Sample records for uncertainty analysis capabilities

  1. MOUSE (MODULAR ORIENTED UNCERTAINTY SYSTEM): A COMPUTERIZED UNCERTAINTY ANALYSIS SYSTEM (FOR MICRO- COMPUTERS)

    EPA Science Inventory

    Environmental engineering calculations involving uncertainties; either in the model itself or in the data, are far beyond the capabilities of conventional analysis for any but the simplest of models. There exist a number of general-purpose computer simulation languages, using Mon...

  2. A Bayesian Network Based Global Sensitivity Analysis Method for Identifying Dominant Processes in a Multi-physics Model

    NASA Astrophysics Data System (ADS)

    Dai, H.; Chen, X.; Ye, M.; Song, X.; Zachara, J. M.

    2016-12-01

    Sensitivity analysis has been an important tool in groundwater modeling to identify the influential parameters. Among various sensitivity analysis methods, the variance-based global sensitivity analysis has gained popularity for its model independence characteristic and capability of providing accurate sensitivity measurements. However, the conventional variance-based method only considers uncertainty contribution of single model parameters. In this research, we extended the variance-based method to consider more uncertainty sources and developed a new framework to allow flexible combinations of different uncertainty components. We decompose the uncertainty sources into a hierarchical three-layer structure: scenario, model and parametric. Furthermore, each layer of uncertainty source is capable of containing multiple components. An uncertainty and sensitivity analysis framework was then constructed following this three-layer structure using Bayesian network. Different uncertainty components are represented as uncertain nodes in this network. Through the framework, variance-based sensitivity analysis can be implemented with great flexibility of using different grouping strategies for uncertainty components. The variance-based sensitivity analysis thus is improved to be able to investigate the importance of an extended range of uncertainty sources: scenario, model, and other different combinations of uncertainty components which can represent certain key model system processes (e.g., groundwater recharge process, flow reactive transport process). For test and demonstration purposes, the developed methodology was implemented into a test case of real-world groundwater reactive transport modeling with various uncertainty sources. The results demonstrate that the new sensitivity analysis method is able to estimate accurate importance measurements for any uncertainty sources which were formed by different combinations of uncertainty components. The new methodology can provide useful information for environmental management and decision-makers to formulate policies and strategies.

  3. Probabilistic Analysis Techniques Applied to Complex Spacecraft Power System Modeling

    NASA Technical Reports Server (NTRS)

    Hojnicki, Jeffrey S.; Rusick, Jeffrey J.

    2005-01-01

    Electric power system performance predictions are critical to spacecraft, such as the International Space Station (ISS), to ensure that sufficient power is available to support all the spacecraft s power needs. In the case of the ISS power system, analyses to date have been deterministic, meaning that each analysis produces a single-valued result for power capability because of the complexity and large size of the model. As a result, the deterministic ISS analyses did not account for the sensitivity of the power capability to uncertainties in model input variables. Over the last 10 years, the NASA Glenn Research Center has developed advanced, computationally fast, probabilistic analysis techniques and successfully applied them to large (thousands of nodes) complex structural analysis models. These same techniques were recently applied to large, complex ISS power system models. This new application enables probabilistic power analyses that account for input uncertainties and produce results that include variations caused by these uncertainties. Specifically, N&R Engineering, under contract to NASA, integrated these advanced probabilistic techniques with Glenn s internationally recognized ISS power system model, System Power Analysis for Capability Evaluation (SPACE).

  4. Onward through the Fog: Uncertainty and Management Adaptation in Systems Analysis and Design

    DTIC Science & Technology

    1990-07-01

    has fallen into stereotyped problem formulations and analytical ap- proaches. In particular, treatments of uncertainty are typically quite incomplete...and often conceptually wrong. This report argues that these shortcomings produce pervasive systematic biases in analyses. Problem formulations ...capability were lost. The expected number of aircraft that would not be fully mission capable thirty days later was roughly twice the num - ber

  5. Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis version 6.0 theory manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S

    The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components requiredmore » for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a theoretical manual for selected algorithms implemented within the Dakota software. It is not intended as a comprehensive theoretical treatment, since a number of existing texts cover general optimization theory, statistical analysis, and other introductory topics. Rather, this manual is intended to summarize a set of Dakota-related research publications in the areas of surrogate-based optimization, uncertainty quanti cation, and optimization under uncertainty that provide the foundation for many of Dakota's iterative analysis capabilities.« less

  6. Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S.

    The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components requiredmore » for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the Dakota software and provides capability overviews and procedures for software execution, as well as a variety of example studies.« less

  7. Dakota Graphical User Interface v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman-Hill, Ernest; Glickman, Matthew; Gibson, Marcus

    Graphical analysis environment for Sandia’s Dakota software for optimization and uncertainty quantification. The Dakota GUI is an interactive graphical analysis environment for creating, running, and interpreting Dakota optimization and uncertainty quantification studies. It includes problem (Dakota study) set-up, option specification, simulation interfacing, analysis execution, and results visualization. Through the use of wizards, templates, and views, Dakota GUI helps uses navigate Dakota’s complex capability landscape.

  8. Monte Carlo capabilities of the SCALE code system

    DOE PAGES

    Rearden, Bradley T.; Petrie, Jr., Lester M.; Peplow, Douglas E.; ...

    2014-09-12

    SCALE is a broadly used suite of tools for nuclear systems modeling and simulation that provides comprehensive, verified and validated, user-friendly capabilities for criticality safety, reactor physics, radiation shielding, and sensitivity and uncertainty analysis. For more than 30 years, regulators, licensees, and research institutions around the world have used SCALE for nuclear safety analysis and design. SCALE provides a “plug-and-play” framework that includes three deterministic and three Monte Carlo radiation transport solvers that can be selected based on the desired solution, including hybrid deterministic/Monte Carlo simulations. SCALE includes the latest nuclear data libraries for continuous-energy and multigroup radiation transport asmore » well as activation, depletion, and decay calculations. SCALE’s graphical user interfaces assist with accurate system modeling, visualization, and convenient access to desired results. SCALE 6.2 will provide several new capabilities and significant improvements in many existing features, especially with expanded continuous-energy Monte Carlo capabilities for criticality safety, shielding, depletion, and sensitivity and uncertainty analysis. Finally, an overview of the Monte Carlo capabilities of SCALE is provided here, with emphasis on new features for SCALE 6.2.« less

  9. Multi-Scale Validation of a Nanodiamond Drug Delivery System and Multi-Scale Engineering Education

    ERIC Educational Resources Information Center

    Schwalbe, Michelle Kristin

    2010-01-01

    This dissertation has two primary concerns: (i) evaluating the uncertainty and prediction capabilities of a nanodiamond drug delivery model using Bayesian calibration and bias correction, and (ii) determining conceptual difficulties of multi-scale analysis from an engineering education perspective. A Bayesian uncertainty quantification scheme…

  10. Survey of Existing Uncertainty Quantification Capabilities for Army Relevant Problems

    DTIC Science & Technology

    2017-11-27

    ARL-TR-8218•NOV 2017 US Army Research Laboratory Survey of Existing Uncertainty Quantification Capabilities for Army-Relevant Problems by James J...NOV 2017 US Army Research Laboratory Survey of Existing Uncertainty Quantification Capabilities for Army-Relevant Problems by James J Ramsey...Rev. 8/98)    Prescribed by ANSI Std. Z39.18 November 2017 Technical Report Survey of Existing Uncertainty Quantification Capabilities for Army

  11. The ends of uncertainty: Air quality science and planning in Central California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fine, James

    Air quality planning in Central California is complicated and controversial despite millions of dollars invested to improve scientific understanding. This research describes and critiques the use of photochemical air quality simulation modeling studies in planning to attain standards for ground-level ozone in the San Francisco Bay Area and the San Joaquin Valley during the 1990's. Data are gathered through documents and interviews with planners, modelers, and policy-makers at public agencies and with representatives from the regulated and environmental communities. Interactions amongst organizations are diagramed to identify significant nodes of interaction. Dominant policy coalitions are described through narratives distinguished by theirmore » uses of and responses to uncertainty, their exposures to risks, and their responses to the principles of conservatism, civil duty, and caution. Policy narratives are delineated using aggregated respondent statements to describe and understand advocacy coalitions. I found that models impacted the planning process significantly, but were used not purely for their scientific capabilities. Modeling results provided justification for decisions based on other constraints and political considerations. Uncertainties were utilized opportunistically by stakeholders instead of managed explicitly. Ultimately, the process supported the partisan views of those in control of the modeling. Based on these findings, as well as a review of model uncertainty analysis capabilities, I recommend modifying the planning process to allow for the development and incorporation of uncertainty information, while addressing the need for inclusive and meaningful public participation. By documenting an actual air quality planning process these findings provide insights about the potential for using new scientific information and understanding to achieve environmental goals, most notably the analysis of uncertainties in modeling applications. Concurrently, needed uncertainty information is identified and capabilities to produce it are assessed. Practices to facilitate incorporation of uncertainty information are suggested based on research findings, as well as theory from the literatures of the policy sciences, decision sciences, science and technology studies, consensus-based and communicative planning, and modeling.« less

  12. A Conceptual Methodology for Assessing Acquisition Requirements Robustness against Technology Uncertainties

    NASA Astrophysics Data System (ADS)

    Chou, Shuo-Ju

    2011-12-01

    In recent years the United States has shifted from a threat-based acquisition policy that developed systems for countering specific threats to a capabilities-based strategy that emphasizes the acquisition of systems that provide critical national defense capabilities. This shift in policy, in theory, allows for the creation of an "optimal force" that is robust against current and future threats regardless of the tactics and scenario involved. In broad terms, robustness can be defined as the insensitivity of an outcome to "noise" or non-controlled variables. Within this context, the outcome is the successful achievement of defense strategies and the noise variables are tactics and scenarios that will be associated with current and future enemies. Unfortunately, a lack of system capability, budget, and schedule robustness against technology performance and development uncertainties has led to major setbacks in recent acquisition programs. This lack of robustness stems from the fact that immature technologies have uncertainties in their expected performance, development cost, and schedule that cause to variations in system effectiveness and program development budget and schedule requirements. Unfortunately, the Technology Readiness Assessment process currently used by acquisition program managers and decision-makers to measure technology uncertainty during critical program decision junctions does not adequately capture the impact of technology performance and development uncertainty on program capability and development metrics. The Technology Readiness Level metric employed by the TRA to describe program technology elements uncertainties can only provide a qualitative and non-descript estimation of the technology uncertainties. In order to assess program robustness, specifically requirements robustness, against technology performance and development uncertainties, a new process is needed. This process should provide acquisition program managers and decision-makers with the ability to assess or measure the robustness of program requirements against such uncertainties. A literature review of techniques for forecasting technology performance and development uncertainties and subsequent impacts on capability, budget, and schedule requirements resulted in the conclusion that an analysis process that coupled a probabilistic analysis technique such as Monte Carlo Simulations with quantitative and parametric models of technology performance impact and technology development time and cost requirements would allow the probabilities of meeting specific constraints of these requirements to be established. These probabilities of requirements success metrics can then be used as a quantitative and probabilistic measure of program requirements robustness against technology uncertainties. Combined with a Multi-Objective Genetic Algorithm optimization process and computer-based Decision Support System, critical information regarding requirements robustness against technology uncertainties can be captured and quantified for acquisition decision-makers. This results in a more informed and justifiable selection of program technologies during initial program definition as well as formulation of program development and risk management strategies. To meet the stated research objective, the ENhanced TEchnology Robustness Prediction and RISk Evaluation (ENTERPRISE) methodology was formulated to provide a structured and transparent process for integrating these enabling techniques to provide a probabilistic and quantitative assessment of acquisition program requirements robustness against technology performance and development uncertainties. In order to demonstrate the capabilities of the ENTERPRISE method and test the research Hypotheses, an demonstration application of this method was performed on a notional program for acquiring the Carrier-based Suppression of Enemy Air Defenses (SEAD) using Unmanned Combat Aircraft Systems (UCAS) and their enabling technologies. The results of this implementation provided valuable insights regarding the benefits and inner workings of this methodology as well as its limitations that should be addressed in the future to narrow the gap between current state and the desired state.

  13. Complexity associated with the optimisation of capability options in military operations

    NASA Astrophysics Data System (ADS)

    Pincombe, A.; Bender, A.; Allen, G.

    2005-12-01

    In the context of a military operation, even if the intended actions, the geographic location, and the capabilities of the opposition are known, there are still some critical uncertainties that could have a major impact on the effectiveness of a given set of capabilities. These uncertainties include unpredictable events and the response alternatives that are available to the command and control elements of the capability set. They greatly complicate any a priori mathematical description. In a forecasting approach, the most likely future might be chosen and a solution sought that is optimal for that case. With scenario analysis, futures are proposed on the basis of critical uncertainties and the option that is most robust is chosen. We use scenario analysis but our approach is different in that we focus on the complexity and use the coupling between scenarios and options to create information on ideal options. The approach makes use of both soft and hard operations research methods, with subject matter expertise being used to define plausible responses to scenarios. In each scenario, uncertainty affects only a subset of the system-inherent variables and the variables that describe system-environment interactions. It is this scenario-specific reduction of variables that makes the problem mathematically tractable. The process we define is significantly different to existing scenario analysis processes, so we have named it adversarial scenario analysis. It can be used in conjunction with other methods, including recent improvements to the scenario analysis process. To illustrate the approach, we undertake a tactical level scenario analysis for a logistics problem that is defined by a network, expected throughputs to end users, the transport capacity available, the infrastructure at the nodes and the capacities of roads, stocks etc. The throughput capacity, e.g. the effectiveness, of the system relies on all of these variables and on the couplings between them. The system is initially in equilibrium for a given level of demand. However, different, and simpler, solutions emerge as the balance of couplings and the importance of variables change. The scenarios describe such changes in conditions. For each scenario it was possible to define measures that describe the differences between options. As with agent-based distillations, the solution is essentially qualitative and exploratory, bringing awareness of possible future difficulties and of the capabilities that are necessary if we are to deal successfully with those difficulties.

  14. Dispersion analysis for baseline reference mission 2

    NASA Technical Reports Server (NTRS)

    Snow, L. S.

    1975-01-01

    A dispersion analysis considering uncertainties (or perturbations) in platform, vehicle, and environmental parameters was performed for baseline reference mission (BRM) 2. The dispersion analysis is based on the nominal trajectory for BRM 2. The analysis was performed to determine state vector and performance dispersions (or variations) which result from the indicated uncertainties. The dispersions are determined at major mission events and fixed times from liftoff (time slices). The dispersion results will be used to evaluate the capability of the vehicle to perform the mission within a specified level of confidence and to determine flight performance reserves.

  15. IAEA Coordinated Research Project on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strydom, Gerhard; Bostelmann, F.

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal-hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis (SA) and uncertainty analysis (UA) methods. Uncertainty originates from errors in physical data, manufacturing uncertainties, modelling and computational algorithms. (The interested reader is referred to the large body of published SA and UA literature for a more complete overview of the various types of uncertainties, methodologies and results obtained).more » SA is helpful for ranking the various sources of uncertainty and error in the results of core analyses. SA and UA are required to address cost, safety, and licensing needs and should be applied to all aspects of reactor multi-physics simulation. SA and UA can guide experimental, modelling, and algorithm research and development. Current SA and UA rely either on derivative-based methods such as stochastic sampling methods or on generalized perturbation theory to obtain sensitivity coefficients. Neither approach addresses all needs. In order to benefit from recent advances in modelling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Only a parallel effort in advanced simulation and in nuclear data improvement will be able to provide designers with more robust and well validated calculation tools to meet design target accuracies. In February 2009, the Technical Working Group on Gas-Cooled Reactors (TWG-GCR) of the International Atomic Energy Agency (IAEA) recommended that the proposed Coordinated Research Program (CRP) on the HTGR Uncertainty Analysis in Modelling (UAM) be implemented. This CRP is a continuation of the previous IAEA and Organization for Economic Co-operation and Development (OECD)/Nuclear Energy Agency (NEA) international activities on Verification and Validation (V&V) of available analytical capabilities for HTGR simulation for design and safety evaluations. Within the framework of these activities different numerical and experimental benchmark problems were performed and insight was gained about specific physics phenomena and the adequacy of analysis methods.« less

  16. Doppler Global Velocimeter Development for the Large Wind Tunnels at Ames Research Center

    NASA Technical Reports Server (NTRS)

    Reinath, Michael S.

    1997-01-01

    Development of an optical, laser-based flow-field measurement technique for large wind tunnels is described. The technique uses laser sheet illumination and charged coupled device detectors to rapidly measure flow-field velocity distributions over large planar regions of the flow. Sample measurements are presented that illustrate the capability of the technique. An analysis of measurement uncertainty, which focuses on the random component of uncertainty, shows that precision uncertainty is not dependent on the measured velocity magnitude. For a single-image measurement, the analysis predicts a precision uncertainty of +/-5 m/s. When multiple images are averaged, this uncertainty is shown to decrease. For an average of 100 images, for example, the analysis shows that a precision uncertainty of +/-0.5 m/s can be expected. Sample applications show that vectors aligned with an orthogonal coordinate system are difficult to measure directly. An algebraic transformation is presented which converts measured vectors to the desired orthogonal components. Uncertainty propagation is then used to show how the uncertainty propagates from the direct measurements to the orthogonal components. For a typical forward-scatter viewing geometry, the propagation analysis predicts precision uncertainties of +/-4, +/-7, and +/-6 m/s, respectively, for the U, V, and W components at 68% confidence.

  17. Computational Support for Technology- Investment Decisions

    NASA Technical Reports Server (NTRS)

    Adumitroaie, Virgil; Hua, Hook; Lincoln, William; Block, Gary; Mrozinski, Joseph; Shelton, Kacie; Weisbin, Charles; Elfes, Alberto; Smith, Jeffrey

    2007-01-01

    Strategic Assessment of Risk and Technology (START) is a user-friendly computer program that assists human managers in making decisions regarding research-and-development investment portfolios in the presence of uncertainties and of non-technological constraints that include budgetary and time limits, restrictions related to infrastructure, and programmatic and institutional priorities. START facilitates quantitative analysis of technologies, capabilities, missions, scenarios and programs, and thereby enables the selection and scheduling of value-optimal development efforts. START incorporates features that, variously, perform or support a unique combination of functions, most of which are not systematically performed or supported by prior decision- support software. These functions include the following: Optimal portfolio selection using an expected-utility-based assessment of capabilities and technologies; Temporal investment recommendations; Distinctions between enhancing and enabling capabilities; Analysis of partial funding for enhancing capabilities; and Sensitivity and uncertainty analysis. START can run on almost any computing hardware, within Linux and related operating systems that include Mac OS X versions 10.3 and later, and can run in Windows under the Cygwin environment. START can be distributed in binary code form. START calls, as external libraries, several open-source software packages. Output is in Excel (.xls) file format.

  18. Self-Aware Vehicles: Mission and Performance Adaptation to System Health

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Leonard, Charles; Scotti, Stephen J.

    2016-01-01

    Advances in sensing (miniaturization, distributed sensor networks) combined with improvements in computational power leading to significant gains in perception, real-time decision making/reasoning and dynamic planning under uncertainty as well as big data predictive analysis have set the stage for realization of autonomous system capability. These advances open the design and operating space for self-aware vehicles that are able to assess their own capabilities and adjust their behavior to either complete the assigned mission or to modify the mission to reflect their current capabilities. This paper discusses the self-aware vehicle concept and associated technologies necessary for full exploitation of the concept. A self-aware aircraft, spacecraft or system is one that is aware of its internal state, has situational awareness of its environment, can assess its capabilities currently and project them into the future, understands its mission objectives, and can make decisions under uncertainty regarding its ability to achieve its mission objectives.

  19. Development of a versatile user-friendly IBA experimental chamber

    NASA Astrophysics Data System (ADS)

    Kakuee, Omidreza; Fathollahi, Vahid; Lamehi-Rachti, Mohammad

    2016-03-01

    Reliable performance of the Ion Beam Analysis (IBA) techniques is based on the accurate geometry of the experimental setup, employment of the reliable nuclear data and implementation of dedicated analysis software for each of the IBA techniques. It has already been shown that geometrical imperfections lead to significant uncertainties in quantifications of IBA measurements. To minimize these uncertainties, a user-friendly experimental chamber with a heuristic sample positioning system for IBA analysis was recently developed in the Van de Graaff laboratory in Tehran. This system enhances IBA capabilities and in particular Nuclear Reaction Analysis (NRA) and Elastic Recoil Detection Analysis (ERDA) techniques. The newly developed sample manipulator provides the possibility of both controlling the tilt angle of the sample and analyzing samples with different thicknesses. Moreover, a reasonable number of samples can be loaded in the sample wheel. A comparison of the measured cross section data of the 16O(d,p1)17O reaction with the data reported in the literature confirms the performance and capability of the newly developed experimental chamber.

  20. Active subspace uncertainty quantification for a polydomain ferroelectric phase-field model

    NASA Astrophysics Data System (ADS)

    Leon, Lider S.; Smith, Ralph C.; Miles, Paul; Oates, William S.

    2018-03-01

    Quantum-informed ferroelectric phase field models capable of predicting material behavior, are necessary for facilitating the development and production of many adaptive structures and intelligent systems. Uncertainty is present in these models, given the quantum scale at which calculations take place. A necessary analysis is to determine how the uncertainty in the response can be attributed to the uncertainty in the model inputs or parameters. A second analysis is to identify active subspaces within the original parameter space, which quantify directions in which the model response varies most dominantly, thus reducing sampling effort and computational cost. In this investigation, we identify an active subspace for a poly-domain ferroelectric phase-field model. Using the active variables as our independent variables, we then construct a surrogate model and perform Bayesian inference. Once we quantify the uncertainties in the active variables, we obtain uncertainties for the original parameters via an inverse mapping. The analysis provides insight into how active subspace methodologies can be used to reduce computational power needed to perform Bayesian inference on model parameters informed by experimental or simulated data.

  1. Representation of Probability Density Functions from Orbit Determination using the Particle Filter

    NASA Technical Reports Server (NTRS)

    Mashiku, Alinda K.; Garrison, James; Carpenter, J. Russell

    2012-01-01

    Statistical orbit determination enables us to obtain estimates of the state and the statistical information of its region of uncertainty. In order to obtain an accurate representation of the probability density function (PDF) that incorporates higher order statistical information, we propose the use of nonlinear estimation methods such as the Particle Filter. The Particle Filter (PF) is capable of providing a PDF representation of the state estimates whose accuracy is dependent on the number of particles or samples used. For this method to be applicable to real case scenarios, we need a way of accurately representing the PDF in a compressed manner with little information loss. Hence we propose using the Independent Component Analysis (ICA) as a non-Gaussian dimensional reduction method that is capable of maintaining higher order statistical information obtained using the PF. Methods such as the Principal Component Analysis (PCA) are based on utilizing up to second order statistics, hence will not suffice in maintaining maximum information content. Both the PCA and the ICA are applied to two scenarios that involve a highly eccentric orbit with a lower apriori uncertainty covariance and a less eccentric orbit with a higher a priori uncertainty covariance, to illustrate the capability of the ICA in relation to the PCA.

  2. Using the MCNP Taylor series perturbation feature (efficiently) for shielding problems

    NASA Astrophysics Data System (ADS)

    Favorite, Jeffrey

    2017-09-01

    The Taylor series or differential operator perturbation method, implemented in MCNP and invoked using the PERT card, can be used for efficient parameter studies in shielding problems. This paper shows how only two PERT cards are needed to generate an entire parameter study, including statistical uncertainty estimates (an additional three PERT cards can be used to give exact statistical uncertainties). One realistic example problem involves a detailed helium-3 neutron detector model and its efficiency as a function of the density of its high-density polyethylene moderator. The MCNP differential operator perturbation capability is extremely accurate for this problem. A second problem involves the density of the polyethylene reflector of the BeRP ball and is an example of first-order sensitivity analysis using the PERT capability. A third problem is an analytic verification of the PERT capability.

  3. Ramping and Uncertainty Prediction Tool - Analysis and Visualization of Wind Generation Impact on Electrical Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Etingov, Pavel; Makarov, PNNL Yuri; Subbarao, PNNL Kris

    RUT software is designed for use by the Balancing Authorities to predict and display additional requirements caused by the variability and uncertainty in load and generation. The prediction is made for the next operating hours as well as for the next day. The tool predicts possible deficiencies in generation capability and ramping capability. This deficiency of balancing resources can cause serious risks to power system stability and also impact real-time market energy prices. The tool dynamically and adaptively correlates changing system conditions with the additional balancing needs triggered by the interplay between forecasted and actual load and output of variablemore » resources. The assessment is performed using a specially developed probabilistic algorithm incorporating multiple sources of uncertainty including wind, solar and load forecast errors. The tool evaluates required generation for a worst case scenario, with a user-specified confidence level.« less

  4. Adaptive neural network motion control for aircraft under uncertainty conditions

    NASA Astrophysics Data System (ADS)

    Efremov, A. V.; Tiaglik, M. S.; Tiumentsev, Yu V.

    2018-02-01

    We need to provide motion control of modern and advanced aircraft under diverse uncertainty conditions. This problem can be solved by using adaptive control laws. We carry out an analysis of the capabilities of these laws for such adaptive systems as MRAC (Model Reference Adaptive Control) and MPC (Model Predictive Control). In the case of a nonlinear control object, the most efficient solution to the adaptive control problem is the use of neural network technologies. These technologies are suitable for the development of both a control object model and a control law for the object. The approximate nature of the ANN model was taken into account by introducing additional compensating feedback into the control system. The capabilities of adaptive control laws under uncertainty in the source data are considered. We also conduct simulations to assess the contribution of adaptivity to the behavior of the system.

  5. Decision Support Methods and Tools

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.; Alexandrov, Natalia M.; Brown, Sherilyn A.; Cerro, Jeffrey A.; Gumbert, Clyde r.; Sorokach, Michael R.; Burg, Cecile M.

    2006-01-01

    This paper is one of a set of papers, developed simultaneously and presented within a single conference session, that are intended to highlight systems analysis and design capabilities within the Systems Analysis and Concepts Directorate (SACD) of the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC). This paper focuses on the specific capabilities of uncertainty/risk analysis, quantification, propagation, decomposition, and management, robust/reliability design methods, and extensions of these capabilities into decision analysis methods within SACD. These disciplines are discussed together herein under the name of Decision Support Methods and Tools. Several examples are discussed which highlight the application of these methods within current or recent aerospace research at the NASA LaRC. Where applicable, commercially available, or government developed software tools are also discussed

  6. CASL L1 Milestone report : CASL.P4.01, sensitivity and uncertainty analysis for CIPS with VIPRE-W and BOA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Yixing; Adams, Brian M.; Secker, Jeffrey R.

    2011-12-01

    The CASL Level 1 Milestone CASL.P4.01, successfully completed in December 2011, aimed to 'conduct, using methodologies integrated into VERA, a detailed sensitivity analysis and uncertainty quantification of a crud-relevant problem with baseline VERA capabilities (ANC/VIPRE-W/BOA).' The VUQ focus area led this effort, in partnership with AMA, and with support from VRI. DAKOTA was coupled to existing VIPRE-W thermal-hydraulics and BOA crud/boron deposit simulations representing a pressurized water reactor (PWR) that previously experienced crud-induced power shift (CIPS). This work supports understanding of CIPS by exploring the sensitivity and uncertainty in BOA outputs with respect to uncertain operating and model parameters. Thismore » report summarizes work coupling the software tools, characterizing uncertainties, and analyzing the results of iterative sensitivity and uncertainty studies. These studies focused on sensitivity and uncertainty of CIPS indicators calculated by the current version of the BOA code used in the industry. Challenges with this kind of analysis are identified to inform follow-on research goals and VERA development targeting crud-related challenge problems.« less

  7. A Generalized Perturbation Theory Solver In Rattlesnake Based On PETSc With Application To TREAT Steady State Uncertainty Quantification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schunert, Sebastian; Wang, Congjian; Wang, Yaqi

    Rattlesnake and MAMMOTH are the designated TREAT analysis tools currently being developed at the Idaho National Laboratory. Concurrent with development of the multi-physics, multi-scale capabilities, sensitivity analysis and uncertainty quantification (SA/UQ) capabilities are required for predicitive modeling of the TREAT reactor. For steady-state SA/UQ, that is essential for setting initial conditions for the transients, generalized perturbation theory (GPT) will be used. This work describes the implementation of a PETSc based solver for the generalized adjoint equations that constitute a inhomogeneous, rank deficient problem. The standard approach is to use an outer iteration strategy with repeated removal of the fundamental modemore » contamination. The described GPT algorithm directly solves the GPT equations without the need of an outer iteration procedure by using Krylov subspaces that are orthogonal to the operator’s nullspace. Three test problems are solved and provide sufficient verification for the Rattlesnake’s GPT capability. We conclude with a preliminary example evaluating the impact of the Boron distribution in the TREAT reactor using perturbation theory.« less

  8. Adjoint-Based Sensitivity and Uncertainty Analysis for Density and Composition: A User’s Guide

    DOE PAGES

    Favorite, Jeffrey A.; Perko, Zoltan; Kiedrowski, Brian C.; ...

    2017-03-01

    The ability to perform sensitivity analyses using adjoint-based first-order sensitivity theory has existed for decades. This paper provides guidance on how adjoint sensitivity methods can be used to predict the effect of material density and composition uncertainties in critical experiments, including when these uncertain parameters are correlated or constrained. Two widely used Monte Carlo codes, MCNP6 (Ref. 2) and SCALE 6.2 (Ref. 3), are both capable of computing isotopic density sensitivities in continuous energy and angle. Additionally, Perkó et al. have shown how individual isotope density sensitivities, easily computed using adjoint methods, can be combined to compute constrained first-order sensitivitiesmore » that may be used in the uncertainty analysis. This paper provides details on how the codes are used to compute first-order sensitivities and how the sensitivities are used in an uncertainty analysis. Constrained first-order sensitivities are computed in a simple example problem.« less

  9. Frequency analysis of uncertain structures using imprecise probability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modares, Mehdi; Bergerson, Joshua

    2015-01-01

    Two new methods for finite element based frequency analysis of a structure with uncertainty are developed. An imprecise probability formulation based on enveloping p-boxes is used to quantify the uncertainty present in the mechanical characteristics of the structure. For each element, independent variations are considered. Using the two developed methods, P-box Frequency Analysis (PFA) and Interval Monte-Carlo Frequency Analysis (IMFA), sharp bounds on natural circular frequencies at different probability levels are obtained. These methods establish a framework for handling incomplete information in structural dynamics. Numerical example problems are presented that illustrate the capabilities of the new methods along with discussionsmore » on their computational efficiency.« less

  10. SCALE 6.2 Continuous-Energy TSUNAMI-3D Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perfetti, Christopher M; Rearden, Bradley T

    2015-01-01

    The TSUNAMI (Tools for Sensitivity and UNcertainty Analysis Methodology Implementation) capabilities within the SCALE code system make use of sensitivity coefficients for an extensive number of criticality safety applications, such as quantifying the data-induced uncertainty in the eigenvalue of critical systems, assessing the neutronic similarity between different systems, quantifying computational biases, and guiding nuclear data adjustment studies. The need to model geometrically complex systems with improved ease of use and fidelity and the desire to extend TSUNAMI analysis to advanced applications have motivated the development of a SCALE 6.2 module for calculating sensitivity coefficients using three-dimensional (3D) continuous-energy (CE) Montemore » Carlo methods: CE TSUNAMI-3D. This paper provides an overview of the theory, implementation, and capabilities of the CE TSUNAMI-3D sensitivity analysis methods. CE TSUNAMI contains two methods for calculating sensitivity coefficients in eigenvalue sensitivity applications: (1) the Iterated Fission Probability (IFP) method and (2) the Contributon-Linked eigenvalue sensitivity/Uncertainty estimation via Track length importance CHaracterization (CLUTCH) method. This work also presents the GEneralized Adjoint Response in Monte Carlo method (GEAR-MC), a first-of-its-kind approach for calculating adjoint-weighted, generalized response sensitivity coefficients—such as flux responses or reaction rate ratios—in CE Monte Carlo applications. The accuracy and efficiency of the CE TSUNAMI-3D eigenvalue sensitivity methods are assessed from a user perspective in a companion publication, and the accuracy and features of the CE TSUNAMI-3D GEAR-MC methods are detailed in this paper.« less

  11. A computer program for uncertainty analysis integrating regression and Bayesian methods

    USGS Publications Warehouse

    Lu, Dan; Ye, Ming; Hill, Mary C.; Poeter, Eileen P.; Curtis, Gary

    2014-01-01

    This work develops a new functionality in UCODE_2014 to evaluate Bayesian credible intervals using the Markov Chain Monte Carlo (MCMC) method. The MCMC capability in UCODE_2014 is based on the FORTRAN version of the differential evolution adaptive Metropolis (DREAM) algorithm of Vrugt et al. (2009), which estimates the posterior probability density function of model parameters in high-dimensional and multimodal sampling problems. The UCODE MCMC capability provides eleven prior probability distributions and three ways to initialize the sampling process. It evaluates parametric and predictive uncertainties and it has parallel computing capability based on multiple chains to accelerate the sampling process. This paper tests and demonstrates the MCMC capability using a 10-dimensional multimodal mathematical function, a 100-dimensional Gaussian function, and a groundwater reactive transport model. The use of the MCMC capability is made straightforward and flexible by adopting the JUPITER API protocol. With the new MCMC capability, UCODE_2014 can be used to calculate three types of uncertainty intervals, which all can account for prior information: (1) linear confidence intervals which require linearity and Gaussian error assumptions and typically 10s–100s of highly parallelizable model runs after optimization, (2) nonlinear confidence intervals which require a smooth objective function surface and Gaussian observation error assumptions and typically 100s–1,000s of partially parallelizable model runs after optimization, and (3) MCMC Bayesian credible intervals which require few assumptions and commonly 10,000s–100,000s or more partially parallelizable model runs. Ready access allows users to select methods best suited to their work, and to compare methods in many circumstances.

  12. New features and improved uncertainty analysis in the NEA nuclear data sensitivity tool (NDaST)

    NASA Astrophysics Data System (ADS)

    Dyrda, J.; Soppera, N.; Hill, I.; Bossant, M.; Gulliford, J.

    2017-09-01

    Following the release and initial testing period of the NEA's Nuclear Data Sensitivity Tool [1], new features have been designed and implemented in order to expand its uncertainty analysis capabilities. The aim is to provide a free online tool for integral benchmark testing, that is both efficient and comprehensive, meeting the needs of the nuclear data and benchmark testing communities. New features include access to P1 sensitivities for neutron scattering angular distribution [2] and constrained Chi sensitivities for the prompt fission neutron energy sampling. Both of these are compatible with covariance data accessed via the JANIS nuclear data software, enabling propagation of the resultant uncertainties in keff to a large series of integral experiment benchmarks. These capabilities are available using a number of different covariance libraries e.g., ENDF/B, JEFF, JENDL and TENDL, allowing comparison of the broad range of results it is possible to obtain. The IRPhE database of reactor physics measurements is now also accessible within the tool in addition to the criticality benchmarks from ICSBEP. Other improvements include the ability to determine and visualise the energy dependence of a given calculated result in order to better identify specific regions of importance or high uncertainty contribution. Sorting and statistical analysis of the selected benchmark suite is now also provided. Examples of the plots generated by the software are included to illustrate such capabilities. Finally, a number of analytical expressions, for example Maxwellian and Watt fission spectra will be included. This will allow the analyst to determine the impact of varying such distributions within the data evaluation, either through adjustment of parameters within the expressions, or by comparison to a more general probability distribution fitted to measured data. The impact of such changes is verified through calculations which are compared to a `direct' measurement found by adjustment of the original ENDF format file.

  13. Automating calibration, sensitivity and uncertainty analysis of complex models using the R package Flexible Modeling Environment (FME): SWAT as an example

    USGS Publications Warehouse

    Wu, Y.; Liu, S.

    2012-01-01

    Parameter optimization and uncertainty issues are a great challenge for the application of large environmental models like the Soil and Water Assessment Tool (SWAT), which is a physically-based hydrological model for simulating water and nutrient cycles at the watershed scale. In this study, we present a comprehensive modeling environment for SWAT, including automated calibration, and sensitivity and uncertainty analysis capabilities through integration with the R package Flexible Modeling Environment (FME). To address challenges (e.g., calling the model in R and transferring variables between Fortran and R) in developing such a two-language coupling framework, 1) we converted the Fortran-based SWAT model to an R function (R-SWAT) using the RFortran platform, and alternatively 2) we compiled SWAT as a Dynamic Link Library (DLL). We then wrapped SWAT (via R-SWAT) with FME to perform complex applications including parameter identifiability, inverse modeling, and sensitivity and uncertainty analysis in the R environment. The final R-SWAT-FME framework has the following key functionalities: automatic initialization of R, running Fortran-based SWAT and R commands in parallel, transferring parameters and model output between SWAT and R, and inverse modeling with visualization. To examine this framework and demonstrate how it works, a case study simulating streamflow in the Cedar River Basin in Iowa in the United Sates was used, and we compared it with the built-in auto-calibration tool of SWAT in parameter optimization. Results indicate that both methods performed well and similarly in searching a set of optimal parameters. Nonetheless, the R-SWAT-FME is more attractive due to its instant visualization, and potential to take advantage of other R packages (e.g., inverse modeling and statistical graphics). The methods presented in the paper are readily adaptable to other model applications that require capability for automated calibration, and sensitivity and uncertainty analysis.

  14. Analysis of ISO NE Balancing Requirements: Uncertainty-based Secure Ranges for ISO New England Dynamic Inerchange Adjustments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Etingov, Pavel V.; Makarov, Yuri V.; Wu, Di

    The document describes detailed uncertainty quantification (UQ) methodology developed by PNNL to estimate secure ranges of potential dynamic intra-hour interchange adjustments in the ISO-NE system and provides description of the dynamic interchange adjustment (DINA) tool developed under the same contract. The overall system ramping up and down capability, spinning reserve requirements, interchange schedules, load variations and uncertainties from various sources that are relevant to the ISO-NE system are incorporated into the methodology and the tool. The DINA tool has been tested by PNNL and ISO-NE staff engineers using ISO-NE data.

  15. Study of aerodynamic technology for single-cruise-engine VSTOL fighter/attack aircraft, phase 1

    NASA Technical Reports Server (NTRS)

    Foley, W. H.; Sheridan, A. E.; Smith, C. W.

    1982-01-01

    A conceptual design and analysis on a single engine VSTOL fighter/attack aircraft is completed. The aircraft combines a NASA/deHavilland ejector with vectored thrust and is capable of accomplishing the mission and point performance of type Specification 169, and a flight demonstrator could be built with an existing F101/DFE engine. The aerodynamic, aero/propulsive, and propulsive uncertainties are identified, and a wind tunnel program is proposed to address those uncertainties associated with wing borne flight.

  16. International comparison CCQM-K111.1—propane in nitrogen

    NASA Astrophysics Data System (ADS)

    van der Veen, Adriaan M. H.; Wouter van der Hout, J.; Ziel, Paul R.; Jozela, Mudalo; Tshilongo, James; Ntsasa, Napo G.; Botha, Angelique

    2017-01-01

    This key comparison aims to assess the core capabilities of the participants in gas analysis. Such competences include, among others, the capability of preparing Primary Standard gas Mixtures (PSMs), performing the necessary purity analysis on the materials used in the gas mixture preparation, the verification of the composition of newly prepared PSMs against existing ones, and the capability of calibrating the composition of a gas mixture. According to the Strategy for Key Comparisons of the Gas Analysis Working Group, this subsequent key comparison is classified as a track B key comparison, which means that the results of this key comparison can be used to underpin calibration and measurement capabilities for propane under the default scheme. The artefact was a binary mixture of propane in nitrogen at a nominal amount-of-substance fraction level of 1000 μmol/mol. The values and uncertainties from the gravimetric gas mixture preparation were used as key comparison reference values (KCRVs). Each transfer standard had its own KCRV. The result of the participating laboratory is consistent with the key comparison reference value within the respective expanded uncertainties and deviates less than 0.1 %. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  17. SCALE Code System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessee, Matthew Anderson

    The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministicmore » and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.SCALE 6.2 provides many new capabilities and significant improvements of existing features.New capabilities include:• ENDF/B-VII.1 nuclear data libraries CE and MG with enhanced group structures,• Neutron covariance data based on ENDF/B-VII.1 and supplemented with ORNL data,• Covariance data for fission product yields and decay constants,• Stochastic uncertainty and correlation quantification for any SCALE sequence with Sampler,• Parallel calculations with KENO,• Problem-dependent temperature corrections for CE calculations,• CE shielding and criticality accident alarm system analysis with MAVRIC,• CE depletion with TRITON (T5-DEPL/T6-DEPL),• CE sensitivity/uncertainty analysis with TSUNAMI-3D,• Simplified and efficient LWR lattice physics with Polaris,• Large scale detailed spent fuel characterization with ORIGAMI and ORIGAMI Automator,• Advanced fission source convergence acceleration capabilities with Sourcerer,• Nuclear data library generation with AMPX, and• Integrated user interface with Fulcrum.Enhanced capabilities include:• Accurate and efficient CE Monte Carlo methods for eigenvalue and fixed source calculations,• Improved MG resonance self-shielding methodologies and data,• Resonance self-shielding with modernized and efficient XSProc integrated into most sequences,• Accelerated calculations with TRITON/NEWT (generally 4x faster than SCALE 6.1),• Spent fuel characterization with 1470 new reactor-specific libraries for ORIGEN,• Modernization of ORIGEN (Chebyshev Rational Approximation Method [CRAM] solver, API for high-performance depletion, new keyword input format)• Extension of the maximum mixture number to values well beyond the previous limit of 2147 to ~2 billion,• Nuclear data formats enabling the use of more than 999 energy groups,• Updated standard composition library to provide more accurate use of natural abundances, andvi• Numerous other enhancements for improved usability and stability.« less

  18. iTOUGH2 v7.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FINSTERLE, STEFAN; JUNG, YOOJIN; KOWALSKY, MICHAEL

    2016-09-15

    iTOUGH2 (inverse TOUGH2) provides inverse modeling capabilities for TOUGH2, a simulator for multi-dimensional, multi-phase, multi-component, non-isothermal flow and transport in fractured porous media. iTOUGH2 performs sensitivity analyses, data-worth analyses, parameter estimation, and uncertainty propagation analyses in geosciences and reservoir engineering and other application areas. iTOUGH2 supports a number of different combinations of fluids and components (equation-of-state (EOS) modules). In addition, the optimization routines implemented in iTOUGH2 can also be used for sensitivity analysis, automatic model calibration, and uncertainty quantification of any external code that uses text-based input and output files using the PEST protocol. iTOUGH2 solves the inverse problem bymore » minimizing a non-linear objective function of the weighted differences between model output and the corresponding observations. Multiple minimization algorithms (derivative-free, gradient-based, and second-order; local and global) are available. iTOUGH2 also performs Latin Hypercube Monte Carlo simulations for uncertainty propagation analyses. A detailed residual and error analysis is provided. This upgrade includes (a) global sensitivity analysis methods, (b) dynamic memory allocation (c) additional input features and output analyses, (d) increased forward simulation capabilities, (e) parallel execution on multicore PCs and Linux clusters, and (f) bug fixes. More details can be found at http://esd.lbl.gov/iTOUGH2.« less

  19. Development of a Risk-Based Comparison Methodology of Carbon Capture Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, David W.; Dalton, Angela C.; Dale, Crystal

    2014-06-01

    Given the varying degrees of maturity among existing carbon capture (CC) technology alternatives, an understanding of the inherent technical and financial risk and uncertainty associated with these competing technologies is requisite to the success of carbon capture as a viable solution to the greenhouse gas emission challenge. The availability of tools and capabilities to conduct rigorous, risk–based technology comparisons is thus highly desirable for directing valuable resources toward the technology option(s) with a high return on investment, superior carbon capture performance, and minimum risk. To address this research need, we introduce a novel risk-based technology comparison method supported by anmore » integrated multi-domain risk model set to estimate risks related to technological maturity, technical performance, and profitability. Through a comparison between solid sorbent and liquid solvent systems, we illustrate the feasibility of estimating risk and quantifying uncertainty in a single domain (modular analytical capability) as well as across multiple risk dimensions (coupled analytical capability) for comparison. This method brings technological maturity and performance to bear on profitability projections, and carries risk and uncertainty modeling across domains via inter-model sharing of parameters, distributions, and input/output. The integration of the models facilitates multidimensional technology comparisons within a common probabilistic risk analysis framework. This approach and model set can equip potential technology adopters with the necessary computational capabilities to make risk-informed decisions about CC technology investment. The method and modeling effort can also be extended to other industries where robust tools and analytical capabilities are currently lacking for evaluating nascent technologies.« less

  20. ROMUSE 2.0 User Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khuwaileh, Bassam; Turinsky, Paul; Williams, Brian J.

    2016-10-04

    ROMUSE (Reduced Order Modeling Based Uncertainty/Sensitivity Estimator) is an effort within the Consortium for Advanced Simulation of Light water reactors (CASL) to provide an analysis tool to be used in conjunction with reactor core simulators, especially the Virtual Environment for Reactor Applications (VERA). ROMUSE is written in C++ and is currently capable of performing various types of parameters perturbations, uncertainty quantification, surrogate models construction and subspace analysis. Version 2.0 has the capability to interface with DAKOTA which gives ROMUSE access to the various algorithms implemented within DAKOTA. ROMUSE is mainly designed to interface with VERA and the Comprehensive Modeling andmore » Simulation Suite for Nuclear Safety Analysis and Design (SCALE) [1,2,3], however, ROMUSE can interface with any general model (e.g. python and matlab) with Input/Output (I/O) format that follows the Hierarchical Data Format 5 (HDF5). In this brief user manual, the use of ROMUSE will be overviewed and example problems will be presented and briefly discussed. The algorithms provided here range from algorithms inspired by those discussed in Ref.[4] to nuclear-specific algorithms discussed in Ref. [3].« less

  1. Optimized production planning model for a multi-plant cultivation system under uncertainty

    NASA Astrophysics Data System (ADS)

    Ke, Shunkui; Guo, Doudou; Niu, Qingliang; Huang, Danfeng

    2015-02-01

    An inexact multi-constraint programming model under uncertainty was developed by incorporating a production plan algorithm into the crop production optimization framework under the multi-plant collaborative cultivation system. In the production plan, orders from the customers are assigned to a suitable plant under the constraints of plant capabilities and uncertainty parameters to maximize profit and achieve customer satisfaction. The developed model and solution method were applied to a case study of a multi-plant collaborative cultivation system to verify its applicability. As determined in the case analysis involving different orders from customers, the period of plant production planning and the interval between orders can significantly affect system benefits. Through the analysis of uncertain parameters, reliable and practical decisions can be generated using the suggested model of a multi-plant collaborative cultivation system.

  2. Dispersion analysis for baseline reference mission 1. [flight simulation and trajectory analysis for space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Kuhn, A. E.

    1975-01-01

    A dispersion analysis considering 3 sigma uncertainties (or perturbations) in platform, vehicle, and environmental parameters was performed for the baseline reference mission (BRM) 1 of the space shuttle orbiter. The dispersion analysis is based on the nominal trajectory for the BRM 1. State vector and performance dispersions (or variations) which result from the indicated 3 sigma uncertainties were studied. The dispersions were determined at major mission events and fixed times from lift-off (time slices) and the results will be used to evaluate the capability of the vehicle to perform the mission within a 3 sigma level of confidence and to determine flight performance reserves. A computer program is given that was used for dynamic flight simulations of the space shuttle orbiter.

  3. Satellite Re-entry Modeling and Uncertainty Quantification

    NASA Astrophysics Data System (ADS)

    Horsley, M.

    2012-09-01

    LEO trajectory modeling is a fundamental aerospace capability and has applications in many areas of aerospace, such as maneuver planning, sensor scheduling, re-entry prediction, collision avoidance, risk analysis, and formation flying. Somewhat surprisingly, modeling the trajectory of an object in low Earth orbit is still a challenging task. This is primarily due to the large uncertainty in the upper atmospheric density, about 15-20% (1-sigma) for most thermosphere models. Other contributions come from our inability to precisely model future solar and geomagnetic activities, the potentially unknown shape, material construction and attitude history of the satellite, and intermittent, noisy tracking data. Current methods to predict a satellite's re-entry trajectory typically involve making a single prediction, with the uncertainty dealt with in an ad-hoc manner, usually based on past experience. However, due to the extreme speed of a LEO satellite, even small uncertainties in the re-entry time translate into a very large uncertainty in the location of the re-entry event. Currently, most methods simply update the re-entry estimate on a regular basis. This results in a wide range of estimates that are literally spread over the entire globe. With no understanding of the underlying distribution of potential impact points, the sequence of impact points predicted by the current methodology are largely useless until just a few hours before re-entry. This paper will discuss the development of a set of the High Performance Computing (HPC)-based capabilities to support near real-time quantification of the uncertainty inherent in uncontrolled satellite re-entries. An appropriate management of the uncertainties is essential for a rigorous treatment of the re-entry/LEO trajectory problem. The development of HPC-based tools for re-entry analysis is important as it will allow a rigorous and robust approach to risk assessment by decision makers in an operational setting. Uncertainty quantification results from the recent uncontrolled re-entry of the Phobos-Grunt satellite will be presented and discussed. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Sensitivity analysis and uncertainty estimation in ash concentration simulations and tephra deposit daily forecasted at Mt. Etna, in Italy

    NASA Astrophysics Data System (ADS)

    Prestifilippo, Michele; Scollo, Simona; Tarantola, Stefano

    2015-04-01

    The uncertainty in volcanic ash forecasts may depend on our knowledge of the model input parameters and our capability to represent the dynamic of an incoming eruption. Forecasts help governments to reduce risks associated with volcanic eruptions and for this reason different kinds of analysis that help to understand the effect that each input parameter has on model outputs are necessary. We present an iterative approach based on the sequential combination of sensitivity analysis, parameter estimation procedure and Monte Carlo-based uncertainty analysis, applied to the lagrangian volcanic ash dispersal model PUFF. We modify the main input parameters as the total mass, the total grain-size distribution, the plume thickness, the shape of the eruption column, the sedimentation models and the diffusion coefficient, perform thousands of simulations and analyze the results. The study is carried out on two different Etna scenarios: the sub-plinian eruption of 22 July 1998 that formed an eruption column rising 12 km above sea level and lasted some minutes and the lava fountain eruption having features similar to the 2011-2013 events that produced eruption column high up to several kilometers above sea level and lasted some hours. Sensitivity analyses and uncertainty estimation results help us to address the measurements that volcanologists should perform during volcanic crisis to reduce the model uncertainty.

  5. Aeras: A next generation global atmosphere model

    DOE PAGES

    Spotz, William F.; Smith, Thomas M.; Demeshko, Irina P.; ...

    2015-06-01

    Sandia National Laboratories is developing a new global atmosphere model named Aeras that is performance portable and supports the quantification of uncertainties. These next-generation capabilities are enabled by building Aeras on top of Albany, a code base that supports the rapid development of scientific application codes while leveraging Sandia's foundational mathematics and computer science packages in Trilinos and Dakota. Embedded uncertainty quantification (UQ) is an original design capability of Albany, and performance portability is a recent upgrade. Other required features, such as shell-type elements, spectral elements, efficient explicit and semi-implicit time-stepping, transient sensitivity analysis, and concurrent ensembles, were not componentsmore » of Albany as the project began, and have been (or are being) added by the Aeras team. We present early UQ and performance portability results for the shallow water equations.« less

  6. On the post mitigation impact risk assessment of possible targets for an asteroid deflection demonstration mission in the NEOShield project.

    NASA Astrophysics Data System (ADS)

    Eggl, Siegfried

    2014-05-01

    Mankind believes to have the capabilities to avert potentially disastrous asteroid impacts. Yet, only the realization of a mitigation demonstration mission can confirm such a claim. The NEOShield project, an international collaboration under European leadership, aims to draw a comprehensive picture of the scientific as well as technical requirements to such an endeavor. One of the top priorities of such a demonstration mission is, of course, that a previously harmless target asteroid shall not be turned into a potentially hazardous object. Given the inherently large uncertainties in an asteroid's physical parameters, as well as the additional uncertainties introduced during the deflection attempt, an in depth analysis of the change in asteroid impact probabilities after a deflection event becomes necessary. We present a post mitigation impact risk analysis of a list of potential deflection test missions and discuss the influence of orbital, physical and mitigation induced uncertainties.

  7. Benchmarking hydrological model predictive capability for UK River flows and flood peaks.

    NASA Astrophysics Data System (ADS)

    Lane, Rosanna; Coxon, Gemma; Freer, Jim; Wagener, Thorsten

    2017-04-01

    Data and hydrological models are now available for national hydrological analyses. However, hydrological model performance varies between catchments, and lumped, conceptual models are not able to produce adequate simulations everywhere. This study aims to benchmark hydrological model performance for catchments across the United Kingdom within an uncertainty analysis framework. We have applied four hydrological models from the FUSE framework to 1128 catchments across the UK. These models are all lumped models and run at a daily timestep, but differ in the model structural architecture and process parameterisations, therefore producing different but equally plausible simulations. We apply FUSE over a 20 year period from 1988-2008, within a GLUE Monte Carlo uncertainty analyses framework. Model performance was evaluated for each catchment, model structure and parameter set using standard performance metrics. These were calculated both for the whole time series and to assess seasonal differences in model performance. The GLUE uncertainty analysis framework was then applied to produce simulated 5th and 95th percentile uncertainty bounds for the daily flow time-series and additionally the annual maximum prediction bounds for each catchment. The results show that the model performance varies significantly in space and time depending on catchment characteristics including climate, geology and human impact. We identify regions where models are systematically failing to produce good results, and present reasons why this could be the case. We also identify regions or catchment characteristics where one model performs better than others, and have explored what structural component or parameterisation enables certain models to produce better simulations in these catchments. Model predictive capability was assessed for each catchment, through looking at the ability of the models to produce discharge prediction bounds which successfully bound the observed discharge. These results improve our understanding of the predictive capability of simple conceptual hydrological models across the UK and help us to identify where further effort is needed to develop modelling approaches to better represent different catchment and climate typologies.

  8. The Advanced Modeling, Simulation and Analysis Capability Roadmap Vision for Engineering

    NASA Technical Reports Server (NTRS)

    Zang, Thomas; Lieber, Mike; Norton, Charles; Fucik, Karen

    2006-01-01

    This paper summarizes a subset of the Advanced Modeling Simulation and Analysis (AMSA) Capability Roadmap that was developed for NASA in 2005. The AMSA Capability Roadmap Team was chartered to "To identify what is needed to enhance NASA's capabilities to produce leading-edge exploration and science missions by improving engineering system development, operations, and science understanding through broad application of advanced modeling, simulation and analysis techniques." The AMSA roadmap stressed the need for integration, not just within the science, engineering and operations domains themselves, but also across these domains. Here we discuss the roadmap element pertaining to integration within the engineering domain, with a particular focus on implications for future observatory missions. The AMSA products supporting the system engineering function are mission information, bounds on information quality, and system validation guidance. The Engineering roadmap element contains 5 sub-elements: (1) Large-Scale Systems Models, (2) Anomalous Behavior Models, (3) advanced Uncertainty Models, (4) Virtual Testing Models, and (5) space-based Robotics Manufacture and Servicing Models.

  9. Uncertainty propagation of p-boxes using sparse polynomial chaos expansions

    NASA Astrophysics Data System (ADS)

    Schöbi, Roland; Sudret, Bruno

    2017-06-01

    In modern engineering, physical processes are modelled and analysed using advanced computer simulations, such as finite element models. Furthermore, concepts of reliability analysis and robust design are becoming popular, hence, making efficient quantification and propagation of uncertainties an important aspect. In this context, a typical workflow includes the characterization of the uncertainty in the input variables. In this paper, input variables are modelled by probability-boxes (p-boxes), accounting for both aleatory and epistemic uncertainty. The propagation of p-boxes leads to p-boxes of the output of the computational model. A two-level meta-modelling approach is proposed using non-intrusive sparse polynomial chaos expansions to surrogate the exact computational model and, hence, to facilitate the uncertainty quantification analysis. The capabilities of the proposed approach are illustrated through applications using a benchmark analytical function and two realistic engineering problem settings. They show that the proposed two-level approach allows for an accurate estimation of the statistics of the response quantity of interest using a small number of evaluations of the exact computational model. This is crucial in cases where the computational costs are dominated by the runs of high-fidelity computational models.

  10. Uncertainty propagation of p-boxes using sparse polynomial chaos expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schöbi, Roland, E-mail: schoebi@ibk.baug.ethz.ch; Sudret, Bruno, E-mail: sudret@ibk.baug.ethz.ch

    2017-06-15

    In modern engineering, physical processes are modelled and analysed using advanced computer simulations, such as finite element models. Furthermore, concepts of reliability analysis and robust design are becoming popular, hence, making efficient quantification and propagation of uncertainties an important aspect. In this context, a typical workflow includes the characterization of the uncertainty in the input variables. In this paper, input variables are modelled by probability-boxes (p-boxes), accounting for both aleatory and epistemic uncertainty. The propagation of p-boxes leads to p-boxes of the output of the computational model. A two-level meta-modelling approach is proposed using non-intrusive sparse polynomial chaos expansions tomore » surrogate the exact computational model and, hence, to facilitate the uncertainty quantification analysis. The capabilities of the proposed approach are illustrated through applications using a benchmark analytical function and two realistic engineering problem settings. They show that the proposed two-level approach allows for an accurate estimation of the statistics of the response quantity of interest using a small number of evaluations of the exact computational model. This is crucial in cases where the computational costs are dominated by the runs of high-fidelity computational models.« less

  11. Asteroid approach covariance analysis for the Clementine mission

    NASA Technical Reports Server (NTRS)

    Ionasescu, Rodica; Sonnabend, David

    1993-01-01

    The Clementine mission is designed to test Strategic Defense Initiative Organization (SDIO) technology, the Brilliant Pebbles and Brilliant Eyes sensors, by mapping the moon surface and flying by the asteroid Geographos. The capability of two of the instruments available on board the spacecraft, the lidar (laser radar) and the UV/Visible camera is used in the covariance analysis to obtain the spacecraft delivery uncertainties at the asteroid. These uncertainties are due primarily to asteroid ephemeris uncertainties. On board optical navigation reduces the uncertainty in the knowledge of the spacecraft position in the direction perpendicular to the incoming asymptote to a one-sigma value of under 1 km, at the closest approach distance of 100 km. The uncertainty in the knowledge of the encounter time is about 0.1 seconds for a flyby velocity of 10.85 km/s. The magnitude of these uncertainties is due largely to Center Finding Errors (CFE). These systematic errors represent the accuracy expected in locating the center of the asteroid in the optical navigation images, in the absence of a topographic model for the asteroid. The direction of the incoming asymptote cannot be estimated accurately until minutes before the asteroid flyby, and correcting for it would require autonomous navigation. Orbit determination errors dominate over maneuver execution errors, and the final delivery accuracy attained is basically the orbit determination uncertainty before the final maneuver.

  12. Six Degree-of-Freedom Entry Dispersion Analysis for the METEOR Recovery Module

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Braun, Robert D.; Powell, Richard W.; Engelund, Walter C.; Tartabini, Paul V.

    1996-01-01

    The present study performs a six degree-of-freedom entry dispersion analysis for the Multiple Experiment Transporter to Earth Orbit and Return (METEOR) mission. METEOR offered the capability of flying a recoverable science package in a microgravity environment. However, since the Recovery Module has no active control system, an accurate determination of the splashdown position is difficult because no opportunity exists to remove any errors. Hence, uncertainties in the initial conditions prior to deorbit burn initiation, during deorbit burn and exo-atmospheric coast phases, and during atmospheric flight impact the splashdown location. This investigation was undertaken to quantify the impact of the various exo-atmospheric and atmospheric uncertainties. Additionally, a Monte-Carlo analysis was performed to statistically assess the splashdown dispersion footprint caused by the multiple mission uncertainties. The Monte-Carlo analysis showed that a 3-sigma splashdown dispersion footprint with axes of 43.3 nm (long), -33.5 nm (short), and 10.0 nm (crossrange) can be constructed. A 58% probability exists that the Recovery Module will overshoot the nominal splashdown site.

  13. Leadership Values, Trust and Negative Capability: Managing the Uncertainties of Future English Higher Education

    ERIC Educational Resources Information Center

    Jameson, Jill

    2012-01-01

    The complex leadership attribute of "negative capability" in managing uncertainty and engendering trust may be amongst the qualities enabling institutions to cope with multiple recent government policy challenges affecting English higher education, including significant increases in student fees. Research findings are reported on changes…

  14. Multifidelity Analysis and Optimization for Supersonic Design

    NASA Technical Reports Server (NTRS)

    Kroo, Ilan; Willcox, Karen; March, Andrew; Haas, Alex; Rajnarayan, Dev; Kays, Cory

    2010-01-01

    Supersonic aircraft design is a computationally expensive optimization problem and multifidelity approaches over a significant opportunity to reduce design time and computational cost. This report presents tools developed to improve supersonic aircraft design capabilities including: aerodynamic tools for supersonic aircraft configurations; a systematic way to manage model uncertainty; and multifidelity model management concepts that incorporate uncertainty. The aerodynamic analysis tools developed are appropriate for use in a multifidelity optimization framework, and include four analysis routines to estimate the lift and drag of a supersonic airfoil, a multifidelity supersonic drag code that estimates the drag of aircraft configurations with three different methods: an area rule method, a panel method, and an Euler solver. In addition, five multifidelity optimization methods are developed, which include local and global methods as well as gradient-based and gradient-free techniques.

  15. Bayesian dose-response analysis for epidemiological studies with complex uncertainty in dose estimation.

    PubMed

    Kwon, Deukwoo; Hoffman, F Owen; Moroz, Brian E; Simon, Steven L

    2016-02-10

    Most conventional risk analysis methods rely on a single best estimate of exposure per person, which does not allow for adjustment for exposure-related uncertainty. Here, we propose a Bayesian model averaging method to properly quantify the relationship between radiation dose and disease outcomes by accounting for shared and unshared uncertainty in estimated dose. Our Bayesian risk analysis method utilizes multiple realizations of sets (vectors) of doses generated by a two-dimensional Monte Carlo simulation method that properly separates shared and unshared errors in dose estimation. The exposure model used in this work is taken from a study of the risk of thyroid nodules among a cohort of 2376 subjects who were exposed to fallout from nuclear testing in Kazakhstan. We assessed the performance of our method through an extensive series of simulations and comparisons against conventional regression risk analysis methods. When the estimated doses contain relatively small amounts of uncertainty, the Bayesian method using multiple a priori plausible draws of dose vectors gave similar results to the conventional regression-based methods of dose-response analysis. However, when large and complex mixtures of shared and unshared uncertainties are present, the Bayesian method using multiple dose vectors had significantly lower relative bias than conventional regression-based risk analysis methods and better coverage, that is, a markedly increased capability to include the true risk coefficient within the 95% credible interval of the Bayesian-based risk estimate. An evaluation of the dose-response using our method is presented for an epidemiological study of thyroid disease following radiation exposure. Copyright © 2015 John Wiley & Sons, Ltd.

  16. SCALE Code System 6.2.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rearden, Bradley T.; Jessee, Matthew Anderson

    The SCALE Code System is a widely used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor physics, radiation shielding, radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including 3 deterministic and 3 Monte Carlomore » radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results. SCALE 6.2 represents one of the most comprehensive revisions in the history of SCALE, providing several new capabilities and significant improvements in many existing features.« less

  17. Crash Certification by Analysis - Are We There Yet?

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Lyle, Karen H.

    2006-01-01

    This paper addresses the issue of crash certification by analysis. This broad topic encompasses many ancillary issues including model validation procedures, uncertainty in test data and analysis models, probabilistic techniques for test-analysis correlation, verification of the mathematical formulation, and establishment of appropriate qualification requirements. This paper will focus on certification requirements for crashworthiness of military helicopters; capabilities of the current analysis codes used for crash modeling and simulation, including some examples of simulations from the literature to illustrate the current approach to model validation; and future directions needed to achieve "crash certification by analysis."

  18. CASL Dakota Capabilities Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian M.; Simmons, Chris; Williams, Brian J.

    2017-10-10

    The Dakota software project serves the mission of Sandia National Laboratories and supports a worldwide user community by delivering state-of-the-art research and robust, usable software for optimization and uncertainty quantification. These capabilities enable advanced exploration and riskinformed prediction with a wide range of computational science and engineering models. Dakota is the verification and validation (V&V) / uncertainty quantification (UQ) software delivery vehicle for CASL, allowing analysts across focus areas to apply these capabilities to myriad nuclear engineering analyses.

  19. Parametric Robust Control and System Identification: Unified Approach

    NASA Technical Reports Server (NTRS)

    Keel, L. H.

    1996-01-01

    During the period of this support, a new control system design and analysis method has been studied. This approach deals with control systems containing uncertainties that are represented in terms of its transfer function parameters. Such a representation of the control system is common and many physical parameter variations fall into this type of uncertainty. Techniques developed here are capable of providing nonconservative analysis of such control systems with parameter variations. We have also developed techniques to deal with control systems when their state space representations are given rather than transfer functions. In this case, the plant parameters will appear as entries of state space matrices. Finally, a system modeling technique to construct such systems from the raw input - output frequency domain data has been developed.

  20. Modelling of plasma-based dry reforming: how do uncertainties in the input data affect the calculation results?

    NASA Astrophysics Data System (ADS)

    Wang, Weizong; Berthelot, Antonin; Zhang, Quanzhi; Bogaerts, Annemie

    2018-05-01

    One of the main issues in plasma chemistry modeling is that the cross sections and rate coefficients are subject to uncertainties, which yields uncertainties in the modeling results and hence hinders the predictive capabilities. In this paper, we reveal the impact of these uncertainties on the model predictions of plasma-based dry reforming in a dielectric barrier discharge. For this purpose, we performed a detailed uncertainty analysis and sensitivity study. 2000 different combinations of rate coefficients, based on the uncertainty from a log-normal distribution, are used to predict the uncertainties in the model output. The uncertainties in the electron density and electron temperature are around 11% and 8% at the maximum of the power deposition for a 70% confidence level. Still, this can have a major effect on the electron impact rates and hence on the calculated conversions of CO2 and CH4, as well as on the selectivities of CO and H2. For the CO2 and CH4 conversion, we obtain uncertainties of 24% and 33%, respectively. For the CO and H2 selectivity, the corresponding uncertainties are 28% and 14%, respectively. We also identify which reactions contribute most to the uncertainty in the model predictions. In order to improve the accuracy and reliability of plasma chemistry models, we recommend using only verified rate coefficients, and we point out the need for dedicated verification experiments.

  1. Mesoscale modelling methodology based on nudging to increase accuracy in WRA

    NASA Astrophysics Data System (ADS)

    Mylonas Dirdiris, Markos; Barbouchi, Sami; Hermmann, Hugo

    2016-04-01

    The offshore wind energy has recently become a rapidly growing renewable energy resource worldwide, with several offshore wind projects in development in different planning stages. Despite of this, a better understanding of the atmospheric interaction within the marine atmospheric boundary layer (MABL) is needed in order to contribute to a better energy capture and cost-effectiveness. Light has been thrown in observational nudging as it has recently become an innovative method to increase the accuracy of wind flow modelling. This particular study focuses on the observational nudging capability of Weather Research and Forecasting (WRF) and ways the uncertainty of wind flow modelling in the wind resource assessment (WRA) can be reduced. Finally, an alternative way to calculate the model uncertainty is pinpointed. Approach WRF mesoscale model will be nudged with observations from FINO3 at three different heights. The model simulations with and without applying observational nudging will be verified against FINO1 measurement data at 100m. In order to evaluate the observational nudging capability of WRF two ways to derive the model uncertainty will be described: one global uncertainty and an uncertainty per wind speed bin derived using the recommended practice of the IEA in order to link the model uncertainty to a wind energy production uncertainty. This study assesses the observational data assimilation capability of WRF model within the same vertical gridded atmospheric column. The principal aim is to investigate whether having observations up to one height could improve the simulation at a higher vertical level. The study will use objective analysis implementing a Cress-man scheme interpolation to interpolate the observation in time and in sp ace (keeping the horizontal component constant) to the gridded analysis. Then the WRF model core will incorporate the interpolated variables to the "first guess" to develop a nudged simulation. Consequently, WRF with and without applying observational nudging will be validated against the higher level of FINO1 met mast using verification statistical metrics such as root mean square error (RMSE), standard deviation of mean error (ME Std), mean error average (bias) and Pearson correlation coefficient (R). The respective process will be followed for different atmospheric stratification regimes in order to evaluate the sensibility of the method to the atmospheric stability. Finally, since wind speed does not have an equally distributed impact on the power yield, the uncertainty will be measured using two ways resulting in a global uncertainty and one per wind speed bin based on a wind turbine power curve in order to evaluate the WRF for the purposes of wind power generation. Conclusion This study shows the higher accuracy of the WRF model after nudging observational data. In a next step these results will be compared with traditional vertical extrapolation methods such as power and log laws. The larger picture of this work would be to nudge the observations from a short offshore metmast in order for the WRF to reconstruct accurately the entire wind profile of the atmosphere up to hub height. This is an important step in order to reduce the cost of offshore WRA. Learning objectives 1. The audience will get a clear view of the added value of observational nudging; 2. An interesting way to calculate WRF uncertainty will be described, linking wind speed uncertainty to energy uncertainty.

  2. A variable acceleration calibration system

    NASA Astrophysics Data System (ADS)

    Johnson, Thomas H.

    2011-12-01

    A variable acceleration calibration system that applies loads using gravitational and centripetal acceleration serves as an alternative, efficient and cost effective method for calibrating internal wind tunnel force balances. Two proof-of-concept variable acceleration calibration systems are designed, fabricated and tested. The NASA UT-36 force balance served as the test balance for the calibration experiments. The variable acceleration calibration systems are shown to be capable of performing three component calibration experiments with an approximate applied load error on the order of 1% of the full scale calibration loads. Sources of error are indentified using experimental design methods and a propagation of uncertainty analysis. Three types of uncertainty are indentified for the systems and are attributed to prediction error, calibration error and pure error. Angular velocity uncertainty is shown to be the largest indentified source of prediction error. The calibration uncertainties using a production variable acceleration based system are shown to be potentially equivalent to current methods. The production quality system can be realized using lighter materials and a more precise instrumentation. Further research is needed to account for balance deflection, forcing effects due to vibration, and large tare loads. A gyroscope measurement technique is shown to be capable of resolving the balance deflection angle calculation. Long term research objectives include a demonstration of a six degree of freedom calibration, and a large capacity balance calibration.

  3. Gaussian Process Regression (GPR) Representation in Predictive Model Markup Language (PMML)

    PubMed Central

    Lechevalier, D.; Ak, R.; Ferguson, M.; Law, K. H.; Lee, Y.-T. T.; Rachuri, S.

    2017-01-01

    This paper describes Gaussian process regression (GPR) models presented in predictive model markup language (PMML). PMML is an extensible-markup-language (XML) -based standard language used to represent data-mining and predictive analytic models, as well as pre- and post-processed data. The previous PMML version, PMML 4.2, did not provide capabilities for representing probabilistic (stochastic) machine-learning algorithms that are widely used for constructing predictive models taking the associated uncertainties into consideration. The newly released PMML version 4.3, which includes the GPR model, provides new features: confidence bounds and distribution for the predictive estimations. Both features are needed to establish the foundation for uncertainty quantification analysis. Among various probabilistic machine-learning algorithms, GPR has been widely used for approximating a target function because of its capability of representing complex input and output relationships without predefining a set of basis functions, and predicting a target output with uncertainty quantification. GPR is being employed to various manufacturing data-analytics applications, which necessitates representing this model in a standardized form for easy and rapid employment. In this paper, we present a GPR model and its representation in PMML. Furthermore, we demonstrate a prototype using a real data set in the manufacturing domain. PMID:29202125

  4. Gaussian Process Regression (GPR) Representation in Predictive Model Markup Language (PMML).

    PubMed

    Park, J; Lechevalier, D; Ak, R; Ferguson, M; Law, K H; Lee, Y-T T; Rachuri, S

    2017-01-01

    This paper describes Gaussian process regression (GPR) models presented in predictive model markup language (PMML). PMML is an extensible-markup-language (XML) -based standard language used to represent data-mining and predictive analytic models, as well as pre- and post-processed data. The previous PMML version, PMML 4.2, did not provide capabilities for representing probabilistic (stochastic) machine-learning algorithms that are widely used for constructing predictive models taking the associated uncertainties into consideration. The newly released PMML version 4.3, which includes the GPR model, provides new features: confidence bounds and distribution for the predictive estimations. Both features are needed to establish the foundation for uncertainty quantification analysis. Among various probabilistic machine-learning algorithms, GPR has been widely used for approximating a target function because of its capability of representing complex input and output relationships without predefining a set of basis functions, and predicting a target output with uncertainty quantification. GPR is being employed to various manufacturing data-analytics applications, which necessitates representing this model in a standardized form for easy and rapid employment. In this paper, we present a GPR model and its representation in PMML. Furthermore, we demonstrate a prototype using a real data set in the manufacturing domain.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadgu, Teklu; Appel, Gordon John

    Sandia National Laboratories (SNL) continued evaluation of total system performance assessment (TSPA) computing systems for the previously considered Yucca Mountain Project (YMP). This was done to maintain the operational readiness of the computing infrastructure (computer hardware and software) and knowledge capability for total system performance assessment (TSPA) type analysis, as directed by the National Nuclear Security Administration (NNSA), DOE 2010. This work is a continuation of the ongoing readiness evaluation reported in Lee and Hadgu (2014) and Hadgu et al. (2015). The TSPA computing hardware (CL2014) and storage system described in Hadgu et al. (2015) were used for the currentmore » analysis. One floating license of GoldSim with Versions 9.60.300, 10.5 and 11.1.6 was installed on the cluster head node, and its distributed processing capability was mapped on the cluster processors. Other supporting software were tested and installed to support the TSPA-type analysis on the server cluster. The current tasks included verification of the TSPA-LA uncertainty and sensitivity analyses, and preliminary upgrade of the TSPA-LA from Version 9.60.300 to the latest version 11.1. All the TSPA-LA uncertainty and sensitivity analyses modeling cases were successfully tested and verified for the model reproducibility on the upgraded 2014 server cluster (CL2014). The uncertainty and sensitivity analyses used TSPA-LA modeling cases output generated in FY15 based on GoldSim Version 9.60.300 documented in Hadgu et al. (2015). The model upgrade task successfully converted the Nominal Modeling case to GoldSim Version 11.1. Upgrade of the remaining of the modeling cases and distributed processing tasks will continue. The 2014 server cluster and supporting software systems are fully operational to support TSPA-LA type analysis.« less

  6. Space Trajectory Error Analysis Program (STEAP) for halo orbit missions. Volume 1: Analytic and user's manual

    NASA Technical Reports Server (NTRS)

    Byrnes, D. V.; Carney, P. C.; Underwood, J. W.; Vogt, E. D.

    1974-01-01

    Development, test, conversion, and documentation of computer software for the mission analysis of missions to halo orbits about libration points in the earth-sun system is reported. The software consisting of two programs called NOMNAL and ERRAN is part of the Space Trajectories Error Analysis Programs (STEAP). The program NOMNAL targets a transfer trajectory from Earth on a given launch date to a specified halo orbit on a required arrival date. Either impulsive or finite thrust insertion maneuvers into halo orbit are permitted by the program. The transfer trajectory is consistent with a realistic launch profile input by the user. The second program ERRAN conducts error analyses of the targeted transfer trajectory. Measurements including range, doppler, star-planet angles, and apparent planet diameter are processed in a Kalman-Schmidt filter to determine the trajectory knowledge uncertainty. Execution errors at injection, midcourse correction and orbit insertion maneuvers are analyzed along with the navigation uncertainty to determine trajectory control uncertainties and fuel-sizing requirements. The program is also capable of generalized covariance analyses.

  7. Propagation of registration uncertainty during multi-fraction cervical cancer brachytherapy

    NASA Astrophysics Data System (ADS)

    Amir-Khalili, A.; Hamarneh, G.; Zakariaee, R.; Spadinger, I.; Abugharbieh, R.

    2017-10-01

    Multi-fraction cervical cancer brachytherapy is a form of image-guided radiotherapy that heavily relies on 3D imaging during treatment planning, delivery, and quality control. In this context, deformable image registration can increase the accuracy of dosimetric evaluations, provided that one can account for the uncertainties associated with the registration process. To enable such capability, we propose a mathematical framework that first estimates the registration uncertainty and subsequently propagates the effects of the computed uncertainties from the registration stage through to the visualizations, organ segmentations, and dosimetric evaluations. To ensure the practicality of our proposed framework in real world image-guided radiotherapy contexts, we implemented our technique via a computationally efficient and generalizable algorithm that is compatible with existing deformable image registration software. In our clinical context of fractionated cervical cancer brachytherapy, we perform a retrospective analysis on 37 patients and present evidence that our proposed methodology for computing and propagating registration uncertainties may be beneficial during therapy planning and quality control. Specifically, we quantify and visualize the influence of registration uncertainty on dosimetric analysis during the computation of the total accumulated radiation dose on the bladder wall. We further show how registration uncertainty may be leveraged into enhanced visualizations that depict the quality of the registration and highlight potential deviations from the treatment plan prior to the delivery of radiation treatment. Finally, we show that we can improve the transfer of delineated volumetric organ segmentation labels from one fraction to the next by encoding the computed registration uncertainties into the segmentation labels.

  8. Wave-optics uncertainty propagation and regression-based bias model in GNSS radio occultation bending angle retrievals

    NASA Astrophysics Data System (ADS)

    Gorbunov, Michael E.; Kirchengast, Gottfried

    2018-01-01

    A new reference occultation processing system (rOPS) will include a Global Navigation Satellite System (GNSS) radio occultation (RO) retrieval chain with integrated uncertainty propagation. In this paper, we focus on wave-optics bending angle (BA) retrieval in the lower troposphere and introduce (1) an empirically estimated boundary layer bias (BLB) model then employed to reduce the systematic uncertainty of excess phases and bending angles in about the lowest 2 km of the troposphere and (2) the estimation of (residual) systematic uncertainties and their propagation together with random uncertainties from excess phase to bending angle profiles. Our BLB model describes the estimated bias of the excess phase transferred from the estimated bias of the bending angle, for which the model is built, informed by analyzing refractivity fluctuation statistics shown to induce such biases. The model is derived from regression analysis using a large ensemble of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) RO observations and concurrent European Centre for Medium-Range Weather Forecasts (ECMWF) analysis fields. It is formulated in terms of predictors and adaptive functions (powers and cross products of predictors), where we use six main predictors derived from observations: impact altitude, latitude, bending angle and its standard deviation, canonical transform (CT) amplitude, and its fluctuation index. Based on an ensemble of test days, independent of the days of data used for the regression analysis to establish the BLB model, we find the model very effective for bias reduction and capable of reducing bending angle and corresponding refractivity biases by about a factor of 5. The estimated residual systematic uncertainty, after the BLB profile subtraction, is lower bounded by the uncertainty from the (indirect) use of ECMWF analysis fields but is significantly lower than the systematic uncertainty without BLB correction. The systematic and random uncertainties are propagated from excess phase to bending angle profiles, using a perturbation approach and the wave-optical method recently introduced by Gorbunov and Kirchengast (2015), starting with estimated excess phase uncertainties. The results are encouraging and this uncertainty propagation approach combined with BLB correction enables a robust reduction and quantification of the uncertainties of excess phases and bending angles in the lower troposphere.

  9. The Second SeaWiFS HPLC Analysis Round-Robin Experiment (SeaHARRE-2)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Eight international laboratories specializing in the determination of marine pigment concentrations using high performance liquid chromatography (HPLC) were intercompared using in situ samples and a variety of laboratory standards. The field samples were collected primarily from eutrophic waters, although mesotrophic waters were also sampled to create a dynamic range in chlorophyll concentration spanning approximately two orders of magnitude (0.3 25.8 mg m-3). The intercomparisons were used to establish the following: a) the uncertainties in quantitating individual pigments and higher-order variables (sums, ratios, and indices); b) an evaluation of spectrophotometric versus HPLC uncertainties in the determination of total chlorophyll a; and c) the reduction in uncertainties as a result of applying quality assurance (QA) procedures associated with extraction, separation, injection, degradation, detection, calibration, and reporting (particularly limits of detection and quantitation). In addition, the remote sensing requirements for the in situ determination of total chlorophyll a were investigated to determine whether or not the average uncertainty for this measurement is being satisfied. The culmination of the activity was a validation of the round-robin methodology plus the development of the requirements for validating an individual HPLC method. The validation process includes the measurements required to initially demonstrate a pigment is validated, and the measurements that must be made during sample analysis to confirm a method remains validated. The so-called performance-based metrics developed here describe a set of thresholds for a variety of easily-measured parameters with a corresponding set of performance categories. The aggregate set of performance parameters and categories establish a) the overall performance capability of the method, and b) whether or not the capability is consistent with the required accuracy objectives.

  10. Destructive analysis capabilities for plutonium and uranium characterization at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tandon, Lav; Kuhn, Kevin J; Drake, Lawrence R

    Los Alamos National Laboratory's (LANL) Actinide Analytical Chemistry (AAC) group has been in existence since the Manhattan Project. It maintains a complete set of analytical capabilities for performing complete characterization (elemental assay, isotopic, metallic and non metallic trace impurities) of uranium and plutonium samples in different forms. For a majority of the customers there are strong quality assurance (QA) and quality control (QC) objectives including highest accuracy and precision with well defined uncertainties associated with the analytical results. Los Alamos participates in various international and national programs such as the Plutonium Metal Exchange Program, New Brunswick Laboratory's (NBL' s) Safeguardsmore » Measurement Evaluation Program (SME) and several other inter-laboratory round robin exercises to monitor and evaluate the data quality generated by AAC. These programs also provide independent verification of analytical measurement capabilities, and allow any technical problems with analytical measurements to be identified and corrected. This presentation will focus on key analytical capabilities for destructive analysis in AAC and also comparative data between LANL and peer groups for Pu assay and isotopic analysis.« less

  11. Estimation of the ocean geoid near the Blake Escarpment using GEOS-3 satellite altimetry

    NASA Technical Reports Server (NTRS)

    Brammer, R. F.

    1979-01-01

    The accuracy with which the local ocean geoid structure could be determined using satellite altimetry data was investigated. The undulation and along-track component of the vertical deflection for selected passes of GEOS-3 near the Blake Escarpment were estimated and compared with independent analogous estimates based on U. S. Navy surface gravimetric survey data. The results of these comparisons show agreement in the geoid undulation values generally to within one or two meters. The nature of the discrepancy in the undulation values was primarily that of a bias error believed to be due essentially to radial orbit uncertainties. The agreement between the vertical deflection estimates was not significantly affected by orbit uncertainties over the track lengths considered in this study (100 - 1500 km), and the comparisons show typical rms differences of between one and two arc secs. In addition, the capability of the altimeter to resolve short wavelength features of the geoid was determined. This analysis involved spectrum and cross spectrum analysis of sets of closely spaced parallel subtracks to determine statistically significant short wavelength geoid resolution capability. The results of this analysis show that resolution can be achieved down to wavelengths as short as 30 km - 80 km depending on regional geoid variations.

  12. Sum and mean. Standard programs for activation analysis.

    PubMed

    Lindstrom, R M

    1994-01-01

    Two computer programs in use for over a decade in the Nuclear Methods Group at NIST illustrate the utility of standard software: programs widely available and widely used, in which (ideally) well-tested public algorithms produce results that are well understood, and thereby capable of comparison, within the community of users. Sum interactively computes the position, net area, and uncertainty of the area of spectral peaks, and can give better results than automatic peak search programs when peaks are very small, very large, or unusually shaped. Mean combines unequal measurements of a single quantity, tests for consistency, and obtains the weighted mean and six measures of its uncertainty.

  13. Capabilities for Joint Analysis in the Department of Defense: Rethinking Support for Strategic Analysis

    DTIC Science & Technology

    2016-01-01

    activity, completed ana- lytic baselines, current memoranda describing in-progress work , briefings sent to high officials, and published papers by...Is Enough, Santa Monica, Calif.: RAND Corporation , MR-400-RC, 1994. ———, “Report of Working Group: Overall Force Planning Concepts, in Lessons...RAND’s Work on Planning Under Uncertainty for National Security, Santa Monica, Calif.: RAND Corporation , TR-1249-OSD, 2012. As of July 22, 2016: http

  14. Human health risk constrained naphthalene-contaminated groundwater remediation management through an improved credibility method.

    PubMed

    Li, Jing; Lu, Hongwei; Fan, Xing; Chen, Yizhong

    2017-07-01

    In this study, a human health risk constrained groundwater remediation management program based on the improved credibility is developed for naphthalene contamination. The program integrates simulation, multivariate regression analysis, health risk assessment, uncertainty analysis, and nonlinear optimization into a general framework. The improved credibility-based optimization model for groundwater remediation management with consideration of human health risk (ICOM-HHR) is capable of not only effectively addressing parameter uncertainties and risk-exceeding possibility in human health risk but also providing a credibility level that indicates the satisfaction of the optimal groundwater remediation strategies with multiple contributions of possibility and necessity. The capabilities and effectiveness of ICOM-HHR are illustrated through a real-world case study in Anhui Province, China. Results indicate that the ICOM-HHR would generate double remediation cost yet reduce approximately 10 times of the naphthalene concentrations at monitoring wells, i.e., mostly less than 1 μg/L, which implies that the ICOM-HHR usually results in better environmental and health risk benefits. And it is acceptable to obtain a better environmental quality and a lower health risk level with sacrificing a certain economic benefit.

  15. A Bayesian-based two-stage inexact optimization method for supporting stream water quality management in the Three Gorges Reservoir region.

    PubMed

    Hu, X H; Li, Y P; Huang, G H; Zhuang, X W; Ding, X W

    2016-05-01

    In this study, a Bayesian-based two-stage inexact optimization (BTIO) method is developed for supporting water quality management through coupling Bayesian analysis with interval two-stage stochastic programming (ITSP). The BTIO method is capable of addressing uncertainties caused by insufficient inputs in water quality model as well as uncertainties expressed as probabilistic distributions and interval numbers. The BTIO method is applied to a real case of water quality management for the Xiangxi River basin in the Three Gorges Reservoir region to seek optimal water quality management schemes under various uncertainties. Interval solutions for production patterns under a range of probabilistic water quality constraints have been generated. Results obtained demonstrate compromises between the system benefit and the system failure risk due to inherent uncertainties that exist in various system components. Moreover, information about pollutant emission is accomplished, which would help managers to adjust production patterns of regional industry and local policies considering interactions of water quality requirement, economic benefit, and industry structure.

  16. A python framework for environmental model uncertainty analysis

    USGS Publications Warehouse

    White, Jeremy; Fienen, Michael N.; Doherty, John E.

    2016-01-01

    We have developed pyEMU, a python framework for Environmental Modeling Uncertainty analyses, open-source tool that is non-intrusive, easy-to-use, computationally efficient, and scalable to highly-parameterized inverse problems. The framework implements several types of linear (first-order, second-moment (FOSM)) and non-linear uncertainty analyses. The FOSM-based analyses can also be completed prior to parameter estimation to help inform important modeling decisions, such as parameterization and objective function formulation. Complete workflows for several types of FOSM-based and non-linear analyses are documented in example notebooks implemented using Jupyter that are available in the online pyEMU repository. Example workflows include basic parameter and forecast analyses, data worth analyses, and error-variance analyses, as well as usage of parameter ensemble generation and management capabilities. These workflows document the necessary steps and provides insights into the results, with the goal of educating users not only in how to apply pyEMU, but also in the underlying theory of applied uncertainty quantification.

  17. A fractional factorial probabilistic collocation method for uncertainty propagation of hydrologic model parameters in a reduced dimensional space

    NASA Astrophysics Data System (ADS)

    Wang, S.; Huang, G. H.; Huang, W.; Fan, Y. R.; Li, Z.

    2015-10-01

    In this study, a fractional factorial probabilistic collocation method is proposed to reveal statistical significance of hydrologic model parameters and their multi-level interactions affecting model outputs, facilitating uncertainty propagation in a reduced dimensional space. The proposed methodology is applied to the Xiangxi River watershed in China to demonstrate its validity and applicability, as well as its capability of revealing complex and dynamic parameter interactions. A set of reduced polynomial chaos expansions (PCEs) only with statistically significant terms can be obtained based on the results of factorial analysis of variance (ANOVA), achieving a reduction of uncertainty in hydrologic predictions. The predictive performance of reduced PCEs is verified by comparing against standard PCEs and the Monte Carlo with Latin hypercube sampling (MC-LHS) method in terms of reliability, sharpness, and Nash-Sutcliffe efficiency (NSE). Results reveal that the reduced PCEs are able to capture hydrologic behaviors of the Xiangxi River watershed, and they are efficient functional representations for propagating uncertainties in hydrologic predictions.

  18. Dynamic Event Tree advancements and control logic improvements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfonsi, Andrea; Rabiti, Cristian; Mandelli, Diego

    The RAVEN code has been under development at the Idaho National Laboratory since 2012. Its main goal is to create a multi-purpose platform for the deploying of all the capabilities needed for Probabilistic Risk Assessment, uncertainty quantification, data mining analysis and optimization studies. RAVEN is currently equipped with three different sampling categories: Forward samplers (Monte Carlo, Latin Hyper Cube, Stratified, Grid Sampler, Factorials, etc.), Adaptive Samplers (Limit Surface search, Adaptive Polynomial Chaos, etc.) and Dynamic Event Tree (DET) samplers (Deterministic and Adaptive Dynamic Event Trees). The main subject of this document is to report the activities that have been donemore » in order to: start the migration of the RAVEN/RELAP-7 control logic system into MOOSE, and develop advanced dynamic sampling capabilities based on the Dynamic Event Tree approach. In order to provide to all MOOSE-based applications a control logic capability, in this Fiscal Year an initial migration activity has been initiated, moving the control logic system, designed for RELAP-7 by the RAVEN team, into the MOOSE framework. In this document, a brief explanation of what has been done is going to be reported. The second and most important subject of this report is about the development of a Dynamic Event Tree (DET) sampler named “Hybrid Dynamic Event Tree” (HDET) and its Adaptive variant “Adaptive Hybrid Dynamic Event Tree” (AHDET). As other authors have already reported, among the different types of uncertainties, it is possible to discern two principle types: aleatory and epistemic uncertainties. The classical Dynamic Event Tree is in charge of treating the first class (aleatory) uncertainties; the dependence of the probabilistic risk assessment and analysis on the epistemic uncertainties are treated by an initial Monte Carlo sampling (MCDET). From each Monte Carlo sample, a DET analysis is run (in total, N trees). The Monte Carlo employs a pre-sampling of the input space characterized by epistemic uncertainties. The consequent Dynamic Event Tree performs the exploration of the aleatory space. In the RAVEN code, a more general approach has been developed, not limiting the exploration of the epistemic space through a Monte Carlo method but using all the forward sampling strategies RAVEN currently employs. The user can combine a Latin Hyper Cube, Grid, Stratified and Monte Carlo sampling in order to explore the epistemic space, without any limitation. From this pre-sampling, the Dynamic Event Tree sampler starts its aleatory space exploration. As reported by the authors, the Dynamic Event Tree is a good fit to develop a goal-oriented sampling strategy. The DET is used to drive a Limit Surface search. The methodology that has been developed by the authors last year, performs a Limit Surface search in the aleatory space only. This report documents how this approach has been extended in order to consider the epistemic space interacting with the Hybrid Dynamic Event Tree methodology.« less

  19. Program and Portfolio Tradeoffs Under Uncertainty Using Epoch-Era Analysis: A Case Application to Carrier Strike Group Design

    DTIC Science & Technology

    2015-05-01

    Warn in_&_ Weapon system detection Electromagnetic ~stem Sea superiority Air Superiority undersea Su_e_erior~ Combat Search and Rescue Anti-Ship...izatian 5. Sy.ste m-Level Capability Assessment ~----------------------------- A tte rn ative s. Evaluat ion 6. De sign-Epoch-Era Trade space...I A tte r n ative s. An a lysis. : 10. Single-Er a 9 . Er a Con.stru ct ion Analysis 11. M utti-Era Analysis I I I I I I I I I I I

  20. Decay heat uncertainty for BWR used fuel due to modeling and nuclear data uncertainties

    DOE PAGES

    Ilas, Germina; Liljenfeldt, Henrik

    2017-05-19

    Characterization of the energy released from radionuclide decay in nuclear fuel discharged from reactors is essential for the design, safety, and licensing analyses of used nuclear fuel storage, transportation, and repository systems. There are a limited number of decay heat measurements available for commercial used fuel applications. Because decay heat measurements can be expensive or impractical for covering the multitude of existing fuel designs, operating conditions, and specific application purposes, decay heat estimation relies heavily on computer code prediction. Uncertainty evaluation for calculated decay heat is an important aspect when assessing code prediction and a key factor supporting decision makingmore » for used fuel applications. While previous studies have largely focused on uncertainties in code predictions due to nuclear data uncertainties, this study discusses uncertainties in calculated decay heat due to uncertainties in assembly modeling parameters as well as in nuclear data. Capabilities in the SCALE nuclear analysis code system were used to quantify the effect on calculated decay heat of uncertainties in nuclear data and selected manufacturing and operation parameters for a typical boiling water reactor (BWR) fuel assembly. Furthermore, the BWR fuel assembly used as the reference case for this study was selected from a set of assemblies for which high-quality decay heat measurements are available, to assess the significance of the results through comparison with calculated and measured decay heat data.« less

  1. Decay heat uncertainty for BWR used fuel due to modeling and nuclear data uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Germina; Liljenfeldt, Henrik

    Characterization of the energy released from radionuclide decay in nuclear fuel discharged from reactors is essential for the design, safety, and licensing analyses of used nuclear fuel storage, transportation, and repository systems. There are a limited number of decay heat measurements available for commercial used fuel applications. Because decay heat measurements can be expensive or impractical for covering the multitude of existing fuel designs, operating conditions, and specific application purposes, decay heat estimation relies heavily on computer code prediction. Uncertainty evaluation for calculated decay heat is an important aspect when assessing code prediction and a key factor supporting decision makingmore » for used fuel applications. While previous studies have largely focused on uncertainties in code predictions due to nuclear data uncertainties, this study discusses uncertainties in calculated decay heat due to uncertainties in assembly modeling parameters as well as in nuclear data. Capabilities in the SCALE nuclear analysis code system were used to quantify the effect on calculated decay heat of uncertainties in nuclear data and selected manufacturing and operation parameters for a typical boiling water reactor (BWR) fuel assembly. Furthermore, the BWR fuel assembly used as the reference case for this study was selected from a set of assemblies for which high-quality decay heat measurements are available, to assess the significance of the results through comparison with calculated and measured decay heat data.« less

  2. A new process sensitivity index to identify important system processes under process model and parametric uncertainty

    DOE PAGES

    Dai, Heng; Ye, Ming; Walker, Anthony P.; ...

    2017-03-28

    A hydrological model consists of multiple process level submodels, and each submodel represents a process key to the operation of the simulated system. Global sensitivity analysis methods have been widely used to identify important processes for system model development and improvement. The existing methods of global sensitivity analysis only consider parametric uncertainty, and are not capable of handling model uncertainty caused by multiple process models that arise from competing hypotheses about one or more processes. To address this problem, this study develops a new method to probe model output sensitivity to competing process models by integrating model averaging methods withmore » variance-based global sensitivity analysis. A process sensitivity index is derived as a single summary measure of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and their parameters. Here, for demonstration, the new index is used to assign importance to the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that convert precipitation to recharge, and the geology process is simulated by two models of hydraulic conductivity. Each process model has its own random parameters. Finally, the new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.« less

  3. A new process sensitivity index to identify important system processes under process model and parametric uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Heng; Ye, Ming; Walker, Anthony P.

    A hydrological model consists of multiple process level submodels, and each submodel represents a process key to the operation of the simulated system. Global sensitivity analysis methods have been widely used to identify important processes for system model development and improvement. The existing methods of global sensitivity analysis only consider parametric uncertainty, and are not capable of handling model uncertainty caused by multiple process models that arise from competing hypotheses about one or more processes. To address this problem, this study develops a new method to probe model output sensitivity to competing process models by integrating model averaging methods withmore » variance-based global sensitivity analysis. A process sensitivity index is derived as a single summary measure of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and their parameters. Here, for demonstration, the new index is used to assign importance to the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that convert precipitation to recharge, and the geology process is simulated by two models of hydraulic conductivity. Each process model has its own random parameters. Finally, the new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.« less

  4. An Assessment of Current Fan Noise Prediction Capability

    NASA Technical Reports Server (NTRS)

    Envia, Edmane; Woodward, Richard P.; Elliott, David M.; Fite, E. Brian; Hughes, Christopher E.; Podboy, Gary G.; Sutliff, Daniel L.

    2008-01-01

    In this paper, the results of an extensive assessment exercise carried out to establish the current state of the art for predicting fan noise at NASA are presented. Representative codes in the empirical, analytical, and computational categories were exercised and assessed against a set of benchmark acoustic data obtained from wind tunnel tests of three model scale fans. The chosen codes were ANOPP, representing an empirical capability, RSI, representing an analytical capability, and LINFLUX, representing a computational aeroacoustics capability. The selected benchmark fans cover a wide range of fan pressure ratios and fan tip speeds, and are representative of modern turbofan engine designs. The assessment results indicate that the ANOPP code can predict fan noise spectrum to within 4 dB of the measurement uncertainty band on a third-octave basis for the low and moderate tip speed fans except at extreme aft emission angles. The RSI code can predict fan broadband noise spectrum to within 1.5 dB of experimental uncertainty band provided the rotor-only contribution is taken into account. The LINFLUX code can predict interaction tone power levels to within experimental uncertainties at low and moderate fan tip speeds, but could deviate by as much as 6.5 dB outside the experimental uncertainty band at the highest tip speeds in some case.

  5. Object-Oriented MDAO Tool with Aeroservoelastic Model Tuning Capability

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Li, Wesley; Lung, Shun-fat

    2008-01-01

    An object-oriented multi-disciplinary analysis and optimization (MDAO) tool has been developed at the NASA Dryden Flight Research Center to automate the design and analysis process and leverage existing commercial as well as in-house codes to enable true multidisciplinary optimization in the preliminary design stage of subsonic, transonic, supersonic and hypersonic aircraft. Once the structural analysis discipline is finalized and integrated completely into the MDAO process, other disciplines such as aerodynamics and flight controls will be integrated as well. Simple and efficient model tuning capabilities based on optimization problem are successfully integrated with the MDAO tool. More synchronized all phases of experimental testing (ground and flight), analytical model updating, high-fidelity simulations for model validation, and integrated design may result in reduction of uncertainties in the aeroservoelastic model and increase the flight safety.

  6. Uncertainty Optimization Applied to the Monte Carlo Analysis of Planetary Entry Trajectories

    NASA Technical Reports Server (NTRS)

    Olds, John; Way, David

    2001-01-01

    Recently, strong evidence of liquid water under the surface of Mars and a meteorite that might contain ancient microbes have renewed interest in Mars exploration. With this renewed interest, NASA plans to send spacecraft to Mars approx. every 26 months. These future spacecraft will return higher-resolution images, make precision landings, engage in longer-ranging surface maneuvers, and even return Martian soil and rock samples to Earth. Future robotic missions and any human missions to Mars will require precise entries to ensure safe landings near science objective and pre-employed assets. Potential sources of water and other interesting geographic features are often located near hazards, such as within craters or along canyon walls. In order for more accurate landings to be made, spacecraft entering the Martian atmosphere need to use lift to actively control the entry. This active guidance results in much smaller landing footprints. Planning for these missions will depend heavily on Monte Carlo analysis. Monte Carlo trajectory simulations have been used with a high degree of success in recent planetary exploration missions. These analyses ascertain the impact of off-nominal conditions during a flight and account for uncertainty. Uncertainties generally stem from limitations in manufacturing tolerances, measurement capabilities, analysis accuracies, and environmental unknowns. Thousands of off-nominal trajectories are simulated by randomly dispersing uncertainty variables and collecting statistics on forecast variables. The dependability of Monte Carlo forecasts, however, is limited by the accuracy and completeness of the assumed uncertainties. This is because Monte Carlo analysis is a forward driven problem; beginning with the input uncertainties and proceeding to the forecasts outputs. It lacks a mechanism to affect or alter the uncertainties based on the forecast results. If the results are unacceptable, the current practice is to use an iterative, trial-and-error approach to reconcile discrepancies. Therefore, an improvement to the Monte Carlo analysis is needed that will allow the problem to be worked in reverse. In this way, the largest allowable dispersions that achieve the required mission objectives can be determined quantitatively.

  7. Combined PIXE and XPS analysis on republican and imperial Roman coins

    NASA Astrophysics Data System (ADS)

    Daccà, A.; Prati, P.; Zucchiatti, A.; Lucarelli, F.; Mandò, P. A.; Gemme, G.; Parodi, R.; Pera, R.

    2000-03-01

    A combined PIXE and XPS analysis has been performed on a few Roman coins of the republican and imperial age. The purpose was to investigate via XPS the nature and extent of patina in order to be capable of extracting PIXE data relative to the coins bulk. The inclusion of elements from the surface layer, altered by oxidation and inclusion, is a known source of uncertainty in PIXE analyses of coins, performed to assess the composition and the provenance.

  8. Land Surface Verification Toolkit (LVT) - A Generalized Framework for Land Surface Model Evaluation

    NASA Technical Reports Server (NTRS)

    Kumar, Sujay V.; Peters-Lidard, Christa D.; Santanello, Joseph; Harrison, Ken; Liu, Yuqiong; Shaw, Michael

    2011-01-01

    Model evaluation and verification are key in improving the usage and applicability of simulation models for real-world applications. In this article, the development and capabilities of a formal system for land surface model evaluation called the Land surface Verification Toolkit (LVT) is described. LVT is designed to provide an integrated environment for systematic land model evaluation and facilitates a range of verification approaches and analysis capabilities. LVT operates across multiple temporal and spatial scales and employs a large suite of in-situ, remotely sensed and other model and reanalysis datasets in their native formats. In addition to the traditional accuracy-based measures, LVT also includes uncertainty and ensemble diagnostics, information theory measures, spatial similarity metrics and scale decomposition techniques that provide novel ways for performing diagnostic model evaluations. Though LVT was originally designed to support the land surface modeling and data assimilation framework known as the Land Information System (LIS), it also supports hydrological data products from other, non-LIS environments. In addition, the analysis of diagnostics from various computational subsystems of LIS including data assimilation, optimization and uncertainty estimation are supported within LVT. Together, LIS and LVT provide a robust end-to-end environment for enabling the concepts of model data fusion for hydrological applications. The evolving capabilities of LVT framework are expected to facilitate rapid model evaluation efforts and aid the definition and refinement of formal evaluation procedures for the land surface modeling community.

  9. Smart Sampling and HPC-based Probabilistic Look-ahead Contingency Analysis Implementation and its Evaluation with Real-world Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yousu; Etingov, Pavel V.; Ren, Huiying

    This paper describes a probabilistic look-ahead contingency analysis application that incorporates smart sampling and high-performance computing (HPC) techniques. Smart sampling techniques are implemented to effectively represent the structure and statistical characteristics of uncertainty introduced by different sources in the power system. They can significantly reduce the data set size required for multiple look-ahead contingency analyses, and therefore reduce the time required to compute them. High-performance-computing (HPC) techniques are used to further reduce computational time. These two techniques enable a predictive capability that forecasts the impact of various uncertainties on potential transmission limit violations. The developed package has been tested withmore » real world data from the Bonneville Power Administration. Case study results are presented to demonstrate the performance of the applications developed.« less

  10. Physics Verification Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doebling, Scott William

    The purpose of the verification project is to establish, through rigorous convergence analysis, that each ASC computational physics code correctly implements a set of physics models and algorithms (code verification); Evaluate and analyze the uncertainties of code outputs associated with the choice of temporal and spatial discretization (solution or calculation verification); and Develop and maintain the capability to expand and update these analyses on demand. This presentation describes project milestones.

  11. Bayesian Analysis of the Cosmic Microwave Background

    NASA Technical Reports Server (NTRS)

    Jewell, Jeffrey

    2007-01-01

    There is a wealth of cosmological information encoded in the spatial power spectrum of temperature anisotropies of the cosmic microwave background! Experiments designed to map the microwave sky are returning a flood of data (time streams of instrument response as a beam is swept over the sky) at several different frequencies (from 30 to 900 GHz), all with different resolutions and noise properties. The resulting analysis challenge is to estimate, and quantify our uncertainty in, the spatial power spectrum of the cosmic microwave background given the complexities of "missing data", foreground emission, and complicated instrumental noise. Bayesian formulation of this problem allows consistent treatment of many complexities including complicated instrumental noise and foregrounds, and can be numerically implemented with Gibbs sampling. Gibbs sampling has now been validated as an efficient, statistically exact, and practically useful method for low-resolution (as demonstrated on WMAP 1 and 3 year temperature and polarization data). Continuing development for Planck - the goal is to exploit the unique capabilities of Gibbs sampling to directly propagate uncertainties in both foreground and instrument models to total uncertainty in cosmological parameters.

  12. Approaches to highly parameterized inversion: A guide to using PEST for model-parameter and predictive-uncertainty analysis

    USGS Publications Warehouse

    Doherty, John E.; Hunt, Randall J.; Tonkin, Matthew J.

    2010-01-01

    Analysis of the uncertainty associated with parameters used by a numerical model, and with predictions that depend on those parameters, is fundamental to the use of modeling in support of decisionmaking. Unfortunately, predictive uncertainty analysis with regard to models can be very computationally demanding, due in part to complex constraints on parameters that arise from expert knowledge of system properties on the one hand (knowledge constraints) and from the necessity for the model parameters to assume values that allow the model to reproduce historical system behavior on the other hand (calibration constraints). Enforcement of knowledge and calibration constraints on parameters used by a model does not eliminate the uncertainty in those parameters. In fact, in many cases, enforcement of calibration constraints simply reduces the uncertainties associated with a number of broad-scale combinations of model parameters that collectively describe spatially averaged system properties. The uncertainties associated with other combinations of parameters, especially those that pertain to small-scale parameter heterogeneity, may not be reduced through the calibration process. To the extent that a prediction depends on system-property detail, its postcalibration variability may be reduced very little, if at all, by applying calibration constraints; knowledge constraints remain the only limits on the variability of predictions that depend on such detail. Regrettably, in many common modeling applications, these constraints are weak. Though the PEST software suite was initially developed as a tool for model calibration, recent developments have focused on the evaluation of model-parameter and predictive uncertainty. As a complement to functionality that it provides for highly parameterized inversion (calibration) by means of formal mathematical regularization techniques, the PEST suite provides utilities for linear and nonlinear error-variance and uncertainty analysis in these highly parameterized modeling contexts. Availability of these utilities is particularly important because, in many cases, a significant proportion of the uncertainty associated with model parameters-and the predictions that depend on them-arises from differences between the complex properties of the real world and the simplified representation of those properties that is expressed by the calibrated model. This report is intended to guide intermediate to advanced modelers in the use of capabilities available with the PEST suite of programs for evaluating model predictive error and uncertainty. A brief theoretical background is presented on sources of parameter and predictive uncertainty and on the means for evaluating this uncertainty. Applications of PEST tools are then discussed for overdetermined and underdetermined problems, both linear and nonlinear. PEST tools for calculating contributions to model predictive uncertainty, as well as optimization of data acquisition for reducing parameter and predictive uncertainty, are presented. The appendixes list the relevant PEST variables, files, and utilities required for the analyses described in the document.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siranosian, Antranik Antonio; Schembri, Philip Edward; Miller, Nathan Andrew

    The Benchmark Extensible Tractable Testbed Engineering Resource (BETTER) is proposed as a family of modular test bodies that are intended to support engineering capability development by helping to identify weaknesses and needs. Weapon systems, subassemblies, and components are often complex and difficult to test and analyze, resulting in low confidence and high uncertainties in experimental and simulated results. The complexities make it difficult to distinguish between inherent uncertainties and errors due to insufficient capabilities. BETTER test bodies will first use simplified geometries and materials such that testing, data collection, modeling and simulation can be accomplished with high confidence and lowmore » uncertainty. Modifications and combinations of simple and well-characterized BETTER test bodies can then be used to increase complexity in order to reproduce relevant mechanics and identify weaknesses. BETTER can provide both immediate and long-term improvements in testing and simulation capabilities. This document presents the motivation, concept, benefits and examples for BETTER.« less

  14. Uncertainty Analysis and Order-by-Order Optimization of Chiral Nuclear Interactions

    DOE PAGES

    Carlsson, Boris; Forssen, Christian; Fahlin Strömberg, D.; ...

    2016-02-24

    Chiral effective field theory ( ΧEFT) provides a systematic approach to describe low-energy nuclear forces. Moreover, EFT is able to provide well-founded estimates of statistical and systematic uncertainties | although this unique advantage has not yet been fully exploited. We ll this gap by performing an optimization and statistical analysis of all the low-energy constants (LECs) up to next-to-next-to-leading order. Our optimization protocol corresponds to a simultaneous t to scattering and bound-state observables in the pion-nucleon, nucleon-nucleon, and few-nucleon sectors, thereby utilizing the full model capabilities of EFT. Finally, we study the effect on other observables by demonstrating forward-error-propagation methodsmore » that can easily be adopted by future works. We employ mathematical optimization and implement automatic differentiation to attain e cient and machine-precise first- and second-order derivatives of the objective function with respect to the LECs. This is also vital for the regression analysis. We use power-counting arguments to estimate the systematic uncertainty that is inherent to EFT and we construct chiral interactions at different orders with quantified uncertainties. Statistical error propagation is compared with Monte Carlo sampling showing that statistical errors are in general small compared to systematic ones. In conclusion, we find that a simultaneous t to different sets of data is critical to (i) identify the optimal set of LECs, (ii) capture all relevant correlations, (iii) reduce the statistical uncertainty, and (iv) attain order-by-order convergence in EFT. Furthermore, certain systematic uncertainties in the few-nucleon sector are shown to get substantially magnified in the many-body sector; in particlar when varying the cutoff in the chiral potentials. The methodology and results presented in this Paper open a new frontier for uncertainty quantification in ab initio nuclear theory.« less

  15. Effects of temporal and spatial resolution of calibration data on integrated hydrologic water quality model identification

    NASA Astrophysics Data System (ADS)

    Jiang, Sanyuan; Jomaa, Seifeddine; Büttner, Olaf; Rode, Michael

    2014-05-01

    Hydrological water quality modeling is increasingly used for investigating runoff and nutrient transport processes as well as watershed management but it is mostly unclear how data availablity determins model identification. In this study, the HYPE (HYdrological Predictions for the Environment) model, which is a process-based, semi-distributed hydrological water quality model, was applied in two different mesoscale catchments (Selke (463 km2) and Weida (99 km2)) located in central Germany to simulate discharge and inorganic nitrogen (IN) transport. PEST and DREAM(ZS) were combined with the HYPE model to conduct parameter calibration and uncertainty analysis. Split-sample test was used for model calibration (1994-1999) and validation (1999-2004). IN concentration and daily IN load were found to be highly correlated with discharge, indicating that IN leaching is mainly controlled by runoff. Both dynamics and balances of water and IN load were well captured with NSE greater than 0.83 during validation period. Multi-objective calibration (calibrating hydrological and water quality parameters simultaneously) was found to outperform step-wise calibration in terms of model robustness. Multi-site calibration was able to improve model performance at internal sites, decrease parameter posterior uncertainty and prediction uncertainty. Nitrogen-process parameters calibrated using continuous daily averages of nitrate-N concentration observations produced better and more robust simulations of IN concentration and load, lower posterior parameter uncertainty and IN concentration prediction uncertainty compared to the calibration against uncontinuous biweekly nitrate-N concentration measurements. Both PEST and DREAM(ZS) are efficient in parameter calibration. However, DREAM(ZS) is more sound in terms of parameter identification and uncertainty analysis than PEST because of its capability to evolve parameter posterior distributions and estimate prediction uncertainty based on global search and Bayesian inference schemes.

  16. Inspection planning development: An evolutionary approach using reliability engineering as a tool

    NASA Technical Reports Server (NTRS)

    Graf, David A.; Huang, Zhaofeng

    1994-01-01

    This paper proposes an evolutionary approach for inspection planning which introduces various reliability engineering tools into the process and assess system trade-offs among reliability, engineering requirement, manufacturing capability and inspection cost to establish an optimal inspection plan. The examples presented in the paper illustrate some advantages and benefits of the new approach. Through the analysis, reliability and engineering impacts due to manufacturing process capability and inspection uncertainty are clearly understood; the most cost effective and efficient inspection plan can be established and associated risks are well controlled; some inspection reductions and relaxations are well justified; and design feedbacks and changes may be initiated from the analysis conclusion to further enhance reliability and reduce cost. The approach is particularly promising as global competitions and customer quality improvement expectations are rapidly increasing.

  17. iTOUGH2 V6.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finsterle, Stefan A.

    2010-11-01

    iTOUGH2 (inverse TOUGH2) provides inverse modeling capabilities for TOUGH2, a simulator for multi-dimensional , multi-phase, multi-component, non-isothermal flow and transport in fractured porous media. It performs sensitivity analysis, parameter estimation, and uncertainty propagation, analysis in geosciences and reservoir engineering and other application areas. It supports a number of different combination of fluids and components [equation-of-state (EOS) modules]. In addition, the optimization routines implemented in iTOUGH2 can also be used or sensitivity analysis, automatic model calibration, and uncertainty quantification of any external code that uses text-based input and output files. This link is achieved by means of the PEST application programmingmore » interface. iTOUGH2 solves the inverse problem by minimizing a non-linear objective function of the weighted differences between model output and the corresponding observations. Multiple minimization algorithms (derivative fee, gradient-based and second-order; local and global) are available. iTOUGH2 also performs Latin Hypercube Monte Carlos simulation for uncertainty propagation analysis. A detailed residual and error analysis is provided. This upgrade includes new EOS modules (specifically EOS7c, ECO2N and TMVOC), hysteretic relative permeability and capillary pressure functions and the PEST API. More details can be found at http://esd.lbl.gov/iTOUGH2 and the publications cited there. Hardware Req.: Multi-platform; Related/auxiliary software PVM (if running in parallel).« less

  18. Towards a Web-Enabled Geovisualization and Analytics Platform for the Energy and Water Nexus

    NASA Astrophysics Data System (ADS)

    Sanyal, J.; Chandola, V.; Sorokine, A.; Allen, M.; Berres, A.; Pang, H.; Karthik, R.; Nugent, P.; McManamay, R.; Stewart, R.; Bhaduri, B. L.

    2017-12-01

    Interactive data analytics are playing an increasingly vital role in the generation of new, critical insights regarding the complex dynamics of the energy/water nexus (EWN) and its interactions with climate variability and change. Integration of impacts, adaptation, and vulnerability (IAV) science with emerging, and increasingly critical, data science capabilities offers a promising potential to meet the needs of the EWN community. To enable the exploration of pertinent research questions, a web-based geospatial visualization platform is being built that integrates a data analysis toolbox with advanced data fusion and data visualization capabilities to create a knowledge discovery framework for the EWN. The system, when fully built out, will offer several geospatial visualization capabilities including statistical visual analytics, clustering, principal-component analysis, dynamic time warping, support uncertainty visualization and the exploration of data provenance, as well as support machine learning discoveries to render diverse types of geospatial data and facilitate interactive analysis. Key components in the system architecture includes NASA's WebWorldWind, the Globus toolkit, postgresql, as well as other custom built software modules.

  19. Validation of a high-performance liquid chromatographic method with UV detection for the determination of ethopabate residues in poultry liver.

    PubMed

    Granja, Rodrigo H M M; Niño, Alfredo M Montes; Zucchetti, Roberto A M; Niño, Rosario E Montes; Salerno, Alessandro G

    2008-01-01

    Ethopabate is frequently used in the prophylaxis and treatment of coccidiosis in poultry. Residues of this drug in food present a potential risk to consumers. A simple, rapid, and sensitive column high-performance liquid chromatographic (HPLC) method with UV detection for determination of ethopabate in poultry liver is presented. The drug is extracted with acetonitrile. After evaporation, the residue is dissolved with an acetone-hexane mixture and cleaned up by solid-phase extraction using Florisil columns. The analyte is then eluted with methanol. LC analysis is carried out on a C18 5 microm Gemini column, 15 cm x 4.6 mm. Ethopabate is quantified by means of UV detection at 270 nm. Parameters such as decision limit, detection capability, precision, recovery, ruggedness, and measurement uncertainty were calculated according to method validation guidelines provided in 2002/657/EC and ISO/IEC 17025:2005. Decision limit and detection capability were determined to be 2 and 3 microg/kg, respectively. Average recoveries from poultry samples fortified with 10, 15, and 20 microg/kg levels of ethopabate were 100-105%. A complete statistical analysis was performed on the results obtained, including an estimation of the method uncertainty. The method is to be implemented into Brazil's residue monitoring and control program for ethopabate.

  20. DAKOTA Design Analysis Kit for Optimization and Terascale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian M.; Dalbey, Keith R.; Eldred, Michael S.

    2010-02-24

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes (computational models) and iterative analysis methods. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and analysis of computational models on high performance computers.A user provides a set of DAKOTA commands in an input file and launches DAKOTA. DAKOTA invokes instances of the computational models, collects their results, and performs systems analyses. DAKOTA contains algorithms for optimization with gradient and nongradient-basedmore » methods; uncertainty quantification with sampling, reliability, polynomial chaos, stochastic collocation, and epistemic methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as hybrid optimization, surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. Services for parallel computing, simulation interfacing, approximation modeling, fault tolerance, restart, and graphics are also included.« less

  1. Strategic Technology Investment Analysis: An Integrated System Approach

    NASA Technical Reports Server (NTRS)

    Adumitroaie, V.; Weisbin, C. R.

    2010-01-01

    Complex technology investment decisions within NASA are increasingly difficult to make such that the end results are satisfying the technical objectives and all the organizational constraints. Due to a restricted science budget environment and numerous required technology developments, the investment decisions need to take into account not only the functional impact on the program goals, but also development uncertainties and cost variations along with maintaining a healthy workforce. This paper describes an approach for optimizing and qualifying technology investment portfolios from the perspective of an integrated system model. The methodology encompasses multi-attribute decision theory elements and sensitivity analysis. The evaluation of the degree of robustness of the recommended portfolio provides the decision-maker with an array of viable selection alternatives, which take into account input uncertainties and possibly satisfy nontechnical constraints. The methodology is presented in the context of assessing capability development portfolios for NASA technology programs.

  2. A sequential factorial analysis approach to characterize the effects of uncertainties for supporting air quality management

    NASA Astrophysics Data System (ADS)

    Wang, S.; Huang, G. H.; Veawab, A.

    2013-03-01

    This study proposes a sequential factorial analysis (SFA) approach for supporting regional air quality management under uncertainty. SFA is capable not only of examining the interactive effects of input parameters, but also of analyzing the effects of constraints. When there are too many factors involved in practical applications, SFA has the advantage of conducting a sequence of factorial analyses for characterizing the effects of factors in a systematic manner. The factor-screening strategy employed in SFA is effective in greatly reducing the computational effort. The proposed SFA approach is applied to a regional air quality management problem for demonstrating its applicability. The results indicate that the effects of factors are evaluated quantitatively, which can help decision makers identify the key factors that have significant influence on system performance and explore the valuable information that may be veiled beneath their interrelationships.

  3. The Vita Activa as Compass: Navigating Uncertainty in Teaching with Hannah Arendt

    ERIC Educational Resources Information Center

    Rogers, Carrie Ann Barnes

    2010-01-01

    This dissertation is an exploration of stories of uncertainty in the lives of elementary teachers and the value that the ideas of Hannah Arendt lend to the discussion around uncertainty. In "The Human Condition" (1958) Hannah Arendt theorizes the life of action, the "vita activa". Arendtian action is inherently uncertain because to be "capable of…

  4. Fission cross section uncertainties with the NIFFTE TPC

    NASA Astrophysics Data System (ADS)

    Sangiorgio, Samuele; Niffte Collaboration

    2014-09-01

    Nuclear data such as neutron-induced fission cross sections play a fundamental role in nuclear energy and defense applications. In recent years, understanding of these systems has become increasingly dependent upon advanced simulation and modeling, where uncertainties in nuclear data propagate in the expected performances of existing and future systems. It is important therefore that uncertainties in nuclear data are minimized and fully understood. For this reason, the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) uses a Time Projection Chamber (TPC) to measure energy-differential (n,f) cross sections with unprecedented precision. The presentation will discuss how the capabilities of the NIFFTE TPC allow to directly measures systematic uncertainties in fission cross sections, in particular for what concerns fission-fragment identification, and target and beam uniformity. Preliminary results from recent analysis of 238U/235U and 239Pu/235U data collected with the TPC will be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Code System for Performance Assessment Ground-water Analysis for Low-level Nuclear Waste.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MATTHEW,; KOZAK, W.

    1994-02-09

    Version 00 The PAGAN code system is a part of the performance assessment methodology developed for use by the U. S. Nuclear Regulatory Commission in evaluating license applications for low-level waste disposal facilities. In this methodology, PAGAN is used as one candidate approach for analysis of the ground-water pathway. PAGAN, Version 1.1 has the capability to model the source term, vadose-zone transport, and aquifer transport of radionuclides from a waste disposal unit. It combines the two codes SURFACE and DISPERSE which are used as semi-analytical solutions to the convective-dispersion equation. This system uses menu driven input/out for implementing a simplemore » ground-water transport analysis and incorporates statistical uncertainty functions for handling data uncertainties. The output from PAGAN includes a time- and location-dependent radionuclide concentration at a well in the aquifer, or a time- and location-dependent radionuclide flux into a surface-water body.« less

  6. A Review and Analysis of Remote Sensing Capability for Air Quality Measurements as a Potential Decision Support Tool Conducted by the NASA DEVELOP Program

    NASA Technical Reports Server (NTRS)

    Ross, A.; Richards, A.; Keith, K.; Frew, C.; Boseck, J.; Sutton, S.; Watts, C.; Rickman, D.

    2007-01-01

    This project focused on a comprehensive utilization of air quality model products as decision support tools (DST) needed for public health applications. A review of past and future air quality measurement methods and their uncertainty, along with the relationship of air quality to national and global public health, is vital. This project described current and future NASA satellite remote sensing and ground sensing capabilities and the potential for using these sensors to enhance the prediction, prevention, and control of public health effects that result from poor air quality. The qualitative uncertainty of current satellite remotely sensed air quality, the ground-based remotely sensed air quality, the air quality/public health model, and the decision making process is evaluated in this study. Current peer-reviewed literature suggests that remotely sensed air quality parameters correlate well with ground-based sensor data. A satellite remote-sensed and ground-sensed data complement is needed to enhance the models/tools used by policy makers for the protection of national and global public health communities

  7. A Novel Method to Handle the Effect of Uneven Sampling Effort in Biodiversity Databases

    PubMed Central

    Pardo, Iker; Pata, María P.; Gómez, Daniel; García, María B.

    2013-01-01

    How reliable are results on spatial distribution of biodiversity based on databases? Many studies have evidenced the uncertainty related to this kind of analysis due to sampling effort bias and the need for its quantification. Despite that a number of methods are available for that, little is known about their statistical limitations and discrimination capability, which could seriously constrain their use. We assess for the first time the discrimination capacity of two widely used methods and a proposed new one (FIDEGAM), all based on species accumulation curves, under different scenarios of sampling exhaustiveness using Receiver Operating Characteristic (ROC) analyses. Additionally, we examine to what extent the output of each method represents the sampling completeness in a simulated scenario where the true species richness is known. Finally, we apply FIDEGAM to a real situation and explore the spatial patterns of plant diversity in a National Park. FIDEGAM showed an excellent discrimination capability to distinguish between well and poorly sampled areas regardless of sampling exhaustiveness, whereas the other methods failed. Accordingly, FIDEGAM values were strongly correlated with the true percentage of species detected in a simulated scenario, whereas sampling completeness estimated with other methods showed no relationship due to null discrimination capability. Quantifying sampling effort is necessary to account for the uncertainty in biodiversity analyses, however, not all proposed methods are equally reliable. Our comparative analysis demonstrated that FIDEGAM was the most accurate discriminator method in all scenarios of sampling exhaustiveness, and therefore, it can be efficiently applied to most databases in order to enhance the reliability of biodiversity analyses. PMID:23326357

  8. A novel method to handle the effect of uneven sampling effort in biodiversity databases.

    PubMed

    Pardo, Iker; Pata, María P; Gómez, Daniel; García, María B

    2013-01-01

    How reliable are results on spatial distribution of biodiversity based on databases? Many studies have evidenced the uncertainty related to this kind of analysis due to sampling effort bias and the need for its quantification. Despite that a number of methods are available for that, little is known about their statistical limitations and discrimination capability, which could seriously constrain their use. We assess for the first time the discrimination capacity of two widely used methods and a proposed new one (FIDEGAM), all based on species accumulation curves, under different scenarios of sampling exhaustiveness using Receiver Operating Characteristic (ROC) analyses. Additionally, we examine to what extent the output of each method represents the sampling completeness in a simulated scenario where the true species richness is known. Finally, we apply FIDEGAM to a real situation and explore the spatial patterns of plant diversity in a National Park. FIDEGAM showed an excellent discrimination capability to distinguish between well and poorly sampled areas regardless of sampling exhaustiveness, whereas the other methods failed. Accordingly, FIDEGAM values were strongly correlated with the true percentage of species detected in a simulated scenario, whereas sampling completeness estimated with other methods showed no relationship due to null discrimination capability. Quantifying sampling effort is necessary to account for the uncertainty in biodiversity analyses, however, not all proposed methods are equally reliable. Our comparative analysis demonstrated that FIDEGAM was the most accurate discriminator method in all scenarios of sampling exhaustiveness, and therefore, it can be efficiently applied to most databases in order to enhance the reliability of biodiversity analyses.

  9. Hypersonic vehicle model and control law development using H(infinity) and micron synthesis

    NASA Astrophysics Data System (ADS)

    Gregory, Irene M.; Chowdhry, Rajiv S.; McMinn, John D.; Shaughnessy, John D.

    1994-10-01

    The control system design for a Single Stage To Orbit (SSTO) air breathing vehicle will be central to a successful mission because a precise ascent trajectory will preserve narrow payload margins. The air breathing propulsion system requires the vehicle to fly roughly halfway around the Earth through atmospheric turbulence. The turbulence, the high sensitivity of the propulsion system to inlet flow conditions, the relatively large uncertainty of the parameters characterizing the vehicle, and continuous acceleration make the problem especially challenging. Adequate stability margins must be provided without sacrificing payload mass since payload margins are critical. Therefore, a multivariable control theory capable of explicitly including both uncertainty and performance is needed. The H(infinity) controller in general provides good robustness but can result in conservative solutions for practical problems involving structured uncertainty. Structured singular value mu framework for analysis and synthesis is potentially much less conservative and hence more appropriate for problems with tight margins. An SSTO control system requires: highly accurate tracking of velocity and altitude commands while limiting angle-of-attack oscillations, minimized control power usage, and a stabilized vehicle when atmospheric turbulence and system uncertainty are present. The controller designs using H(infinity) and mu-synthesis procedures were compared. An integrated flight/propulsion dynamic mathematical model of a conical accelerator vehicle was linearized as the vehicle accelerated through Mach 8. Vehicle acceleration through the selected flight condition gives rise to parametric variation that was modeled as a structured uncertainty. The mu-analysis approach was used in the frequency domain to conduct controller analysis and was confirmed by time history plots. Results demonstrate the inherent advantages of the mu framework for this class of problems.

  10. Hypersonic vehicle model and control law development using H(infinity) and micron synthesis

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Chowdhry, Rajiv S.; Mcminn, John D.; Shaughnessy, John D.

    1994-01-01

    The control system design for a Single Stage To Orbit (SSTO) air breathing vehicle will be central to a successful mission because a precise ascent trajectory will preserve narrow payload margins. The air breathing propulsion system requires the vehicle to fly roughly halfway around the Earth through atmospheric turbulence. The turbulence, the high sensitivity of the propulsion system to inlet flow conditions, the relatively large uncertainty of the parameters characterizing the vehicle, and continuous acceleration make the problem especially challenging. Adequate stability margins must be provided without sacrificing payload mass since payload margins are critical. Therefore, a multivariable control theory capable of explicitly including both uncertainty and performance is needed. The H(infinity) controller in general provides good robustness but can result in conservative solutions for practical problems involving structured uncertainty. Structured singular value mu framework for analysis and synthesis is potentially much less conservative and hence more appropriate for problems with tight margins. An SSTO control system requires: highly accurate tracking of velocity and altitude commands while limiting angle-of-attack oscillations, minimized control power usage, and a stabilized vehicle when atmospheric turbulence and system uncertainty are present. The controller designs using H(infinity) and mu-synthesis procedures were compared. An integrated flight/propulsion dynamic mathematical model of a conical accelerator vehicle was linearized as the vehicle accelerated through Mach 8. Vehicle acceleration through the selected flight condition gives rise to parametric variation that was modeled as a structured uncertainty. The mu-analysis approach was used in the frequency domain to conduct controller analysis and was confirmed by time history plots. Results demonstrate the inherent advantages of the mu framework for this class of problems.

  11. Use of NARCCAP data to characterize regional climate uncertainty in the impact of global climate change on large river fish population: Missouri River sturgeon example

    NASA Astrophysics Data System (ADS)

    Anderson, C. J.; Wildhaber, M. L.; Wikle, C. K.; Moran, E. H.; Franz, K. J.; Dey, R.

    2012-12-01

    Climate change operates over a broad range of spatial and temporal scales. Understanding the effects of change on ecosystems requires accounting for the propagation of information and uncertainty across these scales. For example, to understand potential climate change effects on fish populations in riverine ecosystems, climate conditions predicted by course-resolution atmosphere-ocean global climate models must first be translated to the regional climate scale. In turn, this regional information is used to force watershed models, which are used to force river condition models, which impact the population response. A critical challenge in such a multiscale modeling environment is to quantify sources of uncertainty given the highly nonlinear nature of interactions between climate variables and the individual organism. We use a hierarchical modeling approach for accommodating uncertainty in multiscale ecological impact studies. This framework allows for uncertainty due to system models, model parameter settings, and stochastic parameterizations. This approach is a hybrid between physical (deterministic) downscaling and statistical downscaling, recognizing that there is uncertainty in both. We use NARCCAP data to determine confidence the capability of climate models to simulate relevant processes and to quantify regional climate variability within the context of the hierarchical model of uncertainty quantification. By confidence, we mean the ability of the regional climate model to replicate observed mechanisms. We use the NCEP-driven simulations for this analysis. This provides a base from which regional change can be categorized as either a modification of previously observed mechanisms or emergence of new processes. The management implications for these categories of change are significantly different in that procedures to address impacts from existing processes may already be known and need adjustment; whereas, an emergent processes may require new management strategies. The results from hierarchical analysis of uncertainty are used to study the relative change in weights of the endangered Missouri River pallid sturgeon (Scaphirhynchus albus) under a 21st century climate scenario.

  12. Probabilistic Structural Analysis Methods (PSAM) for select space propulsion system components

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The fourth year of technical developments on the Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) system for Probabilistic Structural Analysis Methods is summarized. The effort focused on the continued expansion of the Probabilistic Finite Element Method (PFEM) code, the implementation of the Probabilistic Boundary Element Method (PBEM), and the implementation of the Probabilistic Approximate Methods (PAppM) code. The principal focus for the PFEM code is the addition of a multilevel structural dynamics capability. The strategy includes probabilistic loads, treatment of material, geometry uncertainty, and full probabilistic variables. Enhancements are included for the Fast Probability Integration (FPI) algorithms and the addition of Monte Carlo simulation as an alternate. Work on the expert system and boundary element developments continues. The enhanced capability in the computer codes is validated by applications to a turbine blade and to an oxidizer duct.

  13. System for decision analysis support on complex waste management issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shropshire, D.E.

    1997-10-01

    A software system called the Waste Flow Analysis has been developed and applied to complex environmental management processes for the United States Department of Energy (US DOE). The system can evaluate proposed methods of waste retrieval, treatment, storage, transportation, and disposal. Analysts can evaluate various scenarios to see the impacts to waste slows and schedules, costs, and health and safety risks. Decision analysis capabilities have been integrated into the system to help identify preferred alternatives based on a specific objectives may be to maximize the waste moved to final disposition during a given time period, minimize health risks, minimize costs,more » or combinations of objectives. The decision analysis capabilities can support evaluation of large and complex problems rapidly, and under conditions of variable uncertainty. The system is being used to evaluate environmental management strategies to safely disposition wastes in the next ten years and reduce the environmental legacy resulting from nuclear material production over the past forty years.« less

  14. Automated Planning and Scheduling for Space Mission Operations

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Jonsson, Ari; Knight, Russell

    2005-01-01

    Research Trends: a) Finite-capacity scheduling under more complex constraints and increased problem dimensionality (subcontracting, overtime, lot splitting, inventory, etc.) b) Integrated planning and scheduling. c) Mixed-initiative frameworks. d) Management of uncertainty (proactive and reactive). e) Autonomous agent architectures and distributed production management. e) Integration of machine learning capabilities. f) Wider scope of applications: 1) analysis of supplier/buyer protocols & tradeoffs; 2) integration of strategic & tactical decision-making; and 3) enterprise integration.

  15. SCALE Code System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rearden, Bradley T.; Jessee, Matthew Anderson

    The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministicmore » and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.« less

  16. SCALE Code System 6.2.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rearden, Bradley T.; Jessee, Matthew Anderson

    The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministicmore » and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.« less

  17. Uncertainty quantification for nuclear density functional theory and information content of new measurements.

    PubMed

    McDonnell, J D; Schunck, N; Higdon, D; Sarich, J; Wild, S M; Nazarewicz, W

    2015-03-27

    Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squares optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. The example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.

  18. Are we producing PHAs? On the target selection for a proposed mitigation demo-mission within the NEO-Shield project

    NASA Astrophysics Data System (ADS)

    Eggl, S.; Hestroffer, D.; Thuillot, W.

    2013-09-01

    The Chelyabinsk event on February 15th, 2013 has shown once again that even small near earth objects (NEOs) can become a real safety concern. Eventhough we believe to have the capabilities to avert larger potentially disastrous asteroid impacts, only the realization of mitigation demonstration missions can confirm this claim. The target selection process for such deflection demonstrations is a demanding task, as physical, dynamical and engineering aspects have to be considered in great detail. One of the top priorities of such a demonstration mission is, of course, that a harmless asteroid should not be turned into a potentially hazardous object (PHO). Given the potentially large uncertainties in the asteroid's physical parameters as well as the additional uncertainties introduced during the deflection attempt, an in depth analysis of the impact probabilities over the next century becomes necessary, in order to exclude an augmentation of potential risks. Assuming worst case scenarios regard- ing the orbital, physical and mitigation induced uncertainties, we provide a keyhole and impact risk analysis of a list of potential targets for the mitigation demomission proposed in the framework of the NEO-Shield project.

  19. Sensitivity-Uncertainty Based Nuclear Criticality Safety Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.

    2016-09-20

    These are slides from a seminar given to the University of Mexico Nuclear Engineering Department. Whisper is a statistical analysis package developed to support nuclear criticality safety validation. It uses the sensitivity profile data for an application as computed by MCNP6 along with covariance files for the nuclear data to determine a baseline upper-subcritical-limit for the application. Whisper and its associated benchmark files are developed and maintained as part of MCNP6, and will be distributed with all future releases of MCNP6. Although sensitivity-uncertainty methods for NCS validation have been under development for 20 years, continuous-energy Monte Carlo codes such asmore » MCNP could not determine the required adjoint-weighted tallies for sensitivity profiles. The recent introduction of the iterated fission probability method into MCNP led to the rapid development of sensitivity analysis capabilities for MCNP6 and the development of Whisper. Sensitivity-uncertainty based methods represent the future for NCS validation – making full use of today’s computer power to codify past approaches based largely on expert judgment. Validation results are defensible, auditable, and repeatable as needed with different assumptions and process models. The new methods can supplement, support, and extend traditional validation approaches.« less

  20. Action Learning, Performativity and Negative Capability

    ERIC Educational Resources Information Center

    Edmonstone, John

    2016-01-01

    The paper examines the concept of negative capability as a human capacity for containment and contrasts it with well-valued positive capability as expressed through performativity in organisations and society. It identifies the problem of dispersal--the complex ways we behave in order to avoid the emotional challenges of living with uncertainty.…

  1. Modeling transport phenomena and uncertainty quantification in solidification processes

    NASA Astrophysics Data System (ADS)

    Fezi, Kyle S.

    Direct chill (DC) casting is the primary processing route for wrought aluminum alloys. This semicontinuous process consists of primary cooling as the metal is pulled through a water cooled mold followed by secondary cooling with a water jet spray and free falling water. To gain insight into this complex solidification process, a fully transient model of DC casting was developed to predict the transport phenomena of aluminum alloys for various conditions. This model is capable of solving mixture mass, momentum, energy, and species conservation equations during multicomponent solidification. Various DC casting process parameters were examined for their effect on transport phenomena predictions in an alloy of commercial interest (aluminum alloy 7050). The practice of placing a wiper to divert cooling water from the ingot surface was studied and the results showed that placement closer to the mold causes remelting at the surface and increases susceptibility to bleed outs. Numerical models of metal alloy solidification, like the one previously mentioned, are used to gain insight into physical phenomena that cannot be observed experimentally. However, uncertainty in model inputs cause uncertainty in results and those insights. The analysis of model assumptions and probable input variability on the level of uncertainty in model predictions has not been calculated in solidification modeling as yet. As a step towards understanding the effect of uncertain inputs on solidification modeling, uncertainty quantification (UQ) and sensitivity analysis were first performed on a transient solidification model of a simple binary alloy (Al-4.5wt.%Cu) in a rectangular cavity with both columnar and equiaxed solid growth models. This analysis was followed by quantifying the uncertainty in predictions from the recently developed transient DC casting model. The PRISM Uncertainty Quantification (PUQ) framework quantified the uncertainty and sensitivity in macrosegregation, solidification time, and sump profile predictions. Uncertain model inputs of interest included the secondary dendrite arm spacing, equiaxed particle size, equiaxed packing fraction, heat transfer coefficient, and material properties. The most influential input parameters for predicting the macrosegregation level were the dendrite arm spacing, which also strongly depended on the choice of mushy zone permeability model, and the equiaxed packing fraction. Additionally, the degree of uncertainty required to produce accurate predictions depended on the output of interest from the model.

  2. Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    NASA Technical Reports Server (NTRS)

    Groves, Curtis E.

    2013-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This proposal describes an approach to validate the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft. The research described here is absolutely cutting edge. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional"validation by test only'' mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computationaf Fluid Dynamics can be used to veritY these requirements; however, the model must be validated by test data. The proposed research project includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT and OPEN FOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid . . . Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System /spacecraft system. Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. To date, the author is the only person to look at the uncertainty in the entire computational domain. For the flow regime being analyzed (turbulent, threedimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.

  3. Algorithms for sum-of-squares-based stability analysis and control design of uncertain nonlinear systems

    NASA Astrophysics Data System (ADS)

    Ataei-Esfahani, Armin

    In this dissertation, we present algorithmic procedures for sum-of-squares based stability analysis and control design for uncertain nonlinear systems. In particular, we consider the case of robust aircraft control design for a hypersonic aircraft model subject to parametric uncertainties in its aerodynamic coefficients. In recent years, Sum-of-Squares (SOS) method has attracted increasing interest as a new approach for stability analysis and controller design of nonlinear dynamic systems. Through the application of SOS method, one can describe a stability analysis or control design problem as a convex optimization problem, which can efficiently be solved using Semidefinite Programming (SDP) solvers. For nominal systems, the SOS method can provide a reliable and fast approach for stability analysis and control design for low-order systems defined over the space of relatively low-degree polynomials. However, The SOS method is not well-suited for control problems relating to uncertain systems, specially those with relatively high number of uncertainties or those with non-affine uncertainty structure. In order to avoid issues relating to the increased complexity of the SOS problems for uncertain system, we present an algorithm that can be used to transform an SOS problem with uncertainties into a LMI problem with uncertainties. A new Probabilistic Ellipsoid Algorithm (PEA) is given to solve the robust LMI problem, which can guarantee the feasibility of a given solution candidate with an a-priori fixed probability of violation and with a fixed confidence level. We also introduce two approaches to approximate the robust region of attraction (RROA) for uncertain nonlinear systems with non-affine dependence on uncertainties. The first approach is based on a combination of PEA and SOS method and searches for a common Lyapunov function, while the second approach is based on the generalized Polynomial Chaos (gPC) expansion theorem combined with the SOS method and searches for parameter-dependent Lyapunov functions. The control design problem is investigated through a case study of a hypersonic aircraft model with parametric uncertainties. Through time-scale decomposition and a series of function approximations, the complexity of the aircraft model is reduced to fall within the capability of SDP solvers. The control design problem is then formulated as a convex problem using the dual of the Lyapunov theorem. A nonlinear robust controller is searched using the combined PEA/SOS method. The response of the uncertain aircraft model is evaluated for two sets of pilot commands. As the simulation results show, the aircraft remains stable under up to 50% uncertainty in aerodynamic coefficients and can follow the pilot commands.

  4. Explore GPM IMERG and Other Global Precipitation Products with GES DISC GIOVANNI

    NASA Technical Reports Server (NTRS)

    Liu, Zhong; Ostrenga, Dana M.; Vollmer, Bruce; MacRitchie, Kyle; Kempler, Steven

    2015-01-01

    New features and capabilities in the newly released GIOVANNI allow exploring GPM IMERG (Integrated Multi-satelliE Retrievals for GPM) Early, Late and Final Run global half-hourly and monthly precipitation products as well as other precipitation products distributed by the GES DISC such as TRMM Multi-Satellite Precipitation Analysis (TMPA), MERRA (Modern Era Retrospective-Analysis for Research and Applications), NLDAS (North American Land Data Assimilation Systems), GLDAS (Global Land Data Assimilation Systems), etc. GIOVANNI is a web-based tool developed by the GES DISC (Goddard Earth Sciences and Data Information Services Center) to visualize and analyze Earth science data without having to download data and software. The new interface in GIOVANNI allows searching and filtering precipitation products from different NASA missions and projects and expands the capabilities to inter-compare different precipitation products in one interface. Knowing differences in precipitation products is important to identify issues in retrieval algorithms, biases, uncertainties, etc. Due to different formats, data structures, units and so on, it is not easy to inter-compare precipitation products. Newly added features and capabilities (unit conversion, regridding, etc.) in GIOVANNI make inter-comparisons possible. In this presentation, we will describe these new features and capabilities along with examples.

  5. Uncertainty quantification and reliability assessment in operational oil spill forecast modeling system.

    PubMed

    Hou, Xianlong; Hodges, Ben R; Feng, Dongyu; Liu, Qixiao

    2017-03-15

    As oil transport increasing in the Texas bays, greater risks of ship collisions will become a challenge, yielding oil spill accidents as a consequence. To minimize the ecological damage and optimize rapid response, emergency managers need to be informed with how fast and where oil will spread as soon as possible after a spill. The state-of-the-art operational oil spill forecast modeling system improves the oil spill response into a new stage. However uncertainty due to predicted data inputs often elicits compromise on the reliability of the forecast result, leading to misdirection in contingency planning. Thus understanding the forecast uncertainty and reliability become significant. In this paper, Monte Carlo simulation is implemented to provide parameters to generate forecast probability maps. The oil spill forecast uncertainty is thus quantified by comparing the forecast probability map and the associated hindcast simulation. A HyosPy-based simple statistic model is developed to assess the reliability of an oil spill forecast in term of belief degree. The technologies developed in this study create a prototype for uncertainty and reliability analysis in numerical oil spill forecast modeling system, providing emergency managers to improve the capability of real time operational oil spill response and impact assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Disseminating the unit of mass from multiple primary realisations

    NASA Astrophysics Data System (ADS)

    Nielsen, Lars

    2016-12-01

    When a new definition of the kilogram has been adopted in 2018 as expected, the unit of mass will be realised by the watt balance method, the x-ray crystal density method or perhaps other primary methods still to be developed. So far, the standard uncertainties associated with the available primary methods are at least one order of magnitude larger than the standard uncertainty associated with mass comparisons using mass comparators, so differences in primary realisations of the kilogram are easily detected, whereas many National Metrology Institutes would have to increase their calibration and measurement capabilities (CMCs) if they were traceable to a single primary realisation. This paper presents a scheme for obtaining traceability to multiple primary realisations of the kilogram using a small group of stainless steel 1 kg weights, which are allowed to change their masses over time in a way known to be realistic, and which are calibrated and stored in air. An analysis of the scheme shows that if the relative standard uncertainties of future primary realisations are equal to the relative standard uncertainties of the present methods used to measure the Planck constant, the unit of mass can be disseminated with a standard uncertainty less than 0.015 mg, which matches the smallest CMCs currently claimed for the calibration of 1 kg weights.

  7. An investigation of techniques for the measurement and interpretation of cosmic ray isotopic abundances. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M. E.

    1977-01-01

    An instrument, the Caltech High Energy Isotope Spectrometer Telescope was developed to measure isotopic abundances of cosmic ray nuclei by employing an energy loss - residual energy technique. A detailed analysis was made of the mass resolution capabilities of this instrument. A formalism, based on the leaky box model of cosmic ray propagation, was developed for obtaining isotopic abundance ratios at the cosmic ray sources from abundances measured in local interstellar space for elements having three or more stable isotopes, one of which is believed to be absent at the cosmic ray sources. It was shown that the dominant sources of uncertainty in the derived source ratios are uncorrelated errors in the fragmentation cross sections and statistical uncertainties in measuring local interstellar abundances. These results were applied to estimate the extent to which uncertainties must be reduced in order to distinguish between cosmic ray production in a solar-like environment and in various environments with greater neutron enrichments.

  8. Probabilistic migration modelling focused on functional barrier efficiency and low migration concepts in support of risk assessment.

    PubMed

    Brandsch, Rainer

    2017-10-01

    Migration modelling provides reliable migration estimates from food-contact materials (FCM) to food or food simulants based on mass-transfer parameters like diffusion and partition coefficients related to individual materials. In most cases, mass-transfer parameters are not readily available from the literature and for this reason are estimated with a given uncertainty. Historically, uncertainty was accounted for by introducing upper limit concepts first, turning out to be of limited applicability due to highly overestimated migration results. Probabilistic migration modelling gives the possibility to consider uncertainty of the mass-transfer parameters as well as other model inputs. With respect to a functional barrier, the most important parameters among others are the diffusion properties of the functional barrier and its thickness. A software tool that accepts distribution as inputs and is capable of applying Monte Carlo methods, i.e., random sampling from the input distributions of the relevant parameters (i.e., diffusion coefficient and layer thickness), predicts migration results with related uncertainty and confidence intervals. The capabilities of probabilistic migration modelling are presented in the view of three case studies (1) sensitivity analysis, (2) functional barrier efficiency and (3) validation by experimental testing. Based on the predicted migration by probabilistic migration modelling and related exposure estimates, safety evaluation of new materials in the context of existing or new packaging concepts is possible. Identifying associated migration risk and potential safety concerns in the early stage of packaging development is possible. Furthermore, dedicated material selection exhibiting required functional barrier efficiency under application conditions becomes feasible. Validation of the migration risk assessment by probabilistic migration modelling through a minimum of dedicated experimental testing is strongly recommended.

  9. Balancing exploration, uncertainty and computational demands in many objective reservoir optimization

    NASA Astrophysics Data System (ADS)

    Zatarain Salazar, Jazmin; Reed, Patrick M.; Quinn, Julianne D.; Giuliani, Matteo; Castelletti, Andrea

    2017-11-01

    Reservoir operations are central to our ability to manage river basin systems serving conflicting multi-sectoral demands under increasingly uncertain futures. These challenges motivate the need for new solution strategies capable of effectively and efficiently discovering the multi-sectoral tradeoffs that are inherent to alternative reservoir operation policies. Evolutionary many-objective direct policy search (EMODPS) is gaining importance in this context due to its capability of addressing multiple objectives and its flexibility in incorporating multiple sources of uncertainties. This simulation-optimization framework has high potential for addressing the complexities of water resources management, and it can benefit from current advances in parallel computing and meta-heuristics. This study contributes a diagnostic assessment of state-of-the-art parallel strategies for the auto-adaptive Borg Multi Objective Evolutionary Algorithm (MOEA) to support EMODPS. Our analysis focuses on the Lower Susquehanna River Basin (LSRB) system where multiple sectoral demands from hydropower production, urban water supply, recreation and environmental flows need to be balanced. Using EMODPS with different parallel configurations of the Borg MOEA, we optimize operating policies over different size ensembles of synthetic streamflows and evaporation rates. As we increase the ensemble size, we increase the statistical fidelity of our objective function evaluations at the cost of higher computational demands. This study demonstrates how to overcome the mathematical and computational barriers associated with capturing uncertainties in stochastic multiobjective reservoir control optimization, where parallel algorithmic search serves to reduce the wall-clock time in discovering high quality representations of key operational tradeoffs. Our results show that emerging self-adaptive parallelization schemes exploiting cooperative search populations are crucial. Such strategies provide a promising new set of tools for effectively balancing exploration, uncertainty, and computational demands when using EMODPS.

  10. Tower-Based Greenhouse Gas Measurement Network Design---The National Institute of Standards and Technology North East Corridor Testbed.

    PubMed

    Lopez-Coto, Israel; Ghosh, Subhomoy; Prasad, Kuldeep; Whetstone, James

    2017-09-01

    The North-East Corridor (NEC) Testbed project is the 3rd of three NIST (National Institute of Standards and Technology) greenhouse gas emissions testbeds designed to advance greenhouse gas measurements capabilities. A design approach for a dense observing network combined with atmospheric inversion methodologies is described. The Advanced Research Weather Research and Forecasting Model with the Stochastic Time-Inverted Lagrangian Transport model were used to derive the sensitivity of hypothetical observations to surface greenhouse gas emissions (footprints). Unlike other network design algorithms, an iterative selection algorithm, based on a k -means clustering method, was applied to minimize the similarities between the temporal response of each site and maximize sensitivity to the urban emissions contribution. Once a network was selected, a synthetic inversion Bayesian Kalman filter was used to evaluate observing system performance. We present the performances of various measurement network configurations consisting of differing numbers of towers and tower locations. Results show that an overly spatially compact network has decreased spatial coverage, as the spatial information added per site is then suboptimal as to cover the largest possible area, whilst networks dispersed too broadly lose capabilities of constraining flux uncertainties. In addition, we explore the possibility of using a very high density network of lower cost and performance sensors characterized by larger uncertainties and temporal drift. Analysis convergence is faster with a large number of observing locations, reducing the response time of the filter. Larger uncertainties in the observations implies lower values of uncertainty reduction. On the other hand, the drift is a bias in nature, which is added to the observations and, therefore, biasing the retrieved fluxes.

  11. Tower-based greenhouse gas measurement network design—The National Institute of Standards and Technology North East Corridor Testbed

    NASA Astrophysics Data System (ADS)

    Lopez-Coto, Israel; Ghosh, Subhomoy; Prasad, Kuldeep; Whetstone, James

    2017-09-01

    The North-East Corridor (NEC) Testbed project is the 3rd of three NIST (National Institute of Standards and Technology) greenhouse gas emissions testbeds designed to advance greenhouse gas measurements capabilities. A design approach for a dense observing network combined with atmospheric inversion methodologies is described. The Advanced Research Weather Research and Forecasting Model with the Stochastic Time-Inverted Lagrangian Transport model were used to derive the sensitivity of hypothetical observations to surface greenhouse gas emissions (footprints). Unlike other network design algorithms, an iterative selection algorithm, based on a k-means clustering method, was applied to minimize the similarities between the temporal response of each site and maximize sensitivity to the urban emissions contribution. Once a network was selected, a synthetic inversion Bayesian Kalman filter was used to evaluate observing system performance. We present the performances of various measurement network configurations consisting of differing numbers of towers and tower locations. Results show that an overly spatially compact network has decreased spatial coverage, as the spatial information added per site is then suboptimal as to cover the largest possible area, whilst networks dispersed too broadly lose capabilities of constraining flux uncertainties. In addition, we explore the possibility of using a very high density network of lower cost and performance sensors characterized by larger uncertainties and temporal drift. Analysis convergence is faster with a large number of observing locations, reducing the response time of the filter. Larger uncertainties in the observations implies lower values of uncertainty reduction. On the other hand, the drift is a bias in nature, which is added to the observations and, therefore, biasing the retrieved fluxes.

  12. Setting priorities for research on pollution reduction functions of agricultural buffers.

    PubMed

    Dosskey, Michael G

    2002-11-01

    The success of buffer installation initiatives and programs to reduce nonpoint source pollution of streams on agricultural lands will depend the ability of local planners to locate and design buffers for specific circumstances with substantial and predictable results. Current predictive capabilities are inadequate, and major sources of uncertainty remain. An assessment of these uncertainties cautions that there is greater risk of overestimating buffer impact than underestimating it. Priorities for future research are proposed that will lead more quickly to major advances in predictive capabilities. Highest priority is given for work on the surface runoff filtration function, which is almost universally important to the amount of pollution reduction expected from buffer installation and for which there remain major sources of uncertainty for predicting level of impact. Foremost uncertainties surround the extent and consequences of runoff flow concentration and pollutant accumulation. Other buffer functions, including filtration of groundwater nitrate and stabilization of channel erosion sources of sediments, may be important in some regions. However, uncertainty surrounds our ability to identify and quantify the extent of site conditions where buffer installation can substantially reduce stream pollution in these ways. Deficiencies in predictive models reflect gaps in experimental information as well as technology to account for spatial heterogeneity of pollutant sources, pathways, and buffer capabilities across watersheds. Since completion of a comprehensive watershed-scale buffer model is probably far off, immediate needs call for simpler techniques to gage the probable impacts of buffer installation at local scales.

  13. A parallel calibration utility for WRF-Hydro on high performance computers

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wang, C.; Kotamarthi, V. R.

    2017-12-01

    A successful modeling of complex hydrological processes comprises establishing an integrated hydrological model which simulates the hydrological processes in each water regime, calibrates and validates the model performance based on observation data, and estimates the uncertainties from different sources especially those associated with parameters. Such a model system requires large computing resources and often have to be run on High Performance Computers (HPC). The recently developed WRF-Hydro modeling system provides a significant advancement in the capability to simulate regional water cycles more completely. The WRF-Hydro model has a large range of parameters such as those in the input table files — GENPARM.TBL, SOILPARM.TBL and CHANPARM.TBL — and several distributed scaling factors such as OVROUGHRTFAC. These parameters affect the behavior and outputs of the model and thus may need to be calibrated against the observations in order to obtain a good modeling performance. Having a parameter calibration tool specifically for automate calibration and uncertainty estimates of WRF-Hydro model can provide significant convenience for the modeling community. In this study, we developed a customized tool using the parallel version of the model-independent parameter estimation and uncertainty analysis tool, PEST, to enabled it to run on HPC with PBS and SLURM workload manager and job scheduler. We also developed a series of PEST input file templates that are specifically for WRF-Hydro model calibration and uncertainty analysis. Here we will present a flood case study occurred in April 2013 over Midwest. The sensitivity and uncertainties are analyzed using the customized PEST tool we developed.

  14. CCQM-K102: polybrominated diphenyl ethers in sediment

    NASA Astrophysics Data System (ADS)

    Ricci, Marina; Shegunova, Penka; Conneely, Patrick; Becker, Roland; Maldonado Torres, Mauricio; Arce Osuna, Mariana; On, Tang Po; Man, Lee Ho; Baek, Song-Yee; Kim, Byungjoo; Hopley, Christopher; Liscio, Camilla; Warren, John; Le Diouron, Véronique; Lardy-Fontan, Sophie; Lalere, Béatrice; Mingwu, Shao; Kucklick, John; Vamathevan, Veronica; Matsuyama, Shigetomo; Numata, Masahiko; Brits, Martin; Quinn, Laura; Fernandes-Whaley, Maria; Ceyhan Gören, Ahmet; Binici, Burcu; Konopelko, Leonid; Krylov, Anatoli; Mikheeva, Alena

    2017-01-01

    The key comparison CCQM-K102: Polybrominated diphenyl ethers in sediment was coordinated by the JRC, Directorate F - Health, Consumers & Reference Materials, Geel (Belgium) under the auspices of the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM). Thirteen National Metrology institutes or Designated Institutes and the JRC participated. Participants were requested to report the mass fraction (on a dry mass basis) of BDE 47, 99 and 153 in the freshwater sediment study material. The sediment originated from a river in Belgium and contained PBDEs (and other pollutants) at levels commonly found in environmental samples. The comparison was designed to demonstrate participants' capability of analysing non-polar organic molecules in abiotic dried matrices (approximate range of molecular weights: 100 to 800 g/mol, polarity corresponding to pKow < -2, range of mass fraction: 1-1000 μg/kg). All participants (except one using ultrasonic extraction) applied Pressurised Liquid Extraction or Soxhlet, while the instrumental analysis was performed with GC-MS/MS, GC-MS or GC-HRMS. Isotope Dilution Mass Spectrometry approach was used for quantification (except in one case). The assigned Key Comparison Reference Values (KCRVs) were the medians of thirteen results for BDE 47 and eleven results for BDE 99 and 153, respectively. BDE 47 was assigned a KCRV of 15.60 μg/kg with a combined standard uncertainty of 0.41 μg/kg, BDE 99 was assigned a KCRV of 33.69 μg/kg with a combined standard uncertainty of 0.81 μg/kg and BDE 153 was assigned a KCRV of 6.28 μg/kg with a combined standard uncertainty of 0.28 μg/kg. The k-factor for the estimation of the expanded uncertainty of the KCRVs was chosen as k = 2. The degree of equivalence (with the KCRV) and its uncertainty were calculated for each result. Most of the participants to CCQM-K102 were able to demonstrate or confirm their capabilities in the analysis of non-polar organic molecules in abiotic dried matrices. Throughout the study it became clear that matrix interferences can influence the accurate quantification of the PBDEs, if the analytical methodology applied is not appropriately adapted and optimised. This comparison shows that quantification of PBDEs at the μg/kg low-middle range in a challenging environmental abiotic dried matrix can be achieved with relative expanded uncertainties below 15 % (more than 70 % of participating laboratories), well in line with the best measurement performances in the environmental analysis field. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  15. Impact of rheology on probabilistic forecasts of sea ice trajectories: application for search and rescue operations in the Arctic

    NASA Astrophysics Data System (ADS)

    Rabatel, Matthias; Rampal, Pierre; Carrassi, Alberto; Bertino, Laurent; Jones, Christopher K. R. T.

    2018-03-01

    We present a sensitivity analysis and discuss the probabilistic forecast capabilities of the novel sea ice model neXtSIM used in hindcast mode. The study pertains to the response of the model to the uncertainty on winds using probabilistic forecasts of ice trajectories. neXtSIM is a continuous Lagrangian numerical model that uses an elasto-brittle rheology to simulate the ice response to external forces. The sensitivity analysis is based on a Monte Carlo sampling of 12 members. The response of the model to the uncertainties is evaluated in terms of simulated ice drift distances from their initial positions, and from the mean position of the ensemble, over the mid-term forecast horizon of 10 days. The simulated ice drift is decomposed into advective and diffusive parts that are characterised separately both spatially and temporally and compared to what is obtained with a free-drift model, that is, when the ice rheology does not play any role in the modelled physics of the ice. The seasonal variability of the model sensitivity is presented and shows the role of the ice compactness and rheology in the ice drift response at both local and regional scales in the Arctic. Indeed, the ice drift simulated by neXtSIM in summer is close to the one obtained with the free-drift model, while the more compact and solid ice pack shows a significantly different mechanical and drift behaviour in winter. For the winter period analysed in this study, we also show that, in contrast to the free-drift model, neXtSIM reproduces the sea ice Lagrangian diffusion regimes as found from observed trajectories. The forecast capability of neXtSIM is also evaluated using a large set of real buoy's trajectories and compared to the capability of the free-drift model. We found that neXtSIM performs significantly better in simulating sea ice drift, both in terms of forecast error and as a tool to assist search and rescue operations, although the sources of uncertainties assumed for the present experiment are not sufficient for complete coverage of the observed IABP positions.

  16. Achieving Robustness to Uncertainty for Financial Decision-making

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnum, George M.; Van Buren, Kendra L.; Hemez, Francois M.

    2014-01-10

    This report investigates the concept of robustness analysis to support financial decision-making. Financial models, that forecast future stock returns or market conditions, depend on assumptions that might be unwarranted and variables that might exhibit large fluctuations from their last-known values. The analysis of robustness explores these sources of uncertainty, and recommends model settings such that the forecasts used for decision-making are as insensitive as possible to the uncertainty. A proof-of-concept is presented with the Capital Asset Pricing Model. The robustness of model predictions is assessed using info-gap decision theory. Info-gaps are models of uncertainty that express the “distance,” or gapmore » of information, between what is known and what needs to be known in order to support the decision. The analysis yields a description of worst-case stock returns as a function of increasing gaps in our knowledge. The analyst can then decide on the best course of action by trading-off worst-case performance with “risk”, which is how much uncertainty they think needs to be accommodated in the future. The report also discusses the Graphical User Interface, developed using the MATLAB® programming environment, such that the user can control the analysis through an easy-to-navigate interface. Three directions of future work are identified to enhance the present software. First, the code should be re-written using the Python scientific programming software. This change will achieve greater cross-platform compatibility, better portability, allow for a more professional appearance, and render it independent from a commercial license, which MATLAB® requires. Second, a capability should be developed to allow users to quickly implement and analyze their own models. This will facilitate application of the software to the evaluation of proprietary financial models. The third enhancement proposed is to add the ability to evaluate multiple models simultaneously. When two models reflect past data with similar accuracy, the more robust of the two is preferable for decision-making because its predictions are, by definition, less sensitive to the uncertainty.« less

  17. Approaches in highly parameterized inversion—PEST++ Version 3, a Parameter ESTimation and uncertainty analysis software suite optimized for large environmental models

    USGS Publications Warehouse

    Welter, David E.; White, Jeremy T.; Hunt, Randall J.; Doherty, John E.

    2015-09-18

    The PEST++ Version 3 software suite can be compiled for Microsoft Windows®4 and Linux®5 operating systems; the source code is available in a Microsoft Visual Studio®6 2013 solution; Linux Makefiles are also provided. PEST++ Version 3 continues to build a foundation for an open-source framework capable of producing robust and efficient parameter estimation tools for large environmental models.

  18. The Defense Threat Reduction Agency's Technical Nuclear Forensics Research and Development Program

    NASA Astrophysics Data System (ADS)

    Franks, J.

    2015-12-01

    The Defense Threat Reduction Agency (DTRA) Technical Nuclear Forensics (TNF) Research and Development (R&D) Program's overarching goal is to design, develop, demonstrate, and transition advanced technologies and methodologies that improve the interagency operational capability to provide forensics conclusions after the detonation of a nuclear device. This goal is attained through the execution of three focus areas covering the span of the TNF process to enable strategic decision-making (attribution): Nuclear Forensic Materials Exploitation - Development of targeted technologies, methodologies and tools enabling the timely collection, analysis and interpretation of detonation materials.Prompt Nuclear Effects Exploitation - Improve ground-based capabilities to collect prompt nuclear device outputs and effects data for rapid, complementary and corroborative information.Nuclear Forensics Device Characterization - Development of a validated and verified capability to reverse model a nuclear device with high confidence from observables (e.g., prompt diagnostics, sample analysis, etc.) seen after an attack. This presentation will outline DTRA's TNF R&D strategy and current investments, with efforts focusing on: (1) introducing new technical data collection capabilities (e.g., ground-based prompt diagnostics sensor systems; innovative debris collection and analysis); (2) developing new TNF process paradigms and concepts of operations to decrease timelines and uncertainties, and increase results confidence; (3) enhanced validation and verification (V&V) of capabilities through technology evaluations and demonstrations; and (4) updated weapon output predictions to account for the modern threat environment. A key challenge to expanding these efforts to a global capability is the need for increased post-detonation TNF international cooperation, collaboration and peer reviews.

  19. Probabilistic Assessment of National Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Shiao, M.; Chamis, C. C.

    1996-01-01

    A preliminary probabilistic structural assessment of the critical section of National Wind Tunnel (NWT) is performed using NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) computer code. Thereby, the capabilities of NESSUS code have been demonstrated to address reliability issues of the NWT. Uncertainties in the geometry, material properties, loads and stiffener location on the NWT are considered to perform the reliability assessment. Probabilistic stress, frequency, buckling, fatigue and proof load analyses are performed. These analyses cover the major global and some local design requirements. Based on the assumed uncertainties, the results reveal the assurance of minimum 0.999 reliability for the NWT. Preliminary life prediction analysis results show that the life of the NWT is governed by the fatigue of welds. Also, reliability based proof test assessment is performed.

  20. 48 CFR 16.104 - Factors in selecting contract types.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... provide the bases for negotiating contract pricing arrangements. It is essential that the uncertainties... performance or length of production run. In times of economic uncertainty, contracts extending over a relatively long period may require economic price adjustment terms. (g) Contractor's technical capability and...

  1. A probabilistic technique for the assessment of complex dynamic system resilience

    NASA Astrophysics Data System (ADS)

    Balchanos, Michael Gregory

    In the presence of operational uncertainty, one of the greatest challenges in systems engineering is to ensure system effectiveness, mission capability and survivability for large scale, complex system architectures. Historic events such as the 2003 Northeastern Blackout, and the 2005 Hurricane Katrina, have underlined the great importance of system safety, and survivability. With safety management currently applied on a reactive basis to emerging incidents and risk challenges, there is a paradigm shift from passive, reactive and diagnosis-based approaches to the development of architectures that will autonomously manage safety and survivability through active, proactive and prognosis-based engineering solutions. The shift aims to bring safety considerations early in the engineering design process, in order to reduce retrofitting and additional safety certification costs, increase flexibility in risk management, and essentially make safety be "built-in" the design. As a possible enabling research direction, resilience engineering is an emerging discipline, pertinent to safety management, which offers alternative insights on the design of more safe and survivable system architectures. Conceptually, resilience engineering brings new perspectives on the understanding of system safety, accidents, failures, performance degradations and risk. A resilient system can "absorb" the impact of change due to unexpected disturbances, while it "adapts" to change, in order to maintain the system's physical integrity and capability to carry on with its mission. The leading hypothesis advocates that if a complex dynamic system is more resilient, then it would be more survivable, thus more effective, despite the unexpected disturbances that could affect its normal operating conditions. For investigating the impact of more resilient systems on survivability and safety, a framework for theoretical resilience estimations has been formulated. It constitutes the basis for quantitative techniques for total system resilience evaluation, based on scenario-based, dynamic system simulations. Physics-based Modeling and Simulation (M&S) is applied for dynamical system behavior analysis, which includes system performance, health monitoring, damage propagation and overall mission capability. For the development of the assessment framework and testing of a resilience assessment technique, a small-scale canonical problem has been formulated, involving a computational model of a degradable and reconfigurable spring-mass-damper SDOF system, in a multiple main and redundant spring configuration. A rule-based feedback controller is responsible for system performance recovery, through the application of different reconfiguration strategies and strategic activation of the necessary main or redundant springs. Uncertainty effects on system operation are introduced through disturbance factors, such as external forces with varying magnitude, input frequency, event duration and occurrence time. Such factors are the basis for scenario formulation, in support of a Monte Carlo simulation analysis. Case studies with varying levels of damping and different reconfiguration strategies, involve the investigation of operational uncertainty effects on system performance, mission capability, and system survivability. These studies furthermore explore uncertainty effects on resilience functions that describe the system's capacities on "restoring" mission capability, on "absorbing" the effects of changing conditions, and on "adapting" to the occurring change. The proposed resilience assessment technique or the Topological Investigation for Resilient and Effective Systems, through Increased Architecture Survivability (TIRESIAS) is then applied and demonstrated for a naval system application, in the form of a reduced scale, reconfigurable cooling network of a naval combatant. Uncertainty effects are modeled through combinations of different number of network fluid leaks. The TIRESIAS approach on the system baseline (32-control valve configuration) has allowed for the investigation of leak effects on survival times, mission capability degradations, as well as the resilience function capacities. As part of the technique demonstration, case studies were conducted for different architecture configurations, which have been generated for different total number of control valves and valve locations on the topology.

  2. Overview of computational control research at UT Austin

    NASA Technical Reports Server (NTRS)

    Bong, Wie

    1989-01-01

    An overview of current research activities at UT Austin is presented to discuss certain technical issues in the following areas: (1) Computer-Aided Nonlinear Control Design: In this project, the describing function method is employed for the nonlinear control analysis and design of a flexible spacecraft equipped with pulse modulated reaction jets. INCA program has been enhanced to allow the numerical calculation of describing functions as well as the nonlinear limit cycle analysis capability in the frequency domain; (2) Robust Linear Quadratic Gaussian (LQG) Compensator Synthesis: Robust control design techniques and software tools are developed for flexible space structures with parameter uncertainty. In particular, an interactive, robust multivariable control design capability is being developed for INCA program; and (3) LQR-Based Autonomous Control System for the Space Station: In this project, real time implementation of LQR-based autonomous control system is investigated for the space station with time-varying inertias and with significant multibody dynamic interactions.

  3. Dissertation Defense Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    NASA Technical Reports Server (NTRS)

    Groves, Curtis Edward

    2014-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional "validation by test only" mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System /spacecraft system. Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. For the flow regime being analyzed (turbulent, three-dimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.

  4. Dissertation Defense: Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    NASA Technical Reports Server (NTRS)

    Groves, Curtis Edward

    2014-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional validation by test only mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions.Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations. This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System spacecraft system.Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. For the flow regime being analyzed (turbulent, three-dimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.

  5. Simultaneous three-dimensional velocity and mixing measurements by use of laser Doppler velocimetry and fluorescence probes in a water tunnel

    NASA Technical Reports Server (NTRS)

    Neuhart, Dan H.; Wing, David J.; Henderson, Uleses C., Jr.

    1994-01-01

    A water tunnel investigation was conducted to demonstrate the capabilities of a laser-based instrument that can measure velocity and fluorescence intensity simultaneously. Fluorescence intensity of an excited fluorescent dye is directly related to concentration level and is used to indicate the extent of mixing in flow. This instrument is a three-dimensional laser Doppler velocimeter (LDV) in combination with a fluorometer for measuring fluorescence intensity variations. This capability allows simultaneous flow measurements of the three orthogonal velocity components and mixing within the same region. Two different flows which were generated by two models were studied: a generic nonaxisymmetric nozzle propulsion simulation model with an auxiliary internal water source that generated a jet flow and an axisymmetric forebody model with a circular sector strake that generated a vortex flow. The off-body flow fields around these models were investigated in the Langley 16- by 24-Inch Water Tunnel. The experimental results were used to calculate 17 quantities that included mean and fluctuating velocities, Reynolds stresses, mean and fluctuating dye fluorescence intensities (proportional to concentration), and fluctuating velocity and dye concentration correlations. An uncertainty analysis was performed to establish confidence levels in the experimental results. In general, uncertainties in mean velocities varied between 1 and 7 percent of free-stream velocity; uncertainties in fluctuating velocities varied between 1 and 5 percent of reference values. The results show characteristics that are unique to each type of flow.

  6. Emergent structures and understanding from a comparative uncertainty analysis of the FUSE rainfall-runoff modelling platform for >1,100 catchments

    NASA Astrophysics Data System (ADS)

    Freer, J. E.; Odoni, N. A.; Coxon, G.; Bloomfield, J.; Clark, M. P.; Greene, S.; Johnes, P.; Macleod, C.; Reaney, S. M.

    2013-12-01

    If we are to learn about catchments and their hydrological function then a range of analysis techniques can be proposed from analysing observations to building complex physically based models using detailed attributes of catchment characteristics. Decisions regarding which technique is fit for a specific purpose will depend on the data available, computing resources, and the underlying reasons for the study. Here we explore defining catchment function in a relatively general sense expressed via a comparison of multiple model structures within an uncertainty analysis framework. We use the FUSE (Framework for Understanding Structural Errors - Clark et al., 2008) rainfall-runoff modelling platform and the GLUE (Generalised Likelihood Uncertainty Estimation - Beven and Freer, 2001) uncertainty analysis framework. Using these techniques we assess two main outcomes: 1) Benchmarking our predictive capability using discharge performance metrics for a diverse range of catchments across the UK 2) evaluating emergent behaviour for each catchment and/or region expressed as ';best performing' model structures that may be equally plausible representations of catchment behaviour. We shall show how such comparative hydrological modelling studies show patterns of emergent behaviour linked both to seasonal responses and to different geoclimatic regions. These results have implications for the hydrological community regarding how models can help us learn about places as hypothesis testing tools. Furthermore we explore what the limits are to such an analysis when dealing with differing data quality and information content from ';pristine' to less well characterised and highly modified catchment domains. This research has been piloted in the UK as part of the Environmental Virtual Observatory programme (EVOp), funded by NERC to demonstrate the use of cyber-infrastructure and cloud computing resources to develop better methods of linking data and models and to support scenario analysis for research, policy and operational needs.

  7. Uncertainty in Multimodel Water Flow Simulation Associated with Pedotransfer Functions and Weighing Methods

    USDA-ARS?s Scientific Manuscript database

    Multimodeling (MM) has been developed during the last decade to improve prediction capability of hydrological models. The MM combined with the pedotransfer functions (PTFs) was successfully applied to soil water flow simulations. This study examined the uncertainty in water content simulations assoc...

  8. OARE flight maneuvers and calibration measurements on STS-58

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Nicholson, John Y.; Ritter, James R.; Larman, Kevin T.

    1994-01-01

    The Orbital Acceleration Research Experiment (OARE), which has flown on STS-40, STS-50, and STS-58, contains a three axis accelerometer with a single, nonpendulous, electrostatically suspended proofmass which can resolve accelerations to the nano-g level. The experiment also contains a full calibration station to permit in situ bias and scale factor calibration. This on-orbit calibration capability eliminates the large uncertainty of ground-based calibrations encountered with accelerometers flown in the past on the orbiter, thus providing absolute acceleration measurement accuracy heretofore unachievable. This is the first time accelerometer scale factor measurements have been performed on orbit. A detailed analysis of the calibration process is given along with results of the calibration factors from the on-orbit OARE flight measurements on STS-58. In addition, the analysis of OARE flight maneuver data used to validate the scale factor measurements in the sensor's most sensitive range is also presented. Estimates on calibration uncertainties are discussed. This provides bounds on the STS-58 absolute acceleration measurements for future applications.

  9. User Guidelines and Best Practices for CASL VUQ Analysis Using Dakota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian M.; Coleman, Kayla; Hooper, Russell W.

    2016-10-04

    In general, Dakota is the Consortium for Advanced Simulation of Light Water Reactors (CASL) delivery vehicle for verification, validation, and uncertainty quantification (VUQ) algorithms. It permits ready application of the VUQ methods described above to simulation codes by CASL researchers, code developers, and application engineers. More specifically, the CASL VUQ Strategy [33] prescribes the use of Predictive Capability Maturity Model (PCMM) assessments [37]. PCMM is an expert elicitation tool designed to characterize and communicate completeness of the approaches used for computational model definition, verification, validation, and uncertainty quantification associated with an intended application. Exercising a computational model with the methodsmore » in Dakota will yield, in part, evidence for a predictive capability maturity model (PCMM) assessment. Table 1.1 summarizes some key predictive maturity related activities (see details in [33]), with examples of how Dakota fits in. This manual offers CASL partners a guide to conducting Dakota-based VUQ studies for CASL problems. It motivates various classes of Dakota methods and includes examples of their use on representative application problems. On reading, a CASL analyst should understand why and how to apply Dakota to a simulation problem.« less

  10. Observations and simulations of the western United States' hydroclimate

    NASA Astrophysics Data System (ADS)

    Guirguis, Kristen

    While very important from an economical and societal point of view, estimating precipitation in the western United States remains an unsolved and challenging problem. This is due to difficulties in observing and modeling precipitation in complex terrain. This research examines this issue by (i) providing a systematic evaluation of precipitation observations to quantify data uncertainty; and (ii) investigating the ability of the Ocean-Land-Atmosphere Model (OLAM) to simulate the winter hydroclimate in this region. This state-of-the-art, non-hydrostatic model has the capability of simulating simultaneously all scales of motions at various resolutions. This research intercompares nine precipitation datasets commonly used in hydrometeorological research in two ways. First, using principal component analysis, a precipitation climatology is conducted for the western U.S. from which five unique precipitation climates are identified. From this analysis, data uncertainty is shown to be primarily due to differences in (i) precipitation over the Rocky Mountains, (ii) the eastward wet-to-dry precipitation gradient during the cold season, (iii) the North American Monsoon signal, and (iv) precipitation in the desert southwest during spring and summer. The second intercomparison uses these five precipitation regions to provide location-specific assessments of uncertainty, which is shown to be dependent on season, location. Long-range weather forecasts on the order of a season are important for water-scarce regions such as the western U.S. The modeling component of this research looks at the ability of the OLAM to simulate the hydroclimate in the western U.S. during the winter of 1999. Six global simulations are run, each with a different spatial resolution over the western U.S. (360 km down to 11 km). For this study, OLAM is configured as for a long-range seasonal hindcast but with observed sea surface temperatures. OLAM precipitation compares well against observations, and is generally within the range of data uncertainty. Observed and simulated synoptic meteorological conditions are examined during the wettest and driest events. OLAM is shown to reproduce the appropriate anomaly fields, which is encouraging since it demonstrates the capability of a global climate model, driven only by SSTs and initial conditions, to represent meteorological features associated with daily precipitation variability.

  11. Advanced Small Modular Reactor Economics Model Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Thomas J.

    2014-10-01

    The US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (SMR) research and development activities focus on four key areas: Developing assessment methods for evaluating advanced SMR technologies and characteristics; and Developing and testing of materials, fuels and fabrication techniques; and Resolving key regulatory issues identified by US Nuclear Regulatory Commission and industry; and Developing advanced instrumentation and controls and human-machine interfaces. This report focuses on development of assessment methods to evaluate advanced SMR technologies and characteristics. Specifically, this report describes the expansion and application of the economic modeling effort at Oak Ridge National Laboratory. Analysis ofmore » the current modeling methods shows that one of the primary concerns for the modeling effort is the handling of uncertainty in cost estimates. Monte Carlo–based methods are commonly used to handle uncertainty, especially when implemented by a stand-alone script within a program such as Python or MATLAB. However, a script-based model requires each potential user to have access to a compiler and an executable capable of handling the script. Making the model accessible to multiple independent analysts is best accomplished by implementing the model in a common computing tool such as Microsoft Excel. Excel is readily available and accessible to most system analysts, but it is not designed for straightforward implementation of a Monte Carlo–based method. Using a Monte Carlo algorithm requires in-spreadsheet scripting and statistical analyses or the use of add-ons such as Crystal Ball. An alternative method uses propagation of error calculations in the existing Excel-based system to estimate system cost uncertainty. This method has the advantage of using Microsoft Excel as is, but it requires the use of simplifying assumptions. These assumptions do not necessarily bring into question the analytical results. In fact, the analysis shows that the propagation of error method introduces essentially negligible error, especially when compared to the uncertainty associated with some of the estimates themselves. The results of these uncertainty analyses generally quantify and identify the sources of uncertainty in the overall cost estimation. The obvious generalization—that capital cost uncertainty is the main driver—can be shown to be an accurate generalization for the current state of reactor cost analysis. However, the detailed analysis on a component-by-component basis helps to demonstrate which components would benefit most from research and development to decrease the uncertainty, as well as which components would benefit from research and development to decrease the absolute cost.« less

  12. Bayesian uncertainty quantification in linear models for diffusion MRI.

    PubMed

    Sjölund, Jens; Eklund, Anders; Özarslan, Evren; Herberthson, Magnus; Bånkestad, Maria; Knutsson, Hans

    2018-03-29

    Diffusion MRI (dMRI) is a valuable tool in the assessment of tissue microstructure. By fitting a model to the dMRI signal it is possible to derive various quantitative features. Several of the most popular dMRI signal models are expansions in an appropriately chosen basis, where the coefficients are determined using some variation of least-squares. However, such approaches lack any notion of uncertainty, which could be valuable in e.g. group analyses. In this work, we use a probabilistic interpretation of linear least-squares methods to recast popular dMRI models as Bayesian ones. This makes it possible to quantify the uncertainty of any derived quantity. In particular, for quantities that are affine functions of the coefficients, the posterior distribution can be expressed in closed-form. We simulated measurements from single- and double-tensor models where the correct values of several quantities are known, to validate that the theoretically derived quantiles agree with those observed empirically. We included results from residual bootstrap for comparison and found good agreement. The validation employed several different models: Diffusion Tensor Imaging (DTI), Mean Apparent Propagator MRI (MAP-MRI) and Constrained Spherical Deconvolution (CSD). We also used in vivo data to visualize maps of quantitative features and corresponding uncertainties, and to show how our approach can be used in a group analysis to downweight subjects with high uncertainty. In summary, we convert successful linear models for dMRI signal estimation to probabilistic models, capable of accurate uncertainty quantification. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Studies of aerodynamic technology for VSTOL fighter/attack aircraft

    NASA Technical Reports Server (NTRS)

    Nelms, W. P.

    1978-01-01

    The paper summarizes several studies to develop aerodynamic technology for high performance VSTOL aircraft anticipated after 1990. A contracted study jointly sponsored by NASA-Ames and David Taylor Naval Ship Research and Development Center is emphasized. Four contractors analyzed two vertical-attitude and three horizontal-attitude takeoff and landing concepts with gross weights ranging from about 10433 kg (23,000 lb) to 17236 kg (38,000 lb). The aircraft have supersonic capability, high maneuver performance (sustained load factor 6.2 at Mach 0.6, 3048 m (10,000 ft)) and a 4536 kg (10,000-lb) STO overload capability. The contractors have estimated the aerodynamics and identified aerodynamic uncertainties associated with their concept. Example uncertainties relate to propulsion-induced flows, canard-wing interactions, and top inlets. Wind-tunnel research programs were proposed to investigate these uncertainties.

  14. Uncertainty quantification for nuclear density functional theory and information content of new measurements

    DOE PAGES

    McDonnell, J. D.; Schunck, N.; Higdon, D.; ...

    2015-03-24

    Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squaresmore » optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. In addition, the example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.« less

  15. Uncertainty quantification for nuclear density functional theory and information content of new measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonnell, J. D.; Schunck, N.; Higdon, D.

    2015-03-24

    Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squaresmore » optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. As a result, the example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.« less

  16. Adaptive approaches to biosecurity governance.

    PubMed

    Cook, David C; Liu, Shuang; Murphy, Brendan; Lonsdale, W Mark

    2010-09-01

    This article discusses institutional changes that may facilitate an adaptive approach to biosecurity risk management where governance is viewed as a multidisciplinary, interactive experiment acknowledging uncertainty. Using the principles of adaptive governance, evolved from institutional theory, we explore how the concepts of lateral information flows, incentive alignment, and policy experimentation might shape Australia's invasive species defense mechanisms. We suggest design principles for biosecurity policies emphasizing overlapping complementary response capabilities and the sharing of invasive species risks via a polycentric system of governance. © 2010 Society for Risk Analysis

  17. Receiving water quality assessment: comparison between simplified and detailed integrated urban modelling approaches.

    PubMed

    Mannina, Giorgio; Viviani, Gaspare

    2010-01-01

    Urban water quality management often requires use of numerical models allowing the evaluation of the cause-effect relationship between the input(s) (i.e. rainfall, pollutant concentrations on catchment surface and in sewer system) and the resulting water quality response. The conventional approach to the system (i.e. sewer system, wastewater treatment plant and receiving water body), considering each component separately, does not enable optimisation of the whole system. However, recent gains in understanding and modelling make it possible to represent the system as a whole and optimise its overall performance. Indeed, integrated urban drainage modelling is of growing interest for tools to cope with Water Framework Directive requirements. Two different approaches can be employed for modelling the whole urban drainage system: detailed and simplified. Each has its advantages and disadvantages. Specifically, detailed approaches can offer a higher level of reliability in the model results, but can be very time consuming from the computational point of view. Simplified approaches are faster but may lead to greater model uncertainty due to an over-simplification. To gain insight into the above problem, two different modelling approaches have been compared with respect to their uncertainty. The first urban drainage integrated model approach uses the Saint-Venant equations and the 1D advection-dispersion equations, for the quantity and for the quality aspects, respectively. The second model approach consists of the simplified reservoir model. The analysis used a parsimonious bespoke model developed in previous studies. For the uncertainty analysis, the Generalised Likelihood Uncertainty Estimation (GLUE) procedure was used. Model reliability was evaluated on the basis of capacity of globally limiting the uncertainty. Both models have a good capability to fit the experimental data, suggesting that all adopted approaches are equivalent both for quantity and quality. The detailed model approach is more robust and presents less uncertainty in terms of uncertainty bands. On the other hand, the simplified river water quality model approach shows higher uncertainty and may be unsuitable for receiving water body quality assessment.

  18. Advanced Modeling and Uncertainty Quantification for Flight Dynamics; Interim Results and Challenges

    NASA Technical Reports Server (NTRS)

    Hyde, David C.; Shweyk, Kamal M.; Brown, Frank; Shah, Gautam

    2014-01-01

    As part of the NASA Vehicle Systems Safety Technologies (VSST), Assuring Safe and Effective Aircraft Control Under Hazardous Conditions (Technical Challenge #3), an effort is underway within Boeing Research and Technology (BR&T) to address Advanced Modeling and Uncertainty Quantification for Flight Dynamics (VSST1-7). The scope of the effort is to develop and evaluate advanced multidisciplinary flight dynamics modeling techniques, including integrated uncertainties, to facilitate higher fidelity response characterization of current and future aircraft configurations approaching and during loss-of-control conditions. This approach is to incorporate multiple flight dynamics modeling methods for aerodynamics, structures, and propulsion, including experimental, computational, and analytical. Also to be included are techniques for data integration and uncertainty characterization and quantification. This research shall introduce new and updated multidisciplinary modeling and simulation technologies designed to improve the ability to characterize airplane response in off-nominal flight conditions. The research shall also introduce new techniques for uncertainty modeling that will provide a unified database model comprised of multiple sources, as well as an uncertainty bounds database for each data source such that a full vehicle uncertainty analysis is possible even when approaching or beyond Loss of Control boundaries. Methodologies developed as part of this research shall be instrumental in predicting and mitigating loss of control precursors and events directly linked to causal and contributing factors, such as stall, failures, damage, or icing. The tasks will include utilizing the BR&T Water Tunnel to collect static and dynamic data to be compared to the GTM extended WT database, characterizing flight dynamics in off-nominal conditions, developing tools for structural load estimation under dynamic conditions, devising methods for integrating various modeling elements into a real-time simulation capability, generating techniques for uncertainty modeling that draw data from multiple modeling sources, and providing a unified database model that includes nominal plus increments for each flight condition. This paper presents status of testing in the BR&T water tunnel and analysis of the resulting data and efforts to characterize these data using alternative modeling methods. Program challenges and issues are also presented.

  19. A mixed-unit input-output model for environmental life-cycle assessment and material flow analysis.

    PubMed

    Hawkins, Troy; Hendrickson, Chris; Higgins, Cortney; Matthews, H Scott; Suh, Sangwon

    2007-02-01

    Materials flow analysis models have traditionally been used to track the production, use, and consumption of materials. Economic input-output modeling has been used for environmental systems analysis, with a primary benefit being the capability to estimate direct and indirect economic and environmental impacts across the entire supply chain of production in an economy. We combine these two types of models to create a mixed-unit input-output model that is able to bettertrack economic transactions and material flows throughout the economy associated with changes in production. A 13 by 13 economic input-output direct requirements matrix developed by the U.S. Bureau of Economic Analysis is augmented with material flow data derived from those published by the U.S. Geological Survey in the formulation of illustrative mixed-unit input-output models for lead and cadmium. The resulting model provides the capabilities of both material flow and input-output models, with detailed material tracking through entire supply chains in response to any monetary or material demand. Examples of these models are provided along with a discussion of uncertainty and extensions to these models.

  20. Radiocarbon dating uncertainty and the reliability of the PEWMA method of time-series analysis for research on long-term human-environment interaction

    PubMed Central

    Carleton, W. Christopher; Campbell, David

    2018-01-01

    Statistical time-series analysis has the potential to improve our understanding of human-environment interaction in deep time. However, radiocarbon dating—the most common chronometric technique in archaeological and palaeoenvironmental research—creates challenges for established statistical methods. The methods assume that observations in a time-series are precisely dated, but this assumption is often violated when calibrated radiocarbon dates are used because they usually have highly irregular uncertainties. As a result, it is unclear whether the methods can be reliably used on radiocarbon-dated time-series. With this in mind, we conducted a large simulation study to investigate the impact of chronological uncertainty on a potentially useful time-series method. The method is a type of regression involving a prediction algorithm called the Poisson Exponentially Weighted Moving Average (PEMWA). It is designed for use with count time-series data, which makes it applicable to a wide range of questions about human-environment interaction in deep time. Our simulations suggest that the PEWMA method can often correctly identify relationships between time-series despite chronological uncertainty. When two time-series are correlated with a coefficient of 0.25, the method is able to identify that relationship correctly 20–30% of the time, providing the time-series contain low noise levels. With correlations of around 0.5, it is capable of correctly identifying correlations despite chronological uncertainty more than 90% of the time. While further testing is desirable, these findings indicate that the method can be used to test hypotheses about long-term human-environment interaction with a reasonable degree of confidence. PMID:29351329

  1. Radiocarbon dating uncertainty and the reliability of the PEWMA method of time-series analysis for research on long-term human-environment interaction.

    PubMed

    Carleton, W Christopher; Campbell, David; Collard, Mark

    2018-01-01

    Statistical time-series analysis has the potential to improve our understanding of human-environment interaction in deep time. However, radiocarbon dating-the most common chronometric technique in archaeological and palaeoenvironmental research-creates challenges for established statistical methods. The methods assume that observations in a time-series are precisely dated, but this assumption is often violated when calibrated radiocarbon dates are used because they usually have highly irregular uncertainties. As a result, it is unclear whether the methods can be reliably used on radiocarbon-dated time-series. With this in mind, we conducted a large simulation study to investigate the impact of chronological uncertainty on a potentially useful time-series method. The method is a type of regression involving a prediction algorithm called the Poisson Exponentially Weighted Moving Average (PEMWA). It is designed for use with count time-series data, which makes it applicable to a wide range of questions about human-environment interaction in deep time. Our simulations suggest that the PEWMA method can often correctly identify relationships between time-series despite chronological uncertainty. When two time-series are correlated with a coefficient of 0.25, the method is able to identify that relationship correctly 20-30% of the time, providing the time-series contain low noise levels. With correlations of around 0.5, it is capable of correctly identifying correlations despite chronological uncertainty more than 90% of the time. While further testing is desirable, these findings indicate that the method can be used to test hypotheses about long-term human-environment interaction with a reasonable degree of confidence.

  2. Analysis of generic reentry vehicle flight dynamics

    NASA Astrophysics Data System (ADS)

    Metsker, Yu.; Weinand, K.; Geulen, G.; Haidn, O. J.

    2018-06-01

    The knowledge of reentry vehicles (RV) flight characteristics regarding geometrical shape, dimensions, and mechanical properties is essential for precise prediction of their flight trajectory, impact point, and possible deviations according to simulation uncertainties. The flight characteristic estimations of existing RV require both body dimensions and mechanical properties of the objects. Due to comparatively simple and reliable methods of specifying the vehicle outer dimensions, e. g., photos and videomaterials, the estimation of mechanical properties is a subject of higher uncertainties. Within this study, a generic medium range ballistic missile (MRBM) RV was examined for several modifications such as center of gravity (CoG) position, weight moment of inertia, and initial reentry flight states. Combinations of these variables with constant aerodynamic properties for maximal lateral accelerations will be determined. Basing on these, potential evasion maneuver capabilities of the RV will be described.

  3. Qualitative Discovery in Medical Databases

    NASA Technical Reports Server (NTRS)

    Maluf, David A.

    2000-01-01

    Implication rules have been used in uncertainty reasoning systems to confirm and draw hypotheses or conclusions. However a major bottleneck in developing such systems lies in the elicitation of these rules. This paper empirically examines the performance of evidential inferencing with implication networks generated using a rule induction tool called KAT. KAT utilizes an algorithm for the statistical analysis of empirical case data, and hence reduces the knowledge engineering efforts and biases in subjective implication certainty assignment. The paper describes several experiments in which real-world diagnostic problems were investigated; namely, medical diagnostics. In particular, it attempts to show that: (1) with a limited number of case samples, KAT is capable of inducing implication networks useful for making evidential inferences based on partial observations, and (2) observation driven by a network entropy optimization mechanism is effective in reducing the uncertainty of predicted events.

  4. Doing our best: optimization and the management of risk.

    PubMed

    Ben-Haim, Yakov

    2012-08-01

    Tools and concepts of optimization are widespread in decision-making, design, and planning. There is a moral imperative to "do our best." Optimization underlies theories in physics and biology, and economic theories often presume that economic agents are optimizers. We argue that in decisions under uncertainty, what should be optimized is robustness rather than performance. We discuss the equity premium puzzle from financial economics, and explain that the puzzle can be resolved by using the strategy of satisficing rather than optimizing. We discuss design of critical technological infrastructure, showing that satisficing of performance requirements--rather than optimizing them--is a preferable design concept. We explore the need for disaster recovery capability and its methodological dilemma. The disparate domains--economics and engineering--illuminate different aspects of the challenge of uncertainty and of the significance of robust-satisficing. © 2012 Society for Risk Analysis.

  5. Modeling and Uncertainty Quantification of Vapor Sorption and Diffusion in Heterogeneous Polymers

    DOE PAGES

    Sun, Yunwei; Harley, Stephen J.; Glascoe, Elizabeth A.

    2015-08-13

    A high-fidelity model of kinetic and equilibrium sorption and diffusion is developed and exercised. The gas-diffusion model is coupled with a triple-sorption mechanism: Henry’s law absorption, Langmuir adsorption, and pooling or clustering of molecules at higher partial pressures. Sorption experiments are conducted and span a range of relative humidities (0-95%) and temperatures (30-60°C). Kinetic and equilibrium sorption properties and effective diffusivity are determined by minimizing the absolute difference between measured and modeled uptakes. Uncertainty quantification and sensitivity analysis methods are described and exercised herein to demonstrate the capability of this modeling approach. Water uptake in silica-filled and unfilled poly(dimethylsiloxane) networksmore » is investigated; however, the model is versatile enough to be used with a wide range of materials and vapors.« less

  6. Independent Qualification of the CIAU Tool Based on the Uncertainty Estimate in the Prediction of Angra 1 NPP Inadvertent Load Rejection Transient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borges, Ronaldo C.; D'Auria, Francesco; Alvim, Antonio Carlos M.

    2002-07-01

    The Code with - the capability of - Internal Assessment of Uncertainty (CIAU) is a tool proposed by the 'Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione (DIMNP)' of the University of Pisa. Other Institutions including the nuclear regulatory body from Brazil, 'Comissao Nacional de Energia Nuclear', contributed to the development of the tool. The CIAU aims at providing the currently available Relap5/Mod3.2 system code with the integrated capability of performing not only relevant transient calculations but also the related estimates of uncertainty bands. The Uncertainty Methodology based on Accuracy Extrapolation (UMAE) is used to characterize the uncertainty in themore » prediction of system code calculations for light water reactors and is internally coupled with the above system code. Following an overview of the CIAU development, the present paper deals with the independent qualification of the tool. The qualification test is performed by estimating the uncertainty bands that should envelope the prediction of the Angra 1 NPP transient RES-11. 99 originated by an inadvertent complete load rejection that caused the reactor scram when the unit was operating at 99% of nominal power. The current limitation of the 'error' database, implemented into the CIAU prevented a final demonstration of the qualification. However, all the steps for the qualification process are demonstrated. (authors)« less

  7. Improvements to Nuclear Data and Its Uncertainties by Theoretical Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danon, Yaron; Nazarewicz, Witold; Talou, Patrick

    2013-02-18

    This project addresses three important gaps in existing evaluated nuclear data libraries that represent a significant hindrance against highly advanced modeling and simulation capabilities for the Advanced Fuel Cycle Initiative (AFCI). This project will: Develop advanced theoretical tools to compute prompt fission neutrons and gamma-ray characteristics well beyond average spectra and multiplicity, and produce new evaluated files of U and Pu isotopes, along with some minor actinides; Perform state-of-the-art fission cross-section modeling and calculations using global and microscopic model input parameters, leading to truly predictive fission cross-sections capabilities. Consistent calculations for a suite of Pu isotopes will be performed; Implementmore » innovative data assimilation tools, which will reflect the nuclear data evaluation process much more accurately, and lead to a new generation of uncertainty quantification files. New covariance matrices will be obtained for Pu isotopes and compared to existing ones. The deployment of a fleet of safe and efficient advanced reactors that minimize radiotoxic waste and are proliferation-resistant is a clear and ambitious goal of AFCI. While in the past the design, construction and operation of a reactor were supported through empirical trials, this new phase in nuclear energy production is expected to rely heavily on advanced modeling and simulation capabilities. To be truly successful, a program for advanced simulations of innovative reactors will have to develop advanced multi-physics capabilities, to be run on massively parallel super- computers, and to incorporate adequate and precise underlying physics. And all these areas have to be developed simultaneously to achieve those ambitious goals. Of particular interest are reliable fission cross-section uncertainty estimates (including important correlations) and evaluations of prompt fission neutrons and gamma-ray spectra and uncertainties.« less

  8. NPSS Multidisciplinary Integration and Analysis

    NASA Technical Reports Server (NTRS)

    Hall, Edward J.; Rasche, Joseph; Simons, Todd A.; Hoyniak, Daniel

    2006-01-01

    The objective of this task was to enhance the capability of the Numerical Propulsion System Simulation (NPSS) by expanding its reach into the high-fidelity multidisciplinary analysis area. This task investigated numerical techniques to convert between cold static to hot running geometry of compressor blades. Numerical calculations of blade deformations were iteratively done with high fidelity flow simulations together with high fidelity structural analysis of the compressor blade. The flow simulations were performed with the Advanced Ducted Propfan Analysis (ADPAC) code, while structural analyses were performed with the ANSYS code. High fidelity analyses were used to evaluate the effects on performance of: variations in tip clearance, uncertainty in manufacturing tolerance, variable inlet guide vane scheduling, and the effects of rotational speed on the hot running geometry of the compressor blades.

  9. Precision Departure Release Capability (PDRC) Final Report

    NASA Technical Reports Server (NTRS)

    Engelland, Shawn A.; Capps, Richard; Day, Kevin Brian; Kistler, Matthew Stephen; Gaither, Frank; Juro, Greg

    2013-01-01

    After takeoff, aircraft must merge into en route (Center) airspace traffic flows that may be subject to constraints that create localized demand/capacity imbalances. When demand exceeds capacity, Traffic Management Coordinators (TMCs) and Frontline Managers (FLMs) often use tactical departure scheduling to manage the flow of departures into the constrained Center traffic flow. Tactical departure scheduling usually involves a Call for Release (CFR) procedure wherein the Tower must call the Center to coordinate a release time prior to allowing the flight to depart. In present-day operations release times are computed by the Center Traffic Management Advisor (TMA) decision support tool, based upon manual estimates of aircraft ready time verbally communicated from the Tower to the Center. The TMA-computed release time is verbally communicated from the Center back to the Tower where it is relayed to the Local controller as a release window that is typically three minutes wide. The Local controller will manage the departure to meet the coordinated release time window. Manual ready time prediction and verbal release time coordination are labor intensive and prone to inaccuracy. Also, use of release time windows adds uncertainty to the tactical departure process. Analysis of more than one million flights from January 2011 indicates that a significant number of tactically scheduled aircraft missed their en route slot due to ready time prediction uncertainty. Uncertainty in ready time estimates may result in missed opportunities to merge into constrained en route flows and lead to lost throughput. Next Generation Air Transportation System plans call for development of Tower automation systems capable of computing surface trajectory-based ready time estimates. NASA has developed the Precision Departure Release Capability (PDRC) concept that improves tactical departure scheduling by automatically communicating surface trajectory-based ready time predictions and departure runway assignments to the Center scheduling tool. The PDRC concept also incorporates earlier NASA and FAA research into automation-assisted CFR coordination. The PDRC concept reduces uncertainty by automatically communicating coordinated release times with seconds-level precision enabling TMCs and FLMs to work with target times rather than windows. NASA has developed a PDRC prototype system that integrates the Center's TMA system with a research prototype Tower decision support tool. A two-phase field evaluation was conducted at NASA's North Texas Research Station in Dallas/Fort Worth. The field evaluation validated the PDRC concept and demonstrated reduced release time uncertainty while being used for tactical departure scheduling of more than 230 operational flights over 29 weeks of operations. This paper presents research results from the PDRC research activity. Companion papers present the Concept of Operations and a Technology Description.

  10. Precision Departure Release Capability (PDRC) Technology Description

    NASA Technical Reports Server (NTRS)

    Engelland, Shawn A.; Capps, Richard; Day, Kevin; Robinson, Corissia; Null, Jody R.

    2013-01-01

    After takeoff, aircraft must merge into en route (Center) airspace traffic flows which may be subject to constraints that create localized demand-capacity imbalances. When demand exceeds capacity, Traffic Management Coordinators (TMCs) often use tactical departure scheduling to manage the flow of departures into the constrained Center traffic flow. Tactical departure scheduling usually involves use of a Call for Release (CFR) procedure wherein the Tower must call the Center TMC to coordinate a release time prior to allowing the flight to depart. In present-day operations release times are computed by the Center Traffic Management Advisor (TMA) decision support tool based upon manual estimates of aircraft ready time verbally communicated from the Tower to the Center. The TMA-computed release is verbally communicated from the Center back to the Tower where it is relayed to the Local controller as a release window that is typically three minutes wide. The Local controller will manage the departure to meet the coordinated release time window. Manual ready time prediction and verbal release time coordination are labor intensive and prone to inaccuracy. Also, use of release time windows adds uncertainty to the tactical departure process. Analysis of more than one million flights from January 2011 indicates that a significant number of tactically scheduled aircraft missed their en route slot due to ready time prediction uncertainty. Uncertainty in ready time estimates may result in missed opportunities to merge into constrained en route flows and lead to lost throughput. Next Generation Air Transportation System (NextGen) plans call for development of Tower automation systems capable of computing surface trajectory-based ready time estimates. NASA has developed the Precision Departure Release Capability (PDRC) concept that uses this technology to improve tactical departure scheduling by automatically communicating surface trajectory-based ready time predictions to the Center scheduling tool. The PDRC concept also incorporates earlier NASA and FAA research into automation-assisted CFR coordination. The PDRC concept helps reduce uncertainty by automatically communicating coordinated release times with seconds-level precision enabling TMCs to work with target times rather than windows. NASA has developed a PDRC prototype system that integrates the Center's TMA system with a research prototype Tower decision support tool. A two-phase field evaluation was conducted at NASA's North Texas Research Station (NTX) in Dallas-Fort Worth. The field evaluation validated the PDRC concept and demonstrated reduced release time uncertainty while being used for tactical departure scheduling of more than 230 operational flights over 29 weeks of operations. This paper presents the Technology Description. Companion papers include the Final Report and a Concept of Operations.

  11. Precision Departure Release Capability (PDRC): NASA to FAA Research Transition

    NASA Technical Reports Server (NTRS)

    Engelland, Shawn; Davis, Thomas J.

    2013-01-01

    After takeoff, aircraft must merge into en route (Center) airspace traffic flows which may be subject to constraints that create localized demand-capacity imbalances. When demand exceeds capacity, Traffic Management Coordinators (TMCs) and Frontline Managers (FLMs) often use tactical departure scheduling to manage the flow of departures into the constrained Center traffic flow. Tactical departure scheduling usually involves use of a Call for Release (CFR) procedure wherein the Tower must call the Center to coordinate a release time prior to allowing the flight to depart. In present-day operations release times are computed by the Center Traffic Management Advisor (TMA) decision support tool based upon manual estimates of aircraft ready time verbally communicated from the Tower to the Center. The TMA-computed release time is verbally communicated from the Center back to the Tower where it is relayed to the Local controller as a release window that is typically three minutes wide. The Local controller will manage the departure to meet the coordinated release time window. Manual ready time prediction and verbal release time coordination are labor intensive and prone to inaccuracy. Also, use of release time windows adds uncertainty to the tactical departure process. Analysis of more than one million flights from January 2011 indicates that a significant number of tactically scheduled aircraft missed their en route slot due to ready time prediction uncertainty. Uncertainty in ready time estimates may result in missed opportunities to merge into constrained en route flows and lead to lost throughput. Next Generation Air Transportation System plans call for development of Tower automation systems capable of computing surface trajectory-based ready time estimates. NASA has developed the Precision Departure Release Capability (PDRC) concept that improves tactical departure scheduling by automatically communicating surface trajectory-based ready time predictions and departure runway assignments to the Center scheduling tool. The PDRC concept also incorporates earlier NASA and FAA research into automation-assisted CFR coordination. The PDRC concept reduces uncertainty by automatically communicating coordinated release times with seconds-level precision enabling TMCs and FLMs to work with target times rather than windows. NASA has developed a PDRC prototype system that integrates the Center's TMA system with a research prototype Tower decision support tool. A two-phase field evaluation was conducted at NASA's North Texas Research Station in Dallas-Fort Worth. The field evaluation validated the PDRC concept and demonstrated reduced release time uncertainty while being used for tactical departure scheduling of more than 230 operational flights over 29 weeks of operations.

  12. Precision Departure Release Capability (PDRC) Concept of Operations

    NASA Technical Reports Server (NTRS)

    Engelland, Shawn; Capps, Richard A.; Day, Kevin Brian

    2013-01-01

    After takeoff, aircraft must merge into en route (Center) airspace traffic flows which may be subject to constraints that create localized demandcapacity imbalances. When demand exceeds capacity Traffic Management Coordinators (TMCs) often use tactical departure scheduling to manage the flow of departures into the constrained Center traffic flow. Tactical departure scheduling usually involves use of a Call for Release (CFR) procedure wherein the Tower must call the Center TMC to coordinate a release time prior to allowing the flight to depart. In present-day operations release times are computed by the Center Traffic Management Advisor (TMA) decision support tool based upon manual estimates of aircraft ready time verbally communicated from the Tower to the Center. The TMA-computed release is verbally communicated from the Center back to the Tower where it is relayed to the Local controller as a release window that is typically three minutes wide. The Local controller will manage the departure to meet the coordinated release time window. Manual ready time prediction and verbal release time coordination are labor intensive and prone to inaccuracy. Also, use of release time windows adds uncertainty to the tactical departure process. Analysis of more than one million flights from January 2011 indicates that a significant number of tactically scheduled aircraft missed their en route slot due to ready time prediction uncertainty. Uncertainty in ready time estimates may result in missed opportunities to merge into constrained en route flows and lead to lost throughput. Next Generation Air Transportation System (NextGen) plans call for development of Tower automation systems capable of computing surface trajectory-based ready time estimates. NASA has developed the Precision Departure Release Capability (PDRC) concept that uses this technology to improve tactical departure scheduling by automatically communicating surface trajectory-based ready time predictions to the Center scheduling tool. The PDRC concept also incorporates earlier NASA and FAA research into automation-assisted CFR coordination. The PDRC concept helps reduce uncertainty by automatically communicating coordinated release times with seconds-level precision enabling TMCs to work with target times rather than windows. NASA has developed a PDRC prototype system that integrates the Center's TMA system with a research prototype Tower decision support tool. A two-phase field evaluation was conducted at NASA's North Texas Research Station (NTX) in DallasFort Worth. The field evaluation validated the PDRC concept and demonstrated reduced release time uncertainty while being used for tactical departure scheduling of more than 230 operational flights over 29 weeks of operations. This paper presents the Concept of Operations. Companion papers include the Final Report and a Technology Description. ? SUBJECT:

  13. Sequential Designs Based on Bayesian Uncertainty Quantification in Sparse Representation Surrogate Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ray -Bing; Wang, Weichung; Jeff Wu, C. F.

    A numerical method, called OBSM, was recently proposed which employs overcomplete basis functions to achieve sparse representations. While the method can handle non-stationary response without the need of inverting large covariance matrices, it lacks the capability to quantify uncertainty in predictions. We address this issue by proposing a Bayesian approach which first imposes a normal prior on the large space of linear coefficients, then applies the MCMC algorithm to generate posterior samples for predictions. From these samples, Bayesian credible intervals can then be obtained to assess prediction uncertainty. A key application for the proposed method is the efficient construction ofmore » sequential designs. Several sequential design procedures with different infill criteria are proposed based on the generated posterior samples. As a result, numerical studies show that the proposed schemes are capable of solving problems of positive point identification, optimization, and surrogate fitting.« less

  14. Sequential Designs Based on Bayesian Uncertainty Quantification in Sparse Representation Surrogate Modeling

    DOE PAGES

    Chen, Ray -Bing; Wang, Weichung; Jeff Wu, C. F.

    2017-04-12

    A numerical method, called OBSM, was recently proposed which employs overcomplete basis functions to achieve sparse representations. While the method can handle non-stationary response without the need of inverting large covariance matrices, it lacks the capability to quantify uncertainty in predictions. We address this issue by proposing a Bayesian approach which first imposes a normal prior on the large space of linear coefficients, then applies the MCMC algorithm to generate posterior samples for predictions. From these samples, Bayesian credible intervals can then be obtained to assess prediction uncertainty. A key application for the proposed method is the efficient construction ofmore » sequential designs. Several sequential design procedures with different infill criteria are proposed based on the generated posterior samples. As a result, numerical studies show that the proposed schemes are capable of solving problems of positive point identification, optimization, and surrogate fitting.« less

  15. International comparison Euramet.QM-K111—propane in nitrogen

    NASA Astrophysics Data System (ADS)

    Wouter van der Hout, J.; van der Veen, Adriaan M. H.; Ziel, Paul R.; Kipphardt, Heinrich; Tuma, Dirk; Maiwald, Michael; Fernández, Teresa E.; Gómez, Concepción; Cieciora, Dariusz; Ochman, Grzegorz; Dias, Florbela; Silvino, Victor; Macé, Tatiana; Sutour, Christophe; Marioni, Fabrice; Ackermann, Andreas; Niederhauser, Bernhard; Fükő, Judit; Büki, Tamás; Nagyné Szilágyi, Zsófia; Tarhan, Tanıl; Engin, Erinç

    2017-01-01

    This key comparison aims to assess the core capabilities of the participants in gas analysis. Such competences include, among others, the capabilities to prepare Primary Standard gas Mixtures (PSMs), perform the necessary purity analysis on the materials used in the gas mixture preparation, the verification of the composition of newly prepared PSMs against existing ones, and the capability of calibrating the composition of a gas mixture. According to the Strategy for Key Comparisons of the Gas Analysis Working Group, this key comparison is classified as an RMO track A key comparison. The artefacts were binary mixtures of propane in nitrogen at a nominal amount-of-substance fraction level of 1000 μmol/mol. The values and uncertainties from the gravimetric gas mixture preparation were used as key comparison reference values (KCRVs). Each transfer standard had its own KCRV. The results are generally good. All results are within +/- 1 % of the KCRV. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  16. Study of aerodynamic technology for VSTOL fighter attack aircraft

    NASA Technical Reports Server (NTRS)

    Burhans, W., Jr.; Crafta, V. J., Jr.; Dannenhoffer, N.; Dellamura, F. A.; Krepski, R. E.

    1978-01-01

    Vertical short takeoff aircraft capability, supersonic dash capability, and transonic agility were investigated for the development of Fighter/attack aircraft to be accommodated on ships smaller than present aircraft carriers. Topics covered include: (1) description of viable V/STOL fighter/attack configuration (a high wing, close-coupled canard, twin-engine, control configured aircraft) which meets or exceeds specified levels of vehicle performance; (2) estimates of vehicle aerodynamic characteristics and the methodology utilized to generate them; (3) description of propulsion system characteristics and vehicle mass properties; (4) identification of areas of aerodynamic uncertainty; and (5) a test program to investigate the areas of aerodynamic uncertainty in the conventional flight mode.

  17. Recent developments of the NESSUS probabilistic structural analysis computer program

    NASA Technical Reports Server (NTRS)

    Millwater, H.; Wu, Y.-T.; Torng, T.; Thacker, B.; Riha, D.; Leung, C. P.

    1992-01-01

    The NESSUS probabilistic structural analysis computer program combines state-of-the-art probabilistic algorithms with general purpose structural analysis methods to compute the probabilistic response and the reliability of engineering structures. Uncertainty in loading, material properties, geometry, boundary conditions and initial conditions can be simulated. The structural analysis methods include nonlinear finite element and boundary element methods. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. The scope of the code has recently been expanded to include probabilistic life and fatigue prediction of structures in terms of component and system reliability and risk analysis of structures considering cost of failure. The code is currently being extended to structural reliability considering progressive crack propagation. Several examples are presented to demonstrate the new capabilities.

  18. Multielemental analysis of 18 essential and toxic elements in amniotic fluid samples by ICP-MS: Full procedure validation and estimation of measurement uncertainty.

    PubMed

    Markiewicz, B; Sajnóg, A; Lorenc, W; Hanć, A; Komorowicz, I; Suliburska, J; Kocyłowski, R; Barałkiewicz, D

    2017-11-01

    Amniotic fluid is the substantial factor in the development of an embryo and fetus due to the fact that water and solutes contained in it penetrate the fetal membranes in an hydrostatic and osmotic way as well as being swallowed by the fetus. Elemental composition of amniotic fluid influences the growth and health of the fetus, therefore, an analysis of amniotic fluid is important because the results would indicate abnormal levels of minerals or toxic elements. Inductively coupled plasma mass spectroscopy (ICP-MS) is often used for determination of trace and ultra-trace level elements in a wide range of matrices including biological samples because of its unique analytical capabilities. In the case of trace and ultra-trace level analysis detailed characteristics of analytical procedure as well as properties of the analytical result are particularly important. The purpose of this study was to develop a new analytical procedure for multielemental analysis of 18 elements (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Mg, Mn, Ni, Pb, Sb, Se, Sr, U, V and Zn) in amniotic fluid samples using ICP-MS. Dynamic reaction cell (DRC) with two reaction gases, ammonia and oxygen, was involved in the experiment to eliminate spectral interferences. Detailed validation was conducted using 3 certified reference mterials (CRMs) and real amniotic fluid samples collected from patients. Repeatability for all analyzed analytes was found to range from 0.70% to 8.0% and for intermediate precision results varied from 1.3% to 15%. Trueness expressed as recovery ranged from 80% to 125%. Traceability was assured through the analyses of CRMs. Uncertainty of the results was also evaluated using single-laboratory validation approach. The obtained expanded uncertainty (U) results for CRMs, expressed as a percentage of the concentration of an analyte, were found to be between 8.3% for V and 45% for Cd. Standard uncertainty of the precision was found to have a greater influence on the combined standard uncertainty than on trueness factor. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Understanding Climate Uncertainty with an Ocean Focus

    NASA Astrophysics Data System (ADS)

    Tokmakian, R. T.

    2009-12-01

    Uncertainty in climate simulations arises from various aspects of the end-to-end process of modeling the Earth’s climate. First, there is uncertainty from the structure of the climate model components (e.g. ocean/ice/atmosphere). Even the most complex models are deficient, not only in the complexity of the processes they represent, but in which processes are included in a particular model. Next, uncertainties arise from the inherent error in the initial and boundary conditions of a simulation. Initial conditions are the state of the weather or climate at the beginning of the simulation and other such things, and typically come from observations. Finally, there is the uncertainty associated with the values of parameters in the model. These parameters may represent physical constants or effects, such as ocean mixing, or non-physical aspects of modeling and computation. The uncertainty in these input parameters propagates through the non-linear model to give uncertainty in the outputs. The models in 2020 will no doubt be better than today’s models, but they will still be imperfect, and development of uncertainty analysis technology is a critical aspect of understanding model realism and prediction capability. Smith [2002] and Cox and Stephenson [2007] discuss the need for methods to quantify the uncertainties within complicated systems so that limitations or weaknesses of the climate model can be understood. In making climate predictions, we need to have available both the most reliable model or simulation and a methods to quantify the reliability of a simulation. If quantitative uncertainty questions of the internal model dynamics are to be answered with complex simulations such as AOGCMs, then the only known path forward is based on model ensembles that characterize behavior with alternative parameter settings [e.g. Rougier, 2007]. The relevance and feasibility of using "Statistical Analysis of Computer Code Output" (SACCO) methods for examining uncertainty in ocean circulation due to parameter specification will be described and early results using the ocean/ice components of the CCSM climate model in a designed experiment framework will be shown. Cox, P. and D. Stephenson, Climate Change: A Changing Climate for Prediction, 2007, Science 317 (5835), 207, DOI: 10.1126/science.1145956. Rougier, J. C., 2007: Probabilistic Inference for Future Climate Using an Ensemble of Climate Model Evaluations, Climatic Change, 81, 247-264. Smith L., 2002, What might we learn from climate forecasts? Proc. Nat’l Academy of Sciences, Vol. 99, suppl. 1, 2487-2492 doi:10.1073/pnas.012580599.

  20. Optimization of monitoring networks based on uncertainty quantification of model predictions of contaminant transport

    NASA Astrophysics Data System (ADS)

    Vesselinov, V. V.; Harp, D.

    2010-12-01

    The process of decision making to protect groundwater resources requires a detailed estimation of uncertainties in model predictions. Various uncertainties associated with modeling a natural system, such as: (1) measurement and computational errors; (2) uncertainties in the conceptual model and model-parameter estimates; (3) simplifications in model setup and numerical representation of governing processes, contribute to the uncertainties in the model predictions. Due to this combination of factors, the sources of predictive uncertainties are generally difficult to quantify individually. Decision support related to optimal design of monitoring networks requires (1) detailed analyses of existing uncertainties related to model predictions of groundwater flow and contaminant transport, (2) optimization of the proposed monitoring network locations in terms of their efficiency to detect contaminants and provide early warning. We apply existing and newly-proposed methods to quantify predictive uncertainties and to optimize well locations. An important aspect of the analysis is the application of newly-developed optimization technique based on coupling of Particle Swarm and Levenberg-Marquardt optimization methods which proved to be robust and computationally efficient. These techniques and algorithms are bundled in a software package called MADS. MADS (Model Analyses for Decision Support) is an object-oriented code that is capable of performing various types of model analyses and supporting model-based decision making. The code can be executed under different computational modes, which include (1) sensitivity analyses (global and local), (2) Monte Carlo analysis, (3) model calibration, (4) parameter estimation, (5) uncertainty quantification, and (6) model selection. The code can be externally coupled with any existing model simulator through integrated modules that read/write input and output files using a set of template and instruction files (consistent with the PEST I/O protocol). MADS can also be internally coupled with a series of built-in analytical simulators. MADS provides functionality to work directly with existing control files developed for the code PEST (Doherty 2009). To perform the computational modes mentioned above, the code utilizes (1) advanced Latin-Hypercube sampling techniques (including Improved Distributed Sampling), (2) various gradient-based Levenberg-Marquardt optimization methods, (3) advanced global optimization methods (including Particle Swarm Optimization), and (4) a selection of alternative objective functions. The code has been successfully applied to perform various model analyses related to environmental management of real contamination sites. Examples include source identification problems, quantification of uncertainty, model calibration, and optimization of monitoring networks. The methodology and software codes are demonstrated using synthetic and real case studies where monitoring networks are optimized taking into account the uncertainty in model predictions of contaminant transport.

  1. PEBBED Uncertainty and Sensitivity Analysis of the CRP-5 PBMR DLOFC Transient Benchmark with the SUSA Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerhard Strydom

    2011-01-01

    The need for a defendable and systematic uncertainty and sensitivity approach that conforms to the Code Scaling, Applicability, and Uncertainty (CSAU) process, and that could be used for a wide variety of software codes, was defined in 2008. The GRS (Gesellschaft für Anlagen und Reaktorsicherheit) company of Germany has developed one type of CSAU approach that is particularly well suited for legacy coupled core analysis codes, and a trial version of their commercial software product SUSA (Software for Uncertainty and Sensitivity Analyses) was acquired on May 12, 2010. This report summarized the results of the initial investigations performed with SUSA,more » utilizing a typical High Temperature Reactor benchmark (the IAEA CRP-5 PBMR 400MW Exercise 2) and the PEBBED-THERMIX suite of codes. The following steps were performed as part of the uncertainty and sensitivity analysis: 1. Eight PEBBED-THERMIX model input parameters were selected for inclusion in the uncertainty study: the total reactor power, inlet gas temperature, decay heat, and the specific heat capability and thermal conductivity of the fuel, pebble bed and reflector graphite. 2. The input parameters variations and probability density functions were specified, and a total of 800 PEBBED-THERMIX model calculations were performed, divided into 4 sets of 100 and 2 sets of 200 Steady State and Depressurized Loss of Forced Cooling (DLOFC) transient calculations each. 3. The steady state and DLOFC maximum fuel temperature, as well as the daily pebble fuel load rate data, were supplied to SUSA as model output parameters of interest. The 6 data sets were statistically analyzed to determine the 5% and 95% percentile values for each of the 3 output parameters with a 95% confidence level, and typical statistical indictors were also generated (e.g. Kendall, Pearson and Spearman coefficients). 4. A SUSA sensitivity study was performed to obtain correlation data between the input and output parameters, and to identify the primary contributors to the output data uncertainties. It was found that the uncertainties in the decay heat, pebble bed and reflector thermal conductivities were responsible for the bulk of the propagated uncertainty in the DLOFC maximum fuel temperature. It was also determined that the two standard deviation (2s) uncertainty on the maximum fuel temperature was between ±58oC (3.6%) and ±76oC (4.7%) on a mean value of 1604 oC. These values mostly depended on the selection of the distributions types, and not on the number of model calculations above the required Wilks criteria (a (95%,95%) statement would usually require 93 model runs).« less

  2. Negative Capability? Measuring the Unmeasurable in Education

    ERIC Educational Resources Information Center

    Unterhalter, Elaine

    2017-01-01

    This introductory article to the special issue of "Comparative Education" on measuring the unmeasurable in education considers measurement as reflecting facts and uncertainties. The notion of negative capability is used metaphorically to depict some limits of what is measurable, and portray aspects of the process of education, associated…

  3. Polarized Light Scanning Cryomacroscopy, Part II: Thermal Modeling and Analysis of Experimental Observations

    PubMed Central

    Feig, Justin S.G.; Solanki, Prem K.; Eisenberg, David P.; Rabin, Yoed

    2016-01-01

    This study aims at developing thermal analysis tools and explaining experimental observations made by means of polarized-light cryomacroscopy (Part I). Thermal modeling is based on finite elements analysis (FEA), where two model parameters are extracted from thermal measurements: (i) the overall heat transfer coefficient between the cuvette and the cooling chamber, and (ii) the effective thermal conductivity within the cryoprotective agent (CPA) at the upper part of the cryogenic temperature range. The effective thermal conductivity takes into account enhanced heat transfer due to convection currents within the CPA, creating the so-called Bénard cells. Comparison of experimental results with simulation data indicates that the uncertainty in simulations due to the propagation of uncertainty in measured physical properties exceeds the uncertainty in experimental measurements, which validates the modeling approach. It is shown in this study that while a cavity may form in the upper-center portion of the vitrified CPA, it has very little effect on estimating the temperature distribution within the domain. This cavity is driven by thermal contraction of the CPA, with the upper-center of the domain transitioning to glass last. Finally, it is demonstrated in this study that additional stresses may develop within the glass transition temperature range due to nonlinear behavior of the thermal expansion coefficient. This effect is reported here for the first time in the context of cryobiology, using the capabilities of polarized-light cryomacroscopy. PMID:27343139

  4. Polarized light scanning cryomacroscopy, part II: Thermal modeling and analysis of experimental observations.

    PubMed

    Feig, Justin S G; Solanki, Prem K; Eisenberg, David P; Rabin, Yoed

    2016-10-01

    This study aims at developing thermal analysis tools and explaining experimental observations made by means of polarized-light cryomacroscopy (Part I). Thermal modeling is based on finite elements analysis (FEA), where two model parameters are extracted from thermal measurements: (i) the overall heat transfer coefficient between the cuvette and the cooling chamber, and (ii) the effective thermal conductivity within the cryoprotective agent (CPA) at the upper part of the cryogenic temperature range. The effective thermal conductivity takes into account enhanced heat transfer due to convection currents within the CPA, creating the so-called Bénard cells. Comparison of experimental results with simulation data indicates that the uncertainty in simulations due to the propagation of uncertainty in measured physical properties exceeds the uncertainty in experimental measurements, which validates the modeling approach. It is shown in this study that while a cavity may form in the upper-center portion of the vitrified CPA, it has very little effect on estimating the temperature distribution within the domain. This cavity is driven by thermal contraction of the CPA, with the upper-center of the domain transitioning to glass last. Finally, it is demonstrated in this study that additional stresses may develop within the glass transition temperature range due to nonlinear behavior of the thermal expansion coefficient. This effect is reported here for the first time in the context of cryobiology, using the capabilities of polarized-light cryomacroscopy. Copyright © 2016. Published by Elsevier Inc.

  5. Analysis of key technologies for virtual instruments metrology

    NASA Astrophysics Data System (ADS)

    Liu, Guixiong; Xu, Qingui; Gao, Furong; Guan, Qiuju; Fang, Qiang

    2008-12-01

    Virtual instruments (VIs) require metrological verification when applied as measuring instruments. Owing to the software-centered architecture, metrological evaluation of VIs includes two aspects: measurement functions and software characteristics. Complexity of software imposes difficulties on metrological testing of VIs. Key approaches and technologies for metrology evaluation of virtual instruments are investigated and analyzed in this paper. The principal issue is evaluation of measurement uncertainty. The nature and regularity of measurement uncertainty caused by software and algorithms can be evaluated by modeling, simulation, analysis, testing and statistics with support of powerful computing capability of PC. Another concern is evaluation of software features like correctness, reliability, stability, security and real-time of VIs. Technologies from software engineering, software testing and computer security domain can be used for these purposes. For example, a variety of black-box testing, white-box testing and modeling approaches can be used to evaluate the reliability of modules, components, applications and the whole VI software. The security of a VI can be assessed by methods like vulnerability scanning and penetration analysis. In order to facilitate metrology institutions to perform metrological verification of VIs efficiently, an automatic metrological tool for the above validation is essential. Based on technologies of numerical simulation, software testing and system benchmarking, a framework for the automatic tool is proposed in this paper. Investigation on implementation of existing automatic tools that perform calculation of measurement uncertainty, software testing and security assessment demonstrates the feasibility of the automatic framework advanced.

  6. Advances and Challenges In Uncertainty Quantification with Application to Climate Prediction, ICF design and Science Stockpile Stewardship

    NASA Astrophysics Data System (ADS)

    Klein, R.; Woodward, C. S.; Johannesson, G.; Domyancic, D.; Covey, C. C.; Lucas, D. D.

    2012-12-01

    Uncertainty Quantification (UQ) is a critical field within 21st century simulation science that resides at the very center of the web of emerging predictive capabilities. The science of UQ holds the promise of giving much greater meaning to the results of complex large-scale simulations, allowing for quantifying and bounding uncertainties. This powerful capability will yield new insights into scientific predictions (e.g. Climate) of great impact on both national and international arenas, allow informed decisions on the design of critical experiments (e.g. ICF capsule design, MFE, NE) in many scientific fields, and assign confidence bounds to scientifically predictable outcomes (e.g. nuclear weapons design). In this talk I will discuss a major new strategic initiative (SI) we have developed at Lawrence Livermore National Laboratory to advance the science of Uncertainty Quantification at LLNL focusing in particular on (a) the research and development of new algorithms and methodologies of UQ as applied to multi-physics multi-scale codes, (b) incorporation of these advancements into a global UQ Pipeline (i.e. a computational superstructure) that will simplify user access to sophisticated tools for UQ studies as well as act as a self-guided, self-adapting UQ engine for UQ studies on extreme computing platforms and (c) use laboratory applications as a test bed for new algorithms and methodologies. The initial SI focus has been on applications for the quantification of uncertainty associated with Climate prediction, but the validated UQ methodologies we have developed are now being fed back into Science Based Stockpile Stewardship (SSS) and ICF UQ efforts. To make advancements in several of these UQ grand challenges, I will focus in talk on the following three research areas in our Strategic Initiative: Error Estimation in multi-physics and multi-scale codes ; Tackling the "Curse of High Dimensionality"; and development of an advanced UQ Computational Pipeline to enable complete UQ workflow and analysis for ensemble runs at the extreme scale (e.g. exascale) with self-guiding adaptation in the UQ Pipeline engine. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was funded by the Uncertainty Quantification Strategic Initiative Laboratory Directed Research and Development Project at LLNL under project tracking code 10-SI-013 (UCRL LLNL-ABS-569112).

  7. International comparison CCQM-K111—propane in nitrogen

    NASA Astrophysics Data System (ADS)

    van der Veen, Adriaan M. H.; Wouter van der Hout, J.; Ziel, Paul R.; Oudwater, Rutger J.; Fioravante, Andreia L.; Augusto, Cristiane R.; Coutinho Brum, Mariana; Uehara, Shinji; Akima, Dai; Bae, Hyun Kil; Kang, Namgoo; Woo, Jin-Chun; Liaskos, Christina E.; Rhoderick, George C.; Jozela, Mudalo; Tshilongo, James; Ntsasa, Napo G.; Botha, Angelique; Brewer, Paul J.; Brown, Andrew S.; Bartlett, Sam; Downey, Michael L.; Konopelko, L. A.; Kolobova, A. V.; Pankov, A. A.; Orshanskaya, A. A.; Efremova, O. V.

    2017-01-01

    This key comparison aims to assess the core capabilities of the participants in gas analysis. Such competences include, among others, the capabilities to prepare primary standard gas Mixtures (PSMs), perform the necessary purity analysis on the materials used in the gas mixture preparation, the verification of the composition of newly prepared PSMs against existing ones, and the capability of calibrating the composition of a gas mixture. According to the Strategy for Key Comparisons of the Gas Analysis Working Group, this key comparison is classified as a track A key comparison, which means that the results of this key comparison can be used to underpin calibration and measurement capabilities using the flexible scheme, and for propane under the default scheme. The artefacts were binary mixtures of propane in nitrogen at a nominal amount-of-substance fraction level of 1000 μmol/mol. The values and uncertainties from the gravimetric gas mixture preparation were used as key comparison reference values (KCRVs). Each transfer standard had its own KCRV. The results are generally good. All results but one are within +/- 0.2 % of the KCRV. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  8. Competitive assessment of aerospace systems using system dynamics

    NASA Astrophysics Data System (ADS)

    Pfaender, Jens Holger

    Aircraft design has recently experienced a trend away from performance centric design towards a more balanced approach with increased emphasis on engineering an economically successful system. This approach focuses on bringing forward a comprehensive economic and life-cycle cost analysis. Since the success of any system also depends on many external factors outside of the control of the designer, this traditionally has been modeled as noise affecting the uncertainty of the design. However, this approach is currently lacking a strategic treatment of necessary early decisions affecting the probability of success of a given concept in a dynamic environment. This suggests that the introduction of a dynamic method into a life-cycle cost analysis should allow the analysis of the future attractiveness of such a concept in the presence of uncertainty. One way of addressing this is through the use of a competitive market model. However, existing market models do not focus on the dynamics of the market. Instead, they focus on modeling and predicting market share through logit regression models. The resulting models exhibit relatively poor predictive capabilities. The method proposed here focuses on a top-down approach that integrates a competitive model based on work in the field of system dynamics into the aircraft design process. Demonstrating such integration is one of the primary contributions of this work, which previously has not been demonstrated. This integration is achieved through the use of surrogate models, in this case neural networks. This enabled not only the practical integration of analysis techniques, but also reduced the computational requirements so that interactive exploration as envisioned was actually possible. The example demonstration of this integration is built on the competition in the 250 seat large commercial aircraft market exemplified by the Boeing 767-400ER and the Airbus A330-200. Both aircraft models were calibrated to existing performance and certification data and then integrated into the system dynamics market model. The market model was then calibrated with historical market data. This calibration showed a much improved predictive capability as compared to the conventional logit regression models. An additional advantage of this dynamic model is that to realize this improved capability, no additional explanatory variables were required. Furthermore, the resulting market model was then integrated into a prediction profiler environment with a time variant Monte-Carlo analysis resulting in a unique trade-off environment. This environment was shown to allow interactive trade-off between aircraft design decisions and economic considerations while allowing the exploration potential market success in the light of varying external market conditions and scenarios. The resulting method is capable of reduced decision support uncertainty and identification of robust design decisions in future scenarios with a high likelihood of occurrence with special focus on the path dependent nature of future implications of decisions. Furthermore, it was possible to demonstrate the increased importance of design and technology choices on the competitiveness in scenarios with drastic increases in commodity prices during the time period modeled. Another use of the existing outputs of the Monte-Carlo analysis was then realized by showing them on a multivariate scatter plot. This plot was then shown to enable by appropriate grouping of variables to enable the top down definition of an aircraft design, also known as inverse design. In other words this enables the designer to define strategic market and return on investment goals for a number of scenarios, for example the development of fuel prices, and then directly see which specific aircraft designs meet these goals.

  9. ASME V\\&V challenge problem: Surrogate-based V&V

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beghini, Lauren L.; Hough, Patricia D.

    2015-12-18

    The process of verification and validation can be resource intensive. From the computational model perspective, the resource demand typically arises from long simulation run times on multiple cores coupled with the need to characterize and propagate uncertainties. In addition, predictive computations performed for safety and reliability analyses have similar resource requirements. For this reason, there is a tradeoff between the time required to complete the requisite studies and the fidelity or accuracy of the results that can be obtained. At a high level, our approach is cast within a validation hierarchy that provides a framework in which we perform sensitivitymore » analysis, model calibration, model validation, and prediction. The evidence gathered as part of these activities is mapped into the Predictive Capability Maturity Model to assess credibility of the model used for the reliability predictions. With regard to specific technical aspects of our analysis, we employ surrogate-based methods, primarily based on polynomial chaos expansions and Gaussian processes, for model calibration, sensitivity analysis, and uncertainty quantification in order to reduce the number of simulations that must be done. The goal is to tip the tradeoff balance to improving accuracy without increasing the computational demands.« less

  10. Post mitigation impact risk analysis for asteroid deflection demonstration missions

    NASA Astrophysics Data System (ADS)

    Eggl, Siegfried; Hestroffer, Daniel; Thuillot, William; Bancelin, David; Cano, Juan L.; Cichocki, Filippo

    2015-08-01

    Even though mankind believes to have the capabilities to avert potentially disastrous asteroid impacts, only the realization of mitigation demonstration missions can validate this claim. Such a deflection demonstration attempt has to be cost effective, easy to validate, and safe in the sense that harmless asteroids must not be turned into potentially hazardous objects. Uncertainties in an asteroid's orbital and physical parameters as well as those additionally introduced during a mitigation attempt necessitate an in depth analysis of deflection mission designs in order to dispel planetary safety concerns. We present a post mitigation impact risk analysis of a list of potential kinetic impactor based deflection demonstration missions proposed in the framework of the NEOShield project. Our results confirm that mitigation induced uncertainties have a significant influence on the deflection outcome. Those cannot be neglected in post deflection impact risk studies. We show, furthermore, that deflection missions have to be assessed on an individual basis in order to ensure that asteroids are not inadvertently transported closer to the Earth at a later date. Finally, we present viable targets and mission designs for a kinetic impactor test to be launched between the years 2025 and 2032.

  11. Industrial water resources management based on violation risk analysis of the total allowable target on wastewater discharge.

    PubMed

    Yue, Wencong; Cai, Yanpeng; Xu, Linyu; Yang, Zhifeng; Yin, Xin'An; Su, Meirong

    2017-07-11

    To improve the capabilities of conventional methodologies in facilitating industrial water allocation under uncertain conditions, an integrated approach was developed through the combination of operational research, uncertainty analysis, and violation risk analysis methods. The developed approach can (a) address complexities of industrial water resources management (IWRM) systems, (b) facilitate reflections of multiple uncertainties and risks of the system and incorporate them into a general optimization framework, and (c) manage robust actions for industrial productions in consideration of water supply capacity and wastewater discharging control. The developed method was then demonstrated in a water-stressed city (i.e., the City of Dalian), northeastern China. Three scenarios were proposed according to the city's industrial plans. The results indicated that in the planning year of 2020 (a) the production of civilian-used steel ships and machine-made paper & paperboard would reduce significantly, (b) violation risk of chemical oxygen demand (COD) discharge under scenario 1 would be the most prominent, compared with those under scenarios 2 and 3, (c) the maximal total economic benefit under scenario 2 would be higher than the benefit under scenario 3, and (d) the production of rolling contact bearing, rail vehicles, and commercial vehicles would be promoted.

  12. PAGAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, M.S.Y.

    1990-12-01

    The PAGAN code system is a part of the performance assessment methodology developed for use by the U.S. Nuclear Regulatory Commission in evaluating license applications for low-level waste disposal facilities. In this methodology, PAGAN is used as one candidate approach for analysis of the ground-water pathway. PAGAN, Version 1.1. has the capability to model the source term, vadose-zone transport, and aquifer transport of radionuclides from a waste disposal unit. It combines the two codes SURFACE and DISPERSE which are used as semi-analytical solutions to the convective-dispersion equation. This system uses menu driven input/out for implementing a simple ground-water transport analysismore » and incorporates statistical uncertainty functions for handling data uncertainties. The output from PAGAN includes a time and location-dependent radionuclide concentration at a well in the aquifer, or a time and location-dependent radionuclide flux into a surface-water body.« less

  13. Calibration of a stack of NaI scintillators at the Berkeley Bevalac

    NASA Technical Reports Server (NTRS)

    Schindler, S. M.; Buffington, A.; Lau, K.; Rasmussen, I. L.

    1983-01-01

    An analysis of the carbon and argon data reveals that essentially all of the charge-changing fragmentation reactions within the stack can be identified and removed by imposing the simple criteria relating the observed energy deposition profiles to the expected Bragg curve depositions. It is noted that these criteria are even capable of identifying approximately one-third of the expected neutron-stripping interactions, which in these cases have anomalous deposition profiles. The contribution of mass error from uncertainty in delta E has an upper limit of 0.25 percent for Mn; this produces an associated mass error for the experiment of about 0.14 amu. It is believed that this uncertainty will change little with changing gamma. Residual errors in the mapping produce even smaller mass errors for lighter isotopes, whereas photoelectron fluctuations and delta-ray effects are approximately the same independent of the charge and energy deposition.

  14. A method for testing the spectraltransmittance of infrared smoke interference

    NASA Astrophysics Data System (ADS)

    Lei, Hao; Zhang, Yazhou; Wang, Guangping; Wu, Jingli

    2018-02-01

    Infrared smoke is mainly used for shielding, blind, deception and recognition on the battlefield. The traditional shelter smoke is mainly placed in the friendly positions or positions between the friendly positions and enemy positions, to reduce the enemy observation post investigative capacity. The passive interference capability of the smoke depends on the infrared extinction ability of the smoke. The infrared transmittance test is an objective and accurate representation of the extinction ability of the smoke. In this paper, a method for testing the spectral transmittance of infrared smoke interference is introduced. The uncertainty of the measurement results is analyzed. The results show that this method can effectively obtain the spectral transmittance of the infrared smoke and uncertainty of the measurement is 7.16%, which can be effective for the smoke detection, smoke composition analysis, screening effect evaluation to provide test parameters support.

  15. An Integrated Modeling Framework Forecasting Ecosystem Exposure-- A Systems Approach to the Cumulative Impacts of Multiple Stressors

    NASA Astrophysics Data System (ADS)

    Johnston, J. M.

    2013-12-01

    Freshwater habitats provide fishable, swimmable and drinkable resources and are a nexus of geophysical and biological processes. These processes in turn influence the persistence and sustainability of populations, communities and ecosystems. Climate change and landuse change encompass numerous stressors of potential exposure, including the introduction of toxic contaminants, invasive species, and disease in addition to physical drivers such as temperature and hydrologic regime. A systems approach that includes the scientific and technologic basis of assessing the health of ecosystems is needed to effectively protect human health and the environment. The Integrated Environmental Modeling Framework 'iemWatersheds' has been developed as a consistent and coherent means of forecasting the cumulative impact of co-occurring stressors. The Framework consists of three facilitating technologies: Data for Environmental Modeling (D4EM) that automates the collection and standardization of input data; the Framework for Risk Assessment of Multimedia Environmental Systems (FRAMES) that manages the flow of information between linked models; and the Supercomputer for Model Uncertainty and Sensitivity Evaluation (SuperMUSE) that provides post-processing and analysis of model outputs, including uncertainty and sensitivity analysis. Five models are linked within the Framework to provide multimedia simulation capabilities for hydrology and water quality processes: the Soil Water Assessment Tool (SWAT) predicts surface water and sediment runoff and associated contaminants; the Watershed Mercury Model (WMM) predicts mercury runoff and loading to streams; the Water quality Analysis and Simulation Program (WASP) predicts water quality within the stream channel; the Habitat Suitability Index (HSI) model scores physicochemical habitat quality for individual fish species; and the Bioaccumulation and Aquatic System Simulator (BASS) predicts fish growth, population dynamics and bioaccumulation of toxic substances. The capability of the Framework to address cumulative impacts will be demonstrated for freshwater ecosystem services and mountaintop mining.

  16. Inexact nonlinear improved fuzzy chance-constrained programming model for irrigation water management under uncertainty

    NASA Astrophysics Data System (ADS)

    Zhang, Chenglong; Zhang, Fan; Guo, Shanshan; Liu, Xiao; Guo, Ping

    2018-01-01

    An inexact nonlinear mλ-measure fuzzy chance-constrained programming (INMFCCP) model is developed for irrigation water allocation under uncertainty. Techniques of inexact quadratic programming (IQP), mλ-measure, and fuzzy chance-constrained programming (FCCP) are integrated into a general optimization framework. The INMFCCP model can deal with not only nonlinearities in the objective function, but also uncertainties presented as discrete intervals in the objective function, variables and left-hand side constraints and fuzziness in the right-hand side constraints. Moreover, this model improves upon the conventional fuzzy chance-constrained programming by introducing a linear combination of possibility measure and necessity measure with varying preference parameters. To demonstrate its applicability, the model is then applied to a case study in the middle reaches of Heihe River Basin, northwest China. An interval regression analysis method is used to obtain interval crop water production functions in the whole growth period under uncertainty. Therefore, more flexible solutions can be generated for optimal irrigation water allocation. The variation of results can be examined by giving different confidence levels and preference parameters. Besides, it can reflect interrelationships among system benefits, preference parameters, confidence levels and the corresponding risk levels. Comparison between interval crop water production functions and deterministic ones based on the developed INMFCCP model indicates that the former is capable of reflecting more complexities and uncertainties in practical application. These results can provide more reliable scientific basis for supporting irrigation water management in arid areas.

  17. Reduction and Uncertainty Analysis of Chemical Mechanisms Based on Local and Global Sensitivities

    NASA Astrophysics Data System (ADS)

    Esposito, Gaetano

    Numerical simulations of critical reacting flow phenomena in hypersonic propulsion devices require accurate representation of finite-rate chemical kinetics. The chemical kinetic models available for hydrocarbon fuel combustion are rather large, involving hundreds of species and thousands of reactions. As a consequence, they cannot be used in multi-dimensional computational fluid dynamic calculations in the foreseeable future due to the prohibitive computational cost. In addition to the computational difficulties, it is also known that some fundamental chemical kinetic parameters of detailed models have significant level of uncertainty due to limited experimental data available and to poor understanding of interactions among kinetic parameters. In the present investigation, local and global sensitivity analysis techniques are employed to develop a systematic approach of reducing and analyzing detailed chemical kinetic models. Unlike previous studies in which skeletal model reduction was based on the separate analysis of simple cases, in this work a novel strategy based on Principal Component Analysis of local sensitivity values is presented. This new approach is capable of simultaneously taking into account all the relevant canonical combustion configurations over different composition, temperature and pressure conditions. Moreover, the procedure developed in this work represents the first documented inclusion of non-premixed extinction phenomena, which is of great relevance in hypersonic combustors, in an automated reduction algorithm. The application of the skeletal reduction to a detailed kinetic model consisting of 111 species in 784 reactions is demonstrated. The resulting reduced skeletal model of 37--38 species showed that the global ignition/propagation/extinction phenomena of ethylene-air mixtures can be predicted within an accuracy of 2% of the full detailed model. The problems of both understanding non-linear interactions between kinetic parameters and identifying sources of uncertainty affecting relevant reaction pathways are usually addressed by resorting to Global Sensitivity Analysis (GSA) techniques. In particular, the most sensitive reactions controlling combustion phenomena are first identified using the Morris Method and then analyzed under the Random Sampling -- High Dimensional Model Representation (RS-HDMR) framework. The HDMR decomposition shows that 10% of the variance seen in the extinction strain rate of non-premixed flames is due to second-order effects between parameters, whereas the maximum concentration of acetylene, a key soot precursor, is affected by mostly only first-order contributions. Moreover, the analysis of the global sensitivity indices demonstrates that improving the accuracy of the reaction rates including the vinyl radical, C2H3, can drastically reduce the uncertainty of predicting targeted flame properties. Finally, the back-propagation of the experimental uncertainty of the extinction strain rate to the parameter space is also performed. This exercise, achieved by recycling the numerical solutions of the RS-HDMR, shows that some regions of the parameter space have a high probability of reproducing the experimental value of the extinction strain rate between its own uncertainty bounds. Therefore this study demonstrates that the uncertainty analysis of bulk flame properties can effectively provide information on relevant chemical reactions.

  18. Fourier Transform Infrared Absorption Spectroscopy for Quantitative Analysis of Gas Mixtures at Low Temperatures for Homeland Security Applications.

    PubMed

    Meier, D C; Benkstein, K D; Hurst, W S; Chu, P M

    2017-05-01

    Performance standard specifications for point chemical vapor detectors are established in ASTM E 2885-13 and ASTM E 2933-13. The performance evaluation of the detectors requires the accurate delivery of known concentrations of the chemical target to the system under test. Referee methods enable the analyte test concentration and associated uncertainties in the analyte test concentration to be validated by independent analysis, which is especially important for reactive analytes. This work extends the capability of a previously demonstrated method for using Fourier transform infrared (FT-IR) absorption spectroscopy for quantitatively evaluating the composition of vapor streams containing hazardous materials at Acute Exposure Guideline Levels (AEGL) to include test conditions colder than laboratory ambient temperatures. The described method covers the use of primary reference spectra to establish analyte concentrations, the generation of secondary reference spectra suitable for measuring analyte concentrations under specified testing environments, and the use of additional reference spectra and spectral profile strategies to mitigate the uncertainties due to impurities and water condensation within the low-temperature (7 °C, -5 °C) test cell. Important benefits of this approach include verification of the test analyte concentration with characterized uncertainties by in situ measurements co-located with the detector under test, near-real-time feedback, and broad applicability to toxic industrial chemicals.

  19. Fourier Transform Infrared Absorption Spectroscopy for Quantitative Analysis of Gas Mixtures at Low Temperatures for Homeland Security Applications

    PubMed Central

    Meier, D.C.; Benkstein, K.D.; Hurst, W.S.; Chu, P.M.

    2016-01-01

    Performance standard specifications for point chemical vapor detectors are established in ASTM E 2885-13 and ASTM E 2933-13. The performance evaluation of the detectors requires the accurate delivery of known concentrations of the chemical target to the system under test. Referee methods enable the analyte test concentration and associated uncertainties in the analyte test concentration to be validated by independent analysis, which is especially important for reactive analytes. This work extends the capability of a previously demonstrated method for using Fourier transform infrared (FT-IR) absorption spectroscopy for quantitatively evaluating the composition of vapor streams containing hazardous materials at Acute Exposure Guideline Levels (AEGL) to include test conditions colder than laboratory ambient temperatures. The described method covers the use of primary reference spectra to establish analyte concentrations, the generation of secondary reference spectra suitable for measuring analyte concentrations under specified testing environments, and the use of additional reference spectra and spectral profile strategies to mitigate the uncertainties due to impurities and water condensation within the low-temperature (7 °C, −5 °C) test cell. Important benefits of this approach include verification of the test analyte concentration with characterized uncertainties by in situ measurements co-located with the detector under test, near-real-time feedback, and broad applicability to toxic industrial chemicals. PMID:28090126

  20. A robust nonlinear skid-steering control design applied to the MULE (6x6) unmanned ground vehicle

    NASA Astrophysics Data System (ADS)

    Kaloust, Joseph

    2006-05-01

    The paper presents a robust nonlinear skid-steering control design concept. The control concept is based on the recursive/backstepping control design technique and is capable of compensating for uncertainties associated with sensor noise measurements and/or system dynamic state uncertainties. The objective of this control design is to demonstrate the performance of the nonlinear controller under uncertainty associate with road traction (rough off-road and on-road terrain). The MULE vehicle is used in the simulation modeling and results.

  1. Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier-Stokes simulations: A data-driven, physics-informed Bayesian approach

    NASA Astrophysics Data System (ADS)

    Xiao, H.; Wu, J.-L.; Wang, J.-X.; Sun, R.; Roy, C. J.

    2016-11-01

    Despite their well-known limitations, Reynolds-Averaged Navier-Stokes (RANS) models are still the workhorse tools for turbulent flow simulations in today's engineering analysis, design and optimization. While the predictive capability of RANS models depends on many factors, for many practical flows the turbulence models are by far the largest source of uncertainty. As RANS models are used in the design and safety evaluation of many mission-critical systems such as airplanes and nuclear power plants, quantifying their model-form uncertainties has significant implications in enabling risk-informed decision-making. In this work we develop a data-driven, physics-informed Bayesian framework for quantifying model-form uncertainties in RANS simulations. Uncertainties are introduced directly to the Reynolds stresses and are represented with compact parameterization accounting for empirical prior knowledge and physical constraints (e.g., realizability, smoothness, and symmetry). An iterative ensemble Kalman method is used to assimilate the prior knowledge and observation data in a Bayesian framework, and to propagate them to posterior distributions of velocities and other Quantities of Interest (QoIs). We use two representative cases, the flow over periodic hills and the flow in a square duct, to evaluate the performance of the proposed framework. Both cases are challenging for standard RANS turbulence models. Simulation results suggest that, even with very sparse observations, the obtained posterior mean velocities and other QoIs have significantly better agreement with the benchmark data compared to the baseline results. At most locations the posterior distribution adequately captures the true model error within the developed model form uncertainty bounds. The framework is a major improvement over existing black-box, physics-neutral methods for model-form uncertainty quantification, where prior knowledge and details of the models are not exploited. This approach has potential implications in many fields in which the governing equations are well understood but the model uncertainty comes from unresolved physical processes.

  2. A TIERED APPROACH TO PERFORMING UNCERTAINTY ANALYSIS IN CONDUCTING EXPOSURE ANALYSIS FOR CHEMICALS

    EPA Science Inventory

    The WHO/IPCS draft Guidance Document on Characterizing and Communicating Uncertainty in Exposure Assessment provides guidance on recommended strategies for conducting uncertainty analysis as part of human exposure analysis. Specifically, a tiered approach to uncertainty analysis ...

  3. Drought Persistence Errors in Global Climate Models

    NASA Astrophysics Data System (ADS)

    Moon, H.; Gudmundsson, L.; Seneviratne, S. I.

    2018-04-01

    The persistence of drought events largely determines the severity of socioeconomic and ecological impacts, but the capability of current global climate models (GCMs) to simulate such events is subject to large uncertainties. In this study, the representation of drought persistence in GCMs is assessed by comparing state-of-the-art GCM model simulations to observation-based data sets. For doing so, we consider dry-to-dry transition probabilities at monthly and annual scales as estimates for drought persistence, where a dry status is defined as negative precipitation anomaly. Though there is a substantial spread in the drought persistence bias, most of the simulations show systematic underestimation of drought persistence at global scale. Subsequently, we analyzed to which degree (i) inaccurate observations, (ii) differences among models, (iii) internal climate variability, and (iv) uncertainty of the employed statistical methods contribute to the spread in drought persistence errors using an analysis of variance approach. The results show that at monthly scale, model uncertainty and observational uncertainty dominate, while the contribution from internal variability is small in most cases. At annual scale, the spread of the drought persistence error is dominated by the statistical estimation error of drought persistence, indicating that the partitioning of the error is impaired by the limited number of considered time steps. These findings reveal systematic errors in the representation of drought persistence in current GCMs and suggest directions for further model improvement.

  4. "It´s incredible how much I´ve had to fight." Negotiating medical uncertainty in clinical encounters.

    PubMed

    Lian, Olaug S; Robson, Catherine

    2017-01-01

    Clinical encounters related to medically unexplained physical symptoms (MUPS) are associated with high levels of conflict between patients and doctors. Collaborative difficulties are fused by the medical uncertainty that dominates these consultations. The main aim of this study is to explore the interactional dynamics of clinical encounters riddled by medical uncertainty, as experienced by people living with long-term medically unexplained fatigue in Norway. A qualitative thematic analysis of written texts from 256 study participants. We found that patients experience being met with disbelief, inappropriate psychological explanations, marginalisation of experiences, disrespectful treatment, lack of physical examination and damaging health advice. The main source of their discontent is not the lack of biomedical knowledge, but doctors who fail to communicate acknowledgement of patients' experiences, knowledge and autonomy. War metaphors are emblematic of how participants describe their medical encounters. The overarching storyline depicts experiences of being caught in a power struggle with doctors and health systems, fused by a lack of common conceptual ground. When physical symptoms cannot be detected, explained and managed by biomedical knowledge and technology, good doctor-patient partnerships are crucial. Without clearly acknowledging patients' perspectives and capabilities in clinical practice, such partnerships cannot be achieved.

  5. A hierarchical spatial model for well yield in complex aquifers

    NASA Astrophysics Data System (ADS)

    Montgomery, J.; O'sullivan, F.

    2017-12-01

    Efficiently siting and managing groundwater wells requires reliable estimates of the amount of water that can be produced, or the well yield. This can be challenging to predict in highly complex, heterogeneous fractured aquifers due to the uncertainty around local hydraulic properties. Promising statistical approaches have been advanced in recent years. For instance, kriging and multivariate regression analysis have been applied to well test data with limited but encouraging levels of prediction accuracy. Additionally, some analytical solutions to diffusion in homogeneous porous media have been used to infer "effective" properties consistent with observed flow rates or drawdown. However, this is an under-specified inverse problem with substantial and irreducible uncertainty. We describe a flexible machine learning approach capable of combining diverse datasets with constraining physical and geostatistical models for improved well yield prediction accuracy and uncertainty quantification. Our approach can be implemented within a hierarchical Bayesian framework using Markov Chain Monte Carlo, which allows for additional sources of information to be incorporated in priors to further constrain and improve predictions and reduce the model order. We demonstrate the usefulness of this approach using data from over 7,000 wells in a fractured bedrock aquifer.

  6. Defining Tsunami Magnitude as Measure of Potential Impact

    NASA Astrophysics Data System (ADS)

    Titov, V. V.; Tang, L.

    2016-12-01

    The goal of tsunami forecast, as a system for predicting potential impact of a tsunami at coastlines, requires quick estimate of a tsunami magnitude. This goal has been recognized since the beginning of tsunami research. The work of Kajiura, Soloviev, Abe, Murty, and many others discussed several scales for tsunami magnitude based on estimates of tsunami energy. However, difficulties of estimating tsunami energy based on available tsunami measurements at coastal sea-level stations has carried significant uncertainties and has been virtually impossible in real time, before tsunami impacts coastlines. The slow process of tsunami magnitude estimates, including collection of vast amount of available coastal sea-level data from affected coastlines, made it impractical to use any tsunami magnitude scales in tsunami warning operations. Uncertainties of estimates made tsunami magnitudes difficult to use as universal scale for tsunami analysis. Historically, the earthquake magnitude has been used as a proxy of tsunami impact estimates, since real-time seismic data is available of real-time processing and ample amount of seismic data is available for an elaborate post event analysis. This measure of tsunami impact carries significant uncertainties in quantitative tsunami impact estimates, since the relation between the earthquake and generated tsunami energy varies from case to case. In this work, we argue that current tsunami measurement capabilities and real-time modeling tools allow for establishing robust tsunami magnitude that will be useful for tsunami warning as a quick estimate for tsunami impact and for post-event analysis as a universal scale for tsunamis inter-comparison. We present a method for estimating the tsunami magnitude based on tsunami energy and present application of the magnitude analysis for several historical events for inter-comparison with existing methods.

  7. Stress Corrosion of Ceramic Materials

    DTIC Science & Technology

    1981-10-01

    stresses are liable to fail after an indeterminate period of time, leading to a considerable uncertainty in the safe design stress. One of the objectives...of modern ceramics technology is to reduce the uncertainty associated with structural design , and hence, to improve our capabilities of designing ...processes that occur during stress corrosion cracking. Recent advances in th~earea of structural design with ceramic materials have lead to several

  8. A design methodology for nonlinear systems containing parameter uncertainty: Application to nonlinear controller design

    NASA Technical Reports Server (NTRS)

    Young, G.

    1982-01-01

    A design methodology capable of dealing with nonlinear systems, such as a controlled ecological life support system (CELSS), containing parameter uncertainty is discussed. The methodology was applied to the design of discrete time nonlinear controllers. The nonlinear controllers can be used to control either linear or nonlinear systems. Several controller strategies are presented to illustrate the design procedure.

  9. A New Mathematical Framework for Design Under Uncertainty

    DTIC Science & Technology

    2016-05-05

    blending multiple information sources via auto-regressive stochastic modeling. A computationally efficient machine learning framework is developed based on...sion and machine learning approaches; see Fig. 1. This will lead to a comprehensive description of system performance with less uncertainty than in the...Bayesian optimization of super-cavitating hy- drofoils The goal of this study is to demonstrate the capabilities of statistical learning and

  10. Drought prediction using co-active neuro-fuzzy inference system, validation, and uncertainty analysis (case study: Birjand, Iran)

    NASA Astrophysics Data System (ADS)

    Memarian, Hadi; Pourreza Bilondi, Mohsen; Rezaei, Majid

    2016-08-01

    This work aims to assess the capability of co-active neuro-fuzzy inference system (CANFIS) for drought forecasting of Birjand, Iran through the combination of global climatic signals with rainfall and lagged values of Standardized Precipitation Index (SPI) index. Using stepwise regression and correlation analyses, the signals NINO 1 + 2, NINO 3, Multivariate Enso Index, Tropical Southern Atlantic index, Atlantic Multi-decadal Oscillation index, and NINO 3.4 were recognized as the effective signals on the drought event in Birjand. Based on the results from stepwise regression analysis and regarding the processor limitations, eight models were extracted for further processing by CANFIS. The metrics P-factor and D-factor were utilized for uncertainty analysis, based on the sequential uncertainty fitting algorithm. Sensitivity analysis showed that for all models, NINO indices and rainfall variable had the largest impact on network performance. In model 4 (as the model with the lowest error during training and testing processes), NINO 1 + 2(t-5) with an average sensitivity of 0.7 showed the highest impact on network performance. Next, the variables rainfall, NINO 1 + 2(t), and NINO 3(t-6) with the average sensitivity of 0.59, 0.28, and 0.28, respectively, could have the highest effect on network performance. The findings based on network performance metrics indicated that the global indices with a time lag represented a better correlation with El Niño Southern Oscillation (ENSO). Uncertainty analysis of the model 4 demonstrated that 68 % of the observed data were bracketed by the 95PPU and D-Factor value (0.79) was also within a reasonable range. Therefore, the fourth model with a combination of the input variables NINO 1 + 2 (with 5 months of lag and without any lag), monthly rainfall, and NINO 3 (with 6 months of lag) and correlation coefficient of 0.903 (between observed and simulated SPI) was selected as the most accurate model for drought forecasting using CANFIS in the climatic region of Birjand.

  11. Integrated Data Analysis for Fusion: A Bayesian Tutorial for Fusion Diagnosticians

    NASA Astrophysics Data System (ADS)

    Dinklage, Andreas; Dreier, Heiko; Fischer, Rainer; Gori, Silvio; Preuss, Roland; Toussaint, Udo von

    2008-03-01

    Integrated Data Analysis (IDA) offers a unified way of combining information relevant to fusion experiments. Thereby, IDA meets with typical issues arising in fusion data analysis. In IDA, all information is consistently formulated as probability density functions quantifying uncertainties in the analysis within the Bayesian probability theory. For a single diagnostic, IDA allows the identification of faulty measurements and improvements in the setup. For a set of diagnostics, IDA gives joint error distributions allowing the comparison and integration of different diagnostics results. Validation of physics models can be performed by model comparison techniques. Typical data analysis applications benefit from IDA capabilities of nonlinear error propagation, the inclusion of systematic effects and the comparison of different physics models. Applications range from outlier detection, background discrimination, model assessment and design of diagnostics. In order to cope with next step fusion device requirements, appropriate techniques are explored for fast analysis applications.

  12. Creating NDA working standards through high-fidelity spent fuel modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skutnik, Steven E; Gauld, Ian C; Romano, Catherine E

    2012-01-01

    The Next Generation Safeguards Initiative (NGSI) is developing advanced non-destructive assay (NDA) techniques for spent nuclear fuel assemblies to advance the state-of-the-art in safeguards measurements. These measurements aim beyond the capabilities of existing methods to include the evaluation of plutonium and fissile material inventory, independent of operator declarations. Testing and evaluation of advanced NDA performance will require reference assemblies with well-characterized compositions to serve as working standards against which the NDA methods can be benchmarked and for uncertainty quantification. To support the development of standards for the NGSI spent fuel NDA project, high-fidelity modeling of irradiated fuel assemblies is beingmore » performed to characterize fuel compositions and radiation emission data. The assembly depletion simulations apply detailed operating history information and core simulation data as it is available to perform high fidelity axial and pin-by-pin fuel characterization for more than 1600 nuclides. The resulting pin-by-pin isotopic inventories are used to optimize the NDA measurements and provide information necessary to unfold and interpret the measurement data, e.g., passive gamma emitters, neutron emitters, neutron absorbers, and fissile content. A key requirement of this study is the analysis of uncertainties associated with the calculated compositions and signatures for the standard assemblies; uncertainties introduced by the calculation methods, nuclear data, and operating information. An integral part of this assessment involves the application of experimental data from destructive radiochemical assay to assess the uncertainty and bias in computed inventories, the impact of parameters such as assembly burnup gradients and burnable poisons, and the influence of neighboring assemblies on periphery rods. This paper will present the results of high fidelity assembly depletion modeling and uncertainty analysis from independent calculations performed using SCALE and MCNP. This work is supported by the Next Generation Safeguards Initiative, Office of Nuclear Safeguards and Security, National Nuclear Security Administration.« less

  13. Benchmarking the QUAD4/TRIA3 element

    NASA Technical Reports Server (NTRS)

    Pitrof, Stephen M.; Venkayya, Vipperla B.

    1993-01-01

    The QUAD4 and TRIA3 elements are the primary plate/shell elements in NASTRAN. These elements enable the user to analyze thin plate/shell structures for membrane, bending and shear phenomena. They are also very new elements in the NASTRAN library. These elements are extremely versatile and constitute a substantially enhanced analysis capability in NASTRAN. However, with the versatility comes the burden of understanding a myriad of modeling implications and their effect on accuracy and analysis quality. The validity of many aspects of these elements were established through a series of benchmark problem results and comparison with those available in the literature and obtained from other programs like MSC/NASTRAN and CSAR/NASTRAN. Never-the-less such a comparison is never complete because of the new and creative use of these elements in complex modeling situations. One of the important features of QUAD4 and TRIA3 elements is the offset capability which allows the midsurface of the plate to be noncoincident with the surface of the grid points. None of the previous elements, with the exception of bar (beam), has this capability. The offset capability played a crucial role in the design of QUAD4 and TRIA3 elements. It allowed modeling layered composites, laminated plates and sandwich plates with the metal and composite face sheets. Even though the basic implementation of the offset capability is found to be sound in the previous applications, there is some uncertainty in relatively simple applications. The main purpose of this paper is to test the integrity of the offset capability and provide guidelines for its effective use. For the purpose of simplicity, references in this paper to the QUAD4 element will also include the TRIA3 element.

  14. Joint Operations 2030 - Phase III Report: The JO 2030 Capability Set (Operations interarmees 2030 - Rapport Phase III: L’ensemble capacitaire JO 2030)

    DTIC Science & Technology

    2011-04-01

    a ‘strategy as process’ manner to develop capabilities that are flexible, adaptable and robust. 3.4 Future structures The need for agile...to develop models of the future security environment 3.4.10 Planning Under Deep Uncertainty Future structures The need for agile, flexible and... Organisation NEC Network Enabled Capability NGO Non Government Organisation NII Networking and Information Infrastructure PVO Private Voluntary

  15. Experiencing Change, Encountering the Unknown: An Education in "Negative Capability" in Light of Buddhism and Levinas

    ERIC Educational Resources Information Center

    Todd, Sharon

    2015-01-01

    This article offers a reading of the philosophies of Emmanuel Levinas and Theravada Buddhism across and through their differences in order to rethink an education that is committed to "negative capability" and the sensibility to uncertainty that this entails. In fleshing this out, I first explore Buddhist ideas of impermanence, suffering…

  16. Designing Technology: An Exploration of the Relationship between Technological Literacy and Design Capability

    ERIC Educational Resources Information Center

    Hope, Gill

    2013-01-01

    The aim of this article is to contribute to the debate on the nature of technology education. This is especially pertinent at times of curriculum change and uncertainty, such as currently exist in relation to the Primary school curriculum in England and Wales. Two phrases ("technological literacy" and "design capability") have…

  17. Autonomous Object Manipulation Using a Soft Planar Grasping Manipulator

    PubMed Central

    Katzschmann, Robert K.; Marchese, Andrew D.

    2015-01-01

    Abstract This article presents the development of an autonomous motion planning algorithm for a soft planar grasping manipulator capable of grasp-and-place operations by encapsulation with uncertainty in the position and shape of the object. The end effector of the soft manipulator is fabricated in one piece without weakening seams using lost-wax casting instead of the commonly used multilayer lamination process. The soft manipulation system can grasp randomly positioned objects within its reachable envelope and move them to a desired location without human intervention. The autonomous planning system leverages the compliance and continuum bending of the soft grasping manipulator to achieve repeatable grasps in the presence of uncertainty. A suite of experiments is presented that demonstrates the system's capabilities. PMID:27625916

  18. National Climate Assessment - Land Data Assimilation System (NCA-LDAS) Data at NASA GES DISC

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Teng, Bill; Vollmer, Bruce; Jasinski, Michael; Mocko, David; Kempler, Steven

    2016-01-01

    As part of NASA's active participation in the Interagency National Climate Assessment (NCA) program, the Goddard Space Flight Center's Hydrological Sciences Laboratory (HSL) is supporting an Integrated Terrestrial Water Analysis, by using NASA's Land Information System (LIS) and Land Data Assimilation System (LDAS) capabilities. To maximize the benefit of the NCA-LDAS, on completion of planned model runs and uncertainty analysis, NASA will provide open access to all NCA-LDAS components, including input data, output fields, and indicator data, to other NCA-teams and the general public. The NCA-LDAS data will be archived at the NASA GES DISC (Goddard Earth Sciences Data and Information Services Center) and can be accessed via direct ftp, THREDDS, Mirador search and download, and Giovanni visualization and analysis system.

  19. Visualizing uncertainty about the future.

    PubMed

    Spiegelhalter, David; Pearson, Mike; Short, Ian

    2011-09-09

    We are all faced with uncertainty about the future, but we can get the measure of some uncertainties in terms of probabilities. Probabilities are notoriously difficult to communicate effectively to lay audiences, and in this review we examine current practice for communicating uncertainties visually, using examples drawn from sport, weather, climate, health, economics, and politics. Despite the burgeoning interest in infographics, there is limited experimental evidence on how different types of visualizations are processed and understood, although the effectiveness of some graphics clearly depends on the relative numeracy of an audience. Fortunately, it is increasingly easy to present data in the form of interactive visualizations and in multiple types of representation that can be adjusted to user needs and capabilities. Nonetheless, communicating deeper uncertainties resulting from incomplete or disputed knowledge--or from essential indeterminacy about the future--remains a challenge.

  20. Big Data Geo-Analytical Tool Development for Spatial Analysis Uncertainty Visualization and Quantification Needs

    NASA Astrophysics Data System (ADS)

    Rose, K.; Bauer, J. R.; Baker, D. V.

    2015-12-01

    As big data computing capabilities are increasingly paired with spatial analytical tools and approaches, there is a need to ensure uncertainty associated with the datasets used in these analyses is adequately incorporated and portrayed in results. Often the products of spatial analyses, big data and otherwise, are developed using discontinuous, sparse, and often point-driven data to represent continuous phenomena. Results from these analyses are generally presented without clear explanations of the uncertainty associated with the interpolated values. The Variable Grid Method (VGM) offers users with a flexible approach designed for application to a variety of analyses where users there is a need to study, evaluate, and analyze spatial trends and patterns while maintaining connection to and communicating the uncertainty in the underlying spatial datasets. The VGM outputs a simultaneous visualization representative of the spatial data analyses and quantification of underlying uncertainties, which can be calculated using data related to sample density, sample variance, interpolation error, uncertainty calculated from multiple simulations. In this presentation we will show how we are utilizing Hadoop to store and perform spatial analysis through the development of custom Spark and MapReduce applications that incorporate ESRI Hadoop libraries. The team will present custom 'Big Data' geospatial applications that run on the Hadoop cluster and integrate with ESRI ArcMap with the team's probabilistic VGM approach. The VGM-Hadoop tool has been specially built as a multi-step MapReduce application running on the Hadoop cluster for the purpose of data reduction. This reduction is accomplished by generating multi-resolution, non-overlapping, attributed topology that is then further processed using ESRI's geostatistical analyst to convey a probabilistic model of a chosen study region. Finally, we will share our approach for implementation of data reduction and topology generation via custom multi-step Hadoop applications, performance benchmarking comparisons, and Hadoop-centric opportunities for greater parallelization of geospatial operations. The presentation includes examples of the approach being applied to a range of subsurface, geospatial studies (e.g. induced seismicity risk).

  1. Assessment of parameter uncertainty in hydrological model using a Markov-Chain-Monte-Carlo-based multilevel-factorial-analysis method

    NASA Astrophysics Data System (ADS)

    Zhang, Junlong; Li, Yongping; Huang, Guohe; Chen, Xi; Bao, Anming

    2016-07-01

    Without a realistic assessment of parameter uncertainty, decision makers may encounter difficulties in accurately describing hydrologic processes and assessing relationships between model parameters and watershed characteristics. In this study, a Markov-Chain-Monte-Carlo-based multilevel-factorial-analysis (MCMC-MFA) method is developed, which can not only generate samples of parameters from a well constructed Markov chain and assess parameter uncertainties with straightforward Bayesian inference, but also investigate the individual and interactive effects of multiple parameters on model output through measuring the specific variations of hydrological responses. A case study is conducted for addressing parameter uncertainties in the Kaidu watershed of northwest China. Effects of multiple parameters and their interactions are quantitatively investigated using the MCMC-MFA with a three-level factorial experiment (totally 81 runs). A variance-based sensitivity analysis method is used to validate the results of parameters' effects. Results disclose that (i) soil conservation service runoff curve number for moisture condition II (CN2) and fraction of snow volume corresponding to 50% snow cover (SNO50COV) are the most significant factors to hydrological responses, implying that infiltration-excess overland flow and snow water equivalent represent important water input to the hydrological system of the Kaidu watershed; (ii) saturate hydraulic conductivity (SOL_K) and soil evaporation compensation factor (ESCO) have obvious effects on hydrological responses; this implies that the processes of percolation and evaporation would impact hydrological process in this watershed; (iii) the interactions of ESCO and SNO50COV as well as CN2 and SNO50COV have an obvious effect, implying that snow cover can impact the generation of runoff on land surface and the extraction of soil evaporative demand in lower soil layers. These findings can help enhance the hydrological model's capability for simulating/predicting water resources.

  2. Uncertainty Footprint: Visualization of Nonuniform Behavior of Iterative Algorithms Applied to 4D Cell Tracking

    PubMed Central

    Wan, Y.; Hansen, C.

    2018-01-01

    Research on microscopy data from developing biological samples usually requires tracking individual cells over time. When cells are three-dimensionally and densely packed in a time-dependent scan of volumes, tracking results can become unreliable and uncertain. Not only are cell segmentation results often inaccurate to start with, but it also lacks a simple method to evaluate the tracking outcome. Previous cell tracking methods have been validated against benchmark data from real scans or artificial data, whose ground truth results are established by manual work or simulation. However, the wide variety of real-world data makes an exhaustive validation impossible. Established cell tracking tools often fail on new data, whose issues are also difficult to diagnose with only manual examinations. Therefore, data-independent tracking evaluation methods are desired for an explosion of microscopy data with increasing scale and resolution. In this paper, we propose the uncertainty footprint, an uncertainty quantification and visualization technique that examines nonuniformity at local convergence for an iterative evaluation process on a spatial domain supported by partially overlapping bases. We demonstrate that the patterns revealed by the uncertainty footprint indicate data processing quality in two algorithms from a typical cell tracking workflow – cell identification and association. A detailed analysis of the patterns further allows us to diagnose issues and design methods for improvements. A 4D cell tracking workflow equipped with the uncertainty footprint is capable of self diagnosis and correction for a higher accuracy than previous methods whose evaluation is limited by manual examinations. PMID:29456279

  3. Uncertainty Budget Analysis for Dimensional Inspection Processes (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdez, Lucas M.

    2012-07-26

    This paper is intended to provide guidance and describe how to prepare an uncertainty analysis of a dimensional inspection process through the utilization of an uncertainty budget analysis. The uncertainty analysis is stated in the same methodology as that of the ISO GUM standard for calibration and testing. There is a specific distinction between how Type A and Type B uncertainty analysis is used in a general and specific process. All theory and applications are utilized to represent both a generalized approach to estimating measurement uncertainty and how to report and present these estimations for dimensional measurements in a dimensionalmore » inspection process. The analysis of this uncertainty budget shows that a well-controlled dimensional inspection process produces a conservative process uncertainty, which can be attributed to the necessary assumptions in place for best possible results.« less

  4. Scientific Discovery through Advanced Computing (SciDAC-3) Partnership Project Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Forest M.; Bochev, Pavel B.; Cameron-Smith, Philip J..

    The Applying Computationally Efficient Schemes for BioGeochemical Cycles ACES4BGC Project is advancing the predictive capabilities of Earth System Models (ESMs) by reducing two of the largest sources of uncertainty, aerosols and biospheric feedbacks, with a highly efficient computational approach. In particular, this project is implementing and optimizing new computationally efficient tracer advection algorithms for large numbers of tracer species; adding important biogeochemical interactions between the atmosphere, land, and ocean models; and applying uncertainty quanti cation (UQ) techniques to constrain process parameters and evaluate uncertainties in feedbacks between biogeochemical cycles and the climate system.

  5. Quantification of LiDAR measurement uncertainty through propagation of errors due to sensor sub-systems and terrain morphology

    NASA Astrophysics Data System (ADS)

    Goulden, T.; Hopkinson, C.

    2013-12-01

    The quantification of LiDAR sensor measurement uncertainty is important for evaluating the quality of derived DEM products, compiling risk assessment of management decisions based from LiDAR information, and enhancing LiDAR mission planning capabilities. Current quality assurance estimates of LiDAR measurement uncertainty are limited to post-survey empirical assessments or vendor estimates from commercial literature. Empirical evidence can provide valuable information for the performance of the sensor in validated areas; however, it cannot characterize the spatial distribution of measurement uncertainty throughout the extensive coverage of typical LiDAR surveys. Vendor advertised error estimates are often restricted to strict and optimal survey conditions, resulting in idealized values. Numerical modeling of individual pulse uncertainty provides an alternative method for estimating LiDAR measurement uncertainty. LiDAR measurement uncertainty is theoretically assumed to fall into three distinct categories, 1) sensor sub-system errors, 2) terrain influences, and 3) vegetative influences. This research details the procedures for numerical modeling of measurement uncertainty from the sensor sub-system (GPS, IMU, laser scanner, laser ranger) and terrain influences. Results show that errors tend to increase as the laser scan angle, altitude or laser beam incidence angle increase. An experimental survey over a flat and paved runway site, performed with an Optech ALTM 3100 sensor, showed an increase in modeled vertical errors of 5 cm, at a nadir scan orientation, to 8 cm at scan edges; for an aircraft altitude of 1200 m and half scan angle of 15°. In a survey with the same sensor, at a highly sloped glacial basin site absent of vegetation, modeled vertical errors reached over 2 m. Validation of error models within the glacial environment, over three separate flight lines, respectively showed 100%, 85%, and 75% of elevation residuals fell below error predictions. Future work in LiDAR sensor measurement uncertainty must focus on the development of vegetative error models to create more robust error prediction algorithms. To achieve this objective, comprehensive empirical exploratory analysis is recommended to relate vegetative parameters to observed errors.

  6. National Center for Nuclear Security: The Nuclear Forensics Project (F2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klingensmith, A. L.

    These presentation visuals introduce the National Center for Nuclear Security. Its chartered mission is to enhance the Nation’s verification and detection capabilities in support of nuclear arms control and nonproliferation through R&D activities at the NNSS. It has three focus areas: Treaty Verification Technologies, Nonproliferation Technologies, and Technical Nuclear Forensics. The objectives of nuclear forensics are to reduce uncertainty in the nuclear forensics process & improve the scientific defensibility of nuclear forensics conclusions when applied to nearsurface nuclear detonations. Research is in four key areas: Nuclear Physics, Debris collection and analysis, Prompt diagnostics, and Radiochemistry.

  7. Web-based access, aggregation, and visualization of future climate projections with emphasis on agricultural assessments

    NASA Astrophysics Data System (ADS)

    Villoria, Nelson B.; Elliott, Joshua; Müller, Christoph; Shin, Jaewoo; Zhao, Lan; Song, Carol

    2018-01-01

    Access to climate and spatial datasets by non-specialists is restricted by technical barriers involving hardware, software and data formats. We discuss an open-source online tool that facilitates downloading the climate data from the global circulation models used by the Inter-Sectoral Impacts Model Intercomparison Project. The tool also offers temporal and spatial aggregation capabilities for incorporating future climate scenarios in applications where spatial aggregation is important. We hope that streamlined access to these data facilitates analysis of climate related issues while considering the uncertainties derived from future climate projections and temporal aggregation choices.

  8. Dust mass concentrations from the UK volcanic ash lidar network compared with in-situ aircraft measurements

    NASA Astrophysics Data System (ADS)

    Osborne, Martin; Marenco, Franco; Adam, Mariana; Buxmann, Joelle; Haywood, Jim

    2018-04-01

    The Met Office has recently established a series of 10 lidar / sun-photometer installations across the UK, consolidating their ash / aerosol remote sensing capabilities [1]. In addition to this network, the Met Office have acquired the Civil Contingency Aircraft (MOCCA) which allows airborne in-situ measurements of ash / aerosol scattering and size-distributions. Two case studies are presented in which mass concentrations of Saharan dust are obtained remotely using lidar returns, and are then compared with those obtained in-situ. A thorough analysis of the mass concentration uncertainty will be provided at the conference.

  9. Strategic Uncertainty: Thinking About Tactical Level Cyberspace Operations

    DTIC Science & Technology

    2015-05-25

    places on the topic. For example, the Edward Snowden revelations on U.S. intelligence agencies’ surveillance programs heightened tensions between the...generates a new level of strategic uncertainty? The answer is yes. The Edward Snowden disclosures are one example that made it more difficult to assure...revelations from Edward Snowden . Backlash over additional offensive cyber capabilities development and extension down to even lower levels in the Force is

  10. CRAX/Cassandra Reliability Analysis Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, D.

    1999-02-10

    Over the past few years Sandia National Laboratories has been moving toward an increased dependence on model- or physics-based analyses as a means to assess the impact of long-term storage on the nuclear weapons stockpile. These deterministic models have also been used to evaluate replacements for aging systems, often involving commercial off-the-shelf components (COTS). In addition, the models have been used to assess the performance of replacement components manufactured via unique, small-lot production runs. In either case, the limited amount of available test data dictates that the only logical course of action to characterize the reliability of these components ismore » to specifically consider the uncertainties in material properties, operating environment etc. within the physics-based (deterministic) model. This not only provides the ability to statistically characterize the expected performance of the component or system, but also provides direction regarding the benefits of additional testing on specific components within the system. An effort was therefore initiated to evaluate the capabilities of existing probabilistic methods and, if required, to develop new analysis methods to support the inclusion of uncertainty in the classical design tools used by analysts and design engineers at Sandia. The primary result of this effort is the CMX (Cassandra Exoskeleton) reliability analysis software.« less

  11. Representation of analysis results involving aleatory and epistemic uncertainty.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jay Dean; Helton, Jon Craig; Oberkampf, William Louis

    2008-08-01

    Procedures are described for the representation of results in analyses that involve both aleatory uncertainty and epistemic uncertainty, with aleatory uncertainty deriving from an inherent randomness in the behavior of the system under study and epistemic uncertainty deriving from a lack of knowledge about the appropriate values to use for quantities that are assumed to have fixed but poorly known values in the context of a specific study. Aleatory uncertainty is usually represented with probability and leads to cumulative distribution functions (CDFs) or complementary cumulative distribution functions (CCDFs) for analysis results of interest. Several mathematical structures are available for themore » representation of epistemic uncertainty, including interval analysis, possibility theory, evidence theory and probability theory. In the presence of epistemic uncertainty, there is not a single CDF or CCDF for a given analysis result. Rather, there is a family of CDFs and a corresponding family of CCDFs that derive from epistemic uncertainty and have an uncertainty structure that derives from the particular uncertainty structure (i.e., interval analysis, possibility theory, evidence theory, probability theory) used to represent epistemic uncertainty. Graphical formats for the representation of epistemic uncertainty in families of CDFs and CCDFs are investigated and presented for the indicated characterizations of epistemic uncertainty.« less

  12. Governance Structures for Open Innovation: A Preliminary Framework

    NASA Astrophysics Data System (ADS)

    Feller, Joseph; Finnegan, Patrick; Hayes, Jeremy; O'Reilly, Philip

    This research-in-progress paper presents a preliminary framework of four open innovation governance structures. The study seeks to describe four distinct ways in which firms utilize hierarchical relationships, organizational intermediaries, and the market system to supply and acquire intellectual property and/or innovation capabilities from sources external to the firm. This paper reports on phase one of the study, which involved an analysis of six open innovation exemplars based on public data. This phase of the study reveals that governance structures for open innovation can be categorized based on whether they (1) are mediated or direct or (2) seek to acquire intellectual property or innovation capability. We analyze the differences in four governance structures along seven dimensions, and reveal the importance of knowledge dispersion and uncertainty to the use of open innovation hierarchies, brokerages, and markets. The paper concludes by examining the implications of the findings and outlining the next phase of the study.

  13. Fuzzy logic based sensor performance evaluation of vehicle mounted metal detector systems

    NASA Astrophysics Data System (ADS)

    Abeynayake, Canicious; Tran, Minh D.

    2015-05-01

    Vehicle Mounted Metal Detector (VMMD) systems are widely used for detection of threat objects in humanitarian demining and military route clearance scenarios. Due to the diverse nature of such operational conditions, operational use of VMMD without a proper understanding of its capability boundaries may lead to heavy causalities. Multi-criteria fitness evaluations are crucial for determining capability boundaries of any sensor-based demining equipment. Evaluation of sensor based military equipment is a multi-disciplinary topic combining the efforts of researchers, operators, managers and commanders having different professional backgrounds and knowledge profiles. Information acquired through field tests usually involves uncertainty, vagueness and imprecision due to variations in test and evaluation conditions during a single test or series of tests. This report presents a fuzzy logic based methodology for experimental data analysis and performance evaluation of VMMD. This data evaluation methodology has been developed to evaluate sensor performance by consolidating expert knowledge with experimental data. A case study is presented by implementing the proposed data analysis framework in a VMMD evaluation scenario. The results of this analysis confirm accuracy, practicability and reliability of the fuzzy logic based sensor performance evaluation framework.

  14. Measurement uncertainty analysis techniques applied to PV performance measurements

    NASA Astrophysics Data System (ADS)

    Wells, C.

    1992-10-01

    The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis? It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the interval about a measured value or an experiment's final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis? A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.

  15. How Reliable is Bayesian Model Averaging Under Noisy Data? Statistical Assessment and Implications for Robust Model Selection

    NASA Astrophysics Data System (ADS)

    Schöniger, Anneli; Wöhling, Thomas; Nowak, Wolfgang

    2014-05-01

    Bayesian model averaging ranks the predictive capabilities of alternative conceptual models based on Bayes' theorem. The individual models are weighted with their posterior probability to be the best one in the considered set of models. Finally, their predictions are combined into a robust weighted average and the predictive uncertainty can be quantified. This rigorous procedure does, however, not yet account for possible instabilities due to measurement noise in the calibration data set. This is a major drawback, since posterior model weights may suffer a lack of robustness related to the uncertainty in noisy data, which may compromise the reliability of model ranking. We present a new statistical concept to account for measurement noise as source of uncertainty for the weights in Bayesian model averaging. Our suggested upgrade reflects the limited information content of data for the purpose of model selection. It allows us to assess the significance of the determined posterior model weights, the confidence in model selection, and the accuracy of the quantified predictive uncertainty. Our approach rests on a brute-force Monte Carlo framework. We determine the robustness of model weights against measurement noise by repeatedly perturbing the observed data with random realizations of measurement error. Then, we analyze the induced variability in posterior model weights and introduce this "weighting variance" as an additional term into the overall prediction uncertainty analysis scheme. We further determine the theoretical upper limit in performance of the model set which is imposed by measurement noise. As an extension to the merely relative model ranking, this analysis provides a measure of absolute model performance. To finally decide, whether better data or longer time series are needed to ensure a robust basis for model selection, we resample the measurement time series and assess the convergence of model weights for increasing time series length. We illustrate our suggested approach with an application to model selection between different soil-plant models following up on a study by Wöhling et al. (2013). Results show that measurement noise compromises the reliability of model ranking and causes a significant amount of weighting uncertainty, if the calibration data time series is not long enough to compensate for its noisiness. This additional contribution to the overall predictive uncertainty is neglected without our approach. Thus, we strongly advertise to include our suggested upgrade in the Bayesian model averaging routine.

  16. Landing Gear Noise Prediction and Analysis for Tube-and-Wing and Hybrid-Wing-Body Aircraft

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Burley, Casey L.; Thomas, Russell H.

    2016-01-01

    Improvements and extensions to landing gear noise prediction methods are developed. New features include installation effects such as reflection from the aircraft, gear truck angle effect, local flow calculation at the landing gear locations, gear size effect, and directivity for various gear designs. These new features have not only significantly improved the accuracy and robustness of the prediction tools, but also have enabled applications to unconventional aircraft designs and installations. Systematic validations of the improved prediction capability are then presented, including parametric validations in functional trends as well as validations in absolute amplitudes, covering a wide variety of landing gear designs, sizes, and testing conditions. The new method is then applied to selected concept aircraft configurations in the portfolio of the NASA Environmentally Responsible Aviation Project envisioned for the timeframe of 2025. The landing gear noise levels are on the order of 2 to 4 dB higher than previously reported predictions due to increased fidelity in accounting for installation effects and gear design details. With the new method, it is now possible to reveal and assess the unique noise characteristics of landing gear systems for each type of aircraft. To address the inevitable uncertainties in predictions of landing gear noise models for future aircraft, an uncertainty analysis is given, using the method of Monte Carlo simulation. The standard deviation of the uncertainty in predicting the absolute level of landing gear noise is quantified and determined to be 1.4 EPNL dB.

  17. Handling Trajectory Uncertainties for Airborne Conflict Management

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Doble, Nathan A.; Karr, David; Palmer, Michael T.

    2005-01-01

    Airborne conflict management is an enabling capability for NASA's Distributed Air-Ground Traffic Management (DAG-TM) concept. DAGTM has the goal of significantly increasing capacity within the National Airspace System, while maintaining or improving safety. Under DAG-TM, autonomous aircraft maintain separation from each other and from managed aircraft unequipped for autonomous flight. NASA Langley Research Center has developed the Autonomous Operations Planner (AOP), an onboard decision support system that provides airborne conflict management (ACM) and strategic flight planning support for autonomous aircraft pilots. The AOP performs conflict detection, prevention, and resolution from nearby traffic aircraft and area hazards. Traffic trajectory information is assumed to be provided by Automatic Dependent Surveillance Broadcast (ADS-B). Reliable trajectory prediction is a key capability for providing effective ACM functions. Trajectory uncertainties due to environmental effects, differences in aircraft systems and performance, and unknown intent information lead to prediction errors that can adversely affect AOP performance. To accommodate these uncertainties, the AOP has been enhanced to create cross-track, vertical, and along-track buffers along the predicted trajectories of both ownship and traffic aircraft. These buffers will be structured based on prediction errors noted from previous simulations such as a recent Joint Experiment between NASA Ames and Langley Research Centers and from other outside studies. Currently defined ADS-B parameters related to navigation capability, trajectory type, and path conformance will be used to support the algorithms that generate the buffers.

  18. Predictive Capability Maturity Model for computational modeling and simulation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oberkampf, William Louis; Trucano, Timothy Guy; Pilch, Martin M.

    2007-10-01

    The Predictive Capability Maturity Model (PCMM) is a new model that can be used to assess the level of maturity of computational modeling and simulation (M&S) efforts. The development of the model is based on both the authors experience and their analysis of similar investigations in the past. The perspective taken in this report is one of judging the usefulness of a predictive capability that relies on the numerical solution to partial differential equations to better inform and improve decision making. The review of past investigations, such as the Software Engineering Institute's Capability Maturity Model Integration and the National Aeronauticsmore » and Space Administration and Department of Defense Technology Readiness Levels, indicates that a more restricted, more interpretable method is needed to assess the maturity of an M&S effort. The PCMM addresses six contributing elements to M&S: (1) representation and geometric fidelity, (2) physics and material model fidelity, (3) code verification, (4) solution verification, (5) model validation, and (6) uncertainty quantification and sensitivity analysis. For each of these elements, attributes are identified that characterize four increasing levels of maturity. Importantly, the PCMM is a structured method for assessing the maturity of an M&S effort that is directed toward an engineering application of interest. The PCMM does not assess whether the M&S effort, the accuracy of the predictions, or the performance of the engineering system satisfies or does not satisfy specified application requirements.« less

  19. Explanation Capabilities for Behavior-Based Robot Control

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance L.

    2012-01-01

    A recent study that evaluated issues associated with remote interaction with an autonomous vehicle within the framework of grounding found that missing contextual information led to uncertainty in the interpretation of collected data, and so introduced errors into the command logic of the vehicle. As the vehicles became more autonomous through the activation of additional capabilities, more errors were made. This is an inefficient use of the platform, since the behavior of remotely located autonomous vehicles didn't coincide with the "mental models" of human operators. One of the conclusions of the study was that there should be a way for the autonomous vehicles to describe what action they choose and why. Robotic agents with enough self-awareness to dynamically adjust the information conveyed back to the Operations Center based on a detail level component analysis of requests could provide this description capability. One way to accomplish this is to map the behavior base of the robot into a formal mathematical framework called a cost-calculus. A cost-calculus uses composition operators to build up sequences of behaviors that can then be compared to what is observed using well-known inference mechanisms.

  20. Solving iTOUGH2 simulation and optimization problems using the PEST protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finsterle, S.A.; Zhang, Y.

    2011-02-01

    The PEST protocol has been implemented into the iTOUGH2 code, allowing the user to link any simulation program (with ASCII-based inputs and outputs) to iTOUGH2's sensitivity analysis, inverse modeling, and uncertainty quantification capabilities. These application models can be pre- or post-processors of the TOUGH2 non-isothermal multiphase flow and transport simulator, or programs that are unrelated to the TOUGH suite of codes. PEST-style template and instruction files are used, respectively, to pass input parameters updated by the iTOUGH2 optimization routines to the model, and to retrieve the model-calculated values that correspond to observable variables. We summarize the iTOUGH2 capabilities and demonstratemore » the flexibility added by the PEST protocol for the solution of a variety of simulation-optimization problems. In particular, the combination of loosely coupled and tightly integrated simulation and optimization routines provides both the flexibility and control needed to solve challenging inversion problems for the analysis of multiphase subsurface flow and transport systems.« less

  1. Optimal design and uncertainty quantification in blood flow simulations for congenital heart disease

    NASA Astrophysics Data System (ADS)

    Marsden, Alison

    2009-11-01

    Recent work has demonstrated substantial progress in capabilities for patient-specific cardiovascular flow simulations. Recent advances include increasingly complex geometries, physiological flow conditions, and fluid structure interaction. However inputs to these simulations, including medical image data, catheter-derived pressures and material properties, can have significant uncertainties associated with them. For simulations to predict clinically useful and reliable output information, it is necessary to quantify the effects of input uncertainties on outputs of interest. In addition, blood flow simulation tools can now be efficiently coupled to shape optimization algorithms for surgery design applications, and these tools should incorporate uncertainty information. We present a unified framework to systematically and efficient account for uncertainties in simulations using adaptive stochastic collocation. In addition, we present a framework for derivative-free optimization of cardiovascular geometries, and layer these tools to perform optimization under uncertainty. These methods are demonstrated using simulations and surgery optimization to improve hemodynamics in pediatric cardiology applications.

  2. Developing an Online Framework for Publication of Uncertainty Information in Hydrological Modeling

    NASA Astrophysics Data System (ADS)

    Etienne, E.; Piasecki, M.

    2012-12-01

    Inaccuracies in data collection and parameters estimation, and imperfection of models structures imply uncertain predictions of the hydrological models. Finding a way to communicate the uncertainty information in a model output is important in decision-making. This work aims to publish uncertainty information (computed by project partner at Penn State) associated with hydrological predictions on catchments. To this end we have developed a DB schema (derived from the CUAHSI ODM design) which is focused on storing uncertainty information and its associated metadata. The technologies used to build the system are: OGC's Sensor Observation Service (SOS) for publication, the uncertML markup language (also developed by the OGC) to describe uncertainty information, and use of the Interoperability and Automated Mapping (INTAMAP) Web Processing Service (WPS) that handles part of the statistics computations. We develop a service to provide users with the capability to exploit all the functionality of the system (based on DRUPAL). Users will be able to request and visualize uncertainty data, and also publish their data in the system.

  3. Ecosystem Services and Climate Change Considerations for ...

    EPA Pesticide Factsheets

    Freshwater habitats provide fishable, swimmable and drinkable resources and are a nexus of geophysical and biological processes. These processes in turn influence the persistence and sustainability of populations, communities and ecosystems. Climate change and landuse change encompass numerous stressors of potential exposure, including the introduction of toxic contaminants, invasive species, and disease in addition to physical drivers such as temperature and hydrologic regime. A systems approach that includes the scientific and technologic basis of assessing the health of ecosystems is needed to effectively protect human health and the environment. The Integrated Environmental Modeling Framework “iemWatersheds” has been developed as a consistent and coherent means of forecasting the cumulative impact of co-occurring stressors. The Framework consists of three facilitating technologies: Data for Environmental Modeling (D4EM) that automates the collection and standardization of input data; the Framework for Risk Assessment of Multimedia Environmental Systems (FRAMES) that manages the flow of information between linked models; and the Supercomputer for Model Uncertainty and Sensitivity Evaluation (SuperMUSE) that provides post-processing and analysis of model outputs, including uncertainty and sensitivity analysis. Five models are linked within the Framework to provide multimedia simulation capabilities for hydrology and water quality processes: the Soil Water

  4. Astrometry of Pluto from 1930-1951 observations: The Lampland plate collection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buie, Marc W.; Folkner, William M., E-mail: buie@boulder.swri.edu, E-mail: william.m.folkner@jpl.nasa.gov

    We present a new analysis of 843 photographic plates of Pluto taken by Carl Lampland at Lowell Observatory from 1930–1951. This large collection of plates contains useful astrometric information that improves our knowledge of Pluto's orbit. This improvement provides critical support to the impending flyby of Pluto by New Horizons. New Horizons can do inbound navigation of the system to improve its targeting. This navigation is capable of nearly eliminating the sky-plane errors but can do little to constrain the time of closest approach. Thus the focus on this work was to better determine Pluto's heliocentric distance and to determinemore » the uncertainty on that distance with a particular eye to eliminating systematic errors that might have been previously unrecognized. This work adds 596 new astrometric measurements based on the USNO CCD Astrograph Catalog 4. With the addition of these data the uncertainty of the estimated heliocentric position of Pluto in Developmental Ephemerides 432 (DE432) is at the level of 1000 km. This new analysis gives us more confidence that these estimations are accurate and are sufficient to support a successful flyby of Pluto by New Horizons.« less

  5. Astrometry of Pluto from 1930-1951 Observations: the Lampland Plate Collection

    NASA Astrophysics Data System (ADS)

    Buie, Marc W.; Folkner, William M.

    2015-01-01

    We present a new analysis of 843 photographic plates of Pluto taken by Carl Lampland at Lowell Observatory from 1930-1951. This large collection of plates contains useful astrometric information that improves our knowledge of Pluto's orbit. This improvement provides critical support to the impending flyby of Pluto by New Horizons. New Horizons can do inbound navigation of the system to improve its targeting. This navigation is capable of nearly eliminating the sky-plane errors but can do little to constrain the time of closest approach. Thus the focus on this work was to better determine Pluto's heliocentric distance and to determine the uncertainty on that distance with a particular eye to eliminating systematic errors that might have been previously unrecognized. This work adds 596 new astrometric measurements based on the USNO CCD Astrograph Catalog 4. With the addition of these data the uncertainty of the estimated heliocentric position of Pluto in Developmental Ephemerides 432 (DE432) is at the level of 1000 km. This new analysis gives us more confidence that these estimations are accurate and are sufficient to support a successful flyby of Pluto by New Horizons.

  6. Multi-Objective Design Of Optimal Greenhouse Gas Observation Networks

    NASA Astrophysics Data System (ADS)

    Lucas, D. D.; Bergmann, D. J.; Cameron-Smith, P. J.; Gard, E.; Guilderson, T. P.; Rotman, D.; Stolaroff, J. K.

    2010-12-01

    One of the primary scientific functions of a Greenhouse Gas Information System (GHGIS) is to infer GHG source emission rates and their uncertainties by combining measurements from an observational network with atmospheric transport modeling. Certain features of the observational networks that serve as inputs to a GHGIS --for example, sampling location and frequency-- can greatly impact the accuracy of the retrieved GHG emissions. Observation System Simulation Experiments (OSSEs) provide a framework to characterize emission uncertainties associated with a given network configuration. By minimizing these uncertainties, OSSEs can be used to determine optimal sampling strategies. Designing a real-world GHGIS observing network, however, will involve multiple, conflicting objectives; there will be trade-offs between sampling density, coverage and measurement costs. To address these issues, we have added multi-objective optimization capabilities to OSSEs. We demonstrate these capabilities by quantifying the trade-offs between retrieval error and measurement costs for a prototype GHGIS, and deriving GHG observing networks that are Pareto optimal. [LLNL-ABS-452333: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  7. ACCOUNTING FOR CALIBRATION UNCERTAINTIES IN X-RAY ANALYSIS: EFFECTIVE AREAS IN SPECTRAL FITTING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyunsook; Kashyap, Vinay L.; Drake, Jeremy J.

    2011-04-20

    While considerable advance has been made to account for statistical uncertainties in astronomical analyses, systematic instrumental uncertainties have been generally ignored. This can be crucial to a proper interpretation of analysis results because instrumental calibration uncertainty is a form of systematic uncertainty. Ignoring it can underestimate error bars and introduce bias into the fitted values of model parameters. Accounting for such uncertainties currently requires extensive case-specific simulations if using existing analysis packages. Here, we present general statistical methods that incorporate calibration uncertainties into spectral analysis of high-energy data. We first present a method based on multiple imputation that can bemore » applied with any fitting method, but is necessarily approximate. We then describe a more exact Bayesian approach that works in conjunction with a Markov chain Monte Carlo based fitting. We explore methods for improving computational efficiency, and in particular detail a method of summarizing calibration uncertainties with a principal component analysis of samples of plausible calibration files. This method is implemented using recently codified Chandra effective area uncertainties for low-resolution spectral analysis and is verified using both simulated and actual Chandra data. Our procedure for incorporating effective area uncertainty is easily generalized to other types of calibration uncertainties.« less

  8. Impact of uncertainty on modeling and testing

    NASA Technical Reports Server (NTRS)

    Coleman, Hugh W.; Brown, Kendall K.

    1995-01-01

    A thorough understanding of the uncertainties associated with the modeling and testing of the Space Shuttle Main Engine (SSME) Engine will greatly aid decisions concerning hardware performance and future development efforts. This report will describe the determination of the uncertainties in the modeling and testing of the Space Shuttle Main Engine test program at the Technology Test Bed facility at Marshall Space Flight Center. Section 2 will present a summary of the uncertainty analysis methodology used and discuss the specific applications to the TTB SSME test program. Section 3 will discuss the application of the uncertainty analysis to the test program and the results obtained. Section 4 presents the results of the analysis of the SSME modeling effort from an uncertainty analysis point of view. The appendices at the end of the report contain a significant amount of information relative to the analysis, including discussions of venturi flowmeter data reduction and uncertainty propagation, bias uncertainty documentations, technical papers published, the computer code generated to determine the venturi uncertainties, and the venturi data and results used in the analysis.

  9. Determination of Uncertainties for the New SSME Model

    NASA Technical Reports Server (NTRS)

    Coleman, Hugh W.; Hawk, Clark W.

    1996-01-01

    This report discusses the uncertainty analysis performed in support of a new test analysis and performance prediction model for the Space Shuttle Main Engine. The new model utilizes uncertainty estimates for experimental data and for the analytical model to obtain the most plausible operating condition for the engine system. This report discusses the development of the data sets and uncertainty estimates to be used in the development of the new model. It also presents the application of uncertainty analysis to analytical models and the uncertainty analysis for the conservation of mass and energy balance relations is presented. A new methodology for the assessment of the uncertainty associated with linear regressions is presented.

  10. Past and present cosmic structure in the SDSS DR7 main sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasche, J.; Leclercq, F.; Wandelt, B.D., E-mail: jasche@iap.fr, E-mail: florent.leclercq@polytechnique.org, E-mail: wandelt@iap.fr

    2015-01-01

    We present a chrono-cosmography project, aiming at the inference of the four dimensional formation history of the observed large scale structure from its origin to the present epoch. To do so, we perform a full-scale Bayesian analysis of the northern galactic cap of the Sloan Digital Sky Survey (SDSS) Data Release 7 main galaxy sample, relying on a fully probabilistic, physical model of the non-linearly evolved density field. Besides inferring initial conditions from observations, our methodology naturally and accurately reconstructs non-linear features at the present epoch, such as walls and filaments, corresponding to high-order correlation functions generated by late-time structuremore » formation. Our inference framework self-consistently accounts for typical observational systematic and statistical uncertainties such as noise, survey geometry and selection effects. We further account for luminosity dependent galaxy biases and automatic noise calibration within a fully Bayesian approach. As a result, this analysis provides highly-detailed and accurate reconstructions of the present density field on scales larger than ∼ 3 Mpc/h, constrained by SDSS observations. This approach also leads to the first quantitative inference of plausible formation histories of the dynamic large scale structure underlying the observed galaxy distribution. The results described in this work constitute the first full Bayesian non-linear analysis of the cosmic large scale structure with the demonstrated capability of uncertainty quantification. Some of these results will be made publicly available along with this work. The level of detail of inferred results and the high degree of control on observational uncertainties pave the path towards high precision chrono-cosmography, the subject of simultaneously studying the dynamics and the morphology of the inhomogeneous Universe.« less

  11. A Bayesian-based multilevel factorial analysis method for analyzing parameter uncertainty of hydrological model

    NASA Astrophysics Data System (ADS)

    Liu, Y. R.; Li, Y. P.; Huang, G. H.; Zhang, J. L.; Fan, Y. R.

    2017-10-01

    In this study, a Bayesian-based multilevel factorial analysis (BMFA) method is developed to assess parameter uncertainties and their effects on hydrological model responses. In BMFA, Differential Evolution Adaptive Metropolis (DREAM) algorithm is employed to approximate the posterior distributions of model parameters with Bayesian inference; factorial analysis (FA) technique is used for measuring the specific variations of hydrological responses in terms of posterior distributions to investigate the individual and interactive effects of parameters on model outputs. BMFA is then applied to a case study of the Jinghe River watershed in the Loess Plateau of China to display its validity and applicability. The uncertainties of four sensitive parameters, including soil conservation service runoff curve number to moisture condition II (CN2), soil hydraulic conductivity (SOL_K), plant available water capacity (SOL_AWC), and soil depth (SOL_Z), are investigated. Results reveal that (i) CN2 has positive effect on peak flow, implying that the concentrated rainfall during rainy season can cause infiltration-excess surface flow, which is an considerable contributor to peak flow in this watershed; (ii) SOL_K has positive effect on average flow, implying that the widely distributed cambisols can lead to medium percolation capacity; (iii) the interaction between SOL_AWC and SOL_Z has noticeable effect on the peak flow and their effects are dependent upon each other, which discloses that soil depth can significant influence the processes of plant uptake of soil water in this watershed. Based on the above findings, the significant parameters and the relationship among uncertain parameters can be specified, such that hydrological model's capability for simulating/predicting water resources of the Jinghe River watershed can be improved.

  12. Uncertainty quantification's role in modeling and simulation planning, and credibility assessment through the predictive capability maturity model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rider, William J.; Witkowski, Walter R.; Mousseau, Vincent Andrew

    2016-04-13

    The importance of credible, trustworthy numerical simulations is obvious especially when using the results for making high-consequence decisions. Determining the credibility of such numerical predictions is much more difficult and requires a systematic approach to assessing predictive capability, associated uncertainties and overall confidence in the computational simulation process for the intended use of the model. This process begins with an evaluation of the computational modeling of the identified, important physics of the simulation for its intended use. This is commonly done through a Phenomena Identification Ranking Table (PIRT). Then an assessment of the evidence basis supporting the ability to computationallymore » simulate these physics can be performed using various frameworks such as the Predictive Capability Maturity Model (PCMM). There were several critical activities that follow in the areas of code and solution verification, validation and uncertainty quantification, which will be described in detail in the following sections. Here, we introduce the subject matter for general applications but specifics are given for the failure prediction project. In addition, the first task that must be completed in the verification & validation procedure is to perform a credibility assessment to fully understand the requirements and limitations of the current computational simulation capability for the specific application intended use. The PIRT and PCMM are tools used at Sandia National Laboratories (SNL) to provide a consistent manner to perform such an assessment. Ideally, all stakeholders should be represented and contribute to perform an accurate credibility assessment. PIRTs and PCMMs are both described in brief detail below and the resulting assessments for an example project are given.« less

  13. Flight assessment of the onboard propulsion system model for the Performance Seeking Control algorithm on an F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Schkolnik, Gerard S.

    1995-01-01

    Performance Seeking Control (PSC), an onboard, adaptive, real-time optimization algorithm, relies upon an onboard propulsion system model. Flight results illustrated propulsion system performance improvements as calculated by the model. These improvements were subject to uncertainty arising from modeling error. Thus to quantify uncertainty in the PSC performance improvements, modeling accuracy must be assessed. A flight test approach to verify PSC-predicted increases in thrust (FNP) and absolute levels of fan stall margin is developed and applied to flight test data. Application of the excess thrust technique shows that increases of FNP agree to within 3 percent of full-scale measurements for most conditions. Accuracy to these levels is significant because uncertainty bands may now be applied to the performance improvements provided by PSC. Assessment of PSC fan stall margin modeling accuracy was completed with analysis of in-flight stall tests. Results indicate that the model overestimates the stall margin by between 5 to 10 percent. Because PSC achieves performance gains by using available stall margin, this overestimation may represent performance improvements to be recovered with increased modeling accuracy. Assessment of thrust and stall margin modeling accuracy provides a critical piece for a comprehensive understanding of PSC's capabilities and limitations.

  14. A smart Monte Carlo procedure for production costing and uncertainty analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, C.; Stremel, J.

    1996-11-01

    Electric utilities using chronological production costing models to decide whether to buy or sell power over the next week or next few weeks need to determine potential profits or losses under a number of uncertainties. A large amount of money can be at stake--often $100,000 a day or more--and one party of the sale must always take on the risk. In the case of fixed price ($/MWh) contracts, the seller accepts the risk. In the case of cost plus contracts, the buyer must accept the risk. So, modeling uncertainty and understanding the risk accurately can improve the competitive edge ofmore » the user. This paper investigates an efficient procedure for representing risks and costs from capacity outages. Typically, production costing models use an algorithm based on some form of random number generator to select resources as available or on outage. These algorithms allow experiments to be repeated and gains and losses to be observed in a short time. The authors perform several experiments to examine the capability of three unit outage selection methods and measures their results. Specifically, a brute force Monte Carlo procedure, a Monte Carlo procedure with Latin Hypercube sampling, and a Smart Monte Carlo procedure with cost stratification and directed sampling are examined.« less

  15. Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields

    PubMed Central

    Sapozhnikov, Oleg A.; Tsysar, Sergey A.; Khokhlova, Vera A.; Kreider, Wayne

    2015-01-01

    Acoustic holography is a powerful technique for characterizing ultrasound sources and the fields they radiate, with the ability to quantify source vibrations and reduce the number of required measurements. These capabilities are increasingly appealing for meeting measurement standards in medical ultrasound; however, associated uncertainties have not been investigated systematically. Here errors associated with holographic representations of a linear, continuous-wave ultrasound field are studied. To facilitate the analysis, error metrics are defined explicitly, and a detailed description of a holography formulation based on the Rayleigh integral is provided. Errors are evaluated both for simulations of a typical therapeutic ultrasound source and for physical experiments with three different ultrasound sources. Simulated experiments explore sampling errors introduced by the use of a finite number of measurements, geometric uncertainties in the actual positions of acquired measurements, and uncertainties in the properties of the propagation medium. Results demonstrate the theoretical feasibility of keeping errors less than about 1%. Typical errors in physical experiments were somewhat larger, on the order of a few percent; comparison with simulations provides specific guidelines for improving the experimental implementation to reduce these errors. Overall, results suggest that holography can be implemented successfully as a metrological tool with small, quantifiable errors. PMID:26428789

  16. A Rapid Prototyping Look at NASA's Next Generation Earth-Observing Satellites; Opportunities for Global Change Research and Applications

    NASA Astrophysics Data System (ADS)

    Cecil, L.; Young, D. F.; Parker, P. A.; Eckman, R. S.

    2006-12-01

    The NASA Applied Sciences Program extends the results of Earth Science Division (ESD) research and knowledge beyond the scientific and research communities to contribute to national priority applications with societal benefits. The Applied Sciences Program focuses on, (1) assimilation of NASA Earth-science research results and their associated uncertainties to improve decision support systems and, (2) the transition of NASA research results to evolve improvements in future operational systems. The broad range of Earth- science research results that serve as inputs to the Applied Sciences Program are from NASA's Research and Analysis Program (R&A) within the ESD. The R&A Program has established six research focus areas to study the complex processes associated with Earth-system science; Atmospheric Composition, Carbon Cycle and Ecosystems, Climate Variability and Change, Earth Surface and Interior, Water and Energy Cycle, and Weather. Through observations-based Earth-science research results, NASA and its partners are establishing predictive capabilities for future projections of natural and human perturbations on the planet. The focus of this presentation is on the use of research results and their associated uncertainties from several of NASA's nine next generation missions for societal benefit. The newly launched missions are, (1) CloudSat, and (2) CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations), both launched April 28, 2006, and the planned next generation missions include, (3) the Orbiting Carbon Observatory (OCO), (4) the Global Precipitation Mission (GPM), (5) the Landsat Data Continuity Mission (LDCM), (6) Glory, for measuring the spatial and temporal distribution of aerosols and total solar irradiance for long-term climate records, (7) Aquarius, for measuring global sea surface salinity, (8) the Ocean Surface Topography Mission (OSTM), and (9) the NPOESS Preparatory Project (NPP) for measuring long-term climate trends and global biological productivity. NASA's Applied Sciences Program is taking a scientifically rigorous systems engineering approach to facilitate rapid prototyping of potential uses of the projected research capabilities of these new missions into decision support systems. This presentation includes an example of a prototype experiment that focuses on two of the Applied Sciences Program's twelve National Applications focus areas, Water Management and Energy Management. This experiment is utilizing research results and associated uncertainties from existing Earth-observation missions as well as from several of NASA's nine next generation missions. This prototype experiment is simulating decision support analysis and research results leading to priority management and/or policy issues concentrating on climate change and uncertainties in alpine areas on the watershed scale.

  17. Evaluating the combined effects of source zone mass release rates and aquifer heterogeneity on solute discharge uncertainty

    NASA Astrophysics Data System (ADS)

    de Barros, Felipe P. J.

    2018-07-01

    Quantifying the uncertainty in solute mass discharge at an environmentally sensitive location is key to assess the risks due to groundwater contamination. Solute mass fluxes are strongly affected by the spatial variability of hydrogeological properties as well as release conditions at the source zone. This paper provides a methodological framework to investigate the interaction between the ubiquitous heterogeneity of the hydraulic conductivity and the mass release rate at the source zone on the uncertainty of mass discharge. Through the use of perturbation theory, we derive analytical and semi-analytical expressions for the statistics of the solute mass discharge at a control plane in a three-dimensional aquifer while accounting for the solute mass release rates at the source. The derived solutions are limited to aquifers displaying low-to-mild heterogeneity. Results illustrate the significance of the source zone mass release rate in controlling the mass discharge uncertainty. The relative importance of the mass release rate on the mean solute discharge depends on the distance between the source and the control plane. On the other hand, we find that the solute release rate at the source zone has a strong impact on the variance of the mass discharge. Within a risk context, we also compute the peak mean discharge as a function of the parameters governing the spatial heterogeneity of the hydraulic conductivity field and mass release rates at the source zone. The proposed physically-based framework is application-oriented, computationally efficient and capable of propagating uncertainty from different parameters onto risk metrics. Furthermore, it can be used for preliminary screening purposes to guide site managers to perform system-level sensitivity analysis and better allocate resources.

  18. Data and Model Uncertainties associated with Biogeochemical Groundwater Remediation and their impact on Decision Analysis

    NASA Astrophysics Data System (ADS)

    Pandey, S.; Vesselinov, V. V.; O'Malley, D.; Karra, S.; Hansen, S. K.

    2016-12-01

    Models and data are used to characterize the extent of contamination and remediation, both of which are dependent upon the complex interplay of processes ranging from geochemical reactions, microbial metabolism, and pore-scale mixing to heterogeneous flow and external forcings. Characterization is wrought with important uncertainties related to the model itself (e.g. conceptualization, model implementation, parameter values) and the data used for model calibration (e.g. sparsity, measurement errors). This research consists of two primary components: (1) Developing numerical models that incorporate the complex hydrogeology and biogeochemistry that drive groundwater contamination and remediation; (2) Utilizing novel techniques for data/model-based analyses (such as parameter calibration and uncertainty quantification) to aid in decision support for optimal uncertainty reduction related to characterization and remediation of contaminated sites. The reactive transport models are developed using PFLOTRAN and are capable of simulating a wide range of biogeochemical and hydrologic conditions that affect the migration and remediation of groundwater contaminants under diverse field conditions. Data/model-based analyses are achieved using MADS, which utilizes Bayesian methods and Information Gap theory to address the data/model uncertainties discussed above. We also use these tools to evaluate different models, which vary in complexity, in order to weigh and rank models based on model accuracy (in representation of existing observations), model parsimony (everything else being equal, models with smaller number of model parameters are preferred), and model robustness (related to model predictions of unknown future states). These analyses are carried out on synthetic problems, but are directly related to real-world problems; for example, the modeled processes and data inputs are consistent with the conditions at the Los Alamos National Laboratory contamination sites (RDX and Chromium).

  19. APMP.QM-S8: determination of mass fraction of benzoic acid, methyl paraben and n-butyl paraben in soy sauce

    NASA Astrophysics Data System (ADS)

    Teo, Tang Lin; Gui, Ee Mei; Lu, Ting; Sze Cheow, Pui; Giannikopoulou, Panagiota; Kakoulides, Elias; Lampi, Evgenia; Choi, Sik-man; Yip, Yiu-chung; Chan, Pui-kwan; Hui, Sin-kam; Wollinger, Wagner; Carvalho, Lucas J.; Garrido, Bruno C.; Rego, Eliane C. P.; Ahn, Seonghee; Kim, Byungjoo; Li, Xiuqin; Guo, Zhen; Styarini, Dyah; Aristiawan, Yosi; Putri Ramadhaningtyas, Dillani; Aryana, Nurhani; Ebarvia, Benilda S.; Dacuaya, Aaron; Tongson, Alleni; Aganda, Kim Christopher; Junvee Fortune, Thippaya; Tangtrirat, Pradthana; Mungmeechai, Thanarak; Ceyhan Gören, Ahmet; Gündüz, Simay; Yilmaz, Hasibe

    2017-01-01

    The supplementary comparison APMP.QM-S8: determination of mass fraction of benzoic acid, methyl paraben and n-butyl paraben in soy sauce was coordinated by the Health Sciences Authority, Singapore under the auspices of the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM). Ten national metrology institutes (NMIs) or designated institutes (DIs) participated in the comparison. All the institutes participated in the comparison for benzoic acid, while six NMIs/DIs participated in the comparison for methyl paraben and n-butyl paraben. The comparison was designed to enable participating institutes to demonstrate their measurement capabilities in the determination of common preservatives in soy sauce, using procedure(s) that required simple sample preparation and selective detection in the mass fraction range of 50 to 1000 mg/kg. The demonstrated capabilities can be extended to include other polar food preservatives (e.g. sorbic acid, propionic acid and other alkyl benzoates) in water, aqueous-based beverages (e.g. fruit juices, tea extracts, sodas, sports drinks, etc) and aqueous-based condiments (e.g. vinegar, fish sauce, etc). Liquid--liquid extraction and/or dilution were applied, followed by instrumental analyses using LC-MS/MS, LC-MS, GC-MS (with or without derivatisation) or HPLC-DAD. Isotope dilution mass spectrometry was used for quantification, except in the case of a participating institute, where external calibration method was used for quantification of all three measurands. The assigned Supplementary Comparison Reference Values (SCRVs) were the medians of ten results for benzoic acid, six results for methyl paraben and six results for n-butyl paraben. Benzoic acid was assigned a SCRV of 154.55 mg/kg with a combined standard uncertainty of 0.94 mg/kg, methyl paraben was assigned a SCRV of 100.95 mg/kg with a combined standard uncertainty of 0.40 mg/kg, and n-butyl paraben was assigned a SCRV of 99.05 mg/kg with a combined standard uncertainty of 1.36 mg/kg. The k-factors for the estimation of the expanded uncertainties of the SCRVs were 2.26, 2.57 and 2.57, respectively. The degree of equivalence (with the SCRV) and its uncertainty were calculated for each result. All the participating institutes (except in one case for benzoic acid) were able to demonstrate or confirm their capabilities in the determination of polar food preservatives in water or aqueous-based beverages/condiments. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  20. Global Sensitivity Analysis for Identifying Important Parameters of Nitrogen Nitrification and Denitrification under Model and Scenario Uncertainties

    NASA Astrophysics Data System (ADS)

    Ye, M.; Chen, Z.; Shi, L.; Zhu, Y.; Yang, J.

    2017-12-01

    Nitrogen reactive transport modeling is subject to uncertainty in model parameters, structures, and scenarios. While global sensitivity analysis is a vital tool for identifying the parameters important to nitrogen reactive transport, conventional global sensitivity analysis only considers parametric uncertainty. This may result in inaccurate selection of important parameters, because parameter importance may vary under different models and modeling scenarios. By using a recently developed variance-based global sensitivity analysis method, this paper identifies important parameters with simultaneous consideration of parametric uncertainty, model uncertainty, and scenario uncertainty. In a numerical example of nitrogen reactive transport modeling, a combination of three scenarios of soil temperature and two scenarios of soil moisture leads to a total of six scenarios. Four alternative models are used to evaluate reduction functions used for calculating actual rates of nitrification and denitrification. The model uncertainty is tangled with scenario uncertainty, as the reduction functions depend on soil temperature and moisture content. The results of sensitivity analysis show that parameter importance varies substantially between different models and modeling scenarios, which may lead to inaccurate selection of important parameters if model and scenario uncertainties are not considered. This problem is avoided by using the new method of sensitivity analysis in the context of model averaging and scenario averaging. The new method of sensitivity analysis can be applied to other problems of contaminant transport modeling when model uncertainty and/or scenario uncertainty are present.

  1. The NASA Langley Multidisciplinary Uncertainty Quantification Challenge

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2014-01-01

    This paper presents the formulation of an uncertainty quantification challenge problem consisting of five subproblems. These problems focus on key aspects of uncertainty characterization, sensitivity analysis, uncertainty propagation, extreme-case analysis, and robust design.

  2. Comparison of Human Exploration Architecture and Campaign Approaches

    NASA Technical Reports Server (NTRS)

    Goodliff, Kandyce; Cirillo, William; Mattfeld, Bryan; Stromgren, Chel; Shyface, Hilary

    2015-01-01

    As part of an overall focus on space exploration, National Aeronautics and Space Administration (NASA) continues to evaluate potential approaches for sending humans beyond low Earth orbit (LEO). In addition, various external organizations are studying options for beyond LEO exploration. Recent studies include NASA's Evolvable Mars Campaign and Design Reference Architecture (DRA) 5.0, JPL's Minimal Mars Architecture; the Inspiration Mars mission; the Mars One campaign; and the Global Exploration Roadmap (GER). Each of these potential exploration constructs applies unique methods, architectures, and philosophies for human exploration. It is beneficial to compare potential approaches in order to better understand the range of options available for exploration. Since most of these studies were conducted independently, the approaches, ground rules, and assumptions used to conduct the analysis differ. In addition, the outputs and metrics presented for each construct differ substantially. This paper will describe the results of an effort to compare and contrast the results of these different studies under a common set of metrics. The paper will first present a summary of each of the proposed constructs, including a description of the overall approach and philosophy for exploration. Utilizing a common set of metrics for comparison, the paper will present the results of an evaluation of the potential benefits, critical challenges, and uncertainties associated with each construct. The analysis framework will include a detailed evaluation of key characteristics of each construct. These will include but are not limited to: a description of the technology and capability developments required to enable the construct and the uncertainties associated with these developments; an analysis of significant operational and programmatic risks associated with that construct; and an evaluation of the extent to which exploration is enabled by the construct, including the destinations visited and the exploration capabilities provided at those destinations. Based upon the comparison of constructs, the paper will identify trends and lessons learned across all of the candidate studies.

  3. Forward and backward uncertainty propagation: an oxidation ditch modelling example.

    PubMed

    Abusam, A; Keesman, K J; van Straten, G

    2003-01-01

    In the field of water technology, forward uncertainty propagation is frequently used, whereas backward uncertainty propagation is rarely used. In forward uncertainty analysis, one moves from a given (or assumed) parameter subspace towards the corresponding distribution of the output or objective function. However, in the backward uncertainty propagation, one moves in the reverse direction, from the distribution function towards the parameter subspace. Backward uncertainty propagation, which is a generalisation of parameter estimation error analysis, gives information essential for designing experimental or monitoring programmes, and for tighter bounding of parameter uncertainty intervals. The procedure of carrying out backward uncertainty propagation is illustrated in this technical note by working example for an oxidation ditch wastewater treatment plant. Results obtained have demonstrated that essential information can be achieved by carrying out backward uncertainty propagation analysis.

  4. Pretest uncertainty analysis for chemical rocket engine tests

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth J.

    1987-01-01

    A parametric pretest uncertainty analysis has been performed for a chemical rocket engine test at a unique 1000:1 area ratio altitude test facility. Results from the parametric study provide the error limits required in order to maintain a maximum uncertainty of 1 percent on specific impulse. Equations used in the uncertainty analysis are presented.

  5. Strategies and Approaches to TPS Design

    NASA Technical Reports Server (NTRS)

    Kolodziej, Paul

    2005-01-01

    Thermal protection systems (TPS) insulate planetary probes and Earth re-entry vehicles from the aerothermal heating experienced during hypersonic deceleration to the planet s surface. The systems are typically designed with some additional capability to compensate for both variations in the TPS material and for uncertainties in the heating environment. This additional capability, or robustness, also provides a surge capability for operating under abnormal severe conditions for a short period of time, and for unexpected events, such as meteoroid impact damage, that would detract from the nominal performance. Strategies and approaches to developing robust designs must also minimize mass because an extra kilogram of TPS displaces one kilogram of payload. Because aircraft structures must be optimized for minimum mass, reliability-based design approaches for mechanical components exist that minimize mass. Adapting these existing approaches to TPS component design takes advantage of the extensive work, knowledge, and experience from nearly fifty years of reliability-based design of mechanical components. A Non-Dimensional Load Interference (NDLI) method for calculating the thermal reliability of TPS components is presented in this lecture and applied to several examples. A sensitivity analysis from an existing numerical simulation of a carbon phenolic TPS provides insight into the effects of the various design parameters, and is used to demonstrate how sensitivity analysis may be used with NDLI to develop reliability-based designs of TPS components.

  6. Artificial neural network model for ozone concentration estimation and Monte Carlo analysis

    NASA Astrophysics Data System (ADS)

    Gao, Meng; Yin, Liting; Ning, Jicai

    2018-07-01

    Air pollution in urban atmosphere directly affects public-health; therefore, it is very essential to predict air pollutant concentrations. Air quality is a complex function of emissions, meteorology and topography, and artificial neural networks (ANNs) provide a sound framework for relating these variables. In this study, we investigated the feasibility of using ANN model with meteorological parameters as input variables to predict ozone concentration in the urban area of Jinan, a metropolis in Northern China. We firstly found that the architecture of network of neurons had little effect on the predicting capability of ANN model. A parsimonious ANN model with 6 routinely monitored meteorological parameters and one temporal covariate (the category of day, i.e. working day, legal holiday and regular weekend) as input variables was identified, where the 7 input variables were selected following the forward selection procedure. Compared with the benchmarking ANN model with 9 meteorological and photochemical parameters as input variables, the predicting capability of the parsimonious ANN model was acceptable. Its predicting capability was also verified in term of warming success ratio during the pollution episodes. Finally, uncertainty and sensitivity analysis were also performed based on Monte Carlo simulations (MCS). It was concluded that the ANN could properly predict the ambient ozone level. Maximum temperature, atmospheric pressure, sunshine duration and maximum wind speed were identified as the predominate input variables significantly influencing the prediction of ambient ozone concentrations.

  7. Uncertainties in stormwater runoff data collection from a small urban catchment, Southeast China.

    PubMed

    Huang, Jinliang; Tu, Zhenshun; Du, Pengfei; Lin, Jie; Li, Qingsheng

    2010-01-01

    Monitoring data are often used to identify stormwater runoff characteristics and in stormwater runoff modelling without consideration of their inherent uncertainties. Integrated with discrete sample analysis and error propagation analysis, this study attempted to quantify the uncertainties of discrete chemical oxygen demand (COD), total suspended solids (TSS) concentration, stormwater flowrate, stormwater event volumes, COD event mean concentration (EMC), and COD event loads in terms of flow measurement, sample collection, storage and laboratory analysis. The results showed that the uncertainties due to sample collection, storage and laboratory analysis of COD from stormwater runoff are 13.99%, 19.48% and 12.28%. Meanwhile, flow measurement uncertainty was 12.82%, and the sample collection uncertainty of TSS from stormwater runoff was 31.63%. Based on the law of propagation of uncertainties, the uncertainties regarding event flow volume, COD EMC and COD event loads were quantified as 7.03%, 10.26% and 18.47%.

  8. Detailed Uncertainty Analysis of the ZEM-3 Measurement System

    NASA Technical Reports Server (NTRS)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    The measurement of Seebeck coefficient and electrical resistivity are critical to the investigation of all thermoelectric systems. Therefore, it stands that the measurement uncertainty must be well understood to report ZT values which are accurate and trustworthy. A detailed uncertainty analysis of the ZEM-3 measurement system has been performed. The uncertainty analysis calculates error in the electrical resistivity measurement as a result of sample geometry tolerance, probe geometry tolerance, statistical error, and multi-meter uncertainty. The uncertainty on Seebeck coefficient includes probe wire correction factors, statistical error, multi-meter uncertainty, and most importantly the cold-finger effect. The cold-finger effect plagues all potentiometric (four-probe) Seebeck measurement systems, as heat parasitically transfers through thermocouple probes. The effect leads to an asymmetric over-estimation of the Seebeck coefficient. A thermal finite element analysis allows for quantification of the phenomenon, and provides an estimate on the uncertainty of the Seebeck coefficient. The thermoelectric power factor has been found to have an uncertainty of +9-14 at high temperature and 9 near room temperature.

  9. Oceanic Flights and Airspace: Improving Efficiency by Trajectory-Based Operations

    NASA Technical Reports Server (NTRS)

    Fernandes, Alicia Borgman; Rebollo, Juan; Koch, Michael

    2016-01-01

    Oceanic operations suffer from multiple inefficiencies, including pre-departure planning that does not adequately consider uncertainty in the proposed trajectory, restrictions on the routes that a flight operator can choose for an oceanic crossing, time-consuming processes and procedures for amending en route trajectories, and difficulties exchanging data between Flight Information Regions (FIRs). These inefficiencies cause aircraft to fly suboptimal trajectories, burning fuel and time that could be conserved. A concept to support integration of existing and emerging capabilities and concepts is needed to transition to an airspace system that employs Trajectory Based Operations (TBO) to improve efficiency and safety in oceanic operations. This paper describes such a concept and the results of preliminary activities to evaluate the concept, including a stakeholder feedback activity, user needs analysis, and high level benefits analysis.

  10. An introduction to the global positioning system and some geological applications

    NASA Technical Reports Server (NTRS)

    Dixon, T. H.

    1991-01-01

    The fundamental principles of the global positioning system (GPS) are reviewed, with consideration given to geological and geophysical applications and related accuracy requirements. Recent improvements are emphasized which relate to areas such as equipment cost, limitations in the GPS satellite constellation, data analysis, uncertainties in satellite orbits and propagation delays, and problems in resolving carrier phase cycle ambiguities. Earthquake processes and near-fault crustal deformation monitoring have been facilitated by advances in GPS data acquisition and analysis. Horizontal positioning capability has been improved by new satellite constellation, better models, and global tracking networks. New classes of tectonic problems may now be studied through GPS, such as kinematic descriptions of crustal deformation and the measurement of relative plate motion at convergent boundaries. Continued improvements in the GPS are foreseen.

  11. A fuzzy logic intelligent diagnostic system for spacecraft integrated vehicle health management

    NASA Technical Reports Server (NTRS)

    Wu, G. Gordon

    1995-01-01

    Due to the complexity of future space missions and the large amount of data involved, greater autonomy in data processing is demanded for mission operations, training, and vehicle health management. In this paper, we develop a fuzzy logic intelligent diagnostic system to perform data reduction, data analysis, and fault diagnosis for spacecraft vehicle health management applications. The diagnostic system contains a data filter and an inference engine. The data filter is designed to intelligently select only the necessary data for analysis, while the inference engine is designed for failure detection, warning, and decision on corrective actions using fuzzy logic synthesis. Due to its adaptive nature and on-line learning ability, the diagnostic system is capable of dealing with environmental noise, uncertainties, conflict information, and sensor faults.

  12. iTOUGH2 Universal Optimization Using the PEST Protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finsterle, S.A.

    2010-07-01

    iTOUGH2 (http://www-esd.lbl.gov/iTOUGH2) is a computer program for parameter estimation, sensitivity analysis, and uncertainty propagation analysis [Finsterle, 2007a, b, c]. iTOUGH2 contains a number of local and global minimization algorithms for automatic calibration of a model against measured data, or for the solution of other, more general optimization problems (see, for example, Finsterle [2005]). A detailed residual and estimation uncertainty analysis is conducted to assess the inversion results. Moreover, iTOUGH2 can be used to perform a formal sensitivity analysis, or to conduct Monte Carlo simulations for the examination for prediction uncertainties. iTOUGH2's capabilities are continually enhanced. As the name implies, iTOUGH2more » is developed for use in conjunction with the TOUGH2 forward simulator for nonisothermal multiphase flow in porous and fractured media [Pruess, 1991]. However, iTOUGH2 provides FORTRAN interfaces for the estimation of user-specified parameters (see subroutine USERPAR) based on user-specified observations (see subroutine USEROBS). These user interfaces can be invoked to add new parameter or observation types to the standard set provided in iTOUGH2. They can also be linked to non-TOUGH2 models, i.e., iTOUGH2 can be used as a universal optimization code, similar to other model-independent, nonlinear parameter estimation packages such as PEST [Doherty, 2008] or UCODE [Poeter and Hill, 1998]. However, to make iTOUGH2's optimization capabilities available for use with an external code, the user is required to write some FORTRAN code that provides the link between the iTOUGH2 parameter vector and the input parameters of the external code, and between the output variables of the external code and the iTOUGH2 observation vector. While allowing for maximum flexibility, the coding requirement of this approach limits its applicability to those users with FORTRAN coding knowledge. To make iTOUGH2 capabilities accessible to many application models, the PEST protocol [Doherty, 2007] has been implemented into iTOUGH2. This protocol enables communication between the application (which can be a single 'black-box' executable or a script or batch file that calls multiple codes) and iTOUGH2. The concept requires that for the application model: (1) Input is provided on one or more ASCII text input files; (2) Output is returned to one or more ASCII text output files; (3) The model is run using a system command (executable or script/batch file); and (4) The model runs to completion without any user intervention. For each forward run invoked by iTOUGH2, select parameters cited within the application model input files are then overwritten with values provided by iTOUGH2, and select variables cited within the output files are extracted and returned to iTOUGH2. It should be noted that the core of iTOUGH2, i.e., its optimization routines and related analysis tools, remains unchanged; it is only the communication format between input parameters, the application model, and output variables that are borrowed from PEST. The interface routines have been provided by Doherty [2007]. The iTOUGH2-PEST architecture is shown in Figure 1. This manual contains installation instructions for the iTOUGH2-PEST module, and describes the PEST protocol as well as the input formats needed in iTOUGH2. Examples are provided that demonstrate the use of model-independent optimization and analysis using iTOUGH2.« less

  13. Dynamic Analytical Capability to Better Understand and Anticipate Extremist Shifts Within Populations under Authoritarian Regimes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard, Michael Lewis

    2015-11-01

    The purpose of this work is to create a generalizable data- and theory-supported capability to better understand and anticipate (with quantifiable uncertainty): 1) how the dynamics of allegiance formations between various groups and society are impacted by active conflict and by third-party interventions and 2) how/why extremist allegiances co-evolve over time due to changing geopolitical, sociocultural, and military conditions.

  14. Recent Surface Reflectance Measurement Campaigns with Emphasis on Best Practices, SI Traceability and Uncertainty Estimation

    NASA Technical Reports Server (NTRS)

    Helder, Dennis; Thome, Kurtis John; Aaron, Dave; Leigh, Larry; Czapla-Myers, Jeff; Leisso, Nathan; Biggar, Stuart; Anderson, Nik

    2012-01-01

    A significant problem facing the optical satellite calibration community is limited knowledge of the uncertainties associated with fundamental measurements, such as surface reflectance, used to derive satellite radiometric calibration estimates. In addition, it is difficult to compare the capabilities of calibration teams around the globe, which leads to differences in the estimated calibration of optical satellite sensors. This paper reports on two recent field campaigns that were designed to isolate common uncertainties within and across calibration groups, particularly with respect to ground-based surface reflectance measurements. Initial results from these efforts suggest the uncertainties can be as low as 1.5% to 2.5%. In addition, methods for improving the cross-comparison of calibration teams are suggested that can potentially reduce the differences in the calibration estimates of optical satellite sensors.

  15. Hydrology and phosphorus transport simulation in a lowland polder by a coupled modeling system.

    PubMed

    Yan, Renhua; Huang, Jiacong; Li, Lingling; Gao, Junfeng

    2017-08-01

    Modeling the rain-runoff processes and phosphorus transport processes in lowland polders is critical in finding reasonable measures to alleviate the eutrophication problem of downstream rivers and lakes. This study develops a lowland Polder Hydrology and Phosphorus modeling System (PHPS) by coupling the WALRUS-paddy model and an improved phosphorus module of a Phosphorus Dynamic model for lowland Polder systems (PDP). It considers some important hydrological characteristics, such as groundwater-unsaturated zone coupling, groundwater-surface water feedback, human-controlled irrigation and discharge, and detailed physical and biochemical cycles of phosphorus in surface water. The application of the model in the Jianwei polder shows that the simulated phosphorus matches well with the measured values. The high precision of this model combined with its low input data requirement and efficient computation make it practical and easy to the water resources management of Chinese polders. Parameter sensitivity analysis demonstrates that K uptake , c Q2 , c W1 , and c Q1 exert a significant effect on the modeled results, whereas K resuspensionMax , K settling , and K mineralization have little effect on the modeled total phosphorus. Among the three types of uncertainties (i.e., parameter, initial condition, and forcing uncertainties), forcing uncertainty produces the strongest effect on the simulated phosphorus. Based on the analysis result of annual phosphorus balance when considering the high import from irrigation and fertilization, lowland polder is capable of retaining phosphorus and reducing phosphorus export to surrounding aquatic ecosystems because of their special hydrological regulation regime. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A Greenhouse-Gas Information System: Monitoring and Validating Emissions Reporting and Mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonietz, Karl K.; Dimotakis, Paul E.; Rotman, Douglas A.

    2011-09-26

    This study and report focus on attributes of a greenhouse-gas information system (GHGIS) needed to support MRV&V needs. These needs set the function of such a system apart from scientific/research monitoring of GHGs and carbon-cycle systems, and include (not exclusively): the need for a GHGIS that is operational, as required for decision-support; the need for a system that meets specifications derived from imposed requirements; the need for rigorous calibration, verification, and validation (CV&V) standards, processes, and records for all measurement and modeling/data-inversion data; the need to develop and adopt an uncertainty-quantification (UQ) regimen for all measurement and modeling data; andmore » the requirement that GHGIS products can be subjected to third-party questioning and scientific scrutiny. This report examines and assesses presently available capabilities that could contribute to a future GHGIS. These capabilities include sensors and measurement technologies; data analysis and data uncertainty quantification (UQ) practices and methods; and model-based data-inversion practices, methods, and their associated UQ. The report further examines the need for traceable calibration, verification, and validation processes and attached metadata; differences between present science-/research-oriented needs and those that would be required for an operational GHGIS; the development, operation, and maintenance of a GHGIS missions-operations center (GMOC); and the complex systems engineering and integration that would be required to develop, operate, and evolve a future GHGIS.« less

  17. Advanced Computational Framework for Environmental Management ZEM, Version 1.x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vesselinov, Velimir V.; O'Malley, Daniel; Pandey, Sachin

    2016-11-04

    Typically environmental management problems require analysis of large and complex data sets originating from concurrent data streams with different data collection frequencies and pedigree. These big data sets require on-the-fly integration into a series of models with different complexity for various types of model analyses where the data are applied as soft and hard model constraints. This is needed to provide fast iterative model analyses based on the latest available data to guide decision-making. Furthermore, the data and model are associated with uncertainties. The uncertainties are probabilistic (e.g. measurement errors) and non-probabilistic (unknowns, e.g. alternative conceptual models characterizing site conditions).more » To address all of these issues, we have developed an integrated framework for real-time data and model analyses for environmental decision-making called ZEM. The framework allows for seamless and on-the-fly integration of data and modeling results for robust and scientifically-defensible decision-making applying advanced decision analyses tools such as Bayesian- Information-Gap Decision Theory (BIG-DT). The framework also includes advanced methods for optimization that are capable of dealing with a large number of unknown model parameters, and surrogate (reduced order) modeling capabilities based on support vector regression techniques. The framework is coded in Julia, a state-of-the-art high-performance programing language (http://julialang.org). The ZEM framework is open-source and can be applied to any environmental management site. The framework will be open-source and released under GPL V3 license.« less

  18. Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier–Stokes simulations: A data-driven, physics-informed Bayesian approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, H., E-mail: hengxiao@vt.edu; Wu, J.-L.; Wang, J.-X.

    Despite their well-known limitations, Reynolds-Averaged Navier–Stokes (RANS) models are still the workhorse tools for turbulent flow simulations in today's engineering analysis, design and optimization. While the predictive capability of RANS models depends on many factors, for many practical flows the turbulence models are by far the largest source of uncertainty. As RANS models are used in the design and safety evaluation of many mission-critical systems such as airplanes and nuclear power plants, quantifying their model-form uncertainties has significant implications in enabling risk-informed decision-making. In this work we develop a data-driven, physics-informed Bayesian framework for quantifying model-form uncertainties in RANS simulations.more » Uncertainties are introduced directly to the Reynolds stresses and are represented with compact parameterization accounting for empirical prior knowledge and physical constraints (e.g., realizability, smoothness, and symmetry). An iterative ensemble Kalman method is used to assimilate the prior knowledge and observation data in a Bayesian framework, and to propagate them to posterior distributions of velocities and other Quantities of Interest (QoIs). We use two representative cases, the flow over periodic hills and the flow in a square duct, to evaluate the performance of the proposed framework. Both cases are challenging for standard RANS turbulence models. Simulation results suggest that, even with very sparse observations, the obtained posterior mean velocities and other QoIs have significantly better agreement with the benchmark data compared to the baseline results. At most locations the posterior distribution adequately captures the true model error within the developed model form uncertainty bounds. The framework is a major improvement over existing black-box, physics-neutral methods for model-form uncertainty quantification, where prior knowledge and details of the models are not exploited. This approach has potential implications in many fields in which the governing equations are well understood but the model uncertainty comes from unresolved physical processes. - Highlights: • Proposed a physics–informed framework to quantify uncertainty in RANS simulations. • Framework incorporates physical prior knowledge and observation data. • Based on a rigorous Bayesian framework yet fully utilizes physical model. • Applicable for many complex physical systems beyond turbulent flows.« less

  19. Development of robust building energy demand-side control strategy under uncertainty

    NASA Astrophysics Data System (ADS)

    Kim, Sean Hay

    The potential of carbon emission regulations applied to an individual building will encourage building owners to purchase utility-provided green power or to employ onsite renewable energy generation. As both cases are based on intermittent renewable energy sources, demand side control is a fundamental precondition for maximizing the effectiveness of using renewable energy sources. Such control leads to a reduction in peak demand and/or in energy demand variability, therefore, such reduction in the demand profile eventually enhances the efficiency of an erratic supply of renewable energy. The combined operation of active thermal energy storage and passive building thermal mass has shown substantial improvement in demand-side control performance when compared to current state-of-the-art demand-side control measures. Specifically, "model-based" optimal control for this operation has the potential to significantly increase performance and bring economic advantages. However, due to the uncertainty in certain operating conditions in the field its control effectiveness could be diminished and/or seriously damaged, which results in poor performance. This dissertation pursues improvements of current demand-side controls under uncertainty by proposing a robust supervisory demand-side control strategy that is designed to be immune from uncertainty and perform consistently under uncertain conditions. Uniqueness and superiority of the proposed robust demand-side controls are found as below: a. It is developed based on fundamental studies about uncertainty and a systematic approach to uncertainty analysis. b. It reduces variability of performance under varied conditions, and thus avoids the worst case scenario. c. It is reactive in cases of critical "discrepancies" observed caused by the unpredictable uncertainty that typically scenario uncertainty imposes, and thus it increases control efficiency. This is obtainable by means of i) multi-source composition of weather forecasts including both historical archive and online sources and ii) adaptive Multiple model-based controls (MMC) to mitigate detrimental impacts of varying scenario uncertainties. The proposed robust demand-side control strategy verifies its outstanding demand-side control performance in varied and non-indigenous conditions compared to the existing control strategies including deterministic optimal controls. This result reemphasizes importance of the demand-side control for a building in the global carbon economy. It also demonstrates a capability of risk management of the proposed robust demand-side controls in highly uncertain situations, which eventually attains the maximum benefit in both theoretical and practical perspectives.

  20. Interferometric step gauge for CMM verification

    NASA Astrophysics Data System (ADS)

    Hemming, B.; Esala, V.-P.; Laukkanen, P.; Rantanen, A.; Viitala, R.; Widmaier, T.; Kuosmanen, P.; Lassila, A.

    2018-07-01

    The verification of the measurement capability of coordinate measuring machines (CMM) is usually performed using gauge blocks or step gauges as reference standards. Gauge blocks and step gauges are robust and easy to use, but have some limitations such as finite lengths and uncertainty of thermal expansion. This paper describes the development, testing and uncertainty evaluation of an interferometric step gauge (ISG) for CMM verification. The idea of the ISG is to move a carriage bearing a gauge block along a rail and to measure the position with an interferometer. For a displacement of 1 m the standard uncertainty of the position of the gauge block is 0.2 µm. A short range periodic error of CMM can also be detected.

  1. Certainty Equivalence M-MRAC for Systems with Unmatched Uncertainties

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vahram; Krishnakumar, Kalmanje

    2012-01-01

    The paper presents a certainty equivalence state feedback indirect adaptive control design method for the systems of any relative degree with unmatched uncertainties. The approach is based on the parameter identification (estimation) model, which is completely separated from the control design and is capable of producing parameter estimates as fast as the computing power allows without generating high frequency oscillations. It is shown that the system's input and output tracking errors can be systematically decreased by the proper choice of the design parameters.

  2. Comparisons of Wilks’ and Monte Carlo Methods in Response to the 10CFR50.46(c) Proposed Rulemaking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hongbin; Szilard, Ronaldo; Zou, Ling

    The Nuclear Regulatory Commission (NRC) is proposing a new rulemaking on emergency core system/loss-of-coolant accident (LOCA) performance analysis. In the proposed rulemaking, designated as 10CFR50.46(c), the US NRC put forward an equivalent cladding oxidation criterion as a function of cladding pre-transient hydrogen content. The proposed rulemaking imposes more restrictive and burnup-dependent cladding embrittlement criteria; consequently nearly all the fuel rods in a reactor core need to be analyzed under LOCA conditions to demonstrate compliance to the safety limits. New analysis methods are required to provide a thorough characterization of the reactor core in order to identify the locations of themore » limiting rods as well as to quantify the safety margins under LOCA conditions. With the new analysis method presented in this work, the limiting transient case and the limiting rods can be easily identified to quantify the safety margins in response to the proposed new rulemaking. In this work, the best-estimate plus uncertainty (BEPU) analysis capability for large break LOCA with the new cladding embrittlement criteria using the RELAP5-3D code is established and demonstrated with a reduced set of uncertainty parameters. Both the direct Monte Carlo method and the Wilks’ nonparametric statistical method can be used to perform uncertainty quantification. Wilks’ method has become the de-facto industry standard to perform uncertainty quantification in BEPU LOCA analyses. Despite its widespread adoption by the industry, the use of small sample sizes to infer statement of compliance to the existing 10CFR50.46 rule, has been a major cause of unrealized operational margin in today’s BEPU methods. Moreover the debate on the proper interpretation of the Wilks’ theorem in the context of safety analyses is not fully resolved yet, even more than two decades after its introduction in the frame of safety analyses in the nuclear industry. This represents both a regulatory and application risk in rolling out new methods. With the 10CFR50.46(c) proposed rulemaking, the deficiencies of the Wilks’ approach are further exacerbated. The direct Monte Carlo approach offers a robust alternative to perform uncertainty quantification within the context of BEPU analyses. In this work, the Monte Carlo method is compared with the Wilks’ method in response to the NRC 10CFR50.46(c) proposed rulemaking.« less

  3. Business model configuration and dynamics for technology commercialization in mature markets.

    PubMed

    Flammini, Serena; Arcese, Gabriella; Lucchetti, Maria Claudia; Mortara, Letizia

    2017-01-01

    The food industry is a well-established and complex industry. New entrants attempting to penetrate it via the commercialization of a new technological innovation could face high uncertainty and constraints. The capability to innovate through collaboration and to identify suitable strategies and innovative business models (BMs) can be particularly important for bringing a technological innovation to this market. However, although the potential for these capabilities has been advocated, we still lack a complete understanding of how new ventures could support the technology commercialization process via the development of BMs. The paper aims to discuss these issues. To address this gap, this paper builds a conceptual framework that knits together the different bodies of extant literature (i.e. entrepreneurship, strategy and innovation) to analyze the BM innovation processes associated with the exploitation of emerging technologies; determines the suitability of the framework using data from the exploratory case study of IT IS 3D - a firm which has started to exploit 3D printing in the food industry; and improves the initial conceptual framework with the findings that emerged in the case study. From this analysis it emerged that: companies could use more than one BM at a time; hence, BM innovation processes could co-exist and be run in parallel; the facing of high uncertainty might lead firms to choose a closed and/or a familiar BM, while explorative strategies could be pursued with open BMs; significant changes in strategies during the technology commercialization process are not necessarily reflected in a radical change in the BM; and firms could deliberately adopt interim strategies and BMs as means to identify the more suitable ones to reach the market. This case study illustrates how firms could innovate the processes of their BM development to face the uncertainties linked with the entry into a mature and highly conservative industry (food).

  4. a New Model for Fuzzy Personalized Route Planning Using Fuzzy Linguistic Preference Relation

    NASA Astrophysics Data System (ADS)

    Nadi, S.; Houshyaripour, A. H.

    2017-09-01

    This paper proposes a new model for personalized route planning under uncertain condition. Personalized routing, involves different sources of uncertainty. These uncertainties can be raised from user's ambiguity about their preferences, imprecise criteria values and modelling process. The proposed model uses Fuzzy Linguistic Preference Relation Analytical Hierarchical Process (FLPRAHP) to analyse user's preferences under uncertainty. Routing is a multi-criteria task especially in transportation networks, where the users wish to optimize their routes based on different criteria. However, due to the lake of knowledge about the preferences of different users and uncertainties available in the criteria values, we propose a new personalized fuzzy routing method based on the fuzzy ranking using center of gravity. The model employed FLPRAHP method to aggregate uncertain criteria values regarding uncertain user's preferences while improve consistency with least possible comparisons. An illustrative example presents the effectiveness and capability of the proposed model to calculate best personalize route under fuzziness and uncertainty.

  5. A detailed description of the uncertainty analysis for high area ratio rocket nozzle tests at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth J.; Dieck, Ronald H.; Chuang, Isaac

    1987-01-01

    A preliminary uncertainty analysis was performed for the High Area Ratio Rocket Nozzle test program which took place at the altitude test capsule of the Rocket Engine Test Facility at the NASA Lewis Research Center. Results from the study establish the uncertainty of measured and calculated parameters required for the calculation of rocket engine specific impulse. A generalized description of the uncertainty methodology used is provided. Specific equations and a detailed description of the analysis is presented. Verification of the uncertainty analysis model was performed by comparison with results from the experimental program's data reduction code. Final results include an uncertainty for specific impulse of 1.30 percent. The largest contributors to this uncertainty were calibration errors from the test capsule pressure and thrust measurement devices.

  6. A detailed description of the uncertainty analysis for High Area Ratio Rocket Nozzle tests at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth J.; Dieck, Ronald H.; Chuang, Isaac

    1987-01-01

    A preliminary uncertainty analysis has been performed for the High Area Ratio Rocket Nozzle test program which took place at the altitude test capsule of the Rocket Engine Test Facility at the NASA Lewis Research Center. Results from the study establish the uncertainty of measured and calculated parameters required for the calculation of rocket engine specific impulse. A generalized description of the uncertainty methodology used is provided. Specific equations and a detailed description of the analysis are presented. Verification of the uncertainty analysis model was performed by comparison with results from the experimental program's data reduction code. Final results include an uncertainty for specific impulse of 1.30 percent. The largest contributors to this uncertainty were calibration errors from the test capsule pressure and thrust measurement devices.

  7. Stochastic Forcing for High-Resolution Regional and Global Ocean and Atmosphere-Ocean Coupled Ensemble Forecast System

    NASA Astrophysics Data System (ADS)

    Rowley, C. D.; Hogan, P. J.; Martin, P.; Thoppil, P.; Wei, M.

    2017-12-01

    An extended range ensemble forecast system is being developed in the US Navy Earth System Prediction Capability (ESPC), and a global ocean ensemble generation capability to represent uncertainty in the ocean initial conditions has been developed. At extended forecast times, the uncertainty due to the model error overtakes the initial condition as the primary source of forecast uncertainty. Recently, stochastic parameterization or stochastic forcing techniques have been applied to represent the model error in research and operational atmospheric, ocean, and coupled ensemble forecasts. A simple stochastic forcing technique has been developed for application to US Navy high resolution regional and global ocean models, for use in ocean-only and coupled atmosphere-ocean-ice-wave ensemble forecast systems. Perturbation forcing is added to the tendency equations for state variables, with the forcing defined by random 3- or 4-dimensional fields with horizontal, vertical, and temporal correlations specified to characterize different possible kinds of error. Here, we demonstrate the stochastic forcing in regional and global ensemble forecasts with varying perturbation amplitudes and length and time scales, and assess the change in ensemble skill measured by a range of deterministic and probabilistic metrics.

  8. Uncertainty Analysis of NASA Glenn's 8- by 6-Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Stephens, Julia E.; Hubbard, Erin P.; Walter, Joel A.; McElroy, Tyler

    2016-01-01

    An analysis was performed to determine the measurement uncertainty of the Mach Number of the 8- by 6-foot Supersonic Wind Tunnel at the NASA Glenn Research Center. This paper details the analysis process used, including methods for handling limited data and complicated data correlations. Due to the complexity of the equations used, a Monte Carlo Method was utilized for this uncertainty analysis. A summary of the findings are presented as pertains to understanding what the uncertainties are, how they impact various research tests in the facility, and methods of reducing the uncertainties in the future.

  9. [A correlational study on uncertainty, mastery and appraisal of uncertainty in hospitalized children's mothers].

    PubMed

    Yoo, Kyung Hee

    2007-06-01

    This study was conducted to investigate the correlation among uncertainty, mastery and appraisal of uncertainty in hospitalized children's mothers. Self report questionnaires were used to measure the variables. Variables were uncertainty, mastery and appraisal of uncertainty. In data analysis, the SPSSWIN 12.0 program was utilized for descriptive statistics, Pearson's correlation coefficients, and regression analysis. Reliability of the instruments was cronbach's alpha=.84~.94. Mastery negatively correlated with uncertainty(r=-.444, p=.000) and danger appraisal of uncertainty(r=-.514, p=.000). In regression of danger appraisal of uncertainty, uncertainty and mastery were significant predictors explaining 39.9%. Mastery was a significant mediating factor between uncertainty and danger appraisal of uncertainty in hospitalized children's mothers. Therefore, nursing interventions which improve mastery must be developed for hospitalized children's mothers.

  10. Efficient design and verification of diagnostics for impurity transport experiments.

    PubMed

    Chilenski, M A; Greenwald, M J; Marzouk, Y M; Rice, J E; White, A E

    2018-01-01

    Recent attempts to measure impurity transport in Alcator C-Mod using an x-ray imaging crystal spectrometer and laser blow-off impurity injector have failed to yield unique reconstructions of the transport coefficient profiles. This paper presents a fast, linearized model which was constructed to estimate diagnostic requirements for impurity transport experiments. The analysis shows that the spectroscopic diagnostics on Alcator C-Mod should be capable of inferring simple profiles of impurity diffusion D Z and convection V Z accurate to better than ±10% uncertainty, suggesting that the failure to infer unique D Z and V Z from experimental data is attributable to an inadequate analysis procedure rather than the result of insufficient diagnostics. Furthermore, the analysis reveals that even a modest spatial resolution can overcome a low time resolution. This approach can be adapted to design and verify diagnostics for transport experiments on any magnetic confinement device.

  11. Legacy model integration for enhancing hydrologic interdisciplinary research

    NASA Astrophysics Data System (ADS)

    Dozier, A.; Arabi, M.; David, O.

    2013-12-01

    Many challenges are introduced to interdisciplinary research in and around the hydrologic science community due to advances in computing technology and modeling capabilities in different programming languages, across different platforms and frameworks by researchers in a variety of fields with a variety of experience in computer programming. Many new hydrologic models as well as optimization, parameter estimation, and uncertainty characterization techniques are developed in scripting languages such as Matlab, R, Python, or in newer languages such as Java and the .Net languages, whereas many legacy models have been written in FORTRAN and C, which complicates inter-model communication for two-way feedbacks. However, most hydrologic researchers and industry personnel have little knowledge of the computing technologies that are available to address the model integration process. Therefore, the goal of this study is to address these new challenges by utilizing a novel approach based on a publish-subscribe-type system to enhance modeling capabilities of legacy socio-economic, hydrologic, and ecologic software. Enhancements include massive parallelization of executions and access to legacy model variables at any point during the simulation process by another program without having to compile all the models together into an inseparable 'super-model'. Thus, this study provides two-way feedback mechanisms between multiple different process models that can be written in various programming languages and can run on different machines and operating systems. Additionally, a level of abstraction is given to the model integration process that allows researchers and other technical personnel to perform more detailed and interactive modeling, visualization, optimization, calibration, and uncertainty analysis without requiring deep understanding of inter-process communication. To be compatible, a program must be written in a programming language with bindings to a common implementation of the message passing interface (MPI), which includes FORTRAN, C, Java, the .NET languages, Python, R, Matlab, and many others. The system is tested on a longstanding legacy hydrologic model, the Soil and Water Assessment Tool (SWAT), to observe and enhance speed-up capabilities for various optimization, parameter estimation, and model uncertainty characterization techniques, which is particularly important for computationally intensive hydrologic simulations. Initial results indicate that the legacy extension system significantly decreases developer time, computation time, and the cost of purchasing commercial parallel processing licenses, while enhancing interdisciplinary research by providing detailed two-way feedback mechanisms between various process models with minimal changes to legacy code.

  12. Uncertainty Analysis of the NASA Glenn 8x6 Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Stephens, Julia; Hubbard, Erin; Walter, Joel; McElroy, Tyler

    2016-01-01

    This paper presents methods and results of a detailed measurement uncertainty analysis that was performed for the 8- by 6-foot Supersonic Wind Tunnel located at the NASA Glenn Research Center. The statistical methods and engineering judgments used to estimate elemental uncertainties are described. The Monte Carlo method of propagating uncertainty was selected to determine the uncertainty of calculated variables of interest. A detailed description of the Monte Carlo method as applied for this analysis is provided. Detailed uncertainty results for the uncertainty in average free stream Mach number as well as other variables of interest are provided. All results are presented as random (variation in observed values about a true value), systematic (potential offset between observed and true value), and total (random and systematic combined) uncertainty. The largest sources contributing to uncertainty are determined and potential improvement opportunities for the facility are investigated.

  13. Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC) : gap analysis for high fidelity and performance assessment code development.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Joon H.; Siegel, Malcolm Dean; Arguello, Jose Guadalupe, Jr.

    2011-03-01

    This report describes a gap analysis performed in the process of developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repositorymore » designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with rigorous verification, validation, and software quality requirements. The gap analyses documented in this report were are performed during an initial gap analysis to identify candidate codes and tools to support the development and integration of the Waste IPSC, and during follow-on activities that delved into more detailed assessments of the various codes that were acquired, studied, and tested. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. The gap analysis indicates that significant capabilities may already exist in the existing THC codes although there is no single code able to fully account for all physical and chemical processes involved in a waste disposal system. Large gaps exist in modeling chemical processes and their couplings with other processes. The coupling of chemical processes with flow transport and mechanical deformation remains challenging. The data for extreme environments (e.g., for elevated temperature and high ionic strength media) that are needed for repository modeling are severely lacking. In addition, most of existing reactive transport codes were developed for non-radioactive contaminants, and they need to be adapted to account for radionuclide decay and in-growth. The accessibility to the source codes is generally limited. Because the problems of interest for the Waste IPSC are likely to result in relatively large computational models, a compact memory-usage footprint and a fast/robust solution procedure will be needed. A robust massively parallel processing (MPP) capability will also be required to provide reasonable turnaround times on the analyses that will be performed with the code. A performance assessment (PA) calculation for a waste disposal system generally requires a large number (hundreds to thousands) of model simulations to quantify the effect of model parameter uncertainties on the predicted repository performance. A set of codes for a PA calculation must be sufficiently robust and fast in terms of code execution. A PA system as a whole must be able to provide multiple alternative models for a specific set of physical/chemical processes, so that the users can choose various levels of modeling complexity based on their modeling needs. This requires PA codes, preferably, to be highly modularized. Most of the existing codes have difficulties meeting these requirements. Based on the gap analysis results, we have made the following recommendations for the code selection and code development for the NEAMS waste IPSC: (1) build fully coupled high-fidelity THCMBR codes using the existing SIERRA codes (e.g., ARIA and ADAGIO) and platform, (2) use DAKOTA to build an enhanced performance assessment system (EPAS), and build a modular code architecture and key code modules for performance assessments. The key chemical calculation modules will be built by expanding the existing CANTERA capabilities as well as by extracting useful components from other existing codes.« less

  14. Capabilities of VOS-based fluxes for estimating ocean heat budget and its variability

    NASA Astrophysics Data System (ADS)

    Gulev, S.; Belyaev, K.

    2016-12-01

    We consider here the perspective of using VOS observations by merchant ships available form the ICOADS data for estimating ocean surface heat budget at different time scale. To this purpose we compute surface turbulent heat fluxes as well as short- and long-wave radiative fluxes from the ICOADS reports for the last several decades in the North Atlantic mid latitudes. Turbulent fluxes were derived using COARE-3 algorithm and for computation of radiative fluxes new algorithms accounting for cloud types were used. Sampling uncertainties in the VOS-based fluxes were estimated by sub-sampling of the recomputed reanalysis (ERA-Interim) fluxes according to the VOS sampling scheme. For the turbulent heat fluxes we suggest an approach to minimize sampling uncertainties. The approach is based on the integration of the turbulent heat fluxes in the coordinates of steering parameters (vertical surface temperature and humidity gradients on one hand and wind speed on the other) for which theoretical probability distributions are known. For short-wave radiative fluxes sampling uncertainties were minimized by "rotating local observation time around the clock" and using probability density functions for the cloud cover occurrence distributions. Analysis was performed for the North Atlantic latitudinal band from 25 N to 60 N, for which also estimates of the meridional heat transport are available from the ocean cross-sections. Over the last 35 years turbulent fluxes within the region analysed increase by about 6 W/m2 with the major growth during the 1990s and early 2000s. Decreasing incoming short wave radiation during the same time (about 1 W/m2) implies upward change of the ocean surface heat loss by about 7-8 W/m2. We discuss different sources of uncertainties of computations as well as potential of the application of the analysis concept to longer time series going back to 1920s.

  15. A virtual clinical trial comparing static versus dynamic PET imaging in measuring response to breast cancer therapy

    NASA Astrophysics Data System (ADS)

    Wangerin, Kristen A.; Muzi, Mark; Peterson, Lanell M.; Linden, Hannah M.; Novakova, Alena; Mankoff, David A.; E Kinahan, Paul

    2017-05-01

    We developed a method to evaluate variations in the PET imaging process in order to characterize the relative ability of static and dynamic metrics to measure breast cancer response to therapy in a clinical trial setting. We performed a virtual clinical trial by generating 540 independent and identically distributed PET imaging study realizations for each of 22 original dynamic fluorodeoxyglucose (18F-FDG) breast cancer patient studies pre- and post-therapy. Each noise realization accounted for known sources of uncertainty in the imaging process, such as biological variability and SUV uptake time. Four definitions of SUV were analyzed, which were SUVmax, SUVmean, SUVpeak, and SUV50%. We performed a ROC analysis on the resulting SUV and kinetic parameter uncertainty distributions to assess the impact of the variability on the measurement capabilities of each metric. The kinetic macro parameter, K i , showed more variability than SUV (mean CV K i   =  17%, SUV  =  13%), but K i pre- and post-therapy distributions also showed increased separation compared to the SUV pre- and post-therapy distributions (mean normalized difference K i   =  0.54, SUV  =  0.27). For the patients who did not show perfect separation between the pre- and post-therapy parameter uncertainty distributions (ROC AUC  <  1), dynamic imaging outperformed SUV in distinguishing metabolic change in response to therapy, ranging from 12 to 14 of 16 patients over all SUV definitions and uptake time scenarios (p  <  0.05). For the patient cohort in this study, which is comprised of non-high-grade ER+  tumors, K i outperformed SUV in an ROC analysis of the parameter uncertainty distributions pre- and post-therapy. This methodology can be applied to different scenarios with the ability to inform the design of clinical trials using PET imaging.

  16. Development of a special-purpose test surface guided by uncertainty analysis - Introduction of a new uncertainty analysis step

    NASA Technical Reports Server (NTRS)

    Wang, T.; Simon, T. W.

    1988-01-01

    Development of a recent experimental program to investigate the effects of streamwise curvature on boundary layer transition required making a bendable, heated and instrumented test wall, a rather nonconventional surface. The present paper describes this surface, the design choices made in its development and how uncertainty analysis was used, beginning early in the test program, to make such design choices. Published uncertainty analysis techniques were found to be of great value; but, it became clear that another step, one herein called the pre-test analysis, would aid the program development. Finally, it is shown how the uncertainty analysis was used to determine whether the test surface was qualified for service.

  17. Advanced Capabilities for Wind Tunnel Testing in the 21st Century

    NASA Technical Reports Server (NTRS)

    Kegelman, Jerome T.; Danehy, Paul M.; Schwartz, Richard J.

    2010-01-01

    Wind tunnel testing methods and test technologies for the 21st century using advanced capabilities are presented. These capabilities are necessary to capture more accurate and high quality test results by eliminating the uncertainties in testing and to facilitate verification of computational tools for design. This paper discusses near term developments underway in ground testing capabilities, which will enhance the quality of information of both the test article and airstream flow details. Also discussed is a selection of new capability investments that have been made to accommodate such developments. Examples include advanced experimental methods for measuring the test gas itself; using efficient experiment methodologies, including quality assurance strategies within the test; and increasing test result information density by using extensive optical visualization together with computed flow field results. These points could be made for both major investments in existing tunnel capabilities or for entirely new capabilities.

  18. Uncertainty analysis of hydrological modeling in a tropical area using different algorithms

    NASA Astrophysics Data System (ADS)

    Rafiei Emam, Ammar; Kappas, Martin; Fassnacht, Steven; Linh, Nguyen Hoang Khanh

    2018-01-01

    Hydrological modeling outputs are subject to uncertainty resulting from different sources of errors (e.g., error in input data, model structure, and model parameters), making quantification of uncertainty in hydrological modeling imperative and meant to improve reliability of modeling results. The uncertainty analysis must solve difficulties in calibration of hydrological models, which further increase in areas with data scarcity. The purpose of this study is to apply four uncertainty analysis algorithms to a semi-distributed hydrological model, quantifying different source of uncertainties (especially parameter uncertainty) and evaluate their performance. In this study, the Soil and Water Assessment Tools (SWAT) eco-hydrological model was implemented for the watershed in the center of Vietnam. The sensitivity of parameters was analyzed, and the model was calibrated. The uncertainty analysis for the hydrological model was conducted based on four algorithms: Generalized Likelihood Uncertainty Estimation (GLUE), Sequential Uncertainty Fitting (SUFI), Parameter Solution method (ParaSol) and Particle Swarm Optimization (PSO). The performance of the algorithms was compared using P-factor and Rfactor, coefficient of determination (R 2), the Nash Sutcliffe coefficient of efficiency (NSE) and Percent Bias (PBIAS). The results showed the high performance of SUFI and PSO with P-factor>0.83, R-factor <0.56 and R 2>0.91, NSE>0.89, and 0.18

  19. A Novel TRM Calculation Method by Probabilistic Concept

    NASA Astrophysics Data System (ADS)

    Audomvongseree, Kulyos; Yokoyama, Akihiko; Verma, Suresh Chand; Nakachi, Yoshiki

    In a new competitive environment, it becomes possible for the third party to access a transmission facility. From this structure, to efficiently manage the utilization of the transmission network, a new definition about Available Transfer Capability (ATC) has been proposed. According to the North American ElectricReliability Council (NERC)’s definition, ATC depends on several parameters, i. e. Total Transfer Capability (TTC), Transmission Reliability Margin (TRM), and Capacity Benefit Margin (CBM). This paper is focused on the calculation of TRM which is one of the security margin reserved for any uncertainty of system conditions. The TRM calculation by probabilistic method is proposed in this paper. Based on the modeling of load forecast error and error in transmission line limitation, various cases of transmission transfer capability and its related probabilistic nature can be calculated. By consideration of the proposed concept of risk analysis, the appropriate required amount of TRM can be obtained. The objective of this research is to provide realistic information on the actual ability of the network which may be an alternative choice for system operators to make an appropriate decision in the competitive market. The advantages of the proposed method are illustrated by application to the IEEJ-WEST10 model system.

  20. Cryogenic on-orbit liquid depot storage acquisition and transfer (COLD-SAT) experiment subsystem instrumentation and wire harness design report

    NASA Technical Reports Server (NTRS)

    Edwards, Lawrence G.

    1994-01-01

    Subcritical cryogens such as liquid hydrogen (LH2) and liquid oxygen (LO2) are required for space based transportation propellant, reactant, and life support systems. Future long-duration space missions will require on-orbit systems capable of long-term cryogen storage and efficient fluid transfer capabilities. COLD-SAT, which stands for cryogenic orbiting liquid depot-storage acquisition and transfer, is a free-flying liquid hydrogen management flight experiment. Experiments to determine optimum methods of fluid storage and transfer will be performed on the COLD-SAT mission. The success of the mission is directly related to the type and accuracy of measurements made. The instrumentation and measurement techniques used are therefore critical to the success of the mission. This paper presents the results of the COLD-SAT experiment subsystem instrumentation and wire harness design effort. Candidate transducers capable of fulfilling the COLD-SAT experiment measurement requirements are identified. Signal conditioning techniques, data acquisition requirements, and measurement uncertainty analysis are presented. Electrical harnessing materials and wiring techniques for the instrumentation designed to minimize heat conduction to the cryogenic tanks and provide optimum measurement accuracy are listed.

  1. Interval-parameter semi-infinite fuzzy-stochastic mixed-integer programming approach for environmental management under multiple uncertainties.

    PubMed

    Guo, P; Huang, G H

    2010-03-01

    In this study, an interval-parameter semi-infinite fuzzy-chance-constrained mixed-integer linear programming (ISIFCIP) approach is developed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing interval-parameter semi-infinite programming (ISIP) and fuzzy-chance-constrained programming (FCCP) by incorporating uncertainties expressed as dual uncertainties of functional intervals and multiple uncertainties of distributions with fuzzy-interval admissible probability of violating constraint within a general optimization framework. The binary-variable solutions represent the decisions of waste-management-facility expansion, and the continuous ones are related to decisions of waste-flow allocation. The interval solutions can help decision-makers to obtain multiple decision alternatives, as well as provide bases for further analyses of tradeoffs between waste-management cost and system-failure risk. In the application to the City of Regina, Canada, two scenarios are considered. In Scenario 1, the City's waste-management practices would be based on the existing policy over the next 25 years. The total diversion rate for the residential waste would be approximately 14%. Scenario 2 is associated with a policy for waste minimization and diversion, where 35% diversion of residential waste should be achieved within 15 years, and 50% diversion over 25 years. In this scenario, not only landfill would be expanded, but also CF and MRF would be expanded. Through the scenario analyses, useful decision support for the City's solid-waste managers and decision-makers has been generated. Three special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it is useful for tackling multiple uncertainties expressed as intervals, functional intervals, probability distributions, fuzzy sets, and their combinations; secondly, it has capability in addressing the temporal variations of the functional intervals; thirdly, it can facilitate dynamic analysis for decisions of facility-expansion planning and waste-flow allocation within a multi-facility, multi-period and multi-option context. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. A methodology for calibration of hyperspectral and multispectral satellite data in coastal areas

    NASA Astrophysics Data System (ADS)

    Pennucci, Giuliana; Fargion, Giulietta; Alvarez, Alberto; Trees, Charles; Arnone, Robert

    2012-06-01

    The objective of this work is to determine the location(s) in any given oceanic area during different temporal periods where in situ sampling for Calibration/Validation (Cal/Val) provides the best capability to retrieve accurate radiometric and derived product data (lowest uncertainties). We present a method to merge satellite imagery with in situ measurements, to determine the best in situ sampling strategy suitable for satellite Cal/Val and to evaluate the present in situ locations through uncertainty indices. This analysis is required to determine if the present in situ sites are adequate for assessing uncertainty and where additional sites and ship programs should be located to improve Calibration/Validation (Cal/Val) procedures. Our methodology uses satellite acquisitions to build a covariance matrix encoding the spatial-temporal variability of the area of interest. The covariance matrix is used in a Bayesian framework to merge satellite and in situ data providing a product with lower uncertainty. The best in situ location for Cal/Val is then identified by using a design principle (A-optimum design) that looks for minimizing the estimated variance of the merged products. Satellite products investigated in this study include Ocean Color water leaving radiance, chlorophyll, and inherent and apparent optical properties (retrieved from MODIS and VIIRS). In situ measurements are obtained from systems operated on fixed deployment platforms (e.g., sites of the Ocean Color component of the AErosol RObotic NETwork- AERONET-OC), moorings (e.g, Marine Optical Buoy-MOBY), ships or autonomous vehicles (such as Autonomous Underwater Vehicles and/or Gliders).

  3. A GIS based spatially-explicit sensitivity and uncertainty analysis approach for multi-criteria decision analysis.

    PubMed

    Feizizadeh, Bakhtiar; Jankowski, Piotr; Blaschke, Thomas

    2014-03-01

    GIS multicriteria decision analysis (MCDA) techniques are increasingly used in landslide susceptibility mapping for the prediction of future hazards, land use planning, as well as for hazard preparedness. However, the uncertainties associated with MCDA techniques are inevitable and model outcomes are open to multiple types of uncertainty. In this paper, we present a systematic approach to uncertainty and sensitivity analysis. We access the uncertainty of landslide susceptibility maps produced with GIS-MCDA techniques. A new spatially-explicit approach and Dempster-Shafer Theory (DST) are employed to assess the uncertainties associated with two MCDA techniques, namely Analytical Hierarchical Process (AHP) and Ordered Weighted Averaging (OWA) implemented in GIS. The methodology is composed of three different phases. First, weights are computed to express the relative importance of factors (criteria) for landslide susceptibility. Next, the uncertainty and sensitivity of landslide susceptibility is analyzed as a function of weights using Monte Carlo Simulation and Global Sensitivity Analysis. Finally, the results are validated using a landslide inventory database and by applying DST. The comparisons of the obtained landslide susceptibility maps of both MCDA techniques with known landslides show that the AHP outperforms OWA. However, the OWA-generated landslide susceptibility map shows lower uncertainty than the AHP-generated map. The results demonstrate that further improvement in the accuracy of GIS-based MCDA can be achieved by employing an integrated uncertainty-sensitivity analysis approach, in which the uncertainty of landslide susceptibility model is decomposed and attributed to model's criteria weights.

  4. A GIS based spatially-explicit sensitivity and uncertainty analysis approach for multi-criteria decision analysis

    NASA Astrophysics Data System (ADS)

    Feizizadeh, Bakhtiar; Jankowski, Piotr; Blaschke, Thomas

    2014-03-01

    GIS multicriteria decision analysis (MCDA) techniques are increasingly used in landslide susceptibility mapping for the prediction of future hazards, land use planning, as well as for hazard preparedness. However, the uncertainties associated with MCDA techniques are inevitable and model outcomes are open to multiple types of uncertainty. In this paper, we present a systematic approach to uncertainty and sensitivity analysis. We access the uncertainty of landslide susceptibility maps produced with GIS-MCDA techniques. A new spatially-explicit approach and Dempster-Shafer Theory (DST) are employed to assess the uncertainties associated with two MCDA techniques, namely Analytical Hierarchical Process (AHP) and Ordered Weighted Averaging (OWA) implemented in GIS. The methodology is composed of three different phases. First, weights are computed to express the relative importance of factors (criteria) for landslide susceptibility. Next, the uncertainty and sensitivity of landslide susceptibility is analyzed as a function of weights using Monte Carlo Simulation and Global Sensitivity Analysis. Finally, the results are validated using a landslide inventory database and by applying DST. The comparisons of the obtained landslide susceptibility maps of both MCDA techniques with known landslides show that the AHP outperforms OWA. However, the OWA-generated landslide susceptibility map shows lower uncertainty than the AHP-generated map. The results demonstrate that further improvement in the accuracy of GIS-based MCDA can be achieved by employing an integrated uncertainty-sensitivity analysis approach, in which the uncertainty of landslide susceptibility model is decomposed and attributed to model's criteria weights.

  5. Assessing and reporting uncertainties in dietary exposure analysis: Mapping of uncertainties in a tiered approach.

    PubMed

    Kettler, Susanne; Kennedy, Marc; McNamara, Cronan; Oberdörfer, Regina; O'Mahony, Cian; Schnabel, Jürgen; Smith, Benjamin; Sprong, Corinne; Faludi, Roland; Tennant, David

    2015-08-01

    Uncertainty analysis is an important component of dietary exposure assessments in order to understand correctly the strength and limits of its results. Often, standard screening procedures are applied in a first step which results in conservative estimates. If through those screening procedures a potential exceedance of health-based guidance values is indicated, within the tiered approach more refined models are applied. However, the sources and types of uncertainties in deterministic and probabilistic models can vary or differ. A key objective of this work has been the mapping of different sources and types of uncertainties to better understand how to best use uncertainty analysis to generate more realistic comprehension of dietary exposure. In dietary exposure assessments, uncertainties can be introduced by knowledge gaps about the exposure scenario, parameter and the model itself. With this mapping, general and model-independent uncertainties have been identified and described, as well as those which can be introduced and influenced by the specific model during the tiered approach. This analysis identifies that there are general uncertainties common to point estimates (screening or deterministic methods) and probabilistic exposure assessment methods. To provide further clarity, general sources of uncertainty affecting many dietary exposure assessments should be separated from model-specific uncertainties. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. AN OVERVIEW OF THE UNCERTAINTY ANALYSIS, SENSITIVITY ANALYSIS, AND PARAMETER ESTIMATION (UA/SA/PE) API AND HOW TO IMPLEMENT IT

    EPA Science Inventory

    The Application Programming Interface (API) for Uncertainty Analysis, Sensitivity Analysis, and
    Parameter Estimation (UA/SA/PE API) (also known as Calibration, Optimization and Sensitivity and Uncertainty (CUSO)) was developed in a joint effort between several members of both ...

  7. High-Throughput Models for Exposure-Based Chemical ...

    EPA Pesticide Factsheets

    The United States Environmental Protection Agency (U.S. EPA) must characterize potential risks to human health and the environment associated with manufacture and use of thousands of chemicals. High-throughput screening (HTS) for biological activity allows the ToxCast research program to prioritize chemical inventories for potential hazard. Similar capabilities for estimating exposure potential would support rapid risk-based prioritization for chemicals with limited information; here, we propose a framework for high-throughput exposure assessment. To demonstrate application, an analysis was conducted that predicts human exposure potential for chemicals and estimates uncertainty in these predictions by comparison to biomonitoring data. We evaluated 1936 chemicals using far-field mass balance human exposure models (USEtox and RAIDAR) and an indicator for indoor and/or consumer use. These predictions were compared to exposures inferred by Bayesian analysis from urine concentrations for 82 chemicals reported in the National Health and Nutrition Examination Survey (NHANES). Joint regression on all factors provided a calibrated consensus prediction, the variance of which serves as an empirical determination of uncertainty for prioritization on absolute exposure potential. Information on use was found to be most predictive; generally, chemicals above the limit of detection in NHANES had consumer/indoor use. Coupled with hazard HTS, exposure HTS can place risk earlie

  8. Durability reliability analysis for corroding concrete structures under uncertainty

    NASA Astrophysics Data System (ADS)

    Zhang, Hao

    2018-02-01

    This paper presents a durability reliability analysis of reinforced concrete structures subject to the action of marine chloride. The focus is to provide insight into the role of epistemic uncertainties on durability reliability. The corrosion model involves a number of variables whose probabilistic characteristics cannot be fully determined due to the limited availability of supporting data. All sources of uncertainty, both aleatory and epistemic, should be included in the reliability analysis. Two methods are available to formulate the epistemic uncertainty: the imprecise probability-based method and the purely probabilistic method in which the epistemic uncertainties are modeled as random variables. The paper illustrates how the epistemic uncertainties are modeled and propagated in the two methods, and shows how epistemic uncertainties govern the durability reliability.

  9. Linked Sensitivity Analysis, Calibration, and Uncertainty Analysis Using a System Dynamics Model for Stroke Comparative Effectiveness Research.

    PubMed

    Tian, Yuan; Hassmiller Lich, Kristen; Osgood, Nathaniel D; Eom, Kirsten; Matchar, David B

    2016-11-01

    As health services researchers and decision makers tackle more difficult problems using simulation models, the number of parameters and the corresponding degree of uncertainty have increased. This often results in reduced confidence in such complex models to guide decision making. To demonstrate a systematic approach of linked sensitivity analysis, calibration, and uncertainty analysis to improve confidence in complex models. Four techniques were integrated and applied to a System Dynamics stroke model of US veterans, which was developed to inform systemwide intervention and research planning: Morris method (sensitivity analysis), multistart Powell hill-climbing algorithm and generalized likelihood uncertainty estimation (calibration), and Monte Carlo simulation (uncertainty analysis). Of 60 uncertain parameters, sensitivity analysis identified 29 needing calibration, 7 that did not need calibration but significantly influenced key stroke outcomes, and 24 not influential to calibration or stroke outcomes that were fixed at their best guess values. One thousand alternative well-calibrated baselines were obtained to reflect calibration uncertainty and brought into uncertainty analysis. The initial stroke incidence rate among veterans was identified as the most influential uncertain parameter, for which further data should be collected. That said, accounting for current uncertainty, the analysis of 15 distinct prevention and treatment interventions provided a robust conclusion that hypertension control for all veterans would yield the largest gain in quality-adjusted life years. For complex health care models, a mixed approach was applied to examine the uncertainty surrounding key stroke outcomes and the robustness of conclusions. We demonstrate that this rigorous approach can be practical and advocate for such analysis to promote understanding of the limits of certainty in applying models to current decisions and to guide future data collection. © The Author(s) 2016.

  10. Automation life-cycle cost model

    NASA Technical Reports Server (NTRS)

    Gathmann, Thomas P.; Reeves, Arlinda J.; Cline, Rick; Henrion, Max; Ruokangas, Corinne

    1992-01-01

    The problem domain being addressed by this contractual effort can be summarized by the following list: Automation and Robotics (A&R) technologies appear to be viable alternatives to current, manual operations; Life-cycle cost models are typically judged with suspicion due to implicit assumptions and little associated documentation; and Uncertainty is a reality for increasingly complex problems and few models explicitly account for its affect on the solution space. The objectives for this effort range from the near-term (1-2 years) to far-term (3-5 years). In the near-term, the envisioned capabilities of the modeling tool are annotated. In addition, a framework is defined and developed in the Decision Modelling System (DEMOS) environment. Our approach is summarized as follows: Assess desirable capabilities (structure into near- and far-term); Identify useful existing models/data; Identify parameters for utility analysis; Define tool framework; Encode scenario thread for model validation; and Provide transition path for tool development. This report contains all relevant, technical progress made on this contractual effort.

  11. Progress in and prospects for fluvial flood modelling.

    PubMed

    Wheater, H S

    2002-07-15

    Recent floods in the UK have raised public and political awareness of flood risk. There is an increasing recognition that flood management and land-use planning are linked, and that decision-support modelling tools are required to address issues of climate and land-use change for integrated catchment management. In this paper, the scientific context for fluvial flood modelling is discussed, current modelling capability is considered and research challenges are identified. Priorities include (i) appropriate representation of spatial precipitation, including scenarios of climate change; (ii) development of a national capability for continuous hydrological simulation of ungauged catchments; (iii) improved scientific understanding of impacts of agricultural land-use and land-management change, and the development of new modelling approaches to represent those impacts; (iv) improved representation of urban flooding, at both local and catchment scale; (v) appropriate parametrizations for hydraulic simulation of in-channel and flood-plain flows, assimilating available ground observations and remotely sensed data; and (vi) a flexible decision-support modelling framework, incorporating developments in computing, data availability, data assimilation and uncertainty analysis.

  12. Uncertainty in monitoring E. coli concentrations in streams and stormwater runoff

    NASA Astrophysics Data System (ADS)

    Harmel, R. D.; Hathaway, J. M.; Wagner, K. L.; Wolfe, J. E.; Karthikeyan, R.; Francesconi, W.; McCarthy, D. T.

    2016-03-01

    Microbial contamination of surface waters, a substantial public health concern throughout the world, is typically identified by fecal indicator bacteria such as Escherichia coli. Thus, monitoring E. coli concentrations is critical to evaluate current conditions, determine restoration effectiveness, and inform model development and calibration. An often overlooked component of these monitoring and modeling activities is understanding the inherent random and systematic uncertainty present in measured data. In this research, a review and subsequent analysis was performed to identify, document, and analyze measurement uncertainty of E. coli data collected in stream flow and stormwater runoff as individual discrete samples or throughout a single runoff event. Data on the uncertainty contributed by sample collection, sample preservation/storage, and laboratory analysis in measured E. coli concentrations were compiled and analyzed, and differences in sampling method and data quality scenarios were compared. The analysis showed that: (1) manual integrated sampling produced the lowest random and systematic uncertainty in individual samples, but automated sampling typically produced the lowest uncertainty when sampling throughout runoff events; (2) sample collection procedures often contributed the highest amount of uncertainty, although laboratory analysis introduced substantial random uncertainty and preservation/storage introduced substantial systematic uncertainty under some scenarios; and (3) the uncertainty in measured E. coli concentrations was greater than that of sediment and nutrients, but the difference was not as great as may be assumed. This comprehensive analysis of uncertainty in E. coli concentrations measured in streamflow and runoff should provide valuable insight for designing E. coli monitoring projects, reducing uncertainty in quality assurance efforts, regulatory and policy decision making, and fate and transport modeling.

  13. Fundamental uncertainty limit for speckle displacement measurements.

    PubMed

    Fischer, Andreas

    2017-09-01

    The basic metrological task in speckle photography is to quantify displacements of speckle patterns, allowing for instance the investigation of the mechanical load and modification of objects with rough surfaces. However, the fundamental limit of the measurement uncertainty due to photon shot noise is unknown. For this reason, the Cramér-Rao bound (CRB) is derived for speckle displacement measurements, representing the squared minimal achievable measurement uncertainty. As result, the CRB for speckle patterns is only two times the CRB for an ideal point light source. Hence, speckle photography is an optimal measurement approach for contactless displacement measurements on rough surfaces. In agreement with a derivation from Heisenberg's uncertainty principle, the CRB depends on the number of detected photons and the diffraction limit of the imaging system described by the speckle size. The theoretical results are verified and validated, demonstrating the capability for displacement measurements with nanometer resolution.

  14. A web-application for visualizing uncertainty in numerical ensemble models

    NASA Astrophysics Data System (ADS)

    Alberti, Koko; Hiemstra, Paul; de Jong, Kor; Karssenberg, Derek

    2013-04-01

    Numerical ensemble models are used in the analysis and forecasting of a wide range of environmental processes. Common use cases include assessing the consequences of nuclear accidents, pollution releases into the ocean or atmosphere, forest fires, volcanic eruptions, or identifying areas at risk from such hazards. In addition to the increased use of scenario analyses and model forecasts, the availability of supplementary data describing errors and model uncertainties is increasingly commonplace. Unfortunately most current visualization routines are not capable of properly representing uncertain information. As a result, uncertainty information is not provided at all, not readily accessible, or it is not communicated effectively to model users such as domain experts, decision makers, policy makers, or even novice users. In an attempt to address these issues a lightweight and interactive web-application has been developed. It makes clear and concise uncertainty visualizations available in a web-based mapping and visualization environment, incorporating aggregation (upscaling) techniques to adjust uncertainty information to the zooming level. The application has been built on a web mapping stack of open source software, and can quantify and visualize uncertainties in numerical ensemble models in such a way that both expert and novice users can investigate uncertainties present in a simple ensemble dataset. As a test case, a dataset was used which forecasts the spread of an airborne tracer across Western Europe. Extrinsic uncertainty representations are used in which dynamic circular glyphs are overlaid on model attribute maps to convey various uncertainty concepts. It supports both basic uncertainty metrics such as standard deviation, standard error, width of the 95% confidence interval and interquartile range, as well as more experimental ones aimed at novice users. Ranges of attribute values can be specified, and the circular glyphs dynamically change size to represent the probability of the attribute value falling within the specified interval. For more advanced users graphs of the cumulative probability density function, histograms, and time series plume charts are available. To avoid risking a cognitive overload and crowding of glyphs on the map pane, the support of the data used for generating the glyphs is linked dynamically to the zoom level. Zooming in and out respectively decreases and increases the underlying support size of data used for generating the glyphs, thereby making uncertainty information of the original data upscaled to the resolution of the visualization accessible to the user. This feature also ensures that the glyphs are neatly spaced in a regular grid regardless of the zoom level. Finally, the web-application has been presented to groups of test users of varying degrees of expertise in order to evaluate the usability of the interface and the effectiveness of uncertainty visualizations based on circular glyphs.

  15. An uncertainty analysis of wildfire modeling [Chapter 13

    Treesearch

    Karin Riley; Matthew Thompson

    2017-01-01

    Before fire models can be understood, evaluated, and effectively applied to support decision making, model-based uncertainties must be analyzed. In this chapter, we identify and classify sources of uncertainty using an established analytical framework, and summarize results graphically in an uncertainty matrix. Our analysis facilitates characterization of the...

  16. Analytic uncertainty and sensitivity analysis of models with input correlations

    NASA Astrophysics Data System (ADS)

    Zhu, Yueying; Wang, Qiuping A.; Li, Wei; Cai, Xu

    2018-03-01

    Probabilistic uncertainty analysis is a common means of evaluating mathematical models. In mathematical modeling, the uncertainty in input variables is specified through distribution laws. Its contribution to the uncertainty in model response is usually analyzed by assuming that input variables are independent of each other. However, correlated parameters are often happened in practical applications. In the present paper, an analytic method is built for the uncertainty and sensitivity analysis of models in the presence of input correlations. With the method, it is straightforward to identify the importance of the independence and correlations of input variables in determining the model response. This allows one to decide whether or not the input correlations should be considered in practice. Numerical examples suggest the effectiveness and validation of our analytic method in the analysis of general models. A practical application of the method is also proposed to the uncertainty and sensitivity analysis of a deterministic HIV model.

  17. Final Technical Report: Mathematical Foundations for Uncertainty Quantification in Materials Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plechac, Petr; Vlachos, Dionisios G.

    We developed path-wise information theory-based and goal-oriented sensitivity analysis and parameter identification methods for complex high-dimensional dynamics and in particular of non-equilibrium extended molecular systems. The combination of these novel methodologies provided the first methods in the literature which are capable to handle UQ questions for stochastic complex systems with some or all of the following features: (a) multi-scale stochastic models such as (bio)chemical reaction networks, with a very large number of parameters, (b) spatially distributed systems such as Kinetic Monte Carlo or Langevin Dynamics, (c) non-equilibrium processes typically associated with coupled physico-chemical mechanisms, driven boundary conditions, hybrid micro-macro systems,more » etc. A particular computational challenge arises in simulations of multi-scale reaction networks and molecular systems. Mathematical techniques were applied to in silico prediction of novel materials with emphasis on the effect of microstructure on model uncertainty quantification (UQ). We outline acceleration methods to make calculations of real chemistry feasible followed by two complementary tasks on structure optimization and microstructure-induced UQ.« less

  18. A Review of Aerothermal Modeling for Mars Entry Missions

    NASA Technical Reports Server (NTRS)

    Wright, Michael J; Tang, Chun Y.; Edquist, Karl T.; Hollis, Brian R.; Krasa, Paul

    2009-01-01

    The current status of aerothermal analysis for Mars entry missions is reviewed. The aeroheating environment of all Mars missions to date has been dominated by convective heating. Two primary uncertainties in our ability to predict forebody convective heating are turbulence on a blunt lifting cone and surface catalysis in a predominantly CO2 environment. Future missions, particularly crewed vehicles, will encounter additional heating from shock-layer radiation due to a combination of larger size and faster entry velocity. Localized heating due to penetrations or other singularities on the aeroshell must also be taken into account. The physical models employed to predict these phenomena are reviewed, and key uncertainties or deficiencies inherent in these models are explored. Capabilities of existing ground test facilities to support aeroheating validation are also summarized. Engineering flight data from the Viking and Pathfinder missions, which may be useful for aerothermal model validation, are discussed, and an argument is presented for obtaining additional flight data. Examples are taken from past, present, and future Mars entry missions, including the twin Mars Exploration Rovers and the Mars Science Laboratory, scheduled for launch by NASA in 2011.

  19. [Traditional Chinese Medicine data management policy in big data environment].

    PubMed

    Liang, Yang; Ding, Chang-Song; Huang, Xin-di; Deng, Le

    2018-02-01

    As traditional data management model cannot effectively manage the massive data in traditional Chinese medicine(TCM) due to the uncertainty of data object attributes as well as the diversity and abstraction of data representation, a management strategy for TCM data based on big data technology is proposed. Based on true characteristics of TCM data, this strategy could solve the problems of the uncertainty of data object attributes in TCM information and the non-uniformity of the data representation by using modeless properties of stored objects in big data technology. Hybrid indexing mode was also used to solve the conflicts brought by different storage modes in indexing process, with powerful capabilities in query processing of massive data through efficient parallel MapReduce process. The theoretical analysis provided the management framework and its key technology, while its performance was tested on Hadoop by using several common traditional Chinese medicines and prescriptions from practical TCM data source. Result showed that this strategy can effectively solve the storage problem of TCM information, with good performance in query efficiency, completeness and robustness. Copyright© by the Chinese Pharmaceutical Association.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, J. Austin; Hix, W. Raphael; Chertkow, Merek A.

    In this paper, we investigate core-collapse supernova (CCSN) nucleosynthesis with self-consistent, axisymmetric (2D) simulations performed using the neutrino hydrodynamics code Chimera. Computational costs have traditionally constrained the evolution of the nuclear composition within multidimensional CCSN models to, at best, a 14-species α-network capable of tracking onlymore » $$(\\alpha ,\\gamma )$$ reactions from 4He to 60Zn. Such a simplified network limits the ability to accurately evolve detailed composition and neutronization or calculate the nuclear energy generation rate. Lagrangian tracer particles are commonly used to extend the nuclear network evolution by incorporating more realistic networks into post-processing nucleosynthesis calculations. However, limitations such as poor spatial resolution of the tracer particles; inconsistent thermodynamic evolution, including misestimation of expansion timescales; and uncertain determination of the multidimensional mass cut at the end of the simulation impose uncertainties inherent to this approach. Finally, we present a detailed analysis of the impact of such uncertainties for four self-consistent axisymmetric CCSN models initiated from solar-metallicity, nonrotating progenitors of 12, 15, 20, and 25 $${M}_{\\odot }$$ and evolved with the smaller α-network to more than 1 s after the launch of an explosion.« less

  1. Force-Strain Characteristics and Rupture-Load Capability of Viking-Type Suspension-Line Material Under Dynamic Loading Conditions

    NASA Technical Reports Server (NTRS)

    Poole, Lamont R.; Councill, Earl L., Jr.

    1972-01-01

    A series of tests has been conducted to investigate the elastic behavior of Viking-type suspension-line material under dynamic loading conditions. Results indicate that there is a decrease in both rupture-load capability and elongation at rupture as the test strain rate is increased. Preliminary examination of force-strain characteristics indicates that, on the average, the material exhibits some type of viscous effect which results in a greater force being produced, for a particular value of strain, under dynamic loading conditions than that produced under quasi-static loading conditions. A great deal of uncertainty exists in defining a priori the tensile properties of viscoelastic materials, such as nylon or dacron, under dynamic loading conditions. Additional uncertainty enters the picture when woven configurations such as suspension,line material are considered. To eliminate these uncertainties, with respect to the Viking parachute configuration, a test program has been conducted to obtain data on the tensile properties of Viking-type suspension-line material over a wide range of strain rates. Based on preliminary examination of these data, the following conclusions can be drawn: 1. Material rupture-load capability decreases as strain-rate is increased. At strain rates above 75 percent/sec, no rupture loads were observed which would meet the minimum tensile strength specification of 880 pounds. 2. The material, on the average, exhibits some type of viscous effect which, for a particular value of strain, produces a greater load under dynamic loading conditions than that produced under quasi-static loading conditions.

  2. Model parameter uncertainty analysis for an annual field-scale P loss model

    NASA Astrophysics Data System (ADS)

    Bolster, Carl H.; Vadas, Peter A.; Boykin, Debbie

    2016-08-01

    Phosphorous (P) fate and transport models are important tools for developing and evaluating conservation practices aimed at reducing P losses from agricultural fields. Because all models are simplifications of complex systems, there will exist an inherent amount of uncertainty associated with their predictions. It is therefore important that efforts be directed at identifying, quantifying, and communicating the different sources of model uncertainties. In this study, we conducted an uncertainty analysis with the Annual P Loss Estimator (APLE) model. Our analysis included calculating parameter uncertainties and confidence and prediction intervals for five internal regression equations in APLE. We also estimated uncertainties of the model input variables based on values reported in the literature. We then predicted P loss for a suite of fields under different management and climatic conditions while accounting for uncertainties in the model parameters and inputs and compared the relative contributions of these two sources of uncertainty to the overall uncertainty associated with predictions of P loss. Both the overall magnitude of the prediction uncertainties and the relative contributions of the two sources of uncertainty varied depending on management practices and field characteristics. This was due to differences in the number of model input variables and the uncertainties in the regression equations associated with each P loss pathway. Inspection of the uncertainties in the five regression equations brought attention to a previously unrecognized limitation with the equation used to partition surface-applied fertilizer P between leaching and runoff losses. As a result, an alternate equation was identified that provided similar predictions with much less uncertainty. Our results demonstrate how a thorough uncertainty and model residual analysis can be used to identify limitations with a model. Such insight can then be used to guide future data collection and model development and evaluation efforts.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kastenberg, W.E.; Apostolakis, G.; Dhir, V.K.

    Severe accident management can be defined as the use of existing and/or altemative resources, systems and actors to prevent or mitigate a core-melt accident. For each accident sequence and each combination of severe accident management strategies, there may be several options available to the operator, and each involves phenomenological and operational considerations regarding uncertainty. Operational uncertainties include operator, system and instrumentation behavior during an accident. A framework based on decision trees and influence diagrams has been developed which incorporates such criteria as feasibility, effectiveness, and adverse effects, for evaluating potential severe accident management strategies. The framework is also capable ofmore » propagating both data and model uncertainty. It is applied to several potential strategies including PWR cavity flooding, BWR drywell flooding, PWR depressurization and PWR feed and bleed.« less

  4. The Importance of Uncertainty and Sensitivity Analysis in Process-based Models of Carbon and Nitrogen Cycling in Terrestrial Ecosystems with Particular Emphasis on Forest Ecosystems — Selected Papers from a Workshop Organized by the International Society for Ecological Modelling (ISEM) at the Third Biennal Meeting of the International Environmental Modelling and Software Society (IEMSS) in Burlington, Vermont, USA, August 9-13, 2006

    USGS Publications Warehouse

    Larocque, Guy R.; Bhatti, Jagtar S.; Liu, Jinxun; Ascough, James C.; Gordon, Andrew M.

    2008-01-01

    Many process-based models of carbon (C) and nitrogen (N) cycles have been developed for terrestrial ecosystems, including forest ecosystems. They address many basic issues of ecosystems structure and functioning, such as the role of internal feedback in ecosystem dynamics. The critical factor in these phenomena is scale, as these processes operate at scales from the minute (e.g. particulate pollution impacts on trees and other organisms) to the global (e.g. climate change). Research efforts remain important to improve the capability of such models to better represent the dynamics of terrestrial ecosystems, including the C, nutrient, (e.g. N) and water cycles. Existing models are sufficiently well advanced to help decision makers develop sustainable management policies and planning of terrestrial ecosystems, as they make realistic predictions when used appropriately. However, decision makers must be aware of their limitations by having the opportunity to evaluate the uncertainty associated with process-based models (Smith and Heath, 2001 and Allen et al., 2004). The variation in scale of issues currently being addressed by modelling efforts makes the evaluation of uncertainty a daunting task.

  5. A structured analysis of uncertainty surrounding modeled impacts of groundwater-extraction rules

    NASA Astrophysics Data System (ADS)

    Guillaume, Joseph H. A.; Qureshi, M. Ejaz; Jakeman, Anthony J.

    2012-08-01

    Integrating economic and groundwater models for groundwater-management can help improve understanding of trade-offs involved between conflicting socioeconomic and biophysical objectives. However, there is significant uncertainty in most strategic decision-making situations, including in the models constructed to represent them. If not addressed, this uncertainty may be used to challenge the legitimacy of the models and decisions made using them. In this context, a preliminary uncertainty analysis was conducted of a dynamic coupled economic-groundwater model aimed at assessing groundwater extraction rules. The analysis demonstrates how a variety of uncertainties in such a model can be addressed. A number of methods are used including propagation of scenarios and bounds on parameters, multiple models, block bootstrap time-series sampling and robust linear regression for model calibration. These methods are described within the context of a theoretical uncertainty management framework, using a set of fundamental uncertainty management tasks and an uncertainty typology.

  6. Uncertainty analysis for low-level radioactive waste disposal performance assessment at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, D.W.; Yambert, M.W.; Kocher, D.C.

    1994-12-31

    A performance assessment of the operating Solid Waste Storage Area 6 (SWSA 6) facility for the disposal of low-level radioactive waste at the Oak Ridge National Laboratory has been prepared to provide the technical basis for demonstrating compliance with the performance objectives of DOE Order 5820.2A, Chapter 111.2 An analysis of the uncertainty incorporated into the assessment was performed which addressed the quantitative uncertainty in the data used by the models, the subjective uncertainty associated with the models used for assessing performance of the disposal facility and site, and the uncertainty in the models used for estimating dose and humanmore » exposure. The results of the uncertainty analysis were used to interpret results and to formulate conclusions about the performance assessment. This paper discusses the approach taken in analyzing the uncertainty in the performance assessment and the role of uncertainty in performance assessment.« less

  7. SIMULATING METABOLISM TO ENHANCE EFFECTS MODELING

    EPA Science Inventory

    A major uncertainty that has long been recognized in evaluating chemical toxicity is accounting for metabolic activation of chemicals resulting in increased toxicity. The proposed research will develop a capability for forecasting the metabolism of xenobiotic chemicals of EPA int...

  8. Numerical Uncertainty Quantification for Radiation Analysis Tools

    NASA Technical Reports Server (NTRS)

    Anderson, Brooke; Blattnig, Steve; Clowdsley, Martha

    2007-01-01

    Recently a new emphasis has been placed on engineering applications of space radiation analyses and thus a systematic effort of Verification, Validation and Uncertainty Quantification (VV&UQ) of the tools commonly used for radiation analysis for vehicle design and mission planning has begun. There are two sources of uncertainty in geometric discretization addressed in this paper that need to be quantified in order to understand the total uncertainty in estimating space radiation exposures. One source of uncertainty is in ray tracing, as the number of rays increase the associated uncertainty decreases, but the computational expense increases. Thus, a cost benefit analysis optimizing computational time versus uncertainty is needed and is addressed in this paper. The second source of uncertainty results from the interpolation over the dose vs. depth curves that is needed to determine the radiation exposure. The question, then, is what is the number of thicknesses that is needed to get an accurate result. So convergence testing is performed to quantify the uncertainty associated with interpolating over different shield thickness spatial grids.

  9. Retrieval of the thickness and refractive index dispersion of parallel plate from a single interferogram recorded in both spectral and angular domains

    NASA Astrophysics Data System (ADS)

    Dong, Jingtao; Lu, Rongsheng

    2018-04-01

    The principle of retrieving the thickness and refractive index dispersion of a parallel glass plate is reported based on single interferogram recording and phase analysis. With the parallel plate illuminated by a convergent light sheet, the transmitted light interfering in both spectral and angular domains is recorded. The phase recovered from the single interferogram by Fourier analysis is used to retrieve the thickness and refractive index dispersion without periodic ambiguity. Experimental results of an optical substrate standard show that the accuracy of refractive index dispersion is less than 2.5 × 10-5 and the relative uncertainty of thickness is 6 × 10-5 (3σ). This method is confirmed to be robust against the intensity noises, indicating the capability of stable and accurate measurement.

  10. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.

    2010-01-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the loadmore » and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. Currently, uncertainties associated with wind and load forecasts, as well as uncertainties associated with random generator outages and unexpected disconnection of supply lines, are not taken into account in power grid operation. Thus, operators have little means to weigh the likelihood and magnitude of upcoming events of power imbalance. In this project, funded by the U.S. Department of Energy (DOE), a framework has been developed for incorporating uncertainties associated with wind and load forecast errors, unpredicted ramps, and forced generation disconnections into the energy management system (EMS) as well as generation dispatch and commitment applications. A new approach to evaluate the uncertainty ranges for the required generation performance envelope including balancing capacity, ramping capability, and ramp duration has been proposed. The approach includes three stages: forecast and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence levels. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis, incorporating all sources of uncertainties of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the “flying brick” technique has been developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation algorithm has been developed to validate the accuracy of the confidence intervals.« less

  11. Model Based Mission Assurance: Emerging Opportunities for Robotic Systems

    NASA Technical Reports Server (NTRS)

    Evans, John W.; DiVenti, Tony

    2016-01-01

    The emergence of Model Based Systems Engineering (MBSE) in a Model Based Engineering framework has created new opportunities to improve effectiveness and efficiencies across the assurance functions. The MBSE environment supports not only system architecture development, but provides for support of Systems Safety, Reliability and Risk Analysis concurrently in the same framework. Linking to detailed design will further improve assurance capabilities to support failures avoidance and mitigation in flight systems. This also is leading new assurance functions including model assurance and management of uncertainty in the modeling environment. Further, the assurance cases, a structured hierarchal argument or model, are emerging as a basis for supporting a comprehensive viewpoint in which to support Model Based Mission Assurance (MBMA).

  12. Uncertainty as Knowledge: Constraints on Policy Choices Provided by Analysis of Uncertainty

    NASA Astrophysics Data System (ADS)

    Lewandowsky, S.; Risbey, J.; Smithson, M.; Newell, B. R.

    2012-12-01

    Uncertainty forms an integral part of climate science, and it is often cited in connection with arguments against mitigative action. We argue that an analysis of uncertainty must consider existing knowledge as well as uncertainty, and the two must be evaluated with respect to the outcomes and risks associated with possible policy options. Although risk judgments are inherently subjective, an analysis of the role of uncertainty within the climate system yields two constraints that are robust to a broad range of assumptions. Those constraints are that (a) greater uncertainty about the climate system is necessarily associated with greater expected damages from warming, and (b) greater uncertainty translates into a greater risk of the failure of mitigation efforts. These ordinal constraints are unaffected by subjective or cultural risk-perception factors, they are independent of the discount rate, and they are independent of the magnitude of the estimate for climate sensitivity. The constraints mean that any appeal to uncertainty must imply a stronger, rather than weaker, need to cut greenhouse gas emissions than in the absence of uncertainty.

  13. Robust Control Design for Uncertain Nonlinear Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Kenny, Sean P.; Crespo, Luis G.; Andrews, Lindsey; Giesy, Daniel P.

    2012-01-01

    Robustness to parametric uncertainty is fundamental to successful control system design and as such it has been at the core of many design methods developed over the decades. Despite its prominence, most of the work on robust control design has focused on linear models and uncertainties that are non-probabilistic in nature. Recently, researchers have acknowledged this disparity and have been developing theory to address a broader class of uncertainties. This paper presents an experimental application of robust control design for a hybrid class of probabilistic and non-probabilistic parametric uncertainties. The experimental apparatus is based upon the classic inverted pendulum on a cart. The physical uncertainty is realized by a known additional lumped mass at an unknown location on the pendulum. This unknown location has the effect of substantially altering the nominal frequency and controllability of the nonlinear system, and in the limit has the capability to make the system neutrally stable and uncontrollable. Another uncertainty to be considered is a direct current motor parameter. The control design objective is to design a controller that satisfies stability, tracking error, control power, and transient behavior requirements for the largest range of parametric uncertainties. This paper presents an overview of the theory behind the robust control design methodology and the experimental results.

  14. Joint analysis of input and parametric uncertainties in watershed water quality modeling: A formal Bayesian approach

    NASA Astrophysics Data System (ADS)

    Han, Feng; Zheng, Yi

    2018-06-01

    Significant Input uncertainty is a major source of error in watershed water quality (WWQ) modeling. It remains challenging to address the input uncertainty in a rigorous Bayesian framework. This study develops the Bayesian Analysis of Input and Parametric Uncertainties (BAIPU), an approach for the joint analysis of input and parametric uncertainties through a tight coupling of Markov Chain Monte Carlo (MCMC) analysis and Bayesian Model Averaging (BMA). The formal likelihood function for this approach is derived considering a lag-1 autocorrelated, heteroscedastic, and Skew Exponential Power (SEP) distributed error model. A series of numerical experiments were performed based on a synthetic nitrate pollution case and on a real study case in the Newport Bay Watershed, California. The Soil and Water Assessment Tool (SWAT) and Differential Evolution Adaptive Metropolis (DREAM(ZS)) were used as the representative WWQ model and MCMC algorithm, respectively. The major findings include the following: (1) the BAIPU can be implemented and used to appropriately identify the uncertain parameters and characterize the predictive uncertainty; (2) the compensation effect between the input and parametric uncertainties can seriously mislead the modeling based management decisions, if the input uncertainty is not explicitly accounted for; (3) the BAIPU accounts for the interaction between the input and parametric uncertainties and therefore provides more accurate calibration and uncertainty results than a sequential analysis of the uncertainties; and (4) the BAIPU quantifies the credibility of different input assumptions on a statistical basis and can be implemented as an effective inverse modeling approach to the joint inference of parameters and inputs.

  15. Analysis of the Ability of United States and Russian Trace Contaminant Control Systems to Meet U.S. 180-Day and Russian 360-Day Spacecraft Maximum Allowable Concentrations

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    2016-01-01

    As the Space Station Freedom program transitioned to become the International Space Station (ISS), uncertainty existed concerning the performance capabilities for U.S.- and Russian-provided trace contaminant control (TCC) equipment. In preparation for the first dialogue between NASA and Russian Space Agency personnel in Moscow, Russia, in late April 1994, an engineering analysis was conducted to serve as a basis for discussing TCC equipment engineering assumptions as well as relevant assumptions on equipment offgassing and cabin air quality standards. The analysis presented was conducted as part of the efforts to integrate Russia into the ISS program via the early ISS Multilateral Medical Operations Panel's Air Quality Subgroup deliberations. This analysis, served as a basis for technical deliberations that established a framework for TCC system design and operations among the ISS program's international partners that has been instrumental in successfully managing the ISS common cabin environment.

  16. Sigma: Strain-level inference of genomes from metagenomic analysis for biosurveillance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Tae-Hyuk; Chai, Juanjuan; Pan, Chongle

    Motivation: Metagenomic sequencing of clinical samples provides a promising technique for direct pathogen detection and characterization in biosurveillance. Taxonomic analysis at the strain level can be used to resolve serotypes of a pathogen in biosurveillance. Sigma was developed for strain-level identification and quantification of pathogens using their reference genomes based on metagenomic analysis. Results: Sigma provides not only accurate strain-level inferences, but also three unique capabilities: (i) Sigma quantifies the statistical uncertainty of its inferences, which includes hypothesis testing of identified genomes and confidence interval estimation of their relative abundances; (ii) Sigma enables strain variant calling by assigning metagenomic readsmore » to their most likely reference genomes; and (iii) Sigma supports parallel computing for fast analysis of large datasets. In conclusion, the algorithm performance was evaluated using simulated mock communities and fecal samples with spike-in pathogen strains. Availability and Implementation: Sigma was implemented in C++ with source codes and binaries freely available at http://sigma.omicsbio.org.« less

  17. Sigma: Strain-level inference of genomes from metagenomic analysis for biosurveillance

    DOE PAGES

    Ahn, Tae-Hyuk; Chai, Juanjuan; Pan, Chongle

    2014-09-29

    Motivation: Metagenomic sequencing of clinical samples provides a promising technique for direct pathogen detection and characterization in biosurveillance. Taxonomic analysis at the strain level can be used to resolve serotypes of a pathogen in biosurveillance. Sigma was developed for strain-level identification and quantification of pathogens using their reference genomes based on metagenomic analysis. Results: Sigma provides not only accurate strain-level inferences, but also three unique capabilities: (i) Sigma quantifies the statistical uncertainty of its inferences, which includes hypothesis testing of identified genomes and confidence interval estimation of their relative abundances; (ii) Sigma enables strain variant calling by assigning metagenomic readsmore » to their most likely reference genomes; and (iii) Sigma supports parallel computing for fast analysis of large datasets. In conclusion, the algorithm performance was evaluated using simulated mock communities and fecal samples with spike-in pathogen strains. Availability and Implementation: Sigma was implemented in C++ with source codes and binaries freely available at http://sigma.omicsbio.org.« less

  18. Building model analysis applications with the Joint Universal Parameter IdenTification and Evaluation of Reliability (JUPITER) API

    USGS Publications Warehouse

    Banta, E.R.; Hill, M.C.; Poeter, E.; Doherty, J.E.; Babendreier, J.

    2008-01-01

    The open-source, public domain JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) API (Application Programming Interface) provides conventions and Fortran-90 modules to develop applications (computer programs) for analyzing process models. The input and output conventions allow application users to access various applications and the analysis methods they embody with a minimum of time and effort. Process models simulate, for example, physical, chemical, and (or) biological systems of interest using phenomenological, theoretical, or heuristic approaches. The types of model analyses supported by the JUPITER API include, but are not limited to, sensitivity analysis, data needs assessment, calibration, uncertainty analysis, model discrimination, and optimization. The advantages provided by the JUPITER API for users and programmers allow for rapid programming and testing of new ideas. Application-specific coding can be in languages other than the Fortran-90 of the API. This article briefly describes the capabilities and utility of the JUPITER API, lists existing applications, and uses UCODE_2005 as an example.

  19. A Cascade Approach to Uncertainty Estimation for the Hydrological Simulation of Droughts

    NASA Astrophysics Data System (ADS)

    Smith, Katie; Tanguy, Maliko; Parry, Simon; Prudhomme, Christel

    2016-04-01

    Uncertainty poses a significant challenge in environmental research and the characterisation and quantification of uncertainty has become a research priority over the past decade. Studies of extreme events are particularly affected by issues of uncertainty. This study focusses on the sources of uncertainty in the modelling of streamflow droughts in the United Kingdom. Droughts are a poorly understood natural hazard with no universally accepted definition. Meteorological, hydrological and agricultural droughts have different meanings and vary both spatially and temporally, yet each is inextricably linked. The work presented here is part of two extensive interdisciplinary projects investigating drought reconstruction and drought forecasting capabilities in the UK. Lumped catchment models are applied to simulate streamflow drought, and uncertainties from 5 different sources are investigated: climate input data, potential evapotranspiration (PET) method, hydrological model, within model structure, and model parameterisation. Latin Hypercube sampling is applied to develop large parameter ensembles for each model structure which are run using parallel computing on a high performance computer cluster. Parameterisations are assessed using a multi-objective evaluation criteria which includes both general and drought performance metrics. The effect of different climate input data and PET methods on model output is then considered using the accepted model parameterisations. The uncertainty from each of the sources creates a cascade, and when presented as such the relative importance of each aspect of uncertainty can be determined.

  20. Quantitative Analysis of Uncertainty in Medical Reporting: Creating a Standardized and Objective Methodology.

    PubMed

    Reiner, Bruce I

    2018-04-01

    Uncertainty in text-based medical reports has long been recognized as problematic, frequently resulting in misunderstanding and miscommunication. One strategy for addressing the negative clinical ramifications of report uncertainty would be the creation of a standardized methodology for characterizing and quantifying uncertainty language, which could provide both the report author and reader with context related to the perceived level of diagnostic confidence and accuracy. A number of computerized strategies could be employed in the creation of this analysis including string search, natural language processing and understanding, histogram analysis, topic modeling, and machine learning. The derived uncertainty data offers the potential to objectively analyze report uncertainty in real time and correlate with outcomes analysis for the purpose of context and user-specific decision support at the point of care, where intervention would have the greatest clinical impact.

  1. Uncertainty Assessment of Hypersonic Aerothermodynamics Prediction Capability

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; Brown, James L.; Prabhu, Dinesh K.; Gnoffo, Peter; Johnston, Christopher O.; Hollis, Brian

    2011-01-01

    The present paper provides the background of a focused effort to assess uncertainties in predictions of heat flux and pressure in hypersonic flight (airbreathing or atmospheric entry) using state-of-the-art aerothermodynamics codes. The assessment is performed for four mission relevant problems: (1) shock turbulent boundary layer interaction on a compression corner, (2) shock turbulent boundary layer interaction due a impinging shock, (3) high-mass Mars entry and aerocapture, and (4) high speed return to Earth. A validation based uncertainty assessment approach with reliance on subject matter expertise is used. A code verification exercise with code-to-code comparisons and comparisons against well established correlations is also included in this effort. A thorough review of the literature in search of validation experiments is performed, which identified a scarcity of ground based validation experiments at hypersonic conditions. In particular, a shortage of useable experimental data at flight like enthalpies and Reynolds numbers is found. The uncertainty was quantified using metrics that measured discrepancy between model predictions and experimental data. The discrepancy data is statistically analyzed and investigated for physics based trends in order to define a meaningful quantified uncertainty. The detailed uncertainty assessment of each mission relevant problem is found in the four companion papers.

  2. Advanced Booster Liquid Engine Combustion Stability

    NASA Technical Reports Server (NTRS)

    Tucker, Kevin; Gentz, Steve; Nettles, Mindy

    2015-01-01

    Combustion instability is a phenomenon in liquid rocket engines caused by complex coupling between the time-varying combustion processes and the fluid dynamics in the combustor. Consequences of the large pressure oscillations associated with combustion instability often cause significant hardware damage and can be catastrophic. The current combustion stability assessment tools are limited by the level of empiricism in many inputs and embedded models. This limited predictive capability creates significant uncertainty in stability assessments. This large uncertainty then increases hardware development costs due to heavy reliance on expensive and time-consuming testing.

  3. A Multi-Band Uncertainty Set Based Robust SCUC With Spatial and Temporal Budget Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Chenxi; Wu, Lei; Wu, Hongyu

    2016-11-01

    The dramatic increase of renewable energy resources in recent years, together with the long-existing load forecast errors and increasingly involved price sensitive demands, has introduced significant uncertainties into power systems operation. In order to guarantee the operational security of power systems with such uncertainties, robust optimization has been extensively studied in security-constrained unit commitment (SCUC) problems, for immunizing the system against worst uncertainty realizations. However, traditional robust SCUC models with single-band uncertainty sets may yield over-conservative solutions in most cases. This paper proposes a multi-band robust model to accurately formulate various uncertainties with higher resolution. By properly tuning band intervalsmore » and weight coefficients of individual bands, the proposed multi-band robust model can rigorously and realistically reflect spatial/temporal relationships and asymmetric characteristics of various uncertainties, and in turn could effectively leverage the tradeoff between robustness and economics of robust SCUC solutions. The proposed multi-band robust SCUC model is solved by Benders decomposition (BD) and outer approximation (OA), while taking the advantage of integral property of the proposed multi-band uncertainty set. In addition, several accelerating techniques are developed for enhancing the computational performance and the convergence speed. Numerical studies on a 6-bus system and the modified IEEE 118-bus system verify the effectiveness of the proposed robust SCUC approach for enhancing uncertainty modeling capabilities and mitigating conservativeness of the robust SCUC solution.« less

  4. Uncertainty

    USGS Publications Warehouse

    Hunt, Randall J.

    2012-01-01

    Management decisions will often be directly informed by model predictions. However, we now know there can be no expectation of a single ‘true’ model; thus, model results are uncertain. Understandable reporting of underlying uncertainty provides necessary context to decision-makers, as model results are used for management decisions. This, in turn, forms a mechanism by which groundwater models inform a risk-management framework because uncertainty around a prediction provides the basis for estimating the probability or likelihood of some event occurring. Given that the consequences of management decisions vary, it follows that the extent of and resources devoted to an uncertainty analysis may depend on the consequences. For events with low impact, a qualitative, limited uncertainty analysis may be sufficient for informing a decision. For events with a high impact, on the other hand, the risks might be better assessed and associated decisions made using a more robust and comprehensive uncertainty analysis. The purpose of this chapter is to provide guidance on uncertainty analysis through discussion of concepts and approaches, which can vary from heuristic (i.e. the modeller’s assessment of prediction uncertainty based on trial and error and experience) to a comprehensive, sophisticated, statistics-based uncertainty analysis. Most of the material presented here is taken from Doherty et al. (2010) if not otherwise cited. Although the treatment here is necessarily brief, the reader can find citations for the source material and additional references within this chapter.

  5. Joint analysis of epistemic and aleatory uncertainty in stability analysis for geo-hazard assessments

    NASA Astrophysics Data System (ADS)

    Rohmer, Jeremy; Verdel, Thierry

    2017-04-01

    Uncertainty analysis is an unavoidable task of stability analysis of any geotechnical systems. Such analysis usually relies on the safety factor SF (if SF is below some specified threshold), the failure is possible). The objective of the stability analysis is then to estimate the failure probability P for SF to be below the specified threshold. When dealing with uncertainties, two facets should be considered as outlined by several authors in the domain of geotechnics, namely "aleatoric uncertainty" (also named "randomness" or "intrinsic variability") and "epistemic uncertainty" (i.e. when facing "vague, incomplete or imprecise information" such as limited databases and observations or "imperfect" modelling). The benefits of separating both facets of uncertainty can be seen from a risk management perspective because: - Aleatoric uncertainty, being a property of the system under study, cannot be reduced. However, practical actions can be taken to circumvent the potentially dangerous effects of such variability; - Epistemic uncertainty, being due to the incomplete/imprecise nature of available information, can be reduced by e.g., increasing the number of tests (lab or in site survey), improving the measurement methods or evaluating calculation procedure with model tests, confronting more information sources (expert opinions, data from literature, etc.). Uncertainty treatment in stability analysis usually restricts to the probabilistic framework to represent both facets of uncertainty. Yet, in the domain of geo-hazard assessments (like landslides, mine pillar collapse, rockfalls, etc.), the validity of this approach can be debatable. In the present communication, we propose to review the major criticisms available in the literature against the systematic use of probability in situations of high degree of uncertainty. On this basis, the feasibility of using a more flexible uncertainty representation tool is then investigated, namely Possibility distributions (e.g., Baudrit et al., 2007) for geo-hazard assessments. A graphical tool is then developed to explore: 1. the contribution of both types of uncertainty, aleatoric and epistemic; 2. the regions of the imprecise or random parameters which contribute the most to the imprecision on the failure probability P. The method is applied on two case studies (a mine pillar and a steep slope stability analysis, Rohmer and Verdel, 2014) to investigate the necessity for extra data acquisition on parameters whose imprecision can hardly be modelled by probabilities due to the scarcity of the available information (respectively the extraction ratio and the cliff geometry). References Baudrit, C., Couso, I., & Dubois, D. (2007). Joint propagation of probability and possibility in risk analysis: Towards a formal framework. International Journal of Approximate Reasoning, 45(1), 82-105. Rohmer, J., & Verdel, T. (2014). Joint exploration of regional importance of possibilistic and probabilistic uncertainty in stability analysis. Computers and Geotechnics, 61, 308-315.

  6. Assessment of a three‐dimensional (3D) water scanning system for beam commissioning and measurements on a helical tomotherapy unit

    PubMed Central

    Ashenafi, Michael S.; McDonald, Daniel G.; Vanek, Kenneth N.

    2015-01-01

    Beam scanning data collected on the tomotherapy linear accelerator using the TomoScanner water scanning system is primarily used to verify the golden beam profiles included in all Helical TomoTherapy treatment planning systems (TOMO TPSs). The user is not allowed to modify the beam profiles/parameters for beam modeling within the TOMO TPSs. The authors report the first feasibility study using the Blue Phantom Helix (BPH) as an alternative to the TomoScanner (TS) system. This work establishes a benchmark dataset using BPH for target commissioning and quality assurance (QA), and quantifies systematic uncertainties between TS and BPH. Reproducibility of scanning with BPH was tested by three experienced physicists taking five sets of measurements over a six‐month period. BPH provides several enhancements over TS, including a 3D scanning arm, which is able to acquire necessary beam‐data with one tank setup, a universal chamber mount, and the OmniPro software, which allows online data collection and analysis. Discrepancies between BPH and TS were estimated by acquiring datasets with each tank. In addition, data measured with BPH and TS was compared to the golden TOMO TPS beam data. The total systematic uncertainty, defined as the combination of scanning system and beam modeling uncertainties, was determined through numerical analysis and tabulated. OmniPro was used for all analysis to eliminate uncertainty due to different data processing algorithms. The setup reproducibility of BPH remained within 0.5 mm/0.5%. Comparing BPH, TS, and Golden TPS for PDDs beyond maximum depth, the total systematic uncertainties were within 1.4 mm/2.1%. Between BPH and TPS golden data, maximum differences in the field width and penumbra of in‐plane profiles were within 0.8 and 1.1 mm, respectively. Furthermore, in cross‐plane profiles, the field width differences increased at depth greater than 10 cm up to 2.5 mm, and maximum penumbra uncertainties were 5.6 mm and 4.6 mm from TS scanning system and TPS modeling, respectively. Use of BPH reduced measurement time by 1–2 hrs per session. The BPH has been assessed as an efficient, reproducible, and accurate scanning system capable of providing a reliable benchmark beam data. With this data, a physicist can utilize the BPH in a clinical setting with an understanding of the scan discrepancy that may be encountered while validating the TPS or during routine machine QA. Without the flexibility of modifying the TPS and without a golden beam dataset from the vendor or a TPS model generated from data collected with the BPH, this represents the best solution for current clinical use of the BPH. PACS number: 87.56.Fc

  7. A Global Fitting Approach For Doppler Broadening Thermometry

    NASA Astrophysics Data System (ADS)

    Amodio, Pasquale; Moretti, Luigi; De Vizia, Maria Domenica; Gianfrani, Livio

    2014-06-01

    Very recently, a spectroscopic determination of the Boltzmann constant, kB, has been performed at the Second University of Naples by means of a rather sophisticated implementation of Doppler Broadening Thermometry (DBT)1. Performed on a 18O-enriched water sample, at a wavelength of 1.39 µm, the experiment has provided a value for kB with a combined uncertainty of 24 parts over 106, which is the best result obtained so far, by using an optical method. In the spectral analysis procedure, the partially correlated speed-dependent hard-collision (pC-SDHC) model was adopted. The uncertainty budget has clearly revealed that the major contributions come from the statistical uncertainty (type A) and from the uncertainty associated to the line-shape model (type B)2. In the present work, we present the first results of a theoretical and numerical work aimed at reducing these uncertainty components. It is well known that molecular line shapes exhibit clear deviations from the time honoured Voigt profile. Even in the case of a well isolated spectral line, under the influence of binary collisions, in the Doppler regime, the shape can be quite complicated by the joint occurrence of velocity-change collisions and speed-dependent effects. The partially correlated speed-dependent Keilson-Storer profile (pC-SDKS) has been recently proposed as a very realistic model, capable of reproducing very accurately the absorption spectra for self-colliding water molecules, in the near infrared3. Unfortunately, the model is so complex that it cannot be implemented into a fitting routine for the analysis of experimental spectra. Therefore, we have developed a MATLAB code to simulate a variety of H218O spectra in thermodynamic conditions identical to the one of our DBT experiment, using the pC-SDKS model. The numerical calculations to determine such a profile have a very large computational cost, resulting from a very sophisticated iterative procedure. Hence, the numerically simulated spectra (with the addition of random noise) have been used to test the validity of simplified line shape models, such as the speed-dependent Galatry (SDG) profile and pC-SDHC model. In particular, we have used the global fitting procedure that is described in Amodio et al4. Such a procedure is very effective in reducing the uncertainty resulting from statistical correlation among free parameters. Therefore, the analysis of large amounts of simulated spectra has allowed us to study the influence of the choice of the model and quantify the achievable precision and accuracy levels, at the present value of the signal-to-noise ratio. freely redistributable under the GPL http://www.gnu.org.

  8. Derivation of global vegetation biophysical parameters from EUMETSAT Polar System

    NASA Astrophysics Data System (ADS)

    García-Haro, Francisco Javier; Campos-Taberner, Manuel; Muñoz-Marí, Jordi; Laparra, Valero; Camacho, Fernando; Sánchez-Zapero, Jorge; Camps-Valls, Gustau

    2018-05-01

    This paper presents the algorithm developed in LSA-SAF (Satellite Application Facility for Land Surface Analysis) for the derivation of global vegetation parameters from the AVHRR (Advanced Very High Resolution Radiometer) sensor on board MetOp (Meteorological-Operational) satellites forming the EUMETSAT (European Organization for the Exploitation of Meteorological Satellites) Polar System (EPS). The suite of LSA-SAF EPS vegetation products includes the leaf area index (LAI), the fractional vegetation cover (FVC), and the fraction of absorbed photosynthetically active radiation (FAPAR). LAI, FAPAR, and FVC characterize the structure and the functioning of vegetation and are key parameters for a wide range of land-biosphere applications. The algorithm is based on a hybrid approach that blends the generalization capabilities offered by physical radiative transfer models with the accuracy and computational efficiency of machine learning methods. One major feature is the implementation of multi-output retrieval methods able to jointly and more consistently estimate all the biophysical parameters at the same time. We propose a multi-output Gaussian process regression (GPRmulti), which outperforms other considered methods over PROSAIL (coupling of PROSPECT and SAIL (Scattering by Arbitrary Inclined Leaves) radiative transfer models) EPS simulations. The global EPS products include uncertainty estimates taking into account the uncertainty captured by the retrieval method and input errors propagation. A sensitivity analysis is performed to assess several sources of uncertainties in retrievals and maximize the positive impact of modeling the noise in training simulations. The paper discusses initial validation studies and provides details about the characteristics and overall quality of the products, which can be of interest to assist the successful use of the data by a broad user's community. The consistent generation and distribution of the EPS vegetation products will constitute a valuable tool for monitoring of earth surface dynamic processes.

  9. Consistency assessment of rating curve data in various locations using Bidirectional Reach (BReach)

    NASA Astrophysics Data System (ADS)

    Van Eerdenbrugh, Katrien; Van Hoey, Stijn; Coxon, Gemma; Freer, Jim; Verhoest, Niko E. C.

    2017-10-01

    When estimating discharges through rating curves, temporal data consistency is a critical issue. In this research, consistency in stage-discharge data is investigated using a methodology called Bidirectional Reach (BReach), which departs from a (in operational hydrology) commonly used definition of consistency. A period is considered to be consistent if no consecutive and systematic deviations from a current situation occur that exceed observational uncertainty. Therefore, the capability of a rating curve model to describe a subset of the (chronologically sorted) data is assessed in each observation by indicating the outermost data points for which the rating curve model behaves satisfactorily. These points are called the maximum left or right reach, depending on the direction of the investigation. This temporal reach should not be confused with a spatial reach (indicating a part of a river). Changes in these reaches throughout the data series indicate possible changes in data consistency and if not resolved could introduce additional errors and biases. In this research, various measurement stations in the UK, New Zealand and Belgium are selected based on their significant historical ratings information and their specific characteristics related to data consistency. For each country, regional information is maximally used to estimate observational uncertainty. Based on this uncertainty, a BReach analysis is performed and, subsequently, results are validated against available knowledge about the history and behavior of the site. For all investigated cases, the methodology provides results that appear to be consistent with this knowledge of historical changes and thus facilitates a reliable assessment of (in)consistent periods in stage-discharge measurements. This assessment is not only useful for the analysis and determination of discharge time series, but also to enhance applications based on these data (e.g., by informing hydrological and hydraulic model evaluation design about consistent time periods to analyze).

  10. Comprehensive Approach to Verification and Validation of CFD Simulations Applied to Backward Facing Step-Application of CFD Uncertainty Analysis

    NASA Technical Reports Server (NTRS)

    Groves, Curtis E.; LLie, Marcel; Shallhorn, Paul A.

    2012-01-01

    There are inherent uncertainties and errors associated with using Computational Fluid Dynamics (CFD) to predict the flow field and there is no standard method for evaluating uncertainty in the CFD community. This paper describes an approach to -validate the . uncertainty in using CFD. The method will use the state of the art uncertainty analysis applying different turbulence niodels and draw conclusions on which models provide the least uncertainty and which models most accurately predict the flow of a backward facing step.

  11. Facility Measurement Uncertainty Analysis at NASA GRC

    NASA Technical Reports Server (NTRS)

    Stephens, Julia; Hubbard, Erin

    2016-01-01

    This presentation provides and overview of the measurement uncertainty analysis currently being implemented in various facilities at NASA GRC. This presentation includes examples pertinent to the turbine engine community (mass flow and fan efficiency calculation uncertainties.

  12. Uncertainty Estimation Cheat Sheet for Probabilistic Risk Assessment

    NASA Technical Reports Server (NTRS)

    Britton, Paul T.; Al Hassan, Mohammad; Ring, Robert W.

    2017-01-01

    "Uncertainty analysis itself is uncertain, therefore, you cannot evaluate it exactly," Source Uncertain Quantitative results for aerospace engineering problems are influenced by many sources of uncertainty. Uncertainty analysis aims to make a technical contribution to decision-making through the quantification of uncertainties in the relevant variables as well as through the propagation of these uncertainties up to the result. Uncertainty can be thought of as a measure of the 'goodness' of a result and is typically represented as statistical dispersion. This paper will explain common measures of centrality and dispersion; and-with examples-will provide guidelines for how they may be estimated to ensure effective technical contributions to decision-making.

  13. Lognormal Uncertainty Estimation for Failure Rates

    NASA Technical Reports Server (NTRS)

    Britton, Paul T.; Al Hassan, Mohammad; Ring, Robert W.

    2017-01-01

    "Uncertainty analysis itself is uncertain, therefore, you cannot evaluate it exactly," Source Uncertain. Quantitative results for aerospace engineering problems are influenced by many sources of uncertainty. Uncertainty analysis aims to make a technical contribution to decision-making through the quantification of uncertainties in the relevant variables as well as through the propagation of these uncertainties up to the result. Uncertainty can be thought of as a measure of the 'goodness' of a result and is typically represented as statistical dispersion. This presentation will explain common measures of centrality and dispersion; and-with examples-will provide guidelines for how they may be estimated to ensure effective technical contributions to decision-making.

  14. Utilization of extended bayesian networks in decision making under uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Eeckhout, Edward M; Leishman, Deborah A; Gibson, William L

    2009-01-01

    Bayesian network tool (called IKE for Integrated Knowledge Engine) has been developed to assess the probability of undesirable events. The tool allows indications and observables from sensors and/or intelligence to feed directly into hypotheses of interest, thus allowing one to quantify the probability and uncertainty of these events resulting from very disparate evidence. For example, the probability that a facility is processing nuclear fuel or assembling a weapon can be assessed by examining the processes required, establishing the observables that should be present, then assembling information from intelligence, sensors and other information sources related to the observables. IKE also hasmore » the capability to determine tasking plans, that is, prioritize which observable should be collected next to most quickly ascertain the 'true' state and drive the probability toward 'zero' or 'one.' This optimization capability is called 'evidence marshaling.' One example to be discussed is a denied facility monitoring situation; there is concern that certain process(es) are being executed at the site (due to some intelligence or other data). We will show how additional pieces of evidence will then ascertain with some degree of certainty the likelihood of this process(es) as each piece of evidence is obtained. This example shows how both intelligence and sensor data can be incorporated into the analysis. A second example involves real-time perimeter security. For this demonstration we used seismic, acoustic, and optical sensors linked back to IKE. We show how these sensors identified and assessed the likelihood of 'intruder' versus friendly vehicles.« less

  15. The attitude accuracy consequences of on-orbit calibration of the Extreme Ultraviolet Explorer attitude sensors by the Flight Dynamics Facility at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Hashmall, J.; Davis, W.; Harman, R.

    1993-01-01

    The science mission of the Extreme Ultraviolet Explorer (EUVE) requires attitude solutions with uncertainties of 27, 16.7, 16.7 arcseconds (3 sigma) around the roll, pitch, and yaw axes, respectively. The primary input to the attitude determination process is provided by two NASA standard fixed-head star trackers (FHSTs) and a Teledyne dry rotor inertial reference unit (DRIRU) 2. The attitude determination requirements approach the limits attainable with the FHSTs and DRIRU. The Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC) designed and executed calibration procedures that far exceeded the extent and the data volume of any other FDF-supported mission. The techniques and results of this attempt to obtain attitude accuracies at the limit of sensor capability and the results of analysis of the factors that limit the attitude accuracy are the primary subjects of this paper. The success of the calibration effort is judged by the resulting measurement residuals and comparisons between ground- and onboard-determined attitudes. The FHST star position residuals have been reduced to less tha 4 arcsec per axis -- a value that appears to be limited by the sensor capabilities. The FDF ground system uses a batch least-squares estimator to determine attitude. The EUVE onboard computer (OBC) uses an extended Kalman filter. Currently, there are systematic differences between the two attitude solutions that occasionally exceed the mission requirements for 3 sigma attitude uncertainty. Attempts to understand and reduce these differences are continuing.

  16. Evaluating the Impacts of an Agricultural Water Market in the Guadalupe River Basin, Texas: An Agent-based Modeling Approach

    NASA Astrophysics Data System (ADS)

    Du, E.; Cai, X.; Minsker, B. S.

    2014-12-01

    Agriculture comprises about 80 percent of the total water consumption in the US. Under conditions of water shortage and fully committed water rights, market-based water allocations could be promising instruments for agricultural water redistribution from marginally profitable areas to more profitable ones. Previous studies on water market have mainly focused on theoretical or statistical analysis. However, how water users' heterogeneous physical attributes and decision rules about water use and water right trading will affect water market efficiency has been less addressed. In this study, we developed an agent-based model to evaluate the benefits of an agricultural water market in the Guadalupe River Basin during drought events. Agricultural agents with different attributes (i.e., soil type for crops, annual water diversion permit and precipitation) are defined to simulate the dynamic feedback between water availability, irrigation demand and water trading activity. Diversified crop irrigation rules and water bidding rules are tested in terms of crop yield, agricultural profit, and water-use efficiency. The model was coupled with a real-time hydrologic model and run under different water scarcity scenarios. Preliminary results indicate that an agricultural water market is capable of increasing crop yield, agricultural profit, and water-use efficiency. This capability is more significant under moderate drought scenarios than in mild and severe drought scenarios. The water market mechanism also increases agricultural resilience to climate uncertainty by reducing crop yield variance in drought events. The challenges of implementing an agricultural water market under climate uncertainty are also discussed.

  17. Coupled semivariogram uncertainty of hydrogeological and geophysical data on capture zone uncertainty analysis

    USGS Publications Warehouse

    Rahman, A.; Tsai, F.T.-C.; White, C.D.; Willson, C.S.

    2008-01-01

    This study investigates capture zone uncertainty that relates to the coupled semivariogram uncertainty of hydrogeological and geophysical data. Semivariogram uncertainty is represented by the uncertainty in structural parameters (range, sill, and nugget). We used the beta distribution function to derive the prior distributions of structural parameters. The probability distributions of structural parameters were further updated through the Bayesian approach with the Gaussian likelihood functions. Cokriging of noncollocated pumping test data and electrical resistivity data was conducted to better estimate hydraulic conductivity through autosemivariograms and pseudo-cross-semivariogram. Sensitivities of capture zone variability with respect to the spatial variability of hydraulic conductivity, porosity and aquifer thickness were analyzed using ANOVA. The proposed methodology was applied to the analysis of capture zone uncertainty at the Chicot aquifer in Southwestern Louisiana, where a regional groundwater flow model was developed. MODFLOW-MODPATH was adopted to delineate the capture zone. The ANOVA results showed that both capture zone area and compactness were sensitive to hydraulic conductivity variation. We concluded that the capture zone uncertainty due to the semivariogram uncertainty is much higher than that due to the kriging uncertainty for given semivariograms. In other words, the sole use of conditional variances of kriging may greatly underestimate the flow response uncertainty. Semivariogram uncertainty should also be taken into account in the uncertainty analysis. ?? 2008 ASCE.

  18. Quantifying model-structure- and parameter-driven uncertainties in spring wheat phenology prediction with Bayesian analysis

    DOE PAGES

    Alderman, Phillip D.; Stanfill, Bryan

    2016-10-06

    Recent international efforts have brought renewed emphasis on the comparison of different agricultural systems models. Thus far, analysis of model-ensemble simulated results has not clearly differentiated between ensemble prediction uncertainties due to model structural differences per se and those due to parameter value uncertainties. Additionally, despite increasing use of Bayesian parameter estimation approaches with field-scale crop models, inadequate attention has been given to the full posterior distributions for estimated parameters. The objectives of this study were to quantify the impact of parameter value uncertainty on prediction uncertainty for modeling spring wheat phenology using Bayesian analysis and to assess the relativemore » contributions of model-structure-driven and parameter-value-driven uncertainty to overall prediction uncertainty. This study used a random walk Metropolis algorithm to estimate parameters for 30 spring wheat genotypes using nine phenology models based on multi-location trial data for days to heading and days to maturity. Across all cases, parameter-driven uncertainty accounted for between 19 and 52% of predictive uncertainty, while model-structure-driven uncertainty accounted for between 12 and 64%. Here, this study demonstrated the importance of quantifying both model-structure- and parameter-value-driven uncertainty when assessing overall prediction uncertainty in modeling spring wheat phenology. More generally, Bayesian parameter estimation provided a useful framework for quantifying and analyzing sources of prediction uncertainty.« less

  19. Investigations of interpolation errors of angle encoders for high precision angle metrology

    NASA Astrophysics Data System (ADS)

    Yandayan, Tanfer; Geckeler, Ralf D.; Just, Andreas; Krause, Michael; Asli Akgoz, S.; Aksulu, Murat; Grubert, Bernd; Watanabe, Tsukasa

    2018-06-01

    Interpolation errors at small angular scales are caused by the subdivision of the angular interval between adjacent grating lines into smaller intervals when radial gratings are used in angle encoders. They are often a major error source in precision angle metrology and better approaches for determining them at low levels of uncertainty are needed. Extensive investigations of interpolation errors of different angle encoders with various interpolators and interpolation schemes were carried out by adapting the shearing method to the calibration of autocollimators with angle encoders. The results of the laboratories with advanced angle metrology capabilities are presented which were acquired by the use of four different high precision angle encoders/interpolators/rotary tables. State of the art uncertainties down to 1 milliarcsec (5 nrad) were achieved for the determination of the interpolation errors using the shearing method which provides simultaneous access to the angle deviations of the autocollimator and of the angle encoder. Compared to the calibration and measurement capabilities (CMC) of the participants for autocollimators, the use of the shearing technique represents a substantial improvement in the uncertainty by a factor of up to 5 in addition to the precise determination of interpolation errors or their residuals (when compensated). A discussion of the results is carried out in conjunction with the equipment used.

  20. A global positioning measurement system for regional geodesy in the caribbean

    NASA Astrophysics Data System (ADS)

    Renzetti, N. A.

    1986-11-01

    Low cost, portable receivers using signals from satellites of the Global Positioning System (GPS) will enable precision geodetic observations to be made on a large scale. A number of important geophysical questions relating to plate-motion kinematics and dynamics can be addressed with this measurement capability. We describe a plan to design and validate a GPS-based geodetic system, and to demonstrate its capability in California, Mexico and the Caribbean region. The Caribbean program is a prototype for a number of regional geodetic networks to be globally distributed. In 1985, efforts will be concentrated on understanding and minimizing error sources. Two dominant sources of error are uncertainties in the orbit ephemeris of the GPS satellites, and uncertainties in the correction for signal delay due to variable tropospheric water vapor. Orbit ephemeris uncertainties can be minimized by performing simultaneous satellite observations with GPS receivers at known (fiducial) points. Water vapor corrections can be made by performing simultaneous line-of-sight measurements of integrated water vapor content with ground-based water vapor radiometers. Specific experiments to validate both concepts are outlined. Caribbean measurements will begin in late 1985 or early 1986. Key areas of measurement are the northern strike-slip boundary, and the western convergent boundary. Specific measurement plans in both regions are described.

  1. Stochastic simulation of ecohydrological interactions between vegetation and groundwater

    NASA Astrophysics Data System (ADS)

    Dwelle, M. C.; Ivanov, V. Y.; Sargsyan, K.

    2017-12-01

    The complex interactions between groundwater and vegetation in the Amazon rainforest may yield vital ecophysiological interactions in specific landscape niches such as buffering plant water stress during dry season or suppression of water uptake due to anoxic conditions. Representation of such processes is greatly impacted by both external and internal sources of uncertainty: inaccurate data and subjective choice of model representation. The models that can simulate these processes are complex and computationally expensive, and therefore make it difficult to address uncertainty using traditional methods. We use the ecohydrologic model tRIBS+VEGGIE and a novel uncertainty quantification framework applied to the ZF2 watershed near Manaus, Brazil. We showcase the capability of this framework for stochastic simulation of vegetation-hydrology dynamics. This framework is useful for simulation with internal and external stochasticity, but this work will focus on internal variability of groundwater depth distribution and model parameterizations. We demonstrate the capability of this framework to make inferences on uncertain states of groundwater depth from limited in situ data, and how the realizations of these inferences affect the ecohydrological interactions between groundwater dynamics and vegetation function. We place an emphasis on the probabilistic representation of quantities of interest and how this impacts the understanding and interpretation of the dynamics at the groundwater-vegetation interface.

  2. An Optimization-Based Approach to Determine Requirements and Aircraft Design under Multi-domain Uncertainties

    NASA Astrophysics Data System (ADS)

    Govindaraju, Parithi

    Determining the optimal requirements for and design variable values of new systems, which operate along with existing systems to provide a set of overarching capabilities, as a single task is challenging due to the highly interconnected effects that setting requirements on a new system's design can have on how an operator uses this newly designed system. This task of determining the requirements and the design variable values becomes even more difficult because of the presence of uncertainties in the new system design and in the operational environment. This research proposed and investigated aspects of a framework that generates optimum design requirements of new, yet-to-be-designed systems that, when operating alongside other systems, will optimize fleet-level objectives while considering the effects of various uncertainties. Specifically, this research effort addresses the issues of uncertainty in the design of the new system through reliability-based design optimization methods, and uncertainty in the operations of the fleet through descriptive sampling methods and robust optimization formulations. In this context, fleet-level performance metrics result from using the new system alongside other systems to accomplish an overarching objective or mission. This approach treats the design requirements of a new system as decision variables in an optimization problem formulation that a user in the position of making an acquisition decision could solve. This solution would indicate the best new system requirements-and an associated description of the best possible design variable variables for that new system-to optimize the fleet level performance metric(s). Using a problem motivated by recorded operations of the United States Air Force Air Mobility Command for illustration, the approach is demonstrated first for a simplified problem that only considers demand uncertainties in the service network and the proposed methodology is used to identify the optimal design requirements and optimal aircraft sizing variables of new, yet-to-be-introduced aircraft. With this new aircraft serving alongside other existing aircraft, the fleet of aircraft satisfy the desired demand for cargo transportation, while maximizing fleet productivity and minimizing fuel consumption via a multi-objective problem formulation. The approach is then extended to handle uncertainties in both the design of the new system and in the operations of the fleet. The propagation of uncertainties associated with the conceptual design of the new aircraft to the uncertainties associated with the subsequent operations of the new and existing aircraft in the fleet presents some unique challenges. A computationally tractable hybrid robust counterpart formulation efficiently handles the confluence of the two types of domain-specific uncertainties. This hybrid formulation is tested on a larger route network problem to demonstrate the scalability of the approach. Following the presentation of the results obtained, a summary discussion indicates how decision-makers might use these results to set requirements for new aircraft that meet operational needs while balancing the environmental impact of the fleet with fleet-level performance. Comparing the solutions from the uncertainty-based and deterministic formulations via a posteriori analysis demonstrates the efficacy of the robust and reliability-based optimization formulations in addressing the different domain-specific uncertainties. Results suggest that the aircraft design requirements and design description determined through the hybrid robust counterpart formulation approach differ from solutions obtained from the simplistic deterministic approach, and leads to greater fleet-level fuel savings, when subjected to real-world uncertain scenarios (more robust to uncertainty). The research, though applied to a specific air cargo application, is technically agnostic in nature and can be applied to other facets of policy and acquisition management, to explore capability trade spaces for different vehicle systems, mitigate risks, define policy and potentially generate better returns on investment. Other domains relevant to policy and acquisition decisions could utilize the problem formulation and solution approach proposed in this dissertation provided that the problem can be split into a non-linear programming problem to describe the new system sizing and the fleet operations problem can be posed as a linear/integer programming problem.

  3. New Multi-objective Uncertainty-based Algorithm for Water Resource Models' Calibration

    NASA Astrophysics Data System (ADS)

    Keshavarz, Kasra; Alizadeh, Hossein

    2017-04-01

    Water resource models are powerful tools to support water management decision making process and are developed to deal with a broad range of issues including land use and climate change impacts analysis, water allocation, systems design and operation, waste load control and allocation, etc. These models are divided into two categories of simulation and optimization models whose calibration has been addressed in the literature where great relevant efforts in recent decades have led to two main categories of auto-calibration methods of uncertainty-based algorithms such as GLUE, MCMC and PEST and optimization-based algorithms including single-objective optimization such as SCE-UA and multi-objective optimization such as MOCOM-UA and MOSCEM-UA. Although algorithms which benefit from capabilities of both types, such as SUFI-2, were rather developed, this paper proposes a new auto-calibration algorithm which is capable of both finding optimal parameters values regarding multiple objectives like optimization-based algorithms and providing interval estimations of parameters like uncertainty-based algorithms. The algorithm is actually developed to improve quality of SUFI-2 results. Based on a single-objective, e.g. NSE and RMSE, SUFI-2 proposes a routine to find the best point and interval estimation of parameters and corresponding prediction intervals (95 PPU) of time series of interest. To assess the goodness of calibration, final results are presented using two uncertainty measures of p-factor quantifying percentage of observations covered by 95PPU and r-factor quantifying degree of uncertainty, and the analyst has to select the point and interval estimation of parameters which are actually non-dominated regarding both of the uncertainty measures. Based on the described properties of SUFI-2, two important questions are raised, answering of which are our research motivation: Given that in SUFI-2, final selection is based on the two measures or objectives and on the other hand, knowing that there is no multi-objective optimization mechanism in SUFI-2, are the final estimations Pareto-optimal? Can systematic methods be applied to select the final estimations? Dealing with these questions, a new auto-calibration algorithm was proposed where the uncertainty measures were considered as two objectives to find non-dominated interval estimations of parameters by means of coupling Monte Carlo simulation and Multi-Objective Particle Swarm Optimization. Both the proposed algorithm and SUFI-2 were applied to calibrate parameters of water resources planning model of Helleh river basin, Iran. The model is a comprehensive water quantity-quality model developed in the previous researches using WEAP software in order to analyze the impacts of different water resources management strategies including dam construction, increasing cultivation area, utilization of more efficient irrigation technologies, changing crop pattern, etc. Comparing the Pareto frontier resulted from the proposed auto-calibration algorithm with SUFI-2 results, it was revealed that the new algorithm leads to a better and also continuous Pareto frontier, even though it is more computationally expensive. Finally, Nash and Kalai-Smorodinsky bargaining methods were used to choose compromised interval estimation regarding Pareto frontier.

  4. Status of Commercial Programs at NASA

    NASA Technical Reports Server (NTRS)

    Groen, Frank

    2011-01-01

    NASA's strategy is two-fold: (1) Use Space Act Agreements to support the development of commercial crew transportation capabilities. (2) Use FAR-based contracts for the certification of commercially developed capabilities and for the procurement of crew transportation services to and from the ISS to meet NASA requirements. Focus is on reducing the risk and uncertainties of the development environment and on the incentives provided through competition by separating the design and early development content from the longer-term CTS Certification activities. CCP expects to develop, demonstrate, and certify U.S. commercial crew space transportation capabilities that meet ISS crew transportation needs by the end of FY 2017.

  5. Earthquake prediction analysis based on empirical seismic rate: the M8 algorithm

    NASA Astrophysics Data System (ADS)

    Molchan, G.; Romashkova, L.

    2010-12-01

    The quality of space-time earthquake prediction is usually characterized by a 2-D error diagram (n, τ), where n is the fraction of failures-to-predict and τ is the local rate of alarm averaged in space. The most reasonable averaging measure for analysis of a prediction strategy is the normalized rate of target events λ(dg) in a subarea dg. In that case the quantity H = 1 - (n + τ) determines the prediction capability of the strategy. The uncertainty of λ(dg) causes difficulties in estimating H and the statistical significance, α, of prediction results. We investigate this problem theoretically and show how the uncertainty of the measure can be taken into account in two situations, viz., the estimation of α and the construction of a confidence zone for the (n, τ)-parameters of the random strategies. We use our approach to analyse the results from prediction of M >= 8.0 events by the M8 method for the period 1985-2009 (the M8.0+ test). The model of λ(dg) based on the events Mw >= 5.5, 1977-2004, and the magnitude range of target events 8.0 <= M < 8.5 are considered as basic to this M8 analysis. We find the point and upper estimates of α and show that they are still unstable because the number of target events in the experiment is small. However, our results argue in favour of non-triviality of the M8 prediction algorithm.

  6. A unified approach for squeal instability analysis of disc brakes with two types of random-fuzzy uncertainties

    NASA Astrophysics Data System (ADS)

    Lü, Hui; Shangguan, Wen-Bin; Yu, Dejie

    2017-09-01

    Automotive brake systems are always subjected to various types of uncertainties and two types of random-fuzzy uncertainties may exist in the brakes. In this paper, a unified approach is proposed for squeal instability analysis of disc brakes with two types of random-fuzzy uncertainties. In the proposed approach, two uncertainty analysis models with mixed variables are introduced to model the random-fuzzy uncertainties. The first one is the random and fuzzy model, in which random variables and fuzzy variables exist simultaneously and independently. The second one is the fuzzy random model, in which uncertain parameters are all treated as random variables while their distribution parameters are expressed as fuzzy numbers. Firstly, the fuzziness is discretized by using α-cut technique and the two uncertainty analysis models are simplified into random-interval models. Afterwards, by temporarily neglecting interval uncertainties, the random-interval models are degraded into random models, in which the expectations, variances, reliability indexes and reliability probabilities of system stability functions are calculated. And then, by reconsidering the interval uncertainties, the bounds of the expectations, variances, reliability indexes and reliability probabilities are computed based on Taylor series expansion. Finally, by recomposing the analysis results at each α-cut level, the fuzzy reliability indexes and probabilities can be obtained, by which the brake squeal instability can be evaluated. The proposed approach gives a general framework to deal with both types of random-fuzzy uncertainties that may exist in the brakes and its effectiveness is demonstrated by numerical examples. It will be a valuable supplement to the systematic study of brake squeal considering uncertainty.

  7. Probabilistic Multi-Scale, Multi-Level, Multi-Disciplinary Analysis and Optimization of Engine Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Abumeri, Galib H.

    2000-01-01

    Aircraft engines are assemblies of dynamically interacting components. Engine updates to keep present aircraft flying safely and engines for new aircraft are progressively required to operate in more demanding technological and environmental requirements. Designs to effectively meet those requirements are necessarily collections of multi-scale, multi-level, multi-disciplinary analysis and optimization methods and probabilistic methods are necessary to quantify respective uncertainties. These types of methods are the only ones that can formally evaluate advanced composite designs which satisfy those progressively demanding requirements while assuring minimum cost, maximum reliability and maximum durability. Recent research activities at NASA Glenn Research Center have focused on developing multi-scale, multi-level, multidisciplinary analysis and optimization methods. Multi-scale refers to formal methods which describe complex material behavior metal or composite; multi-level refers to integration of participating disciplines to describe a structural response at the scale of interest; multidisciplinary refers to open-ended for various existing and yet to be developed discipline constructs required to formally predict/describe a structural response in engine operating environments. For example, these include but are not limited to: multi-factor models for material behavior, multi-scale composite mechanics, general purpose structural analysis, progressive structural fracture for evaluating durability and integrity, noise and acoustic fatigue, emission requirements, hot fluid mechanics, heat-transfer and probabilistic simulations. Many of these, as well as others, are encompassed in an integrated computer code identified as Engine Structures Technology Benefits Estimator (EST/BEST) or Multi-faceted/Engine Structures Optimization (MP/ESTOP). The discipline modules integrated in MP/ESTOP include: engine cycle (thermodynamics), engine weights, internal fluid mechanics, cost, mission and coupled structural/thermal, various composite property simulators and probabilistic methods to evaluate uncertainty effects (scatter ranges) in all the design parameters. The objective of the proposed paper is to briefly describe a multi-faceted design analysis and optimization capability for coupled multi-discipline engine structures optimization. Results are presented for engine and aircraft type metrics to illustrate the versatility of that capability. Results are also presented for reliability, noise and fatigue to illustrate its inclusiveness. For example, replacing metal rotors with composites reduces the engine weight by 20 percent, 15 percent noise reduction, and an order of magnitude improvement in reliability. Composite designs exist to increase fatigue life by at least two orders of magnitude compared to state-of-the-art metals.

  8. Variance-Based Sensitivity Analysis to Support Simulation-Based Design Under Uncertainty

    DOE PAGES

    Opgenoord, Max M. J.; Allaire, Douglas L.; Willcox, Karen E.

    2016-09-12

    Sensitivity analysis plays a critical role in quantifying uncertainty in the design of engineering systems. A variance-based global sensitivity analysis is often used to rank the importance of input factors, based on their contribution to the variance of the output quantity of interest. However, this analysis assumes that all input variability can be reduced to zero, which is typically not the case in a design setting. Distributional sensitivity analysis (DSA) instead treats the uncertainty reduction in the inputs as a random variable, and defines a variance-based sensitivity index function that characterizes the relative contribution to the output variance as amore » function of the amount of uncertainty reduction. This paper develops a computationally efficient implementation for the DSA formulation and extends it to include distributions commonly used in engineering design under uncertainty. Application of the DSA method to the conceptual design of a commercial jetliner demonstrates how the sensitivity analysis provides valuable information to designers and decision-makers on where and how to target uncertainty reduction efforts.« less

  9. Variance-Based Sensitivity Analysis to Support Simulation-Based Design Under Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opgenoord, Max M. J.; Allaire, Douglas L.; Willcox, Karen E.

    Sensitivity analysis plays a critical role in quantifying uncertainty in the design of engineering systems. A variance-based global sensitivity analysis is often used to rank the importance of input factors, based on their contribution to the variance of the output quantity of interest. However, this analysis assumes that all input variability can be reduced to zero, which is typically not the case in a design setting. Distributional sensitivity analysis (DSA) instead treats the uncertainty reduction in the inputs as a random variable, and defines a variance-based sensitivity index function that characterizes the relative contribution to the output variance as amore » function of the amount of uncertainty reduction. This paper develops a computationally efficient implementation for the DSA formulation and extends it to include distributions commonly used in engineering design under uncertainty. Application of the DSA method to the conceptual design of a commercial jetliner demonstrates how the sensitivity analysis provides valuable information to designers and decision-makers on where and how to target uncertainty reduction efforts.« less

  10. Probabilistic risk assessment for a loss of coolant accident in McMaster Nuclear Reactor and application of reliability physics model for modeling human reliability

    NASA Astrophysics Data System (ADS)

    Ha, Taesung

    A probabilistic risk assessment (PRA) was conducted for a loss of coolant accident, (LOCA) in the McMaster Nuclear Reactor (MNR). A level 1 PRA was completed including event sequence modeling, system modeling, and quantification. To support the quantification of the accident sequence identified, data analysis using the Bayesian method and human reliability analysis (HRA) using the accident sequence evaluation procedure (ASEP) approach were performed. Since human performance in research reactors is significantly different from that in power reactors, a time-oriented HRA model (reliability physics model) was applied for the human error probability (HEP) estimation of the core relocation. This model is based on two competing random variables: phenomenological time and performance time. The response surface and direct Monte Carlo simulation with Latin Hypercube sampling were applied for estimating the phenomenological time, whereas the performance time was obtained from interviews with operators. An appropriate probability distribution for the phenomenological time was assigned by statistical goodness-of-fit tests. The human error probability (HEP) for the core relocation was estimated from these two competing quantities: phenomenological time and operators' performance time. The sensitivity of each probability distribution in human reliability estimation was investigated. In order to quantify the uncertainty in the predicted HEPs, a Bayesian approach was selected due to its capability of incorporating uncertainties in model itself and the parameters in that model. The HEP from the current time-oriented model was compared with that from the ASEP approach. Both results were used to evaluate the sensitivity of alternative huinan reliability modeling for the manual core relocation in the LOCA risk model. This exercise demonstrated the applicability of a reliability physics model supplemented with a. Bayesian approach for modeling human reliability and its potential usefulness of quantifying model uncertainty as sensitivity analysis in the PRA model.

  11. What is the relative role of initial hydrological conditions and meteorological forcing to the seasonal hydrological forecasting skill? Analysis along Europe's hydro-climatic gradient

    NASA Astrophysics Data System (ADS)

    Pechlivanidis, Ilias; Crochemore, Louise

    2017-04-01

    Recent advances in understanding and forecasting of climate have led into skilful seasonal meteorological predictions, which can consequently increase the confidence of hydrological prognosis. The majority of seasonal impact modelling has commonly been conducted at only one or a limited number of basins limiting the potential to understand large systems. Nevertheless, there is a necessity to develop operational seasonal forecasting services at the pan-European scale, capable of addressing the end-user needs. The skill of such forecasting services is subject to a number of sources of uncertainty, i.e. model structure, parameters, and forcing input. In here, we complement the "deep" knowledge from basin based modelling by investigating the relative contributions of initial hydrological conditions (IHCs) and meteorological forcing (MF) to the skill of a seasonal pan-European hydrological forecasting system. We use the Ensemble Streamflow Prediction (ESP) and reverse ESP (revESP) procedure to show a proxy of hydrological forecasting uncertainty due to MF and IHC uncertainties respectively. We further calculate the critical lead time (CLT), as a proxy of the river memory, after which the importance of MFs surpasses the importance of IHCs. We analyze these results in the context of prevailing hydro-climatic conditions for about 35000 European basins. Both model state initialisation (level in surface water, i.e. reservoirs, lakes and wetlands, soil moisture, snow depth) and provision of climatology are based on forcing input derived from the WFDEI product for the period 1981-2010. The analysis shows that the contribution of ICs and MFs to the hydrological forecasting skill varies considerably according to location, season and lead time. This analysis allows clustering of basins in which hydrological forecasting skill may be improved by better estimation of IHCs, e.g. via data assimilation of in-situ and/or satellite observations; whereas in other basins skill improvement depends on better MFs.

  12. Probabilistic Structural Analysis Methods (PSAM) for select space propulsion system structural components

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.

    1987-01-01

    The objective is the development of several modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as maximum stress, natural frequencies, transient response, etc. The structural analysis packages are to include stochastic modeling of loads, material properties, geometry (tolerances), and boundary conditions. The solution is to be in terms of the cumulative probability of exceedance distribution (CDF) and confidence bounds. Two methods of probability modeling are to be included as well as three types of structural models - probabilistic finite-element method (PFEM); probabilistic approximate analysis methods (PAAM); and probabilistic boundary element methods (PBEM). The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the response of a high performance structure. Probabilistic Structural Analysis Method (PSAM) tools will estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior. Perhaps most critically, the PSAM results will directly provide information on the sensitivity of the design response to those variables which are seen to be uncertain.

  13. Probabilistic Structural Analysis Methods for select space propulsion system structural components (PSAM)

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Burnside, O. H.; Wu, Y.-T.; Polch, E. Z.; Dias, J. B.

    1988-01-01

    The objective is the development of several modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as maximum stress, natural frequencies, transient response, etc. The structural analysis packages are to include stochastic modeling of loads, material properties, geometry (tolerances), and boundary conditions. The solution is to be in terms of the cumulative probability of exceedance distribution (CDF) and confidence bounds. Two methods of probability modeling are to be included as well as three types of structural models - probabilistic finite-element method (PFEM); probabilistic approximate analysis methods (PAAM); and probabilistic boundary element methods (PBEM). The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the response of a high performance structure. Probabilistic Structural Analysis Method (PSAM) tools will estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior. Perhaps most critically, the PSAM results will directly provide information on the sensitivity of the design response to those variables which are seen to be uncertain.

  14. Meeting report: Estimating the benefits of reducing hazardous air pollutants--summary of 2009 workshop and future considerations.

    PubMed

    Gwinn, Maureen R; Craig, Jeneva; Axelrad, Daniel A; Cook, Rich; Dockins, Chris; Fann, Neal; Fegley, Robert; Guinnup, David E; Helfand, Gloria; Hubbell, Bryan; Mazur, Sarah L; Palma, Ted; Smith, Roy L; Vandenberg, John; Sonawane, Babasaheb

    2011-01-01

    Quantifying the benefits of reducing hazardous air pollutants (HAPs, or air toxics) has been limited by gaps in toxicological data, uncertainties in extrapolating results from high-dose animal experiments to estimate human effects at lower doses, limited ambient and personal exposure monitoring data, and insufficient economic research to support valuation of the health impacts often associated with exposure to individual air toxics. To address some of these issues, the U.S. Environmental Protection Agency held the Workshop on Estimating the Benefits of Reducing Hazardous Air Pollutants (HAPs) in Washington, DC, from 30 April to 1 May 2009. Experts from multiple disciplines discussed how best to move forward on air toxics benefits assessment, with a focus on developing near-term capability to conduct quantitative benefits assessment. Proposed methodologies involved analysis of data-rich pollutants and application of this analysis to other pollutants, using dose-response modeling of animal data for estimating benefits to humans, determining dose-equivalence relationships for different chemicals with similar health effects, and analysis similar to that used for criteria pollutants. Limitations and uncertainties in economic valuation of benefits assessment for HAPS were discussed as well. These discussions highlighted the complexities in estimating the benefits of reducing air toxics, and participants agreed that alternative methods for benefits assessment of HAPs are needed. Recommendations included clearly defining the key priorities of the Clean Air Act air toxics program to identify the most effective approaches for HAPs benefits analysis, focusing on susceptible and vulnerable populations, and improving dose-response estimation for quantification of benefits.

  15. Progressive Sampling Technique for Efficient and Robust Uncertainty and Sensitivity Analysis of Environmental Systems Models: Stability and Convergence

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, R.; Hosseini, N.; Razavi, S.

    2016-12-01

    Modern earth and environmental models are usually characterized by a large parameter space and high computational cost. These two features prevent effective implementation of sampling-based analysis such as sensitivity and uncertainty analysis, which require running these computationally expensive models several times to adequately explore the parameter/problem space. Therefore, developing efficient sampling techniques that scale with the size of the problem, computational budget, and users' needs is essential. In this presentation, we propose an efficient sequential sampling strategy, called Progressive Latin Hypercube Sampling (PLHS), which provides an increasingly improved coverage of the parameter space, while satisfying pre-defined requirements. The original Latin hypercube sampling (LHS) approach generates the entire sample set in one stage; on the contrary, PLHS generates a series of smaller sub-sets (also called `slices') while: (1) each sub-set is Latin hypercube and achieves maximum stratification in any one dimensional projection; (2) the progressive addition of sub-sets remains Latin hypercube; and thus (3) the entire sample set is Latin hypercube. Therefore, it has the capability to preserve the intended sampling properties throughout the sampling procedure. PLHS is deemed advantageous over the existing methods, particularly because it nearly avoids over- or under-sampling. Through different case studies, we show that PHLS has multiple advantages over the one-stage sampling approaches, including improved convergence and stability of the analysis results with fewer model runs. In addition, PLHS can help to minimize the total simulation time by only running the simulations necessary to achieve the desired level of quality (e.g., accuracy, and convergence rate).

  16. Direct Estimation of Power Distribution in Reactors for Nuclear Thermal Space Propulsion

    NASA Astrophysics Data System (ADS)

    Aldemir, Tunc; Miller, Don W.; Burghelea, Andrei

    2004-02-01

    A recently proposed constant temperature power sensor (CTPS) has the capability to directly measure the local power deposition rate in nuclear reactor cores proposed for space thermal propulsion. Such a capability reduces the uncertainties in the estimated power peaking factors and hence increases the reliability of the nuclear engine. The CTPS operation is sensitive to the changes in the local thermal conditions. A procedure is described for the automatic on-line calibration of the sensor through estimation of changes in thermal .conditions.

  17. Department of Defense Energy and Logistics: Implications of Historic and Future Cost, Risk, and Capability Analysis

    NASA Astrophysics Data System (ADS)

    Tisa, Paul C.

    Every year the DoD spends billions satisfying its large petroleum demand. This spending is highly sensitive to uncontrollable and poorly understood market forces. Additionally, while some stakeholders may not prioritize its monetary cost and risk, energy is fundamentally coupled to other critical factors. Energy, operational capability, and logistics are heavily intertwined and dependent on uncertain security environment and technology futures. These components and their relationships are less understood. Without better characterization, future capabilities may be significantly limited by present-day acquisition decisions. One attempt to demonstrate these costs and risks to decision makers has been through a metric known as the Fully Burdened Cost of Energy (FBCE). FBCE is defined as the commodity price for fuel plus many of these hidden costs. The metric encouraged a valuable conversation and is still required by law. However, most FBCE development stopped before the lessons from that conversation were incorporated. Current implementation is easy to employ but creates little value. Properly characterizing the costs and risks of energy and putting them in a useful tradespace requires a new framework. This research aims to highlight energy's complex role in many aspects of military operations, the critical need to incorporate it in decisions, and a novel framework to do so. It is broken into five parts. The first describes the motivation behind FBCE, the limits of current implementation, and outlines a new framework that aids decisions. Respectively, the second, third, and fourth present a historic analysis of the connections between military capabilities and energy, analyze the recent evolution of this conversation within the DoD, and pull the historic analysis into a revised framework. The final part quantifies the potential impacts of deeply uncertain futures and technological development and introduces an expanded framework that brings capability, energy, and their uncertainty into the same tradespace. The work presented is intended to inform better policies and investment decisions for military acquisitions. The discussion highlights areas within the DoD's understanding of energy that could improve or whose development has faltered. The new metric discussed allows the DoD to better manage and plan for long-term energy-related costs and risk.

  18. A Two-Step Approach to Uncertainty Quantification of Core Simulators

    DOE PAGES

    Yankov, Artem; Collins, Benjamin; Klein, Markus; ...

    2012-01-01

    For the multiple sources of error introduced into the standard computational regime for simulating reactor cores, rigorous uncertainty analysis methods are available primarily to quantify the effects of cross section uncertainties. Two methods for propagating cross section uncertainties through core simulators are the XSUSA statistical approach and the “two-step” method. The XSUSA approach, which is based on the SUSA code package, is fundamentally a stochastic sampling method. Alternatively, the two-step method utilizes generalized perturbation theory in the first step and stochastic sampling in the second step. The consistency of these two methods in quantifying uncertainties in the multiplication factor andmore » in the core power distribution was examined in the framework of phase I-3 of the OECD Uncertainty Analysis in Modeling benchmark. With the Three Mile Island Unit 1 core as a base model for analysis, the XSUSA and two-step methods were applied with certain limitations, and the results were compared to those produced by other stochastic sampling-based codes. Based on the uncertainty analysis results, conclusions were drawn as to the method that is currently more viable for computing uncertainties in burnup and transient calculations.« less

  19. Multi-Hypothesis Modelling Capabilities for Robust Data-Model Integration

    NASA Astrophysics Data System (ADS)

    Walker, A. P.; De Kauwe, M. G.; Lu, D.; Medlyn, B.; Norby, R. J.; Ricciuto, D. M.; Rogers, A.; Serbin, S.; Weston, D. J.; Ye, M.; Zaehle, S.

    2017-12-01

    Large uncertainty is often inherent in model predictions due to imperfect knowledge of how to describe the mechanistic processes (hypotheses) that a model is intended to represent. Yet this model hypothesis uncertainty (MHU) is often overlooked or informally evaluated, as methods to quantify and evaluate MHU are limited. MHU is increased as models become more complex because each additional processes added to a model comes with inherent MHU as well as parametric unceratinty. With the current trend of adding more processes to Earth System Models (ESMs), we are adding uncertainty, which can be quantified for parameters but not MHU. Model inter-comparison projects do allow for some consideration of hypothesis uncertainty but in an ad hoc and non-independent fashion. This has stymied efforts to evaluate ecosystem models against data and intepret the results mechanistically because it is not simple to interpret exactly why a model is producing the results it does and identify which model assumptions are key as they combine models of many sub-systems and processes, each of which may be conceptualised and represented mathematically in various ways. We present a novel modelling framework—the multi-assumption architecture and testbed (MAAT)—that automates the combination, generation, and execution of a model ensemble built with different representations of process. We will present the argument that multi-hypothesis modelling needs to be considered in conjunction with other capabilities (e.g. the Predictive Ecosystem Analyser; PecAn) and statistical methods (e.g. sensitivity anaylsis, data assimilation) to aid efforts in robust data model integration to enhance our predictive understanding of biological systems.

  20. Comparison of two optimization algorithms for fuzzy finite element model updating for damage detection in a wind turbine blade

    NASA Astrophysics Data System (ADS)

    Turnbull, Heather; Omenzetter, Piotr

    2018-03-01

    vDifficulties associated with current health monitoring and inspection practices combined with harsh, often remote, operational environments of wind turbines highlight the requirement for a non-destructive evaluation system capable of remotely monitoring the current structural state of turbine blades. This research adopted a physics based structural health monitoring methodology through calibration of a finite element model using inverse techniques. A 2.36m blade from a 5kW turbine was used as an experimental specimen, with operational modal analysis techniques utilised to realize the modal properties of the system. Modelling the experimental responses as fuzzy numbers using the sub-level technique, uncertainty in the response parameters was propagated back through the model and into the updating parameters. Initially, experimental responses of the blade were obtained, with a numerical model of the blade created and updated. Deterministic updating was carried out through formulation and minimisation of a deterministic objective function using both firefly algorithm and virus optimisation algorithm. Uncertainty in experimental responses were modelled using triangular membership functions, allowing membership functions of updating parameters (Young's modulus and shear modulus) to be obtained. Firefly algorithm and virus optimisation algorithm were again utilised, however, this time in the solution of fuzzy objective functions. This enabled uncertainty associated with updating parameters to be quantified. Varying damage location and severity was simulated experimentally through addition of small masses to the structure intended to cause a structural alteration. A damaged model was created, modelling four variable magnitude nonstructural masses at predefined points and updated to provide a deterministic damage prediction and information in relation to the parameters uncertainty via fuzzy updating.

  1. Parameter uncertainty and nonstationarity in regional extreme rainfall frequency analysis in Qu River Basin, East China

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Xu, Y. P.; Gu, H.

    2014-12-01

    Traditionally, regional frequency analysis methods were developed for stationary environmental conditions. Nevertheless, recent studies have identified significant changes in hydrological records, leading to the 'death' of stationarity. Besides, uncertainty in hydrological frequency analysis is persistent. This study aims to investigate the impact of one of the most important uncertainty sources, parameter uncertainty, together with nonstationarity, on design rainfall depth in Qu River Basin, East China. A spatial bootstrap is first proposed to analyze the uncertainty of design rainfall depth estimated by regional frequency analysis based on L-moments and estimated on at-site scale. Meanwhile, a method combining the generalized additive models with 30-year moving window is employed to analyze non-stationarity existed in the extreme rainfall regime. The results show that the uncertainties of design rainfall depth with 100-year return period under stationary conditions estimated by regional spatial bootstrap can reach 15.07% and 12.22% with GEV and PE3 respectively. On at-site scale, the uncertainties can reach 17.18% and 15.44% with GEV and PE3 respectively. In non-stationary conditions, the uncertainties of maximum rainfall depth (corresponding to design rainfall depth) with 0.01 annual exceedance probability (corresponding to 100-year return period) are 23.09% and 13.83% with GEV and PE3 respectively. Comparing the 90% confidence interval, the uncertainty of design rainfall depth resulted from parameter uncertainty is less than that from non-stationarity frequency analysis with GEV, however, slightly larger with PE3. This study indicates that the spatial bootstrap can be successfully applied to analyze the uncertainty of design rainfall depth on both regional and at-site scales. And the non-stationary analysis shows that the differences between non-stationary quantiles and their stationary equivalents are important for decision makes of water resources management and risk management.

  2. On the uncertainty of interdisciplinarity measurements due to incomplete bibliographic data.

    PubMed

    Calatrava Moreno, María Del Carmen; Auzinger, Thomas; Werthner, Hannes

    The accuracy of interdisciplinarity measurements is directly related to the quality of the underlying bibliographic data. Existing indicators of interdisciplinarity are not capable of reflecting the inaccuracies introduced by incorrect and incomplete records because correct and complete bibliographic data can rarely be obtained. This is the case for the Rao-Stirling index, which cannot handle references that are not categorized into disciplinary fields. We introduce a method that addresses this problem. It extends the Rao-Stirling index to acknowledge missing data by calculating its interval of uncertainty using computational optimization. The evaluation of our method indicates that the uncertainty interval is not only useful for estimating the inaccuracy of interdisciplinarity measurements, but it also delivers slightly more accurate aggregated interdisciplinarity measurements than the Rao-Stirling index.

  3. Moral uncertainty in bioethical argumentation: a new understanding of the pro-life view on early human embryos.

    PubMed

    Żuradzki, Tomasz

    2014-12-01

    In this article, I present a new interpretation of the pro-life view on the status of early human embryos. In my understanding, this position is based not on presumptions about the ontological status of embryos and their developmental capabilities but on the specific criteria of rational decisions under uncertainty and on a cautious response to the ambiguous status of embryos. This view, which uses the decision theory model of moral reasoning, promises to reconcile the uncertainty about the ontological status of embryos with the certainty about normative obligations. I will demonstrate that my interpretation of the pro-life view, although seeming to be stronger than the standard one, has limited scope and cannot be used to limit destructive research on human embryos.

  4. Systematic uncertainties in long-baseline neutrino-oscillation experiments

    NASA Astrophysics Data System (ADS)

    Ankowski, Artur M.; Mariani, Camillo

    2017-05-01

    Future neutrino-oscillation experiments are expected to bring definite answers to the questions of neutrino-mass hierarchy and violation of charge-parity symmetry in the lepton-sector. To realize this ambitious program it is necessary to ensure a significant reduction of uncertainties, particularly those related to neutrino-energy reconstruction. In this paper, we discuss different sources of systematic uncertainties, paying special attention to those arising from nuclear effects and detector response. By analyzing nuclear effects we show the importance of developing accurate theoretical models, capable of providing a quantitative description of neutrino cross sections, together with the relevance of their implementation in Monte Carlo generators and extensive testing against lepton-scattering data. We also point out the fundamental role of efforts aiming to determine detector responses in test-beam exposures.

  5. Traceable Dynamic Calibration of Force Transducers by Primary Means

    PubMed Central

    Vlajic, Nicholas; Chijioke, Ako

    2018-01-01

    We describe an apparatus for traceable, dynamic calibration of force transducers using harmonic excitation, and report calibration measurements of force transducers using this apparatus. In this system, the force applied to the transducer is produced by the acceleration of an attached mass, and is determined according to Newton’s second law, F = ma. The acceleration is measured by primary means, using laser interferometry. The capabilities of this system are demonstrated by performing dynamic calibrations of two shear-web-type force transducers up to a frequency of 2 kHz, with an expanded uncertainty below 1.2 %. We give an accounting of all significant sources of uncertainty, including a detailed consideration of the effects of dynamic tilting (rocking), which is a leading source of uncertainty in such harmonic force calibration systems. PMID:29887643

  6. Wind Energy Management System Integration Project Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.

    2010-09-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation) and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and windmore » forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. In order to improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively, by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. In this report, a new methodology to predict the uncertainty ranges for the required balancing capacity, ramping capability and ramp duration is presented. Uncertainties created by system load forecast errors, wind and solar forecast errors, generation forced outages are taken into account. The uncertainty ranges are evaluated for different confidence levels of having the actual generation requirements within the corresponding limits. The methodology helps to identify system balancing reserve requirement based on a desired system performance levels, identify system “breaking points”, where the generation system becomes unable to follow the generation requirement curve with the user-specified probability level, and determine the time remaining to these potential events. The approach includes three stages: statistical and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence intervals. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis incorporating all sources of uncertainty and parameters of a continuous (wind forecast and load forecast errors) and discrete (forced generator outages and failures to start up) nature. Preliminary simulations using California Independent System Operator (California ISO) real life data have shown the effectiveness of the proposed approach. A tool developed based on the new methodology described in this report will be integrated with the California ISO systems. Contractual work is currently in place to integrate the tool with the AREVA EMS system.« less

  7. CASMO5/TSUNAMI-3D spent nuclear fuel reactivity uncertainty analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrer, R.; Rhodes, J.; Smith, K.

    2012-07-01

    The CASMO5 lattice physics code is used in conjunction with the TSUNAMI-3D sequence in ORNL's SCALE 6 code system to estimate the uncertainties in hot-to-cold reactivity changes due to cross-section uncertainty for PWR assemblies at various burnup points. The goal of the analysis is to establish the multiplication factor uncertainty similarity between various fuel assemblies at different conditions in a quantifiable manner and to obtain a bound on the hot-to-cold reactivity uncertainty over the various assembly types and burnup attributed to fundamental cross-section data uncertainty. (authors)

  8. A H∞/μ solution for microvibration mitigation in satellites: A case study

    NASA Astrophysics Data System (ADS)

    Preda, Valentin; Cieslak, Jérôme; Henry, David; Bennani, Samir; Falcoz, Alexandre

    2017-07-01

    The research work presented in this paper focuses on the development of a mixed active-passive microvibration mitigation solution capable of attenuating the transmitted vibrations generated by reaction wheels to a satellite structure. A representative benchmark provided by the European Space Agency (ESA) and Airbus Defence and Space, serves as a support for testing the proposed solution. The paper also covers modeling and design issues as well as a deep analysis of the solution within the H∞ / μ setting. Especially, an uncertainty modeling strategy is proposed to extract a Linear Fractional Transformation (LFT) model. Insight is naturally provided into various dynamical interactions between the plant elements such as bearing and isolator flexibility, gyroscopic effects, actuator dynamics and feedback-loop delays. The design of the mitigation solution is formulated into the H∞ / μ framework leading to a robust H∞ control strategy capable of achieving exemplary active attenuation performance across a wide range of reaction wheel speeds. A systematic analysis procedure based on the structured singular value μ is used to assess and demonstrate the robust stability and robust performance of the microvibration mitigation strategy. The proposed analysis method is also shown to be a powerful and reliable solution to identify worst-case scenarios without relying on traditional Monte Carlo campaigns. Time domain simulations based on a nonlinear high-fidelity industrial simulator are included as a validation step.

  9. A GIS based spatially-explicit sensitivity and uncertainty analysis approach for multi-criteria decision analysis☆

    PubMed Central

    Feizizadeh, Bakhtiar; Jankowski, Piotr; Blaschke, Thomas

    2014-01-01

    GIS multicriteria decision analysis (MCDA) techniques are increasingly used in landslide susceptibility mapping for the prediction of future hazards, land use planning, as well as for hazard preparedness. However, the uncertainties associated with MCDA techniques are inevitable and model outcomes are open to multiple types of uncertainty. In this paper, we present a systematic approach to uncertainty and sensitivity analysis. We access the uncertainty of landslide susceptibility maps produced with GIS-MCDA techniques. A new spatially-explicit approach and Dempster–Shafer Theory (DST) are employed to assess the uncertainties associated with two MCDA techniques, namely Analytical Hierarchical Process (AHP) and Ordered Weighted Averaging (OWA) implemented in GIS. The methodology is composed of three different phases. First, weights are computed to express the relative importance of factors (criteria) for landslide susceptibility. Next, the uncertainty and sensitivity of landslide susceptibility is analyzed as a function of weights using Monte Carlo Simulation and Global Sensitivity Analysis. Finally, the results are validated using a landslide inventory database and by applying DST. The comparisons of the obtained landslide susceptibility maps of both MCDA techniques with known landslides show that the AHP outperforms OWA. However, the OWA-generated landslide susceptibility map shows lower uncertainty than the AHP-generated map. The results demonstrate that further improvement in the accuracy of GIS-based MCDA can be achieved by employing an integrated uncertainty–sensitivity analysis approach, in which the uncertainty of landslide susceptibility model is decomposed and attributed to model's criteria weights. PMID:25843987

  10. Photovoltaic Calibrations at the National Renewable Energy Laboratory and Uncertainty Analysis Following the ISO 17025 Guidelines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emery, Keith

    The measurement of photovoltaic (PV) performance with respect to reference conditions requires measuring current versus voltage for a given tabular reference spectrum, junction temperature, and total irradiance. This report presents the procedures implemented by the PV Cell and Module Performance Characterization Group at the National Renewable Energy Laboratory (NREL) to achieve the lowest practical uncertainty. A rigorous uncertainty analysis of these procedures is presented, which follows the International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement. This uncertainty analysis is required for the team’s laboratory accreditation under ISO standard 17025, “General Requirements for the Competence ofmore » Testing and Calibration Laboratories.” The report also discusses additional areas where the uncertainty can be reduced.« less

  11. Assessment of Radiative Heating Uncertainty for Hyperbolic Earth Entry

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Mazaheri, Alireza; Gnoffo, Peter A.; Kleb, W. L.; Sutton, Kenneth; Prabhu, Dinesh K.; Brandis, Aaron M.; Bose, Deepak

    2011-01-01

    This paper investigates the shock-layer radiative heating uncertainty for hyperbolic Earth entry, with the main focus being a Mars return. In Part I of this work, a baseline simulation approach involving the LAURA Navier-Stokes code with coupled ablation and radiation is presented, with the HARA radiation code being used for the radiation predictions. Flight cases representative of peak-heating Mars or asteroid return are de ned and the strong influence of coupled ablation and radiation on their aerothermodynamic environments are shown. Structural uncertainties inherent in the baseline simulations are identified, with turbulence modeling, precursor absorption, grid convergence, and radiation transport uncertainties combining for a +34% and ..24% structural uncertainty on the radiative heating. A parametric uncertainty analysis, which assumes interval uncertainties, is presented. This analysis accounts for uncertainties in the radiation models as well as heat of formation uncertainties in the flow field model. Discussions and references are provided to support the uncertainty range chosen for each parameter. A parametric uncertainty of +47.3% and -28.3% is computed for the stagnation-point radiative heating for the 15 km/s Mars-return case. A breakdown of the largest individual uncertainty contributors is presented, which includes C3 Swings cross-section, photoionization edge shift, and Opacity Project atomic lines. Combining the structural and parametric uncertainty components results in a total uncertainty of +81.3% and ..52.3% for the Mars-return case. In Part II, the computational technique and uncertainty analysis presented in Part I are applied to 1960s era shock-tube and constricted-arc experimental cases. It is shown that experiments contain shock layer temperatures and radiative ux values relevant to the Mars-return cases of present interest. Comparisons between the predictions and measurements, accounting for the uncertainty in both, are made for a range of experiments. A measure of comparison quality is de ned, which consists of the percent overlap of the predicted uncertainty bar with the corresponding measurement uncertainty bar. For nearly all cases, this percent overlap is greater than zero, and for most of the higher temperature cases (T >13,000 K) it is greater than 50%. These favorable comparisons provide evidence that the baseline computational technique and uncertainty analysis presented in Part I are adequate for Mars-return simulations. In Part III, the computational technique and uncertainty analysis presented in Part I are applied to EAST shock-tube cases. These experimental cases contain wavelength dependent intensity measurements in a wavelength range that covers 60% of the radiative intensity for the 11 km/s, 5 m radius flight case studied in Part I. Comparisons between the predictions and EAST measurements are made for a range of experiments. The uncertainty analysis presented in Part I is applied to each prediction, and comparisons are made using the metrics defined in Part II. The agreement between predictions and measurements is excellent for velocities greater than 10.5 km/s. Both the wavelength dependent and wavelength integrated intensities agree within 30% for nearly all cases considered. This agreement provides confidence in the computational technique and uncertainty analysis presented in Part I, and provides further evidence that this approach is adequate for Mars-return simulations. Part IV of this paper reviews existing experimental data that include the influence of massive ablation on radiative heating. It is concluded that this existing data is not sufficient for the present uncertainty analysis. Experiments to capture the influence of massive ablation on radiation are suggested as future work, along with further studies of the radiative precursor and improvements in the radiation properties of ablation products.

  12. Robustness Analysis and Optimally Robust Control Design via Sum-of-Squares

    NASA Technical Reports Server (NTRS)

    Dorobantu, Andrei; Crespo, Luis G.; Seiler, Peter J.

    2012-01-01

    A control analysis and design framework is proposed for systems subject to parametric uncertainty. The underlying strategies are based on sum-of-squares (SOS) polynomial analysis and nonlinear optimization to design an optimally robust controller. The approach determines a maximum uncertainty range for which the closed-loop system satisfies a set of stability and performance requirements. These requirements, de ned as inequality constraints on several metrics, are restricted to polynomial functions of the uncertainty. To quantify robustness, SOS analysis is used to prove that the closed-loop system complies with the requirements for a given uncertainty range. The maximum uncertainty range, calculated by assessing a sequence of increasingly larger ranges, serves as a robustness metric for the closed-loop system. To optimize the control design, nonlinear optimization is used to enlarge the maximum uncertainty range by tuning the controller gains. Hence, the resulting controller is optimally robust to parametric uncertainty. This approach balances the robustness margins corresponding to each requirement in order to maximize the aggregate system robustness. The proposed framework is applied to a simple linear short-period aircraft model with uncertain aerodynamic coefficients.

  13. Introducing uncertainty analysis of nucleation and crystal growth models in Process Analytical Technology (PAT) system design of crystallization processes.

    PubMed

    Samad, Noor Asma Fazli Abdul; Sin, Gürkan; Gernaey, Krist V; Gani, Rafiqul

    2013-11-01

    This paper presents the application of uncertainty and sensitivity analysis as part of a systematic model-based process monitoring and control (PAT) system design framework for crystallization processes. For the uncertainty analysis, the Monte Carlo procedure is used to propagate input uncertainty, while for sensitivity analysis, global methods including the standardized regression coefficients (SRC) and Morris screening are used to identify the most significant parameters. The potassium dihydrogen phosphate (KDP) crystallization process is used as a case study, both in open-loop and closed-loop operation. In the uncertainty analysis, the impact on the predicted output of uncertain parameters related to the nucleation and the crystal growth model has been investigated for both a one- and two-dimensional crystal size distribution (CSD). The open-loop results show that the input uncertainties lead to significant uncertainties on the CSD, with appearance of a secondary peak due to secondary nucleation for both cases. The sensitivity analysis indicated that the most important parameters affecting the CSDs are nucleation order and growth order constants. In the proposed PAT system design (closed-loop), the target CSD variability was successfully reduced compared to the open-loop case, also when considering uncertainty in nucleation and crystal growth model parameters. The latter forms a strong indication of the robustness of the proposed PAT system design in achieving the target CSD and encourages its transfer to full-scale implementation. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Uncertainty in Operational Atmospheric Analyses and Re-Analyses

    NASA Astrophysics Data System (ADS)

    Langland, R.; Maue, R. N.

    2016-12-01

    This talk will describe uncertainty in atmospheric analyses of wind and temperature produced by operational forecast models and in re-analysis products. Because the "true" atmospheric state cannot be precisely quantified, there is necessarily error in every atmospheric analysis, and this error can be estimated by computing differences ( variance and bias) between analysis products produced at various centers (e.g., ECMWF, NCEP, U.S Navy, etc.) that use independent data assimilation procedures, somewhat different sets of atmospheric observations and forecast models with different resolutions, dynamical equations, and physical parameterizations. These estimates of analysis uncertainty provide a useful proxy to actual analysis error. For this study, we use a unique multi-year and multi-model data archive developed at NRL-Monterey. It will be shown that current uncertainty in atmospheric analyses is closely correlated with the geographic distribution of assimilated in-situ atmospheric observations, especially those provided by high-accuracy radiosonde and commercial aircraft observations. The lowest atmospheric analysis uncertainty is found over North America, Europe and Eastern Asia, which have the largest numbers of radiosonde and commercial aircraft observations. Analysis uncertainty is substantially larger (by factors of two to three times) in most of the Southern hemisphere, the North Pacific ocean, and under-developed nations of Africa and South America where there are few radiosonde or commercial aircraft data. It appears that in regions where atmospheric analyses depend primarily on satellite radiance observations, analysis uncertainty of both temperature and wind remains relatively high compared to values found over North America and Europe.

  15. Framing of Uncertainty in Scientific Publications: Towards Recommendations for Decision Support

    NASA Astrophysics Data System (ADS)

    Guillaume, J. H. A.; Helgeson, C.; Elsawah, S.; Jakeman, A. J.; Kummu, M.

    2016-12-01

    Uncertainty is recognised as an essential issue in environmental decision making and decision support. As modellers, we notably use a variety of tools and techniques within an analysis, for example related to uncertainty quantification and model validation. We also address uncertainty by how we present results. For example, experienced modellers are careful to distinguish robust conclusions from those that need further work, and the precision of quantitative results is tailored to their accuracy. In doing so, the modeller frames how uncertainty should be interpreted by their audience. This is an area which extends beyond modelling to fields such as philosophy of science, semantics, discourse analysis, intercultural communication and rhetoric. We propose that framing of uncertainty deserves greater attention in the context of decision support, and that there are opportunities in this area for fundamental research, synthesis and knowledge transfer, development of teaching curricula, and significant advances in managing uncertainty in decision making. This presentation reports preliminary results of a study of framing practices. Specifically, we analyse the framing of uncertainty that is visible in the abstracts from a corpus of scientific articles. We do this through textual analysis of the content and structure of those abstracts. Each finding that appears in an abstract is classified according to the uncertainty framing approach used, using a classification scheme that was iteratively revised based on reflection and comparison amongst three coders. This analysis indicates how frequently the different framing approaches are used, and provides initial insights into relationships between frames, how the frames relate to interpretation of uncertainty, and how rhetorical devices are used by modellers to communicate uncertainty in their work. We propose initial hypotheses for how the resulting insights might influence decision support, and help advance decision making to better address uncertainty.

  16. An optimization based sampling approach for multiple metrics uncertainty analysis using generalized likelihood uncertainty estimation

    NASA Astrophysics Data System (ADS)

    Zhou, Rurui; Li, Yu; Lu, Di; Liu, Haixing; Zhou, Huicheng

    2016-09-01

    This paper investigates the use of an epsilon-dominance non-dominated sorted genetic algorithm II (ɛ-NSGAII) as a sampling approach with an aim to improving sampling efficiency for multiple metrics uncertainty analysis using Generalized Likelihood Uncertainty Estimation (GLUE). The effectiveness of ɛ-NSGAII based sampling is demonstrated compared with Latin hypercube sampling (LHS) through analyzing sampling efficiency, multiple metrics performance, parameter uncertainty and flood forecasting uncertainty with a case study of flood forecasting uncertainty evaluation based on Xinanjiang model (XAJ) for Qing River reservoir, China. Results obtained demonstrate the following advantages of the ɛ-NSGAII based sampling approach in comparison to LHS: (1) The former performs more effective and efficient than LHS, for example the simulation time required to generate 1000 behavioral parameter sets is shorter by 9 times; (2) The Pareto tradeoffs between metrics are demonstrated clearly with the solutions from ɛ-NSGAII based sampling, also their Pareto optimal values are better than those of LHS, which means better forecasting accuracy of ɛ-NSGAII parameter sets; (3) The parameter posterior distributions from ɛ-NSGAII based sampling are concentrated in the appropriate ranges rather than uniform, which accords with their physical significance, also parameter uncertainties are reduced significantly; (4) The forecasted floods are close to the observations as evaluated by three measures: the normalized total flow outside the uncertainty intervals (FOUI), average relative band-width (RB) and average deviation amplitude (D). The flood forecasting uncertainty is also reduced a lot with ɛ-NSGAII based sampling. This study provides a new sampling approach to improve multiple metrics uncertainty analysis under the framework of GLUE, and could be used to reveal the underlying mechanisms of parameter sets under multiple conflicting metrics in the uncertainty analysis process.

  17. Akuna: An Open Source User Environment for Managing Subsurface Simulation Workflows

    NASA Astrophysics Data System (ADS)

    Freedman, V. L.; Agarwal, D.; Bensema, K.; Finsterle, S.; Gable, C. W.; Keating, E. H.; Krishnan, H.; Lansing, C.; Moeglein, W.; Pau, G. S. H.; Porter, E.; Scheibe, T. D.

    2014-12-01

    The U.S. Department of Energy (DOE) is investing in development of a numerical modeling toolset called ASCEM (Advanced Simulation Capability for Environmental Management) to support modeling analyses at legacy waste sites. ASCEM is an open source and modular computing framework that incorporates new advances and tools for predicting contaminant fate and transport in natural and engineered systems. The ASCEM toolset includes both a Platform with Integrated Toolsets (called Akuna) and a High-Performance Computing multi-process simulator (called Amanzi). The focus of this presentation is on Akuna, an open-source user environment that manages subsurface simulation workflows and associated data and metadata. In this presentation, key elements of Akuna are demonstrated, which includes toolsets for model setup, database management, sensitivity analysis, parameter estimation, uncertainty quantification, and visualization of both model setup and simulation results. A key component of the workflow is in the automated job launching and monitoring capabilities, which allow a user to submit and monitor simulation runs on high-performance, parallel computers. Visualization of large outputs can also be performed without moving data back to local resources. These capabilities make high-performance computing accessible to the users who might not be familiar with batch queue systems and usage protocols on different supercomputers and clusters.

  18. CALIBRATION, OPTIMIZATION, AND SENSITIVITY AND UNCERTAINTY ALGORITHMS APPLICATION PROGRAMMING INTERFACE (COSU-API)

    EPA Science Inventory

    The Application Programming Interface (API) for Uncertainty Analysis, Sensitivity Analysis, and Parameter Estimation (UA/SA/PE API) tool development, here fore referred to as the Calibration, Optimization, and Sensitivity and Uncertainty Algorithms API (COSU-API), was initially d...

  19. AN IMPROVEMENT TO THE MOUSE COMPUTERIZED UNCERTAINTY ANALYSIS SYSTEM

    EPA Science Inventory

    The original MOUSE (Modular Oriented Uncertainty System) system was designed to deal with the problem of uncertainties in Environmental engineering calculations, such as a set of engineering cast or risk analysis equations. It was especially intended for use by individuals with l...

  20. High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems.

    PubMed

    Mahadevan, Vijay S; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul

    2014-08-06

    An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework.

  1. Difficult Decisions Made Easier

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA missions are extremely complex and prone to sudden, catastrophic failure if equipment falters or if an unforeseen event occurs. For these reasons, NASA trains to expect the unexpected. It tests its equipment and systems in extreme conditions, and it develops risk-analysis tests to foresee any possible problems. The Space Agency recently worked with an industry partner to develop reliability analysis software capable of modeling complex, highly dynamic systems, taking into account variations in input parameters and the evolution of the system over the course of a mission. The goal of this research was multifold. It included performance and risk analyses of complex, multiphase missions, like the insertion of the Mars Reconnaissance Orbiter; reliability analyses of systems with redundant and/or repairable components; optimization analyses of system configurations with respect to cost and reliability; and sensitivity analyses to identify optimal areas for uncertainty reduction or performance enhancement.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grabaskas, David; Bucknor, Matthew; Jerden, James

    A mechanistic source term (MST) calculation attempts to realistically assess the transport and release of radionuclides from a reactor system to the environment during a specific accident sequence. The U.S. Nuclear Regulatory Commission (NRC) has repeatedly stated its expectation that advanced reactor vendors will utilize an MST during the U.S. reactor licensing process. As part of a project to examine possible impediments to sodium fast reactor (SFR) licensing in the U.S., an analysis was conducted regarding the current capabilities to perform an MST for a metal fuel SFR. The purpose of the project was to identify and prioritize any gapsmore » in current computational tools, and the associated database, for the accurate assessment of an MST. The results of the study demonstrate that an SFR MST is possible with current tools and data, but several gaps exist that may lead to possibly unacceptable levels of uncertainty, depending on the goals of the MST analysis.« less

  3. High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems

    PubMed Central

    Mahadevan, Vijay S.; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul

    2014-01-01

    An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework. PMID:24982250

  4. Gaussian processes for personalized e-health monitoring with wearable sensors.

    PubMed

    Clifton, Lei; Clifton, David A; Pimentel, Marco A F; Watkinson, Peter J; Tarassenko, Lionel

    2013-01-01

    Advances in wearable sensing and communications infrastructure have allowed the widespread development of prototype medical devices for patient monitoring. However, such devices have not penetrated into clinical practice, primarily due to a lack of research into "intelligent" analysis methods that are sufficiently robust to support large-scale deployment. Existing systems are typically plagued by large false-alarm rates, and an inability to cope with sensor artifact in a principled manner. This paper has two aims: 1) proposal of a novel, patient-personalized system for analysis and inference in the presence of data uncertainty, typically caused by sensor artifact and data incompleteness; 2) demonstration of the method using a large-scale clinical study in which 200 patients have been monitored using the proposed system. This latter provides much-needed evidence that personalized e-health monitoring is feasible within an actual clinical environment, at scale, and that the method is capable of improving patient outcomes via personalized healthcare.

  5. How Do Science and Technology Affect International Affairs?

    ERIC Educational Resources Information Center

    Weiss, Charles

    2015-01-01

    Science and technology influence international affairs by many different mechanisms. Both create new issues, risks and uncertainties. Advances in science alert the international community to new issues and risks. New technological capabilities transform war, diplomacy, commerce, intelligence, and investment. This paper identifies six basic…

  6. A robust active control system for shimmy damping in the presence of free play and uncertainties

    NASA Astrophysics Data System (ADS)

    Orlando, Calogero; Alaimo, Andrea

    2017-02-01

    Shimmy vibration is the oscillatory motion of the fork-wheel assembly about the steering axis. It represents one of the major problem of aircraft landing gear because it can lead to excessive wear, discomfort as well as safety concerns. Based on the nonlinear model of the mechanics of a single wheel nose landing gear (NLG), electromechanical actuator and tire elasticity, a robust active controller capable of damping shimmy vibration is designed and investigated in this study. A novel Decline Population Swarm Optimization (PDSO) procedure is introduced and used to select the optimal parameters for the controller. The PDSO procedure is based on a decline demographic model and shows high global search capability with reduced computational costs. The open and closed loop system behavior is analyzed under different case studies of aeronautical interest and the effects of torsional free play on the nose landing gear response are also studied. Plant parameters probabilistic uncertainties are then taken into account to assess the active controller robustness using a stochastic approach.

  7. Metrology for the manufacturing of freeform optics

    NASA Astrophysics Data System (ADS)

    Blalock, Todd; Myer, Brian; Ferralli, Ian; Brunelle, Matt; Lynch, Tim

    2017-10-01

    Recently the use of freeform surfaces have become a realization for optical designers. These non-symmetrical optical surfaces have allowed unique solutions to optical design problems. The implementation of freeform optical surfaces has been limited by manufacturing capabilities and quality. However over the past several years freeform fabrication processes have improved in capability and precision. But as with any manufacturing, proper metrology is required to monitor and verify the process. Typical optics metrology such as interferometry has its challenges and limitations with the unique shapes of freeform optics. Two contact metrology methods for freeform metrology are presented; a Leitz coordinate measurement machine (CMM) with an uncertainty of +/- 0.5 μm and a high resolution profilometer (Panasonic UA3P) with a measurement uncertainty of +/- 0.05 μm. We are also developing a non-contact high resolution technique based on the fringe reflection technique known as deflectometry. This fast non-contact metrology has the potential to compete with accuracies of the contact methods but also can acquire data in seconds rather than minutes or hours.

  8. Lunar Navigation Architecture Design Considerations

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher; Getchius, Joel; Holt, Greg; Moreau, Michael

    2009-01-01

    The NASA Constellation Program is aiming to establish a long-term presence on the lunar surface. The Constellation elements (Orion, Altair, Earth Departure Stage, and Ares launch vehicles) will require a lunar navigation architecture for navigation state updates during lunar-class missions. Orion in particular has baselined earth-based ground direct tracking as the primary source for much of its absolute navigation needs. However, due to the uncertainty in the lunar navigation architecture, the Orion program has had to make certain assumptions on the capabilities of such architectures in order to adequately scale the vehicle design trade space. The following paper outlines lunar navigation requirements, the Orion program assumptions, and the impacts of these assumptions to the lunar navigation architecture design. The selection of potential sites was based upon geometric baselines, logistical feasibility, redundancy, and abort support capability. Simulated navigation covariances mapped to entry interface flightpath- angle uncertainties were used to evaluate knowledge errors. A minimum ground station architecture was identified consisting of Goldstone, Madrid, Canberra, Santiago, Hartebeeshoek, Dongora, Hawaii, Guam, and Ascension Island (or the geometric equivalent).

  9. Uncertainty Analysis of Seebeck Coefficient and Electrical Resistivity Characterization

    NASA Technical Reports Server (NTRS)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    In order to provide a complete description of a materials thermoelectric power factor, in addition to the measured nominal value, an uncertainty interval is required. The uncertainty may contain sources of measurement error including systematic bias error and precision error of a statistical nature. The work focuses specifically on the popular ZEM-3 (Ulvac Technologies) measurement system, but the methods apply to any measurement system. The analysis accounts for sources of systematic error including sample preparation tolerance, measurement probe placement, thermocouple cold-finger effect, and measurement parameters; in addition to including uncertainty of a statistical nature. Complete uncertainty analysis of a measurement system allows for more reliable comparison of measurement data between laboratories.

  10. Multi-objective calibration and uncertainty analysis of hydrologic models; A comparative study between formal and informal methods

    NASA Astrophysics Data System (ADS)

    Shafii, M.; Tolson, B.; Matott, L. S.

    2012-04-01

    Hydrologic modeling has benefited from significant developments over the past two decades. This has resulted in building of higher levels of complexity into hydrologic models, which eventually makes the model evaluation process (parameter estimation via calibration and uncertainty analysis) more challenging. In order to avoid unreasonable parameter estimates, many researchers have suggested implementation of multi-criteria calibration schemes. Furthermore, for predictive hydrologic models to be useful, proper consideration of uncertainty is essential. Consequently, recent research has emphasized comprehensive model assessment procedures in which multi-criteria parameter estimation is combined with statistically-based uncertainty analysis routines such as Bayesian inference using Markov Chain Monte Carlo (MCMC) sampling. Such a procedure relies on the use of formal likelihood functions based on statistical assumptions, and moreover, the Bayesian inference structured on MCMC samplers requires a considerably large number of simulations. Due to these issues, especially in complex non-linear hydrological models, a variety of alternative informal approaches have been proposed for uncertainty analysis in the multi-criteria context. This study aims at exploring a number of such informal uncertainty analysis techniques in multi-criteria calibration of hydrological models. The informal methods addressed in this study are (i) Pareto optimality which quantifies the parameter uncertainty using the Pareto solutions, (ii) DDS-AU which uses the weighted sum of objective functions to derive the prediction limits, and (iii) GLUE which describes the total uncertainty through identification of behavioral solutions. The main objective is to compare such methods with MCMC-based Bayesian inference with respect to factors such as computational burden, and predictive capacity, which are evaluated based on multiple comparative measures. The measures for comparison are calculated both for calibration and evaluation periods. The uncertainty analysis methodologies are applied to a simple 5-parameter rainfall-runoff model, called HYMOD.

  11. Quantifying confidence in density functional theory predictions of magnetic ground states

    NASA Astrophysics Data System (ADS)

    Houchins, Gregory; Viswanathan, Venkatasubramanian

    2017-10-01

    Density functional theory (DFT) simulations, at the generalized gradient approximation (GGA) level, are being routinely used for material discovery based on high-throughput descriptor-based searches. The success of descriptor-based material design relies on eliminating bad candidates and keeping good candidates for further investigation. While DFT has been widely successfully for the former, oftentimes good candidates are lost due to the uncertainty associated with the DFT-predicted material properties. Uncertainty associated with DFT predictions has gained prominence and has led to the development of exchange correlation functionals that have built-in error estimation capability. In this work, we demonstrate the use of built-in error estimation capabilities within the BEEF-vdW exchange correlation functional for quantifying the uncertainty associated with the magnetic ground state of solids. We demonstrate this approach by calculating the uncertainty estimate for the energy difference between the different magnetic states of solids and compare them against a range of GGA exchange correlation functionals as is done in many first-principles calculations of materials. We show that this estimate reasonably bounds the range of values obtained with the different GGA functionals. The estimate is determined as a postprocessing step and thus provides a computationally robust and systematic approach to estimating uncertainty associated with predictions of magnetic ground states. We define a confidence value (c-value) that incorporates all calculated magnetic states in order to quantify the concurrence of the prediction at the GGA level and argue that predictions of magnetic ground states from GGA level DFT is incomplete without an accompanying c-value. We demonstrate the utility of this method using a case study of Li-ion and Na-ion cathode materials and the c-value metric correctly identifies that GGA-level DFT will have low predictability for NaFePO4F . Further, there needs to be a systematic test of a collection of plausible magnetic states, especially in identifying antiferromagnetic (AFM) ground states. We believe that our approach of estimating uncertainty can be readily incorporated into all high-throughput computational material discovery efforts and this will lead to a dramatic increase in the likelihood of finding good candidate materials.

  12. Uncertainty analysis of diffuse-gray radiation enclosure problems: A hypersensitive case study

    NASA Technical Reports Server (NTRS)

    Taylor, Robert P.; Luck, Rogelio; Hodge, B. K.; Steele, W. Glenn

    1993-01-01

    An uncertainty analysis of diffuse-gray enclosure problems is presented. The genesis was a diffuse-gray enclosure problem which proved to be hypersensitive to the specification of view factors. This genesis is discussed in some detail. The uncertainty analysis is presented for the general diffuse-gray enclosure problem and applied to the hypersensitive case study. It was found that the hypersensitivity could be greatly reduced by enforcing both closure and reciprocity for the view factors. The effects of uncertainties in the surface emissivities and temperatures are also investigated.

  13. Definition, Capabilities, and Components of a Terrestrial Carbon Monitoring System

    NASA Technical Reports Server (NTRS)

    West, Tristram O.; Brown, Molly E.; Duren, Riley M.; Ogle, Stephen M.; Moss, Richard H.

    2013-01-01

    Research efforts for effectively and consistently monitoring terrestrial carbon are increasing in number. As such, there is a need to define carbon monitoring and how it relates to carbon cycle science and carbon management. There is also a need to identify capabilities of a carbon monitoring system and the system components needed to develop the capabilities. Capabilities that enable the effective application of a carbon monitoring system for monitoring and management purposes may include: reconciling carbon stocks and fluxes, developing consistency across spatial and temporal scales, tracking horizontal movement of carbon, attribution of emissions to originating sources, cross-sectoral accounting, uncertainty quantification, redundancy and policy relevance. Focused research is needed to integrate these capabilities for sustained estimates of carbon stocks and fluxes. Additionally, if monitoring is intended to inform management decisions, management priorities should be considered prior to development of a monitoring system.

  14. Virtual Sensors: Using Data Mining Techniques to Efficiently Estimate Remote Sensing Spectra

    NASA Technical Reports Server (NTRS)

    Srivastava, Ashok N.; Oza, Nikunj; Stroeve, Julienne

    2004-01-01

    Various instruments are used to create images of the Earth and other objects in the universe in a diverse set of wavelength bands with the aim of understanding natural phenomena. These instruments are sometimes built in a phased approach, with some measurement capabilities being added in later phases. In other cases, there may not be a planned increase in measurement capability, but technology may mature to the point that it offers new measurement capabilities that were not available before. In still other cases, detailed spectral measurements may be too costly to perform on a large sample. Thus, lower resolution instruments with lower associated cost may be used to take the majority of measurements. Higher resolution instruments, with a higher associated cost may be used to take only a small fraction of the measurements in a given area. Many applied science questions that are relevant to the remote sensing community need to be addressed by analyzing enormous amounts of data that were generated from instruments with disparate measurement capability. This paper addresses this problem by demonstrating methods to produce high accuracy estimates of spectra with an associated measure of uncertainty from data that is perhaps nonlinearly correlated with the spectra. In particular, we demonstrate multi-layer perceptrons (MLPs), Support Vector Machines (SVMs) with Radial Basis Function (RBF) kernels, and SVMs with Mixture Density Mercer Kernels (MDMK). We call this type of an estimator a Virtual Sensor because it predicts, with a measure of uncertainty, unmeasured spectral phenomena.

  15. PIV Uncertainty Methodologies for CFD Code Validation at the MIR Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabharwall, Piyush; Skifton, Richard; Stoots, Carl

    2013-12-01

    Currently, computational fluid dynamics (CFD) is widely used in the nuclear thermal hydraulics field for design and safety analyses. To validate CFD codes, high quality multi dimensional flow field data are essential. The Matched Index of Refraction (MIR) Flow Facility at Idaho National Laboratory has a unique capability to contribute to the development of validated CFD codes through the use of Particle Image Velocimetry (PIV). The significance of the MIR facility is that it permits non intrusive velocity measurement techniques, such as PIV, through complex models without requiring probes and other instrumentation that disturb the flow. At the heart ofmore » any PIV calculation is the cross-correlation, which is used to estimate the displacement of particles in some small part of the image over the time span between two images. This image displacement is indicated by the location of the largest peak. In the MIR facility, uncertainty quantification is a challenging task due to the use of optical measurement techniques. Currently, this study is developing a reliable method to analyze uncertainty and sensitivity of the measured data and develop a computer code to automatically analyze the uncertainty/sensitivity of the measured data. The main objective of this study is to develop a well established uncertainty quantification method for the MIR Flow Facility, which consists of many complicated uncertainty factors. In this study, the uncertainty sources are resolved in depth by categorizing them into uncertainties from the MIR flow loop and PIV system (including particle motion, image distortion, and data processing). Then, each uncertainty source is mathematically modeled or adequately defined. Finally, this study will provide a method and procedure to quantify the experimental uncertainty in the MIR Flow Facility with sample test results.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Chanyoung; Kim, Nam H.

    Structural elements, such as stiffened panels and lap joints, are basic components of aircraft structures. For aircraft structural design, designers select predesigned elements satisfying the design load requirement based on their load-carrying capabilities. Therefore, estimation of safety envelope of structural elements for load tolerances would be a good investment for design purpose. In this article, a method of estimating safety envelope is presented using probabilistic classification, which can estimate a specific level of failure probability under both aleatory and epistemic uncertainties. An important contribution of this article is that the calculation uncertainty is reflected in building a safety envelope usingmore » Gaussian process, and the effect of element test data on reducing the calculation uncertainty is incorporated by updating the Gaussian process model with the element test data. It is shown that even one element test can significantly reduce the calculation uncertainty due to lacking knowledge of actual physics, so that conservativeness in a safety envelope is significantly reduced. The proposed approach was demonstrated with a cantilever beam example, which represents a structural element. The example shows that calculation uncertainty provides about 93% conservativeness against the uncertainty due to a few element tests. As a result, it is shown that even a single element test can increase the load tolerance modeled with the safety envelope by 20%.« less

  17. Performance Assessment Uncertainty Analysis for Japan's HLW Program Feasibility Study (H12)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BABA,T.; ISHIGURO,K.; ISHIHARA,Y.

    1999-08-30

    Most HLW programs in the world recognize that any estimate of long-term radiological performance must be couched in terms of the uncertainties derived from natural variation, changes through time and lack of knowledge about the essential processes. The Japan Nuclear Cycle Development Institute followed a relatively standard procedure to address two major categories of uncertainty. First, a FEatures, Events and Processes (FEPs) listing, screening and grouping activity was pursued in order to define the range of uncertainty in system processes as well as possible variations in engineering design. A reference and many alternative cases representing various groups of FEPs weremore » defined and individual numerical simulations performed for each to quantify the range of conceptual uncertainty. Second, parameter distributions were developed for the reference case to represent the uncertainty in the strength of these processes, the sequencing of activities and geometric variations. Both point estimates using high and low values for individual parameters as well as a probabilistic analysis were performed to estimate parameter uncertainty. A brief description of the conceptual model uncertainty analysis is presented. This paper focuses on presenting the details of the probabilistic parameter uncertainty assessment.« less

  18. Methods for Estimating the Uncertainty in Emergy Table-Form Models

    EPA Science Inventory

    Emergy studies have suffered criticism due to the lack of uncertainty analysis and this shortcoming may have directly hindered the wider application and acceptance of this methodology. Recently, to fill this gap, the sources of uncertainty in emergy analysis were described and an...

  19. Time-variant random interval natural frequency analysis of structures

    NASA Astrophysics Data System (ADS)

    Wu, Binhua; Wu, Di; Gao, Wei; Song, Chongmin

    2018-02-01

    This paper presents a new robust method namely, unified interval Chebyshev-based random perturbation method, to tackle hybrid random interval structural natural frequency problem. In the proposed approach, random perturbation method is implemented to furnish the statistical features (i.e., mean and standard deviation) and Chebyshev surrogate model strategy is incorporated to formulate the statistical information of natural frequency with regards to the interval inputs. The comprehensive analysis framework combines the superiority of both methods in a way that computational cost is dramatically reduced. This presented method is thus capable of investigating the day-to-day based time-variant natural frequency of structures accurately and efficiently under concrete intrinsic creep effect with probabilistic and interval uncertain variables. The extreme bounds of the mean and standard deviation of natural frequency are captured through the embedded optimization strategy within the analysis procedure. Three particularly motivated numerical examples with progressive relationship in perspective of both structure type and uncertainty variables are demonstrated to justify the computational applicability, accuracy and efficiency of the proposed method.

  20. Instrumental neutron activation analysis for studying size-fractionated aerosols

    NASA Astrophysics Data System (ADS)

    Salma, Imre; Zemplén-Papp, Éva

    1999-10-01

    Instrumental neutron activation analysis (INAA) was utilized for studying aerosol samples collected into a coarse and a fine size fraction on Nuclepore polycarbonate membrane filters. As a result of the panoramic INAA, 49 elements were determined in an amount of about 200-400 μg of particulate matter by two irradiations and four γ-spectrometric measurements. The analytical calculations were performed by the absolute ( k0) standardization method. The calibration procedures, application protocol and the data evaluation process are described and discussed. They make it possible now to analyse a considerable number of samples, with assuring the quality of the results. As a means of demonstrating the system's analytical capabilities, the concentration ranges, median or mean atmospheric concentrations and detection limits are presented for an extensive series of aerosol samples collected within the framework of an urban air pollution study in Budapest. For most elements, the precision of the analysis was found to be beyond the uncertainty represented by the sampling techniques and sample variability.

  1. A study of Kapton degradation under simulated shuttle environment

    NASA Technical Reports Server (NTRS)

    Eck, T. G.; Hoffman, R. W.

    1986-01-01

    A system was developed which employs a source of low energy oxygen ion to simulate the shuttle low Earth orbit environment. This source, together with diagnostic tools including surface analysis ans mass spectroscopic capability, was used to measure the dependence of ion energy of the oxygen induced CO signals from pyrolytic graphite and Kapton. For graphite the CO signal was examined at energies ranging form 4.5 to 465 eV and for Kapton from 4.5 to 188 eV. While the relative quantum yields inferred from the data are reasonably precise, there are large uncertainties in the absolute yields because of the assumptions necessary to covert the measured signal strengths to quantum yields. These assumptions are discussed in detail.

  2. A methodology for the evaluation of program cost and schedule risk for the SEASAT program

    NASA Technical Reports Server (NTRS)

    Abram, P.; Myers, D.

    1976-01-01

    An interactive computerized project management software package (RISKNET) is designed to analyze the effect of the risk involved in each specific activity on the results of the total SEASAT-A program. Both the time and the cost of each distinct activity can be modeled with an uncertainty interval so as to provide the project manager with not only the expected time and cost for the completion of the total program, but also with the expected range of costs corresponding to any desired level of significance. The nature of the SEASAT-A program is described. The capabilities of RISKNET and the implementation plan of a RISKNET analysis for the development of SEASAT-A are presented.

  3. Computational methods for structural load and resistance modeling

    NASA Technical Reports Server (NTRS)

    Thacker, B. H.; Millwater, H. R.; Harren, S. V.

    1991-01-01

    An automated capability for computing structural reliability considering uncertainties in both load and resistance variables is presented. The computations are carried out using an automated Advanced Mean Value iteration algorithm (AMV +) with performance functions involving load and resistance variables obtained by both explicit and implicit methods. A complete description of the procedures used is given as well as several illustrative examples, verified by Monte Carlo Analysis. In particular, the computational methods described in the paper are shown to be quite accurate and efficient for a material nonlinear structure considering material damage as a function of several primitive random variables. The results show clearly the effectiveness of the algorithms for computing the reliability of large-scale structural systems with a maximum number of resolutions.

  4. Desensitized Optimal Filtering and Sensor Fusion Toolkit

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.

    2015-01-01

    Analytical Mechanics Associates, Inc., has developed a software toolkit that filters and processes navigational data from multiple sensor sources. A key component of the toolkit is a trajectory optimization technique that reduces the sensitivity of Kalman filters with respect to model parameter uncertainties. The sensor fusion toolkit also integrates recent advances in adaptive Kalman and sigma-point filters for non-Gaussian problems with error statistics. This Phase II effort provides new filtering and sensor fusion techniques in a convenient package that can be used as a stand-alone application for ground support and/or onboard use. Its modular architecture enables ready integration with existing tools. A suite of sensor models and noise distribution as well as Monte Carlo analysis capability are included to enable statistical performance evaluations.

  5. Irreducible Uncertainty in Terrestrial Carbon Projections

    NASA Astrophysics Data System (ADS)

    Lovenduski, N. S.; Bonan, G. B.

    2016-12-01

    We quantify and isolate the sources of uncertainty in projections of carbon accumulation by the ocean and terrestrial biosphere over 2006-2100 using output from Earth System Models participating in the 5th Coupled Model Intercomparison Project. We consider three independent sources of uncertainty in our analysis of variance: (1) internal variability, driven by random, internal variations in the climate system, (2) emission scenario, driven by uncertainty in future radiative forcing, and (3) model structure, wherein different models produce different projections given the same emission scenario. Whereas uncertainty in projections of ocean carbon accumulation by 2100 is 100 Pg C and driven primarily by emission scenario, uncertainty in projections of terrestrial carbon accumulation by 2100 is 50% larger than that of the ocean, and driven primarily by model structure. This structural uncertainty is correlated with emission scenario: the variance associated with model structure is an order of magnitude larger under a business-as-usual scenario (RCP8.5) than a mitigation scenario (RCP2.6). In an effort to reduce this structural uncertainty, we apply various model weighting schemes to our analysis of variance in terrestrial carbon accumulation projections. The largest reductions in uncertainty are achieved when giving all the weight to a single model; here the uncertainty is of a similar magnitude to the ocean projections. Such an analysis suggests that this structural uncertainty is irreducible given current terrestrial model development efforts.

  6. Uncertainty analysis in vulnerability estimations for elements at risk- a review of concepts and some examples on landslides

    NASA Astrophysics Data System (ADS)

    Ciurean, R. L.; Glade, T.

    2012-04-01

    Decision under uncertainty is a constant of everyday life and an important component of risk management and governance. Recently, experts have emphasized the importance of quantifying uncertainty in all phases of landslide risk analysis. Due to its multi-dimensional and dynamic nature, (physical) vulnerability is inherently complex and the "degree of loss" estimates imprecise and to some extent even subjective. Uncertainty analysis introduces quantitative modeling approaches that allow for a more explicitly objective output, improving the risk management process as well as enhancing communication between various stakeholders for better risk governance. This study presents a review of concepts for uncertainty analysis in vulnerability of elements at risk to landslides. Different semi-quantitative and quantitative methods are compared based on their feasibility in real-world situations, hazard dependency, process stage in vulnerability assessment (i.e. input data, model, output), and applicability within an integrated landslide hazard and risk framework. The resulted observations will help to identify current gaps and future needs in vulnerability assessment, including estimation of uncertainty propagation, transferability of the methods, development of visualization tools, but also address basic questions like what is uncertainty and how uncertainty can be quantified or treated in a reliable and reproducible way.

  7. Uncertainty Analysis of Consequence Management (CM) Data Products.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, Brian D.; Eckert-Gallup, Aubrey Celia; Cochran, Lainy Dromgoole

    The goal of this project is to develop and execute methods for characterizing uncertainty in data products that are deve loped and distributed by the DOE Consequence Management (CM) Program. A global approach to this problem is necessary because multiple sources of error and uncertainty from across the CM skill sets contribute to the ultimate p roduction of CM data products. This report presents the methods used to develop a probabilistic framework to characterize this uncertainty and provides results for an uncertainty analysis for a study scenario analyzed using this framework.

  8. Influences of system uncertainties on the numerical transfer path analysis of engine systems

    NASA Astrophysics Data System (ADS)

    Acri, A.; Nijman, E.; Acri, A.; Offner, G.

    2017-10-01

    Practical mechanical systems operate with some degree of uncertainty. In numerical models uncertainties can result from poorly known or variable parameters, from geometrical approximation, from discretization or numerical errors, from uncertain inputs or from rapidly changing forcing that can be best described in a stochastic framework. Recently, random matrix theory was introduced to take parameter uncertainties into account in numerical modeling problems. In particular in this paper, Wishart random matrix theory is applied on a multi-body dynamic system to generate random variations of the properties of system components. Multi-body dynamics is a powerful numerical tool largely implemented during the design of new engines. In this paper the influence of model parameter variability on the results obtained from the multi-body simulation of engine dynamics is investigated. The aim is to define a methodology to properly assess and rank system sources when dealing with uncertainties. Particular attention is paid to the influence of these uncertainties on the analysis and the assessment of the different engine vibration sources. Examples of the effects of different levels of uncertainties are illustrated by means of examples using a representative numerical powertrain model. A numerical transfer path analysis, based on system dynamic substructuring, is used to derive and assess the internal engine vibration sources. The results obtained from this analysis are used to derive correlations between parameter uncertainties and statistical distribution of results. The derived statistical information can be used to advance the knowledge of the multi-body analysis and the assessment of system sources when uncertainties in model parameters are considered.

  9. Bayesian soft X-ray tomography using non-stationary Gaussian Processes

    NASA Astrophysics Data System (ADS)

    Li, Dong; Svensson, J.; Thomsen, H.; Medina, F.; Werner, A.; Wolf, R.

    2013-08-01

    In this study, a Bayesian based non-stationary Gaussian Process (GP) method for the inference of soft X-ray emissivity distribution along with its associated uncertainties has been developed. For the investigation of equilibrium condition and fast magnetohydrodynamic behaviors in nuclear fusion plasmas, it is of importance to infer, especially in the plasma center, spatially resolved soft X-ray profiles from a limited number of noisy line integral measurements. For this ill-posed inversion problem, Bayesian probability theory can provide a posterior probability distribution over all possible solutions under given model assumptions. Specifically, the use of a non-stationary GP to model the emission allows the model to adapt to the varying length scales of the underlying diffusion process. In contrast to other conventional methods, the prior regularization is realized in a probability form which enhances the capability of uncertainty analysis, in consequence, scientists who concern the reliability of their results will benefit from it. Under the assumption of normally distributed noise, the posterior distribution evaluated at a discrete number of points becomes a multivariate normal distribution whose mean and covariance are analytically available, making inversions and calculation of uncertainty fast. Additionally, the hyper-parameters embedded in the model assumption can be optimized through a Bayesian Occam's Razor formalism and thereby automatically adjust the model complexity. This method is shown to produce convincing reconstructions and good agreements with independently calculated results from the Maximum Entropy and Equilibrium-Based Iterative Tomography Algorithm methods.

  10. Bayesian soft X-ray tomography using non-stationary Gaussian Processes.

    PubMed

    Li, Dong; Svensson, J; Thomsen, H; Medina, F; Werner, A; Wolf, R

    2013-08-01

    In this study, a Bayesian based non-stationary Gaussian Process (GP) method for the inference of soft X-ray emissivity distribution along with its associated uncertainties has been developed. For the investigation of equilibrium condition and fast magnetohydrodynamic behaviors in nuclear fusion plasmas, it is of importance to infer, especially in the plasma center, spatially resolved soft X-ray profiles from a limited number of noisy line integral measurements. For this ill-posed inversion problem, Bayesian probability theory can provide a posterior probability distribution over all possible solutions under given model assumptions. Specifically, the use of a non-stationary GP to model the emission allows the model to adapt to the varying length scales of the underlying diffusion process. In contrast to other conventional methods, the prior regularization is realized in a probability form which enhances the capability of uncertainty analysis, in consequence, scientists who concern the reliability of their results will benefit from it. Under the assumption of normally distributed noise, the posterior distribution evaluated at a discrete number of points becomes a multivariate normal distribution whose mean and covariance are analytically available, making inversions and calculation of uncertainty fast. Additionally, the hyper-parameters embedded in the model assumption can be optimized through a Bayesian Occam's Razor formalism and thereby automatically adjust the model complexity. This method is shown to produce convincing reconstructions and good agreements with independently calculated results from the Maximum Entropy and Equilibrium-Based Iterative Tomography Algorithm methods.

  11. Estimating mountain basin-mean precipitation from streamflow using Bayesian inference

    NASA Astrophysics Data System (ADS)

    Henn, Brian; Clark, Martyn P.; Kavetski, Dmitri; Lundquist, Jessica D.

    2015-10-01

    Estimating basin-mean precipitation in complex terrain is difficult due to uncertainty in the topographical representativeness of precipitation gauges relative to the basin. To address this issue, we use Bayesian methodology coupled with a multimodel framework to infer basin-mean precipitation from streamflow observations, and we apply this approach to snow-dominated basins in the Sierra Nevada of California. Using streamflow observations, forcing data from lower-elevation stations, the Bayesian Total Error Analysis (BATEA) methodology and the Framework for Understanding Structural Errors (FUSE), we infer basin-mean precipitation, and compare it to basin-mean precipitation estimated using topographically informed interpolation from gauges (PRISM, the Parameter-elevation Regression on Independent Slopes Model). The BATEA-inferred spatial patterns of precipitation show agreement with PRISM in terms of the rank of basins from wet to dry but differ in absolute values. In some of the basins, these differences may reflect biases in PRISM, because some implied PRISM runoff ratios may be inconsistent with the regional climate. We also infer annual time series of basin precipitation using a two-step calibration approach. Assessment of the precision and robustness of the BATEA approach suggests that uncertainty in the BATEA-inferred precipitation is primarily related to uncertainties in hydrologic model structure. Despite these limitations, time series of inferred annual precipitation under different model and parameter assumptions are strongly correlated with one another, suggesting that this approach is capable of resolving year-to-year variability in basin-mean precipitation.

  12. Adaptive Flood Risk Management Under Climate Change Uncertainty Using Real Options and Optimization.

    PubMed

    Woodward, Michelle; Kapelan, Zoran; Gouldby, Ben

    2014-01-01

    It is well recognized that adaptive and flexible flood risk strategies are required to account for future uncertainties. Development of such strategies is, however, a challenge. Climate change alone is a significant complication, but, in addition, complexities exist trying to identify the most appropriate set of mitigation measures, or interventions. There are a range of economic and environmental performance measures that require consideration, and the spatial and temporal aspects of evaluating the performance of these is complex. All these elements pose severe difficulties to decisionmakers. This article describes a decision support methodology that has the capability to assess the most appropriate set of interventions to make in a flood system and the opportune time to make these interventions, given the future uncertainties. The flood risk strategies have been explicitly designed to allow for flexible adaptive measures by capturing the concepts of real options and multiobjective optimization to evaluate potential flood risk management opportunities. A state-of-the-art flood risk analysis tool is employed to evaluate the risk associated to each strategy over future points in time and a multiobjective genetic algorithm is utilized to search for the optimal adaptive strategies. The modeling system has been applied to a reach on the Thames Estuary (London, England), and initial results show the inclusion of flexibility is advantageous, while the outputs provide decisionmakers with supplementary knowledge that previously has not been considered. © 2013 HR Wallingford Ltd.

  13. Measurement uncertainty of liquid chromatographic analyses visualized by Ishikawa diagrams.

    PubMed

    Meyer, Veronika R

    2003-09-01

    Ishikawa, or cause-and-effect diagrams, help to visualize the parameters that influence a chromatographic analysis. Therefore, they facilitate the set up of the uncertainty budget of the analysis, which can then be expressed in mathematical form. If the uncertainty is calculated as the Gaussian sum of all uncertainty parameters, it is necessary to quantitate them all, a task that is usually not practical. The other possible approach is to use the intermediate precision as a base for the uncertainty calculation. In this case, it is at least necessary to consider the uncertainty of the purity of the reference material in addition to the precision data. The Ishikawa diagram is then very simple, and so is the uncertainty calculation. This advantage is given by the loss of information about the parameters that influence the measurement uncertainty.

  14. Analysis of uncertainties in the estimates of nitrous oxide and methane emissions in the UK's greenhouse gas inventory for agriculture

    NASA Astrophysics Data System (ADS)

    Milne, Alice E.; Glendining, Margaret J.; Bellamy, Pat; Misselbrook, Tom; Gilhespy, Sarah; Rivas Casado, Monica; Hulin, Adele; van Oijen, Marcel; Whitmore, Andrew P.

    2014-01-01

    The UK's greenhouse gas inventory for agriculture uses a model based on the IPCC Tier 1 and Tier 2 methods to estimate the emissions of methane and nitrous oxide from agriculture. The inventory calculations are disaggregated at country level (England, Wales, Scotland and Northern Ireland). Before now, no detailed assessment of the uncertainties in the estimates of emissions had been done. We used Monte Carlo simulation to do such an analysis. We collated information on the uncertainties of each of the model inputs. The uncertainties propagate through the model and result in uncertainties in the estimated emissions. Using a sensitivity analysis, we found that in England and Scotland the uncertainty in the emission factor for emissions from N inputs (EF1) affected uncertainty the most, but that in Wales and Northern Ireland, the emission factor for N leaching and runoff (EF5) had greater influence. We showed that if the uncertainty in any one of these emission factors is reduced by 50%, the uncertainty in emissions of nitrous oxide reduces by 10%. The uncertainty in the estimate for the emissions of methane emission factors for enteric fermentation in cows and sheep most affected the uncertainty in methane emissions. When inventories are disaggregated (as that for the UK is) correlation between separate instances of each emission factor will affect the uncertainty in emissions. As more countries move towards inventory models with disaggregation, it is important that the IPCC give firm guidance on this topic.

  15. Uncertainties in internal gas counting

    NASA Astrophysics Data System (ADS)

    Unterweger, M.; Johansson, L.; Karam, L.; Rodrigues, M.; Yunoki, A.

    2015-06-01

    The uncertainties in internal gas counting will be broken down into counting uncertainties and gas handling uncertainties. Counting statistics, spectrum analysis, and electronic uncertainties will be discussed with respect to the actual counting of the activity. The effects of the gas handling and quantities of counting and sample gases on the uncertainty in the determination of the activity will be included when describing the uncertainties arising in the sample preparation.

  16. 10 CFR 436.24 - Uncertainty analyses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Procedures for Life Cycle Cost Analyses § 436.24 Uncertainty analyses. If particular items of cost data or... impact of uncertainty on the calculation of life cycle cost effectiveness or the assignment of rank order... and probabilistic analysis. If additional analysis casts substantial doubt on the life cycle cost...

  17. 10 CFR 436.24 - Uncertainty analyses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Procedures for Life Cycle Cost Analyses § 436.24 Uncertainty analyses. If particular items of cost data or... impact of uncertainty on the calculation of life cycle cost effectiveness or the assignment of rank order... and probabilistic analysis. If additional analysis casts substantial doubt on the life cycle cost...

  18. 10 CFR 436.24 - Uncertainty analyses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Procedures for Life Cycle Cost Analyses § 436.24 Uncertainty analyses. If particular items of cost data or... impact of uncertainty on the calculation of life cycle cost effectiveness or the assignment of rank order... and probabilistic analysis. If additional analysis casts substantial doubt on the life cycle cost...

  19. 10 CFR 436.24 - Uncertainty analyses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Procedures for Life Cycle Cost Analyses § 436.24 Uncertainty analyses. If particular items of cost data or... impact of uncertainty on the calculation of life cycle cost effectiveness or the assignment of rank order... and probabilistic analysis. If additional analysis casts substantial doubt on the life cycle cost...

  20. Estimation Of TMDLs And Margin Of Safety Under Conditions Of Uncertainty

    EPA Science Inventory

    In TMDL development, an adequate margin of safety (MOS) is required in the calculation process to provide a cushion needed because of uncertainties in the data and analysis. Current practices, however, rarely factor analysis' uncertainty in TMDL development and the MOS is largel...

  1. MODEL UNCERTAINTY ANALYSIS, FIELD DATA COLLECTION AND ANALYSIS OF CONTAMINATED VAPOR INTRUSION INTO BUILDINGS

    EPA Science Inventory

    To address uncertainty associated with the evaluation of vapor intrusion problems we are working on a three part strategy that includes: evaluation of uncertainty in model-based assessments; collection of field data and assessment of sites using EPA and state protocols.

  2. Final report on EURAMET.QM-S10/1274: supplementary comparison of preparative capabilities for automotive gas mixtures

    NASA Astrophysics Data System (ADS)

    Val'ková, M.; Ďurišová, Z.; Szilágyi, Z. N.; Büki, T.; Fükű, J.

    2016-01-01

    This bilateral supplementary preparative comparison involves standard gas mixtures of automotive gas containing carbon monoxide, carbon dioxide and propane in nitrogen. Two laboratories (SMU, Slovakia and MKEH, Hungary) participated in this supplementary comparison. SMU was the coordinating laboratory, responsible for collecting and reporting measurement results. The participants have established facilities for automotive gas gravimetric preparation and analysis. The agreement of the results in this supplementary comparison is good. All the results with their reported uncertainties are in agreement with the reference values for the participants. SMU participated and obtained good results in the previous preparative comparison organised within EURAMET in this field. Both laboratories have existing claims for their Calibration and Measurement Capabilities (CMCs) for automotive gas mixtures. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  3. Short stack modeling of degradation in solid oxide fuel cells. Part II. Sensitivity and interaction analysis

    NASA Astrophysics Data System (ADS)

    Gazzarri, J. I.; Kesler, O.

    In the first part of this two-paper series, we presented a numerical model of the impedance behaviour of a solid oxide fuel cell (SOFC) aimed at simulating the change in the impedance spectrum induced by contact degradation at the interconnect-electrode, and at the electrode-electrolyte interfaces. The purpose of that investigation was to develop a non-invasive diagnostic technique to identify degradation modes in situ. In the present paper, we appraise the predictive capabilities of the proposed method in terms of its robustness to uncertainties in the input parameters, many of which are very difficult to measure independently. We applied this technique to the degradation modes simulated in Part I, in addition to anode sulfur poisoning. Electrode delamination showed the highest robustness to input parameter variations, followed by interconnect oxidation and interconnect detachment. The most sensitive degradation mode was sulfur poisoning, due to strong parameter interactions. In addition, we simulate several simultaneous two-degradation-mode scenarios, assessing the method's capabilities and limitations for the prediction of electrochemical behaviour of SOFC's undergoing multiple simultaneous degradation modes.

  4. A Comprehensive Validation Approach Using The RAVEN Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua J

    2015-06-01

    The RAVEN computer code , developed at the Idaho National Laboratory, is a generic software framework to perform parametric and probabilistic analysis based on the response of complex system codes. RAVEN is a multi-purpose probabilistic and uncertainty quantification platform, capable to communicate with any system code. A natural extension of the RAVEN capabilities is the imple- mentation of an integrated validation methodology, involving several different metrics, that represent an evolution of the methods currently used in the field. The state-of-art vali- dation approaches use neither exploration of the input space through sampling strategies, nor a comprehensive variety of metrics neededmore » to interpret the code responses, with respect experimental data. The RAVEN code allows to address both these lacks. In the following sections, the employed methodology, and its application to the newer developed thermal-hydraulic code RELAP-7, is reported.The validation approach has been applied on an integral effect experiment, representing natu- ral circulation, based on the activities performed by EG&G Idaho. Four different experiment configurations have been considered and nodalized.« less

  5. Stabilized FE simulation of prototype thermal-hydraulics problems with integrated adjoint-based capabilities

    NASA Astrophysics Data System (ADS)

    Shadid, J. N.; Smith, T. M.; Cyr, E. C.; Wildey, T. M.; Pawlowski, R. P.

    2016-09-01

    A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. In this respect the understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In this study we report on initial efforts to apply integrated adjoint-based computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier-Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. Initial results are presented that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.

  6. Development of an ultra high performance liquid chromatography method for determining triamcinolone acetonide in hydrogels using the design of experiments/design space strategy in combination with process capability index.

    PubMed

    Oliva, Alexis; Monzón, Cecilia; Santoveña, Ana; Fariña, José B; Llabrés, Matías

    2016-07-01

    An ultra high performance liquid chromatography method was developed and validated for the quantitation of triamcinolone acetonide in an injectable ophthalmic hydrogel to determine the contribution of analytical method error in the content uniformity measurement. During the development phase, the design of experiments/design space strategy was used. For this, the free R-program was used as a commercial software alternative, a fast efficient tool for data analysis. The process capability index was used to find the permitted level of variation for each factor and to define the design space. All these aspects were analyzed and discussed under different experimental conditions by the Monte Carlo simulation method. Second, a pre-study validation procedure was performed in accordance with the International Conference on Harmonization guidelines. The validated method was applied for the determination of uniformity of dosage units and the reasons for variability (inhomogeneity and the analytical method error) were analyzed based on the overall uncertainty. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Stabilized FE simulation of prototype thermal-hydraulics problems with integrated adjoint-based capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadid, J.N., E-mail: jnshadi@sandia.gov; Department of Mathematics and Statistics, University of New Mexico; Smith, T.M.

    A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. In this respect the understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In this study we report on initial efforts tomore » apply integrated adjoint-based computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. Initial results are presented that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.« less

  8. Stabilized FE simulation of prototype thermal-hydraulics problems with integrated adjoint-based capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadid, J. N.; Smith, T. M.; Cyr, E. C.

    A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. The understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In our study we report on initial efforts to apply integrated adjoint-basedmore » computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. We present the initial results that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.« less

  9. Stabilized FE simulation of prototype thermal-hydraulics problems with integrated adjoint-based capabilities

    DOE PAGES

    Shadid, J. N.; Smith, T. M.; Cyr, E. C.; ...

    2016-05-20

    A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. The understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In our study we report on initial efforts to apply integrated adjoint-basedmore » computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. We present the initial results that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.« less

  10. `spup' - An R Package for Analysis of Spatial Uncertainty Propagation and Application to Trace Gas Emission Simulations

    NASA Astrophysics Data System (ADS)

    Sawicka, K.; Breuer, L.; Houska, T.; Santabarbara Ruiz, I.; Heuvelink, G. B. M.

    2016-12-01

    Computer models have become a crucial tool in engineering and environmental sciences for simulating the behaviour of complex static and dynamic systems. However, while many models are deterministic, the uncertainty in their predictions needs to be estimated before they are used for decision support. Advances in uncertainty propagation analysis and assessment have been paralleled by a growing number of software tools for uncertainty analysis, but none has gained recognition for a universal applicability, including case studies with spatial models and spatial model inputs. Due to the growing popularity and applicability of the open source R programming language we undertook a project to develop an R package that facilitates uncertainty propagation analysis in spatial environmental modelling. In particular, the `spup' package provides functions for examining the uncertainty propagation starting from input data and model parameters, via the environmental model onto model predictions. The functions include uncertainty model specification, stochastic simulation and propagation of uncertainty using Monte Carlo techniques, as well as several uncertainty visualization functions. Here we will demonstrate that the 'spup' package is an effective and easy-to-use tool to be applied even in a very complex study case, and that it can be used in multi-disciplinary research and model-based decision support. As an example, we use the ecological LandscapeDNDC model to analyse propagation of uncertainties associated with spatial variability of the model driving forces such as rainfall, nitrogen deposition and fertilizer inputs. The uncertainty propagation is analysed for the prediction of emissions of N2O and CO2 for a German low mountainous, agriculturally developed catchment. The study tests the effect of spatial correlations on spatially aggregated model outputs, and could serve as an advice for developing best management practices and model improvement strategies.

  11. Uncertainty analysis and robust trajectory linearization control of a flexible air-breathing hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Pu, Zhiqiang; Tan, Xiangmin; Fan, Guoliang; Yi, Jianqiang

    2014-08-01

    Flexible air-breathing hypersonic vehicles feature significant uncertainties which pose huge challenges to robust controller designs. In this paper, four major categories of uncertainties are analyzed, that is, uncertainties associated with flexible effects, aerodynamic parameter variations, external environmental disturbances, and control-oriented modeling errors. A uniform nonlinear uncertainty model is explored for the first three uncertainties which lumps all uncertainties together and consequently is beneficial for controller synthesis. The fourth uncertainty is additionally considered in stability analysis. Based on these analyses, the starting point of the control design is to decompose the vehicle dynamics into five functional subsystems. Then a robust trajectory linearization control (TLC) scheme consisting of five robust subsystem controllers is proposed. In each subsystem controller, TLC is combined with the extended state observer (ESO) technique for uncertainty compensation. The stability of the overall closed-loop system with the four aforementioned uncertainties and additional singular perturbations is analyzed. Particularly, the stability of nonlinear ESO is also discussed from a Liénard system perspective. At last, simulations demonstrate the great control performance and the uncertainty rejection ability of the robust scheme.

  12. Uncertainty Analysis of Instrument Calibration and Application

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Tcheng, Ping

    1999-01-01

    Experimental aerodynamic researchers require estimated precision and bias uncertainties of measured physical quantities, typically at 95 percent confidence levels. Uncertainties of final computed aerodynamic parameters are obtained by propagation of individual measurement uncertainties through the defining functional expressions. In this paper, rigorous mathematical techniques are extended to determine precision and bias uncertainties of any instrument-sensor system. Through this analysis, instrument uncertainties determined through calibration are now expressed as functions of the corresponding measurement for linear and nonlinear univariate and multivariate processes. Treatment of correlated measurement precision error is developed. During laboratory calibration, calibration standard uncertainties are assumed to be an order of magnitude less than those of the instrument being calibrated. Often calibration standards do not satisfy this assumption. This paper applies rigorous statistical methods for inclusion of calibration standard uncertainty and covariance due to the order of their application. The effects of mathematical modeling error on calibration bias uncertainty are quantified. The effects of experimental design on uncertainty are analyzed. The importance of replication is emphasized, techniques for estimation of both bias and precision uncertainties using replication are developed. Statistical tests for stationarity of calibration parameters over time are obtained.

  13. An efficient dynamic load balancing algorithm

    NASA Astrophysics Data System (ADS)

    Lagaros, Nikos D.

    2014-01-01

    In engineering problems, randomness and uncertainties are inherent. Robust design procedures, formulated in the framework of multi-objective optimization, have been proposed in order to take into account sources of randomness and uncertainty. These design procedures require orders of magnitude more computational effort than conventional analysis or optimum design processes since a very large number of finite element analyses is required to be dealt. It is therefore an imperative need to exploit the capabilities of computing resources in order to deal with this kind of problems. In particular, parallel computing can be implemented at the level of metaheuristic optimization, by exploiting the physical parallelization feature of the nondominated sorting evolution strategies method, as well as at the level of repeated structural analyses required for assessing the behavioural constraints and for calculating the objective functions. In this study an efficient dynamic load balancing algorithm for optimum exploitation of available computing resources is proposed and, without loss of generality, is applied for computing the desired Pareto front. In such problems the computation of the complete Pareto front with feasible designs only, constitutes a very challenging task. The proposed algorithm achieves linear speedup factors and almost 100% speedup factor values with reference to the sequential procedure.

  14. Cryogenic System for Interferometric Measurement of Dimensional Changes at 40 K: Design and Performance

    NASA Technical Reports Server (NTRS)

    Blake, Peter; Miller, Franklin; Zukowski, Tim; Canavan, Edgar R.; Crane, Allen; Madison, Tim; Miller, David

    2007-01-01

    This report describes the facility, experimental methods, characterizations, and uncertainty analysis of the Cryo Distortion Measurement Facility (CDMF) at the Goddard Space Flight Center (GSFC). This facility is designed to measure thermal distortions of structural elements as the temperature is lowered from 320K to below 40 K over multiple cycles, and is capable of unattended running and data logging. The first measurement is to be the change in length and any bending of composite tubes with Invar end-fittings. The CDMF includes a chamber that is efficiently cooled with two cryo-coolers (one single-stage and one two-stage) rather than with liquid cryogens. Five optical ports incorporate sapphire radiation shields - transparent to the interferometer - on each of two shrouds and a fused silica vacuum-port window. The change in length of composite tubes is monitored continuously with displacement-measuring interferometers; and the rotations, bending, and twisting are measured intermittently with theodolites and a surface-figure interferometer. Nickel-coated invar mirrors and attachment mechanisms were developed and qualified by test in the CDMF. The uncertainty in measurement of length change of 0.4 m tubes is currently estimated at 0.9 micrometers.

  15. Implications for Post-processing Nucleosynthesis of Core-collapse Supernova Models with Lagrangian Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, J. Austin; Hix, W. Raphael; Chertkow, Merek A.

    In this paper, we investigate core-collapse supernova (CCSN) nucleosynthesis with self-consistent, axisymmetric (2D) simulations performed using the neutrino hydrodynamics code Chimera. Computational costs have traditionally constrained the evolution of the nuclear composition within multidimensional CCSN models to, at best, a 14-species α-network capable of tracking onlymore » $$(\\alpha ,\\gamma )$$ reactions from 4He to 60Zn. Such a simplified network limits the ability to accurately evolve detailed composition and neutronization or calculate the nuclear energy generation rate. Lagrangian tracer particles are commonly used to extend the nuclear network evolution by incorporating more realistic networks into post-processing nucleosynthesis calculations. However, limitations such as poor spatial resolution of the tracer particles; inconsistent thermodynamic evolution, including misestimation of expansion timescales; and uncertain determination of the multidimensional mass cut at the end of the simulation impose uncertainties inherent to this approach. Finally, we present a detailed analysis of the impact of such uncertainties for four self-consistent axisymmetric CCSN models initiated from solar-metallicity, nonrotating progenitors of 12, 15, 20, and 25 $${M}_{\\odot }$$ and evolved with the smaller α-network to more than 1 s after the launch of an explosion.« less

  16. A Study on the Requirements for Fast Active Turbine Tip Clearance Control Systems

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan A.; Melcher, Kevin J.

    2004-01-01

    This paper addresses the requirements of a control system for active turbine tip clearance control in a generic commercial turbofan engine through design and analysis. The control objective is to articulate the shroud in the high pressure turbine section in order to maintain a certain clearance set point given several possible engine transient events. The system must also exhibit reasonable robustness to modeling uncertainties and reasonable noise rejection properties. Two actuators were chosen to fulfill such a requirement, both of which possess different levels of technological readiness: electrohydraulic servovalves and piezoelectric stacks. Identification of design constraints, desired actuator parameters, and actuator limitations are addressed in depth; all of which are intimately tied with the hardware and controller design process. Analytical demonstrations of the performance and robustness characteristics of the two axisymmetric LQG clearance control systems are presented. Takeoff simulation results show that both actuators are capable of maintaining the clearance within acceptable bounds and demonstrate robustness to parameter uncertainty. The present model-based control strategy was employed to demonstrate the tradeoff between performance, control effort, and robustness and to implement optimal state estimation in a noisy engine environment with intent to eliminate ad hoc methods for designing reliable control systems.

  17. Implications for Post-processing Nucleosynthesis of Core-collapse Supernova Models with Lagrangian Particles

    NASA Astrophysics Data System (ADS)

    Harris, J. Austin; Hix, W. Raphael; Chertkow, Merek A.; Lee, C. T.; Lentz, Eric J.; Messer, O. E. Bronson

    2017-07-01

    We investigate core-collapse supernova (CCSN) nucleosynthesis with self-consistent, axisymmetric (2D) simulations performed using the neutrino hydrodynamics code Chimera. Computational costs have traditionally constrained the evolution of the nuclear composition within multidimensional CCSN models to, at best, a 14-species α-network capable of tracking only (α ,γ ) reactions from 4He to 60Zn. Such a simplified network limits the ability to accurately evolve detailed composition and neutronization or calculate the nuclear energy generation rate. Lagrangian tracer particles are commonly used to extend the nuclear network evolution by incorporating more realistic networks into post-processing nucleosynthesis calculations. However, limitations such as poor spatial resolution of the tracer particles inconsistent thermodynamic evolution, including misestimation of expansion timescales and uncertain determination of the multidimensional mass cut at the end of the simulation impose uncertainties inherent to this approach. We present a detailed analysis of the impact of such uncertainties for four self-consistent axisymmetric CCSN models initiated from solar-metallicity, nonrotating progenitors of 12, 15, 20, and 25 {M}⊙ and evolved with the smaller α-network to more than 1 s after the launch of an explosion.

  18. Physics-based Entry, Descent and Landing Risk Model

    NASA Technical Reports Server (NTRS)

    Gee, Ken; Huynh, Loc C.; Manning, Ted

    2014-01-01

    A physics-based risk model was developed to assess the risk associated with thermal protection system failures during the entry, descent and landing phase of a manned spacecraft mission. In the model, entry trajectories were computed using a three-degree-of-freedom trajectory tool, the aerothermodynamic heating environment was computed using an engineering-level computational tool and the thermal response of the TPS material was modeled using a one-dimensional thermal response tool. The model was capable of modeling the effect of micrometeoroid and orbital debris impact damage on the TPS thermal response. A Monte Carlo analysis was used to determine the effects of uncertainties in the vehicle state at Entry Interface, aerothermodynamic heating and material properties on the performance of the TPS design. The failure criterion was set as a temperature limit at the bondline between the TPS and the underlying structure. Both direct computation and response surface approaches were used to compute the risk. The model was applied to a generic manned space capsule design. The effect of material property uncertainty and MMOD damage on risk of failure were analyzed. A comparison of the direct computation and response surface approach was undertaken.

  19. Implications for Post-processing Nucleosynthesis of Core-collapse Supernova Models with Lagrangian Particles

    DOE PAGES

    Harris, J. Austin; Hix, W. Raphael; Chertkow, Merek A.; ...

    2017-06-26

    In this paper, we investigate core-collapse supernova (CCSN) nucleosynthesis with self-consistent, axisymmetric (2D) simulations performed using the neutrino hydrodynamics code Chimera. Computational costs have traditionally constrained the evolution of the nuclear composition within multidimensional CCSN models to, at best, a 14-species α-network capable of tracking onlymore » $$(\\alpha ,\\gamma )$$ reactions from 4He to 60Zn. Such a simplified network limits the ability to accurately evolve detailed composition and neutronization or calculate the nuclear energy generation rate. Lagrangian tracer particles are commonly used to extend the nuclear network evolution by incorporating more realistic networks into post-processing nucleosynthesis calculations. However, limitations such as poor spatial resolution of the tracer particles; inconsistent thermodynamic evolution, including misestimation of expansion timescales; and uncertain determination of the multidimensional mass cut at the end of the simulation impose uncertainties inherent to this approach. Finally, we present a detailed analysis of the impact of such uncertainties for four self-consistent axisymmetric CCSN models initiated from solar-metallicity, nonrotating progenitors of 12, 15, 20, and 25 $${M}_{\\odot }$$ and evolved with the smaller α-network to more than 1 s after the launch of an explosion.« less

  20. Impact of Uncertainty from Load-Based Reserves and Renewables on Dispatch Costs and Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bowen; Maroukis, Spencer D.; Lin, Yashen

    2016-11-21

    Aggregations of controllable loads are considered to be a fast-responding, cost-efficient, and environmental-friendly candidate for power system ancillary services. Unlike conventional service providers, the potential capacity from the aggregation is highly affected by factors like ambient conditions and load usage patterns. Previous work modeled aggregations of controllable loads (such as air conditioners) as thermal batteries, which are capable of providing reserves but with uncertain capacity. A stochastic optimal power flow problem was formulated to manage this uncertainty, as well as uncertainty in renewable generation. In this paper, we explore how the types and levels of uncertainty, generation reserve costs, andmore » controllable load capacity affect the dispatch solution, operational costs, and CO2 emissions. We also compare the results of two methods for solving the stochastic optimization problem, namely the probabilistically robust method and analytical reformulation assuming Gaussian distributions. Case studies are conducted on a modified IEEE 9-bus system with renewables, controllable loads, and congestion. We find that different types and levels of uncertainty have significant impacts on dispatch and emissions. More controllable loads and less conservative solution methodologies lead to lower costs and emissions.« less

  1. Convergence in parameters and predictions using computational experimental design.

    PubMed

    Hagen, David R; White, Jacob K; Tidor, Bruce

    2013-08-06

    Typically, biological models fitted to experimental data suffer from significant parameter uncertainty, which can lead to inaccurate or uncertain predictions. One school of thought holds that accurate estimation of the true parameters of a biological system is inherently problematic. Recent work, however, suggests that optimal experimental design techniques can select sets of experiments whose members probe complementary aspects of a biochemical network that together can account for its full behaviour. Here, we implemented an experimental design approach for selecting sets of experiments that constrain parameter uncertainty. We demonstrated with a model of the epidermal growth factor-nerve growth factor pathway that, after synthetically performing a handful of optimal experiments, the uncertainty in all 48 parameters converged below 10 per cent. Furthermore, the fitted parameters converged to their true values with a small error consistent with the residual uncertainty. When untested experimental conditions were simulated with the fitted models, the predicted species concentrations converged to their true values with errors that were consistent with the residual uncertainty. This paper suggests that accurate parameter estimation is achievable with complementary experiments specifically designed for the task, and that the resulting parametrized models are capable of accurate predictions.

  2. Hydrologic and geochemical data assimilation at the Hanford 300 Area

    NASA Astrophysics Data System (ADS)

    Chen, X.; Hammond, G. E.; Murray, C. J.; Zachara, J. M.

    2012-12-01

    In modeling the uranium migration within the Integrated Field Research Challenge (IFRC) site at the Hanford 300 Area, uncertainties arise from both hydrologic and geochemical sources. The hydrologic uncertainty includes the transient flow boundary conditions induced by dynamic variations in Columbia River stage and the underlying heterogeneous hydraulic conductivity field, while the geochemical uncertainty is a result of limited knowledge of the geochemical reaction processes and parameters, as well as heterogeneity in uranium source terms. In this work, multiple types of data, including the results from constant-injection tests, borehole flowmeter profiling, and conservative tracer tests, are sequentially assimilated across scales within a Bayesian framework to reduce the hydrologic uncertainty. The hydrologic data assimilation is then followed by geochemical data assimilation, where the goal is to infer the heterogeneous distribution of uranium sources using uranium breakthrough curves from a desorption test that took place at high spring water table. We demonstrate in our study that Ensemble-based data assimilation techniques (Ensemble Kalman filter and smoother) are efficient in integrating multiple types of data sequentially for uncertainty reduction. The computational demand is managed by using the multi-realization capability within the parallel PFLOTRAN simulator.

  3. Abductive networks applied to electronic combat

    NASA Astrophysics Data System (ADS)

    Montgomery, Gerard J.; Hess, Paul; Hwang, Jong S.

    1990-08-01

    A practical approach to dealing with combinatorial decision problems and uncertainties associated with electronic combat through the use of networks of high-level functional elements called abductive networks is presented. It describes the application of the Abductory Induction Mechanism (AIMTM) a supervised inductive learning tool for synthesizing polynomial abductive networks to the electronic combat problem domain. From databases of historical expert-generated or simulated combat engagements AIM can often induce compact and robust network models for making effective real-time electronic combat decisions despite significant uncertainties or a combinatorial explosion of possible situations. The feasibility of applying abductive networks to realize advanced combat decision aiding capabilities was demonstrated by applying AIM to a set of electronic combat simulations. The networks synthesized by AIM generated accurate assessments of the intent lethality and overall risk associated with a variety of simulated threats and produced reasonable estimates of the expected effectiveness of a group of electronic countermeasures for a large number of simulated combat scenarios. This paper presents the application of abductive networks to electronic combat summarizes the results of experiments performed using AIM discusses the benefits and limitations of applying abductive networks to electronic combat and indicates why abductive networks can often result in capabilities not attainable using alternative approaches. 1. ELECTRONIC COMBAT. UNCERTAINTY. AND MACHINE LEARNING Electronic combat has become an essential part of the ability to make war and has become increasingly complex since

  4. Importance analysis for Hudson River PCB transport and fate model parameters using robust sensitivity studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, S.; Toll, J.; Cothern, K.

    1995-12-31

    The authors have performed robust sensitivity studies of the physico-chemical Hudson River PCB model PCHEPM to identify the parameters and process uncertainties contributing the most to uncertainty in predictions of water column and sediment PCB concentrations, over the time period 1977--1991 in one segment of the lower Hudson River. The term ``robust sensitivity studies`` refers to the use of several sensitivity analysis techniques to obtain a more accurate depiction of the relative importance of different sources of uncertainty. Local sensitivity analysis provided data on the sensitivity of PCB concentration estimates to small perturbations in nominal parameter values. Range sensitivity analysismore » provided information about the magnitude of prediction uncertainty associated with each input uncertainty. Rank correlation analysis indicated which parameters had the most dominant influence on model predictions. Factorial analysis identified important interactions among model parameters. Finally, term analysis looked at the aggregate influence of combinations of parameters representing physico-chemical processes. The authors scored the results of the local and range sensitivity and rank correlation analyses. The authors considered parameters that scored high on two of the three analyses to be important contributors to PCB concentration prediction uncertainty, and treated them probabilistically in simulations. They also treated probabilistically parameters identified in the factorial analysis as interacting with important parameters. The authors used the term analysis to better understand how uncertain parameters were influencing the PCB concentration predictions. The importance analysis allowed us to reduce the number of parameters to be modeled probabilistically from 16 to 5. This reduced the computational complexity of Monte Carlo simulations, and more importantly, provided a more lucid depiction of prediction uncertainty and its causes.« less

  5. A stochastic approach to uncertainty quantification in residual moveout analysis

    NASA Astrophysics Data System (ADS)

    Johng-Ay, T.; Landa, E.; Dossou-Gbété, S.; Bordes, L.

    2015-06-01

    Oil and gas exploration and production relies usually on the interpretation of a single seismic image, which is obtained from observed data. However, the statistical nature of seismic data and the various approximations and assumptions are sources of uncertainties which may corrupt the evaluation of parameters. The quantification of these uncertainties is a major issue which supposes to help in decisions that have important social and commercial implications. The residual moveout analysis, which is an important step in seismic data processing is usually performed by a deterministic approach. In this paper we discuss a Bayesian approach to the uncertainty analysis.

  6. The two-dimensional Monte Carlo: a new methodologic paradigm for dose reconstruction for epidemiological studies.

    PubMed

    Simon, Steven L; Hoffman, F Owen; Hofer, Eduard

    2015-01-01

    Retrospective dose estimation, particularly dose reconstruction that supports epidemiological investigations of health risk, relies on various strategies that include models of physical processes and exposure conditions with detail ranging from simple to complex. Quantification of dose uncertainty is an essential component of assessments for health risk studies since, as is well understood, it is impossible to retrospectively determine the true dose for each person. To address uncertainty in dose estimation, numerical simulation tools have become commonplace and there is now an increased understanding about the needs and what is required for models used to estimate cohort doses (in the absence of direct measurement) to evaluate dose response. It now appears that for dose-response algorithms to derive the best, unbiased estimate of health risk, we need to understand the type, magnitude and interrelationships of the uncertainties of model assumptions, parameters and input data used in the associated dose estimation models. Heretofore, uncertainty analysis of dose estimates did not always properly distinguish between categories of errors, e.g., uncertainty that is specific to each subject (i.e., unshared error), and uncertainty of doses from a lack of understanding and knowledge about parameter values that are shared to varying degrees by numbers of subsets of the cohort. While mathematical propagation of errors by Monte Carlo simulation methods has been used for years to estimate the uncertainty of an individual subject's dose, it was almost always conducted without consideration of dependencies between subjects. In retrospect, these types of simple analyses are not suitable for studies with complex dose models, particularly when important input data are missing or otherwise not available. The dose estimation strategy presented here is a simulation method that corrects the previous deficiencies of analytical or simple Monte Carlo error propagation methods and is termed, due to its capability to maintain separation between shared and unshared errors, the two-dimensional Monte Carlo (2DMC) procedure. Simply put, the 2DMC method simulates alternative, possibly true, sets (or vectors) of doses for an entire cohort rather than a single set that emerges when each individual's dose is estimated independently from other subjects. Moreover, estimated doses within each simulated vector maintain proper inter-relationships such that the estimated doses for members of a cohort subgroup that share common lifestyle attributes and sources of uncertainty are properly correlated. The 2DMC procedure simulates inter-individual variability of possibly true doses within each dose vector and captures the influence of uncertainty in the values of dosimetric parameters across multiple realizations of possibly true vectors of cohort doses. The primary characteristic of the 2DMC approach, as well as its strength, are defined by the proper separation between uncertainties shared by members of the entire cohort or members of defined cohort subsets, and uncertainties that are individual-specific and therefore unshared.

  7. Risk assessment of climate systems for national security.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, George A.; Boslough, Mark Bruce Elrick; Brown, Theresa Jean

    2012-10-01

    Climate change, through drought, flooding, storms, heat waves, and melting Arctic ice, affects the production and flow of resource within and among geographical regions. The interactions among governments, populations, and sectors of the economy require integrated assessment based on risk, through uncertainty quantification (UQ). This project evaluated the capabilities with Sandia National Laboratories to perform such integrated analyses, as they relate to (inter)national security. The combining of the UQ results from climate models with hydrological and economic/infrastructure impact modeling appears to offer the best capability for national security risk assessments.

  8. A New Primary Dew-Point Generator at TUBITAK UME

    NASA Astrophysics Data System (ADS)

    Oğuz Aytekin, S.; Karaböce, N.; Heinonen, M.; Sairanen, H.

    2018-05-01

    An implementation of a new low-range primary humidity generator as a part of an international collaboration between TUBITAK UME and VTT MIKES was initiated as a EURAMET Project Number 1259. The dew-point generator was designed and constructed within the scope of the cooperation between TUBITAK UME and VTT MIKES in order to extend the dew-point temperature measurement capability of Humidity Laboratory of TUBITAK UME down to - 80 °C. The system was thoroughly characterized and validated at TUBITAK UME to support the evidence for dew-point temperature uncertainties. The new generator has a capability of operating in the range of - 80 °C to +10 °C, but at the moment, it was characterized down to - 60 °C. The core of the generator system is a saturator which is fully immersed in a liquid bath. Dry air is supplied to the saturator through a temperature-controlled pre-saturator. The operation of the system is based on the single-pressure generation method with a single pass, i.e., the dew-point temperature is only controlled by the saturator temperature, and the humidity-controlled air is not returned to the system after leaving of the saturator. The metrological performance of the saturator was investigated thoroughly at both National Metrology Institutes. The pre-saturator was also tested using a thermostatic bath at VTT MIKES prior to sending them to TUBITAK UME. This paper describes the principle and design of the generator in detail. The dew-point measurement system and the corresponding uncertainty analysis of the dew-point temperature scale realized with the generator in the range from - 60 °C to 10 °C is also presented.

  9. Large-Scale Transport Model Uncertainty and Sensitivity Analysis: Distributed Sources in Complex Hydrogeologic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sig Drellack, Lance Prothro

    2007-12-01

    The Underground Test Area (UGTA) Project of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is in the process of assessing and developing regulatory decision options based on modeling predictions of contaminant transport from underground testing of nuclear weapons at the Nevada Test Site (NTS). The UGTA Project is attempting to develop an effective modeling strategy that addresses and quantifies multiple components of uncertainty including natural variability, parameter uncertainty, conceptual/model uncertainty, and decision uncertainty in translating model results into regulatory requirements. The modeling task presents multiple unique challenges to the hydrological sciences as a result ofmore » the complex fractured and faulted hydrostratigraphy, the distributed locations of sources, the suite of reactive and non-reactive radionuclides, and uncertainty in conceptual models. Characterization of the hydrogeologic system is difficult and expensive because of deep groundwater in the arid desert setting and the large spatial setting of the NTS. Therefore, conceptual model uncertainty is partially addressed through the development of multiple alternative conceptual models of the hydrostratigraphic framework and multiple alternative models of recharge and discharge. Uncertainty in boundary conditions is assessed through development of alternative groundwater fluxes through multiple simulations using the regional groundwater flow model. Calibration of alternative models to heads and measured or inferred fluxes has not proven to provide clear measures of model quality. Therefore, model screening by comparison to independently-derived natural geochemical mixing targets through cluster analysis has also been invoked to evaluate differences between alternative conceptual models. Advancing multiple alternative flow models, sensitivity of transport predictions to parameter uncertainty is assessed through Monte Carlo simulations. The simulations are challenged by the distributed sources in each of the Corrective Action Units, by complex mass transfer processes, and by the size and complexity of the field-scale flow models. An efficient methodology utilizing particle tracking results and convolution integrals provides in situ concentrations appropriate for Monte Carlo analysis. Uncertainty in source releases and transport parameters including effective porosity, fracture apertures and spacing, matrix diffusion coefficients, sorption coefficients, and colloid load and mobility are considered. With the distributions of input uncertainties and output plume volumes, global analysis methods including stepwise regression, contingency table analysis, and classification tree analysis are used to develop sensitivity rankings of parameter uncertainties for each model considered, thus assisting a variety of decisions.« less

  10. Uncertainty Measurement for Trace Element Analysis of Uranium and Plutonium Samples by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallimore, David L.

    2012-06-13

    The measurement uncertainty estimatino associated with trace element analysis of impurities in U and Pu was evaluated using the Guide to the Expression of Uncertainty Measurement (GUM). I this evalution the uncertainty sources were identified and standard uncertainties for the components were categorized as either Type A or B. The combined standard uncertainty was calculated and a coverage factor k = 2 was applied to obtain the expanded uncertainty, U. The ICP-AES and ICP-MS methods used were deveoped for the multi-element analysis of U and Pu samples. A typical analytical run consists of standards, process blanks, samples, matrix spiked samples,more » post digestion spiked samples and independent calibration verification standards. The uncertainty estimation was performed on U and Pu samples that have been analyzed previously as part of the U and Pu Sample Exchange Programs. Control chart results and data from the U and Pu metal exchange programs were combined with the GUM into a concentration dependent estimate of the expanded uncertainty. Comparison of trace element uncertainties obtained using this model was compared to those obtained for trace element results as part of the Exchange programs. This process was completed for all trace elements that were determined to be above the detection limit for the U and Pu samples.« less

  11. Assessing Uncertainties in Surface Water Security: A Probabilistic Multi-model Resampling approach

    NASA Astrophysics Data System (ADS)

    Rodrigues, D. B. B.

    2015-12-01

    Various uncertainties are involved in the representation of processes that characterize interactions between societal needs, ecosystem functioning, and hydrological conditions. Here, we develop an empirical uncertainty assessment of water security indicators that characterize scarcity and vulnerability, based on a multi-model and resampling framework. We consider several uncertainty sources including those related to: i) observed streamflow data; ii) hydrological model structure; iii) residual analysis; iv) the definition of Environmental Flow Requirement method; v) the definition of critical conditions for water provision; and vi) the critical demand imposed by human activities. We estimate the overall uncertainty coming from the hydrological model by means of a residual bootstrap resampling approach, and by uncertainty propagation through different methodological arrangements applied to a 291 km² agricultural basin within the Cantareira water supply system in Brazil. Together, the two-component hydrograph residual analysis and the block bootstrap resampling approach result in a more accurate and precise estimate of the uncertainty (95% confidence intervals) in the simulated time series. We then compare the uncertainty estimates associated with water security indicators using a multi-model framework and provided by each model uncertainty estimation approach. The method is general and can be easily extended forming the basis for meaningful support to end-users facing water resource challenges by enabling them to incorporate a viable uncertainty analysis into a robust decision making process.

  12. Assessing uncertainties in surface water security: An empirical multimodel approach

    NASA Astrophysics Data System (ADS)

    Rodrigues, Dulce B. B.; Gupta, Hoshin V.; Mendiondo, Eduardo M.; Oliveira, Paulo Tarso S.

    2015-11-01

    Various uncertainties are involved in the representation of processes that characterize interactions among societal needs, ecosystem functioning, and hydrological conditions. Here we develop an empirical uncertainty assessment of water security indicators that characterize scarcity and vulnerability, based on a multimodel and resampling framework. We consider several uncertainty sources including those related to (i) observed streamflow data; (ii) hydrological model structure; (iii) residual analysis; (iv) the method for defining Environmental Flow Requirement; (v) the definition of critical conditions for water provision; and (vi) the critical demand imposed by human activities. We estimate the overall hydrological model uncertainty by means of a residual bootstrap resampling approach, and by uncertainty propagation through different methodological arrangements applied to a 291 km2 agricultural basin within the Cantareira water supply system in Brazil. Together, the two-component hydrograph residual analysis and the block bootstrap resampling approach result in a more accurate and precise estimate of the uncertainty (95% confidence intervals) in the simulated time series. We then compare the uncertainty estimates associated with water security indicators using a multimodel framework and the uncertainty estimates provided by each model uncertainty estimation approach. The range of values obtained for the water security indicators suggests that the models/methods are robust and performs well in a range of plausible situations. The method is general and can be easily extended, thereby forming the basis for meaningful support to end-users facing water resource challenges by enabling them to incorporate a viable uncertainty analysis into a robust decision-making process.

  13. SOARCA Peach Bottom Atomic Power Station Long-Term Station Blackout Uncertainty Analysis: Knowledge Advancement.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauntt, Randall O.; Mattie, Patrick D.; Bixler, Nathan E.

    2014-02-01

    This paper describes the knowledge advancements from the uncertainty analysis for the State-of- the-Art Reactor Consequence Analyses (SOARCA) unmitigated long-term station blackout accident scenario at the Peach Bottom Atomic Power Station. This work assessed key MELCOR and MELCOR Accident Consequence Code System, Version 2 (MACCS2) modeling uncertainties in an integrated fashion to quantify the relative importance of each uncertain input on potential accident progression, radiological releases, and off-site consequences. This quantitative uncertainty analysis provides measures of the effects on consequences, of each of the selected uncertain parameters both individually and in interaction with other parameters. The results measure the modelmore » response (e.g., variance in the output) to uncertainty in the selected input. Investigation into the important uncertain parameters in turn yields insights into important phenomena for accident progression and off-site consequences. This uncertainty analysis confirmed the known importance of some parameters, such as failure rate of the Safety Relief Valve in accident progression modeling and the dry deposition velocity in off-site consequence modeling. The analysis also revealed some new insights, such as dependent effect of cesium chemical form for different accident progressions. (auth)« less

  14. Holistic uncertainty analysis in river basin modeling for climate vulnerability assessment

    NASA Astrophysics Data System (ADS)

    Taner, M. U.; Wi, S.; Brown, C.

    2017-12-01

    The challenges posed by uncertain future climate are a prominent concern for water resources managers. A number of frameworks exist for assessing the impacts of climate-related uncertainty, including internal climate variability and anthropogenic climate change, such as scenario-based approaches and vulnerability-based approaches. While in many cases climate uncertainty may be dominant, other factors such as future evolution of the river basin, hydrologic response and reservoir operations are potentially significant sources of uncertainty. While uncertainty associated with modeling hydrologic response has received attention, very little attention has focused on the range of uncertainty and possible effects of the water resources infrastructure and management. This work presents a holistic framework that allows analysis of climate, hydrologic and water management uncertainty in water resources systems analysis with the aid of a water system model designed to integrate component models for hydrology processes and water management activities. The uncertainties explored include those associated with climate variability and change, hydrologic model parameters, and water system operation rules. A Bayesian framework is used to quantify and model the uncertainties at each modeling steps in integrated fashion, including prior and the likelihood information about model parameters. The framework is demonstrated in a case study for the St. Croix Basin located at border of United States and Canada.

  15. Design and Characterization of the 4STAR Sun-Sky Spectrometer with Results from 4- Way Intercomparison of 4STAR, AATS-14, Prede, and Cimel Photometers at Mauna Loa Observatory.

    NASA Astrophysics Data System (ADS)

    Flynn, C. J.; Dunagan, S. E.; Johnson, R. R.; Schmid, B.; Shinozuka, Y.; Ramachandran, S.; Livingston, J. M.; Russell, P. B.; Redemann, J.; Tran, A. K.; Holben, B. N.

    2008-12-01

    Uncertainties in radiative forcing of climate are still dominated by uncertainties in forcing by aerosols. Aerosols impact the radiation balance in three primary ways: the direct effect through scattering and absorption of radiation, the indirect effect by acting as cloud condensation nuclei affecting cloud optical depth and longevity, and the semi-direct effect affecting cloud formation and longevity through heating and thermodynamics. An active collaboration between the Pacific Northwest National Laboratory (PNNL), National Aeronautics and Space Administration (NASA) Ames Research Center (ARC), and NASA Goddard Space Flight Center (GSFC) is advancing new instrument concepts with application to reducing these aerosol uncertainties. The concept of 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) combines airborne sun tracking capabilities of the Ames Airborne Tracking Sun Photometer (AATS-14) and Aeronet-like sky scanning capability with state-of-the-art monolithic spectrometry. The overall science goal for the new instruments is to improve knowledge of atmospheric constituents and their links to climate. The high-resolution spectral capability will improve retrievals of gas constituents (e.g., H2O, O3, and NO2) and thereby improve determination of aerosol properties as residual components of the total optical depth. The sky scanning capability will enable retrievals of aerosol type (via complex refractive index and shape) and aerosol size distribution extending to larger sizes than attainable by direct-beam sun photometry alone. Additional technical goals are to reduce instrument size, weight, and power requirements while increasing autonomy and component modularity to permit operation on a wide range of aircraft including unmanned aerial vehicles (UAVs). To investigate techniques to accomplish these goals, we developed a ground-based prototype, 4STAR-Ground. The 4STAR-Ground operating performance has been characterized in many tests including field of view (FOV) scans, repeatability testing of the fiber optic coupler, calibration of diffuse sky radiance with integrating sphere, and calibration of solar irradiance via Langley retrievals. Recent results from an intercomparison on Mauna Loa Observatory involving 4STAR, AATS-14, AERONET Cimel sun-sky photometers, and a Prede sun-sky photometer will be presented.

  16. Governing the Entrepreneurial Mindset: Business Students' Constructions of Entrepreneurial Subjectivity

    ERIC Educational Resources Information Center

    Laalo, Hanna; Heinonen, Jarna

    2016-01-01

    Promoting entrepreneurship education to develop the entrepreneurial competences and mindsets of citizens has become an important mission on the supranational educational policy agenda. This endeavour constructs the ideal of a self-guided entrepreneurial subject who is active, adaptable and capable of tolerating uncertainty. Using the theorizations…

  17. Probability and possibility-based representations of uncertainty in fault tree analysis.

    PubMed

    Flage, Roger; Baraldi, Piero; Zio, Enrico; Aven, Terje

    2013-01-01

    Expert knowledge is an important source of input to risk analysis. In practice, experts might be reluctant to characterize their knowledge and the related (epistemic) uncertainty using precise probabilities. The theory of possibility allows for imprecision in probability assignments. The associated possibilistic representation of epistemic uncertainty can be combined with, and transformed into, a probabilistic representation; in this article, we show this with reference to a simple fault tree analysis. We apply an integrated (hybrid) probabilistic-possibilistic computational framework for the joint propagation of the epistemic uncertainty on the values of the (limiting relative frequency) probabilities of the basic events of the fault tree, and we use possibility-probability (probability-possibility) transformations for propagating the epistemic uncertainty within purely probabilistic and possibilistic settings. The results of the different approaches (hybrid, probabilistic, and possibilistic) are compared with respect to the representation of uncertainty about the top event (limiting relative frequency) probability. Both the rationale underpinning the approaches and the computational efforts they require are critically examined. We conclude that the approaches relevant in a given setting depend on the purpose of the risk analysis, and that further research is required to make the possibilistic approaches operational in a risk analysis context. © 2012 Society for Risk Analysis.

  18. Decision Making Under Uncertainty - Bridging the Gap Between End User Needs and Science Capability

    NASA Astrophysics Data System (ADS)

    Verdon-Kidd, D. C.; Kiem, A.; Austin, E. K.

    2012-12-01

    Successful adaptation outcomes depend on decision making based on the best available climate science information. However, a fundamental barrier exists, namely the 'gap' between information that climate science can currently provide and the information that is practically useful for end users and decision makers. This study identifies the major contributing factors to the 'gap' from an Australian perspective and provides recommendations as to ways in which the 'gap' may be narrowed. This was achieved via a literature review, online survey (targeted to providers of climate information and end users of that information), workshop (where both climate scientists and end users came together to discuss key issues) and focus group. The study confirmed that uncertainty in climate science is a key barrier to adaptation. The issue of uncertainty was found to be multi-faceted, with issues identified in terms of communication of uncertainty, misunderstanding of uncertainty and the lack of tools/methods to deal with uncertainty. There were also key differences in terms of expectations for the future - most end users were of the belief that uncertainty associated with future climate projections would reduce within the next five to 10 years, however producers of climate science information were well aware that this would most likely not be the case. This is a concerning finding as end users may delay taking action on adaptation and risk planning until the uncertainties are reduced - a situation which may never eventuate or may occur after the optimal time for action. Improved communication and packaging of climate information was another key theme that was highlighted in this study. Importantly, it was made clear that improved communication is not just about more glossy brochures and presentations by climate scientists, rather there is a role for a program or group to fill this role (coined a 'knowledge broker' during the workshop and focus group). The role of the 'knowledge broker' would be to package, translate (both from end user to scientist and scientist to end user) and transform climate information. Importantly communication of uncertainty needs to be improved so that end users are aware of all the caveats and what can realistically be expected from climate science now and in the near future. Overall this study confirmed that there is indeed a 'gap' between end user's needs and science capability, particularly with respect to uncertainty, communication and packaging of climate information. This 'gap' has been a barrier to successful climate change adaptation in the past. While it is unrealistic to think we could ever close the 'gap' completely, based on the recommendations provided in this paper, it may be possible to bridge the 'gap' (or at least improve people's awareness of the 'gap'). Furthermore, the insights gained and recommendations provided from this study, while based on an Australian context, are likely to be applicable to many other regions of the world, grappling with similar issues.

  19. A General Uncertainty Quantification Methodology for Cloud Microphysical Property Retrievals

    NASA Astrophysics Data System (ADS)

    Tang, Q.; Xie, S.; Chen, X.; Zhao, C.

    2014-12-01

    The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program provides long-term (~20 years) ground-based cloud remote sensing observations. However, there are large uncertainties in the retrieval products of cloud microphysical properties based on the active and/or passive remote-sensing measurements. To address this uncertainty issue, a DOE Atmospheric System Research scientific focus study, Quantification of Uncertainties in Cloud Retrievals (QUICR), has been formed. In addition to an overview of recent progress of QUICR, we will demonstrate the capacity of an observation-based general uncertainty quantification (UQ) methodology via the ARM Climate Research Facility baseline cloud microphysical properties (MICROBASE) product. This UQ method utilizes the Karhunen-Loéve expansion (KLE) and Central Limit Theorems (CLT) to quantify the retrieval uncertainties from observations and algorithm parameters. The input perturbations are imposed on major modes to take into account the cross correlations between input data, which greatly reduces the dimension of random variables (up to a factor of 50) and quantifies vertically resolved full probability distribution functions of retrieved quantities. Moreover, this KLE/CLT approach has the capability of attributing the uncertainties in the retrieval output to individual uncertainty source and thus sheds light on improving the retrieval algorithm and observations. We will present the results of a case study for the ice water content at the Southern Great Plains during an intensive observing period on March 9, 2000. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  20. Robustness analysis of non-ordinary Petri nets for flexible assembly systems

    NASA Astrophysics Data System (ADS)

    Hsieh, Fu-Shiung

    2010-05-01

    Non-ordinary controlled Petri nets (NCPNs) have the advantages to model flexible assembly systems in which multiple identical resources may be required to perform an operation. However, existing studies on NCPNs are still limited. For example, the robustness properties of NCPNs have not been studied. This motivates us to develop an analysis method for NCPNs. Robustness analysis concerns the ability for a system to maintain operation in the presence of uncertainties. It provides an alternative way to analyse a perturbed system without reanalysis. In our previous research, we have analysed the robustness properties of several subclasses of ordinary controlled Petri nets. To study the robustness properties of NCPNs, we augment NCPNs with an uncertainty model, which specifies an upper bound on the uncertainties for each reachable marking. The resulting PN models are called non-ordinary controlled Petri nets with uncertainties (NCPNU). Based on NCPNU, the problem is to characterise the maximal tolerable uncertainties for each reachable marking. The computational complexities to characterise maximal tolerable uncertainties for each reachable marking grow exponentially with the size of the nets. Instead of considering general NCPNU, we limit our scope to a subclass of PN models called non-ordinary controlled flexible assembly Petri net with uncertainties (NCFAPNU) for assembly systems and study its robustness. We will extend the robustness analysis to NCFAPNU. We identify two types of uncertainties under which the liveness of NCFAPNU can be maintained.

  1. Uncertainty quantification of Antarctic contribution to sea-level rise using the fast Elementary Thermomechanical Ice Sheet (f.ETISh) model

    NASA Astrophysics Data System (ADS)

    Bulthuis, Kevin; Arnst, Maarten; Pattyn, Frank; Favier, Lionel

    2017-04-01

    Uncertainties in sea-level rise projections are mostly due to uncertainties in Antarctic ice-sheet predictions (IPCC AR5 report, 2013), because key parameters related to the current state of the Antarctic ice sheet (e.g. sub-ice-shelf melting) and future climate forcing are poorly constrained. Here, we propose to improve the predictions of Antarctic ice-sheet behaviour using new uncertainty quantification methods. As opposed to ensemble modelling (Bindschadler et al., 2013) which provides a rather limited view on input and output dispersion, new stochastic methods (Le Maître and Knio, 2010) can provide deeper insight into the impact of uncertainties on complex system behaviour. Such stochastic methods usually begin with deducing a probabilistic description of input parameter uncertainties from the available data. Then, the impact of these input parameter uncertainties on output quantities is assessed by estimating the probability distribution of the outputs by means of uncertainty propagation methods such as Monte Carlo methods or stochastic expansion methods. The use of such uncertainty propagation methods in glaciology may be computationally costly because of the high computational complexity of ice-sheet models. This challenge emphasises the importance of developing reliable and computationally efficient ice-sheet models such as the f.ETISh ice-sheet model (Pattyn, 2015), a new fast thermomechanical coupled ice sheet/ice shelf model capable of handling complex and critical processes such as the marine ice-sheet instability mechanism. Here, we apply these methods to investigate the role of uncertainties in sub-ice-shelf melting, calving rates and climate projections in assessing Antarctic contribution to sea-level rise for the next centuries using the f.ETISh model. We detail the methods and show results that provide nominal values and uncertainty bounds for future sea-level rise as a reflection of the impact of the input parameter uncertainties under consideration, as well as a ranking of the input parameter uncertainties in the order of the significance of their contribution to uncertainty in future sea-level rise. In addition, we discuss how limitations posed by the available information (poorly constrained data) pose challenges that motivate our current research.

  2. A geostatistics-informed hierarchical sensitivity analysis method for complex groundwater flow and transport modeling: GEOSTATISTICAL SENSITIVITY ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Heng; Chen, Xingyuan; Ye, Ming

    Sensitivity analysis is an important tool for quantifying uncertainty in the outputs of mathematical models, especially for complex systems with a high dimension of spatially correlated parameters. Variance-based global sensitivity analysis has gained popularity because it can quantify the relative contribution of uncertainty from different sources. However, its computational cost increases dramatically with the complexity of the considered model and the dimension of model parameters. In this study we developed a hierarchical sensitivity analysis method that (1) constructs an uncertainty hierarchy by analyzing the input uncertainty sources, and (2) accounts for the spatial correlation among parameters at each level ofmore » the hierarchy using geostatistical tools. The contribution of uncertainty source at each hierarchy level is measured by sensitivity indices calculated using the variance decomposition method. Using this methodology, we identified the most important uncertainty source for a dynamic groundwater flow and solute transport in model at the Department of Energy (DOE) Hanford site. The results indicate that boundary conditions and permeability field contribute the most uncertainty to the simulated head field and tracer plume, respectively. The relative contribution from each source varied spatially and temporally as driven by the dynamic interaction between groundwater and river water at the site. By using a geostatistical approach to reduce the number of realizations needed for the sensitivity analysis, the computational cost of implementing the developed method was reduced to a practically manageable level. The developed sensitivity analysis method is generally applicable to a wide range of hydrologic and environmental problems that deal with high-dimensional spatially-distributed parameters.« less

  3. Uncertainties propagation and global sensitivity analysis of the frequency response function of piezoelectric energy harvesters

    NASA Astrophysics Data System (ADS)

    Ruiz, Rafael O.; Meruane, Viviana

    2017-06-01

    The goal of this work is to describe a framework to propagate uncertainties in piezoelectric energy harvesters (PEHs). These uncertainties are related to the incomplete knowledge of the model parameters. The framework presented could be employed to conduct prior robust stochastic predictions. The prior analysis assumes a known probability density function for the uncertain variables and propagates the uncertainties to the output voltage. The framework is particularized to evaluate the behavior of the frequency response functions (FRFs) in PEHs, while its implementation is illustrated by the use of different unimorph and bimorph PEHs subjected to different scenarios: free of uncertainties, common uncertainties, and uncertainties as a product of imperfect clamping. The common variability associated with the PEH parameters are tabulated and reported. A global sensitivity analysis is conducted to identify the Sobol indices. Results indicate that the elastic modulus, density, and thickness of the piezoelectric layer are the most relevant parameters of the output variability. The importance of including the model parameter uncertainties in the estimation of the FRFs is revealed. In this sense, the present framework constitutes a powerful tool in the robust design and prediction of PEH performance.

  4. New analysis strategies for micro aspheric lens metrology

    NASA Astrophysics Data System (ADS)

    Gugsa, Solomon Abebe

    Effective characterization of an aspheric micro lens is critical for understanding and improving processing in micro-optic manufacturing. Since most microlenses are plano-convex, where the convex geometry is a conic surface, current practice is often limited to obtaining an estimate of the lens conic constant, which average out the surface geometry that departs from an exact conic surface and any addition surface irregularities. We have developed a comprehensive approach of estimating the best fit conic and its uncertainty, and in addition propose an alternative analysis that focuses on surface errors rather than best-fit conic constant. We describe our new analysis strategy based on the two most dominant micro lens metrology methods in use today, namely, scanning white light interferometry (SWLI) and phase shifting interferometry (PSI). We estimate several parameters from the measurement. The major uncertainty contributors for SWLI are the estimates of base radius of curvature, the aperture of the lens, the sag of the lens, noise in the measurement, and the center of the lens. In the case of PSI the dominant uncertainty contributors are noise in the measurement, the radius of curvature, and the aperture. Our best-fit conic procedure uses least squares minimization to extract a best-fit conic value, which is then subjected to a Monte Carlo analysis to capture combined uncertainty. In our surface errors analysis procedure, we consider the surface errors as the difference between the measured geometry and the best-fit conic surface or as the difference between the measured geometry and the design specification for the lens. We focus on a Zernike polynomial description of the surface error, and again a Monte Carlo analysis is used to estimate a combined uncertainty, which in this case is an uncertainty for each Zernike coefficient. Our approach also allows us to investigate the effect of individual uncertainty parameters and measurement noise on both the best-fit conic constant analysis and the surface errors analysis, and compare the individual contributions to the overall uncertainty.

  5. Estimating Uncertainty in N2O Emissions from US Cropland Soils

    USDA-ARS?s Scientific Manuscript database

    A Monte Carlo analysis was combined with an empirically-based approach to quantify uncertainties in soil N2O emissions from US croplands estimated with the DAYCENT simulation model. Only a subset of croplands was simulated in the Monte Carlo analysis which was used to infer uncertainties across the ...

  6. Uncertainty Analysis of Inertial Model Attitude Sensor Calibration and Application with a Recommended New Calibration Method

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Tcheng, Ping

    1999-01-01

    Statistical tools, previously developed for nonlinear least-squares estimation of multivariate sensor calibration parameters and the associated calibration uncertainty analysis, have been applied to single- and multiple-axis inertial model attitude sensors used in wind tunnel testing to measure angle of attack and roll angle. The analysis provides confidence and prediction intervals of calibrated sensor measurement uncertainty as functions of applied input pitch and roll angles. A comparative performance study of various experimental designs for inertial sensor calibration is presented along with corroborating experimental data. The importance of replicated calibrations over extended time periods has been emphasized; replication provides independent estimates of calibration precision and bias uncertainties, statistical tests for calibration or modeling bias uncertainty, and statistical tests for sensor parameter drift over time. A set of recommendations for a new standardized model attitude sensor calibration method and usage procedures is included. The statistical information provided by these procedures is necessary for the uncertainty analysis of aerospace test results now required by users of industrial wind tunnel test facilities.

  7. Stochastic subspace identification for operational modal analysis of an arch bridge

    NASA Astrophysics Data System (ADS)

    Loh, Chin-Hsiung; Chen, Ming-Che; Chao, Shu-Hsien

    2012-04-01

    In this paer the application of output-only system identification technique, known as Stochastic Subspace Identification (SSI) algorithms, for civil infrastructures is carried out. The ability of covariance driven stochastic subspace identification (SSI-COV) was proved through the analysis of the ambient data of an arch bridge under operational condition. A newly developed signal processing technique, Singular Spectrum analysis (SSA), capable to smooth noisy signals, is adopted for pre-processing the recorded data before the SSI. The conjunction of SSA and SSICOV provides a useful criterion for the system order determination. With the aim of estimating accurate modal parameters of the structure in off-line analysis, a stabilization diagram is constructed by plotting the identified poles of the system with increasing the size of data Hankel matrix. Identification task of a real structure, Guandu Bridge, is carried out to identify the system natural frequencies and mode shapes. The uncertainty of the identified model parameters from output-only measurement of the bridge under operation condition, such as temperature and traffic loading conditions, is discussed.

  8. Risk-Informed External Hazards Analysis for Seismic and Flooding Phenomena for a Generic PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parisi, Carlo; Prescott, Steve; Ma, Zhegang

    This report describes the activities performed during the FY2017 for the US-DOE Light Water Reactor Sustainability Risk-Informed Safety Margin Characterization (LWRS-RISMC), Industry Application #2. The scope of Industry Application #2 is to deliver a risk-informed external hazards safety analysis for a representative nuclear power plant. Following the advancements occurred during the previous FYs (toolkits identification, models development), FY2017 focused on: increasing the level of realism of the analysis; improving the tools and the coupling methodologies. In particular the following objectives were achieved: calculation of buildings pounding and their effects on components seismic fragility; development of a SAPHIRE code PRA modelsmore » for 3-loops Westinghouse PWR; set-up of a methodology for performing static-dynamic PRA coupling between SAPHIRE and EMRALD codes; coupling RELAP5-3D/RAVEN for performing Best-Estimate Plus Uncertainty analysis and automatic limit surface search; and execute sample calculations for demonstrating the capabilities of the toolkit in performing a risk-informed external hazards safety analyses.« less

  9. Uncertainty Estimation Improves Energy Measurement and Verification Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, Travis; Price, Phillip N.; Sohn, Michael D.

    2014-05-14

    Implementing energy conservation measures in buildings can reduce energy costs and environmental impacts, but such measures cost money to implement so intelligent investment strategies require the ability to quantify the energy savings by comparing actual energy used to how much energy would have been used in absence of the conservation measures (known as the baseline energy use). Methods exist for predicting baseline energy use, but a limitation of most statistical methods reported in the literature is inadequate quantification of the uncertainty in baseline energy use predictions. However, estimation of uncertainty is essential for weighing the risks of investing in retrofits.more » Most commercial buildings have, or soon will have, electricity meters capable of providing data at short time intervals. These data provide new opportunities to quantify uncertainty in baseline predictions, and to do so after shorter measurement durations than are traditionally used. In this paper, we show that uncertainty estimation provides greater measurement and verification (M&V) information and helps to overcome some of the difficulties with deciding how much data is needed to develop baseline models and to confirm energy savings. We also show that cross-validation is an effective method for computing uncertainty. In so doing, we extend a simple regression-based method of predicting energy use using short-interval meter data. We demonstrate the methods by predicting energy use in 17 real commercial buildings. We discuss the benefits of uncertainty estimates which can provide actionable decision making information for investing in energy conservation measures.« less

  10. Toward best practice framing of uncertainty in scientific publications: A review of Water Resources Research abstracts

    NASA Astrophysics Data System (ADS)

    Guillaume, Joseph H. A.; Helgeson, Casey; Elsawah, Sondoss; Jakeman, Anthony J.; Kummu, Matti

    2017-08-01

    Uncertainty is recognized as a key issue in water resources research, among other sciences. Discussions of uncertainty typically focus on tools and techniques applied within an analysis, e.g., uncertainty quantification and model validation. But uncertainty is also addressed outside the analysis, in writing scientific publications. The language that authors use conveys their perspective of the role of uncertainty when interpreting a claim—what we call here "framing" the uncertainty. This article promotes awareness of uncertainty framing in four ways. (1) It proposes a typology of eighteen uncertainty frames, addressing five questions about uncertainty. (2) It describes the context in which uncertainty framing occurs. This is an interdisciplinary topic, involving philosophy of science, science studies, linguistics, rhetoric, and argumentation. (3) We analyze the use of uncertainty frames in a sample of 177 abstracts from the Water Resources Research journal in 2015. This helped develop and tentatively verify the typology, and provides a snapshot of current practice. (4) We make provocative recommendations to achieve a more influential, dynamic science. Current practice in uncertainty framing might be described as carefully considered incremental science. In addition to uncertainty quantification and degree of belief (present in ˜5% of abstracts), uncertainty is addressed by a combination of limiting scope, deferring to further work (˜25%) and indicating evidence is sufficient (˜40%)—or uncertainty is completely ignored (˜8%). There is a need for public debate within our discipline to decide in what context different uncertainty frames are appropriate. Uncertainty framing cannot remain a hidden practice evaluated only by lone reviewers.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaohu; Shi, Di; Wang, Zhiwei

    Shunt FACTS devices, such as, a Static Var Compensator (SVC), are capable of providing local reactive power compensation. They are widely used in the network to reduce the real power loss and improve the voltage profile. This paper proposes a planning model based on mixed integer conic programming (MICP) to optimally allocate SVCs in the transmission network considering load uncertainty. The load uncertainties are represented by a number of scenarios. Reformulation and linearization techniques are utilized to transform the original non-convex model into a convex second order cone programming (SOCP) model. Numerical case studies based on the IEEE 30-bus systemmore » demonstrate the effectiveness of the proposed planning model.« less

  12. A Review On Accuracy and Uncertainty of Spatial Data and Analyses with special reference to Urban and Hydrological Modelling

    NASA Astrophysics Data System (ADS)

    Devendran, A. A.; Lakshmanan, G.

    2014-11-01

    Data quality for GIS processing and analysis is becoming an increased concern due to the accelerated application of GIS technology for problem solving and decision making roles. Uncertainty in the geographic representation of the real world arises as these representations are incomplete. Identification of the sources of these uncertainties and the ways in which they operate in GIS based representations become crucial in any spatial data representation and geospatial analysis applied to any field of application. This paper reviews the articles on the various components of spatial data quality and various uncertainties inherent in them and special focus is paid to two fields of application such as Urban Simulation and Hydrological Modelling. Urban growth is a complicated process involving the spatio-temporal changes of all socio-economic and physical components at different scales. Cellular Automata (CA) model is one of the simulation models, which randomly selects potential cells for urbanisation and the transition rules evaluate the properties of the cell and its neighbour. Uncertainty arising from CA modelling is assessed mainly using sensitivity analysis including Monte Carlo simulation method. Likewise, the importance of hydrological uncertainty analysis has been emphasized in recent years and there is an urgent need to incorporate uncertainty estimation into water resources assessment procedures. The Soil and Water Assessment Tool (SWAT) is a continuous time watershed model to evaluate various impacts of land use management and climate on hydrology and water quality. Hydrological model uncertainties using SWAT model are dealt primarily by Generalized Likelihood Uncertainty Estimation (GLUE) method.

  13. Advances in Geologic Disposal System Modeling and Application to Crystalline Rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariner, Paul E.; Stein, Emily R.; Frederick, Jennifer M.

    The Used Fuel Disposition Campaign (UFDC) of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of used nuclear fuel (UNF) and high-level nuclear waste (HLW). Two of the high priorities for UFDC disposal R&D are design concept development and disposal system modeling (DOE 2011). These priorities are directly addressed in the UFDC Generic Disposal Systems Analysis (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic mediamore » (e.g., salt, granite, clay, and deep borehole disposal). This report describes specific GDSA activities in fiscal year 2016 (FY 2016) toward the development of the enhanced disposal system modeling and analysis capability for geologic disposal of nuclear waste. The GDSA framework employs the PFLOTRAN thermal-hydrologic-chemical multi-physics code and the Dakota uncertainty sampling and propagation code. Each code is designed for massively-parallel processing in a high-performance computing (HPC) environment. Multi-physics representations in PFLOTRAN are used to simulate various coupled processes including heat flow, fluid flow, waste dissolution, radionuclide release, radionuclide decay and ingrowth, precipitation and dissolution of secondary phases, and radionuclide transport through engineered barriers and natural geologic barriers to the biosphere. Dakota is used to generate sets of representative realizations and to analyze parameter sensitivity.« less

  14. Safety envelope for load tolerance of structural element design based on multi-stage testing

    DOE PAGES

    Park, Chanyoung; Kim, Nam H.

    2016-09-06

    Structural elements, such as stiffened panels and lap joints, are basic components of aircraft structures. For aircraft structural design, designers select predesigned elements satisfying the design load requirement based on their load-carrying capabilities. Therefore, estimation of safety envelope of structural elements for load tolerances would be a good investment for design purpose. In this article, a method of estimating safety envelope is presented using probabilistic classification, which can estimate a specific level of failure probability under both aleatory and epistemic uncertainties. An important contribution of this article is that the calculation uncertainty is reflected in building a safety envelope usingmore » Gaussian process, and the effect of element test data on reducing the calculation uncertainty is incorporated by updating the Gaussian process model with the element test data. It is shown that even one element test can significantly reduce the calculation uncertainty due to lacking knowledge of actual physics, so that conservativeness in a safety envelope is significantly reduced. The proposed approach was demonstrated with a cantilever beam example, which represents a structural element. The example shows that calculation uncertainty provides about 93% conservativeness against the uncertainty due to a few element tests. As a result, it is shown that even a single element test can increase the load tolerance modeled with the safety envelope by 20%.« less

  15. Uncertainty quantification and validation of 3D lattice scaffolds for computer-aided biomedical applications.

    PubMed

    Gorguluarslan, Recep M; Choi, Seung-Kyum; Saldana, Christopher J

    2017-07-01

    A methodology is proposed for uncertainty quantification and validation to accurately predict the mechanical response of lattice structures used in the design of scaffolds. Effective structural properties of the scaffolds are characterized using a developed multi-level stochastic upscaling process that propagates the quantified uncertainties at strut level to the lattice structure level. To obtain realistic simulation models for the stochastic upscaling process and minimize the experimental cost, high-resolution finite element models of individual struts were reconstructed from the micro-CT scan images of lattice structures which are fabricated by selective laser melting. The upscaling method facilitates the process of determining homogenized strut properties to reduce the computational cost of the detailed simulation model for the scaffold. Bayesian Information Criterion is utilized to quantify the uncertainties with parametric distributions based on the statistical data obtained from the reconstructed strut models. A systematic validation approach that can minimize the experimental cost is also developed to assess the predictive capability of the stochastic upscaling method used at the strut level and lattice structure level. In comparison with physical compression test results, the proposed methodology of linking the uncertainty quantification with the multi-level stochastic upscaling method enabled an accurate prediction of the elastic behavior of the lattice structure with minimal experimental cost by accounting for the uncertainties induced by the additive manufacturing process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Uncertainty assessment of urban pluvial flood risk in a context of climate change adaptation decision making

    NASA Astrophysics Data System (ADS)

    Arnbjerg-Nielsen, Karsten; Zhou, Qianqian

    2014-05-01

    There has been a significant increase in climatic extremes in many regions. In Central and Northern Europe, this has led to more frequent and more severe floods. Along with improved flood modelling technologies this has enabled development of economic assessment of climate change adaptation to increasing urban flood risk. Assessment of adaptation strategies often requires a comprehensive risk-based economic analysis of current risk, drivers of change of risk over time, and measures to reduce the risk. However, such studies are often associated with large uncertainties. The uncertainties arise from basic assumptions in the economic analysis and the hydrological model, but also from the projection of future societies to local climate change impacts and suitable adaptation options. This presents a challenge to decision makers when trying to identify robust measures. We present an integrated uncertainty analysis, which can assess and quantify the overall uncertainty in relation to climate change adaptation to urban flash floods. The analysis is based on an uncertainty cascade that by means of Monte Carlo simulations of flood risk assessments incorporates climate change impacts as a key driver of risk changes over time. The overall uncertainty is then attributed to six bulk processes: climate change impact, urban rainfall-runoff processes, stage-depth functions, unit cost of repair, cost of adaptation measures, and discount rate. We apply the approach on an urban hydrological catchment in Odense, Denmark, and find that the uncertainty on the climate change impact appears to have the least influence on the net present value of the studied adaptation measures-. This does not imply that the climate change impact is not important, but that the uncertainties are not dominating when deciding on action or in-action. We then consider the uncertainty related to choosing between adaptation options given that a decision of action has been taken. In this case the major part of the uncertainty on the estimated net present values is identical for all adaptation options and will therefore not affect a comparison between adaptation measures. This makes the chose among the options easier. Furthermore, the explicit attribution of uncertainty also enables a reduction of the overall uncertainty by identifying the processes which contributes the most. This knowledge can then be used to further reduce the uncertainty related to decision making, as a substantial part of the remaining uncertainty is epistemic.

  17. Traceable Coulomb blockade thermometry

    NASA Astrophysics Data System (ADS)

    Hahtela, O.; Mykkänen, E.; Kemppinen, A.; Meschke, M.; Prunnila, M.; Gunnarsson, D.; Roschier, L.; Penttilä, J.; Pekola, J.

    2017-02-01

    We present a measurement and analysis scheme for determining traceable thermodynamic temperature at cryogenic temperatures using Coulomb blockade thermometry. The uncertainty of the electrical measurement is improved by utilizing two sampling digital voltmeters instead of the traditional lock-in technique. The remaining uncertainty is dominated by that of the numerical analysis of the measurement data. Two analysis methods are demonstrated: numerical fitting of the full conductance curve and measuring the height of the conductance dip. The complete uncertainty analysis shows that using either analysis method the relative combined standard uncertainty (k  =  1) in determining the thermodynamic temperature in the temperature range from 20 mK to 200 mK is below 0.5%. In this temperature range, both analysis methods produced temperature estimates that deviated from 0.39% to 0.67% from the reference temperatures provided by a superconducting reference point device calibrated against the Provisional Low Temperature Scale of 2000.

  18. Unconventional nozzle tradeoff study. [space tug propulsion

    NASA Technical Reports Server (NTRS)

    Obrien, C. J.

    1979-01-01

    Plug cluster engine design, performance, weight, envelope, operational characteristics, development cost, and payload capability, were evaluated and comparisons were made with other space tug engine candidates using oxygen/hydrogen propellants. Parametric performance data were generated for existing developed or high technology thrust chambers clustered around a plug nozzle of very large diameter. The uncertainties in the performance prediction of plug cluster engines with large gaps between the modules (thrust chambers) were evaluated. The major uncertainty involves, the aerodynamics of the flow from discrete nozzles, and the lack of this flow to achieve the pressure ratio corresponding to the defined area ratio for a plug cluster. This uncertainty was reduced through a cluster design that consists of a plug contour that is formed from the cluster of high area ratio bell nozzles that have been scarfed. Light-weight, high area ratio, bell nozzles were achieved through the use of AGCarb (carbon-carbon cloth) nozzle extensions.

  19. Determination of the air w-value in proton beams using ionization chambers with gas flow capability.

    PubMed

    Moyers, M F; Vatnitsky, S M; Miller, D W; Slater, J M

    2000-10-01

    The purpose of this work was to determine the w-value of air for protons using the paired gas method. Several plastic- and magnesium-walled chambers were used with air, synthetic air, nitrogen, and argon flowing gases. Using argon as a reference gas, the w-value of air was measured and ranged from 32.7 to 34.5 J/C for protons with energies encountered in radiotherapy. Using nitrogen as a reference gas, the w-value of air ranged from 35.2 to 35.4 J/C over the same range of proton energies. The w-value was found, at a given energy, to be independent of the ion chamber used. The uncertainty in these measurements was estimated at 5.2% at the 2sigma level. This uncertainty was dominated by the 4.4% uncertainty in the w-value of the reference gas.

  20. An Intuitionistic Fuzzy Logic Models for Multicriteria Decision Making Under Uncertainty

    NASA Astrophysics Data System (ADS)

    Jana, Biswajit; Mohanty, Sachi Nandan

    2017-04-01

    The purpose of this paper is to enhance the applicability of the fuzzy sets for developing mathematical models for decision making under uncertainty, In general a decision making process consist of four stages, namely collection of information from various sources, compile the information, execute the information and finally take the decision/action. Only fuzzy sets theory is capable to quantifying the linguistic expression to mathematical form in complex situation. Intuitionistic fuzzy set (IFSs) which reflects the fact that the degree of non membership is not always equal to one minus degree of membership. There may be some degree of hesitation. Thus, there are some situations where IFS theory provides a more meaningful and applicable to cope with imprecise information present for solving multiple criteria decision making problem. This paper emphasis on IFSs, which is help for solving real world problem in uncertainty situation.

Top