Sample records for ultrawideband microwave dielectric

  1. Ultrawideband temperature-dependent dielectric properties of animal liver tissue in the microwave frequency range.

    PubMed

    Lazebnik, Mariya; Converse, Mark C; Booske, John H; Hagness, Susan C

    2006-04-07

    The development of ultrawideband (UWB) microwave diagnostic and therapeutic technologies, such as UWB microwave breast cancer detection and hyperthermia treatment, is facilitated by accurate knowledge of the temperature- and frequency-dependent dielectric properties of biological tissues. To this end, we characterize the temperature-dependent dielectric properties of a representative tissue type-animal liver-from 0.5 to 20 GHz. Since discrete-frequency linear temperature coefficients are impractical and inappropriate for applications spanning wide frequency and temperature ranges, we propose a novel and compact data representation technique. A single-pole Cole-Cole model is used to fit the dielectric properties data as a function of frequency, and a second-order polynomial is used to fit the Cole-Cole parameters as a function of temperature. This approach permits rapid estimation of tissue dielectric properties at any temperature and frequency.

  2. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries

    NASA Astrophysics Data System (ADS)

    Lazebnik, Mariya; Popovic, Dijana; McCartney, Leah; Watkins, Cynthia B.; Lindstrom, Mary J.; Harter, Josephine; Sewall, Sarah; Ogilvie, Travis; Magliocco, Anthony; Breslin, Tara M.; Temple, Walley; Mew, Daphne; Booske, John H.; Okoniewski, Michal; Hagness, Susan C.

    2007-10-01

    The development of microwave breast cancer detection and treatment techniques has been driven by reports of substantial contrast in the dielectric properties of malignant and normal breast tissues. However, definitive knowledge of the dielectric properties of normal and diseased breast tissues at microwave frequencies has been limited by gaps and discrepancies across previously published studies. To address these issues, we conducted a large-scale study to experimentally determine the ultrawideband microwave dielectric properties of a variety of normal, malignant and benign breast tissues, measured from 0.5 to 20 GHz using a precision open-ended coaxial probe. Previously, we reported the dielectric properties of normal breast tissue samples obtained from reduction surgeries. Here, we report the dielectric properties of normal (adipose, glandular and fibroconnective), malignant (invasive and non-invasive ductal and lobular carcinomas) and benign (fibroadenomas and cysts) breast tissue samples obtained from cancer surgeries. We fit a one-pole Cole-Cole model to the complex permittivity data set of each characterized sample. Our analyses show that the contrast in the microwave-frequency dielectric properties between malignant and normal adipose-dominated tissues in the breast is considerable, as large as 10:1, while the contrast in the microwave-frequency dielectric properties between malignant and normal glandular/fibroconnective tissues in the breast is no more than about 10%.

  3. Ultra-wideband microwave photonic link based on single-sideband modulation

    NASA Astrophysics Data System (ADS)

    Li, Jingnan; Wang, Yunxin; Wang, Dayong; Zhou, Tao; Zhong, Xin; Xu, Jiahao; Yang, Dengcai; Rong, Lu

    2017-10-01

    Comparing with the conventional double-sideband (DSB) modulation in communication system, single-sideband (SSB) modulation only demands half bandwidth of DSB in transmission. Two common ways are employed to implement SSB modulation by using optical filter (OF) or electrical 90° phase shift, respectively. However, the bandwidth of above methods is limited by characteristics of current OF and electrical phase shift. To overcome this problem, an ultra-wideband microwave photonic link based on SSB modulation is proposed and demonstrated. The radio frequency (RF) signal modulates a single-drive dual-parallel Mach-Zehnder modulator, and the SSB modulation is realized by combining an electrical 90° hybrid coupler and an optical bandpass filter. The experimental results indicate that the system can achieve SSB modulation for RF signal from 2 to 40 GHz. The proposed microwave photonic link provides an ultra-wideband approach based on SSB modulation for radio-over-fiber system.

  4. A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries.

    PubMed

    Lazebnik, Mariya; McCartney, Leah; Popovic, Dijana; Watkins, Cynthia B; Lindstrom, Mary J; Harter, Josephine; Sewall, Sarah; Magliocco, Anthony; Booske, John H; Okoniewski, Michal; Hagness, Susan C

    2007-05-21

    The efficacy of emerging microwave breast cancer detection and treatment techniques will depend, in part, on the dielectric properties of normal breast tissue. However, knowledge of these properties at microwave frequencies has been limited due to gaps and discrepancies in previously reported small-scale studies. To address these issues, we experimentally characterized the wideband microwave-frequency dielectric properties of a large number of normal breast tissue samples obtained from breast reduction surgeries at the University of Wisconsin and University of Calgary hospitals. The dielectric spectroscopy measurements were conducted from 0.5 to 20 GHz using a precision open-ended coaxial probe. The tissue composition within the probe's sensing region was quantified in terms of percentages of adipose, fibroconnective and glandular tissues. We fit a one-pole Cole-Cole model to the complex permittivity data set obtained for each sample and determined median Cole-Cole parameters for three groups of normal breast tissues, categorized by adipose tissue content (0-30%, 31-84% and 85-100%). Our analysis of the dielectric properties data for 354 tissue samples reveals that there is a large variation in the dielectric properties of normal breast tissue due to substantial tissue heterogeneity. We observed no statistically significant difference between the within-patient and between-patient variability in the dielectric properties.

  5. Ultra-Wideband Millimeter-Wave Dielectric Characteristics of Freshly Excised Normal and Malignant Human Skin Tissues.

    PubMed

    Mirbeik-Sabzevari, Amir; Ashinoff, Robin; Tavassolian, Negar

    2018-06-01

    Millimeter waves have recently gained attention for the evaluation of skin lesions and the detection of skin tumors. Such evaluations heavily rely on the dielectric contrasts existing between normal and malignant skin tissues at millimeter-wave frequencies. However, current studies on the dielectric properties of normal and diseased skin tissues at these frequencies are limited and inconsistent. In this study, a comprehensive dielectric spectroscopy study is conducted for the first time to characterize the ultra-wideband dielectric properties of freshly excised normal and malignant skin tissues obtained from skin cancer patients having undergone Mohs micrographic surgeries at Hackensack University Medical Center. Measurements are conducted using a precision slim-form open-ended coaxial probe in conjunction with a millimeter-wave vector network analyzer over the frequency range of 0.5-50 GHz. A one-pole Cole-Cole model is fitted to the complex permittivity dataset of each sample. Statistically considerable contrasts are observed between the dielectric properties of malignant and normal skin tissues over the ultra-wideband millimeter-wave frequency range considered.

  6. Development of an Ultra-Wideband Circularly Polarized Multiple Layer Dielectric Rod Antenna Design

    NASA Astrophysics Data System (ADS)

    Wainwright, Gregory D.

    This dissertations focuses on the development of a novel Ultra-Wideband (UWB) circularly polarized dielectric rod antenna (CPDRA) which yields a constant gain, pattern, and phase center. These properties are important in many applications. Within radar systems a constant phase center is desirable to avoid errors within downrange and crossrange measurements. In a reflector antenna the illumination, spillover, and phase efficiencies will remain the same over an ultra-wideband. Lastly, near field probes require smooth amplitude and phase patterns over frequency to avoid errors during the calibration process of the antenna under test. In this dissertation a novel CP feeding network has been developed for an ultra-wideband dielectric rod antenna. Circularly-polarized antennas have a major advantage over its linearly-polarized counterpart in that the polarization mismatch loss caused by misalignment between the polarizations of the incident fields and antenna can be avoided. This is important in satellite communications and broadcasts where signal propagation through the ionosphere can experience Faraday Rotation. A circularly polarized antenna is also helpful in mobile radar and communication systems where the receiving antennas orientation is not fixed. Previous research on UWB dielectric rod antenna designs has focused on Dual linear feeds. Each polarization within the dual linear feed is excited by a pair of linear launcher arms fed with a 0°-180° hybrid balun. The proposed CPDRA design does not require the 0°-180° hybrid baluns or 0°-90° hybrid for achieving CP operation. These hybrids will increase the antennas size, weight, cost, and reduce operational bandwidth. A design technique has been developed for an UWB multilayer dielectric waveguide used in a CPDRA antenna. This design technique uses near-field Electric field data from inside the waveguide, in conjunction with a genetic algorithm optimization to yield a wideband waveguide with a near field

  7. Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime

    NASA Astrophysics Data System (ADS)

    Huang, Xiaojun; Yang, Helin; Shen, Zhaoyang; Chen, Jiao; Lin, Hail; Yu, Zetai

    2017-09-01

    We present a water-injected all-dielectric metamaterial that can offer an extremely wide bandwidth of electromagnetic absorption and prominent wide incident angle range. Different from conventional metal-dielectric based metamaterial absorbers, the absorption mechanism of the proposed all-dielectric metamaterial absorber is to take advantage of the dispersion of water, rather than electric or/and magnetic resonance, which thoroughly overcomes the defects of narrow bandwidth and oblique incidence from metal-dielectric based metamaterial absorber. The simulated absorption was over 90% in 8.1-22.9 GHz with the relative bandwidth of 95.5% when the incident angle reaches 60°, and the corresponding microwave experiment is performed to support the simulations. The obtained excellent absorption performance reveals a possible application of the proposed absorber, which can be exploited for electromagnetic stealth purposes, especially for electromagnetic stealth of sea targets.

  8. High-speed microwave photonic switch for millimeter-wave ultra-wideband signal generation.

    PubMed

    Wang, Li Xian; Li, Wei; Zheng, Jian Yu; Wang, Hui; Liu, Jian Guo; Zhu, Ning Hua

    2013-02-15

    We propose a scheme for generating millimeter-wave (MMW) ultra-wideband (UWB) signal that is free from low-frequency components and a residual local oscillator. The system consists of two cascaded polarization modulators and is equivalent to a high-speed microwave photonic switch, which truncates a sinusoidal MMW into short pulses. The polarity switchability of the generated MMW-UWB pulse is also demonstrated.

  9. Ultra-wideband microwave photonic frequency downconverter based on carrier-suppressed single-sideband modulation

    NASA Astrophysics Data System (ADS)

    Wang, Yunxin; Li, Jingnan; Wang, Dayong; Zhou, Tao; Xu, Jiahao; Zhong, Xin; Yang, Dengcai; Rong, Lu

    2018-03-01

    An ultra-wideband microwave photonic frequency downconverter is proposed based on carrier-suppressed single-sideband (CS-SSB) modulation. A radio frequency (RF) signal and a local oscillator (LO) signal are combined to drive a dual-parallel Mach-Zehnder modulator (DPMZM) through the electrical 90°hybrid coupler. To break through the bandwidth limit, an optical bandpass filter (OBPF) is applied simultaneously. Then a photodetector (PD) after OBPF is used to obtain intermediate frequency (IF) signal. Experimental results demonstrate that the proposed frequency downconverter can generate the CS-SSB modulation signal from 2 to 40 GHz in optical spectrum. All the mixing spurs are completely suppressed under the noise floor in electrical spectrum, and the output IF signal possesses high purity with a suppression ratio of the undesired signals (≥40 dB). Furthermore, the multi-octave downconversion can also be implemented to satisfy the bandwidth requirement of multi-channel communication. The proposed frequency downconverter supplies an ultra-wideband and high-purity alternative for the signal processing in microwave photonic applications.

  10. Trends of microwave dielectric materials for antenna application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulong, T. A. T., E-mail: tuanamirahtuansulong@gmail.com; Osman, R. A. M., E-mail: rozana@unimap.edu.my; Idris, M. S., E-mail: sobri@unimap.edu.my

    Rapid development of a modern microwave communication system requires a high quality microwave dielectric ceramic material to be used as mobile and satellite communication. High permittivity of dielectric ceramics leads to fabrication of compact device for electronic components. Dielectric ceramics which used for microwave applications required three important parameters such as high or appropriate permittivity (ε{sub r}), high quality factor (Q {sub f} ≥ 5000 GH z) and good temperature coefficient of resonant frequency (τ{sub f}). This paper review of various dielectric ceramic materials used as microwave dielectric materials and related parameters for antenna applications.

  11. Investigation of dielectric properties of different cake formulations during microwave and infrared-microwave combination baking.

    PubMed

    Sakiyan, Ozge; Sumnu, Gulum; Sahin, Serpil; Meda, Venkatesh

    2007-05-01

    Dielectric properties can be used to understand the behavior of food materials during microwave processing. Dielectric properties influence the level of interaction between food and high frequency electromagnetic energy. Dielectric properties are, therefore, important in the design of foods intended for microwave preparation. In this study, it was aimed to determine the variation of dielectric properties of different cake formulations during baking in microwave and infrared-microwave combination oven. In addition, the effects of formulation and temperature on dielectric properties of cake batter were examined. Dielectric constant and loss factor of cake samples were shown to be dependent on formulation, baking time, and temperature. The increase in baking time and temperature decreased dielectric constant and loss factor of all formulations. Fat content was shown to increase dielectric constant and loss factor of cakes.

  12. Microwave Propagation in Dielectric Fluids.

    ERIC Educational Resources Information Center

    Lonc, W. P.

    1980-01-01

    Describes an undergraduate experiment designed to verify quantitatively the effect of a dielectric fluid's dielectric constant on the observed wavelength of microwave radiation propagating through the fluid. The fluid used is castor oil, and results agree with the expected behavior within 5 percent. (Author/CS)

  13. Chaotic ultra-wideband radio generator based on an optoelectronic oscillator with a built-in microwave photonic filter.

    PubMed

    Wang, Li Xian; Zhu, Ning Hua; Zheng, Jian Yu; Liu, Jian Guo; Li, Wei

    2012-05-20

    We induce a microwave photonic bandpass filter into an optoelectronic oscillator to generate a chaotic ultra-wideband signal in both the optical and electrical domain. The theoretical analysis and numerical simulation indicate that this system is capable of generating band-limited high-dimensional chaos. Experimental results coincide well with the theoretical prediction and show that the power spectrum of the generated chaotic signal basically meets the Federal Communications Commission indoor mask. The generated chaotic carrier is further intensity modulated by a 10 MHz square wave, and the waveform of the output ultra-wideband signal is measured for demonstrating the chaotic on-off keying modulation.

  14. Microwave Memristive-like Nonlinearity in a Dielectric Metamaterial

    NASA Astrophysics Data System (ADS)

    Wu, Hongya; Zhou, Ji; Lan, Chuwen; Guo, Yunsheng; Bi, Ke

    2014-06-01

    Memristor exhibit interesting and valuable circuit properties and have thus become the subject of increasing scientific interest. Scientists wonder if they can conceive a microwave memristor that behaves as a memristor operating with electromagnetic fields. Here, we report a microwave memristive-like nonlinear phenomenon at room temperature in dielectric metamaterials consisting of CaTiO3-ZrO2 ceramic dielectric cubes. Hysteretic transmission-incident field power loops (similar to the hysteretic I-V loop of memristor which is the fingerprint of memristor) with various characteristics were systematically observed in the metamaterials, which exhibited designable microwave memristive-like behavior. The effect is attributed to the decreasing permittivity of the dielectric cubes with the increasing temperature generated by the interaction between the electromagnetic waves and the dielectric cubes. This work demonstrates the feasibility of fabrication transient photonic memristor at microwave frequencies with metamaterials.

  15. Microwave Memristive-like Nonlinearity in a Dielectric Metamaterial

    PubMed Central

    Wu, Hongya; Zhou, Ji; Lan, Chuwen; Guo, Yunsheng; Bi, Ke

    2014-01-01

    Memristor exhibit interesting and valuable circuit properties and have thus become the subject of increasing scientific interest. Scientists wonder if they can conceive a microwave memristor that behaves as a memristor operating with electromagnetic fields. Here, we report a microwave memristive-like nonlinear phenomenon at room temperature in dielectric metamaterials consisting of CaTiO3-ZrO2 ceramic dielectric cubes. Hysteretic transmission-incident field power loops (similar to the hysteretic I-V loop of memristor which is the fingerprint of memristor) with various characteristics were systematically observed in the metamaterials, which exhibited designable microwave memristive-like behavior. The effect is attributed to the decreasing permittivity of the dielectric cubes with the increasing temperature generated by the interaction between the electromagnetic waves and the dielectric cubes. This work demonstrates the feasibility of fabrication transient photonic memristor at microwave frequencies with metamaterials. PMID:24975455

  16. An ultra-wideband microwave tomography system: preliminary results.

    PubMed

    Gilmore, Colin; Mojabi, Puyan; Zakaria, Amer; Ostadrahimi, Majid; Kaye, Cam; Noghanian, Sima; Shafai, Lotfollah; Pistorius, Stephen; LoVetri, Joe

    2009-01-01

    We describe a 2D wide-band multi-frequency microwave imaging system intended for biomedical imaging. The system is capable of collecting data from 2-10 GHz, with 24 antenna elements connected to a vector network analyzer via a 2 x 24 port matrix switch. Through the use of two different nonlinear reconstruction schemes: the Multiplicative-Regularized Contrast Source Inversion method and an enhanced version of the Distorted Born Iterative Method, we show preliminary imaging results from dielectric phantoms where data were collected from 3-6 GHz. The early inversion results show that the system is capable of quantitatively reconstructing dielectric objects.

  17. Ultra-wideband surface plasmonic Y-splitter.

    PubMed

    Gao, Xi; Zhou, Liang; Yu, Xing Yang; Cao, Wei Ping; Li, Hai Ou; Ma, Hui Feng; Cui, Tie Jun

    2015-09-07

    We present an ultra-wideband Y-splitter based on planar THz plasmonic metamaterials, which consists of a straight waveguide with composite H-shaped structure and two branch waveguides with H-shaped structure. The spoof surface plasmonic polaritons (SSPPs) supported by the straight waveguide occupy the similar dispersion relation and mode characteristic to the ones confined by the branch waveguides. Attributing to these features, the two branch waveguides can equally separate the SSPPs wave propagating along the straight plasmonic waveguide to form a 3dB power divider in an ultra-wideband frequency range. To verify the functionality and performance of the proposed Y-splitter, we scaled down the working frequency to microwave and implemented microwave experiments. The tested device performances have clearly validated the functionality of our designs. It is believed to be applicable for future plasmonic circuit in microwave and THz ranges.

  18. Automated Microwave Dielectric Constant Measurement

    DTIC Science & Technology

    1987-03-01

    IJSWC TR 86-46 AD.-A 184 182 AUTOMATED MICROWAVE DIELECTRIC CONSTANT MEASUREMENT SYTIEM BY B. C. GLANCY A. KRALL PESEARCH AND TECHNOLOGY DEPARTMENT...NO0. NO. ACCESSION NO. Silver Spring, Maryland 20903-500061152N ZROO1 ZRO131 R1AA29 11. TITLE (Include Security Classification) AUTOMATED MICROWAVE ...constants as a funct on of microwave frequency has been simplified using an automated testing apparatus. This automated procedure is based on the use of a

  19. Fast ultra-wideband microwave spectral scanning utilizing photonic wavelength- and time-division multiplexing.

    PubMed

    Li, Yihan; Kuse, Naoya; Fermann, Martin

    2017-08-07

    A high-speed ultra-wideband microwave spectral scanning system is proposed and experimentally demonstrated. Utilizing coherent dual electro-optical frequency combs and a recirculating optical frequency shifter, the proposed system realizes wavelength- and time-division multiplexing at the same time, offering flexibility between scan speed and size, weight and power requirements (SWaP). High-speed spectral scanning spanning from ~1 to 8 GHz with ~1.2 MHz spectral resolution is achieved experimentally within 14 µs. The system can be easily scaled to higher bandwidth coverage, faster scanning speed or finer spectral resolution with suitable hardware.

  20. Ultrawideband radar; Proceedings of the Meeting, Los Angeles, CA, Jan. 22, 23, 1992

    NASA Astrophysics Data System (ADS)

    Lahaie, Ivan J.

    1992-05-01

    The present conference discusses a canonical representation of the radar range equation in the time domain, two-way beam patterns fron ultrawideband arrays, modeling of ultrawideband sea clutter, the analysis of time-domain ultrawideband radar signals, a frequency-agile ultrawideband microwave source, and the performance of ultrawideband antennas. Also discussed are the diffraction of ultrawideband radar pulses, sea-clutter measurements with an ultrawideband X-band radar having variable resolution, results from a VHF-impulse SAR, an ultrawideband differential radar, the development of 2D target images from ultrawideband radar systems, ultrawideband generators, and the radiated waveform of a monolithic photoconductive GaAs pulser. (For individual items see A93-28202 to A93-28223)

  1. Dielectric constants of soils at microwave frequencies

    NASA Technical Reports Server (NTRS)

    Geiger, F. E.; Williams, D.

    1972-01-01

    A knowledge of the complex dielectric constant of soils is essential in the interpretation of microwave airborne radiometer data of the earth's surface. Measurements were made at 37 GHz on various soils from the Phoenix, Ariz., area. Extensive data have been obtained for dry soil and soil with water content in the range from 0.6 to 35 percent by dry weight. Measurements were made in a two arm microwave bridge and results were corrected for reflections at the sample interfaces by solution of the parallel dielectric plate problem. The maximum dielectric constants are about a factor of 3 lower than those reported for similar soils at X-band frequencies.

  2. Dielectric properties, optimum formulation and microwave baking conditions of chickpea cakes.

    PubMed

    Alifakı, Yaşar Özlem; Şakıyan, Özge

    2017-03-01

    The aim of this study was to correlate dielectric properties with quality parameters, and to optimize cake formulation and baking conditions by response surface methodology. Weight loss, color, specific volume, hardness and porosity were evaluated. The samples with different DATEM (0.4, 0.8 and 1.2%) and chickpea flour concentrations (30, 40 and 50%) were baked in microwave oven at different power (300, 350, 400 W) and baking times (2.50, 3.0, 3.50 min). It was found that microwave power showed significant effect on color, while baking time showed effect on weight loss, porosity, hardness, specific volume and dielectric properties. Emulsifier level affected porosity, specific volume and dielectric constant. Chickpea flour level affected porosity, color, hardness and dielectric properties of cakes. The optimum microwave power, baking time, DATEM level and chickpea flour level were found as 400 W, 2.84 min, 1.2% and 30%, respectively. The comparison between conventionally baked and the microwave baked cakes at optimum points showed that color difference, weight loss, specific volume and porosity values of microwave baked cakes were less than those of conventionally baked cakes, on the other hand, hardness values were higher. Moreover, a negative correlation between dielectric constant and porosity, and weight loss values were detected for microwave baked samples. A negative correlation between dielectric loss factor and porosity was observed. These correlations indicated that quality characteristics of a microwave baked cake sample can be assessed from dielectric properties. These correlations provides understanding on the behavior of food material during microwave processing.

  3. Anisotropic Dielectric Properties of Carbon Fiber Reinforced Polymer Composites during Microwave Curing

    NASA Astrophysics Data System (ADS)

    Zhang, Linglin; Li, Yingguang; Zhou, Jing

    2018-01-01

    Microwave cuing technology is a promising alternative to conventional autoclave curing technology in high efficient and energy saving processing of polymer composites. Dielectric properties of composites are key parameters related to the energy conversion efficiency during the microwave curing process. However, existing methods of dielectric measurement cannot be applied to the microwave curing process. This paper presented an offline test method to solve this problem. Firstly, a kinetics model of the polymer composites under microwave curing was established based on differential scanning calorimetry to describe the whole curing process. Then several specially designed samples of different feature cure degrees were prepared and used to reflect the dielectric properties of the composite during microwave curing. It was demonstrated to be a feasible plan for both test accuracy and efficiency through extensive experimental research. Based on this method, the anisotropic complex permittivity of a carbon fiber/epoxy composite during microwave curing was accurately determined. Statistical results indicated that both the dielectric constant and dielectric loss of the composite increased at the initial curing stage, peaked at the maximum reaction rate point and decreased finally during the microwave curing process. Corresponding mechanism has also been systematically investigated in this work.

  4. Ultra-wideband electronics, design methods, algorithms, and systems for dielectric spectroscopy of isolated B16 tumor cells in liquid medium

    NASA Astrophysics Data System (ADS)

    Maxwell, Erick N.

    Quantifying and characterizing isolated tumor cells (ITCs) is of interest in surgical pathology and cytology for its potential to provide data for cancer staging, classification, and treatment. Although the independent prognostic significance of circulating ITCs has not been proven, their presence is gaining clinical relevance as an indicator. However, researchers have not established an optimal method for detecting ITCs. Consequently, this Ph.D. dissertation is concerned with the development and evaluation of dielectric spectroscopy as a low-cost method for cell characterization and quantification. In support of this goal, ultra-wideband (UWB), microwave pulse generator circuits, coaxial transmission line fixtures, permittivity extraction algorithms, and dielectric spectroscopy measurement systems were developed for evaluating the capacity to quantify B16-F10 tumor cells in suspension. First, this research addressed challenges in developing tunable UWB circuits for pulse generation. In time-domain dielectric spectroscopy, a tunable UWB pulse generator facilitates exploration of microscopic dielectric mechanisms, which contribute to dispersion characteristics. Conventional approaches to tunable pulse generator design have resulted in complex circuit topologies and unsymmetrical waveform morphologies. In this research, a new design approach for low-complexity, tunable, sub-nanosecond and UWB pulse generator was developed. This approach was applied to the development of a novel generator that produces symmetrical waveforms (patent pending 60/597,746). Next, this research addressed problems with transmission-reflection (T/R) measurement of cell suspensions. In T/R measurement, coaxial transmission line fixtures have historically required an elaborate sample holder for containing liquids, resulting in high cost and complexity. Furthermore, the algorithms used to extract T/R dielectric properties have suffered from myriad problems including local minima and

  5. Microwave Dielectric Heating of Drops in Microfluidic Devices†

    PubMed Central

    Issadore, David; Humphry, Katherine J.; Brown, Keith A.; Sandberg, Lori; Weitz, David; Westervelt, Robert M.

    2010-01-01

    We present a technique to locally and rapidly heat water drops in microfluidic devices with microwave dielectric heating. Water absorbs microwave power more efficiently than polymers, glass, and oils due to its permanent molecular dipole moment that has a large dielectric loss at GHz frequencies. The relevant heat capacity of the system is a single thermally isolated picoliter drop of water and this enables very fast thermal cycling. We demonstrate microwave dielectric heating in a microfluidic device that integrates a flow-focusing drop maker, drop splitters, and metal electrodes to locally deliver microwave power from an inexpensive, commercially available 3.0 GHz source and amplifier. The temperature of the drops is measured by observing the temperature dependent fluorescence intensity of cadmium selenide nanocrystals suspended in the water drops. We demonstrate characteristic heating times as short as 15 ms to steady-state temperatures as large as 30°C above the base temperature of the microfluidic device. Many common biological and chemical applications require rapid and local control of temperature, such as PCR amplification of DNA, and can benefit from this new technique. PMID:19495453

  6. Accurate Permittivity Measurements for Microwave Imaging via Ultra-Wideband Removal of Spurious Reflectors

    PubMed Central

    Pelletier, Mathew G.; Viera, Joseph A.; Wanjura, John; Holt, Greg

    2010-01-01

    The use of microwave imaging is becoming more prevalent for detection of interior hidden defects in manufactured and packaged materials. In applications for detection of hidden moisture, microwave tomography can be used to image the material and then perform an inverse calculation to derive an estimate of the variability of the hidden material, such internal moisture, thereby alerting personnel to damaging levels of the hidden moisture before material degradation occurs. One impediment to this type of imaging occurs with nearby objects create strong reflections that create destructive and constructive interference, at the receiver, as the material is conveyed past the imaging antenna array. In an effort to remove the influence of the reflectors, such as metal bale ties, research was conducted to develop an algorithm for removal of the influence of the local proximity reflectors from the microwave images. This research effort produced a technique, based upon the use of ultra-wideband signals, for the removal of spurious reflections created by local proximity reflectors. This improvement enables accurate microwave measurements of moisture in such products as cotton bales, as well as other physical properties such as density or material composition. The proposed algorithm was shown to reduce errors by a 4:1 ratio and is an enabling technology for imaging applications in the presence of metal bale ties. PMID:22163668

  7. Accurate permittivity measurements for microwave imaging via ultra-wideband removal of spurious reflectors.

    PubMed

    Pelletier, Mathew G; Viera, Joseph A; Wanjura, John; Holt, Greg

    2010-01-01

    The use of microwave imaging is becoming more prevalent for detection of interior hidden defects in manufactured and packaged materials. In applications for detection of hidden moisture, microwave tomography can be used to image the material and then perform an inverse calculation to derive an estimate of the variability of the hidden material, such internal moisture, thereby alerting personnel to damaging levels of the hidden moisture before material degradation occurs. One impediment to this type of imaging occurs with nearby objects create strong reflections that create destructive and constructive interference, at the receiver, as the material is conveyed past the imaging antenna array. In an effort to remove the influence of the reflectors, such as metal bale ties, research was conducted to develop an algorithm for removal of the influence of the local proximity reflectors from the microwave images. This research effort produced a technique, based upon the use of ultra-wideband signals, for the removal of spurious reflections created by local proximity reflectors. This improvement enables accurate microwave measurements of moisture in such products as cotton bales, as well as other physical properties such as density or material composition. The proposed algorithm was shown to reduce errors by a 4:1 ratio and is an enabling technology for imaging applications in the presence of metal bale ties.

  8. Dielectric behavior of semiconductors at microwave frequencies

    NASA Technical Reports Server (NTRS)

    Dahiya, Jai N.

    1992-01-01

    A cylindrical microwave resonant cavity in TE(011) (Transverse Electric) mode is used to study the dielectric relaxation in germanium and silicon. The samples of these semiconductors are used to perturb the electric field in the cavity, and Slater's perturbation equations are used to calculate the real and imaginary parts of the dielectric constant. The dielectric loss of germanium and silicon is studied at different temperatures, and Debye's equations are used to calculate the relaxation time at these temperatures.

  9. Safety assessment of ultra-wideband antennas for microwave breast imaging.

    PubMed

    De Santis, Valerio; Sill, Jeff M; Bourqui, Jeremie; Fear, Elise C

    2012-04-01

    This article deals with the safety assessment of several ultra-wideband (UWB) antenna designs for use in prototype microwave breast imaging systems. First, the performances of the antennas are validated by comparison of measured and simulated data collected for a simple test case. An efficient approach to estimating the specific energy absorption (SA) is introduced and validated. Next, SA produced by the UWB antennas inside more realistic breast models is computed. In particular, the power levels and pulse repetition periods adopted for the SA evaluation follow the measurement protocol employed by a tissue sensing adaptive radar (TSAR) prototype system. Results indicate that the SA for the antennas examined is below limits prescribed in standards for exposure of the general population; however, the difficulties inherent in applying such standards to UWB exposures are discussed. The results also suggest that effective tools for the rapid evaluation of new sensors have been developed. © 2011 Wiley Periodicals, Inc.

  10. Ultra-wideband microwave photonic phase shifter with a 360° tunable phase shift based on an erbium-ytterbium co-doped linearly chirped FBG.

    PubMed

    Liu, Weilin; Yao, Jianping

    2014-02-15

    A simple photonic approach to implementing an ultra-wideband microwave phase shifter based on an erbium-ytterbium (Er/Yb) co-doped linearly chirped fiber Bragg grating (LCFBG) is proposed and experimentally demonstrated. The LCFBG is designed to have a constant magnitude response over a reflection band, and a phase response that is linear and nonlinear in two sections in the reflection band. When an optical single-sideband with carrier (OSSB+C) signal is sent to the LCFBG, by locating the optical carrier at the section corresponding to the nonlinear phase response and the sideband at the section corresponding to the linear phase response, a phase shift is introduced to the optical carrier, which is then translated to the microwave signal by beating the optical carrier and the sideband at a photodetector. The tuning of the phase shift is realized by optically pumping the Er/Yb co-doped LCFBG by a 980-nm laser diode. The proposed ultra-wideband microwave photonic phase shifter is experimentally demonstrated. A phase shifter with a full 360° phase shift with a bandwidth from 10 to 40 GHz is experimentally demonstrated.

  11. All-optical, ultra-wideband microwave I/Q mixer and image-reject frequency down-converter.

    PubMed

    Gao, Yongsheng; Wen, Aijun; Chen, Wei; Li, Xiaoyan

    2017-03-15

    An all-optical and ultra-wideband microwave in-phase/quadrature (I/Q) mixer, based on a dual-parallel Mach-Zehnder modulator and a wavelength division multiplexer, is proposed. Due to the simultaneous frequency down-conversion and 360-deg tunable phase shifting in the optical domain, the proposed I/Q mixer has the advantages of high conversion gain and excellent quadrature phase balance (<±1.3 deg⁡) with a wide operating frequency from 10 to 40 GHz. Assisted by an analog or digital intermediate-frequency quadrature coupler, an image-reject frequency down-converter is then implemented, with an image rejection exceeding 50 dB over the working band.

  12. Ultra-wideband microwave photonic filter with a high Q-factor using a semiconductor optical amplifier.

    PubMed

    Chen, Han

    2017-04-01

    An ultra-wideband microwave photonic filter (MPF) with a high quality (Q)-factor based on the birefringence effects in a semiconductor optical amplifier (SOA) is presented, and the theoretical fundamentals of the design are explained. The proposed MPF along orthogonal polarization in an active loop operates at up to a Ku-band and provides a tunable free spectral range from 15.44 to 19.44 GHz by controlling the SOA injection current. A prototype of the equivalent second-order infinite impulse response filter with a Q-factor over 6300 and a rejection ration exceeding 41 dB is experimentally demonstrated.

  13. New calibration algorithms for dielectric-based microwave moisture sensors

    USDA-ARS?s Scientific Manuscript database

    New calibration algorithms for determining moisture content in granular and particulate materials from measurement of the dielectric properties at a single microwave frequency are proposed. The algorithms are based on identifying empirically correlations between the dielectric properties and the par...

  14. Ultra-wideband filtering of spoof surface plasmon polaritons using deep subwavelength planar structures

    PubMed Central

    Hu, Ming Zhe; Zhang, Hao Chi; Yin, Jia Yuan; Ding, Zhao; Liu, Jun Feng; Tang, Wen Xuan; Cui, Tie Jun

    2016-01-01

    Novel ultra-wideband filtering of spoof surface plasmon polaritons (SPPs) is proposed in the microwave frequency using deep subwavelength planar structures printed on thin and flexible dielectric substrate. The proposed planar SPPs waveguide is composed of two mirror-oriented metallic corrugated strips, which are further decorated with parallel-arranged slots in the main corrugated strips. This compound structure provides deep subwavelength field confinement as well as flexible parameters when employed as a plasmonic waveguide, which is potential to construct miniaturization. Using momentum and impedance matching technology, we achieve a smooth conversion between the proposed SPPs waveguide and the conventional transmission line. To verify the validity of the design, we fabricate a spoof SPPs filter, and the measured results illustrate excellent performance, in which the reflection coefficient is less than −10 dB within the −3 dB passband from 1.21 GHz to 7.21 GHz with the smallest insertion loss of 1.23 dB at 2.21 GHz, having very good agreements with numerical simulations. The ultra-wideband filter with low insertion loss and high transmission efficiency possesses great potential in modern communication systems. PMID:27883028

  15. Ultra-wideband filtering of spoof surface plasmon polaritons using deep subwavelength planar structures.

    PubMed

    Hu, Ming Zhe; Zhang, Hao Chi; Yin, Jia Yuan; Ding, Zhao; Liu, Jun Feng; Tang, Wen Xuan; Cui, Tie Jun

    2016-11-24

    Novel ultra-wideband filtering of spoof surface plasmon polaritons (SPPs) is proposed in the microwave frequency using deep subwavelength planar structures printed on thin and flexible dielectric substrate. The proposed planar SPPs waveguide is composed of two mirror-oriented metallic corrugated strips, which are further decorated with parallel-arranged slots in the main corrugated strips. This compound structure provides deep subwavelength field confinement as well as flexible parameters when employed as a plasmonic waveguide, which is potential to construct miniaturization. Using momentum and impedance matching technology, we achieve a smooth conversion between the proposed SPPs waveguide and the conventional transmission line. To verify the validity of the design, we fabricate a spoof SPPs filter, and the measured results illustrate excellent performance, in which the reflection coefficient is less than -10 dB within the -3 dB passband from 1.21 GHz to 7.21 GHz with the smallest insertion loss of 1.23 dB at 2.21 GHz, having very good agreements with numerical simulations. The ultra-wideband filter with low insertion loss and high transmission efficiency possesses great potential in modern communication systems.

  16. Dielectric properties of biomass/biochar mixtures at microwave frequencies

    USDA-ARS?s Scientific Manuscript database

    Material dielectric properties are important for understanding their response to microwaves. Carbonaceous materials are considered good microwave absorbers and can be mixed with dry biomasses, which are otherwise low- loss materials, to improve the heating efficiency of biomass feedstocks. In this ...

  17. Microwave dielectric behavior of vegetation material

    NASA Technical Reports Server (NTRS)

    Elrayes, Mohamed A.; Ulaby, Fawwaz T.

    1987-01-01

    The microwave dielectric behavior of vegetation was examined through the development of theoretical models involving dielectric dispersion by both bound and free water and supported by extensive dielectric measurements conducted over a wide range of conditions. The experimental data were acquired using an open-ended coaxial probe that was developed for sensing the dielectric constant of thin layers of materials, such as leaves, from measurements of the complex reflection coefficient using a network analyzer. The probe system was successfully used to record the spectral variation of the dielectric constant over a wide frequency range extending from 0.5 to 20.4 GHz at numerous temperatures between -40 to +40 C. The vegetation samples were measured over a wide range of moisture conditions. To model the dielectric spectrum of the bound water component of the water included in vegetation, dielectric measurements were made for several sucrose-water solutions as analogs for the situation in vegetation. The results were used in conjunction with the experimental data for leaves to determine some of the constant coefficients in the theoretical models. Two models, both of which provide good fit to the data, are proposed.

  18. Microwave sintering of nanopowder ZnNb2O6: Densification, microstructure and microwave dielectric properties

    NASA Astrophysics Data System (ADS)

    Bafrooei, H. Barzegar; Nassaj, E. Taheri; Hu, C. F.; Huang, Q.; Ebadzadeh, T.

    2014-12-01

    High density ZnNb2O6 ceramics were successfully fabricated by microwave sintering of ZnO-Nb2O5 and ZnNb2O6 nanopowders. Phase formation, microstructure and microwave electrical properties of the microwave sintered (MS) and microwave reaction sintered (MRS) specimens were examined using X-ray diffraction, field emission scanning electron microscopy and microwave dielectric properties measurement. Specimens were sintered in a temperature range from 950 to 1075 °C for 30 min at an interval of 25 °C using a microwave furnace operated at 2.45 GHz frequency, 3 kW power. XRD pattern revealed the formation of pure columbite phase of ZnNb2O6. The SEM micrographs show grain growth and reduction in porosity of specimens with the increase in sintering temperature. Good combination of microwave dielectric properties (εr~23.6, Qf~64,300 GHz and τf~-66 ppm/°C and εr~24, Qf~75,800 GHz and τf~-64 ppm/°C) was obtained for MS- and MRS-prepared samples at 1000 °C and 1050 °C for 30 min, respectively.

  19. Technique for Performing Dielectric Property Measurements at Microwave Frequencies

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B.; Jackson, Henry W.

    2010-01-01

    A paper discusses the need to perform accurate dielectric property measurements on larger sized samples, particularly liquids at microwave frequencies. These types of measurements cannot be obtained using conventional cavity perturbation methods, particularly for liquids or powdered or granulated solids that require a surrounding container. To solve this problem, a model has been developed for the resonant frequency and quality factor of a cylindrical microwave cavity containing concentric cylindrical samples. This model can then be inverted to obtain the real and imaginary dielectric constants of the material of interest. This approach is based on using exact solutions to Maxwell s equations for the resonant properties of a cylindrical microwave cavity and also using the effective electrical conductivity of the cavity walls that is estimated from the measured empty cavity quality factor. This new approach calculates the complex resonant frequency and associated electromagnetic fields for a cylindrical microwave cavity with lossy walls that is loaded with concentric, axially aligned, lossy dielectric cylindrical samples. In this approach, the calculated complex resonant frequency, consisting of real and imaginary parts, is related to the experimentally measured quantities. Because this approach uses Maxwell's equations to determine the perturbed electromagnetic fields in the cavity with the material(s) inserted, one can calculate the expected wall losses using the fields for the loaded cavity rather than just depending on the value of the fields obtained from the empty cavity quality factor. These additional calculations provide a more accurate determination of the complex dielectric constant of the material being studied. The improved approach will be particularly important when working with larger samples or samples with larger dielectric constants that will further perturb the cavity electromagnetic fields. Also, this approach enables the ability to have a

  20. Microwave dielectric properties of boreal forest trees

    NASA Technical Reports Server (NTRS)

    Xu, G.; Ahern, F.; Brown, J.

    1993-01-01

    The knowledge of vegetation dielectric behavior is important in studying the scattering properties of the vegetation canopy and radar backscatter modelling. Until now, a limited number of studies have been published on the dielectric properties in the boreal forest context. This paper presents the results of the dielectric constant as a function of depth in the trunks of two common boreal forest species: black spruce and trembling aspen, obtained from field measurements. The microwave penetration depth for the two species is estimated at C, L, and P bands and used to derive the equivalent dielectric constant for the trunk as a whole. The backscatter modelling is carried out in the case of black spruce and the results are compared with the JPL AIRSAR data. The sensitivity of the backscatter coefficient to the dielectric constant is also examined.

  1. Development of anatomically and dielectrically accurate breast phantoms for microwave imaging applications

    NASA Astrophysics Data System (ADS)

    O'Halloran, M.; Lohfeld, S.; Ruvio, G.; Browne, J.; Krewer, F.; Ribeiro, C. O.; Inacio Pita, V. C.; Conceicao, R. C.; Jones, E.; Glavin, M.

    2014-05-01

    Breast cancer is one of the most common cancers in women. In the United States alone, it accounts for 31% of new cancer cases, and is second only to lung cancer as the leading cause of deaths in American women. More than 184,000 new cases of breast cancer are diagnosed each year resulting in approximately 41,000 deaths. Early detection and intervention is one of the most significant factors in improving the survival rates and quality of life experienced by breast cancer sufferers, since this is the time when treatment is most effective. One of the most promising breast imaging modalities is microwave imaging. The physical basis of active microwave imaging is the dielectric contrast between normal and malignant breast tissue that exists at microwave frequencies. The dielectric contrast is mainly due to the increased water content present in the cancerous tissue. Microwave imaging is non-ionizing, does not require breast compression, is less invasive than X-ray mammography, and is potentially low cost. While several prototype microwave breast imaging systems are currently in various stages of development, the design and fabrication of anatomically and dielectrically representative breast phantoms to evaluate these systems is often problematic. While some existing phantoms are composed of dielectrically representative materials, they rarely accurately represent the shape and size of a typical breast. Conversely, several phantoms have been developed to accurately model the shape of the human breast, but have inappropriate dielectric properties. This study will brie y review existing phantoms before describing the development of a more accurate and practical breast phantom for the evaluation of microwave breast imaging systems.

  2. Application of dielectric constant measurement in microwave sludge disintegration and wastewater purification processes.

    PubMed

    Kovács, Petra Veszelovszki; Lemmer, Balázs; Keszthelyi-Szabó, Gábor; Hodúr, Cecilia; Beszédes, Sándor

    2018-05-01

    It has been numerously verified that microwave radiation could be advantageous as a pre-treatment for enhanced disintegration of sludge. Very few data related to the dielectric parameters of wastewater of different origins are available; therefore, the objective of our work was to measure the dielectric constant of municipal and meat industrial wastewater during a continuous flow operating microwave process. Determination of the dielectric constant and its change during wastewater and sludge processing make it possible to decide on the applicability of dielectric measurements for detecting the organic matter removal efficiency of wastewater purification process or disintegration degree of sludge. With the measurement of dielectric constant as a function of temperature, total solids (TS) content and microwave specific process parameters regression models were developed. Our results verified that in the case of municipal wastewater sludge, the TS content has a significant effect on the dielectric constant and disintegration degree (DD), as does the temperature. The dielectric constant has a decreasing tendency with increasing temperature for wastewater sludge of low TS content, but an adverse effect was found for samples with high TS and organic matter contents. DD of meat processing wastewater sludge was influenced significantly by the volumetric flow rate and power level, as process parameters of continuously flow microwave pre-treatments. It can be concluded that the disintegration process of food industry sludge can be detected by dielectric constant measurements. From technical purposes the applicability of dielectric measurements was tested in the purification process of municipal wastewater, as well. Determination of dielectric behaviour was a sensitive method to detect the purification degree of municipal wastewater.

  3. Improved Resolution and Reduced Clutter in Ultra-Wideband Microwave Imaging Using Cross-Correlated Back Projection: Experimental and Numerical Results

    PubMed Central

    Jacobsen, S.; Birkelund, Y.

    2010-01-01

    Microwave breast cancer detection is based on the dielectric contrast between healthy and malignant tissue. This radar-based imaging method involves illumination of the breast with an ultra-wideband pulse. Detection of tumors within the breast is achieved by some selected focusing technique. Image formation algorithms are tailored to enhance tumor responses and reduce early-time and late-time clutter associated with skin reflections and heterogeneity of breast tissue. In this contribution, we evaluate the performance of the so-called cross-correlated back projection imaging scheme by using a scanning system in phantom experiments. Supplementary numerical modeling based on commercial software is also presented. The phantom is synthetically scanned with a broadband elliptical antenna in a mono-static configuration. The respective signals are pre-processed by a data-adaptive RLS algorithm in order to remove artifacts caused by antenna reverberations and signal clutter. Successful detection of a 7 mm diameter cylindrical tumor immersed in a low permittivity medium was achieved in all cases. Selecting the widely used delay-and-sum (DAS) beamforming algorithm as a benchmark, we show that correlation based imaging methods improve the signal-to-clutter ratio by at least 10 dB and improves spatial resolution through a reduction of the imaged peak full-width half maximum (FWHM) of about 40–50%. PMID:21331362

  4. Improved resolution and reduced clutter in ultra-wideband microwave imaging using cross-correlated back projection: experimental and numerical results.

    PubMed

    Jacobsen, S; Birkelund, Y

    2010-01-01

    Microwave breast cancer detection is based on the dielectric contrast between healthy and malignant tissue. This radar-based imaging method involves illumination of the breast with an ultra-wideband pulse. Detection of tumors within the breast is achieved by some selected focusing technique. Image formation algorithms are tailored to enhance tumor responses and reduce early-time and late-time clutter associated with skin reflections and heterogeneity of breast tissue. In this contribution, we evaluate the performance of the so-called cross-correlated back projection imaging scheme by using a scanning system in phantom experiments. Supplementary numerical modeling based on commercial software is also presented. The phantom is synthetically scanned with a broadband elliptical antenna in a mono-static configuration. The respective signals are pre-processed by a data-adaptive RLS algorithm in order to remove artifacts caused by antenna reverberations and signal clutter. Successful detection of a 7 mm diameter cylindrical tumor immersed in a low permittivity medium was achieved in all cases. Selecting the widely used delay-and-sum (DAS) beamforming algorithm as a benchmark, we show that correlation based imaging methods improve the signal-to-clutter ratio by at least 10 dB and improves spatial resolution through a reduction of the imaged peak full-width half maximum (FWHM) of about 40-50%.

  5. Dielectric Characteristics and Microwave Absorption of Graphene Composite Materials

    PubMed Central

    Rubrice, Kevin; Castel, Xavier; Himdi, Mohamed; Parneix, Patrick

    2016-01-01

    Nowadays, many types of materials are elaborated for microwave absorption applications. Carbon-based nanoparticles belong to these types of materials. Among these, graphene presents some distinctive features for electromagnetic radiation absorption and thus microwave isolation applications. In this paper, the dielectric characteristics and microwave absorption properties of epoxy resin loaded with graphene particles are presented from 2 GHz to 18 GHz. The influence of various parameters such as particle size (3 µm, 6–8 µm, and 15 µm) and weight ratio (from 5% to 25%) are presented, studied, and discussed. The sample loaded with the smallest graphene size (3 µm) and the highest weight ratio (25%) exhibits high loss tangent (tanδ = 0.36) and a middle dielectric constant ε′ = 12–14 in the 8–10 GHz frequency range. As expected, this sample also provides the highest absorption level: from 5 dB/cm at 4 GHz to 16 dB/cm at 18 GHz. PMID:28773948

  6. An equivalent method of mixed dielectric constant in passive microwave/millimeter radiometric measurement

    NASA Astrophysics Data System (ADS)

    Su, Jinlong; Tian, Yan; Hu, Fei; Gui, Liangqi; Cheng, Yayun; Peng, Xiaohui

    2017-10-01

    Dielectric constant is an important role to describe the properties of matter. This paper proposes This paper proposes the concept of mixed dielectric constant(MDC) in passive microwave radiometric measurement. In addition, a MDC inversion method is come up, Ratio of Angle-Polarization Difference(RAPD) is utilized in this method. The MDC of several materials are investigated using RAPD. Brightness temperatures(TBs) which calculated by MDC and original dielectric constant are compared. Random errors are added to the simulation to test the robustness of the algorithm. Keywords: Passive detection, microwave/millimeter, radiometric measurement, ratio of angle-polarization difference (RAPD), mixed dielectric constant (MDC), brightness temperatures, remote sensing, target recognition.

  7. Use of dimensionality to enhance tunable microwave dielectrics

    NASA Astrophysics Data System (ADS)

    Schlom, D. G.; Lee, Che-Hui; Haislmaier, R.; Vlahos, E.; Gopalan, V.; Birol, T.; Zhu, Y.; Kourkoutis, L. F.; Benedek, N.; Kim, Y.; Brock, J. D.; Muller, D. A.; Fennie, C. J.; Orloff, N. D.; Booth, J. C.; Goian, V.; Kamba, S.; Biegalski, M. D.; Bernhagen, M.; Uecker, R.; Xi, X. X.; Takeuchi, I.

    2012-02-01

    The miniaturization and integration of frequency-agile microwave circuits---tunable filters, resonators, phase shifters and more---with microelectronics offers tantalizing device possibilities, yet requires thin films whose dielectric constant at GHz frequencies can be tuned by applying a quasi-static electric field. Appropriate systems, e.g., BaxSr1-xTiO3, have a paraelectric-to-ferroelectric transition just below ambient temperature, providing high tunability. Unfortunately such films suffer significant losses arising from defects. Recognizing that progress is stymied by dielectric loss, we start with a system with exceptionally low loss---Srn+1TinO3n+1 phases---where in-plane crystallographic shear (SrO)2 faults provide an alternative to point defects for accommodating non-stoichiometry. In this talk we will establish both experimentally and theoretically the emergence of a ferroelectric and highly tunable ground state in biaxially strained Srn+1TinO3n+1 phases with n>=3 at frequencies up to 40 GHz. With increasing n the (SrO)2 faults are separated further than the ferroelectric coherence length perpendicular to the in-plane polarization, enabling tunability with a figure of merit at room temperature that rivals all known tunable microwave dielectrics.

  8. Novel Polymeric Dielectric Materials for the Additive Manufacturing of Microwave Devices

    NASA Astrophysics Data System (ADS)

    O'Keefe, Shamus E.

    The past decade has seen a rapid increase in the deployment of additive manufacturing (AM) due to the perceived benefits of lower cost, higher quality, and a smaller environmental footprint. And while the hardware behind most of AM processes is mature, the study and development of material feedstock(s) are in their infancy, particularly so for niche areas. In this dissertation, we look at novel polymeric materials to support AM for microwave devices. Chapter 1 provides an overview of the benefits of AM, followed by the specific motivation for this work, and finally a scope defining the core objectives. Chapter 2 delves into a higher-level background of dielectric theory and includes a brief overview of the two common dielectric spectroscopy techniques used in this work. The remaining chapters, summarized below, describe experiments in which novel polymeric materials were developed and their microwave dielectric properties measured. Chapter 3 describes the successful synthesis of polytetrafluroethylene (PTFE)/polyacrylate (PA) core-shell nanoparticles and their measured microwave dielectric properties. PTFE/PA core-shell nanoparticles with spherical morphology were successfully made by aerosol deposition followed by a brief annealing. The annealing temperature is closely controlled to exceed the glass transition (Tg) of the PA shell yet not exceed the Tg of the PTFE core. Furthermore, the annealing promotes coalescence amongst the PA shells of neighboring nanoparticles and results in the formation of a contiguous PA matrix that has excellent dispersion of PTFE cores. The measured dielectric properties agree well with theoretical predictions and suggest the potential of this material as a feedstock for AM microwave devices. Chapter 4 delves into the exploration of various polyimide systems with the aim of replacing the PA in the previously studied PTFE/PA core-shell nanoparticles. Fundamental relationships between polymer attributes (flexibility/rigidity and

  9. Dielectric properties and carbothermic reduction of zinc oxide and zinc ferrite by microwave heating

    PubMed Central

    Fabritius, Timo; Heikkinen, Eetu-Pekka; Chen, Guo

    2017-01-01

    This paper aims to study the dielectric properties and carbothermic reduction of zinc oxide (zincite, ZnO) and zinc ferrite (franklinite, ZnFe2O4) by microwave heating. To achieve this aim, the dielectric properties were measured with an open-ended coaxial method to understand the behaviour of the samples under microwave irradiation. The effects of microwave power, duration time and sample mass on the heating rate, and the effects of the stoichiometric amount of graphite on the reduction of ZnO and decomposition of ZnFe2O4 were investigated. The results show that ZnFe2O4 has significantly higher dielectric properties compared to ZnO. Generally, for both samples, the dielectric values at room temperature were quite low, indicating that both ZnO and ZnFe2O4 are poor microwave absorbers. It was found that the temperatures have a more significant effect on the imaginary permittivities than on the real permittivities. The heating rate showed that the sample temperature increased with increase in microwave power and sample mass. Using 700 W of microwave power and two times the stoichiometric amount of graphite, almost complete reduction of ZnO was achieved in 12 min, while ZnFe2O4 completely decomposed to zincite and wustite in 3 min. PMID:28989772

  10. Microwave dielectric spectrum of rocks

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Bengal, T.; East, J.; Dobson, M. C.; Garvin, J.; Evans, D.

    1988-01-01

    A combination of several measurement techniques was used to investigate the dielectric properties of 80 rock samples in the microwave region. The real part of the dielectric constant, epsilon', was measured in 0.1 GHz steps from 0.5 to 18 GHz, and the imaginary part, epsilon'', was measured at five frequencies extending between 1.6 and 16 GHz. In addition to the dielectric measurements, the bulk density was measured for all the samples and the bulk chemical composition was determined for 56 of the samples. The study shows that epsilon' is frequency-dependent over the 0.5 to 18 GHz range for all rock samples, and that the bulk density rho accounts for about 50 percent of the observed variance of epsilon'. For individual rock types (by genesis), about 90 percent of the observed variance may be explained by the combination of density and the fractional contents of SiO2, Fe2O3, MgO, and TiO2. For the loss factor epsilon'', it was not possible to establish statistically significant relationships between it and the measured properties of the rock samples (density and chemical composition).

  11. High Temperature Microwave Dielectric Properties of JSC-1AC Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Allan, Shawn M.; Merritt, Brandon J.; Griffin, Brittany F.; Hintze, Paul E.; Shulman, Holly S.

    2011-01-01

    Microwave heating has many potential lunar applications including sintering regolith for lunar surface stabilization and heating regolith for various oxygen production reactors. The microwave properties of lunar simulants must be understood so this technology can be applied to lunar operations. Dielectric properties at microwave frequencies for a common lunar simulant, JSC-1AC, were measured up to 1100 C, which is approximately the melting point. The experimentally determined dielectric properties included real and imaginary permittivity (epsilon', epsilon"), loss tangent (tan delta), and half-power depth, the di stance at which a material absorbs 50% of incident microwave energy. Measurements at 2.45 GHz revealed tan delta of JSC-1A increases from 0.02 at 25 C to 0.31 at 110 C. The corresponding half-power depth decreases from a peak of 286 mm at 110 C, to 13 mm at 1100 C. These data indicate that JSC-1AC becomes more absorbing, and thus a better microwave heater as temperature increases. A half-power depth maximum at 100-200 C presents a barrier to direct microwave heating at low temperatures. Microwave heating experiments confirm the sluggish heating effect of weak absorption below 200 C, and increasingly strong absorption above 200 C, leading to rapid heating and melting of JSC-1AC.

  12. High-voltage subnanosecond dielectric breakdown

    NASA Astrophysics Data System (ADS)

    Mankowski, John Jerome

    Current interests in ultrawideband radar sources are in the microwave regime, which correspond to voltage pulse risetimes less than a nanosecond. Some new sources, including the Phillips Laboratory Hindenberg series of hydrogen gas switched pulsers use hydrogen at hundreds of atmospheres of pressure in the switch. Unfortunately, the published data of electrical breakdown of gas and liquid media at these time lengths are relatively scarce. A study was conducted on the electrical breakdown properties of liquid and gas dielectrics at subnanosecond and nanoseconds. Two separate voltage sources with pulse risetimes less than 400 ps were developed. Diagnostic probes were designed and tested for their capability of detecting high voltage pulses at these fast risetimes. A thorough investigation into E-field strengths of liquid and gas dielectrics at breakdown times ranging from 0.4 to 5 ns was performed. The voltage polarity dependence on breakdown strength is observed. Streak camera images of streamer formation were taken. The effect of ultraviolet radiation, incident upon the gap, on statistical lag time was determined.

  13. Dielectric characterization of Bentonite clay at various moisture contents and with mixtures of biomass in the microwave spectrum

    USDA-ARS?s Scientific Manuscript database

    This study assesses the potential for using bentonite as a microwave absorber for microwave-assisted biomass pyrolysis based on the dielectric properties. Dielectric properties of bentonite at different moisture contents were measured using a coaxial line dielectric probe and vector network analyzer...

  14. Effect on the grain size of single-mode microwave sintered NiCuZn ferrite and zinc titanate dielectric resonator ceramics.

    PubMed

    Sirugudu, Roopas Kiran; Vemuri, Rama Krishna Murthy; Venkatachalam, Subramanian; Gopalakrishnan, Anisha; Budaraju, Srinivasa Murty

    2011-01-01

    Microwave sintering of materials significantly depends on dielectric, magnetic and conductive Losses. Samples with high dielectric and magnetic loss such as ferrites could be sintered easily. But low dielectric loss material such as dielectric resonators (paraelectrics) finds difficulty in generation of heat during microwave interaction. Microwave sintering of materials of these two classes helps in understanding the variation in dielectric and magnetic characteristics with respect to the change in grain size. High-energy ball milled Ni0.6Cu0.2Zn0.2Fe1.98O4-delta and ZnTiO3 are sintered in conventional and microwave methods and characterized for respective dielectric and magnetic characteristics. The grain size variation with higher copper content is also observed with conventional and microwave sintering. The grain size in microwave sintered Ni0.6Cu0.2Zn0.2Fe1.98O4-delta is found to be much small and uniform in comparison with conventional sintered sample. However, the grain size of microwave sintered sample is almost equal to that of conventional sintered sample of Ni0.3Cu0.5Zn0.2Fe1.98O4-delta. In contrast to these high dielectric and magnetic loss ferrites, the paraelectric materials are observed to sinter in presence of microwaves. Although microwave sintered zinc titanate sample showed finer and uniform grains with respect to conventional samples, the dielectric characteristics of microwave sintered sample are found to be less than that of conventional sample. Low dielectric constant is attributed to the low density. Smaller grain size is found to be responsible for low quality factor and the presence of small percentage of TiO2 is observed to achieve the temperature stable resonant frequency.

  15. Dielectric Properties and Oxidation Roasting of Molybdenite Concentrate by Using Microwave Energy at 2.45 GHz Frequency

    NASA Astrophysics Data System (ADS)

    Yonglin, Jiang; Bingguo, Liu; Peng, Liu; Jinhui, Peng; Libo, Zhang

    2017-12-01

    Conversion of electromagnetic energy into heat depends largely on the dielectric properties of the material being treated. Therefore, determining the dielectric properties of molybdenite concentrate and its microwave power penetration depth in relation to a temperature increment at the commercial frequency of 2.45 GHz is necessary to design industrial microwave processing units. In this study, the dielectric constants increased as the temperature increased in the entire experimental range. The loss factor presented an opposite trend, except for 298 K to 373 K (25 °C to 100 °C) in which a cavity perturbation resonator was used. The plots of nonlinear surface fitting indicate that the increase in dielectric loss causes a considerable decrease in penetration depth, but the dielectric constants exert a small positive effect. The thermogravimetric analysis (TGA-DSC) of the molybdenite concentrate was carried out to track its thermal decomposition process, aim to a dielectric analysis during the microwave heating. MoO3 was prepared from molybdenite concentrate through oxidation roasting in a microwave heating system and a resistance furnace, respectively. The phase transitions and morphology evolutions during oxidation roasting were characterized through X-ray diffraction and scanning electron microscopy. Results show that microwave thermal technique can produce high-purity molybdenum trioxide.

  16. An improved model for the dielectric constant of sea water at microwave frequencies

    NASA Technical Reports Server (NTRS)

    Klein, L. A.; Swift, C. T.

    1977-01-01

    The advent of precision microwave radiometry has placed a stringent requirement on the accuracy with which the dielectric constant of sea water must be known. To this end, measurements of the dielectric constant have been conducted at S-band and L-band with a quoted uncertainty of tenths of a percent. These and earlier results are critically examined, and expressions are developed which will yield computations of brightness temperature having an error of no more than 0.3 K for an undisturbed sea at frequencies lower than X-band. At the higher microwave and millimeter wave frequencies, the accuracy is in question because of uncertainties in the relaxation time and the dielectric constant at infinite frequency.

  17. Microwave dielectric properties of inorganic fullerene-like tungsten disulfide nanoparticles

    NASA Astrophysics Data System (ADS)

    Chang, Hong; Dimitrakis, Georgios; Xu, Fang; Yi, Chenbo; Kingman, Samuel; Zhu, Yanqiu

    2013-01-01

    The dielectric response of inorganic fullerene-like (IF) tungsten disulfide (WS2) nanoparticles prepared by a sulfidization reaction of WO3 nanoparticles has been investigated, against commercial platelet 2H-WS2 particles, using a cavity perturbation technique at microwave frequencies at temperatures ranging from 20 to 750 °C. The IF-WS2 nanoparticles showed both temperature and frequency dependent dielectric properties. The different dielectric behaviour between the IF-WS2 and 2H-WS2 can be attributed to the different conductivity and structure peculiar to the materials. The microstructure and thermal stability of the IF-WS2 and 2H-WS2 were thoroughly examined, to correlate with the resulting dielectric responses.

  18. Microwave-Assisted Curing of Silicon Carbide-Reinforced Epoxy Composites: Role of Dielectric Properties

    NASA Astrophysics Data System (ADS)

    Pal, Ranu; Akhtar, M. J.; Kar, Kamal K.

    2018-05-01

    In this work, the dielectric properties of epoxy-based composites are significantly improved with the help of the silicon carbide (SiC) filler at an operating frequency of 2.45 GHz to make them ideal candidates for microwave curing. The improvement is due to enhancement of the interfacial polarization because of the presence of the SiC filler. The dielectric properties are measured using the microwave cavity perturbation method. The cavity structure is simulated using the COMSOL@Multiphysics software to verify the measured data in terms of the resonant frequency. Finally, all the SiC-based composites including the neat epoxy resin are heated in the 2.45 GHz microwave oven at 300 W for 20 min. The thermal and mechanical properties of all the cured composites are measured, and the data are compared with their room temperature pre-cured counterparts. The dielectric properties of composite samples using SiC as a reinforcing agent in the epoxy are found to be substantially improved compared with those of the pure epoxy sample, which actually leads to better curing of these composite using the 2.45 GHz microwave system.

  19. Microwave performance of photoresist-alumina microcomposites for batch fabrication of thick polymer-based dielectric structures

    NASA Astrophysics Data System (ADS)

    Rashidian, Atabak; Klymyshyn, David M.; Tayfeh Aligodarz, Mohammadreza; Boerner, Martin; Mohr, Jürgen

    2012-10-01

    The goal of this paper is to investigate the electrical properties of photoresist-alumina microcomposites with different portions of ceramic content. Substrates of photoresist-alumina microcomposites are fabricated and a comprehensive analysis is performed to characterize their dielectric constant and dielectric loss tangent at microwave frequencies up to 40 GHz. To evaluate the performance of these materials for microwave applications, the properties of various lithographically fabricated antenna elements are examined and analysed based on the measured electrical properties. The experimental results show that the electrical properties of the photoresist composite are nonlinearly affected by ceramic content and also a minimum percentage of ceramic portion is required to improve the electrical properties of the photoresist composite. For instance, comparison of 0 wt% with 23 wt% SU8-alumina shows that no reduction is achieved for the dielectric loss tangent. Comparison of 38 wt% with 48 wt% SU8-alumina microcomposite shows that the dielectric loss tangent is improved from 0.03 to 0.01 and the dielectric constant is increased from 3.8 to 5.0 at 25 GHz. These improvements can result in superior performance for the photoresist-based microwave components.

  20. Preparation of a Carbon Doped Tissue-Mimicking Material with High Dielectric Properties for Microwave Imaging Application

    PubMed Central

    Lan, Siang-Wen; Weng, Min-Hang; Yang, Ru-Yuan; Chang, Shoou-Jinn; Chung, Yaoh-Sien; Yu, Tsung-Chih; Wu, Chun-Sen

    2016-01-01

    In this paper, the oil-in-gelatin based tissue-mimicking materials (TMMs) doped with carbon based materials including carbon nanotube, graphene ink or lignin were prepared. The volume percent for gelatin based mixtures and oil based mixtures were both around 50%, and the doping amounts were 2 wt %, 4 wt %, and 6 wt %. The effect of doping material and amount on the microwave dielectric properties including dielectric constant and conductivity were investigated over an ultra-wide frequency range from 2 GHz to 20 GHz. The coaxial open-ended reflection technology was used to evaluate the microwave dielectric properties. Six measured values in different locations of each sample were averaged and the standard deviations of all the measured dielectric properties, including dielectric constant and conductivity, were less than one, indicating a good uniformity of the prepared samples. Without doping, the dielectric constant was equal to 23 ± 2 approximately. Results showed with doping of carbon based materials that the dielectric constant and conductivity both increased about 5% to 20%, and the increment was dependent on the doping amount. By proper selection of doping amount of the carbon based materials, the prepared material could map the required dielectric properties of special tissues. The proposed materials were suitable for the phantom used in the microwave medical imaging system. PMID:28773678

  1. Dielectric Characterization of PCL-Based Thermoplastic Materials for Microwave Diagnostic and Therapeutic Applications

    PubMed Central

    Aguilar, Suzette M.; Shea, Jacob D.; Al-Joumayly, Mudar A.; Van Veen, Barry D.; Behdad, Nader; Hagness, Susan C.

    2011-01-01

    We propose the use of a polycaprolactone (PCL)-based thermoplastic mesh as a tissue-immobilization interface for microwave imaging and microwave hyperthermia treatment. An investigation of the dielectric properties of two PCL-based thermoplastic materials in the frequency range of 0.5 – 3.5 GHz is presented. The frequency-dependent dielectric constant and effective conductivity of the PCL-based thermoplastics are characterized using measurements of microstrip transmission lines fabricated on substrates comprised of the thermoplastic meshes. We also examine the impact of the presence of a PCL-based thermoplastic mesh on microwave breast imaging. We use a numerical test bed comprised of a previously reported three-dimensional anatomically realistic breast phantom and a multi-frequency microwave inverse scattering algorithm. We demonstrate that the PCL-based thermoplastic material and the assumed biocompatible medium of vegetable oil are sufficiently well matched such that the PCL layer may be neglected by the imaging solution without sacrificing imaging quality. Our results suggest that PCL-based thermoplastics are promising materials as tissue immobilization structures for microwave diagnostic and therapeutic applications. PMID:21622068

  2. Propagation of an ultrawideband electromagnetic signal in ionospheric plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soldatov, A. V., E-mail: av-soldatov@vniief.ru; Terekhin, V. A.

    2016-10-15

    The propagation of an ultrawideband electromagnetic signal in the ionosphere—a plasma medium with spatially nonuniform characteristics—is studied analytically in the high-frequency approximation. The effect of the plasma dielectric properties and angular divergence on the shape and frequency spectrum of the propagating signal is investigated. It is shown that the spectral energy density of the signal is preserved if collisions of ionospheric plasma electrons are neglected.

  3. Expanded modeling of temperature-dependent dielectric properties for microwave thermal ablation

    PubMed Central

    Ji, Zhen; Brace, Christopher L

    2011-01-01

    Microwaves are a promising source for thermal tumor ablation due to their ability to rapidly heat dispersive biological tissues, often to temperatures in excess of 100 °C. At these high temperatures, tissue dielectric properties change rapidly and, thus, so do the characteristics of energy delivery. Precise knowledge of how tissue dielectric properties change during microwave heating promises to facilitate more accurate simulation of device performance and helps optimize device geometry and energy delivery parameters. In this study, we measured the dielectric properties of liver tissue during high-temperature microwave heating. The resulting data were compiled into either a sigmoidal function of temperature or an integration of the time–temperature curve for both relative permittivity and effective conductivity. Coupled electromagnetic–thermal simulations of heating produced by a single monopole antenna using the new models were then compared to simulations with existing linear and static models, and experimental temperatures in liver tissue. The new sigmoidal temperature-dependent model more accurately predicted experimental temperatures when compared to temperature–time integrated or existing models. The mean percent differences between simulated and experimental temperatures over all times were 4.2% for sigmoidal, 10.1% for temperature–time integration, 27.0% for linear and 32.8% for static models at the antenna input power of 50 W. Correcting for tissue contraction improved agreement for powers up to 75 W. The sigmoidal model also predicted substantial changes in heating pattern due to dehydration. We can conclude from these studies that a sigmoidal model of tissue dielectric properties improves prediction of experimental results. More work is needed to refine and generalize this model. PMID:21791728

  4. Microwave Quantitative NDE Technique for Dielectric Slab Thickness Estimation Using the Music Algorithm

    NASA Astrophysics Data System (ADS)

    Abou-Khousa, M. A.; Zoughi, R.

    2007-03-01

    Non-invasive monitoring of dielectric slab thickness is of great interest in various industrial applications. This paper focuses on estimating the thickness of dielectric slabs, and consequently monitoring their variations, utilizing wideband microwave signals and the MUtiple SIgnal Characterization (MUSIC) algorithm. The performance of the proposed approach is assessed by validating simulation results with laboratory experiments. The results clearly indicate the utility of this overall approach for accurate dielectric slab thickness evaluation.

  5. Dielectric Properties of Sol-Gel Derived Barium Strontium Titanate and Microwave Sintering of Ceramics

    NASA Astrophysics Data System (ADS)

    Selmi, Fathi A.

    This thesis consists of two areas of research: (1) sol-gel processing of Ba_{rm 1-x}Sr_{rm x} TiO_3 ceramics and their dielectric properties measurement; and (2) microwave versus conventional sintering of ceramics such as Al_2 O_3, Ba_{ rm 1-x}Sr_{rm x}TiO_3, Sb-doped SnO _2 and YBa_2Cu _3O_7. Sol-gel powders of BaTiO_3, SrTiO_3, and their solid solutions were synthesized by the hydrolysis of titanium isopropoxide and Ba and Sr methoxyethoxides. The loss tangent and dielectric constant of both sol-gel and conventionally prepared and sintered Ba_{rm 1-x}Sr _{rm x}TiO _3 ceramics were investigated at high frequencies. The sol-gel prepared ceramics showed higher dielectric constant and lower loss compared to those prepared conventionally. Ba _{rm 1-x}Sr _{rm x}TiO_3 ceramics were tunable with applied bias, indicating the potential use of this material for phase shifter applications. Porous Ba_{0.65}Sr _{0.35}TiO_3 was also investigated to lower the dielectric constant. Microwave sintering of alpha -Al_2O_3 and SrTiO_3 was investigated using an ordinary kitchen microwave oven (2.45 GHz; 600 Watts). The use of microwaves with good insulation of alpha -Al_2O_3 and SrTiO_3 samples resulted in their rapid sintering with good final densities of 96 and 98% of the theoretical density, respectively. A comparison of grain size for conventionally and microwave sintered SrTiO_3 samples did not show a noticeable difference. However, the grain size of microwave sintered alpha-Al_2O _3 was found to be larger than that of conventionally sintered sample. These results show that rapid sintering of ceramics can be achieved by using microwave radiation. The sintering behavior of coprecipitated Sb-doped SnO_2 was investigated using microwave power absorption. With microwave power, samples were sintered at 1450^circC for 20 minutes and showed a density as high as 99.9% of theoretical. However, samples fired in a conventional electric furnace at the same temperature for 4 hours showed only

  6. A Bayesian Retrieval of Greenland Ice Sheet Internal Temperature from Ultra-wideband Software-defined Microwave Radiometer (UWBRAD) Measurements

    NASA Astrophysics Data System (ADS)

    Duan, Y.; Durand, M. T.; Jezek, K. C.; Yardim, C.; Bringer, A.; Aksoy, M.; Johnson, J. T.

    2017-12-01

    The ultra-wideband software-defined microwave radiometer (UWBRAD) is designed to provide ice sheet internal temperature product via measuring low frequency microwave emission. Twelve channels ranging from 0.5 to 2.0 GHz are covered by the instrument. A Greenland air-borne demonstration was demonstrated in September 2016, provided first demonstration of Ultra-wideband radiometer observations of geophysical scenes, including ice sheets. Another flight is planned for September 2017 for acquiring measurements in central ice sheet. A Bayesian framework is designed to retrieve the ice sheet internal temperature from simulated UWBRAD brightness temperature (Tb) measurements over Greenland flight path with limited prior information of the ground. A 1-D heat-flow model, the Robin Model, was used to model the ice sheet internal temperature profile with ground information. Synthetic UWBRAD Tb observations was generated via the partially coherent radiation transfer model, which utilizes the Robin model temperature profile and an exponential fit of ice density from Borehole measurement as input, and corrupted with noise. The effective surface temperature, geothermal heat flux, the variance of upper layer ice density, and the variance of fine scale density variation at deeper ice sheet were treated as unknown variables within the retrieval framework. Each parameter is defined with its possible range and set to be uniformly distributed. The Markov Chain Monte Carlo (MCMC) approach is applied to make the unknown parameters randomly walk in the parameter space. We investigate whether the variables can be improved over priors using the MCMC approach and contribute to the temperature retrieval theoretically. UWBRAD measurements near camp century from 2016 was also treated with the MCMC to examine the framework with scattering effect. The fine scale density fluctuation is an important parameter. It is the most sensitive yet highly unknown parameter in the estimation framework

  7. Extraction of Water from Polar Lunar Permafrost with Microwaves - Dielectric Property Measurements

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.; Kaukler, William

    2009-01-01

    Remote sensing indicates the presence of hydrogen rich regions associated with the lunar poles. The logical hypothesis is that there is cryogenically trapped water ice located in craters at the lunar poles. Some of the craters have been in permanent darkness for a billion years. The presence of water at the poles as well as other scientific advantages of a polar base, have influenced NASA plans for the lunar outpost. The lunar outpost has water and oxygen requirements on the order of 1 ton per year scaling up to as much as 10 tons per year. Microwave heating of the frozen permafrost has unique advantages for water extraction. Proof of principle experiments have successfully demonstrated that microwaves will couple to the cryogenic soil in a vacuum and the sublimed water vapor can be successfully captured on a cold trap. The dielectric properties of lunar soil will determine the hardware requirements for extraction processes. Microwave frequency dielectric property measurements of lunar soil simulant have been measured.

  8. Dielectric properties of almond shells in the development of radio frequency and microwave pasteurization

    USDA-ARS?s Scientific Manuscript database

    To develop pasteurization treatments based on radio frequency (RF) or microwave energy, dielectric properties of almond shells were determined using an open-ended coaxial-probe with an impedance analyzer over a frequency range of 10 to 1800 MHz. Both the dielectric constant and loss factor of almond...

  9. Microwave reflection measurements of the dielectric properties of concrete : final report.

    DOT National Transportation Integrated Search

    1983-01-01

    The use of microwave reflection measurements to continuously and nondestructively monitor the hydration of concrete is described. The method relies upon the influence of the free-water content on the dielectric properties of the concrete. Use of the ...

  10. Microwave dielectric study of polar liquids at 298 K

    NASA Astrophysics Data System (ADS)

    Maharolkar, Aruna P.; Murugkar, A.; Khirade, P. W.

    2018-05-01

    Present paper deals with study of microwave dielectric properties like dielectric constant, viscosity, density and refractive index for the binary mixtures of Dimethylsulphoxide (DMSO) and Methanol over the entire concentration range were measured at 298K. The experimental data further used to determine the excess properties viz. excess static dielectric constant, excess molar volume, excess viscosity& derived properties viz. molar refraction&Bruggman factor. The values of excess properties further fitted with Redlich-Kister (R-K Fit) equation to calculate the binary coefficients and standard deviation. The resulting excess parameters are used to indicate the presence of intermolecular interactions and strength of intermolecular interactions between the molecules in the binary mixtures. Excess parameters indicate structure breaking factor in the mixture predominates in the system.

  11. Microwave measurement and modeling of the dielectric properties of vegetation

    NASA Astrophysics Data System (ADS)

    Shrestha, Bijay Lal

    Some of the important applications of microwaves in the industrial, scientific and medical sectors include processing and treatment of various materials, and determining their physical properties. The dielectric properties of the materials of interest are paramount irrespective of the applications, hence, a wide range of materials covering food products, building materials, ores and fuels, and biological materials have been investigated for their dielectric properties. However, very few studies have been conducted towards the measurement of dielectric properties of green vegetations, including commercially important plant crops such as alfalfa. Because of its high nutritional value, there is a huge demand for this plant and its processed products in national and international markets, and an investigation into the possibility of applying microwaves to improve both the net yield and quality of the crop can be beneficial. Therefore, a dielectric measurement system based upon the probe reflection technique has been set up to measure dielectric properties of green plants over a frequency range from 300 MHz to 18 GHz, moisture contents from 12%, wet basis to 79%, wet basis, and temperatures from -15°C to 30°C. Dielectric properties of chopped alfalfa were measured with this system over frequency range of 300 MHz to 18 GHz, moisture content from 11.5%, wet basis, to 73%, wet basis, and density over the range from 139 kg m-3 to 716 kg m-3 at 23°C. The system accuracy was found to be +/-6% and +/-10% in measuring the dielectric constant and loss factor respectively. Empirical, semi empirical and theoretical models that require only moisture content and operating frequency were determined to represent the dielectric properties of both leaves and stems of alfalfa at 22°C. The empirical models fitted the measured dielectric data extremely well. The root mean square error (RMSE) and the coefficient of determination (r2) for dielectric constant and loss factor of leaves

  12. Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms.

    PubMed

    Su, Jianxun; Lu, Yao; Zhang, Hui; Li, Zengrui; Lamar Yang, Yaoqing; Che, Yongxing; Qi, Kainan

    2017-02-09

    In this paper, an ultra-wideband, wide angle and polarization-insensitive metasurface is designed, fabricated, and characterized for suppressing the specular electromagnetic wave reflection or backward radar cross section (RCS). Square ring structure is chosen as the basic meta-atoms. A new physical mechanism based on size adjustment of the basic meta-atoms is proposed for ultra-wideband manipulation of electromagnetic (EM) waves. Based on hybrid array pattern synthesis (APS) and particle swarm optimization (PSO) algorithm, the selection and distribution of the basic meta-atoms are optimized simultaneously to obtain the ultra-wideband diffusion scattering patterns. The metasurface can achieve an excellent RCS reduction in an ultra-wide frequency range under x- and y-polarized normal incidences. The new proposed mechanism greatly extends the bandwidth of RCS reduction. The simulation and experiment results show the metasurface can achieve ultra-wideband and polarization-insensitive specular reflection reduction for both normal and wide-angle incidences. The proposed methodology opens up a new route for realizing ultra-wideband diffusion scattering of EM wave, which is important for stealth and other microwave applications in the future.

  13. Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics

    NASA Astrophysics Data System (ADS)

    Lee, Che-Hui; Orloff, Nathan D.; Birol, Turan; Zhu, Ye; Goian, Veronica; Rocas, Eduard; Haislmaier, Ryan; Vlahos, Eftihia; Mundy, Julia A.; Kourkoutis, Lena F.; Nie, Yuefeng; Biegalski, Michael D.; Zhang, Jingshu; Bernhagen, Margitta; Benedek, Nicole A.; Kim, Yongsam; Brock, Joel D.; Uecker, Reinhard; Xi, X. X.; Gopalan, Venkatraman; Nuzhnyy, Dmitry; Kamba, Stanislav; Muller, David A.; Takeuchi, Ichiro; Booth, James C.; Fennie, Craig J.; Schlom, Darrell G.

    2013-10-01

    The miniaturization and integration of frequency-agile microwave circuits--relevant to electronically tunable filters, antennas, resonators and phase shifters--with microelectronics offers tantalizing device possibilities, yet requires thin films whose dielectric constant at gigahertz frequencies can be tuned by applying a quasi-static electric field. Appropriate systems such as BaxSr1-xTiO3 have a paraelectric-ferroelectric transition just below ambient temperature, providing high tunability. Unfortunately, such films suffer significant losses arising from defects. Recognizing that progress is stymied by dielectric loss, we start with a system with exceptionally low loss--Srn+1TinO3n+1 phases--in which (SrO)2 crystallographic shear planes provide an alternative to the formation of point defects for accommodating non-stoichiometry. Here we report the experimental realization of a highly tunable ground state arising from the emergence of a local ferroelectric instability in biaxially strained Srn+1TinO3n+1 phases with n>=3 at frequencies up to 125GHz. In contrast to traditional methods of modifying ferroelectrics--doping or strain--in this unique system an increase in the separation between the (SrO)2 planes, which can be achieved by changing n, bolsters the local ferroelectric instability. This new control parameter, n, can be exploited to achieve a figure of merit at room temperature that rivals all known tunable microwave dielectrics.

  14. Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Che-Hui; Orloff, Nathan; Birol, Turan

    2013-01-01

    The miniaturization and integration of frequency-agile microwave circuits tunable filters, resonators, phase shifters and more with microelectronics offers tantalizing device possibilities, yet requires thin films whose dielectric constant at GHz frequencies can be tuned by applying a quasi-static electric field . Appropriate systems, e.g., BaxSr1 xTiO3, have a paraelectric-to-ferroelectric transition just below ambient temperature, providing high tunability1 . Unfortunately such films suffer significant losses arising from defects. Recognizing that progress is stymied by dielectric loss, we start with a system with exceptionally low loss Srn+1TinO3n+1 phases , where (SrO)2 crystallographic shear , planes provide an alternative to point defect formationmore » for accommodating non-stoichiometry , . Here, we report the experimental realization of a highly tunable ground state arising from the emergence of a local ferroelectric instability in biaxially strained Srn+1TinO3n+1 phases with n 3 at frequencies up to 120 GHz. In contrast to traditional methods of modifying ferroelectrics doping or strain in this rather unique system increasing the separation between the (SrO)2 planes bolsters the local ferroelectric instability. This new control parameter, n, can be exploited to achieve a figure of merit at room temperature that rivals all known tunable microwave dielectrics.« less

  15. Dielectric prisms would improve performance of quasi-optical microwave components

    NASA Technical Reports Server (NTRS)

    Carson, J. W.

    1967-01-01

    Properties of the Brewster angle and internal reflection in a dielectric prism are proposed as the basis of a new type of element for use in oversize waveguide in quasi-optical microwave components. Waveguide loss is reduced and precision broadband attenuators, phase shifters, and directional couplers can be constructed on the basis of the properties.

  16. Fluid and microfluidic dielectric measurement using a cavity perturbation method at microwave C-band

    NASA Astrophysics Data System (ADS)

    Asghari, Aref

    The utilization of cavity perturbation technique in dielectric property measurement of fluid and micro-fluid is investigated in this thesis to better assist the ever-growing needs of science and technology for analysis and characterization of such materials in various applications from genetics, MEMS devices, to consumer product industry. Development of different techniques for measuring complex dielectric properties of fluid and micro-fluids at Giga (10 9)-Hz frequencies is of significant importance as their usage is increasingly coupled with infrared and microwave electromagnetic wavelengths. Conventional cavity perturbation method could provide a sensitive and convenient system for measuring fluids of low (e.g., epsilonr <10) permittivity that meets the assumptions of negligible perturbation to the electromagnetic field distribution in the cavity. Developing a methodology that uses conventional cavity perturbation method that is however suitable for a sensitive, accurate, and reliable measurement of high permittivity polar liquids at microwave C-band is the goal in the current work. Systematic studies are carried out, using de-ionic (DI) water as test specimens, to evaluate the influence of sample's container, volume, dimension, and temperature on the sensitivity and reliability of microwave dielectric measurement. The cavity perturbation measurement of DI water in a 1 mm diameter capillary tube showed well-defined temperature dependence of dielectric permittivity and loss coefficients of water. Observation of a permittivity peak in temperature range tested at 4GHz around -10 °C implies an important relaxation in low temperatures at microwave C-band, which corresponds to a critical slowing down of polarization reorientation in crystallized (icy) H2O. Numerical simulations using Finite Element Analysis (FEA) COMSOL suites were conducted to established the optimum amount of liquid water for cavity perturbation testing at microwave C-band (in perfectly conducting

  17. Study of plasma-based stable and ultra-wideband electromagnetic wave absorption for stealth application

    NASA Astrophysics Data System (ADS)

    Xuyang, CHEN; Fangfang, SHEN; Yanming, LIU; Wei, AI; Xiaoping, LI

    2018-06-01

    A plasma-based stable, ultra-wideband electromagnetic (EM) wave absorber structure is studied in this paper for stealth applications. The stability is maintained by a multi-layer structure with several plasma layers and dielectric layers distributed alternately. The plasma in each plasma layer is designed to be uniform, whereas it has a discrete nonuniform distribution from the overall view of the structure. The nonuniform distribution of the plasma is the key to obtaining ultra-wideband wave absorption. A discrete Epstein distribution model is put forward to constrain the nonuniform electron density of the plasma layers, by which the wave absorption range is extended to the ultra-wideband. Then, the scattering matrix method (SMM) is employed to analyze the electromagnetic reflection and absorption of the absorber structure. In the simulation, the validation of the proposed structure and model in ultra-wideband EM wave absorption is first illustrated by comparing the nonuniform plasma model with the uniform case. Then, the influence of various parameters on the EM wave reflection of the plasma are simulated and analyzed in detail, verifying the EM wave absorption performance of the absorber. The proposed structure and model are expected to be superior in some realistic applications, such as supersonic aircraft.

  18. Relative influence upon microwave emissivity of fine-scale stratigraphy, internal scattering, and dielectric properties

    USGS Publications Warehouse

    England, A.W.

    1976-01-01

    The microwave emissivity of relatively low-loss media such as snow, ice, frozen ground, and lunar soil is strongly influenced by fine-scale layering and by internal scattering. Radiometric data, however, are commonly interpreted using a model of emission from a homogeneous, dielectric halfspace whose emissivity derives exclusively from dielectric properties. Conclusions based upon these simple interpretations can be erroneous. Examples are presented showing that the emission from fresh or hardpacked snow over either frozen or moist soil is governed dominantly by the size distribution of ice grains in the snowpack. Similarly, the thickness of seasonally frozen soil and the concentration of rock clasts in lunar soil noticeably affect, respectively, the emissivities of northern latitude soils in winter and of the lunar regolith. Petrophysical data accumulated in support of the geophysical interpretation of microwave data must include measurements of not only dielectric properties, but also of geometric factors such as finescale layering and size distributions of grains, inclusions, and voids. ?? 1976 Birkha??user Verlag.

  19. The effect of dopants on the microwave dielectric properties of Ba(Mg{sub 0.33}Ta{sub 0.67})O{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surendran, Kuzhichalil P.; Sebastian, Mailadil T.; Mohanan, Pezholil

    2005-11-01

    The effect of dopants with different valencies and ionic radii on the densification, structural ordering, and microwave dielectric properties of Ba(Mg{sub 1/3}Ta{sub 2/3})O{sub 3} (BMT) is investigated. It is found that dopants such as Sb{sub 2}O{sub 5}, MnO, ZrO{sub 2}, WO{sub 3}, and ZnO improve the microwave dielectric properties of BMT. Addition of trivalent dopants is detrimental to the cation ordering and dielectric properties of BMT. A correlation between the microwave dielectric properties of BMT and ionic radii of the dopant has been established. The variation of the dielectric properties of pure and doped BMT at cryogenic temperatures is alsomore » discussed.« less

  20. Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms

    PubMed Central

    Su, Jianxun; Lu, Yao; Zhang, Hui; Li, Zengrui; (Lamar) Yang, Yaoqing; Che, Yongxing; Qi, Kainan

    2017-01-01

    In this paper, an ultra-wideband, wide angle and polarization-insensitive metasurface is designed, fabricated, and characterized for suppressing the specular electromagnetic wave reflection or backward radar cross section (RCS). Square ring structure is chosen as the basic meta-atoms. A new physical mechanism based on size adjustment of the basic meta-atoms is proposed for ultra-wideband manipulation of electromagnetic (EM) waves. Based on hybrid array pattern synthesis (APS) and particle swarm optimization (PSO) algorithm, the selection and distribution of the basic meta-atoms are optimized simultaneously to obtain the ultra-wideband diffusion scattering patterns. The metasurface can achieve an excellent RCS reduction in an ultra-wide frequency range under x- and y-polarized normal incidences. The new proposed mechanism greatly extends the bandwidth of RCS reduction. The simulation and experiment results show the metasurface can achieve ultra-wideband and polarization-insensitive specular reflection reduction for both normal and wide-angle incidences. The proposed methodology opens up a new route for realizing ultra-wideband diffusion scattering of EM wave, which is important for stealth and other microwave applications in the future. PMID:28181593

  1. Research on the honeycomb restrain layer application to the high power microwave dielectric window

    NASA Astrophysics Data System (ADS)

    Zhang, Qingyuan; Shao, Hao; Huang, Wenhua; Guo, Letian

    2018-01-01

    Dielectric window breakdown is an important problem of high power microwave radiation. A honeycomb layer can suppress the multipactor in two directions to restrain dielectric window breakdown. This paper studies the effect of the honeycomb restrain layer on improving the dielectric window power capability. It also studies the multipactor suppression mechanism by using the electromagnetic particle-in-cell software, gives the design method, and accomplishes the test experiment. The experimental results indicated that the honeycomb restrain layer can effectively improve the power capability twice.

  2. Research on the honeycomb restrain layer application to the high power microwave dielectric window.

    PubMed

    Zhang, Qingyuan; Shao, Hao; Huang, Wenhua; Guo, Letian

    2018-01-01

    Dielectric window breakdown is an important problem of high power microwave radiation. A honeycomb layer can suppress the multipactor in two directions to restrain dielectric window breakdown. This paper studies the effect of the honeycomb restrain layer on improving the dielectric window power capability. It also studies the multipactor suppression mechanism by using the electromagnetic particle-in-cell software, gives the design method, and accomplishes the test experiment. The experimental results indicated that the honeycomb restrain layer can effectively improve the power capability twice.

  3. Control of Silver Diffusion in Low-Temperature Co-Fired Diopside Glass-Ceramic Microwave Dielectrics

    PubMed Central

    Chou, Chen-Chia; Chang, Chun-Yao; Chen, Guang-Yu; Feng, Kuei-Chih; Tsao, Chung-Ya

    2017-01-01

    Electrode material for low-temperature co-fired diopside glass-ceramic used for microwave dielectrics was investigated in the present work. Diffusion of silver from the electrode to diopside glass-ceramics degrades the performance of the microwave dielectrics. Two approaches were adopted to resolve the problem of silver diffusion. Firstly, silicon-oxide (SiO2) powder was employed and secondly crystalline phases were chosen to modify the sintering behavior and inhibit silver ions diffusion. Nanoscale amorphous SiO2 powder turns to the quartz phase uniformly in dielectric material during the sintering process, and prevents the silver from diffusion. The chosen crystalline phase mixing into the glass-ceramics enhances crystallinity of the material and inhibits silver diffusion as well. The result provides a method to decrease the diffusivity of silver ions by adding the appropriate amount of SiO2 and appropriate crystalline ceramics in diopside glass-ceramic dielectric materials. Finally, we used IEEE 802.11a 5.8 GHz as target specification to manufacture LTCC antenna and the results show that a good broadband antenna was made using CaMgSi2O6 with 4 wt % silicon oxide. PMID:29286330

  4. Microwave-Assisted Synthesis of High Dielectric Constant CaCu3Ti4O12 from Sol-Gel Precursor

    NASA Astrophysics Data System (ADS)

    Ouyang, Xin; Cao, Peng; Huang, Saifang; Zhang, Weijun; Huang, Zhaohui; Gao, Wei

    2015-07-01

    CaCu3Ti4O12 (CCTO) powders derived from sol-gel precursors were calcined and sintered via microwave radiation. The obtained CCTO powders were compared with that obtained via a conventional heating method. For microwave heating, 89.1 wt.% CCTO was achieved from the sol-gel precursor, after only 17 min at 950°C. In contrast, the conventional calcination method required 3 h to generate 87.6 wt.% CCTO content at 1100°C. In addition, the CCTO powders prepared through 17 min of microwave calcination exhibited a small particle size distribution of D50 = 3.826 μm. It was found that a lengthy hold time of 1 h by microwave sintering is required to obtain a high dielectric constant (3.14 × 103 at 102 Hz) and a reasonably low dielectric loss (0.161) in the sintered CCTO ceramic. Based upon the distinct microstructures, the dielectric responses of the CCTO samples sintered by different methods are attributed to space charge polarization and internal barrier layer capacitor mechanism.

  5. Influence of Water Content on RF and Microwave Dielectric Behavior of Foods

    USDA-ARS?s Scientific Manuscript database

    Abstract The importance of dielectric properties of food materials are discussed with respect to their influence on the heating of materials by radio-frequency and microwave energy and their use for rapid, nondestructive sensing of quality characteristics of such materials. Data are presented graph...

  6. Influence of Water content of RF and Microwave Dielectric Properties of Foods

    USDA-ARS?s Scientific Manuscript database

    ABSTRACT The importance of dielectric properties of food materials is discussed with respect to their influence on the heating of materials by radio-frequency and microwave energy and their use for rapid, nondestructive sensing of quality characteristics of such materials. Data are presented graph...

  7. Novel Multistatic Adaptive Microwave Imaging Methods for Early Breast Cancer Detection

    NASA Astrophysics Data System (ADS)

    Xie, Yao; Guo, Bin; Li, Jian; Stoica, Petre

    2006-12-01

    Multistatic adaptive microwave imaging (MAMI) methods are presented and compared for early breast cancer detection. Due to the significant contrast between the dielectric properties of normal and malignant breast tissues, developing microwave imaging techniques for early breast cancer detection has attracted much interest lately. MAMI is one of the microwave imaging modalities and employs multiple antennas that take turns to transmit ultra-wideband (UWB) pulses while all antennas are used to receive the reflected signals. MAMI can be considered as a special case of the multi-input multi-output (MIMO) radar with the multiple transmitted waveforms being either UWB pulses or zeros. Since the UWB pulses transmitted by different antennas are displaced in time, the multiple transmitted waveforms are orthogonal to each other. The challenge to microwave imaging is to improve resolution and suppress strong interferences caused by the breast skin, nipple, and so forth. The MAMI methods we investigate herein utilize the data-adaptive robust Capon beamformer (RCB) to achieve high resolution and interference suppression. We will demonstrate the effectiveness of our proposed methods for breast cancer detection via numerical examples with data simulated using the finite-difference time-domain method based on a 3D realistic breast model.

  8. Microwave resonances in dielectric samples probed in Corbino geometry: simulation and experiment.

    PubMed

    Felger, M Maximilian; Dressel, Martin; Scheffler, Marc

    2013-11-01

    The Corbino approach, where the sample of interest terminates a coaxial cable, is a well-established method for microwave spectroscopy. If the sample is dielectric and if the probe geometry basically forms a conductive cavity, this combination can sustain well-defined microwave resonances that are detrimental for broadband measurements. Here, we present detailed simulations and measurements to investigate the resonance frequencies as a function of sample and probe size and of sample permittivity. This allows a quantitative optimization to increase the frequency of the lowest-lying resonance.

  9. Excellent microwave response derived from the construction of dielectric-loss 1D nanostructure.

    PubMed

    Dai, Sisi; Quan, Bin; Liang, Xiaohui; Lv, Jing; Yang, Zhihong; Ji, Guangbin; Du, Youwei

    2018-05-11

    Increasing efforts have recently been devoted to the artificial design and function of nanostructures for their application prospects in catalysis, drug delivery, energy storage, and microwave absorption. With the advantages of natural abundance, low cost, and environment friendliness, a one-dimensional (1D) MnO 2 nanowire (MW) is the representative dielectric-loss absorber for its special morphology and crystalline structure. However, its low reflection loss (RL) value due to its thin thickness limits its wide development and application in the microwave absorption field. In this work, artificially designed MnO 2 @AIR@C (MCs), namely, 1D hollow carbon nanotubes filled with nano-MnO 2 , were designed and synthesized. It is found that the RL value of the MC is almost lower than -10 dB. Furthermore, the RL value was able to achieve -18.9 dB with an effective bandwidth (-10 dB) of 5.84 GHz at 2.25 mm. Simultaneously, the dielectric and interfacial polarization became stronger while the impedance matching was much better than in the single MWs. Hence, the rational design and fabrication of micro-architecture are essential and MC has great potential to be an outstanding microwave absorber.

  10. Excellent microwave response derived from the construction of dielectric-loss 1D nanostructure

    NASA Astrophysics Data System (ADS)

    Dai, Sisi; Quan, Bin; Liang, Xiaohui; Lv, Jing; Yang, Zhihong; Ji, Guangbin; Du, Youwei

    2018-05-01

    Increasing efforts have recently been devoted to the artificial design and function of nanostructures for their application prospects in catalysis, drug delivery, energy storage, and microwave absorption. With the advantages of natural abundance, low cost, and environment friendliness, a one-dimensional (1D) MnO2 nanowire (MW) is the representative dielectric-loss absorber for its special morphology and crystalline structure. However, its low reflection loss (RL) value due to its thin thickness limits its wide development and application in the microwave absorption field. In this work, artificially designed MnO2@AIR@C (MCs), namely, 1D hollow carbon nanotubes filled with nano-MnO2, were designed and synthesized. It is found that the RL value of the MC is almost lower than -10 dB. Furthermore, the RL value was able to achieve -18.9 dB with an effective bandwidth (-10 dB) of 5.84 GHz at 2.25 mm. Simultaneously, the dielectric and interfacial polarization became stronger while the impedance matching was much better than in the single MWs. Hence, the rational design and fabrication of micro-architecture are essential and MC has great potential to be an outstanding microwave absorber.

  11. Aerogel Poly(butylene succinate) Biomaterial Substrate for RF and Microwave Applications.

    PubMed

    Habib Ullah, M; Mahadi, W N L; Latef, T A

    2015-08-04

    Polybutylene succinate (PBS) has become a potential candidate, similar to polypropylene (PP) and acrylonitrile butadiene styrene (ABS), for use as an organic plastic material due to its outstanding mechanical properties as well as high thermal deformation characteristics. A new composition of silica aerogel nanoparticles extracted from rice waste with PBS is proposed for use as a dielectric (εr = 4.5) substrate for microwave applications. A microstrip patch antenna was fabricated on the proposed dielectric substrate for multi-resonant ultra-wideband (UWB) applications. The performance characteristics of the proposed biomaterial-based antenna were investigated in a far-field measurement environment. The results indicate that the proposed biocompatible material-based antenna covered a bandwidth of 9.4 (2.3-11.7) GHz with stop bands from 5.5 GHz to 5.8 GHz and 7.0 GHz to 8.3 GHz. Peak gains of 9.82 dBi, 7.59 dBi, 8.0 dBi and 7.68 dBi were measured at resonant frequencies of 2.7 GHz, 4.6 GHz, 6.3 GHz and 9.5 GHz, respectively.

  12. Changes in the dielectric properties of ex vivo bovine liver during microwave thermal ablation at 2.45 GHz

    NASA Astrophysics Data System (ADS)

    Lopresto, Vanni; Pinto, Rosanna; Lovisolo, Giorgio A.; Cavagnaro, Marta

    2012-04-01

    In microwave thermal ablation (MTA) therapy, the dielectric properties of the target tissue play an important role in determining the radiation properties of the microwave ablation antenna. In this work, the ex vivo dielectric properties of bovine liver were experimentally characterized as a function of the temperature during MTA at the frequency of 2.45 GHz. The obtained data were compared with measurements performed at the end of the MTA treatment, and considering the heating achieved with a temperature-controlled water bath. Finally, measured data were used to perform a numerical study evaluating the effects of changes in tissue's dielectric properties during the MTA treatment on the radiation properties of a microwave interstitial ablation antenna, as well as on the obtained thermal lesion. Results evidenced a significant decrease of both relative permittivity (about 38%) and electric conductivity (about 33%) in the tissue during treatment as the temperature increased to over 60 °C, with a dramatic drop when the temperature approached 100 °C. Moreover, the numerical study evidenced that changes in tissue's dielectric properties during the MTA treatment affect the distribution of the power absorbed by the tissue (specific absorption rate—SAR, W kg-1) surrounding the microwave interstitial ablation antenna, leading to a peak SAR up to 20% lower, as well as to a thermal lesion up to 8% longer. This work may represent a preliminary step towards the future development of a procedure for MTA treatment planning.

  13. Design and investigation of planar technology based ultra-wideband antenna with directional radiation patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meena, M. L., E-mail: madan.meena.ece@gamil.com; Parmar, Girish, E-mail: girish-parmar2002@yahoo.com; Kumar, Mithilesh, E-mail: mith-kr@yahoo.com

    A novel design technique based on planar technology for ultra-wideband (UWB) antennas with different ground shape having directional radiation pattern is being presented here. Firstly, the L-shape corner reflector ground plane antenna is designed with microstrip feed line in order to achieve large bandwidth and directivity. Thereafter, for the further improvement in the directivity as well as for better impedance matching the parabolic-shape ground plane has been introduced. The coaxial feed line is given for the proposed directional antenna in order to achieve better impedance matching with 50 ohm transmission line. The simulation analysis of the antenna is done onmore » CST Microwave Studio software using FR-4 substrate having thickness of 1.6 mm and dielectric constant of 4.4. The simulated result shows a good return loss (S11) with respect to -10 dB. The radiation pattern characteristic, angular width, directivity and bandwidth performance of the antenna have also been compared at different resonant frequencies. The designed antennas exhibit low cost, low reflection coefficient and better directivity in the UWB frequency band.« less

  14. Ultra-wide-band 3D microwave imaging scanner for the detection of concealed weapons

    NASA Astrophysics Data System (ADS)

    Rezgui, Nacer-Ddine; Andrews, David A.; Bowring, Nicholas J.

    2015-10-01

    The threat of concealed weapons, explosives and contraband in footwear, bags and suitcases has led to the development of new devices, which can be deployed for security screening. To address known deficiencies of metal detectors and x-rays, an UWB 3D microwave imaging scanning apparatus using FMCW stepped frequency working in the K and Q bands and with a planar scanning geometry based on an x y stage, has been developed to screen suspicious luggage and footwear. To obtain microwave images of the concealed weapons, the targets are placed above the platform and the single transceiver horn antenna attached to the x y stage is moved mechanically to perform a raster scan to create a 2D synthetic aperture array. The S11 reflection signal of the transmitted sweep frequency from the target is acquired by a VNA in synchronism with each position step. To enhance and filter from clutter and noise the raw data and to obtain the 2D and 3D microwave images of the concealed weapons or explosives, data processing techniques are applied to the acquired signals. These techniques include background subtraction, Inverse Fast Fourier Transform (IFFT), thresholding, filtering by gating and windowing and deconvolving with the transfer function of the system using a reference target. To focus the 3D reconstructed microwave image of the target in range and across the x y aperture without using focusing elements, 3D Synthetic Aperture Radar (SAR) techniques are applied to the post-processed data. The K and Q bands, between 15 to 40 GHz, show good transmission through clothing and dielectric materials found in luggage and footwear. A description of the system, algorithms and some results with replica guns and a comparison of microwave images obtained by IFFT, 2D and 3D SAR techniques are presented.

  15. Design and analysis of planar spiral resonator bandstop filter for microwave frequency

    NASA Astrophysics Data System (ADS)

    Motakabber, S. M. A.; Shaifudin Suharsono, Muhammad

    2017-11-01

    In microwave frequency, a spiral resonator can act as either frequency reject or acceptor circuits. A planar logarithmic spiral resonator bandstop filter has been developed based on this property. This project focuses on the rejection property of the spiral resonator. The performance analysis of the exhibited filter circuit has been performed by using scattering parameters (S-parameters) technique in the ultra-wideband microwave frequency. The proposed filter is built, simulated and S-parameters analysis have been accomplished by using electromagnetic simulation software CST microwave studio. The commercial microwave substrate Taconic TLX-8 has been used to build this filter. Experimental results showed that the -10 dB rejection bandwidth of the filter is 2.32 GHz and central frequency is 5.72 GHz which is suitable for ultra-wideband applications. The proposed design has been full of good compliance with the simulated and experimental results here.

  16. Simplified two-dimensional microwave imaging scheme using metamaterial-loaded Vivaldi antenna

    NASA Astrophysics Data System (ADS)

    Johari, Esha; Akhter, Zubair; Bhaskar, Manoj; Akhtar, M. Jaleel

    2017-03-01

    In this paper, a highly efficient, low-cost scheme for two-dimensional microwave imaging is proposed. To this end, the AZIM (anisotropic zero index metamaterial) cell-loaded Vivaldi antenna is designed and tested as effective electromagnetic radiation beam source required in the microwave imaging scheme. The designed antenna is first individually tested in the anechoic chamber, and its directivity along with the radiation pattern is obtained. The measurement setup for the imaging here involves a vector network analyzer, the AZIM cell-loaded ultra-wideband Vivaldi antenna, and other associated microwave components. The potential of the designed antenna for the microwave imaging is tested by first obtaining the two-dimensional reflectivity images of metallic samples of different shapes placed in front of the antenna, using the proposed scheme. In the next step, these sets of samples are hidden behind wooden blocks of different thicknesses and the reflectivity image of the test media is reconstructed by using the proposed scheme. Finally, the reflectivity images of various dielectric samples (Teflon, Plexiglas, permanent magnet moving coil) along with the copper sheet placed on a piece of cardboard are reconstructed by using the proposed setup. The images obtained for each case are plotted and compared with the actual objects, and a close match is observed which shows the applicability of the proposed scheme for through-wall imaging and the detection of concealed objects.

  17. Remote Respiration Monitoring Using Ultra-wideband Microwave Sensor

    NASA Astrophysics Data System (ADS)

    Higashikatsuragi, Kenji; Nakahata, Youichiro; Matsunami, Isamu; Kajiwara, Akihiro

    Impulse based ultra-wideband radio has lately attracted considerable attention as medical monitoring sensor since it is expected to measure bio-signals of a patient on a bed such as respiration rate and heartbeat with a remote non-contact approach. It is also friendly to the environment including the human body due to the very low electromagnetic energy emission. Using conventional ranging scheme, however, high speed A/D device should be required in order to detect the small respiratory displacement. This paper suggests a respiratory monitoring scheme where the respiration rate is measured by observing the variation of the path strength from the patient. Therefore, it does not require high speed A/D. It also makes possible to design the simultaneous monitoring of multiple patients in hospital beds, for example. In this paper the measurements were conducted for various scenarios and the feasibility is discussed.

  18. Microwave dielectric measurements of lunar soil with a coaxial line resonator method

    NASA Technical Reports Server (NTRS)

    Bussey, H. E.

    1979-01-01

    A method is given for sensitive dielectric measurements at a series of microwave frequencies using a section of coaxial line. The line is used as a 1-port cavity resonator; it resonates when the electrical length of the center conductor equals 1, 2 . . . , N half-wave lengths. The dielectric properties of an Apollo 17 dried soil sample were measured in vacuum over a temperature range of 173 to 373 K. The relative permittivity and the loss tangent were determined and the frequency dependence was very small. The derivative with respect to temperature, per degree, was 0.00045 for the permittivity and 0.00002 for the loss tangent.

  19. Effects of TiO2 addition on microwave dielectric properties of Li2MgSiO4 ceramics

    NASA Astrophysics Data System (ADS)

    Rose, Aleena; Masin, B.; Sreemoolanadhan, H.; Ashok, K.; Vijayakumar, T.

    2018-03-01

    Silicates have been widely studied for substrate applications in microwave integrated circuits owing to their low dielectric constant and low tangent loss values. Li2MgSiO4 (LMS) ceramics are synthesized through solid-state reaction route using TiO2 as an additive to the pure ceramics. Variations in dielectric properties of LMS upon TiO2 addition in different weight percentages (0.5, 1.5, 2) are studied by keeping the sintering parameters constant. Crystalline structure, phase composition, and microstructure of LMS and LMS-TiO2 ceramics were studied using x-ray diffraction spectrometer and High Resolution Scanning electron microscope. Density was measured through Archimedes method and the microwave dielectric properties were examined by Cavity perturbation technique. LMS achieved relative permittivity (ε r) of 5.73 and dielectric loss (tan δ) of 5.897 × 10‑4 at 8 GHz. In LMS-TiO2 ceramics, 0.5 wt% TiO2 added LMS showed comparatively better dielectric properties than other weight percentages where ε r = 5.67, tan δ = 7.737 × 10‑4 at 8 GHz.

  20. Aerogel Poly(butylene succinate) Biomaterial Substrate for RF and Microwave Applications

    PubMed Central

    Habib Ullah, M.; Mahadi, W. N. L.; Latef, T. A.

    2015-01-01

    Polybutylene succinate (PBS) has become a potential candidate, similar to polypropylene (PP) and acrylonitrile butadiene styrene (ABS), for use as an organic plastic material due to its outstanding mechanical properties as well as high thermal deformation characteristics. A new composition of silica aerogel nanoparticles extracted from rice waste with PBS is proposed for use as a dielectric (εr = 4.5) substrate for microwave applications. A microstrip patch antenna was fabricated on the proposed dielectric substrate for multi-resonant ultra-wideband (UWB) applications. The performance characteristics of the proposed biomaterial-based antenna were investigated in a far-field measurement environment. The results indicate that the proposed biocompatible material-based antenna covered a bandwidth of 9.4 (2.3–11.7) GHz with stop bands from 5.5 GHz to 5.8 GHz and 7.0 GHz to 8.3 GHz. Peak gains of 9.82 dBi, 7.59 dBi, 8.0 dBi and 7.68 dBi were measured at resonant frequencies of 2.7 GHz, 4.6 GHz, 6.3 GHz and 9.5 GHz, respectively. PMID:26238975

  1. Research on sintering behavior and microwave dielectric property of (Mg0.95Ca0.05)TiO3 ceramics for cross coupling filter

    NASA Astrophysics Data System (ADS)

    Luo, Chunya; Ma, Zhichao; Hu, Laisheng; Hu, Mingzhe; Huang, Xiaomin

    2015-12-01

    The microwave dielectric properties of 0.95%MgTiO3-0.05%CaTiO3 (abbreviated as 95MCT hereafter) ceramics have been studied for application in dielectric cross coupling filters. ZnO and Nb2O5 were selected as liquid sintering aids to lower the sintering temperature and enhance the Qf value of 95MCT and simultaneously we varied the mole ratio of ZnO : Nb2O5 to tune the microwave dielectric properties of 95MCT. When the ZnO : Nb2O5 mole ratio was 1.5 and the co-doping content was 0.25 wt.%, the optimal sintering temperature of 95MCT ceramic could be lowered from 1400∘C to 1320∘C and the Qf value could be improved by about 7.7%. The optimal microwave dielectric properties obtained under this condition were Qf = 72730 GHz (6.8 GHz), ɛr = 20.29 and τf = -6.84ppm/∘C, which demonstrated great potential usage in ceramic industry. High values of Qf ceramic were used to design the dielectric cross coupling filter. The dielectric filter measured at 2.35 GHz exhibited a 6.7% bandwidth (insert loss > -3 dB) of center frequency.

  2. Microwave dielectric study of an oligomeric electrolyte gelator by time domain reflectometry.

    PubMed

    Kundu, Shyamal Kumar; Yagihara, Shin; Yoshida, Masaru; Shibayama, Mitsuhiro

    2009-07-30

    The dynamics of water molecules in aqueous solutions of an oligomeric electrolyte gelator, poly[pyridinium-1,4-diyliminocarbonyl-1,4-phenylene-methylene chloride] (1-Cl) was characterized by microwave dielectric measurements using the time domain reflectometry method. The dielectric dispersion and absorption curves related to the orientational motion of water molecules were described by the Cole-Cole equation. Discontinuities were observed in the concentration dependence of the dielectric relaxation strength, Deltaepsilonh, as well as in the Cole-Cole parameter, betah. These discontinuities were observed between the samples with concentrations of 6 and 7 g/L 1-Cl/water, which correspond to a change in the transparency. Such a discontinuity corresponds to the observation of the critical concentration of gelation. The interaction between water and 1-Cl molecules was discussed from the tauh-betah diagram. As 1-Cl carries an amide group, it could be expected that 1-Cl may interact hydrophilically with water, but the present result suggests that 1-Cl interact hydrophobically with water.

  3. Machine learning aided diagnosis of hepatic malignancies through in vivo dielectric measurements with microwaves.

    PubMed

    Yilmaz, Tuba; Kılıç, Mahmut Alp; Erdoğan, Melike; Çayören, Mehmet; Tunaoğlu, Doruk; Kurtoğlu, İsmail; Yaslan, Yusuf; Çayören, Hüseyin; Arkan, Akif Enes; Teksöz, Serkan; Cancan, Gülden; Kepil, Nuray; Erdamar, Sibel; Özcan, Murat; Akduman, İbrahim; Kalkan, Tunaya

    2016-06-20

    In the past decade, extensive research on dielectric properties of biological tissues led to characterization of dielectric property discrepancy between the malignant and healthy tissues. Such discrepancy enabled the development of microwave therapeutic and diagnostic technologies. Traditionally, dielectric property measurements of biological tissues is performed with the well-known contact probe (open-ended coaxial probe) technique. However, the technique suffers from limited accuracy and low loss resolution for permittivity and conductivity measurements, respectively. Therefore, despite the inherent dielectric property discrepancy, a rigorous measurement routine with open-ended coaxial probes is required for accurate differentiation of malignant and healthy tissues. In this paper, we propose to eliminate the need for multiple measurements with open-ended coaxial probe for malignant and healthy tissue differentiation by applying support vector machine (SVM) classification algorithm to the dielectric measurement data. To do so, first, in vivo malignant and healthy rat liver tissue dielectric property measurements are collected with open-ended coaxial probe technique between 500 MHz to 6 GHz. Cole-Cole functions are fitted to the measured dielectric properties and measurement data is verified with the literature. Malign tissue classification is realized by applying SVM to the open-ended coaxial probe measurements where as high as 99.2% accuracy (F1 Score) is obtained.

  4. Simultaneous dielectric monitoring of microfluidic channels at microwaves utilizing a metamaterial transmission line structure.

    PubMed

    Schüßler, M; Puentes, M; Dubuc, D; Grenier, K; Jakoby, R

    2012-01-01

    The paper presents a technique that allows the simultaneous monitoring of the dielectric properties of liquids in microfluidic channels at microwave frequencies. It is capable of being integrated within the lab-on-a-chip concept and uses a composite right/left-handed transmission line resonator which is detuned by the dielectric loading of the liquids in the channels. By monitoring the change in the resonance spectrum of the resonator the loading profile can be derived with the multi-resonant perturbation method. From the value of the dielectric constant inference on the substances like cells or chemicals in the channels can be drawn. The paper presents concept, design, fabrication and characterization of prototype sensors. The sensors have been designed to operate between 20 and 30 GHz and were tested with water and water ethanol mixtures.

  5. Effect of microwave-assisted sintering on dielectric properties of CaCu3Ti4O12 ceramic

    NASA Astrophysics Data System (ADS)

    Rani, Suman; Ahlawat, Neetu; Punia, R.; Kundu, R. S.; Ahlawat, N.

    2016-05-01

    In this present work, CaCu3Ti4O12 (CCTO) was synthesized by conventional solid-state reaction technique. The synthesis process was carried out in two phases; by conventional process (calcination and sintering at 1080°C for 10 hours) and phase II involves the micro assisted pre sintering of conventionally calcined CCTO for very short soaking time of 30 min at 1080°C in a microwave furnace followed by sintering at 1080°C for 10 hours in conventional furnace. X-ray diffraction (XRD) patterns confirmed the formation of single phase ceramic. Dielectric properties were studied over the frequency range from 50Hz -5MHz at temperatures (273K-343K). It was observed that pre- microwave sintering enhance the dielectric constant values from 10900 to 11893 and respectively reduces the dielectric loss values from 0.49 to 0.34 at room temperature(1 KHz). CCTO ceramics which are found desirable for many technological applications. The effect is more pronounced at low frequencies of applied electric field.

  6. Hydration properties of adenosine phosphate series as studied by microwave dielectric spectroscopy.

    PubMed

    Mogami, George; Wazawa, Tetsuichi; Morimoto, Nobuyuki; Kodama, Takao; Suzuki, Makoto

    2011-02-01

    Hydration properties of adenine nucleotides and orthophosphate (Pi) in aqueous solutions adjusted to pH=8 with NaOH were studied by high-resolution microwave dielectric relaxation (DR) spectroscopy at 20 °C. The dielectric spectra were analyzed using a mixture theory combined with a least-squares Debye decomposition method. Solutions of Pi and adenine nucleotides showed qualitatively similar dielectric properties described by two Debye components. One component was characterized by a relaxation frequency (f(c)=18.8-19.7 GHz) significantly higher than that of bulk water (17 GHz) and the other by a much lower f(c) (6.4-7.6 GHz), which are referred to here as hyper-mobile water and constrained water, respectively. By contrast, a hydration shell of only the latter type was found for adenosine (f(c)~6.7 GHz). The present results indicate that phosphoryl groups are mostly responsible for affecting the structure of the water surrounding the adenine nucleotides by forming one constrained water layer and an additional three or four layers of hyper-mobile water. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Dielectric-loaded coaxial-slot antenna for interstitial microwave hyperthermia: longitudinal control of heating patterns.

    PubMed

    Hamada, L; Saito, K; Yoshimura, H; Ito, K

    2000-01-01

    In this paper, the microwave interstitial antenna with the dielectric load in part near the tip is introduced to realize the tip-heating and to improve the dependence of the heating patterns on the insertion depth. Numerical simulations using the Finite Difference Time Domain (FDTD) method have been conducted at the frequency of 915 MHz for four different configurations of the coaxial-slot antenna inserted into a catheter: the media between the antenna and the catheter are (a) no, (b) a thin air layer, (c) a thin dielectric layer, and (d) a thin air layer and a dielectric load in part near the tip. The diameter of the antenna including the catheter is sufficiently small for minimally invasive therapy. Comparison of the SARs for the four configurations makes it clear that the dielectric-loaded antenna can realize the best tip-heating and suppress the hot spot near the surface of the human body. Dependence of the SAR distributions on the insertion depth of the antenna has also been examined. It is found from the investigation that the dielectric-loaded antenna has little dependence on the insertion depth.

  8. Compact microwave lamp having a tuning block and a dielectric located in a lamp cavity

    DOEpatents

    Simpson, James E.

    2000-01-01

    A microwave lamp having a compact structure utilizing a coupling slot which has a dielectric member extending therethrough and a tuning block adjoining the coupling slot. A non-conventional waveguide is used which has about the width of a WR-284 waveguide and about the length of a WR-340 waveguide.

  9. Novel ultra-low temperature co-fired microwave dielectric ceramic at 400 degrees and its chemical compatibility with base metal

    PubMed Central

    Di, Zhou; Li-Xia, Pang; Ze-Ming, Qi; Biao-Bing, Jin; Xi, Yao

    2014-01-01

    A novel NaAgMoO4 material with spinel-like structure was synthesized by using the solid state reaction method and the ceramic sample was well densified at an extreme low sintering temperature about 400°C. Rietveld refinement of the crystal structure was performed using FULLPROF program and the cell parameters are a = b = c = 9.22039 Å with a space group F D −3 M (227). High performance microwave dielectric properties, with a permittivity ~7.9, a Qf value ~33,000 GHz and a temperature coefficient of resonant frequency ~−120 ppm/°C, were obtained. From X-ray diffraction (XRD) and Energy Dispersive Spectrometer (EDS) analysis of the co-fired sample, it was found that the NaAgMoO4 ceramic is chemically compatible with both silver and aluminum at the sintering temperature and this makes it a promising candidate for the ultra-low temperature co-fired ceramics technology. Analysis of infrared and THz spectra indicated that dielectric polarizability at microwave region of the NaAgMoO4 ceramic was equally contributed by ionic displasive and electronic polarizations. Its small microwave dielectric permittivity can also be explained well by the Shannon's additive rule. PMID:25099530

  10. Dielectric properties of almond kernels associated with radio frequency and microwave pasteurization

    NASA Astrophysics Data System (ADS)

    Li, Rui; Zhang, Shuang; Kou, Xiaoxi; Ling, Bo; Wang, Shaojin

    2017-02-01

    To develop advanced pasteurization treatments based on radio frequency (RF) or microwave (MW) energy, dielectric properties of almond kernels were measured by using an open-ended coaxial-line probe and impedance analyzer at frequencies between 10 and 3000 MHz, moisture contents between 4.2% to 19.6% w.b. and temperatures between 20 and 90 °C. The results showed that both dielectric constant and loss factor of the almond kernels decreased sharply with increasing frequency over the RF range (10-300 MHz), but gradually over the measured MW range (300-3000 MHz). Both dielectric constant and loss factor of almond kernels increased with increasing temperature and moisture content, and largely enhanced at higher temperature and moisture levels. Quadratic polynomial equations were developed to best fit the relationship between dielectric constant or loss factor at 27, 40, 915 or 2450 MHz and sample temperature/moisture content with R2 greater than 0.967. Penetration depth of electromagnetic wave into samples decreased with increasing frequency (27-2450 MHz), moisture content (4.2-19.6% w.b.) and temperature (20-90 °C). The temperature profiles of RF heated almond kernels under three moisture levels were made using experiment and computer simulation based on measured dielectric properties. Based on the result of this study, RF treatment has potential to be practically used for pasteurization of almond kernels with acceptable heating uniformity.

  11. Dielectric properties of almond kernels associated with radio frequency and microwave pasteurization.

    PubMed

    Li, Rui; Zhang, Shuang; Kou, Xiaoxi; Ling, Bo; Wang, Shaojin

    2017-02-10

    To develop advanced pasteurization treatments based on radio frequency (RF) or microwave (MW) energy, dielectric properties of almond kernels were measured by using an open-ended coaxial-line probe and impedance analyzer at frequencies between 10 and 3000 MHz, moisture contents between 4.2% to 19.6% w.b. and temperatures between 20 and 90 °C. The results showed that both dielectric constant and loss factor of the almond kernels decreased sharply with increasing frequency over the RF range (10-300 MHz), but gradually over the measured MW range (300-3000 MHz). Both dielectric constant and loss factor of almond kernels increased with increasing temperature and moisture content, and largely enhanced at higher temperature and moisture levels. Quadratic polynomial equations were developed to best fit the relationship between dielectric constant or loss factor at 27, 40, 915 or 2450 MHz and sample temperature/moisture content with R 2 greater than 0.967. Penetration depth of electromagnetic wave into samples decreased with increasing frequency (27-2450 MHz), moisture content (4.2-19.6% w.b.) and temperature (20-90 °C). The temperature profiles of RF heated almond kernels under three moisture levels were made using experiment and computer simulation based on measured dielectric properties. Based on the result of this study, RF treatment has potential to be practically used for pasteurization of almond kernels with acceptable heating uniformity.

  12. The phase compositions and microwave dielectric properties of Li2Zn(Ti1-xSnx)3O8 ceramics

    NASA Astrophysics Data System (ADS)

    Lu, Xuepeng; Hu, Jie; Chen, Haoyuan; Xu, Wensheng; Li, Shuai

    2017-08-01

    The Li2Zn(Ti1-xSnx)3O8 (0.02≤x≤0.20) ceramics were prepared by the conventional solid-state ceramic route. The sintering behavior, phase compositions, microstructures and microwave dielectric properties of Li2Zn(Ti1-xSnx)3O8 ceramics were thoroughly investigated. The XRD patterns of Li2Zn(Ti1-xSnx)3O8 ceramics exhibited a single spinel as the main phase in the x value range of 0.02-0.08. The dielectric constants decreased linearly with increasing the substitution of Sn, which was mainly controlled by dielectric polarizabilities and secondary phase. The variation of Q×f values was dependent on average grain sizes and secondary phase. The τf values of Li2Zn(Ti1-xSnx)3O8 ceramics became more negative with higher substitution of Sn, which was related to the variations of their cell volumes. Typically, the Li2Zn(Ti0.92Sn0.08)3O8 ceramic sintered at 1075 °C for 4h exhibited good microwave dielectric properties: ɛr= 24.4, Q×f=89300 GHz, τf= -16.0 ppm/°C.

  13. Dielectric Relaxation of the Ionic Liquid 1-Ethyl-3-methylimidazolium Ethyl Sulfate: Microwave and Far-IR Properties.

    PubMed

    Dhumal, Nilesh R; Kiefer, Johannes; Turton, David; Wynne, Klaas; Kim, Hyung J

    2017-05-11

    Dielectric relaxation of the ionic liquid, 1-ethyl-3-methylimidazolium ethyl sulfate (EMI + ETS - ), is studied using molecular dynamics (MD) simulations. The collective dynamics of polarization arising from cations and anions are examined. Characteristics of the rovibrational and translational components of polarization dynamics are analyzed to understand their respective roles in the microwave and terahertz regions of dielectric relaxation. The MD results are compared with the experimental low-frequency spectrum of EMI + ETS - , obtained via ultrafast optical Kerr effect (OKE) measurements.

  14. Using Microwave and Macroscopic Samples of Dielectric Solids to Study the Photonic Properties of Disordered Photonic Bandgap Materials

    PubMed Central

    Hashemizad, Seyed Reza; Tsitrin, Sam; Yadak, Polin; He, Yingquan; Cuneo, Daniel; Williamson, Eric Paul; Liner, Devin; Man, Weining

    2014-01-01

    Recently, disordered photonic materials have been suggested as an alternative to periodic crystals for the formation of a complete photonic bandgap (PBG). In this article we will describe the methods for constructing and characterizing macroscopic disordered photonic structures using microwaves. The microwave regime offers the most convenient experimental sample size to build and test PBG media. Easily manipulated dielectric lattice components extend flexibility in building various 2D structures on top of pre-printed plastic templates. Once built, the structures could be quickly modified with point and line defects to make freeform waveguides and filters. Testing is done using a widely available Vector Network Analyzer and pairs of microwave horn antennas. Due to the scale invariance property of electromagnetic fields, the results we obtained in the microwave region can be directly applied to infrared and optical regions. Our approach is simple but delivers exciting new insight into the nature of light and disordered matter interaction. Our representative results include the first experimental demonstration of the existence of a complete and isotropic PBG in a two-dimensional (2D) hyperuniform disordered dielectric structure. Additionally we demonstrate experimentally the ability of this novel photonic structure to guide electromagnetic waves (EM) through freeform waveguides of arbitrary shape. PMID:25285416

  15. Microwave meter for rapid, nondestructive determination of in-shell peanut kernel moisture content from dielectric measurements on cleaned and uncleaned pod samples

    USDA-ARS?s Scientific Manuscript database

    Microwave Sensing provides a means for nondestructively determining the amount of moisture in materials by sensing the dielectric properties of the material. In this study, dielectric properties of Vidalia onions were analyzed for moisture dependence at 13.36 GHz and 23°C for moisture content betwee...

  16. Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies.

    PubMed

    Jiang, Yannan; Wang, Lei; Wang, Jiao; Akwuruoha, Charles Nwakanma; Cao, Weiping

    2017-10-30

    The polarization conversion of electromagnetic (EM) waves, especially linear-to-circular (LTC) polarization conversion, is of great significance in practical applications. In this study, we propose an ultra-wideband high-efficiency reflective LTC polarization converter based on a metasurface in the terahertz regime. It consists of periodic unit cells, each cell of which is formed by a double split resonant square ring, dielectric layer, and fully reflective gold mirror. In the frequency range of 0.60 - 1.41 THz, the magnitudes of the reflection coefficients reach approximately 0.7, and the phase difference between the two orthogonal electric field components of the reflected wave is close to 90° or -270°. The results indicate that the relative bandwidth reaches 80% and the efficiency is greater than 88%, thus, ultra-wideband high-efficiency LTC polarization conversion has been realized. Finally, the physical mechanism of the polarization conversion is revealed. This converter has potential applications in antenna design, EM measurement, and stealth technology.

  17. Microwave Dielectric Properties of Alfalfa Leaves From 0.3 to 18 GHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokhansanj, Shahabaddine; Shrestha, Bijay; Wood, H.C.

    2011-01-01

    Dielectric properties (i.e., permittivity) are essential in designing, simulating, and modeling microwave applications. The permittivity of stacked leaves of alfalfa (Medicago sativa) were measured with a network analyzer and a coaxial probe, and the effect of moisture content (MC: 12% 73% wet basis), frequency (300 MHz to 18 GHz), bound water (Cole Cole dispersion equation), temperature ( 15 C and 30 C), leaf-orientation, and pressure (0 11 kPa) were investigated. The measured permittivity increased with MC. A critical moisture level (CML) of 23% was reported, below which the permittivity decreased with increasing frequency at 22 C. Above CML and upmore » to 5 GHz, the dielectric constants followed the Cole Cole dispersion, and the dielectric loss factors consisted of ionic and bound water losses. Above 5 GHz, the behavior of the dielectric constant was similar to that of free water, and the polar losses became dominant. Above 0 C, the measured permittivity followed a trend similar to that of free saline water and was characterized by the Debye equation. Below 0 C, it was dominated by nonfreezing bound and unfrozen supercooled moistures. The relaxation parameters and the optimum pressure (9 kPa) for the leaf measurements were determined. The effects of variations among the samples, and their orientations had negligible effects on the measured permittivity.« less

  18. Modeling dielectric half-wave plates for cosmic microwave background polarimetry using a Mueller matrix formalism.

    PubMed

    Bryan, Sean A; Montroy, Thomas E; Ruhl, John E

    2010-11-10

    We derive an analytic formula using the Mueller matrix formalism that parameterizes the nonidealities of a half-wave plate (HWP) made from dielectric antireflection-coated birefringent slabs. This model accounts for frequency-dependent effects at normal incidence, including effects driven by the reflections at dielectric boundaries. The model also may be used to guide the characterization of an instrument that uses a HWP. We discuss the coupling of a HWP to different source spectra, and the potential impact of that effect on foreground removal for the SPIDER cosmic microwave background experiment. We also describe a way to use this model in a mapmaking algorithm that fully corrects for HWP nonidealities.

  19. Temperature compensation effects of TiO2 on Ca[(Li1/3Nb2/3)0.8Sn0.2]O3-δ microwave dielectric ceramic

    NASA Astrophysics Data System (ADS)

    Hu, Mingzhe; Wei, Huanghe; Xiao, Lihua; Zhang, Kesheng; Hao, Yongde

    2017-10-01

    The crystal structure and dielectric properties of TiO2-modified Ca[(Li1/3Nb2/3)0.8Sn0.2]O3-δ microwave ceramics are investigated in the present paper. The crystal structure is probed by XRD patterns and their Rietveld refinement, results show that a single perovskite phase is formed in TiO2-modified Ca[(Li1/3Nb2/3)0.8Sn0.2]O3-δ ceramics with the crystal structure belonging to the orthorhombic Pbnm 62 space group. Raman spectra results indicate that the B-site order-disorder structure transition is a key point to the dielectric loss of TiO2-modified Ca[(Li1/3Nb2/3)0.8Sn0.2]O3-δ ceramics at microwave frequencies. After properly modified by TiO2, the large negative temperature coefficient of Ca[(Li1/3Nb2/3)0.8Sn0.2]O3-δ ceramic can be compensated and the optimal microwave dielectric properties can reach 𝜀r = 25.66, Qf = 18,894 GHz and TCF = -6.3 ppm/∘C when sintered at 1170∘C for 2.5 h, which manifests itself for potential use in microwave dielectric devices for modern wireless communication.

  20. Study on Structural and Dielectric Properties of Ultra-Low-Fire Integratable Dielectric Film for High-Frequency and Microwave Application

    NASA Astrophysics Data System (ADS)

    Qu, Sheng; Zhang, Jihua; Wu, Kaituo; Wang, Lei; Chen, Hongwei

    2018-03-01

    In this study, ultra-low-fire ceramic composites of Zn2Te3O8-30 wt.%TiTe3O8 (ZTT) were prepared by a solid-state reaction method. Densified at 600°C, the best microwave dielectric properties at 8.5 GHz were measured with the ɛ r , tan δ, Q × f, and τ f as 25.6, 1.5 × 10-4, 56191 GHz and 1.66 ppm/°C, respectively. Thin films of ultra-low-fire ZTT were prepared by a radio-frequency magnetron sputtering method. ZTT films which deposited on Au/NiCr/SiO2/Si (100) substrates at 200°C showed good adhesion. From ultra-low-fire ceramic to ultra-low-fire ZTT thin films, the latter maintained all the good high-frequency dielectric properties of the former: high dielectric constant ( ɛ r ˜ 25) and low dissipation factor (tan δ < 5×10-3), low leakage current density (˜ 10-9 A/cm2) and ultra low processing temperature. These excellent properties of the ultra-low-fire ZTT thin film make it possible to be integrated in MMIC and be applied in the research of GaN and GaAs MOSFET devices.

  1. Effect of microwave-assisted sintering on dielectric properties of CaCu{sub 3}Ti{sub 4}O{sub 12} ceramic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rani, Suman, E-mail: sumanranigju@gmail.com; Ahlawat, Neetu; Punia, R.

    2016-05-23

    In this present work, CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) was synthesized by conventional solid-state reaction technique. The synthesis process was carried out in two phases; by conventional process (calcination and sintering at 1080°C for 10 hours) and phase II involves the micro assisted pre sintering of conventionally calcined CCTO for very short soaking time of 30 min at 1080°C in a microwave furnace followed by sintering at 1080°C for 10 hours in conventional furnace. X-ray diffraction (XRD) patterns confirmed the formation of single phase ceramic. Dielectric properties were studied over the frequency range from 50Hz -5MHz at temperatures (273K-343K). It wasmore » observed that pre- microwave sintering enhance the dielectric constant values from 10900 to 11893 and respectively reduces the dielectric loss values from 0.49 to 0.34 at room temperature(1 KHz). CCTO ceramics which are found desirable for many technological applications. The effect is more pronounced at low frequencies of applied electric field.« less

  2. Portable Wideband Microwave Imaging System for Intracranial Hemorrhage Detection Using Improved Back-projection Algorithm with Model of Effective Head Permittivity

    PubMed Central

    Mobashsher, Ahmed Toaha; Mahmoud, A.; Abbosh, A. M.

    2016-01-01

    Intracranial hemorrhage is a medical emergency that requires rapid detection and medication to restrict any brain damage to minimal. Here, an effective wideband microwave head imaging system for on-the-spot detection of intracranial hemorrhage is presented. The operation of the system relies on the dielectric contrast between healthy brain tissues and a hemorrhage that causes a strong microwave scattering. The system uses a compact sensing antenna, which has an ultra-wideband operation with directional radiation, and a portable, compact microwave transceiver for signal transmission and data acquisition. The collected data is processed to create a clear image of the brain using an improved back projection algorithm, which is based on a novel effective head permittivity model. The system is verified in realistic simulation and experimental environments using anatomically and electrically realistic human head phantoms. Quantitative and qualitative comparisons between the images from the proposed and existing algorithms demonstrate significant improvements in detection and localization accuracy. The radiation and thermal safety of the system are examined and verified. Initial human tests are conducted on healthy subjects with different head sizes. The reconstructed images are statistically analyzed and absence of false positive results indicate the efficacy of the proposed system in future preclinical trials. PMID:26842761

  3. Portable Wideband Microwave Imaging System for Intracranial Hemorrhage Detection Using Improved Back-projection Algorithm with Model of Effective Head Permittivity

    NASA Astrophysics Data System (ADS)

    Mobashsher, Ahmed Toaha; Mahmoud, A.; Abbosh, A. M.

    2016-02-01

    Intracranial hemorrhage is a medical emergency that requires rapid detection and medication to restrict any brain damage to minimal. Here, an effective wideband microwave head imaging system for on-the-spot detection of intracranial hemorrhage is presented. The operation of the system relies on the dielectric contrast between healthy brain tissues and a hemorrhage that causes a strong microwave scattering. The system uses a compact sensing antenna, which has an ultra-wideband operation with directional radiation, and a portable, compact microwave transceiver for signal transmission and data acquisition. The collected data is processed to create a clear image of the brain using an improved back projection algorithm, which is based on a novel effective head permittivity model. The system is verified in realistic simulation and experimental environments using anatomically and electrically realistic human head phantoms. Quantitative and qualitative comparisons between the images from the proposed and existing algorithms demonstrate significant improvements in detection and localization accuracy. The radiation and thermal safety of the system are examined and verified. Initial human tests are conducted on healthy subjects with different head sizes. The reconstructed images are statistically analyzed and absence of false positive results indicate the efficacy of the proposed system in future preclinical trials.

  4. Optical and microwave dielectric properties of pulsed laser deposited Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, Andrews; Goud, J. Pundareekam; Raju, K. C. James

    2016-05-23

    Optical properties of pulsed laser deposited (PLD) sodium bismuth titanate thin films (NBT), are investigated at wavelengths of 190-2500 nm. Microwave dielectric properties were investigated using the Split Post Dielectric Resonator (SPDR) technique. At 10 GHz, the NBT films have a dielectric constant of 205 and loss tangent of 0.0373 at room temperature. The optical spectra analysis reveals that NBT thin films have an optical band gap E{sub g}=3.55 eV and it has a dielectric constant of 3.37 at 1000 nm with dielectric loss of 0.299. Hence, NBT is a promising candidate for photonic device applications.

  5. Cobalt ferrite sphere-coated buckhorn-like barium titanate: Fabrication, characterization, its dielectric resonance, and microwave attenuation properties

    NASA Astrophysics Data System (ADS)

    Ji, Renlong; Cao, Chuanbao

    2014-10-01

    Barium titanate (BTO) with different morphology is prepared through hydrothermal method using titania spheres as precursor, then calcined at different temperatures and ultimately coated with cobalt ferrite (BTO/CFO). The dielectric dispersion of the composite containing BTO (75 wt. % ratio in paraffin wax) shows evidence of resonance behaviour in the microwave spectrum, rather than the usually observed relaxation mode. The imaginary part of permittivity (ɛ″) displays a strong peak in the 10-13 GHz frequency region, especially for buckhorn-like BTO (hydrothermally synthesized at 110 °C and calcined at 1100 °C). The dielectric response anomaly of BTO in special morphology is due to the emission of plane acoustic waves caused by electrostrictive and converse piezoelectric effects. An accepted model is adopted to simulate the resonance frequency. The minimum reflection loss of cauliflower-like BTO (hydrothermally synthesized at 110 °C, then calcined at 600 °C for 2 h, 75 wt. % ratio) in paraffin wax reaches -30.831 dB at 10.56 GHz with a matching thickness of 2 mm, lower than all the reported values. When the sintering temperature is changed to 1100 °C (buckhorn-like BTO), the minimum reflection loss value is -24.37 dB at 12.56 GHz under the thickness of 3 mm. After combination with CFO, the value reaches -42.677 dB when the thickness is 5.6 mm. The ginger-like BTO (hydrothermally synthesized at 200 °C and calcined at different temperatures) is inferior in microwave reflection reduction. The electromagnetic interference shielding effectiveness of buckhorn-like BTO composite is calculated to be -12.7 dB (94.6% shielding) at resonance frequency (2 mm, 11.52 GHz). This work clearly shows the potential to tune the dielectric property of ferroelectrics through control of morphology, facilitating new comprehension of the ferroelectrics in microwave regime.

  6. Synthesis and microwave dielectric behavior of (Bi1-xPbx)NbO4 ceramics

    NASA Astrophysics Data System (ADS)

    Butee, S. P.; Kambale, K. R.; Upadhyay, Shaishav; Bashaiah, S.; Raju, K. C. James; Panda, Himanshu

    2016-03-01

    Ceramic samples of (Bi1-xPbx)NbO4 (x=0, 0.025, 0.05, 0.10, 0.15, 0.20) with 0.75wt.% V2O5 addition sintered at 920∘C, 940∘C and 960∘C are investigated. Pb is selected as a substitute for Bi3+ in BiNbO4 ceramics as it exists in two stable valence states of +2 and +4 and the average valency matches to that of Bi3+. The average Shannon radius (for octahedral coordination) of Pb2+ (1.19Å) and Pb4+(0.775Å) cations is 0.9825Å, which is similar to that of Bi3+ ion (1.03Å). The dense (>94%) polycrystalline (Bi1-xPbx)NbO4 samples fabricated mostly reveal orthorhombic (Pnna) phase (α-BiNbO4, Sp. Gp. 52) by powder XRD. Presence of satellite Pb2Nb2O7 phase, the amount of which is increasing with increase in Pb content, is also noticed. The microwave dielectric constant (ɛr‧) values of the niobates are found to increase from 42 to 71, whereas the quality factor (Qu.f) values are found to decrease from 5400 to 550 GHz with increasing substitution of Pb. The compositions so synthesized are important as hardly there are any microwave dielectric ceramics available with 45<ɛr‧<75.

  7. Review on Microwave-Matter Interaction Fundamentals and Efficient Microwave-Associated Heating Strategies

    PubMed Central

    Sun, Jing; Wang, Wenlong; Yue, Qinyan

    2016-01-01

    Microwave heating is rapidly emerging as an effective and efficient tool in various technological and scientific fields. A comprehensive understanding of the fundamentals of microwave–matter interactions is the precondition for better utilization of microwave technology. However, microwave heating is usually only known as dielectric heating, and the contribution of the magnetic field component of microwaves is often ignored, which, in fact, contributes greatly to microwave heating of some aqueous electrolyte solutions, magnetic dielectric materials and certain conductive powder materials, etc. This paper focuses on this point and presents a careful review of microwave heating mechanisms in a comprehensive manner. Moreover, in addition to the acknowledged conventional microwave heating mechanisms, the special interaction mechanisms between microwave and metal-based materials are attracting increasing interest for a variety of metallurgical, plasma and discharge applications, and therefore are reviewed particularly regarding the aspects of the reflection, heating and discharge effects. Finally, several distinct strategies to improve microwave energy utilization efficiencies are proposed and discussed with the aim of tackling the energy-efficiency-related issues arising from the application of microwave heating. This work can present a strategic guideline for the developed understanding and utilization of the microwave heating technology. PMID:28773355

  8. Photonics for microwave systems and ultra-wideband signal processing

    NASA Astrophysics Data System (ADS)

    Ng, W.

    2016-08-01

    The advantages of using the broadband and low-loss distribution attributes of photonics to enhance the signal processing and sensing capabilities of microwave systems are well known. In this paper, we review the progress made in the topical areas of true-time-delay beamsteering, photonic-assisted analog-to-digital conversion, RF-photonic filtering and link performances. We also provide an outlook on the emerging field of integrated microwave photonics (MWP) that promise to reduce the cost of MWP subsystems and components, while providing significantly improved form-factors for system insertion.

  9. Analytical scanning evanescent microwave microscope and control stage

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin

    2013-01-22

    A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

  10. Analytical scanning evanescent microwave microscope and control stage

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin

    2009-06-23

    A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

  11. Electrical and Structural Properties Study of Layered Dielectric and Magnetic Composites and Blends Structures for RF and Microwave Applications

    DTIC Science & Technology

    2014-06-12

    Graduação em Engenharia de Teleinformática (2012) 3- STUDY of THERMAL STABILITY of microwave Resonant frequency of (τf) of DIELETRICS and...SYNTHESIS of CERAMIC MATERIALS with NEAR-ZERO τf Marcelo Antonio Santos da Silva, Programa de Pós Graduação em Quimica (2012) 4- STUDY OF DIELECTRIC...PROPERTIES OF CERAMIC MATRIX SrBi2Nb2O9 (SBN) FOR USE IN RF AND MICROWAVE DEVICES, EMMANUELLE DE OLIVEIRA SANCHO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA

  12. Microwave dielectric properties of BaO-2CeO{sub 2}-nTiO{sub 2} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sreemoolanadhan, H.; Sebastian, M.T.; Ratheesh, R.

    2004-11-01

    The BaO-2CeO{sub 2}-nTiO{sub 2} ceramics with n=3, 4 and 5 have been prepared with CeO{sub 2} as starting material. The ceramics have been characterized using scanning electron microscopy, X-ray diffraction, Raman and X-ray photoelectron spectroscopy techniques. The microwave dielectric properties have been measured using standard dielectric resonator techniques. BaO-2CeO{sub 2}-3TiO{sub 2} (123), BaO-2CeO{sub 2}-4TiO{sub 2} (124) and BaO-2CeO{sub 2}-5TiO{sub 2} (125) ceramics showed dielectric constants of 38, 27 and 32, respectively. All the ceramics showed fairly good unloaded Q-factors. 124 and 125 compounds exhibited low {tau}f values, while 123 showed a high {tau}f value.

  13. Embedded dielectric water "atom" array for broadband microwave absorber based on Mie resonance

    NASA Astrophysics Data System (ADS)

    Gogoi, Dhruba Jyoti; Bhattacharyya, Nidhi Saxena

    2017-11-01

    A wide band microwave absorber at X-band frequency range is demonstrated numerically and experimentally by embedding a simple rectangular structured dielectric water "atom" in flexible silicone substrate. The absorption peak of the absorber is tuned by manipulating the size of the dielectric water "atom." The frequency dispersive permittivity property of the water "atom" shows broadband absorption covering the entire X-band above 90% efficiency with varying the size of the water "atom." Mie resonance of the proposed absorber provides the desired impedance matching condition at the air-absorber interface across a wide frequency range in terms of electric and magnetic resonances. Multipole decomposition of induced current densities is used to identify the nature of observed resonances. Numerical absorptivity verifies that the designed absorber is polarization insensitive for normal incidence and can maintain an absorption bandwidth of more than 2 GHz in a wide-angle incidence. Additionally, the tunability of absorption property with temperature is shown experimentally.

  14. Microwave dielectric properties of BNT-BT0.08 thin films prepared by sol-gel technique

    NASA Astrophysics Data System (ADS)

    Huitema, L.; Cernea, M.; Crunteanu, A.; Trupina, L.; Nedelcu, L.; Banciu, M. G.; Ghalem, A.; Rammal, M.; Madrangeas, V.; Passerieux, D.; Dutheil, P.; Dumas-Bouchiat, F.; Marchet, P.; Champeaux, C.

    2016-04-01

    We report for the first time the microwave characterization of 0.92(Bi0.5Na0.5)TiO3-0.08BaTiO3 (BNT-BT0.08) ferroelectric thin films fabricated by the sol-gel method and integrated in both planar and out-of-plane tunable capacitors for agile high-frequency applications and particularly on the WiFi frequency band from 2.4 GHz to 2.49 GHz. The permittivity and loss tangent of the realized BNT-BT0.08 layers have been first measured by a resonant cavity method working at 12.5 GHz. Then, we integrated the ferroelectric material in planar inter-digitated capacitors (IDC) and in out-of-plane metal-insulator-metal (MIM) devices and investigated their specific properties (dielectric tunability and losses) on the whole 100 MHz-15 GHz frequency domain. The 3D finite-elements electromagnetic simulations of the IDC capacitances are fitting very well with their measured responses and confirm the dielectric properties determined with the cavity method. While IDCs are not exhibiting an optimal tunability, the MIM capacitor devices with optimized Ir/MgO(100) bottom electrodes demonstrate a high dielectric tunability, of 30% at 2.45 GHz under applied voltages as low as 10 V, and it is reaching 50% under 20 V voltage bias at the same frequency. These high-frequency properties of the MIM devices integrating the BNT-BT0.08 films, combining a high tunability under low applied voltages indicate a wide integration potential for tunable devices in the microwave domain and particularly at 2.45 GHz, corresponding to the widely used industrial, scientific, and medical frequency band.

  15. Temperature and Moisture Dependent Dielectric Properties of Legume Flours Associated with Dielectric Heating

    USDA-ARS?s Scientific Manuscript database

    Dielectric property data are important in developing thermal treatments using radio frequency (RF) and microwave (MW) energy and essential to estimate the heating uniformity in electromagnetic fields. Dielectric properties of flour samples from four legumes (chickpea, green pea, lentil, and soybean)...

  16. Microwave Dielectric and Propagation Properties of Vegetation Canopies

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator)

    1985-01-01

    A vegetation canopy is a highly inhomogeneous medium at microwave frequencies, and because the scattering elements (leaves, stalks, fruits, and branches) have a nonuniform distribution in orientation, the canopy is likely to exhibit nonisotropic attenuation properties. In some canopies, the stalk may contain the overwhelming majority of the plant's biomass, which suggests that an incident radar wave would be differentially attenuated by the canopy depending on the direction of the incident electric field relative to the stalks' orientation. The propagation properties of a vegetation canopy play a central role in modeling both the backscattering behavior observed by an imaging radar and the emission observed by a radiometer. These propagation properties are in turn governed by the dielectric properties and the size, shape, and slope distributions of the scatteres. In spite of the critical need for canopy propagation models and experimental data, very few investigations had been conducted (prior to this study) to determine the extinction properties of vegetation canopies, either by constituent type (leaves, stalks, etc.) or as a whole.

  17. Microwave Bandpass Filter Based on Mie-Resonance Extraordinary Transmission

    PubMed Central

    Pan, Xiaolong; Wang, Haiyan; Zhang, Dezhao; Xun, Shuang; Ouyang, Mengzhu; Fan, Wentao; Guo, Yunsheng; Wu, Ye; Huang, Shanguo; Bi, Ke; Lei, Ming

    2016-01-01

    Microwave bandpass filter structure has been designed and fabricated by filling the periodically metallic apertures with dielectric particles. The microwave cannot transmit through the metallic subwavelength apertures. By filling the metallic apertures with dielectric particles, a transmission passband with insertion loss 2 dB appears at the frequency of 10–12 GHz. Both simulated and experimental results show that the passband is induced by the Mie resonance of the dielectric particles. In addition, the passband frequency can be tuned by the size and the permittivity of the dielectric particles. This approach is suitable to fabricate the microwave bandpass filters. PMID:27992440

  18. Strip dielectric wave guide antenna-for the measurement of dielectric constant of low-loss materials

    NASA Astrophysics Data System (ADS)

    Rastogi, Alok Kumar; Tiwari, A. K.; Shrivastava, R. P.

    1993-07-01

    The value of dielectric constant are the most important parameters in material science technology. In micro-wave and millimeter wave circuits using dielectric materials the values of this parameters should be known accurately. It is observed that the number of methods are reported in litrature, however these methods impose difficulties in experimentation and are not very accurate. In this paper a novel approach to the measurement of the dielectric constant of low loss materials at micro-wave and millimeter wave frequencies has been discussed. In this method by using antenna theory, a metallic strip dielectric guide is taken in to constideration and band reject phenomenon of dielectric antenna is used. Frequency response of an antenna in band reject mode is a function of the dimensional parameters, such as the metallic strip period, the profile of the metallic strip and the dielectric constant of the material used. Hence if one measure the frequency responce of the antenna in band reject mode, the dielectric constant of the material is determined provided all other parameters are known. This method gives a direct measure of dielectric constant and is quite accurate as computer techniques are used for evaluating the dielectric constant. This method verified experimentally also.

  19. Optimal Design of Miniaturized Reflecting Metasurfaces for Ultra-Wideband and Angularly Stable Polarization Conversion.

    PubMed

    Borgese, Michele; Costa, Filippo; Genovesi, Simone; Monorchio, Agostino; Manara, Giuliano

    2018-05-16

    An ultra-wideband linear polarization converter based on a reflecting metasurface is presented. The polarizer is composed by a periodic arrangement of miniaturized metallic elements printed on a grounded dielectric substrate. In order to achieve broadband polarization converting properties, the metasurface is optimized by employing a genetic algorithm (GA) which imposes the minimization of the amplitude of the co-polar reflection coefficient over a wide frequency band. The enhanced angular stability of the polarization converter is due to the miniaturized unit cell which is obtained by imposing the maximum periodicity of the metasurface in the GA optimization process. The pixelated polarization converter obtained by the GA exhibits a relative bandwidth of 102% working from 8.12 GHz to 25.16 GHz. The analysis of the surface current distribution of the metasurface led to a methodology for refining the optimized GA solution based on the sequential removal of pixels of the unit cell on which surface currents are not excited. The relative bandwidth of the refined polarizer is extended up to 117.8% with a unit cell periodicity of 0.46 mm, corresponding to λ/20 at the maximum operating frequency. The performance of the proposed ultra-wideband polarization metasurface has been confirmed through full-wave simulations and measurements.

  20. Production of atmospheric pressure microwave plasma with dielectric half-mirror resonator and its application to polymer surface treatment

    NASA Astrophysics Data System (ADS)

    Sasai, Kensuke; Keyamura, Kazuki; Suzuki, Haruka; Toyoda, Hirotaka

    2018-06-01

    For the surface treatment of a polymer tube, a ring-shaped atmospheric pressure microwave plasma (APMP) using a coaxial waveguide is studied. In this APMP, a dielectric plate is used not only as a partial mirror for cavity resonation but also for the precise alignment of the discharge gap for ring-shaped plasma production. The optimum position of the dielectric plate is investigated by electromagnetic wave simulation. On the basis of simulation results, a ring-shaped plasma with good uniformity along the ring is produced. The coaxial APMP is applied to the surface treatment of ethylene tetrafluoroethylene. A very fast surface modification within 3 s is observed.

  1. Effects of concentration on the microwave dielectric spectra of aqueous urea solutions

    NASA Astrophysics Data System (ADS)

    Lyashchenko, A. K.; Dunyashev, V. S.; Zasetsky, A. Yu.

    2017-05-01

    Several models of relaxation for the dielectric spectra of aqueous urea solutions in the microwave region are compared. The spectra are shown to contain two main Debye components arising from the rotational motions of urea and water molecules. Two essentially different concentration regions in urea solutions are identified. The first is characterized by a small increase in the mobility of water molecules (τ1 = 7.8 ps) and the existence of hydrated urea molecules (τ2 = 19 ps). Due to the aggregation of urea molecules, the relaxation times for the latter process grow considerably in highly concentrated solutions. At the same time, faster molecular motions (τ3 = 6 ps) are observed for water molecules.

  2. Cu3Mo2O9: An Ultralow-Firing Microwave Dielectric Ceramic with Good Temperature Stability and Chemical Compatibility with Aluminum

    NASA Astrophysics Data System (ADS)

    Wen, Wangxi; Li, Chunchun; Sun, Yihua; Tang, Ying; Fang, Liang

    2018-02-01

    An ultralow-firing microwave dielectric ceramic Cu3Mo2O9 with orthorhombic structure has been fabricated via a solid-state reaction method. X-ray diffraction analysis, Rietveld refinement, Raman spectroscopy, energy-dispersive spectrometry, and scanning electron microscopy were employed to explore the phase purity, crystal structure, and microstructure. Pure and dense Cu3Mo2O9 ceramics could be obtained in the sintering temperature range from 580°C to 680°C. The sample sintered at 660°C for 4 h exhibited the highest relative density (˜ 97.2%) and best microwave dielectric properties with ɛ r = 7.2, Q × f = 19,300 GHz, and τ f = - 7.8 ppm/°C. Chemical compatibility with aluminum electrodes was also confirmed. All the results suggest that Cu3Mo2O9 ceramic is a promising candidate for use in ultralow-temperature cofired ceramic applications.

  3. Ultrawideband combined antenna with improved matching

    NASA Astrophysics Data System (ADS)

    Balzovsky, E. V.; Buyanov, Yu I.; Koshelev, V. I.; Nekrasov, E. S.

    2018-05-01

    To study the immunity of electronic equipment to ultrawideband irradiation, a combined antenna with improved matching has been created. In contrast to the previously presented, a novel antenna has a modified input node with a flat part instead of a cylindrical one. As a result of optimizing the geometry of the antenna electrodes, a matching band with the feeder of 0.38-2.4 GHz was achieved by the VSWR = 2. The results of the investigations of antenna characteristics in the frequency domain, as well as the waveforms of the radiated short ultrawideband pulses are presented.

  4. Passive Microwave Soil Moisture Retrieval through Combined Radar/Radiometer Ground Based Simulator with Special Reference to Dielectric Schemes

    NASA Astrophysics Data System (ADS)

    Srivastava, Prashant K., ,, Dr.; O'Neill, Peggy, ,, Dr.

    2014-05-01

    indicated a higher performance in terms of soil moisture retrieval accuracy for the Mironov dielectric model (RMSE of 0.035 m3/m3), followed by Dobson, Wang & Schmugge, and Hallikainen. This analysis indicates that Mironov dielectric model is promising for passive-only microwave soil moisture retrieval and could be a useful choice for SMAP satellite soil moisture retrieval. Keywords: Dielectric models; Single Channel Algorithm, Combined Radar/Radiometer, Soil moisture; L band References: Behari, J. (2005). Dielectric Behavior of Soil (pp. 22-40). Springer Netherlands O'Neill, P. E., Lang, R. H., Kurum, M., Utku, C., & Carver, K. R. (2006), Multi-Sensor Microwave Soil Moisture Remote Sensing: NASA's Combined Radar/Radiometer (ComRAD) System. In IEEE MicroRad, 2006 (pp. 50-54). IEEE. Srivastava, P. K., Han, D., Rico Ramirez, M. A., & Islam, T. (2013), Appraisal of SMOS soil moisture at a catchment scale in a temperate maritime climate. Journal of Hydrology, 498, 292-304. USDA OPE3 web site at http://www.ars.usda.gov/Research/.

  5. Photonic generation of ultra-wideband signals by direct current modulation on SOA section of an SOA-integrated SGDBR laser.

    PubMed

    Lv, Hui; Yu, Yonglin; Shu, Tan; Huang, Dexiu; Jiang, Shan; Barry, Liam P

    2010-03-29

    Photonic ultra-wideband (UWB) pulses are generated by direct current modulation of a semiconductor optical amplifier (SOA) section of an SOA-integrated sampled grating distributed Bragg reflector (SGDBR) laser. Modulation responses of the SOA section of the laser are first simulated with a microwave equivalent circuit model. Simulated results show a resonance behavior indicating the possibility to generate UWB signals with complex shapes in the time domain. The UWB pulse generation is then experimentally demonstrated for different selected wavelength channels with an SOA-integrated SGDBR laser.

  6. Multipactor experiment on a dielectric surface

    NASA Astrophysics Data System (ADS)

    Anderson, Rex Beach, III

    2001-12-01

    Multipactor is an electron multiplication process, or electron avalanche, that occurs on metallic and dielectric surfaces in the presence of rf microwave fields. Just as a rock avalanche only needs one rock to cause a larger slide of destruction, one electron under multipactor conditions can cause a tremendous amount of damage to electrical components. Multipactor is a nuisance that can cause excessive noise in communication satellites and radar, and damage to vacuum windows in particle accelerators. Single-surface multipactor on dielectrics is responsible for poor transmission properties of vacuum windows and can eventually lead to vacuum window failure. The repercussions of multipactor affect a wide range of people. For example, a civilian placing a call on a cell phone, or a captain dependent on radar for his ship's safety could both be affected by multipactor. In order to combat this expensive annoyance, a unique experiment to investigate single-surface multipactor on a dielectric surface was developed and tested. The motivation of this thesis is to introduce a novel experiment for multipactor that is designed to verify theoretical calculations and explore the physics behind the phenomenon. The compact apparatus consists of a small brass microwave cavity in a high vacuum system. Most single-surface multipactor experiments consist of a large resonant ring wave guide with a MW power supply. This experiment is the first to utilize a high Q resonant cavity and kW-level power supply to create multipactor on a dielectric surface. The small brass resonant cavity has an inner length of 9.154 cm with an inner diameter of 9.045 cm. A pulsed, variable frequency microwave source at ˜2.4 GHz, 2 kW peak excites the TE111 mode with a strong electric field parallel to a dielectric plate (˜0.2 cm thickness) that is inserted at the mid-plane of the cavity. The microwave pulses from the power supply are monitored by calibrated microwave diodes. These calibrated diodes along

  7. Ultrafast high-power microwave window breakdown: nonlinear and postpulse effects.

    PubMed

    Chang, C; Verboncoeur, J; Guo, M N; Zhu, M; Song, W; Li, S; Chen, C H; Bai, X C; Xie, J L

    2014-12-01

    The time- and space-dependent optical emissions of nanosecond high-power microwave discharges near a dielectric-air interface have been observed by nanosecond-response four-framing intensified-charged-coupled device cameras. The experimental observations indicate that plasma developed more intensely at the dielectric-air interface than at the free-space region with a higher electric-field amplitude. A thin layer of intense light emission above the dielectric was observed after the microwave pulse. The mechanisms of the breakdown phenomena are analyzed by a three-dimensional electromagnetic-field modeling and a two-dimensional electromagnetic particle-in-cell simulation, revealing the formation of a space-charge microwave sheath near the dielectric surface, accelerated by the normal components of the microwave field, significantly enhancing the local-field amplitude and hence ionization near the dielectric surface. The nonlinear positive feedback of ionization, higher electron mobility, and ultraviolet-driven photoemission due to the elevated electron temperature are crucial for achieving the ultrafast discharge. Following the high-power microwave pulse, the sheath sustains a glow discharge until the sheath collapses.

  8. Nondestructive Superresolution Imaging of Defects and Nonuniformities in Metals, Semiconductors, Dielectrics, Composites, and Plants Using Evanescent Microwaves

    NASA Technical Reports Server (NTRS)

    Tabib-Azar, M.; Pathak, P. S.; Ponchak, G.; LeClair, S.

    1999-01-01

    We have imaged and mapped material nonuniformities and defects using microwaves generated at the end of a microstripline resonator with 0.4 micrometer lateral spatial resolution at 1 GHz. Here we experimentally examine the effect of microstripline substrate permittivity, the feedline-to-resonator coupling strength, and probe tip geometry on the spatial resolution of the probe. Carbon composites, dielectrics, semiconductors, metals, and botanical samples were scanned for defects, residual stresses, subsurface features, areas of different film thickness, and moisture content. The resulting evanescent microwave probe (EMP) images are discussed. The main objective of this work is to demonstrate the overall capabilities of the EMP imaging technique as well as to discuss various probe parameters that can be used to design EMPs for different applications.

  9. Effects of La2O3-B2O3-ZnO additions on the low temperature sintering and microwave dielectric properties of (Ca0.61La0.26) TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Chen, Y. W.; Li, E. Z.; Niu, N.; Zou, M. Y.; Duan, S. X.; Zhang, S. R.

    2017-02-01

    The influence of La2O3-B2O3-ZnO (LBZ) additions on the sintering behavior, microstructure, phase composition, and the microwave dielectric properties of (Ca0.61La0.26) TiO3 (CLT) ceramics have been investigated. The results indicate that the LBZ additions could efficiently lower the sintering temperature of the CLT ceramics from 1400°C to 950°C, and excellent microwave properties remain. Small amount of LBZ glass promotes the densification of the CLT ceramics and enhances the microwave dielectric properties. However, excess amount of LBZ glass deteriorates the dielectric properties because of the increasing glass phase. The CLT ceramic with 3 wt. % LBZ additions, sintered at 950°C, exhibit excellent properties: εr= 103.12, Q× f = 8826 GHz(f=3.312 GHz) and τƒ=299.52 ppm/°C.

  10. Effect of V2O5 Addition on the Phase Composition of Bi5FeTi3O15 Ceramic and RF/Microwave Dielectric Properties

    NASA Astrophysics Data System (ADS)

    Aguiar, F. A. A.; Sales, A. J. M.; Araújo, B. S.; Sabóia, K. D. A.; Filho, M. C. Campos; Sombra, A. S. B.; Ayala, A. P.; Fechine, P. B. A.

    2017-04-01

    Bi5FeTi3O15 (BFT) polycrystalline ceramic with the addition of different concentrations of V2O5 was obtained by a solid-state method. X-ray powder diffraction, Raman spectroscopy and scanning electron microscopy (SEM) were used to study the microstructure and crystalline phases of the ceramics. SEM images showed plate-like morphology with dimensions between 0.32 μm and 3.07 μm (grain size, average around 1.3 μm). For samples with V2O5 concentration below 5%, Raman spectra were mainly determined by the vibrational modes from BFT. Impedance spectroscopy was also performed to evaluate the dielectric properties at microwave and radio frequencies (RF). Two extra phases (Bi4V1.5Fe0.5O10.5 and Bi2Ti2O7) were found due to the chemical reaction between BFT and V2O5. These phases were responsible for the changes in the grain morphology and dielectric response. V2O5 addition increased the real part of the dielectric permittivity ( ɛ') and reduced the dielectric loss tangent (tan δ) values at the RF range of 10 Hz to 1 MHz. For microwave frequencies of 3-3.5 GHz, ɛ' and temperature coefficient of resonant frequency ( τ f) values ranged from 66.52 ppm/°C to 88.60 ppm/°C and -304.3 ppm/°C to -192.6 ppm/°C, respectively. Thereby, BFT ceramics with added V2O5 are good candidates to be used for microwave devices (e.g., cell phones).

  11. Low-loss Ca{sub 5-x}Sr{sub x}A{sub 2}TiO{sub 12} [A=Nb,Ta] ceramics: Microwave dielectric properties and vibrational spectroscopic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bijumon, Pazhoor Varghese; Sebastian, Mailadil Thomas; Dias, Anderson

    2005-05-15

    Complex perovskite-type Ca{sub 5-x}Sr{sub x}A{sub 2}TiO{sub 12} [A=Nb,Ta] (0{<=}x{<=}5) ceramics were prepared by conventional solid-state ceramic route. The crystal structure, microwave dielectric properties, and vibrational spectroscopic characteristics of these materials are reported. The structure and microstructure were investigated by x-ray diffraction and scanning electron microscopy techniques. The microwave dielectric properties were measured in the 3-5-GHz frequency range by the resonance method. Structural evolutions from orthorhombic to an averaged pseudocubic phase, with associated changes in dielectric properties, were observed as a function of composition. The structure-property relationships in these ceramics were established using Raman and Fourier transform infrared spectroscopic techniques. Ramanmore » analysis showed characteristic bands of ordered perovskite materials, with variation in both intensity and frequency as a function of composition.« less

  12. Investigation of Local Structures in Cation-ordered Microwave Dielectric A Solid-state NMR and First Principle Calculation Study

    NASA Astrophysics Data System (ADS)

    Kalfarisi, Rony G.

    Solid-state Nuclear Magnetic Resonance (ssNMR) spectroscopy has proven to be a powerful method to probe the local structure and dynamics of a system. In powdered solids, the nuclear spins experience various anisotropic interactions which depend on the molecular orientation. These anisotropic interactions make ssNMR very useful as they give a specific appearance to the resonance lines of the spectra. The position and shape of these resonance lines can be related to local structure and dynamics of the system under study. My research interest has focused around studying local structures and dynamics of quadrupolar nuclei in materials using ssNMR spectroscopy. 7Li and 93Nb ssNMR magic angle spinning (MAS) spectra, acquired at 17.6 and 7.06 T, have been used to evaluate the structural and dynamical properties of cation-ordered microwave dielectric materials. Microwave dielectric materials are essential in the application of wireless telecommunication, biomedical engineering, and other scientific and industrial implementations that use radio and microwave signals. The study of the local environment with respect to average structure, such as X-ray diffraction study, is essential for the better understanding of the correlations between structures and properties of these materials. The investigation for short and medium range can be performed with the use of ssNMR techniques. Even though XRD results show cationic ordering at the B-site (third coordination sphere), NMR spectra show a presence of disorder materials. This was indicated by the observation of a distribution in NMR parameters derived from experimental . {93}Nb NMR spectraand supported by theoretical calculations.

  13. Ultra-wideband polarization conversion metasurface and its application cases for antenna radiation enhancement and scattering suppression.

    PubMed

    Zheng, Yuejun; Zhou, Yulong; Gao, Jun; Cao, Xiangyu; Yang, Huanhuan; Li, Sijia; Xu, Liming; Lan, Junxiang; Jidi, Liaori

    2017-11-23

    A double-layer complementary metasurface (MS) with ultra-wideband polarization conversion is presented. Then, we propose two application cases by applying the polarization conversion structures to aperture coupling patch antenna (ACPA). Due to the existence of air-filled gap of ACPA, air substrate and dielectric substrate are used to construct the double-layer MS. The polarization conversion bandwidth is broadened toward low-frequency range. Subsequently, two application cases of antenna are proposed and investigated. The simultaneous improvement of radiation and scattering performance of antenna is normally considered as a contradiction. Gratifyingly, the contradiction is addressed in these two application cases. According to different mechanism of scattering suppression (i.e., polarization conversion and phase cancellation), the polarization conversion structures are utilized to construct uniform and orthogonal arrangement configurations. And then, the configurations are integrated into ACPA and two different kinds of metasurface-based (MS-based) ACPA are formed. Radiation properties of the two MS-based ACPAs are improved by optimizing the uniform and orthogonal arrangement configurations. The measured results suggest that ultra-wideband polarization conversion properties of the MS are achieved and radiation enhancement and scattering suppression of the two MS-based ACPAs are obtained. These results demonstrate that we provide novel approach to design high-performance polarization conversion MS and MS-based devices.

  14. Average Dielectric Property Analysis of Complex Breast Tissue with Microwave Transmission Measurements

    PubMed Central

    Garrett, John D.; Fear, Elise C.

    2015-01-01

    Prior information about the average dielectric properties of breast tissue can be implemented in microwave breast imaging techniques to improve the results. Rapidly providing this information relies on acquiring a limited number of measurements and processing these measurement with efficient algorithms. Previously, systems were developed to measure the transmission of microwave signals through breast tissue, and simplifications were applied to estimate the average properties. These methods provided reasonable estimates, but they were sensitive to multipath. In this paper, a new technique to analyze the average properties of breast tissues while addressing multipath is presented. Three steps are used to process transmission measurements. First, the effects of multipath were removed. In cases where multipath is present, multiple peaks were observed in the time domain. A Tukey window was used to time-gate a single peak and, therefore, select a single path through the breast. Second, the antenna response was deconvolved from the transmission coefficient to isolate the response from the tissue in the breast interior. The antenna response was determined through simulations. Finally, the complex permittivity was estimated using an iterative approach. This technique was validated using simulated and physical homogeneous breast models and tested with results taken from a recent patient study. PMID:25585106

  15. Ultra-wideband impedance sensor

    DOEpatents

    McEwan, Thomas E.

    1999-01-01

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks.

  16. Ultra-wideband impedance sensor

    DOEpatents

    McEwan, T.E.

    1999-03-16

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks. 2 figs.

  17. Development and characterization of camphor sulphonic acid doped polyaniline film with broadband negative dielectric constant for microwave applications

    NASA Astrophysics Data System (ADS)

    Sreekala, P. S.; Honey, John; Aanandan, C. K.

    2018-05-01

    In this communication, the broadband artificial dielectric plasma behavior of Camphor Sulphonic acid doped Polyaniline (PANI-CSA) film at microwave frequencies is experimentally verified. The fabricated PANI-CSA films have been experimentally characterized by rectangular wave guide measurements for a broad range of frequencies within the X band and the effective material parameters, skin depth and conductivity have been extracted from the scattering parameters. Since most of the artificial materials available today are set up by consolidating two structured materials which independently demonstrates negative permittivity and negative permeability, this open another strategy for creation of compact single negative materials for microwave applications. The proposed doping can shift the double positive material parameter of the sample to single negative in nature.

  18. Physics of the Microwave Oven

    ERIC Educational Resources Information Center

    Vollmer, Michael

    2004-01-01

    This is the first of two articles about the physics of microwave ovens. This article deals with the generation of microwaves in the oven and includes the operation of the magnetrons, waveguides and standing waves in resonant cavities. It then considers the absorption of microwaves by foods, discussing the dielectric relaxation of water,…

  19. Tuneable dielectric films having low electrical losses

    DOEpatents

    Dimos, Duane Brian; Schwartz, Robert William; Raymond, Mark Victor; Al-Shareef, Husam Niman; Mueller, Carl; Galt, David

    2000-01-01

    The present invention is directed to a method for forming dielectric thin films having substantially reduced electrical losses at microwave and millimeter wave frequencies relative to conventional dielectric thin films. The reduction in losses is realized by dramatically increasing the grain sizes of the dielectric films, thereby minimizing intergranular scattering of the microwave signal due to grain boundaries and point defects. The increase in grain size is realized by heating the film to a temperature at which the grains experience regrowth. The grain size of the films can be further increased by first depositing the films with an excess of one of the compoents, such that a highly mobile grain boundary phase is formed.

  20. [Application of microwave irradiation technology to the field of pharmaceutics].

    PubMed

    Zhang, Xue-Bing; Shi, Nian-Qiu; Yang, Zhi-Qiang; Wang, Xing-Lin

    2014-03-01

    Microwaves can be directly transformed into heat inside materials because of their ability of penetrating into any substance. The degree that materials are heated depends on their dielectric properties. Materials with high dielectric loss are more easily to reach a resonant state by microwaves field, then microwaves can be absorbed efficiently. Microwave irradiation technique with the unique heating mechanisms could induce drug-polymer interaction and change the properties of dissolution. Many benefits such as improving product quality, increasing energy efficiency and reducing times can be obtained by microwaves. This paper summarized characteristics of the microwave irradiation technique, new preparation techniques and formulation process in pharmaceutical industry by microwave irradiation technology. The microwave technology provides a new clue for heating and drying in the field of pharmaceutics.

  1. A dielectric logging tool with insulated collar for formation fluid detection around borehole

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Li, Kang; Kong, Fan-Min; Zhao, Jia

    2015-08-01

    A dielectric tool with insulated collar for analyzing fluid saturation outside a borehole was introduced. The UWB (ultra-wideband) antenna mounted on the tool was optimized to launch a transient pulse. The broadband evaluation method provided more advantages when compared with traditional dielectric tools. The EM (electromagnetic) power distribution outside the borehole was studied, and it was shown that energy was propagated in two modes. Furthermore, the mechanism of the modes was discussed. In order to increase this tools' investigation depth, a novel insulated collar was introduced. In addition, operation in difference formations was discussed and this tool proved to be able to efficiently launch lateral EM waves. Response voltages indicated that the proposed scheme was able to evaluate the fluid saturation of reservoir formations and dielectric dispersion properties. It may be used as an alternative tool for imaging logging applications.

  2. Ultra-wideband reflective polarization converter based on anisotropic metasurface

    NASA Astrophysics Data System (ADS)

    Wu, Jia-Liang; Lin, Bao-Qin; Da, Xin-Yu

    2016-08-01

    In this paper, we propose an ultra-wideband reflective linear cross-polarization converter based on anisotropic metasurface. Its unit cell is composed of a square-shaped resonator with intersectant diagonal and metallic ground sheet separated by dielectric substrate. Simulated results show that the converter can generate resonances at four frequencies under normal incident electromagnetic (EM) wave, leading to the bandwidth expansion of cross-polarization reflection. For verification, the designed polarization converter is fabricated and measured. The measured and simulated results agree well with each other, showing that the fabricated converter can convert x- or y-polarized incident wave into its cross polarized wave in a frequency range from 7.57 GHz to 20.46 GHz with a relative bandwidth of 91.2%, and the polarization conversion efficiency is greater than 90%. The proposed polarization converter has a simple geometry but an ultra wideband compared with the published designs, and hence possesses potential applications in novel polarization-control devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471387, 61271250, and 61571460).

  3. Measurement of the complex permittivity of microbubbles using a cavity perturbation technique for contrast enhanced ultra-wideband breast cancer detection.

    PubMed

    Ogunlade, Olumide; Chen, Yifan; Kosmas, Panagiotis

    2010-01-01

    Measurements of the complex permittivity of various concentrations of microbubbles in ethylene glycol liquid phantom have been carried out. A cavity perturbation technique using custom rectangular waveguide cavities, which are sensitive to small changes in the permittivity of the perturber, has been employed. Three different frequencies within the ultra-wideband (UWB) frequency spectrum have been used for the experiments. The results show that the concentration of the air filled microbubbles required to achieve a dielectric contrast as little as 2% exceeds the recommended dosage used in clinical ultrasound applications, by more than two orders of magnitude.

  4. An Evanescent Microwave Probe for Super-Resolution Nondestructive Imaging of Metals, Semiconductors, Dielectrics, Composites and Biological Specimens

    NASA Technical Reports Server (NTRS)

    Pathak, P. S.; Tabib-Azar, M.; Ponchak, G.

    1998-01-01

    Using evanescent microwaves with decay lengths determined by a combination of microwave wavelength (lambda) and waveguide termination geometry, we have imaged and mapped material non-uniformities and defects with a resolving capability of lambda/3800=79 microns at 1 GHz. In our method a microstrip quarter wavelength resonator was used to generate evanescent microwaves. We imaged materials with a wide range of conductivities. Carbon composites, dielectrics (Duroid, polymers), semiconductors (3C-SiC, polysilicon, natural diamond), metals (tungsten alloys, copper, zinc, steel), high-temperature superconductors, and botanical samples were scanned for defects, residual stresses, integrity of brazed junctions, subsurface features, areas of different film thickness and moisture content. The evanescent microwave probe is a versatile tool and it can be used to perform very fast, large scale mapping of a wide range of materials. This method of characterization compares favorably with ultrasound testing, which has a resolution of about 0.1 mm and suffers from high absorption in composite materials and poor transmission across boundaries. Eddy current methods which can have a resolution on the order of 50 microns are restricted to evaluating conducting materials. Evanescent microwave imaging, with careful choice of operating frequency and probe geometry, can have a resolution of up to 1 micron. In this method we can scan hot and moving objects, sample preparation is not required, testing is non-destructive, non-invasive and non-contact, and can be done in air, in liquid or in vacuum.

  5. Microwave dielectric properties of CaCu3Ti4O12-Al2O3 composite

    NASA Astrophysics Data System (ADS)

    Rahman, Mohd Fariz Ab; Abu, Mohamad Johari; Karim, Saniah Ab; Zaman, Rosyaini Afindi; Ain, Mohd Fadzil; Ahmad, Zainal Arifin; Mohamed, Julie Juliewatty

    2016-07-01

    (1-x)CaCu3Ti4O12 + (x)Al2O3 composite (0 ≤ x ≤0.25) was prepared via conventional solid-state reaction method. The fabrication of sample was started with synthesizing stoichiometric CCTO from CaCO3, CuO and TiO2 powders, then wet-mixed in deionized water for 24 h. The process was continued with calcined CCTO powder at 900 °C for 12 h before sintered at 1040 °C for 10 h. Next, the calcined CCTO powder with different amount of Al2O3 were mixed for 24 h, then palletized and sintered at 1040 °C for 10. X-ray diffraction analysis on the sintered samples showed that CCTO powder was in a single phase, meanwhile the trace of secondary peaks which belong to CaAl2O4 and Corundum (Al2O3) could be observed in the other samples Scanning electron microscopy analysis showed that the grain size of the sample is firstly increased with addition of Al2O3 (x = 0.01), then become smaller with the x > 0.01. Microwave dielectric properties showed that the addition of Al2O3 (x = 0.01) was remarkably reduced the dielectric loss while slightly increased the dielectric permittivity. However, further addition of Al2O3 was reduced both dielectric loss and permittivity at least for an order of magnitude.

  6. Full-time response of starch subjected to microwave heating.

    PubMed

    Fan, Daming; Wang, Liyun; Zhang, Nana; Xiong, Lei; Huang, Luelue; Zhao, Jianxin; Wang, Mingfu; Zhang, Hao

    2017-06-21

    The effect of non-ionizing microwave radiation on starch is due to a gelatinization temperature range that changes starch structure and properties. However, the changes in starch upon microwave heating are observable throughout the heating process. We compared the effects on starch heating by microwaves to the effects by rapid and regular conventional heating. Our results show that microwave heating promotes the rapid rearrangement of starch molecules at low temperatures; starch showed a stable dielectric response and a high dielectric constant. Microwave heating changed the Cole-Cole curve and the polarization of starch suspension at low temperatures. A marked transition at 2.45 GHz resulted in a double-polarization phenomenon. At temperatures below gelatinization, microwave-induced dielectric rearrangement and changes in the polarization characteristics of starch suspensions reduced the absorption properties; at temperatures above gelatinization, these characteristics became consistent with conventional heating. Throughout the heating process, microwaves change the electrical response and polarization characteristics of the starch at low temperatures, but on the macro level, there is no enhancement of the material's microwave absorption properties. In contrast, with the warming process, the starch exhibited a "blocking effect", and the absorption properties of the starch quickly returned to the level observed in conductive heating after gelatinization.

  7. GREENER SYNTHETIC TRANSFORMATIONS USING MICROWAVES

    EPA Science Inventory

    Microwave irradiation has been used for a variety of organic transformations wherein chemical reactions are expedited because of selective adsorption of microwave (MW) energy by polar molecules, non-polar molecules being inert to the MW dielectric loss. The MW application under s...

  8. Change in Dielectric Properties in the Microwave Frequency Region of Polypyrrole–Coated Textiles during Aging

    PubMed Central

    Hakansson, Eva; Kaynak, Akif; Kouzani, Abbas

    2016-01-01

    Complex permittivity of conducting polypyrrole (PPy)-coated Nylon-Lycra textiles is measured using a free space transmission measurement technique over the frequency range of 1–18 GHz. The aging of microwave dielectric properties and reflection, transmission and absorption for a period of 18 months is demonstrated. PPy-coated fabrics are shown to be lossy over the full frequency range. The levels of absorption are shown to be higher than reflection in the tested samples. This is attributed to the relatively high resistivity of the PPy-coated fabrics. Both the dopant concentration and polymerisation time affect the total shielding effectiveness and microwave aging behaviour. Distinguishing either of these two factors as being exclusively the dominant mechanism of shielding effectiveness is shown to be difficult. It is observed that the PPy-coated Nylon-Lycra samples with a p-toluene sulfonic acid (pTSA) concentration of 0.015 M and polymerisation times of 60 min and 180 min have 37% and 26% decrease in total transmission loss, respectively, upon aging for 72 weeks at room temperature (20 °C, 65% Relative humidity (RH)). The concentration of the dopant also influences the microwave aging behaviour of the PPy-coated fabrics. The samples with a higher dopant concentration of 0.027 mol/L pTSA are shown to have a transmission loss of 32.6% and 16.5% for short and long polymerisation times, respectively, when aged for 72 weeks. The microwave properties exhibit better stability with high dopant concentration and/or longer polymerization times. High pTSA dopant concentrations and/or longer polymerisation times result in high microwave insertion loss and are more effective in reducing the transmission and also increasing the longevity of the electrical properties. PMID:28773729

  9. Change in Dielectric Properties in the Microwave Frequency Region of Polypyrrole-Coated Textiles during Aging.

    PubMed

    Hakansson, Eva; Kaynak, Akif; Kouzani, Abbas

    2016-07-22

    Complex permittivity of conducting polypyrrole (PPy)-coated Nylon-Lycra textiles is measured using a free space transmission measurement technique over the frequency range of 1-18 GHz. The aging of microwave dielectric properties and reflection, transmission and absorption for a period of 18 months is demonstrated. PPy-coated fabrics are shown to be lossy over the full frequency range. The levels of absorption are shown to be higher than reflection in the tested samples. This is attributed to the relatively high resistivity of the PPy-coated fabrics. Both the dopant concentration and polymerisation time affect the total shielding effectiveness and microwave aging behaviour. Distinguishing either of these two factors as being exclusively the dominant mechanism of shielding effectiveness is shown to be difficult. It is observed that the PPy-coated Nylon-Lycra samples with a p -toluene sulfonic acid ( p TSA) concentration of 0.015 M and polymerisation times of 60 min and 180 min have 37% and 26% decrease in total transmission loss, respectively, upon aging for 72 weeks at room temperature (20 °C, 65% Relative humidity (RH)). The concentration of the dopant also influences the microwave aging behaviour of the PPy-coated fabrics. The samples with a higher dopant concentration of 0.027 mol/L p TSA are shown to have a transmission loss of 32.6% and 16.5% for short and long polymerisation times, respectively, when aged for 72 weeks. The microwave properties exhibit better stability with high dopant concentration and/or longer polymerization times. High p TSA dopant concentrations and/or longer polymerisation times result in high microwave insertion loss and are more effective in reducing the transmission and also increasing the longevity of the electrical properties.

  10. A Microwave Method for Dielectric Characterization Measurement of Small Liquids Using a Metamaterial-Based Sensor.

    PubMed

    Liu, Weina; Sun, Haoran; Xu, Lei

    2018-05-05

    We present a microwave method for the dielectric characterization of small liquids based on a metamaterial-based sensor The proposed sensor consists of a micro-strip line and a double split-ring resonator (SRR). A large electric field is observed on the two splits of the double SRRs at the resonance frequency (1.9 GHz). The dielectric property data of the samples under test (SUTs) were obtained with two measurements. One is with the sensor loaded with the reference liquid (REF) and the other is with the sensor loaded with the SUTs. Additionally, the principle of extracting permittivity from measured changes of resonance characteristics changes of the sensor loaded with REF and SUTs is given. Some measurements were carried out at 1.9 GHz, and the calculated results of methanol⁻water mixtures with different molar fractions agree well with the time-domain reflectometry method. Moreover, the proposed sensor is compact and highly sensitive for use of sub-wavelength resonance. In comparison with literature data, relative errors are less than 3% for the real parts and 2% for the imaginary parts of complex permittivity.

  11. Near-Field Microwave Detection of Corrosion Precursor Pitting under Thin Dielectric Coatings in Metallic Substrate

    NASA Astrophysics Data System (ADS)

    Hughes, D.; Zoughi, R.; Austin, R.; Wood, N.; Engelbart, R.

    2003-03-01

    Detection of corrosion precursor pitting on metallic surfaces under various coatings and on bare metal is of keen interest in evaluation of aircraft fuselage. Near-field microwave nondestructive testing methods, utilizing open-ended rectangular waveguides and coaxial probes, have been used extensively for detection of surface flaws in metals, both on bare metal and under a dielectric coating. This paper presents the preliminary results of using microwave techniques to detect corrosion precursor pitting under paint and primer, applique and on bare metal. Machined pits of 500 μm diameter were detected using open-ended rectangular waveguides at V-Band under paint and primer and applique, and on bare metal. Using coaxial probes, machined pits with diameters down to 150 μm on bare metal were also detected. Relative pit size and density were shown on a corrosion-pitted sample using open-ended rectangular waveguides at frequencies of 35 GHz to 70 GHz. The use of Boeing's MAUS™ scanning systems provided improved results by alleviating standoff variation and scanning artifact. Typical results of this investigation are also presented.

  12. Microwave dielectric measurements of erythrocyte suspensions.

    PubMed Central

    Bao, J Z; Davis, C C; Swicord, M L

    1994-01-01

    Complex dielectric constants of human erythrocyte suspensions over a frequency range from 45 MHz to 26.5 GHz and a temperature range from 5 to 40 degrees C have been determined with the open-ended coaxial probe technique using an automated vector network analyzer (HP 8510). The spectra show two separate major dispersions (beta and gamma) and a much smaller dispersion between them. The two major dispersions are analyzed with a dispersion equation containing two Cole-Cole functions by means of a complex nonlinear least squares technique. The parameters of the equation at different temperatures have been determined. The low frequency behavior of the spectra suggests that the dielectric constant of the cell membrane increases when the temperature is above 35 degrees C. The real part of the dielectric constant at approximately 3.4 GHz remains almost constant when the temperature changes. The dispersion shifts with temperature in the manner of a thermally activated process, and the thermal activation enthalpies for the beta- and gamma-dispersions are 9.87 +/- 0.42 kcal/mol and 4.80 +/- 0.06 kcal/mol, respectively. PMID:8075351

  13. Raman spectra of Nd/Sn cosubstituted Ba6-3xSm8+2xTi18O54 microwave dielectric ceramics

    NASA Astrophysics Data System (ADS)

    Wu, S. Y.; Li, Y.; Chen, X. M.

    2004-11-01

    The Raman spectra and dielectric properties of Nd /Sn cosubstituted Ba6-3xSm8+2xTi18O54 (x =2/3) microwave dielectric ceramics were discussed as the functions of composition and sintering time. The peaks in 753cm-1 were caused by the second order scatter. The peaks in 425 and 403cm-1 became sharper with prolonging sintering time, and this reflected the increased lattice defects. The shoulder peak near 292cm-1 was caused by the octahedral tilt when A site is Nd3+. The Raman shifts in 590, 520, 280, and 232cm-1 indicated no obvious change in position, but all peaks became sharper with prolonging sintering time. This indicated the increased ordering degree of A-site cations. With prolonging sintering time, the Qf factor (Q is the inverse of dielectric loss, tan δ, and f is the resonant frequency) increased, and the temperature coefficient of resonant frequency significantly decreased or became more negative, while the dielectric constant indicated no significant variation.

  14. Temperature dependence of the dielectric properties of rubber wood

    Treesearch

    Mohammed Firoz Kabir; Wan M. Daud; Kaida B. Khalid; Haji A.A. Sidek

    2001-01-01

    The effect of temperature on the dielectric properties of rubber wood was investigated in three anisotropic directions—longitudinal, radial, and tangential, and at different measurement frequencies. Low frequency measurements were conducted with a dielectric spectrometer, and high frequencies used microwave applied with open-ended coaxial probe sensors. Dielectric...

  15. Dielectric properties of agricultural materials and their application

    USDA-ARS?s Scientific Manuscript database

    This book is prepared as a comprehensive source of information on dielectric properties of agricultural materials for scientific researchers and engineers involved in practical application of radio-frequency and microwave energy for potential problem solutions. Dielectric properties of materials det...

  16. The effect of glass additives on the microwave dielectric properties of Ba(Mg{sub 1/3}Ta{sub 2/3})O{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surendran, K.P.; Mohanan, P.; Sebastian, M.T.

    2004-11-01

    The effect of glass additives on the densification, phase evolution, microstructure and microwave dielectric properties of Ba(Mg{sub 1/3}Ta{sub 2/3})O{sub 3} (BMT) was investigated. Different weight percentages of quenched glass such as B{sub 2}O{sub 3}, SiO{sub 2}, B{sub 2}O{sub 3}-SiO{sub 2}, ZnO-B{sub 2}O{sub 3}, 5ZnO-2B{sub 2}O{sub 3}, Al{sub 2}O{sub 3}-SiO{sub 2}, Na{sub 2}O-2B{sub 2}O{sub 3}.10H{sub 2}O, BaO-B{sub 2}O{sub 3}-SiO{sub 2}, MgO-B{sub 2}O{sub 3}-SiO{sub 2}, PbO-B{sub 2}O{sub 3}-SiO{sub 2}, ZnO-B{sub 2}O{sub 3}-SiO{sub 2} and 2MgO-Al{sub 2}O{sub 3}-5SiO{sub 2} were added to calcined BMT precursor. The sintering temperature of the glass-added BMT samples were lowered down to 1300 deg. C compared to solid-statemore » sintering where the temperature was 1650{sup o}C. The formation of high temperature satellite phases such as Ba{sub 5}Ta{sub 4}O{sub 15} and Ba{sub 7}Ta{sub 6}O{sub 22} were found to be suppressed by the glass addition. Addition of glass systems such as B{sub 2}O{sub 3}, ZnO-B{sub 2}O{sub 3}, 5ZnO-2B{sub 2}O{sub 3} and ZnO-B{sub 2}O{sub 3}-SiO{sub 2} improved the densification and microwave dielectric properties. Other glasses were found to react with BMT to form low-Q phases which prevented densification. The microwave dielectric properties of undoped BMT with a densification of 93.1% of the theoretical density were {epsilon}r=24.8, {tau}f=8ppm/{sup o}C and Q{sub u}xf=80,000GHz. The BMT doped with 1.0wt% of B{sub 2}O{sub 3} has Q{sub u}xf=124,700GHz, {epsilon}r=24.2, and {tau}f=-1.3ppm/ deg/ C. The unloaded Q factor of 0.2wt% ZnO-B{sub 2}O{sub 3}-doped BMT was 136,500GHz while that of 1.0wt% of 5ZnO-2B{sub 2}O{sub 3} added ceramic was Q{sub u}xf=141,800GHz. The best microwave quality factor was observed for ZnO-B{sub 2}O{sub 3}-SiO{sub 2} (ZBS) glass-added ceramics which can act as a perfect liquid-phase medium for the sintering of BMT. The microwave dielectric properties of 0.2wt% ZBS-added BMT dielectric was Q{sub u}xf=152,800GHz

  17. Fundamentals of dielectric properties measurements and agricultural applications.

    PubMed

    Nelson, Stuart O

    2010-01-01

    Dielectrics and dielectric properties are defined generally and dielectric measurement methods and equipment are described for various frequency ranges from audio frequencies through microwave frequencies. These include impedance and admittance bridges, resonant frequency, transmission-line, and free-space methods in the frequency domain and time-domain and broadband techniques. Many references are cited describing methods in detail and giving sources of dielectric properties data. Finally a few applications for such data are presented and sources of tabulated and dielectric properties data bases are identified.

  18. Microwave-Induced Interfacial Nanobubbles.

    PubMed

    Wang, Lei; Miao, Xiaojun; Pan, Gang

    2016-11-01

    A new method for generating nanobubbles via microwave irradiation was verified and quantified. AFM measurement showed that nanobubbles with diameters ranging from 200 to 600 nm were generated at a water-HOPG surface by applying microwave radiation to aqueous solutions with 9.0-30.0 mg/L dissolved oxygen. Graphite displays strong microwave absorption and transmits high thermal energy to the surface. Because of the high dielectric constant (20 °C, 80 F/m) and dielectric loss factor, water molecules have a strong ability to absorb microwave radiation. The thermal and nonthermal effects of microwave radiation made contributions to decreasing the gas solubility, thus facilitating nanobubble nucleation. The yield of nanobubbles increased about 10-fold when the irradiation time increased from 60 to 120 s at 200 W of microwave radiation. The nanobubble density increased from 0.8 to 15 μm -2 by improving the working power from 200 to 600 W. An apparent improvement in nanobubbles yield was obtained between 300 and 400 W, and the resulting temperature was 34-52 °C. When the initial dissolved oxygen increased from 11.3 to 30.0 mg/L, the density of nanobubbles increased from 1.2 to 13 μm -2 . The generation of nanobubbles could be well controlled by adjusting the gas concentration, microwave power, or irradiation time. The method may be valuable in preparing surface nanobubbles quickly and conveniently for various applications, such as catalysis, hypoxia/anoxia remediation, and templates for preparing nanoscale materials.

  19. Quantitative evaluation of spatial scale of carrier trapping at grain boundary by GHz-microwave dielectric loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Choi, W.; Tsutsui, Y.; Miyakai, T.; Sakurai, T.; Seki, S.

    2017-11-01

    Charge carrier mobility is an important primary parameter for the electronic conductive materials, and the intrinsic limit of the mobility has been hardly access by conventional direct-current evaluation methods. In the present study, intra-grain hole mobility of pentacene thin films was estimated quantitatively using microwave-based dielectric loss spectroscopy (time-resolved microwave conductivity measurement) in alternating current mode of charge carrier local motion. Metal-insulator-semiconductor devices were prepared with different insulating polymers or substrate temperature upon vacuum deposition of the pentacene layer, which afforded totally four different grain-size conditions of pentacene layers. Under the condition where the local motion was determined by interfacial traps at the pentacene grain boundaries (grain-grain interfaces), the observed hole mobilities were plotted against the grain sizes, giving an excellent correlation fit successfully by a parabolic function representative of the boarder length. Consequently, the intra-grain mobility and trap-release time of holes were estimated as 15 cm2 V-1 s-1 and 9.4 ps.

  20. An unobtrusive liquid sensor utilizing a micromilled RF spark gap transmitter and resonant cavity

    NASA Astrophysics Data System (ADS)

    Berry, H.; Wilson, C.

    2009-09-01

    This paper reports on a new dielectric liquid sensor that utilizes an RF sparkgap transmitter coupled with an aluminum microwave resonant cavity. The transmitter is a micromilled polymer transmitter housing with patterned copper electrodes that generate micro-arcs. This transmitter which operates outside the measured liquid generates a directed ultrawideband signal which is received by the aluminum waveguide. Absorption resonances in the microwave cavity, measured with a spectrum analyzer are a function of the liquids' dielectric constant at lower frequencies, as well as from molecular vibrations/rotations at higher frequencies. In many chemical manufacturing processes, liquids being manufactured are removed, tested in a lab, and then disposed of, or else they will contaminate the full batch. In beer brewing, for instance, samples are removed, density tested for alcohol content, then disposed of. Using this sensor, the chemical process could be continuously monitored by a computerized system without risk of contamination.

  1. Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio-Inspired Optimization Techniques

    DTIC Science & Technology

    2017-11-01

    ARL-TR-8225 ● NOV 2017 US Army Research Laboratory Methodology for Designing and Developing a New Ultra-Wideband Antenna Based...Research Laboratory Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio-Inspired Optimization Techniques by...SUBTITLE Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio-Inspired Optimization Techniques 5a. CONTRACT NUMBER

  2. Microwave assisted synthesis and characterization of barium titanate nanoparticles for multi layered ceramic capacitor applications.

    PubMed

    Thirumalai, Sundararajan; Shanmugavel, Balasivanandha Prabu

    2011-01-01

    Barium titanate is a common ferroelectric electro-ceramic material having high dielectric constant, with photorefractive effect and piezoelectric properties. In this research work, nano-scale barium titanate powders were synthesized by microwave assisted mechano-chemical route. Suitable precursors were ball milled for 20 hours. TGA studies were performed to study the thermal stability of the powders. The powders were characterized by XRD, SEM and EDX Analysis. Microwave and Conventional heating were performed at 1000 degrees C. The overall heating schedule was reduced by 8 hours in microwave heating thereby reducing the energy and time requirement. The nano-scale, impurity-free and defect-free microstructure was clearly evident from the SEM micrograph and EDX patterns. LCR meter was used to measure the dielectric constant and dielectric loss values at various frequencies. Microwave heated powders showed superior dielectric constant value with low dielectric loss which is highly essential for the fabrication of Multi Layered Ceramic Capacitors.

  3. Parameter Search Algorithms for Microwave Radar-Based Breast Imaging: Focal Quality Metrics as Fitness Functions.

    PubMed

    O'Loughlin, Declan; Oliveira, Bárbara L; Elahi, Muhammad Adnan; Glavin, Martin; Jones, Edward; Popović, Milica; O'Halloran, Martin

    2017-12-06

    Inaccurate estimation of average dielectric properties can have a tangible impact on microwave radar-based breast images. Despite this, recent patient imaging studies have used a fixed estimate although this is known to vary from patient to patient. Parameter search algorithms are a promising technique for estimating the average dielectric properties from the reconstructed microwave images themselves without additional hardware. In this work, qualities of accurately reconstructed images are identified from point spread functions. As the qualities of accurately reconstructed microwave images are similar to the qualities of focused microscopic and photographic images, this work proposes the use of focal quality metrics for average dielectric property estimation. The robustness of the parameter search is evaluated using experimental dielectrically heterogeneous phantoms on the three-dimensional volumetric image. Based on a very broad initial estimate of the average dielectric properties, this paper shows how these metrics can be used as suitable fitness functions in parameter search algorithms to reconstruct clear and focused microwave radar images.

  4. Ultra-wideband receiver

    DOEpatents

    McEwan, T.E.

    1994-09-06

    An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, [+-] UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals. 16 figs.

  5. Ultra-wideband receiver

    DOEpatents

    McEwan, T.E.

    1996-06-04

    An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, {+-}UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals. 21 figs.

  6. Ultra-wideband receiver

    DOEpatents

    McEwan, Thomas E.

    1994-01-01

    An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, .+-.UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals.

  7. Ultra-wideband receiver

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, .+-.UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals.

  8. Residual ferroelectricity in barium strontium titanate thin film tunable dielectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garten, L. M., E-mail: lmg309@psu.edu; Trolier-McKinstry, S.; Lam, P.

    2014-07-28

    Loss reduction is critical to develop Ba{sub 1−x}Sr{sub x}TiO{sub 3} thin film tunable microwave dielectric components and dielectric energy storage devices. The presence of ferroelectricity, and hence the domain wall contributions to dielectric loss, will degrade the tunable performance in the microwave region. In this work, residual ferroelectricity—a persistent ferroelectric response above the global phase transition temperature—was characterized in tunable dielectrics using Rayleigh analysis. Chemical solution deposited Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} films, with relative tunabilities of 86% over 250 kV/cm at 100 kHz, demonstrated residual ferroelectricity 65 °C above the ostensible paraelectric transition temperature. Frequency dispersion observed in the dielectric temperature response wasmore » consistent with the presence of nanopolar regions as one source of residual ferroelectricity. The application of AC electric field for the Rayleigh analysis of these samples led to a doubling of the dielectric loss for fields over 10 kV/cm at room temperature.« less

  9. The measurement of the dielectric constant of concrete pipes and clay pipes

    NASA Astrophysics Data System (ADS)

    McGraw, David

    To optimize the effectiveness of the rehabilitation of underground utilities, taking in consideration limitation of available resources, there is a need for a cost effective and efficient sensing systems capable of providing effective, in real time and in situ, measurement of infrastructural characteristics. To carry out accurate non-destructive condition assessment of buried and above ground infrastructure such as sewers, bridges, pavements and dams, an advanced ultra-wideband (UWB) based radar was developed at Trenchless Technology Centre (TTC) and Centre for Applied Physics Studies (CAPS) at Louisiana Tech University (LTU). One of the major issues in designing the FCC compliant UWB radar was the contribution of the pipe wall, presence of complex soil types and moderate-to-high moisture levels on penetration depth of the electromagnetic (EM) energy. The electrical properties of the materials involved in designing the UWB radar exhibit a significant variation as a result of the moisture content, mineral content, bulk density, temperature and frequency of the electromagnetic signal propagating through it. Since no measurements of frequency dependence of the dielectric permittivity and conductivities of the pipe wall material in the FCC approved frequency range exist, in this thesis, the dielectric constant of concrete and clay pipes are measured over a microwave frequency range from 1 Ghz to 10 Ghz including the effects of moisture and chloride content. A high performance software package called MU-EPSLN(TM) was used for the calculations. Data reduction routines to calculate the complex permeability and permittivity of materials as well as other parameters are also provided. The results obtained in this work will be used to improve the accuracy of the numerical simulations and the performances of the UWB radar system.

  10. Microwave moisture meter for in-shell almonds.

    USDA-ARS?s Scientific Manuscript database

    Determining almond kernel moisture content while still in the shell is important for both almond growers and processors. A dielectric method was developed for almond kernel moisture determination from dielectric measurements on in-shell almonds at a single microwave frequency. A sample holder was fi...

  11. High-efficiency water-loaded microwave antenna in ultra-high-frequency band

    NASA Astrophysics Data System (ADS)

    Gong, Zilun; Bartone, Chris; Yang, Fuyi; Yao, Jie

    2018-03-01

    High-index dielectrics are widely used in microwave antennas to control the radiation characteristics. Liquid water, with a high dielectric index at microwave frequency, is an interesting material to achieving tunable functionalities. Here, we demonstrate a water-loaded microwave antenna system that has high loss-tolerance and wideband tunability enabled by fluidity. Our simulation and experimental results show that the resonance frequency can be effectively tuned by the size of loading water. Furthermore, the antenna systems with water loading can achieve high radiation efficiency (>90%) in the ultra-high-frequency (0.3-3 GHz) band. This work brings about opportunities in realistic tunable microwave antenna designs enabled by liquid.

  12. Subsurface imaging of metal lines embedded in a dielectric with a scanning microwave microscope

    NASA Astrophysics Data System (ADS)

    You, Lin; Ahn, Jung-Joon; Obeng, Yaw S.; Kopanski, Joseph J.

    2016-02-01

    We demonstrate the ability of the scanning microwave microscope (SMM) to detect subsurface metal lines embedded in a dielectric film with sub-micrometer resolution. The SMM was used to image 1.2 μm-wide Al-Si-Cu metal lines encapsulated with either 800 nm or 2300 nm of plasma deposited silicon dioxide. Both the reflected microwave (S 11) amplitude and phase shifted near resonance frequency while the tip scanned across these buried lines. The shallower line edge could be resolved within 900 nm  ±  70 nm, while the deeper line was resolved within 1200 nm  ±  260 nm. The spatial resolution obtained in this work is substantially better that the 50 μm previously reported in the literature. Our observations agree very well with the calculated change in peak frequency and phase using a simple lumped element model for an SMM with a resonant transmission line. By conducting experiments at various eigenmodes, different contrast levels and signal-to-noise ratios have been compared. With detailed sensitivity studies, centered around 9.3 GHz, it has been revealed that the highest amplitude contrast is obtained when the probe microwave frequency matches the exact resonance frequency of the experimental setup. By RLC equivalent circuit modeling of the tip-sample system, two competing effects have been identified to account for the positive and negative S 11 amplitude and phase contrasts, which can be leveraged to further improve the contrast and resolution. Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.

  13. Microwave temperature-jump nuclear magnetic resonance system for aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kawakami, Masaru; Akasaka, Kazuyuki

    1998-09-01

    A microwave temperature-jump nuclear magnetic resonance (NMR) system suitable for aqueous solutions has been developed. A microwave pulse of a desired length is generated at a frequency of 2.46 GHz from a 1.3 kW magnetron, and is delivered through a waveguide and a coaxial cable to a coupling loop which works as an antenna to the dielectric resonator in the NMR probe. Inside the dielectric resonator, the microwave power is efficiently absorbed by the sample solution (about 100 μl) contained in a glass tube, causing a temperature jump by about 25 °C in less than 20 ms. The temperature after the jump can be maintained by applying intermittent microwave pulses of shorter length. A saddle-type radio-frequency coil is placed around the sample tube inside the hollow of the dielectric resonator to excite spins and detect NMR signals. Both the microwave pulses and the radio-frequency pulses are gated by a pulse programmer of the NMR spectrometer to form a desired temperature-jump pulse sequence. A mechanical mixing device is introduced, which significantly reduces the temperature gradient of the sample solution well within 100 ms after the jump. Application to an aqueous solution of ribonuclease A showed that the protein unfolds within 20 ms of microwave heating.

  14. Development of Active Microwave Thermography for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Foudazi, Ali

    Active Microwave Thermography (AMT) is an integrated nondestructive testing and evaluation (NDT&E) method that incorporates aspects of microwave NDT and thermography techniques. AMT uses a microwave excitation to generate heat and the surface thermal profile of the material or structure under test is subsequently measured using a thermal camera (or IR camera). Utilizing a microwave heat excitation provides advantages over traditional thermal excitations (heat lamps, etc.) including the potential for non-contact, selective and focused heating. During an AMT inspection, two heating mechanisms are possible, referred to as dielectric and induction heating. Dielectric heating occurs as a result of the interaction of microwave energy with lossy dielectric materials which results in dissipated microwave energy and a subsequent increase in temperature. Induction heating is a result of induced surface current on conductive materials with finite conductivity under microwave illumination and subsequently ohmic loss. Due to the unique properties of microwave signals including frequency of operation, power level, and polarization, as well as their interaction with different materials, AMT has strong potential for application in various industries including infrastructure, transportation, aerospace, etc. As such, this Dissertation explores the application of AMT to NDT&E needs in these important industries, including detection and evaluation of defects in single- or multi-layered fiber-reinforced polymer-strengthened cement-based materials, evaluation of steel fiber percentage and distributions in steel fiber reinforced structures, characterization of corrosion ratio on corroded reinforcing steel bars (rebar), and evaluation of covered surface cracks orientation and size in metal structures.

  15. Low-temperature sintered Li2(MnxTi1-x)O3 microwave dielectric ceramics with adjustable τf

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Zhang, Huaiwu; Su, Hua; Li, Jie; Liao, Yulong; Jia, Lijun; Li, Yuanxun

    2017-12-01

    B2O3-Bi2O3-SiO2-ZnO (BBSZ) glass-modified Li2(MnxTi1-x)O3 ceramics were fabricated via a solid-state reaction route. Pure phase and dense crystal morphology were obtained at 900∘C. Suitable amount of Mn4+-ion substitution could adjust the τf value of the Li2(MnxTi1-x)O3 system to near zero. Among all of the Li2(MnxTi1-x)O3 samples, the sample with x = 0.9 (marked as BL9 in this paper) possessed good microwave dielectric properties: 𝜀r = 18, Q × f = 14,056 GHz (9.58 GHz) and τf = (+)2.43 ppm/∘C. It is suggested that the Li2(MnxTi1-x)O3 ceramic with BBSZ glass is a suitable low-temperature co-fired ceramic (LTCC) candidate for microwave applications.

  16. High-resolution nondestructive testing of multilayer dielectric materials using wideband microwave synthetic aperture radar imaging

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hee; James, Robin; Narayanan, Ram M.

    2017-04-01

    Fiber Reinforced Polymer or Plastic (FRP) composites have been rapidly increasing in the aerospace, automotive and marine industry, and civil engineering, because these composites show superior characteristics such as outstanding strength and stiffness, low weight, as well as anti-corrosion and easy production. Generally, the advancement of materials calls for correspondingly advanced methods and technologies for inspection and failure detection during production or maintenance, especially in the area of nondestructive testing (NDT). Among numerous inspection techniques, microwave sensing methods can be effectively used for NDT of FRP composites. FRP composite materials can be produced using various structures and materials, and various defects or flaws occur due to environmental conditions encountered during operation. However, reliable, low-cost, and easy-to-operate NDT methods have not been developed and tested. FRP composites are usually produced as multilayered structures consisting of fiber plate, matrix and core. Therefore, typical defects appearing in FRP composites are disbondings, delaminations, object inclusions, and certain kinds of barely visible impact damages. In this paper, we propose a microwave NDT method, based on synthetic aperture radar (SAR) imaging algorithms, for stand-off imaging of internal delaminations. When a microwave signal is incident on a multilayer dielectric material, the reflected signal provides a good response to interfaces and transverse cracks. An electromagnetic wave model is introduced to delineate interface widths or defect depths from the reflected waves. For the purpose of numerical analysis and simulation, multilayered composite samples with various artificial defects are assumed, and their SAR images are obtained and analyzed using a variety of high-resolution wideband waveforms.

  17. High brightness microwave lamp

    DOEpatents

    Kirkpatrick, Douglas A.; Dolan, James T.; MacLennan, Donald A.; Turner, Brian P.; Simpson, James E.

    2003-09-09

    An electrodeless microwave discharge lamp includes a source of microwave energy, a microwave cavity, a structure configured to transmit the microwave energy from the source to the microwave cavity, a bulb disposed within the microwave cavity, the bulb including a discharge forming fill which emits light when excited by the microwave energy, and a reflector disposed within the microwave cavity, wherein the reflector defines a reflective cavity which encompasses the bulb within its volume and has an inside surface area which is sufficiently less than an inside surface area of the microwave cavity. A portion of the reflector may define a light emitting aperture which extends from a position closely spaced to the bulb to a light transmissive end of the microwave cavity. Preferably, at least a portion of the reflector is spaced from a wall of the microwave cavity. The lamp may be substantially sealed from environmental contamination. The cavity may include a dielectric material is a sufficient amount to require a reduction in the size of the cavity to support the desired resonant mode.

  18. SOLVENT-FREE ALTERNATIVES TO ORGANIC SYNTHESES USING MICROWAVES

    EPA Science Inventory

    Microwave irradiation has been used for a variety of synthetic transformations wherein chemical reactions are accelerated because of selective adsorption of microwave (MW) energy by polar molecules, non-polar molecules being inert to the MW dielectric loss. The application of mic...

  19. Technique for Performing Dielectric Property Measurements at Microwave Frequencies

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Jackson, Henry W. (Inventor)

    2014-01-01

    A method, system, apparatus, and computer readable medium has been provided with the ability to obtain a complex permittivity dielectric or a complex permeability micron of a sample in a cavity. One or more complex-valued resonance frequencies f(sub m) of the cavity, wherein each f(sub m) is a measurement, are obtained. Maxwell's equations are solved exactly for dielectric, and/or micron, using the f(sub m) as known quantities, thereby obtaining the dielectric and/or micron of the sample.

  20. Implementation Status of a Ultra-Wideband Receiver Package for the next-generation Very Large Array

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph W.; Velazco, Jose; Soriano, Melissa; Hoppe, Daniel; Russell, Damon; D'Addario, Larry; Long, Ezra; Bowen, James; Samoska, Lorene; Janzen, Andrew

    2017-01-01

    The next-generation Very Large Array (ngVLA) is a concept for a radio astronomical interferometric array operating in the frequency range 1.2 GHz to 116 GHz and designed to provide substantial improvements in sensitivity, angular resolution, and frequency coverage above the current Very Large Array (VLA). As notional design goals, it would have a continuous frequency coverage of 1.2 GHz to 48 GHz and be 10 times more sensitive than the VLA (and 25 times more sensitive than a 34 m diameter antenna of the Deep Space Network [DSN]). One of the key goals for the ngVLA is to reduce the operating costs without sacrificing performance. We are designing an ultra-wideband receiver package designed to operate across the 8 to 48 GHz frequency range, which can be contrasted to the current VLA, which covers this frequency range with five receiver packages. Reducing the number of receiving systems required to cover the full frequency range would reduce operating costs, and the objective of this work is to develop a prototype integrated feed-receiver package with a sensitivity performance comparable to current narrower band systems on radio telescopes and the DSN, but with a design that meets the requirement of low long-term operational costs. The ultra-wideband receiver package consists of a feed horn, low-noise amplifier (LNA), and down-converters to analog intermediate frequencies. Key features of this design are a quad-ridge feed horn with dielectric loading and a cryogenic receiver with a noise temperature of no more than 30 K at the low end of the band. We will report on the status of this receiver package development including the feed design and LNA implementation. We will present simulation studies of the feed horn including the insertion of dielectric components for improved illumination efficiencies across the band of interest. In addition, we will show experimental results of low-noise 35nm InP HEMT amplifier testing performed across the 8-50 GHz frequency range

  1. Anisotropy of Wood in the Microwave Region

    ERIC Educational Resources Information Center

    Ziherl, Sasa; Bajc, Jurij; Urankar, Bernarda; Cepic, Mojca

    2010-01-01

    Wood is transparent for microwaves and due to its anisotropic structure has anisotropic dielectric properties. A laboratory experiment that allows for the qualitative demonstration and quantitative measurements of linear dichroism and birefringence in the microwave region is presented. As the proposed experiments are based on the anisotropy (of…

  2. ENVIRONMENTALLY FRIENDLIER ALTERNATIVES TO ORGANIC SYNTHESIS USING MICROWAVES

    EPA Science Inventory

    Microwave irradiation has been used for a variety of organic transformations wherein chemical reactions are expedited because of selective adsorption of microwave (MW) energy by polar molecules, non-polar molecules being inert to the MW dielectric loss. The MW application under s...

  3. GREENER APPROACH TO EFFICIENT ORGANIC SYNTHESES USING MICROWAVES

    EPA Science Inventory

    Microwave irradiation has been used for a variety of organic transformations wherein chemical reactions are expedited because of selective adsorption of microwave (MW) energy by polar molecules, non-polar molecules being inert to the MW dielectric loss. The MW application under s...

  4. Ultrawideband radar clutter measurements and analysis

    NASA Astrophysics Data System (ADS)

    Tuley, Michael T.; Sheen, David M.; Collins, H. D.; Sager, Earl V.; Schultheis, A. C.

    1993-05-01

    This paper reports the results of ultrawideband radar clutter measurements made by Battelle- Pacific Northwest Laboratories and the System Planning Corporation near Sequim, WA. The measurement area is a mountainous coniferous forest with occasional roads and clear-cut areas. Local grazing angles range from near zero to approximately 40 degree(s). Very limited data are also presented from measurements made in a desert-type terrain near Richland, WA. Two ultrawideband radar systems were employed in the data collection. An impulse system providing an approximate one nanosecond monocycle pulse (bandwidth of 300 MHz - 1000 MHz) acquired data over a 0.7 km2 area (121,000 resolution cells). A step chirp radar with the same total bandwidth as the impulse system collected data over a 6.2 km2 area (780,000 resolution cells), including the area sampled by the impulse system. Wideband TEM horn antennas (log-periodic antennas for the step chirp system) deployed on a 19 m horizontally scanned aperture were used for transmission and reception, providing a 1.5 degree(s) azimuth resolution at 300 MHz for both systems.

  5. An optical model for the microwave properties of sea ice

    NASA Technical Reports Server (NTRS)

    Gloersen, P.; Larabee, J. K.

    1981-01-01

    The complex refractive index of sea ice is modeled and used to predict the microwave signatures of various sea ice types. Results are shown to correspond well with the observed values of the complex index inferred from dielectic constant and dielectric loss measurements performed in the field, and with observed microwave signatures of sea ice. The success of this modeling procedure vis a vis modeling of the dielectric properties of sea ice constituents used earlier by several others is explained. Multiple layer radiative transfer calculations are used to predict the microwave properties of first-year sea ice with and without snow, and multiyear sea ice.

  6. Topological properties of microwave magnetoelectric fields.

    PubMed

    Berezin, M; Kamenetskii, E O; Shavit, R

    2014-02-01

    Collective excitations of electron spins in a ferromagnetic sample dominated by the magnetic dipole-dipole interaction strongly influence the field structure of microwave radiation. A small quasi-two-dimensional ferrite disk with magnetic-dipolar-mode (MDM) oscillation spectra can behave as a source of specific fields in vacuum, termed magnetoelectric (ME) fields. A coupling between the time-varying electric and magnetic fields in the ME-field structures is different from such a coupling in regular electromagnetic fields. The ME fields are characterized by strong energy confinement at a subwavelength region of microwave radiation, topologically distinctive power-flow vortices, and helicity parameters [E. O. Kamenetskii, R. Joffe, and R. Shavit, Phys. Rev. E 87, 023201 (2013)]. We study topological properties of microwave ME fields by loading a MDM ferrite particle with different dielectric samples. We establish a close connection between the permittivity parameters of dielectric environment and the topology of ME fields. We show that the topology of ME fields is strongly correlated with the Fano-resonance spectra observed at terminals of a microwave structure. We reveal specific thresholds in the Fano-resonance spectra appearing at certain permittivity parameters of dielectric samples. We show that ME fields originated from MDM ferrite disks can be distinguished by topological portraits of the helicity parameters and can have a torsion degree of freedom. Importantly, the ME-field phenomena can be viewed as implementations of space-time coordinate transformations on waves.

  7. Dielectric properties for prediction of moisture content in Vidalia onions

    USDA-ARS?s Scientific Manuscript database

    Microwave Sensing provides a means for nondestructively determining the amount of moisture in materials by sensing the dielectric properties of the material. In this study, dielectric properties of Vidalia onions were analyzed for moisture dependence at 13.36 GHz and 23°C for moisture content betwee...

  8. Detection of chemical contraband using spectroscopic microwave imaging

    NASA Astrophysics Data System (ADS)

    Falconer, David G.; Watters, David G.

    1994-02-01

    We have developed and demonstrated a microwave technique for detecting high explosives, illegal drugs, and other chemical contraband in checked airline baggage. Our technique isolates suspicious materials using microwave tomography and identifies chemical contraband using microwave spectroscopy. Measurements in the frequency range 2 - 18 GHz indicate that microwave energy will penetrate nonmetallic suitcases and that contraband materials feature distinct dielectric spectra at these wavelengths. We have also formed microwave images of a soft-sided suitcase and its contents. After manually segmenting the microwave imagery, we successfully identified chemical simulants for both high explosives and illegal drugs.

  9. Intrinsic dielectric properties of magnetodielectric La2CoMnO6

    NASA Astrophysics Data System (ADS)

    Silva, R. X.; Moreira, R. L.; Almeida, R. M.; Paniago, R.; Paschoal, C. W. A.

    2015-06-01

    Manganite with a double perovskite structure is an attractive material because of its interesting magnetoelectric and dielectric responses. In particular, colossal dielectric constant (CDC) behavior has been observed in La2CoMnO6 (LCMO) at radio frequencies and at room temperature. In this paper, we used infrared-reflectivity spectroscopy to study a LCMO ceramic obtained through a modified Pechini's method to determine the phonon contribution to the intrinsic dielectric response of the system and to investigate the CDC origin. The analysis of the main polar modes and of the obtained phonon parameters indicate that the CDC effect of LCMO is of pure extrinsic origin. In addition, we estimated the dielectric constant and the quality factor of the material in the microwave region to be ɛ's ˜ 16 and Qu × f ˜ 124 THz, which verifies that LCMO is appropriate for application in microwave devices and circuitry.

  10. Effect of soil texture on the microwave emission from soils

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.

    1980-01-01

    The intensity brightness temperature of the microwave emission from the soil is determined primarily by its dielectric properties. The large difference between the dielectric constant of water and that of dry soil produces a strong dependence of the soil's dielectric constant on its moisture content. This dependence is effected by the texture of the soil because the water molecules close to the particle surface are tightly bound and do not contribute significantly to the dielectric properties. Since this surface area is a function of the particle size distribution (soil texture), being larger for clay soils with small particles, and smaller for sandy soils with larger particles; the dielectric properties will depend on soil texture. Laboratory measurements of the dielectric constant for soils are summarized. The dependence of the microwave emission on texture is demonstrated by measurements of brightness temperature from an aircraft platform for a wide range of soil textures. It is concluded that the effect of soil texture differences on the observed values can be normalized by expressing the soil moisture values as a percent field capacity for the soil.

  11. Haystack Ultrawideband Satellite Imaging Radar

    DTIC Science & Technology

    2014-09-01

    SEP 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Haystack Ultrawideband Satellite Imaging Radar 5a...www.ll.mit.edu September 2014 Since the launch of satellites into Earth orbits more than 50 years ago, space has become crowded. Commercial and military... satellites , both active and defunct, share the space environment with an assort- ment of space debris, such as remnants of damaged spacecraft and

  12. An Ultra-Wideband, Microwave Radar for Measuring Snow Thickness on Sea Ice and Mapping Near-Surface Internal Layers in Polar Firn

    NASA Technical Reports Server (NTRS)

    Panzer, Ben; Gomez-Garcia, Daniel; Leuschen, Carl; Paden, John; Rodriguez-Morales, Fernando; Patel, Azsa; Markus, Thorsten; Holt, Benjamin; Gogineni, Prasad

    2013-01-01

    Sea ice is generally covered with snow, which can vary in thickness from a few centimeters to >1 m. Snow cover acts as a thermal insulator modulating the heat exchange between the ocean and the atmosphere, and it impacts sea-ice growth rates and overall thickness, a key indicator of climate change in polar regions. Snow depth is required to estimate sea-ice thickness using freeboard measurements made with satellite altimeters. The snow cover also acts as a mechanical load that depresses ice freeboard (snow and ice above sea level). Freeboard depression can result in flooding of the snow/ice interface and the formation of a thick slush layer, particularly in the Antarctic sea-ice cover. The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an ultra-wideband, microwave radar capable of operation on long-endurance aircraft to characterize the thickness of snow over sea ice. The low-power, 100mW signal is swept from 2 to 8GHz allowing the air/snow and snow/ ice interfaces to be mapped with 5 c range resolution in snow; this is an improvement over the original system that worked from 2 to 6.5 GHz. From 2009 to 2012, CReSIS successfully operated the radar on the NASA P-3B and DC-8 aircraft to collect data on snow-covered sea ice in the Arctic and Antarctic for NASA Operation IceBridge. The radar was found capable of snow depth retrievals ranging from 10cm to >1 m. We also demonstrated that this radar can be used to map near-surface internal layers in polar firn with fine range resolution. Here we describe the instrument design, characteristics and performance of the radar.

  13. Microwave signatures of snow, ice and soil at several wavelengths

    NASA Technical Reports Server (NTRS)

    Gloersen, P.; Schmugge, T. J.; Chang, T. C.

    1974-01-01

    Analyses of data obtained from aircraft-borne radiometers have shown that the microwave signatures of various parts of the terrain depend on both the volume scattering cross-section and the dielectric loss in the medium. In soil, it has been found that experimental data fit a model in which the scattering cross section is negligible compared to the dielectric loss. On the other hand, the volume scattering cross-section in snow and continental ice was found, from analyzing data obtained with aircraft- and spacecraft-borne radiometers, to be more important than the dielectric loss or surface reflectivity in determining the observed microwave emissivity. A model which assumes Mie scattering of ice particles of various sizes was found to be the dominant volume scattering mechanism in these media. Both spectral variation in the microwave signatures of snow and ice fields, as well as the variation in the emissivity of continental ice sheets such as those covering Greenland and Antarctica appear to be consistent with this model.

  14. Hydration and dielectrical properties of aqueous pyrrolidinium trifluoroacetate solutions

    NASA Astrophysics Data System (ADS)

    Lyashchenko, A. K.; Balakaeva, I. V.; Simonova, Yu. A.; Timofeeva, L. M.

    2017-10-01

    Results from microwave measurements of the dielectrical properties of aqueous pyrrolidinium trifluoroacetate solutions at maximum water dispersion frequencies (13-25 GHz) and temperatures of 288, 298, and 308 K are given. The static dielectrical constants, times, and activation parameters of the dielectrical relaxation of solutions are calculated. The enthalpy and time of dielectrical relaxation activation are increased by deceleration of the motion of water molecules in the hydrate shells of ions. The changes in dielectrical parameters are in this case minimal in a series of aqueous solutions of diallylammonium salts with cations of different structures and degrees of substitution. It is shown that pyrrolidinium ions are characterized by weak hydrophobic hydration.

  15. Study on the Microwave Permittivity of Single-Walled Carbon Nanotube

    ERIC Educational Resources Information Center

    Liu, Xiaolai; Zhao, Donglin

    2009-01-01

    In this article, we studied the microwave permittivity of the complex of the single-walled carbon nanotube and paraffin in 2-18GHz. In the range, the dielectric loss of single-walled carbon nanotube is higher, and the real part and the imaginary part of the dielectric constant decrease with the increase of frequency, and the dielectric constant…

  16. Planar spoof plasmonic ultra-wideband filter based on low-loss and compact terahertz waveguide corrugated with dumbbell grooves.

    PubMed

    Zhou, Yong Jin; Yang, Bao Jia

    2015-05-10

    Although subwavelength planar terahertz (THz) plasmonic devices can be implemented based on planar spoof surface plasmons (SPs), they still suffer from a little high propagation loss. Here the dispersion and propagation characteristics of the spoof plasmonic waveguide composed of double metal strips corrugated with dumbbell shaped grooves have been investigated. It has been found that much lower propagation loss and longer propagation length can be achieved based on the waveguide compared with the conventional spoof plasmonic waveguide with rectangular grooves. Moreover, the waveguide can implement a decrease in size of about 22%. An ultra-wideband THz plasmonic filter for planar circuits has been demonstrated based on the proposed waveguide. The experimental verification at the microwave frequency has been conducted by scaling up the geometry size of the filter.

  17. Dielectric Properties of Low-Level Liquid Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. E. Lagos; M. A. Ebadian

    1998-10-20

    The purpose of this study was to develop a data collection containing values for the dielectric properties of various low-level liquid waste (LLLW) simulants measured as a function of frequency, temperature, and composition. The investigation was motivated by current interest in the use of microwave processing for the treatment of radioactive waste. A large volume of transuranic liquid and sludge produced by the U.S. Department of Defense (DOD) during the production of nuclear fiel bars is stored at several U.S. Department of Energy (DOE) sites around the United States. Waste storage and disposal space is scarce, expensive, and must bemore » minimized. Thus, several DOE sites are pursuing the use of microwave heating as a means of achieving volume reduction and solidification of low-level liquid wastes. It is important to know which microwave frequencies should be employed tc achieve the most efficient processing at a range of different temperatures. The dielectric properties of the LLLW simulants can be utilized to determine the optimum frequencies for use with a particular LLLW or with other LLLWS of similar composition. Furthermore, nonlinear thermal processes, such as thermal runaway, which occur in the material being treated cannot be modeled without a knowledge of the temperature dependence of the dielectric properties. Often, this data does not exist; however, when it does, only very limited data near room temperature are available. The data collection generated in this study can be used to predict the behavior of a variety of microwave thermal treatment technologies, which have the potential of substantially reducing the volume of the LLLWS that are currently stored at many DOE sites. This information should help the users of the microwave reduction and solidification technology to optimize microwave processes used in the treatment of LLLW. The microwave reduction and solidification technology has clear advantages over other methods of reducing LLLWS

  18. A multistage selective weighting method for improved microwave breast tomography.

    PubMed

    Shahzad, Atif; O'Halloran, Martin; Jones, Edward; Glavin, Martin

    2016-12-01

    Microwave tomography has shown potential to successfully reconstruct the dielectric properties of the human breast, thereby providing an alternative to other imaging modalities used in breast imaging applications. Considering the costly forward solution and complex iterative algorithms, computational complexity becomes a major bottleneck in practical applications of microwave tomography. In addition, the natural tendency of microwave inversion algorithms to reward high contrast breast tissue boundaries, such as the skin-adipose interface, usually leads to a very slow reconstruction of the internal tissue structure of human breast. This paper presents a multistage selective weighting method to improve the reconstruction quality of breast dielectric properties and minimize the computational cost of microwave breast tomography. In the proposed two stage approach, the skin layer is approximated using scaled microwave measurements in the first pass of the inversion algorithm; a numerical skin model is then constructed based on the estimated skin layer and the assumed dielectric properties of the skin tissue. In the second stage of the algorithm, the skin model is used as a priori information to reconstruct the internal tissue structure of the breast using a set of temporal scaling functions. The proposed method is evaluated on anatomically accurate MRI-derived breast phantoms and a comparison with the standard single-stage technique is presented. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  19. Realization of a complementary medium using dielectric photonic crystals.

    PubMed

    Xu, Tao; Fang, Anan; Jia, Ziyuan; Ji, Liyu; Hang, Zhi Hong

    2017-12-01

    By exploiting the scaling invariance of photonic band diagrams, a complementary photonic crystal slab structure is realized by stacking two uniformly scaled double-zero-index dielectric photonic crystal slabs together. The space cancellation effect in complementary photonic crystals is demonstrated in both numerical simulations and microwave experiments. The refractive index dispersion of double-zero-index dielectric photonic crystal is experimentally measured. Using pure dielectrics, our photonic crystal structure will be an ideal platform to explore various intriguing properties related to a complementary medium.

  20. Frequency, moisture content, and temperature dependent dielectric properties of potato starch related to drying with radio-frequency/microwave energy.

    PubMed

    Zhu, Zhuozhuo; Guo, Wenchuan

    2017-08-24

    To develop advanced drying methods using radio-frequency (RF) or microwave (MW) energy, dielectric properties of potato starch were determined using an open-ended coaxial-line probe and network analyzer at frequencies between 20 and 4,500 MHz, moisture contents between 15.1% and 43.1% wet basis (w.b.), and temperatures between 25 and 75 °C. The results showed that both dielectric constant (ε') and loss factor (ε″) were dependent on frequency, moisture content, and temperature. ε' decreased with increasing frequency at a given moisture content or temperature. At low moisture contents (≤25.4% w.b.) or low temperatures (≤45 °C), ε″ increased with increasing frequency. However, ε″ changed from decrease to increase with increasing frequency at high moisture contents or temperatures. At low temperatures (25-35 °C), both ε' and ε″ increased with increasing moisture content. At low moisture contents (15.1-19.5% w.b.), they increased with increasing temperature. The change trends of ε' and ε″ were different and dependent on temperature and moisture content at their high levels. The penetration depth (d p ) decreased with increasing frequency. RF treatments may provide potential large-scale industrial drying application for potato starch. This research offers useful information on dielectric properties of potato starch related to drying with electromagnetic energy.

  1. Dynamic dielectric properties of a wood liquefaction system using polyethylene glycol and glycerol

    Treesearch

    Mengchao Zhou; Thomas L. Eberhardt; Bo Cai; Chung-Yun Hse; Hui Pan

    2017-01-01

    Microwave-assisted liquefaction has shown potential for rapid thermal processing of lignocellulosic biomass. The efficiency of microwave heating depends largely on the dielectric properties of the materials being heated. The objective of this study was to investigate the dynamic interactions between microwave energy and the reaction system during the liquefaction of a...

  2. Integrating an embedded system in a microwave moisture meter

    USDA-ARS?s Scientific Manuscript database

    The conversion of a PC- or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter measures the attenuation and phase shift of low power microwaves traversing the sample, from which the dielectric properties are calculated. T...

  3. New three-phase polymer-ceramic composite materials for miniaturized microwave antennas

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zhang, Jie; Yue, Zhenxing; Li, Longtu

    2016-09-01

    Unique polymer-ceramic composites for microwave antenna applications were prepared via melt extrusion using high-density polyethylene (HDPE) as the matrix and low-density polyethylene (LDPE) coated BaO-Nd2O3-TiO2 (BNT) ceramic-powders as the filler. By incorporating LDPE into the composites via a coating route, high ceramic-powder volume content (up to 50 vol%) could be achieved. The composites exhibited good microwave dielectric and thermomechanical behaviors. As BNT ceramic content increased from 10 vol% to 50 vol%, the permittivity of the composites increased from 3.45 (9 GHz) to 11.87 (7 GHz), while the dielectric loss remained lower than 0.0016. Microstrip antennas for applications in global positioning systems (GPS) were designed and fabricated from the composites containing 50 vol% BNT ceramics. The results indicate that the composites that have suitable permittivity and low dielectric loss are promising candidates for applications in miniaturized microwave devices, such as antennas.

  4. Dielectric constants of soils at microwave frequencies-2

    NASA Technical Reports Server (NTRS)

    Wang, J.; Schmugge, T.; Williams, D.

    1978-01-01

    The dielectric constants of several soil samples were measured at frequencies of 5 and 19 GHz using the infinite transmission line method. The results of these measurements are presented and discussed with respect to soil types and texture structures. A comparison is made with other measurements at 1.4 GHz. At all three frequencies, the dependence of dielectric constant on soil moisture can be approximated by two straight lines. At low moisture, the slope is less than at high moisture level. The intersection of the two lines is believed to be a function of soil texture.

  5. SOLVENT-FREE APPROACH TO EXPEDITIOUS ORGANIC SYNTHESES USING MICROWAVE IRRADIATION

    EPA Science Inventory

    Microwave irradiation has been used for a variety of organic transformations wherein chemical reactions are accelerated because of selective adsorption of microwave (MW) energy by polar molecules, non-polar molecules being inert to the MW dielectric loss. The application of MW ir...

  6. Ultra-wideband microwave photonic phase shifter with configurable amplitude response.

    PubMed

    Pagani, M; Marpaung, D; Eggleton, B J

    2014-10-15

    We introduce a new principle that enables separate control of the amplitude and phase of an optical carrier, simply by controlling the power of two stimulated Brillouin scattering (SBS) pumps. This technique is used to implement a microwave photonic phase shifter with record performance, which solves the bandwidth limitation of previous gain-transparent SBS-based phase shifters, while achieving unprecedented minimum power fluctuations, as a function of phase shift. We demonstrate 360° continuously tunable phase shift, with less than 0.25 dB output power fluctuations, over a frequency band from 1.5 to 31 GHz, limited only by the measurement equipment.

  7. Polymer (PDMS-Fe3O4) magneto-dielectric substrate for a MIMO antenna array

    NASA Astrophysics Data System (ADS)

    Alqadami, Abdulrahman Shueai Mohsen; Jamlos, Mohd Faizal; Soh, Ping Jack; Kamarudin, Muhammad Ramlee

    2016-01-01

    This paper presents the design of a 2 × 4 multiple-input multiple-output (MIMO) antenna array fabricated on a nanocomposite magneto-dielectric polymer substrate. The 10-nm iron oxide (Fe3O4) nanoparticles and polydimethylsiloxane (PDMS) composite is used as substrate to enhance the performance of a MIMO antenna array. The measured results showed up to 40.8 % enhancement in terms of bandwidth, 9.95 dB gain, and 57 % of radiation efficiency. Furthermore, it is found that the proposed magneto-dielectric (PDMS-Fe3O4) composite substrate provides excellent MIMO parameters such as correlation coefficient, diversity gain, and mutual coupling. The prototype of the proposed antenna is transparent, flexible, lightweight, and resistant against dust and corrosion. Measured results indicate that the proposed antenna is suitable for WLAN and ultra-wideband biomedical applications within frequency range of 5.33-7.70 GHz.

  8. Enhanced Ultra-Wideband (UWB) Circular Monopole Antenna with Electromagnetic Band Gap (EBG) Surface and Director

    DTIC Science & Technology

    2014-08-01

    Enhanced Ultra-Wideband (UWB) Circular Monopole Antenna with Electromagnetic Band Gap (EBG) Surface and Director by Amir I Zaghloul, Youn M... Antenna with Electromagnetic Band Gap (EBG) Surface and Director Amir I Zaghloul, Youn M Lee, Gregory A Mitchell, and Theodore K Anthony...DATES COVERED (From - To) 4. TITLE AND SUBTITLE Enhanced Ultra-Wideband (UWB) Circular Monopole Antenna with Electromagnetic Band Gap (EBG

  9. Near-field interference microwave diagnostics

    NASA Astrophysics Data System (ADS)

    Belichenko, V. P.; Zapasnoy, A. S.; Mironchev, A. S.; Matvievskiy, E. V.

    2017-08-01

    The article explores the dimensions of the probing region of two coaxial probes during the measurement of the dielectric properties of biological tissues and media at microwave radiation. This region is formed in the overlapping evanescent fields of the probes.

  10. Particle-in-cell simulation of multipactor discharge on a dielectric in a parallel-plate waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakharov, A. S., E-mail: sakharov-as@mail.ru; Ivanov, V. A.; Konyzhev, M. E.

    2016-06-15

    An original 2D3V (two-dimensional in coordinate space and three-dimensional in velocity space) particle-in-cell code has been developed for simulation of multipactor discharge on a dielectric in a parallelplate metal waveguide with allowance for secondary electron emission (SEE) from the dielectric surface and waveguide walls, finite temperature of secondary electrons, electron space charge, and elastic and inelastic scattering of electrons from the dielectric and metal surfaces. The code allows one to simulate all stages of the multipactor discharge, from the onset of the electron avalanche to saturation. It is shown that the threshold for the excitation of a single-surface multipactor onmore » a dielectric placed in a low-profile waveguide with absorbing walls increases as compared to that in the case of an unbounded dielectric surface due to escape of electrons onto the waveguide walls. It is found that, depending on the microwave field amplitude and the SEE characteristics of the waveguide walls, the multipactor may operate in two modes. In the first mode, which takes place at relatively low microwave amplitudes, a single-surface multipactor develops only on the dielectric, the surface of which acquires a positively potential with respect to the waveguide walls. In the second mode, which occurs at sufficiently high microwave intensities, a single-surface multipactor on the dielectric and a two-surface multipactor between the waveguide walls operate simultaneously. In this case, both the dielectric surface and the interwall space acquire a negative potential. It is shown that electron scattering from the dielectric surface and waveguide walls results in the appearance of high-energy tails in the electron distribution function.« less

  11. Ultra-wideband polarization insensitive UT-shaped metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Karampour, Nasrollah; Nozhat, Najmeh

    2017-05-01

    In this paper, an ultra-wideband metamaterial absorber (MMA) with U and T shaped resonators has been proposed. The resonators and the ground plane consist of gold (Au) and titanium (Ti) layers. The resistive sheet effect of Ti layer and the resonance elements in the structure cause a broad absorption spectrum. The simulations are based on the finite element method (FEM) and the results show that the absorption of the proposed structure is more than 90% between 150 and 300 THz that is much larger than previous works. Moreover, by applying the interference theory, we have demonstrated that the simulation results are in good agreement with the theoretical results. The primary proposed MMA is polarization sensitive. Therefore, a polarization insensitive metamaterial absorber has been suggested. Also, because of the extra resonance elements the full width at 90% absorption increases about 35 THz. This ultra-wideband MMA has various applications in microbalometer, imaging, thermal emitters, photovoltaic, and energy harvesting.

  12. Precise measurement of dielectric anisotropy in ice Ih at 39 GHz

    NASA Astrophysics Data System (ADS)

    Matsuoka, Takeshi; Fujita, Shuji; Morishima, Shigenori; Mae, Shinji

    1997-03-01

    The dielectric permittivities parallel and perpendicular to the c axis (optic axis) of ice Ih were measured using an open resonator at 39 GHz in the temperature range 194-262 K. The dielectric anisotropy in ice at microwave frequencies is important for understanding remote sensing data in polar regions, obtained by ice radar and satellite-born microwave radar and radiometer. The measured samples were natural single-crystal ice collected from Mendenhall Glacier, Alaska. A very precise measurement was achieved by detecting two resonant peaks, one from the ordinary component and the other from the extraordinary component, simultaneously, from one sample. The real part of dielectric anisotropy, Δɛ'=ɛ∥c'-ɛ⊥c', at 39 GHz was 0.0339±0.0007 (1.07%±0.02%) at 252 K and slightly depended on temperature. Reference measurements at 1 MHz using parallel plate electrodes were also carried out. The measured dielectric anisotropy at microwave frequencies agrees very well with the value at 1 MHz. The absolute values of ɛ∥c' and ɛ⊥c' at 39 GHz were, respectively, smaller than those at 1 MHz and the difference was about 0.044 at 252 K. The results suggest that a small dispersion exists between GHz and MHz frequencies, but there is no frequency dependence in the value of anisotropy.

  13. Integrating an Embedded System within a Microwave Moisture Meter

    USDA-ARS?s Scientific Manuscript database

    In this paper, the conversion of a PC or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter uses low-power microwaves to measure the attenuation and phase shift of the sample, from which the dielectric properties are cal...

  14. Microwave and millimeter wave dielectric permittivity and magnetic permeability of epsilon-gallium-iron-oxide nano-powders

    NASA Astrophysics Data System (ADS)

    Chao, Liu; Afsar, Mohammed N.; Ohkoshi, Shin-ichi

    2015-05-01

    In millimeter wave frequency range, hexagonal ferrites with high uniaxial anisotropic magnetic fields are used as absorbers. These ferrites include M-type barium ferrite (BaFe12O19) and strontium ferrite (SrFe12O19), which have natural ferromagnetic resonant frequency range from 40 GHz to 60 GHz. However, the higher frequency range lacks suitable materials that support the higher frequency ferromagnetic resonance. A series of gallium-substituted ɛ-iron oxides (ɛ-GaxFe2-xO3) are synthesized, which have ferromagnetic resonant frequencies appearing over the frequency range of 30 GHz to 150 GHz. The ɛ-GaxFe2-xO3 is synthesized by the sol-gel method. The particle sizes are observed to be smaller than 100 nm. In this paper, in-waveguide transmission and reflection method and the free space magneto-optical approach have been employed to study these newly developed ɛ-GaxFe2-xO3 particles in millimeter waves. These techniques enable to obtain precise transmission spectra to determine the dielectric and magnetic properties of both isotropic and anisotropic ferrites in the microwave and millimeter wave frequency range from single set of direct measurements. The complex dielectric permittivity and magnetic permeability spectra of ɛ-GaxFe2-xO3 are shown in this paper. Strong ferromagnetic resonances at different frequencies determined by the x parameter are found.

  15. Ultra-wideband design of waveguide magneto-optical isolator operating in 1.31mum and 1.55mum band.

    PubMed

    Shoji, Yuya; Mizumoto, Tetsuya

    2007-01-22

    The design of an ultra-wideband waveguide magneto-optical isolator is described. The isolator is based on a Mach-Zehnder interferometer employing nonreciprocal phase shift. The ultra-wideband design is realized by adjusting the wavelength dependence of reciprocal phase difference to compensate for that of nonreciprocal phase difference in the backward direction. We obtained the ultra-wideband design that provides isolation > 35dB from 1.25mum to >1.65mum. This is the proposal of magneto-optical isolator that operates both in 1.31mum band and 1.55mum band.

  16. The relationship between bond ionicity, lattice energy, coefficient of thermal expansion and microwave dielectric properties of Nd(Nb(1-x)Sb(x))O4 ceramics.

    PubMed

    Zhang, Ping; Zhao, Yonggui; Wang, Xiuyu

    2015-06-28

    The crystalline structure refinement, chemical bond ionicity, lattice energy and coefficient of thermal expansion were carried out for Nd(Nb(1-x)Sb(x))O4 ceramics with a monoclinic fergusonite structure to investigate the correlations between the crystalline structure, phase stability, bond ionicity, lattice energy, coefficient of thermal expansion, and microwave dielectric properties. The bond ionicity, lattice energy, and coefficient of thermal expansion of Nd(Nb(1-x)Sb(x))O4 ceramics were calculated using a semiempirical method based on the complex bond theory. The phase structure stability varied with the lattice energy which was resulted by the substitution constant of Sb(5+). With the increasing of the Sb(5+) contents, the decrease of Nb/Sb-O bond ionicity was observed, which could be contributed to the electric polarization. The ε(r) had a close relationship with the Nb/Sb-O bond ionicity. The increase of the Q×f and |τ(f)| values could be attributed to the lattice energy and the coefficient of thermal expansion. The microwave dielectric properties of Nd(Nb(1-x)Sb(x))O4 ceramics with the monoclinic fergusonite structure were strongly dependent on the chemical bond ionicity, lattice energy and coefficient of thermal expansion.

  17. Low-Temperature Sintering Li3Mg1.8Ca0.2NbO6 Microwave Dielectric Ceramics with LMZBS Glass

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Zhang, Huaiwu; Liu, Cheng; Su, Hua; Jia, Lijun; Li, Jie; Huang, Xin; Gan, Gongwen

    2018-05-01

    Li3Mg1.8Ca0.2NbO6 ceramics doped with Li2O-MgO-ZnO-B2O3-SiO2 glass (LMZBS) were prepared via a solid-state route. The LMZBS glass effectively reduced the sintering temperature of Li3Mg1.8Ca0.2NbO6 ceramics to 950°C. The effects of the LMZBS glass on the sintering behavior, microstructures and microwave dielectric properties of Li3Mg1.8Ca0.2NbO6 ceramics are discussed in detail. Among all the LMZBS doped Li3Mg1.8Ca0.2NbO6 ceramics, the sample with 1 wt.% of LMZBS glass sintered at 950°C for 4 h exhibited good dielectric properties: ɛ r = 16.7, Q × f = 31,000 GHz (9.92 GHz), τ f = - 1.3 ppm/°C. The Li3Mg1.8Ca0.2NbO6 ceramics possessed excellent chemical compatibility with Ag electrodes, and could be applied in low temperature co-fired ceramics (LTCC) applications.

  18. Early Breast Cancer Diagnosis Using Microwave Imaging via Space-Frequency Algorithm

    NASA Astrophysics Data System (ADS)

    Vemulapalli, Spandana

    The conventional breast cancer detection methods have limitations ranging from ionizing radiations, low specificity to high cost. These limitations make way for a suitable alternative called Microwave Imaging, as a screening technique in the detection of breast cancer. The discernible differences between the benign, malignant and healthy breast tissues and the ability to overcome the harmful effects of ionizing radiations make microwave imaging, a feasible breast cancer detection technique. Earlier studies have shown the variation of electrical properties of healthy and malignant tissues as a function of frequency and hence stimulates high bandwidth requirement. A Ultrawideband, Wideband and Narrowband arrays have been designed, simulated and optimized for high (44%), medium (33%) and low (7%) bandwidths respectively, using the EM (electromagnetic software) called FEKO. These arrays are then used to illuminate the breast model (phantom) and the received backscattered signals are obtained in the near field for each case. The Microwave Imaging via Space-Time (MIST) beamforming algorithm in the frequency domain, is next applied to these near field backscattered monostatic frequency response signals for the image reconstruction of the breast model. The main purpose of this investigation is to access the impact of bandwidth and implement a novel imaging technique for use in the early detection of breast cancer. Earlier studies show the implementation of the MIST imaging algorithm on the time domain signals via a frequency domain beamformer. The performance evaluation of the imaging algorithm on the frequency response signals has been carried out in the frequency domain. The energy profile of the breast in the spatial domain is created via the frequency domain Parseval's theorem. The beamformer weights calculated using these the MIST algorithm (not including the effect of the skin) has been calculated for Ultrawideband, Wideband and Narrowband arrays, respectively

  19. Ultra-wideband tunable resonator based on varactor-loaded complementary split-ring resonators on a substrate-integrated waveguide for microwave sensor applications.

    PubMed

    Sam, Somarith; Lim, Sungjoon

    2013-04-01

    This paper presents the modeling, design, fabrication, and measurement of an ultra-wideband tunable twoport resonator in which the substrate-integrated waveguide, complementary split-ring resonators (CSRRs), and varactors are embedded on the same planar platform. The tuning of the passband frequency is generated by a simple single dc voltage of 0 to 36 V, which is applied to each varactor on the CSRRs. Different capacitance values and resonant frequencies are produced while a nearly constant absolute bandwidth is maintained. The resonant frequency is varied between 0.83 and 1.58 GHz and has a wide tuning ratio of 90%.

  20. Ultra-wideband radar motion sensor

    DOEpatents

    McEwan, Thomas E.

    1994-01-01

    A motion sensor is based on ultra-wideband (UWB) radar. UWB radar range is determined by a pulse-echo interval. For motion detection, the sensors operate by staring at a fixed range and then sensing any change in the averaged radar reflectivity at that range. A sampling gate is opened at a fixed delay after the emission of a transmit pulse. The resultant sampling gate output is averaged over repeated pulses. Changes in the averaged sampling gate output represent changes in the radar reflectivity at a particular range, and thus motion.

  1. Ultra-wideband radar motion sensor

    DOEpatents

    McEwan, T.E.

    1994-11-01

    A motion sensor is based on ultra-wideband (UWB) radar. UWB radar range is determined by a pulse-echo interval. For motion detection, the sensors operate by staring at a fixed range and then sensing any change in the averaged radar reflectivity at that range. A sampling gate is opened at a fixed delay after the emission of a transmit pulse. The resultant sampling gate output is averaged over repeated pulses. Changes in the averaged sampling gate output represent changes in the radar reflectivity at a particular range, and thus motion. 15 figs.

  2. Measurement of the dipole moments of excited states and photochemical transients by microwave dielectric absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fessenden, R.W.; Carton, P.M.; Shimamori, H.

    1982-09-16

    Time-resolved changes in microwave dielectric absorption have been used to study transients formed by laser flash photolysis. Details of the method and apparatus are given. Applications both to the measurements of the dipole moments of transients and to decay kinetics are given. The dipole moments of the lowest triplet states of a number of aromatic compounds (mostly ketones) have been measured in benzene solution at room temperature. States of n..pi..* character generally possess smaller dipole moments than the corresponding ground states while states of ..pi pi..* character (for example, fluorenone) have larger values than the ground state. The triplets ofmore » 4-(dimethylamino)benzaldehyde and 4,4'-bis(dimethylamino)benzophenone have rather high values of dipole moment (10.5 and 8.4 D, respectively) showing their charge-transfer character. The triplet state of benzil was found to have zero or near-zero dipole moment, thus confirming that the triplet state is of a transstructure. 7 figures, 1 table.« less

  3. Microwave dielectric properties of CaCu{sub 3}Ti{sub 4}O{sub 12}-Al{sub 2}O{sub 3} composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Mohd Fariz Ab; Abu, Mohamad Johari; Zaman, Rosyaini Afindi

    2016-07-19

    (1-x)CaCu{sub 3}Ti{sub 4}O{sub 12} + (x)Al{sub 2}O{sub 3} composite (0 ≤ x ≤0.25) was prepared via conventional solid-state reaction method. The fabrication of sample was started with synthesizing stoichiometric CCTO from CaCO{sub 3}, CuO and TiO{sub 2} powders, then wet-mixed in deionized water for 24 h. The process was continued with calcined CCTO powder at 900 °C for 12 h before sintered at 1040 °C for 10 h. Next, the calcined CCTO powder with different amount of Al{sub 2}O{sub 3} were mixed for 24 h, then palletized and sintered at 1040 °C for 10. X-ray diffraction analysis on the sinteredmore » samples showed that CCTO powder was in a single phase, meanwhile the trace of secondary peaks which belong to CaAl{sub 2}O{sub 4} and Corundum (Al{sub 2}O{sub 3}) could be observed in the other samples Scanning electron microscopy analysis showed that the grain size of the sample is firstly increased with addition of Al{sub 2}O{sub 3} (x = 0.01), then become smaller with the x > 0.01. Microwave dielectric properties showed that the addition of Al{sub 2}O{sub 3} (x = 0.01) was remarkably reduced the dielectric loss while slightly increased the dielectric permittivity. However, further addition of Al{sub 2}O{sub 3} was reduced both dielectric loss and permittivity at least for an order of magnitude.« less

  4. Optimal width of quasicrystalline slabs of dielectric cylinders to microwave radiation transmission contrast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andueza, Ángel; Sevilla, Joaquín; Smart Cities Institute, Universidad Pública de Navarra, 31006 Pamplona

    2016-08-28

    Light confinement induced by resonant states in aperiodic photonic structures is interesting for many applications. A particular case of these resonances can be found in 2D quasicrystalline arrangements of dielectric cylinders. These systems present a rather isotropic band gap as well as isolated in-gap photonic states (as a result of spatially localized resonances). These states are built by high symmetry polygonal clusters that can be regarded as photonic molecules. In this paper, we study the transmission properties of a slab of glass cylinders arranged in approximants of the decagonal quasicrystalline structure. In particular, we investigate the influence of the slabmore » width in the transmission contrast between the states and the gap. The study is both experimental and numerical in the microwave regime. We find that the best transmission contrast is found for a width of around three times the radiation wavelength. The transmission in the band gap region is mediated by the resonances of the photonic molecules. If the samples are thin enough, they become transparent except around a resonance of the photonic molecule which reflects the incoming light.« less

  5. Microwave evaluation of electromigration susceptibility in advanced interconnects

    NASA Astrophysics Data System (ADS)

    Sunday, Christopher E.; Veksler, Dmitry; Cheung, Kin C.; Obeng, Yaw S.

    2017-11-01

    Traditional metrology has been unable to adequately address the needs of the emerging integrated circuits (ICs) at the nano scale; thus, new metrology and techniques are needed. For example, the reliability challenges in fabrication need to be well understood and controlled to facilitate mass production of through-substrate-via (TSV) enabled three-dimensional integrated circuits (3D-ICs). This requires new approaches to the metrology. In this paper, we use the microwave propagation characteristics to study the reliability issues that precede the physical damage caused by electromigration in the Cu-filled TSVs. The pre-failure microwave insertion losses and group delay are dependent on both the device temperature and the amount of current forced through the devices-under-test. The microwave insertion losses increase with the increase in the test temperature, while the group delay increases with the increase in the forced direct current magnitude. The microwave insertion losses are attributed to the defect mobility at the Cu-TiN interface, and the group delay changes are due to resistive heating in the interconnects, which perturbs the dielectric properties of the cladding dielectrics of the copper fill in the TSVs.

  6. Microwave evaluation of electromigration susceptibility in advanced interconnects.

    PubMed

    Sunday, Christopher E; Veksler, Dmitry; Cheung, Kin C; Obeng, Yaw S

    2017-11-07

    Traditional metrology has been unable to adequately address the needs of the emerging integrated circuits (ICs) at the nano scale; thus, new metrology and techniques are needed. For example, the reliability challenges in fabrication need to be well understood and controlled to facilitate mass production of through-substrate-via (TSV) enabled three-dimensional integrated circuits (3D-ICs). This requires new approaches to the metrology. In this paper, we use the microwave propagation characteristics to study the reliability issues that precede the physical damage caused by electromigration in the Cu-filled TSVs. The pre-failure microwave insertion losses and group delay are dependent on both the device temperature and the amount of current forced through the devices-under-test. The microwave insertion losses increase with the increase in the test temperature, while the group delay increases with the increase in the forced direct current magnitude. The microwave insertion losses are attributed to the defect mobility at the Cu-TiN interface, and the group delay changes are due to resistive heating in the interconnects, which perturbs the dielectric properties of the cladding dielectrics of the copper fill in the TSVs. https://doi.org/10.1063/1.4992135.

  7. Microwave switching power divider. [antenna feeds

    NASA Technical Reports Server (NTRS)

    Stockton, R. J.; Johnson, R. W. (Inventor)

    1981-01-01

    A pair of parallel, spaced-apart circular ground planes define a microwave cavity with multi-port microwave power distributing switching circuitry formed on opposite sides of a thin circular dielectric substrate disposed between the ground planes. The power distributing circuitry includes a conductive disk located at the center of the substrate and connected to a source of microwave energy. A high speed, low insertion loss switching diode and a dc blocking capacitor are connected in series between the outer end of a transmission line and an output port. A high impedance, microwave blocking dc bias choke is connected between each switching diode and a source of switching current. The switching source forward biases the diodes to couple microwave energy from the conductive disk to selected output ports and, to associated antenna elements connected to the output ports to form a synthesized antenna pattern.

  8. A reexamination of soil textural effects on microwave emission and backscattering

    NASA Technical Reports Server (NTRS)

    Dobson, M. C.; Kouyate, F.; Ulaby, F. T.

    1984-01-01

    Microwave frequency measurements of moist soil dielectric properties are noted to challenge the validity of percent-of-field-capacity as a moisture indicator that is independent of soil texture in terms of microwave sensitivity. In arriving at this view, gravimetric, volumetric, and percent-of-field-capacity were tested for their ability to reduce dielectric behavior divergence between soil textures at 1.4 and 5.0 GHz. The most congruent dielectric behavior between soil textures is found to occur when soil moisture is expressed on a volumetric basis that is proportional to the number of water dipoles/unit volume. An inadequate characterization of soil bulk density in the field, combined with the dependency of bulk density on water retention at field capacity, offers the most plausible explanation for the earlier conclusions.

  9. Microwave sensing of moisture content and bulk density in flowing grain

    USDA-ARS?s Scientific Manuscript database

    Moisture content and bulk density were determined from measurement of the dielectric properties of flowing wheat kernels at a single microwave frequency (5.8 GHz). The measuring system consisted of two high-gain microwave patch antennas mounted on opposite sides of rectangular chute and connected to...

  10. Effect of microwaves on the synthesis, structural and dielectric properties of Ca-modified BaTiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Salhi, Abdelaziz; Sayouri, Salah-eddine; Jaber, Boujemaa; Omari, L.-Haj

    2018-05-01

    A pre-heat treatment with a domestic microwave, (MW), performed on gel-dry of sol gel processed Ca-modified BaTiO3, with the chemical formulation Ba1- x Ca x TiO3 such as x = 0, 1, 5, 10, 15, 20 and 30%, has been shown to lower the calcination temperature of these samples and to strongly influence their physicochemical properties. Indeed, X-ray diffraction and Raman characterizations of the samples revealed a gradual change from tetragonal to pseudo cubic phase with increasing x and a predominance of the occupation of the Ti-site for the composition x < 10 and that of the Ba-site for x ≥ 10. Dielectric measurements have shown that the temperature, T m, of the ferro-to-paraelectric transition is sensitive to the above-mentioned behavior, with a diffuse character of this transition; T m first decreases for the concentrations in x such as x < = 10 (predominance of occupation of Ti sites) before it increases for the compositions with x > 10 (predominance of occupation of Ba-sites). The thermal behavior of the permittivity has been approached by the modified Uchino's law, allowing the calculation of the dielectric parameters (diffuseness and relaxation parameters).

  11. The microwave properties of Ag(Ta0.8Nb0.2)O3 thick film interdigital capacitors on alumina substrates

    NASA Astrophysics Data System (ADS)

    Lee, Ku-Tak; Koh, Jung-Hyuk

    2012-01-01

    In this paper, we will introduce the microwave properties of Ag(Ta0.8Nb0.2)O3 thick film planar type interdigital capacitors fabricated on alumina substrates. The tailored paraelectric state of Ag(Ta,Nb)O3 allows the material to be regarded as a part of the family of microwave materials. As thick films formed in our experiment, Ag(Ta,Nb)O3 exhibited extremely low dielectric loss with relatively high dielectric permittivity. This low dielectric loss is a very important issue for microwave applications. Therefore, we investigated the microwave properties of Ag(Ta0.8Nb0.2)O3 thick film planar type interdigital capacitors. Ag(Ta0.8Nb0.2)O3 thick films were prepared by a screen-printing method on alumina substrates and were sintered at 1140 °C for 2 hrs. The XRD analysis results showed that the Ag(Ta0.8Nb0.2)O3 thick film has the perovskite structure. The frequency dependent dielectric permittivity showed that these Ag(Ta0.8Nb0.2)O3 thick film planar type interdigital capacitors have very weak frequency dispersions with low loss tangents in the microwave range.

  12. Dielectric properties of lanthanum gallate (LaGaO3) crystal

    NASA Astrophysics Data System (ADS)

    Dube, D. C.; Scheel, H. J.; Reaney, I.; Daglish, M.; Setter, N.

    1994-04-01

    Dielectric properties of single crystals of LaGaO3 have been measured at low frequencies as well as in the microwave region over a wide temperature range. Measurements performed on two crystal orientations, viz. (001) and (110), show dielectric anomalies at a transition near 145 °C. Dielectric anisotropy below, but not above, 145 °C confirm the previously reported orthorhombic symmetry at room temperature and rhombohedral symmetry above 145 °C. Domain wall motion which arises as a result of a phase transition has been observed around 145 °C.

  13. Heat treatment effects on dielectric properties of SRFe{sub 12}O{sub 19} hexaferrite prepared by an SHS route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panchal, Nital R.; Jotania, Rajshree B., E-mail: natal_panchal@yahoo.co.in, E-mail: rbjotania@gmail.com

    2011-07-01

    The M-type Strontium Hexaferrite SRFe{sub 12}O{sub 19} particles were prepared by a Self propagating High temperature Synthesis (SHS) route. Precursors were heated under two different conditions: microwave heating for 30 minutes and sintered at 950 deg C for 4 hrs. The dielectric properties: dielectric constant ({epsilon}{sup '}), dielectric loss (tan {delta} ) and ac conductivity ({sigma}{sub ac}) were measured at room temperature in the frequency range from 100 Hz to 2 MHz. The samples present a non-linear behavior for the dielectric constant at 1 kHz, 100 kHz and 2 MHz. The dielectric properties of prepared Strontium Hexaferrite samples were discussedmore » in view of applications as a material for microwave devices, permanent magnets and high density magnetic recording media. (author)« less

  14. All-optical and broadband microwave fundamental/sub-harmonic I/Q down-converters.

    PubMed

    Gao, Yongsheng; Wen, Aijun; Jiang, Wei; Fan, Yangyu; He, You

    2018-03-19

    Microwave I/Q down-converters are frequently used in image-reject super heterodyne receivers, zero intermediate frequency (zero-IF) receivers, and phase/frequency discriminators. However, due to the electronic bottleneck, conventional microwave I/Q mixers face a serious bandwidth limitation, I/Q imbalance, and even-order distortion. In this paper, photonic microwave fundamental and sub-harmonic I/Q down-converters are presented using a polarization division multiplexing dual-parallel Mach-Zehnder modulator (PDM-DPMZM). Thanks to all-optical manipulation, the proposed system features an ultra-wide operating band (7-40 GHz in the fundamental I/Q down-converter, and 10-40 GHz in the sub-harmonic I/Q down-converter) and an excellent I/Q balance (maximum 0.7 dB power imbalance and 1 degree phase imbalance). The conversion gain, noise figure (NF), even-order distortion, and spurious free dynamic range (SFDR) are also improved by LO power optimization and balanced detection. Using the proposed system, a high image rejection ratio is demonstrated for a super heterodyne receiver, and good EVMs over a wide RF power range is demonstrated for a zero-IF receiver. The proposed broadband photonic microwave fundamental and sub-harmonic I/Q down-converters may find potential applications in multi-band satellite, ultra-wideband radar and frequency-agile electronic warfare systems.

  15. Microwave Characterization of Ba-Substituted PZT and ZnO Thin Films.

    PubMed

    Tierno, Davide; Dekkers, Matthijn; Wittendorp, Paul; Sun, Xiao; Bayer, Samuel C; King, Seth T; Van Elshocht, Sven; Heyns, Marc; Radu, Iuliana P; Adelmann, Christoph

    2018-05-01

    The microwave dielectric properties of (Ba 0.1 Pb 0.9 )(Zr 0.52 Ti 0.48 )O 3 (BPZT) and ZnO thin films with thicknesses below were investigated. No significant dielectric relaxation was observed for both BPZT and ZnO up to 30 GHz. The intrinsic dielectric constant of BPZT was as high as 980 at 30 GHz. The absence of strong dielectric dispersion and loss peaks in the studied frequency range can be linked to the small grain diameters in these ultrathin films.

  16. Tissue dielectric measurement using an interstitial dipole antenna.

    PubMed

    Wang, Peng; Brace, Christopher L

    2012-01-01

    The purpose of this study was to develop a technique to measure the dielectric properties of biological tissues with an interstitial dipole antenna based upon previous efforts for open-ended coaxial probes. The primary motivation for this technique is to facilitate treatment monitoring during microwave tumor ablation by utilizing the heating antenna without additional intervention or interruption of the treatment. The complex permittivity of a tissue volume surrounding the antenna was calculated from reflection coefficients measured after high-temperature microwave heating by using a rational function model of the antenna's input admittance. Three referencing liquids were needed for measurement calibration. The dielectric measurement technique was validated ex vivo in normal and ablated bovine livers. Relative permittivity and effective conductivity were lower in the ablation zone when compared to normal tissue, consistent with previous results. The dipole technique demonstrated a mean 10% difference of permittivity values when compared to open-ended coaxial cable measurements in the frequency range of 0.5-20 GHz. Variability in measured permittivities could be smoothed by fitting to a Cole-Cole dispersion model. Further development of this technique may facilitate real-time monitoring of microwave ablation treatments through the treatment applicator. © 2011 IEEE

  17. Tissue Dielectric Measurement Using an Interstitial Dipole Antenna

    PubMed Central

    Wang, Peng; Brace, Christopher L.

    2012-01-01

    The purpose of this study was to develop a technique to measure the dielectric properties of biological tissues with an interstitial dipole antenna based upon previous efforts for open-ended coaxial probes. The primary motivation for this technique is to facilitate treatment monitoring during microwave tumor ablation by utilizing the heating antenna without additional intervention or interruption of the treatment. The complex permittivity of a tissue volume surrounding the antenna was calculated from reflection coefficients measured after high-temperature microwave heating by using a rational function model of the antenna’s input admittance. Three referencing liquids were needed for measurement calibration. The dielectric measurement technique was validated ex vivo in normal and ablated bovine livers. Relative permittivity and effective conductivity were lower in the ablation zone when compared to normal tissue, consistent with previous results. The dipole technique demonstrated a mean 10% difference of permittivity values when compared to open-ended coaxial cable measurements in the frequency range of 0.5–20 GHz. Variability in measured permittivities could be smoothed by fitting to a Cole–Cole dispersion model. Further development of this technique may facilitate real-time monitoring of microwave ablation treatments through the treatment applicator. PMID:21914566

  18. An Ultra-Wideband Millimeter-Wave Phased Array

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Miranda, Felix A.; Volakis, John L.

    2016-01-01

    Wideband millimeter-wave arrays are of increasing importance due to their growing use in high data rate systems, including 5G communication networks. In this paper, we present a new class of ultra-wideband millimeter wave arrays that operate from nearly 20 GHz to 90 GHz. The array is based on tightly coupled dipoles. Feeding designs and fabrication challenges are presented, and a method for suppressing feed resonances is provided.

  19. Rapid Cellulose-Mediated Microwave Sintering for High-Conductivity Ag Patterns on Paper.

    PubMed

    Jung, Sunshin; Chun, Su Jin; Shon, Chae-Hwa

    2016-08-10

    Cellulose-based paper is essential in everyday life, but it also has further potentials for use in low-cost, printable, disposable, and eco-friendly electronics. Here, a method is developed for the cellulose-mediated microwave sintering of Ag patterns on conventional paper, in which the paper plays a significant role both as a flexible insulating substrate for the conductive Ag pattern and as a lossy dielectric media for rapid microwave heating. The anisotropic dielectric properties of the cellulose fibers mean that a microwave electric field applied parallel to the paper substrate provides sufficient heating to produce Ag patterns with a conductivity 29-38% that of bulk Ag in a short period of time (∼1 s) at 250-300 °C. Significantly, there is little thermal degradation of the substrate during this process. The microwave-sintered Ag patterns exhibit good mechanical stability against 10 000 bending cycles and can be easily soldered with lead-free solder. Therefore, cellulose-mediated microwave sintering presents a promising means of achieving short processing times and high electrical performance in flexible paper electronics.

  20. The dielectric properties of soil-water mixtures at microwave frequencies

    NASA Technical Reports Server (NTRS)

    Wang, J. R.

    1979-01-01

    Recent measurements on the dielectric constants of soil-water mixtures show the existence of two frequency regions in which the dielectric behavior of these mixtures was quite different. At the frequencies of 1.4 GHz to 5 GHz, there were strong evidences that the variations of the dielectric (epsilon) with water content (W) depended on soil type. While the real part of epsilon for sandy soils rose rapidly with the increase in W, epsilon for the high-clay content soils rose only slowly with W. As a consequence, epsilon was generally higher for the sandy soils than for the high-clay content soils at a given W. On the other hand, most of the measurements at frequencies 1 GHz indicated the increase of epsilon with W independent of soil types. At a given W, epsilon' (sandy soil) approximately equals epsilon (high-clay content soil) within the precision of the measurements. These observational features can be satisfactorily interpreted in terms of a simple dielectric relaxation model, with an appropriate choice of the mean relaxation frequency f(m) and the range of the activation energy (beta). It was found that smaller f(m) and larger beta were required for the high-clay content soils than the sandy soils in order to be consistent with the measured data.

  1. Characterizations of biodegradable epoxy-coated cellulose nanofibrils (CNF) thin film for flexible microwave applications

    Treesearch

    Hongyi Mi; Chien-Hao Liu; Tzu-Husan Chang; Jung-Hun Seo; Huilong Zhang; Sang June Cho; Nader Behdad; Zhenqiang Ma; Chunhua Yao; Zhiyong Cai; Shaoqin Gong

    2016-01-01

    Wood pulp cellulose nanofibrils (CNF) thin film is a novel recyclable and biodegradable material. We investigated the microwave dielectric properties of the epoxy coated-CNF thin film for potential broad applications in flexible high speed electronics. The characterizations of dielectric properties were carried out in a frequency range of 1–10 GHz. The dielectric...

  2. Electromagnetic Spectroscopy of Normal Breast Tissue Specimens Obtained From Reduction Surgeries: Comparison of Optical and Microwave Properties

    PubMed Central

    Lazebnik, Mariya; Zhu, Changfang; Palmer, Gregory M.; Harter, Josephine; Sewall, Sarah; Ramanujam, Nirmala; Hagness, Susan C.

    2009-01-01

    Techniques utilizing electromagnetic energy at microwave and optical frequencies have been shown to be promising for breast cancer detection and diagnosis. Since different biophysical mechanisms are exploited at these frequencies to discriminate between healthy and diseased tissue, combining these two modalities may result in a more powerful approach for breast cancer detection and diagnosis. Toward this end, we performed microwave dielectric spectroscopy and optical diffuse reflectance spectroscopy measurements at the same sites on freshly-excised normal breast tissues obtained from reduction surgeries at the University of Wisconsin Hospital, using microwave and optical probes with very similar sensing volumes. We found that the microwave dielectric constant and effective conductivity are correlated with tissue composition across the entire measurement frequency range (|r|~0.5–0.6, p<0.01), and that the optical absorption coefficient at 460 nm and optical scattering coefficient are correlated with tissue composition (|r|~ 0.4–0.6, p<0.02). Finally, we found that the optical absorption coefficient at 460 nm is correlated with the microwave dielectric constant and effective conductivity (r=−0.55, p<0.01). Our results suggest that combining optical and microwave modalities for analyzing breast tissue samples may serve as a crosscheck and provide complementary information about tissue composition. PMID:18838370

  3. Electromagnetic spectroscopy of normal breast tissue specimens obtained from reduction surgeries: comparison of optical and microwave properties.

    PubMed

    Lazebnik, Mariya; Zhu, Changfang; Palmer, Gregory M; Harter, Josephine; Sewall, Sarah; Ramanujam, Nirmala; Hagness, Susan C

    2008-10-01

    Techniques utilizing electromagnetic energy at microwave and optical frequencies have been shown to be promising for breast cancer detection and diagnosis. Since different biophysical mechanisms are exploited at these frequencies to discriminate between healthy and diseased tissue, combining these two modalities may result in a more powerful approach for breast cancer detection and diagnosis. Toward this end, we performed microwave dielectric spectroscopy and optical diffuse reflectance spectroscopy measurements at the same sites on freshly excised normal breast tissues obtained from reduction surgeries at the University of Wisconsin Hospital, using microwave and optical probes with very similar sensing volumes. We found that the microwave dielectric constant and effective conductivity are correlated with tissue composition across the entire measurement frequency range (|r| approximately 0.5-0.6, p<0.01) and that the optical absorption coefficient at 460 nm and optical scattering coefficient are correlated with tissue composition (|r| approximately 0.4-0.6, p<0.02). Finally, we found that the optical absorption coefficient at 460 nm is correlated with the microwave dielectric constant and effective conductivity (r=-0.55, p<0.01). Our results suggest that combining optical and microwave modalities for analyzing breast tissue samples may serve as a crosscheck and provide complementary information about tissue composition.

  4. Phase transition studies in barium and strontium titanates at microwave frequencies

    NASA Technical Reports Server (NTRS)

    Dahiya, Jai N.

    1993-01-01

    The objectives were the following: to understand the phase transformations in barium and strontium titanates as the crystals go from one temperature to the other; and to study the dielectric behavior of barium and strontium titanate crystals at a microwave frequency of 9.12 GHz and as a function of temperature. Phase transition studies in barium and strontium titanate are conducted using a cylindrical microwave resonant cavity as a probe. The cavity technique is quite successful in establishing the phase changes in these crystals. It appears that dipole relaxation plays an important role in the behavior of the dielectric response of the medium loading the cavity as phase change takes place within the sample. The method of a loaded resonant microwave cavity as applied in this work has proven to be sensitive enough to monitor small phase changes of the cavity medium.

  5. Critical parameters for sterilization of oil palm fruit by microwave irradiation

    NASA Astrophysics Data System (ADS)

    Sarah, Maya; Taib, M. R.

    2017-08-01

    Study to evaluate critical parameters for microwave irradiation to sterilize oil palm fruit was carried out at power density of 560 to 1120 W/kg. Critical parameters are important to ensure moisture loss during sterilization exceed the critical moisture (Mc) but less than maximum moisture (Mmax). Critical moisture in this study was determined according to dielectric loss factor of heated oil palm fruits at 2450 MHz. It was obtained from slope characterization of dielectric loss factor-vs-moisture loss curve. The Mc was used to indicate critical temperature (Tc) and critical time (tc) for microwave sterilization. To ensure moisture loss above critical value but not exceed maximum value, the combinations of time-temperature for sterilization of oil palm fruits by microwave irradiation were 6 min and 75°C to 17 min and 82°C respectively.

  6. Reducing Sweeping Frequencies in Microwave NDT Employing Machine Learning Feature Selection

    PubMed Central

    Moomen, Abdelniser; Ali, Abdulbaset; Ramahi, Omar M.

    2016-01-01

    Nondestructive Testing (NDT) assessment of materials’ health condition is useful for classifying healthy from unhealthy structures or detecting flaws in metallic or dielectric structures. Performing structural health testing for coated/uncoated metallic or dielectric materials with the same testing equipment requires a testing method that can work on metallics and dielectrics such as microwave testing. Reducing complexity and expenses associated with current diagnostic practices of microwave NDT of structural health requires an effective and intelligent approach based on feature selection and classification techniques of machine learning. Current microwave NDT methods in general based on measuring variation in the S-matrix over the entire operating frequency ranges of the sensors. For instance, assessing the health of metallic structures using a microwave sensor depends on the reflection or/and transmission coefficient measurements as a function of the sweeping frequencies of the operating band. The aim of this work is reducing sweeping frequencies using machine learning feature selection techniques. By treating sweeping frequencies as features, the number of top important features can be identified, then only the most influential features (frequencies) are considered when building the microwave NDT equipment. The proposed method of reducing sweeping frequencies was validated experimentally using a waveguide sensor and a metallic plate with different cracks. Among the investigated feature selection techniques are information gain, gain ratio, relief, chi-squared. The effectiveness of the selected features were validated through performance evaluations of various classification models; namely, Nearest Neighbor, Neural Networks, Random Forest, and Support Vector Machine. Results showed good crack classification accuracy rates after employing feature selection algorithms. PMID:27104533

  7. Moisture influence on the dielectric behavior of foods

    USDA-ARS?s Scientific Manuscript database

    The importance of dielectric properties of food materials is discussed with respect to their influence on the heating of materials by radio-frequency and microwave energy and their use for rapid, nondestructive sensing of quality characteristics of such materials. Data are presented graphically sho...

  8. Suppression of multipactor discharge on a dielectric surface by an external magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai Libing; Zhu Xiangqin; Wang Yue

    2011-07-15

    The multipactor discharge on a dielectric surface in an external magnetic field is simulated by using the particle-in-cell method, and the electron number, energy, the velocity of the yield of secondary electrons, and the power deposited on dielectric surface in the process of multipactor discharge are investigated. The effects of the strength of the external magnetic field on multipactor are studied. The results show that when the external magnetic field reaches a certain value, the multipactor is weaker than that in the case of no external magnetic field and becomes much lighter versus the strength of the external magnetic fieldmore » in the half microwave period in which the ExB drift pulls the electrons back to dielectric surface. And in the other half microwave period in which the ExB drift pushes the electrons away from the dielectric surface, the multipactor is cut off. So the power capability can be increased to the fourfold by the suppression of multipactor by applying an external magnetic field.« less

  9. Microwave Permittivity and Permeability Measurement on Lunar Soils

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin; Steinfeld, David; Begley, Shelley B.; Winterhalter, Daniel; Allen, Carlton

    2011-01-01

    There has been interest in finding ways to process the lunar regolith since the early analyses of lunar samples returned from the Apollo moon missions. This fact has led to proposals for using microwaves to perform in-situ processing of the lunar soil to support future colonization of the moon. More recently, there has been speculation that the excellent microwave absorption of lunar soil came from the nanophase iron content in the regolith. The motivation for the present study was to begin obtaining a more fundamental understanding of the dielectric and magnetic properties of the regolith at microwave frequencies. A major objective of this study was to obtain information that would help answer the question about whether nanophase iron plays a major role in heating lunar soils. These new measurements over a wide frequency range can also determine the magnitude of the dielectric and magnetic absorption and if there are any resonant features that could be used to enhance processing of the regolith in the future. In addition, these microwave measurements would be useful in confirming that new simulants being developed, particularly those containing nanophase iron, would have the correct composition to simulate the lunar regolith. The results of this study suggest that nanophase iron does not play a major role in heating lunar regolith.

  10. Ultra-wideband directional sampler

    DOEpatents

    McEwan, T.E.

    1996-05-14

    The Ultra-Wideband (UWB) Directional Sampler is a four port device that combines the function of a directional coupler with a high speed sampler. Two of the four ports operate at a high sub-nanosecond speed, in ``real time``, and the other two ports operate at a slow millisecond-speed, in ``equivalent time``. A signal flowing inbound to either of the high speed ports is sampled and coupled, in equivalent time, to the adjacent equivalent time port while being isolated from the opposite equivalent time port. A primary application is for a time domain reflectometry (TDR) situation where the reflected pulse returns while the outbound pulse is still being transmitted, such as when the reflecting discontinuity is very close to the TDR apparatus. 3 figs.

  11. Ultra-wideband directional sampler

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    The Ultra-Wideband (UWB) Directional Sampler is a four port device that combines the function of a directional coupler with a high speed sampler. Two of the four ports operate at a high sub-nanosecond speed, in "real time", and the other two ports operate at a slow millisecond-speed, in "equivalent time". A signal flowing inbound to either of the high speed ports is sampled and coupled, in equivalent time, to the adjacent equivalent time port while being isolated from the opposite equivalent time port. A primary application is for a time domain reflectometry (TDR) situation where the reflected pulse returns while the outbound pulse is still being transmitted, such as when the reflecting discontinuity is very close to the TDR apparatus.

  12. Ultrathin microwave absorber based on metamaterial

    NASA Astrophysics Data System (ADS)

    Kim, Y. J.; Yoo, Y. J.; Hwang, J. S.; Lee, Y. P.

    2016-11-01

    We suggest that ultrathin broadband metamaterial is a perfect absorber in the microwave regime by utilizing the properties of a resistive sheet and metamaterial. Meta-atoms are composed of four-leaf clover-shape metallic patterns and a metal plane separated by three intermediate resistive sheet layers between four dielectric layers. We interpret the absorption mechanism of the broadband by using the distribution of surface currents at specific frequencies. The simulated absorption was over 99% in 1.8-4.2 GHz. The corresponding experimental absorption was also over 99% in 2.62-4.2 GHz; however, the absorption was slightly lower than 99% in 1.8-2.62 GHz because of the sheet resistance and the changed values for the dielectric constant. Furthermore, it is independent of incident angle. The results of this research indicate the possibility of applications, due to the suppression of noxious exposure, in cell phones, computers and microwave equipments.

  13. Liquid hydrogen densitometer utilizes open-ended microwave cavity

    NASA Technical Reports Server (NTRS)

    Smetana, J.; Wenger, N. C.

    1967-01-01

    Open-ended microwave cavity directly measures the density of flowing liquid, gaseous, or two-phase hydrogen. Its operation is based on derived relations between the cavity resonant frequency and the dielectric constant and density of hydrogen.

  14. Microwave and millimeter wave dielectric permittivity and magnetic permeability of epsilon-gallium-iron-oxide nano-powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Liu, E-mail: liu.chao@tufts.edu; Afsar, Mohammed N.; Ohkoshi, Shin-ichi

    2015-05-07

    In millimeter wave frequency range, hexagonal ferrites with high uniaxial anisotropic magnetic fields are used as absorbers. These ferrites include M-type barium ferrite (BaFe{sub 12}O{sub 19}) and strontium ferrite (SrFe{sub 12}O{sub 19}), which have natural ferromagnetic resonant frequency range from 40 GHz to 60 GHz. However, the higher frequency range lacks suitable materials that support the higher frequency ferromagnetic resonance. A series of gallium-substituted ε-iron oxides (ε-Ga{sub x}Fe{sub 2−x}O{sub 3}) are synthesized, which have ferromagnetic resonant frequencies appearing over the frequency range of 30 GHz to 150 GHz. The ε-Ga{sub x}Fe{sub 2−x}O{sub 3} is synthesized by the sol-gel method. The particlemore » sizes are observed to be smaller than 100 nm. In this paper, in-waveguide transmission and reflection method and the free space magneto-optical approach have been employed to study these newly developed ε-Ga{sub x}Fe{sub 2−x}O{sub 3} particles in millimeter waves. These techniques enable to obtain precise transmission spectra to determine the dielectric and magnetic properties of both isotropic and anisotropic ferrites in the microwave and millimeter wave frequency range from single set of direct measurements. The complex dielectric permittivity and magnetic permeability spectra of ε-Ga{sub x}Fe{sub 2−x}O{sub 3} are shown in this paper. Strong ferromagnetic resonances at different frequencies determined by the x parameter are found.« less

  15. Measurement of dielectric properties of whole and ground chicken breast meat over the frequency range from 500 MHz to 50 GHz

    USDA-ARS?s Scientific Manuscript database

    The dielectric properties of food greatly influence its interaction with RF and MW electromagnetic fields and subsequently determine the absorption of microwave energy and consequent heating behavior of food materials in microwave heating and processing applications. Microwave heating is usually re...

  16. Microwave absorption studies of magnetic sublattices in microwave sintered Cr3+ doped SrFe12O19

    NASA Astrophysics Data System (ADS)

    Praveena, K.; Sadhana, K.; Liu, Hsiang-Lin; Bououdina, M.

    2017-03-01

    The partial substitution of Fe3+ by Cr3+ in strontium hexaferrite has shown to be an effective method to tailor anisotropy for many novel microwave applications. Some basic studies have revealed that this substitution leads to unusual interactions among the magnetic sublattices of the hexaferrite. In order to investigate these interactions, Cr3+ doped SrCrxFe12-xO19 (x=0.0, 0.1, 0.3, 0.5, 0.7 and 0.9) (m-type) hexaferrites were prepared by microwave-hydrothermal (m-H) method and subsequently sintered at 950 °C/90 min using microwave furnace. The magnetic hysteresis (m-H) loops revealed the ferromagnetic nature of nanoparticles (NPs). The coercive field was increasing from 3291 Oe to 7335 Oe with increasing chromium content. This resulting compacts exhibited high squareness ratio (Mr/Ms-80%). The intrinsic coercivity (Hci) above 1,20,000 Oe and high values of magnetocrystalline anisotropy revealed that all samples are magnetically hard materials. A material with high loss as well as high dielectric constant may be desired in applications such as electromagnetic (EM) wave absorbing coatings. The room temperature complex dielectric and magnetic properties (ε‧, ε‧‧, μ‧ and μ‧‧) of Cr3+ doped SrFe12O19 were measured in X-band region. The frequency dependent dielectric and magnetic losses were increasing to large extent. The reflection coefficient varied from -16 to -33 dB at 10.1 GHz as Cr3+ concentration increased from x=0.0 to x=0.9. Ferromagnetic resonance spectra (FMR) were measured in the X-band (9.4 GHz), linewidth decreases with chromium concentration from 1368 to 752 Oe from x=0.0 to x=0.9, which is quite low compared to commercial samples. We also have detailed origins of the FMR linewidth broadenings in terms of some important theoretical models. These results show that chromium doped strontium hexaferrites are useful for microwave absorption in the X-band frequency and also have potential for use in low frequency self-biased microwave

  17. Optically addressed ultra-wideband phased antenna array

    NASA Astrophysics Data System (ADS)

    Bai, Jian

    Demands for high data rate and multifunctional apertures from both civilian and military users have motivated development of ultra-wideband (UWB) electrically steered phased arrays. Meanwhile, the need for large contiguous frequency is pushing operation of radio systems into the millimeter-wave (mm-wave) range. Therefore, modern radio systems require UWB performance from VHF to mm-wave. However, traditional electronic systems suffer many challenges that make achieving these requirements difficult. Several examples includes: voltage controlled oscillators (VCO) cannot provide a tunable range of several octaves, distribution of wideband local oscillator signals undergo high loss and dispersion through RF transmission lines, and antennas have very limited bandwidth or bulky sizes. Recently, RF photonics technology has drawn considerable attention because of its advantages over traditional systems, with the capability of offering extreme power efficiency, information capacity, frequency agility, and spatial beam diversity. A hybrid RF photonic communication system utilizing optical links and an RF transducer at the antenna potentially provides ultra-wideband data transmission, i.e., over 100 GHz. A successful implementation of such an optically addressed phased array requires addressing several key challenges. Photonic generation of an RF source with over a seven-octave bandwidth has been demonstrated in the last few years. However, one challenge which still remains is how to convey phased optical signals to downconversion modules and antennas. Therefore, a feed network with phase sweeping capability and low excessive phase noise needs to be developed. Another key challenge is to develop an ultra-wideband array antenna. Modern frontends require antennas to be compact, planar, and low-profile in addition to possessing broad bandwidth, conforming to stringent space, weight, cost, and power constraints. To address these issues, I will study broadband and miniaturization

  18. Microwave characterization of slotline on high resistivity silicon for antenna feed network

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Taub, Susan R.; Lee, Richard Q.; Young, Paul G.

    1993-01-01

    Conventional silicon wafers have low resistivity and consequently unacceptably high value of dielectric attenuation constant. Microwave circuits for phased array antenna systems fabricated on these wafers therefore have low efficiency. By choosing a silicon substrate with sufficiently high resistivity it is possible to make the dielectric attenuation constant of the interconnecting microwave transmission lines approach those of GaAs or InP. In order for this to be possible, the transmission lines must be characterized. In this presentation, the effective dielectric constant (epsilon sub eff) and attenuation constant (alpha) of a slotline on high resistivity (5000 to 10 000 ohm-cm) silicon wafer will be discussed. The epsilon sub eff and alpha are determined from the measured resonant frequencies and the corresponding insertion loss of a slotline ring resonator. The results for slotline will be compared with microstrip line and coplanar waveguide.

  19. Microwave-assisted regeneration of synthetic zeolite used in tritium removal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, M.; Takayama, S.; Sano, S.

    The regeneration process using synthetic honeycomb type 5A zeolite under microwave irradiation was experimentally investigated using a single-mode cavity at 2.46 GHz. In order to investigate the effect of electromagnetic fields, inductive heating by a magnetic field was applied to synthetic zeolite containing water. Because the microwave energy absorbed in the sample was less than 15 W, the zeolite sample was only heated to a temperature of 71 C. degrees. Water desorption was observed based on the increased temperature of the zeolite sample and the thermogravimetric curve that indicated a single step phenomenon. As a result, the regeneration process ofmore » zeolite was not complete over a period of 6000 s. A comparison of dielectric heating by an electric field with inductive heating by a magnetic field showed that the regeneration process by microwave irradiation was particularly beneficial in dielectric heating. (authors)« less

  20. Experimental realization of a terahertz all-dielectric metasurface absorber.

    PubMed

    Liu, Xinyu; Fan, Kebin; Shadrivov, Ilya V; Padilla, Willie J

    2017-01-09

    Metamaterial absorbers consisting of metal, metal-dielectric, or dielectric materials have been realized across much of the electromagnetic spectrum and have demonstrated novel properties and applications. However, most absorbers utilize metals and thus are limited in applicability due to their low melting point, high Ohmic loss and high thermal conductivity. Other approaches rely on large dielectric structures and / or a supporting dielectric substrate as a loss mechanism, thereby realizing large absorption volumes. Here we present a terahertz (THz) all dielectric metasurface absorber based on hybrid dielectric waveguide resonances. We tune the metasurface geometry in order to overlap electric and magnetic dipole resonances at the same frequency, thus achieving an experimental absorption of 97.5%. A simulated dielectric metasurface achieves a total absorption coefficient enhancement factor of FT=140, with a small absorption volume. Our experimental results are well described by theory and simulations and not limited to the THz range, but may be extended to microwave, infrared and optical frequencies. The concept of an all-dielectric metasurface absorber offers a new route for control of the emission and absorption of electromagnetic radiation from surfaces with potential applications in energy harvesting, imaging, and sensing.

  1. Protection layers on a superconducting microwave resonator toward a hybrid quantum system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jongmin, E-mail: jongmin.lee@sandia.gov; Sandia National Laboratories, Albuquerque, New Mexico 87123; Park, Dong Hun, E-mail: leomac@umd.edu

    2015-10-07

    We propose a protection scheme of a superconducting microwave resonator to realize a hybrid quantum system, where cold neutral atoms are coupled with a single microwave photon through magnetic dipole interaction at an interface inductor. The evanescent field atom trap, such as a waveguide/nanofiber atom trap, brings both surface-scattered photons and absorption-induced broadband blackbody radiation which result in quasiparticles and a low quality factor at the resonator. A proposed multiband protection layer consists of pairs of two dielectric layers and a thin nanogrid conductive dielectric layer above the interface inductor. We show numerical simulations of quality factors and reflection/absorption spectra,more » indicating that the proposed multilayer structure can protect a lumped-element microwave resonator from optical photons and blackbody radiation while maintaining a reasonably high quality factor.« less

  2. Design and Realization of a Planar Ultrawideband Antenna with Notch Band at 3.5 GHz

    PubMed Central

    2014-01-01

    A small antenna with single notch band at 3.5 GHz is designed for ultrawideband (UWB) communication applications. The fabricated antenna comprises a radiating monopole element and a perfectly conducting ground plane with a wide slot. To achieve a notch band at 3.5 GHz, a parasitic element has been inserted in the same plane of the substrate along with the radiating patch. Experimental results shows that, by properly adjusting the position of the parasitic element, the designed antenna can achieve an ultrawide operating band of 3.04 to 11 GHz with a notched band operating at 3.31–3.84 GHz. Moreover, the proposed antenna achieved a good gain except at the notched band and exhibits symmetric radiation patterns throughout the operating band. The prototype of the proposed antenna possesses a very compact size and uses simple structures to attain the stop band characteristic with an aim to lessen the interference between UWB and worldwide interoperability for microwave access (WiMAX) band. PMID:25133245

  3. Fiber-distributed Ultra-wideband noise radar with steerable power spectrum and colorless base station.

    PubMed

    Zheng, Jianyu; Wang, Hui; Fu, Jianbin; Wei, Li; Pan, Shilong; Wang, Lixian; Liu, Jianguo; Zhu, Ninghua

    2014-03-10

    A fiber-distributed Ultra-wideband (UWB) noise radar was achieved, which consists of a chaotic UWB noise source based on optoelectronic oscillator (OEO), a fiber-distributed transmission link, a colorless base station (BS), and a cross-correlation processing module. Due to a polarization modulation based microwave photonic filter and an electrical UWB pass-band filter embedded in the feedback loop of the OEO, the power spectrum of chaotic UWB signal could be shaped and notch-filtered to avoid the spectrum-overlay-induced interference to the narrow band signals. Meanwhile, the wavelength-reusing could be implemented in the BS by means of the distributed polarization modulation-to-intensity modulation conversion. The experimental comparison for range finding was carried out as the chaotic UWB signal was notch-filtered at 5.2 GHz and 7.8 GHz or not. Measured results indicate that space resolution with cm-level could be realized after 3-km fiber transmission thanks to the excellent self-correlation property of the UWB noise signal provided by the OEO. The performance deterioration of the radar raised by the energy loss of the notch-filtered noise signal was negligible.

  4. Development of an Ultra-Wideband Receiver for the North America Array

    NASA Astrophysics Data System (ADS)

    Velazco, J. E.; Soriano, M.; Hoppe, D.; Russell, D.; D'Addario, L.; Long, E.; Bowen, J.; Samoska, L.; Lazio, J.

    2016-11-01

    The North America Array (NAA) is a concept for a radio astronomical interferometric array operating in the 1.2 GHz to 116 GHz frequency range. It has been designed to provide substantial improvements in sensitivity, angular resolution, and frequency coverage beyond the current Karl G. Jansky Very Large Array (VLA). It will have a continuous frequency coverage of 1.2 GHz to 50 GHz and 70 to 116 GHz, and a total aperture 10 times more sensitive than the VLA (and 25 times more sensitive than a 34-m-diameter antenna of the Deep Space Network [DSN]). One of the key goals for the NAA is to reduce the operating costs without sacrificing performance. We are designing an ultra-wideband receiver package designed to operate across the 8 to 48 GHz frequency range in contrast to the current VLA, which covers this frequency range with five receiver packages. Reducing the number of receiving systems required to cover the full frequency range would reduce operating costs. To minimize implementation, operational, and maintenance costs, we are developing a receiver that is compact, simple to assemble, and that consumes less power. The objective of this work is to develop a prototype integrated feed-receiver package with a sensitivity performance comparable to current narrower-band systems on radio telescopes and the DSN, but with a design that meets the requirement of low long-term operational costs. The ultra-wideband receiver package consists of a feedhorn, low-noise amplifier (LNA), and downconverters to analog intermediate frequencies. Both the feedhorn and the LNA are cryogenically cooled. Key features of this design are a quad-ridge feedhorn with dielectric loading and a cryogenic receiver with a noise temperature of no more than 30°K at the low end of the band. In this article, we report on the status of this receiver package development, including the feed design and LNA implementation. We present simulation studies of the feed horn carried out to optimize illumination

  5. Portable automated imaging in complex ceramics with a microwave interference scanning system

    NASA Astrophysics Data System (ADS)

    Goitia, Ryan M.; Schmidt, Karl F.; Little, Jack R.; Ellingson, William A.; Green, William; Franks, Lisa P.

    2013-01-01

    An improved portable microwave interferometry system has been automated to permit rapid examination of components with minimal operator attendance. Functionalities include stereo and multiplexed, frequency-modulated at multiple frequencies, producing layered volumetric images of complex ceramic structures. The technique has been used to image composite ceramic armor and ceramic matrix composite components, as well as other complex dielectric materials. The system utilizes Evisive Scan microwave interference scanning technique. Validation tests include artificial and in-service damage of ceramic armor, surrogates and ceramic matrix composite samples. Validation techniques include micro-focus x-ray and computed tomography imaging. The microwave interference scanning technique has demonstrated detection of cracks, interior laminar features and variations in material properties such as density. The image yields depth information through phase angle manipulation, and shows extent of feature and relative dielectric property information. It requires access to only one surface, and no coupling medium. Data are not affected by separation of layers of dielectric material, such as outer over-wrap. Test panels were provided by the US Army Research Laboratory, and the US Army Tank Automotive Research, Development and Engineering Center (TARDEC), who with the US Air Force Research Laboratory have supported this work.

  6. Variation in dielectric properties due to pathological changes in human liver.

    PubMed

    Peyman, Azadeh; Kos, Bor; Djokić, Mihajlo; Trotovšek, Blaž; Limbaeck-Stokin, Clara; Serša, Gregor; Miklavčič, Damijan

    2015-12-01

    Dielectric properties of freshly excised human liver tissues (in vitro) with several pathological conditions including cancer were obtained in frequency range 100 MHz-5 GHz. Differences in dielectric behavior of normal and pathological tissues at microwave frequencies are discussed based on histological information for each tissue. Data presented are useful for many medical applications, in particular nanosecond pulsed electroporation techniques. Knowledge of dielectric properties is vital for mathematical calculations of local electric field distribution inside electroporated tissues and can be used to optimize the process of electroporation for treatment planning procedures. © 2015 Wiley Periodicals, Inc.

  7. Microwave Dielectric Constant Dependence on Soil Tension.

    DTIC Science & Technology

    1983-10-01

    water to be only a single monolayer thick .1 (OA) with Ice-like dielectric properties EWS = (3.15, JO). The first approach apportions the soil solution Into...mixing model that accounts explicitly for the presence of a hydrationU layer of bound water adjacent to hydrophilic soil particle surfaces. The soil ... solution is differentiated Into (1) a bound, ice-like component and (2) a bulk solution component, by a physical soil model dependent upon either soil

  8. Amplifying Dynamic Nuclear Polarization of Frozen Solutions by Incorporating Dielectric Particles

    PubMed Central

    2014-01-01

    There is currently great interest in understanding the limits on NMR signal enhancements provided by dynamic nuclear polarization (DNP), and in particular if the theoretical maximum enhancements can be achieved. We show that over a 2-fold improvement in cross-effect DNP enhancements can be achieved in MAS experiments on frozen solutions by simply incorporating solid particles into the sample. At 9.4 T and ∼105 K, enhancements up to εH = 515 are obtained in this way, corresponding to 78% of the theoretical maximum. We also underline that degassing of the sample is important to achieve highest enhancements. We link the amplification effect to the dielectric properties of the solid material, which probably gives rise to scattering, diffraction, and amplification of the microwave field in the sample. This is substantiated by simulations of microwave propagation. A reduction in sample heating at a given microwave power also likely occurs due to reduced dielectric loss. Simulations indicate that the microwave field (and thus the DNP enhancement) is inhomogeneous in the sample, and we deduce that in these experiments between 5 and 10% of the solution actually yields the theoretical maximum signal enhancement of 658. The effect is demonstrated for a variety of particles added to both aqueous and organic biradical solutions. PMID:25285480

  9. EDITORIAL: Microwave Moisture Measurements

    NASA Astrophysics Data System (ADS)

    Kaatze, Udo; Kupfer, Klaus; Hübner, Christof

    2007-04-01

    Microwave moisture measurements refer to a methodology by which the water content of materials is non-invasively determined using electromagnetic fields of radio and microwave frequencies. Being the omnipresent liquid on our planet, water occurs as a component in most materials and often exercises a significant influence on their properties. Precise measurements of the water content are thus extremely useful in pure sciences, particularly in biochemistry and biophysics. They are likewise important in many agricultural, technical and industrial fields. Applications are broad and diverse, and include the quality assessment of foodstuffs, the determination of water content in paper, cardboard and textile production, the monitoring of moisture in sands, gravels, soils and constructions, as well as the measurement of water admixtures to coal and crude oil in reservoirs and in pipelines. Microwave moisture measurements and evaluations require insights in various disciplines, such as materials science, dielectrics, the physical chemistry of water, electrodynamics and microwave techniques. The cooperation of experts from the different fields of science is thus necessary for the efficient development of this complex discipline. In order to advance cooperation the Workshop on Electromagnetic Wave Interaction with Water and Moist Substances was held in 1993 in Atlanta. It initiated a series of international conferences, of which the last one was held in 2005 in Weimar. The meeting brought together 130 scientists and engineers from all over the world. This special issue presents a collection of some selected papers that were given at the event. The papers cover most topics of the conference, featuring dielectric properties of aqueous materials, electromagnetic wave interactions, measurement methods and sensors, and various applications. The special issue is dedicated to Dr Andrzej W Kraszewski, who died in July 2006 after a distinguished career of 48 years in the research of

  10. Soil moisture mapping by ground and airborne microwave radiometry

    NASA Technical Reports Server (NTRS)

    Poe, G.; Edgerton, A. T.

    1972-01-01

    Extensive ground-based and airborne investigations were undertaken in conjunction with laboratory dielectric measurements of soils and analytical modeling. Radiometric measurements were made in the vicinity of Phoenix, Arizona at observational wavelengths ranging from 0.81 to 21 cm. Ground experiments were conducted with a microwave field laboratory and airborne measurements were obtained from a CV-990 aircraft. Research activities were focused on establishing basic relationships between microwave emission and the distribution of moisture.

  11. All-metal superconducting planar microwave resonator

    NASA Astrophysics Data System (ADS)

    Horsley, Matt; Pereverzev, Sergey; Dubois, Jonathon; Friedrich, Stephan; Qu, Dongxia; Libby, Steve; Lordi, Vincenzo; Carosi, Gianpaolo; Stoeffl, Wolfgang; Chapline, George; Drury, Owen; Quantum Noise in Superconducting Devices Team

    There is common agreement that noise and resonance frequency jitter in superconducting microwave planar resonators are caused by presence of two-level systems, or fluctuators, in resonator materials- in dielectric substrate, in superconducting and dielectric layers and on the boundaries and interfaces. Scaling of noise with device dimensions indicate that fluctuators are likely concentrated around boundaries; physical nature of those fluctuators remains unclear. The presence of dielectrics is not necessary for the superconducting device functionality, and one can ask question about properties of all-metal device, where dielectric substrate and oxide films on metal are absent. Resonator made from of thin conducting layer with cuts in it is usually called slot line resonator. We report on the design, fabrication and initial testing of multiple split rings slot line resonator made out of thin molybdenum plate. This work is being funded as part of a three year strategic initiative (LDRD 16-SI-004) to better understand noise in superconducting devices.

  12. TOPICAL REVIEW: Modelling the interaction of electromagnetic fields (10 MHz 10 GHz) with the human body: methods and applications

    NASA Astrophysics Data System (ADS)

    Hand, J. W.

    2008-08-01

    Numerical modelling of the interaction between electromagnetic fields (EMFs) and the dielectrically inhomogeneous human body provides a unique way of assessing the resulting spatial distributions of internal electric fields, currents and rate of energy deposition. Knowledge of these parameters is of importance in understanding such interactions and is a prerequisite when assessing EMF exposure or when assessing or optimizing therapeutic or diagnostic medical applications that employ EMFs. In this review, computational methods that provide this information through full time-dependent solutions of Maxwell's equations are summarized briefly. This is followed by an overview of safety- and medical-related applications where modelling has contributed significantly to development and understanding of the techniques involved. In particular, applications in the areas of mobile communications, magnetic resonance imaging, hyperthermal therapy and microwave radiometry are highlighted. Finally, examples of modelling the potentially new medical applications of recent technologies such as ultra-wideband microwaves are discussed.

  13. Dependence of microwave dielectric properties on crystallization behaviour of CaMgSi{sub 2}O{sub 6} glass-ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Bo Kyeong; Jang, Sung Wook; Kim, Eung Soo, E-mail: eskim@kyonggi.ac.kr

    2015-07-15

    The effects of the crystallization behaviour of CaMgSi{sub 2}O{sub 6} (diopside) glass-ceramics on their microwave dielectric properties were investigated as functions of the Cr{sub 2}O{sub 3} content and heat-treatment method used (one or two steps). The crystallization behaviours of the specimens were affected by the Cr{sub 2}O{sub 3} content as well as by the heat-treatment method employed, and were evaluated using X-ray diffraction and the combined Rietveld and reference intensity ratio (RIR) method. The dielectric constants (K) of the specimens did not change significantly with an increase in the Cr{sub 2}O{sub 3} content. The quality factor (Qf) of the specimensmore » increased for Cr{sub 2}O{sub 3} contents of up to 0.5 wt% Cr{sub 2}O{sub 3}, but then decreased for higher contents. These results could be attributed to the degree of crystallization. For the same Cr{sub 2}O{sub 3} content, the specimens that underwent a two-step heat treatment showed lower K values and higher Qf values than those heat-treated in one-step. These results could be attributed to the smaller crystallite size and higher degree of crystallization in the specimens obtained from the two-step heat treatment compared with those of the specimens heat-treated in one-step method.« less

  14. Measurement of complex terahertz dielectric properties of polymers using an improved free-space technique

    NASA Astrophysics Data System (ADS)

    Chang, Tianying; Zhang, Xiansheng; Yang, Chuanfa; Sun, Zhonglin; Cui, Hong-Liang

    2017-04-01

    The complex dielectric properties of non-polar solid polymer materials were measured in the terahertz (THz) band by a free-space technique employing a frequency-extended vector network analyzer (VNA), and by THz time-domain spectroscopy (TDS). Mindful of THz wave’s unique characteristics, the free-space method for measurement of material dielectric properties in the microwave band was expanded and improved for application in the THz frequency region. To ascertain the soundness and utility of the proposed method, measurements of the complex dielectric properties of a variety of polymers were carried out, including polytetrafluoroethylene (PTFE, known also by the brand name Teflon), polypropylene (PP), polyethylene (PE), and glass fiber resin (Composite Stone). The free-space method relies on the determination of electromagnetic scattering parameters (S-parameters) of the sample, with the gated-reflect-line (GRL) calibration technique commonly employed using a VNA. Subsequently, based on the S-parameters, the dielectric constant and loss characteristic of the sample were calculated by using a Newtonian iterative algorithm. To verify the calculated results, THz TDS technique, which produced Fresnel parameters such as reflection and transmission coefficients, was also used to independently determine the dielectric properties of these polymer samples, with results satisfactorily corroborating those obtained by the free-space extended microwave technique.

  15. Microwave moisture meter for in-shell peanut kernels

    USDA-ARS?s Scientific Manuscript database

    . A microwave moisture meter built with off-the-shelf components was developed, calibrated and tested in the laboratory and in the field for nondestructive and instantaneous in-shell peanut kernel moisture content determination from dielectric measurements on unshelled peanut pod samples. The meter ...

  16. Microwave integrated circuit for Josephson voltage standards

    NASA Technical Reports Server (NTRS)

    Holdeman, L. B.; Toots, J.; Chang, C. C. (Inventor)

    1980-01-01

    A microwave integrated circuit comprised of one or more Josephson junctions and short sections of microstrip or stripline transmission line is fabricated from thin layers of superconducting metal on a dielectric substrate. The short sections of transmission are combined to form the elements of the circuit and particularly, two microwave resonators. The Josephson junctions are located between the resonators and the impedance of the Josephson junctions forms part of the circuitry that couples the two resonators. The microwave integrated circuit has an application in Josephson voltage standards. In this application, the device is asymmetrically driven at a selected frequency (approximately equal to the resonance frequency of the resonators), and a d.c. bias is applied to the junction. By observing the current voltage characteristic of the junction, a precise voltage, proportional to the frequency of the microwave drive signal, is obtained.

  17. Near-Field Resonance Microwave Tomography and Holography

    NASA Astrophysics Data System (ADS)

    Gaikovich, K. P.; Smirnov, A. I.; Yanin, D. V.

    2018-02-01

    We develop the methods of electromagnetic computer near-field microwave tomography of distributed subsurface inhomogeneities of complex dielectric permittivity and of holography (shape retrieval) of internally homogeneous subsurface objects. The methods are based on the solution of the near-field inverse scattering problem from measurements of the resonance-parameter variations of microwave probes above the medium surface. The capabilities of the proposed diagnostic technique are demonstrated in the numerical simulation for sensors with a cylindrical capacitor as a probe element, the edge capacitance of which is sensitive to subsurface inhomogeneities.

  18. Ultra-Wideband Electromagnetic Pulse Propagation through Causal Media

    DTIC Science & Technology

    2016-03-04

    AFRL-AFOSR-VA-TR-2016-0112 Ultra-Wideband Electromagnetic Pulse Propagation through Causal Media Natalie Cartwright RESEARCH FOUNDATION OF STATE... Electromagnetic Pulse Propagation through Causal Media 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-13-1-0013 5c.  PROGRAM ELEMENT NUMBER 61102F 6...SUPPLEMENTARY NOTES 14. ABSTRACT When an electromagnetic pulse travels through a dispersive material each frequency of the transmitted pulse changes in both

  19. Dielectric properties of biomass and biochar mixtures for bioenergy applications

    USDA-ARS?s Scientific Manuscript database

    Biomass is an abundant and renewable energy resource, which may be converted into energy-dense products through thermochemical processes such as pyrolysis and gasification. Since microwave heating depends on the dielectric properties of the biomass material, these properties were measured at freque...

  20. Dielectric spectroscopic studies on the water hyacinth plant collected from agriculture drainage.

    PubMed

    Mahani, Ragab; Atia, Fatma; Al Neklawy, Mohammed M; Fahem, Amin

    2016-06-05

    The present paper aims to investigate the sensitivity of dielectric spectroscopy to changes in concentrations of pollutants (heavy metals and metal oxides) uptake by the water hyacinth plant collected from agriculture wastewater drainage. The measurements were carried out on the dried root and shoot plant parts before and after subjecting to different microwave heating powers for different times. Dielectric properties of the untreated root were investigated at temperature range (30-90°C). X-ray fluorescence spectroscopy (XRF) results showed that the concentration of metals and metals oxides are higher in plant root than in plant shoot. Accordingly, the obtained dielectric properties were found to depend on the applied electric field frequency, magnitude of heating power as well as concentrations of pollutants. Analysis of experimental data represented by the imaginary part of the dielectric modulus M″ (ω) revealed to the presence of three different relaxation processes. The lower frequency relaxation process was associated to charge carriers conduction whereas those appeared at higher frequencies were associated to different types of interfacial polarization. The plant ability for removing heavy metals and metal oxides from the aquatic environments would be enhanced upon subjecting to microwave heating power with 400 W for 30 min. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Microwave Nondestructive Evaluation of Dielectric Materials with a Metamaterial Lens

    NASA Technical Reports Server (NTRS)

    Shreiber, Daniel; Gupta, Mool; Cravey, Robin L.

    2008-01-01

    A novel microwave Nondestructive Evaluation (NDE) sensor was developed in an attempt to increase the sensitivity of the microwave NDE method for detection of defects small relative to a wavelength. The sensor was designed on the basis of a negative index material (NIM) lens. Characterization of the lens was performed to determine its resonant frequency, index of refraction, focus spot size, and optimal focusing length (for proper sample location). A sub-wavelength spot size (3 dB) of 0.48 lambda was obtained. The proof of concept for the sensor was achieved when a fiberglass sample with a 3 mm diameter through hole (perpendicular to the propagation direction of the wave) was tested. The hole was successfully detected with an 8.2 cm wavelength electromagnetic wave. This method is able to detect a defect that is 0.037 lambda. This method has certain advantages over other far field and near field microwave NDE methods currently in use.

  2. Additive manufacturing and analysis of high frequency interconnects for microwave devices

    NASA Astrophysics Data System (ADS)

    Harper, Elicia K.

    Wire bond interconnects have been the main approach to interconnecting microelectronic devices within a package. Conventional wirebonding however offers little control of the impedance of the interconnect and also introduces parasitic inductance that can degrade performance at microwave frequencies. The size and compactness of microchips is often an issue when it comes to attaching wirebonds to the microchip or other components within a microwave module. This work demonstrates the use of additive manufacturing for printing interconnects directly between bare die microchips and other components within a microwave module. A test structure was developed consisting of a GaAs microchip sandwiched between two alumina blocks patterned with coplanar waveguides (CPW). A printed dielectric ink is used to fill the gap between the alumina CPW blocks and the GaAs chip. Conductive interconnects are printed on top of the dielectric bridge material to connect the CPW traces to the bonding pads on the GaAs microchip. Simulations of these structures were modeled in the electromagnetics simulation tool by ANSYS, high frequency structure simulation (HFSS), to optimize the printed interconnects at 1-40 GHz (ANSYS Inc., Canonsburg, PA). The dielectric constant and loss tangent of the simulated dielectric was varied along with the dimensions of the conductive interconnects. The best combination of dielectric properties and interconnect dimensions was chosen for impedance matching by analyzing the insertion losses and return losses. A dielectric ink, which was chosen based on the simulated results, was experimentally printed between the two CPW blocks and the GaAs chip and subsequently cured. The conductive interconnects were then printed with an aerosol jet printer, connecting the CPW traces to the bonding pads on the GaAs microchip. The experimental prototype was then measured with a network analyzer and the measured data were compared to simulations. Results show good agreement between

  3. Patterned Ferroelectric Films for Tunable Microwave Devices

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Mueller, Carl H.

    2008-01-01

    Tunable microwave devices based on metal terminals connected by thin ferroelectric films can be made to perform better by patterning the films to include suitably dimensioned, positioned, and oriented constrictions. The patterns can be formed during fabrication by means of selective etching processes. If the width of the ferroelectric film in such a device is reduced at one or more locations, then both the microwave field and any applied DC bias (tuning) electric field become concentrated at those locations. The magnitudes of both the permittivity and the dielectric loss of a ferroelectric material are reduced by application of a DC field. Because the concentration of the DC field in the constriction(s) magnifies the permittivity- and loss-reducing effects of the applied DC voltage, the permittivity and dielectric loss in the constriction(s) are smaller in the constriction(s) than they are in the wider parts of the ferroelectric film. Furthermore, inasmuch as displacement current must flow through either the constriction(s) or the low-loss dielectric substrate, the net effect of the constriction(s) is equivalent to that of incorporating one or more low-loss, low-permittivity region(s) in series with the high-loss, high-permittivity regions. In a series circuit, the properties of the low-capacitance series element (in this case, the constriction) dominate the overall performance. Concomitantly, the capacitance between the metal terminals is reduced. By making the capacitance between the metal terminals small but tunable, a constriction increases the upper limit of the frequency range amenable to ferroelectric tuning. The present patterning concept is expected to be most advantageous for devices and circuits that must operate at frequencies from about 4 to about 60 GHz. A constriction can be designed such that the magnitude of the microwave electric field and the effective width of the region occupied by the microwave electric field become functions of the applied DC

  4. Achieving a multi-band metamaterial perfect absorber via a hexagonal ring dielectric resonator

    NASA Astrophysics Data System (ADS)

    Li, Li-Yang; Wang, Jun; Du, Hong-Liang; Wang, Jia-Fu; Qu, Shao-Bo

    2015-06-01

    A multi-band absorber composed of high-permittivity hexagonal ring dielectric resonators and a metallic ground plate is designed in the microwave band. Near-unity absorptions around 9.785 GHz, 11.525 GHz, and 12.37 GHz are observed for this metamaterial absorber. The dielectric hexagonal ring resonator is made of microwave ceramics with high permittivity and low loss. The mechanism for the near-unity absorption is investigated via the dielectric resonator theory. It is found that the absorption results from electric and magnetic resonances where enhanced electromagnetic fields are excited inside the dielectric resonator. In addition, the resonance modes of the hexagonal resonator are similar to those of standard rectangle resonators and can be used for analyzing hexagonal absorbers. Our work provides a new research method as well as a solid foundation for designing and analyzing dielectric metamaterial absorbers with complex shapes. Project supported by the National Natural Science Foundation of China (Grant Nos. 61331005, 11204378, 11274389, 11304393, and 61302023), the Aviation Science Foundation of China (Grant Nos. 20132796018 and 20123196015), the Natural Science Foundation for Post-Doctoral Scientists of China (Grant Nos. 2013M532131 and 2013M532221), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2013JM6005), and the Special Funds for Authors of Annual Excellent Doctoral Degree Dissertations of China (Grant No. 201242).

  5. FDTD computation of human eye exposure to ultra-wideband electromagnetic pulses.

    PubMed

    Simicevic, Neven

    2008-03-21

    With an increase in the application of ultra-wideband (UWB) electromagnetic pulses in the communications industry, radar, biotechnology and medicine, comes an interest in UWB exposure safety standards. Despite an increase of the scientific research on bioeffects of exposure to non-ionizing UWB pulses, characterization of those effects is far from complete. A numerical computational approach, such as a finite-difference time domain (FDTD) method, is required to visualize and understand the complexity of broadband electromagnetic interactions. The FDTD method has almost no limits in the description of the geometrical and dispersive properties of the simulated material, it is numerically robust and appropriate for current computer technology. In this paper, a complete calculation of exposure of the human eye to UWB electromagnetic pulses in the frequency range of 3.1-10.6, 22-29 and 57-64 GHz is performed. Computation in this frequency range required a geometrical resolution of the eye of 0.1 mm and an arbitrary precision in the description of its dielectric properties in terms of the Debye model. New results show that the interaction of UWB pulses with the eye tissues exhibits the same properties as the interaction of the continuous electromagnetic waves (CWs) with the frequencies from the pulse's frequency spectrum. It is also shown that under the same exposure conditions the exposure to UWB pulses is from one to many orders of magnitude safer than the exposure to CW.

  6. Dielectric Haloscopes: A New Way to Detect Axion Dark Matter.

    PubMed

    Caldwell, Allen; Dvali, Gia; Majorovits, Béla; Millar, Alexander; Raffelt, Georg; Redondo, Javier; Reimann, Olaf; Simon, Frank; Steffen, Frank

    2017-03-03

    We propose a new strategy to search for dark matter axions in the mass range of 40-400 μeV by introducing dielectric haloscopes, which consist of dielectric disks placed in a magnetic field. The changing dielectric media cause discontinuities in the axion-induced electric field, leading to the generation of propagating electromagnetic waves to satisfy the continuity requirements at the interfaces. Large-area disks with adjustable distances boost the microwave signal (10-100 GHz) to an observable level and allow one to scan over a broad axion mass range. A sensitivity to QCD axion models is conceivable with 80 disks of 1  m^{2} area contained in a 10 T field.

  7. Resonance of electromagnetic absorption in a dielectric composite based on a high temperature superconductor

    NASA Astrophysics Data System (ADS)

    Grishin, A. M.; D'Iakonov, V. P.; Mezin, N. I.; Shapovalov, V. A.; Starostiuk, N. Iu.; Iarosh, G. S.

    1992-10-01

    A dielectric composite has been produced which is characterized by a sufficiently strong dependence of its microwave properties on weak magnetic fields. The composite is based on highly dispersed YBa2Cu3O(7-x) superconducting powder, with paraffin used as the matrix material. Results of a study of the magnetic and microwave properties of the composite are presented.

  8. Enhanced conductive loss in nickel–cobalt sulfide nanostructures for highly efficient microwave absorption and shielding

    NASA Astrophysics Data System (ADS)

    Li, Wanrong; Zhou, Min; Lu, Fei; Liu, Hongfei; Zhou, Yuxue; Zhu, Jun; Zeng, Xianghua

    2018-06-01

    Microwave-absorbing materials with light weight and high efficiency are desirable in addressing electromagnetic interference (EMI) problems. Herein, a nickel–cobalt sulfide (NCS) nanostructure was employed as a robust microwave absorber, which displayed an optimized reflection loss of  ‑49.1 dB in the gigahertz range with a loading of only 20 wt% in an NCS/paraffin wax composite. High electrical conductivity was found to contribute prominent conductive loss in NCS, leading to intense dielectric loss within a relatively low mass loading. Furthermore, owing to its high electrical conductivity and remarkable dielectric loss to microwaves, the prepared NCS exhibited excellent performance in EMI shielding. The EMI shielding efficiency of the 50 wt% NCS/paraffin composite exceeded 55 dB at the X-band, demonstrating NCS is a versatile candidate for solving EMI problems.

  9. Dielectric properties of glassy disaccharides for electromagnetic interference shielding application

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, P.; Hawelek, L.; Paluch, M.; Wlodarczyk, A.; Wojnarowska, Z.; Kolano-Burian, A.

    2015-11-01

    Three amorphous disaccharides (sucrose, trehalose, and lactulose) and their mixtures were studied in order to evaluate their ability to absorb a high frequency (>1 MHz) electromagnetic wave. The materials were characterized by a dielectric loss tangent. It was found out that the highest tan(δ) value is observed in pure amorphous sucrose (tan(δ) = 0.17 at f = 1 MHz at T = 293 K). Moreover, the best Tg/tan(δ) ratio is observed in binary mixtures of sucrose and trehalose. A high glass transition temperature is advantageous as it increases operational temperatures of the material. The high tangent delta in microwave frequencies of sugars is connected with the mobility of sugar groups (possibly -CH2OH). The energy of the electromagnetic wave is converted into rotational movements of side groups and in consequence it is dissipated in the form of heat. It was proven that the polar low molecular glasses such as sugars may form dielectric components of composite microwave absorbers.

  10. An omnidirectional retroreflector based on the transmutation of dielectric singularities.

    PubMed

    Ma, Yun Gui; Ong, C K; Tyc, Tomás; Leonhardt, Ulf

    2009-08-01

    Transformation optics is a concept used in some metamaterials to guide light on a predetermined path. In this approach, the materials implement coordinate transformations on electromagnetic waves to create the illusion that the waves are propagating through a virtual space. Transforming space by appropriately designed materials makes devices possible that have been deemed impossible. In particular, transformation optics has led to the demonstration of invisibility cloaking for microwaves, surface plasmons and infrared light. Here, on the basis of transformation optics, we implement a microwave device that would normally require a dielectric singularity, an infinity in the refractive index. To fabricate such a device, we transmute a dielectric singularity in virtual space into a mere topological defect in a real metamaterial. In particular, we demonstrate an omnidirectional retroreflector, a device for faithfully reflecting images and for creating high visibility from all directions. Our method is robust, potentially broadband and could also be applied to visible light using similar techniques.

  11. Design of Dielectric-Loaded Circumferential Slot Antennas of Arbitrary Size for Conical and Cylindrical Bodies

    DTIC Science & Technology

    1974-09-01

    designed in the surface of small or large dielectric structures and results in durable antennas that may operate in the UHF or microwave frequerncy...in tne guide is given by g g =, o (i) 0c 1Moreno, T. Microwave Transmission Design Data, McGraw-Hill Book Co., N.Y., 1948. 2 Sevenson, A. F., Jr...size and a high Q that makes it useful in the UHF and microwave frequency regions. Such a resonant cavity is shown in figure 1. Normally, waveguide

  12. Quasi-static Design of Electrically Small Ultra-Wideband Antennas

    DTIC Science & Technology

    2017-02-01

    this design reduces the width of the antenna, which implies that the bulb shape can be non -spherical at high frequencies. The stored energy in an...conclusion. The Quasi-static Antenna Design Algorithm generates three UWB non -spherical bulb shapes. The non -spherical bulb shape performs as well...TECHNICAL REPORT 3056 February 2017 Quasi-static Design of Electrically Small Ultra-Wideband Antennas Thomas O. Jones III Approved for public

  13. Microwave Extraction of Lunar Water for Rocket Fuel

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.; Donahue, Benjamin; Kaukler, William

    2008-01-01

    Nearly 50% of the lunar surface is oxygen, present as oxides in silicate rocks and soil. Methods for reduction of these oxides could liberate the oxygen. Remote sensing has provided evidence of significant quantities of hydrogen possibly indicating hundreds of millions of metric tons, MT, of water at the lunar poles. If the presence of lunar water is verified, water is likely to be the first in situ resource exploited for human exploration and for LOX-H2 rocket fuel. In-Situ lunar resources offer unique advantages for space operations. Each unit of product produced on the lunar surface represents 6 units that need not to be launched into LEO. Previous studies have indicated the economic advantage of LOX for space tugs from LEO to GEO. Use of lunar derived LOX in a reusable lunar lander would greatly reduce the LEO mass required for a given payload to the moon. And Lunar LOX transported to L2 has unique advantages for a Mars mission. Several methods exist for extraction of oxygen from the soil. But, extraction of lunar water has several significant advantages. Microwave heating of lunar permafrost has additional important advantages for water extraction. Microwaves penetrate and heat from within not just at the surface and excavation is not required. Proof of concept experiments using a moon in a bottle concept have demonstrated that microwave processing of cryogenic lunar permafrost simulant in a vacuum rapidly and efficiently extracts water by sublimation. A prototype lunar water extraction rover was built and tested for heating of simulant. Microwave power was very efficiently delivered into a simulated lunar soil. Microwave dielectric properties (complex electric permittivity and magnetic permeability) of lunar regolith simulant, JSC-1A, were measured down to cryogenic temperatures and above room temperature. The microwave penetration has been correlated with the measured dielectric properties. Since the microwave penetration depth is a function of temperature

  14. Molecular Mechanisms Contributing to the Growth and Physiology of an Extremophile Cultured with Dielectric Heating

    PubMed Central

    Cusick, Kathleen D.; Lin, Baochuan; Malanoski, Anthony P.; Strycharz-Glaven, Sarah M.; Cockrell-Zugell, Allison; Fitzgerald, Lisa A.; Cramer, Jeffrey A.; Barlow, Daniel E.; Boyd, Thomas J.

    2016-01-01

    ABSTRACT The effect of microwave frequency electromagnetic fields on living microorganisms is an active and highly contested area of research. One of the major drawbacks to using mesophilic organisms to study microwave radiation effects is the unavoidable heating of the organism, which has limited the scale (<5 ml) and duration (<1 h) of experiments. However, the negative effects of heating a mesophile can be mitigated by employing thermophiles (organisms able to grow at temperatures of >60°C). This study identified changes in global gene expression profiles during the growth of Thermus scotoductus SA-01 at 65°C using dielectric (2.45 GHz, i.e., microwave) heating. RNA sequencing was performed on cultures at 8, 14, and 24 h after inoculation to determine the molecular mechanisms contributing to long-term cellular growth and survival under microwave heating conditions. Over the course of growth, genes associated with amino acid metabolism, carbohydrate metabolism, and defense mechanisms were upregulated; the number of repressed genes with unknown function increased; and at all time points, transposases were upregulated. Genes involved in cell wall biogenesis and elongation were also upregulated, consistent with the distinct elongated cell morphology observed after 24 h using microwave heating. Analysis of the global differential gene expression data enabled the identification of molecular processes specific to the response of T. scotoductus SA-01 to dielectric heating during growth. IMPORTANCE The residual heating of living organisms in the microwave region of the electromagnetic spectrum has complicated the identification of radiation-only effects using microorganisms for 50 years. A majority of the previous experiments used either mature cells or short exposure times with low-energy high-frequency radiation. Using global differential gene expression data, we identified molecular processes unique to dielectric heating using Thermus scotoductus SA-01 cultured over

  15. Molecular Mechanisms Contributing to the Growth and Physiology of an Extremophile Cultured with Dielectric Heating.

    PubMed

    Cusick, Kathleen D; Lin, Baochuan; Malanoski, Anthony P; Strycharz-Glaven, Sarah M; Cockrell-Zugell, Allison; Fitzgerald, Lisa A; Cramer, Jeffrey A; Barlow, Daniel E; Boyd, Thomas J; Biffinger, Justin C

    2016-10-15

    The effect of microwave frequency electromagnetic fields on living microorganisms is an active and highly contested area of research. One of the major drawbacks to using mesophilic organisms to study microwave radiation effects is the unavoidable heating of the organism, which has limited the scale (<5 ml) and duration (<1 h) of experiments. However, the negative effects of heating a mesophile can be mitigated by employing thermophiles (organisms able to grow at temperatures of >60°C). This study identified changes in global gene expression profiles during the growth of Thermus scotoductus SA-01 at 65°C using dielectric (2.45 GHz, i.e., microwave) heating. RNA sequencing was performed on cultures at 8, 14, and 24 h after inoculation to determine the molecular mechanisms contributing to long-term cellular growth and survival under microwave heating conditions. Over the course of growth, genes associated with amino acid metabolism, carbohydrate metabolism, and defense mechanisms were upregulated; the number of repressed genes with unknown function increased; and at all time points, transposases were upregulated. Genes involved in cell wall biogenesis and elongation were also upregulated, consistent with the distinct elongated cell morphology observed after 24 h using microwave heating. Analysis of the global differential gene expression data enabled the identification of molecular processes specific to the response of T. scotoductus SA-01 to dielectric heating during growth. The residual heating of living organisms in the microwave region of the electromagnetic spectrum has complicated the identification of radiation-only effects using microorganisms for 50 years. A majority of the previous experiments used either mature cells or short exposure times with low-energy high-frequency radiation. Using global differential gene expression data, we identified molecular processes unique to dielectric heating using Thermus scotoductus SA-01 cultured over 30 h in a

  16. Utilization of microwave energy for decontamination of oil polluted soils.

    PubMed

    Iordache, Daniela; Niculae, Dumitru; Francisc, Ioan Hathazi

    2010-01-01

    Soil oil (petroleum) product pollution represents a great environmental threat as it may contaminate the neighboring soils and surface and underground water. Liquid fuel contamination may occur anywhere during oil (petroleum) product transportation, storing, handling and utilization. The polluted soil recovery represents a complex process due to the wide range of physical, chemical and biological properties of soils which should be analyzed in connection with the study of the contaminated soil behavior under the microwave field action. The soil, like any other non-metallic material, can be heated through microwave energy absorption due to the dielectric losses, expressed by its dielectric complex constant. Oil polluted soil behaves differently in a microwave field depending on the nature, structure and amount of the polluting fuel. Decontamination is performed through volatilization and retrieval of organic contaminant volatile components. After decontamination only a soil fixed residue remains, which cannot penetrate the underground anymore. In carrying out the soil recovery process by means of this technology we should also consider the soil characteristics such as: the soil type, temperature, moisture.The first part of the paper presents the theoretical aspects relating to the behavior of the polluted soil samples in the microwave field, as well as their relating experimental data. The experimental data resulting from the analysis of soils with a different level of pollution point out that the degree of pollutant recovery is high, contributing to changing the initial classification of soils from the point of view of pollution. The paper graphically presents the levels of microwave generated and absorbed power in soil samples, soil temperature during experimentations, specific processing parameters in a microwave field. It also presents the constructive solution of the microwave equipment designed for the contaminated soil in situ treatment.

  17. Design and Experimental Evaluation of a Non-Invasive Microwave Head Imaging System for Intracranial Haemorrhage Detection

    PubMed Central

    Mobashsher, A. T.; Bialkowski, K. S.; Abbosh, A. M.; Crozier, S.

    2016-01-01

    An intracranial haemorrhage is a life threatening medical emergency, yet only a fraction of the patients receive treatment in time, primarily due to the transport delay in accessing diagnostic equipment in hospitals such as Magnetic Resonance Imaging or Computed Tomography. A mono-static microwave head imaging system that can be carried in an ambulance for the detection and localization of intracranial haemorrhage is presented. The system employs a single ultra-wideband antenna as sensing element to transmit signals in low microwave frequencies towards the head and capture backscattered signals. The compact and low-profile antenna provides stable directional radiation patterns over the operating bandwidth in both near and far-fields. Numerical analysis of the head imaging system with a realistic head model in various situations is performed to realize the scattering mechanism of haemorrhage. A modified delay-and-summation back-projection algorithm, which includes effects of surface waves and a distance-dependent effective permittivity model, is proposed for signal and image post-processing. The efficacy of the automated head imaging system is evaluated using a 3D-printed human head phantom with frequency dispersive dielectric properties including emulated haemorrhages with different sizes located at different depths. Scattered signals are acquired with a compact transceiver in a mono-static circular scanning profile. The reconstructed images demonstrate that the system is capable of detecting haemorrhages as small as 1 cm3. While quantitative analyses reveal that the quality of images gradually degrades with the increase of the haemorrhage’s depth due to the reduction of signal penetration inside the head; rigorous statistical analysis suggests that substantial improvement in image quality can be obtained by increasing the data samples collected around the head. The proposed head imaging prototype along with the processing algorithm demonstrates its feasibility

  18. Modulated microwave microscopy and probes used therewith

    DOEpatents

    Lai, Keji; Kelly, Michael; Shen, Zhi-Xun

    2012-09-11

    A microwave microscope including a probe tip electrode vertically positionable over a sample and projecting downwardly from the end of a cantilever. A transmission line connecting the tip electrode to the electronic control system extends along the cantilever and is separated from a ground plane at the bottom of the cantilever by a dielectric layer. The probe tip may be vertically tapped near or at the sample surface at a low frequency and the microwave signal reflected from the tip/sample interaction is demodulated at the low frequency. Alternatively, a low-frequency electrical signal is also a non-linear electrical element associated with the probe tip to non-linearly interact with the applied microwave signal and the reflected non-linear microwave signal is detected at the low frequency. The non-linear element may be semiconductor junction formed near the apex of the probe tip or be an FET formed at the base of a semiconducting tip.

  19. Dielectric constant tunability at microwave frequencies and pyroelectric behavior of lead-free submicrometer-structured (Bi0.5Na0.5)1-xBaxTiO3 ferroelectric ceramics.

    PubMed

    Martínez, Félix L; Hinojosa, Juan; Doménech, Ginés; Fernández-Luque, Francisco J; Zapata, Juan; Ruiz, Ramon; Pardo, Lorena

    2013-08-01

    In this article, we show that the dielectric constant of lead-free ferroelectric ceramics based on the solid solution (1-x)(Bi(0.5)Na(0.5))TiO(3)-xBaTiO(3), with compositions at or near the morphotropic phase boundary (MPB), can be tuned by a local applied electric field. Two compositions have been studied, one at the MPB, with x = 0.06 (BNBT6), and another one nearer the BNT side of the phase diagram, with x = 0.04 (BNBT4). The tunability of the dielectric constant is measured at microwave frequencies between 100 MHz and 3 GHz by a nonresonant method and simultaneously applying a dc electric field. As expected, the tunability is higher for the composition at the MPB (BNBT6), reaching a maximum value of 60% for an electric field of 900 V/cm, compared with the composition below this boundary (BNBT4), which saturates at 40% for an electric field of 640 V/cm. The high tunability in both cases is attributed to the fine grain and high density of the samples, which have a submicrometer homogeneous grain structure with grain size of the order of a few hundred nanometers. Such properties make these ceramics attractive for microwave tunable devices. Finally, we have tested these ceramics for their application as infrared pyroelectric detectors and we have found that the pyroelectric figure of merit is comparable to traditional lead-containing pyroelectrics.

  20. Metasurface base on uneven layered fractal elements for ultra-wideband RCS reduction

    NASA Astrophysics Data System (ADS)

    Su, Jianxun; Cui, Yueyang; Li, Zengrui; Yang, Yaoqing Lamar; Che, Yongxing; Yin, Hongcheng

    2018-03-01

    A novel metasurface based on uneven layered fractal elements is designed and fabricated for ultra-wideband radar cross section (RCS) reduction in this paper. The proposed metasurface consists of two fractal subwavelength elements with different layer thickness. The reflection phase difference of 180° (±37°) between two unit cells covers an ultra-wide frequency range. Ultra-wideband RCS reduction results from the phase cancellation between two local waves produced by these two unit cells. The diffuse scattering of electromagnetic (EM) waves is caused by the randomized phase distribution, leading to a low monostatic and bistatic RCS simultaneously. This metasurface can achieve -10dB RCS reduction in an ultra-wide frequency range from 6.6 to 23.9 GHz with a ratio bandwidth (fH/fL) of 3.62:1 under normal incidences for both x- and y-polarized waves. Both the simulation and the measurement results are consistent to verify this excellent RCS reduction performance of the proposed metasurface.

  1. Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats.

    PubMed

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2009-03-30

    We propose theoretically and demonstrate experimentally an optical architecture for flexible Ultra-Wideband pulse generation. It is based on an N-tap reconfigurable microwave photonic filter fed by a laser array by using phase inversion in a Mach-Zehnder modulator. Since a large number of positive and negative coefficients can be easily implemented, UWB pulses fitted to the FCC mask requirements can be generated. As an example, a four tap pulse generator is experimentally demonstrated which complies with the FCC regulation. The proposed pulse generator allows different pulse modulation formats since the amplitude, polarity and time delay of generated pulse is controlled.

  2. Towards sparse characterisation of on-body ultra-wideband wireless channels.

    PubMed

    Yang, Xiaodong; Ren, Aifeng; Zhang, Zhiya; Ur Rehman, Masood; Abbasi, Qammer Hussain; Alomainy, Akram

    2015-06-01

    With the aim of reducing cost and power consumption of the receiving terminal, compressive sensing (CS) framework is applied to on-body ultra-wideband (UWB) channel estimation. It is demonstrated in this Letter that the sparse on-body UWB channel impulse response recovered by the CS framework fits the original sparse channel well; thus, on-body channel estimation can be achieved using low-speed sampling devices.

  3. Hybrid metasurfaces for microwave reflection and infrared emission reduction.

    PubMed

    Pang, Yongqiang; Li, Yongfeng; Yan, Mingbao; Liu, Dongqing; Wang, Jiafu; Xu, Zhuo; Qu, Shaobo

    2018-04-30

    Controlling of electromagnetic wave radiation is of great importance in many fields. In this work, a hybrid metasurface (HMS) is designed to simultaneously reduce the microwave reflection and the infrared emission. The HMS is composed of the metal/dielectric/metal/dielectric/metal configuration. The reflection reduction at microwave frequencies mainly results from the phase cancellation technique, while the infrared emission reduction is due to the reflection of the metal with a high filling ration in the top layer. It has been analytically indicated that reflection reduction with an efficiency larger than 10 dB can be achieved in the frequency band of 8.2-18 GHz, and this has been well verified by the simulated and experimental results. Meanwhile, the designed HMS displays a low emission performance in the infrared band, with the emissivity less than 0.27 from 3 to 14 μm. It is believed that our proposal may find the application of multispectral stealth technology.

  4. Nonthermal microwave effects revisited: on the importance of internal temperature monitoring and agitation in microwave chemistry.

    PubMed

    Herrero, M Antonia; Kremsner, Jennifer M; Kappe, C Oliver

    2008-01-04

    The concept of nonthermal microwave effects has received considerable attention in recent years and is the subject of intense debate in the scientific community. Nonthermal microwave effects have been postulated to result from a direct stabilizing interaction of the electric field with specific (polar) molecules in the reaction medium that is not related to a macroscopic temperature effect. In order to probe the existence of nonthermal microwave effects, four synthetic transformations (Diels-Alder cycloaddition, alkylation of triphenylphosphine and 1,2,4-triazole, direct amide bond formation) were reevaluated under both microwave dielectric heating and conventional thermal heating. In all four cases, previous studies have claimed the existence of nonthermal microwave effects in these reactions. Experimentally, significant differences in conversion and/or product distribution comparing the conventionally and microwave-heated experiments performed at the same measured reaction temperature were found. The current reevaluation of these reactions was performed in a dedicated reactor setup that allowed accurate internal reaction temperature measurements using a multiple fiber-optic probe system. Using this technology, the importance of efficient stirring and internal temperature measurement in microwave-heated reactions was made evident. Inefficient agitation leads to temperature gradients within the reaction mixture due to field inhomogeneities in the microwave cavity. Using external infrared temperature sensors in some cases results in significant inaccuracies in the temperature measurement. Applying the fiber-optic probe temperature monitoring device, a critical reevaluation of all four reactions has provided no evidence for the existence of nonthermal microwave effects. Ensuring efficient agitation of the reaction mixture via magnetic stirring, no significant differences in terms of conversion and selectivity between experiments performed under microwave or oil bath

  5. Multiphysics numerical modeling of the continuous flow microwave-assisted transesterification process.

    PubMed

    Muley, Pranjali D; Boldor, Dorin

    2012-01-01

    Use of advanced microwave technology for biodiesel production from vegetable oil is a relatively new technology. Microwave dielectric heating increases the process efficiency and reduces reaction time. Microwave heating depends on various factors such as material properties (dielectric and thermo-physical), frequency of operation and system design. Although lab scale results are promising, it is important to study these parameters and optimize the process before scaling up. Numerical modeling approach can be applied for predicting heating and temperature profiles including at larger scale. The process can be studied for optimization without actually performing the experiments, reducing the amount of experimental work required. A basic numerical model of continuous electromagnetic heating of biodiesel precursors was developed. A finite element model was built using COMSOL Multiphysics 4.2 software by coupling the electromagnetic problem with the fluid flow and heat transfer problem. Chemical reaction was not taken into account. Material dielectric properties were obtained experimentally, while the thermal properties were obtained from the literature (all the properties were temperature dependent). The model was tested for the two different power levels 4000 W and 4700 W at a constant flow rate of 840ml/min. The electric field, electromagnetic power density flow and temperature profiles were studied. Resulting temperature profiles were validated by comparing to the temperatures obtained at specific locations from the experiment. The results obtained were in good agreement with the experimental data.

  6. Non-Reciprocal on Wafer Microwave Devices

    DTIC Science & Technology

    2015-05-27

    filter uses a barium hexagonal ferrite film incorporated into the dielectric layer of a microstrip transmission line. The zero-field operational...Fal,, Robert E. Camley. Millimeter wave phase shifter based on ferromagnetic resonancein a hexagonal barium ferrite thin film, Applied Physics...materials for on-wafer microwave devices concentrated on barium hexagonal ferrite (BaM) films grown on Si because these material is a good candidate

  7. Ultra-wideband WDM VCSEL arrays by lateral heterogeneous integration

    NASA Astrophysics Data System (ADS)

    Geske, Jon

    Advancements in heterogeneous integration are a driving factor in the development of evermore sophisticated and functional electronic and photonic devices. Such advancements will merge the optical and electronic capabilities of different material systems onto a common integrated device platform. This thesis presents a new lateral heterogeneous integration technology called nonplanar wafer bonding. The technique is capable of integrating multiple dissimilar semiconductor device structures on the surface of a substrate in a single wafer bond step, leaving different integrated device structures adjacent to each other on the wafer surface. Material characterization and numerical simulations confirm that the material quality is not compromised during the process. Nonplanar wafer bonding is used to fabricate ultra-wideband wavelength division multiplexed (WDM) vertical-cavity surface-emitting laser (VCSEL) arrays. The optically-pumped VCSEL arrays span 140 nm from 1470 to 1610 nm, a record wavelength span for devices operating in this wavelength range. The array uses eight wavelength channels to span the 140 nm with all channels separated by precisely 20 nm. All channels in the array operate single mode to at least 65°C with output power uniformity of +/- 1 dB. The ultra-wideband WDM VCSEL arrays are a significant first step toward the development of a single-chip source for optical networks based on coarse WDM (CWDM), a low-cost alternative to traditional dense WDM. The CWDM VCSEL arrays make use of fully-oxidized distributed Bragg reflectors (DBRs) to provide the wideband reflectivity required for optical feedback and lasing across 140 rim. In addition, a novel optically-pumped active region design is presented. It is demonstrated, with an analytical model and experimental results, that the new active-region design significantly improves the carrier uniformity in the quantum wells and results in a 50% lasing threshold reduction and a 20°C improvement in the peak

  8. Microwave-enhanced chemical processes

    DOEpatents

    Varma, Ravi

    1990-01-01

    A process for disposal of toxic wastes including chlorinated hydrocarbons, comprising, establishing a bed of non-metallic particulates having a high dielectric loss factor. Effecting intimate contact of the particulates and the toxic wastes at a temperature in excess of about 400.degree. C. in the presence of microwave radiation for a time sufficient to break the hydrocarbon chlorine bonds and provide detoxification values in excess of 80 and further detoxifying the bed followed by additional disposal of toxic wastes.

  9. Micro-Coplanar Striplines: New Transmission Media for Microwave Applications

    NASA Technical Reports Server (NTRS)

    Goverdhanam, Kavita; Simons, Rainee N.; Katehi, Linda P. B.

    1998-01-01

    In this paper a new transmission line for microwave applications, referred to here as the Micro-Coplanar Stripline (MCPS), is introduced. The propagation characteristics, such as, characteristic impedance (Z(sub 0) and effective dielectric constant (epsilon eff) for a range of MCPS geometries have been modeled using the Finite Difference Time Domain (FDTD) Technique and presented here. Also, preliminary experimental results on the performance of an MCP-Microstrip transition and an MCPS-fed patch antenna are presented. The results indicate several potential applications of the MCPS line in microwave integrated circuit technology.

  10. A Microwave Tunable Bandpass Filter for Liquid Crystal Applications

    NASA Astrophysics Data System (ADS)

    Cao, Weiping; Jiang, Di; Liu, Yupeng; Yang, Yuanwang; Gan, Baichuan

    2017-07-01

    In this paper, a novel microwave continuously tunable band-pass filter, based on nematic liquid crystals (LCs), is proposed. It uses liquid crystal (LC) as the electro-optic material to mainly realize frequency shift at microwave band by changing the dielectric anisotropy, when applying the bias voltage. According to simulation results, it achieves 840 MHz offset. Comparing to the existing tunable filter, it has many advantages, such as continuously tunable, miniaturization, low processing costs, low tuning voltage, etc. Thus, it has shown great potentials in frequency domain and practical applications in modern communication.

  11. A high-throughput flow cytometry-on-a-CMOS platform for single-cell dielectric spectroscopy at microwave frequencies.

    PubMed

    Chien, Jun-Chau; Ameri, Ali; Yeh, Erh-Chia; Killilea, Alison N; Anwar, Mekhail; Niknejad, Ali M

    2018-06-06

    This work presents a microfluidics-integrated label-free flow cytometry-on-a-CMOS platform for the characterization of the cytoplasm dielectric properties at microwave frequencies. Compared with MHz impedance cytometers, operating at GHz frequencies offers direct intracellular permittivity probing due to electric fields penetrating through the cellular membrane. To overcome the detection challenges at high frequencies, the spectrometer employs on-chip oscillator-based sensors, which embeds simultaneous frequency generation, electrode excitation, and signal detection capabilities. By employing an injection-locking phase-detection technique, the spectrometer offers state-of-the-art sensitivity, achieving a less than 1 aFrms capacitance detection limit (or 5 ppm in frequency-shift) at a 100 kHz noise filtering bandwidth, enabling high throughput (>1k cells per s), with a measured cellular SNR of more than 28 dB. With CMOS/microfluidics co-design, we distribute four sensing channels at 6.5, 11, 17.5, and 30 GHz in an arrayed format whereas the frequencies are selected to center around the water relaxation frequency at 18 GHz. An issue in the integration of CMOS and microfluidics due to size mismatch is also addressed through introducing a cost-efficient epoxy-molding technique. With 3-D hydrodynamic focusing microfluidics, we perform characterization on four different cell lines including two breast cell lines (MCF-10A and MDA-MB-231) and two leukocyte cell lines (K-562 and THP-1). After normalizing the higher frequency signals to the 6.5 GHz ones, the size-independent dielectric opacity shows a differentiable distribution at 17.5 GHz between normal (0.905 ± 0.160, mean ± std.) and highly metastatic (1.033 ± 0.107) breast cells with p ≪ 0.001.

  12. Investigation of the use of microwave image line integrated circuits for use in radiometers and other microwave devices in X-band and above

    NASA Technical Reports Server (NTRS)

    Knox, R. M.; Toulios, P. P.; Onoda, G. Y.

    1972-01-01

    Program results are described in which the use of a/high permittivity rectangular dielectric image waveguide has been investigated for use in microwave and millimeter wavelength circuits. Launchers from rectangular metal waveguide to image waveguide are described. Theoretical and experimental evaluations of the radiation from curved image waveguides are given. Measurements of attenuation due to conductor and dielectric losses, adhesives, and gaps between the dielectric waveguide and the image plane are included. Various passive components are described and evaluations given. Investigations of various techniques for fabrication of image waveguide circuits using ceramic waveguides are also presented. Program results support the evaluation of the image line approach as an advantageous method for realizing low loss integrated electronic circuits for X-band and above.

  13. Microwave, Semiconductor Research - Materials, Devices and Circuits.

    DTIC Science & Technology

    1984-03-01

    Phenomena, Gamisch/Partenkirchen, Germany, 1982 (Springer-Verlag, Berlin). 3. "Observation of nonlinear refractive index in molecular liquids by...in non-walled dielectric waveguide including a novel use of transverse resonance equivalent circuits for the treatment of dispersion in graded index ...number) This program covers the growth and assessment of Gallium Arsenide, and related compounds and alloys, for use in microwave, millimeter, and

  14. Towards sparse characterisation of on-body ultra-wideband wireless channels

    PubMed Central

    Ren, Aifeng; Zhang, Zhiya; Ur Rehman, Masood; Abbasi, Qammer Hussain; Alomainy, Akram

    2015-01-01

    With the aim of reducing cost and power consumption of the receiving terminal, compressive sensing (CS) framework is applied to on-body ultra-wideband (UWB) channel estimation. It is demonstrated in this Letter that the sparse on-body UWB channel impulse response recovered by the CS framework fits the original sparse channel well; thus, on-body channel estimation can be achieved using low-speed sampling devices. PMID:26609409

  15. Microwave radiometric aircraft observations of the Fabry-Perot interference fringes of an ice-water system

    NASA Technical Reports Server (NTRS)

    Harrington, R. F.; Swift, C. T.; Fedors, J. C.

    1980-01-01

    Airborne stepped-frequency microwave radiometer (SFMR) observations of the Fabry-Perot interference fringes of ice-water systems are discussed. The microwave emissivity at normal incidence of a smooth layered dielectric medium over a semi-infinite dielectric medium is examined for the case of ice over water as a function of ice thickness and attenuation coefficient, and the presence of quarter-wavelength oscillations in emissivity as the ice thickness and frequency are varied is pointed out. Experimental observations of pronounced quarter-wavelength oscillations in radiometric brightness temperature due to the Fabry-Perot interference fringes over smooth sea ice and lake ice varying in roughness as the radiometer frequencies were scanned are then presented.

  16. Theoretical verification of nonthermal microwave effects on intramolecular reactions.

    PubMed

    Kanno, Manabu; Nakamura, Kosuke; Kanai, Eri; Hoki, Kunihito; Kono, Hirohiko; Tanaka, Motohiko

    2012-03-08

    There have been a growing number of articles that report dramatic improvements in the experimental performance of chemical reactions by microwave irradiation compared to that under conventional heating conditions. We theoretically examined whether nonthermal microwave effects on intramolecular reactions exist or not, in particular, on Newman-Kwart rearrangements and intramolecular Diels-Alder reactions. The reaction rates of the former calculated by the transition state theory, which consider only the thermal effects of microwaves, agree quantitatively with experimental data, and thus, the increases in reaction rates can be ascribed to dielectric heating of the solvent by microwaves. In contrast, for the latter, the temperature dependence of reaction rates can be explained qualitatively by thermal effects but the possibility of nonthermal effects still remains regardless of whether competitive processes are present or not. The effective intramolecular potential energy surface in the presence of a microwave field suggests that nonthermal effects arising from potential distortion are vanishingly small in intramolecular reactions. It is useful in the elucidation of the reaction mechanisms of microwave synthesis to apply the present theoretical approach with reference to the experiments where thermal and nonthermal effects are separated by screening microwave fields.

  17. Microwave-to-Optical Conversion in WGM Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Strekalov, Dmitry; Yu, Nan; Matsko, Andrey; Maleki, Lute

    2008-01-01

    Microwave-to-optical frequency converters based on whispering-gallery-mode (WGM) resonators have been proposed as mixers for the input ends of microwave receivers in which, downstream of the input ends, signals would be processed photonically. A frequency converter as proposed (see figure) would exploit the nonlinearity of the electromagnetic response of a WGM resonator made of LiNbO3 or another suitable ferroelectric material. Up-conversion would take place by three-wave mixing in the resonator. The WGM resonator would be de - signed and fabricated to obtain (1) resonance at both the microwave and the optical operating frequencies and (2) phase matching among the input and output microwave and optical signals as described in the immediately preceding article. Because the resonator would be all dielectric there would be no metal electrodes signal losses would be very low and, consequently, the resonance quality factors (Q values) of the microwave and optical fields would be very large. The long lifetimes associated with the large Q values would enable attainment of high efficiency of nonlinear interaction with low saturation power. It is anticipated that efficiency would be especially well enhanced by the combination of optical and microwave resonances in operation at input signal frequencies between 90 and 300 GHz.

  18. Ultrawideband asynchronous tracking system and method

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Phan, Chau T. (Inventor); Gross, Julia A. (Inventor); Ni, Jianjun (Inventor); Dusl, John (Inventor)

    2012-01-01

    A passive tracking system is provided with a plurality of ultrawideband (UWB) receivers that is asynchronous with respect to a UWB transmitter. A geometry of the tracking system may utilize a plurality of clusters with each cluster comprising a plurality of antennas. Time Difference of Arrival (TDOA) may be determined for the antennas in each cluster and utilized to determine Angle of Arrival (AOA) based on a far field assumption regarding the geometry. Parallel software communication sockets may be established with each of the plurality of UWB receivers. Transfer of waveform data may be processed by alternately receiving packets of waveform data from each UWB receiver. Cross Correlation Peak Detection (CCPD) is utilized to estimate TDOA information to reduce errors in a noisy, multipath environment.

  19. Microwave based civil structure inspection device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sohns, C.W.; Bible, D.W.

    1994-06-01

    A microwave based ``wall probe`` has been developed which is capable of nondestructive evaluation of architectural structures. By using microwaves in the 8 to 12 GHz range this probing instrument can detect subsurface characteristics through concrete, brick, wood or other building materials to depths in excess of 12 inches. The instrument interrogates a structure from a single side by transmitting a microwave signal into the surface at some angle of incidence and receiving the reflected signal some distance away on the same side of the structure. The transmitted signal is partially reflected at each internal boundary of different dielectric constant,more » giving a composite reflection which contains information from each internal layer. The reflected composite signal is compared in phase and amplitude to the transmitted signal and that reading is considered the ``signature`` of the structure under test. Computer algorithms analyze the signature for recognizable features and nonstandard construction.« less

  20. Development of 3D microwave imaging technology for damage assessment of concrete bridge.

    DOT National Transportation Integrated Search

    2003-11-01

    An innovative microwave 3-dimensional (3D) sub-surface imaging technology is developed for : detecting and quantitatively assessing internal damage of concrete structures. This technology is : based on reconstruction of dielectric profile (image) of ...

  1. Microwave-enhanced chemical processes

    DOEpatents

    Varma, R.

    1990-06-19

    A process is disclosed for the disposal of toxic wastes including chlorinated hydrocarbons, comprising, establishing a bed of non-metallic particulates having a high dielectric loss factor. Intimate contact of the particulates and the toxic wastes at a temperature in excess of about 400 C in the presence of microwave radiation for a time sufficient breaks the hydrocarbon chlorine bonds. Detoxification values in excess of 80 are provided and further detoxification of the bed is followed by additional disposal of toxic wastes. 1 figure.

  2. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon.

    PubMed

    Qiu, Xu; Wang, Lixi; Zhu, Hongli; Guan, Yongkang; Zhang, Qitu

    2017-06-08

    Lightweight microwave absorbing materials have drawn tremendous attention. Herein, nano-porous biomass carbon materials have been prepared by carbonization with a subsequent potassium hydroxide activation of walnut shells and the microwave absorption properties have also been investigated. The obtained samples have large specific surface areas with numerous micropores and nanopores. The sample activated at 600 °C with a specific surface area of 736.2 m 2 g -1 exhibits the most enhanced microwave absorption performance. It has the maximum reflection loss of -42.4 dB at 8.88 GHz and the effective absorption bandwidth (reflection loss below -10 dB) is 1.76 GHz (from 8.08 GHz to 9.84 GHz), corresponding to a thickness of 2 mm. Additionally, the effective absorption bandwidth can reach 2.24 GHz (from 10.48 GHz to 12.72 GHz) when the absorber thickness is 1.5 mm. Three-dimensional porous architecture, interfacial polarization relaxation loss, and the dipolar relaxation loss make a great contribution to the excellent microwave absorption performance. In contrast, the non-activated sample with lower specific surface area (435.3 m 2 g -1 ) has poor microwave absorption performance due to a poor dielectric loss capacity. This comparison highlights the role of micropores and nanopores in improving the dielectric loss property of porous carbon materials. To sum up, porous biomass carbon has great potential to become lightweight microwave absorbers. Moreover, KOH is an efficient activation agent in the fabrication of carbonaceous materials.

  3. Compact planar microwave blocking filters

    NASA Technical Reports Server (NTRS)

    U-Yen, Kongpop (Inventor); Wollack, Edward J. (Inventor)

    2012-01-01

    A compact planar microwave blocking filter includes a dielectric substrate and a plurality of filter unit elements disposed on the substrate. The filter unit elements are interconnected in a symmetrical series cascade with filter unit elements being organized in the series based on physical size. In the filter, a first filter unit element of the plurality of filter unit elements includes a low impedance open-ended line configured to reduce the shunt capacitance of the filter.

  4. Microwave moisture sensing through use of a piecewise density-independent function

    USDA-ARS?s Scientific Manuscript database

    Microwave moisture sensing provides a means to determine nondestructively the amount of water in materials. This is accomplished through the correlation of dielectric properties with moisture in the material. In this study, linear relationships between a density-independent function of the dielectri...

  5. Accurate L-Band Measurements of the Dielectric Constant of Seawater

    NASA Technical Reports Server (NTRS)

    Lang, R.H.; Utku, C.; Tarkocin, Y.; Vine, D.M. Le

    2007-01-01

    A new temperature controlled microwave cavity system to measure the complex dielectric constant of seawater at 1.413 GHz is discussed. The system is being developed to measure seawater for temperatures from O C to 30 C and salinities from 10 to 40 psu, The paper discusses the construction of the measurement system and initial stability tests.

  6. Dielectric polarization in the Planck theory of sonoluminescence.

    PubMed

    Prevenslik, T V

    1998-11-01

    Sonoluminescence observed in the cavitation of liquid H2O may be explained by the Planck theory of SL, which treats the bubbles as collapsing miniature masers having optical waves standing in resonance with the dimensions of the bubble cavity. Microwaves are shown to be created from the Planck energy of the standing waves, provided the bubble wall can be treated as a perfect blackbody surface. Liquid H2O is strongly absorbent in the ultraviolet and there the bubble approaches a Planck blackbody enclosure. The microwaves are created at frequencies proportional to the bubble collapse velocity only to be promptly absorbed by the rotation quantum states of the H2O and other bubble wall molecules. The microwaves are absorbed discretely at rotation line frequencies, or continuously by dipole rotation at frequencies from 1 to 30 GHz. In the liquid state, molecular rotation of the H2O molecule is hindered and the microwave energy is rapidly turned into bending energy by intermolecular collisions. Subsequently, the bubble wall molecules may thereby ionize and produce visible photons. The microwaves create intense electrical fields in the bubble wall by dielectric polarization. If the gases adjacent to the bubble wall undergo electrical breakdown, free electrons are created, thereby providing sonoluminescence with a magnetic field effect.

  7. Tunable Dielectric Materials and Devices for Broadband Wireless Communications

    NASA Technical Reports Server (NTRS)

    Mueller, Carl H.; Miranda, Felix A.; Dayton, James A. (Technical Monitor)

    1998-01-01

    Wireless and satellite communications are a rapidly growing industries which are slated for explosive growth into emerging countries as well as countries with advanced economies. The dominant trend in wireless communication systems is towards broadband applications such as multimedia file transfer, video transmission and Internet access. These applications require much higher data transmission rates than those currently used for voice transmission applications. To achieve these higher data rates, substantially larger bandwidths and higher carrier frequencies are required. A key roadblock to implementing these systems at K-band (18-26.5 GHz) and Ka-band (26.5-40 GHz) is the need to develop hardware which meets the requirements for high data rate transmission in a cost effective manner. In this chapter, we report on the status of tunable dielectric thin films for devices, such as resonators, filters, phased array antennas, and tunable oscillators, which utilize nonlinear tuning in the control elements. Paraelectric materials such as Barium Strontium Titanate ((Ba, Sr)TiO3) have dielectric constants which can be tuned by varying the magnitude of the electric field across the material. Therefore, these materials can be used to control the frequency and/or phase response of various devices such as electronically steerable phased array antennas, oscillators, and filters. Currently, tunable dielectric devices are being developed for applications which require high tunability, low loss, and good RF power-handling capabilities at microwave and millimeter-wave frequencies. These properties are strongly impacted by film microstructure and device design, and considerable developmental work is still required. However, in the last several years enormous progress has occurred in this field, validating the potential of tunable dielectric technology for broadband wireless communication applications. In this chapter we summarize how film processing techniques, microwave test

  8. Microwave remote sensing of sea ice in the AIDJEX Main Experiment. [Arctic Ice Dynamics Joint Experiment

    NASA Technical Reports Server (NTRS)

    Campbell, W. J.; Wayenberg, J.; Ramseyer, J. B.; Ramseier, R. O.; Vant, M. R.; Weaver, R.; Redmond, A.; Arsenault, L.; Gloersen, P.; Zwally, H. J.

    1978-01-01

    A microwave remote sensing program of sea ice in the Beaufort Sea was conducted during the Arctic Ice Dynamics Joint Experiment (AIDJEX). Several types of both passive and active sensors were used to perform surface and aircraft measurements during all seasons of the year. In situ observations were made of physical properties (salinity, temperature, density, surface roughness), dielectric properties, and passive microwave measurements were made of first-year, multiyear, and first-year/multiyear mixtures. Airborne passive microwave measurements were performed with the electronically scanning microwave radiometer while airborne active microwave measurements were performed by synthetic aperture radar, X- and L-band radar, and a scatterometer.

  9. Microwave properties of ice from The Great Lakes

    NASA Technical Reports Server (NTRS)

    Vickers, R. S.

    1975-01-01

    The increasing use of radar systems as remote sensors of ice thickness has revealed a lack of basic data on the microwave properties of fresh-water ice. A program, in which the complex dielectric constant was measured for a series of ice samples taken from the Great Lakes, is described. The measurements were taken at temperatures of -5, -10, and -15 C. It is noted that the ice has considerable internal layered structure, and the effects of the layering are examined. Values of 3.0 to 3.2 are reported for the real part of the dielectric constant, with an error bar of + or - 0.01.

  10. Microwave applications range from under the soil to the stratosphere

    NASA Astrophysics Data System (ADS)

    Bierman, Howard

    1990-11-01

    While the current cutback in defense spending had a negative impact on the microwave industry, microwave technology is now being applied to improve mankind's health, to clean up the environment, and provide more food. The paper concentrates on solutions for traffic jams and collision avoidance, the application of microwave hyperthermia to detect and destroy cancer cells, applications for controlling ozone-layer depletion, for investigating iceberg activity and ocean-current patterns in the Arctic, and for measuring soil-moisture content to improve crop efficiency. An experimental 60-GHz communication system for maintaining contact with up to 30 vehicles is described, along with dielectric-loaded lens and multimicrostrip hyperthermia applicators, and microwave equipment for NASA's upper-atmosphere research satellite and ESA's remote-sensing satellite. Stripline techniques to monitor process control on semiconductor wafer and paper production lines are also outlined.

  11. Electrically tunable materials for microwave applications

    NASA Astrophysics Data System (ADS)

    Ahmed, Aftab; Goldthorpe, Irene A.; Khandani, Amir K.

    2015-03-01

    Microwave devices based on tunable materials are of vigorous current interest. Typical applications include phase shifters, antenna beam steering, filters, voltage controlled oscillators, matching networks, and tunable power splitters. The objective of this review is to assist in the material selection process for various applications in the microwave regime considering response time, required level of tunability, operating temperature, and loss tangent. The performance of a variety of material types are compared, including ferroelectric ceramics, polymers, and liquid crystals. Particular attention is given to ferroelectric materials as they are the most promising candidates when response time, dielectric loss, and tunability are important. However, polymers and liquid crystals are emerging as potential candidates for a number of new applications, offering mechanical flexibility, lower weight, and lower tuning voltages.

  12. Effect of microwave irradiation on TATB explosive (II): temperature response and other risk.

    PubMed

    Yu, Weifei; Zhang, Tonglai; Zuo, Jun; Huang, Yigang; Li, Gang; Han, Chao; Li, Jinshan; Huang, Hui

    2010-01-15

    TATB (1,3,5-triamino-2,4,6-trinitrobenzene) explosives were safely irradiated with microwave and showed no visible change according to XPS and XRD spectra. Temperature of TATB sample increased quickly at the beginning and gently during sequent continuous irradiation with temperature less than 140 degrees C after 60 min, 480 W irradiation, and increased more quickly in 300 g at 480 W than in 150 g at 480 W, both implied that heat dissipation was in the majority of microwave energy. Two major risk factors in microwave irradiation were concerned including overheating which should be avoidable with temperature monitor and microwave discharge which should be controllable experimentally though dielectric breakdown mechanism was not elucidated theoretically yet.

  13. Electromagnetic field tapering using all-dielectric gradient index materials.

    PubMed

    Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz

    2016-07-28

    The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes.

  14. Orientation effect on microwave dielectric properties of Si-integrated Ba0.6Sr0.4TiO3 thin films for frequency agile devices

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Suk; Hyun, Tae-Seon; Kim, Ho-Gi; Kim, Il-Doo; Yun, Tae-Soon; Lee, Jong-Chul

    2006-07-01

    The effect of texture with (100) and (110) preferred orientations on dielectric properties of Ba0.6Sr0.4TiO3 (BST) thin films grown on SrO (9nm) and CeO2 (70nm ) buffered Si substrates, respectively, was investigated. The coplanar waveguide (CPW) phase shifter using (100) oriented BST films on SrO buffered Si exhibited a much-enhanced figure of merit of 24.7°/dB, as compared to that (10.2°/dB) of a CPW phase shifter using (110) oriented BST films on CeO2 buffered Si at 12GHz. This work demonstrates that the microwave properties of the Si-integrated BST thin films are highly correlated with crystal orientation.

  15. Superconducting Microwave Electronics at Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Warner, Joseph D.; Bhasin, Kul B.; Leonard, Regis F.

    1991-01-01

    Over the last three years, NASA Lewis Research Center has investigated the application of newly discovered high temperature superconductors to microwave electronics. Using thin films of YBa2Cu3O7-delta and Tl2Ca2Ba2Cu3Ox deposited on a variety of substrates, including strontium titanate, lanthanum gallate, lanthanum aluminate and magnesium oxide, a number of microwave circuits have been fabricated and evaluated. These include a cavity resonator at 60 GHz, microstrip resonators at 35 GHz, a superconducting antenna array at 35 GHz, a dielectric resonator at 9 GHz, and a microstrip filter at 5 GHz. Performance of some of these circuits as well as suggestions for other applications are reported.

  16. Superconducting microwave electronics at Lewis Research Center

    NASA Astrophysics Data System (ADS)

    Warner, Joseph D.; Bhasin, Kul B.; Leonard, Regis F.

    Over the last three years, NASA Lewis Research Center has investigated the application of newly discovered high temperature superconductors to microwave electronics. Using thin films of YBa2Cu3O7-delta and Tl2Ca2Ba2Cu3Ox deposited on a variety of substrates, including strontium titanate, lanthanum gallate, lanthanum aluminate and magnesium oxide, a number of microwave circuits have been fabricated and evaluated. These include a cavity resonator at 60 GHz, microstrip resonators at 35 GHz, a superconducting antenna array at 35 GHz, a dielectric resonator at 9 GHz, and a microstrip filter at 5 GHz. Performance of some of these circuits as well as suggestions for other applications are reported.

  17. High-performance flexible microwave passives on plastic

    NASA Astrophysics Data System (ADS)

    Ma, Zhenqiang; Seo, Jung-Hun; Cho, Sang June; Zhou, Weidong

    2014-06-01

    We report the demonstration of bendable inductors, capacitors and switches fabricated on a polyethylene terephthalate (PET) substrate that can operate at high microwave frequencies. By employing bendable dielectric and single crystalline semiconductor materials, spiral inductors and metal-insulator-metal (MIM) capacitors with high quality factors and high resonance frequencies and single-pole, single-throw (SPST) switches were archived. The effects of mechanical bending on the performance of inductors, capacitors and switches were also measured and analyzed. We further investigated the highest possible resonance frequencies and quality factors of inductors and capacitors and, high frequency responses and insertion loss. These demonstrations will lead to flexible radio-frequency and microwave systems in the future.

  18. Ultra high vacuum broad band high power microwave window

    DOEpatents

    Nguyen-Tuong, V.; Dylla, H.F. III

    1997-11-04

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

  19. Ultra high vacuum broad band high power microwave window

    DOEpatents

    Nguyen-Tuong, Viet; Dylla, III, Henry Frederick

    1997-01-01

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

  20. Dielectric, thermal and mechanical properties of zirconium silicate reinforced high density polyethylene composites for antenna applications.

    PubMed

    Varghese, Jobin; Nair, Dinesh Raghavan; Mohanan, Pezholil; Sebastian, Mailadil Thomas

    2015-06-14

    A low cost and low dielectric loss zirconium silicate (ZrSiO4) reinforced HDPE (high-density polyethylene) composite has been developed for antenna applications. The 0-3 type composite is prepared by dispersing ZrSiO4 fillers for various volume fractions (0.1 to 0.5) in the HDPE matrix by the melt mixing process. The composite shows good microwave dielectric properties with a relative permittivity of 5.6 and a dielectric loss of 0.003 at 5 GHz at the maximum filler loading of 0.5 volume fraction. The composite exhibits low water absorption, excellent thermal and mechanical properties. It shows a water absorption of 0.03 wt%, a coefficient of thermal expansion of 70 ppm per °C and a room temperature thermal conductivity of 2.4 W mK(-1). The composite shows a tensile strength of 22 MPa and a microhardness of 13.9 kg mm(-2) for the filler loading of 0.5 volume fraction. The HDPE-ZrSiO4 composites show good dielectric, thermal and mechanical properties suitable for microwave soft substrate applications. A microstrip patch antenna is designed and fabricated using the HDPE-0.5 volume fraction ZrSiO4 substrate and the antenna parameters are investigated.

  1. Design of Vivaldi Microstrip Antenna for Ultra-Wideband Radar Applications

    NASA Astrophysics Data System (ADS)

    Perdana, M. Y.; Hariyadi, T.; Wahyu, Y.

    2017-03-01

    The development of radar technology has an important role in several fields such as aviation, civil engineering, geology, and medicine. One of the essential components of the radar system is the antenna. The bandwidth can specify the resolution of the radar. The wider the bandwidth, the higher the resolution of radar. For Ground penetrating radar (GPR) or medical applications need with a high-resolution radar so it needs an antenna with a wide bandwidth. In addition, for the radar application is required antenna with directional radiation pattern. So, we need an antenna with wide bandwidth and directional radiation pattern. One of antenna that has meet with these characteristics is vivaldi antenna. In previous research, has designed several vivaldi microstrip antenna for ultra-wideband radar applications which has a working frequency of 3.1 to 10.7 GHz. However, these studies there is still a shortage of one of them is the radiation pattern from lowest to highest frequency radiation pattern is not uniform in the sense that not all directional. Besides the antenna material used is also not easily available and the price is not cheap. This paper will discuss the design of a vivaldi microstrip antenna which has a wide bandwidth with directional radiation pattern works on 3.1 to 10.7 GHz and using cheaper substrate. Substrates used for vivaldi microstrip antenna vivaldi is FR4 with a dielectric constant of 4.3 and a thickness of 1.6 mm. Based on the simulation results we obtained that the antenna design has frequency range 3.1-10.7 GHz for return loss less than -10 dB with a directional radiation pattern. This antenna gain is 4.8 to 8 dBi with the largest dimension is 50 mm x 40 mm.

  2. Frequency and Temperature Dependent Dielectric Properties of Free-standing Strontium Titanate Thin Films.

    NASA Astrophysics Data System (ADS)

    Dalberth, Mark J.; Stauber, Renaud E.; Anderson, Britt; Price, John C.; Rogers, Charles T.

    1998-03-01

    We will report on the frequency and temperature dependence of the complex dielectric function of free-standing strontium titanate (STO) films. STO is an incipient ferroelectric with electric-field tunable dielectric properties of utility in microwave electronics. The films are grown epitaxially via pulsed laser deposition on a variety of substrates, including lanthanum aluminate (LAO), neodymium gallate (NGO), and STO. An initial film of yttrium barium cuprate (YBCO) is grown on the substrate, followed by deposition of the STO layer. Following deposition, the sacrificial YBCO layer is chemically etched away in dilute nitric acid, leaving the substrate and a released, free-standing STO film. Coplanar capacitor structures fabricated on the released films allow us to measure the dielectric response. We observe a peak dielectric function in excess of 5000 at 35K, change in dielectric constant of over a factor of 8 for 10Volt/micron electric fields, and temperature dependence above 50K that is very similar to bulk material. The dielectric loss shows two peaks, each with a thermally activated behavior, apparently arising from two types of polar defects. We will discuss the correlation between dielectric properties, growth conditions, and strain in the free-standing STO films.

  3. Study of dielectric properties of adulterated milk concentration and freshness

    NASA Astrophysics Data System (ADS)

    Jitendra Murthy, V.; Sai Kiranmai, N.; Kumar, Sanjeev

    2017-08-01

    The knowledge of dielectric properties may hold a potential to develop a new technique for quality evaluation of milk. The dielectric properties of water diluted cow’s milk with milk concentration from 70 percent to 100 percent stored during 36hour storage at 22°C and 144 hour at 5°C were measured at room temperature for frequencies ranging from 10 to 4500 MHz and at low, high & at microwave frequencies using X band bench and open-ended coaxial-line probe technology, along with electrical conductivity. The raw milk had the lowest dielectric constant (ɛ‧) when the frequency was higher than about 20M.Hz, and had the highest loss (ɛ″) or decepation factor tan (δ) at each frequency. The penetration depth (dp) increased with decreasing frequency, water content and storage time, which was large enough to detect dielectric properties changes in milk samples and provide large scale RF pasteurization processes. The loss factor can be an indicator in predicting milk concentration and freshness.

  4. Microwave dielectric relaxation spectroscopy study of propylene glycol/ethanol binary mixtures: Temperature dependence

    NASA Astrophysics Data System (ADS)

    Vishwam, T.; Shihab, Suriya; Murthy, V. R. K.; Tiong, Ha Sie; Sreehari Sastry, S.

    2017-05-01

    Complex dielectric permittivity measurements of propylene glycol (PG) in ethanol at various mole fractions were measured by using open-ended coaxial probe technique at different temperatures in the frequency range 0.02 < ν/GHz < 20. The dipole moment (μ), excess dipole moment (Δμ),excess permittivity (εE), excess inverse relaxation time(1/τ)E, Bruggeman parameter (fB), excess Helmholtz energy (ΔFE) are determined using experimental data. From the minimum energy based geometry optimization, dipole moments of individual monomers of propylene glycol and ethanol and their binary system have been evaluated theoretically at gaseous state as well as alcoholic medium by using PCM and IEFPCM solvation models from the Hatree-Fock (HF) and Density Functional Theory (DFT-B3LYP) methods with 6-311G* and 6-311G** basis sets. The obtained results have been interpreted in terms of the short and long range ordering of the dipoles, Kirkwood correlation factor (geff), thermodynamic parameters, mean molecular polarizability (αM) and interaction in the mixture through hydrogen bonding. Dielectric relaxation study of propylene glycol in ethanol medium Determination of excess dielectric and thermodynamic parameters Comparison of experimental dipole moment with theoretical calculations Interpretation of the molecular interactions in the liquid through H-bonding Correlation between the evaluated dielectric parameters and theoretical results

  5. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays.

    PubMed

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-10-19

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies.

  6. Deep-Blue Fluorescent Particles via Microwave Heating of Polyacrylonitrile Dispersions.

    PubMed

    Go, Dennis; Jurásková, Alena; Hoffmann, Andreas; Kapiti, Gent; Kuehne, Alexander J C

    2017-03-01

    This study presents a new method to produce fluorescent particles. Established methods are based on the incorporation of conjugated dye molecules into dielectric polymer matrices or preparation of colloids, which are composed of fluorescent conjugated polymer. By contrast, this study presents a method where dielectric polyacrylonitrile is exposed to microwave radiation leading to an intramolecular cyclization reaction producing π-conjugated segments, which fluoresce blue. During this conversion, the particles shrink in diameter but as an ensemble they retain their monodispersity. This work investigates the optimal reaction conditions and characterizes the optical properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Diurnal changes in the dielectric properties and water status of eastern hemlock and red spruce from Howland, ME

    NASA Technical Reports Server (NTRS)

    Salas, W. A.; Ranson, K. J.; Rock, B. N.; Moss, D. M.

    1991-01-01

    The diurnal characteristics of microwave dielectric properties and water potential of two conifer species were investigated in July and September, 1990. P-band and C-band radial dielectric profiles of hemlock and red spruce, as well as hemlock diurnal water potential and dielectric profiles, are presented. The resulting radial dielectric profiles matched the regions of the functional sapwood (water transport component of the active xylem) in both species such that the sapwood was characterized by a higher dielectric than the bark and heartwood tissues. This is probably due to characteristic differences in the water content of each tissue. As the hemlocks progressed through their diurnal water potential pattern, the dielectric profile remained static until mid-afternoon. As the tension in the water column relaxed (2 to 3 bars) the dielectric constant decreased by 30 to 40 percent. There are several possible explanations for this phenomenon, and these may relate to the dependency of the dielectric measurements on temperature, salinity, and volumetric water content.

  8. Preparation and microwave absorption properties of honeycomb core structures coated with composite absorber

    NASA Astrophysics Data System (ADS)

    Luo, Hui; Chen, Fu; Wang, Fang; Wang, Xian; Dai, Weiyong; Hu, Sheng; Gong, Rongzhou

    2018-05-01

    Honeycomb structure coated with paraffin filled with composite of graphene and flaky carbonyl iron powder (FCIP) as lossy filler have been studied. The composite of graphene/FCIP with different weight ratio were synthesized via mechanical milling, the electromagnetic properties of the samples were measured by transmission/reflection method in the frequency range of 8-12 GHz. The microwave absorbing properties of the microwave absorbing honeycomb structure (MAHS) and microwave absorbing honeycomb sandwich structure (MAHSS) were studied based on the Finite Element Method with periodical boundary conditions. The matching layer on the top of the honeycomb sandwich structure can enhanced the microwave absorption properties. It was shown that a light weight and broadband MAHSS could be implemented with the use of the magnetic material and dielectric material.

  9. Observed effects of soil organic matter content on the microwave emissivity of soils

    NASA Technical Reports Server (NTRS)

    O'Neill, P. E.; Jackson, T. J.

    1990-01-01

    In order to determine the significance of organic matter content on the microwave emissivity of soils when estimating soil moisture, field experiments were conducted in which 1.4 GHz microwave emissivity data were collected over test plots of sandy loam soil with different organic matter levels (1.8, 4.0, and 6.1 percent) for a range of soil moisture values. Analyses of the observed data show only minor variation in microwave emissivity due to a change in organic matter content at a given moisture level for soils with similar texture and structure. Predictions of microwave emissivity made using a dielectric model for aggregated soils exhibit the same trends and type of response as the measured data when appropriate values for the input parameters were utilized.

  10. Observed effects of soil organic matter content on the microwave intensity of soils

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Oneill, P. E.

    1988-01-01

    In order to determine the significance of organic matter content on the microwave emissivity of soils when estimating soil moisture, field experiments were conducted in which 1.4 GHz microwave emissivity data were collected over test plots of sandy loam soil with different organic matter levels (1.8, 4.0, and 6.1 percent) for a range of soil moisture values. Analyses of the observed data show only minor variation in microwave emissivity due to a change in organic matter content at a given moisture level for soils with similar texture and structure. Predictions of microwave emissivity made using a dielectric model for aggregated soils exhibit the same trends and type of response as the measured data when appropriate values for the input parameters were utilized.

  11. Electrically tunable materials for microwave applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Aftab, E-mail: aahmed@anl.gov; Goldthorpe, Irene A.; Khandani, Amir K.

    2015-03-15

    Microwave devices based on tunable materials are of vigorous current interest. Typical applications include phase shifters, antenna beam steering, filters, voltage controlled oscillators, matching networks, and tunable power splitters. The objective of this review is to assist in the material selection process for various applications in the microwave regime considering response time, required level of tunability, operating temperature, and loss tangent. The performance of a variety of material types are compared, including ferroelectric ceramics, polymers, and liquid crystals. Particular attention is given to ferroelectric materials as they are the most promising candidates when response time, dielectric loss, and tunability aremore » important. However, polymers and liquid crystals are emerging as potential candidates for a number of new applications, offering mechanical flexibility, lower weight, and lower tuning voltages.« less

  12. Microwave Remote Sensing of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.

    1985-01-01

    Because of the large contrast between the dielectric constant of liquid water and that of dry soil at microwave wavelength, there is a strong dependence of the thermal emission and radar backscatter from the soil on its moisture content. This dependence provides a means for the remote sensing of the moisture content in a surface layer approximately 5 cm thick. The feasibility of these techniques is demonstrated from field, aircraft and spacecraft platforms. The soil texture, surface roughness, and vegetative cover affect the sensitivity of the microwave response to moisture variations with vegetation being the most important. It serves as an attenuating layer which can totally obscure the surface. Research indicates that it is possible to obtain five or more levels of moisture discrimination and that a mature corn crop is the limiting vegetation situation.

  13. Flexible ultra-wideband antenna incorporated with metamaterial structures: multiple notches for chipless RFID application

    NASA Astrophysics Data System (ADS)

    Jalil, M. E.; Rahim, M. K. A.; Samsuri, N. A.; Dewan, R.; Kamardin, K.

    2017-01-01

    A coplanar waveguide (CPW) ultra-wideband (UWB) antenna incorporated with metamaterial—split ring resonator structure—that operates from 3.0 to 12.0 GHz is proposed for chipless RFID tag. The 30 mm × 40 mm flexible chipless RFID tag is designed on the fleece substrate ( ɛ r = 1.35, thickness = 1 mm and tan δ = 0.025). A six-slotted modified complementary split ring resonator (MCSRR) is introduced into the ultra-wideband antenna to produce multiple band notches at 3.0, 4.0, 5.0, 6.0 and 7.0 GHz. The frequency shifting technique is introduced for designing a high-capacity chipless RFID tag with compact size. Each MCSRR is able to code in four different allocations (00, 01, 10 and 11). To achieve encoding of 10-bits data (10,234 number), six MCSRRs are proposed with three-slotted MCSRR in the radiator and three-slotted MCSRR in the ground plane.

  14. High temperature dielectric studies of indium-substituted NiCuZn nanoferrites

    NASA Astrophysics Data System (ADS)

    Hashim, Mohd.; Raghasudha, M.; Shah, Jyoti; Shirsath, Sagar E.; Ravinder, D.; Kumar, Shalendra; Meena, Sher Singh; Bhatt, Pramod; Alimuddin; Kumar, Ravi; Kotnala, R. K.

    2018-01-01

    In this study, indium (In3+)-substituted NiCuZn nanostructured ceramic ferrites with a chemical composition of Ni0.5Cu0.25Zn0.25Fe2-xInxO4 (0.0 ≤ x ≤ 0.5) were prepared by chemical synthesis involving sol-gel chemistry. Single phased cubic spinel structure materials were prepared successfully according to X-ray diffraction and transmission electron microscopy analyses. The dielectric properties of the prepared ferrites were measured using an LCR HiTester at temperatures ranging from room temperature to 300 °C at different frequencies from 102 Hz to 5 × 106 Hz. The variations in the dielectric parameters ε‧ and (tanδ) with temperature demonstrated the frequency- and temperature-dependent characteristics due to electron hopping between the ions. The materials had low dielectric loss values in the high frequency range at all temperatures, which makes them suitable for high frequency microwave applications. A qualitative explanation is provided for the dependences of the dielectric constant and dielectric loss tangent on the frequency, temperature, and composition. Mӧssbauer spectroscopy was employed at room temperature to characterize the magnetic behavior.

  15. Optimization of bio-diesel production from soybean and wastes of cooked oil: combining dielectric microwave irradiation and a SrO catalyst.

    PubMed

    Koberg, Miri; Abu-Much, Riam; Gedanken, Aharon

    2011-01-01

    This work offers an optimized method in the transesterification of pristine (soybean) oil and cooked oil to bio-diesel, based on microwave dielectric irradiation as a driving force for the transesterification reaction and SrO as a catalyst. This combination has demonstrated excellent catalytic activity and stability. The transesterification was carried out with and without stirring. According to 1H NMR spectroscopy and TLC results, this combination accelerates the reaction (to less than 60 s), maintaining a very high conversion (99%) and high efficiency. The catalytic activity of SrO under atmospheric pressure in the presence of air and under the argon atmosphere is demonstrated. The optimum conversion of cooked oil (99.8%) is achieved under MW irradiation of 1100 W output with magnetic stirring after only 10 s. The optimum method decreases the cost of bio-diesel production and has the potential for industrial application in the transesterification of cooked oil to bio-diesel. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. An Analysis of the Tensor Dielectric Constant of Sea Ice at Microwave Frequencies.

    DTIC Science & Technology

    1985-10-01

    36.8 > t a -43.2 0 C (5) is convenient. The above equations for p in the range t > -22.9 0 C were first published by Frankenstein and Garner [12). III...Em 0 (6) for the mean electric field propagating in the medium. Here ko is the free space propagation constant, K. the quasi-static dielectric tensor...C. Essen- " tially identical results were found for the real part of the dielectric con- stant whether the polarization of the electric field was

  17. A Dual-Mode Microwave Applicator for Liver Tumor Thermotherapy

    NASA Astrophysics Data System (ADS)

    Reimann, Carolin; Schüßler, Martin; Jakoby, Rolf; Bazrafshan, Babak; Hübner, Frank; Vogl, Thomas

    2018-03-01

    The concept of a novel dual-mode microwave applicator for diagnosis and thermal ablation treatment of tumorous tissue is presented in this paper. This approach is realized by integrating a planar resonator array to, firstly, detect abnormalities by a relative dielectric analysis, and secondly, perform a highly localized thermal ablation. A further essential advantage is addressed by designing the applicator to be MRI compatible to provide a multimodal imaging procedure. Investigations for an appropriate frequency range lead to the use of much higher operating frequencies between 5 GHz and 10 GHz, providing a significantly lower power consumption for microwave ablation of only 20 W compared to commercial available applicators.

  18. PHASE EVOLUTION AND MICROWAVE DIELECTRIC PROPERTIES OF (Li0.5Bi0.5)(W1-xMox)O4(0.0 ≤ x ≤ 1.0) CERAMICS WITH ULTRA-LOW SINTERING TEMPERATURES

    NASA Astrophysics Data System (ADS)

    Zhou, Di; Guo, Jing; Yao, Xi; Pang, Li-Xia; Qi, Ze-Ming; Shao, Tao

    2012-11-01

    The (Li0.5Bi0.5)(W1-xMox)O4(0.0 ≤ x ≤ 1.0) ceramics were prepared via the solid state reaction method. The sintering temperature decreased almost linearly from 755°C for (Li0.5Bi0.5)WO4 to 560°C for (Li0.5Bi0.5)MoO4. When the x≤0.3, a wolframite solid solution can be formed. For x = 0.4 and x = 0.6 compositions, both the wolframite and scheelite phases can be formed from the X-ray diffraction analysis, while two different kinds of grains can be revealed from the scanning electron microscopy and energy-dispersive X-ray spectrometer results. High performance of microwave dielectric properties were obtained in the (Li0.5Bi0.5)(W0.6Mo0.4)O4 ceramic sintered at 620°C with a relative permittivity of 31.5, a Qf value of 8500 GHz (at 8.2 GHz), and a temperature coefficient value of +20 ppm/°C. Complex dielectric spectra of pure (Li0.5Bi0.5)WO4 ceramic gained from the infrared spectra were extrapolated down to microwave range, and they were in good agreement with the measured values. The (Li0.5Bi0.5)(W1-xMox)O4(0.0 ≤ x ≤ 1.0) ceramics might be promising for low temperature co-fired ceramic technology.

  19. Effect of crystal structure on strontium titanate thin films and their dielectric properties

    NASA Astrophysics Data System (ADS)

    Kampangkeaw, Satreerat

    Strontium titanate (SrTiO3 or STO) has application in radio and microwave-frequency tunable capacitor devices particularly at low temperatures due to its high dielectric constant, low loss and the electric field tunability of its dielectric constant. The main goal of improving the performance in these devices is to increase the tunability and decrease the dielectric loss at the same time, especially at microwave frequencies. Thin films of STO however, show dramatic differences compared to the bulk. The dielectric constant of bulk STO increases nonlinearly from 300 at room temperature to 30000 at 4 K and the loss range is 10-3--10 -4. On the other hand. STO thin films, while showing a dielectric constant close to 300 at room temperature, typically reach a maximum between 1000 and 10000 in the 30 K to 100 K range before decreasing, and the high-loss range is 10-2--10-3. We have grown strontium titanate thin films using a pulsed laser deposition technique on substrates selected to have a small lattice mismatch between the film and substrate. Neodymium gallate (NdGaO3 or NGO) and lanthanum aluminate (LaAlO3 or LAO) substrates were good candidates due to only 1--2% mismatching. Film capacitor devices were fabricated with 25 micron gap separation. 1.5 mm total gap length and an overall 1 x 2 mm dimension using standard lithography and gold metal evaporative techniques. Their nonlinear dielectric constant and loss tangent were measured at low frequencies and also at 2 GHz, and from room temperature down to 4 K. The resulting films show significant variations of dielectric properties with position on the substrates with respect to the deposition plume axis. In the presence of DC electric fields up to +/-4 V/mum, STO films show improved dielectric tunability and low loss in regions far from the plume axis. We found that the films grown on NCO have lower dielectric loss than those on LAO due to a closer match of the NCO lattice to that of STO. We investigated the possible

  20. Apparatus for Use in Determining Surface Conductivity at Microwave Frequencies

    NASA Technical Reports Server (NTRS)

    Hearn, Chase P. (Inventor)

    1995-01-01

    An apparatus is provided for use in determining surface conductivity of a flat or shaped conductive material at microwave frequencies. A plate has an electrically conductive surface with first and second holes passing through the plate. An electrically conductive material under test (MUT) is maintained in a spaced apart relationship with the electrically conductive surface of the plate by one or more nonconductive spacers. A first coupling loop is electrically shielded within the first hole while a second coupling loop is electrically shielded within the second hole. A dielectric resonator element is positioned between the first and second coupling loops, while also being positioned closer to the MUT than the electrically conductive surface of the plate. Microwave energy at an operating frequency f is supplied from a signal source to the first coupling loop while microwave energy received at the second coupling loop is measured. The apparatus is capable of measuring the Q-factor of the dielectric resonator situated in the 'cavity' existing between the electrically conductive surface of the plate and the MUT. Surface conductivity of the electrically conductive surface can be determined via interpolation using: 1 ) the measured Q-factor with the electrically conductive surface in place, and 2) the measured Q-factor when the MUT is replaced with reference standards having known surface conductivities.

  1. On the scattering directionality of a dielectric particle dimer of High Refractive Index.

    PubMed

    Barreda, Ángela I; Saleh, Hassan; Litman, Amélie; González, Francisco; Geffrin, Jean-Michel; Moreno, Fernando

    2018-05-22

    Low-losses and directionality effects exhibited by High Refractive Index Dielectric particles make them attractive for applications where radiation direction control is relevant. For instance, isolated metallo-dielectric core-shell particles or aggregates (dimers) of High Refractive Index Dielectric particles have been proposed for building operational switching devices. Also, the possibility of using isolated High Refractive Index Dielectric particles for optimizing solar cells performance has been explored. Here, we present experimental evidence in the microwave range, that a High Refractive Index Dielectric dimer of spherical particles is more efficient for redirecting the incident radiation in the forward direction than the isolated case. In fact, we report two spectral regions in the dipolar spectral range where the incident intensity is mostly scattered in the forward direction. They correspond to the Zero-Backward condition (also observed for isolated particles) and to a new condition, denoted as "near Zero-Backward" condition, which comes from the interaction effects between the particles. The proposed configuration has implications in solar energy harvesting devices and in radiation guiding.

  2. One-step fabrication of N-doped CNTs encapsulating M nanoparticles (M = Fe, Co, Ni) for efficient microwave absorption

    NASA Astrophysics Data System (ADS)

    Ning, Mingqiang; Li, Jingbo; Kuang, Boya; Wang, Chengzhi; Su, Dezhi; Zhao, Yongjie; Jin, Haibo; Cao, Maosheng

    2018-07-01

    By using a modified non-toxic pyrolysis method, M@NCNTs comprising in-situ formed M nanoparticles encapsulated in nitrogen-doped carbon nanotubes (NCNTs) have been synthesized. Compared to traditional preparation process of M@CNTs (eg: acid-aid treatment to CNTs then decorating M particles onto), this method holds the advantage of free of complicated treatment processes. The M@NCNTs exhibit tightly connected interfaces of M/NCNTs and contain abundant N dopants, which could contribute interfacial polarization and defect-dipole polarization to improving the microwave absorption performance. An intense dielectric relaxation is observed in Fe@NCNTs samples, which further enhances the dielectric loss. As expected, the as-synthesized M@NCNTs composites demonstrate promising candidates in microwave absorption (MWA) application. The minimum reflection loss (RL) of Fe@NCNTs (with 10 wt% loading) is up to -30.43 dB at 3.2 mm, and the effective absorption bandwidth (RL < -10 dB) is as wide as 5.7 GHz which benefits from the neighboring dual absorption peaks induced by the intense dielectric relaxation. Co@NCNTs and Ni@NCNTs also have satisfactory effective absorption bandwidth ∼4.08 and ∼4.72 GHz, respectively. The modified pyrolysis method is low-cost and non-toxic, which could become an industrial technique to synthesize carbonaceous composites for microwave absorption.

  3. Lunar Heat Flux Measurements Enabled by a Microwave Radiometer Aboard the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Siegler, M.; Ruf, C.; Putzig, N.; Morgan, G.; Hayne, P.; Paige, D.; Nagihara, S.; Weber, R.

    2018-02-01

    We would like to present a concept to use the Deep Space Gateway as a platform for constraining the geothermal heat production, surface, and near-surface rocks, and dielectric properties of the Moon from orbit with passive microwave radiometery.

  4. Microwave corrosion detection using open ended rectangular waveguide sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qaddoumi, N.; Handjojo, L.; Bigelow, T.

    The use of microwave and millimeter wave nondestructive testing methods utilizing open ended rectangular waveguide sensors has shown great potential for detecting minute thickness variations in laminate structures, in particular those backed by a conducting plate. Slight variations in the dielectric properties of materials may also be detected using a set of optimal parameters which include the standoff distance and the frequency of operation. In a recent investigation, on detecting rust under paint, the dielectric properties of rust were assumed to be similar to those of Fe{sub 2}O{sub 3} powder. These values were used in an electromagnetic model that simulatesmore » the interaction of fields radiated by a rectangular waveguide aperture with layered structures to obtain optimal parameters. The dielectric properties of Fe{sub 2}O{sub 3} were measured to be very similar to the properties of paint. Nevertheless, the presence of a simulated Fe{sub 2}O{sub 3} layer under a paint layer was detected. In this paper the dielectric properties of several different rust samples from different environments are measured. The measurements indicate that the nature of real rust is quite diverse and is different from Fe{sub 2}O{sub 3} and paint, indicating that the presence of rust under paint can be easily detected. The same electromagnetic model is also used (with the newly measured dielectric properties of real rust) to obtain an optimal standoff distance at a frequency of 24 GHz. The results indicate that variations in the magnitude as well as the phase of the reflection coefficient can be used to obtain information about the presence of rust. An experimental investigation on detecting the presence of very thin rust layers (2.5--5 x 10{sup {minus}2} mm [09--2.0 x 10{sup {minus}3} in.]) using an open ended rectangular waveguide probe is also conducted. Microwave images of rusted specimens, obtained at 24 GHz, are also presented.« less

  5. Thermally Tunable Ultra-wideband Metamaterial Absorbers based on Three-dimensional Water-substrate construction.

    PubMed

    Shen, Yang; Zhang, Jieqiu; Pang, Yongqiang; Zheng, Lin; Wang, Jiafu; Ma, Hua; Qu, Shaobo

    2018-03-13

    Distilled water has frequency dispersive characteristic and high value of imaginary part in permittivity, which can be seen as a good candidate of broadband metamaterial absorbers(MAs) in microwave. Here, an interesting idea based on the combination of water-substrate and metallic metamaterial in the three-dimensional construction is proposed, which can achieve outstanding broadband absorption. As a proof, the distilled water is filled into the dielectric reservoir as ultra-thin water-substrate, and then the water-substrates are arranged on the metal backplane periodically as three-dimensional water-substrate array(TWA). Simulation shows that the TWA achieves broadband absorption with the efficiency more than 90% from 8.3 to 21.0 GHz. Then, the trigonal metallic fishbone structure is introduced here between the water-substrate and the dielectric reservoir periodically as three-dimensional water-substrate metamaterial absorber(TWMA). The proposed TWMA could achieve ultra-broadband absorption from 2.6 to 16.8 GHz, which has increase by 64.8% in relative absorption bandwidth. Meanwhile, due to the participation of distilled water, the thermally tunable property also deserves to be discussed here. In view of the outstanding performance, it is worth to expect a wide range of applications to emerge inspired from the proposed construction.

  6. BOREAS RSS-17 Dielectric Constant Profile Measurements

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); McDonald, Kyle C.; Zimmerman, Reiner; Way, JoBea

    2000-01-01

    The BOREAS RSS-17 team acquired and analyzed imaging radar data from the ESA's ERS-1 over a complete annual cycle at the BOREAS sites in Canada in 1994 to detect shifts in radar backscatter related to varying environmental conditions. This data set consists of dielectric constant profile measurements from selected trees at various BOREAS flux tower sites. The relative dielectric constant was measured at C-band (frequency = 5 GHz) as a function of depth into the trunk of three trees at each site, Measurements were made during April 1994 with an Applied Microwave Corporation field PDP fitted with a 0.358-cm (0.141-inch) diameter coaxial probe tip. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  7. Real-time curling probe monitoring of dielectric layer deposited on plasma chamber wall

    NASA Astrophysics Data System (ADS)

    Hotta, Masaya; Ogawa, Daisuke; Nakamura, Keiji; Sugai, Hideo

    2018-04-01

    A microwave resonator probe called a curling probe (CP) was applied to in situ monitoring of a dielectric layer deposited on a chamber wall during plasma processing. The resonance frequency of the CP was analytically found to shift in proportion to the dielectric layer thickness; the proportionality constant was determined from a comparison with the finite-difference time-domain (FDTD) simulation result. Amorphous carbon layers deposited in acetylene inductively coupled plasma (ICP) discharge were monitored using the CP. The measured resonance frequency shift dictated the carbon layer thickness, which agreed with the results from the surface profiler and ellipsometry.

  8. Monostatic ultra-wideband GPR antenna for through wall detection

    NASA Astrophysics Data System (ADS)

    Ali, Jawad; Abdullah, Noorsaliza; Yahya, Roshayati; Naeem, Taimoor

    2017-11-01

    The aim of this paper is to present a monostatic arc-shaped ultra-wideband (UWB) printed monopole antenna system with 3-16 GHz frequency bandwidth suitable for through-wall detection. Ground penetrating radar (GPR) technique is used for detection with the gain of 6.2 dB achieved for the proposed antenna using defected ground structure (DGS) method. To serve the purpose, a simulation experiment of through-wall detection model is constructed which consists of a monostatic antenna act as transmitter and receiver, concrete wall and human skin model. The time domain reflection of obtained result is then analysed for target detection.

  9. Mapping Greenland's Firn Aquifer using L-band Microwave Radiometry

    NASA Astrophysics Data System (ADS)

    Miller, J.; Bringer, A.; Jezek, K. C.; Johnson, J. T.; Scambos, T. A.; Long, D. G.

    2016-12-01

    University developed Ultra-Wideband Software-Defined Microwave Radiometer (UWBRAD) as part of our airborne field campaign to be conducted in September 2016.

  10. Experimental and computational studies of electromagnetic cloaking at microwaves

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohui

    An invisibility cloak is a device that can hide the target by enclosing it from the incident radiation. This intriguing device has attracted a lot of attention since it was first implemented at a microwave frequency in 2006. However, the problems of existing cloak designs prevent them from being widely applied in practice. In this dissertation, we try to remove or alleviate the three constraints for practical applications imposed by loosy cloaking media, high implementation complexity, and small size of hidden objects compared to the incident wavelength. To facilitate cloaking design and experimental characterization, several devices and relevant techniques for measuring the complex permittivity of dielectric materials at microwave frequencies are developed. In particular, a unique parallel plate waveguide chamber has been set up to automatically map the electromagnetic (EM) field distribution for wave propagation through the resonator arrays and cloaking structures. The total scattering cross section of the cloaking structures was derived based on the measured scattering field by using this apparatus. To overcome the adverse effects of lossy cloaking media, microwave cloaks composed of identical dielectric resonators made of low loss ceramic materials are designed and implemented. The effective permeability dispersion was provided by tailoring dielectric resonator filling fractions. The cloak performances had been verified by full-wave simulation of true multi-resonator structures and experimental measurements of the fabricated prototypes. With the aim to reduce the implementation complexity caused by metamaterials employment for cloaking, we proposed to design 2-D cylindrical cloaks and 3-D spherical cloaks by using multi-layer ordinary dielectric material (epsilon r>1) coating. Genetic algorithm was employed to optimize the dielectric profiles of the cloaking shells to provide the minimum scattering cross sections of the cloaked targets. The designed cloaks can

  11. A Study of Dielectric Properties of Proteinuria between 0.2 GHz and 50 GHz

    PubMed Central

    Mun, Peck Shen; Ting, Hua Nong; Ong, Teng Aik; Wong, Chew Ming; Ng, Kwan Hong; Chong, Yip Boon

    2015-01-01

    This paper investigates the dielectric properties of urine in normal subjects and subjects with chronic kidney disease (CKD) at microwave frequency of between 0.2 GHz and 50 GHz. The measurements were conducted using an open-ended coaxial probe at room temperature (25°C), at 30°C and at human body temperature (37°C). There were statistically significant differences in the dielectric properties of the CKD subjects compared to those of the normal subjects. Statistically significant differences in dielectric properties were observed across the temperatures for normal subjects and CKD subjects. Pearson correlation test showed the significant correlation between proteinuria and dielectric properties. The experimental data closely matched the single-pole Debye model. The relaxation dispersion and relaxation time increased with the proteinuria level, while decreasing with the temperature. As for static conductivity, it increased with proteinuria level and temperature. PMID:26066351

  12. Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization

    PubMed Central

    Hoff, Daniel E.M.; Albert, Brice J.; Saliba, Edward P.; Scott, Faith J.; Choi, Eric J.; Mardini, Michael; Barnes, Alexander B.

    2015-01-01

    Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198 GHz MAS DNP probe. Our calculations show that a microwave power input of 17 W is required to generate an average EPR nutation frequency of 0.84 MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5 kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions. PMID:26482131

  13. Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization.

    PubMed

    Hoff, Daniel E M; Albert, Brice J; Saliba, Edward P; Scott, Faith J; Choi, Eric J; Mardini, Michael; Barnes, Alexander B

    2015-11-01

    Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198GHz MAS DNP probe. Our calculations show that a microwave power input of 17W is required to generate an average EPR nutation frequency of 0.84MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Millimeter wave and terahertz dielectric properties of biological materials

    NASA Astrophysics Data System (ADS)

    Khan, Usman Ansar

    Broadband dielectric properties of materials can be employed to identify, detect, and characterize materials through their unique spectral signatures. In this study, millimeter wave, submillimeter wave, and terahertz dielectric properties of biological substances inclusive of liquids, solids, and powders were obtained using Dispersive Fourier Transform Spectroscopy (DFTS). Two broadband polarizing interferometers were constructed to test materials from 60 GHz to 1.2 THz. This is an extremely difficult portion of the frequency spectrum to obtain a material's dielectric properties since neither optical nor microwave-based techniques provide accurate data. The dielectric characteristics of liquids such as cyclohexane, chlorobenzene, benzene, ethanol, methanol, 1,4 dioxane, and 10% formalin were obtained using the liquid interferometer. Subsequently the solid interferometer was utilized to determine the dielectric properties of human breast tissues, which are fixed and preserved in 10% formalin. This joint collaboration with the Tufts New England Medical Center demonstrated a significant difference between the dielectric response of tumorous and non-tumorous breast tissues across the spectrum. Powders such as anthrax, flour, talc, corn starch, dry milk, and baking soda have been involved in a number of security threats and false alarms around the globe in the last decade. To be able to differentiate hoax attacks and serious security threats, the dielectric properties of common household powders were also examined using the solid interferometer to identify the powders' unique resonance peaks. A new sample preparation kit was designed to test the powder specimens. It was anticipated that millimeter wave and terahertz dielectric characterization will enable one to clearly distinguish one powder from the other; however most of the powders had relatively close dielectric responses and only Talc had a resonance signature recorded at 1.135 THz. Furthermore, due to

  15. Solid-state synthesis of YAG powders through microwave coupling of oxide/carbon particulate mixtures

    DOE PAGES

    Wildfire, Christina; Sabolsky, Edward M.; Spencer, Michael J.; ...

    2017-06-14

    The rapid synthesis of yttrium aluminum garnet (Y 3Al 15O 12, YAG) powder was investigated through the use of microwave irradiation of the oxide precursor system. For this investigation, an external hybrid heating source was not used. Instead, the rapid heating of the precursor materials (yttria and alumina powders, which are typically transparent to 2.45 GHz microwaves) was initiated by mixing an intrinsic absorbing material (carbon) into the original oxide precursors. The effect of the carbon characteristics, such as carbon source, concentration, particle size, and agglomerate microstructure were evaluated on the efficiency of coupling and resultant oxide reaction. The microwavemore » power was varied to optimize the YAG conversion and eliminate intermediate phase formation. Interactions between the conductive carbon particles and the dielectric oxides within the microwave exposure produced local arching and micro-plasma formation within the powder bed, resulting in the rapid formation of the refractory YAG composition. This optimal conduction led to temperatures of 1000°C that could be achieved in less than 5 min resulting in the formation of > 90 vol% YAG. The understanding of a conductor/dielectric particulate system here, provided insight into possible application of similar systems where microwave irradiation could be used for enhanced solid-state formation, local melting events, and gas phase reactions with a composite powder media.« less

  16. EFFECT OF MICROWAVE SINTERING ON THE STRUCTURAL AND ELECTRICAL PROPERTIES OF Li0.51Zn0.2Ti0.2V0.01Fe2.08O4 FERRITE

    NASA Astrophysics Data System (ADS)

    Maisnam, Mamata; Phanjoubam, Sumitra

    2013-07-01

    Effect of microwave sintering on the structural and electrical properties of Li+0.51Zn2+0.2Ti4+0.2V5+0.01Fe3+2.08O2-4 is studied in comparison with that of conventionally sintered one. The technique is advantageous in terms of significantly reduced size of microwave kilns and rapid heating compared to the cumbersome and slow heating of conventional sintering technology. Microwave sintering produced enhanced densification and much finer microstructures. The DC resistivity is markedly increased. Microwave sintering reduces chances of evaporation of lithium and oxygen during sintering of lithium based ferrites resulting in formation of lesser ferrous ions. This has profound effect on the electrical properties of microwave sintered ferrites. The dielectric constant is significantly reduced possibly due to reduced space charge polarization and the temperature dependence of the dielectric properties are also studied.

  17. Microwave synthesis of noncentrosymmetric BaTiO3 truncated nanocubes for charge storage applications.

    PubMed

    Swaminathan, V; Pramana, Stevin S; White, T J; Chen, L; Chukka, Rami; Ramanujan, R V

    2010-11-01

    Truncated nanocubes of barium titanate (BT) were synthesized using a rapid, facile microwave-assisted hydrothermal route. Stoichiometric composition of pellets of nanocube BT powders was prepared by two-stage microwave process. Characterization by powder XRD, Rietveld refinement, SEM, TEM, and dielectric and polarization measurements was performed. X-ray diffraction revealed a polymorphic transformation from cubic Pm3̅m to tetragonal P4mm after 15 min of microwave irradiation, arising from titanium displacement along the c-axis. Secondary electron images were examined for nanocube BT synthesis and annealed at different timings. Transmission electron microscopy showed a narrow particle size distribution with an average size of 70 ± 9 nm. The remanence and saturation polarization were 15.5 ± 1.6 and 19.3 ± 1.2 μC/cm(2), respectively. A charge storage density of 925 ± 47 nF/cm(2) was obtained; Pt/BT/Pt multilayer ceramic capacitor stack had an average leakage current density of 5.78 ± 0.46 × 10(-8) A/cm(2) at ±2 V. The significance of this study shows an inexpensive and facile processing platform for synthesis of high-k dielectric for charge storage applications.

  18. The Contributions Regarding the Use of Microwave to Obtain Modeling Gypsum for Phonic-Absorbent Construction and Orthopedic Materials

    NASA Astrophysics Data System (ADS)

    Pop, P. A.; Ungur, P. A.; Caraban, A.; Marcu, F.

    2009-11-01

    The paper has presented some experiments realized at "Congips" Co. Oradea and University of Oradea, regarding of increase machining efficiency and quality for modeling gypsum plaster by using of microwave energy to gypsum ore roast. The elaboration process of microwave energy for modeling gypsum plaster has done on electromagnetic waves properties and specific properties for dielectric materials. Microwaves are radiations of electromagnetic waveform nature, determine by pulsations of electrical-E) and magnetically-H components of electromagnetic wave in interdependence with Maxwell equations. The gypsum ore is calcium sulphate dehydrate (CaSO4ṡ2H2O) using at modeling gypsum plaster fabrication, which is calcium sulphate hemihydrate (CaSO4ṡ1/2H2O), that has behavior of dielectric with losses. The gypsum ore getting in microwave field, in conditions of predictable pressure and temperature has transformed in modeling gypsum plaster, by quick lost of a part from crystallization water. The processing time is very short, which due to a great productivity and machining efficiency, finally of low process cost. All of these recommend continuing the research at pilot station level.

  19. On-chip programmable ultra-wideband microwave photonic phase shifter and true time delay unit.

    PubMed

    Burla, Maurizio; Cortés, Luis Romero; Li, Ming; Wang, Xu; Chrostowski, Lukas; Azaña, José

    2014-11-01

    We proposed and experimentally demonstrated an ultra-broadband on-chip microwave photonic processor that can operate both as RF phase shifter (PS) and true-time-delay (TTD) line, with continuous tuning. The processor is based on a silicon dual-phase-shifted waveguide Bragg grating (DPS-WBG) realized with a CMOS compatible process. We experimentally demonstrated the generation of delay up to 19.4 ps over 10 GHz instantaneous bandwidth and a phase shift of approximately 160° over the bandwidth 22-29 GHz. The available RF measurement setup ultimately limits the phase shifting demonstration as the device is capable of providing up to 300° phase shift for RF frequencies over a record bandwidth approaching 1 THz.

  20. Macro-motion detection using ultra-wideband impulse radar.

    PubMed

    Xin Li; Dengyu Qiao; Ye Li

    2014-01-01

    Radar has the advantage of being able to detect hidden individuals, which can be used in homeland security, disaster rescue, and healthcare monitoring-related applications. Human macro-motion detection using ultra-wideband impulse radar is studied in this paper. First, a frequency domain analysis is carried out to show that the macro-motion yields a bandpass signal in slow-time. Second, the FTFW (fast-time frequency windowing), which has the advantage of avoiding the measuring range reduction, and the HLF (high-pass linear-phase filter), which can preserve the motion signal effectively, are proposed to preprocess the radar echo. Last, a threshold decision method, based on the energy detector structure, is presented.

  1. Hydrothermal synthesis of doped lanthanum zirconate nanomaterials and the effect of V–Ge substitution on their structural, electrical and dielectric properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farid, Muhammad Asim; Asghar, Muhammad Adnan; Ashiq, Muhammad Naeem, E-mail: naeemashiqqau@yahoo.com

    2014-11-15

    Graphical abstract: Variation of dielectric constant with frequency for all the synthesized materials. - Highlights: • Hydrothermal method has been successfully employed to synthesize the zirconates. • XRD confirmed the formation of required phase. • Increased electrical resistivity makes these materials useful for microwave devices. • Dielectric parameters of zirconates decrease with increasing frequency. • Dielectric constant decreases with increasing substituents concentration. - Abstract: A hydrothermal method was successfully employed for the synthesis of a series of vanadium and germanium co-doped pyrochlore lanthanum zirconates with composition La{sub 2−x}V{sub x}Zr{sub 2−y}Ge{sub y}O{sub 7} (where x, y = 0.0, 0.25, 0.50, 0.75more » and 1.0). The XRD and FTIR analyses confirmed the formation of single phase except vanadium and germanium substituted samples and the crystallite sizes are in the range of 7–31 nm for V{sup 3+}–Ge{sup 4+} substituted samples. The theoretical compositions are confirmed by the ED-XRF studies. The room temperature electrical resistivity increase with the substituents concentration which suggests that the synthesized materials can be used for microwave devices as such devices required highly resistive materials. Dielectric properties were measured in the frequency range of 6 kHz to 1 MHz. The dielectric parameters decrease with increase in frequency. The DC resistivity data is in good agreement with the dielectric data.« less

  2. Multi-functional metal-dielectric photonic structures

    NASA Astrophysics Data System (ADS)

    Smith, Kyle J.

    In RF circuits and integrated photonics, it is important to effectively control an electromagnetic signal. This includes protecting of the network from high power and/or undesired signal flow, which is achieved with device functionalities such as isolation, circulation, switching, and limiting. In an attempt to develop light-weight, small-footprint, better protection devices, new designs have been sought utilizing materials that have been otherwise avoided due to some primary downside. For example, ferromagnetic metals like Iron and Cobalt, despite being powerful magnets, have been completely shunned for uses in nonreciprocal devices due to their overwhelming electric losses and high reflectivity. How could we utilize lossy materials in electromagnetic applications? In this thesis research, we design and fabricate metal-dielectric photonic structures in which metal can be highly transmissive, while the desired response (e.g., magneto-photonic response) is strongly enhanced. Moreover, the metal-dielectric structures can be designed to exhibit a sharp transition from the induced transmission to broadband opacity for oblique incidence and/or due to a tiny alteration of the photonic structure (e.g., because of nonlinearity). Thus, the photonic structures can be tailored to produce collimation and power-limiting effects. In the case of ferromagnetic metals, the metal-dielectric structure can be realized as an omnidirectional isolator passing radiation in a single direction and for a single frequency. The effectiveness of such structures will be verified in microwave measurements. Additionally, metal-dielectric structures including a nonlinear component will be shown to function as a reflective power limiter, thus providing a far superior alternative to absorptive, and often sacrificial, limiters.

  3. Distance bounded energy detecting ultra-wideband impulse radio secure protocol.

    PubMed

    Hedin, Daniel S; Kollmann, Daniel T; Gibson, Paul L; Riehle, Timothy H; Seifert, Gregory J

    2014-01-01

    We present a demonstration of a novel protocol for secure transmissions on a Ultra-wideband impulse radio that includes distance bounding. Distance bounding requires radios to be within a certain radius to communicate. This new protocol can be used in body area networks for medical devices where security is imperative. Many current wireless medical devices were not designed with security as a priority including devices that can be life threatening if controlled by a hacker. This protocol provides multiple levels of security including encryption and a distance bounding test to prevent long distance attacks.

  4. Modeling the use of microwave energy in sensing of moisture content in vidalia onions

    USDA-ARS?s Scientific Manuscript database

    Microwave moisture sensing provides a means to nondestructively determine the amount of water in materials. This is accomplished through the correlation of dielectric constant and loss factor with moisture content in the material. In this study, linear relationships between a density-independent fun...

  5. Computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems

    NASA Astrophysics Data System (ADS)

    Ku, Walter H.

    1987-08-01

    This interim technical report presents results of research on the computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems. A specific objective is to extend the state-of-the-art of the Computer Aided Design (CAD) of the monolithic microwave and millimeter wave integrated circuits (MIMIC). In this reporting period, we have derived a new model for the high electron mobility transistor (HEMT) based on a nonlinear charge control formulation which takes into consideration the variation of the 2DEG distance offset from the heterointerface as a function of bias. Pseudomorphic InGaAs/GaAs HEMT devices have been successfully fabricated at UCSD. For a 1 micron gate length, a maximum transconductance of 320 mS/mm was obtained. In cooperation with TRW, devices with 0.15 micron and 0.25 micron gate lengths have been successfully fabricated and tested. New results on the design of ultra-wideband distributed amplifiers using 0.15 micron pseudomorphic InGaAs/GaAs HEMT's have also been obtained. In addition, two-dimensional models of the submicron MESFET's, HEMT's and HBT's are currently being developed for the CRAY X-MP/48 supercomputer. Preliminary results obtained are also presented in this report.

  6. Compact microwave imaging system to measure spatial distribution of plasma density

    NASA Astrophysics Data System (ADS)

    Ito, H.; Oba, R.; Yugami, N.; Nishida, Y.

    2004-10-01

    We have developed an advanced microwave interferometric system operating in the K band (18-27 GHz) with the use of a fan-shaped microwave based on a heterodyne detection system for measuring the spatial distribution of the plasma density. In order to make a simple, low-cost, and compact microwave interferometer with better spatial resolution, a microwave scattering technique by a microstrip antenna array is employed. Experimental results show that the imaging system with the microstrip antenna array can have finer spatial resolution than one with the diode antenna array and reconstruct a good spatially resolved image of the finite size dielectric phantoms placed between the horn antenna and the micro strip antenna array. The precise two-dimensional electron density distribution of the cylindrical plasma produced by an electron cyclotron resonance has been observed. As a result, the present imaging system is more suitable for a two- or three-dimensional display of the objects or stationary plasmas and it is possible to realize a compact microwave imaging system.

  7. Influence of color on dielectric properties of marinated poultry breast meat.

    PubMed

    Samuel, D; Trabelsi, S

    2012-08-01

    The dielectric behavior of foods when exposed to radio-frequency and microwave electric fields is highly influenced by moisture content and the degree of water binding with constituents of the food materials. The ability to correlate specific food quality characteristics with the dielectric properties can lead to the development of rapid, nondestructive techniques for such quality measurements. Water-holding capacity is a critical attribute in meat quality. Up to 50% of raw poultry meat in the United States is marinated with mixtures of water, salts, and phosphates. The objective of this study was to determine if variations in breast meat color would affect the dielectric properties of marinated poultry meat over a broad frequency range from 500 MHz to 50 GHz. Poultry meat was obtained from a local commercial plant in Georgia (USA). Color and pH measurements were taken on the breast filets. Groups of breast filets were sorted into classes of pale and normal before adding marination pickup percentages of 0, 5, 10, and 15. Breast filets were vacuum-tumbled and weighed for pickup percentages. Dielectric properties of the filets were measured with a coaxial open-ended probe on samples equilibrated to 25°C. Samples from pale meat exhibited higher dielectric properties than samples from normal meat. No differences could be observed between samples from pale and normal meat after marination of the samples. Overall, dielectric properties increased as the marination pickup increased (α=0.05). Marination pickup strongly influenced the dielectric loss factor. Differences between samples marinated at different pickup levels were more pronounced at lower frequencies for the dielectric loss factor. As frequency increased, the differences between samples decreased. Differences in dielectric constant between samples were not as consistent as those seen with the dielectric loss factor.

  8. Dielectric loss of strontium titanate thin films

    NASA Astrophysics Data System (ADS)

    Dalberth, Mark Joseph

    1999-12-01

    Interest in strontium titanate (STO) thin films for microwave device applications continues to grow, fueled by the telecommunications industry's interest in phase shifters and tunable filters. The optimization of these devices depends upon increasing the phase or frequency tuning and decreasing the losses in the films. Currently, the dielectric response of thin film STO is poorly understood through lack of data and a theory to describe it. We have studied the growth of STO using pulsed laser deposition and single crystal substrates like lanthanum aluminate and neodymium gallate. We have researched ways to use ring resonators to accurately measure the dielectric response as a function of temperature, electric field, and frequency from low radio frequencies to a few gigahertz. Our films grown on lanthanum aluminate show marked frequency dispersion in the real part of the dielectric constant and hints of thermally activated loss behavior. We also found that films grown with conditions that optimized the dielectric constant showed increased losses. In an attempt to simplify the system, we developed a technique called epitaxial lift off, which has allowed us to study films removed from their growth substrates. These free standing films have low losses and show obvious thermally activated behavior. The "amount of tuning," as measured by a figure of merit, KE, is greater in these films than in the films still attached to their growth substrates. We have developed a theory that describes the real and imaginary parts of the dielectric constant. The theory models the real part using a mean field description of the ionic motion in the crystal and includes the loss by incorporating the motion of charged defects in the films.

  9. Directional Emission from Dielectric Leaky-Wave Nanoantennas

    NASA Astrophysics Data System (ADS)

    Peter, Manuel; Hildebrandt, Andre; Schlickriede, Christian; Gharib, Kimia; Zentgraf, Thomas; Förstner, Jens; Linden, Stefan

    2017-07-01

    An important source of innovation in nanophotonics is the idea to scale down known radio wave technologies to the optical regime. One thoroughly investigated example of this approach are metallic nanoantennas which employ plasmonic resonances to couple localized emitters to selected far-field modes. While metals can be treated as perfect conductors in the microwave regime, their response becomes Drude-like at optical frequencies. Thus, plasmonic nanoantennas are inherently lossy. Moreover, their resonant nature requires precise control of the antenna geometry. A promising way to circumvent these problems is the use of broadband nanoantennas made from low-loss dielectric materials. Here, we report on highly directional emission from active dielectric leaky-wave nanoantennas made of Hafnium dioxide. Colloidal semiconductor quantum dots deposited in the nanoantenna feed gap serve as a local light source. The emission patterns of active nanoantennas with different sizes are measured by Fourier imaging. We find for all antenna sizes a highly directional emission, underlining the broadband operation of our design.

  10. Ultra-Wideband Radars for Measurements over Land and Sea Ice

    NASA Astrophysics Data System (ADS)

    Gogineni, S.; Hale, R.; Miller, H. G.; Yan, S.; Rodriguez-Morales, F.; Leuschen, C.; Wang, Z.; Gomez-Garcia, D.; Binder, T.; Steinhage, D.; Gehrmann, M.; Braaten, D. A.

    2015-12-01

    We developed two ultra-wideband (UWB) radars for measurements over the ice sheets in Greenland and Antarctica and sea ice. One of the UWB radars operates over a 150-600 MHz frequency range with a large, cross-track 24-element array. It is designed to sound ice, image the ice-bed interface, and map internal layers with fine resolution. The 24-element array consists of three 8-element sub-arrays. One of these sub-arrays is mounted under the fuselage of a BT-67 aircraft; the other two are mounted under the wings. The polarization of each antenna element can be individually reconfigured depending on the target of interest. The measured inflight VSWR is less than 2 over the operating range. The fuselage sub-array is used both for transmission and reception, and the wing-mounted sub-arrays are used for reception. The transmitter consists of an 8-channel digital waveform generator to synthesize chirped pulses of selectable pulse width, duration, and bandwidth. It also consists of drivers and power amplifiers to increase the power level of each individual channel to about 1 kW and a fast high-power transmit/receive switch. Each receiver consists of a limiter, switches, low-noise and driver amplifiers, and filters to shape and amplify received signals to the level required for digitization. The digital sub-section consists of timing and control sub-systems and 24 14-bit A/D converters to digitize received signals at a rate of 1.6 GSPS. The radar performance is evaluated using an optical delay line to simulate returns from about 2 km thick ice, and the measured radar loop sensitivity is about 215 dB. The other UWB microwave radar operates over a 2-18 GHz frequency range in Frequency-Modulated Continuous Wave (FM-CW) mode. It is designed to sound more than 1 m of snow over sea ice and map internal layers to a depth about 25-40 m in polar firn and ice. We operated the microwave radar over snow-covered sea ice and mapped snow as thin as 5 cm and as thick as 60 cm. We mapped

  11. Studies on magnetocapacitance, dielectric, ferroelectric, and magnetic properties of microwave sintered (1-x) (Ba0.8Sr0.2TiO3) - x (Co0.9Ni0.1Fe2O4) multiferroic composite

    NASA Astrophysics Data System (ADS)

    Mane, Sagar M.; Tirmali, Pravin M.; Ranjit, Bhakti; Khan, Madiha; Khan, Nargis; Tarale, Arjun N.; Kulkarni, Shrinivas B.

    2018-07-01

    Present paper reports the synthesis of multiferroic composite (1-x) [Ba0.8Sr0.2Ti)O3]-x[Co0.9Ni0.1Fe2O4] were x = 0.1, 0.2, 0.3 and 0.4. Both phases of the composite i.e. ferroelectric (BST) and ferrite (CNFO) are synthesized via hydroxide co-precipitation method followed by microwave sintering technique at 1100 °C. These composites were characterized for their structural, microstructural, dielectric analysis, magnetodielectric (MD) effect and ferroelectric properties. Presence of both the phases ferroelectric (BST) and ferromagnetic (CNFO) are confirmed by the x-ray diffraction and scanning electron microscopic analysis. Maxwell-Wagner type dielectric dispersion is observed in frequency dependent dielectric measurement. Temperature-dependent dielectric properties were measured from 25 °C to 500 °C at various applied frequencies. Ferroelectric behavior in the composites was confirmed by the polarization vs. Electric field analysis. The magnetodielectric effect was studied in the presence of applied magnetic field from 0 to 1 Tesla. Magnetocapacitance (%) increases with increase in the ferrite concentration in the ferroelectric phase. The maximum percentage of magnetocapacitance is observed in 60BST-40CNFO composite which is MC = 30% at the frequency 1 KHz with the applied magnetic field is 1-Tesla. Room temperature magnetic hysteresis loops show an increase in saturation magnetization (Ms) with an increase in ferrite concentration.

  12. Design and development of an electrically-controlled beam steering mirror for microwave tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tayebi, A., E-mail: tayebiam@msu.edu; Tang, J.; Paladhi, P. Roy

    2015-03-31

    Microwave tomography has gained significant attention due to its reliability and unhazardous nature in the fields of NDE and medical industry. A new microwave tomography system is presented in this paper, which significantly reduces the design and operational complexities of traditional microwave imaging systems. The major component of the proposed system is a reconfigurable reflectarray antenna which is used for beam steering in order to generate projections from multiple angles. The design, modeling and fabrication of the building block of the antenna, a tunable unit cell, are discussed in this paper. The unit cell is capable of dynamically altering themore » phase of the reflected field which results in beam steering ability of the reflectarray antenna. A tomographically reconstructed image of a dielectric sample using this new microwave tomography system is presented in this work.« less

  13. Dielectric properties characterization of saline solutions by near-field microwave microscopy

    NASA Astrophysics Data System (ADS)

    Gu, Sijia; Lin, Tianjun; Lasri, Tuami

    2017-01-01

    Saline solutions are of a great interest when characterizations of biological fluids are targeted. In this work a near-field microwave microscope is proposed for the characterization of liquids. An interferometric technique is suggested to enhance measurement sensitivity and accuracy. The validation of the setup and the measurement technique is conducted through the characterization of a large range of saline concentrations (0-160 mg ml-1). Based on the measured resonance frequency shift and quality factor, the complex permittivity is successfully extracted as exhibited by the good agreement found when comparing the results to data obtained from Cole-Cole model. We demonstrate that the near field microwave microscope (NFMM) brings a great advantage by offering the possibility to select a resonance frequency and a quality factor for a given concentration level. This method provides a very effective way to largely enhance the measurement sensitivity in high loss materials.

  14. In vivo microwave-based thermoacoustic tomography of rats (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lin, Li; Zhou, Yong; Wang, Lihong V.

    2016-03-01

    Microwave-based thermoacoustic tomography (TAT), based on the measurement of ultrasonic waves induced by microwave pulses, can reveal tissue dielectric properties that may be closely related to the physiological and pathological status of the tissues. Using microwaves as the excitation source improved imaging depth because of their deep penetration into biological tissues. We demonstrate, for the first time, in vivo microwave-based thermoacoustic imaging in rats. The transducer is rotated around the rat in a full circle, providing a full two-dimensional view. Instead of a flat ultrasonic transducer, we used a virtual line detector based on a cylindrically focused transducer. A 3 GHz microwave source with 0.6 µs pulse width and an electromagnetically shielded transducer with 2.25 MHz central frequency provided clear cross-sectional images of the rat's body. The high imaging contrast, based on the tissue's rate of absorption, and the ultrasonically defined spatial resolution combine to reveal the spine, kidney, muscle, and other deeply seated anatomical features in the rat's abdominal cavity. This non-invasive and non-ionizing imaging modality achieved an imaging depth beyond 6 cm in the rat's tissue. Cancer diagnosis based on information about tissue properties from microwave band TAT can potentially be more accurate than has previously been achievable.

  15. Influence of SiO2 Addition on Properties of PTFE/TiO2 Microwave Composites

    NASA Astrophysics Data System (ADS)

    Yuan, Ying; Wang, Jie; Yao, Minghao; Tang, Bin; Li, Enzhu; Zhang, Shuren

    2018-01-01

    Composite substrates for microwave circuit applications have been fabricated by filling polytetrafluoroethylene (PTFE) polymer matrix with ceramic powder consisting of rutile TiO2 ( D 50 ≈ 5 μm) partially substituted with fused amorphous SiO2 ( D 50 ≈ 8 μm) with composition x vol.% SiO2 + (50 - x) vol.% TiO2 ( x = 0, 3, 6, 9, 12), and the effects of SiO2 addition on characteristics such as the density, moisture absorption, microwave dielectric properties, and thermal properties systematically investigated. The results show that the filler was well distributed throughout the matrix. High dielectric constant ( ɛ r > 7.19) and extremely low moisture absorption (<0.02%) were obtained, resulting from the relatively high density of the composites. The ceramic particles served as barriers and improved the thermal stability of the PTFE polymer, retarding its decomposition. The temperature coefficient of dielectric constant ( τ ɛ ) of the composites shifted toward the positive direction (from - 309 ppm/°C to - 179 ppm/°C) as the SiO2 content was increased, while the coefficient of thermal expansion remained almost unchanged (˜ 35 ppm/°C).

  16. Changes in the dielectric properties of rat tissue as a function of age at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Peyman, A.; Rezazadeh, A. A.; Gabriel, C.

    2001-06-01

    The dielectric properties of ten rat tissues at six different ages were measured at 37 °C in the frequency range of 130 MHz to 10 GHz using an open-ended coaxial probe and a computer controlled network analyser. The results show a general decrease of the dielectric properties with age. The trend is more apparent for brain, skull and skin tissues and less noticeable for abdominal tissues. The variation in the dielectric properties with age is due to the changes in the water content and the organic composition of tissues. The percentage decrease in the dielectric properties of certain tissues in the 30 to 70 day old rats at cellular phone frequencies have been tabulated. These data provide an important input in the provision of rigorous dosimetry in lifetime-exposure animal experiments. The results provide some insight into possible differences in the assessment of exposure for children and adults.

  17. Facial burns from exploding microwaved foods: Case series and review.

    PubMed

    Bagirathan, Shenbana; Rao, Krishna; Al-Benna, Sammy; O'Boyle, Ciaran P

    2016-03-01

    Microwave ovens allow for quick and simple cooking. However, the importance of adequate food preparation, prior to microwave cooking, and the consequences of inadequate preparation are not well-known. The authors conducted a retrospective outcome analysis of all patients who sustained facial burns from microwaved foods and were treated at a UK regional burns unit over a six-year period. Patients were identified from clinical records. Eight patients presented following inadequate preparation of either tinned potatoes (n=4) or eggs (n=4). All patients sustained <2% total body surface area facial burns. Mean age was 41 years (range 21-68 years). Six cases (75%) had associated ocular injury. One received amniotic membrane grafts; this individual's vision remains poor twelve months after injury. Rapid dielectric heating of water within foods may produce high steam and vapour pressure gradients and cause explosive decompression [1,5,11]. Consumers may fail to recognise differential heating and simply cook foods for longer if they remain cool on the outer surface. Education on safe use and risks of microwave-cooked foods may help prevent these potentially serious injuries. Microwave ovens have become ubiquitous. The authors recognise the need for improved public awareness of safe microwave cooking. Burns resulting from microwave-cooked foods may have life-changing consequences. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  18. The electromagnetic-trait imaging computation of traveling wave method in breast tumor microwave sensor system.

    PubMed

    Tao, Zhi-Fu; Han, Zhong-Ling; Yao, Meng

    2011-01-01

    Using the difference of dielectric constant between malignant tumor tissue and normal breast tissue, breast tumor microwave sensor system (BRATUMASS) determines the detected target of imaging electromagnetic trait by analyzing the properties of target tissue back wave obtained after near-field microwave radicalization (conelrad). The key of obtained target properties relationship and reconstructed detected space is to analyze the characteristics of the whole process from microwave transmission to back wave reception. Using traveling wave method, we derive spatial transmission properties and the relationship of the relation detected points distances, and valuate the properties of each unit by statistical valuation theory. This chapter gives the experimental data analysis results.

  19. Electromagnetic properties of polycrystalline diamond from 35 K to room temperature and microwave to terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Floch, Jean-Michel Le; Bara, Romain; Hartnett, John G.; Tobar, Michael E.; Mouneyrac, David; Passerieux, Damien; Cros, Dominique; Krupka, Jerzy; Goy, Philippe; Caroopen, Sylvain

    2011-05-01

    Dielectric resonators are key components for many microwave and millimeter wave applications, including high-Q filters and frequency-determining elements for precision frequency synthesis. These often depend on the quality of the dielectric material. The commonly used material for building the best cryogenic microwave oscillators is sapphire. However, sapphire is becoming a limiting factor for higher frequency designs. It is, then, important to find new candidates that can fulfill the requirements for millimeter wave low noise oscillators at room and cryogenic temperatures. These clocks are used as a reference in many fields, such as modern telecommunication systems, radio astronomy (very-long-baseline interferometry), and precision measurements at the quantum limit. High resolution measurements were taken of the temperature-dependence of the electromagnetic properties of a polycrystalline diamond disk at temperatures between 35 and 330 K at microwave to submillimeter wave frequencies. The cryogenic measurements were made using a TE01δ dielectric mode resonator placed inside a vacuum chamber connected to a single-stage pulse-tube cryocooler. The high frequency characterization was performed at room temperature using a combination of a quasi-optical two-lens transmission setup, a Fabry-Perot cavity, and a whispering gallery mode resonator excited with waveguides. Our CVD diamond sample exhibits a decreasing loss tangent with increasing frequencies. We compare the results with well known crystals. This comparison makes it clear that polycrystalline diamond could be an important material for generating stable frequencies at millimeter waves.

  20. Reconfigurable ultra-wideband waveform generation with simple photonic devices

    NASA Astrophysics Data System (ADS)

    Dastmalchi, Mansour; Abtahi, Mohammad; Lemus, David; Rusch, Leslie A.; LaRochelle, Sophie

    2012-08-01

    We propose and experimentally demonstrate a low cost, low power consumption technique for ultra-wideband pulse shaping. Our approach is based on thermal apodization of two identical linearly chirped fiber Bragg gratings (LCFBG) placed in both arms of a balanced photodetector. Resistive heating elements with low electrical power consumption are used to tune the LCFBG spectral responses. Using a standard gain switched distributed feedback laser as a pulsed optical source and a simple energy detector receiver, we measured a bit error rate of 1.5×10-4 at a data rate of 1 Gb/s after RF transmission over a 1-m link.

  1. Digital FMCW for ultrawideband spectrum sensing

    NASA Astrophysics Data System (ADS)

    Cheema, A. A.; Salous, S.

    2016-08-01

    An ultrawideband digital frequency-modulated continuous wave sensing engine is proposed as an alternative technique for cognitive radio applications. A dual-band demonstrator capable of sensing 750 MHz bandwidth in 204.8 µs is presented. Its performance is illustrated from both bench tests and from real-time measurements of the GSM 900 band and the 2.4 GHz wireless local area network (WLAN) band. The measured sensitivity and noise figure values are -90 dBm for a signal-to-noise ratio margin of at least 10 dB and ~13-14 dB, respectively. Data were collected over 24 h and were analyzed by using the energy detection method. The obtained results show the time variability of occupancy, and considerable sections of the spectrum are unoccupied. In addition, unlike the cyclic temporal variations of spectrum occupancy in the GSM 900 band, the detected variations in the 2.4 GHz WLAN band have an impulsive nature.

  2. Localized electrical fine tuning of passive microwave and radio frequency devices

    DOEpatents

    Findikoglu, Alp T.

    2001-04-10

    A method and apparatus for the localized electrical fine tuning of passive multiple element microwave or RF devices in which a nonlinear dielectric material is deposited onto predetermined areas of a substrate containing the device. An appropriate electrically conductive material is deposited over predetermined areas of the nonlinear dielectric and the signal line of the device for providing electrical contact with the nonlinear dielectric. Individual, adjustable bias voltages are applied to the electrically conductive material allowing localized electrical fine tuning of the devices. The method of the present invention can be applied to manufactured devices, or can be incorporated into the design of the devices so that it is applied at the time the devices are manufactured. The invention can be configured to provide localized fine tuning for devices including but not limited to coplanar waveguides, slotline devices, stripline devices, and microstrip devices.

  3. Perovskite Superlattices as Tunable Microwave Devices

    NASA Technical Reports Server (NTRS)

    Christen, H. M.; Harshavardhan, K. S.

    2003-01-01

    Experiments have shown that superlattices that comprise alternating epitaxial layers of dissimilar paraelectric perovskites can exhibit large changes in permittivity with the application of electric fields. The superlattices are potentially useful as electrically tunable dielectric components of such microwave devices as filters and phase shifters. The present superlattice approach differs fundamentally from the prior use of homogeneous, isotropic mixtures of base materials and dopants. A superlattice can comprise layers of two or more perovskites in any suitable sequence (e.g., ABAB..., ABCDABCD..., ABACABACA...). Even though a single layer of one of the perovskites by itself is not tunable, the compositions and sequence of the layers can be chosen so that (1) the superlattice exhibits low microwave loss and (2) the interfacial interaction between at least two of the perovskites in the superlattice renders either the entire superlattice or else at least one of the perovskites tunable.

  4. Accurate Measurements of the Dielectric Constant of Seawater at L Band

    NASA Technical Reports Server (NTRS)

    Lang, Roger; Zhou, Yiwen; Utku, Cuneyt; Le Vine, David

    2016-01-01

    This paper describes measurements of the dielectric constant of seawater at a frequency of 1.413 GHz, the center of the protected band (i.e., passive use only) used in the measurement of sea surface salinity from space. The objective of the measurements is to accurately determine the complex dielectric constant of seawater as a function of salinity and temperature. A resonant cylindrical microwave cavity in transmission mode has been employed to make the measurements. The measurements are made using standard seawater at salinities of 30, 33, 35, and 38 practical salinity units over a range of temperatures from 0 degree C to 35 degree C in 5 degree C intervals. Repeated measurements have been made at each temperature and salinity. Mean values and standard deviations are then computed. The total error budget indicates that the real and imaginary parts of the dielectric constant have a combined standard uncertainty of about 0.3 over the range of salinities and temperatures considered. The measurements are compared with the dielectric constants obtained from the model functions of Klein and Swift and those of Meissner and Wentz. The biggest differences occur at low and high temperatures.

  5. Numerical simulation of forced convection in a duct subjected to microwave heating

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Kuznetsov, A. V.; Sandeep, K. P.

    2007-01-01

    In this paper, forced convection in a rectangular duct subjected to microwave heating is investigated. Three types of non-Newtonian liquids flowing through the duct are considered, specifically, apple sauce, skim milk, and tomato sauce. A finite difference time domain method is used to solve Maxwell’s equations simulating the electromagnetic field. The three-dimensional temperature field is determined by solving the coupled momentum, energy, and Maxwell’s equations. Numerical results show that the heating pattern strongly depends on the dielectric properties of the fluid in the duct and the geometry of the microwave heating system.

  6. Temporal and spatial evolution of nanosecond microwave-driven plasma

    NASA Astrophysics Data System (ADS)

    Chang, C.; Chen, X. Q.; Zhu, M.; Pu, Y. K.

    2018-06-01

    In this paper, a method for simultaneously acquiring the temporal and spatial evolution of characteristic plasma spectra in a single microwave pulse is proposed and studied. By using multi-sub-beam fiber bundles coupled with a spectrometer and EMICCD (Electron-multiplying intensified charge-coupled device), the spatial distribution and time evolution of characteristic spectra of desorbed gases at the dielectric/vacuum interface during nanosecond microwave-driven plasma discharge are observed. Arrays of small align tubes punctured with metal walls of feed horn are filled with separate fibers of matched sizes and equal lengths. The output ends of fibers arranged in a single longitudinal column are connected to the entrance slit of a spectrometer, where the optical spectrum inputs to a high-speed EMICCD, to detect the rapid-varying time and space spectra of nanosecond giga-watt microwave discharges. The evolution of spectral clusters of N2 (C-B), N2+ (B-X), and the hydrogen atoms is discovered and monitored. The whole duration of light emission is much longer than the microwave pulse, and the intensities of ion N2+ (B-X) spectra increase after microwave pulses with rise times of 25-50 ns. The brightness distribution of plasma spectra in different space is observed and approximately consistent with the simulated E-field distribution.

  7. Effects of soil tillage on the microwave emission of soils

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Koopman, G. J.; Oneill, P. E.; Wang, J. R.

    1985-01-01

    In order to understand the interactions of soil properties and microwave emission better, a series of field experiments were conducted in 1984. Small plots were measured with a truck-mounted passive microwave radiometer operating at 1.4 GHz. These data were collected concurrent with ground observations of soil moisture and bulk density. Treatment effects studied included different soil moisture contents and bulk densities. Evaluations of the data have shown that commonly used models of the dielectric properties of wet soils do not explain the observations obtained in these experiments. This conclusion was based on the fact that the roughness parameters determined through optimization were significantly larger than those observed in similar investigations. These discrepancies are most likely due to the soil structure. Commonly used models assume a homogeneous three phase mixture of soil solids, air and water. Under tilled conditions the soil is actually a two phase mixture of aggregates and voids. Appropriate dielectric models for this tilled condition were evaluated and found to explain the observations. These results indicate that previous conclusions concerning the effects of surface roughness in tilled fields may be incorrect, and they may explain some of the inconsistencies encountered in roughness modeling.

  8. Ultra-wideband horn antenna with abrupt radiator

    DOEpatents

    McEwan, Thomas E.

    1998-01-01

    An ultra-wideband horn antenna transmits and receives impulse waveforms for short-range radars and impulse time-of flight systems. The antenna reduces or eliminates various sources of close-in radar clutter, including pulse dispersion and ringing, sidelobe clutter, and feedline coupling into the antenna. Dispersion is minimized with an abrupt launch point radiator element; sidelobe and feedline coupling are minimized by recessing the radiator into a metallic horn. Low frequency cut-off associated with a horn is extended by configuring the radiator drive impedance to approach a short circuit at low frequencies. A tapered feed plate connects at one end to a feedline, and at the other end to a launcher plate which is mounted to an inside wall of the horn. The launcher plate and feed plate join at an abrupt edge which forms the single launch point of the antenna.

  9. Dielectric spectroscopy study of water hyacinth collected from different media

    NASA Astrophysics Data System (ADS)

    Mahani, Ragab; Atia, Fatma; Al Neklawy, Mohammed M.; Fahem, Amin

    2018-02-01

    X-ray fluorescence (XRF) study has been shown that the water hyacinth plant is an effective tool for the removals of heavy metals (As, Ba, Cr, Cu, Ni, Pb, Rb, Sr, Zn and Zr) and metal oxides (SiO2, K2O, CaO, Al2O3, Fe2O3, MgO, Na2O, MnO, P2O5, SO3 and TiO2) from agriculture (media 1) and agriculture wastewaters drainage polluted with municipal wastewater (media 2). As a general description, the heavy metals and metal oxides were found at higher levels in the plant collected from media 1 than those in the plant collected from media 2. Similarly, these pollutants were found at higher levels in the plant roots than those in the plant shoots. The dielectric properties were investigated for the plant samples before (control) and after treating by microwave heating power. They were found at higher values in the control roots than those in the control shoots. Furthermore, the properties were found at relatively higher values in the control roots collected from media 1 (ε‧ = 13 at 103 Hz) than those in the control roots collected from media 2 (ε‧ = 9 at 103 Hz). The electrical conductivity of the microwave treated samples remarkably increased due to appearance of OH group through which the plant interacts with heavy metals. Accordingly, the pollutants removing ability could be enhanced upon treating the plant by microwave heating power. The plant-pollutant mixture behaves like highly conductive disordered polymers. The conductivity and dielectric properties of all plant samples are dominated by the media and concentration of pollutants.

  10. Flow monitoring of microwave pre-heated resin in LCM processes

    NASA Astrophysics Data System (ADS)

    Rubino, F.; Paradiso, V.; Carlone, P.

    2017-10-01

    Liquid composite molding is manufacturing techniques that involve the injection or infusion of catalyzed liquid resin into a mold to impregnate a dry fiber preform. The challenges of LCM processes are related to the obtaining of a complete wetting of the reinforcement as well as a reduction of the void to obtain a final product with high mechanical properties. The heating of the resin prior the injection into the mold cavity has proven to be useful to improve the LCM processes. The increasing of temperature results in a reduction of resin viscosity and allows the resin to flow more easily through the reinforcement; the cure stage is also improved resulting in a reduction of global process time required. Besides the conventional solutions to heat up the resin based on the thermal conduction, in-line microwave heating is a suitable method to heat dielectric materials providing an even temperature distribution through the resin, thereby avoiding a thermal gradient between the surface and the core of liquid resin, which could result in a premature and uncontrolled cure. In the present work, an in-line microwave system, manually controlled, have been coupled with a VARTM apparatus to heat the resin before the infusion. In addition, parallel-plate dielectric sensors and pressure sensors, embedded into the mold, were employed to track the flow front through the fiber reinforcement in two distinct cases: unheated resin and pre-heated resin. The aim of work was to assess the effectiveness of microwave pre-heating to improve the macro and micro-impregnation of dry preform. The obtained results showed capability of in-line microwave heating to shorten the impregnation of dry fabric and provide a homogeneous wetting of fibers.

  11. Water sorption behavior and swelling characteristics of starches subjected to dielectric heating.

    PubMed

    Szepes, Anikó; Szabó-Révész, Piroska; Mohnicke, Mandy

    2007-01-01

    The aim of this study was to investigate the effects of microwave irradiation and storage on the moisture content, adsorption behavior and swelling properties of potato (B-type) and maize starches (A-type). Volumetric heating resulted in reversible moisture loss from both types of samples. The crystallinity of potato starch was decreased, whereas its water retention capacity and swelling power were increased irreversibly, and its swelling capacity was increased reversibly by the thermal process applied. The corresponding parameters of maize starch were not influenced significantly by dielectric heating; this may be related to its special structure resulting in the thermal resistance of this polymer. Our results allow the conclusion that microwave irradiation offers an appropriate and selective alternative for the physicochemical modification of potato starch. In consequence of its low susceptibility to thermal processes, maize starch may be used for the microwave drying of pharmaceutical formulations containing starch.

  12. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption

    NASA Astrophysics Data System (ADS)

    Li, Zhong-Jun; Hou, Zhi-Ling; Song, Wei-Li; Liu, Xing-Da; Cao, Wen-Qiang; Shao, Xiao-Hong; Cao, Mao-Sheng

    2016-05-01

    Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications.Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3

  13. Numerical models to evaluate the temperature increase induced by ex vivo microwave thermal ablation.

    PubMed

    Cavagnaro, M; Pinto, R; Lopresto, V

    2015-04-21

    Microwave thermal ablation (MTA) therapies exploit the local absorption of an electromagnetic field at microwave (MW) frequencies to destroy unhealthy tissue, by way of a very high temperature increase (about 60 °C or higher). To develop reliable interventional protocols, numerical tools able to correctly foresee the temperature increase obtained in the tissue would be very useful. In this work, different numerical models of the dielectric and thermal property changes with temperature were investigated, looking at the simulated temperature increments and at the size of the achievable zone of ablation. To assess the numerical data, measurement of the temperature increases close to a MTA antenna were performed in correspondence with the antenna feed-point and the antenna cooling system, for increasing values of the radiated power. Results show that models not including the changes of the dielectric and thermal properties can be used only for very low values of the power radiated by the antenna, whereas a good agreement with the experimental values can be obtained up to 20 W if water vaporization is included in the numerical model. Finally, for higher power values, a simulation that dynamically includes the tissue's dielectric and thermal property changes with the temperature should be performed.

  14. A comparative study of conventionally sintered and microwave sintered nickel zinc ferrite

    NASA Astrophysics Data System (ADS)

    Rani, Rekha; Juneja, J. K.; Raina, K. K.; Kotnala, R. K.; Prakash, Chandra

    2014-04-01

    For the present work, nickel zinc ferrite having compositional formula Ni0.8Zn0.2Fe2O4 was synthesized by conventional solid state method and sintered in conventional and microwave furnaces. Pellets were sintered with very short soaking time of 10 min at 1150 °C in microwave furnace whereas 4 hrs of soaking time was selected for conventional sintering at 1200 °C. Phase formation was confirmed by X-ray diffraction analysis technique. Scanning electron micrographs were taken for microstructural study. Dielectric properties were studied as a function of temperature. To study magnetic behavior, M-H hysteresis loops were recorded for both samples. It is observed that microwave sintered sample could obtain comparable properties to the conventionally sintered one in lesser soaking time at lower sintering temperature.

  15. Analysis and design of tunable wideband microwave photonics phase shifter based on Fabry-Perot cavity and Bragg mirrors in silicon-on-insulator waveguide.

    PubMed

    Qu, Pengfei; Zhou, Jingran; Chen, Weiyou; Li, Fumin; Li, Haibin; Liu, Caixia; Ruan, Shengping; Dong, Wei

    2010-04-20

    We designed a microwave (MW) photonics phase shifter, consisting of a Fabry-Perot filter, a phase modulation region (PMR), and distributed Bragg reflectors, in a silicon-on-insulator rib waveguide. The thermo-optics effect was employed to tune the PMR. It was theoretically demonstrated that the linear MW phase shift of 0-2pi could be achieved by a refractive index variation of 0-9.68x10(-3) in an ultrawideband (about 38?GHz-1.9?THz), and the corresponding tuning resolution was about 6.92 degrees / degrees C. The device had a very compact size. It could be easily integrated in silicon optoelectronic chips and expected to be widely used in the high-frequency MW photonics field.

  16. Non-intrusive tunable resonant microwave cavity for optical detected magnetic resonance of NV centres in nanodiamonds

    NASA Astrophysics Data System (ADS)

    Le Floch, Jean-Michel; Bradac, Carlo; Volz, Thomas; Tobar, Michael E.; Castelletto, Stefania

    2013-12-01

    Optically detected magnetic resonance (ODMR) in nanodiamond nitrogen-vacancy (NV) centres is usually achieved by applying a microwave field delivered by micron-size wires, strips or antennas directly positioned in very close proximity (~ μm) of the nanodiamond crystals. The microwave field couples evanescently with the ground state spin transition of the NV centre (2.87 GHz at zero magnetic field), which results in a reduction of the centre photoluminescence. We propose an alternative approach based on the construction of a dielectric resonator. We show that such a resonator allows for the efficient detection of NV spins in nanodiamonds without the constraints associated to the laborious positioning of the microwave antenna next to the nanodiamonds, providing therefore improved flexibility. The resonator is based on a tunable Transverse Electric Mode in a dielectric-loaded cavity, and we demonstrate that the resonator can detect single NV centre spins in nanodiamonds using less microwave power than alternative techniques in a non-intrusive manner. This method can achieve higher precision measurement of ODMR of paramagnetic defects spin transition in the micro to millimetre-wave frequency domain. Our approach would permit the tracking of NV centres in biological solutions rather than simply on the surface, which is desirable in light of the recently proposed applications of using nanodiamonds containing NV centres for spin labelling in biological systems with single spin and single particle resolution.

  17. Microwave pretreatment of switchgrass for bioethanol production

    NASA Astrophysics Data System (ADS)

    Keshwani, Deepak Radhakrishin

    conditions, 82% glucose and 63% xylose yields were achieved for switchgrass, and 87% glucose and 59% xylose yields were achieved for coastal bermudagrass following enzymatic hydrolysis of the pretreated biomass. The optimum enzyme loadings were 15 FPU/g and 20 CBU/g for switchgrass and 10 FPU/g and 20 CBU/g for coastal bermudagrass. Dielectric properties for dilute sodium hydroxide solutions were measured and compared to solid loss, lignin reduction and reducing sugar levels in hydrolyzates. Results indicate that the dielectric loss tangent of alkali solutions is a potential indicator of the severity of microwave-based pretreatments. Modeling of pretreatment processes can be a valuable tool in process simulations of bioethanol production from lignocellulosic biomass. Chapter 4 discusses three different approaches that were used to model delignification and carbohydrate loss during microwave-based pretreatment of switchgrass: statistical linear regression modeling, kinetic modeling using a time-dependent rate coefficient, and a Mamdani-type fuzzy inference system. The dielectric loss tangent of the alkali reagent and pretreatment time were used as predictors in all models. The statistical linear regression model for delignification gave comparable root mean square error (RMSE) values for training and testing data and predictions were approximately within 1% of experimental values. The kinetic model for delignification and xylan loss gave comparable RMSE values for training and testing data sets and predictions were approximately within 2% of experimental values. The kinetic model for cellulose loss was not as effective and predictions were only within 5-7% of experimental values. The time-dependent rate coefficients of the kinetic models calculated from experimental data were consistent with the heterogeneity (or lack thereof) of individual biomass components. The Mamdani-type fuzzy inference system was shown to be an effective means to model pretreatment processes and gave

  18. Correlation of Microwave Dielectric Properties and Microstructure of Unpatterned Ferroelectric Thin Films

    DTIC Science & Technology

    2003-04-03

    technique. Ba acetate, Sr acetate, and Ti isopropoxide were used as precursors to form BST. Acetic acid and 2-methoxyethanol were used as solvents and...resulting from the generation of oxygen vacancy can hop between different titanium ions and provide a mechanism for dielectric losses, 2+the

  19. Fluorinated graphene oxide for enhanced S and X-band microwave absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudeep, P. M.; TIFR-Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500075; Vinayasree, S.

    2015-06-01

    Here we report the microwave absorbing properties of three graphene derivatives, namely, graphene oxide (GO), fluorinated GO (FGO, containing 5.6 at. % Fluorine (F)), and highly FGO (HFGO, containing 23 at. % F). FGO is known to be exhibiting improved electrochemical and electronic properties when compared to GO. Fluorination modifies the dielectric properties of GO and hence thought of as a good microwave absorber. The dielectric permittivities of GO, FGO, and HFGO were estimated in the S (2 GHz to 4 GHz) and X (8 GHz to 12 GHz) bands by employing cavity perturbation technique. For this, suspensions containing GO/FGO/HFGO were made in N-Methylmore » Pyrrolidone (NMP) and were subjected to cavity perturbation. The reflection loss was then estimated and it was found that −37 dB (at 3.2 GHz with 6.5 mm thickness) and −31 dB (at 2.8 GHz with 6 mm thickness) in the S band and a reflection loss of −18 dB (at 8.4 GHz with 2.5 mm thickness) and −10 dB (at 11 GHz with 2 mm thickness) in the X band were achieved for 0.01 wt. % of FGO and HFGO in NMP, respectively, suggesting that these materials can serve as efficient microwave absorbers even at low concentrations.« less

  20. Effect of ionic liquid properties on lipase stabilization under microwave irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Hua; Baker, Gary A; Song, Zhiyan

    2009-01-01

    Ionic liquids (ILs) as neoteric solvents and microwave irradiation as alternative energy source are becoming two important tools for many enzymatic reactions. However, it is not well understood what properties of ILs govern the enzyme stabilization, and whether the microwave irradiation could activate enzymes in ILs. To tackle these two important issues, the synthetic activities of immobilized Candida antarctica lipase B (Novozyme 435) were examined in more than twenty ILs through microwave heating. Under microwave irradiation, enhanced enzyme activities were observed when the enzyme was surrounded by a layer of water molecules. However, such enhancement diminished when the reaction systemmore » was dried. To understand the effect of IL properties, the enzyme activities under microwave irradiation were correlated with the viscosity, polarity and hydrophobicity (log P) of ILs, respectively. The initial reaction rates bear no direct relationship with the viscosity and polarity (in terms of dielectric constant and EN T ) of ILs, but have a loose correlation (a bell curve) with log P values. The enzyme stabilization by ILs was explained from aspects of hydrogen-bond basicity of anions, dissolution of the enzyme, ionic association strength of anions, and substrate ground-state stabilization by ILs.« less

  1. Using Microwaves for Extracting Water from the Moon

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.

    2009-01-01

    Twenty years ago, the Lunar Prospector remote sensing satellite provided evidence of relatively large hydrogen concentrations at the lunar poles and in particular concentrated in permanently shadowed craters. The scientific hypothesis is that the hydrogen is in the form of cryo-trapped water just under the surface of the soil. If true this would mean that an average of about 2% water ice is mixed with the lunar soil existing in the form of ice at cryogenic temperatures. For 5 years we have been investigating the use of microwaves for the processing of lunar soil. One of the early uses could be to use microwave energy to extract volatiles and in particular water from the lunar permafrost. Prototype experiments have shown that microwave energy at 2.45 GHz, as in consumer microwave ovens, will couple with and heat cryogenically cooled lunar soil permafrost simulant, resulting in the rapid sublimation of water vapor into the vacuum chamber. The water vapor has been collected on a cryogenic cold trap with high efficiency. The primary advantage of microwave processing is that the volatiles can be extracted in situ. Excavation would not be required. Microwave frequency dielectric property measurements are being made of different lunar soil simulants and plans are to measure Apollo lunar soil at different frequencies and over a range of temperatures. The materials properties are being used to evaluate the heating of lunar soil and develop COMSOL models that can be used to evaluate different microwave extraction scenarios. With COMSOL the heating from cryogenic temperatures can be calculated and COMSOL will permit temperature dependent materials properties to be used during the heating process. Calculations at different microwave frequencies will allow the evaluation of the type of hardware that would be needed to most efficiently extract the water and other volatiles.

  2. Remote sensing of soil moisture with microwave radiometers

    NASA Technical Reports Server (NTRS)

    Schmugge, T.; Wilheit, T.; Webster, W., Jr.; Gloerson, P.

    1976-01-01

    Results are presented that were derived from measurements made by microwave radiometers during the March 1972 and February 1973 flights of National Aeronautics and Space Administration (NASA) Convair-9900 aircraft over agricultural test sites in the southwestern part of United States. The purpose of the missions was to study the use of microwave radiometers for the remote sensing of soil moisture. The microwave radiometers covered the 0.8- to 21-cm wavelength range. The results show a good linear correlation between the observed microwave brightness temperature and moisture content of the 0- to 1-cm layer of the soil. The results at the largest wavelength (21 cm) show the greatest sensitivity to soil moisture variations and indicate the possibility of sensing these variations through a vegetative canopy. The effect of soil texture on the emission from the soil was also studied and it was found that this effect can be compensated for by expressing soil moisture as a percent of field capacity for the soil. The results were compared with calculations based on a radiative transfer model for layered dielectrics and the agreement is very good at the longer wavelengths. At the shorter wavelengths, surface roughness effects are larger and the agreement becomes poorer.

  3. Ultra-wideband horn antenna with abrupt radiator

    DOEpatents

    McEwan, T.E.

    1998-05-19

    An ultra-wideband horn antenna transmits and receives impulse waveforms for short-range radars and impulse time-of flight systems. The antenna reduces or eliminates various sources of close-in radar clutter, including pulse dispersion and ringing, sidelobe clutter, and feedline coupling into the antenna. Dispersion is minimized with an abrupt launch point radiator element; sidelobe and feedline coupling are minimized by recessing the radiator into a metallic horn. Low frequency cut-off associated with a horn is extended by configuring the radiator drive impedance to approach a short circuit at low frequencies. A tapered feed plate connects at one end to a feedline, and at the other end to a launcher plate which is mounted to an inside wall of the horn. The launcher plate and feed plate join at an abrupt edge which forms the single launch point of the antenna. 8 figs.

  4. A laboratory test setup for in situ measurements of the dielectric properties of catalyst powder samples under reaction conditions by microwave cavity perturbation: set up and initial tests.

    PubMed

    Dietrich, Markus; Rauch, Dieter; Porch, Adrian; Moos, Ralf

    2014-09-10

    The catalytic behavior of zeolite catalysts for the ammonia-based selective catalytic reduction (SCR) of nitrogen oxides (NOX) depends strongly on the type of zeolite material. An essential precondition for SCR is a previous ammonia gas adsorption that occurs on acidic sites of the zeolite. In order to understand and develop SCR active materials, it is crucial to know the amount of sorbed ammonia under reaction conditions. To support classical temperature-programmed desorption (TPD) experiments, a correlation of the dielectric properties with the catalytic properties and the ammonia sorption under reaction conditions appears promising. In this work, a laboratory test setup, which enables direct measurements of the dielectric properties of catalytic powder samples under a defined gas atmosphere and temperature by microwave cavity perturbation, has been developed. Based on previous investigations and computational simulations, a resonator cavity and a heating system were designed, installed and characterized. The resonator cavity is designed to operate in its TM010 mode at 1.2 GHz. The first measurement of the ammonia loading of an H-ZSM-5 zeolite confirmed the operating performance of the test setup at constant temperatures of up to 300 °C. It showed how both real and imaginary parts of the relative complex permittivity are strongly correlated with the mass of stored ammonia.

  5. A novel antenna for ultra-wide-band applications

    NASA Technical Reports Server (NTRS)

    Lai, Albert K. Y.; Sinopoli, Albert L.; Burnside, Walter D.

    1992-01-01

    An ultrawideband antenna based on a slotline feed structure, a bowtie horn, and a rolled edge termination was developed, analyzed, and measured. Empirical data showed that its beamwidths and bandwidth are dependent on its physical dimensions which are easily controllable by an antenna designer. Measured patterns of models with various radiation properties are shown to substantiate these design rules. A flat plateau-like main beam, low voltage standing-wave ratio (VSWR), the ability to produce both wide (60 deg) and narrow (30 deg) half-power beamwidths, low sidelobes and backlobe (40-50 dB down), low cross-polarized levels (20-25 dB down), and independent control of E- and H-plane beamwidths over an ultrawide bandwidth, say 2-18 GHz, are some of the strong points of this antenna type.

  6. Research of microwave scattering properties of snow fields

    NASA Technical Reports Server (NTRS)

    Angelakos, D. J.

    1978-01-01

    The results obtained in the research program of microwave scattering properties of snow fields are presented. Experimental results are presented showing backscatter dependence on frequency (5.8-8.0 GHz), angle of incidence (0-60 degrees), snow wetness (time of day), and frequency modulation (0-500 MHz). Theoretical studies are being made of the inverse scattering problem yielding some preliminary results concerning the determination of the dielectric constant of the snow layer. The experimental results lead to the following conclusions: snow layering affects backscatter, layer response is significant up to 45 degrees of incidence, wetness modifies snow layer effects, frequency modulation masks the layer response, and for the proper choice of probing frequency and for nominal snow depths, it appears to be possible to measure the effective dielectric constant and the corresponding water content of a snow pack.

  7. Dielectric properties of highly resistive GaN crystals grown by ammonothermal method at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Krupka, Jerzy; Zajåc, Marcin; Kucharski, Robert; Gryglewski, Daniel

    2016-03-01

    Permittivity, the dielectric loss tangent and conductivity of semi-insulating Gallium Nitride crystals have been measured as functions of frequency from 10 GHz to 50 GHz and temperature from 295 to 560 K employing quasi TE0np mode dielectric resonator technique. Crystals were grown using ammonothermal method. Two kinds of doping were used to obtain high resistivity crystals; one with deep acceptors in form of transition metal ions, and the other with shallow Mg acceptors. The sample compensated with transition metal ions exhibited semi-insulating behavior in the whole temperature range. The sample doped with Mg acceptors remained semi-insulating up to 390 K. At temperatures exceeding 390 K the conductivity term in the total dielectric loss tangent of Mg compensated sample becomes dominant and it increases exponentially with activation energy of 1.14 eV. It has been proved that ammonothermal method with appropriate doping allows growth of high quality, temperature stable semi-insulating GaN crystals.

  8. Silicon-based antenna-coupled polarization-sensitive millimeter-wave bolometer arrays for cosmic microwave background instruments

    NASA Astrophysics Data System (ADS)

    Rostem, Karwan; Ali, Aamir; Appel, John W.; Bennett, Charles L.; Brown, Ari; Chang, Meng-Ping; Chuss, David T.; Colazo, Felipe A.; Costen, Nick; Denis, Kevin L.; Essinger-Hileman, Tom; Hu, Ron; Marriage, Tobias A.; Moseley, Samuel H.; Stevenson, Thomas R.; U-Yen, Kongpop; Wollack, Edward J.; Xu, Zhilei

    2016-07-01

    We describe feedhorn-coupled polarization-sensitive detector arrays that utilize monocrystalline silicon as the dielectric substrate material. Monocrystalline silicon has a low-loss tangent and repeatable dielectric constant, characteristics that are critical for realizing efficient and uniform superconducting microwave circuits. An additional advantage of this material is its low specific heat. In a detector pixel, two Transition-Edge Sensor (TES) bolometers are antenna-coupled to in-band radiation via a symmetric planar orthomode transducer (OMT). Each orthogonal linear polarization is coupled to a separate superconducting microstrip transmission line circuit. On-chip filtering is employed to both reject out-of-band radiation from the upper band edge to the gap frequency of the niobium superconductor, and to flexibly define the bandwidth for each TES to meet the requirements of the application. The microwave circuit is compatible with multi-chroic operation. Metalized silicon platelets are used to define the backshort for the waveguide probes. This micro-machined structure is also used to mitigate the coupling of out-of-band radiation to the microwave circuit. At 40 GHz, the detectors have a measured efficiency of ˜90%. In this paper, we describe the development of the 90 GHz detector arrays that will be demonstrated using the Cosmology Large Angular Scale Surveyor (CLASS) ground-based telescope.

  9. Microwave propagation and absorption and its thermo-mechanical consequences in heterogeneous rocks.

    PubMed

    Meisels, R; Toifl, M; Hartlieb, P; Kuchar, F; Antretter, T

    2015-02-10

    A numerical analysis in a two-component model rock is presented including the propagation and absorption of a microwave beam as well as the microwave-induced temperature and stress distributions in a consistent way. The analyses are two-dimensional and consider absorbing inclusions (discs) in a non-absorbing matrix representing the model of a heterogeneous rock. The microwave analysis (finite difference time domain - FDTD) is performed with values of the dielectric permittivity typical for hard rocks. Reflections at the discs/matrix interfaces and absorption in the discs lead to diffuse scattering with up to 20% changes of the intensity in the main beam compared to a homogeneous model rock. The subsequent thermo-mechanical finite element (FE) analysis indicates that the stresses become large enough to initiate damage. The results are supported by preliminary experiments on hard rock performed at 2.45 GHz.

  10. Microwave frequency effect in the formation of Au nanocolloids in polar and non-polar solvents

    NASA Astrophysics Data System (ADS)

    Horikoshi, Satoshi; Abe, Hideki; Sumi, Takuya; Torigoe, Kanjiro; Sakai, Hideki; Serpone, Nick; Abe, Masahiko

    2011-04-01

    Given earlier observations that microwave frequencies can have a substantial effect on the photoactivity of a well-known photocatalyst (TiO2), in the synthesis of 3,6-diphenyl-4-n-butylpyridazine through a Diels-Alder process, and in the one-pot solvent-free synthesis of a room-temperature ionic liquid, we proceeded to examine the frequency effects of the 5.8 and 2.45 GHz microwave (MW) radiation in the synthesis of gold nanoparticles in non-polar media, such as oleylamine, which have a low dielectric constant (ε'), and we further examine differences in shape and size under otherwise identical temperature conditions when the synthesis of the gold nanoparticles was carried out in an ethylene glycol polar medium in the presence of polyvinylpyrrolidone. Whereas a change in microwave frequency from 2.45 to 5.8 GHz at equal microwave power levels led to the synthesis of gold nanoparticles in the non-polar media, a change in the microwave frequency had no effect on the size and shape of the gold nanoparticles synthesized in polar media for identical microwave power levels.

  11. Microwave frequency effect in the formation of Au nanocolloids in polar and non-polar solvents.

    PubMed

    Horikoshi, Satoshi; Abe, Hideki; Sumi, Takuya; Torigoe, Kanjiro; Sakai, Hideki; Serpone, Nick; Abe, Masahiko

    2011-04-01

    Given earlier observations that microwave frequencies can have a substantial effect on the photoactivity of a well-known photocatalyst (TiO(2)), in the synthesis of 3,6-diphenyl-4-n-butylpyridazine through a Diels-Alder process, and in the one-pot solvent-free synthesis of a room-temperature ionic liquid, we proceeded to examine the frequency effects of the 5.8 and 2.45 GHz microwave (MW) radiation in the synthesis of gold nanoparticles in non-polar media, such as oleylamine, which have a low dielectric constant (ε'), and we further examine differences in shape and size under otherwise identical temperature conditions when the synthesis of the gold nanoparticles was carried out in an ethylene glycol polar medium in the presence of polyvinylpyrrolidone. Whereas a change in microwave frequency from 2.45 to 5.8 GHz at equal microwave power levels led to the synthesis of gold nanoparticles in the non-polar media, a change in the microwave frequency had no effect on the size and shape of the gold nanoparticles synthesized in polar media for identical microwave power levels.

  12. Effects of synthesis techniques on chemical composition, microstructure and dielectric properties of Mg-doped calcium titanate

    NASA Astrophysics Data System (ADS)

    Jongprateep, Oratai; Sato, Nicha

    2018-04-01

    Calcium titanate (CaTiO3) has been recognized as a material for fabrication of dielectric components, owing to its moderate dielectric constant and excellent microwave response. Enhancement of dielectric properties of the material can be achieved through doping, compositional and microstructural control. This study, therefore, aimed at investigating effects of powder synthesis techniques on compositions, microstructure, and dielectric properties of Mg-doped CaTiO3. Solution combustion and solid-state reaction were powder synthesis techniques employed in preparation of undoped CaTiO3 and CaTiO3 doped with 5-20 at% Mg. Compositional analysis revealed that powder synthesis techniques did not exhibit a significant effect on formation of secondary phases. When Mg concentration did not exceed 5 at%, the powders prepared by both techniques contained only a single phase. An increase of MgO secondary phase was observed as Mg concentrations increased from 10 to 20 at%. Experimental results, on the contrary, revealed that powder synthesis techniques contributed to significant differences in microstructure. Solution combustion technique produced powders with finer particle sizes, which consequently led to finer grain sizes and density enhancement. High-density specimens with fine microstructure generally exhibit improved dielectric properties. Dielectric measurements revealed that dielectric constants of all samples ranged between 231 and 327 at 1 MHz, and that superior dielectric constants were observed in samples prepared by the solution combustion technique.

  13. Microwave application on air drying of apple (var. Granny Smith). The influence of vacuum impregnation pretreatment

    NASA Astrophysics Data System (ADS)

    Martin Esparza, Maria Eugenia

    Combined hot air-microwave drying has been studied on apple (var. Granny Smith), with and without vacuum impregnation (VI) pretreatment with isotonic solution, respect to kinetics, microstructural and final quality items. In order to reach this objective, a drier has been designed and built, that allows to control and to register all the variables which take place during the drying process. Thermal and dielectric properties, that are very important characteristics when studying heat and mass transfer phenomena that occur during the combined drying process, have been related to temperature and/or moisture content throughout empirical equations. It could be observed that all these properties decreased with product moisture content. Respect to dielectric properties, a relationship among water binding forms to food structure and water molecules relaxation frequency has been found. On the other hand, the effect of drying treatment conditions (air rate, drying temperature, sample thickness and incident microwave power) on the drying rate, from an empirical model based on diffusional mechanisms with two kinetic parameters (k1 and k2), both function of the incident microwave power, has been studied. Microwave application to air drying implied a notable decrease on drying time, the higher the applied power the higher the reduction. Microstructural study by Cryo-Sem revealed fast water vaporization taking place when microwaves are applied. Vacuum impregnation did not implied an additional advantage for combined drying as drying rate was similar to that of NIV samples. Finally, it has been studied the influence of process conditions on the color and mechanical properties of the dried product (IV and NIV). Vacuum impregnation implied an increase on the fracture resistance and less purity and tone angle. Microwave application induced product browning with respect to air drying (tone decreased and purity increased).

  14. Ultrawideband Electromagnetic Interference to Aircraft Radios

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Fuller, Gerald L.; Shaver, Timothy W.

    2002-01-01

    A very recent FCC Final Rule now permits marketing and operation of new products that incorporate Ultrawideband (UWB) technology into handheld devices. Wireless product developers are working to rapidly bring this versatile, powerful and expectedly inexpensive technology into numerous consumer wireless devices. Past studies addressing the potential for passenger-carried portable electronic devices (PEDs) to interfere with aircraft electronic systems suggest that UWB transmitters may pose a significant threat to aircraft communication and navigation radio receivers. NASA, United Airlines and Eagles Wings Incorporated have performed preliminary testing that clearly shows the potential for handheld UWB transmitters to cause cockpit failure indications for the air traffic control radio beacon system (ATCRBS), blanking of aircraft on the traffic alert and collision avoidance system (TCAS) displays, and cause erratic motion and failure of instrument landing system (ILS) localizer and glideslope pointers on the pilot horizontal situation and attitude director displays. This paper provides details of the preliminary testing and recommends further assessment of aircraft systems for susceptibility to UWB electromagnetic interference.

  15. Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy.

    PubMed

    Segawa, Takuya F; Doll, Andrin; Pribitzer, Stephan; Jeschke, Gunnar

    2015-07-28

    The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclear modulation spectrum.

  16. Microporous Co@C Nanoparticles Prepared by Dealloying CoAl@C Precursors: Achieving Strong Wideband Microwave Absorption via Controlling Carbon Shell Thickness.

    PubMed

    Li, Da; Liao, Haoyan; Kikuchi, Hiroaki; Liu, Tong

    2017-12-27

    Excellent magnetic features make Co-based materials promising candidates as high-performance microwave absorbers. However, it is still a significant challenge for Co-based absorbers to possess high-intensity and broadband absorption simultaneously, owing to the lack of dielectric loss and impedance matching. Herein, microporous Co@C nanoparticles (NPs) with carbon shell thicknesses ranging from 1.8-4.9 nm have been successfully synthesized by dealloying CoAl@C precursors. All of the samples exhibit high microwave absorption performance. The microporous Co@C sample possessing a carbon shell of 1.8 nm exhibits the highest absorption intensity among these samples with a minimum reflection loss (RL) of -141.1 dB, whose absorption bandwidth for RL ≤ -10 dB is 7.3 GHz. As the thickness of the carbon shell increases, the absorption bandwidth of the NPs becomes wider. For the sample with the carbon shell thickness of 4.9 nm, the absorption bandwidth for RL ≤ -10 dB reaches a record high of 13.2 GHz. The outstanding microwave attenuation properties are attributed to the dielectric loss of the carbon shell, the magnetic loss of the Co core, and the cooperation of the core-shell structure and microporous morphology. The strong wideband microwave absorption of the carbon-coated microporous Co NPs highlights their potential applications in microwave absorbing systems.

  17. Analysis and characterization of microwave plasma generated with rectangular all-dielectric resonators

    NASA Astrophysics Data System (ADS)

    Kourtzanidis, K.; Raja, L. L.

    2017-04-01

    We report on a computational modeling study of small scale plasma discharge formation with rectangular dielectric resonators (DR). An array of rectangular dielectric slabs, separated by a gap of millimeter dimensions is used to provide resonant response when illuminated by an incident wave of 1.26 GHz. A coupled electromagnetic (EM) wave-plasma model is used to describe the breakdown, early response and steady state of the argon discharge. We characterize the plasma generation with respect to the input power, background gas pressure and gap size. It is found that the plasma discharge is generated mainly inside the gaps between the DR at positions that correspond to the antinodes of the resonant enhanced electric field pattern. The enhancement of the electric field inside the gaps is due to a combination of leaking and displacement current radiation from the DR. The plasma is sustained in over-critical densities due to the large skin depth with respect to the gap and plasma size. Electron densities are calculated in the order of {10}18{--}{10}19 {{{m}}}-3 for a gas pressure of 10 Torr, while they exceed 1020 {{{m}}}-3 in atmospheric conditions. Increase of input power leads to more intense ionization and thus faster plasma formation and results to a more symmetric plasma pattern. For low background gas pressure the discharge is diffusive and extends away from the gap region while in high pressure it is constricted inside the gap. An optimal gap size can be found to provide maximum EM energy transfer to the plasma. This fact demonstrates that the gap size dictates to a certain extent the resonant frequency and the Q-factor of the dielectric array and the breakdown fields can not be determined in a straight-forward way but they are functions of the resonators geometry and incident field frequency.

  18. Magnetic and Dielectric Property Studies in Fe- and NiFe-Based Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Sharma, Himani; Jain, Shubham; Raj, Pulugurtha Markondeya; Murali, K. P.; Tummala, Rao

    2015-10-01

    Metal-polymer composites were investigated for their microwave properties in the frequency range of 30-1000 MHz to assess their application as inductor cores and electromagnetic isolation shield structures. NiFe and Fe nanoparticles were dispersed in epoxy as nanocomposites, in different volume fractions. The permittivity, permeability, and loss tangents of the composites were measured with an impedance analyzer and correlated with the magnetic properties of the particle such as saturation magnetization and field anisotropy. Fe-epoxy showed lower magnetic permeability but improved frequency stability, compared to the NiFe-epoxy composites of the same volume loading. This is attributed to the differences in nanoparticle's structure such as effective metal core size and particle-porosity distribution in the polymer matrix. The dielectric properties of the nanocomposites were also characterized from 30 MHz to 1000 MHz. The instabilities in the dielectric constant and loss tangent were related to the interfacial polarization relaxation of the particles and the dielectric relaxation of the surface oxides.

  19. Microwave-assisted synthesis of sensitive silver substrate for surface-enhanced Raman scattering spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia Lixin; Wang Haibo; Wang Jian

    A sensitive silver substrate for surface-enhanced Raman scattering (SERS) spectroscopy is synthesized under multimode microwave irradiation. The microwave-assisted synthesis of the SERS-active substrate was carried out in a modified domestic microwave oven of 2450 MHz, and the reductive reaction was conducted in a polypropylene container under microwave irradiation with a power of 100 W for 5 min. Formaldehyde was employed as both the reductant and microwave absorber in the reductive process. The effects of different heating methods (microwave dielectric and conventional) on the properties of the SERS-active substrates were investigated. Samples obtained with 5 min of microwave irradiation at amore » power of 100 W have more well-defined edges, corners, and sharper surface features, while the samples synthesized with 1 h of conventional heating at 40 deg. C consist primarily of spheroidal nanoparticles. The SERS peak intensity of the {approx}1593 cm{sup -1} band of 4-mercaptobenzoic acid adsorbed on silver nanoparticles synthesized with 5 min of microwave irradiation at a power of 100 W is about 30 times greater than when it is adsorbed on samples synthesized with 1 h of conventional heating at 40 deg. C. The results of quantum chemical calculations are in good agreement with our experimental data. This method is expected to be utilized for the synthesis of other metal nanostructural materials.« less

  20. Two-port transmission line technique for dielectric property characterization of polymer electrolyte membranes.

    PubMed

    Lu, Zijie; Lanagan, Michael; Manias, Evangelos; Macdonald, Digby D

    2009-10-15

    Performance improvements of perfluorosulfonic acid membranes, such as Nafion and Flemion, underline a need for dielectric characterization of these materials toward a quantitative understanding of the dynamics of water molecules and protons within the membranes. In this Article, a two-port transmission line technique for measuring the complex permittivity spectra of polymeric electrolytes in the microwave region is described, and the algorithms for permittivity determination are presented. The technique is experimentally validated with liquid water and polytertrafluoroethylene film, whose dielectric properties are well-known. Further, the permittivity spectra of dry and hydrated Flemion SH150 membranes are measured and compared to those of Nafion 117. Two water relaxation modes are observed in the microwave region (0.045-26 GHz) at 25 degrees C. The higher-frequency process observed is identified as the cooperative relaxation of bulk-like water, whose amount was found to increase linearly with water content in the polymer. The lower-frequency process, characterized by longer relaxation times in the range of 20-70 ps, is attributed to water molecules that are loosely bound to sulfonate groups. The loosely bound water amount was found to increase with hydration level at low water content and levels off at higher water contents. Flemion SH150, which has an equivalent weight of 909 g/equiv, displays higher dielectric strengths for both of these water modes as compared to Nafion 117 (equivalent weight of 1100 g/equiv), which probably reflects the effect of equivalent weight on the polymers' hydrated structure, and in particular its effect on the extended ionic cluster domains.

  1. Tailoring dielectric resonator geometries for directional scattering and Huygens’ metasurfaces

    DOE PAGES

    Campione, Salvatore; Basilio, Lorena I.; Warne, Larry K.; ...

    2015-01-28

    In this paper we describe a methodology for tailoring the design of metamaterial dielectric resonators, which represent a promising path toward low-loss metamaterials at optical frequencies. We first describe a procedure to decompose the far field scattered by subwavelength resonators in terms of multipolar field components, providing explicit expressions for the multipolar far fields. We apply this formulation to confirm that an isolated high-permittivity dielectric cube resonator possesses frequency separated electric and magnetic dipole resonances, as well as a magnetic quadrupole resonance in close proximity to the electric dipole resonance. We then introduce multiple dielectric gaps to the resonator geometrymore » in a manner suggested by perturbation theory, and demonstrate the ability to overlap the electric and magnetic dipole resonances, thereby enabling directional scattering by satisfying the first Kerker condition. We further demonstrate the ability to push the quadrupole resonance away from the degenerate dipole resonances to achieve local behavior. These properties are confirmed through the multipolar expansion and show that the use of geometries suggested by perturbation theory is a viable route to achieve purely dipole resonances for metamaterial applications such as wave-front manipulation with Huygens’ metasurfaces. Our results are fully scalable across any frequency bands where high-permittivity dielectric materials are available, including microwave, THz, and infrared frequencies.« less

  2. A method for building low loss multi-layer wiring for superconducting microwave devices

    NASA Astrophysics Data System (ADS)

    Dunsworth, A.; Barends, R.; Chen, Yu; Chen, Zijun; Chiaro, B.; Fowler, A.; Foxen, B.; Jeffrey, E.; Kelly, J.; Klimov, P. V.; Lucero, E.; Mutus, J. Y.; Neeley, M.; Neill, C.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Neven, H.; Martinis, John M.; Megrant, A.

    2018-02-01

    Complex integrated circuits require multiple wiring layers. In complementary metal-oxide-semiconductor processing, these layers are robustly separated by amorphous dielectrics. These dielectrics would dominate energy loss in superconducting integrated circuits. Here, we describe a procedure that capitalizes on the structural benefits of inter-layer dielectrics during fabrication and mitigates the added loss. We use a deposited inter-layer dielectric throughout fabrication and then etch it away post-fabrication. This technique is compatible with foundry level processing and can be generalized to make many different forms of low-loss wiring. We use this technique to create freestanding aluminum vacuum gap crossovers (airbridges). We characterize the added capacitive loss of these airbridges by connecting ground planes over microwave frequency λ/4 coplanar waveguide resonators and measuring resonator loss. We measure a low power resonator loss of ˜3.9 × 10-8 per bridge, which is 100 times lower than that of dielectric supported bridges. We further characterize these airbridges as crossovers, control line jumpers, and as part of a coupling network in gmon and fluxmon qubits. We measure qubit characteristic lifetimes (T1s) in excess of 30 μs in gmon devices.

  3. Generation of ultra-wideband achromatic Airy plasmons on a graphene surface.

    PubMed

    Guan, Chunying; Yuan, Tingting; Chu, Rang; Shen, Yize; Zhu, Zheng; Shi, Jinhui; Li, Ping; Yuan, Libo; Brambilla, Gilberto

    2017-02-01

    Tunable ultra-wideband achromatic plasmonic Airy beams are demonstrated on graphene surfaces. Surface plasmonic polaritons are excited using diffractive gratings. The phase and amplitude of plasmonic waves on the graphene surface are determined by the relative position between the grating arrays and the duty ratio of the grating unit cell, respectively. The transverse acceleration and nondiffraction properties of plasmonic waves are observed. The achromatic Airy plasmons with identical acceleration trajectory at different excited frequencies can be achieved by tuning dynamically the Fermi energy of graphene without reoptimizing the grating structures. The proposed devices may find applications in photonics integrations and surface optical manipulation.

  4. Compact electromagnetic bandgap structures for notch band in ultra-wideband applications.

    PubMed

    Rotaru, Mihai; Sykulski, Jan

    2010-01-01

    This paper introduces a novel approach to create notch band filters in the front-end of ultra-wideband (UWB) communication systems based on electromagnetic bandgap (EBG) structures. The concept presented here can be implemented in any structure that has a microstrip in its configuration. The EBG structure is first analyzed using a full wave electromagnetic solver and then optimized to work at WLAN band (5.15-5.825 GHz). Two UWB passband filters are used to demonstrate the applicability and effectiveness of the novel EBG notch band feature. Simulation results are provided for two cases studied.

  5. Compact Electromagnetic Bandgap Structures for Notch Band in Ultra-Wideband Applications

    PubMed Central

    Rotaru, Mihai; Sykulski, Jan

    2010-01-01

    This paper introduces a novel approach to create notch band filters in the front-end of ultra-wideband (UWB) communication systems based on electromagnetic bandgap (EBG) structures. The concept presented here can be implemented in any structure that has a microstrip in its configuration. The EBG structure is first analyzed using a full wave electromagnetic solver and then optimized to work at WLAN band (5.15–5.825 GHz). Two UWB passband filters are used to demonstrate the applicability and effectiveness of the novel EBG notch band feature. Simulation results are provided for two cases studied. PMID:22163430

  6. The influence of tissue layering on microwave thermographic measurements.

    PubMed

    Hawley, M S; Conway, J; Anderson, A P; Cudd, P A

    1988-01-01

    Non-invasive thermal imaging and temperature measurement by microwave radiometry has been investigated for medical diagnostic applications and monitoring hyperthermia treatment of cancer, in the context of heterogeneous body structure. The temperature measured by a radiometer is a function of the emission and propagation of microwaves in tissue and the receiving characteristics of the radiometric probe. Propagation of microwaves in lossy media was analysed by a spectral diffraction approach. Extension of this technique via a cascade transmission line model provides an efficient algorithm for predicting the field patterns of aperture antennas contacting multi-layered tissue. A coherent radiative transfer analysis was used to relate the field pattern of a radiating antenna to its receiving characteristics when used as a radiometer probe, leading to a method for simulating radiometric data. Measurements and simulations were used to assess the effect of overlying fat layers upon radiometer response to temperature hot spots in muscle-type media. Results suggest that dielectric layering in tissue greatly influences measured temperatures and should be accounted for in the interpretation of radiometric data.

  7. Ultra-broadband microwave metamaterial absorber based on resistive sheets

    NASA Astrophysics Data System (ADS)

    Kim, Y. J.; Yoo, Y. J.; Hwang, J. S.; Lee, Y. P.

    2017-01-01

    We investigate a broadband perfect absorber for microwave frequencies, with a wide incident angle, using resistive sheets, based on both simulation and experiment. The absorber uses periodically-arranged meta-atoms, consisting of snake-shape metallic patterns and metal planes separated by three resistive sheet layers between four dielectric layers. We demonstrate the mechanism of the broadband by impedance matching with free space, and the distribution of surface currents at specific frequencies. In simulation, the absorption was over 96% in 1.4-6.0 GHz. The corresponding experimental absorption band over 96% was 1.4-4.0 GHz, however, the absorption was lower than 96% in the 4.0-6.0 GHz range because of the rather irregular thickness of the resistive sheets. Furthermore, it works for wide incident angles and is relatively independent of polarization. The design is scalable to smaller sizes in the THz range. The results of this study show potential for real applications in prevention of microwave frequency exposure, with devices such as cell phones, monitors, and microwave equipment.

  8. Botswana water and surface energy balance research program. Part 2: Large scale moisture and passive microwaves

    NASA Technical Reports Server (NTRS)

    Vandegriend, A. A.; Owe, M.; Chang, A. T. C.

    1992-01-01

    The Botswana water and surface energy balance research program was developed to study and evaluate the integrated use of multispectral satellite remote sensing for monitoring the hydrological status of the Earth's surface. The research program consisted of two major, mutually related components: a surface energy balance modeling component, built around an extensive field campaign; and a passive microwave research component which consisted of a retrospective study of large scale moisture conditions and Nimbus scanning multichannel microwave radiometer microwave signatures. The integrated approach of both components are explained in general and activities performed within the passive microwave research component are summarized. The microwave theory is discussed taking into account: soil dielectric constant, emissivity, soil roughness effects, vegetation effects, optical depth, single scattering albedo, and wavelength effects. The study site is described. The soil moisture data and its processing are considered. The relation between observed large scale soil moisture and normalized brightness temperatures is discussed. Vegetation characteristics and inverse modeling of soil emissivity is considered.

  9. The application research of microwave nondestructive testing and imaging based on ω-k algorithm

    NASA Astrophysics Data System (ADS)

    Qi, Shengxiang; Ren, Jian; Gu, Lihua; Xu, Hui; Wang, Yuanbo

    2017-07-01

    The Bridges had collapsed accidents in recent years due to bridges quality problems. Therefore, concretes nondestructive testing are particularly important. At present, most applications are Ground Penetrating Radar (GPR) technology in the detection of reinforced concretes structure. GPR are used the pulse method which alongside with definitive advantages, but the testing of the internal structure of the small thickness concretes has very low resolution by this method. In this paper, it's the first time to use the ultra-wideband (UWB) stepped frequency conversion radar above problems. We use vector network analyzer and double ridged horn antenna microwave imaging system to test the reinforced concretes block. The internal structure of the concretes is reconstructed with a method of synthetic aperture of ω-k algorithm. By this method, the depth of the steel bar with the diameter of 1cm is shown exactly in the depth of 450mm×400mm×500mm and the depth error do not exceed 1cm.

  10. Effects of Natural Rubber on Microwave Absorption Characteristics of Some Li-Ni-Zn Ferrite-Thermoplastic Natural Rubber Composites

    NASA Astrophysics Data System (ADS)

    Abdul Hamid, Siti Atkah; Abdullah, Mustaffa Hj.; Ahmad, Sahrim Hj.; Mansor, Abdul Aziz; Yusoff, Ahmad Nazlim

    2002-09-01

    A microwave (Li0.5Fe0.5)0.4Ni0.3Zn0.3Fe2O4 (LNZ) ferrite was prepared by a conventional sintering method in air. Thermoplastic natural rubber (TPNR) was prepared from polypropylene (PP) and natural rubber (NR) in the ratios of 80:20, 70:30, 60:40, 50:50 and 40:60 with liquid natural rubber as a compatibilizer by a melt blending technique. LNZ ferrite-TPNR composites with 20 wt% ferrite filler were prepared using a Brabender plasticorder internal mixer. The microwave electromagnetic properties of the composites were studied in the frequency range of 0.3-13.5 GHz using a microwave vector network analyzer (MVNA). The real and imaginary components of the relative complex dielectric permittivity (\\varepsilonr*=\\varepsilonr\\prime-j\\varepsilonr\\prime\\prime) and magnetic permeability (μr*=μr\\prime-jμr\\prime\\prime) were calculated from the measured complex scattering parameters (S11* and S12*) using the Nicolson-Ross model. The dielectric and magnetic properties were found to depend on the NR and PP content in the composites. The minimum reflection loss (RL) under the matching conditions increases with increasing NR content.

  11. Thin Film Multilayer Conductor/Ferroelectric Tunable Microwave Components for Communication Applications

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Romanofsky, Robert R.; VanKeuls, Frederick W.; Mueller, Carl H.; Treece, Randolph E.; Rivkin, Tania V.

    1997-01-01

    High Temperature Superconductor/Ferroelectric (HTS/FE ) thin film multilayered structures deposited onto dielectric substrates are currently being investigated for use in low loss, tunable microwave components for satellite and ground based communications. The main goal for this technology is to achieve maximum tunability while keeping the microwave losses as low as possible, so as to avoid performance degradation when replacing conventional technology (e.g., filters and oscillators) with HTS/FE components. Therefore, for HTS/FE components to be successfully integrated into current working systems, full optimization of the material and electrical properties of the ferroelectric films, without degrading those of the HTS film; is required. Hence, aspects such as the appropriate type of ferroelectric and optimization of the deposition conditions (e.g., deposition temperature) should be carefully considered. The tunability range as well as the microwave losses of the desired varactor (i.e., tunable component) are also dependent on the geometry chosen (e.g., parallel plate capacitor, interdigital capacitor, coplanar waveguide, etc.). In addition, the performance of the circuit is dependent on the location of the varactor in the circuit and the biasing circuitry. In this paper, we will present our results on the study of the SrTiO3/YBa2Cu3O(7-delta)/LaAl03 (STO/YBCO/LAO) and the Ba(x)Sr(1-x)TiO3/YBa2Cu3O(7-delta)/LaAl03(BSTO/YBCO/ILAO) HTS/FE multilayered structures. We have observed that the amount of variation of the dielectric constant upon the application of a dc electric field is closely related to the microstructure of the film. The largest tuning of the STO/YBCO/LAO structure corresponded to single-phased, epitaxial STO films deposited at 800 C and with a thickness of 500 nm. Higher temperatures resulted in interfacial degradation and poor film quality, while lower deposition temperatures resulted in films with lower dielectric constants, lower tunabilities, and

  12. Towards sustainable processing of columbite group minerals: elucidating the relation between dielectric properties and physico-chemical transformations in the mineral phase.

    PubMed

    Sanchez-Segado, Sergio; Monti, Tamara; Katrib, Juliano; Kingman, Samuel; Dodds, Chris; Jha, Animesh

    2017-12-21

    Current methodologies for the extraction of tantalum and niobium pose a serious threat to human beings and the environment due to the use of hydrofluoric acid (HF). Niobium and tantalum metal powders and pentoxides are widely used for energy efficient devices and components. However, the current processing methods for niobium and tantalum metals and oxides are energy inefficient. This dichotomy between materials use for energy applications and their inefficient processing is the main motivation for exploring a new methodology for the extraction of these two oxides, investigating the microwave absorption properties of the reaction products formed during the alkali roasting of niobium-tantalum bearing minerals with sodium bicarbonate. The experimental findings from dielectric measurement at elevated temperatures demonstrate an exponential increase in the values of the dielectric properties as a result of the formation of NaNbO 3 -NaTaO 3 solid solutions at temperatures above 700 °C. The investigation of the evolution of the dielectric properties during the roasting reaction is a key feature in underpinning the mechanism for designing a new microwave assisted high-temperature process for the selective separation of niobium and tantalum oxides from the remainder mineral crystalline lattice.

  13. Challenges and opportunities for multi-functional oxide thin films for voltage tunable radio frequency/microwave components

    NASA Astrophysics Data System (ADS)

    Subramanyam, Guru; Cole, M. W.; Sun, Nian X.; Kalkur, Thottam S.; Sbrockey, Nick M.; Tompa, Gary S.; Guo, Xiaomei; Chen, Chonglin; Alpay, S. P.; Rossetti, G. A.; Dayal, Kaushik; Chen, Long-Qing; Schlom, Darrell G.

    2013-11-01

    There has been significant progress on the fundamental science and technological applications of complex oxides and multiferroics. Among complex oxide thin films, barium strontium titanate (BST) has become the material of choice for room-temperature-based voltage-tunable dielectric thin films, due to its large dielectric tunability and low microwave loss at room temperature. BST thin film varactor technology based reconfigurable radio frequency (RF)/microwave components have been demonstrated with the potential to lower the size, weight, and power needs of a future generation of communication and radar systems. Low-power multiferroic devices have also been recently demonstrated. Strong magneto-electric coupling has also been demonstrated in different multiferroic heterostructures, which show giant voltage control of the ferromagnetic resonance frequency of more than two octaves. This manuscript reviews recent advances in the processing, and application development for the complex oxides and multiferroics, with the focus on voltage tunable RF/microwave components. The over-arching goal of this review is to provide a synopsis of the current state-of the-art of complex oxide and multiferroic thin film materials and devices, identify technical issues and technical challenges that need to be overcome for successful insertion of the technology for both military and commercial applications, and provide mitigation strategies to address these technical challenges.

  14. Behaviors of printed circuit boards due to microwave supported curing process of coating materials.

    PubMed

    Bremerkamp, Felix; Nowottnick, Mathias; Seehase, Dirk; Bui, Trinh Dung

    2012-01-01

    The Application of a microwave supported curing process for coatings in the field of electronic industry poses a challenge. Here the implementation of this technology is represented. Within the scope of the investigation special PCB Test Layouts were designed and the polymer curing process examined by the method of dielectric analysis. Furthermore the coupling of microwave radiation with conductive PCB structures was analyzed experimentally by means of special test boards. The formation of standing waves and regular heating distribution along the conductive wires on the PCB could be observed. The experimental results were compared with numerical simulation. In this context the numerical analysis of microwave PCB interaction led to important findings concerning wave propagation on wired PCB. The final valuation demonstrated a substantial similarity between numerical simulations and experimental results.

  15. Ultra-wideband short-pulse radar with range accuracy for short range detection

    DOEpatents

    Rodenbeck, Christopher T; Pankonin, Jeffrey; Heintzleman, Richard E; Kinzie, Nicola Jean; Popovic, Zorana P

    2014-10-07

    An ultra-wideband (UWB) radar transmitter apparatus comprises a pulse generator configured to produce from a sinusoidal input signal a pulsed output signal having a series of baseband pulses with a first pulse repetition frequency (PRF). The pulse generator includes a plurality of components that each have a nonlinear electrical reactance. A signal converter is coupled to the pulse generator and configured to convert the pulsed output signal into a pulsed radar transmit signal having a series of radar transmit pulses with a second PRF that is less than the first PRF.

  16. Hybrid graphene-copper UWB array sensor for brain tumor detection via scattering parameters in microwave detection system

    NASA Astrophysics Data System (ADS)

    Jamlos, Mohd Aminudin; Ismail, Abdul Hafiizh; Jamlos, Mohd Faizal; Narbudowicz, Adam

    2017-01-01

    Hybrid graphene-copper ultra-wideband array sensor applied to microwave imaging technique is successfully used in detecting and visualizing tumor inside human brain. The sensor made of graphene coated film for the patch while copper for both the transmission line and parasitic element. The hybrid sensor performance is better than fully copper sensor. Hybrid sensor recorded wider bandwidth of 2.0-10.1 GHz compared with fully copper sensor operated from 2.5 to 10.1 GHz. Higher gain of 3.8-8.5 dB is presented by hybrid sensor, while fully copper sensor stated lower gain ranging from 2.6 to 6.7 dB. Both sensors recorded excellent total efficiency averaged at 97 and 94%, respectively. The sensor used for both transmits equivalent signal and receives backscattering signal from stratified human head model in detecting tumor. Difference in the data of the scattering parameters recorded from the head model with presence and absence of tumor is used as the main data to be further processed in confocal microwave imaging algorithm in generating image. MATLAB software is utilized to analyze S-parameter signals obtained from measurement. Tumor presence is indicated by lower S-parameter values compared to higher values recorded by tumor absence.

  17. Data processing and error analysis for the CE-1 Lunar microwave radiometer

    NASA Astrophysics Data System (ADS)

    Feng, Jian-Qing; Su, Yan; Liu, Jian-Jun; Zou, Yong-Liao; Li, Chun-Lai

    2013-03-01

    The microwave radiometer (MRM) onboard the Chang' E-1 (CE-1) lunar orbiter is a 4-frequency microwave radiometer, and it is mainly used to obtain the brightness temperature (TB) of the lunar surface, from which the thickness, temperature, dielectric constant and other related properties of the lunar regolith can be derived. The working mode of the CE-1 MRM, the ground calibration (including the official calibration coefficients), as well as the acquisition and processing of the raw data are introduced. Our data analysis shows that TB increases with increasing frequency, decreases towards the lunar poles and is significantly affected by solar illumination. Our analysis also reveals that the main uncertainty in TB comes from ground calibration.

  18. Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segawa, Takuya F.; Doll, Andrin; Pribitzer, Stephan

    2015-07-28

    The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclearmore » modulation spectrum.« less

  19. Free space optical ultra-wideband communications over atmospheric turbulence channels.

    PubMed

    Davaslioğlu, Kemal; Cağiral, Erman; Koca, Mutlu

    2010-08-02

    A hybrid impulse radio ultra-wideband (IR-UWB) communication system in which UWB pulses are transmitted over long distances through free space optical (FSO) links is proposed. FSO channels are characterized by random fluctuations in the received light intensity mainly due to the atmospheric turbulence. For this reason, theoretical detection error probability analysis is presented for the proposed system for a time-hopping pulse-position modulated (TH-PPM) UWB signal model under weak, moderate and strong turbulence conditions. For the optical system output distributed over radio frequency UWB channels, composite error analysis is also presented. The theoretical derivations are verified via simulation results, which indicate a computationally and spectrally efficient UWB-over-FSO system.

  20. Using Microwaves for Extracting Water from the Moon

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.; Kaukler, William; Hepburn, Frank

    2009-01-01

    This disk contains 2 videos that accompanies the talk. Twenty years ago, the Lunar Prospector remote sensing satellite provided evidence of relatively large hydrogen concentrations at the lunar poles and in particular concentrated in permanently shadowed craters. The scientific hypothesis is that the hydrogen is in the form of cryo-trapped water just under the surface of the soil. If true this would mean that an average of about 2% water ice is mixed with the lunar soil existing in the form of ice at cryogenic temperatures. For 5 years we have been investigating the use of microwaves for the processing of lunar soil. One of the early uses could be to use microwave energy to extract volatiles and in particular water from the lunar permafrost. Prototype experiments have shown that microwave energy at 2.45 GHz, as in consumer microwave ovens, will couple with and heat cryogenically cooled lunar soil permafrost simulant, resulting in the rapid sublimation of water vapor into the vacuum chamber. The water vapor has been collected on a cryogenic cold trap with high efficiency. The primary advantage of microwave processing is that the volatiles can be extracted in situ. Excavation would not be required. Microwave frequency dielectric property measurements are being made of different lunar soil simulants and plans are to measure Apollo lunar soil at different frequencies and over a range of temperatures. The materials properties are being used to evaluate the heating of lunar soil and develop COMSOL models that can be used to evaluate different microwave extraction scenarios. With COMSOL the heating from cryogenic temperatures can be calculated and COMSOL will permit temperature dependent materials properties to be used during the heating process. Calculations at different microwave frequencies will allow the evaluation of the type of hardware that would be needed to most efficiently extract the water and other volatiles. The 1st video shows the results of the COMSOL

  1. Using Microwaves for Extracting Water from the Moon

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.; Kaukler, William; Hepburn, Frank

    2009-01-01

    This disk contains a video that accompanies the talk. Twenty years ago, the Lunar Prospector remote sensing satellite provided evidence of relatively large hydrogen concentrations at the lunar poles and in particular concentrated in permanently shadowed craters. The scientific hypothesis is that the hydrogen is in the form of cryo-trapped water just under the surface of the soil. If true this would mean that an average of about 2% water ice is mixed with the lunar soil existing in the form of ice at cryogenic temperatures. For 5 years we have been investigating the use of microwaves for the processing of lunar soil. One of the early uses could be to use microwave energy to extract volatiles and in particular water from the lunar permafrost. Prototype experiments have shown that microwave energy at 2.45 GHz, as in consumer microwave ovens, will couple with and heat cryogenically cooled lunar soil permafrost simulant, resulting in the rapid sublimation of water vapor into the vacuum chamber. The water vapor has been collected on a cryogenic cold trap with high efficiency. The primary advantage of microwave processing is that the volatiles can be extracted in situ. Excavation would not be required. Microwave frequency dielectric property measurements are being made of different lunar soil simulants and plans are to measure Apollo lunar soil at different frequencies and over a range of temperatures. The materials properties are being used to evaluate the heating of lunar soil and develop COMSOL models that can be used to evaluate different microwave extraction scenarios. With COMSOL the heating from cryogenic temperatures can be calculated and COMSOL will permit temperature dependent materials properties to be used during the heating process. Calculations at different microwave frequencies will allow the evaluation of the type of hardware that would be needed to most efficiently extract the water and other volatiles. The video shows the partial results of the COMSOL

  2. A Laboratory Test Setup for in Situ Measurements of the Dielectric Properties of Catalyst Powder Samples under Reaction Conditions by Microwave Cavity Perturbation: Set up and Initial Tests

    PubMed Central

    Dietrich, Markus; Rauch, Dieter; Porch, Adrian; Moos, Ralf

    2014-01-01

    The catalytic behavior of zeolite catalysts for the ammonia-based selective catalytic reduction (SCR) of nitrogen oxides (NOX) depends strongly on the type of zeolite material. An essential precondition for SCR is a previous ammonia gas adsorption that occurs on acidic sites of the zeolite. In order to understand and develop SCR active materials, it is crucial to know the amount of sorbed ammonia under reaction conditions. To support classical temperature-programmed desorption (TPD) experiments, a correlation of the dielectric properties with the catalytic properties and the ammonia sorption under reaction conditions appears promising. In this work, a laboratory test setup, which enables direct measurements of the dielectric properties of catalytic powder samples under a defined gas atmosphere and temperature by microwave cavity perturbation, has been developed. Based on previous investigations and computational simulations, a resonator cavity and a heating system were designed, installed and characterized. The resonator cavity is designed to operate in its TM010 mode at 1.2 GHz. The first measurement of the ammonia loading of an H-ZSM-5 zeolite confirmed the operating performance of the test setup at constant temperatures of up to 300 °C. It showed how both real and imaginary parts of the relative complex permittivity are strongly correlated with the mass of stored ammonia. PMID:25211199

  3. First microwave map of the Moon with Chang'E-1 data: The role of local time in global imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Y. C.; Tsang, K. T.; Chan, K. L.; Zou, Y. L.; Zhang, F.; Ouyang, Z. Y.

    2012-05-01

    Among recent lunar orbiters, only the Chinese Chang'E-1 (CE-1) was equipped with a passive microwave radiometer (MRM) to measure the natural microwave emission from the lunar surface. The microwave emission, characterized by a frequency-dependent brightness temperature (TB), is related to the physical temperature and dielectric properties of the lunar surface. By measuring the brightness temperature at different frequencies, detailed thermal behavior and properties of the lunar surface can be retrieved. Using CE-1's microwave data, we present here a set of microwave maps of the Moon constructed through a rescaling of TB to noontime or midnight. The adopted processing technique helps to reduce the effect of mixing up the temporal and spatial variations introduced by the satellite's localized measurements which cover different locations of the globe at different lunar local times. The resulting maps show fine structures unseen in previous microwave maps that disregarded the local time effect. We discussed the new features revealed and their possible connections with the lunar geology.

  4. Microwave facilities for welding thermoplastic composites and preliminary results.

    PubMed

    Ku, H S; Siores, E; Ball, J A

    1999-01-01

    The wide range of applications of microwave technology in manufacturing industries has been well documented (NRC, 1994; Thuery, 1992). In this paper, a new way of joining fibre reinforced thermoplastic composites with or without primers is presented. The microwave facility used is also discussed. The effect of power input and cycle time on the heat affected zone (HAZ) is detailed together with the underlying principles of test piece material interactions with the electromagnetic field. The process of autogenous joining of 33% by weight of random glass fibre reinforced Nylon 66, polystyrene (PS) and low density polyethylene (LDPE) as well as 23.3% by weight of carbon fibre reinforced PS thermoplastic composites is discussed together with developments using filler materials, or primers in the heterogenous joining mode. The weldability dependence on the dielectric loss tangent of these materials at elevated temperatures is also described.

  5. Microwave measurement of the mass of frozen hydrogen pellets

    DOEpatents

    Talanker, Vera; Greenwald, Martin

    1990-01-01

    A nondestructive apparatus and method for measuring the mass of a moving object, based on the perturbation of the dielectric character of a resonant microwave cavity caused by the object passing through the cavity. An oscillator circuit is formed with a resonant cavity in a positive feedback loop of a microwave power amplifier. The moving object perturbs the resonant characteristics of the cavity causing a shift in the operating frequency of the oscillator proportional to the ratio of the pellet volume to the volume of the cavity. Signals from the cavity oscillation are mixed with a local oscillator. Then the IF frequency from the mixer is measured thereby providing a direct measurement of pellet mass based upon known physical properties and relationships. This apparatus and method is particularly adapted for the measurement of frozen hydrogen pellets.

  6. Nano-crystalline Magnesium Substituted Cadmium Ferrites as X-band Microwave Absorbers

    NASA Astrophysics Data System (ADS)

    Bhongale, S. R.; Ingawale, H. R.; Shinde, T. J.; Pubby, Kunal; Bindra Narang, Sukhleen; Vasambekar, P. N.

    2017-11-01

    The magnetic and electromagnetic properties of nanocrystalline spinel ferrites with chemical formula MgxCd1-xFe2O4 (x = 0, 0.2, 0.4, 0.6, 0.8 and 1.0) prepared by oxalate co-precipitation method under microwave sintering technique were studied. The magnetic and dielectric parameters of ferrites were determined by using vibrating sample magnetometer (VSM) and vector network analyzer (VNA) respectively. Magnetic parameters such as saturation magnetizations (Ms), coercive force (Hc), remnant magnetization (Mr), Yafet-Kittel (Y-K) angle of ferrites were determined from hysteresis loops. The variation of real permittivity (ε‧), dielectric loss tangent (tanδe), real permeability (μ‧) and magnetic loss tangent (tanδm) with frequency and Mg2+content were studied in X-band frequency range. The values of ε‧, tanδe, μ‧ and tanδm of ferrites were observed to be in range of 4.2 - 6.12, 2.9 × 10-1 - 6 × 10-2, 0.6 - 1.12 and 4.5 × 10-1 - 2 × 10-3 respectively for the prepared compositions. The study of variation of reflection loss with frequency of all ferrites shows that ferrite with magnesium content x = 0.4 can be potential candidate for microwave applications in X-band.

  7. Dendritic-metasurface-based flexible broadband microwave absorbers

    NASA Astrophysics Data System (ADS)

    Wang, Mei; Weng, Bin; Zhao, Jing; Zhao, Xiaopeng

    2017-06-01

    Based on the dendritic metasurface model, a type of flexible and lightweight microwave absorber (MA) comprising resistance film array with dendritic slot (RFADS), dielectric material, and metal plate is proposed. A broadband absorptivity of >80% is obtained both from simulation and experiment at frequency ranges of 3.0-9.2 and 3.2-9.00 GHz, respectively. And the thickness of MA is 5 mm, which is only 0.05λ _{low}, or 0.15λ _ {high}, where the λ _{low} and the λ _{high} are the beginning and the end of the working frequency. By combining this metasurface-based MA with the dendritic-resistance-film-based microwave metasurface absorber (MMA), we designed a broadband MMA. The simulations and experiments showed that this kind of MMA can absorb the radiation effectively at a wide frequency range 4.5-17.5 GHz. And the thickness of this combined MMA is 4 mm. All the structures showed their insensitivity to the incident angle (0°-40°) and the polarization of the incident wave because of their structural symmetry. In addition, the small thickness, low apparent density, and flexibility made those structures possess the advantages of being applied in microwave stealth and radar cross-section (RCS) reduction.

  8. Multipactor susceptibility on a dielectric with a bias dc electric field and a background gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Peng; Lau, Y. Y.; Franzi, Matthew

    2011-05-15

    We use Monte Carlo simulations and analytical calculations to derive the condition for the onset of multipactor discharge on a dielectric surface at various combinations of the bias dc electric field, rf electric field, and background pressures of noble gases, such as Argon. It is found that the presence of a tangential bias dc electric field on the dielectric surface lowers the magnitude of rf electric field threshold to initiate multipactor, therefore plausibly offering robust protection against high power microwaves. The presence of low pressure gases may lead to a lower multipactor saturation level, however. The combined effects of tangentialmore » dc electric field and external gases on multipactor susceptibility are presented.« less

  9. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption.

    PubMed

    Li, Zhong-Jun; Hou, Zhi-Ling; Song, Wei-Li; Liu, Xing-Da; Cao, Wen-Qiang; Shao, Xiao-Hong; Cao, Mao-Sheng

    2016-05-21

    Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications.

  10. Stroke localization and classification using microwave tomography with k-means clustering and support vector machine.

    PubMed

    Guo, Lei; Abbosh, Amin

    2018-05-01

    For any chance for stroke patients to survive, the stroke type should be classified to enable giving medication within a few hours of the onset of symptoms. In this paper, a microwave-based stroke localization and classification framework is proposed. It is based on microwave tomography, k-means clustering, and a support vector machine (SVM) method. The dielectric profile of the brain is first calculated using the Born iterative method, whereas the amplitude of the dielectric profile is then taken as the input to k-means clustering. The cluster is selected as the feature vector for constructing and testing the SVM. A database of MRI-derived realistic head phantoms at different signal-to-noise ratios is used in the classification procedure. The performance of the proposed framework is evaluated using the receiver operating characteristic (ROC) curve. The results based on a two-dimensional framework show that 88% classification accuracy, with a sensitivity of 91% and a specificity of 87%, can be achieved. Bioelectromagnetics. 39:312-324, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  11. Ultra-Wideband Massive MIMO Communications Using Multi-mode Antennas

    NASA Astrophysics Data System (ADS)

    Hoeher, P. A.; Manteuffel, D.; Doose, N.; Peitzmeier, N.

    2017-09-01

    An ultra-wideband system design is presented which supports wireless internet access and similar short-range applications with data rates of the order of 100 Gbps. Unlike concurrent work exploring the 60 GHz regime and beyond for this purpose, our focus is on the 6.0 -8.5 GHz frequency band. Hence, a bandwidth efficiency of about 50 bps/Hz is necessary. This sophisticated goal is targeted by employing two key enabling techniques: massive MIMO communications in conjunction with multi-mode antennas. This concept is suitable both for small-scale terminals like smartphones, as well as for powerful access points. Compared to millimeter wave and THz band communications, the 6.0 -8.5 GHz frequency band offers more robustness in NLOS scenarios and is more mature with respect to system components.

  12. Microwave-assisted pyrolysis of Mississippi coal: A comparative study with conventional pyrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelsayed, Victor; Shekhawat, Dushyant; Smith, Mark W.

    Pyrolysis conditions greatly affect the structure-reactivity relationship of char during coal gasification. Here, this work investigated the effect of temperature and microwave heating on the structural properties of the chars generated during pyrolysis, as well as gaseous and tar products. Results showed that microwave pyrolysis of Mississippi coal produced more gaseous products and less tars compared to conventional pyrolysis. Higher CO/CO 2 ratio (>1) was observed under microwave pyrolysis compared to conventional pyrolysis (CO/CO2 < 1), which may be explained by a greater extent of gasification between solid carbon and the CO 2 formed during microwave pyrolysis. Additionally, in microwavemore » pyrolysis, the oil tars generated exhibited lower concentrations of polar oxygenates, while the wax tars showed higher concentrations of non-polar alkanes, as observed from the intensity of CH vibrations in FTIR. The product compositions and FTIR analysis of the tars (oils and waxes) suggest that the microwave interacted preferentially with these polar species, which have relatively higher dielectric properties compared to alkanes. The structure–reactivity relationship of the chars produced was also investigated using a variety of characterization tools such as XRD, BET, SEM, EDS, and FTIR. Finally, the char reactivity towards combustion suggested that microwave-produced chars have a higher thermal stability, likely due to lower O/C ratios, and could be utilized in the metallurgical industry.« less

  13. Microwave-assisted pyrolysis of Mississippi coal: A comparative study with conventional pyrolysis

    DOE PAGES

    Abdelsayed, Victor; Shekhawat, Dushyant; Smith, Mark W.; ...

    2018-01-13

    Pyrolysis conditions greatly affect the structure-reactivity relationship of char during coal gasification. Here, this work investigated the effect of temperature and microwave heating on the structural properties of the chars generated during pyrolysis, as well as gaseous and tar products. Results showed that microwave pyrolysis of Mississippi coal produced more gaseous products and less tars compared to conventional pyrolysis. Higher CO/CO 2 ratio (>1) was observed under microwave pyrolysis compared to conventional pyrolysis (CO/CO2 < 1), which may be explained by a greater extent of gasification between solid carbon and the CO 2 formed during microwave pyrolysis. Additionally, in microwavemore » pyrolysis, the oil tars generated exhibited lower concentrations of polar oxygenates, while the wax tars showed higher concentrations of non-polar alkanes, as observed from the intensity of CH vibrations in FTIR. The product compositions and FTIR analysis of the tars (oils and waxes) suggest that the microwave interacted preferentially with these polar species, which have relatively higher dielectric properties compared to alkanes. The structure–reactivity relationship of the chars produced was also investigated using a variety of characterization tools such as XRD, BET, SEM, EDS, and FTIR. Finally, the char reactivity towards combustion suggested that microwave-produced chars have a higher thermal stability, likely due to lower O/C ratios, and could be utilized in the metallurgical industry.« less

  14. Novel Low Loss Wide-Band Multi-Port Integrated Circuit Technology for RF/Microwave Applications

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Goverdhanam, Kavita; Katehi, Linda P. B.; Burke, Thomas P. (Technical Monitor)

    2001-01-01

    In this paper, novel low loss, wide-band coplanar stripline technology for radio frequency (RF)/microwave integrated circuits is demonstrated on high resistivity silicon wafer. In particular, the fabrication process for the deposition of spin-on-glass (SOG) as a dielectric layer, the etching of microvias for the vertical interconnects, the design methodology for the multiport circuits and their measured/simulated characteristics are graphically illustrated. The study shows that circuits with very low loss, large bandwidth, and compact size are feasible using this technology. This multilayer planar technology has potential to significantly enhance RF/microwave IC performance when combined with semi-conductor devices and microelectromechanical systems (MEMS).

  15. Quantitative measurements of nanoscale permittivity and conductivity using tuning-fork-based microwave impedance microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoyu; Hao, Zhenqi; Wu, Di; Zheng, Lu; Jiang, Zhanzhi; Ganesan, Vishal; Wang, Yayu; Lai, Keji

    2018-04-01

    We report quantitative measurements of nanoscale permittivity and conductivity using tuning-fork (TF) based microwave impedance microscopy (MIM). The system is operated under the driving amplitude modulation mode, which ensures satisfactory feedback stability on samples with rough surfaces. The demodulated MIM signals on a series of bulk dielectrics are in good agreement with results simulated by finite-element analysis. Using the TF-MIM, we have visualized the evolution of nanoscale conductance on back-gated MoS2 field effect transistors, and the results are consistent with the transport data. Our work suggests that quantitative analysis of mesoscopic electrical properties can be achieved by near-field microwave imaging with small distance modulation.

  16. Effects of corn stalk orientation and water content on passive microwave sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Oneill, P. E.; Blanchard, B. J.; Wang, J. R.; Gould, W. I.; Jackson, T. J.

    1984-01-01

    A field experiment was conducted utilizing artificial arrangements of plant components during the summer of 1982 to examine the effects of corn canopy structure and plant water content on microwave emission. Truck-mounted microwave radiometers at C (5 GHz) and L (1.4 GHz) band sensed vertically and horizontally polarized radiation concurrent with ground observations of soil moisture and vegetation parameters. Results indicate that the orientation of cut stalks and the distribution of their dielectric properties through the canopy layer can influence the microwave emission measured from a vegetation/soil scene. The magnitude of this effect varies with polarization and frequency and with the amount of water in the plant, disappearing at low levels of vegetation water content. Although many of the canopy structures and orientations studied in this experiment are somewhat artificial, they serve to improve understanding of microwave energy interactions within a vegetation canopy and to aid in the development of appropriate physically based vegetation models.

  17. A newly-designed magnetic/dielectric [Fe3O4/BaTiO3@MWCNT] nanocomposite system for modern electromagnetic absorption applications

    NASA Astrophysics Data System (ADS)

    Sardarian, Pouria; Naffakh-Moosavy, Homam; Afghahi, Seyyed Salman Seyyed

    2017-11-01

    Developments in electronic industries for telecommunications and demands for decreasing electromagnetic radiation pollution result in developing researches on microwave absorption materials. The target of the present study is to design materials with high absorption properties for electromagnetic waves in the 12-18 GHz range. Thus, Fe3O4 magnetic nanoparticles were syntheses through chemical co-precipitation reinforced by ultrasonic. Then, BaTiO3 nanocrystalline powder was synthesized by the hydrothermal sol-gel method under atmospheric oxygen. Next, nano-particles of barium titanate were deposited on the multi-walled carbon nanotubes (BaTiO3@CNT). It was concluded that a magnetic-dielectric nanocomposite has superior microwave absorption properties in comparison to individual magnetic or dielectric absorbers. Also, in order to obtain an optimum absorption in a wide frequency band, dielectric-CNT nanocomposites represents higher properties than magnetic-CNT composites. It is concluded that composites with more magnetic percentage showed better absorption in low frequency band (12 GHz), whereas composites with more dielectric percentage exhibited superior absorption for high frequency band (18 GHz). 80-93% absorption was obtained in the frequency range of 16.7-18 GHz by composite 40M.20F.40C (40% paraffin, 20% magnetite, 40% multi-walled carbon nanotubes). Also, composite 40M.20B.40B@C (40% paraffin, 20% barium titanate, 40% barium titanate deposited on multi-walled carbon nanotubes) showed the absorption of 80-90%.

  18. Microwave remote sensing of sea ice in the AIDJEX Main Experiment

    USGS Publications Warehouse

    Campbell, W.J.; Wayenberg, J.; Ramseyer, J.B.; Ramseier, R.O.; Vant, M.R.; Weaver, R.; Redmond, A.; Arsenaul, L.; Gloersen, P.; Zwally, H.J.; Wilheit, T.T.; Chang, T.C.; Hall, D.; Gray, L.; Meeks, D.C.; Bryan, M.L.; Barath, F.T.; Elachi, C.; Leberl, F.; Farr, Tom

    1978-01-01

    During the AIDJEX Main Experiment, April 1975 through May 1976, a comprehensive microwave sensing program was performed on the sea ice of the Beaufort Sea. Surface and aircraft measurements were obtained during all seasons using a wide variety of active and passive microwave sensors. The surface program obtained passive microwave measurements of various ice types using four antennas mounted on a tracked vehicle. In three test regions, each with an area of approximately 1.5 ?? 104 m2, detailed ice crystallographic, dielectric properties, and brightness temperatures of first-year, multiyear, and first-year/multiyear mixtures were measured. A NASA aircraft obtained passive microwave measurements of the entire area of the AIDJEX manned station array (triangle) during each of 18 flights. This verified the earlier reported ability to distinguish first-year and multiyear ice types and concentration and gave new information on ways to observe ice mixtures and thin ice types. The active microwave measurements from aircraft included those from an X- and L-band radar and from a scatterometer. The former is used to study a wide variety of ice features and to estimate deformations, while both are equally usable to observe ice types. With the present data, only the scatterometer can be used to distinguish positively multiyear from first-year and various types of thin ice. This is best done using coupled active and passive microwave sensing. ?? 1978 D. Reidel Publishing Company.

  19. Microwave sensing for meat and fish structure evaluation

    NASA Astrophysics Data System (ADS)

    Clerjon, S.; Damez, J. L.

    2007-04-01

    Monitoring changes in muscle structure during the ageing of bovine meat and quality loss due to fish freezing are major industrial challenges. During ageing, bovine muscle becomes tender through muscle fibre deterioration, and full control of this process is essential. Conversely, degradation of fish muscle, often due to long storage or a freezing cycle, lowers quality. To improve competitiveness, and to respond to consumer quality demand, muscle structure needs to be evaluated in-line. We present here a polarimetric microwave method (10-24 GHz) consisting in free space and contact reflection coefficient measurements using a horn antenna and rectangular probes, respectively. This method is based on the measurement of dielectric properties of tissues parallel and perpendicular to muscle fibre directions. The dielectric properties of structured tissues such as muscles are anisotropic, but during processing structural disorganization reduces this anisotropy. The method is illustrated by the discrimination of fresh and frozen-thawed fish fillets and by monitoring of meat ageing.

  20. Thin-Film Ferroelectric Tunable Microwave Devices Being Developed

    NASA Technical Reports Server (NTRS)

    VanKeuls, Frederick W.

    1999-01-01

    Electronically tunable microwave components have become the subject of intense research efforts in recent years. Many new communications systems would greatly benefit from these components. For example, planned low Earth orbiting satellite networks have a need for electronically scanned antennas. Thin ferroelectric films are one of the major technologies competing to fill these applications. When a direct-current (dc) voltage is applied to ferroelectric film, the dielectric constant of the film can be decreased by nearly an order of magnitude, changing the high-frequency wavelength in the microwave device. Recent advances in film growth have demonstrated high-quality ferroelectric thin films. This technology may allow microwave devices that have very low power and are compact, lightweight, simple, robust, planar, voltage tunable, and affordable. The NASA Lewis Research Center has been designing, fabricating, and testing proof-of-concept tunable microwave devices. This work, which is being done in-house with funding from the Lewis Director's Discretionary Fund, is focusing on introducing better microwave designs to utilize these materials. We have demonstrated Ku- and K-band phase shifters, tunable local oscillators, tunable filters, and tunable diplexers. Many of our devices employ SrTiO3 as the ferroelectric. Although it is one of the more tunable and easily grown ferroelectrics, SrTiO3 must be used at cryogenic temperatures, usually below 100 K. At these temperatures, we frequently use high-temperature superconducting thin films of YBa2Cu3O7-8 to carry the microwave signals. However, much of our recent work has concentrated on inserting room-temperature ferroelectric thin films, such as BaxSr1- xTiO3 into these devices. The BaxSr1-xTiO3 films are used in conjuction with normal metal conductors, such as gold.