbidity during spine surgery. Transcranial motor evoked potentials (TcMEPs) are principal IONM signals in which the motor cortex of the subject is stimulated with electrical pulses and the evoked potentials are recorded from the muscles of interest. Currently available monitoring systems require the connection of 40-60 lengthy lead wires to the patient. These wires contribute to a crowded and cluttered surgical environment, and limit the maneuverability of the surgical team. In this work, it was demonstrated that the cumbersome wired system is vulnerable to electromagnetic interference (EMI) produced by operating room (OR) equipment. It was hypothesized that eliminating the lengthy recording wires can remove the EMI induced in the IONM signals. Hence, a wireless system to acquire TcMEPs was developed and validated through bench-top and animal experiments. Side-by-side TcMEPs acquisition from the wired and wireless systems in animal experiments under controlled conditions (absence of EMI from OR equipment) showed comparable magnitudes and waveforms, thus demonstrating the fidelity in the signal acquisition of the wireless solution. The robustness of the wireless system to minimize EMI was compared with a wired-system under identical conditions. Unlike the wired-system, the wireless system was not influenced by the electromagnetic waves from the C-Arm X-ray machine and temperature management system in the OR. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. An Ultra-Wideband Millimeter-Wave Phased Array

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Miranda, Felix A.; Volakis, John L.

    2016-01-01

    Wideband millimeter-wave arrays are of increasing importance due to their growing use in high data rate systems, including 5G communication networks. In this paper, we present a new class of ultra-wideband millimeter wave arrays that operate from nearly 20 GHz to 90 GHz. The array is based on tightly coupled dipoles. Feeding designs and fabrication challenges are presented, and a method for suppressing feed resonances is provided.

  11. Electromagnetic immunity of infusion pumps to GSM mobile phones: a systematic review.

    PubMed

    Calcagnini, Giovanni; Censi, Federica; Triventi, Michele; Mattei, Eugenio; Bartolini, Pietro

    2007-01-01

    Electromagnetic interference with life-sustaining medical care devices has been reported by various groups. Previous studies have demonstrated that volumetric and syringe pumps are susceptible to false alarm buzzing and blocking, when exposed to various electromagnetic sources. The risk of electromagnetic interference depends on several factors such as the phone-emitted power, distance and carrier frequency, phone model and antenna type. The main recommendations and the relevant harmonized standard are also reported and discussed. >From the data available in literature emerges that, for distances lower than 1 m there is a non negligible risk of electromagnetic interferences, although significant differences exists in the reported minimum distances. Interference effects clinically relevant for the patients are rare. No permanent damage to the pumps has been ever reported, although in several cases intervention of personnel is required to resume normal operation.

  12. Thin and Flexible Fe-Si-B/Ni-Cu-P Metallic Glass Multilayer Composites for Efficient Electromagnetic Interference Shielding.

    PubMed

    Zhang, Jijun; Li, Jiawei; Tan, Guoguo; Hu, Renchao; Wang, Junqiang; Chang, Chuntao; Wang, Xinmin

    2017-12-06

    Thin and flexible materials that can provide efficient electromagnetic interference (EMI) shielding are urgently needed, especially if they can be easily processed and withstand harsh environments. Herein, layer-structured Fe-Si-B/Ni-Cu-P metallic glass composites have been developed by simple electroless plating Ni-Cu-P coating on commercial Fe-Si-B metallic glasses. The 0.1 mm-thick composite shows EMI shielding effectiveness of 40 dB over the X-band frequency range, which is higher than those of traditional metals, metal oxides, and their polymer composites of larger thickness. Most of the applied electromagnetic waves are proved to be absorbed rather than bounced back. This performance originates from the combination of a superior soft magnetic property, excellent electrical conductivity, and multiple internal reflections from multilayer composites. In addition, the flexible composites also exhibit good corrosion resistance, high thermal stability, and excellent tensile strength, making them suitable for EMI shielding in harsh chemical or thermal environments.

  13. Electromagnetic Noise Interference and Compatibility

    DTIC Science & Technology

    1975-11-01

    RADIO INTERFERENCE by C.Fengler 7 LES CHARGES ELECTROSTATIQUES ET LES PERTURBATIONS QU’ELLES ENTRAINENT DANS LES LIAISONS RADIOELECTRIQUES par...PAR LA TRANSMISSION DANS UN SYSTFJE INTEGRE AEROPORTE par r,.David et M.Vanneizel 31 Not available at time of priating Reference DIGITAL DATA...TRANSMISSION IN AIRCRAFT: EMC-PROBLEMS AND POSSIBLE SOLUTIONS by R.Rode 32 GENERATIONS El EFFETS DES TENSIONS PARASITES DE CONDUCTION ET DE RAVONNEMENT ENTRE

  14. Reemission spectra and interference effects at the interaction of multiatomic targets with ultrashort electromagnetic pulses

    NASA Astrophysics Data System (ADS)

    Matveev, V. I.; Matrasulov, D. U.

    2013-01-01

    The processes of reemission of ultrashort electromagnetic pulses by linear chains consisting of isolated multielectron atoms have been considered. The developed method makes it possible to accurately take into account the spatial inhomogeneity of the field of an ultrashort pulse and the momenta of photons in reemission processes. The angular distributions of reemission spectra have been obtained for an arbitrary number of atoms in a chain. It has been shown that the interference of the photon emission amplitudes leads to the appearance of characteristic "diffraction" maxima. The results allow standard generalization to the cases of rescattering from two-dimensional (graphene-like) and three-dimensional lattices, as well as to the case of the inclusion of thermal vibrations of the atoms of lattices.

  15. Transparent Conducting Graphene Hybrid Films To Improve Electromagnetic Interference (EMI) Shielding Performance of Graphene.

    PubMed

    Ma, Limin; Lu, Zhengang; Tan, Jiubin; Liu, Jian; Ding, Xuemei; Black, Nicola; Li, Tianyi; Gallop, John; Hao, Ling

    2017-10-04

    Conducting graphene-based hybrids have attracted considerable attention in recent years for their scientific and technological significance in many applications. In this work, conductive graphene hybrid films, consisting of a metallic network fully encapsulated between monolayer graphene and quartz-glass substrate, were fabricated and characterized for their electromagnetic interference shielding capabilities. Experimental results show that by integration with a metallic network the sheet resistance of graphene was significantly suppressed from 813.27 to 5.53 Ω/sq with an optical transmittance at 91%. Consequently, the microwave shielding effectiveness (SE) exceeded 23.60 dB at the K u -band and 13.48 dB at the K a -band. The maximum SE value was 28.91 dB at 12 GHz. Compared with the SE of pristine monolayer graphene (3.46 dB), the SE of graphene hybrid film was enhanced by 25.45 dB (99.7% energy attenuation). At 94% optical transmittance, the sheet resistance was 20.67 Ω/sq and the maximum SE value was 20.86 dB at 12 GHz. Our results show that hybrid graphene films incorporate both high conductivity and superior electromagnetic shielding comparable to existing ITO shielding modalities. The combination of high conductivity and shielding along with the materials' earth-abundant nature, and facile large-scale fabrication, make these graphene hybrid films highly attractive for transparent EMI shielding.

  16. A theory of electrical conductivity, dielectric constant, and electromagnetic interference shielding for lightweight graphene composite foams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Xiaodong; Department of Mechanical and Aerospace Engineering, Rutgers University, New Brunswick, New Jersey 08903; Wang, Yang

    This work was driven by the need to understand the electromagnetic interference (EMI) shielding effectiveness (SE) of light weight, flexible, and high performance graphene composite foams, but as EMI SE of a material depends on its electrical conductivity, dielectric permittivity, and magnetic permeability, the investigation of these three properties also became a priority. In this paper, we first present a continuum theory to determine these three electromagnetic properties, and then use the obtained properties to evaluate the EMI SE of the foam. A two-scale composite model is conceived to evaluate these three properties, with the large one being the skeleton-voidmore » composite and the small one being the graphene-polymer composite that serves as the skeleton of the foam. To evaluate the properties of the skeleton, the effective-medium approach is taken as the starting point. Subsequently, the effect of an imperfect interface and the contributions of electron tunneling to the interfacial conductivity and Maxwell-Wagner-Sillars polarization mechanism to the dielectric constant are also implemented. The derived skeleton properties are then utilized on the large scale to determine the three properties of the composite foam at a given porosity. Then a uniform plane electromagnetic wave is considered to evaluate the EMI SE of the foam. It is demonstrated that the electrical conductivity, dielectric constant, and EMI SE of the foam calculated from the developed theory are in general agreement with the reported experimental data of graphene/PDMS composite foams. The theory is further proven to be valid for the EMI SE of solid graphene/epoxy and solid carbon nanotube/epoxy nanocomposites. It is also shown that, among the three electromagnetic properties, electrical conductivity has the strongest influence on the EMI shielding effectiveness.« less

  17. Investigation of Mechanical and Electromagnetic Interference Shielding Properties of Nickel-CFRP Textile Composites

    NASA Astrophysics Data System (ADS)

    Tugirumubano, Alexandre; Vijay, Santhiyagu Joseph; Go, Sun Ho; Kwac, Lee Ku; Kim, Hong Gun

    2018-05-01

    The most common materials used for electromagnetic interference shielding are metals and their alloys. However, those materials are heavy and highly reflective. In order to eliminate or reduce the intensity of wave radiation in their working environment, lightweight materials that have interference shielding properties are needed. In this paper, nickel wire mesh yarns (warps) were woven into carbon fibers-reinforced plastic yarns (wefts) to produce metal-carbon textile composite materials. The plain weave and 2/2 twill weave techniques were used, and the woven fabrics were laminated to manufacture experimental test samples. The nickel, which has high magnetic permeability and good electric conductivity, and carbon fibers, which have good electrical, thermal and mechanical properties, were used together to achieve the desired properties. The shielding effectiveness of each sample was investigated using a network analyzer connected with coaxial transmission line test in accordance with ASTM 4935-99 standard, with the frequencies ranging from 500 MHz to 1.5 GHz. Here, the plain weave structure showed higher shielding effectiveness than twill weave. The absorption losses for both materials were relatively greater than reflection losses. In reference to the orientation of wire mesh yarns about the loading axis, the tensile strengths in the transversal direction were 19.04 and 16.34% higher than the tensile strengths in longitudinal direction for plain weave and twill weave, respectively. The fractography analysis with SEM showed a ductile fracture of wire mesh and brittle fracture of epoxy matrix and carbon fibers.

  18. Investigation of Mechanical and Electromagnetic Interference Shielding Properties of Nickel-CFRP Textile Composites

    NASA Astrophysics Data System (ADS)

    Tugirumubano, Alexandre; Vijay, Santhiyagu Joseph; Go, Sun Ho; Kwac, Lee Ku; Kim, Hong Gun

    2018-04-01

    The most common materials used for electromagnetic interference shielding are metals and their alloys. However, those materials are heavy and highly reflective. In order to eliminate or reduce the intensity of wave radiation in their working environment, lightweight materials that have interference shielding properties are needed. In this paper, nickel wire mesh yarns (warps) were woven into carbon fibers-reinforced plastic yarns (wefts) to produce metal-carbon textile composite materials. The plain weave and 2/2 twill weave techniques were used, and the woven fabrics were laminated to manufacture experimental test samples. The nickel, which has high magnetic permeability and good electric conductivity, and carbon fibers, which have good electrical, thermal and mechanical properties, were used together to achieve the desired properties. The shielding effectiveness of each sample was investigated using a network analyzer connected with coaxial transmission line test in accordance with ASTM 4935-99 standard, with the frequencies ranging from 500 MHz to 1.5 GHz. Here, the plain weave structure showed higher shielding effectiveness than twill weave. The absorption losses for both materials were relatively greater than reflection losses. In reference to the orientation of wire mesh yarns about the loading axis, the tensile strengths in the transversal direction were 19.04 and 16.34% higher than the tensile strengths in longitudinal direction for plain weave and twill weave, respectively. The fractography analysis with SEM showed a ductile fracture of wire mesh and brittle fracture of epoxy matrix and carbon fibers.

  19. A Novel Application of Machine Learning Methods to Model Microcontroller Upset Due to Intentional Electromagnetic Interference

    NASA Astrophysics Data System (ADS)

    Bilalic, Rusmir

    A novel application of support vector machines (SVMs), artificial neural networks (ANNs), and Gaussian processes (GPs) for machine learning (GPML) to model microcontroller unit (MCU) upset due to intentional electromagnetic interference (IEMI) is presented. In this approach, an MCU performs a counting operation (0-7) while electromagnetic interference in the form of a radio frequency (RF) pulse is direct-injected into the MCU clock line. Injection times with respect to the clock signal are the clock low, clock rising edge, clock high, and the clock falling edge periods in the clock window during which the MCU is performing initialization and executing the counting procedure. The intent is to cause disruption in the counting operation and model the probability of effect (PoE) using machine learning tools. Five experiments were executed as part of this research, each of which contained a set of 38,300 training points and 38,300 test points, for a total of 383,000 total points with the following experiment variables: injection times with respect to the clock signal, injected RF power, injected RF pulse width, and injected RF frequency. For the 191,500 training points, the average training error was 12.47%, while for the 191,500 test points the average test error was 14.85%, meaning that on average, the machine was able to predict MCU upset with an 85.15% accuracy. Leaving out the results for the worst-performing model (SVM with a linear kernel), the test prediction accuracy for the remaining machines is almost 89%. All three machine learning methods (ANNs, SVMs, and GPML) showed excellent and consistent results in their ability to model and predict the PoE on an MCU due to IEMI. The GP approach performed best during training with a 7.43% average training error, while the ANN technique was most accurate during the test with a 10.80% error.

  20. Ultra-wideband microwave photonic link based on single-sideband modulation

    NASA Astrophysics Data System (ADS)

    Li, Jingnan; Wang, Yunxin; Wang, Dayong; Zhou, Tao; Zhong, Xin; Xu, Jiahao; Yang, Dengcai; Rong, Lu

    2017-10-01

    Comparing with the conventional double-sideband (DSB) modulation in communication system, single-sideband (SSB) modulation only demands half bandwidth of DSB in transmission. Two common ways are employed to implement SSB modulation by using optical filter (OF) or electrical 90° phase shift, respectively. However, the bandwidth of above methods is limited by characteristics of current OF and electrical phase shift. To overcome this problem, an ultra-wideband microwave photonic link based on SSB modulation is proposed and demonstrated. The radio frequency (RF) signal modulates a single-drive dual-parallel Mach-Zehnder modulator, and the SSB modulation is realized by combining an electrical 90° hybrid coupler and an optical bandpass filter. The experimental results indicate that the system can achieve SSB modulation for RF signal from 2 to 40 GHz. The proposed microwave photonic link provides an ultra-wideband approach based on SSB modulation for radio-over-fiber system.

  1. Graphene oxide/cellulose aerogels nanocomposite: Preparation, pyrolysis, and application for electromagnetic interference shielding.

    PubMed

    Wan, Caichao; Li, Jian

    2016-10-05

    Hybrid aerogels consisting of graphene oxide (GO) and cellulose were prepared via a solution mixing-regeneration-freeze drying process. The presence of GO affected the micromorphology of the hybrid aerogels, and a self-assembly behavior of cellulose was observed after the incorporation of GO. Moreover, there is no remarkable modification in the crystallinity index and thermal stability after the insertion of GO. After the reduction of GO in the hybrid aerogels by l-ascorbic acid and the subsequent pyrolysis of the aerogels, the resultant displays some interesting characteristics, including good electromagnetic interference (EMI) shielding capacity (SEtotal=58.4dB), high electrical conductivity (19.1Sm(-1)), hydrophobicity, and fire resistance, which provide an opportunity for some advanced applications such as EMI protection, electrochemical devices, water-proofing agents, and fire retardants. Moreover, this work possibly helps to facilitate the development of both cellulose and GO-based materials and expand their application scope. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Ultra-wideband directional sampler

    DOEpatents

    McEwan, T.E.

    1996-05-14

    The Ultra-Wideband (UWB) Directional Sampler is a four port device that combines the function of a directional coupler with a high speed sampler. Two of the four ports operate at a high sub-nanosecond speed, in ``real time``, and the other two ports operate at a slow millisecond-speed, in ``equivalent time``. A signal flowing inbound to either of the high speed ports is sampled and coupled, in equivalent time, to the adjacent equivalent time port while being isolated from the opposite equivalent time port. A primary application is for a time domain reflectometry (TDR) situation where the reflected pulse returns while the outbound pulse is still being transmitted, such as when the reflecting discontinuity is very close to the TDR apparatus. 3 figs.

  3. Ultra-wideband directional sampler

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    The Ultra-Wideband (UWB) Directional Sampler is a four port device that combines the function of a directional coupler with a high speed sampler. Two of the four ports operate at a high sub-nanosecond speed, in "real time", and the other two ports operate at a slow millisecond-speed, in "equivalent time". A signal flowing inbound to either of the high speed ports is sampled and coupled, in equivalent time, to the adjacent equivalent time port while being isolated from the opposite equivalent time port. A primary application is for a time domain reflectometry (TDR) situation where the reflected pulse returns while the outbound pulse is still being transmitted, such as when the reflecting discontinuity is very close to the TDR apparatus.

  4. Age-dependent acute interference with stem and progenitor cell proliferation in the hippocampus after exposure to 1800 MHz electromagnetic radiation.

    PubMed

    Xu, Falin; Bai, Qiongdan; Zhou, Kai; Ma, Li; Duan, Jiajia; Zhuang, Fangli; Xie, Cuicui; Li, Wenli; Zou, Peng; Zhu, Changlian

    2017-01-01

    To investigate the effects of exposure to an 1800 MHz electromagnetic field on cell death and cell proliferation in the developing brain, postnatal day 7 (P7) and P21 healthy Kunming mice were randomly assigned into the experimental and control groups. The experimental groups were exposed to an 1800 MHz electromagnetic field for 8 h daily for three consecutive days. The thymidine analog 5-bromo-2-deoxyuridine (BrdU) was injected intraperitoneally 1 h before each exposure session, and all animals were sacrificed 24 h after the last exposure. Cell death and proliferation markers were detected by immunohistochemistry in the dentate gyrus of the hippocampus. Electromagnetic exposure has no influence on cell death in the dentate gyrus of the hippocampus in P7 and P21 mice as indicated by active caspase-3 immunostaining and Fluoro-Jade labeling. The basal cell proliferation in the hippocampus was higher in P7 than in P21 mice as indicated by the number of cells labeled with BrdU and by immunohistochemical staining for phosphor-histone H3 (PHH3) and brain lipid-binding protein (BLBP). Electromagnetic exposure stimulated DNA synthesis in P7 neural stem and progenitor cells, but reduced cell division and the total number of stem cells in the hippocampus as indicated by increased BrdU labeling and reduced PHH3 and BLBP labeling compared to P7 control mice. There were no significant changes in cell proliferation in P21 mice after exposure to the electromagnetic field. These results indicate that interference with stem cell proliferation upon short-term exposure to an 1800 MHz electromagnetic field depends on the developmental stage of the brain.

  5. Optically addressed ultra-wideband phased antenna array

    NASA Astrophysics Data System (ADS)

    Bai, Jian

    Demands for high data rate and multifunctional apertures from both civilian and military users have motivated development of ultra-wideband (UWB) electrically steered phased arrays. Meanwhile, the need for large contiguous frequency is pushing operation of radio systems into the millimeter-wave (mm-wave) range. Therefore, modern radio systems require UWB performance from VHF to mm-wave. However, traditional electronic systems suffer many challenges that make achieving these requirements difficult. Several examples includes: voltage controlled oscillators (VCO) cannot provide a tunable range of several octaves, distribution of wideband local oscillator signals undergo high loss and dispersion through RF transmission lines, and antennas have very limited bandwidth or bulky sizes. Recently, RF photonics technology has drawn considerable attention because of its advantages over traditional systems, with the capability of offering extreme power efficiency, information capacity, frequency agility, and spatial beam diversity. A hybrid RF photonic communication system utilizing optical links and an RF transducer at the antenna potentially provides ultra-wideband data transmission, i.e., over 100 GHz. A successful implementation of such an optically addressed phased array requires addressing several key challenges. Photonic generation of an RF source with over a seven-octave bandwidth has been demonstrated in the last few years. However, one challenge which still remains is how to convey phased optical signals to downconversion modules and antennas. Therefore, a feed network with phase sweeping capability and low excessive phase noise needs to be developed. Another key challenge is to develop an ultra-wideband array antenna. Modern frontends require antennas to be compact, planar, and low-profile in addition to possessing broad bandwidth, conforming to stringent space, weight, cost, and power constraints. To address these issues, I will study broadband and miniaturization

  6. Lecture Series on Electromagnetic Interference and Electromagnetic Compatibility Presented on 10-11 June 1991 in Kjeller, Norway, 13-14 June 1991 in Konigswinter, Germany and 17-18 June 1991 in Lisbon, Portugal.

    DTIC Science & Technology

    1991-06-01

    assessing EMC characteristics of EM systems in a lecture on "Measuremazzenvironments and testing".The various test en - vronments available will be described...severe in a dual-diversity system gains at least 10 dB in SNR relative to a maritime situation where salt water corrosion has for many non-diversity...environment having great significance for NATO systems are: (a) electromagnetic interference (EMT) arising from both natural and man-made sources; (b

  7. A study of occurrence rates of Electromagnetic Interference (EMI) to aircraft with a focus on HIRF (external) High Intensity Radiated Fields

    NASA Technical Reports Server (NTRS)

    Shooman, Martin L.

    1994-01-01

    This report presents the methodology and results of a subjective study done by Polytechnic University to investigate Electromagnetic Interference (EMI) events on aircraft. The results cover various types of EMI from on-board aircraft systems, passenger carry-on devices, and externally generated disturbances. The focus of the study, however, was on externally generated EMI, termed High Intensity Radiated Fields (HIRF), from radars, radio and television transmitters, and other man-made emitters of electromagnetic energy. The study methodology used an anonymous questionnaire distributed to experts to gather the data. This method is known as the Delphi or Consensus Estimation technique. The questionnaire was sent to an expert population of 230 and there were 57 respondents. Details of the questionnaire, a few anecdotes, and the statistical results of the study are presented.

  8. Stiff, Thermally Stable and Highly Anisotropic Wood-Derived Carbon Composite Monoliths for Electromagnetic Interference Shielding.

    PubMed

    Yuan, Ye; Sun, Xianxian; Yang, Minglong; Xu, Fan; Lin, Zaishan; Zhao, Xu; Ding, Yujie; Li, Jianjun; Yin, Weilong; Peng, Qingyu; He, Xiaodong; Li, Yibin

    2017-06-28

    Electromagnetic interference (EMI) shielding materials for electronic devices in aviation and aerospace not only need lightweight and high shielding effectiveness, but also should withstand harsh environments. Traditional EMI shielding materials often show heavy weight, poor thermal stability, short lifetime, poor tolerance to chemicals, and are hard-to-manufacture. Searching for high-efficiency EMI shielding materials overcoming the above weaknesses is still a great challenge. Herein, inspired by the unique structure of natural wood, lightweight and highly anisotropic wood-derived carbon composite EMI shielding materials have been prepared which possess not only high EMI shielding performance and mechanical stable characteristics, but also possess thermally stable properties, outperforming those metals, conductive polymers, and their composites. The newly developed low-cost materials are promising for specific applications in aerospace electronic devices, especially regarding extreme temperatures.

  9. Dual polarized receiving steering antenna array for measurement of ultrawideband pulse polarization structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balzovsky, E. V.; Buyanov, Yu. I.; Koshelev, V. I., E-mail: koshelev@lhfe.hcei.tsc.ru

    To measure simultaneously two orthogonal components of the electromagnetic field of nano- and subnano-second duration, an antenna array has been developed. The antenna elements of the array are the crossed dipoles of dimension 5 × 5 cm. The arms of the dipoles are connected to the active four-pole devices to compensate the frequency response variations of a short dipole in the frequency band ranging from 0.4 to 4 GHz. The dipoles have superimposed phase centers allowing measuring the polarization structure of the field in different directions. The developed antenna array is the linear one containing four elements. The pattern maximummore » position is controlled by means of the switched ultrawideband true time delay lines. Discrete steering in seven directions in the range from −40° to +40° has been realized. The error at setting the pattern maximum position is less than 4°. The isolation of the polarization exceeds 29 dB in the direction orthogonal to the array axis and in the whole steering range it exceeds 23 dB. Measurement results of the polarization structure of radiated and scattered pulses with different polarization are presented as well.« less

  10. Unifying electromagnetism and gravitation without curvature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuetze, D.

    1985-10-01

    This paper is devoted to a five-dimensional unification of the gravitational theory of Hayashi and Shirafuji with electromagnetism. Interference effects are found between gravitational contributions of matter spin and electromagnetism. This unification becomes the classical Kaluza--Klein theory if contributions of the torsion tensor related with spin are neglected.

  11. Ultralight Graphene Foam/Conductive Polymer Composites for Exceptional Electromagnetic Interference Shielding.

    PubMed

    Wu, Ying; Wang, Zhenyu; Liu, Xu; Shen, Xi; Zheng, Qingbin; Xue, Quan; Kim, Jang-Kyo

    2017-03-15

    Ultralight, high-performance electromagnetic interference (EMI) shielding graphene foam (GF)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) composites are developed by drop coating of PEDOT:PSS on cellular-structured, freestanding GFs. To enhance the wettability and the interfacial bonds with PEDOT:PSS, GFs are functionalized with 4-dodecylbenzenesulfonic acid. The GF/PEDOT:PSS composites possess an ultralow density of 18.2 × 10 -3 g/cm 3 and a high porosity of 98.8%, as well as an enhanced electrical conductivity by almost 4 folds from 11.8 to 43.2 S/cm after the incorporation of the conductive PEDOT:PSS. Benefiting from the excellent electrical conductivity, ultralight porous structure, and effective charge delocalization, the composites deliver remarkable EMI shielding performance with a shielding effectiveness (SE) of 91.9 dB and a specific SE (SSE) of 3124 dB·cm 3 /g, both of which are the highest among those reported in the literature for carbon-based polymer composites. The excellent electrical conductivities of composites arising from both the GFs with three-dimensionally interconnected conductive networks and the conductive polymer coating, as well as the left-handed composites with absolute permittivity and/or permeability larger than one give rise to significant microwave attenuation by absorption.

  12. Harmonization based on regulatory science between scientific and commercial radio uses in a case of ultrawideband radio

    NASA Astrophysics Data System (ADS)

    Kohno, Ryuji; Iinatti, Jari; Sameshima, Keiko

    2016-12-01

    Harmonization for scientific and commercial radio uses is one of the unsolved problems in academia, industry, and regulatory bodies. The demands for commercial radio, mobile communications, and broadcasting have significantly increased over the past few decades; therefore, interference has become a major concern. There is an increasing need to prevent such interferences, for example, between commercial radio systems and other potentially sensitive radio systems such as those used for radio astronomy or studies. When discussing the fairness in resolving such conflicts, regulatory science may be a useful multidisciplinary approach as it scientifically investigates the advantages and disadvantages of a new application or technology for conflicts between different stakeholders through a mathematical analysis of risks versus benefits of the given technology. Such an analysis enables fair rules or regulations to be made. In this study, we apply the above-mentioned concept to harmonize the scientific and commercial uses of radio. After a brief introduction to regulatory science, a case study about the coexistence between ultrawideband commercial radio systems and radio astronomy is considered. Finally, a proposal by International Union of Radio Science, Japan, to the Science Council of Japan in the Cabinet Office to establish a "Center for Coexistence and Harmonization of Scientific and Commercial Uses of Radio Waves" is explained.

  13. Missile’s Guidance Head Anti-Nuclear Electromagnetic Pulse Reinforcement,

    DTIC Science & Technology

    1996-11-18

    electromagnetic pulse bomb is one of them. This kind of nuclear bomb is mainly used to interfere or damage un-reinforced electric and electronic... electromagnetic pulse , the damaging mechanism of the nuclear electromagnetic pulse to the guidance head, and the response of electronic devices to...the nuclear electromagnetic pulse , at last introduces the guidance heads defense method to the nuclear electromagnetic pulse .

  14. Highly conductive and flexible nano-structured carbon-based polymer nanocomposites with improved electromagnetic-interference-shielding performance

    NASA Astrophysics Data System (ADS)

    Mondal, Subhadip; Ghosh, Sabyasachi; Ganguly, Sayan; Das, Poushali; Ravindren, Revathy; Sit, Subhashis; Chakraborty, Goutam; Das, Narayan Ch

    2017-10-01

    Widespread usage and development of electrical/electronic devices can create severe problems for various other devices and in our everyday lives due to harmful exposure to electromagnetic (EM) radiation. Herein, we report on the electromagnetic interference (EMI)-shielding performance of highly flexible and conductive chlorinated polyethylene (CPE)/carbon nanofiber (CNF) nanocomposites fabricated by a probe-sonication-assisted simple solution-mixing process. The dispersion of CNF nanofillers inside the CPE matrix has been studied by electron micrographs. This dispersion is reflected in the formation of continuous conductive networks at a low percolation-threshold value of 2.87 wt% and promising EMI-shielding performance of 41.5 dB for 25 wt% CNF in the X-band frequency (8.2-12.4 GHz). Such an intriguing performance mainly depends on the unique filler-filler or filler-polymer networks in CPE nanocomposites. In addition, the composite material displays a superior EMI efficiency of 47.5 dB for 2.0 mm thickness at 8.2 GHz. However, we have been encouraged by the promotion of highly flexible and lightweight CPE/CNF nanocomposite as a superior EMI shield, which can protect electronic devices against harm caused by EM radiation and offers an adaptable solution in advanced EMI-shield applications.

  15. Aircraft electromagnetic compatibility

    NASA Technical Reports Server (NTRS)

    Clarke, Clifton A.; Larsen, William E.

    1987-01-01

    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.

  16. Inorganic nanotubes reinforced polyvinylidene fluoride composites as low-cost electromagnetic interference shielding materials

    PubMed Central

    2011-01-01

    Novel polymer nanocomposites comprising of MnO2 nanotubes (MNTs), functionalized multiwalled carbon nanotubes (f-MWCNTs), and polyvinylidene fluoride (PVDF) were synthesized. Homogeneous distribution of f-MWCNTs and MNTs in PVDF matrix were confirmed by field emission scanning electron microscopy. Electrical conductivity measurements were performed on these polymer composites using four probe technique. The addition of 2 wt.% of MNTs (2 wt.%, f-MWCNTs) to PVDF matrix results in an increase in the electrical conductivity from 10-16S/m to 4.5 × 10-5S/m (3.2 × 10-1S/m). Electromagnetic interference shielding effectiveness (EMI SE) was measured with vector network analyzer using waveguide sample holder in X-band frequency range. EMI SE of approximately 20 dB has been obtained with the addition of 5 wt.% MNTs-1 wt.% f-MWCNTs to PVDF in comparison with EMI SE of approximately 18 dB for 7 wt.% of f-MWCNTs indicating the potential use of the present MNT/f-MWCNT/PVDF composite as low-cost EMI shielding materials in X-band region. PMID:21711633

  17. Electromagnetic Compatibility Design of the Computer Circuits

    NASA Astrophysics Data System (ADS)

    Zitai, Hong

    2018-02-01

    Computers and the Internet have gradually penetrated into every aspect of people’s daily work. But with the improvement of electronic equipment as well as electrical system, the electromagnetic environment becomes much more complex. Electromagnetic interference has become an important factor to hinder the normal operation of electronic equipment. In order to analyse the computer circuit compatible with the electromagnetic compatibility, this paper starts from the computer electromagnetic and the conception of electromagnetic compatibility. And then, through the analysis of the main circuit and system of computer electromagnetic compatibility problems, we can design the computer circuits in term of electromagnetic compatibility. Finally, the basic contents and methods of EMC test are expounded in order to ensure the electromagnetic compatibility of equipment.

  18. Survey of Ultra-wideband Radar

    NASA Astrophysics Data System (ADS)

    Mokole, Eric L.; Hansen, Pete

    The development of UWB radar over the last four decades is very briefly summarized. A discussion of the meaning of UWB is followed by a short history of UWB radar developments and discussions of key supporting technologies and current UWB radars. Selected UWB radars and the associated applications are highlighted. Applications include detecting and imaging buried mines, detecting and mapping underground utilities, detecting and imaging objects obscured by foliage, through-wall detection in urban areas, short-range detection of suicide bombs, and the characterization of the impulse responses of various artificial and naturally occurring scattering objects. In particular, the Naval Research Laboratory's experimental, low-power, dual-polarized, short-pulse, ultra-high resolution radar is used to discuss applications and issues of UWB radar. Some crucial issues that are problematic to UWB radar are spectral availability, electromagnetic interference and compatibility, difficulties with waveform control/shaping, hardware limitations in the transmission chain, and the unreliability of high-power sources for sustained use above 2 GHz.

  19. Interference coupling analysis based on a hybrid method: application to a radio telescope system

    NASA Astrophysics Data System (ADS)

    Xu, Qing-Lin; Qiu, Yang; Tian, Jin; Liu, Qi

    2018-02-01

    Working in a way that passively receives electromagnetic radiation from a celestial body, a radio telescope can be easily disturbed by external radio frequency interference as well as electromagnetic interference generated by electric and electronic components operating at the telescope site. A quantitative analysis of these interferences must be taken into account carefully for further electromagnetic protection of the radio telescope. In this paper, based on electromagnetic topology theory, a hybrid method that combines the Baum-Liu-Tesche (BLT) equation and transfer function is proposed. In this method, the coupling path of the radio telescope is divided into strong coupling and weak coupling sub-paths, and the coupling intensity criterion is proposed by analyzing the conditions in which the BLT equation simplifies to a transfer function. According to the coupling intensity criterion, the topological model of a typical radio telescope system is established. The proposed method is used to solve the interference response of the radio telescope system by analyzing subsystems with different coupling modes separately and then integrating the responses of the subsystems as the response of the entire system. The validity of the proposed method is verified numerically. The results indicate that the proposed method, compared with the direct solving method, reduces the difficulty and improves the efficiency of interference prediction.

  20. Quasi-static Design of Electrically Small Ultra-Wideband Antennas

    DTIC Science & Technology

    2017-02-01

    this design reduces the width of the antenna, which implies that the bulb shape can be non -spherical at high frequencies. The stored energy in an...conclusion. The Quasi-static Antenna Design Algorithm generates three UWB non -spherical bulb shapes. The non -spherical bulb shape performs as well...TECHNICAL REPORT 3056 February 2017 Quasi-static Design of Electrically Small Ultra-Wideband Antennas Thomas O. Jones III Approved for public

  1. [Experimental research on the electromagnetic radiation immunity of a kind of portable monitor].

    PubMed

    Yuan, Jun; Xiao, Dongping; Jian, Xin

    2010-11-01

    The paper is focused on a kind of portable monitor that is widely used in military hospitals. In order to study the electromagnetic radiation immunity of the monitor, the experiments of electromagnetic radiation caused by radio frequency continuous wave in reverberation chamber and by ultra wide band (UWB) electromagnetic pulse have been done. The study results show that UWB electromagnetic pulse interferes observably the operating state of the monitor. It should be paid high attention to take protective measures. The monitor tested has some electromagnetic immunity ability for radio frequency continuous wave radiation. The frequent abnormal phenomena are baseline drift and waveform distortion. The electromagnetic sensitivity of the monitor is related to the frequency of interference source. The monitor tested is most sensitive to the frequency of 390 MHz.

  2. Inductive interference in rapid transit signaling systems. volume 2. suggested test procedures.

    DOT National Transportation Integrated Search

    1987-03-31

    These suggested test procedures have been prepared in order to develop standard methods of analysis and testing to quantify and resolve issues of electromagnetic compatibility in rail transit operations. Electromagnetic interference, generated by rai...

  3. Fiber-distributed Ultra-wideband noise radar with steerable power spectrum and colorless base station.

    PubMed

    Zheng, Jianyu; Wang, Hui; Fu, Jianbin; Wei, Li; Pan, Shilong; Wang, Lixian; Liu, Jianguo; Zhu, Ninghua

    2014-03-10

    A fiber-distributed Ultra-wideband (UWB) noise radar was achieved, which consists of a chaotic UWB noise source based on optoelectronic oscillator (OEO), a fiber-distributed transmission link, a colorless base station (BS), and a cross-correlation processing module. Due to a polarization modulation based microwave photonic filter and an electrical UWB pass-band filter embedded in the feedback loop of the OEO, the power spectrum of chaotic UWB signal could be shaped and notch-filtered to avoid the spectrum-overlay-induced interference to the narrow band signals. Meanwhile, the wavelength-reusing could be implemented in the BS by means of the distributed polarization modulation-to-intensity modulation conversion. The experimental comparison for range finding was carried out as the chaotic UWB signal was notch-filtered at 5.2 GHz and 7.8 GHz or not. Measured results indicate that space resolution with cm-level could be realized after 3-km fiber transmission thanks to the excellent self-correlation property of the UWB noise signal provided by the OEO. The performance deterioration of the radar raised by the energy loss of the notch-filtered noise signal was negligible.

  4. Design and Realization of a Planar Ultrawideband Antenna with Notch Band at 3.5 GHz

    PubMed Central

    2014-01-01

    A small antenna with single notch band at 3.5 GHz is designed for ultrawideband (UWB) communication applications. The fabricated antenna comprises a radiating monopole element and a perfectly conducting ground plane with a wide slot. To achieve a notch band at 3.5 GHz, a parasitic element has been inserted in the same plane of the substrate along with the radiating patch. Experimental results shows that, by properly adjusting the position of the parasitic element, the designed antenna can achieve an ultrawide operating band of 3.04 to 11 GHz with a notched band operating at 3.31–3.84 GHz. Moreover, the proposed antenna achieved a good gain except at the notched band and exhibits symmetric radiation patterns throughout the operating band. The prototype of the proposed antenna possesses a very compact size and uses simple structures to attain the stop band characteristic with an aim to lessen the interference between UWB and worldwide interoperability for microwave access (WiMAX) band. PMID:25133245

  5. Towards sparse characterisation of on-body ultra-wideband wireless channels.

    PubMed

    Yang, Xiaodong; Ren, Aifeng; Zhang, Zhiya; Ur Rehman, Masood; Abbasi, Qammer Hussain; Alomainy, Akram

    2015-06-01

    With the aim of reducing cost and power consumption of the receiving terminal, compressive sensing (CS) framework is applied to on-body ultra-wideband (UWB) channel estimation. It is demonstrated in this Letter that the sparse on-body UWB channel impulse response recovered by the CS framework fits the original sparse channel well; thus, on-body channel estimation can be achieved using low-speed sampling devices.

  6. Ultra-wideband WDM VCSEL arrays by lateral heterogeneous integration

    NASA Astrophysics Data System (ADS)

    Geske, Jon

    Advancements in heterogeneous integration are a driving factor in the development of evermore sophisticated and functional electronic and photonic devices. Such advancements will merge the optical and electronic capabilities of different material systems onto a common integrated device platform. This thesis presents a new lateral heterogeneous integration technology called nonplanar wafer bonding. The technique is capable of integrating multiple dissimilar semiconductor device structures on the surface of a substrate in a single wafer bond step, leaving different integrated device structures adjacent to each other on the wafer surface. Material characterization and numerical simulations confirm that the material quality is not compromised during the process. Nonplanar wafer bonding is used to fabricate ultra-wideband wavelength division multiplexed (WDM) vertical-cavity surface-emitting laser (VCSEL) arrays. The optically-pumped VCSEL arrays span 140 nm from 1470 to 1610 nm, a record wavelength span for devices operating in this wavelength range. The array uses eight wavelength channels to span the 140 nm with all channels separated by precisely 20 nm. All channels in the array operate single mode to at least 65°C with output power uniformity of +/- 1 dB. The ultra-wideband WDM VCSEL arrays are a significant first step toward the development of a single-chip source for optical networks based on coarse WDM (CWDM), a low-cost alternative to traditional dense WDM. The CWDM VCSEL arrays make use of fully-oxidized distributed Bragg reflectors (DBRs) to provide the wideband reflectivity required for optical feedback and lasing across 140 rim. In addition, a novel optically-pumped active region design is presented. It is demonstrated, with an analytical model and experimental results, that the new active-region design significantly improves the carrier uniformity in the quantum wells and results in a 50% lasing threshold reduction and a 20°C improvement in the peak

  7. Dipole-Induced Electromagnetic Transparency

    NASA Astrophysics Data System (ADS)

    Puthumpally-Joseph, Raiju; Sukharev, Maxim; Atabek, Osman; Charron, Eric

    2014-10-01

    We determine the optical response of a thin and dense layer of interacting quantum emitters. We show that, in such a dense system, the Lorentz redshift and the associated interaction broadening can be used to control the transmission and reflection spectra. In the presence of overlapping resonances, a dipole-induced electromagnetic transparency (DIET) regime, similar to electromagnetically induced transparency (EIT), may be achieved. DIET relies on destructive interference between the electromagnetic waves emitted by quantum emitters. Carefully tuning material parameters allows us to achieve narrow transmission windows in, otherwise, completely opaque media. We analyze in detail this coherent and collective effect using a generalized Lorentz model and show how it can be controlled. Several potential applications of the phenomenon, such as slow light, are proposed.

  8. Limited electromagnetic interference testing of evidential breath testers

    DOT National Transportation Integrated Search

    1983-05-06

    This report summarizes a limited test program conducted to determine the susceptibility of evidential breath testers (EBTs) to radio frequency interference (RFI). Several comprehensive test protocols were prepared based on procedures developed by the...

  9. Towards sparse characterisation of on-body ultra-wideband wireless channels

    PubMed Central

    Ren, Aifeng; Zhang, Zhiya; Ur Rehman, Masood; Abbasi, Qammer Hussain; Alomainy, Akram

    2015-01-01

    With the aim of reducing cost and power consumption of the receiving terminal, compressive sensing (CS) framework is applied to on-body ultra-wideband (UWB) channel estimation. It is demonstrated in this Letter that the sparse on-body UWB channel impulse response recovered by the CS framework fits the original sparse channel well; thus, on-body channel estimation can be achieved using low-speed sampling devices. PMID:26609409

  10. An analytical model for the calculation of the change in transmembrane potential produced by an ultrawideband electromagnetic pulse.

    PubMed

    Hart, Francis X; Easterly, Clay E

    2004-05-01

    The electric field pulse shape and change in transmembrane potential produced at various points within a sphere by an intense, ultrawideband pulse are calculated in a four stage, analytical procedure. Spheres of two sizes are used to represent the head of a human and the head of a rat. In the first stage, the pulse is decomposed into its Fourier components. In the second stage, Mie scattering analysis (MSA) is performed for a particular point in the sphere on each of the Fourier components, and the resulting electric field pulse shape is obtained for that point. In the third stage, the long wavelength approximation (LWA) is used to obtain the change in transmembrane potential in a cell at that point. In the final stage, an energy analysis is performed. These calculations are performed at 45 points within each sphere. Large electric fields and transmembrane potential changes on the order of a millivolt are produced within the brain, but on a time scale on the order of nanoseconds. The pulse shape within the brain differs considerably from that of the incident pulse. Comparison of the results for spheres of different sizes indicates that scaling of such pulses across species is complicated. Published 2004 Wiley-Liss, Inc.

  11. Ultrawideband asynchronous tracking system and method

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Phan, Chau T. (Inventor); Gross, Julia A. (Inventor); Ni, Jianjun (Inventor); Dusl, John (Inventor)

    2012-01-01

    A passive tracking system is provided with a plurality of ultrawideband (UWB) receivers that is asynchronous with respect to a UWB transmitter. A geometry of the tracking system may utilize a plurality of clusters with each cluster comprising a plurality of antennas. Time Difference of Arrival (TDOA) may be determined for the antennas in each cluster and utilized to determine Angle of Arrival (AOA) based on a far field assumption regarding the geometry. Parallel software communication sockets may be established with each of the plurality of UWB receivers. Transfer of waveform data may be processed by alternately receiving packets of waveform data from each UWB receiver. Cross Correlation Peak Detection (CCPD) is utilized to estimate TDOA information to reduce errors in a noisy, multipath environment.

  12. The electromagnetic environment of hospitals: how it is affected by the strength of electromagnetic fields generated both inside and outside the hospital.

    PubMed

    Hanada, Eisuke

    2007-01-01

    Most problems with the electromagnetic environment of medical institutions have been related to radiated electromagnetic fields and have been constructed from reports about electromagnetic interference (EMI) with electronic medical equipment by the radio waves emitted from mobile telephone handsets. However, radiated electromagnetic fields are just one of the elements. For example, little attention has been placed on problems with the electric power source. Apparatus for clinical treatment and diagnosis that use electric power sources have come into wide use in hospitals. Hospitals must pay careful attention to all elements of the electromagnetic environment. Herein, I will show examples of measurements and measuring methods for radiated electromagnetic fields, static magnetic fields, and power-source noise, common components of the medical electromagnetic environment.

  13. Chaotic ultra-wideband radio generator based on an optoelectronic oscillator with a built-in microwave photonic filter.

    PubMed

    Wang, Li Xian; Zhu, Ning Hua; Zheng, Jian Yu; Liu, Jian Guo; Li, Wei

    2012-05-20

    We induce a microwave photonic bandpass filter into an optoelectronic oscillator to generate a chaotic ultra-wideband signal in both the optical and electrical domain. The theoretical analysis and numerical simulation indicate that this system is capable of generating band-limited high-dimensional chaos. Experimental results coincide well with the theoretical prediction and show that the power spectrum of the generated chaotic signal basically meets the Federal Communications Commission indoor mask. The generated chaotic carrier is further intensity modulated by a 10 MHz square wave, and the waveform of the output ultra-wideband signal is measured for demonstrating the chaotic on-off keying modulation.

  14. Beta-manganese dioxide nanorods for sufficient high-temperature electromagnetic interference shielding in X-band

    NASA Astrophysics Data System (ADS)

    Song, Wei-Li; Cao, Mao-Sheng; Hou, Zhi-Ling; Lu, Ming-Ming; Wang, Chan-Yuan; Yuan, Jie; Fan, Li-Zhen

    2014-09-01

    As the development of electronic and communication technology, electromagnetic interference (EMI) shielding and attenuation is an effective strategy to ensure the operation of the electronic devices. Among the materials for high-performance shielding in aerospace industry and related high-temperature working environment, the thermally stable metal oxide semiconductors with narrow band gap are promising candidates. In this work, beta-manganese dioxide ( β-MnO2) nanorods were synthesized by a hydrothermal method. The bulk materials of the β-MnO2 were fabricated to evaluate the EMI shielding performance in the temperature range of 20-500 °C between 8.2 and 12.4 GHz (X-band). To understand the mechanisms of high-temperature EMI shielding, the contribution of reflection and absorption to EMI shielding was discussed based on temperature-dependent electrical properties and complex permittivity. Highly sufficient shielding effectiveness greater than 20 dB was observed over all the investigated range, suggesting β-MnO2 nanorods as promising candidates for high-temperature EMI shielding. The results have also established a platform to develop high-temperature EMI shielding materials based on nanoscale semiconductors.

  15. Electromagnetic interference-aware transmission scheduling and power control for dynamic wireless access in hospital environments.

    PubMed

    Phunchongharn, Phond; Hossain, Ekram; Camorlinga, Sergio

    2011-11-01

    We study the multiple access problem for e-Health applications (referred to as secondary users) coexisting with medical devices (referred to as primary or protected users) in a hospital environment. In particular, we focus on transmission scheduling and power control of secondary users in multiple spatial reuse time-division multiple access (STDMA) networks. The objective is to maximize the spectrum utilization of secondary users and minimize their power consumption subject to the electromagnetic interference (EMI) constraints for active and passive medical devices and minimum throughput guarantee for secondary users. The multiple access problem is formulated as a dual objective optimization problem which is shown to be NP-complete. We propose a joint scheduling and power control algorithm based on a greedy approach to solve the problem with much lower computational complexity. To this end, an enhanced greedy algorithm is proposed to improve the performance of the greedy algorithm by finding the optimal sequence of secondary users for scheduling. Using extensive simulations, the tradeoff in performance in terms of spectrum utilization, energy consumption, and computational complexity is evaluated for both the algorithms.

  16. Light and Strong Hierarchical Porous SiC Foam for Efficient Electromagnetic Interference Shielding and Thermal Insulation at Elevated Temperatures.

    PubMed

    Liang, Caiyun; Wang, Zhenfeng; Wu, Lina; Zhang, Xiaochen; Wang, Huan; Wang, Zhijiang

    2017-09-06

    A novel light but strong SiC foam with hierarchical porous architecture was fabricated by using dough as raw material via carbonization followed by carbothermal reduction with silicon source. A significant synergistic effect is achieved by embedding meso- and nanopores in a microsized porous skeleton, which endows the SiC foam with high-performance electromagnetic interference (EMI) shielding, thermal insulation, and mechanical properties. The microsized skeleton withstands high stress. The meso- and nanosized pores enhance multiple reflection of the incident electromagnetic waves and elongate the path of heat transfer. For the hierarchical porous SiC foam with 72.8% porosity, EMI shielding can be higher than 20 dB, and specific EMI effectiveness exceeds 24.8 dB·cm 3 ·g -1 at a frequency of 11 GHz at 25-600 °C, which is 3 times higher than that of dense SiC ceramic. The thermal conductivity reaches as low as 0.02 W·m -1 ·K -1 , which is comparable to that of aerogel. The compressive strength is as high as 9.8 MPa. Given the chemical and high-temperature stability of SiC, the fabricated SiC foam is a promising candidate for modern aircraft and automobile applications.

  17. Morgantown People Mover Electromagnetic Compatibility Program

    DOT National Transportation Integrated Search

    1980-09-01

    Electromagnetic Compatibility (EMC) of a transit system is the absence of interference between all parts of the system, and between the system and the community which it serves. This report documents the EMC experience obtained during the design and ...

  18. Personal medical electronic devices and walk-through metal detector security systems: assessing electromagnetic interference effects.

    PubMed

    Guag, Joshua; Addissie, Bisrat; Witters, Donald

    2017-03-20

    There have been concerns that Electromagnetic security systems such as walk-through metal detectors (WTMDs) can potentially cause electromagnetic interference (EMI) in certain active medical devices including implantable cardiac pacemakers and implantable neurostimulators. Incidents of EMI between WTMDs and active medical devices also known as personal medical electronic devices (PMED) continue to be reported. This paper reports on emission measurements of sample WTMDs and testing of 20 PMEDs in a WTMD simulation system. Magnetic fields from sample WTMD systems were characterized for emissions and exposure of certain PMEDs. A WTMD simulator system designed and evaluated by FDA in previous studies was used to mimic the PMED exposures to the waveform from sample WTMDs. The simulation system allows for controlled PMED exposure enabling careful study with adjustable magnetic field strengths and exposure duration, and provides flexibility for PMED exposure at elevated levels in order to study EMI effects on the PMED. The PMED samples consisted of six implantable cardiac pacemakers, six implantable cardioverter defibrillators (ICD), five implantable neurostimulators, and three insulin pumps. Each PMED was exposed in the simulator to the sample WTMD waveforms using methods based on appropriate consensus test standards for each of the device type. Testing the sample PMEDs using the WTMD simulator revealed EMI effects on two implantable pacemakers and one implantable neurostimulator for exposure field strength comparable to actual WTMD field strength. The observed effects were transient and the PMEDs returned to pre-exposure operation within a few seconds after removal from the simulated WTMD exposure fields. No EMI was observed for the sample ICDs or insulin pumps. The findings are consistent with earlier studies where certain sample PMEDs exhibited EMI effects. Clinical implications were not addressed in this study. Additional studies are needed to evaluate potential PMED

  19. Control and near-field detection of surface plasmon interference patterns.

    PubMed

    Dvořák, Petr; Neuman, Tomáš; Břínek, Lukáš; Šamořil, Tomáš; Kalousek, Radek; Dub, Petr; Varga, Peter; Šikola, Tomáš

    2013-06-12

    The tailoring of electromagnetic near-field properties is the central task in the field of nanophotonics. In addition to 2D optics for optical nanocircuits, confined and enhanced electric fields are utilized in detection and sensing, photovoltaics, spatially localized spectroscopy (nanoimaging), as well as in nanolithography and nanomanipulation. For practical purposes, it is necessary to develop easy-to-use methods for controlling the electromagnetic near-field distribution. By imaging optical near-fields using a scanning near-field optical microscope, we demonstrate that surface plasmon polaritons propagating from slits along the metal-dielectric interface form tunable interference patterns. We present a simple way how to control the resulting interference patterns both by variation of the angle between two slits and, for a fixed slit geometry, by a proper combination of laser beam polarization and inhomogeneous far-field illumination of the structure. Thus the modulation period of interference patterns has become adjustable and new variable patterns consisting of stripelike and dotlike motifs have been achieved, respectively.

  20. High-speed microwave photonic switch for millimeter-wave ultra-wideband signal generation.

    PubMed

    Wang, Li Xian; Li, Wei; Zheng, Jian Yu; Wang, Hui; Liu, Jian Guo; Zhu, Ning Hua

    2013-02-15

    We propose a scheme for generating millimeter-wave (MMW) ultra-wideband (UWB) signal that is free from low-frequency components and a residual local oscillator. The system consists of two cascaded polarization modulators and is equivalent to a high-speed microwave photonic switch, which truncates a sinusoidal MMW into short pulses. The polarity switchability of the generated MMW-UWB pulse is also demonstrated.

  1. Flexible ultra-wideband antenna incorporated with metamaterial structures: multiple notches for chipless RFID application

    NASA Astrophysics Data System (ADS)

    Jalil, M. E.; Rahim, M. K. A.; Samsuri, N. A.; Dewan, R.; Kamardin, K.

    2017-01-01

    A coplanar waveguide (CPW) ultra-wideband (UWB) antenna incorporated with metamaterial—split ring resonator structure—that operates from 3.0 to 12.0 GHz is proposed for chipless RFID tag. The 30 mm × 40 mm flexible chipless RFID tag is designed on the fleece substrate ( ɛ r = 1.35, thickness = 1 mm and tan δ = 0.025). A six-slotted modified complementary split ring resonator (MCSRR) is introduced into the ultra-wideband antenna to produce multiple band notches at 3.0, 4.0, 5.0, 6.0 and 7.0 GHz. The frequency shifting technique is introduced for designing a high-capacity chipless RFID tag with compact size. Each MCSRR is able to code in four different allocations (00, 01, 10 and 11). To achieve encoding of 10-bits data (10,234 number), six MCSRRs are proposed with three-slotted MCSRR in the radiator and three-slotted MCSRR in the ground plane.

  2. Accurate Permittivity Measurements for Microwave Imaging via Ultra-Wideband Removal of Spurious Reflectors

    PubMed Central

    Pelletier, Mathew G.; Viera, Joseph A.; Wanjura, John; Holt, Greg

    2010-01-01

    The use of microwave imaging is becoming more prevalent for detection of interior hidden defects in manufactured and packaged materials. In applications for detection of hidden moisture, microwave tomography can be used to image the material and then perform an inverse calculation to derive an estimate of the variability of the hidden material, such internal moisture, thereby alerting personnel to damaging levels of the hidden moisture before material degradation occurs. One impediment to this type of imaging occurs with nearby objects create strong reflections that create destructive and constructive interference, at the receiver, as the material is conveyed past the imaging antenna array. In an effort to remove the influence of the reflectors, such as metal bale ties, research was conducted to develop an algorithm for removal of the influence of the local proximity reflectors from the microwave images. This research effort produced a technique, based upon the use of ultra-wideband signals, for the removal of spurious reflections created by local proximity reflectors. This improvement enables accurate microwave measurements of moisture in such products as cotton bales, as well as other physical properties such as density or material composition. The proposed algorithm was shown to reduce errors by a 4:1 ratio and is an enabling technology for imaging applications in the presence of metal bale ties. PMID:22163668

  3. Accurate permittivity measurements for microwave imaging via ultra-wideband removal of spurious reflectors.

    PubMed

    Pelletier, Mathew G; Viera, Joseph A; Wanjura, John; Holt, Greg

    2010-01-01

    The use of microwave imaging is becoming more prevalent for detection of interior hidden defects in manufactured and packaged materials. In applications for detection of hidden moisture, microwave tomography can be used to image the material and then perform an inverse calculation to derive an estimate of the variability of the hidden material, such internal moisture, thereby alerting personnel to damaging levels of the hidden moisture before material degradation occurs. One impediment to this type of imaging occurs with nearby objects create strong reflections that create destructive and constructive interference, at the receiver, as the material is conveyed past the imaging antenna array. In an effort to remove the influence of the reflectors, such as metal bale ties, research was conducted to develop an algorithm for removal of the influence of the local proximity reflectors from the microwave images. This research effort produced a technique, based upon the use of ultra-wideband signals, for the removal of spurious reflections created by local proximity reflectors. This improvement enables accurate microwave measurements of moisture in such products as cotton bales, as well as other physical properties such as density or material composition. The proposed algorithm was shown to reduce errors by a 4:1 ratio and is an enabling technology for imaging applications in the presence of metal bale ties.

  4. Selective interference with pacemaker activity by electrical dental devices.

    PubMed

    Miller, C S; Leonelli, F M; Latham, E

    1998-01-01

    We sought to determine whether electromagnetic interference with cardiac pacemakers occurs during the operation of contemporary electrical dental equipment. Fourteen electrical dental devices were tested in vitro for their ability to interfere with the function of two Medtronics cardiac pacemakers (one a dual-chamber, bipolar Thera 7942 pacemaker, the other a single-chamber, unipolar Minix 8340 pacemaker). Atrial and ventricular pacemaker output and electrocardiographic activity were monitored by means of telemetry with the use of a Medtronics 9760/90 programmer. Atrial and ventricular pacing were inhibited by electromagnetic interference produced by the electrosurgical unit up to a distance of 10 cm, by the ultrasonic bath cleaner up to 30 cm, and by the magnetorestrictive ultrasonic scalers up to 37.5 cm. In contrast, operation of the amalgamator, electric pulp tester, composite curing light, dental handpieces, electric toothbrush, microwave oven, dental chair and light, ENAC ultrasonic instrument, radiography unit, and sonic scaler did not alter pacing rate or rhythm. These results suggest that certain electrosurgical and ultrasonic instruments may produce deleterious effects in medically fragile patients with cardiac pacemakers.

  5. International Symposium on Electromagnetic Compatibility, 25th, Arlington, VA, August 23-25, 1983, Symposium Record

    NASA Astrophysics Data System (ADS)

    Subjects related to electromagnetic compatibility (EMC) analysis are discussed, taking into account forcing terms of line equations for externally excited transmission lines, E-fields over ground, electromagnetic near fields as a function of electrical size, a program for experimental verification of EMC analysis models, random susceptability of an IC 7400 TTL NAND gate, and a comparison of IEMCAP and SEMCAP. Other topics explored are concerned with EMC measurements, spectrum management, the electromagnetic pulse (EMP), a Navy EMC program, measurement systems, filters, EMC design, electromagnetic vulnerability (EMV) assessment of weapon systems, FCC rules and regulations, shielding, and electromagnetic interference (EMI) in communication systems. Attention is also given to nonsinusoidal functions in radar and communications, transients/electrostatic discharge, open field testing, cables and connectors, interference effects of induced and conducted earth current at dc and ELF, test cells, and cable coupling.

  6. Ultra-wideband microwave photonic frequency downconverter based on carrier-suppressed single-sideband modulation

    NASA Astrophysics Data System (ADS)

    Wang, Yunxin; Li, Jingnan; Wang, Dayong; Zhou, Tao; Xu, Jiahao; Zhong, Xin; Yang, Dengcai; Rong, Lu

    2018-03-01

    An ultra-wideband microwave photonic frequency downconverter is proposed based on carrier-suppressed single-sideband (CS-SSB) modulation. A radio frequency (RF) signal and a local oscillator (LO) signal are combined to drive a dual-parallel Mach-Zehnder modulator (DPMZM) through the electrical 90°hybrid coupler. To break through the bandwidth limit, an optical bandpass filter (OBPF) is applied simultaneously. Then a photodetector (PD) after OBPF is used to obtain intermediate frequency (IF) signal. Experimental results demonstrate that the proposed frequency downconverter can generate the CS-SSB modulation signal from 2 to 40 GHz in optical spectrum. All the mixing spurs are completely suppressed under the noise floor in electrical spectrum, and the output IF signal possesses high purity with a suppression ratio of the undesired signals (≥40 dB). Furthermore, the multi-octave downconversion can also be implemented to satisfy the bandwidth requirement of multi-channel communication. The proposed frequency downconverter supplies an ultra-wideband and high-purity alternative for the signal processing in microwave photonic applications.

  7. Nuclear Electromagnetic Pulse Review

    NASA Astrophysics Data System (ADS)

    Dinallo, Michael

    2011-04-01

    Electromagnetic Pulse (EMP) from nuclear detonations have been observed for well over half a century. Beginning in the mid-to-late 1950s, the physics and modeling of EMP has been researched and will continue into the foreseeable future. The EMP environment propagates hundreds of miles from its origins and causes interference for all types of electronic instrumentation. This includes military, municipal and industry based electronic infrastructures such as power generation and distribution, command and control systems, systems used in financial and emergency services, electronic monitoring and communications networks, to mention some key infrastructure elements. Research into EMP has included originating physics, propagation and electromagnetic field coupling analyses and measurement-sensor development. Several methods for calculating EMP induced transient interference (voltage and current induction) will be briefly discussed and protection techniques reviewed. These methods can be mathematically simple or involve challenging boundary value solution techniques. A few illustrative calculations will demonstrate the concern for electronic system operability. Analyses such as the Wunsch-Bell model for electronic upset or damage, and the Singularity Expansion Method (SEM) put forth by Dr. Carl Baum, will facilitate the concern for EMP effects. The SEM determines the voltages and currents induced from transient electromagnetic fields in terms of natural modes of various types of electronic platforms (aerospace vehicles or land-based assets - fixed or mobile). Full-scale facility and laboratory simulation and response measurement approaches will be discussed. The talk will conclude with a discussion of some present research activities.

  8. Ultra-Wideband Sensors for Improved Magnetic Resonance Imaging, Cardiovascular Monitoring and Tumour Diagnostics

    PubMed Central

    Thiel, Florian; Kosch, Olaf; Seifert, Frank

    2010-01-01

    The specific advantages of ultra-wideband electromagnetic remote sensing (UWB radar) make it a particularly attractive technique for biomedical applications. We partially review our activities in utilizing this novel approach for the benefit of high and ultra-high field magnetic resonance imaging (MRI) and other applications, e.g., for intensive care medicine and biomedical research. We could show that our approach is beneficial for applications like motion tracking for high resolution brain imaging due to the non-contact acquisition of involuntary head motions with high spatial resolution, navigation for cardiac MRI due to our interpretation of the detected physiological mechanical contraction of the heart muscle and for MR safety, since we have investigated the influence of high static magnetic fields on myocardial mechanics. From our findings we could conclude, that UWB radar can serve as a navigator technique for high and ultra-high field magnetic resonance imaging and can be beneficial preserving the high resolution capability of this imaging modality. Furthermore it can potentially be used to support standard ECG analysis by complementary information where sole ECG analysis fails. Further analytical investigations have proven the feasibility of this method for intracranial displacements detection and the rendition of a tumour’s contrast agent based perfusion dynamic. Beside these analytical approaches we have carried out FDTD simulations of a complex arrangement mimicking the illumination of a human torso model incorporating the geometry of the antennas applied. PMID:22163498

  9. Ultra-wideband sensors for improved magnetic resonance imaging, cardiovascular monitoring and tumour diagnostics.

    PubMed

    Thiel, Florian; Kosch, Olaf; Seifert, Frank

    2010-01-01

    The specific advantages of ultra-wideband electromagnetic remote sensing (UWB radar) make it a particularly attractive technique for biomedical applications. We partially review our activities in utilizing this novel approach for the benefit of high and ultra-high field magnetic resonance imaging (MRI) and other applications, e.g., for intensive care medicine and biomedical research. We could show that our approach is beneficial for applications like motion tracking for high resolution brain imaging due to the non-contact acquisition of involuntary head motions with high spatial resolution, navigation for cardiac MRI due to our interpretation of the detected physiological mechanical contraction of the heart muscle and for MR safety, since we have investigated the influence of high static magnetic fields on myocardial mechanics. From our findings we could conclude, that UWB radar can serve as a navigator technique for high and ultra-high field magnetic resonance imaging and can be beneficial preserving the high resolution capability of this imaging modality. Furthermore it can potentially be used to support standard ECG analysis by complementary information where sole ECG analysis fails. Further analytical investigations have proven the feasibility of this method for intracranial displacements detection and the rendition of a tumour's contrast agent based perfusion dynamic. Beside these analytical approaches we have carried out FDTD simulations of a complex arrangement mimicking the illumination of a human torso model incorporating the geometry of the antennas applied.

  10. An update on mobile phones interference with medical devices.

    PubMed

    Mahmoud Pashazadeh, Ali; Aghajani, Mahdi; Nabipour, Iraj; Assadi, Majid

    2013-10-01

    Mobile phones' electromagnetic interference with medical devices is an important issue for the medical safety of patients who are using life-supporting medical devices. This review mainly focuses on mobile phones' interference with implanted medical devices and with medical equipment located in critical areas of hospitals. A close look at the findings reveals that mobile phones may adversely affect the functioning of medical devices, and the specific effect and the degree of interference depend on the applied technology and the separation distance. According to the studies' findings and the authors' recommendations, besides mitigating interference, using mobile phones at a reasonable distance from medical devices and developing technology standards can lead to their effective use in hospital communication systems.

  11. Highly Effective Electromagnetic Interference Shielding Materials based on Silver Nanowire/Cellulose Papers.

    PubMed

    Lee, Tae-Won; Lee, Sang-Eui; Jeong, Young Gyu

    2016-05-25

    We fabricated silver nanowire (AgNW)-coated cellulose papers with a hierarchical structure by an efficient and facile dip-coating process, and investigated their microstructures, electrical conductivity and electromagnetic interference (EMI) shielding effectiveness. SEM images confirm that AgNWs are coated dominantly on the paper surfaces, although they exist partially in the inner parts of the cellulose papers, which demonstrates that the AgNW density gradually decreases in thickness direction of the AgNW/cellulose papers. This result is supported by the anisotropic apparent electrical conductivity of the AgNW/cellulose papers depending on in-plane or thickness direction. Even for a AgNW/cellulose paper obtained by a single dip-coating cycle, the apparent electrical conductivity in the in-plane direction of 0.34 S/cm is achieved, which is far higher than the neat cellulose paper with ∼10(-11) S/cm. In addition, the apparent electrical conductivity of the papers in the in-plane direction increases significantly from 0.34 to 67.51 S/cm with increasing the number of dip-coating cycle. Moreover, although the AgNW/cellulose paper with 67.51 S/cm possesses 0.53 vol % AgNW only, it exhibits high EMI shielding performance of ∼48.6 dB at 1 GHz. This indicates that the cellulose paper structure is highly effective to form a conductive AgNW network. Overall, it can be concluded that the AgNW/cellulose papers with high flexibility and low density can be used as electrically conductive components and EMI shielding elements in advanced application areas.

  12. Monostatic ultra-wideband GPR antenna for through wall detection

    NASA Astrophysics Data System (ADS)

    Ali, Jawad; Abdullah, Noorsaliza; Yahya, Roshayati; Naeem, Taimoor

    2017-11-01

    The aim of this paper is to present a monostatic arc-shaped ultra-wideband (UWB) printed monopole antenna system with 3-16 GHz frequency bandwidth suitable for through-wall detection. Ground penetrating radar (GPR) technique is used for detection with the gain of 6.2 dB achieved for the proposed antenna using defected ground structure (DGS) method. To serve the purpose, a simulation experiment of through-wall detection model is constructed which consists of a monostatic antenna act as transmitter and receiver, concrete wall and human skin model. The time domain reflection of obtained result is then analysed for target detection.

  13. Neural systems and time course of proactive interference in working memory.

    PubMed

    Du, Yingchun; Zhang, John X; Xiao, Zhuangwei; Wu, Renhua

    2007-01-01

    The storage of information in working memory suffers as a function of proactive interference. Many works using neuroimaging technique have been done to reveal the brain mechanism of interference resolution. However, less is yet known about the time course of this process. Event-related potential method(ERP) and standardized Low Resolution Brain Electromagnetic Tomography method (sLORETA) were used in this study to discover the time course of interference resolution in working memory. The anterior P2 was thought to reflect interference resolution and if so, this process occurred earlier in working memory than in long-term memory.

  14. Electromagnetic compatibility of PLC adapters for in-home/domestic networks

    NASA Astrophysics Data System (ADS)

    Potisk, Lukas; Hallon, Jozef; Orgon, Milos; Fujdiak, Radek

    2018-01-01

    The use of programable logic controllers (PLC) technology in electrical networks 230 V causes electromagnetic radiation that interferes with other electrical equipment connected to the network [1-4]. Therefore, this article describes the issues of electromagnetic compatibility (EMC) of new PLC adapters used in IP broadband services in a multi-user environment. The measurements of disturbing electromagnetic field originated in PLC adapters were made in a certified laboratory EMC (laboratory of electromagnetic compatibility) in the Institute of Electrical Engineering at Faculty of Electrical Engineering and Information Technology of the Slovak University of Technology in Bratislava. The measured spectra of the radiated electromagnetic field will be compared with the results obtained when testing older PLC modems [5].

  15. Measurement technology of RF interference current in high current system

    NASA Astrophysics Data System (ADS)

    Zhao, Zhihua; Li, Jianxuan; Zhang, Xiangming; Zhang, Lei

    2018-06-01

    Current probe is a detection method commonly used in electromagnetic compatibility. With the development of power electronics technology, the power level of power conversion devices is constantly increasing, and the power current of the electric energy conversion device in the electromagnetic launch system can reach 10kA. Current probe conventionally used in EMC (electromagnetic compatibility) detection cannot meet the test requirements on high current system due to the magnetic saturation problem. The conventional high current sensor is also not suitable for the RF (Radio Frequency) interference current measurement in high current power device due to the high noise level in the output of active amplifier. In this paper, a passive flexible current probe based on Rogowski coil and matching resistance is proposed that can withstand high current and has low noise level, to solve the measurement problems of interference current in high current power converter. And both differential mode and common mode current detection can be easily carried out with the proposed probe because of the probe's flexible structure.

  16. Macro-motion detection using ultra-wideband impulse radar.

    PubMed

    Xin Li; Dengyu Qiao; Ye Li

    2014-01-01

    Radar has the advantage of being able to detect hidden individuals, which can be used in homeland security, disaster rescue, and healthcare monitoring-related applications. Human macro-motion detection using ultra-wideband impulse radar is studied in this paper. First, a frequency domain analysis is carried out to show that the macro-motion yields a bandpass signal in slow-time. Second, the FTFW (fast-time frequency windowing), which has the advantage of avoiding the measuring range reduction, and the HLF (high-pass linear-phase filter), which can preserve the motion signal effectively, are proposed to preprocess the radar echo. Last, a threshold decision method, based on the energy detector structure, is presented.

  17. Airborne system for detection and location of radio interference sources

    NASA Astrophysics Data System (ADS)

    Audone, Bruno; Pastore, Alberto

    1992-11-01

    The rapid expansion of telecommunication has practically saturated every band of Radio Frequency Spectrum; a similar expansion of electrical and electronic devices has affected all radio communications which are, in some way, influenced by a large amount of interferences, either intentionally or unintentionally produced. Operational consequences of these interferences, particularly in the frequency channels used for aeronautical services, can be extremely dangerous, making mandatory a tight control of Electromagnetic Spectrum. The present paper analyzes the requirements and the problems related to the surveillance, for civil application, of the Electromagnetic Spectrum between 20 and 1000 MHz, with particular attention to the detection and location of radio interference sources; after a brief introduction and the indication of the advantages of an airborne versus ground installation, the airborne system designed by Alenia in cooperation with Italian Ministry of Post and Telecommunication, its practical implementation and the prototype installation on board of a small twin turboprop aircraft for experimentation purposes is presented. The results of the flight tests are also analyzed and discussed.

  18. Distance bounded energy detecting ultra-wideband impulse radio secure protocol.

    PubMed

    Hedin, Daniel S; Kollmann, Daniel T; Gibson, Paul L; Riehle, Timothy H; Seifert, Gregory J

    2014-01-01

    We present a demonstration of a novel protocol for secure transmissions on a Ultra-wideband impulse radio that includes distance bounding. Distance bounding requires radios to be within a certain radius to communicate. This new protocol can be used in body area networks for medical devices where security is imperative. Many current wireless medical devices were not designed with security as a priority including devices that can be life threatening if controlled by a hacker. This protocol provides multiple levels of security including encryption and a distance bounding test to prevent long distance attacks.

  19. Integrated Advanced Microwave Sounding Unit-A (AMSU-A. Engineering Report: Electromagnetic Interface (EMI)/Electromagnetic Radiation (EMR) and Electromagnetic Compatibility (EMC), for the METSAT/METOP AMSU-A1

    NASA Technical Reports Server (NTRS)

    Valdez, A.

    1999-01-01

    This document contains the procedure and the test results of the Advanced Microwave Sounding Unit-A (AMSU-A) Electromagnetic Interference (EMI), Electromagnetic Susceptibility, and Electromagnetic Compatibility (EMC) qualification test for the Meteorological Satellite (METSAT) and the Meteorological Operation Platform (METOP) projects. The test was conducted in accordance with the approved EMI/EMC Test Plan/Procedure, Specification number AE-26151/5D. This document describes the EMI/EMC test performed by Aerojet and it is presented in the following manner: Section-1 contains introductory material and a brief summary of the test results. Section 2 contains more detailed descriptions of the test plan, test procedure, and test results for each type of EMI/EMC test conducted. Section 3 contains supplementary information that includes test data sheets, plots, and calculations collected during the qualification testing.

  20. Ultra-wideband filtering of spoof surface plasmon polaritons using deep subwavelength planar structures

    PubMed Central

    Hu, Ming Zhe; Zhang, Hao Chi; Yin, Jia Yuan; Ding, Zhao; Liu, Jun Feng; Tang, Wen Xuan; Cui, Tie Jun

    2016-01-01

    Novel ultra-wideband filtering of spoof surface plasmon polaritons (SPPs) is proposed in the microwave frequency using deep subwavelength planar structures printed on thin and flexible dielectric substrate. The proposed planar SPPs waveguide is composed of two mirror-oriented metallic corrugated strips, which are further decorated with parallel-arranged slots in the main corrugated strips. This compound structure provides deep subwavelength field confinement as well as flexible parameters when employed as a plasmonic waveguide, which is potential to construct miniaturization. Using momentum and impedance matching technology, we achieve a smooth conversion between the proposed SPPs waveguide and the conventional transmission line. To verify the validity of the design, we fabricate a spoof SPPs filter, and the measured results illustrate excellent performance, in which the reflection coefficient is less than −10 dB within the −3 dB passband from 1.21 GHz to 7.21 GHz with the smallest insertion loss of 1.23 dB at 2.21 GHz, having very good agreements with numerical simulations. The ultra-wideband filter with low insertion loss and high transmission efficiency possesses great potential in modern communication systems. PMID:27883028

  1. Ultra-wideband filtering of spoof surface plasmon polaritons using deep subwavelength planar structures.

    PubMed

    Hu, Ming Zhe; Zhang, Hao Chi; Yin, Jia Yuan; Ding, Zhao; Liu, Jun Feng; Tang, Wen Xuan; Cui, Tie Jun

    2016-11-24

    Novel ultra-wideband filtering of spoof surface plasmon polaritons (SPPs) is proposed in the microwave frequency using deep subwavelength planar structures printed on thin and flexible dielectric substrate. The proposed planar SPPs waveguide is composed of two mirror-oriented metallic corrugated strips, which are further decorated with parallel-arranged slots in the main corrugated strips. This compound structure provides deep subwavelength field confinement as well as flexible parameters when employed as a plasmonic waveguide, which is potential to construct miniaturization. Using momentum and impedance matching technology, we achieve a smooth conversion between the proposed SPPs waveguide and the conventional transmission line. To verify the validity of the design, we fabricate a spoof SPPs filter, and the measured results illustrate excellent performance, in which the reflection coefficient is less than -10 dB within the -3 dB passband from 1.21 GHz to 7.21 GHz with the smallest insertion loss of 1.23 dB at 2.21 GHz, having very good agreements with numerical simulations. The ultra-wideband filter with low insertion loss and high transmission efficiency possesses great potential in modern communication systems.

  2. Wiring design for the control of electromagnetic interference (EMI)

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    1995-01-01

    Wiring design is only one important aspect of EMI control. Other important areas for EMI are: circuit design, filtering, grounding, bonding, shielding, lighting, electrostatic discharge (ESD), transient suppression, and electromagnetic pulse (EMP). Topics covered include: wire magnetic field emissions at low frequencies; wire radiated magnetic field emissions at frequencies; wire design guidelines for EMI control; wire design guidelines for EMI control; high frequency emissions from cables; and pulse frequency spectra.

  3. Robust and Stable Cu Nanowire@Graphene Core-Shell Aerogels for Ultraeffective Electromagnetic Interference Shielding.

    PubMed

    Wu, Shiting; Zou, Mingchu; Li, Zhencheng; Chen, Daqin; Zhang, Hui; Yuan, Yongjun; Pei, Yongmao; Cao, Anyuan

    2018-06-01

    Cu nanowires (CuNWs) are considered as a promising candidate to develop high performance metal aerogels, yet the construction of robust and stable 3D porous structures remains challenging which severely limits their practical applications. Here, graphene-hybridized CuNW (CuNW@G) core-shell aerogels are fabricated by introducing a conformal polymeric coating and in situ transforming it into multilayered graphene seamlessly wrapped around individual CuNWs through a mild thermal annealing process. The existence of the outer graphene shell reinforces the 3D bulk structure and significantly slows down the oxidation process of CuNWs, resulting in improved mechanical property and highly stable electrical conductivity. When applied in electromagnetic interference shielding, the CuNW@G core-shell aerogels exhibit an average effectiveness of ≈52.5 dB over a wide range (from 8.2 to 18 GHz) with negligible degradation under ambient conditions for 40 d. Mechanism analysis reveals that the graphene shell with functional groups enables dual reflections on the core-shell and a multiple dielectric relaxation process, leading to enhanced dielectric loss and energy dissipation within the core-shell aerogels. The flexible core-shell-structured CuNW@G aerogels, with superior mechanical robustness and electrical stability, have potential applications in many areas such as advanced energy devices and functional composites. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Easily fabricated and lightweight PPy/PDA/AgNW composites for excellent electromagnetic interference shielding.

    PubMed

    Wang, Yan; Gu, Fu-Qiang; Ni, Li-Juan; Liang, Kun; Marcus, Kyle; Liu, Shu-Li; Yang, Fan; Chen, Jin-Ju; Feng, Zhe-Sheng

    2017-11-30

    Conductive polymer composites (CPCs) containing nanoscale conductive fillers have been widely studied for their potential use in various applications. In this paper, polypyrrole (PPy)/polydopamine (PDA)/silver nanowire (AgNW) composites with high electromagnetic interference (EMI) shielding performance, good adhesion ability and light weight are successfully fabricated via a simple in situ polymerization method followed by a mixture process. Benefiting from the intrinsic adhesion properties of PDA, the adhesion ability and mechanical properties of the PPy/PDA/AgNW composites are significantly improved. The incorporation of AgNWs endows the functionalized PPy with tunable electrical conductivity and enhanced EMI shielding effectiveness (SE). By adjusting the AgNW loading degree in the PPy/PDA/AgNW composites from 0 to 50 wt%, the electrical conductivity of the composites greatly increases from 0.01 to 1206.72 S cm -1 , and the EMI SE of the composites changes from 6.5 to 48.4 dB accordingly (8.0-12.0 GHz, X-band). Moreover, due to the extremely low density of PPy, the PPy/PDA/AgNW (20 wt%) composites show a superior light weight of 0.28 g cm -3 . In general, it can be concluded that the PPy/PDA/AgNW composites with tunable electrical conductivity, good adhesion properties and light weight can be used as excellent EMI shielding materials.

  5. Dielectric properties of glassy disaccharides for electromagnetic interference shielding application

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, P.; Hawelek, L.; Paluch, M.; Wlodarczyk, A.; Wojnarowska, Z.; Kolano-Burian, A.

    2015-11-01

    Three amorphous disaccharides (sucrose, trehalose, and lactulose) and their mixtures were studied in order to evaluate their ability to absorb a high frequency (>1 MHz) electromagnetic wave. The materials were characterized by a dielectric loss tangent. It was found out that the highest tan(δ) value is observed in pure amorphous sucrose (tan(δ) = 0.17 at f = 1 MHz at T = 293 K). Moreover, the best Tg/tan(δ) ratio is observed in binary mixtures of sucrose and trehalose. A high glass transition temperature is advantageous as it increases operational temperatures of the material. The high tangent delta in microwave frequencies of sugars is connected with the mobility of sugar groups (possibly -CH2OH). The energy of the electromagnetic wave is converted into rotational movements of side groups and in consequence it is dissipated in the form of heat. It was proven that the polar low molecular glasses such as sugars may form dielectric components of composite microwave absorbers.

  6. Influence of spatial configurations on electromagnetic interference shielding of ordered mesoporous carbon/ordered mesoporous silica/silica composites

    PubMed Central

    Wang, Jiacheng; Zhou, Hu; Zhuang, Jiandong; Liu, Qian

    2013-01-01

    Ordered mesoporous carbons (OMCs), obtained by nanocasting using ordered mesoporous silicas (OMSs) as hard templates, exhibit unique arrangements of ordered regular nanopore/nanowire mesostructures. Here, we used nanocasting combined with hot-pressing to prepare 10 wt% OMC/OMS/SiO2 ternary composites possessing various carbon mesostructure configurations of different dimensionalities (1D isolated CS41 carbon nanowires, 2D hexagonal CMK-3 carbon, and 3D cubic CMK-1 carbon). The electric/dielectric properties and electromagnetic interference (EMI) shielding efficiency (SE) of the composites were influenced by spatial configurations of carbon networks. The complex permittivity and the EMI SE of the composites in the X-band frequency range decreased for the carbon mesostructures in the following order: CMK-3-filled > CMK-1-filled > CS41-filled. Our study provides technical directions for designing and preparing high-performance EMI shielding materials. Our OMC-based silica composites can be used for EMI shielding, especially in high-temperature or corrosive environments, owing to the high stability of the OMC/OMS fillers and the SiO2 matrix. Related shielding mechanisms are also discussed. PMID:24248277

  7. Synthesis of MoS2-reduced graphene oxide/Fe3O4 nanocomposite for enhanced electromagnetic interference shielding effectiveness

    NASA Astrophysics Data System (ADS)

    Prasad, Jagdees; Singh, Ashwani Kumar; Shah, Jyoti; Kotnala, R. K.; Singh, Kedar

    2018-05-01

    This article presents a facile two step hydrothermal process for the synthesis of MoS2-reduced graphene oxide/Fe3O4 (MoS2-rGO/Fe3O4) nanocomposite and its application as an excellent electromagnetic interference shielding material. Characterization tools like; scanning electron microscope, transmission electron microscope, x-ray diffraction, and Raman spectroscopy were used to confirm the formation of nanocomposite and found that spherical Fe3O4 nanoparticles are well dispersed over MoS2-rGO composite with average particle size ∼25–30 nm was confirmed by TEM. Structural characterization done by XRD was found inconsistent with the known lattice parameter of MoS2 nanosheet, reduced graphene oxide and Fe3O4 nanoparticles. Electromagnetic shielding effectiveness of MoS2-rGO/Fe3O4 nanocomposite was evaluated and found to be an excellent EMI shielding material in X-band range (8.0–12.0 GHz). MoS2-rGO composite shows poor shielding capacity (SET ∼ 3.81 dB) in entire range as compared to MoS2-rGO/Fe3O4 nanocomposite (SET ∼ 8.27 dB). It is due to interfacial polarization in the presence of EM field. The result indicates that MoS2-rGO/Fe3O4 nanocomposite provide a new stage for the next generation in high-performance EM wave absorption and EMI shielding effectiveness.

  8. Potential for Personal Digital Assistant interference with implantable cardiac devices.

    PubMed

    Tri, Jeffrey L; Trusty, Jane M; Hayes, David L

    2004-12-01

    To determine whether the wireless local area network (WLAN) technology, specifically the Personal Digital Assistant (PDA), interferes with implantable cardiac pacemakers and defibrillators. Various pacemakers and defibrillators were tested in vitro at the Mayo Clinic in Rochester, Minn, between March 6 and July 30, 2003. These cardiac devices were exposed to an HP Compaq IPAQ PDA fitted with a Cisco Aironet WLAN card. Initial testing was designed to show whether the Aironet card radiated energy in a consistent pattern from the antenna of the PDA to ensure that subsequent cardiac device testing would not be affected by the orientation of the PDA to the cardiac device. Testing involved placing individual cardiac devices in a simulator and uniformly exposing each device at its most sensitive programmable value to the WLAN card set to maximum power. During testing with the Cisco WLAN Aironet card, all devices programmed to the unipolar or bipolar configuration single- or dual-chamber mode had normal pacing and sensing functions and exhibited no effects of electromagnetic interference except for 1 implantable cardioverter-defibrillator (ICD). This aberration was determined to relate to the design of the investigators' testing apparatus and not to the output of the PDA. The ICD device appropriately identified and labeled the electromagnetic aberration as "noise." We documented no electromagnetic interference caused by the WLAN technology by using in vitro testing of pacemakers and ICDs; however, testing ideally should be completed in vivo to confirm the lack of any clinically important interactions.

  9. Reconfigurable ultra-wideband waveform generation with simple photonic devices

    NASA Astrophysics Data System (ADS)

    Dastmalchi, Mansour; Abtahi, Mohammad; Lemus, David; Rusch, Leslie A.; LaRochelle, Sophie

    2012-08-01

    We propose and experimentally demonstrate a low cost, low power consumption technique for ultra-wideband pulse shaping. Our approach is based on thermal apodization of two identical linearly chirped fiber Bragg gratings (LCFBG) placed in both arms of a balanced photodetector. Resistive heating elements with low electrical power consumption are used to tune the LCFBG spectral responses. Using a standard gain switched distributed feedback laser as a pulsed optical source and a simple energy detector receiver, we measured a bit error rate of 1.5×10-4 at a data rate of 1 Gb/s after RF transmission over a 1-m link.

  10. Digital FMCW for ultrawideband spectrum sensing

    NASA Astrophysics Data System (ADS)

    Cheema, A. A.; Salous, S.

    2016-08-01

    An ultrawideband digital frequency-modulated continuous wave sensing engine is proposed as an alternative technique for cognitive radio applications. A dual-band demonstrator capable of sensing 750 MHz bandwidth in 204.8 µs is presented. Its performance is illustrated from both bench tests and from real-time measurements of the GSM 900 band and the 2.4 GHz wireless local area network (WLAN) band. The measured sensitivity and noise figure values are -90 dBm for a signal-to-noise ratio margin of at least 10 dB and ~13-14 dB, respectively. Data were collected over 24 h and were analyzed by using the energy detection method. The obtained results show the time variability of occupancy, and considerable sections of the spectrum are unoccupied. In addition, unlike the cyclic temporal variations of spectrum occupancy in the GSM 900 band, the detected variations in the 2.4 GHz WLAN band have an impulsive nature.

  11. Electromagnetic Compatibility of Devices on Hybrid Electromagnetic Components

    NASA Astrophysics Data System (ADS)

    Konesev, S. G.; Khazieva, R. T.; Kirillov, R. V.; Gainutdinov, I. Z.; Kondratyev, E. Y.

    2018-01-01

    There is a general tendency to reduce the weight and dimensions, the consumption of conductive and electrical insulating materials, increase the reliability and energy efficiency of electrical devices. In recent years, designers have been actively developing devices based on hybrid electromagnetic components (HEMC) such as inductive-capacitive converters (ICC), voltages pulse generators (VPG), secondary power supplies (SPS), capacitive storage devices (CSD), induction heating systems (IHS). Sources of power supplies of similar electrical devices contain, as a rule, links of increased frequency and function in key (pulse) modes, which leads to an increase in electromagnetic interference (EMI). Nonlinear and periodic (impulse) loads, non-sinusoidal (pulsation) of the electromotive force and nonlinearity of the internal parameters of the source and input circuits of consumers distort the shape of the input voltage lead to an increase in thermal losses from the higher harmonic currents, aging of the insulation, increase in the weight of the power supply filter units, resonance at higher harmonics. The most important task is to analyze the operation of electrotechnical devices based on HEMC from the point of view of creating EMIs and assessing their electromagnetic compatibility (EMC) with power supply systems (PSS). The article presents the results of research on the operation of an IHS, the operation principle of a secondary power supply source of which is based on the operation of a half-bridge autonomous inverter, the switching circuit of which is made in the form of a HEMC, called the «multifunctional integrated electromagnetic component»" (MIEC).

  12. Ultra-wideband horn antenna with abrupt radiator

    DOEpatents

    McEwan, Thomas E.

    1998-01-01

    An ultra-wideband horn antenna transmits and receives impulse waveforms for short-range radars and impulse time-of flight systems. The antenna reduces or eliminates various sources of close-in radar clutter, including pulse dispersion and ringing, sidelobe clutter, and feedline coupling into the antenna. Dispersion is minimized with an abrupt launch point radiator element; sidelobe and feedline coupling are minimized by recessing the radiator into a metallic horn. Low frequency cut-off associated with a horn is extended by configuring the radiator drive impedance to approach a short circuit at low frequencies. A tapered feed plate connects at one end to a feedline, and at the other end to a launcher plate which is mounted to an inside wall of the horn. The launcher plate and feed plate join at an abrupt edge which forms the single launch point of the antenna.

  13. Ultra-Wideband Millimeter-Wave Dielectric Characteristics of Freshly Excised Normal and Malignant Human Skin Tissues.

    PubMed

    Mirbeik-Sabzevari, Amir; Ashinoff, Robin; Tavassolian, Negar

    2018-06-01

    Millimeter waves have recently gained attention for the evaluation of skin lesions and the detection of skin tumors. Such evaluations heavily rely on the dielectric contrasts existing between normal and malignant skin tissues at millimeter-wave frequencies. However, current studies on the dielectric properties of normal and diseased skin tissues at these frequencies are limited and inconsistent. In this study, a comprehensive dielectric spectroscopy study is conducted for the first time to characterize the ultra-wideband dielectric properties of freshly excised normal and malignant skin tissues obtained from skin cancer patients having undergone Mohs micrographic surgeries at Hackensack University Medical Center. Measurements are conducted using a precision slim-form open-ended coaxial probe in conjunction with a millimeter-wave vector network analyzer over the frequency range of 0.5-50 GHz. A one-pole Cole-Cole model is fitted to the complex permittivity dataset of each sample. Statistically considerable contrasts are observed between the dielectric properties of malignant and normal skin tissues over the ultra-wideband millimeter-wave frequency range considered.

  14. Electromagnetic interference from GSM and TETRA phones with life-support medical devices.

    PubMed

    Hietanen, Maila; Sibakov, Viktor

    2007-01-01

    Disturbances in hospital devices caused by cellular telephone signals were investigated. The interference sources were GSM900, GSM1800, and TETRA380 phones. The number of medical appliances tested was 23. Most measurements were taken in a semi-anechoic laboratory. To simulate the worst situation, the phones were adjusted to emit at their maximum power levels. No interference was observed if the distance from GSM1800 phone was over 5 cm. Corresponding safety distance for GSM900 phone was 70 cm, and for TETRA phones over 3 m. Hence, the use of GSM1800 type mobile phones can be considered safe, whereas GSM 900 and TETRA phones may cause considerable interference in hospital devices, which can result in life-endangering situations.

  15. Radiated interference in rapid transit systems. volume 2. suggested test procedures.

    DOT National Transportation Integrated Search

    1987-06-30

    The purpose of this report is to present a suggested test procedure for measuring the radiated electromagnetic interference (EMI) emanating from rail transit systems. This report points out that, unlike inductive and conductive EMI, radiated EMI has ...

  16. Cellular telephone interference with medical equipment.

    PubMed

    Tri, Jeffrey L; Severson, Rodney P; Firl, Allen R; Hayes, David L; Abenstein, John P

    2005-10-01

    To assess the potential electromagnetic interference (EMI) effects that new or current-generation cellular telephones have on medical devices. For this study, performed at the Mayo Clinic in Rochester, Minn, between March 9, 2004, and April 24, 2004, we tested 16 different medical devices with 6 cellular telephones to assess the potential for EMI. Two of the medical devices were tested with both new and old interface modules. The 6 cellular telephones chosen represent the different cellular technology protocols in use: Code Division Multiple Access (2 models), Global System for Mobile communications, Integrated Digital Enhanced Network, Time Division Multiple Access, and analog. The cellular telephones were tested when operating at or near their maximum power output. The medical devices, connected to clinical simulators during testing, were monitored by observing the device displays and alarms. Of 510 tests performed, the incidence of clinically important interference was 1.2%; EMI was Induced in 108 tests (21.2%). Interference occurred in 7 (44%) of the 16 devices tested. Cellular telephones can interfere with medical equipment. Technology changes in both cellular telephones and medical equipment may continue to mitigate or may worsen clinically relevant interference. Compared with cellular telephones tested in previous studies, those currently in use must be closer to medical devices before any interference is noticed. However, periodic testing of cellular telephones to determine their effects on medical equipment will be required.

  17. Conductive interference in rapid transit signaling systems. volume 2. suggested test procedures

    DOT National Transportation Integrated Search

    1987-05-31

    Methods for detecting and quantifying the levels of conductive electromagnetic interference produced by solid state rapid transit propulsion equipment and for determining the susceptibility of signaling systems to these emissions are presented. These...

  18. Radiated Interference in Rapid Transit Systems. Volume 1. Theory and Data.

    DOT National Transportation Integrated Search

    1988-04-01

    For the past eight years, the UMTA Office of Systems Engineering, U.S. Department of Transportation, has sponsored a program to delineate and mitigate the effects of electromagnetic interference (EMI) in rail transit operations. Work has proceeded un...

  19. Assessment of Electromagnetic Interference with Active Cardiovascular Implantable Electronic Devices (CIEDs) Caused by the Qi A13 Design Wireless Charging Board

    PubMed Central

    Seckler, Tobias; Jagielski, Kai; Stunder, Dominik

    2015-01-01

    Electromagnetic interference is a concern for people wearing cardiovascular implantable electronic devices (CIEDs). The aim of this study was to assess the electromagnetic compatibility between CIEDs and the magnetic field of a common wireless charging technology. To do so the voltage induced in CIEDs by Qi A13 design magnetic fields were measured and compared with the performance limits set by ISO 14117. In order to carry this out a measuring circuit was developed which can be connected with unipolar or bipolar pacemaker leads. The measuring system was positioned at the four most common implantation sites in a torso phantom filled with physiological saline solution. The phantom was exposed by using Helmholtz coils from 5 µT to 27 µT with 111 kHz sine-bursts or by using a Qi A13 design wireless charging board (Qi-A13-Board) in two operating modes “power transfer” and “pinging”. With the Helmholtz coils the lowest magnetic flux density at which the performance limit was exceeded is 11 µT. With the Qi-A13-Board in power transfer mode 10.8% and in pinging mode 45.7% (2.2% at 10 cm distance) of the performance limit were reached at maximum. In neither of the scrutinized cases, did the voltage induced by the Qi-A13-Board exceed the performance limits. PMID:26024360

  20. Assessment of Electromagnetic Interference with Active Cardiovascular Implantable Electronic Devices (CIEDs) Caused by the Qi A13 Design Wireless Charging Board.

    PubMed

    Seckler, Tobias; Jagielski, Kai; Stunder, Dominik

    2015-05-27

    Electromagnetic interference is a concern for people wearing cardiovascular implantable electronic devices (CIEDs). The aim of this study was to assess the electromagnetic compatibility between CIEDs and the magnetic field of a common wireless charging technology. To do so the voltage induced in CIEDs by Qi A13 design magnetic fields were measured and compared with the performance limits set by ISO 14117. In order to carry this out a measuring circuit was developed which can be connected with unipolar or bipolar pacemaker leads. The measuring system was positioned at the four most common implantation sites in a torso phantom filled with physiological saline solution. The phantom was exposed by using Helmholtz coils from 5 µT to 27 µT with 111 kHz sine‑bursts or by using a Qi A13 design wireless charging board (Qi‑A13‑Board) in two operating modes "power transfer" and "pinging". With the Helmholtz coils the lowest magnetic flux density at which the performance limit was exceeded is 11 µT. With the Qi‑A13‑Board in power transfer mode 10.8% and in pinging mode 45.7% (2.2% at 10 cm distance) of the performance limit were reached at maximum. In neither of the scrutinized cases, did the voltage induced by the Qi‑A13‑Board exceed the performance limits.

  1. Ultra-wideband horn antenna with abrupt radiator

    DOEpatents

    McEwan, T.E.

    1998-05-19

    An ultra-wideband horn antenna transmits and receives impulse waveforms for short-range radars and impulse time-of flight systems. The antenna reduces or eliminates various sources of close-in radar clutter, including pulse dispersion and ringing, sidelobe clutter, and feedline coupling into the antenna. Dispersion is minimized with an abrupt launch point radiator element; sidelobe and feedline coupling are minimized by recessing the radiator into a metallic horn. Low frequency cut-off associated with a horn is extended by configuring the radiator drive impedance to approach a short circuit at low frequencies. A tapered feed plate connects at one end to a feedline, and at the other end to a launcher plate which is mounted to an inside wall of the horn. The launcher plate and feed plate join at an abrupt edge which forms the single launch point of the antenna. 8 figs.

  2. Interference of mobile phones and digitally enhanced cordless telecommunications mobile phones in renal scintigraphy.

    PubMed

    Stegmayr, Armin; Fessl, Benjamin; Hörtnagl, Richard; Marcadella, Michael; Perkhofer, Susanne

    2013-08-01

    The aim of the study was to assess the potential negative impact of cellular phones and digitally enhanced cordless telecommunication (DECT) devices on the quality of static and dynamic scintigraphy to avoid repeated testing in infant and teenage patients to protect them from unnecessary radiation exposure. The assessment was conducted by performing phantom measurements under real conditions. A functional renal-phantom acting as a pair of kidneys in dynamic scans was created. Data were collected using the setup of cellular phones and DECT phones placed in different positions in relation to a camera head to test the potential interference of cellular phones and DECT phones with the cameras. Cellular phones reproducibly interfered with the oldest type of gamma camera, which, because of its single-head specification, is the device most often used for renal examinations. Curves indicating the renal function were considerably disrupted; cellular phones as well as DECT phones showed a disturbance concerning static acquisition. Variable electromagnetic tolerance in different types of γ-cameras could be identified. Moreover, a straightforward, low-cost method of testing the susceptibility of equipment to interference caused by cellular phones and DECT phones was generated. Even though some departments use newer models of γ-cameras, which are less susceptible to electromagnetic interference, we recommend testing examination rooms to avoid any interference caused by cellular phones. The potential electromagnetic interference should be taken into account when the purchase of new sensitive medical equipment is being considered, not least because the technology of mobile communication is developing fast, which also means that different standards of wave bands will be issued in the future.

  3. A novel antenna for ultra-wide-band applications

    NASA Technical Reports Server (NTRS)

    Lai, Albert K. Y.; Sinopoli, Albert L.; Burnside, Walter D.

    1992-01-01

    An ultrawideband antenna based on a slotline feed structure, a bowtie horn, and a rolled edge termination was developed, analyzed, and measured. Empirical data showed that its beamwidths and bandwidth are dependent on its physical dimensions which are easily controllable by an antenna designer. Measured patterns of models with various radiation properties are shown to substantiate these design rules. A flat plateau-like main beam, low voltage standing-wave ratio (VSWR), the ability to produce both wide (60 deg) and narrow (30 deg) half-power beamwidths, low sidelobes and backlobe (40-50 dB down), low cross-polarized levels (20-25 dB down), and independent control of E- and H-plane beamwidths over an ultrawide bandwidth, say 2-18 GHz, are some of the strong points of this antenna type.

  4. Primary Salvage Survey of the Interference of Radiowaves Emitted by Smartphones on Medical Equipment.

    PubMed

    Takao, Hiroyuki; Yeh, Yu Chih; Arita, Hiroyuki; Obatake, Takumi; Sakano, Teppei; Kurihara, Minoru; Matsuki, Akira; Ishibashi, Toshihiro; Murayama, Yuichi

    2016-10-01

    Use of mobile phones has become a standard reality of everyday living for many people worldwide, including medical professionals, as data sharing has drastically helped to improve quality of care. This increase in the use of mobile phones within hospitals and medical facilities has raised concern regarding the influence of radio waves on medical equipment. Although comprehensive studies have examined the effects of electromagnetic interference from 2G wireless communication and personal digital cellular systems on medical equipment, similar studies on more recent wireless technologies such as Long Term Evolution, wideband code division multiple access, and high-speed uplink access have yet to be published. Numerous tests targeting current wireless technologies were conducted between December 2012 and March 2013 in an anechoic chamber, shielded from external radio signals, with a dipole antenna to assess the effects of smartphone interference on several types of medical equipment. The interference produced by electromagnetic waves across five frequency bands from four telecommunication standards was assessed on 49 components from 22 pieces of medical equipment. Of the 22 pieces of medical equipment tested, 13 experienced interference at maximum transmission power. In contrast, at minimum transmission power, the maximum interference distance varied from 2 to 5 cm for different wireless devices. Four machines were affected at the minimum transmission power, and the maximum interference distance at the maximum transmission power was 38 cm. Results show that the interference from smartphones on medical equipment is very controllable.

  5. Dependences of microstructure on electromagnetic interference shielding properties of nano-layered Ti3AlC2 ceramics.

    PubMed

    Tan, Yongqiang; Luo, Heng; Zhou, Xiaosong; Peng, Shuming; Zhang, Haibin

    2018-05-21

    The microstructure dependent electromagnetic interference (EMI) shielding properties of nano-layered Ti 3 AlC 2 ceramics were presented in this study by comparing the shielding properties of various Ti 3 AlC 2 ceramics with distinct microstructures. Results indicate that Ti 3 AlC 2 ceramics with dense microstructure and coarse grains are more favourable for superior EMI shielding efficiency. High EMI shielding effectiveness over 40 dB at the whole Ku-band frequency range was achieved in Ti 3 AlC 2 ceramics by microstructure optimization, and the high shielding effectiveness were well maintained up to 600 °C. A further investigation reveals that only the absorption loss displays variations upon modifying microstructure by allowing more extensive multiple reflections in coarse layered grains. Moreover, the absorption loss of Ti 3 AlC 2 was found to be much higher than those of highly conductive TiC ceramics without layered structure. These results demonstrate that nano-layered MAX phase ceramics are promising candidates of high-temperature structural EMI shielding materials and provide insightful suggestions for achieving high EMI shielding efficiency in other ceramic-based shielding materials.

  6. Carbon Nanotube-Multilayered Graphene Edge Plane Core-Shell Hybrid Foams for Ultrahigh-Performance Electromagnetic-Interference Shielding.

    PubMed

    Song, Qiang; Ye, Fang; Yin, Xiaowei; Li, Wei; Li, Hejun; Liu, Yongsheng; Li, Kezhi; Xie, Keyu; Li, Xuanhua; Fu, Qiangang; Cheng, Laifei; Zhang, Litong; Wei, Bingqing

    2017-08-01

    Materials with an ultralow density and ultrahigh electromagnetic-interference (EMI)-shielding performance are highly desirable in fields of aerospace, portable electronics, and so on. Theoretical work predicts that 3D carbon nanotube (CNT)/graphene hybrids are one of the most promising lightweight EMI shielding materials, owing to their unique nanostructures and extraordinary electronic properties. Herein, for the first time, a lightweight, flexible, and conductive CNT-multilayered graphene edge plane (MLGEP) core-shell hybrid foam is fabricated using chemical vapor deposition. MLGEPs are seamlessly grown on the CNTs, and the hybrid foam exhibits excellent EMI shielding effectiveness which exceeds 38.4 or 47.5 dB in X-band at 1.6 mm, while the density is merely 0.0058 or 0.0089 g cm -3 , respectively, which far surpasses the best values of reported carbon-based composite materials. The grafted MLGEPs on CNTs can obviously enhance the penetration losses of microwaves in foams, leading to a greatly improved EMI shielding performance. In addition, the CNT-MLGEP hybrids also exhibit a great potential as nano-reinforcements for fabricating high-strength polymer-based composites. The results provide an alternative approach to fully explore the potentials of CNT and graphene, for developing advanced multifunctional materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy.

    PubMed

    Segawa, Takuya F; Doll, Andrin; Pribitzer, Stephan; Jeschke, Gunnar

    2015-07-28

    The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclear modulation spectrum.

  8. Correlation singularities in partially coherent electromagnetic beams.

    PubMed

    Raghunathan, Shreyas B; Schouten, Hugo F; Visser, Taco D

    2012-10-15

    We demonstrate that coherence vortices, singularities of the correlation function, generally occur in partially coherent electromagnetic beams. In successive cross sections of Gaussian Schell-model beams, their locus is found to be a closed string. These coherence singularities have implications for both interference experiments and correlation of intensity fluctuation measurements performed with such beams.

  9. Frequency Management for Electromagnetic Continuous Wave Conductivity Meters

    PubMed Central

    Mazurek, Przemyslaw; Putynkowski, Grzegorz

    2016-01-01

    Ground conductivity meters use electromagnetic fields for the mapping of geological variations, like the determination of water amount, depending on ground layers, which is important for the state analysis of embankments. The VLF band is contaminated by numerous natural and artificial electromagnetic interference signals. Prior to the determination of ground conductivity, the meter’s working frequency is not possible, due to the variable frequency of the interferences. Frequency management based on the analysis of the selected band using track-before-detect (TBD) algorithms, which allows dynamical frequency changes of the conductivity of the meter transmitting part, is proposed in the paper. Naive maximum value search, spatio-temporal TBD (ST-TBD), Viterbi TBD and a new algorithm that uses combined ST-TBD and Viterbi TBD are compared. Monte Carlo tests are provided for the numerical analysis of the properties for a single interference signal in the considered band, and a new approach based on combined ST-TBD and Viterbi algorithms shows the best performance. The considered algorithms process spectrogram data for the selected band, so DFT (Discrete Fourier Transform) could be applied for the computation of the spectrogram. Real–time properties, related to the latency, are discussed also, and it is shown that TBD algorithms are feasible for real applications. PMID:27070608

  10. Frequency Management for Electromagnetic Continuous Wave Conductivity Meters.

    PubMed

    Mazurek, Przemyslaw; Putynkowski, Grzegorz

    2016-04-07

    Ground conductivity meters use electromagnetic fields for the mapping of geological variations, like the determination of water amount, depending on ground layers, which is important for the state analysis of embankments. The VLF band is contaminated by numerous natural and artificial electromagnetic interference signals. Prior to the determination of ground conductivity, the meter's working frequency is not possible, due to the variable frequency of the interferences. Frequency management based on the analysis of the selected band using track-before-detect (TBD) algorithms, which allows dynamical frequency changes of the conductivity of the meter transmitting part, is proposed in the paper. Naive maximum value search, spatio-temporal TBD (ST-TBD), Viterbi TBD and a new algorithm that uses combined ST-TBD and Viterbi TBD are compared. Monte Carlo tests are provided for the numerical analysis of the properties for a single interference signal in the considered band, and a new approach based on combined ST-TBD and Viterbi algorithms shows the best performance. The considered algorithms process spectrogram data for the selected band, so DFT (Discrete Fourier Transform) could be applied for the computation of the spectrogram. Real-time properties, related to the latency, are discussed also, and it is shown that TBD algorithms are feasible for real applications.

  11. On the exhaust of electromagnetic drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grahn, Patrick, E-mail: patrick.grahn@comsol.fi; Annila, Arto, E-mail: arto.annila@helsinki.fi; Department of Biosciences, FI-00014 University of Helsinki, Helsinki

    2016-06-15

    Recent reports about propulsion without reaction mass have been met on one hand with enthusiasm and on the other hand with some doubts. Namely, closed metal cavities, when fueled with microwaves, have delivered thrust that could eventually maintain satellites on orbits using solar power. However, the measured thrust appears to be without any apparent exhaust. Thus the Law of Action-Reaction seems to have been violated. We consider the possibility that the exhaust is in a form that has so far escaped both experimental detection and theoretical attention. In the thruster’s cavity microwaves interfere with each other and invariably some photonsmore » will also end up co-propagating with opposite phases. At the destructive interference electromagnetic fields cancel. However, the photons themselves do not vanish for nothing but continue in propagation. These photon pairs without net electromagnetic field do not reflect back from the metal walls but escape from the resonator. By this action momentum is lost from the cavity which, according to the conservation of momentum, gives rise to an equal and opposite reaction. We examine theoretical corollaries and practical concerns that follow from the paired-photon conclusion.« less

  12. Generation of ultra-wideband achromatic Airy plasmons on a graphene surface.

    PubMed

    Guan, Chunying; Yuan, Tingting; Chu, Rang; Shen, Yize; Zhu, Zheng; Shi, Jinhui; Li, Ping; Yuan, Libo; Brambilla, Gilberto

    2017-02-01

    Tunable ultra-wideband achromatic plasmonic Airy beams are demonstrated on graphene surfaces. Surface plasmonic polaritons are excited using diffractive gratings. The phase and amplitude of plasmonic waves on the graphene surface are determined by the relative position between the grating arrays and the duty ratio of the grating unit cell, respectively. The transverse acceleration and nondiffraction properties of plasmonic waves are observed. The achromatic Airy plasmons with identical acceleration trajectory at different excited frequencies can be achieved by tuning dynamically the Fermi energy of graphene without reoptimizing the grating structures. The proposed devices may find applications in photonics integrations and surface optical manipulation.

  13. Reflection and interference of electromagnetic waves in inhomogeneous media

    NASA Technical Reports Server (NTRS)

    Geiger, F. E.; Kyle, H. L.

    1973-01-01

    Solutions were obtained of the wave equation for a plane horizontally polarized electro-magnetic wave incident on a semi infinite two dimensional inhomogeneous medium. Two problems were considered: An inhomogeneous half space, and an inhomogeneous layer of arbitrary thickness. Solutions of the wave equation were obtained in terms of Hankel functions with complex arguments. Numerical calculations were made of the reflection coefficient R at the interface of the homogeneous medium. The startling results show that the reflection coefficient for a complex dielectric constant with gradient, can be less than that of the same medium with zero gradient.

  14. Optimal Design of Miniaturized Reflecting Metasurfaces for Ultra-Wideband and Angularly Stable Polarization Conversion.

    PubMed

    Borgese, Michele; Costa, Filippo; Genovesi, Simone; Monorchio, Agostino; Manara, Giuliano

    2018-05-16

    An ultra-wideband linear polarization converter based on a reflecting metasurface is presented. The polarizer is composed by a periodic arrangement of miniaturized metallic elements printed on a grounded dielectric substrate. In order to achieve broadband polarization converting properties, the metasurface is optimized by employing a genetic algorithm (GA) which imposes the minimization of the amplitude of the co-polar reflection coefficient over a wide frequency band. The enhanced angular stability of the polarization converter is due to the miniaturized unit cell which is obtained by imposing the maximum periodicity of the metasurface in the GA optimization process. The pixelated polarization converter obtained by the GA exhibits a relative bandwidth of 102% working from 8.12 GHz to 25.16 GHz. The analysis of the surface current distribution of the metasurface led to a methodology for refining the optimized GA solution based on the sequential removal of pixels of the unit cell on which surface currents are not excited. The relative bandwidth of the refined polarizer is extended up to 117.8% with a unit cell periodicity of 0.46 mm, corresponding to λ/20 at the maximum operating frequency. The performance of the proposed ultra-wideband polarization metasurface has been confirmed through full-wave simulations and measurements.

  15. Sensors Locate Radio Interference

    NASA Technical Reports Server (NTRS)

    2009-01-01

    After receiving a NASA Small Business Innovation Research (SBIR) contract from Kennedy Space Center, Soneticom Inc., based in West Melbourne, Florida, created algorithms for time difference of arrival and radio interferometry, which it used in its Lynx Location System (LLS) to locate electromagnetic interference that can disrupt radio communications. Soneticom is collaborating with the Federal Aviation Administration (FAA) to install and test the LLS at its field test center in New Jersey in preparation for deploying the LLS at commercial airports. The software collects data from each sensor in order to compute the location of the interfering emitter.

  16. Ultra-wideband short-pulse radar with range accuracy for short range detection

    DOEpatents

    Rodenbeck, Christopher T; Pankonin, Jeffrey; Heintzleman, Richard E; Kinzie, Nicola Jean; Popovic, Zorana P

    2014-10-07

    An ultra-wideband (UWB) radar transmitter apparatus comprises a pulse generator configured to produce from a sinusoidal input signal a pulsed output signal having a series of baseband pulses with a first pulse repetition frequency (PRF). The pulse generator includes a plurality of components that each have a nonlinear electrical reactance. A signal converter is coupled to the pulse generator and configured to convert the pulsed output signal into a pulsed radar transmit signal having a series of radar transmit pulses with a second PRF that is less than the first PRF.

  17. Induced Mitogenic Activity in AML-12 Mouse Hepatocytes Exposed to Low-dose Ultra-Wideband Electromagnetic Radiation

    PubMed Central

    Dorsey, W. C.; Ford, B. D.; Roane, L.; Haynie, D. T.; Tchounwou, P. B.

    2005-01-01

    Ultra–wideband (UWB) technology has increased with the use of various civilian and military applications. In the present study, we hypothesized that low-dose UWB electromagnetic radiation (UWBR) could elicit a mitogenic effect in AML-12 mouse hepatocytes, in vitro. To test this hypothesis, we exposed AML-12 mouse hepatocytes, to UWBR in a specially constructed gigahertz transverse electromagnetic mode (GTEM) cell. Cells were exposed to UWBR for 2 h at a temperature of 23°C, a pulse width of 10 ns, a repetition rate of 1 kHz, and field strength of 5–20 kV/m. UWB pulses were triggered by an external pulse generator for UWBR exposure but were not triggered for the sham exposure. We performed an MTT Assay to assess cell viability for UWBR-treated and sham-exposed hepatocytes. Data from viability studies indicated a time-related increase in hepatocytes at time intervals from 8–24 h post exposure. UWBR exerted a statistically significant (p < 0.05) dose-dependent response in cell viability in both serum-treated and serum free medium (SFM) -treated hepatocytes. Western blot analysis of hepatocyte lysates demonstrated that cyclin A protein was induced in hepatocytes, suggesting that increased MTT activity after UWBR exposure was due to cell proliferation. This study indicates that UWBR has a mitogenic effect on AML-12 mouse hepatocytes and implicates a possible role for UWBR in hepatocarcinoma. PMID:16705798

  18. Ultra-wideband impedance sensor

    DOEpatents

    McEwan, Thomas E.

    1999-01-01

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks.

  19. Ultra-wideband impedance sensor

    DOEpatents

    McEwan, T.E.

    1999-03-16

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks. 2 figs.

  20. Testing for EMC (electromagnetic compatibility) in the clinical environment.

    PubMed

    Paperman, D; David, Y; Martinez, M

    1996-01-01

    Testing for electromagnetic compatibility (EMC) in the clinical environment introduces a host of complex conditions not normally encountered under laboratory conditions. In the clinical environment, various radio-frequency (RF) sources of electromagnetic interference (EMI) may be present throughout the entire spectrum of interest. Isolating and analyzing the impact from the sources of interference to medical devices involves a multidisciplinary approach based on training in, and knowledge of, the following: operation of medical devices and their susceptibility to EMI; RF propagation modalities and interaction theory; spectrum analysis systems and techniques (preferably with signature analysis capabilities) and calibrated antennas; the investigation methodology of suspected EMC problems, and testing protocols and standards. Using combinations of standard test procedures adapted for the clinical environment with personnel that have an understanding of radio-frequency behavior increases the probability of controlling, proactively, EMI in the clinical environment, thus providing for a safe and more effective patient care environment.

  1. Quantum interference in plasmonic circuits.

    PubMed

    Heeres, Reinier W; Kouwenhoven, Leo P; Zwiller, Valery

    2013-10-01

    Surface plasmon polaritons (plasmons) are a combination of light and a collective oscillation of the free electron plasma at metal/dielectric interfaces. This interaction allows subwavelength confinement of light beyond the diffraction limit inherent to dielectric structures. As a result, the intensity of the electromagnetic field is enhanced, with the possibility to increase the strength of the optical interactions between waveguides, light sources and detectors. Plasmons maintain non-classical photon statistics and preserve entanglement upon transmission through thin, patterned metallic films or weakly confining waveguides. For quantum applications, it is essential that plasmons behave as indistinguishable quantum particles. Here we report on a quantum interference experiment in a nanoscale plasmonic circuit consisting of an on-chip plasmon beamsplitter with integrated superconducting single-photon detectors to allow efficient single plasmon detection. We demonstrate a quantum-mechanical interaction between pairs of indistinguishable surface plasmons by observing Hong-Ou-Mandel (HOM) interference, a hallmark non-classical interference effect that is the basis of linear optics-based quantum computation. Our work shows that it is feasible to shrink quantum optical experiments to the nanoscale and offers a promising route towards subwavelength quantum optical networks.

  2. Fabrication and evaluation of thin layer PVDF composites using MWCNT reinforcement: Mechanical, electrical and enhanced electromagnetic interference shielding properties

    NASA Astrophysics Data System (ADS)

    Bhaskara Rao, B. V.; Kale, Nikita; Kothavale, B. S.; Kale, S. N.

    2016-06-01

    Radar X-band electromagnetic interference shielding (EMS) is one of the prime requirements for any air vehicle coating; with limitations on the balance between strength and thickness of the EMS material. Nanocomposite of multiwalled-carbon-nanotubes (MWCNT) has been homogeneously integrated (0 - 9 wt%) with polymer, poly (vinylidene fluoride, PVDF) to yield 300 micron film. The PVDF + 9 wt% MWCNT sample of density 1.41 g/cm3 show specific shielding effectiveness (SSE) of 17.7 dB/(g/cm3) (99.6% EMS), with maintained hardness and improved conductivity. With multilayer stacking (900 microns) of these films of density 1.37 g/cm3, the sample showed increase in SSE to 23.3 dB/(g/cm3) (99.93% EMS). Uniform dispersion of MWCNTs in the PVDF matrix gives rise to increased conductivity in the sample beyond 5 wt% MWCNT reinforcement. The results are correlated to the hardness, reflection loss, absorption loss, percolation threshold, permittivity and the conductivity data. An extremely thin film with maximum EMS property is hence proposed.

  3. Impact evaluation of conducted UWB transients on loads in power-line networks

    NASA Astrophysics Data System (ADS)

    Li, Bing; Månsson, Daniel

    2017-09-01

    Nowadays, faced with the ever-increasing dependence on diverse electronic devices and systems, the proliferation of potential electromagnetic interference (EMI) becomes a critical threat for reliable operation. A typical issue is the electronics working reliably in power-line networks when exposed to electromagnetic environment. In this paper, we consider a conducted ultra-wideband (UWB) disturbance, as an example of intentional electromagnetic interference (IEMI) source, and perform the impact evaluation at the loads in a network. With the aid of fast Fourier transform (FFT), the UWB transient is characterized in the frequency domain. Based on a modified Baum-Liu-Tesche (BLT) method, the EMI received at the loads, with complex impedance, is computed. Through inverse FFT (IFFT), we obtain time-domain responses of the loads. To evaluate the impact on loads, we employ five common, but important quantifiers, i.e., time-domain peak, total signal energy, peak signal power, peak time rate of change and peak time integral of the pulse. Moreover, to perform a comprehensive analysis, we also investigate the effects of the attributes (capacitive, resistive, or inductive) of other loads connected to the network, the rise time and pulse width of the UWB transient, and the lengths of power lines. It is seen that, for the loads distributed in a network, the impact evaluation of IEMI should be based on the characteristics of the IEMI source, and the network features, such as load impedances, layout, and characteristics of cables.

  4. Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segawa, Takuya F.; Doll, Andrin; Pribitzer, Stephan

    2015-07-28

    The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclearmore » modulation spectrum.« less

  5. Free space optical ultra-wideband communications over atmospheric turbulence channels.

    PubMed

    Davaslioğlu, Kemal; Cağiral, Erman; Koca, Mutlu

    2010-08-02

    A hybrid impulse radio ultra-wideband (IR-UWB) communication system in which UWB pulses are transmitted over long distances through free space optical (FSO) links is proposed. FSO channels are characterized by random fluctuations in the received light intensity mainly due to the atmospheric turbulence. For this reason, theoretical detection error probability analysis is presented for the proposed system for a time-hopping pulse-position modulated (TH-PPM) UWB signal model under weak, moderate and strong turbulence conditions. For the optical system output distributed over radio frequency UWB channels, composite error analysis is also presented. The theoretical derivations are verified via simulation results, which indicate a computationally and spectrally efficient UWB-over-FSO system.

  6. Anticorrosive, Ultralight, and Flexible Carbon-Wrapped Metallic Nanowire Hybrid Sponges for Highly Efficient Electromagnetic Interference Shielding.

    PubMed

    Wan, Yan-Jun; Zhu, Peng-Li; Yu, Shu-Hui; Sun, Rong; Wong, Ching-Ping; Liao, Wei-Hsin

    2018-05-30

    Metal-based materials with exceptional intrinsic conductivity own excellent electromagnetic interference (EMI) shielding performance. However, high density, corrosion susceptibility, and poor flexibility of the metal severely restrict their further applications in the areas of aircraft/aerospace, portable and wearable smart electronics. Herein, a lightweight, flexible, and anticorrosive silver nanowire wrapped carbon hybrid sponge (Ag@C) is fabricated and employed as ultrahigh efficiency EMI shielding material. The interconnected Ag@C hybrid sponges provide an effective way for electron transport, leading to a remarkable conductivity of 363.1 S m -1 and superb EMI shielding effectiveness of around 70.1 dB in the frequency range of 8.2-18 GHz, while the density is as low as 0.00382 g cm -3 , which are among the best performances for electrically conductive sponges/aerogels/foams by far. More importantly, the Ag@C sponge surprisingly exhibits super-hydrophobicity and strong corrosion resistance. In addition, the hybrid sponges possess excellent mechanical resilience even with a large strain (90% reversible compressibility) and an outstanding cycling stability, which is far better than the bare metallic aerogels, such as silver nanowire aerogels and copper nanowire foams. This strategy provides a facile methodology to fabricate lightweight, flexible, and anticorrosive metal-based sponge for highly efficient EMI shielding applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Ultra-Wideband Massive MIMO Communications Using Multi-mode Antennas

    NASA Astrophysics Data System (ADS)

    Hoeher, P. A.; Manteuffel, D.; Doose, N.; Peitzmeier, N.

    2017-09-01

    An ultra-wideband system design is presented which supports wireless internet access and similar short-range applications with data rates of the order of 100 Gbps. Unlike concurrent work exploring the 60 GHz regime and beyond for this purpose, our focus is on the 6.0 -8.5 GHz frequency band. Hence, a bandwidth efficiency of about 50 bps/Hz is necessary. This sophisticated goal is targeted by employing two key enabling techniques: massive MIMO communications in conjunction with multi-mode antennas. This concept is suitable both for small-scale terminals like smartphones, as well as for powerful access points. Compared to millimeter wave and THz band communications, the 6.0 -8.5 GHz frequency band offers more robustness in NLOS scenarios and is more mature with respect to system components.

  8. Transient coherence of media under strong phase modulation exploiting electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Shwa, David; Katz, Nadav

    2014-08-01

    When quantum systems are shifted faster than their transition and coupling time scales, their susceptibility is dramatically modified. We measure the optical susceptibility of a strongly modulated electromagnetically induced transparency system. Time vs detuning plots for different pump modulation frequencies reveal a transition between an adiabatic regime where a series of smooth pulses are created and a nonadiabatic regime where a strong transient oscillating response is added. Applying a magnetic field lifts the hyperfine level degeneracy, revealing an interference effect between the different magnetic level transients. We explore the dynamics of the magnetic and nonmagnetic cases and discuss their coherent nature. We finally combine the global phase of the transmitted pulses with the transient interference to achieve broadband magnetic sensing without losing the sensitivity of a single electromagnetically induced transparency line.

  9. Graphene, microscale metallic mesh, and transparent dielectric hybrid structure for excellent transparent electromagnetic interference shielding and absorbing

    NASA Astrophysics Data System (ADS)

    Lu, Zhengang; Ma, Limin; Tan, Jiubin; Wang, Heyan; Ding, Xuemei

    2017-06-01

    A high-performance transparent electromagnetic interference (EMI) shielding material based on a graphene/metallic mesh/transparent dielectric (GMTD) hybrid structure is designed and characterized. It consists of stacked graphene and metallic mesh layers, with neighboring layers separated by a quartz-glass substrsate. The GMTD hybrid structure combines the microwave-reflecting characteristics of the metallic mesh and the microwave-absorbing characteristics of graphene to achieve simultaneously high visible transmittance, strong microwave shielding effectiveness (SE), and low microwave reflection. Experiments show that a double-graphene and double-metallic mesh GMTD hybrid structure with a mesh periodicity of 160 µm provides microwave SE exceeding 47.79 dB in the K u-band, and an SE exceeding 32.12 dB in the K a-band, with a maximum value of 37.78 dB at 26.5 GHz. SE by absorption exceeds 30.78 dB in the K a-band, with a maximum value of 34.55 dB at 26.5 GHz, while maintaining a normalized visible transmittance of ~85% at 700 nm. This remarkable performance favors the application of the proposed structure as a transparent microwave shield and absorber, and offers a new strategy for transparent EMI shielding.

  10. Electromagnetic and thermal properties of three-dimensional printed multilayered nano-carbon/poly(lactic) acid structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paddubskaya, A.; Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108 Vilnius; Valynets, N.

    A new type of light-weight material produced by 3D printing consisting of nano-carbon doped polymer layer followed by a dielectric polymer layer is proposed. We performed temperature dependent characterization and measured the electromagnetic (EM) response of the samples in the GHz and THz range. The temperature dependent structural characteristics, crystallization, and melting were observed to be strongly affected by the presence and the number of nano-carbon doped layers in the sandwich structure. The electromagnetic measurements show a great potential of such a type of periodic material for electromagnetic compatibility applications in microwave frequency range. Sandwich structures containing only two nano-carbonmore » layers already become not transparent to the microwaves, giving an electromagnetic interference shielding efficiency at the level of 8–15 dB. A sandwich consisting of one nano-carbon doped and one polymer layer is opaque for THz radiation, because of 80% of absorption. These studies serve as a basis for design and realization of specific optimal geometries of meta-surface type with the 3D printing technique, in order to reach a high level of electromagnetic interference shielding performance for real world EM cloaking and EM ecology applications.« less

  11. Development of an Ultra-Wideband Circularly Polarized Multiple Layer Dielectric Rod Antenna Design

    NASA Astrophysics Data System (ADS)

    Wainwright, Gregory D.

    This dissertations focuses on the development of a novel Ultra-Wideband (UWB) circularly polarized dielectric rod antenna (CPDRA) which yields a constant gain, pattern, and phase center. These properties are important in many applications. Within radar systems a constant phase center is desirable to avoid errors within downrange and crossrange measurements. In a reflector antenna the illumination, spillover, and phase efficiencies will remain the same over an ultra-wideband. Lastly, near field probes require smooth amplitude and phase patterns over frequency to avoid errors during the calibration process of the antenna under test. In this dissertation a novel CP feeding network has been developed for an ultra-wideband dielectric rod antenna. Circularly-polarized antennas have a major advantage over its linearly-polarized counterpart in that the polarization mismatch loss caused by misalignment between the polarizations of the incident fields and antenna can be avoided. This is important in satellite communications and broadcasts where signal propagation through the ionosphere can experience Faraday Rotation. A circularly polarized antenna is also helpful in mobile radar and communication systems where the receiving antennas orientation is not fixed. Previous research on UWB dielectric rod antenna designs has focused on Dual linear feeds. Each polarization within the dual linear feed is excited by a pair of linear launcher arms fed with a 0°-180° hybrid balun. The proposed CPDRA design does not require the 0°-180° hybrid baluns or 0°-90° hybrid for achieving CP operation. These hybrids will increase the antennas size, weight, cost, and reduce operational bandwidth. A design technique has been developed for an UWB multilayer dielectric waveguide used in a CPDRA antenna. This design technique uses near-field Electric field data from inside the waveguide, in conjunction with a genetic algorithm optimization to yield a wideband waveguide with a near field

  12. Ultra-Wideband Array in PCB for Millimeter-Wave 5G and ISM

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2017-01-01

    Next generation 5G mobile architectures will take advantage of the millimeter-wave spectrum to deliver unprecedented bandwidth. Concurrently, there is a need to consolidate numerous disparate allocations into a single, multi-functional array. Existing arrays are either narrow-band, prohibitively expensive or cannot be scaled to these frequencies. In this paper, we present the first ultra-wideband millimeter-wave array to operate across the six 5G and ISM bands spanning 24-71 GHz. Critically, the array is realized using low-cost PCB. The design concept and optimized layout are presented, and fabrication and measurement considerations are discussed.

  13. Feasibility of ultra-wideband SAW RFID tags meeting FCC rules.

    PubMed

    Härmä, Sanna; Plessky, Victor P; Li, Xianyi; Hartogh, Paul

    2009-04-01

    We discuss the feasibility of surface acoustic wave (SAW) radio-frequency identification (RFID) tags that rely on ultra-wideband (UWB) technology. We propose a design of a UWB SAW tag, carry out numerical experiments on the device performance, and study signal processing in the system. We also present experimental results for the proposed device and estimate the potentially achievable reading distance. UWB SAW tags will have an extremely small chip size (<0.5 x 1 mm(2)) and a low cost. They also can provide a large number of different codes. The estimated read range for UWB SAW tags is about 2 m with a reader radiating as low as <0.1 mW power levels with an extremely low duty factor.

  14. High power radiators of ultra-short electromagnetic quasi-unipolar pulses

    NASA Astrophysics Data System (ADS)

    Fedorov, V. M.; Ostashev, V. E.; Tarakanov, V. P.; Ul'yanov, A. V.

    2017-05-01

    Results of creation, operation, and diagnostics of the high power radiators for ultra-short length electromagnetic pulses (USEMPs) with a quasi-unipolar profile, which have been developed in our laboratory, are presented. The radiating module contains: the ultra-wideband (UWB) antenna array, the exciting high voltage pulse semiconductor generator (a pulser), the power source and the control unit. The principles of antenna array with a high efficiency aperture about 0.9 were developed using joint four TEM-horns with shielding electrodes in every TEM-horn. Sizes of the antenna apertures were (16-60) cm. The pulsers produced by “FID Technology” company had the following parameters: 50 Ohm connector impedance, unipolar pulses voltages (10-100) kV, the rise-time (0.04-0.15) ns, and the width (0.2-1) ns. The modules radiate the USEMPs of (0.1-10) GHz spectrum, their repetition rate is (1-100) kHz, and the effective potential is E*R = (20-400) kV, producing the peak E-field into the far-zone of R-distance. Parameters of the USEMP waves were measured by a calibrated sensor with the following characteristics: the sensitivity 0.32V/(kV/m), the rise-time 0.03 ns, the duration up to 7 ns. The measurements were in agreement with the simulation results, which were obtained using the 3-D code “KARAT”. The USEMP waves with amplitudes (1-10) kV/m and the pulse repetition rate (0.5-100) kHz were successfully used to examine various electronic devices for an electromagnetic immunity.

  15. Fast ultra-wideband microwave spectral scanning utilizing photonic wavelength- and time-division multiplexing.

    PubMed

    Li, Yihan; Kuse, Naoya; Fermann, Martin

    2017-08-07

    A high-speed ultra-wideband microwave spectral scanning system is proposed and experimentally demonstrated. Utilizing coherent dual electro-optical frequency combs and a recirculating optical frequency shifter, the proposed system realizes wavelength- and time-division multiplexing at the same time, offering flexibility between scan speed and size, weight and power requirements (SWaP). High-speed spectral scanning spanning from ~1 to 8 GHz with ~1.2 MHz spectral resolution is achieved experimentally within 14 µs. The system can be easily scaled to higher bandwidth coverage, faster scanning speed or finer spectral resolution with suitable hardware.

  16. The Impact of Radio Interference on Future Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Mitchell, Daniel A.; Robertson, Gordon J.; Sault, Robert J.

    While future radio telescopes will require technological advances from the communications industry interference from sources such as satellites and mobile phones is a serious concern. In addition to the fact that the level of interference is growing constantly the increased capabilities of next generation instruments make them more prone to harmful interference. These facilities must have mechanisms to allow operation in a crowded spectrum. In this report some of the factors which may limit the effectiveness of these mechanisms are investigated. Radio astronomy is unique among other observing wavelengths in that the radiation can be fully sampled at a rate which completely specifies the electromagnetic environment. Knowledge of phases and antennae gain factors affords one the opportunity to attempt to mitigate interference from the astronomical data. At present several interference mitigation techniques have been demonstrated to be extremely effective. However the observational scales of the new facilities will push the techniques to their limits. Processes such as signal decorrelation varying antenna gain and instabilities in the primary beam will have a serious effect on some of the algorithms. In addition the sheer volume of data produced will render some techniques computationally and financially impossible.

  17. Equivalent radiation source of 3D package for electromagnetic characteristics analysis

    NASA Astrophysics Data System (ADS)

    Li, Jun; Wei, Xingchang; Shu, Yufei

    2017-10-01

    An equivalent radiation source method is proposed to characterize electromagnetic emission and interference of complex three dimensional integrated circuits (IC) in this paper. The method utilizes amplitude-only near-field scanning data to reconstruct an equivalent magnetic dipole array, and the differential evolution optimization algorithm is proposed to extract the locations, orientation and moments of those dipoles. By importing the equivalent dipoles model into a 3D full-wave simulator together with the victim circuit model, the electromagnetic interference issues in mixed RF/digital systems can be well predicted. A commercial IC is used to validate the accuracy and efficiency of this proposed method. The coupled power at the victim antenna port calculated by the equivalent radiation source is compared with the measured data. Good consistency is obtained which confirms the validity and efficiency of the method. Project supported by the National Nature Science Foundation of China (No. 61274110).

  18. Development of a 3D numerical code to calculate the trajectories of the blow off electrons emitted by a vacuum surface discharge: Application to the study of the electromagnetic interference induced on a spacecraft

    NASA Astrophysics Data System (ADS)

    Froger, Etienne

    1993-05-01

    A description of the electromagnetic behavior of a satellite subjected to an electric discharge is given using a specially developed numerical code. One of the particularities of vacuum discharges, obtained by irradiation of polymers, is the intense emission of electrons into the spacecraft environment. Electromagnetic radiation, associated with the trajectories of the particles around the spacecraft, is considered as the main source of the interference observed. In the absence of accurate orbital data and realistic ground tests, the assessment of these effects requires numerical simulation of the interaction between this electron source and the spacecraft. This is done by the GEODE particle code which is applied to characteristic configurations in order to estimate the spacecraft response to a discharge, which is simulated from a vacuum discharge model designed in laboratory. The spacecraft response to a current injection is simulated by the ALICE numerical three dimensional code. The comparison between discharge and injection effects, from the results given by the two codes, illustrates the representativity of electromagnetic susceptibility tests and the main parameters for their definition.

  19. Influences of Electromagnetic Articulography Sensors on Speech Produced by Healthy Adults and Individuals with Aphasia and Apraxia

    ERIC Educational Resources Information Center

    Katz, William F.; Bharadwaj, Sneha V.; Stettler, Monica P.

    2006-01-01

    Purpose: This study examined whether the intraoral transducers used in electromagnetic articulography (EMA) interfere with speech and whether there is an added risk of interference when EMA systems are used to study individuals with aphasia and apraxia. Method: Ten adult talkers (5 individuals with aphasia/apraxia, 5 controls) produced 12 American…

  20. Design of UWB Monopole Antenna with Dual Notched Bands Using One Modified Electromagnetic-Bandgap Structure

    PubMed Central

    Xu, Ziqiang

    2013-01-01

    A modified electromagnetic-bandgap (M-EBG) structure and its application to planar monopole ultra-wideband (UWB) antenna are presented. The proposed M-EBG which comprises two strip patch and an edge-located via can perform dual notched bands. By properly designing and placing strip patch near the feedline, the proposed M-EBG not only possesses a simple structure and compact size but also exhibits good band rejection. Moreover, it is easy to tune the dual notched bands by altering the dimensions of the M-EBG. A demonstration antenna with dual band-notched characteristics is designed and fabricated to validate the proposed method. The results show that the proposed antenna can satisfy the requirements of VSWR < 2 over UWB 3.1–10.6 GHz, except for the rejected bands of the world interoperability for microwave access (WiMAX) and the wireless local area network (WLAN) at 3.5 GHz and 5.5 GHz, respectively. PMID:24170984

  1. Electromagnetic Radiofrequency Radiation Emitted from GSM Mobile Phones Decreases the Accuracy of Home Blood Glucose Monitors

    PubMed Central

    Mortazavi, SMJ; Gholampour, M; Haghani, M; Mortazavi, G; Mortazavi, AR

    2014-01-01

    Mobile phones are two-way radios that emit electromagnetic radiation in microwave range. As the number of mobile phone users has reached 6 billion, the bioeffects of exposure to mobile phone radiation and mobile phone electromagnetic interference with electronic equipment have received more attention, globally. As self-monitoring of blood glucose can be a beneficial part of diabetes control, home blood glucose testing kits are very popular. The main goal of this study was to investigate if radiofrequency radiation emitted from a common GSM mobile phone can alter the accuracy of home blood glucose monitors. Forty five female nondiabetic students aged 17-20 years old participated in this study. For Control-EMF group (30 students), blood glucose concentration for each individual was measured in presence and absence of radiofrequency radiation emitted by a common GSM mobile phone (HTC touch, Diamond 2) while the phone was ringing. For Control- Repeat group (15 students), two repeated measurements were performed for each participant in the absence of electromagnetic fields. The magnitude of the changes between glucose levels in two repeated measurements (|ΔC|) in Control-Repeat group was 1.07 ± 0.88 mg/dl while this magnitude for Control-EMF group was 7.53 ± 4.76 mg/dl (P < 0.001, two-tailed test). To the best of our knowledge, this is the first study to assess the electromagnetic interference in home blood glucose monitors. It can be concluded that electromagnetic interference from mobile phones has an adverse effect on the accuracy of home blood glucose monitors. We suggest that mobile phones should be used at least 50 cm away from home blood glucose monitors. PMID:25505778

  2. Electromagnetic Radiofrequency Radiation Emitted from GSM Mobile Phones Decreases the Accuracy of Home Blood Glucose Monitors.

    PubMed

    Mortazavi, Smj; Gholampour, M; Haghani, M; Mortazavi, G; Mortazavi, Ar

    2014-09-01

    Mobile phones are two-way radios that emit electromagnetic radiation in microwave range. As the number of mobile phone users has reached 6 billion, the bioeffects of exposure to mobile phone radiation and mobile phone electromagnetic interference with electronic equipment have received more attention, globally. As self-monitoring of blood glucose can be a beneficial part of diabetes control, home blood glucose testing kits are very popular. The main goal of this study was to investigate if radiofrequency radiation emitted from a common GSM mobile phone can alter the accuracy of home blood glucose monitors. Forty five female nondiabetic students aged 17-20 years old participated in this study. For Control-EMF group (30 students), blood glucose concentration for each individual was measured in presence and absence of radiofrequency radiation emitted by a common GSM mobile phone (HTC touch, Diamond 2) while the phone was ringing. For Control- Repeat group (15 students), two repeated measurements were performed for each participant in the absence of electromagnetic fields. The magnitude of the changes between glucose levels in two repeated measurements (|ΔC|) in Control-Repeat group was 1.07 ± 0.88 mg/dl while this magnitude for Control-EMF group was 7.53 ± 4.76 mg/dl (P < 0.001, two-tailed test). To the best of our knowledge, this is the first study to assess the electromagnetic interference in home blood glucose monitors. It can be concluded that electromagnetic interference from mobile phones has an adverse effect on the accuracy of home blood glucose monitors. We suggest that mobile phones should be used at least 50 cm away from home blood glucose monitors.

  3. Sensing coherent phonons with two-photon interference

    NASA Astrophysics Data System (ADS)

    Ding, Ding; Yin, Xiaobo; Li, Baowen

    2018-02-01

    Detecting coherent phonons pose different challenges compared to coherent photons due to the much stronger interaction between phonons and matter. This is especially true for high frequency heat carrying phonons, which are intrinsic lattice vibrations experiencing many decoherence events with the environment, and are thus generally assumed to be incoherent. Two photon interference techniques, especially coherent population trapping (CPT) and electromagnetically induced transparency (EIT), have led to extremely sensitive detection, spectroscopy and metrology. Here, we propose the use of two photon interference in a three-level system to sense coherent phonons. Unlike prior works which have treated phonon coupling as damping, we account for coherent phonon coupling using a full quantum-mechanical treatment. We observe strong asymmetry in absorption spectrum in CPT and negative dispersion in EIT susceptibility in the presence of coherent phonon coupling which cannot be accounted for if only pure phonon damping is considered. Our proposal has application in sensing heat carrying coherent phonons effects and understanding coherent bosonic multi-pathway interference effects in three coupled oscillator systems.

  4. Design of piezoelectric transducer layer with electromagnetic shielding and high connection reliability

    NASA Astrophysics Data System (ADS)

    Qiu, Lei; Yuan, Shenfang; Shi, Xiaoling; Huang, Tianxiang

    2012-07-01

    Piezoelectric transducer (PZT) and Lamb wave based structural health monitoring (SHM) method have been widely studied for on-line SHM of high-performance structures. To monitor large-scale structures, a dense PZTs array is required. In order to improve the placement efficiency and reduce the wire burden of the PZTs array, the concept of the piezoelectric transducers layer (PSL) was proposed. The PSL consists of PZTs, a flexible interlayer with printed wires and signal input/output interface. For on-line SHM on real aircraft structures, there are two main issues on electromagnetic interference and connection reliability of the PSL. To address the issues, an electromagnetic shielding design method of the PSL to reduce spatial electromagnetic noise and crosstalk is proposed and a combined welding-cementation process based connection reliability design method is proposed to enhance the connection reliability between the PZTs and the flexible interlayer. Two experiments on electromagnetic interference suppression are performed to validate the shielding design of the PSL. The experimental results show that the amplitudes of the spatial electromagnetic noise and crosstalk output from the shielded PSL developed by this paper are - 15 dB and - 25 dB lower than those of the ordinary PSL, respectively. Other two experiments on temperature durability ( - 55 °C-80 °C ) and strength durability (160-1600μɛ, one million load cycles) are applied to the PSL to validate the connection reliability. The low repeatability errors (less than 3% and less than 5%, respectively) indicate that the developed PSL is of high connection reliability and long fatigue life.

  5. Synthesis and electromagnetic interference shielding of cellulose-derived carbon aerogels functionalized with α-Fe2O3 and polypyrrole.

    PubMed

    Wan, Caichao; Li, Jian

    2017-04-01

    Eco-friendly cellulose-derived carbon aerogels (CDCA) were employed as porous substrate to integrate with α-Fe 2 O 3 and polypyrrole (PPy) via pyrolysis and vapor-phase polymerization. The SEM and TEM observations present that the wrinkled PPy sheets and the α-Fe 2 O 3 nanoparticles were well dispersed in CDCA. The strong interactions (such as hydrogen bonding) between the substrate and the nanomaterials were demonstrated by the FTIR and XPS analysis. When utilized as electromagnetic interference (EMI) shielding materials, the α-Fe 2 O 3 /PPy/CDCA (FPCA) composite has the highest total shielding effectiveness (SE total ) of 39.4dB, about 2.0, 2.9, and 1.3 times that of the acid-treated CDCA (19.3dB), PPy (13.6dB), and α-Fe 2 O 3 /CDCA (29.3dB), respectively. Moreover, the shielding effectiveness due to absorption accounts for 78.2%-84.2% of SE total for FPCA, indicative of the absorption-dominant shielding mechanism contributing to alleviating secondary radiation. These features make the composite a useful alternative candidate for EMI shielding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Characterization of Different Cable Ferrite Materials to Reduce the Electromagnetic Noise in the 2-150 kHz Frequency Range.

    PubMed

    Suarez, Adrian; Victoria, Jorge; Alcarria, Antonio; Torres, Jose; Martinez, Pedro A; Martos, Julio; Soret, Jesus; Garcia-Olcina, Raimundo; Muetsch, Steffen

    2018-01-23

    The gap of standardization for conducted and field coupled electromagnetic interferences (EMI) in the 2-150 kHz frequency range can lead to Electromagnetic Compatibility (EMC) problems. This is caused by power systems such as Pulse Width Modulation (PWM) controlled rectifiers, photovoltaic inverters or charging battery units in electric vehicles. This is a very important frequency spectral due to interferences generated in a wide range of devices and, specifically, communication problems in the new technologies and devices incorporated to the traditional grid to convert it into a Smart Grid. Consequently, it is necessary to provide new solutions to attenuate this kind of interference, which involves finding new materials that are able to filter the electromagnetic noise. This contribution is focused on characterizing the performance of a novel material based on nanocrystalline and comparing it to most common material compositions such as MnZn and NiZn. This research is carried out from the point of view of the manufacturing process, magnetic properties and EMI suppression ability. This last item is carried out through two analysis procedures: a theoretical method by determining the attenuation ratio by measuring impedance parameter and proposing a new empirical technique based on measuring directly the insertion loss parameter. Therefore, the main aim of this characterization process is to determine the performance of nanocrystalline compared to traditional cable ferrite compositions to reduce the interferences in this controversial frequency range. From the results obtained, it is possible to deduce that nanocrystalline cable ferrite provides the best performance to filter the electromagnetic noise in the 2-150 kHz frequency range.

  7. A Novel Manufacturing Process for Compact, Low-Weight and Flexible Ultra-Wideband Cavity Backed Textile Antennas

    PubMed Central

    Van Baelen, Dries

    2018-01-01

    A novel manufacturing procedure for the fabrication of ultra-wideband cavity-backed substrate integrated waveguide antennas on textile substrates is proposed. The antenna cavity is constructed using a single laser-cut electrotextile patch, which is folded around the substrate. Electrotextile slabs protruding from the laser-cut patch are then vertically folded and glued to form the antenna cavity instead of rigid metal tubelets to implement the vertical cavity walls. This approach drastically improves mechanical flexibility, decreases the antenna weight to slightly more than 1 g and significantly reduces alignment errors. As a proof of concept, a cavity-backed substrate integrated waveguide antenna is designed and realized for ultra-wideband operation in the [5.15–5.85] GHz band. Antenna performance is validated in free space as well as in two on body measurement scenarios. Furthermore, the antenna’s figures of merit are characterized when the prototype is bent at different curvature radii, as commonly encountered during deployment on the human body. Also the effect of humidity content on antenna performance is studied. In all scenarios, the realized antenna covers the entire operating frequency band, meanwhile retaining a stable radiation pattern with a broadside gain above 5 dBi, and a radiation efficiency of at least 70%. PMID:29301378

  8. Ultra-wideband polarization conversion metasurface and its application cases for antenna radiation enhancement and scattering suppression.

    PubMed

    Zheng, Yuejun; Zhou, Yulong; Gao, Jun; Cao, Xiangyu; Yang, Huanhuan; Li, Sijia; Xu, Liming; Lan, Junxiang; Jidi, Liaori

    2017-11-23

    A double-layer complementary metasurface (MS) with ultra-wideband polarization conversion is presented. Then, we propose two application cases by applying the polarization conversion structures to aperture coupling patch antenna (ACPA). Due to the existence of air-filled gap of ACPA, air substrate and dielectric substrate are used to construct the double-layer MS. The polarization conversion bandwidth is broadened toward low-frequency range. Subsequently, two application cases of antenna are proposed and investigated. The simultaneous improvement of radiation and scattering performance of antenna is normally considered as a contradiction. Gratifyingly, the contradiction is addressed in these two application cases. According to different mechanism of scattering suppression (i.e., polarization conversion and phase cancellation), the polarization conversion structures are utilized to construct uniform and orthogonal arrangement configurations. And then, the configurations are integrated into ACPA and two different kinds of metasurface-based (MS-based) ACPA are formed. Radiation properties of the two MS-based ACPAs are improved by optimizing the uniform and orthogonal arrangement configurations. The measured results suggest that ultra-wideband polarization conversion properties of the MS are achieved and radiation enhancement and scattering suppression of the two MS-based ACPAs are obtained. These results demonstrate that we provide novel approach to design high-performance polarization conversion MS and MS-based devices.

  9. A Novel Manufacturing Process for Compact, Low-Weight and Flexible Ultra-Wideband Cavity Backed Textile Antennas.

    PubMed

    Van Baelen, Dries; Lemey, Sam; Verhaevert, Jo; Rogier, Hendrik

    2018-01-03

    A novel manufacturing procedure for the fabrication of ultra-wideband cavity-backed substrate integrated waveguide antennas on textile substrates is proposed. The antenna cavity is constructed using a single laser-cut electrotextile patch, which is folded around the substrate. Electrotextile slabs protruding from the laser-cut patch are then vertically folded and glued to form the antenna cavity instead of rigid metal tubelets to implement the vertical cavity walls. This approach drastically improves mechanical flexibility, decreases the antenna weight to slightly more than 1 g and significantly reduces alignment errors. As a proof of concept, a cavity-backed substrate integrated waveguide antenna is designed and realized for ultra-wideband operation in the [5.15-5.85] GHz band. Antenna performance is validated in free space as well as in two on body measurement scenarios. Furthermore, the antenna's figures of merit are characterized when the prototype is bent at different curvature radii, as commonly encountered during deployment on the human body. Also the effect of humidity content on antenna performance is studied. In all scenarios, the realized antenna covers the entire operating frequency band, meanwhile retaining a stable radiation pattern with a broadside gain above 5 dBi, and a radiation efficiency of at least 70%.

  10. A literature review of transmission effectiveness and electromagnetic compatibility in home telemedicine environments to evaluate safety and security.

    PubMed

    Carranza, Noemí; Ramos, Victoria; Lizana, Francisca G; García, Jorge; del Pozo, Alejando; Monteagudo, José Luis

    2010-09-01

    The objective of this study was to determine already reported cases of transmission/reception failure and interferences to evaluate the safety and security of the new mobile home telemedicine systems. The literature published in the last 10 years (1998-2009) has been reviewed, by searching in several databases. Searches on transmission effectiveness and electromagnetic compatibility were made manually through journals, conference proceedings, and also the healthcare technology assessment agencies' Web pages. Search strategies developed through electronic databases and manual search identified a total of 886 references, with 44 finally being included in the results. They have been divided by technology in the transmission/reception effectiveness studies, and according to the type of medical device in the case of electromagnetic interferences studies. The study reveals that there are numerous publications on telemedicine and home-monitoring systems using wireless networks. However, literature on effectiveness in terms of connectivity and transmission problems and electromagnetic interferences is limited. From the collected studies, it can be concluded that there are transmission failures, low-coverage areas, errors in the transmission of packets, and so on. Moreover, cases of serious interferences in medical instruments have also been reported. These facts highlight the lack of studies and specific recommendations to be followed in the implementation of biomonitoring systems in domestic environments using wireless networks.

  11. Implementation of rectangular slit-inserted ultra-wideband tapered slot antenna.

    PubMed

    Kim, Sun-Woong; Choi, Dong-You

    2016-01-01

    In this paper, a tapered slot antenna capable of ultra-wideband communication was designed. In the proposed antenna, rectangular slits were inserted to enhance the bandwidth and reduce the area of the antenna. The rectangular slit-inserted tapered slot antenna operated at a bandwidth of 8.45 GHz, and the bandwidth improved upon the basic tapered slot antenna by 4.72 GHz. The radiation pattern of the antenna was suitable for location recognition in a certain direction owing to an appropriate 3 dB beam width. The antenna gain was analyzed within the proposed bandwidth, and the highest gain characteristic at 7.55 dBi was exhibited at a 5-GHz band. The simulation and measurement results of the proposed tapered slot antenna were similar.

  12. Electromagnetic resonance in the asymmetric terahertz metamaterials with triangle microstructure

    NASA Astrophysics Data System (ADS)

    Xing, Yuanyuan; Zhang, Xiaoyu; Zhang, Qiang; Gu, Yanping; Qian, Yunan; Lin, Xingyue; Tang, Yunhai; Cheng, Xinli; Qin, Changfa; Shen, Jiaoyan; Zang, Taocheng; Ma, Chunlan

    2018-05-01

    We investigate terahertz transmission properties and electromagnetic resonance modes in the asymmetric triangle structures with the change of asymmetric distance and the direction of electric field. When the THz electric field is perpendicular to the split gap of triangle, the electric field can better excite the THz absorption in the triangle structures. Importantly, electromagnetically induced transparency (EIT) characteristics are observed in the triangle structures due to the destructive interference of the different excited modes. The distributions of electric field and surface current density simulated by finite difference time domain indicate that the bright mode is excited by the side of triangle structures and dark mode is excited by the gap-side of triangle. The present study is helpful to understand the electromagnetic resonance in the asymmetric triangular metamaterials.

  13. Safety of Electromagnetic Articulography in Patients with Pacemakers and Implantable Cardioverter-Defibrillators

    ERIC Educational Resources Information Center

    Joglar, Jose A.; Nguyen, Carol; Garst, Diane M.; Katz, William F.

    2009-01-01

    Purpose: "Electromagnetic articulography (EMA)" uses a helmet to create alternating magnetic fields for tracking speech articulator movement. An important safety consideration is whether EMA magnetic fields interfere with the operation of speakers' pacemakers or implantable cardioverter-defibrillators (ICDs). In this investigation,…

  14. Tunable rejection filters with ultra-wideband using zeroth shear mode plate wave resonators

    NASA Astrophysics Data System (ADS)

    Kadota, Michio; Sannomiya, Toshio; Tanaka, Shuji

    2017-07-01

    This paper reports wide band rejection filters and tunable rejection filters using ultra-wideband zeroth shear mode (SH0) plate wave resonators. The frequency range covers the digital TV band in Japan that runs from 470 to 710 MHz. This range has been chosen to meet the TV white space cognitive radio requirements of rejection filters. Wide rejection bands were obtained using several resonators with different frequencies. Tunable rejection filters were demonstrated using Si diodes connected to the band rejection filters. Wide tunable ranges as high as 31% were measured by applying a DC voltage to the Si diodes.

  15. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field

    DOE PAGES

    Piazza, L.; Lummen, T. T. A.; Quiñonez, E.; ...

    2015-03-02

    Surface plasmon polaritons can confine electromagnetic fields in subwavelength spaces and are of interest for photonics, optical data storage devices and biosensing applications. In analogy to photons, they exhibit wave–particle duality, whose different aspects have recently been observed in separate tailored experiments. Here we demonstrate the ability of ultrafast transmission electron microscopy to simultaneously image both the spatial interference and the quantization of such confined plasmonic fields. Our experiments are accomplished by spatiotemporally overlapping electron and light pulses on a single nanowire suspended on a graphene film. The resulting energy exchange between single electrons and the quanta of the photoinducedmore » near-field is imaged synchronously with its spatial interference pattern. In conclusion, this methodology enables the control and visualization of plasmonic fields at the nanoscale, providing a promising tool for understanding the fundamental properties of confined electromagnetic fields and the development of advanced photonic circuits.« less

  16. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field

    PubMed Central

    Piazza, L; Lummen, T.T.A.; Quiñonez, E; Murooka, Y; Reed, B.W.; Barwick, B; Carbone, F

    2015-01-01

    Surface plasmon polaritons can confine electromagnetic fields in subwavelength spaces and are of interest for photonics, optical data storage devices and biosensing applications. In analogy to photons, they exhibit wave–particle duality, whose different aspects have recently been observed in separate tailored experiments. Here we demonstrate the ability of ultrafast transmission electron microscopy to simultaneously image both the spatial interference and the quantization of such confined plasmonic fields. Our experiments are accomplished by spatiotemporally overlapping electron and light pulses on a single nanowire suspended on a graphene film. The resulting energy exchange between single electrons and the quanta of the photoinduced near-field is imaged synchronously with its spatial interference pattern. This methodology enables the control and visualization of plasmonic fields at the nanoscale, providing a promising tool for understanding the fundamental properties of confined electromagnetic fields and the development of advanced photonic circuits. PMID:25728197

  17. Susceptibility study of audio recording devices to electromagnetic stimulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halligan, Matthew S.; Grant, Steven L.; Beetner, Daryl G.

    2014-02-01

    Little research has been performed to study how intentional electromagnetic signals may couple into recording devices. An electromagnetic susceptibility study was performed on an analog tape recorder, a digital video camera, a wired computer microphone, and a wireless microphone system to electromagnetic interference. Devices were subjected to electromagnetic stimulations in the frequency range of 1-990 MHz and field strengths up to 4.9 V/m. Carrier and message frequencies of the stimulation signals were swept, and the impacts of device orientation and antenna polarization were explored. Message signals coupled into all devices only when amplitude modulated signals were used as stimulation signals.more » Test conditions that produced maximum sensitivity were highly specific to each device. Only narrow carrier frequency ranges could be used for most devices to couple messages into recordings. A basic detection technique using cross-correlation demonstrated the need for messages to be as long as possible to maximize message detection and minimize detection error. Analysis suggests that detectable signals could be coupled to these recording devices under realistic ambient conditions.« less

  18. Demonstration of ultra-wideband (UWB) over fiber based on optical pulse-injected semiconductor laser.

    PubMed

    Juan, Yu-Shan; Lin, Fan-Yi

    2010-04-26

    We experimentally demonstrated the ultra-wideband (UWB) signal generation utilizing nonlinear dynamics of an optical pulse-injected semiconductor laser. The UWB signals generated are fully in compliant with the FCC mask for indoor radiation, while a large fractional bandwidth of 93% is achieved. To show the feasibility of UWB-over-fiber, transmission over a 2 km single-mode fiber and a wireless channel utilizing a pair of broadband antennas are examined. Moreover, proof of concept experiment on data encoding and decoding with 250 Mb/s in the optical pulse-injected laser is successfully demonstrated.

  19. Interference between active implanted medical devices and electromagnetic field emitting devices is rare but real: results of an incidence study in a population of physicians in France.

    PubMed

    Hours, Martine; Khati, Inès; Hamelin, Joel

    2014-03-01

    Assessing the behavior of active implanted medical devices (AIMDs) in response to electromagnetic field (EMF) transmitters is a current issue of great importance. Given the numerous telecommunication systems and our lack of knowledge as to the impact of electromagnetic effects, this study investigated the reality of possible AIMD disturbance by EMFs by interviewing health professionals. A self-administered postal questionnaire was sent to almost 5,000 physicians in five specialties: cardiology; endocrinology; ears, nose, and throat; urology; and neurology. It collected data on the existence and annual number of incidents observed and the conditions under which they occurred, the EMF sources involved, and the means of managing the malfunctions. A total of 1,188 physicians agreed to participate. Sixteen percent of participants reported cases of implant failure, three-quarters of whom, mainly in cardiology, reported rates of at least one incident per year-amounting to more than 100 incidents per year in all. Severity appeared to be moderate (discomfort or transient symptoms), but frequently required resetting or, more rarely, replacing the device. Some serious incidents were, however, reported. The sources implicated were basically of two types: electronic security systems (antitheft and airport gates) and medical electromagnetic radiation devices. These incidents were poorly reported within the public health system, preventing follow-up and effective performance of alert and surveillance functions. Although minor, the risk of interference between EMF sources and AIMDs is real and calls for vigilance. It particularly concerns antitheft and airport security gates, though other sources may also cause incidents. ©2013, The Authors. Journal compilation ©2013 Wiley Periodicals, Inc.

  20. Mechanically Robust Magnetic Carbon Nanotube Papers Prepared with CoFe2O4 Nanoparticles for Electromagnetic Interference Shielding and Magnetomechanical Actuation.

    PubMed

    Lim, Guh-Hwan; Woo, Seongwon; Lee, Hoyoung; Moon, Kyoung-Seok; Sohn, Hiesang; Lee, Sang-Eui; Lim, Byungkwon

    2017-11-22

    The introduction of inorganic nanoparticles into carbon nanotube (CNT) papers can provide a versatile route to the fabrication of CNT papers with diverse functionalities, but it may lead to a reduction in their mechanical properties. Here, we describe a simple and effective strategy for the fabrication of mechanically robust magnetic CNT papers for electromagnetic interference (EMI) shielding and magnetomechanical actuation applications. The magnetic CNT papers were produced by vacuum filtration of an aqueous suspension of CNTs, CoFe 2 O 4 nanoparticles, and poly(vinyl alcohol) (PVA). PVA plays a critical role in enhancing the mechanical strength of CNT papers. The magnetic CNT papers containing 73 wt % of CoFe 2 O 4 nanoparticles exhibited high mechanical properties with Young's modulus of 3.2 GPa and tensile strength of 30.0 MPa. This magnetic CNT paper was successfully demonstrated as EMI shielding paper with shielding effectiveness of ∼30 dB (99.9%) in 0.5-1.0 GHz, and also as a magnetomechanical actuator in an audible frequency range from 200 to 20 000 Hz.

  1. Ultra-wideband optical leaky-wave slot antennas.

    PubMed

    Wang, Yan; Helmy, Amr S; Eleftheriades, George V

    2011-06-20

    We propose and investigate an ultra-wideband leaky-wave antenna that operates at optical frequencies for the purpose of efficient energy coupling between localized nanoscale optical circuits and the far-field. The antenna consists of an optically narrow aluminum slot on a silicon substrate. We analyze its far-field radiation pattern in the spectral region centered around 1550 nm with a 50% bandwidth ranging from 2000 nm to 1200 nm. This plasmonic leaky-wave slot produces a maximum far-field radiation angle at 32° and a 3 dB beamwidth of 24° at its center wavelength. The radiation pattern is preserved within the 50% bandwidth suffering only insignificant changes in both the radiation angle and the beamwidth. This wide-band performance is quite unique when compared to other optical antenna designs. Furthermore, the antenna effective length for radiating 90% and 99.9% of the input power is only 0.5λ(0) and 1.5λ(0) respectively at 1550 nm. The versatility and simplicity of the proposed design along with its small footprint makes it extremely attractive for integration with nano-optical components using existing technologies.

  2. Intrathecal Pump Exposure to Electromagnetic Interference: A Report of Device Interrogation following Multiple ECT Sessions.

    PubMed

    Bicket, Mark C; Hanna, George M

    2016-02-01

    Intrathecal drug delivery systems represent an increasingly common treatment modality for patients with a variety of conditions, including chronic pain and spasticity. Pumps rely on electronic programming to properly control and administer highly concentrated medications. Electromagnetic interference (EMI) is a known exposure that may cause a potential patient safety issue stemming from direct patient injury, pump damage, or changes to pump operation or flow rate. The objective of our case report was to describe an approach to evaluating a patient with a pump prior to and following exposure to EMI from electroconvulsive therapy (ECT), as well as to document findings from device interrogations associated with this event. Case report. Academic university-based pain management center. We present the case of a patient with an intrathecal pump who underwent multiple exposures to EMI in the form of 42 ECT sessions. Interrogation of the intrathecal drug delivery system revealed no safety issues following ECT sessions. At no time were error messages, unintentional changes in event logs, unintentional changes in pump settings, or evidence of pump stall or over-infusion noted. Communication with multiple entities (patient, family, consulting physicians, and device manufacturer) and maintaining vigilance through device interrogation both before and after EMI exposure are appropriate safeguards to mitigate the risk and detect potential adverse events of EMI with intrathecal drug delivery systems. Given the infrequent reports of device exposure to ECT, best practices may be derived from experience with EMI exposure from magnetic resonance imaging (MRI). Although routine EMI exposure to intrathecal drug delivery systems should be avoided, we describe one patient with repeated exposure to ECT without apparent complication.

  3. Electromagnetic Performances Analysis of an Ultra-wideband and Flexible Material Antenna in Microwave Breast Imaging: To Implement A Wearable Medical Bra.

    PubMed

    Rahman, Ashiqur; Islam, Mohammad Tariqul; Singh, Mandeep Jit; Kibria, Salehin; Akhtaruzzaman, Md

    2016-12-23

    In this paper, we report a compact and ultra-wide band antenna on a flexible substrate using the 5-(4-(perfluorohexyl)phenyl)thiophene-2-carbaldehyde compound for microwave imaging. In contrast to other microwave based imaging systems, such as an array of 16 antennas, we proposed a bi-static radar based imaging system consisting of two omnidirectional antennas, which reduces complexity and the overall dimension. The proposed compact antennas are 20 × 14 mm 2 and designed for operating at frequencies from 4 to 6 GHz. To allow for implantation into a bra, the electromagnetic performances of the antennas must be considered in bending conditions. In comparison with the recently reported flexible antennas, we demonstrated both electromagnetic performance and imaging reconstruction for bending conditions. For the proof of concept, the electromagnetic performances both at flat and bending conditions have been verified using a homogeneous multilayer model of the human breast phantom. Our results demonstrate that the antenna, even at bending conditions, exhibits an excellent omni-directional radiation pattern with an average efficiency above 70% and average gain above 1 dBi, within the operational frequency band. The comprehensive aim of the realized antenna is to design a biodegradable and wearable antenna-based bra for early breast cancer detection in the future.

  4. Electromagnetic Performances Analysis of an Ultra-wideband and Flexible Material Antenna in Microwave Breast Imaging: To Implement A Wearable Medical Bra

    NASA Astrophysics Data System (ADS)

    Rahman, Ashiqur; Islam, Mohammad Tariqul; Singh, Mandeep Jit; Kibria, Salehin; Akhtaruzzaman, Md.

    2016-12-01

    In this paper, we report a compact and ultra-wide band antenna on a flexible substrate using the 5-(4-(perfluorohexyl)phenyl)thiophene-2-carbaldehyde compound for microwave imaging. In contrast to other microwave based imaging systems, such as an array of 16 antennas, we proposed a bi-static radar based imaging system consisting of two omnidirectional antennas, which reduces complexity and the overall dimension. The proposed compact antennas are 20 × 14 mm2 and designed for operating at frequencies from 4 to 6 GHz. To allow for implantation into a bra, the electromagnetic performances of the antennas must be considered in bending conditions. In comparison with the recently reported flexible antennas, we demonstrated both electromagnetic performance and imaging reconstruction for bending conditions. For the proof of concept, the electromagnetic performances both at flat and bending conditions have been verified using a homogeneous multilayer model of the human breast phantom. Our results demonstrate that the antenna, even at bending conditions, exhibits an excellent omni-directional radiation pattern with an average efficiency above 70% and average gain above 1 dBi, within the operational frequency band. The comprehensive aim of the realized antenna is to design a biodegradable and wearable antenna-based bra for early breast cancer detection in the future.

  5. Intraoperative visualization and assessment of electromagnetic tracking error

    NASA Astrophysics Data System (ADS)

    Harish, Vinyas; Ungi, Tamas; Lasso, Andras; MacDonald, Andrew; Nanji, Sulaiman; Fichtinger, Gabor

    2015-03-01

    Electromagnetic tracking allows for increased flexibility in designing image-guided interventions, however it is well understood that electromagnetic tracking is prone to error. Visualization and assessment of the tracking error should take place in the operating room with minimal interference with the clinical procedure. The goal was to achieve this ideal in an open-source software implementation in a plug and play manner, without requiring programming from the user. We use optical tracking as a ground truth. An electromagnetic sensor and optical markers are mounted onto a stylus device, pivot calibrated for both trackers. Electromagnetic tracking error is defined as difference of tool tip position between electromagnetic and optical readings. Multiple measurements are interpolated into the thin-plate B-spline transform visualized in real time using 3D Slicer. All tracked devices are used in a plug and play manner through the open-source SlicerIGT and PLUS extensions of the 3D Slicer platform. Tracking error was measured multiple times to assess reproducibility of the method, both with and without placing ferromagnetic objects in the workspace. Results from exhaustive grid sampling and freehand sampling were similar, indicating that a quick freehand sampling is sufficient to detect unexpected or excessive field distortion in the operating room. The software is available as a plug-in for the 3D Slicer platforms. Results demonstrate potential for visualizing electromagnetic tracking error in real time for intraoperative environments in feasibility clinical trials in image-guided interventions.

  6. Nuclear translocation and DNA-binding activity of NFKB (NF-kappaB) after exposure of human monocytes to pulsed ultra-wideband electromagnetic fields (1 kV/cm) fails to transactivate kappaB-dependent gene expression.

    PubMed

    Natarajan, M; Nayak, B K; Galindo, C; Mathur, S P; Roldan, F N; Meltz, M L

    2006-06-01

    The objective of this study was to investigate whether exposure of human monocytes to a pulsed ultra-wideband electromagnetic field (EMF) of 1 kV/cm average peak power triggers a signaling pathway responsible for the transcriptional regulation of NFKB (NF-kappaB)-dependent gene expression. Human Mono Mac 6 (MM6) cells were exposed intermittently to EMF pulses for a total of 90 min. The pulse width was 0.79+/-0.01 ns and the pulse repetition rate was 250 pps. The temperature of the medium was maintained at 37 degrees C in both sham- and EMF-exposed flasks. Total NFKB DNA-binding activity was measured in the nuclear extracts by the electrophoretic mobility shift assay. Cells exposed to the EMFs and incubated for 24 h postexposure showed a 3.5+/-0.2-fold increase in the NFKB DNA-binding activity. Since activation of NFKB was observed, the possibility of kappaB-dependent gene expression in response to exposure to the EMFs was investigated using NFKB signal-specific gene arrays. The results revealed no difference in the NFKB-dependent gene expression profiles at 8 or 24 h postexposure, indicating that activated NFKB does not lead to the differential expression of kappaB-dependent target genes. To determine whether the absence of the kappaB-dependent gene expression was due to compromised transcriptional regulation of NFKB, the functional activity of NFKB was examined in cells transiently transfected with Mercury Pathway constructs containing 4x NFKB binding sites associated either with the luciferase reporter system or a control vector. Pulsed EMF exposure did not induce NFKB-driven luciferase activity in these cells, indicating that the activation of NFKB at 24 h after the 1 kV/cm EMF exposure is functionally inactive. From these results, it is clear that the EMF-induced NFKB activation is only a transient response, with minimal or no downstream effect.

  7. TOPICAL REVIEW: Modelling the interaction of electromagnetic fields (10 MHz 10 GHz) with the human body: methods and applications

    NASA Astrophysics Data System (ADS)

    Hand, J. W.

    2008-08-01

    Numerical modelling of the interaction between electromagnetic fields (EMFs) and the dielectrically inhomogeneous human body provides a unique way of assessing the resulting spatial distributions of internal electric fields, currents and rate of energy deposition. Knowledge of these parameters is of importance in understanding such interactions and is a prerequisite when assessing EMF exposure or when assessing or optimizing therapeutic or diagnostic medical applications that employ EMFs. In this review, computational methods that provide this information through full time-dependent solutions of Maxwell's equations are summarized briefly. This is followed by an overview of safety- and medical-related applications where modelling has contributed significantly to development and understanding of the techniques involved. In particular, applications in the areas of mobile communications, magnetic resonance imaging, hyperthermal therapy and microwave radiometry are highlighted. Finally, examples of modelling the potentially new medical applications of recent technologies such as ultra-wideband microwaves are discussed.

  8. Digital music players cause interference with interrogation telemetry for pacemakers and implantable cardioverter-defibrillators without affecting device function.

    PubMed

    Webster, Gregory; Jordao, Ligia; Martuscello, Maria; Mahajan, Tarun; Alexander, Mark E; Cecchin, Frank; Triedman, John K; Walsh, Edward P; Berul, Charles I

    2008-04-01

    Concern exists regarding the potential electromagnetic interaction between pacemakers, implantable cardioverter-defibrillators (ICDs) and digital music players (DMPs). A preliminary study reported interference in 50% of patients whose devices were interrogated near Apple iPods. Given the high prevalence of DMP use among young patients, we sought to define the nature of interference from iPods and evaluate other DMPs. Four DMPs (Apple Nano, Apple Video, SanDisk Sansa and Microsoft Zune) were evaluated against pacemakers and ICDs (PM/ICD). Along with continuous monitoring, we recorded a baseline ECG strip, sensing parameters and lead impedance at baseline and for each device. Among 51 patients evaluated (age 6 to 60 years, median 22), there was no interference with intrinsic device function. Interference with the programmer occurred in 41% of the patients. All four DMPs caused programmer interference, including disabled communication between the PM/ICD and programmer, noise in the ECG channel, and lost marker channel indicators. Sensing parameters and lead impedances exhibited no more than baseline variability. When the DMPs were removed six inches, there were no further programmer telemetry interactions. Contrary to a prior report, we did not identify any evidence for electromagnetic interference between a selection of DMPs and intrinsic function of PM/ICDs. The DMPs did sometimes interfere with device-programmer communication, but not in a way that compromised device function. Therefore, we recommend that DMPs not be used during device interrogation, but suggest that there is reassuring counterevidence to mitigate the current high level of concern for interactions between DMPs and implantable cardiac rhythm devices.

  9. IEEE 1988 International Symposium on Electromagnetic Compatibility, Seattle, WA, Aug. 2-4, 1988, Record

    NASA Astrophysics Data System (ADS)

    Various papers on electromagnetic compatibility are presented. Some of the optics considered include: field-to-wire coupling 1 to 18 GHz, SHF/EHF field-to-wire coupling model, numerical method for the analysis of coupling to thin wire structures, spread-spectrum system with an adaptive array for combating interference, technique to select the optimum modulation indices for suppression of undesired signals for simultaneous range and data operations, development of a MHz RF leak detector technique for aircraft harness surveillance, and performance of standard aperture shielding techniques at microwave frequncies. Also discussed are: spectrum efficiency of spread-spectrum systems, control of power supply ripple produced sidebands in microwave transistor amplifiers, an intership SATCOM versus radar electromagnetic interference prediction model, considerations in the design of a broadband E-field sensing system, unique bonding methods for spacecraft, and review of EMC practice for launch vehicle systems.

  10. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities.

    PubMed

    Peng, Bo; Özdemir, Sahin Kaya; Chen, Weijian; Nori, Franco; Yang, Lan

    2014-10-24

    There has been an increasing interest in all-optical analogues of electromagnetically induced transparency and Autler-Townes splitting. Despite the differences in their underlying physics, both electromagnetically induced transparency and Autler-Townes splitting are quantified by a transparency window in the absorption or transmission spectrum, which often leads to a confusion about its origin. While the transparency window in electromagnetically induced transparency is a result of Fano interference among different transition pathways, in Autler-Townes splitting it is the result of strong field-driven interactions leading to the splitting of energy levels. Being able to tell objectively whether an observed transparency window is because of electromagnetically induced transparency or Autler-Townes splitting is crucial for applications and for clarifying the physics involved. Here we demonstrate the pathways leading to electromagnetically induced transparency, Fano resonances and Autler-Townes splitting in coupled whispering-gallery-mode resonators. Moreover, we report the application of the Akaike Information Criterion discerning between all-optical analogues of electromagnetically induced transparency and Autler-Townes splitting and clarifying the transition between them.

  11. A study of the electromagnetic shielding mechanisms in the GHz frequency range of graphene based composite layers

    NASA Astrophysics Data System (ADS)

    Drakakis, E.; Kymakis, E.; Tzagkarakis, G.; Louloudakis, D.; Katharakis, M.; Kenanakis, G.; Suchea, M.; Tudose, V.; Koudoumas, E.

    2017-03-01

    We report on the mechanisms of the electromagnetic interference shielding effect of graphene based paint like composite layers. In particular, we studied the absorption and reflection of electromagnetic radiation in the 4-20 GHz frequency of various dispersions employing different amounts of graphene nanoplatelets, polyaniline, and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), special attention given on the relative contribution of each process in the shielding effect. Moreover, the influence of the composition, the thickness and the conductivity of the composite layers on the electromagnetic shielding was also examined.

  12. Non-contact detection of myocardium's mechanical activity by ultrawideband RF-radar and interpretation applying electrocardiography

    NASA Astrophysics Data System (ADS)

    Thiel, F.; Kreiseler, D.; Seifert, F.

    2009-11-01

    Electromagnetic waves can propagate through the body and are reflected at interfaces between materials with different dielectric properties. Therefore the reason for using ultrawideband (UWB) radar for probing the human body in the frequency range from 100 MHz up to 10 GHz is obvious and suggests an ability to monitor the motion of organs within the human body as well as obtaining images of internal structures. The specific advantages of UWB sensors are high temporal and spatial resolutions, penetration into object, low integral power, and compatibility with established narrowband systems. The sensitivity to ultralow power signals makes them suitable for human medical applications including mobile and continuous noncontact supervision of vital functions. Since no ionizing radiation is used, and due to the ultralow specific absorption rate applied, UWB techniques permit noninvasive sensing with no potential risks. This research aims at the synergetic use of UWB sounding combined with magnetic resonance imaging (MRI) to gain complementary information for improved functional diagnosis and imaging, especially to accelerate and enhance cardiac MRI by applying UWB radar as a noncontact navigator of myocardial contraction. To this end a sound understanding of how myocardial's mechanic is rendered by reflected and postprocessed UWB radar signals must be achieved. Therefore, we have executed the simultaneous acquisition and evaluation of radar signals with signals from a high-resolution electrocardiogram. The noncontact UWB illumination was done from several radiographic standard positions to monitor selected superficial myocardial areas during the cyclic physiological myocardial deformation in three different respiratory states. From our findings we could conclude that UWB radar can serve as a navigator technique for high and ultrahigh field magnetic resonance imaging and can be beneficial preserving the high resolution capability of this imaging modality. Furthermore it

  13. Non-contact detection of myocardium's mechanical activity by ultrawideband RF-radar and interpretation applying electrocardiography.

    PubMed

    Thiel, F; Kreiseler, D; Seifert, F

    2009-11-01

    Electromagnetic waves can propagate through the body and are reflected at interfaces between materials with different dielectric properties. Therefore the reason for using ultrawideband (UWB) radar for probing the human body in the frequency range from 100 MHz up to 10 GHz is obvious and suggests an ability to monitor the motion of organs within the human body as well as obtaining images of internal structures. The specific advantages of UWB sensors are high temporal and spatial resolutions, penetration into object, low integral power, and compatibility with established narrowband systems. The sensitivity to ultralow power signals makes them suitable for human medical applications including mobile and continuous noncontact supervision of vital functions. Since no ionizing radiation is used, and due to the ultralow specific absorption rate applied, UWB techniques permit noninvasive sensing with no potential risks. This research aims at the synergetic use of UWB sounding combined with magnetic resonance imaging (MRI) to gain complementary information for improved functional diagnosis and imaging, especially to accelerate and enhance cardiac MRI by applying UWB radar as a noncontact navigator of myocardial contraction. To this end a sound understanding of how myocardial's mechanic is rendered by reflected and postprocessed UWB radar signals must be achieved. Therefore, we have executed the simultaneous acquisition and evaluation of radar signals with signals from a high-resolution electrocardiogram. The noncontact UWB illumination was done from several radiographic standard positions to monitor selected superficial myocardial areas during the cyclic physiological myocardial deformation in three different respiratory states. From our findings we could conclude that UWB radar can serve as a navigator technique for high and ultrahigh field magnetic resonance imaging and can be beneficial preserving the high resolution capability of this imaging modality. Furthermore it

  14. Single-plasmon interferences

    PubMed Central

    Dheur, Marie-Christine; Devaux, Eloïse; Ebbesen, Thomas W.; Baron, Alexandre; Rodier, Jean-Claude; Hugonin, Jean-Paul; Lalanne, Philippe; Greffet, Jean-Jacques; Messin, Gaétan; Marquier, François

    2016-01-01

    Surface plasmon polaritons are electromagnetic waves coupled to collective electron oscillations propagating along metal-dielectric interfaces, exhibiting a bosonic character. Recent experiments involving surface plasmons guided by wires or stripes allowed the reproduction of quantum optics effects, such as antibunching with a single surface plasmon state, coalescence with a two-plasmon state, conservation of squeezing, or entanglement through plasmonic channels. We report the first direct demonstration of the wave-particle duality for a single surface plasmon freely propagating along a planar metal-air interface. We develop a platform that enables two complementary experiments, one revealing the particle behavior of the single-plasmon state through antibunching, and the other one where the interferences prove its wave nature. This result opens up new ways to exploit quantum conversion effects between different bosonic species as shown here with photons and polaritons. PMID:26998521

  15. Characterization of Different Cable Ferrite Materials to Reduce the Electromagnetic Noise in the 2–150 kHz Frequency Range

    PubMed Central

    Suarez, Adrian; Victoria, Jorge; Alcarria, Antonio; Torres, Jose; Martinez, Pedro A.; Muetsch, Steffen

    2018-01-01

    The gap of standardization for conducted and field coupled electromagnetic interferences (EMI) in the 2–150 kHz frequency range can lead to Electromagnetic Compatibility (EMC) problems. This is caused by power systems such as Pulse Width Modulation (PWM) controlled rectifiers, photovoltaic inverters or charging battery units in electric vehicles. This is a very important frequency spectral due to interferences generated in a wide range of devices and, specifically, communication problems in the new technologies and devices incorporated to the traditional grid to convert it into a Smart Grid. Consequently, it is necessary to provide new solutions to attenuate this kind of interference, which involves finding new materials that are able to filter the electromagnetic noise. This contribution is focused on characterizing the performance of a novel material based on nanocrystalline and comparing it to most common material compositions such as MnZn and NiZn. This research is carried out from the point of view of the manufacturing process, magnetic properties and EMI suppression ability. This last item is carried out through two analysis procedures: a theoretical method by determining the attenuation ratio by measuring impedance parameter and proposing a new empirical technique based on measuring directly the insertion loss parameter. Therefore, the main aim of this characterization process is to determine the performance of nanocrystalline compared to traditional cable ferrite compositions to reduce the interferences in this controversial frequency range. From the results obtained, it is possible to deduce that nanocrystalline cable ferrite provides the best performance to filter the electromagnetic noise in the 2–150 kHz frequency range. PMID:29360754

  16. Measurement and Analysis of L-Band (1535-1660 MHz) Electromagnetic (EM) Noise on Ships

    DOT National Transportation Integrated Search

    1974-12-01

    A program of L-band (1535-1660 MHz) electromagnetic (EM) noise measurements conducted on ships is described. The magnitude and duration of EM noise on ships is of particular significance in terms of potential radio frequency interference (RFI) to fut...

  17. Understanding interference experiments with polarized light through photon trajectories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanz, A.S.; Davidovic, M.; Bozic, M.

    2010-04-15

    Bohmian mechanics allows to visualize and understand the quantum-mechanical behavior of massive particles in terms of trajectories. As shown by Bialynicki-Birula, Electromagnetism also admits a hydrodynamical formulation when the existence of a wave function for photons (properly defined) is assumed. This formulation thus provides an alternative interpretation of optical phenomena in terms of photon trajectories, whose flow yields a pictorial view of the evolution of the electromagnetic energy density in configuration space. This trajectory-based theoretical framework is considered here to study and analyze the outcome from Young-type diffraction experiments within the context of the Arago-Fresnel laws. More specifically, photon trajectoriesmore » in the region behind the two slits are obtained in the case where the slits are illuminated by a polarized monochromatic plane wave. Expressions to determine electromagnetic energy flow lines and photon trajectories within this scenario are provided, as well as a procedure to compute them in the particular case of gratings totally transparent inside the slits and completely absorbing outside them. As is shown, the electromagnetic energy flow lines obtained allow to monitor at each point of space the behavior of the electromagnetic energy flow and, therefore, to evaluate the effects caused on it by the presence (right behind each slit) of polarizers with the same or different polarization axes. This leads to a trajectory-based picture of the Arago-Fresnel laws for the interference of polarized light.« less

  18. Frequency-controls of electromagnetic multi-beam scanning by metasurfaces.

    PubMed

    Li, Yun Bo; Wan, Xiang; Cai, Ben Geng; Cheng, Qiang; Cui, Tie Jun

    2014-11-05

    We propose a method to control electromagnetic (EM) radiations by holographic metasurfaces, including to producing multi-beam scanning in one dimension (1D) and two dimensions (2D) with the change of frequency. The metasurfaces are composed of subwavelength metallic patches on grounded dielectric substrate. We present a combined theory of holography and leaky wave to realize the multi-beam radiations by exciting the surface interference patterns, which are generated by interference between the excitation source and required radiation waves. As the frequency changes, we show that the main lobes of EM radiation beams could accomplish 1D or 2D scans regularly by using the proposed holographic metasurfaces shaped with different interference patterns. This is the first time to realize 2D scans of antennas by changing the frequency. Full-wave simulations and experimental results validate the proposed theory and confirm the corresponding physical phenomena.

  19. Ultra-Wideband Phased Array for Millimeter-Wave 5G and ISM

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2016-01-01

    Growing mobile data consumption has prompted the exploration of the millimeter-wave spectrum for large bandwidth, high speed communications. However, the allocated bands are spread across a wide swath of spectrum: fifth generation mobile architecture (5G): 28, 38, 39, 64-71 GHz, as well as Industrial, Scientific, and Medical bands (ISM): 24 and 60 GHz. Moreover, high gain phased arrays are required to overcome the significant path loss associated with these frequencies. Further, it is necessary to incorporate several of these applications in a single, small size and low cost platform. To this end, we have developed a scanning, Ultra-Wideband (UWB) array which covers all 5G, ISM, and other mm-W bands from 24-72 GHz. Critically, this is accomplished using mass-production Printed Circuit Board (PCB) fabrication.

  20. Electromagnetic interference from radio frequency identification inducing potentially hazardous incidents in critical care medical equipment.

    PubMed

    van der Togt, Remko; van Lieshout, Erik Jan; Hensbroek, Reinout; Beinat, E; Binnekade, J M; Bakker, P J M

    2008-06-25

    Health care applications of autoidentification technologies, such as radio frequency identification (RFID), have been proposed to improve patient safety and also the tracking and tracing of medical equipment. However, electromagnetic interference (EMI) by RFID on medical devices has never been reported. To assess and classify incidents of EMI by RFID on critical care equipment. Without a patient being connected, EMI by 2 RFID systems (active 125 kHz and passive 868 MHz) was assessed under controlled conditions during May 2006, in the proximity of 41 medical devices (in 17 categories, 22 different manufacturers) at the Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. Assessment took place according to an international test protocol. Incidents of EMI were classified according to a critical care adverse events scale as hazardous, significant, or light. In 123 EMI tests (3 per medical device), RFID induced 34 EMI incidents: 22 were classified as hazardous, 2 as significant, and 10 as light. The passive 868-MHz RFID signal induced a higher number of incidents (26 incidents in 41 EMI tests; 63%) compared with the active 125-kHz RFID signal (8 incidents in 41 EMI tests; 20%); difference 44% (95% confidence interval, 27%-53%; P < .001). The passive 868-MHz RFID signal induced EMI in 26 medical devices, including 8 that were also affected by the active 125-kHz RFID signal (26 in 41 devices; 63%). The median distance between the RFID reader and the medical device in all EMI incidents was 30 cm (range, 0.1-600 cm). In a controlled nonclinical setting, RFID induced potentially hazardous incidents in medical devices. Implementation of RFID in the critical care environment should require on-site EMI tests and updates of international standards.

  1. Mutual interferences and design principles for mechatronic devices in magnetic resonance imaging.

    PubMed

    Yu, Ningbo; Gassert, Roger; Riener, Robert

    2011-07-01

    Robotic and mechatronic devices that work compatibly with magnetic resonance imaging (MRI) are applied in diagnostic MRI, image-guided surgery, neurorehabilitation and neuroscience. MRI-compatible mechatronic systems must address the challenges imposed by the scanner's electromagnetic fields. We have developed objective quantitative evaluation criteria for device characteristics needed to formulate design guidelines that ensure MRI-compatibility based on safety, device functionality and image quality. The mutual interferences between an MRI system and mechatronic devices working in its vicinity are modeled and tested. For each interference, the involved components are listed, and a numerical measure for "MRI-compatibility" is proposed. These interferences are categorized into an MRI-compatibility matrix, with each element representing possible interactions between one part of the mechatronic system and one component of the electromagnetic fields. Based on this formulation, design principles for MRI-compatible mechatronic systems are proposed. Furthermore, test methods are developed to examine whether a mechatronic device indeed works without interferences within an MRI system. Finally, the proposed MRI-compatibility criteria and design guidelines have been applied to an actual design process that has been validated by the test procedures. Objective and quantitative MRI-compatibility measures for mechatronic and robotic devices have been established. Applying the proposed design principles, potential problems in safety, device functionality and image quality can be considered in the design phase to ensure that the mechatronic system will fulfill the MRI-compatibility criteria. New guidelines and test procedures for MRI instrument compatibility provide a rational basis for design and evaluation of mechatronic devices in various MRI applications. Designers can apply these criteria and use the tests, so that MRI-compatibility results can accrue to build an experiential

  2. Mobile phone interference with medical equipment and its clinical relevance: a systematic review.

    PubMed

    Lawrentschuk, Nathan; Bolton, Damien M

    2004-08-02

    To conduct a systematic review of studies on clinically relevant digital mobile phone electromagnetic interference with medical equipment. MEDLINE and SUMSEARCH were searched for the period 1966-2004. The Cochrane Library and Database of Abstracts of Reviews of Effects were also searched for systematic reviews. Studies were eligible if published in a peer-reviewed journal in English, and if they included testing of digital mobile phones for clinically relevant interference with medical equipment used to monitor or treat patients, but not implantable medical devices. As there was considerable heterogeneity in medical equipment studied and the conduct of testing, results were summarised rather than subjected to meta-analysis. Clinically relevant electromagnetic interference (EMI) secondary to mobile phones potentially endangering patients occurred in 45 of 479 devices tested at 900 MHz and 14 of 457 devices tested at 1800 MHz. However, in the largest studies, the prevalence of clinically relevant EMI was low. Most clinically relevant EMI occurred when mobile phones were used within 1 m of medical equipment. Although testing was not standardised between studies and equipment tested was not identical, it is of concern that at least 4% of devices tested in any study were susceptible to clinically relevant EMI. All studies recommend some type of restriction of mobile phone use in hospitals, with use greater than 1 m from equipment and restrictions in clinical areas being the most common.

  3. Electromagnetic interference shielding effectiveness of microcellular polyimide/in situ thermally reduced graphene oxide/carbon nanotubes nanocomposites

    NASA Astrophysics Data System (ADS)

    Yang, Hongli; Yu, Zhi; Wu, Peng; Zou, Huawei; Liu, Pengbo

    2018-03-01

    A simple and effective method was adopted to fabricate microcellular polyimide (PI)/reduced graphene oxide (GO)/multi-walled carbon nanotubes (MWCNTs) nanocomposites. Firstly, microcellular poly (amic acid) (PAA)/GO/MWCNTs nanocomposites were prepared through solvent evaporation induced phase separation. In this process, PAA and dibutyl phthalate (DBP) co-dissolved in N,N-dimethylacetamide (DMAc) underwent phase separation with DMAc evaporating, and DBP microdomains were formed in continuous PAA phase. Subsequently, PAA was thermally imidized and simultaneously GO was in situ reduced. After DBP was removed, the microcellular PI/reduced GO (RGO)/MWCNTs nanocomposites were finally obtained. When the initial filler loading was 8 wt%, the electrical conductivity of microcellular PI/RGO, PI/MWCNTs and PI/RGO/MWCNTs nanocomposites were 0.05, 0.02 and 1.87 S·m-1, respectively, and the electromagnetic interference (EMI) shielding efficiency (SE) of microcellular PI/RGO, PI/MWCNTs and PI/RGO/MWCNTs nanocomposites were 13.7-15.1, 13.0-14.3 and 16.6-18.2 dB, respectively. The synergistic effect between RGO and MWCNTs enhanced both the electrical conductivity and EMI shielding performance of the microcellular PI/RGO/MWCNTs nanocomposites. The dominating EMI shielding mechanism for these materials was microwave absorption. While the initial loading of GO and MWCNT was 8 wt%, the microcellular PI/RGO/MWCNTs nanocomposite (500 μm thickness) had extremely high specific EMI SE value of 755-823 dB·cm2·g-1. Its thermal stability was also obviously improved, the 5% weight loss temperature in nitrogen was 548 °C. In addition, it also possessed a high Young's modulus of 789 MPa.

  4. Observation of electromagnetically induced Talbot effect in an atomic system

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoyang; Liu, Xing; Zhang, Dan; Sheng, Jiteng; Zhang, Yiqi; Zhang, Yanpeng; Xiao, Min

    2018-01-01

    The electromagnetically induced Talbot effect (EITE) resulting from the repeated self-reconstruction of a spatially intensity-modulated probe field is experimentally demonstrated in a three-level atomic configuration. The probe beam is launched into an optically induced lattice (established by the interference of two coupling fields) inside a rubidium vapor cell and is diffracted by the electromagnetically induced grating that was formed. The diffraction pattern repeats itself at the planes of integer multiple Talbot lengths. In addition, a fractional EITE is also investigated. The experimental observations agree well with the theoretical predictions. This investigation may potentially pave the way for studying the nonlinear and quantum dynamical features that have been predicted for established periodic optical systems.

  5. Bench study of the accuracy of a commercial AED arrhythmia analysis algorithm in the presence of electromagnetic interferences.

    PubMed

    Jekova, Irena; Krasteva, Vessela; Ménétré, Sarah; Stoyanov, Todor; Christov, Ivaylo; Fleischhackl, Roman; Schmid, Johann-Jakob; Didon, Jean-Philippe

    2009-07-01

    This paper presents a bench study on a commercial automated external defibrillator (AED). The objective was to evaluate the performance of the defibrillation advisory system and its robustness against electromagnetic interferences (EMI) with central frequencies of 16.7, 50 and 60 Hz. The shock advisory system uses two 50 and 60 Hz band-pass filters, an adaptive filter to identify and suppress 16.7 Hz interference, and a software technique for arrhythmia analysis based on morphology and frequency ECG parameters. The testing process includes noise-free ECG strips from the internationally recognized MIT-VFDB ECG database that were superimposed with simulated EMI artifacts and supplied to the shock advisory system embedded in a real AED. Measurements under special consideration of the allowed variation of EMI frequency (15.7-17.4, 47-52, 58-62 Hz) and amplitude (1 and 8 mV) were performed to optimize external validity. The accuracy was reported using the American Heart Association (AHA) recommendations for arrhythmia analysis performance. In the case of artifact-free signals, the AHA performance goals were exceeded for both sensitivity and specificity: 99% for ventricular fibrillation (VF), 98% for rapid ventricular tachycardia (VT), 90% for slow VT, 100% for normal sinus rhythm, 100% for asystole and 99% for other non-shockable rhythms. In the presence of EMI, the specificity for some non-shockable rhythms (NSR, N) may be affected in some specific cases of a low signal-to-noise ratio and extreme frequencies, leading to a drop in the specificity with no more than 7% point. The specificity for asystole and the sensitivity for VF and rapid VT in the presence of any kind of 16.7, 50 or 60 Hz EMI simulated artifact were shown to reach the equivalence of sensitivity required for non-noisy signals. In conclusion, we proved that the shock advisory system working in a real AED operates accurately according to the AHA recommendations without artifacts and in the presence of EMI

  6. Signatures of Hong-Ou-Mandel interference at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Woolley, M. J.; Lang, C.; Eichler, C.; Wallraff, A.; Blais, A.

    2013-10-01

    Two-photon quantum interference at a beam splitter, commonly known as Hong-Ou-Mandel interference, is a fundamental demonstration of the quantum mechanical nature of electromagnetic fields and a key component of various quantum information processing protocols. The phenomenon was recently demonstrated with microwave-frequency photons by Lang et al (2013 Nature Phys. 9 345-8). This experiment employed circuit QED systems as sources of microwave photons, and was based on the measurement of second-order cross-correlation and auto-correlation functions of the microwave fields at the outputs of the beam splitter using linear detectors. Here we present the calculation of these correlation functions for the cases of inputs corresponding to: (i) trains of pulsed Gaussian or Lorentzian single microwave photons and (ii) resonant fluorescent microwave fields from continuously driven circuit QED systems. In both cases, the signature of two-photon quantum interference is a suppression of the second-order cross-correlation function for small delays. The experiment described in Lang et al (2013) was performed with trains of Lorentzian single photons, and very good agreement with experimental data is obtained. The results are relevant not only to interference experiments using circuit QED systems, but any such setup with highly controllable sources and time-resolved detection.

  7. Electromagnetically Clean Solar Arrays

    NASA Technical Reports Server (NTRS)

    Stem, Theodore G.; Kenniston, Anthony E.

    2008-01-01

    The term 'electromagnetically clean solar array' ('EMCSA') refers to a panel that contains a planar array of solar photovoltaic cells and that, in comparison with a functionally equivalent solar-array panel of a type heretofore used on spacecraft, (1) exhibits less electromagnetic interferences to and from other nearby electrical and electronic equipment and (2) can be manufactured at lower cost. The reduction of electromagnetic interferences is effected through a combination of (1) electrically conductive, electrically grounded shielding and (2) reduction of areas of current loops (in order to reduce magnetic moments). The reduction of cost is effected by designing the array to be fabricated as a more nearly unitary structure, using fewer components and fewer process steps. Although EMCSAs were conceived primarily for use on spacecraft they are also potentially advantageous for terrestrial applications in which there are requirements to limit electromagnetic interference. In a conventional solar panel of the type meant to be supplanted by an EMCSA panel, the wiring is normally located on the back side, separated from the cells, thereby giving rise to current loops having significant areas and, consequently, significant magnetic moments. Current-loop geometries are chosen in an effort to balance opposing magnetic moments to limit far-0field magnetic interactions, but the relatively large distances separating current loops makes full cancellation of magnetic fields problematic. The panel is assembled from bare photovoltaic cells by means of multiple sensitive process steps that contribute significantly to cost, especially if electomagnetic cleanliness is desired. The steps include applying a cover glass and electrical-interconnect-cell (CIC) sub-assemble, connecting the CIC subassemblies into strings of series-connected cells, laying down and adhesively bonding the strings onto a panel structure that has been made in a separate multi-step process, and mounting the

  8. Time-Reversal Based Range Extension Technique for Ultra-wideband (UWB) Sensors and Applications in Tactical Communications and Networking

    DTIC Science & Technology

    2008-04-16

    Zhen (Edward) Hu Peng (Peter) Zhang Yu Song Amanpreet Singh Saini Corey Cooke April 16, 2006 Department of Electrical and Computer Engineering Center...and RF frequency agility is the most challenging issue for spectrum sensing. The radio under development is an ultra-wideband software -defined radio...PC USB programming cable and accom- panying PC software as well as download test vectors to the waveform memory module, as shown in Figure 3.25,3I

  9. Electromagnetic malfunction of semiconductor-type electronic personal dosimeters caused by access control systems for radiation facilities.

    PubMed

    Deji, Shizuhiko; Ito, Shigeki; Ariga, Eiji; Mori, Kazuyuki; Hirota, Masahiro; Saze, Takuya; Nishizawa, Kunihide

    2006-08-01

    High frequency electromagnetic fields in the 120 kHz band emitted from card readers for access control systems in radiation control areas cause abnormally high and erroneous indicated dose readings on semiconductor-type electronic personal dosimeters (SEPDs). All SEPDs malfunctioned but recovered their normal performance by resetting after the exposure ceased. The minimum distances required to prevent electromagnetic interference varied from 5.0 to 38.0 cm. The electric and magnetic immunity levels ranged from 35.1 to 267.6 V m(-1) and from 1.0 to 16.6 A m(-1), respectively. Electromagnetic immunity levels of SEPDs should be strengthened from the standpoint of radiation protection.

  10. A tunable acoustic metamaterial with double-negativity driven by electromagnets

    PubMed Central

    Chen, Zhe; Xue, Cheng; Fan, Li; Zhang, Shu-yi; Li, Xiao-juan; Zhang, Hui; Ding, Jin

    2016-01-01

    With the advance of the research on acoustic metamaterials, the limits of passive metamaterials have been observed, which prompts the studies concerning actively tunable metamaterials with adjustable characteristic frequency bands. In this work, we present a tunable acoustic metamaterial with double-negativity composed of periodical membranes and side holes, in which the double-negativity pass band can be controlled by an external direct-current voltage. The tension and stiffness of the periodically arranged membranes are actively controlled by electromagnets producing additional stresses, and thus, the transmission and phase velocity of the metamaterial can be adjusted by the driving voltage of the electromagnets. It is demonstrated that a tiny direct-current voltage of 6V can arise a shift of double-negativity pass band by 40% bandwidth, which exhibits that it is an easily controlled and highly tunable acoustic metamaterial, and furthermore, the metamaterial marginally causes electromagnetic interference to the surroundings. PMID:27443196

  11. All-optical, ultra-wideband microwave I/Q mixer and image-reject frequency down-converter.

    PubMed

    Gao, Yongsheng; Wen, Aijun; Chen, Wei; Li, Xiaoyan

    2017-03-15

    An all-optical and ultra-wideband microwave in-phase/quadrature (I/Q) mixer, based on a dual-parallel Mach-Zehnder modulator and a wavelength division multiplexer, is proposed. Due to the simultaneous frequency down-conversion and 360-deg tunable phase shifting in the optical domain, the proposed I/Q mixer has the advantages of high conversion gain and excellent quadrature phase balance (<±1.3 deg⁡) with a wide operating frequency from 10 to 40 GHz. Assisted by an analog or digital intermediate-frequency quadrature coupler, an image-reject frequency down-converter is then implemented, with an image rejection exceeding 50 dB over the working band.

  12. Safety assessment of ultra-wideband antennas for microwave breast imaging.

    PubMed

    De Santis, Valerio; Sill, Jeff M; Bourqui, Jeremie; Fear, Elise C

    2012-04-01

    This article deals with the safety assessment of several ultra-wideband (UWB) antenna designs for use in prototype microwave breast imaging systems. First, the performances of the antennas are validated by comparison of measured and simulated data collected for a simple test case. An efficient approach to estimating the specific energy absorption (SA) is introduced and validated. Next, SA produced by the UWB antennas inside more realistic breast models is computed. In particular, the power levels and pulse repetition periods adopted for the SA evaluation follow the measurement protocol employed by a tissue sensing adaptive radar (TSAR) prototype system. Results indicate that the SA for the antennas examined is below limits prescribed in standards for exposure of the general population; however, the difficulties inherent in applying such standards to UWB exposures are discussed. The results also suggest that effective tools for the rapid evaluation of new sensors have been developed. © 2011 Wiley Periodicals, Inc.

  13. 125Mbps ultra-wideband system evaluation for cortical implant devices.

    PubMed

    Luo, Yi; Winstead, Chris; Chiang, Patrick

    2012-01-01

    This paper evaluates the performance of a 125Mbps Impulse Ratio Ultra-Wideband (IR-UWB) system for cortical implant devices by using low-Q inductive coil link operating in the near-field domain. We examine design tradeoffs between transmitted signal amplitude, reliability, noise and clock jitter. The IR-UWB system is modeled using measured parameters from a reported UWB transceiver implemented in 90nm-CMOS technology. Non-optimized inductive coupling coils with low-Q value for near-field data transmission are modeled in order to build a full channel from the transmitter (Tx) to the receiver (Rx). On-off keying (OOK) modulation is used together with a low-complexity convolutional error correcting code. The simulation results show that even though the low-Q coils decrease the amplitude of the received pulses, the UWB system can still achieve acceptable performance when error correction is used. These results predict that UWB is a good candidate for delivering high data rates in cortical implant devices.

  14. Ultra-wideband microwave photonic filter with a high Q-factor using a semiconductor optical amplifier.

    PubMed

    Chen, Han

    2017-04-01

    An ultra-wideband microwave photonic filter (MPF) with a high quality (Q)-factor based on the birefringence effects in a semiconductor optical amplifier (SOA) is presented, and the theoretical fundamentals of the design are explained. The proposed MPF along orthogonal polarization in an active loop operates at up to a Ku-band and provides a tunable free spectral range from 15.44 to 19.44 GHz by controlling the SOA injection current. A prototype of the equivalent second-order infinite impulse response filter with a Q-factor over 6300 and a rejection ration exceeding 41 dB is experimentally demonstrated.

  15. A novel ultra-wideband 80 GHz FMCW radar system for contactless monitoring of vital signs.

    PubMed

    Wang, Siying; Pohl, Antje; Jaeschke, Timo; Czaplik, Michael; Köny, Marcus; Leonhardt, Steffen; Pohl, Nils

    2015-01-01

    In this paper an ultra-wideband 80 GHz FMCW-radar system for contactless monitoring of respiration and heart rate is investigated and compared to a standard monitoring system with ECG and CO(2) measurements as reference. The novel FMCW-radar enables the detection of the physiological displacement of the skin surface with submillimeter accuracy. This high accuracy is achieved with a large bandwidth of 10 GHz and the combination of intermediate frequency and phase evaluation. This concept is validated with a radar system simulation and experimental measurements are performed with different radar sensor positions and orientations.

  16. Fiber-connected position localization sensor networks

    NASA Astrophysics Data System (ADS)

    Pan, Shilong; Zhu, Dan; Fu, Jianbin; Yao, Tingfeng

    2014-11-01

    Position localization has drawn great attention due to its wide applications in radars, sonars, electronic warfare, wireless communications and so on. Photonic approaches to realize position localization can achieve high-resolution, which also provides the possibility to move the signal processing from each sensor node to the central station, thanks to the low loss, immunity to electromagnetic interference (EMI) and broad bandwidth brought by the photonic technologies. In this paper, we present a review on the recent works of position localization based on photonic technologies. A fiber-connected ultra-wideband (UWB) sensor network using optical time-division multiplexing (OTDM) is proposed to realize high-resolution localization and moving the signal processing to the central station. A 3.9-cm high spatial resolution is achieved. A wavelength-division multiplexed (WDM) fiber-connected sensor network is also demonstrated to realize location which is independent of the received signal format.

  17. UWB EMI To Aircraft Radios: Field Evaluation on Operational Commercial Transport Airplanes. Volume 1

    NASA Technical Reports Server (NTRS)

    Oria, A. J. (Editor); Ely, Jay J.; Martin, Warren L.; Shaver, Timothy W.; Fuller, Gerald L.; Zimmerman, John; Fuschino, Robert L.; Larsen, William E.

    2005-01-01

    Ultrawideband (UWB) transmitters may soon be integrated into a wide variety of portable electronic devices (PEDs) that passengers routinely carry on board commercial airplanes. Airlines and the FAA will have difficulty controlling passenger use of UWB transmitters during flights with current airline policies and existing wireless product standards. The aeronautical community is concerned as to whether evolving FCC UWB rules are adequate to protect legacy and emerging aeronautical radio systems from electromagnetic interference (EMI) from emerging UWB products. To address these concerns, the NASA Office of Space Communications and Chief Spectrum Managers assembled a multidisciplinary team from NASA LaRC, NASA JPL, NASA ARC, FAA, United Airlines, Sky West Airlines, and Eagles Wings Inc. to carry out a comprehensive series of tests aimed at determining the nature and extent of any EMI to aeronautical communication and navigation systems from UWB devices meeting FCCapproved and proposed levels for unlicensed handheld transmitters.

  18. Ultra-Wideband Array in PCB for Millimeter-Wave 5G and ISM

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2017-01-01

    Growing mobile data consumption has prompted the exploration of the millimeter-wave spectrum for large bandwidth, high speed communications. However, the allocated bands are spread across a wide swath of spectrum: Fifth generation mobile architecture (5G): 28, 38, 39, 6471 GHz; Industrial, Scientific, and Medical bands (ISM): 24, 60 GHz. Moreover, high gain phased arrays are required to overcome the significant path loss associated with these frequencies. Further, it is necessary to incorporate several of these applications in a single, small size and low cost platform. To this end, we have developed a scanning, Ultra-Wideband (UWB) array which covers all 5G, ISM, and other mm-W bands from 2472 GHz. Critically, this is accomplished using mass-production Printed Circuit Board (PCB) fabrication. The results of this work are presented in this poster.

  19. An ultra-wideband tunable multi-wavelength Brillouin fibre laser based on a semiconductor optical amplifier and dispersion compensating fibre in a linear cavity configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zulkifli, M Z; Ahmad, H; Hassan, N A

    2011-07-31

    A multi-wavelength Brillouin fibre laser (MBFL) with an ultra-wideband tuning range from 1420 nm to 1620 nm is demonstrated. The MBFL uses an ultra-wideband semiconductor optical amplifier (SOA) and a dispersion compensating fibre (DCF) as the linear gain medium and nonlinear gain medium, respectively. The proposed MBFL has a wide tuning range covering the short (S-), conventional (C-) and long (L-) bands with a wavelength spacing of 0.08 nm, making it highly suitable for DWDM system applications. The output power of the observed Brillouin Stokes ranges approximately from -5.94 dBm to -0.41 dBm for the S-band, from -4.34 dBm tomore » 0.02 dBm for the C-band and from -2.19 dBm to 0.39 dBm for the L-band. The spacing between each adjacent wavelengths of all the three bands is about 0.08 nm, which is approximately 10.7 GHz for the frequency domain. (lasers)« less

  20. Health hazards and electromagnetic fields.

    PubMed

    Saunders, T

    2003-11-01

    Biological rhythms, physical wellbeing and mental states are dependent on our electrical brainwave system interacting with the extremely weak electromagnetic fields generated by the Earth's telluric and Cosmic radiations. In a single generation, since the evolution of humankind over millions of years, we are exposed to a wide range of powerful, artificially generated electromagnetic radiation which adversely affects the subtle balance in nature's energy fields and has become the source of so-called 'diseases of civilization'. This also includes electromagnetic sensitivity. Generally, there is a lack of awareness and understanding of the impact electromagnetic fields can have upon health and wellbeing.Our ancestors were acutely aware that certain locations, were perceived to have a positive energy field which was beneficial to health and vitality. Over time, these areas are now referred to as sacred sites for spiritual ceremony and as healing centres. In contrast, there are other geographical locations that can have a negative effect upon health and these are known as geopathic stress zones. It is believed that such zones can interfere with the brain's normal function that inhibits the release of melatonin and other endocrine secretions needed to replenish the immune system. Geopathic stress can affect animals and plant life as well as human beings and significantly contributes to sick building syndrome (SBS). Whilst there is an increasing body of opinion amongst eminent researchers and scientists who are addressing these issues, the establishment professions are slow to change. However, very gradually, modern allopathic medicine and attitudes are beginning to recognise the extraordinary wisdom and efficacy of ancient traditions such as acupuncture, light, colour and other therapies based on the understanding and treatment of the interaction of a person's electromagnetic subtle body and the immediate environment. These and many other 'complementary' therapies may

  1. Interference Path Loss Prediction in A319/320 Airplanes Using Modulated Fuzzy Logic and Neural Networks

    NASA Technical Reports Server (NTRS)

    Jafri, Madiha J.; Ely, Jay J.; Vahala, Linda L.

    2007-01-01

    In this paper, neural network (NN) modeling is combined with fuzzy logic to estimate Interference Path Loss measurements on Airbus 319 and 320 airplanes. Interference patterns inside the aircraft are classified and predicted based on the locations of the doors, windows, aircraft structures and the communication/navigation system-of-concern. Modeled results are compared with measured data. Combining fuzzy logic and NN modeling is shown to improve estimates of measured data over estimates obtained with NN alone. A plan is proposed to enhance the modeling for better prediction of electromagnetic coupling problems inside aircraft.

  2. [INVITED] Coherent perfect absorption of electromagnetic wave in subwavelength structures

    NASA Astrophysics Data System (ADS)

    Yan, Chao; Pu, Mingbo; Luo, Jun; Huang, Yijia; Li, Xiong; Ma, Xiaoliang; Luo, Xiangang

    2018-05-01

    Electromagnetic (EM) absorption is a common process by which the EM energy is transformed into other kinds of energy in the absorber, for example heat. Perfect absorption of EM with structures at subwavelength scale is important for many practical applications, such as stealth technology, thermal control and sensing. Coherent perfect absorption arises from the interplay of interference and absorption, which can be interpreted as a time-reversed process of lasing or EM emitting. It provides a promising way for complete absorption in both nanophotonics and electromagnetics. In this review, we discuss basic principles and properties of a coherent perfect absorber (CPA). Various subwavelength structures including thin films, metamaterials and waveguide-based structures to realize CPAs are compared. We also discuss the potential applications of CPAs.

  3. Electromagnetic Compatibility Assessment of CCD Detector Acquisition Chains not Synchronized

    NASA Astrophysics Data System (ADS)

    Nicoletto, M.; Boschetti, D.; Ciancetta, E.; Maiorano, E.; Stagnaro, L.

    2016-05-01

    Euclid is a space observatory managed by the European Space Agency; it is the second medium class mission (see Figure 1) in the frame of Cosmic Vision 2015-2025 program.In the frame of this project, the electromagnetic interference between two different and not synchronized Charge Coupled Device (CCD) (see Figure 2) acquisition chains has been evaluated. The key parameter used for this assessment is the electromagnetic noise induced on each other. Taking into account the specificity of the issue, radiation coupling at relative low frequency and in near field conditions, classical approach based on simulations and testing on qualification model cannot be directly applied. Based on that, it has been decided to investigate the issue by test in an incremental way.

  4. Shields for protecting cables from the effects of electromagnetic noise and interference

    NASA Astrophysics Data System (ADS)

    Hoeft, L. O.; Hofstra, J. S.; Karaskiewicz, R. J.; Torres, B. W.

    1988-12-01

    The intrinsic electromagnetic property of a cable or connector shield is its surface transfer impedance. This is the ratio of the longitudinal open circuit voltage measured on one side of the shield (normally the inside) to the axial current on the other side (normally the outside). In cases where a high electric field is present at the surface of the shield, the transfer admittance or charge transfer elastance is also important. Measurements of typical cables, connectors, backshells and cable terminations are presented and explained in terms of simple models.

  5. Impact of Electromagnetic Field upon Temperature Measurement of Induction Heated Charges

    NASA Astrophysics Data System (ADS)

    Smalcerz, A.; Przylucki, R.

    2013-04-01

    The use of thermoelements is a commonly applied method in industry and engineering. It provides a wide measurement range of temperature, a direct voltage signal from the transducer, low cost of the thermoelement, and its resistance to many unfavorable factors which occur in an industrial environment. Unfortunately, thermoelements may not be resistant to interferences of a strong electromagnetic field because of the nature and design of a transducer. Induction heating is the most commonly used type of heating, at present, for metals. In order to guarantee the correctness of the carried out heating process, it is essential to control the temperature of the heated element. The impact of a strong electromagnetic field upon the thermocouple temperature measurement of the inductively heated elements has been analyzed in this paper. The experiment includes dozens of measurements where the following parameters have been varied: frequency of the current which feeds the heating inductor, power supplied to the heating system, geometry of heat inductor, and the charge material and its geometrical dimensions. Interferences of the power-line frequency have been eliminated in part of the carried out measurements.

  6. A low-power high-speed ultra-wideband pulse radio transmission system.

    PubMed

    Wei Tang; Culurciello, E

    2009-10-01

    We present a low-power high-speed ultra-wideband (UWB) transmitter with a wireless transmission test platform. The system is specifically designed for low-power high-speed wireless implantable biosensors. The integrated transmitter consists of a compact pulse generator and a modulator. The circuit is fabricated in the 0.5-mum silicon-on-sapphire process and occupies 420 mum times 420 mum silicon area. The transmitter is capable of generating pulses with 1-ns width and the pulse rate can be controlled between 90 MHz and 270 MHz. We built a demonstration/testing system for the transmitter. The transmitter achieves a 14-Mb/s data rate. With 50% duty cycle data, the power consumption of the chip is between 10 mW and 21 mW when the transmission distance is from 3.2 to 4 m. The core circuit size is 70 mum times 130 mum.

  7. A methodology to enhance electromagnetic compatibility in joint military operations

    NASA Astrophysics Data System (ADS)

    Buckellew, William R.

    The development and validation of an improved methodology to identify, characterize, and prioritize potential joint EMI (electromagnetic interference) interactions and identify and develop solutions to reduce the effects of the interference are discussed. The methodology identifies potential EMI problems using results from field operations, historical data bases, and analytical modeling. Operational expertise, engineering analysis, and testing are used to characterize and prioritize the potential EMI problems. Results can be used to resolve potential EMI during the development and acquisition of new systems and to develop engineering fixes and operational workarounds for systems already employed. The analytic modeling portion of the methodology is a predictive process that uses progressive refinement of the analysis and the operational electronic environment to eliminate noninterfering equipment pairs, defer further analysis on pairs lacking operational significance, and resolve the remaining EMI problems. Tests are conducted on equipment pairs to ensure that the analytical models provide a realistic description of the predicted interference.

  8. NOTE: Cell-phone interference with pocket dosimeters

    NASA Astrophysics Data System (ADS)

    Djajaputra, David; Nehru, Ramasamy; Bruch, Philip M.; Ayyangar, Komanduri M.; Raman, Natarajan V.; Enke, Charles A.

    2005-05-01

    Accurate reporting of personal dose is required by regulation for hospital personnel that work with radioactive material. Pocket dosimeters are commonly used for monitoring this personal dose. We show that operating a cell phone in the vicinity of a pocket dosimeter can introduce large and erroneous readings of the dosimeter. This note reports a systematic study of this electromagnetic interference. We found that simple practical measures are enough to mitigate this problem, such as increasing the distance between the cell phone and the dosimeter or shielding the dosimeter, while maintaining its sensitivity to ionizing radiation, by placing it inside a common anti-static bag.

  9. Computational Electromagnetics Application to Small Geometric Anomalies and Associated Ucertainty Evaluation

    DTIC Science & Technology

    2010-02-28

    implemented a fast method to enable the statistical characterization of electromagnetic interference and compatibility (EMI/EMC) phenomena on electrically...higher accuracy is needed, e.g., to compute higher moment statistics . To address this problem, we have developed adaptive stochastic collocation methods ...SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) AF OFFICE OF SCIENTIFIC RESEARCH 875 N. RANDOLPH ST. ROOM 3112 ARLINGTON VA 22203 UA

  10. Demonstration of an ultra-wideband optical fiber inline polarizer with metal nano-grid on the fiber tip.

    PubMed

    Lin, Yongbin; Guo, Junpeng; Lindquist, Robert G

    2009-09-28

    Dramatic increase in the bandwidth of optical fiber inline polarizer can be achieved by using metal nano-grid on the fiber tip. However, high extinction ratio of such fiber polarizer requires high spatial frequency metal nano girds with high aspect ratio on the small area of optical fiber tip. We report the development of a nano-fabrication process on the optical fiber tip, and the design and realization of the first ultra-wideband fiber inline polarization device with Au nano gird fabricated on a single mode optical fiber end face.

  11. Photonic-chip-based all-optical ultra-wideband pulse generation via XPM and birefringence in a chalcogenide waveguide.

    PubMed

    Tan, Kang; Marpaung, David; Pant, Ravi; Gao, Feng; Li, Enbang; Wang, Jian; Choi, Duk-Yong; Madden, Steve; Luther-Davies, Barry; Sun, Junqiang; Eggleton, Benjamin J

    2013-01-28

    We report a photonic-chip-based scheme for all-optical ultra-wideband (UWB) pulse generation using a novel all-optical differentiator that exploits cross-phase modulation and birefringence in an As₂S₃ chalcogenide rib waveguide. Polarity-switchable UWB monocycles and doublets were simultaneously obtained with single optical carrier operation. Moreover, transmission over 40-km fiber of the generated UWB doublets is demonstrated with good dispersion tolerance. These results indicate that the proposed approach has potential applications in multi-shape, multi-modulation and long-distance UWB-over-fiber communication systems.

  12. Ultra-Wideband Tracking System Design for Relative Navigation

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun David; Arndt, Dickey; Bgo, Phong; Dekome, Kent; Dusl, John

    2011-01-01

    This presentation briefly discusses a design effort for a prototype ultra-wideband (UWB) time-difference-of-arrival (TDOA) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being designed for use in localization and navigation of a rover in a GPS deprived environment for surface missions. In one application enabled by the UWB tracking, a robotic vehicle carrying equipments can autonomously follow a crewed rover from work site to work site such that resources can be carried from one landing mission to the next thereby saving up-mass. The UWB Systems Group at JSC has developed a UWB TDOA High Resolution Proximity Tracking System which can achieve sub-inch tracking accuracy of a target within the radius of the tracking baseline [1]. By extending the tracking capability beyond the radius of the tracking baseline, a tracking system is being designed to enable relative navigation between two vehicles for surface missions. A prototype UWB TDOA tracking system has been designed, implemented, tested, and proven feasible for relative navigation of robotic vehicles. Future work includes testing the system with the application code to increase the tracking update rate and evaluating the linear tracking baseline to improve the flexibility of antenna mounting on the following vehicle.

  13. Investigation of Possible Electromagnetic Disturbances caused by Spacecraft-Plasma Interactions at 4 Radii

    NASA Technical Reports Server (NTRS)

    Okada, M.; Tsurutani, B. T.; Goldstein, G. E.; Matsumoto, H.; Brinca, A. L.; Kellogg, P. J.

    1995-01-01

    The proposed Small Solar Probe mission features a close approach to the sun with a perihelion of 4 radii. Carbon molecules emitted from the spacecraft's heat shield will become ionized by electron impact and photoionization. The newly created ions and electrons may generate electromagnetic and electrostatic plasma waves which are possible sources of interference with in-situ plasma measurements.

  14. Ultra-wideband radios for time-of-flight-ranging and network position estimation

    DOEpatents

    Hertzog, Claudia A [Houston, TX; Dowla, Farid U [Castro Valley, CA; Dallum, Gregory E [Livermore, CA; Romero, Carlos E [Livermore, CA

    2011-06-14

    This invention provides a novel high-accuracy indoor ranging device that uses ultra-wideband (UWB) RF pulsing with low-power and low-cost electronics. A unique of the present invention is that it exploits multiple measurements in time and space for very accurate ranging. The wideband radio signals utilized herein are particularly suited to ranging in harsh RF environments because they allow signal reconstruction in spite of multipath propagation distortion. Furthermore, the ranging and positioning techniques discussed herein directly address many of the known technical challenges encountered in UWB localization regarding synchronization and sampling. In the method developed, noisy, corrupted signals can be recovered by repeating range measurements across a channel, and the distance measurements are combined from many locations surrounding the target in a way that minimizes the range biases associated to indirect flight paths and through-wall propagation delays.

  15. Light Vector Meson Photoproduction off of 1H at Jefferson Lab and p-w Interference in the Leptonic Decay Channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djalali, Chaden; Paolone, Michael; Weygand, Dennis

    2014-09-01

    Although the phenomena of r – w interference has been studied at great length in pionic decay channel over the past 50 years, a study of the interference in a purely electromagnetic production and decay channel has never been performed on an elementary proton target until now. The only published photo-production data of the r - w leptonic decay channel was obtained in the early seventies on C and Be. An investigation of the r - w interference on a Hydrogen was recently completed at Jefferson Lab with the CLAS detector. The di-lepton spectra was fit with two inter- feringmore » relativistic Breit-Wigner functions, and the interference phase was extracted. Preliminary results will be compared to the previous experimental studies in nuclei.« less

  16. Solar radio observations and radio interference monitoring in Roztoky

    NASA Astrophysics Data System (ADS)

    Monstein, C.; Baluďanský, D.

    2013-10-01

    This paper is part of a planned measurement campaign in which spectrum measurements were carried out at different locations worldwide within potential locations of the e-Callisto network. The results of measurements at the Callisto observing station in Roztoky, which took place at the beginning of May 2013, are presented. Measurements were made out with a special low cost broadband logarithmic periodic antenna connected to a Callisto spectrometer designed and built at ETH Zurich (Benz, 2004). This study provides the technical basis to decide whether it is possible to make solar spectroscopic measurements below 1 GHz (λ>30 cm) at the observing station. In terms of electromagnetic interference, Roztoky is not perfect for broadband spectroscopic solar radio astronomy observations due to non negligible radio interference level from the nearby FM-transmitters. Nevertheless, low frequency observations below 80 MHz, as well as observations in some small bands above 116 MHz can be done.

  17. Interference of GSM mobile phones with communication between Cardiac Rhythm Management devices and programmers: A combined in vivo and in vitro study.

    PubMed

    Huang, Dong; Dong, Zhi-Feng; Chen, Yan; Wang, Fa-Bin; Wei, Zhi; Zhao, Wen-Bin; Li, Shuai; Liu, Ming-Ya; Zhu, Wei; Wei, Meng; Li, Jing-Bo

    2015-07-01

    To investigate interference, and how to avoid it, by high-frequency electromagnetic fields (EMFs) of Global System for Mobile Communications (GSM) mobile phone with communication between cardiac rhythm management devices (CRMs) and programmers, a combined in vivo and in vitro testing was conducted. During in vivo testing, GSM mobile phones interfered with CRM-programmer communication in 33 of 65 subjects tested (50.8%). Losing ventricle sensing was representative in this study. In terms of clinical symptoms, only 4 subjects (0.6%) felt dizzy during testing. CRM-programmer communication recovered upon termination of mobile phone communication. During in vitro testing, electromagnetic interference by high-frequency (700-950 MHz) EMFs reproducibly occurred in duplicate testing in 18 of 20 CRMs (90%). During each interference, the pacing pulse signal on the programmer would suddenly disappear while the synchronous signal was normal on the amplifier-oscilloscope. Simulation analysis showed that interference by radiofrequency emitting devices with CRM-programmer communication may be attributed to factors including materials, excitation source distance, and implant depth. Results suggested that patients implanted with CRMs should not be restricted from using GSM mobile phones; however, CRMs should be kept away from high-frequency EMFs of GSM mobile phone during programming. © 2015 Wiley Periodicals, Inc.

  18. Ultra-Wideband Electromagnetic Induction for UXO Discrimination

    DTIC Science & Technology

    2002-11-30

    prolate to oblate shapes do not present problematical considerations, we will just proceed below in terms of the prolate case. The coefficients bpmn in...these equations are known in the sense that they are calculated from the primary field, while the unknown Bpmn must be solved for. Obtaining the... Bpmn constitutes solving the problem, given that the associated Legendre functions m mn nandP Q are readily evaluated. A set of bpmn can be obtained

  19. The effects of annealing temperature on the permittivity and electromagnetic attenuation performance of reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Zeng, Qiao; Xia, Yilu; Sun, Mengxiao; Xie, Aming

    2018-05-01

    Reduced graphene oxide (RGO) has been prepared through the thermal reduction method with different annealing temperatures to explore the effects of temperature on the permittivity and electromagnetic attenuation performance. The real and imaginary parts of permittivity increase along with the decrease in the oxygen functional group and the increase in the filler loading ratio. A composite only loaded with 1 wt. % of RGO can possess an effective electromagnetic absorption bandwidth of 7.60 GHz, when graphene oxide was reduced under 300 °C for 2 h. With the annealing temperature increased to 700 °C and the well reduced RGO loaded 7 wt. % in the composite, the electromagnetic interference shielding efficiency can get higher than 35 dB from 2 to 18 GHz. This study shows that controlling the oxygen functional groups on the RGO surface can also obtain an ideal electromagnetic attenuation performance without any other decorated nanomaterials.

  20. Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials

    PubMed Central

    Han, Song; Cong, Longqing; Lin, Hai; Xiao, Boxun; Yang, Helin; Singh, Ranjan

    2016-01-01

    Metamaterials have recently enabled coupling induced transparency due to interference effects in coupled subwavelength resonators. In this work, we present a three dimensional (3-D) metamaterial design with six-fold rotational symmetry that shows electromagnetically induced transparency with a strong polarization dependence to the incident electromagnetic wave due to the ultra-sharp resonance line width as a result of interaction between the constituent meta-atoms. However, when the six-fold rotationally symmetric unit cell design was re-arranged into a fourfold rotational symmetry, we observed the excitation of a polarization insensitive dual-band transparency. Thus, the 3-D split-ring resonators allow new schemes to observe single and multi-band classical analogues of electromagnetically induced transparencies that has huge potential applications in slowing down light, sensing modalities, and filtering functionalities either in the passive mode or the active mode where such effects could be tuned by integrating materials with dynamic properties. PMID:26857034

  1. Far-field interference of a neutron white beam and the applications to noninvasive phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Pushin, D. A.; Sarenac, D.; Hussey, D. S.; Miao, H.; Arif, M.; Cory, D. G.; Huber, M. G.; Jacobson, D. L.; LaManna, J. M.; Parker, J. D.; Shinohara, T.; Ueno, W.; Wen, H.

    2017-04-01

    The phenomenon of interference plays a crucial role in the field of precision measurement science. Wave-particle duality has expanded the well-known interference effects of electromagnetic waves to massive particles. The majority of the wave-particle interference experiments require a near monochromatic beam which limits its applications due to the resulting low intensity. Here we demonstrate white beam interference in the far-field regime using a two-phase-grating neutron interferometer and its application to phase-contrast imaging. The functionality of this interferometer is based on the universal moiré effect that allows us to improve upon the standard Lau setup. Interference fringes were observed with monochromatic and polychromatic neutron beams for both continuous and pulsed beams. Far-field neutron interferometry allows for the full utilization of intense neutron sources for precision measurements of gradient fields. It also overcomes the alignment, stability, and fabrication challenges associated with the more familiar perfect-crystal neutron interferometer, as well as avoids the loss of intensity due to the absorption analyzer grating requirement in Talbot-Lau interferometer.

  2. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency.

    PubMed

    Xu, Qianfan; Sandhu, Sunil; Povinelli, Michelle L; Shakya, Jagat; Fan, Shanhui; Lipson, Michal

    2006-03-31

    We provide the first experimental observation of structure tuning of the electromagnetically induced transparency-like spectrum in integrated on-chip optical resonator systems. The system consists of coupled silicon ring resonators with 10 microm diameter on silicon, where the coherent interference between the two coupled resonators is tuned. We measured a transparency-resonance mode with a quality factor of 11,800.

  3. Chaos Through-Wall Imaging Radar

    NASA Astrophysics Data System (ADS)

    Xu, Hang; Wang, Bingjie; Zhang, Jianguo; Liu, Li; Li, Ying; Wang, Yuncai; Wang, Anbang

    2017-12-01

    We experimentally demonstrate a chaos through-wall imaging radar using ultra-wideband chaotic-pulse-position modulation (CPPM) microwave signal. The CPPM signal based on logistic map with 1-ns pulse width and 1-GHz bandwidth is implemented by a field programmable gate array (FPGA) and then up-converted as the radar transmitting signal. Two-dimensional image of human objects behind obstacles is obtained by correlation method and back projection algorithm. Our experiments successfully perform through-wall imaging for single and multiple human objects through 20-cm thick wall. The down-range resolution of the proposed radar is 15 cm. Furthermore, the anti-jamming properties of the proposed radar in CPPM jamming, linear frequency-modulated jamming, and Gaussian noise jamming environments are demonstrated by electromagnetic simulations using the finite-difference time-domain. The simulation results show the CPPM microwave signal possesses excellent jamming immunity to the noise and radio frequency interference, which makes it perform superbly in multiradar environments.

  4. S – C – L triple wavelength superluminescent source based on an ultra-wideband SOA and FBGs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, H; Zulkifli, M Z; Hassan, N A

    2013-10-31

    We propose and demonstrate a wide-band semiconductor optical amplifier (SOA) based triple-wavelength superluminescent source with the output in the S-, C- and L-band regions. The proposed systems uses an ultra-wideband SOA with an amplification range from 1440 to 1620 nm as the linear gain medium. Three fibre Bragg gratings (FBGs) with centre wavelengths of 1500, 1540 and 1580 nm are used to generate the lasing wavelengths in the S-, Cand L-bands respectively, while a variable optical attenuator is used to finely balance the optical powers of the lasing wavelengths. The ultra-wideband SOA generates an amplified spontaneous emission (ASE) spectrum withmore » a peak power of -33 dBm at the highest SOA drive current, and also demonstrates a down-shift in the centre wavelength of the generated spectrum due to the spatial distribution of the carrier densities. The S-band wavelength is the dominant wavelength at high drive currents, with an output power of -6 dBm as compared to the C- and L-bands, which only have powers of -11 and -10 dBm, respectively. All wavelengths have a high average signal-to-noise ratio more than 60 dB at the highest drive current of 390 mA, and the system also shows a high degree of stability, with power fluctuations of less than 3 dB within 70 min. The proposed system can find many applications where a wide-band and stable laser source is crucial, such as in communications and sensing. (control of laser radiation parameters)« less

  5. Development of an Ultra-Wideband Receiver for the North America Array

    NASA Astrophysics Data System (ADS)

    Velazco, J. E.; Soriano, M.; Hoppe, D.; Russell, D.; D'Addario, L.; Long, E.; Bowen, J.; Samoska, L.; Lazio, J.

    2016-11-01

    The North America Array (NAA) is a concept for a radio astronomical interferometric array operating in the 1.2 GHz to 116 GHz frequency range. It has been designed to provide substantial improvements in sensitivity, angular resolution, and frequency coverage beyond the current Karl G. Jansky Very Large Array (VLA). It will have a continuous frequency coverage of 1.2 GHz to 50 GHz and 70 to 116 GHz, and a total aperture 10 times more sensitive than the VLA (and 25 times more sensitive than a 34-m-diameter antenna of the Deep Space Network [DSN]). One of the key goals for the NAA is to reduce the operating costs without sacrificing performance. We are designing an ultra-wideband receiver package designed to operate across the 8 to 48 GHz frequency range in contrast to the current VLA, which covers this frequency range with five receiver packages. Reducing the number of receiving systems required to cover the full frequency range would reduce operating costs. To minimize implementation, operational, and maintenance costs, we are developing a receiver that is compact, simple to assemble, and that consumes less power. The objective of this work is to develop a prototype integrated feed-receiver package with a sensitivity performance comparable to current narrower-band systems on radio telescopes and the DSN, but with a design that meets the requirement of low long-term operational costs. The ultra-wideband receiver package consists of a feedhorn, low-noise amplifier (LNA), and downconverters to analog intermediate frequencies. Both the feedhorn and the LNA are cryogenically cooled. Key features of this design are a quad-ridge feedhorn with dielectric loading and a cryogenic receiver with a noise temperature of no more than 30°K at the low end of the band. In this article, we report on the status of this receiver package development, including the feed design and LNA implementation. We present simulation studies of the feed horn carried out to optimize illumination

  6. Complex Permittivity of Planar Building Materials Measured With an Ultra-Wideband Free-Field Antenna Measurement System.

    PubMed

    Davis, Ben; Grosvenor, Chriss; Johnk, Robert; Novotny, David; Baker-Jarvis, James; Janezic, Michael

    2007-01-01

    Building materials are often incorporated into complex, multilayer macrostructures that are simply not amenable to measurements using coax or waveguide sample holders. In response to this, we developed an ultra-wideband (UWB) free-field measurement system. This measurement system uses a ground-plane-based system and two TEM half-horn antennas to transmit and receive the RF signal. The material samples are placed between the antennas, and reflection and transmission measurements made. Digital signal processing techniques are then applied to minimize environmental and systematic effects. The processed data are compared to a plane-wave model to extract the material properties with optimization software based on genetic algorithms.

  7. Ultra-wideband microwave photonic phase shifter with a 360° tunable phase shift based on an erbium-ytterbium co-doped linearly chirped FBG.

    PubMed

    Liu, Weilin; Yao, Jianping

    2014-02-15

    A simple photonic approach to implementing an ultra-wideband microwave phase shifter based on an erbium-ytterbium (Er/Yb) co-doped linearly chirped fiber Bragg grating (LCFBG) is proposed and experimentally demonstrated. The LCFBG is designed to have a constant magnitude response over a reflection band, and a phase response that is linear and nonlinear in two sections in the reflection band. When an optical single-sideband with carrier (OSSB+C) signal is sent to the LCFBG, by locating the optical carrier at the section corresponding to the nonlinear phase response and the sideband at the section corresponding to the linear phase response, a phase shift is introduced to the optical carrier, which is then translated to the microwave signal by beating the optical carrier and the sideband at a photodetector. The tuning of the phase shift is realized by optically pumping the Er/Yb co-doped LCFBG by a 980-nm laser diode. The proposed ultra-wideband microwave photonic phase shifter is experimentally demonstrated. A phase shifter with a full 360° phase shift with a bandwidth from 10 to 40 GHz is experimentally demonstrated.

  8. Photonic generation of ultra-wideband signals by direct current modulation on SOA section of an SOA-integrated SGDBR laser.

    PubMed

    Lv, Hui; Yu, Yonglin; Shu, Tan; Huang, Dexiu; Jiang, Shan; Barry, Liam P

    2010-03-29

    Photonic ultra-wideband (UWB) pulses are generated by direct current modulation of a semiconductor optical amplifier (SOA) section of an SOA-integrated sampled grating distributed Bragg reflector (SGDBR) laser. Modulation responses of the SOA section of the laser are first simulated with a microwave equivalent circuit model. Simulated results show a resonance behavior indicating the possibility to generate UWB signals with complex shapes in the time domain. The UWB pulse generation is then experimentally demonstrated for different selected wavelength channels with an SOA-integrated SGDBR laser.

  9. Electromagnetic interference of GSM mobile phones with the implantable deep brain stimulator, ITREL-III

    PubMed Central

    Kainz, Wolfgang; Alesch, François; Chan, Dulciana Dias

    2003-01-01

    Background The purpose was to investigate mobile phone interference with implantable deep brain stimulators by means of 10 different 900 Mega Hertz (MHz) and 10 different 1800 MHz GSM (Global System for Mobile Communications) mobile phones. Methods All tests were performed in vitro using a phantom especially developed for testing with deep brain stimulators. The phantom was filled with liquid phantom materials simulating brain and muscle tissue. All examinations were carried out inside an anechoic chamber on two implants of the same type of deep brain stimulator: ITREL-III from Medtronic Inc., USA. Results Despite a maximum transmitted peak power of mobile phones of 1 Watt (W) at 1800 MHz and 2 W at 900 MHz respectively, no influence on the ITREL-III was found. Neither the shape of the pulse form changed nor did single pulses fail. Tests with increased transmitted power using CW signals and broadband dipoles have shown that inhibition of the ITREL-III occurs at frequency dependent power levels which are below the emissions of GSM mobile phones. The ITREL-III is essentially more sensitive at 1800 MHz than at 900 MHz. Particularly the frequency range around 1500 MHz shows a very low interference threshold. Conclusion These investigations do not indicate a direct risk for ITREL-III patients using the tested GSM phones. Based on the interference levels found with CW signals, which are below the mobile phone emissions, we recommend similar precautions as for patients with cardiac pacemakers: 1. The phone should be used at the ear at the opposite side of the implant and 2. The patient should avoid carrying the phone close to the implant. PMID:12773204

  10. Military Handbook: Management and Design Guidance Electromagnetic Radiation Hardness for Air Launched Ordnance Systems

    DTIC Science & Technology

    1981-01-15

    system is attacted to the delivery aircraft until it Impacto a target, it is exposed to electromagnetic radiation from emitters aboard the delivery...homogeneous, isotropic, ambient medium may be a lossy dielectric. Antenna computations include cur- rent distribution, input impedance, radiation...permissible ambient interference level in the system, and when determining the expected signal-to-inter- ference ratio of the signal transmission circuits

  11. Ultra-Wideband Optical Modulation Spectrometer (OMS) Development

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan (Technical Monitor); Tolls, Volker

    2004-01-01

    The optical modulation spectrometer (OMS) is a novel, highly efficient, low mass backend for heterodyne receiver systems. Current and future heterodyne receiver systems operating at frequencies up to a few THz require broadband spectrometer backends to achieve spectral resolutions of R approximately 10(exp 5) to 10(exp 6) to carry out many important astronomical investigations. Among these are observations of broad emission and absorption lines from extra-galactic objects at high redshifts, spectral line surveys, and observations of planetary atmospheres. Many of these lines are pressure or velocity broadened with either large half-widths or line wings extending over several GHz. Current backend systems can cover the needed bandwidth only by combining the output of several spectrometers, each with typically up to 1 GHz bandwidth, or by combining several frequency-shifted spectra taken with a single spectrometer. An ultra-wideband optical modulation spectrometer with 10 - 40 GHz bandwidth will enable broadband ob- servations without the limitations and disadvantages of hybrid spectrometers. Spectrometers like the OMS will be important for both ground-based observatories and future space missions like the Single Aperture Far-Infrared Telescope (SAFIR) which might carry IR/submm array heterodyne receiver systems requiring a spectrometer for each array pixel. Small size, low mass and small power consumption are extremely important for space missions. This report summarizes the specifications developed for the OMS and lists already identified commercial parts. The report starts with a review of the principle of operation, then describes the most important components and their specifications which were derived from theory, and finishes with a conclusion and outlook.

  12. Electromagnetically induced transparency in circuit quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Ku, Hsiang-Sheng; Long, Junling; Wu, Xian; Lake, Russell; Gu, Xiu; Liu, Yu-Xi; Pappas, David

    Electromagnetically induced transparency (EIT) is a phenomenon caused by quantum interference between distinct transition paths in a three-level system. In general, it is difficult to realize EIT in a system of three-level superconducting quantum circuit, because the decay rates and the Rabi frequency of the driving field do not normally satisfy the conditions for EIT. However, we propose to achieve EIT within a driven circuit quantum electrodynamics (cQED) system by creating polariton states and engineering the decay rates of their levels with the driving field. In this talk we present spectroscopic measurements of the polariton states that will enable demonstration of EIT within cQED.

  13. Research on anti - interference based on GNSS

    NASA Astrophysics Data System (ADS)

    Yu, Huanran; Liu, Yijun

    2017-05-01

    Satellite Navigation System has been widely used in military and civil fields. It has all-functional, all-weather, continuity and real-time characteristics, can provide the precise position, velocity and timing information's for the users. The environments where the receiver of satellite navigation system works become more and more complex, and the satellite signals are susceptible to intentional or unintentional interferences, anti-jamming capability has become a key problem of satellite navigation receiver's ability to work normal. In this paper, we study a DOA estimation algorithm based on linear symmetric matrix to improve the anti-jamming capability of the satellite navigation receiver, has great significance to improve the performance of satellite navigation system in complex electromagnetic environment and enhance its applicability in various environments.

  14. Characterization and Mitigation of Radio Frequency Interference in PolSAR Data

    NASA Astrophysics Data System (ADS)

    Tao, Mingliang; Zhou, Feng; Zhang, Zijing

    2017-11-01

    Polarimetric synthetic aperture radar (PolSAR) is a very important instrument for active remote sensing. However, it is common to find that PolSAR echoes are often contaminated by incoherent electromagnetic interference, which is referred to as radio frequency interference (RFI). The analysis of RFI signatures and its influence on PolSAR data seems to be lacking in existing literatures, especially for PolSAR post products, such as the polarimetric decomposition parameters and clustering result. The goal of this paper is to reveal the link between RFI and polarization, as well as to analyze the impact of interference on PolSAR image and its post products. Qualitative and quantitative analyses of the adverse impact of RFI on the real measured NASA/Jet Propulsion Laboratory (JPL) Uninhabited Aerial Vehicle Synthetic Aperture Radar data set are illustrated from two perspectives, that is, evaluation of imaging quality and interpretation of scattering mechanisms. The point target response and effective number of looks are evaluated for assessing the distortion to focusing quality. Further, we discussed the characteristics of ultra wideband RFI and proposed a mitigation method using nonnegative matrix factorization along azimuth direction. The experimental results indicate the effectiveness of the proposed method.

  15. Ultra-Wideband Chaos Life-Detection Radar with Sinusoidal Wave Modulation

    NASA Astrophysics Data System (ADS)

    Xu, Hang; Li, Ying; Zhang, Jianguo; Han, Hong; Zhang, Bing; Wang, Longsheng; Wang, Yuncai; Wang, Anbang

    2017-12-01

    We propose and experimentally demonstrate an ultra-wideband (UWB) chaos life-detection radar. The proposed radar transmits a wideband chaotic-pulse-position modulation (CPPM) signal modulated by a single-tone sinusoidal wave. A narrow-band split ring sensor is used to collect the reflected sinusoidal wave, and a lock-in amplifier is utilized to identify frequencies of respiration and heartbeat by detecting the phase change of the sinusoidal echo signal. Meanwhile, human location is realized by correlating the CPPM echo signal with its delayed duplicate and combining the synthetic aperture technology. Experimental results demonstrate that the human target can be located accurately and his vital signs can be detected in a large dynamic range through a 20-cm-thick wall using our radar system. The down-range resolution is 15cm, benefiting from the 1-GHz bandwidth of the CPPM signal. The dynamic range for human location is 50dB, and the dynamic ranges for heartbeat and respiration detection respectively are 20dB and 60dB in our radar system. In addition, the bandwidth of the CPPM signal can be adjusted from 620MHz to 1.56GHz to adapt to different requirements.

  16. A Simple Ultra-Wideband Magneto-Electric Dipole Antenna With High Gain

    NASA Astrophysics Data System (ADS)

    Shuai, Chen-yang; Wang, Guang-ming

    2017-12-01

    A simple ultra-wideband magneto-electric dipole antenna utilizing a differential-fed structure is designed. The antenna mainly comprises three parts, including a novel circular horned reflector, two vertical semicircular shorted patches as a magnetic dipole, and a horizontal U-shaped semicircular electric dipole. A differential feeding structure working as a perfect balun excites the designed antenna. The results of simulation have a good match with the ones of measurement. Results indicate that the designed antenna achieves a wide frequency bandwidth of 107 % which is 3.19 10.61 GHz, when VSWR is below 2. Via introducing the circular horned reflector, the designed antenna attains a steady and high gain of 12±1.5dBi. Moreover, settled broadside direction main beam, high front-to-back ratio, low cross polarization, and the symmetrical and relatively stable radiation patterns in the E-and H-plane are gotten in the impedance bandwidth range. In the practical applications, the proposed antenna that is dc grounded and has a simple structure satisfies the requirement of many outdoor antennas.

  17. Preparation and characterization of TiO2 coated Fe nanofibers for electromagnetic wave absorber.

    PubMed

    Jang, Dae-Hwan; Song, Hanbok; Lee, Young-In; Lee, Kun-Jae; Kim, Ki Hyeon; Oh, Sung-Tag; Lee, Sang-Kwan; Choa, Yong-Ho

    2011-01-01

    Recently, electromagnetic interference (EMI) and electromagnetic compatibility (EMC) have become serious problems due to the growth of electronic device and next generation telecommunication. It is necessary to develop new electromagnetic wave absorbing material to overcome the limitation of electromagnetic wave shielding materials. The EMI attenuation is normally related to magnetic loss and dielectric loss. Therefore, magnetic material coating dielectric materials are required in this reason. In this study, TiO2 coated Fe nanofibers were prepared to improve their properties for electromagnetic wave absorption. Poly(vinylpyrrolidone) (PVP) and Iron (III) nitrate nonahydrate (Fe(NO3)3 x 9H2O) were used as starting materials for the synthesis of Fe oxide nanofibers. Fe oxide nanofibers were prepared by electrospinning in an electric field and heat treatment. TiO2 layer was coated on the surface of Fe oxide nanofibers using sol-gel process. After the reduction of TiO2 coated Fe oxide nanofibers, Fe nanofibers with a TiO2 coating layer of about 10 nm were successfully obtained. The morphology and structure of fibers were characterized by SEM, TEM, and XRD. In addition, the absorption properties of TiO2 coated Fe nanofibers were measured by network analyzer.

  18. Electromagnetic Remote Sensing. Low Frequency Electromagnetics

    DTIC Science & Technology

    1989-01-01

    biased superconducting point - contact quantum devices", J.Appl.Phys. 41, p.1572, 1970. [40] A.Yariv and H.Winsor, "Proposal for detection of magnetic ... magnetics , electromagnetic induc- tion, electrostatics) 2. Nondestructive testing (electromagnetic induction, neutron tomography, x-ray imaging) 3...Detection of submarines from aircraft or ships ( magnetics , electromagnetic induction) 4. Detection of land vehicles using buried sensors ( magnetics

  19. An Improved High-Sensitivity Airborne Transient Electromagnetic Sensor for Deep Penetration

    PubMed Central

    Chen, Shudong; Guo, Shuxu; Wang, Haofeng; He, Miao; Liu, Xiaoyan; Qiu, Yu; Zhang, Shuang; Yuan, Zhiwen; Zhang, Haiyang; Fang, Dong; Zhu, Jun

    2017-01-01

    The investigation depth of transient electromagnetic sensors can be effectively increased by reducing the system noise, which is mainly composed of sensor internal noise, electromagnetic interference (EMI), and environmental noise, etc. A high-sensitivity airborne transient electromagnetic (AEM) sensor with low sensor internal noise and good shielding effectiveness is of great importance for deep penetration. In this article, the design and optimization of such an AEM sensor is described in detail. To reduce sensor internal noise, a noise model with both a damping resistor and a preamplifier is established and analyzed. The results indicate that a sensor with a large diameter, low resonant frequency, and low sampling rate will have lower sensor internal noise. To improve the electromagnetic compatibility of the sensor, an electromagnetic shielding model for a central-tapped coil is established and discussed in detail. Previous studies have shown that unclosed shields with multiple layers and center grounding can effectively suppress EMI and eddy currents. According to these studies, an improved differential AEM sensor is constructed with a diameter, resultant effective area, resonant frequency, and normalized equivalent input noise of 1.1 m, 114 m2, 35.6 kHz, and 13.3 nV/m2, respectively. The accuracy of the noise model and the shielding effectiveness of the sensor have been verified experimentally. The results show a good agreement between calculated and measured results for the sensor internal noise. Additionally, over 20 dB shielding effectiveness is achieved in a complex electromagnetic environment. All of these results show a great improvement in sensor internal noise and shielding effectiveness. PMID:28106718

  20. Multilayer limb quasi-static electromagnetic modeling with experiments for Galvanic coupling type IBC.

    PubMed

    Pun, S H; Gao, Y M; Mou, P A; Mak, P U; Vai, M I; Du, M

    2010-01-01

    Intra-body communication (IBC) is a new, emerging, short-range and human body based communication methodology. It is a technique to network various devices on human body, by utilizing the conducting properties of human tissues. For currently fast developed Body area network(BAN)/Body sensor network(BSN), IBC is believed to have advantages in power consumption, electromagnetic radiation, interference from external electromagnetic noise, security, and restriction in spectrum resource. In this article, the authors propose an improved mathematical model, which includes both electrical properties and proportion of human tissues, for IBC on a human limb. By solving the mathematical model analytically on four-layer system (skin, fat, muscle, and bone) and conducting in-vivo experiment, a comparison has been conducted.

  1. Modifying a Commercial Centrifuge to Reduce Electromagnetic Interference and Evaluating Functionality of Ultrasound Equipment

    NASA Technical Reports Server (NTRS)

    Greening, Gage J.

    2016-01-01

    The Project Management and Engineering Branch (SF4) supports the Human Health and Performance Directorate (HH&P) and is responsible for developing and supporting human systems hardware for the International Space Station (ISS). When a principal investigator's (PI) medical research project on the ISS is accepted, SF4 develops the necessary hardware and software to transport to the ISS. The two projects I primarily worked on were the centrifuge and ultrasound projects. Centrifuge: One concern with spacecraft such as the ISS is electromagnetic interference (EMI) from onboard equipment, typically from radio waves (frequencies of 3 kHz to 300 GHz), which can negatively affect nearby circuitry. Standard commercial centrifuges produce EMI above safety limits, so my task was to help reduce EMI production from this equipment. Two centrifuges were tested: one unmodified as a control and one modified. To reduce EMI below safety limits, one centrifuge was modified to become a Faraday shield, in which significant electrical contact was made between all regions of the centrifuge housing. This included removing non-conductive paint, applying conductive fabric to the lid and foam sealer, adding a 10,000 µF decoupling capacitor across the power supply, and adding copper adhesive-mount gaskets to the housing interior. EMI testing of both centrifuges was performed in the EMI/EMC Control Test and Measurement Facility. EMI for both centrifuges was below safety limits for frequencies between 10 MHz and 15 GHz (pass); however, between 14 kHz and 10 MHz, EMI for the unmodified centrifuge exceeded safety limits (fail) as expected. Alternatively, for the modified centrifuge with the Faraday shield, EMI was below the safely limit of 55 dBµV/m for electromagnetic frequencies between 14 kHz and 10 MHz. This result indicates our modifications were successful. The successful EMI test allowed us to communicate with the vendor what modifications they needed to make to their commercial unit to

  2. Influence of electromagnetic interference on implanted cardiac arrhythmia devices in and around a magnetically levitated linear motor car.

    PubMed

    Fukuta, Motoyuki; Mizutani, Noboru; Waseda, Katsuhisa

    2005-01-01

    This study was designed to determine the susceptibility of implanted cardiac arrhythmia devices to electromagnetic interference in and around a magnetically levitated linear motor car [High-Speed Surface Transport (HSST)]. During the study, cardiac devices were connected to a phantom model that had similar characteristics to the human body. Three pacemakers from three manufacturers and one implantable cardioverter-defibrillator (ICD) were evaluated in and around the magnetically levitated vehicle. The system is based on a normal conductive system levitated by the attractive force of magnets and propelled by a linear induction motor without wheels. The magnetic field strength at 40 cm from the vehicle in the nonlevitating state was 0.12 mT and that during levitation was 0.20 mT. The magnetic and electric field strengths on a seat close to the variable voltage/variable frequency inverter while the vehicle was moving and at rest were 0.13 mT, 2.95 V/m and 0.04 mT, 0.36 V/m, respectively. Data recorded on a seat close to the reactor while the vehicle was moving and at rest were 0.09 mT, 2.45 V/m and 0.05 mT, 1.46 V/m, respectively. Measured magnetic and electric field strengths both inside and outside the linear motor car were too low to result in device inactivation. No sensing, pacing, or arrhythmic interactions were noted with any pacemaker or ICD programmed in either bipolar and unipolar configurations. In conclusion, our data suggest that a permanent programming change or a device failure is unlikely to occur and that the linear motor car system is probably safe for patients with one of the four implanted cardiac arrhythmia devices used in this study under the conditions tested.

  3. 4 Gbps impulse radio (IR) ultra-wideband (UWB) transmission over 100 meters multi mode fiber with 4 meters wireless transmission.

    PubMed

    Jensen, Jesper Bevensee; Rodes, Roberto; Caballero, Antonio; Yu, Xianbin; Gibbon, Timothy Braidwood; Monroy, Idelfonso Tafur

    2009-09-14

    We present experimental demonstrations of in-building impulse radio (IR) ultra-wideband (UWB) link consisting of 100 m multi mode fiber (MMF) and 4 m wireless transmission at a record 4 Gbps, and a record 8 m wireless transmission at 2.5 Gbps. A directly modulated vertical cavity surface emitting laser (VCSEL) was used for the generation of the optical signal. 8 m at 2.5 Gbps corresponds to a bit rate--distance product of 20; the highest yet reported for wireless IR-UWB transmission.

  4. Method and apparatus for simultaneously measuring a plurality of spectral wavelengths present in electromagnetic radiation

    DOEpatents

    Buican, Tudor N.; Martin, John C.

    1990-01-01

    An apparatus and method simultaneously measures a plurality of spectral wavelengths present in electromagnetic radiation. A modulatable birefringent optical element is employed to divide a polarized light beam into two components, thereby producing a phase difference in two resulting light beams such that the two beams can be made to interfere with one another when recombined, the interference pattern providing the wavelength information required for the analysis of the incident light. The interferometer thus created performs in a similar manner to a Michelson interferometer, but with no moving parts, and with a resolution dependent on the degree of phase shift introduced by the modulator.

  5. Unified physical mechanism of frequency-domain controlled-source electromagnetic exploration on land and in ocean

    NASA Astrophysics Data System (ADS)

    Liu, Changsheng; Lin, Jun; Zhou, Fengdao; Hu, Ruihua; Sun, Caitang

    2013-12-01

    The frequency-domain controlled-source electromagnetic method (FDCSEM) has played an important role in the terrestrial and oceanic exploration. However, the measuring manners and the detecting abilities in two kinds of environment are much different. This paper analyses the electromagnetic theories of the FDCSEM exploration on land and in ocean, simulates the electromagnetic responses in the two cases based on a united physical and mathematical model, and studies the physical mechanism leading to these differences. In this study, the relationship between the propagation paths and the detecting ability is illuminated and the way to improve the detecting ability of FDCSEM is brought forward. In terrestrial exploration, FDCSEM widely adopts the measuring manner of controlled-source audio-frequency magnetotelluric method (CSAMT), which records the electromagnetic fields in the far zone in the broadside direction of an electric dipole source. This manner utilizes the airwave (i.e. the Earth surface wave) and takes the stratum wave as interference. It is sensitive to the conductive target but insensitive to the resistive one. In oceanic exploration, FDCSEM usually adopts the measuring manner of marine controlled-source electromagnetic method (MCSEM), which records the electromagnetic fields, commonly the horizontal electric fields, in the in-line direction of the electric dipole source. This manner utilizes the stratum wave (i.e. the seafloor wave and the guided wave in resistive targets) and takes the airwave as interference. It is sensitive to the resistive target but relatively insensitive to the conductive one. The numerical simulation shows that both the airwave and the stratum wave contribute to the FDCSEM exploration. United utilization of them will enhance the anomalies of targets and congregate the advantages of CSAMT and MCSEM theories. At different azimuth and different offset, the contribution of the airwave and the stratum wave to electromagnetic anomaly is

  6. Basic EMC (Electromagnetic compatibility) technology advancement for C3 systems. Volume 4D: Modeling crosstalk in balanced twisted pairs

    NASA Astrophysics Data System (ADS)

    Koopman, D. A.; Paul, C. R.

    1984-08-01

    Electrical devices (computers, radar systems, communication radios, etc.) are interconnected by wires on most present systems. Electromagnetic fields produced by the excitation of these wires will cause unintentional coupling of signals onto nearby wires. This undesired electromagnetic coupling is termed crosstalk. It is important to be able to determine whether these crosstalk signals will cause the devices at the ends of the wires to malfunction. Wires are often grouped together in cable bundles or harnesses. The close proximity of wires in these bundles enhances the possibility that the crosstalk levels will be sufficiently large to cause malfunctions. The ability to predict crosstalk levels and the means to control crosstalk when it causes a problem are important to optimum system design. It interference of this type is allowed to surface during final system tests, a costly and time consuming retrofit of the wiring or the addition of filters and other interference control measures may be required.

  7. AC conductivity, magnetic and shielding effectiveness studies on polyaniline embedded Co0.5Mn0.5Fe2O4 nanoparticles for electromagnetic interference suppression

    NASA Astrophysics Data System (ADS)

    Gurusiddesh, M.; Madhu, B. J.; Shankaramurthy, G. J.

    2018-05-01

    Electrically conducting Polyaniline (PANI)/Co0.5Mn0.5Fe2O4 nanocomposites are synthesized by in situ polymerization of aniline monomer in the presence of Co0.5Mn0.5Fe2O4 nanoparticles. Structural studies on the synthesized samples have been carried out using X-ray diffraction technique, Field emission scanning electron microscopy and Energy dispersive X-ray spectroscopy. Frequency dependent ac conductivity studies on the prepared samples revealed that conductivity of the composite is high compared to Co0.5Mn0.5Fe2O4 nanoparticles. Further, both the samples exhibited hysteresis behavior under the applied magnetic field. Electromagnetic interference (EMI) shielding effectiveness of both the samples decreases with increase in the applied frequency in the studied frequency range. Maximum shielding effectiveness (SE) of 31.49 dB and 62.84 dB were obtained for Co0.5Mn0.5Fe2O4 nanoparticles and PANI/Co0.5Mn0.5Fe2O4 nanocomposites respectively in the studied frequency range. Observed higher EMI shielding in the composites was attributed to its high electrical conductivity.

  8. Ultrawideband temperature-dependent dielectric properties of animal liver tissue in the microwave frequency range.

    PubMed

    Lazebnik, Mariya; Converse, Mark C; Booske, John H; Hagness, Susan C

    2006-04-07

    The development of ultrawideband (UWB) microwave diagnostic and therapeutic technologies, such as UWB microwave breast cancer detection and hyperthermia treatment, is facilitated by accurate knowledge of the temperature- and frequency-dependent dielectric properties of biological tissues. To this end, we characterize the temperature-dependent dielectric properties of a representative tissue type-animal liver-from 0.5 to 20 GHz. Since discrete-frequency linear temperature coefficients are impractical and inappropriate for applications spanning wide frequency and temperature ranges, we propose a novel and compact data representation technique. A single-pole Cole-Cole model is used to fit the dielectric properties data as a function of frequency, and a second-order polynomial is used to fit the Cole-Cole parameters as a function of temperature. This approach permits rapid estimation of tissue dielectric properties at any temperature and frequency.

  9. Environmental impact of the use of radiofrequency electromagnetic fields in physiotherapeutic treatment.

    PubMed

    Gryz, Krzysztof; Karpowicz, Jolanta

    2014-01-01

    Electromagnetic fields used in physiotherapeutic treatment affect not only patients, but also physiotherapists, patients not undergoing treatment and electronic medical equipment. The aim of the work was to study the parameters of the electromagnetic fields of physiotherapeutic devices with respect to requirements regarding the protection of electronic devices, including medical implants, against electromagnetic intererence, and the protection of the general public (patients not undergoing treatment and bystanders), as well as medical personnel, against the health hazards caused by electromagnetic exposure. The spatial distribution of electric and magnetic field strength was investigated near 3 capacitive short-wave and 3 long-wave diathermies and 3 ultrasound therapy units, as along with the capacitive electric currents caused by electromagnetic field interaction in the upper limbs of the physiotherapists operating these devices. The physiotherapists' exposure to electromagnetic fields depends on the spatial organisation of the workspace and their location during treatment. Electric fields able to interfere with the function of electronic medical implants and in whic anyone not undergoing treatment should not be present were measured up to 150-200 cm away from active applicators of short-wave diathermy, and up to 40-45 cm away from long-wave diathermy ones. Electric fields in which workers should not be present were measured up to 30-40 cm away from the applicators and cables of active short-wave diathermy devices. A capacitive electric current with a strength exceeding many times the international recommendations regarding workers protection was measured in the wrist while touching applicators and cables of active short-wave diathermy devices. The strongest environmental electromagnetic hazards occur near short-wave diathermy devices, and to a lesser degree near long-wave diathermy devices, but were not found near ultrasound therapy units.

  10. Analog of electromagnetically induced transparency at terahertz frequency based on a bilayer-double-H-metamaterial

    NASA Astrophysics Data System (ADS)

    Wang, Yue'e.; Li, Zhi; Hu, Fangrong

    2018-01-01

    We designed a bilayer-double-H-metamaterials (BDHM) composed of two layers of metal and two layers of dielectric to analog a spectral response of electromagnetically induced transparency (EIT) at terahertz frequency. By changing the incident angle, the BDHM exhibits an EIT-like spectral response. The tunable spectral performances and modulation mechanism of the transparent peak are theoretically investigated using full-wave electromagnetic simulation software. The physical mechanism of the EIT-like effect is based on the constructive and destructive interference between the induced electrical dipoles. Our work provides a new way to realize the EIT-like effect only by changing the incident angles of the metamaterials. The potential applications include tunable filters, sensors, attenuators, switches, and so on.

  11. In-harbor and at-sea electromagnetic compatibility survey for maritime satellite L-band shipboard terminal

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Geostationary maritime satellites, one over the Pacific and one over the Atlantic Ocean, are planned to make available high-speed communications and navigation (position determination) services to ships at sea. A shipboard satellite terminal, operating within the authorized maritime L-band, 1636.5 to 1645.0 MHz, will allow ships to pass voice, teletype, facsimile, and data messages to shore communication facilities with a high degree of reliability. The shore-to-ship link will also operate in the maritime L-band from 1535.0 to 1543.5 MHz. A significant number or maritime/commercial ships are expected to be equipped with an L-band satellite terminal by the year 1980, and so consequently, there is an interest in determining electromagnetic compatibility between the proposed L-band shipboard terminal and existing, on-board, shipboard communications/electronics and electrical systems, as well as determining the influence of shore-based interference sources. The shipboard electromagnetic interference survey described was conducted on-board the United States Line's American Leader class (15,690 tons) commercial container ship, the "American Alliance" from June 16 to 20, 1974. Details of the test plan and measurements are given.

  12. Electromagnetic Compatibility Testing of Implantable Neurostimulators Exposed to Metal Detectors

    PubMed Central

    Seidman, Seth J; Kainz, Wolfgang; Casamento, Jon; Witters, Donald

    2010-01-01

    This paper presents results of electromagnetic compatibility (EMC) testing of three implantable neurostimulators exposed to the magnetic fields emitted from several walk-through and hand-held metal detectors. The motivation behind this testing comes from numerous adverse event reports involving active implantable medical devices (AIMDs) and security systems that have been received by the Food and Drug Administration (FDA). EMC testing was performed using three neurostimulators exposed to the emissions from 12 walk-through metal detectors (WTMDs) and 32 hand-held metal detectors (HHMDs). Emission measurements were performed on all HHMDs and WTMDs and summary data is presented. Results from the EMC testing indicate possible electromagnetic interference (EMI) between one of the neurostimulators and one WTMD and indicate that EMI between the three neurostimulators and HHMDs is unlikely. The results suggest that worst case situations for EMC testing are hard to predict and testing all major medical device modes and setting parameters are necessary to understand and characterize the EMC of AIMDs. PMID:20448818

  13. Out of time: a possible link between mirror neurons, autism and electromagnetic radiation.

    PubMed

    Thornton, Ian M

    2006-01-01

    Recent evidence suggests a link between autism and the human mirror neuron system. In this paper, I argue that temporal disruption from the environment may play an important role in the observed mirror neuron dysfunction, leading in turn to the pattern of deficits associated with autism. I suggest that the developing nervous system of an infant may be particularly prone to temporal noise that can interfere with the initial calibration of brain networks such as the mirror neuron system. The most likely source of temporal noise in the environment is artificially generated electromagnetic radiation. To date, there has been little evidence that electromagnetic radiation poses a direct biological hazard. It is clear, however, that time-varying electromagnetic waves have the potential to temporally modulate the nervous system, particularly when populations of neurons are required to act together. This modulation may be completely harmless for the fully developed nervous system of an adult. For an infant, this same temporal disruption might act to severely delay or disrupt vital calibration processes.

  14. Photonic generation of ultra-wideband doublet pulse using a semiconductor-optical-amplifier based polarization-diversified loop.

    PubMed

    Luo, Bowen; Dong, Jianji; Yu, Yuan; Yang, Ting; Zhang, Xinliang

    2012-06-15

    We propose and demonstrate a novel scheme of ultra-wideband (UWB) doublet pulse generation using a semiconductor optical amplifier (SOA) based polarization-diversified loop (PDL) without any assistant light. In our scheme, the incoming gaussian pulse is split into two parts by the PDL, and each of them is intensity modulated by the other due to cross-gain modulation (XGM) in the SOA. Then, both parts are recombined with incoherent summation to form a UWB doublet pulse. Bi-polar UWB doublet pulse generation is demonstrated using an inverted gaussian pulse injection. Moreover, pulse amplitude modulation of UWB doublet is also experimentally demonstrated. Our scheme shows some advantages, such as simple implementation without assistant light and single optical carrier operation with good fiber dispersion tolerance.

  15. Experimental demonstration of the transmission performance for LDPC-coded multiband OFDM ultra-wideband over fiber system

    NASA Astrophysics Data System (ADS)

    He, Jing; Wen, Xuejie; Chen, Ming; Chen, Lin; Su, Jinshu

    2015-01-01

    To improve the transmission performance of multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband (UWB) over optical fiber, a pre-coding scheme based on low-density parity-check (LDPC) is adopted and experimentally demonstrated in the intensity-modulation and direct-detection MB-OFDM UWB over fiber system. Meanwhile, a symbol synchronization and pilot-aided channel estimation scheme is implemented on the receiver of the MB-OFDM UWB over fiber system. The experimental results show that the LDPC pre-coding scheme can work effectively in the MB-OFDM UWB over fiber system. After 70 km standard single-mode fiber (SSMF) transmission, at the bit error rate of 1 × 10-3, the receiver sensitivities are improved about 4 dB when the LDPC code rate is 75%.

  16. Interference patterns of a horizontal electric dipole over layered dielectric media.

    NASA Technical Reports Server (NTRS)

    Tsang, L.; Kong, J. A.; Simmons, G.

    1973-01-01

    Interference patterns for electromagnetic fields due to a subsurface reflector below a layered lossy dielectric are calculated with the geometrical optics approximation for use in interpreting data to be collected on the moon by Apollo 17 as well as data currently being obtained on terrestrial glaciers. The radiating antenna lies on the surface. All six field components are calculated and studied. For the endfire solutions, the peak of the first reflected wave is found to be different from that of the broadside ones. To facilitate a physical discussion, we plotted the radiation patterns due to the antenna on the surface.

  17. Optical ultra-wide-band pulse bipolar and shape modulation based on a symmetric PM-IM conversion architecture.

    PubMed

    Wang, Shiguang; Chen, Hongwei; Xin, Ming; Chen, Minghua; Xie, Shizhong

    2009-10-15

    A simple and feasible technique for ultra-wide-band (UWB) pulse bipolar modulation (PBM) and pulse shape modulation (PSM) in the optical domain is proposed and demonstrated. The PBM and PSM are performed using a symmetric phase modulation to intensity modulation conversion architecture, including a couple of phase modulators and an optical bandpass filter (OBPF). Two optical carriers, which are separately phase modulated by two appropriate electrical pulse patterns, are at the long- and short-wavelength linear slopes of the OBPF spectrum, respectively. The high-speed PBM and PSM without limit of chip length, polarity, and shape are implemented in simulation and are also verified by experiment. (c) 2009 Optical Society of America.

  18. Ultra-Wideband Radiometry Remote Sensing of Polar Ice Sheet Temperature Profile, Sea Ice and Terrestrial Snow Thickness: Forward Modeling and Data Analysis

    NASA Astrophysics Data System (ADS)

    Tsang, L.; Tan, S.; Sanamzadeh, M.; Johnson, J. T.; Jezek, K. C.; Durand, M. T.

    2017-12-01

    The recent development of an ultra-wideband software defined radiometer (UWBRAD) operating over the unprotected spectrum of 0.5 2.0 GHz using radio-frequency interference suppression techniques offers new methodologies for remote sensing of the polar ice sheets, sea ice, and terrestrial snow. The instrument was initially designed for remote sensing of the intragalcial temperature profile of the ice sheet, where a frequency dependent penetration depth yields a frequency dependent brightness temperature (Tb) spectrum that can be linked back to the temperature profile of the ice sheet. The instrument was tested during a short flight over Northwest Greenland in September, 2016. Measurements were successfully made over the different snow facies characteristic of Greenland including the ablation, wet snow and percolation facies, and ended just west of Camp Century during the approach to the dry snow zone. Wide-band emission spectra collected during the flight have been processed and analyzed. Results show that the spectra are highly sensitive to the facies type with scattering from ice lenses being the dominant reason for low Tbs in the percolation zone. Inversion of Tb to physical temperature at depth was conducted on the measurements near Camp Century, achieving a -1.7K ten-meter error compared to borehole measurements. However, there is a relatively large uncertainty in the lower part possibly due to the large scattering near the surface. Wideband radiometry may also be applicable to sea ice and terrestrial snow thickness retrieval. Modeling studies suggest that the UWBRAD spectra reduce ambiguities inherent in other sea ice thickness retrievals by utilizing coherent wave interferences that appear in the Tb spectrum. When applied to a lossless medium such as terrestrial snow, this coherent oscillation turns out to be the single key signature that can be used to link back to snow thickness. In this paper, we report our forward modeling findings in support of instrument

  19. Electromagnetic characteristics of systems of prolate and oblate ellipsoids

    NASA Astrophysics Data System (ADS)

    Karimi, Pouyan; Amiri-Hezaveh, Amirhossein; Ostoja-Starzewski, Martin; Jin, Jian-Ming

    2017-11-01

    The present study suggests a novel model for simulating electromagnetic characteristics of spheroidal nanofillers. The electromagnetic interference shielding efficiency of prolate and oblate ellipsoids in the X-band frequency range is studied. Different multilayered nanocomposite configurations incorporating carbon nanotubes, graphene nanoplatelets, and carbon blacks are fabricated and tested. The best performance for a specific thickness is observed for the multilayered composite with a gradual increase in the thickness and electrical conductivity of layers. The simulation results based on the proposed model are shown to be in good agreement with the experimental data. The effect of filler alignment on shielding efficiency is also studied by using the nematic order parameter. The ability of a nanocomposite to shield the incident power is found to decrease by increasing alignment especially for high volume fractions of prolate fillers. The interaction of the electromagnetic wave and the fillers is mainly affected by the polarization of the electric field; when the electric field is perpendicular to the equatorial axis of a spheroid, the interaction is significantly reduced and results in a lower shielding efficiency. Apart from the filler alignment, size polydispersity is found to have a significant effect on reflected and transmitted powers. It is demonstrated that the nanofillers with a higher aspect ratio mainly contribute to the shielding performance. The results are of interest in both shielding structures and microwave absorbing materials.

  20. Window-Based Channel Impulse Response Prediction for Time-Varying Ultra-Wideband Channels.

    PubMed

    Al-Samman, A M; Azmi, M H; Rahman, T A; Khan, I; Hindia, M N; Fattouh, A

    2016-01-01

    This work proposes channel impulse response (CIR) prediction for time-varying ultra-wideband (UWB) channels by exploiting the fast movement of channel taps within delay bins. Considering the sparsity of UWB channels, we introduce a window-based CIR (WB-CIR) to approximate the high temporal resolutions of UWB channels. A recursive least square (RLS) algorithm is adopted to predict the time evolution of the WB-CIR. For predicting the future WB-CIR tap of window wk, three RLS filter coefficients are computed from the observed WB-CIRs of the left wk-1, the current wk and the right wk+1 windows. The filter coefficient with the lowest RLS error is used to predict the future WB-CIR tap. To evaluate our proposed prediction method, UWB CIRs are collected through measurement campaigns in outdoor environments considering line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. Under similar computational complexity, our proposed method provides an improvement in prediction errors of approximately 80% for LOS and 63% for NLOS scenarios compared with a conventional method.

  1. Window-Based Channel Impulse Response Prediction for Time-Varying Ultra-Wideband Channels

    PubMed Central

    Al-Samman, A. M.; Azmi, M. H.; Rahman, T. A.; Khan, I.; Hindia, M. N.; Fattouh, A.

    2016-01-01

    This work proposes channel impulse response (CIR) prediction for time-varying ultra-wideband (UWB) channels by exploiting the fast movement of channel taps within delay bins. Considering the sparsity of UWB channels, we introduce a window-based CIR (WB-CIR) to approximate the high temporal resolutions of UWB channels. A recursive least square (RLS) algorithm is adopted to predict the time evolution of the WB-CIR. For predicting the future WB-CIR tap of window wk, three RLS filter coefficients are computed from the observed WB-CIRs of the left wk−1, the current wk and the right wk+1 windows. The filter coefficient with the lowest RLS error is used to predict the future WB-CIR tap. To evaluate our proposed prediction method, UWB CIRs are collected through measurement campaigns in outdoor environments considering line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. Under similar computational complexity, our proposed method provides an improvement in prediction errors of approximately 80% for LOS and 63% for NLOS scenarios compared with a conventional method. PMID:27992445

  2. Bandwidth enhancement of a microstrip patch antenna for ultra-wideband applications

    NASA Astrophysics Data System (ADS)

    Anum, Khanda; Singh, Milind Saurabh; Mishra, Rajan; Tripathi, G. S.

    2018-04-01

    The microstrip antennas are used where size, weight, cost, and performance are constraints. Microstrip antennas (MSA) are being used in many government and commercial applications among which it is mostly used in wireless communication. The proposed antenna is designed for Ultra-wideband (UWB), it is designed on FR4 substrate material with ɛr = 4.3 and 0.0025 loss tangent. The shape and size of patch in microstrip patch antenna plays an important role in its performance. In the proposed antenna design the respective changes have been introduced which includes slotting the feedline,adding a curved slot in patch and change in patch shape itself to improve the bandwidth of the conventional antenna. The simulated results of proposed antenna shows impedance bandwidth (defined by 10 dB return loss) of 2-11.1GHz, VSWR<2 for entire bandwidth of antenna and peak gain is 5.2 dB. Thus the antenna covers the UWB range and it can also be used for bands such as 2.4/3.6/5 -GHz WLAN bands, 2.5/3.5/5.5GHz WiMAX bands and X band satellite communication at 7.25-8.395 GHz.

  3. Adhoc electromagnetic compatibility testing of non-implantable medical devices and radio frequency identification

    PubMed Central

    2013-01-01

    Background The use of radiofrequency identification (RFID) in healthcare is increasing and concerns for electromagnetic compatibility (EMC) pose one of the biggest obstacles for widespread adoption. Numerous studies have documented that RFID can interfere with medical devices. The majority of past studies have concentrated on implantable medical devices such as implantable pacemakers and implantable cardioverter defibrillators (ICDs). This study examined EMC between RFID systems and non-implantable medical devices. Methods Medical devices were exposed to 19 different RFID readers and one RFID active tag. The RFID systems used covered 5 different frequency bands: 125–134 kHz (low frequency (LF)); 13.56 MHz (high frequency (HF)); 433 MHz; 915 MHz (ultra high frequency (UHF])) and 2.4 GHz. We tested three syringe pumps, three infusion pumps, four automatic external defibrillators (AEDs), and one ventilator. The testing procedure is modified from American National Standards Institute (ANSI) C63.18, Recommended Practice for an On-Site, Ad Hoc Test Method for Estimating Radiated Electromagnetic Immunity of Medical Devices to Specific Radio-Frequency Transmitters. Results For syringe pumps, we observed electromagnetic interference (EMI) during 13 of 60 experiments (22%) at a maximum distance of 59 cm. For infusion pumps, we observed EMI during 10 of 60 experiments (17%) at a maximum distance of 136 cm. For AEDs, we observed EMI during 18 of 75 experiments (24%) at a maximum distance of 51 cm. The majority of the EMI observed was classified as probably clinically significant or left the device inoperable. No EMI was observed for all medical devices tested during exposure to 433 MHz (two readers, one active tag) or 2.4 GHz RFID (two readers). Conclusion Testing confirms that RFID has the ability to interfere with critical medical equipment. Hospital staff should be aware of the potential for medical device EMI caused by RFID systems and should be encouraged to

  4. Adhoc electromagnetic compatibility testing of non-implantable medical devices and radio frequency identification.

    PubMed

    Seidman, Seth J; Guag, Joshua W

    2013-07-11

    The use of radiofrequency identification (RFID) in healthcare is increasing and concerns for electromagnetic compatibility (EMC) pose one of the biggest obstacles for widespread adoption. Numerous studies have documented that RFID can interfere with medical devices. The majority of past studies have concentrated on implantable medical devices such as implantable pacemakers and implantable cardioverter defibrillators (ICDs). This study examined EMC between RFID systems and non-implantable medical devices. Medical devices were exposed to 19 different RFID readers and one RFID active tag. The RFID systems used covered 5 different frequency bands: 125-134 kHz (low frequency (LF)); 13.56 MHz (high frequency (HF)); 433 MHz; 915 MHz (ultra high frequency (UHF])) and 2.4 GHz. We tested three syringe pumps, three infusion pumps, four automatic external defibrillators (AEDs), and one ventilator. The testing procedure is modified from American National Standards Institute (ANSI) C63.18, Recommended Practice for an On-Site, Ad Hoc Test Method for Estimating Radiated Electromagnetic Immunity of Medical Devices to Specific Radio-Frequency Transmitters. For syringe pumps, we observed electromagnetic interference (EMI) during 13 of 60 experiments (22%) at a maximum distance of 59 cm. For infusion pumps, we observed EMI during 10 of 60 experiments (17%) at a maximum distance of 136 cm. For AEDs, we observed EMI during 18 of 75 experiments (24%) at a maximum distance of 51 cm. The majority of the EMI observed was classified as probably clinically significant or left the device inoperable. No EMI was observed for all medical devices tested during exposure to 433 MHz (two readers, one active tag) or 2.4 GHz RFID (two readers). Testing confirms that RFID has the ability to interfere with critical medical equipment. Hospital staff should be aware of the potential for medical device EMI caused by RFID systems and should be encouraged to perform on-site RF immunity tests prior

  5. [Interference of vitamin E on the brain tissue damage by electromagnetic radiation of cell phone in pregnant and fetal rats].

    PubMed

    Gao, Xian; Luo, Rui; Ma, Bin; Wang, Hui; Liu, Tian; Zhang, Jing; Lian, Zhishun; Cui, Xi

    2013-07-01

    positive control group, and the content of MDA was found significantly decreased in both middle and high dosage of vitamin E groups(P < 0.05). The same results have also been found in high dosage pregnant rat group, but in middle dosage group only SOD activity was found increased with significance (P < 0.05). With the dosage increase of vitamin E, the vitality of SOD and GSH-Px was increasing and the content of MDA was decreasing. Under the experimental dosage, vitamin E has certain interference on damage of antioxidant capacity and energy metabolization induced by electromagnetic radiation of cell phone in pregnant rats and fetal rats.

  6. Ultra-wideband Ge-rich silicon germanium integrated Mach-Zehnder interferometer for mid-infrared spectroscopy.

    PubMed

    Vakarin, Vladyslav; Ramírez, Joan Manel; Frigerio, Jacopo; Ballabio, Andrea; Le Roux, Xavier; Liu, Qiankun; Bouville, David; Vivien, Laurent; Isella, Giovanni; Marris-Morini, Delphine

    2017-09-01

    This Letter explores the use of Ge-rich Si 0.2 Ge 0.8 waveguides on graded Si 1-x Ge x substrate for the demonstration of ultra-wideband photonic integrated circuits in the mid-infrared (mid-IR) wavelength range. We designed, fabricated, and characterized broadband Mach-Zehnder interferometers fully covering a range of 3 μm in the mid-IR band. The fabricated devices operate indistinctly in quasi-TE and quasi-TM polarizations, and have an extinction ratio higher than 10 dB over the entire operating wavelength range. The obtained results are in good correlation with theoretical predictions, while numerical simulations indicate that the device bandwidth can reach one octave with low additional losses. This Letter paves the way for further realization of mid-IR integrated spectrometers using low-index-contrast Si 1-x Ge x waveguides with high germanium concentration.

  7. Electromagnetic fields due to a horizontal electric dipole antenna laid on the surface of a two-layer medium

    NASA Technical Reports Server (NTRS)

    Tsang, L.; Kong, J. A.

    1974-01-01

    With applications to geophysical subsurface probings, electromagnetic fields due to a horizontal electric dipole laid on the surface of a two-layer medium are solved by a combination of analytic and numerical methods. Interference patterns are calculated for various layer thickness. The results are interpreted in terms of normal modes, and the accuracies of the methods are discussed.

  8. Achievable rate degradation of ultra-wideband coherent fiber communication systems due to stimulated Raman scattering.

    PubMed

    Semrau, Daniel; Killey, Robert; Bayvel, Polina

    2017-06-12

    As the bandwidths of optical communication systems are increased to maximize channel capacity, the impact of stimulated Raman scattering (SRS) on the achievable information rates (AIR) in ultra-wideband coherent WDM systems becomes significant, and is investigated in this work, for the first time. By modifying the GN-model to account for SRS, it is possible to derive a closed-form expression that predicts the optical signal-to-noise ratio of all channels at the receiver for bandwidths of up to 15 THz, which is in excellent agreement with numerical calculations. It is shown that, with fixed modulation and coding rate, SRS leads to a drop of approximately 40% in achievable information rates for bandwidths higher than 15 THz. However, if adaptive modulation and coding rates are applied across the entire spectrum, this AIR reduction can be limited to only 10%.

  9. Calculation of electromagnetic force in electromagnetic forming process of metal sheet

    NASA Astrophysics Data System (ADS)

    Xu, Da; Liu, Xuesong; Fang, Kun; Fang, Hongyuan

    2010-06-01

    Electromagnetic forming (EMF) is a forming process that relies on the inductive electromagnetic force to deform metallic workpiece at high speed. Calculation of the electromagnetic force is essential to understand the EMF process. However, accurate calculation requires complex numerical solution, in which the coupling between the electromagnetic process and the deformation of workpiece needs be considered. In this paper, an appropriate formula has been developed to calculate the electromagnetic force in metal work-piece in the sheet EMF process. The effects of the geometric size of coil, the material properties, and the parameters of discharge circuit on electromagnetic force are taken into consideration. Through the formula, the electromagnetic force at different time and in different positions of the workpiece can be predicted. The calculated electromagnetic force and magnetic field are in good agreement with the numerical and experimental results. The accurate prediction of the electromagnetic force provides an insight into the physical process of the EMF and a powerful tool to design optimum EMF systems.

  10. Electromagnetic Fields

    PubMed Central

    Ishida, Masashi; Takahashi, Kenji A.; Arai, Yuji; Kubo, Toshikazu

    2008-01-01

    Establishing a means to prevent osteonecrosis after corticosteroid administration is an important theme. We asked whether pulsed electromagnetic field stimulation, a noninvasive treatment, could prevent osteonecrosis. Ninety rabbits were divided into four treatment groups: (1) exposure of 10 hours per day to electromagnetic stimulation for 1 week, followed by injection of methylprednisolone (20 mg/kg), and exposure of 10 hours per day to electromagnetism for a further 4 weeks (n = 40); (2) methylprednisolone injection only (n = 40); (3) no treatment (n = 5); and (4) exposure of 10 hours per day to electromagnetism for 5 weeks (n = 5). After 5 weeks, we harvested and histologically examined femurs bilaterally. The frequency of osteonecrosis was lower in the steroid-electromagnetism group (15/40) than in the steroid-only group (26/40). No necrotic lesions were found in the two control groups. We observed no clear effects of electromagnetism on the number, location, extent, and repair of necrotic lesions and intramedullary fat cell size in affected rabbits. Pulsed electromagnetic field stimulation reportedly augments angiogenesis factors and dilates blood vessels; these effects may lower the frequency of osteonecrosis. Exposure to pulsed electromagnetic field stimulation before corticosteroid administration could be an effective means to reduce the risk of osteonecrosis. PMID:18350347

  11. Measurement of the complex permittivity of microbubbles using a cavity perturbation technique for contrast enhanced ultra-wideband breast cancer detection.

    PubMed

    Ogunlade, Olumide; Chen, Yifan; Kosmas, Panagiotis

    2010-01-01

    Measurements of the complex permittivity of various concentrations of microbubbles in ethylene glycol liquid phantom have been carried out. A cavity perturbation technique using custom rectangular waveguide cavities, which are sensitive to small changes in the permittivity of the perturber, has been employed. Three different frequencies within the ultra-wideband (UWB) frequency spectrum have been used for the experiments. The results show that the concentration of the air filled microbubbles required to achieve a dielectric contrast as little as 2% exceeds the recommended dosage used in clinical ultrasound applications, by more than two orders of magnitude.

  12. Monitoring Radio Frequency Interference in Southwest Virginia

    NASA Astrophysics Data System (ADS)

    Rapp, Steve

    2010-01-01

    The radio signals received from astronomical objects are extremely weak. Because of this, radio sources are easily shrouded by interference from devices such as satellites and cell phone towers. Radio astronomy is very susceptible to this radio frequency interference (RFI). Possibly even worse than complete veiling, weaker interfering signals can contaminate the data collected by radio telescopes, possibly leading astronomers to mistaken interpretations. To help promote student awareness of the connection between radio astronomy and RFI, an inquiry-based science curriculum was developed to allow high school students to determine RFI levels in their communities. The Quiet Skies Project_the result of a collaboration between the National Aeronautics and Space Administration (NASA), the National Science Foundation (NSF), and the National Radio Astronomy Observatory (NRAO)_encourages students to collect and analyze RFI data and develop conclusions as a team. Because the project focuses on electromagnetic radiation, it is appropriate for physics, physical science, chemistry, or general science classes. My class-about 50 students from 15 southwest Virginia high schools-participated in the Quiet Skies Project and were pioneers in the use of the beta version of the Quiet Skies Detector (QSD), which is used to detect RFI. Students have been involved with the project since 2005 and have collected and shared data with NRAO. In analyzing the data they have noted some trends in RFI in Southwest Virginia.

  13. High permittivity polyaniline-barium titanate nanocomposites with excellent electromagnetic interference shielding response

    NASA Astrophysics Data System (ADS)

    Saini, Parveen; Arora, Manju; Gupta, Govind; Gupta, Bipin Kumar; Singh, Vidya Nand; Choudhary, Veena

    2013-05-01

    Organic conductive polymers are at the forefront of materials science research because of their diverse applications built around their interesting and unique properties. This work reports for the first time a correlation between the structural, electrical, and electromagnetic properties of polyaniline (PANI)-tetragonal BaTiO3 (TBT) nanocomposites prepared by in-situ emulsion polymerization. XRD studies and HRTEM micrographs of these nanocomposites clearly revealed the incorporation of TBT nanoparticles in the conducting PANI matrix. EPR and XPS measurements reveal that increase in loading level of BaTiO3 results in a reduction of the doping level of PANI. The Ku-Band (12.4-18 GHz) network analysis of these composites shows exceptional microwave shielding response with absorption dominated total shielding effectiveness (SET) value of -71.5 dB (blockage of more than 99.99999% of incident radiation) which is the highest value reported in the literature. Such a high attenuation level, which critically depends on the fraction of BaTiO3 is attributed to optimized dielectric and electrical attributes. This demonstrates the possibility of using these materials in stealth technology and for making futuristic radar absorbing materials (RAMs).Organic conductive polymers are at the forefront of materials science research because of their diverse applications built around their interesting and unique properties. This work reports for the first time a correlation between the structural, electrical, and electromagnetic properties of polyaniline (PANI)-tetragonal BaTiO3 (TBT) nanocomposites prepared by in-situ emulsion polymerization. XRD studies and HRTEM micrographs of these nanocomposites clearly revealed the incorporation of TBT nanoparticles in the conducting PANI matrix. EPR and XPS measurements reveal that increase in loading level of BaTiO3 results in a reduction of the doping level of PANI. The Ku-Band (12.4-18 GHz) network analysis of these composites shows exceptional

  14. Ultra-wideband polarization-insensitive and wide-angle thin absorber based on resistive metasurfaces with three resonant modes

    NASA Astrophysics Data System (ADS)

    Li, Long; Lv, Zhiyong

    2017-08-01

    In this paper, a metamaterial absorber is designed, fabricated, and experimentally demonstrated to realize ultra-wideband absorption, which is composed of three layers of square resistive metasurfaces with different dimensions. Multilayer resistive metasurfaces can not only broaden the absorption bandwidth but also adjust the impedance matching based on multi-resonant modes. The total thickness of the proposed absorber is 3.8 mm, which is only 0.09 λ at the lowest frequency. The bandwidth of absorptivity more than 90% is from 7.0 GHz to 37.4 GHz, and the relative absorption bandwidth is about 137%. The proposed absorber has good polarization-insensitiveness and wide incident angle stability. The measured results agree well with the theoretical design and the numerical simulations.

  15. Generation of ultra-wideband triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion.

    PubMed

    Li, Wei; Wang, Li Xian; Hofmann, Werner; Zhu, Ning Hua; Bimberg, Dieter

    2012-08-27

    We propose and demonstrate a novel scheme to generate ultra-wideband (UWB) triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion. First a phase-modulated Gaussian doublet pulse is generated by four-wave mixing in a highly nonlinear fiber. Then an UWB triplet pulse is generated by generating the first-order derivative of the phase-modulated Gaussian doublet pulse using an optical filter serving as a frequency discriminator. By locating the optical signal at the linear slope of the optical filter, the phase modulated Gaussian doublet pulse is converted to an intensity-modulated UWB triplet pulse which well satisfies the Federal Communications Commission spectral mask requirements, even in the extremely power-restricted global positioning system band.

  16. Achieving the broader frequency electromagnetic absorber by development of magnetic core-shell composite with tunable shell/core sizes

    NASA Astrophysics Data System (ADS)

    Cheng, Ye; Guo, Yuhang; Zhang, Zhenya; Dong, Songtao; Liu, Suwei; Wang, Hongying

    2018-03-01

    Magnetic absorber has been regarded as the advanced electromagnetic energy transfer material to solve the increasingly high frequency electromagnetic interference issue. Even so, the pure magnetic material, in particular magnetic metal nanoparticle, suffering from the poor chemical stability and strong eddy current effect, thus limits it further application. To overcome this shortage, surrounded the magnetic metal nanoparticle (MPs) with insulated oxide shell has been considered to be an efficient route to suppress such an eddy current effect. Meanwhile, the combined insulated shell with good impedance matching feature, shows a positive role on the electromagnetic energy transfer intensity. In this regard, the binary Fe@α-Fe2O3 composite with the average size of ∼ 20 nm was prepared by a facile self-oxidation reaction. Interestingly, both the core diameter and shell thickness is controllable by controlling the oxide degree. The electromagnetic energy transfer performance revealed the maximum absorption frequency bandwidth of the optimal Fe@α-Fe2O3 composite is up to 5.3 G(8.2-13.5 GHz)under a small coating thickness of 1.5 mm.

  17. Cognitive inhibition of number/length interference in a Piaget-like task: evidence by combining ERP and MEG.

    PubMed

    Joliot, Marc; Leroux, Gaëlle; Dubal, Stéphanie; Tzourio-Mazoyer, Nathalie; Houdé, Olivier; Mazoyer, Bernard; Petit, Laurent

    2009-08-01

    We combined event-related potential (ERP) and magnetoencephalography (MEG) acquisition and analysis to investigate the electrophysiological markers of the inhibitory processes involved in the number/length interference in a Piaget-like numerical task. Eleven healthy subjects performed four gradually interfering conditions with the heuristic "length equals number" to be inhibited. Low resolution tomography reconstruction was performed on the combined grand averaged electromagnetic data at the early (N1, P1) and late (P2, N2, P3(early) and P3(late)) latencies. Every condition was analyzed at both scalp and regional brain levels. The inhibitory processes were visible on the late components of the electromagnetic brain activity. A right P2-related frontal orbital activation reflected the change of strategy in the inhibitory processes. N2-related SMA/cingulate activation revealed the first occurrence of the stimuli processing to be inhibited. Both P3 components revealed the working memory processes operating in a medial temporal complex and the mental imagery processes subtended by the precuneus. Simultaneous ERP and MEG signal acquisition and analysis allowed to describe the spatiotemporal patterns of neural networks involved in the inhibition of the "length equals number" interference. Combining ERP and MEG ensured a sensitivity which could be reached previously only through invasive intracortical recordings.

  18. Effects of Aperture Size on Q factor and Shielding Effectiveness of a Cubic Resonator

    NASA Astrophysics Data System (ADS)

    Parr, Stefan; Chromy, Stephan; Dickmann, Stefan; Schaarschmidt, Martin

    2017-09-01

    The EMC properties of a cubic metallic shield are highly affected by its resonances. At the resonant frequencies, the shielding effectiveness (SE) collapses, which results in high field strengths inside the cavity. This can cause failure or even breakdown of electronic devices inside the shield. The resonant behaviour is mainly determined by the quality or Q factor of the shield. In this paper, the effects of the aperture size on the Q factor and the SE of an electrically large, cubic shield are analysed. At first, a method is developed in order to determine the Q factor based on the resonance behaviour of the shield in time domain. Only the first resonance of the shield is considered therefore. The results are evaluated for different aperture diameters and compared with theory for the Q factor. The dominant coupling mechanism of electromagnetic energy into the shield is thus identified. Then the effect of aperture size on the SE is analysed. The excitation of resonances is very probable if the interfering signal is an ultrawideband (UWB) pulse, which constitutes a typical intentional electromagnetic interference (IEMI) scenario. Therefore, the relation between aperture size and SE is analysed using the theory of the transient SE for a broadband signal with a constant spectral density distribution. The results show, that a worst case aperture size exists, where the SE has its minimum.

  19. Electromagnetic compatibility and the all-electric airplane

    NASA Technical Reports Server (NTRS)

    Christman, Al

    1995-01-01

    NASA is studying the feasibility of installing 'all-electric' controls in future commercial aircraft, replacing the current hydraulic and pneumatic systems. Planes utilizing such equipment should weigh less and be cheaper to maintain, but might also be susceptible to interference from undesired external electromagnetic fields. Possible sources of these extraneous signals include radio and television broadcasters, two-way communications stations, and radar installations of all kinds. One way to reduce the hazard would be to use fiber-optic cables to carry signals from the cockpit to the various points of use, a concept known as 'fly-by-light' or FBL. However, electrical circuits (PBW, or 'power-by-wire') would still be required at both ends of the cables to perform control functions, so the possibility of harmful interference would remain. Computer models for two different antennas were created in order to find the magnitude of the electric fields which would be generated in the airspace around them while in the transmit mode. The first antenna was a horizontal 'rhombic' used by the Voice of America (VOA) for long-distance short-wave broadcasting. The second antenna was a multi-element 'log-periodic dipole array' (LPDA) of a type often used for two-way radio communications. For each case, a specified amount of power was applied in the computer model, and the resulting electric field intensity was predicted at a variety of locations surrounding the antenna. This information will then be used to calculate the levels of interference which could occur inside an airplane flying in the vicinity of these radiation emitters.

  20. How does electromagnetic navigation stack up against infrared navigation in minimally invasive total knee arthroplasties?

    PubMed

    Lionberger, David R; Weise, Jennifer; Ho, David M; Haddad, John L

    2008-06-01

    Forty-six primary total knee arthroplasties were performed using either an electromagnetic (EM) or infrared (IR) navigation system. In this IRB-approved study, patients were evaluated clinically and for accuracy using spiral computed tomographic imaging and 36-in standing radiographs. Although EM navigation was subject to metal interference, it was not as drastic as line-of-sight interference with IR navigation. Mechanical alignment was ideal in 92.9% of EM and 90.0% of IR cases based on spiral computed tomographic imaging and 100% of EM and 95% of IR cases based on x-ray. Individual measurements of component varus/valgus and sagittal measurements showed EM to be equivalent to IR, with both systems producing subdegree accuracy in 95% of the readings.

  1. Evaluation of electromagnetic interference and exposure assessment from s-health solutions based on Wi-Fi devices.

    PubMed

    de Miguel-Bilbao, Silvia; Aguirre, Erik; Lopez Iturri, Peio; Azpilicueta, Leire; Roldán, José; Falcone, Francisco; Ramos, Victoria

    2015-01-01

    In the last decade the number of wireless devices operating at the frequency band of 2.4 GHz has increased in several settings, such as healthcare, occupational, and household. In this work, the emissions from Wi-Fi transceivers applicable to context aware scenarios are analyzed in terms of potential interference and assessment on exposure guideline compliance. Near field measurement results as well as deterministic simulation results on realistic indoor environments are presented, providing insight on the interaction between the Wi-Fi transceiver and implantable/body area network devices as well as other transceivers operating within an indoor environment, exhibiting topological and morphological complexity. By following approaches (near field estimation/deterministic estimation), colocated body situations as well as large indoor emissions can be determined. The results show in general compliance with exposure levels and the impact of overall network deployment, which can be optimized in order to reduce overall interference levels while maximizing system performance.

  2. Evaluation of Electromagnetic Interference and Exposure Assessment from s-Health Solutions Based on Wi-Fi Devices

    PubMed Central

    de Miguel-Bilbao, Silvia; Aguirre, Erik; Lopez Iturri, Peio; Azpilicueta, Leire; Roldán, José; Falcone, Francisco; Ramos, Victoria

    2015-01-01

    In the last decade the number of wireless devices operating at the frequency band of 2.4 GHz has increased in several settings, such as healthcare, occupational, and household. In this work, the emissions from Wi-Fi transceivers applicable to context aware scenarios are analyzed in terms of potential interference and assessment on exposure guideline compliance. Near field measurement results as well as deterministic simulation results on realistic indoor environments are presented, providing insight on the interaction between the Wi-Fi transceiver and implantable/body area network devices as well as other transceivers operating within an indoor environment, exhibiting topological and morphological complexity. By following approaches (near field estimation/deterministic estimation), colocated body situations as well as large indoor emissions can be determined. The results show in general compliance with exposure levels and the impact of overall network deployment, which can be optimized in order to reduce overall interference levels while maximizing system performance. PMID:25632400

  3. Implementation Status of a Ultra-Wideband Receiver Package for the next-generation Very Large Array

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph W.; Velazco, Jose; Soriano, Melissa; Hoppe, Daniel; Russell, Damon; D'Addario, Larry; Long, Ezra; Bowen, James; Samoska, Lorene; Janzen, Andrew

    2017-01-01

    The next-generation Very Large Array (ngVLA) is a concept for a radio astronomical interferometric array operating in the frequency range 1.2 GHz to 116 GHz and designed to provide substantial improvements in sensitivity, angular resolution, and frequency coverage above the current Very Large Array (VLA). As notional design goals, it would have a continuous frequency coverage of 1.2 GHz to 48 GHz and be 10 times more sensitive than the VLA (and 25 times more sensitive than a 34 m diameter antenna of the Deep Space Network [DSN]). One of the key goals for the ngVLA is to reduce the operating costs without sacrificing performance. We are designing an ultra-wideband receiver package designed to operate across the 8 to 48 GHz frequency range, which can be contrasted to the current VLA, which covers this frequency range with five receiver packages. Reducing the number of receiving systems required to cover the full frequency range would reduce operating costs, and the objective of this work is to develop a prototype integrated feed-receiver package with a sensitivity performance comparable to current narrower band systems on radio telescopes and the DSN, but with a design that meets the requirement of low long-term operational costs. The ultra-wideband receiver package consists of a feed horn, low-noise amplifier (LNA), and down-converters to analog intermediate frequencies. Key features of this design are a quad-ridge feed horn with dielectric loading and a cryogenic receiver with a noise temperature of no more than 30 K at the low end of the band. We will report on the status of this receiver package development including the feed design and LNA implementation. We will present simulation studies of the feed horn including the insertion of dielectric components for improved illumination efficiencies across the band of interest. In addition, we will show experimental results of low-noise 35nm InP HEMT amplifier testing performed across the 8-50 GHz frequency range

  4. Lensless, ultra-wideband fiber optic rotary joint for biomedical applications.

    PubMed

    Kim, Wihan; Chen, Xi; Jo, Javier A; Applegate, Brian E

    2016-05-01

    The demands of optical fiber-based biomedical applications can, in many cases, outstrip the capabilities of lens-based commercially available fiber optic rotary joints. In some circumstances, it is necessary to use very broad spectral bandwidths (near UV to short-wave IR) and specialized optical fibers, such as double-clad fiber, and have the capacity to accommodate high rotational velocities. The broad spectrum, stretching down into the UV, presents two problems: (1) adequate chromatic correction in the lenses across the entire bandwidth and (2) strong UV absorption by the fluids used to lubricate the rotary joint. To accommodate these types of applications, we have developed an ultra-wideband lensless fiber optic rotary joint based on the principle that when two optical fibers are coaligned and placed in contact (or very close), the optical losses at the junction are very low. The advances demonstrated here enable excellent performance (<0.2  dB insertion loss), even down into the UV and spanning a wavelength range of at least 355-1360 nm with single-mode, multimode, and double-clad fibers. We also demonstrate excellent performance, ∼0.38  dB insertion loss, at rotational velocities up to 8800 rpm (146 Hz). To the best of our knowledge, this is the first demonstration of this type of rotary joint capable of such a wide bandwidth and high rotational velocities.

  5. Awake craniotomy using electromagnetic navigation technology without rigid pin fixation.

    PubMed

    Morsy, Ahmed A; Ng, Wai Hoe

    2015-11-01

    We report our institutional experience using an electromagnetic navigation system, without rigid head fixation, for awake craniotomy patients. The StealthStation® S7 AxiEM™ navigation system (Medtronic, Inc.) was used for this technique. Detailed preoperative clinical and neuropsychological evaluations, patient education and contrast-enhanced MRI (thickness 1.5mm) were performed for each patient. The AxiEM Mobile Emitter was typically placed in a holder, which was mounted to the operating room table, and a non-invasive patient tracker was used as the patient reference device. A monitored conscious sedation technique was used in all awake craniotomy patients, and the AxiEM Navigation Pointer was used for navigation during the procedure. This offers the same accuracy as optical navigation, but without head pin fixation or interference with intraoperative neurophysiological techniques and surgical instruments. The application of the electromagnetic neuronavigation technology without rigid head fixation during an awake craniotomy is accurate, and offers superior patient comfort. It is recommended as an effective adjunctive technique for the conduct of awake surgery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. 40 CFR 60.721 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...

  7. 40 CFR 60.721 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...

  8. 40 CFR 60.721 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...

  9. 40 CFR 60.721 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...

  10. 40 CFR 60.721 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...

  11. Ice-templated synthesis of multifunctional three dimensional graphene/noble metal nanocomposites and their mechanical, electrical, catalytic, and electromagnetic shielding properties

    PubMed Central

    Sahoo, P. K.; Aepuru, Radhamanohar; Panda, Himanshu Sekhar; Bahadur, D.

    2015-01-01

    In-situ homogeneous dispersion of noble metals in three-dimensional graphene sheets is a key tactic for producing macroscopic architecture, which is desirable for practical applications, such as electromagnetic interference shielding and catalyst. We report a one-step greener approach for developing porous architecture of 3D-graphene/noble metal (Pt and Ag) nanocomposite monoliths. The resulting graphene/noble metal nanocomposites exhibit a combination of ultralow density, excellent elasticity, and good electrical conductivity. Moreover, in order to illuminate the advantages of the 3D-graphene/noble metal nanocomposites, their electromagnetic interference (EMI) shielding and electrocatalytic performance are further investigated. The as-synthesized 3D-graphene/noble metal nanocomposites exhibit excellent EMI shielding effectiveness when compared to bare graphene; the effectiveness has an average of 28 dB in the 8.2–12.4 GHz X-band range. In the electro-oxidation of methanol, the 3D-graphene/Pt nanocomposite also exhibits significantly enhanced electrocatalytic performance and stability than compared to reduced graphene oxide/Pt and commercial Pt/C. PMID:26638827

  12. Lightweight reduced graphene oxide-Fe3O4 nanoparticle composite in the quest for an excellent electromagnetic interference shielding material.

    PubMed

    Singh, Ashwani Kumar; Kumar, Ajit; Haldar, Krishna Kamal; Gupta, Vinay; Singh, Kedar

    2018-06-15

    This work reports a detailed study of reduced graphene oxide (rGO)-Fe 3 O 4 nanoparticle composite as an excellent electromagnetic (EM) interference shielding material in GHz range. A rGO-Fe 3 O 4 nanoparticle composite was synthesized using a facile, one step, and modified solvothermal method with the reaction of FeCl 3 , ethylenediamine and graphite oxide powder in the presence of ethylene glycol. Various structural, microstructural and optical characterization tools were used to determine its synthesis and various properties. Dielectric, magnetic and EM shielding parameters were also evaluated to estimate its performance as a shielding material for EM waves. X-ray diffraction patterns have provided information about the structural and crystallographic properties of the as-synthesized material. Scanning electron microscopy micrographs revealed the information regarding the exfoliation of graphite into rGO. Well-dispersed Fe 3 O 4 nanoparticles over the surface of the graphene can easily be seen by employing transmission electron microscopy. For comparison, rGO nanosheets and Fe 3 O 4 nanoparticles have also been synthesized and characterized in a similar fashion. A plot of the dielectric and magnetic characterizations provides some useful information related to various losses and the relaxation process. Shielding effectiveness due to reflection (SE R ), shielding effectiveness due to absorption (SE A ), and total shielding effectiveness (SE T ) were also plotted against frequency over a broad range (8-12 GHz). A significant change in all parameters (SE A value from 5 dB to 35 dB for Fe 3 O 4 nanoparticles to rGO-Fe 3 O 4 nanoparticle composite) was found. An actual shielding effectiveness (SE T ) up to 55 dB was found in the rGO-Fe 3 O 4 nanoparticle composite. These graphs give glimpses of how significantly this material shows shielding effectiveness over a broad range of frequency.

  13. Lightweight reduced graphene oxide-Fe3O4 nanoparticle composite in the quest for an excellent electromagnetic interference shielding material

    NASA Astrophysics Data System (ADS)

    Singh, Ashwani Kumar; Kumar, Ajit; Kamal Haldar, Krishna; Gupta, Vinay; Singh, Kedar

    2018-06-01

    This work reports a detailed study of reduced graphene oxide (rGO)-Fe3O4 nanoparticle composite as an excellent electromagnetic (EM) interference shielding material in GHz range. A rGO-Fe3O4 nanoparticle composite was synthesized using a facile, one step, and modified solvothermal method with the reaction of FeCl3, ethylenediamine and graphite oxide powder in the presence of ethylene glycol. Various structural, microstructural and optical characterization tools were used to determine its synthesis and various properties. Dielectric, magnetic and EM shielding parameters were also evaluated to estimate its performance as a shielding material for EM waves. X-ray diffraction patterns have provided information about the structural and crystallographic properties of the as-synthesized material. Scanning electron microscopy micrographs revealed the information regarding the exfoliation of graphite into rGO. Well-dispersed Fe3O4 nanoparticles over the surface of the graphene can easily be seen by employing transmission electron microscopy. For comparison, rGO nanosheets and Fe3O4 nanoparticles have also been synthesized and characterized in a similar fashion. A plot of the dielectric and magnetic characterizations provides some useful information related to various losses and the relaxation process. Shielding effectiveness due to reflection (SER), shielding effectiveness due to absorption (SEA), and total shielding effectiveness (SET) were also plotted against frequency over a broad range (8–12 GHz). A significant change in all parameters (SEA value from 5 dB to 35 dB for Fe3O4 nanoparticles to rGO-Fe3O4 nanoparticle composite) was found. An actual shielding effectiveness (SET) up to 55 dB was found in the rGO-Fe3O4 nanoparticle composite. These graphs give glimpses of how significantly this material shows shielding effectiveness over a broad range of frequency.

  14. A VLSI Neural Monitoring System With Ultra-Wideband Telemetry for Awake Behaving Subjects.

    PubMed

    Greenwald, E; Mollazadeh, M; Hu, C; Wei Tang; Culurciello, E; Thakor, V

    2011-04-01

    Long-term monitoring of neuronal activity in awake behaving subjects can provide fundamental information about brain dynamics for neuroscience and neuroengineering applications. Here, we present a miniature, lightweight, and low-power recording system for monitoring neural activity in awake behaving animals. The system integrates two custom designed very-large-scale integrated chips, a neural interface module fabricated in 0.5 μm complementary metal-oxide semiconductor technology and an ultra-wideband transmitter module fabricated in a 0.5 μm silicon-on-sapphire (SOS) technology. The system amplifies, filters, digitizes, and transmits 16 channels of neural data at a rate of 1 Mb/s. The entire system, which includes the VLSI circuits, a digital interface board, a battery, and a custom housing, is small and lightweight (24 g) and, thus, can be chronically mounted on small animals. The system consumes 4.8 mA and records continuously for up to 40 h powered by a 3.7-V, 200-mAh rechargeable lithium-ion battery. Experimental benchtop characterizations as well as in vivo multichannel neural recordings from awake behaving rats are presented here.

  15. Electromagnetic Properties Analysis on Hybrid-driven System of Electromagnetic Motor

    NASA Astrophysics Data System (ADS)

    Zhao, Jingbo; Han, Bingyuan; Bei, Shaoyi

    2018-01-01

    The hybrid-driven system made of permanent-and electromagnets applied in the electromagnetic motor was analyzed, equivalent magnetic circuit was used to establish the mathematical models of hybrid-driven system, based on the models of hybrid-driven system, the air gap flux, air-gap magnetic flux density, electromagnetic force was proposed. Taking the air-gap magnetic flux density and electromagnetic force as main research object, the hybrid-driven system was researched. Electromagnetic properties of hybrid-driven system with different working current modes is studied preliminary. The results shown that analysis based on hybrid-driven system can improve the air-gap magnetic flux density and electromagnetic force more effectively and can also guarantee the output stability, the effectiveness and feasibility of the hybrid-driven system are verified, which proved theoretical basis for the design of hybrid-driven system.

  16. [Electromagnetic pollution (electrosmog)--potential hazards of our electromagnetic future].

    PubMed

    Nowak, D; Radon, K

    2004-02-26

    The term electromagnetic environment encompasses the totality of all electric, magnetic and electromagnetic fields generated by natural and technical sources. A differentiation is made between low- and high-frequency electromagnetic fields. Typical sources of the former are domestic electricity Exposure to the latter is, for example, associated with the sue of mobile telephones. Studies on the health-related effects of electromagnetic fields are available in particular for the low-frequency range, based on an appropriate estimation of exposure. A number of these studies reveal an association between exposure to this type of electromagnetic fields and the occurrence of infantile leukemia in the highest exposure category. For high-frequency electromagnetic fields the number of epidemiological studies is limited. An increased risk of an accident occurring through the use of a cellular phone while driving has consistently been shown. Against the background of our limited knowledge about possible adverse effects of exposure to mobile phone transmitters, and the inability of the public to influence such exposure, transparency in the communication of the risks involved is of great importance.

  17. Chip-integrated ultrawide-band all-optical logic comparator in plasmonic circuits

    PubMed Central

    Lu, Cuicui; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2014-01-01

    Optical computing opens up the possibility for the realization of ultrahigh-speed and ultrawide-band information processing. Integrated all-optical logic comparator is one of the indispensable core components of optical computing systems. Unfortunately, up to now, no any nanoscale all-optical logic comparator suitable for on-chip integration applications has been realized experimentally. Here, we report a subtle and effective technical solution to circumvent the obstacles of inherent Ohmic losses of metal and limited propagation length of SPPs. A nanoscale all-optical logic comparator suitable for on-chip integration applications is realized in plasmonic circuits directly. The incident single-bit (or dual-bit) logic signals can be compared and the comparison results are endowed with different logic encodings. An ultrabroad operating wavelength range from 700 to 1000 nm, and an ultrahigh output logic-state contrast-ratio of more than 25 dB are realized experimentally. No high power requirement is needed. Though nanoscale SPP light source and the logic comparator device are integrated into the same plasmonic chip, an ultrasmall feature size is maintained. This work not only paves a way for the realization of complex logic device such as adders and multiplier, but also opens up the possibility for realizing quantum solid chips based on plasmonic circuits. PMID:24463956

  18. Chip-integrated ultrawide-band all-optical logic comparator in plasmonic circuits.

    PubMed

    Lu, Cuicui; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2014-01-27

    Optical computing opens up the possibility for the realization of ultrahigh-speed and ultrawide-band information processing. Integrated all-optical logic comparator is one of the indispensable core components of optical computing systems. Unfortunately, up to now, no any nanoscale all-optical logic comparator suitable for on-chip integration applications has been realized experimentally. Here, we report a subtle and effective technical solution to circumvent the obstacles of inherent Ohmic losses of metal and limited propagation length of SPPs. A nanoscale all-optical logic comparator suitable for on-chip integration applications is realized in plasmonic circuits directly. The incident single-bit (or dual-bit) logic signals can be compared and the comparison results are endowed with different logic encodings. An ultrabroad operating wavelength range from 700 to 1000 nm, and an ultrahigh output logic-state contrast-ratio of more than 25 dB are realized experimentally. No high power requirement is needed. Though nanoscale SPP light source and the logic comparator device are integrated into the same plasmonic chip, an ultrasmall feature size is maintained. This work not only paves a way for the realization of complex logic device such as adders and multiplier, but also opens up the possibility for realizing quantum solid chips based on plasmonic circuits.

  19. Ultra-wideband tunable resonator based on varactor-loaded complementary split-ring resonators on a substrate-integrated waveguide for microwave sensor applications.

    PubMed

    Sam, Somarith; Lim, Sungjoon

    2013-04-01

    This paper presents the modeling, design, fabrication, and measurement of an ultra-wideband tunable twoport resonator in which the substrate-integrated waveguide, complementary split-ring resonators (CSRRs), and varactors are embedded on the same planar platform. The tuning of the passband frequency is generated by a simple single dc voltage of 0 to 36 V, which is applied to each varactor on the CSRRs. Different capacitance values and resonant frequencies are produced while a nearly constant absolute bandwidth is maintained. The resonant frequency is varied between 0.83 and 1.58 GHz and has a wide tuning ratio of 90%.

  20. Ultra-wideband high-speed Mach-Zehnder switch based on hybrid plasmonic waveguides.

    PubMed

    Janjan, Babak; Fathi, Davood; Miri, Mehdi; Ghaffari-Miab, Mohsen

    2017-02-20

    In this paper, the distinctive dispersion characteristic of hybrid plasmonic waveguides is exploited for designing ultra-wideband directional couplers. It is shown that by using optimized geometrical dimensions for hybrid plasmonic waveguides, nearly wavelength-independent directional couplers can be achieved. These broadband directional couplers are then used to design Mach-Zehnder-interferometer-based switches. Our simulation results show the ultra-wide bandwidth of ∼260  nm for the proposed hybrid plasmonic-waveguide-based switch. Further investigation of the proposed Mach-Zehnder switch confirms that because of the strong light confinement in the hybrid plasmonic waveguide structure, the switching time, power consumption, and overall footprint of the device can be significantly improved compared to silicon-ridge-waveguide-based Mach-Zehnder switches. For the Mach-Zehnder switch designed by using the optimized directional coupler, the switching time is found to be less than one picosecond, while the power consumption, VπLπ figure of merit, and active length of the device are ∼61  fJ/bit, 85  V×μm, and 30 μm, respectively.

  1. Beamforming design with proactive interference cancelation in MISO interference channels

    NASA Astrophysics Data System (ADS)

    Li, Yang; Tian, Yafei; Yang, Chenyang

    2015-12-01

    In this paper, we design coordinated beamforming at base stations (BSs) to facilitate interference cancelation at users in interference networks, where each BS is equipped with multiple antennas and each user is with a single antenna. By assuming that each user can select the best decoding strategy to mitigate the interference, either canceling the interference after decoding when it is strong or treating it as noise when it is weak, we optimize the beamforming vectors that maximize the sum rate for the networks under different interference scenarios and find the solutions of beamforming with closed-form expressions. The inherent design principles are then analyzed, and the performance gain over passive interference cancelation is demonstrated through simulations in heterogeneous cellular networks.

  2. Tracking Electromagnetic Energy With SQUIDs

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A superconducting quantum interference device (SQUID) is a gadget used to measure extremely weak signals, specifically magnetic flux. It can detect subtle changes in energy, up to 100 billion times weaker than the electromagnetic energy required to move a compass needle. SQUIDs are used for a variety of testing procedures where extreme sensitivity is required and where the test instrument need not come into direct contact with the test subject. NASA uses SQUIDs for remote, noncontact sensing in a variety of venues, including monitoring the Earth s magnetic field and tracking brain activity of pilots. Scientists at NASA s Goddard Space Flight Center have been making extensive use of this technology, from astrophysical research, to tracking the navigational paths of bees in flight to determine if they are using internal compasses. These very sensitive measurement devices have a wide variety of uses within NASA and even more uses within the commercial realm.

  3. Dynamic Synchronous Capture Algorithm for an Electromagnetic Flowmeter.

    PubMed

    Fanjiang, Yong-Yi; Lu, Shih-Wei

    2017-04-10

    This paper proposes a dynamic synchronous capture (DSC) algorithm to calculate the flow rate for an electromagnetic flowmeter. The characteristics of the DSC algorithm can accurately calculate the flow rate signal and efficiently convert an analog signal to upgrade the execution performance of a microcontroller unit (MCU). Furthermore, it can reduce interference from abnormal noise. It is extremely steady and independent of fluctuations in the flow measurement. Moreover, it can calculate the current flow rate signal immediately (m/s). The DSC algorithm can be applied to the current general MCU firmware platform without using DSP (Digital Signal Processing) or a high-speed and high-end MCU platform, and signal amplification by hardware reduces the demand for ADC accuracy, which reduces the cost.

  4. Dynamic Synchronous Capture Algorithm for an Electromagnetic Flowmeter

    PubMed Central

    Fanjiang, Yong-Yi; Lu, Shih-Wei

    2017-01-01

    This paper proposes a dynamic synchronous capture (DSC) algorithm to calculate the flow rate for an electromagnetic flowmeter. The characteristics of the DSC algorithm can accurately calculate the flow rate signal and efficiently convert an analog signal to upgrade the execution performance of a microcontroller unit (MCU). Furthermore, it can reduce interference from abnormal noise. It is extremely steady and independent of fluctuations in the flow measurement. Moreover, it can calculate the current flow rate signal immediately (m/s). The DSC algorithm can be applied to the current general MCU firmware platform without using DSP (Digital Signal Processing) or a high-speed and high-end MCU platform, and signal amplification by hardware reduces the demand for ADC accuracy, which reduces the cost. PMID:28394306

  5. Launch device using endlessly single-mode PCF for ultra-wideband WDM transmission in graded-index multi-mode fiber.

    PubMed

    Ma, Lin; Hanzawa, Nobutomo; Tsujikawa, Kyozo; Azuma, Yuji

    2012-10-22

    We demonstrated ultra-wideband wavelength division multiplexing (WDM) transmission from 850 to 1550 nm in graded-index multi-mode fiber (GI-MMF) using endlessly single-mode photonic crystal fiber (ESM-PCF) as a launch device. Effective single-mode guidance is obtained in multi-mode fiber at all wavelengths by splicing cm-order length ESM-PCF to the transmission fiber. We achieved 3 × 10 Gbit/s WDM transmission in a 1 km-long 50-μm-core GI-MMF. We also realized penalty free 10 Gbit/s data transmission at a wavelength of 850 nm by optimizing the PCF structure. This method has the potential to achieve greater total transmission capacity for MMF systems by the addition of more wavelength channels.

  6. 100 GHz ultra-wideband (UWB) fiber-to-the-antenna (FTTA) system for in-building and in-home networks.

    PubMed

    Chow, C W; Kuo, F M; Shi, J W; Yeh, C H; Wu, Y F; Wang, C H; Li, Y T; Pan, C L

    2010-01-18

    Fiber-to-the-antenna (FTTA) system can be a cost-effective technique for distributing high frequency signals from the head-end office to a number of remote antenna units via passive optical splitter and propagating through low-loss and low-cost optical fibers. Here, we experimentally demonstrate an optical ultra-wideband (UWB) - impulse radio (IR) FTTA system for in-building and in-home applications. The optical UWB-IR wireless link is operated in the W-band (75 GHz - 110 GHz) using our developed near-ballistic unitraveling-carrier photodiode based photonic transmitter (PT) and a 10 GHz mode-locked laser. 2.5 Gb/s UWB-IR FTTA systems with 1,024 high split-ratio and transmission over 300 m optical fiber are demonstrated using direct PT modulation.

  7. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  8. An ultra-wideband wire spiral antenna for in-body communications using different material matching layers.

    PubMed

    Khaleghi, Ali; Balasingham, Ilangko; Chavez-Santiago, Raul

    2014-01-01

    In this work an ultra-wideband wire antenna was designed and fabricated for transmitting/receiving signals to/from inside the human body. The antenna provides high gain and thus high field intensity in its broadside direction; hence, a high energy density wireless can be established with the inner body. The proposed antenna operates in the frequency band of 3-10 GHz with an impedance of 200 Ohms in free space. The antenna was embedded in different materials with permittivity values ranging from 12 to 74 in order to evaluate the matching layer effect on wave propagation from outside to inside the body. The antenna port impedance was adjusted by using matching circuits. The electric field intensity inside the human chest was calculated for different materials and depths. The best improvement in wave penetration was obtained for the frequency band of 750-1000 MHz by embedding the antenna inside a material with permittivity equal to 27.

  9. High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation

    NASA Astrophysics Data System (ADS)

    He, Yixin; Wang, Yuye; Xu, Degang; Nie, Meitong; Yan, Chao; Tang, Longhuang; Shi, Jia; Feng, Jiachen; Yan, Dexian; Liu, Hongxiang; Teng, Bing; Feng, Hua; Yao, Jianquan

    2018-01-01

    We have demonstrated a high-energy and broadly tunable monochromatic terahertz (THz) source based on difference frequency generation (DFG) in DAST crystal. A high-energy dual-wavelength optical parametric oscillator with two KTP crystals was constructed as a light source for DFG, where the effect of blue light was first observed accompanying with tunable dual-wavelength pump light due to different nonlinear processes. The THz frequency was tuned randomly in the range of 0.3-19.6 THz. The highest energy of 870 nJ/pulse was obtained at 18.9 THz under the intense pump intensity of 247 MW/cm2. The THz energy dips above 3 THz have been analyzed and mainly attributed to the resonance absorption induced by lattice vibration in DAST crystal. The dependence of THz output on the input energy was studied experimentally, and THz output saturation was observed. Furthermore, tests of transmission spectroscopy of four typical samples were demonstrated with this ultra-wideband THz source.

  10. Synthesis of Nanosecond Ultrawideband Radiation Pulses

    NASA Astrophysics Data System (ADS)

    Koshelev, V. I.; Plisko, V. V.; Sevostyanov, E. A.

    2017-12-01

    The synthesis of electromagnetic pulses with an extended spectrum by summing pulses of different duration in free space has been studied. The radiation spectrum has been estimated analytically for a 4-element array of combined antennas excited by bipolar voltage pulses of duration 0.5, 1, 2, and 3 ns. It has been shown experimentally that radiation with a spectral width of more than three octaves can be produced using a 2×2 array of combined antennas excited by bipolar pulses of duration 2 and 3 ns.

  11. Electromagnetic shielding effectiveness studies on polyaniline/CSA-WO3 composites at KU band frequencies

    NASA Astrophysics Data System (ADS)

    Sastry, D. Nagesa; Revanasiddappa, M.; Suresh, T.; Kiran, Y. T. Ravi; Raghavendra, S. C.

    2018-05-01

    This paper highlights the Electromagnetic Interference (EMI) Shielding Effectiveness and electromagnetic wave attenuation behavior of Polyaniline/Camphor Sulphonic Acid (PANI-CSA) - tungsten oxide (WO3) composites. Insitu polymerization of aniline monomer with camphor sulphonic acid (CSA) as a dopant was carried out in the presence of ammonium persulphate an oxidizing agent to synthesize PANI-CSA tungsten oxide composites (PANI/CSA-WO3) by chemical oxidation method. The composites have been synthesized with various compositions (10, 20, 30, 40 and 50 wt %) of tungsten oxide in PANI/CSA matrix. The EMI shielding measurements were carried out in the broad microwave spectrum covering the frequency range from 12 to 18 GHz (Ku-Band). The results show the influence of tungsten oxide in PANI/CSA over the EMI shielding Effectiveness. The composites have shown excellent microwave absorption behavior confirmed by the EMI Shielding Effectiveness values of the order of -15 to -16 dB.

  12. Modern wireless telecommunication technologies and their electromagnetic compatibility with life-supporting equipment.

    PubMed

    Wallin, Mats K E B; Marve, Therese; Hakansson, Peter K

    2005-11-01

    Hospitals rely on pagers and ordinary telephones to reach staff members in emergency situations. New telecommunication technologies such as General Packet Radio Service (GPRS), the third generation mobile phone system Universal Mobile Telecommunications System (UMTS), and Wireless Local Area Network (WLAN) might be able to replace hospital pagers if they are electromagnetically compatible with medical devices. In this study, we sought to determine if GPRS, UMTS (Wideband Code Division Multiple Access-Frequency Division Duplex [WCDMA FDD]), and WLAN (IEEE 802.11b) transmitted signals interfere with life-supporting equipment in the intensive care and operating room environment. According to United States standard, ANSI C63.18-1997, laboratory tests were performed on 76 medical devices. In addition, clinical tests during 11 operations and 100 h of intensive care were performed. UMTS and WLAN signals caused little interference. Devices using these technologies can be used safely in critical care areas and during operations, but direct contact between medical devices and wireless communication devices ought to be avoided. In the case of GPRS, at a distance of 50 cm, it caused an older infusion pump to alarm and stop infusing; the pump had to be reset. Also, 10 cases of interference with device displays occurred. GPRS can be used safely at a distance of 1 m. Terminals/cellular phones using these technologies should be allowed without restriction in public areas because the risk of interference is minimal.

  13. Electromagnetic cellular interactions.

    PubMed

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan

    2011-05-01

    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. A Bayesian Retrieval of Greenland Ice Sheet Internal Temperature from Ultra-wideband Software-defined Microwave Radiometer (UWBRAD) Measurements

    NASA Astrophysics Data System (ADS)

    Duan, Y.; Durand, M. T.; Jezek, K. C.; Yardim, C.; Bringer, A.; Aksoy, M.; Johnson, J. T.

    2017-12-01

    The ultra-wideband software-defined microwave radiometer (UWBRAD) is designed to provide ice sheet internal temperature product via measuring low frequency microwave emission. Twelve channels ranging from 0.5 to 2.0 GHz are covered by the instrument. A Greenland air-borne demonstration was demonstrated in September 2016, provided first demonstration of Ultra-wideband radiometer observations of geophysical scenes, including ice sheets. Another flight is planned for September 2017 for acquiring measurements in central ice sheet. A Bayesian framework is designed to retrieve the ice sheet internal temperature from simulated UWBRAD brightness temperature (Tb) measurements over Greenland flight path with limited prior information of the ground. A 1-D heat-flow model, the Robin Model, was used to model the ice sheet internal temperature profile with ground information. Synthetic UWBRAD Tb observations was generated via the partially coherent radiation transfer model, which utilizes the Robin model temperature profile and an exponential fit of ice density from Borehole measurement as input, and corrupted with noise. The effective surface temperature, geothermal heat flux, the variance of upper layer ice density, and the variance of fine scale density variation at deeper ice sheet were treated as unknown variables within the retrieval framework. Each parameter is defined with its possible range and set to be uniformly distributed. The Markov Chain Monte Carlo (MCMC) approach is applied to make the unknown parameters randomly walk in the parameter space. We investigate whether the variables can be improved over priors using the MCMC approach and contribute to the temperature retrieval theoretically. UWBRAD measurements near camp century from 2016 was also treated with the MCMC to examine the framework with scattering effect. The fine scale density fluctuation is an important parameter. It is the most sensitive yet highly unknown parameter in the estimation framework

  15. Design of a Compact Tuning Fork-Shaped Notched Ultrawideband Antenna for Wireless Communication Application

    PubMed Central

    Shakib, M. N.; Moghavvemi, M.; Mahadi, W. N. L.

    2014-01-01

    A new compact planar notched ultrawideband (UWB) antenna is designed for wireless communication application. The proposed antenna has a compact size of 0.182λ × 0.228λ × 0.018λ where λ is the wavelength of the lowest operating frequency. The antenna is comprised of rectangular radiating patch, ground plane, and an arc-shaped strip in between radiating patch and feed line. By introducing a new Tuning Fork-shaped notch in the radiating plane, a stopband is obtained. The antenna is tested and measured. The measured result indicated that fabricated antenna has achieved a wide bandwidth of 4.33–13.8 GHz (at −10 dB return loss) with a rejection frequency band of 5.28–6.97 GHz (WiMAX, WLAN, and C-band). The effects of the parameters of the antenna are discussed. The experiment results demonstrate that the proposed antenna can well meet the requirement for the UWB communication in spite of its compactness and small size. PMID:24723835

  16. Photonic ultra-wideband pulse generation, hybrid modulation and dispersion-compensation-free transmission in multi-access communication systems.

    PubMed

    Tan, Kang; Shao, Jing; Sun, Junqiang; Wang, Jian

    2012-01-16

    We propose and demonstrate a scheme for optical ultrawideband (UWB) pulse generation by exploiting a half-carrier-suppressed Mach-Zehnder modulator (MZM) and a delay-interferometer- and wavelength-division-multiplexer-based, reconfigurable and multi-channel differentiator (DWRMD). Multi-wavelength, polarity- and shape-switchable UWB pulses of monocycle, doublet, triplet, and quadruplet are experimentally generated simply by tuning two bias voltages to modify the carrier-suppression ratio of MZM and the differential order of DWRMD respectively. The pulse position modulation, pulse shape modulation, pulse amplitude modulation and binary phase-shift keying modulation of UWB pulses can also be conveniently realized with the same scheme structure, which indicates that the hybrid modulation of those four formats can be achieved. Consequently, the proposed approach has potential applications in multi-shape, multi-modulation and multi-access UWB-over-fiber communication systems.

  17. RF Safety Analysis of a Novel Ultra-wideband Fetal Monitoring System.

    PubMed

    Bushberg, Jerrold T; Tupin, J Paul

    2017-05-01

    The LifeWave Ultra-Wideband RF sensor (LWUWBS) is a monitoring solution for a variety of physiologic assessment applications, including maternal fetal monitoring in both the antepartum and intrapartum periods. The system uses extremely low power radio frequency (RF) ultra-wide band (UWB) signals to provide continuous fetal heart rate and contractions monitoring during labor and delivery. Even with the incorporation of three very conservative assumptions, (1) concentration of the RF energy in 1 cm, (2) minimal (2.5 cm) maternal tissue attenuation of fetal exposure, and (3) absence of normal thermoregulatory compensation, the maternal whole body spatial-averaged specific absorption rate (WBSAR) would be 34,000 times below the FCC public exposure limit of 0.08 W kg and, at 8 wk or more gestation, the peak spatial-averaged specific absorption rate (PSSAR) in the fetus would be more than 160 times below the localized exposure limit of 1.6 mW g. Even when using very conservative assumptions, an analysis of the LWUWBS's impact on tissue heating is a factor of 7 lower than what is allowed for fetal ultrasound and at least a factor of 650 compared to fetal MRI. The actual transmitted power levels of the LWUWBS are well below all Federal safety standards, and the potential for tissue heating is substantially lower than associated with current ultrasonic fetal monitors and MRI.

  18. Orthogonal on-off control of radar pulses for the suppression of mutual interference

    NASA Astrophysics Data System (ADS)

    Kim, Yong Cheol

    1998-10-01

    Intelligent vehicles of the future will be guided by radars and other sensors to avoid obstacles. When multiple vehicles move simultaneously in autonomous navigational mode, mutual interference among car radars becomes a serious problem. An obstacle is illuminated with electromagnetic pulses from several radars. The signal at a radar receiver is actually a mixture of the self-reflection and the reflection of interfering pulses emitted by others. When standardized pulse- type radars are employed on vehicles for obstacle avoidance and so self-pulse and interfering pulses have identical pulse repetition interval, this SI (synchronous Interference) is very difficult to separate from the true reflection. We present a method of suppressing such a synchronous interference. By controlling the pulse emission of a radar in a binary orthogonal ON, OFF pattern, the true self-reflection can be separated from the false one. Two range maps are generated, TRM (true-reflection map) and SIM (synchronous- interference map). TRM is updated for every ON interval and SIM is updated for every OFF interval of the self-radar. SIM represents the SI of interfering radars while TRM keeps a record of a mixture of the true self-reflection and SI. Hence the true obstacles can be identified by the set subtraction operation. The performance of the proposed method is compared with that of the conventional M of N method. Bayesian analysis shows that the probability of false alarm is improved by order of 103 to approximately 106 while the deterioration in the probability of detection is negligible.

  19. Summary of interference measurements at selected radio observatories

    NASA Technical Reports Server (NTRS)

    Tarter, Jill C.

    1990-01-01

    Results are presented from a series of RF interference (RFI) observations conducted during 1989 and 1990 at selected radio astronomy observatories in order to choose a site for the SETI, where the local and orbital RFI would be as benign as possible for observations of weak electromagnetic signals. These observatories included the DSS13 at Goldstone (California), the Arecibo Observatory (Puerto Rico), the Algonquin Radio Observatory in Ottawa (Canada), the Ohio State University Radio Observatory in Columbus (Ohio), and the NRAO in Green Bank (West Virginia). The observations characterize the RFI environment at these sites from 1 to 10 GHz, using radio astronomy antennas, feeds, and receivers; SETI signal processors; and stand-alone equipment built specifically for this purpose. The results served as part of the basis for the selection (by the NASA SETI Microwave Observing Project) of NRAO as the site of choice for SETI observations.

  20. Planar spoof plasmonic ultra-wideband filter based on low-loss and compact terahertz waveguide corrugated with dumbbell grooves.

    PubMed

    Zhou, Yong Jin; Yang, Bao Jia

    2015-05-10

    Although subwavelength planar terahertz (THz) plasmonic devices can be implemented based on planar spoof surface plasmons (SPs), they still suffer from a little high propagation loss. Here the dispersion and propagation characteristics of the spoof plasmonic waveguide composed of double metal strips corrugated with dumbbell shaped grooves have been investigated. It has been found that much lower propagation loss and longer propagation length can be achieved based on the waveguide compared with the conventional spoof plasmonic waveguide with rectangular grooves. Moreover, the waveguide can implement a decrease in size of about 22%. An ultra-wideband THz plasmonic filter for planar circuits has been demonstrated based on the proposed waveguide. The experimental verification at the microwave frequency has been conducted by scaling up the geometry size of the filter.

  1. Uneven-Layered Coding Metamaterial Tile for Ultra-wideband RCS Reduction and Diffuse Scattering.

    PubMed

    Su, Jianxun; He, Huan; Li, Zengrui; Yang, Yaoqing Lamar; Yin, Hongcheng; Wang, Junhong

    2018-05-25

    In this paper, a novel uneven-layered coding metamaterial tile is proposed for ultra-wideband radar cross section (RCS) reduction and diffuse scattering. The metamaterial tile is composed of two kinds of square ring unit cells with different layer thickness. The reflection phase difference of 180° (±37°) between two unit cells covers an ultra-wide frequency range. Due to the phase cancellation between two unit cells, the metamaterial tile has the scattering pattern of four strong lobes deviating from normal direction. The metamaterial tile and its 90-degree rotation can be encoded as the '0' and '1' elements to cover an object, and diffuse scattering pattern can be realized by optimizing phase distribution, leading to reductions of the monostatic and bi-static RCSs simultaneously. The metamaterial tile can achieve -10 dB RCS reduction from 6.2 GHz to 25.7 GHz with the ratio bandwidth of 4.15:1 at normal incidence. The measured and simulated results are in good agreement and validate the proposed uneven-layered coding metamaterial tile can greatly expanding the bandwidth for RCS reduction and diffuse scattering.

  2. Integrated Ultra-Wideband Tracking and Carbon Dioxide Sensing System Design for International Space Station Applications

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun (David); Hafermalz, David; Dusl, John; Barton, Rick; Wagner, Ray; Ngo, Phong

    2015-01-01

    A three-dimensional (3D) Ultra-Wideband (UWB) Time-of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide (CO2) and felt upset. Recent findings indicate that frequent, short-term crew exposure to elevated CO2 levels combined with other physiological impacts of microgravity may lead to a number of detrimental effects, including loss of vision. To evaluate the risks associated with transient elevated CO2 levels and design effective countermeasures, doctors must have access to frequent CO2 measurements in the immediate vicinity of individual crew members along with simultaneous measurements of their location in the space environment. To achieve this goal, a small, low-power, wearable system that integrates an accurate CO2 sensor with an ultra-wideband (UWB) radio capable of real-time location estimation and data communication is proposed. This system would be worn by crew members or mounted on a free-flyer and would automatically gather and transmit sampled sensor data tagged with real-time, high-resolution location information. Under the current proposed effort, a breadboard prototype of such a system has been developed. Although the initial effort is targeted to CO2 monitoring, the concept is applicable to other types of sensors. For the initial effort, a micro-controller is leveraged to integrate a low-power CO2 sensor with a commercially available UWB radio system with ranging capability. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested

  3. Diverse Eruptive Activity Revealed by Acoustic and Electromagnetic Observations of the 14 July 2013 Intense Vulcanian Eruption of Tungurahua Volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Anderson, J. F.; Johnson, J. B.; Steele, A. L.; Ruiz, M. C.; Brand, B. D.

    2018-04-01

    During the powerful July 2013 eruption of Tungurahua volcano, Ecuador, we recorded exceptionally high amplitude, long-period infrasound (1,600-Pa peak-to-peak amplitude, 5.5-s period) on sensors within 2 km of the vent alongside electromagnetic signals from volcanic lightning serendipitously captured as interference. This explosion was one of Tungurahua's most powerful vulcanian eruptions since recent activity began in 1999, and its acoustic wave is among the most powerful volcanic infrasound ever recorded anywhere. We use these data to quantify erupted volume from the main explosion and to classify postexplosive degassing into distinct emission styles. Additionally, we demonstrate a highly effective method of recording lightning-related electromagnetic signals alongside infrasound. Detailed chronologies of powerful vulcanian eruptions are rare; this study demonstrates that diverse eruptive processes can occur in such eruptions and that near-vent infrasound and electromagnetic data can elucidate them.

  4. Research on high-temperature sensing characteristics based on modular interference of single-mode multimode single-mode fiber

    NASA Astrophysics Data System (ADS)

    Peng, Zhaozhuang; Wang, Li; Yan, Huanhuan

    2016-11-01

    Application of high temperature fiber sensing system is very extensive. It can be mainly used in high temperature test aerospace, such as, materials, chemicals, and energy. In recent years, various on-line optical fiber interferometric sensors based on modular interference of single-mode-multimode-single-mode(SMS) fiber have been largely explored in high temperature fiber sensor. In this paper we use the special fiber of a polyimide coating, its sensor head is composed of a section of multimode fiber spliced in the middle of Single-mode fiber. When the light is launched into the multimode fiber(MMF) through the lead-in single-mode fiber(SMF), the core mode and cladding modes are excited and propagate in the MMF respectively. Then, at the MMF-SMF spliced point, the excited cladding modes coupled back into the core of lead-out SMF interfere with SMF core mode. And the wavelength of the interference dip would shift differently with the variation of the temperature. By this mean, we can achieve the measurement of temperature. The experimental results also show that the fiber sensor based on SMS structure has a highly temperature sensitivity. From 30° to 300°, with the temperature increasing, the interference dip slightly shifts toward longer wavelength and the temperature sensitivity coefficient is 0.0115nm/°. With high sensitivity, simple structure, immunity to electromagnetic interferences and a good linearity of the experimental results, the structure has an excellent application prospect in engineering field.

  5. Evaluation of Electromagnetic Fields in a Hospital for Safe Use of Electronic Medical Equipment.

    PubMed

    Ishida, Kai; Fujioka, Tomomi; Endo, Tetsuo; Hosokawa, Ren; Fujisaki, Tetsushi; Yoshino, Ryoji; Hirose, Minoru

    2016-03-01

    Establishment of electromagnetic compatibility is important in use of electronic medical equipment in hospitals. To evaluate the electromagnetic environment, the electric field intensity induced by electromagnetic radiation in broadcasting spectra coming from outside the hospital was measured in a new hospital building before any patients visited the hospital and 6 months after the opening of the hospital. Various incoming radio waves were detected on the upper floors, with no significant difference in measured levels before and after opening of the hospital. There were no cellphone terminal signals before the hospital opened, but these signals were strongly detected at 6 months thereafter. Cellphone base stations signals were strongly detected on the upper floors, but there were no signals at most locations in the basement and in the center of the building on the lower floors. A maximum electrical intensity of 0.28 V/m from cellphone base stations (2.1 GHz) was detected at the south end of the 2nd floor before the hospital opened. This value is lower than the EMC marginal value for general electronic medical equipment specified in IEC 60601-1-2 (3 V/m). Therefore, electromagnetic interference with electronic medical equipment is unlikely in this situation. However, cellphone terminal signals were frequently detected in non-base station signal areas. This is a concern, and understanding signal strength from cellphone base stations at a hospital is important for promotion of greater safety.

  6. A brief perspective on computational electromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nachman, A.

    1996-06-01

    There is a growing interest in many quarters in acquiring the ability to predict all manner of electromagnetic (EM) effects. These effects include radar scattering attributes of objects (airplanes, missles, tanks, ships, etc.); the mutal interference of a multitude of antennas on board a single aircraft or ship; the performance of integrated circuits (IC); the propagation of waves (radio and radar) over long distances with the help of hindrance of complicated tomography and ionospheric/atmospheric ducting; and the propagation of pulses through dispersive media (soil, treetops, or concrete) to detect pollutants or hidden targets, or to assess the health of runways.more » All of the above require extensive computation and, despite the fact that Maxwell`s equations are linear in all these cases, codes do not exist which will do the job in a timely and error-controlled manner. This report briefly discusses how this can be rectified. 16 refs.« less

  7. Joint Electromagnetic Spectrum Management Operations

    DTIC Science & Technology

    2012-03-20

    electromagnetic radiation to ordnance ( HERO ), hazards of electromagnetic radiation to fuels (HERF), and natural phenomena effects of lightning and...fuels HERO hazards of electromagnetic radiation to ordnance HERP hazards of electromagnetic radiation to personnel HF high frequency HN host... electromagnetic pulse (EMP); hazards of EM radiation to personnel, ordnance ,

  8. IETS and quantum interference: Propensity rules in the presence of an interference feature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lykkebo, Jacob; Solomon, Gemma C., E-mail: gsolomon@nano.ku.dk; Gagliardi, Alessio

    2014-09-28

    Destructive quantum interference in single molecule electronics is an intriguing phenomenon; however, distinguishing quantum interference effects from generically low transmission is not trivial. In this paper, we discuss how quantum interference effects in the transmission lead to either low current or a particular line shape in current-voltage curves, depending on the position of the interference feature. Second, we consider how inelastic electron tunneling spectroscopy can be used to probe the presence of an interference feature by identifying vibrational modes that are selectively suppressed when quantum interference effects dominate. That is, we expand the understanding of propensity rules in inelastic electronmore » tunneling spectroscopy to molecules with destructive quantum interference.« less

  9. Photonic all-silicon microsensor for electromagnetic power in the microwave and millimeter-wave range

    NASA Astrophysics Data System (ADS)

    Rendina, Ivo; Bellucci, Marco; Cocorullo, Giuseppe; Della Corte, Francesco G.; Iodice, Mario

    2000-03-01

    A new type of non-perturbing electromagnetic power sensor for microwaves and millimeter-waves, based on the thermo- optical effect in a silicon interferometric etalon cavity is presented. The incident field power is partially dissipated into the all-silicon metal-less etalon, constituting the sensing element of the detector, so causing its temperature increase. This, in turn, induces the intensity modulation of a probe laser beam reflected by the cavity after a multiple beam interference process. The sensing element is directly connected to an optical fiber for remote interrogation, so avoiding the use of perturbing coaxial cables. The performances of such a new class of non-perturbing and wideband probes, in terms of sensitivity and resolution are discussed in detail. The experimental results concerning the characterization of a preliminary prototype sensor are presented and compared with theoretical data. The dependence of the sensor response on the electromagnetic frequency and on the sensing element characteristics is finally discussed.

  10. Electromagnetic Attraction.

    ERIC Educational Resources Information Center

    Milson, James L.

    1990-01-01

    Three activities involving electromagnetism are presented. Discussed are investigations involving the construction of an electromagnet, the effect of the number of turns of wire in the magnet, and the effect of the number of batteries in the circuit. Extension activities are suggested. (CW)

  11. 78 FR 26849 - Model Specifications for Breath Alcohol Ignition Interlock Devices (BAIIDs)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ...--Acetone Test 14--Emergency Override Test 15--Radiofrequency Interference/Electromagnetic Interference Test... requirements; temperature extreme testing; radio frequency interference (RFI) or electromagnetic interference...

  12. Digital mobile telephones and interference of ophthalmic equipment.

    PubMed

    Ang, G S; Lian, P; Ng, W S; Whyte, I; Ong, J M

    2007-01-01

    To assess the effect of mobile telephone electromagnetic interference on electronic ophthalmic equipment. Prospective audit with mobile telephones placed at distances of 3 m, 1 m, and 30 cm from, and in contact with, electronic ophthalmic equipment. Any interruption or cessation of the function of the ophthalmic device was assessed with the mobile telephones in standby, and in dialling or receiving modes. Any alterations of displayed digital figures or numbers were also assessed. A total of 23 electronic ophthalmic devices in two hospital ophthalmology outpatient departments were evaluated. All six mobile telephones used, and 22 (95.7%) of the 23 ophthalmic equipment evaluated had the Conformité Européene (CE) mark. No device showed any interruption or cessation of function. There were no alterations of displayed digital figures or numbers. The only effect of any kind was found with four instruments (1 non-CE marked), where there was temporary flickering on the screen, and only occurred when the mobile telephones were dialling or receiving at a distance of 30 cm or less from the instruments. This study shows that among the electronic ophthalmic devices tested, none suffered failure or interruption of function, from mobile telephone interference. Although not comprehensive for all ophthalmic equipment, the results question the need for a complete ban of mobile telephones in ophthalmic departments. It highlights the need for a controlled, objectively measured study of the clinically relevant effects of mobile telephones in the ophthalmology outpatient setting.

  13. Results of time-domain electromagnetic soundings in Miami-Dade and southern Broward Counties, Florida

    USGS Publications Warehouse

    Fitterman, David V.; Prinos, Scott T.

    2011-01-01

    Time-domain electromagnetic (TEM) soundings were made in Miami-Dade and southern Broward Counties to aid in mapping the landward extent of saltwater in the Biscayne aquifer. A total of 79 soundings were collected in settings ranging from urban to undeveloped land, with some of the former posing problems of land access and interference from anthropogenic features. TEM soundings combined with monitoring-well data were used to determine if the saltwater front had moved since the last time it was mapped, to provide additional spatial coverage where existing monitoring wells were insufficient, and to help interpret a previously collected helicopter electromagnetic (HEM) survey flown in the southernmost portion of the study area. TEM soundings were interpreted as layered resistivity-depth models. Using information from well logs and water-quality data, the resistivity of the freshwater saturated Biscayne aquifer is expected to be above 30 ohm-meters, and the saltwater-saturated aquifer will have resistivities of less than 10 ohm-meters allowing determination of water quality from the TEM interpretations. TEM models from 29 soundings were compared to electromagnetic induction logs collected in nearby monitoring wells. In general, the agreement of these results was very good, giving confidence in the use of the TEM data for mapping saltwater encroachment.

  14. Design of an electromagnetic accelerator for turbulent hydrodynamic mix studies

    NASA Astrophysics Data System (ADS)

    Susoeff, A. R.; Hawke, R. S.; Morrison, J. J.; Dimonte, G.; Remington, B. A.

    1993-12-01

    An electromagnetic accelerator in the form of a linear electric motor (LEM) has been designed to achieve controlled acceleration profiles of a carriage containing hydrodynamically unstable fluids for the investigation of the development of turbulent mix. The Rayleigh-Taylor instability is investigated by accelerating two dissimilar density fluids using the LEM to achieve a wide variety of acceleration and deceleration profiles. The acceleration profiles are achieved by independent control of rail and augmentation currents. A variety of acceleration-time profiles are possible including: (1) constant, (2) impulsive and (3) shaped. The LEM and support structure are a robust design in order to withstand high loads with deflections and to mitigate operational vibration. Vibration of the carriage during acceleration could create artifacts in the data which would interfere with the intended study of the Rayleigh-Taylor instability. The design allows clear access for diagnostic techniques such as laser induced fluorescence radiography, shadowgraphs and particle imaging velocimetry. Electromagnetic modeling codes were used to optimize the rail and augmentation coil positions within the support structure framework. Results of contemporary studies for non-arcing sliding contact of solid armatures are used for the design of the driving armature and the dynamic electromagnetic braking system. A 0.6MJ electrolytic capacitor bank is used for energy storage to drive the LEM. This report will discuss a LEM design which will accelerate masses of up to 3kg to a maximum of about 3000g(sub o), where g(sub o) is accelerated due to gravity.

  15. What Are Electromagnetic Fields?

    MedlinePlus

    ... Alt+0 Navigation Alt+1 Content Alt+2 Electromagnetic fields (EMF) Menu EMF Home About electromagnetic fields ... Standards EMF publications & information resources Meetings What are electromagnetic fields? Definitions and sources Electric fields are created ...

  16. Electromagnetic fasteners

    DOEpatents

    Crane, Randolph W.; Marts, Donna J.

    1994-11-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  17. Electromagnetic fasteners

    DOEpatents

    Crane, Randolph W.; Marts, Donna J.

    1994-01-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  18. Design and analysis of planar spiral resonator bandstop filter for microwave frequency

    NASA Astrophysics Data System (ADS)

    Motakabber, S. M. A.; Shaifudin Suharsono, Muhammad

    2017-11-01

    In microwave frequency, a spiral resonator can act as either frequency reject or acceptor circuits. A planar logarithmic spiral resonator bandstop filter has been developed based on this property. This project focuses on the rejection property of the spiral resonator. The performance analysis of the exhibited filter circuit has been performed by using scattering parameters (S-parameters) technique in the ultra-wideband microwave frequency. The proposed filter is built, simulated and S-parameters analysis have been accomplished by using electromagnetic simulation software CST microwave studio. The commercial microwave substrate Taconic TLX-8 has been used to build this filter. Experimental results showed that the -10 dB rejection bandwidth of the filter is 2.32 GHz and central frequency is 5.72 GHz which is suitable for ultra-wideband applications. The proposed design has been full of good compliance with the simulated and experimental results here.

  19. Adaptive limited feedback for interference alignment in MIMO interference channels.

    PubMed

    Zhang, Yang; Zhao, Chenglin; Meng, Juan; Li, Shibao; Li, Li

    2016-01-01

    It is very important that the radar sensor network has autonomous capabilities such as self-managing, etc. Quite often, MIMO interference channels are applied to radar sensor networks, and for self-managing purpose, interference management in MIMO interference channels is critical. Interference alignment (IA) has the potential to dramatically improve system throughput by effectively mitigating interference in multi-user networks at high signal-to-noise (SNR). However, the implementation of IA predominantly relays on perfect and global channel state information (CSI) at all transceivers. A large amount of CSI has to be fed back to all transmitters, resulting in a proliferation of feedback bits. Thus, IA with limited feedback has been introduced to reduce the sum feedback overhead. In this paper, by exploiting the advantage of heterogeneous path loss, we first investigate the throughput of IA with limited feedback in interference channels while each user transmits multi-streams simultaneously, then we get the upper bound of sum rate in terms of the transmit power and feedback bits. Moreover, we propose a dynamic feedback scheme via bit allocation to reduce the throughput loss due to limited feedback. Simulation results demonstrate that the dynamic feedback scheme achieves better performance in terms of sum rate.

  20. Electromagnetically Induced Transparency in Circuit Quantum Electrodynamics with Nested Polariton States

    NASA Astrophysics Data System (ADS)

    Long, Junling; Ku, H. S.; Wu, Xian; Gu, Xiu; Lake, Russell E.; Bal, Mustafa; Liu, Yu-xi; Pappas, David P.

    2018-02-01

    Quantum networks will enable extraordinary capabilities for communicating and processing quantum information. These networks require a reliable means of storage, retrieval, and manipulation of quantum states at the network nodes. A node receives one or more coherent inputs and sends a conditional output to the next cascaded node in the network through a quantum channel. Here, we demonstrate this basic functionality by using the quantum interference mechanism of electromagnetically induced transparency in a transmon qubit coupled to a superconducting resonator. First, we apply a microwave bias, i.e., drive, to the qubit-cavity system to prepare a Λ -type three-level system of polariton states. Second, we input two interchangeable microwave signals, i.e., a probe tone and a control tone, and observe that transmission of the probe tone is conditional upon the presence of the control tone that switches the state of the device with up to 99.73% transmission extinction. Importantly, our electromagnetically induced transparency scheme uses all dipole allowed transitions. We infer high dark state preparation fidelities of >99.39 % and negative group velocities of up to -0.52 ±0.09 km /s based on our data.

  1. Electromagnetically Induced Transparency in Circuit Quantum Electrodynamics with Nested Polariton States.

    PubMed

    Long, Junling; Ku, H S; Wu, Xian; Gu, Xiu; Lake, Russell E; Bal, Mustafa; Liu, Yu-Xi; Pappas, David P

    2018-02-23

    Quantum networks will enable extraordinary capabilities for communicating and processing quantum information. These networks require a reliable means of storage, retrieval, and manipulation of quantum states at the network nodes. A node receives one or more coherent inputs and sends a conditional output to the next cascaded node in the network through a quantum channel. Here, we demonstrate this basic functionality by using the quantum interference mechanism of electromagnetically induced transparency in a transmon qubit coupled to a superconducting resonator. First, we apply a microwave bias, i.e., drive, to the qubit-cavity system to prepare a Λ-type three-level system of polariton states. Second, we input two interchangeable microwave signals, i.e., a probe tone and a control tone, and observe that transmission of the probe tone is conditional upon the presence of the control tone that switches the state of the device with up to 99.73% transmission extinction. Importantly, our electromagnetically induced transparency scheme uses all dipole allowed transitions. We infer high dark state preparation fidelities of >99.39% and negative group velocities of up to -0.52±0.09  km/s based on our data.

  2. Neural mechanisms of interference control in working memory: effects of interference expectancy and fluid intelligence.

    PubMed

    Burgess, Gregory C; Braver, Todd S

    2010-09-20

    A critical aspect of executive control is the ability to limit the adverse effects of interference. Previous studies have shown activation of left ventrolateral prefrontal cortex after the onset of interference, suggesting that interference may be resolved in a reactive manner. However, we suggest that interference control may also operate in a proactive manner to prevent effects of interference. The current study investigated the temporal dynamics of interference control by varying two factors - interference expectancy and fluid intelligence (gF) - that could influence whether interference control operates proactively versus reactively. A modified version of the recent negatives task was utilized. Interference expectancy was manipulated across task blocks by changing the proportion of recent negative (interference) trials versus recent positive (facilitation) trials. Furthermore, we explored whether gF affected the tendency to utilize specific interference control mechanisms. When interference expectancy was low, activity in lateral prefrontal cortex replicated prior results showing a reactive control pattern (i.e., interference-sensitivity during probe period). In contrast, when interference expectancy was high, bilateral prefrontal cortex activation was more indicative of proactive control mechanisms (interference-related effects prior to the probe period). Additional results suggested that the proactive control pattern was more evident in high gF individuals, whereas the reactive control pattern was more evident in low gF individuals. The results suggest the presence of two neural mechanisms of interference control, with the differential expression of these mechanisms modulated by both experimental (e.g., expectancy effects) and individual difference (e.g., gF) factors.

  3. A Novel Polyaniline-Coated Bagasse Fiber Composite with Core-Shell Heterostructure Provides Effective Electromagnetic Shielding Performance.

    PubMed

    Zhang, Yang; Qiu, Munan; Yu, Ying; Wen, Bianying; Cheng, Lele

    2017-01-11

    A facile route was proposed to synthesize polyaniline (PANI) uniformly deposited on bagasse fiber (BF) via a one-step in situ polymerization of aniline in the dispersed system of BF. Correlations between the structural, electrical, and electromagnetic properties were extensively investigated. Scanning electron microscopy images confirm that the PANI was coated dominantly on the BF surface, indicating that the as-prepared BF/PANI composite adopted the natural and inexpensive BF as its core and the PANI as the shell. Fourier transform infrared spectra suggest significant interactions between the BF and PANI shell, and a high degree of doping in the PANI shell was achieved. X-ray diffraction results reveal that the crystallization of the PANI shell was improved. The dielectric behaviors are analyzed with respect to dielectric constant, loss tangent, and Cole-Cole plots. The BF/PANI composite exhibits superior electrical conductivity (2.01 ± 0.29 S·cm -1 ), which is higher than that of the pristine PANI with 1.35 ± 0.15 S·cm -1 . The complex permittivity, electromagnetic interference (EMI), shielding effectiveness (SE) values, and attenuation constants of the BF/PANI composite were larger than those of the pristine PANI. The EMI shielding mechanisms of the composite were experimentally and theoretically analyzed. The absorption-dominated total EMI SE of 28.8 dB at a thickness of 0.4 mm indicates the usefulness of the composite for electromagnetic shielding. Moreover, detailed comparison of electrical and EMI shielding properties with respect to the BF/PANI, dedoped BF/PANI composite, and the pristine PANI indicate that the enhancement of electromagnetic properties for the BF/PANI composite was due to the improved conductivity and the core-shell architecture. Thus, the composite has potential commercial applications for high-performance electromagnetic shielding materials and also could be used as a conductive filler to endow polymers with electromagnetic shielding

  4. Ultra-wideband communication system prototype using orthogonal frequency coded SAW correlators.

    PubMed

    Gallagher, Daniel R; Kozlovski, Nikolai Y; Malocha, Donald C

    2013-03-01

    This paper presents preliminary ultra-wideband (UWB) communication system results utilizing orthogonal frequency coded SAW correlators. Orthogonal frequency coding (OFC) and pseudo-noise (PN) coding provides a means for spread-spectrum UWB. The use of OFC spectrally spreads a PN sequence beyond that of CDMA; allowing for improved correlation gain. The transceiver approach is still very similar to that of the CDMA approach, but provides greater code diversity. Use of SAW correlators eliminates many of the costly components that are typically needed in the intermediate frequency (IF) section in the transmitter and receiver, and greatly reduces the signal processing requirements. Development and results of an experimental prototype system with center frequency of 250 MHz are presented. The prototype system is configured using modular RF components and benchtop pulse generator and frequency source. The SAW correlation filters used in the test setup were designed using 7 chip frequencies within the transducer. The fractional bandwidth of approximately 29% was implemented to exceed the defined UWB specification. Discussion of the filter design and results are presented and are compared with packaged device measurements. A prototype UWB system using OFC SAW correlators is demonstrated in wired and wireless configurations. OFC-coded SAW filters are used for generation of a transmitted spread-spectrum UWB and matched filter correlated reception. Autocorrelation and cross-correlation system outputs are compared. The results demonstrate the feasibility of UWB SAW correlators for use in UWB communication transceivers.

  5. Identifying Electromagnetic Attacks against Airports

    NASA Astrophysics Data System (ADS)

    Kreth, A.; Genender, E.; Doering, O.; Garbe, H.

    2012-05-01

    This work presents a new and sophisticated approach to detect and locate the origin of electromagnetic attacks. At the example of an airport, a normal electromagnetic environment is defined, in which electromagnetic attacks shall be identified. After a brief consideration of the capabilities of high power electromagnetic sources to produce high field strength values, this contribution finally presents the approach of a sensor network, realizing the identification of electromagnetic attacks.

  6. Basic EMC (Electromagnetic compatibility) technology advancement for C3 (Command, control, and communications) systems. Volume 6

    NASA Astrophysics Data System (ADS)

    Weiner, D.; Paul, C. R.; Whalen, J.

    1985-04-01

    This research effort was devoted to eliminating some of the basic technological gaps in the two important areas of: (1) electromagnetic effects (EM) on microelectronic circuits and (2) EM coupling and testing. The results are presented in fourteen reports which have been organized into six volumes. The reports are briefly summarized in this volume. In addition, an experiment is described which was performed to demonstrate the feasibility of applying several of the results to a problem involving electromagnetic interference. Specifically, experimental results are provided for the randomness associated with: (1) crosstalk in cable harnesses and (2) demodulation of amplitude modulated (AM) signals in operational amplifiers. These results are combined to predict candidate probability density functions (pdf's) for the amplitude of an AM interfering signal required to turn on a light emitting diode. The candidate pdf's are shown to be statistically consistent with measured data.

  7. Development of a full-waveform voltage and current recording device for multichannel transient electromagnetic transmitters

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyue; Zhang, Qisheng; Wang, Meng; Kong, Qiang; Zhang, Shengquan; He, Ruihao; Liu, Shenghui; Li, Shuhan; Yuan, Zhenzhong

    2017-11-01

    Due to the pressing demand for metallic ore exploration technology in China, several new technologies are being employed in the relevant exploration instruments. In addition to possessing the high resolution of the traditional transient electromagnetic method, high-efficiency measurements, and a short measurement time, the multichannel transient electromagnetic method (MTEM) technology can also sensitively determine the characteristics of a low-resistivity geologic body, without being affected by the terrain. Besides, the MTEM technology also solves the critical, existing interference problem in electrical exploration technology. This study develops a full-waveform voltage and current recording device for MTEM transmitters. After continuous acquisition and storage of the large, pseudo-random current signals emitted by the MTEM transmitter, these signals are then convoluted with the signals collected by the receiver to obtain the earth's impulse response. In this paper, the overall design of the full-waveform recording apparatus, including the hardware and upper-computer software designs, the software interface display, and the results of field test, is discussed in detail.

  8. Polypyrrole-MWCNT-Ag composites for electromagnetic shielding: Comparison between chemical deposition and UV-reduction approaches

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Izadyar; Gashti, Mazeyar Parvinzadeh

    2018-07-01

    In this study, we focused on the synthesis of polypyrrole-MWCNT-Ag composites and we evaluated their electrical properties to determine the electromagnetic interference shielding performance. We reduced silver nanoparticles in composites using two different in situ methods: UV-reduction and chemical deposition. Composites were characterized using spectroscopic and microscopic tools for evaluation of the chemical, morphological, electrical conductivity and electromagnetic shielding effectiveness. Results from Fourier transform infrared spectroscopy and dispersive Raman microscope showed chemical interactions between silver and the polypyrrole-MWCNT composite due to the charge-transfer within the structure. X-ray diffraction confirmed appearance of two new peaks for silver nanoparticles embedded in polypyrrole-MWCNT independent to reduction method. According to microscopy images, silver nanoparticles were homogenously distributed at the PPy-MWCNTs interfaces by UV reduction, while, chemical reduction resulted to deposition of silver within the PPy matrix. Finally, our results revealed that the polypyrrole-MWCNT-Ag composite produced via UV-reduction has higher electrical conductivity and shielding effectiveness in comparison to chemically reduced one.

  9. Designing of Multiphase Fly Ash/MWCNT/PU Composite Sheet Against Electromagnetic Environmental Pollution

    NASA Astrophysics Data System (ADS)

    Gujral, Parth; Varshney, Swati; Dhawan, S. K.

    2016-06-01

    Fly ash and multiwalled carbon nanotubes (MWCNT) reinforced multiphase polyurethane (PU) composite sheets have been fabricated by using a solution casting technique. Utilization of fly ash was the prime objective in order to reduce environmental pollution and to enhance the shielding properties of PU polymer. Our study proves that fly ash particles with MWCNTs in a PU matrix leads to novel hybrid high performance electromagnetic shielding interference material. Scanning electron microscopy confirms the existence of fly ash particles along with MWCNTs in a PU matrix. This multiphase composite shows total shielding effectiveness of 35.8 dB (>99.99% attenuation) in the Ku-band (12.4-18 GHz) frequency range. This is attributed to high dielectric losses of reinforcement present in the polymers matrix. The Nicolson-Ross-Weir algorithm has been applied to calculate the electromagnetic attributes and dielectric parameters of the PU samples by using scattering parameters ( S 11, S 22, S 12, S 21). The synthesized multiphase composites were further characterized by using x-ray diffraction, Fourier transform infrared spectroscopy, and thermo gravimetric analysis.

  10. Design and investigation of planar technology based ultra-wideband antenna with directional radiation patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meena, M. L., E-mail: madan.meena.ece@gamil.com; Parmar, Girish, E-mail: girish-parmar2002@yahoo.com; Kumar, Mithilesh, E-mail: mith-kr@yahoo.com

    A novel design technique based on planar technology for ultra-wideband (UWB) antennas with different ground shape having directional radiation pattern is being presented here. Firstly, the L-shape corner reflector ground plane antenna is designed with microstrip feed line in order to achieve large bandwidth and directivity. Thereafter, for the further improvement in the directivity as well as for better impedance matching the parabolic-shape ground plane has been introduced. The coaxial feed line is given for the proposed directional antenna in order to achieve better impedance matching with 50 ohm transmission line. The simulation analysis of the antenna is done onmore » CST Microwave Studio software using FR-4 substrate having thickness of 1.6 mm and dielectric constant of 4.4. The simulated result shows a good return loss (S11) with respect to -10 dB. The radiation pattern characteristic, angular width, directivity and bandwidth performance of the antenna have also been compared at different resonant frequencies. The designed antennas exhibit low cost, low reflection coefficient and better directivity in the UWB frequency band.« less

  11. In-Body to On-Body Ultrawideband Propagation Model Derived From Measurements in Living Animals.

    PubMed

    Floor, Pål Anders; Chávez-Santiago, Raúl; Brovoll, Sverre; Aardal, Øyvind; Bergsland, Jacob; Grymyr, Ole-Johannes H N; Halvorsen, Per Steinar; Palomar, Rafael; Plettemeier, Dirk; Hamran, Svein-Erik; Ramstad, Tor A; Balasingham, Ilangko

    2015-05-01

    Ultrawideband (UWB) radio technology for wireless implants has gained significant attention. UWB enables the fabrication of faster and smaller transceivers with ultralow power consumption, which may be integrated into more sophisticated implantable biomedical sensors and actuators. Nevertheless, the large path loss suffered by UWB signals propagating through inhomogeneous layers of biological tissues is a major hindering factor. For the optimal design of implantable transceivers, the accurate characterization of the UWB radio propagation in living biological tissues is indispensable. Channel measurements in phantoms and numerical simulations with digital anatomical models provide good initial insight into the expected path loss in complex propagation media like the human body, but they often fail to capture the effects of blood circulation, respiration, and temperature gradients of a living subject. Therefore, we performed UWB channel measurements within 1-6 GHz on two living porcine subjects because of the anatomical resemblance with an average human torso. We present for the first time, a path loss model derived from these in vivo measurements, which includes the frequency-dependent attenuation. The use of multiple on-body receiving antennas to combat the high propagation losses in implant radio channels was also investigated.

  12. Electromagnetic characterization of advanced nanostructured materials and multilayer design optimization for metrological and low radar observability applications

    NASA Astrophysics Data System (ADS)

    Micheli, Davide; Pastore, Roberto; Delfini, Andrea; Giusti, Alfonso; Vricella, Antonio; Santoni, Fabio; Marchetti, Mario; Tolochko, Oleg; Vasilyeva, Ekaterina

    2017-05-01

    In this work the electromagnetic characterization of composite materials reinforced with carbon and metallic nanoparticles is presented. In particular, the electric permittivity and the magnetic permeability as a function of the frequency are used to evaluate the electromagnetic absorption capability of the nanocomposites. The aim is the study of possible applications in advanced coating able to tune the electromagnetic reflectivity of satellite surfaces in specific frequency ranges, in a special way for those surfaces that for some reason could be exposed to the antenna radiation pattern. In fact, the interference caused by the spurious electromagnetic multipath due to good electric conductive satellite surface components could in turn affect the main radiation lobe of TLC and Telemetry antennas, thus modifying its main propagation directions and finally increasing the microwave channel pathloss. The work reports the analysis of different nanostructured materials in the 2-10 GHz frequency range. The employed nanopowders are of carbon nanotubes, cobalt, argent, titanium, nickel, zinc, copper, iron, boron, bismuth, hafnium, in different weight percentages versus the hosting polymeric matrix. The materials are classified as a function of their electromagnetic losses capability by taking into account of both electric and magnetic properties. The possibility to design multi-layered structures optimized to provide specific microwave response is finally analyzed by the aid of swam intelligence algorithm. This novel technique is in general interesting for metrological purpose and remote sensing purposes, and can be effectively used in aerospace field for frequency selective materials design, in order to reduce the aircraft/spacecraft radar observability at certain frequencies.

  13. Electromagnetic fields and their impacts

    NASA Astrophysics Data System (ADS)

    Prša, M. A.; Kasaš-Lažetić, K. K.

    2018-01-01

    The main goal of this paper is to briefly recall some different electromagnetic field definitions, some macroscopic sources of electromagnetic fields, electromagnetic fields classification regarding time dependences, and the ways of field determination in concrete cases. After that, all the mechanisms of interaction between electromagnetic field and substance, on atomic level, are described in details. Interaction between substance and electric field is investigated separately from the substance and magnetic field interaction. It is demonstrated that, in all cases of the unique electromagnetic field, total interaction can be treated as a superposition of two separated interactions. Finally, the main electromagnetic fields surrounding us is cited and discussed.

  14. Apparatus and method for the simultaneous detection of neutrons and ionizing electromagnetic radiation

    DOEpatents

    Bell, Zane W.

    2000-01-01

    A sensor for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising: a sensor for the detection of gamma radiation, the sensor defining a sensing head; the sensor further defining an output end in communication with the sensing head; and an exterior neutron-sensitive material configured to form around the sensing head; wherein the neutron-sensitive material, subsequent to the capture of the neutron, fissions into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the first excited state decaying via the emission of a single gamma ray at 478 keV which can in turn be detected by the sensing head; and wherein the sensing head can also detect the ionizing electromagnetic radiation from an incident radiation field without significant interference from the neutron-sensitive material. A method for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising the steps of: providing a gamma ray sensitive detector comprising a sensing head and an output end; conforming an exterior neutron-sensitive material configured to form around the sensing head of the detector; capturing neutrons by the sensing head causing the neutron-sensitive material to fission into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the state decaying via the emission of a single gamma ray at 478 keV; sensing gamma rays entering the detector through the neutron-sensitive material; and producing an output through a readout device coupled to the output end; wherein the detector provides an output which is proportional to the energy of the absorbed ionizing electromagnetic radiation.

  15. Charge qubit coupled to an intense microwave electromagnetic field in a superconducting Nb device: evidence for photon-assisted quasiparticle tunneling.

    PubMed

    de Graaf, S E; Leppäkangas, J; Adamyan, A; Danilov, A V; Lindström, T; Fogelström, M; Bauch, T; Johansson, G; Kubatkin, S E

    2013-09-27

    We study a superconducting charge qubit coupled to an intensive electromagnetic field and probe changes in the resonance frequency of the formed dressed states. At large driving strengths, exceeding the qubit energy-level splitting, this reveals the well known Landau-Zener-Stückelberg interference structure of a longitudinally driven two-level system. For even stronger drives, we observe a significant change in the Landau-Zener-Stückelberg pattern and contrast. We attribute this to photon-assisted quasiparticle tunneling in the qubit. This results in the recovery of the qubit parity, eliminating effects of quasiparticle poisoning, and leads to an enhanced interferometric response. The interference pattern becomes robust to quasiparticle poisoning and has a good potential for accurate charge sensing.

  16. Coherent hybrid electromagnetic field imaging

    DOEpatents

    Cooke, Bradly J [Jemez Springs, NM; Guenther, David C [Los Alamos, NM

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  17. Herschel's Interference Demonstration.

    ERIC Educational Resources Information Center

    Perkalskis, Benjamin S.; Freeman, J. Reuben

    2000-01-01

    Describes Herschel's demonstration of interference arising from many coherent rays. Presents a method for students to reproduce this demonstration and obtain beautiful multiple-beam interference patterns. (CCM)

  18. 76 FR 44489 - Medical Devices; Neurological Devices; Classification of Repetitive Transcranial Magnetic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ...; Hazards caused by electromagnetic interference and electrostatic discharge hazards; and Hearing loss. FDA... electromagnetic Electromagnetic compatibility. interference and electrostatic discharge hazards. Labeling. Hearing...

  19. Dependency-dependent interference: NPI interference, agreement attraction, and global pragmatic inferences.

    PubMed

    Xiang, Ming; Grove, Julian; Giannakidou, Anastasia

    2013-01-01

    Previous psycholinguistics studies have shown that when forming a long distance dependency in online processing, the parser sometimes accepts a sentence even though the required grammatical constraints are only partially met. A mechanistic account of how such errors arise sheds light on both the underlying linguistic representations involved and the processing mechanisms that put such representations together. In the current study, we contrast the negative polarity items (NPI) interference effect, as shown by the acceptance of an ungrammatical sentence like "The bills that democratic senators have voted for will ever become law," with the well-known phenomenon of agreement attraction ("The key to the cabinets are … "). On the surface, these two types of errors look alike and thereby can be explained as being driven by the same source: similarity based memory interference. However, we argue that the linguistic representations involved in NPI licensing are substantially different from those of subject-verb agreement, and therefore the interference effects in each domain potentially arise from distinct sources. In particular, we show that NPI interference at least partially arises from pragmatic inferences. In a self-paced reading study with an acceptability judgment task, we showed NPI interference was modulated by participants' general pragmatic communicative skills, as quantified by the Autism-Spectrum Quotient (AQ, Baron-Cohen et al., 2001), especially in offline tasks. Participants with more autistic traits were actually less prone to the NPI interference effect than those with fewer autistic traits. This result contrasted with agreement attraction conditions, which were not influenced by individual pragmatic skill differences. We also show that different NPI licensors seem to have distinct interference profiles. We discuss two kinds of interference effects for NPI licensing: memory-retrieval based and pragmatically triggered.

  20. Dependency-dependent interference: NPI interference, agreement attraction, and global pragmatic inferences

    PubMed Central

    Xiang, Ming; Grove, Julian; Giannakidou, Anastasia

    2013-01-01

    Previous psycholinguistics studies have shown that when forming a long distance dependency in online processing, the parser sometimes accepts a sentence even though the required grammatical constraints are only partially met. A mechanistic account of how such errors arise sheds light on both the underlying linguistic representations involved and the processing mechanisms that put such representations together. In the current study, we contrast the negative polarity items (NPI) interference effect, as shown by the acceptance of an ungrammatical sentence like “The bills that democratic senators have voted for will ever become law,” with the well-known phenomenon of agreement attraction (“The key to the cabinets are … ”). On the surface, these two types of errors look alike and thereby can be explained as being driven by the same source: similarity based memory interference. However, we argue that the linguistic representations involved in NPI licensing are substantially different from those of subject-verb agreement, and therefore the interference effects in each domain potentially arise from distinct sources. In particular, we show that NPI interference at least partially arises from pragmatic inferences. In a self-paced reading study with an acceptability judgment task, we showed NPI interference was modulated by participants' general pragmatic communicative skills, as quantified by the Autism-Spectrum Quotient (AQ, Baron-Cohen et al., 2001), especially in offline tasks. Participants with more autistic traits were actually less prone to the NPI interference effect than those with fewer autistic traits. This result contrasted with agreement attraction conditions, which were not influenced by individual pragmatic skill differences. We also show that different NPI licensors seem to have distinct interference profiles. We discuss two kinds of interference effects for NPI licensing: memory-retrieval based and pragmatically triggered. PMID:24109468