Sample records for uncertainty principle

  1. Fundamental uncertainty limit of optical flow velocimetry according to Heisenberg's uncertainty principle.

    PubMed

    Fischer, Andreas

    2016-11-01

    Optical flow velocity measurements are important for understanding the complex behavior of flows. Although a huge variety of methods exist, they are either based on a Doppler or a time-of-flight measurement principle. Doppler velocimetry evaluates the velocity-dependent frequency shift of light scattered at a moving particle, whereas time-of-flight velocimetry evaluates the traveled distance of a scattering particle per time interval. Regarding the aim of achieving a minimal measurement uncertainty, it is unclear if one principle allows to achieve lower uncertainties or if both principles can achieve equal uncertainties. For this reason, the natural, fundamental uncertainty limit according to Heisenberg's uncertainty principle is derived for Doppler and time-of-flight measurement principles, respectively. The obtained limits of the velocity uncertainty are qualitatively identical showing, e.g., a direct proportionality for the absolute value of the velocity to the power of 32 and an indirect proportionality to the square root of the scattered light power. Hence, both measurement principles have identical potentials regarding the fundamental uncertainty limit due to the quantum mechanical behavior of photons. This fundamental limit can be attained (at least asymptotically) in reality either with Doppler or time-of-flight methods, because the respective Cramér-Rao bounds for dominating photon shot noise, which is modeled as white Poissonian noise, are identical with the conclusions from Heisenberg's uncertainty principle.

  2. Gamma-Ray Telescope and Uncertainty Principle

    ERIC Educational Resources Information Center

    Shivalingaswamy, T.; Kagali, B. A.

    2012-01-01

    Heisenberg's Uncertainty Principle is one of the important basic principles of quantum mechanics. In most of the books on quantum mechanics, this uncertainty principle is generally illustrated with the help of a gamma ray microscope, wherein neither the image formation criterion nor the lens properties are taken into account. Thus a better…

  3. Extrapolation, uncertainty factors, and the precautionary principle.

    PubMed

    Steel, Daniel

    2011-09-01

    This essay examines the relationship between the precautionary principle and uncertainty factors used by toxicologists to estimate acceptable exposure levels for toxic chemicals from animal experiments. It shows that the adoption of uncertainty factors in the United States in the 1950s can be understood by reference to the precautionary principle, but not by cost-benefit analysis because of a lack of relevant quantitative data at that time. In addition, it argues that uncertainty factors continue to be relevant to efforts to implement the precautionary principle and that the precautionary principle should not be restricted to cases involving unquantifiable hazards. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. What is the uncertainty principle of non-relativistic quantum mechanics?

    NASA Astrophysics Data System (ADS)

    Riggs, Peter J.

    2018-05-01

    After more than ninety years of discussions over the uncertainty principle, there is still no universal agreement on what the principle states. The Robertson uncertainty relation (incorporating standard deviations) is given as the mathematical expression of the principle in most quantum mechanics textbooks. However, the uncertainty principle is not merely a statement of what any of the several uncertainty relations affirm. It is suggested that a better approach would be to present the uncertainty principle as a statement about the probability distributions of incompatible variables and the resulting restrictions on quantum states.

  5. Disturbance, the uncertainty principle and quantum optics

    NASA Technical Reports Server (NTRS)

    Martens, Hans; Demuynck, Willem M.

    1993-01-01

    It is shown how a disturbance-type uncertainty principle can be derived from an uncertainty principle for joint measurements. To achieve this, we first clarify the meaning of 'inaccuracy' and 'disturbance' in quantum mechanical measurements. The case of photon number and phase is treated as an example, and it is applied to a quantum non-demolition measurement using the optical Kerr effect.

  6. Self-completeness and the generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    Isi, Maximiliano; Mureika, Jonas; Nicolini, Piero

    2014-03-01

    The generalized uncertainty principle discloses a self-complete characteristic of gravity, namely the possibility of masking any curvature singularity behind an event horizon as a result of matter compression at the Planck scale. In this paper we extend the above reasoning in order to overcome some current limitations to the framework, including the absence of a consistent metric describing such Planck-scale black holes. We implement a minimum-size black hole in terms of the extremal configuration of a neutral non-rotating metric, which we derived by mimicking the effects of the generalized uncertainty principle via a short scale modified version of Einstein gravity. In such a way, we find a self- consistent scenario that reconciles the self-complete character of gravity and the generalized uncertainty principle.

  7. Self-completeness and the generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    Isi, Maximiliano; Mureika, Jonas; Nicolini, Piero

    2013-11-01

    The generalized uncertainty principle discloses a self-complete characteristic of gravity, namely the possibility of masking any curvature singularity behind an event horizon as a result of matter compression at the Planck scale. In this paper we extend the above reasoning in order to overcome some current limitations to the framework, including the absence of a consistent metric describing such Planck-scale black holes. We implement a minimum-size black hole in terms of the extremal configuration of a neutral non-rotating metric, which we derived by mimicking the effects of the generalized uncertainty principle via a short scale modified version of Einstein gravity. In such a way, we find a self-consistent scenario that reconciles the self-complete character of gravity and the generalized uncertainty principle.

  8. An uncertainty principle for unimodular quantum groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crann, Jason; Université Lille 1 - Sciences et Technologies, UFR de Mathématiques, Laboratoire de Mathématiques Paul Painlevé - UMR CNRS 8524, 59655 Villeneuve d'Ascq Cédex; Kalantar, Mehrdad, E-mail: jason-crann@carleton.ca, E-mail: mkalanta@math.carleton.ca

    2014-08-15

    We present a generalization of Hirschman's entropic uncertainty principle for locally compact Abelian groups to unimodular locally compact quantum groups. As a corollary, we strengthen a well-known uncertainty principle for compact groups, and generalize the relation to compact quantum groups of Kac type. We also establish the complementarity of finite-dimensional quantum group algebras. In the non-unimodular setting, we obtain an uncertainty relation for arbitrary locally compact groups using the relative entropy with respect to the Haar weight as the measure of uncertainty. We also show that when restricted to q-traces of discrete quantum groups, the relative entropy with respect tomore » the Haar weight reduces to the canonical entropy of the random walk generated by the state.« less

  9. The Uncertainty Principle in the Presence of Quantum Memory

    NASA Astrophysics Data System (ADS)

    Renes, Joseph M.; Berta, Mario; Christandl, Matthias; Colbeck, Roger; Renner, Renato

    2010-03-01

    One consequence of Heisenberg's uncertainty principle is that no observer can predict the outcomes of two incompatible measurements performed on a system to arbitrary precision. However, this implication is invalid if the the observer possesses a quantum memory, a distinct possibility in light of recent technological advances. Entanglement between the system and the memory is responsible for the breakdown of the uncertainty principle, as illustrated by the EPR paradox. In this work we present an improved uncertainty principle which takes this entanglement into account. By quantifying uncertainty using entropy, we show that the sum of the entropies associated with incompatible measurements must exceed a quantity which depends on the degree of incompatibility and the amount of entanglement between system and memory. Apart from its foundational significance, the uncertainty principle motivated the first proposals for quantum cryptography, though the possibility of an eavesdropper having a quantum memory rules out using the original version to argue that these proposals are secure. The uncertainty relation introduced here alleviates this problem and paves the way for its widespread use in quantum cryptography.

  10. Science 101: What, Exactly, Is the Heisenberg Uncertainty Principle?

    ERIC Educational Resources Information Center

    Robertson, Bill

    2016-01-01

    Bill Robertson is the author of the NSTA Press book series, "Stop Faking It! Finally Understanding Science So You Can Teach It." In this month's issue, Robertson describes and explains the Heisenberg Uncertainty Principle. The Heisenberg Uncertainty Principle was discussed on "The Big Bang Theory," the lead character in…

  11. Constraining the generalized uncertainty principle with the atomic weak-equivalence-principle test

    NASA Astrophysics Data System (ADS)

    Gao, Dongfeng; Wang, Jin; Zhan, Mingsheng

    2017-04-01

    Various models of quantum gravity imply the Planck-scale modifications of Heisenberg's uncertainty principle into a so-called generalized uncertainty principle (GUP). The GUP effects on high-energy physics, cosmology, and astrophysics have been extensively studied. Here, we focus on the weak-equivalence-principle (WEP) violation induced by the GUP. Results from the WEP test with the 85Rb-87Rb dual-species atom interferometer are used to set upper bounds on parameters in two GUP proposals. A 1045-level bound on the Kempf-Mangano-Mann proposal and a 1027-level bound on Maggiore's proposal, which are consistent with bounds from other experiments, are obtained. All these bounds have huge room for improvement in the future.

  12. Black hole complementarity with the generalized uncertainty principle in Gravity's Rainbow

    NASA Astrophysics Data System (ADS)

    Gim, Yongwan; Um, Hwajin; Kim, Wontae

    2018-02-01

    When gravitation is combined with quantum theory, the Heisenberg uncertainty principle could be extended to the generalized uncertainty principle accompanying a minimal length. To see how the generalized uncertainty principle works in the context of black hole complementarity, we calculate the required energy to duplicate information for the Schwarzschild black hole. It shows that the duplication of information is not allowed and black hole complementarity is still valid even assuming the generalized uncertainty principle. On the other hand, the generalized uncertainty principle with the minimal length could lead to a modification of the conventional dispersion relation in light of Gravity's Rainbow, where the minimal length is also invariant as well as the speed of light. Revisiting the gedanken experiment, we show that the no-cloning theorem for black hole complementarity can be made valid in the regime of Gravity's Rainbow on a certain combination of parameters.

  13. The action uncertainty principle and quantum gravity

    NASA Astrophysics Data System (ADS)

    Mensky, Michael B.

    1992-02-01

    Results of the path-integral approach to the quantum theory of continuous measurements have been formulated in a preceding paper in the form of an inequality of the type of the uncertainty principle. The new inequality was called the action uncertainty principle, AUP. It was shown that the AUP allows one to find in a simple what outputs of the continuous measurements will occur with high probability. Here a more simple form of the AUP will be formulated, δ S≳ħ. When applied to quantum gravity, it leads in a very simple way to the Rosenfeld inequality for measurability of the average curvature.

  14. Uncertainty principle in loop quantum cosmology by Moyal formalism

    NASA Astrophysics Data System (ADS)

    Perlov, Leonid

    2018-03-01

    In this paper, we derive the uncertainty principle for the loop quantum cosmology homogeneous and isotropic Friedmann-Lemaiter-Robertson-Walker model with the holonomy-flux algebra. The uncertainty principle is between the variables c, with the meaning of connection and μ having the meaning of the physical cell volume to the power 2/3, i.e., v2 /3 or a plaquette area. Since both μ and c are not operators, but rather the random variables, the Robertson uncertainty principle derivation that works for hermitian operators cannot be used. Instead we use the Wigner-Moyal-Groenewold phase space formalism. The Wigner-Moyal-Groenewold formalism was originally applied to the Heisenberg algebra of the quantum mechanics. One can derive it from both the canonical and path integral quantum mechanics as well as the uncertainty principle. In this paper, we apply it to the holonomy-flux algebra in the case of the homogeneous and isotropic space. Another result is the expression for the Wigner function on the space of the cylindrical wave functions defined on Rb in c variables rather than in dual space μ variables.

  15. Generalized uncertainty principle: implications for black hole complementarity

    NASA Astrophysics Data System (ADS)

    Chen, Pisin; Ong, Yen Chin; Yeom, Dong-han

    2014-12-01

    At the heart of the black hole information loss paradox and the firewall controversy lies the conflict between quantum mechanics and general relativity. Much has been said about quantum corrections to general relativity, but much less in the opposite direction. It is therefore crucial to examine possible corrections to quantum mechanics due to gravity. Indeed, the Heisenberg Uncertainty Principle is one profound feature of quantum mechanics, which nevertheless may receive correction when gravitational effects become important. Such generalized uncertainty principle [GUP] has been motivated from not only quite general considerations of quantum mechanics and gravity, but also string theoretic arguments. We examine the role of GUP in the context of black hole complementarity. We find that while complementarity can be violated by large N rescaling if one assumes only the Heisenberg's Uncertainty Principle, the application of GUP may save complementarity, but only if certain N -dependence is also assumed. This raises two important questions beyond the scope of this work, i.e., whether GUP really has the proposed form of N -dependence, and whether black hole complementarity is indeed correct.

  16. Quantum corrections to newtonian potential and generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    Scardigli, Fabio; Lambiase, Gaetano; Vagenas, Elias

    2017-08-01

    We use the leading quantum corrections to the newtonian potential to compute the deformation parameter of the generalized uncertainty principle. By assuming just only General Relativity as theory of Gravitation, and the thermal nature of the GUP corrections to the Hawking spectrum, our calculation gives, to first order, a specific numerical result. We briefly discuss the physical meaning of this value, and compare it with the previously obtained bounds on the generalized uncertainty principle deformation parameter.

  17. Polar Wavelet Transform and the Associated Uncertainty Principles

    NASA Astrophysics Data System (ADS)

    Shah, Firdous A.; Tantary, Azhar Y.

    2018-06-01

    The polar wavelet transform- a generalized form of the classical wavelet transform has been extensively used in science and engineering for finding directional representations of signals in higher dimensions. The aim of this paper is to establish new uncertainty principles associated with the polar wavelet transforms in L2(R2). Firstly, we study some basic properties of the polar wavelet transform and then derive the associated generalized version of Heisenberg-Pauli-Weyl inequality. Finally, following the idea of Beckner (Proc. Amer. Math. Soc. 123, 1897-1905 1995), we drive the logarithmic version of uncertainty principle for the polar wavelet transforms in L2(R2).

  18. A review of the generalized uncertainty principle.

    PubMed

    Tawfik, Abdel Nasser; Diab, Abdel Magied

    2015-12-01

    Based on string theory, black hole physics, doubly special relativity and some 'thought' experiments, minimal distance and/or maximum momentum are proposed. As alternatives to the generalized uncertainty principle (GUP), the modified dispersion relation, the space noncommutativity, the Lorentz invariance violation, and the quantum-gravity-induced birefringence effects are summarized. The origin of minimal measurable quantities and the different GUP approaches are reviewed and the corresponding observations are analysed. Bounds on the GUP parameter are discussed and implemented in the understanding of recent PLANCK observations of cosmic inflation. The higher-order GUP approaches predict minimal length uncertainty with and without maximum momenta. Possible arguments against the GUP are discussed; for instance, the concern about its compatibility with the equivalence principles, the universality of gravitational redshift and the free fall and law of reciprocal action are addressed.

  19. Single-Slit Diffraction and the Uncertainty Principle

    ERIC Educational Resources Information Center

    Rioux, Frank

    2005-01-01

    A theoretical analysis of single-slit diffraction based on the Fourier transform between coordinate and momentum space is presented. The transform between position and momentum is used to illuminate the intimate relationship between single-slit diffraction and uncertainty principle.

  20. On different types of uncertainties in the context of the precautionary principle.

    PubMed

    Aven, Terje

    2011-10-01

    Few policies for risk management have created more controversy than the precautionary principle. A main problem is the extreme number of different definitions and interpretations. Almost all definitions of the precautionary principle identify "scientific uncertainties" as the trigger or criterion for its invocation; however, the meaning of this concept is not clear. For applying the precautionary principle it is not sufficient that the threats or hazards are uncertain. A stronger requirement is needed. This article provides an in-depth analysis of this issue. We question how the scientific uncertainties are linked to the interpretation of the probability concept, expected values, the results from probabilistic risk assessments, the common distinction between aleatory uncertainties and epistemic uncertainties, and the problem of establishing an accurate prediction model (cause-effect relationship). A new classification structure is suggested to define what scientific uncertainties mean. © 2011 Society for Risk Analysis.

  1. Entropy bound of local quantum field theory with generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Wan; Lee, Hyung Won; Myung, Yun Soo

    2009-03-01

    We study the entropy bound for local quantum field theory (LQFT) with generalized uncertainty principle. The generalized uncertainty principle provides naturally a UV cutoff to the LQFT as gravity effects. Imposing the non-gravitational collapse condition as the UV-IR relation, we find that the maximal entropy of a bosonic field is limited by the entropy bound A 3 / 4 rather than A with A the boundary area.

  2. The modification of generalized uncertainty principle applied in the detection technique of femtosecond laser

    NASA Astrophysics Data System (ADS)

    Li, Ziyi

    2017-12-01

    Generalized uncertainty principle (GUP), also known as the generalized uncertainty relationship, is the modified form of the classical Heisenberg’s Uncertainty Principle in special cases. When we apply quantum gravity theories such as the string theory, the theoretical results suggested that there should be a “minimum length of observation”, which is about the size of the Planck-scale (10-35m). Taking into account the basic scale of existence, we need to fix a new common form of Heisenberg’s uncertainty principle in the thermodynamic system and make effective corrections to statistical physical questions concerning about the quantum density of states. Especially for the condition at high temperature and high energy levels, generalized uncertainty calculations have a disruptive impact on classical statistical physical theories but the present theory of Femtosecond laser is still established on the classical Heisenberg’s Uncertainty Principle. In order to improve the detective accuracy and temporal resolution of the Femtosecond laser, we applied the modified form of generalized uncertainty principle to the wavelength, energy and pulse time of Femtosecond laser in our work. And we designed three typical systems from micro to macro size to estimate the feasibility of our theoretical model and method, respectively in the chemical solution condition, crystal lattice condition and nuclear fission reactor condition.

  3. “Stringy” coherent states inspired by generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    Ghosh, Subir; Roy, Pinaki

    2012-05-01

    Coherent States with Fractional Revival property, that explicitly satisfy the Generalized Uncertainty Principle (GUP), have been constructed in the context of Generalized Harmonic Oscillator. The existence of such states is essential in motivating the GUP based phenomenological results present in the literature which otherwise would be of purely academic interest. The effective phase space is Non-Canonical (or Non-Commutative in popular terminology). Our results have a smooth commutative limit, equivalent to Heisenberg Uncertainty Principle. The Fractional Revival time analysis yields an independent bound on the GUP parameter. Using this and similar bounds obtained here, we derive the largest possible value of the (GUP induced) minimum length scale. Mandel parameter analysis shows that the statistics is Sub-Poissonian. Correspondence Principle is deformed in an interesting way. Our computational scheme is very simple as it requires only first order corrected energy values and undeformed basis states.

  4. Uncertainty principles for inverse source problems for electromagnetic and elastic waves

    NASA Astrophysics Data System (ADS)

    Griesmaier, Roland; Sylvester, John

    2018-06-01

    In isotropic homogeneous media, far fields of time-harmonic electromagnetic waves radiated by compactly supported volume currents, and elastic waves radiated by compactly supported body force densities can be modelled in very similar fashions. Both are projected restricted Fourier transforms of vector-valued source terms. In this work we generalize two types of uncertainty principles recently developed for far fields of scalar-valued time-harmonic waves in Griesmaier and Sylvester (2017 SIAM J. Appl. Math. 77 154–80) to this vector-valued setting. These uncertainty principles yield stability criteria and algorithms for splitting far fields radiated by collections of well-separated sources into the far fields radiated by individual source components, and for the restoration of missing data segments. We discuss proper regularization strategies for these inverse problems, provide stability estimates based on the new uncertainty principles, and comment on reconstruction schemes. A numerical example illustrates our theoretical findings.

  5. Verification of the Uncertainty Principle by Using Diffraction of Light Waves

    ERIC Educational Resources Information Center

    Nikolic, D.; Nesic, Lj

    2011-01-01

    We described a simple idea for experimental verification of the uncertainty principle for light waves. We used a single-slit diffraction of a laser beam for measuring the angular width of zero-order diffraction maximum and obtained the corresponding wave number uncertainty. We will assume that the uncertainty in position is the slit width. For the…

  6. Lorentz invariance violation and generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    Tawfik, Abdel Nasser; Magdy, H.; Ali, A. Farag

    2016-01-01

    There are several theoretical indications that the quantum gravity approaches may have predictions for a minimal measurable length, and a maximal observable momentum and throughout a generalization for Heisenberg uncertainty principle. The generalized uncertainty principle (GUP) is based on a momentum-dependent modification in the standard dispersion relation which is conjectured to violate the principle of Lorentz invariance. From the resulting Hamiltonian, the velocity and time of flight of relativistic distant particles at Planck energy can be derived. A first comparison is made with recent observations for Hubble parameter in redshift-dependence in early-type galaxies. We find that LIV has two types of contributions to the time of flight delay Δ t comparable with that observations. Although the wrong OPERA measurement on faster-than-light muon neutrino anomaly, Δ t, and the relative change in the speed of muon neutrino Δ v in dependence on redshift z turn to be wrong, we utilize its main features to estimate Δ v. Accordingly, the results could not be interpreted as LIV. A third comparison is made with the ultra high-energy cosmic rays (UHECR). It is found that an essential ingredient of the approach combining string theory, loop quantum gravity, black hole physics and doubly spacial relativity and the one assuming a perturbative departure from exact Lorentz invariance. Fixing the sensitivity factor and its energy dependence are essential inputs for a reliable confronting of our calculations to UHECR. The sensitivity factor is related to the special time of flight delay and the time structure of the signal. Furthermore, the upper and lower bounds to the parameter, a that characterizes the generalized uncertainly principle, have to be fixed in related physical systems such as the gamma rays bursts.

  7. Continuous quantum measurements and the action uncertainty principle

    NASA Astrophysics Data System (ADS)

    Mensky, Michael B.

    1992-09-01

    The path-integral approach to quantum theory of continuous measurements has been developed in preceding works of the author. According to this approach the measurement amplitude determining probabilities of different outputs of the measurement can be evaluated in the form of a restricted path integral (a path integral “in finite limits”). With the help of the measurement amplitude, maximum deviation of measurement outputs from the classical one can be easily determined. The aim of the present paper is to express this variance in a simpler and transparent form of a specific uncertainty principle (called the action uncertainty principle, AUP). The most simple (but weak) form of AUP is δ S≳ℏ, where S is the action functional. It can be applied for simple derivation of the Bohr-Rosenfeld inequality for measurability of gravitational field. A stronger (and having wider application) form of AUP (for ideal measurements performed in the quantum regime) is |∫{/' t″ }(δ S[ q]/δ q( t))Δ q( t) dt|≃ℏ, where the paths [ q] and [Δ q] stand correspondingly for the measurement output and for the measurement error. It can also be presented in symbolic form as Δ(Equation) Δ(Path) ≃ ℏ. This means that deviation of the observed (measured) motion from that obeying the classical equation of motion is reciprocally proportional to the uncertainty in a path (the latter uncertainty resulting from the measurement error). The consequence of AUP is that improving the measurement precision beyond the threshold of the quantum regime leads to decreasing information resulting from the measurement.

  8. The Uncertainty Principle, Virtual Particles and Real Forces

    ERIC Educational Resources Information Center

    Jones, Goronwy Tudor

    2002-01-01

    This article provides a simple practical introduction to wave-particle duality, including the energy-time version of the Heisenberg Uncertainty Principle. It has been successful in leading students to an intuitive appreciation of "virtual particles" and the role they play in describing the way ordinary particles, like electrons and protons, exert…

  9. The uncertainty principle and quantum chaos

    NASA Technical Reports Server (NTRS)

    Chirikov, Boris V.

    1993-01-01

    The conception of quantum chaos is described in some detail. The most striking feature of this novel phenomenon is that all the properties of classical dynamical chaos persist here but, typically, on the finite and different time scales only. The ultimate origin of such a universal quantum stability is in the fundamental uncertainty principle which makes discrete the phase space and, hence, the spectrum of bounded quantum motion. Reformulation of the ergodic theory, as a part of the general theory of dynamical systems, is briefly discussed.

  10. Human Time-Frequency Acuity Beats the Fourier Uncertainty Principle

    NASA Astrophysics Data System (ADS)

    Oppenheim, Jacob N.; Magnasco, Marcelo O.

    2013-01-01

    The time-frequency uncertainty principle states that the product of the temporal and frequency extents of a signal cannot be smaller than 1/(4π). We study human ability to simultaneously judge the frequency and the timing of a sound. Our subjects often exceeded the uncertainty limit, sometimes by more than tenfold, mostly through remarkable timing acuity. Our results establish a lower bound for the nonlinearity and complexity of the algorithms employed by our brains in parsing transient sounds, rule out simple “linear filter” models of early auditory processing, and highlight timing acuity as a central feature in auditory object processing.

  11. Generalized uncertainty principle and quantum gravity phenomenology

    NASA Astrophysics Data System (ADS)

    Bosso, Pasquale

    The fundamental physical description of Nature is based on two mutually incompatible theories: Quantum Mechanics and General Relativity. Their unification in a theory of Quantum Gravity (QG) remains one of the main challenges of theoretical physics. Quantum Gravity Phenomenology (QGP) studies QG effects in low-energy systems. The basis of one such phenomenological model is the Generalized Uncertainty Principle (GUP), which is a modified Heisenberg uncertainty relation and predicts a deformed canonical commutator. In this thesis, we compute Planck-scale corrections to angular momentum eigenvalues, the hydrogen atom spectrum, the Stern-Gerlach experiment, and the Clebsch-Gordan coefficients. We then rigorously analyze the GUP-perturbed harmonic oscillator and study new coherent and squeezed states. Furthermore, we introduce a scheme for increasing the sensitivity of optomechanical experiments for testing QG effects. Finally, we suggest future projects that may potentially test QG effects in the laboratory.

  12. Generalized uncertainty principles and quantum field theory

    NASA Astrophysics Data System (ADS)

    Husain, Viqar; Kothawala, Dawood; Seahra, Sanjeev S.

    2013-01-01

    Quantum mechanics with a generalized uncertainty principle arises through a representation of the commutator [x^,p^]=if(p^). We apply this deformed quantization to free scalar field theory for f±=1±βp2. The resulting quantum field theories have a rich fine scale structure. For small wavelength modes, the Green’s function for f+ exhibits a remarkable transition from Lorentz to Galilean invariance, whereas for f- such modes effectively do not propagate. For both cases Lorentz invariance is recovered at long wavelengths.

  13. Conditional uncertainty principle

    NASA Astrophysics Data System (ADS)

    Gour, Gilad; Grudka, Andrzej; Horodecki, Michał; Kłobus, Waldemar; Łodyga, Justyna; Narasimhachar, Varun

    2018-04-01

    We develop a general operational framework that formalizes the concept of conditional uncertainty in a measure-independent fashion. Our formalism is built upon a mathematical relation which we call conditional majorization. We define conditional majorization and, for the case of classical memory, we provide its thorough characterization in terms of monotones, i.e., functions that preserve the partial order under conditional majorization. We demonstrate the application of this framework by deriving two types of memory-assisted uncertainty relations, (1) a monotone-based conditional uncertainty relation and (2) a universal measure-independent conditional uncertainty relation, both of which set a lower bound on the minimal uncertainty that Bob has about Alice's pair of incompatible measurements, conditioned on arbitrary measurement that Bob makes on his own system. We next compare the obtained relations with their existing entropic counterparts and find that they are at least independent.

  14. Squeezed States, Uncertainty Relations and the Pauli Principle in Composite and Cosmological Models

    NASA Technical Reports Server (NTRS)

    Terazawa, Hidezumi

    1996-01-01

    The importance of not only uncertainty relations but also the Pauli exclusion principle is emphasized in discussing various 'squeezed states' existing in the universe. The contents of this paper include: (1) Introduction; (2) Nuclear Physics in the Quark-Shell Model; (3) Hadron Physics in the Standard Quark-Gluon Model; (4) Quark-Lepton-Gauge-Boson Physics in Composite Models; (5) Astrophysics and Space-Time Physics in Cosmological Models; and (6) Conclusion. Also, not only the possible breakdown of (or deviation from) uncertainty relations but also the superficial violation of the Pauli principle at short distances (or high energies) in composite (and string) models is discussed in some detail.

  15. The action uncertainty principle for continuous measurements

    NASA Astrophysics Data System (ADS)

    Mensky, Michael B.

    1996-02-01

    The action uncertainty principle (AUP) for the specification of the most probable readouts of continuous quantum measurements is proved, formulated in different forms and analyzed (for nonlinear as well as linear systems). Continuous monitoring of an observable A(p,q,t) with resolution Δa( t) is considered. The influence of the measurement process on the evolution of the measured system (quantum measurement noise) is presented by an additional term δ F(t)A(p,q,t) in the Hamiltonian where the function δ F (generalized fictitious force) is restricted by the AUP ∫|δ F(t)| Δa( t) d t ≲ and arbitrary otherwise. Quantum-nondemolition (QND) measurements are analyzed with the help of the AUP. A simple uncertainty relation for continuous quantum measurements is derived. It states that the area of a certain band in the phase space should be of the order of. The width of the band depends on the measurement resolution while its length is determined by the deviation of the system, due to the measurement, from classical behavior.

  16. Using Uncertainty Principle to Find the Ground-State Energy of the Helium and a Helium-like Hookean Atom

    ERIC Educational Resources Information Center

    Harbola, Varun

    2011-01-01

    In this paper, we accurately estimate the ground-state energy and the atomic radius of the helium atom and a helium-like Hookean atom by employing the uncertainty principle in conjunction with the variational approach. We show that with the use of the uncertainty principle, electrons are found to be spread over a radial region, giving an electron…

  17. The Generalized Uncertainty Principle and Harmonic Interaction in Three Spatial Dimensions

    NASA Astrophysics Data System (ADS)

    Hassanabadi, H.; Hooshmand, P.; Zarrinkamar, S.

    2015-01-01

    In three spatial dimensions, the generalized uncertainty principle is considered under an isotropic harmonic oscillator interaction in both non-relativistic and relativistic regions. By using novel transformations and separations of variables, the exact analytical solution of energy eigenvalues as well as the wave functions is obtained. Time evolution of the non-relativistic region is also reported.

  18. The Species Delimitation Uncertainty Principle

    PubMed Central

    Adams, Byron J.

    2001-01-01

    If, as Einstein said, "it is the theory which decides what we can observe," then "the species problem" could be solved by simply improving our theoretical definition of what a species is. However, because delimiting species entails predicting the historical fate of evolutionary lineages, species appear to behave according to the Heisenberg Uncertainty Principle, which states that the most philosophically satisfying definitions of species are the least operational, and as species concepts are modified to become more operational they tend to lose their philosophical integrity. Can species be delimited operationally without losing their philosophical rigor? To mitigate the contingent properties of species that tend to make them difficult for us to delimit, I advocate a set of operations that takes into account the prospective nature of delimiting species. Given the fundamental role of species in studies of evolution and biodiversity, I also suggest that species delimitation proceed within the context of explicit hypothesis testing, like other scientific endeavors. The real challenge is not so much the inherent fallibility of predicting the future but rather adequately sampling and interpreting the evidence available to us in the present. PMID:19265874

  19. Generalized Uncertainty Principle and Parikh-Wilczek Tunneling

    NASA Astrophysics Data System (ADS)

    Mehdipour, S. Hamid

    We investigate the modifications of the Hawking radiation by the Generalized Uncertainty Principle (GUP) and the tunneling process. By using the GUP-corrected de Broglie wavelength, the squeezing of the fundamental momentum cell, and consequently a GUP-corrected energy, we find the nonthermal effects which lead to a nonzero statistical correlation function between probabilities of tunneling of two massive particles with different energies. Then the recovery of part of the information from the black hole radiation is feasible. From the other point of view, the inclusion of the effects of quantum gravity as the GUP expression can halt the evaporation process, so that a stable black hole remnant is left behind, including the other part of the black hole information content. Therefore, these features of the Planck-scale corrections may solve the information problem in black hole evaporation.

  20. Uncertainty, imprecision, and the precautionary principle in climate change assessment.

    PubMed

    Borsuk, M E; Tomassini, L

    2005-01-01

    Statistical decision theory can provide useful support for climate change decisions made under conditions of uncertainty. However, the probability distributions used to calculate expected costs in decision theory are themselves subject to uncertainty, disagreement, or ambiguity in their specification. This imprecision can be described using sets of probability measures, from which upper and lower bounds on expectations can be calculated. However, many representations, or classes, of probability measures are possible. We describe six of the more useful classes and demonstrate how each may be used to represent climate change uncertainties. When expected costs are specified by bounds, rather than precise values, the conventional decision criterion of minimum expected cost is insufficient to reach a unique decision. Alternative criteria are required, and the criterion of minimum upper expected cost may be desirable because it is consistent with the precautionary principle. Using simple climate and economics models as an example, we determine the carbon dioxide emissions levels that have minimum upper expected cost for each of the selected classes. There can be wide differences in these emissions levels and their associated costs, emphasizing the need for care when selecting an appropriate class.

  1. Generalized uncertainty principle and the maximum mass of ideal white dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashidi, Reza, E-mail: reza.rashidi@srttu.edu

    The effects of a generalized uncertainty principle on the structure of an ideal white dwarf star is investigated. The equation describing the equilibrium configuration of the star is a generalized form of the Lane–Emden equation. It is proved that the star always has a finite size. It is then argued that the maximum mass of such an ideal white dwarf tends to infinity, as opposed to the conventional case where it has a finite value.

  2. The statistical fluctuation study of quantum key distribution in means of uncertainty principle

    NASA Astrophysics Data System (ADS)

    Liu, Dunwei; An, Huiyao; Zhang, Xiaoyu; Shi, Xuemei

    2018-03-01

    Laser defects in emitting single photon, photon signal attenuation and propagation of error cause our serious headaches in practical long-distance quantum key distribution (QKD) experiment for a long time. In this paper, we study the uncertainty principle in metrology and use this tool to analyze the statistical fluctuation of the number of received single photons, the yield of single photons and quantum bit error rate (QBER). After that we calculate the error between measured value and real value of every parameter, and concern the propagation error among all the measure values. We paraphrase the Gottesman-Lo-Lutkenhaus-Preskill (GLLP) formula in consideration of those parameters and generate the QKD simulation result. In this study, with the increase in coding photon length, the safe distribution distance is longer and longer. When the coding photon's length is N = 10^{11}, the safe distribution distance can be almost 118 km. It gives a lower bound of safe transmission distance than without uncertainty principle's 127 km. So our study is in line with established theory, but we make it more realistic.

  3. Lorentz violation and generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    Lambiase, Gaetano; Scardigli, Fabio

    2018-04-01

    Investigations on possible violation of Lorentz invariance have been widely pursued in the last decades, both from theoretical and experimental sides. A comprehensive framework to formulate the problem is the standard model extension (SME) proposed by A. Kostelecky, where violation of Lorentz invariance is encoded into specific coefficients. Here we present a procedure to link the deformation parameter β of the generalized uncertainty principle to the SME coefficients of the gravity sector. The idea is to compute the Hawking temperature of a black hole in two different ways. The first way involves the deformation parameter β , and therefore we get a deformed Hawking temperature containing the parameter β . The second way involves a deformed Schwarzschild metric containing the Lorentz violating terms s¯μ ν of the gravity sector of the SME. The comparison between the two different techniques yields a relation between β and s¯μ ν. In this way bounds on β transferred from s¯μ ν are improved by many orders of magnitude when compared with those derived in other gravitational frameworks. Also the opposite possibility of bounds transferred from β to s¯μ ν is briefly discussed.

  4. Cosmological horizons, uncertainty principle, and maximum length quantum mechanics

    NASA Astrophysics Data System (ADS)

    Perivolaropoulos, L.

    2017-05-01

    The cosmological particle horizon is the maximum measurable length in the Universe. The existence of such a maximum observable length scale implies a modification of the quantum uncertainty principle. Thus due to nonlocality of quantum mechanics, the global properties of the Universe could produce a signature on the behavior of local quantum systems. A generalized uncertainty principle (GUP) that is consistent with the existence of such a maximum observable length scale lmax is Δ x Δ p ≥ℏ2/1/1 -α Δ x2 where α =lmax-2≃(H0/c )2 (H0 is the Hubble parameter and c is the speed of light). In addition to the existence of a maximum measurable length lmax=1/√{α }, this form of GUP implies also the existence of a minimum measurable momentum pmin=3/√{3 } 4 ℏ√{α }. Using appropriate representation of the position and momentum quantum operators we show that the spectrum of the one-dimensional harmonic oscillator becomes E¯n=2 n +1 +λnα ¯ where E¯n≡2 En/ℏω is the dimensionless properly normalized n th energy level, α ¯ is a dimensionless parameter with α ¯≡α ℏ/m ω and λn˜n2 for n ≫1 (we show the full form of λn in the text). For a typical vibrating diatomic molecule and lmax=c /H0 we find α ¯˜10-77 and therefore for such a system, this effect is beyond the reach of current experiments. However, this effect could be more important in the early Universe and could produce signatures in the primordial perturbation spectrum induced by quantum fluctuations of the inflaton field.

  5. Risk analysis under uncertainty, the precautionary principle, and the new EU chemicals strategy.

    PubMed

    Rogers, Michael D

    2003-06-01

    Three categories of uncertainty in relation to risk assessment are defined; uncertainty in effect, uncertainty in cause, and uncertainty in the relationship between a hypothesised cause and effect. The Precautionary Principle (PP) relates to the third type of uncertainty. Three broad descriptions of the PP are set out, uncertainty justifies action, uncertainty requires action, and uncertainty requires a reversal of the burden of proof for risk assessments. The application of the PP is controversial but what matters in practise is the precautionary action (PA) that follows. The criteria by which the PAs should be judged are detailed. This framework for risk assessment and management under uncertainty is then applied to the envisaged European system for the regulation of chemicals. A new EU regulatory system has been proposed which shifts the burden of proof concerning risk assessments from the regulator to the producer, and embodies the PP in all three of its main regulatory stages. The proposals are critically discussed in relation to three chemicals, namely, atrazine (an endocrine disrupter), cadmium (toxic and possibly carcinogenic), and hydrogen fluoride (a toxic, high-production-volume chemical). Reversing the burden of proof will speed up the regulatory process but the examples demonstrate that applying the PP appropriately, and balancing the countervailing risks and the socio-economic benefits, will continue to be a difficult task for the regulator. The paper concludes with a discussion of the role of precaution in the management of change and of the importance of trust in the effective regulation of uncertain risks.

  6. Weak values, 'negative probability', and the uncertainty principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokolovski, D.

    2007-10-15

    A quantum transition can be seen as a result of interference between various pathways (e.g., Feynman paths), which can be labeled by a variable f. An attempt to determine the value of f without destroying the coherence between the pathways produces a weak value of f. We show f to be an average obtained with an amplitude distribution which can, in general, take negative values, which, in accordance with the uncertainty principle, need not contain information about the actual range of f which contributes to the transition. It is also demonstrated that the moments of such alternating distributions have amore » number of unusual properties which may lead to a misinterpretation of the weak-measurement results. We provide a detailed analysis of weak measurements with and without post-selection. Examples include the double-slit diffraction experiment, weak von Neumann and von Neumann-like measurements, traversal time for an elastic collision, phase time, and local angular momentum.« less

  7. Wave-Particle Duality and Uncertainty Principle: Phenomenographic Categories of Description of Tertiary Physics Students' Depictions

    ERIC Educational Resources Information Center

    Ayene, Mengesha; Kriek, Jeanne; Damtie, Baylie

    2011-01-01

    Quantum mechanics is often thought to be a difficult subject to understand, not only in the complexity of its mathematics but also in its conceptual foundation. In this paper we emphasize students' depictions of the uncertainty principle and wave-particle duality of quantum events, phenomena that could serve as a foundation in building an…

  8. The energy-time uncertainty principle and the EPR paradox: Experiments involving correlated two-photon emission in parametric down-conversion

    NASA Technical Reports Server (NTRS)

    Chiao, Raymond Y.; Kwiat, Paul G.; Steinberg, Aephraim M.

    1992-01-01

    The energy-time uncertainty principle is on a different footing than the momentum position uncertainty principle: in contrast to position, time is a c-number parameter, and not an operator. As Aharonov and Bohm have pointed out, this leads to different interpretations of the two uncertainty principles. In particular, one must distinguish between an inner and an outer time in the definition of the spread in time, delta t. It is the inner time which enters the energy-time uncertainty principle. We have checked this by means of a correlated two-photon light source in which the individual energies of the two photons are broad in spectra, but in which their sum is sharp. In other words, the pair of photons is in an entangled state of energy. By passing one member of the photon pair through a filter with width delta E, it is observed that the other member's wave packet collapses upon coincidence detection to a duration delta t, such that delta E(delta t) is approximately equal to planks constant/2 pi, where this duration delta t is an inner time, in the sense of Aharonov and Bohm. We have measured delta t by means of a Michelson interferometer by monitoring the visibility of the fringes seen in coincidence detection. This is a nonlocal effect, in the sense that the two photons are far away from each other when the collapse occurs. We have excluded classical-wave explanations of this effect by means of triple coincidence measurements in conjunction with a beam splitter which follows the Michelson interferometer. Since Bell's inequalities are known to be violated, we believe that it is also incorrect to interpret this experimental outcome as if energy were a local hidden variable, i.e., as if each photon, viewed as a particle, possessed some definite but unknown energy before its detection.

  9. Do the Modified Uncertainty Principle and Polymer Quantization predict same physics?

    NASA Astrophysics Data System (ADS)

    Majumder, Barun; Sen, Sourav

    2012-10-01

    In this Letter we study the effects of the Modified Uncertainty Principle as proposed in Ali et al. (2009) [5] in simple quantum mechanical systems and study its thermodynamic properties. We have assumed that the quantum particles follow Maxwell-Boltzmann statistics with no spin. We compare our results with the results found in the GUP and polymer quantum mechanical frameworks. Interestingly we find that the corrected thermodynamic entities are exactly the same compared to the polymer results but the length scale considered has a theoretically different origin. Hence we express the need of further study for an investigation whether these two approaches are conceptually connected in the fundamental level.

  10. Uncertainty quantification in application of the enrichment meter principle for nondestructive assay of special nuclear material

    DOE PAGES

    Burr, Tom; Croft, Stephen; Jarman, Kenneth D.

    2015-09-05

    The various methods of nondestructive assay (NDA) of special nuclear material (SNM) have applications in nuclear nonproliferation, including detection and identification of illicit SNM at border crossings, and quantifying SNM at nuclear facilities for safeguards. No assay method is complete without “error bars,” which provide one way of expressing confidence in the assay result. Consequently, NDA specialists typically quantify total uncertainty in terms of “random” and “systematic” components, and then specify error bars for the total mass estimate in multiple items. Uncertainty quantification (UQ) for NDA has always been important, but it is recognized that greater rigor is needed andmore » achievable using modern statistical methods. To this end, we describe the extent to which the guideline for expressing uncertainty in measurements (GUM) can be used for NDA. Also, we propose improvements over GUM for NDA by illustrating UQ challenges that it does not address, including calibration with errors in predictors, model error, and item-specific biases. A case study is presented using low-resolution NaI spectra and applying the enrichment meter principle to estimate the U-235 mass in an item. The case study illustrates how to update the current American Society for Testing and Materials guide for application of the enrichment meter principle using gamma spectra from a NaI detector.« less

  11. On the action of Heisenberg's uncertainty principle in discrete linear methods for calculating the components of the deflection of the vertical

    NASA Astrophysics Data System (ADS)

    Mazurova, Elena; Lapshin, Aleksey

    2013-04-01

    The method of discrete linear transformations that can be implemented through the algorithms of the Standard Fourier Transform (SFT), Short-Time Fourier Transform (STFT) or Wavelet transform (WT) is effective for calculating the components of the deflection of the vertical from discrete values of gravity anomaly. The SFT due to the action of Heisenberg's uncertainty principle indicates weak spatial localization that manifests in the following: firstly, it is necessary to know the initial digital signal on the complete number line (in case of one-dimensional transform) or in the whole two-dimensional space (if a two-dimensional transform is performed) in order to find the SFT. Secondly, the localization and values of the "peaks" of the initial function cannot be derived from its Fourier transform as the coefficients of the Fourier transform are formed by taking into account all the values of the initial function. Thus, the SFT gives the global information on all frequencies available in the digital signal throughout the whole time period. To overcome this peculiarity it is necessary to localize the signal in time and apply the Fourier transform only to a small portion of the signal; the STFT that differs from the SFT only by the presence of an additional factor (window) is used for this purpose. A narrow enough window is chosen to localize the signal in time and, according to Heisenberg's uncertainty principle, it results in have significant enough uncertainty in frequency. If one chooses a wide enough window it, according to the same principle, will increase time uncertainty. Thus, if the signal is narrowly localized in time its spectrum, on the contrary, is spread on the complete axis of frequencies, and vice versa. The STFT makes it possible to improve spatial localization, that is, it allows one to define the presence of any frequency in the signal and the interval of its presence. However, owing to Heisenberg's uncertainty principle, it is impossible to tell

  12. Corrected black hole thermodynamics in Damour-Ruffini’s method with generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    Zhou, Shiwei; Chen, Ge-Rui

    Recently, some approaches to quantum gravity indicate that a minimal measurable length lp ˜ 10-35 should be considered, a direct implication of the minimal measurable length is the generalized uncertainty principle (GUP). Taking the effect of GUP into account, Hawking radiation of massless scalar particles from a Schwarzschild black hole is investigated by the use of Damour-Ruffini’s method. The original Klein-Gordon equation is modified. It is obtained that the corrected Hawking temperature is related to the energy of emitting particles. Some discussions appear in the last section.

  13. Quantification of uncertainty in first-principles predicted mechanical properties of solids: Application to solid ion conductors

    NASA Astrophysics Data System (ADS)

    Ahmad, Zeeshan; Viswanathan, Venkatasubramanian

    2016-08-01

    Computationally-guided material discovery is being increasingly employed using a descriptor-based screening through the calculation of a few properties of interest. A precise understanding of the uncertainty associated with first-principles density functional theory calculated property values is important for the success of descriptor-based screening. The Bayesian error estimation approach has been built in to several recently developed exchange-correlation functionals, which allows an estimate of the uncertainty associated with properties related to the ground state energy, for example, adsorption energies. Here, we propose a robust and computationally efficient method for quantifying uncertainty in mechanical properties, which depend on the derivatives of the energy. The procedure involves calculating energies around the equilibrium cell volume with different strains and fitting the obtained energies to the corresponding energy-strain relationship. At each strain, we use instead of a single energy, an ensemble of energies, giving us an ensemble of fits and thereby, an ensemble of mechanical properties associated with each fit, whose spread can be used to quantify its uncertainty. The generation of ensemble of energies is only a post-processing step involving a perturbation of parameters of the exchange-correlation functional and solving for the energy non-self-consistently. The proposed method is computationally efficient and provides a more robust uncertainty estimate compared to the approach of self-consistent calculations employing several different exchange-correlation functionals. We demonstrate the method by calculating the uncertainty bounds for several materials belonging to different classes and having different structures using the developed method. We show that the calculated uncertainty bounds the property values obtained using three different GGA functionals: PBE, PBEsol, and RPBE. Finally, we apply the approach to calculate the uncertainty

  14. Thermodynamics of a class of regular black holes with a generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    Maluf, R. V.; Neves, Juliano C. S.

    2018-05-01

    In this article, we present a study on thermodynamics of a class of regular black holes. Such a class includes Bardeen and Hayward regular black holes. We obtained thermodynamic quantities like the Hawking temperature, entropy, and heat capacity for the entire class. As part of an effort to indicate some physical observable to distinguish regular black holes from singular black holes, we suggest that regular black holes are colder than singular black holes. Besides, contrary to the Schwarzschild black hole, that class of regular black holes may be thermodynamically stable. From a generalized uncertainty principle, we also obtained the quantum-corrected thermodynamics for the studied class. Such quantum corrections provide a logarithmic term for the quantum-corrected entropy.

  15. Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control

    NASA Astrophysics Data System (ADS)

    Deffner, Sebastian; Campbell, Steve

    2017-11-01

    One of the most widely known building blocks of modern physics is Heisenberg’s indeterminacy principle. Among the different statements of this fundamental property of the full quantum mechanical nature of physical reality, the uncertainty relation for energy and time has a special place. Its interpretation and its consequences have inspired continued research efforts for almost a century. In its modern formulation, the uncertainty relation is understood as setting a fundamental bound on how fast any quantum system can evolve. In this topical review we describe important milestones, such as the Mandelstam-Tamm and the Margolus-Levitin bounds on the quantum speed limit, and summarise recent applications in a variety of current research fields—including quantum information theory, quantum computing, and quantum thermodynamics amongst several others. To bring order and to provide an access point into the many different notions and concepts, we have grouped the various approaches into the minimal time approach and the geometric approach, where the former relies on quantum control theory, and the latter arises from measuring the distinguishability of quantum states. Due to the volume of the literature, this topical review can only present a snapshot of the current state-of-the-art and can never be fully comprehensive. Therefore, we highlight but a few works hoping that our selection can serve as a representative starting point for the interested reader.

  16. Routine internal- and external-quality control data in clinical laboratories for estimating measurement and diagnostic uncertainty using GUM principles.

    PubMed

    Magnusson, Bertil; Ossowicki, Haakan; Rienitz, Olaf; Theodorsson, Elvar

    2012-05-01

    Healthcare laboratories are increasingly joining into larger laboratory organizations encompassing several physical laboratories. This caters for important new opportunities for re-defining the concept of a 'laboratory' to encompass all laboratories and measurement methods measuring the same measurand for a population of patients. In order to make measurement results, comparable bias should be minimized or eliminated and measurement uncertainty properly evaluated for all methods used for a particular patient population. The measurement as well as diagnostic uncertainty can be evaluated from internal and external quality control results using GUM principles. In this paper the uncertainty evaluations are described in detail using only two main components, within-laboratory reproducibility and uncertainty of the bias component according to a Nordtest guideline. The evaluation is exemplified for the determination of creatinine in serum for a conglomerate of laboratories both expressed in absolute units (μmol/L) and relative (%). An expanded measurement uncertainty of 12 μmol/L associated with concentrations of creatinine below 120 μmol/L and of 10% associated with concentrations above 120 μmol/L was estimated. The diagnostic uncertainty encompasses both measurement uncertainty and biological variation, and can be estimated for a single value and for a difference. This diagnostic uncertainty for the difference for two samples from the same patient was determined to be 14 μmol/L associated with concentrations of creatinine below 100 μmol/L and 14 % associated with concentrations above 100 μmol/L.

  17. Comparison of Classical and Quantum Mechanical Uncertainties.

    ERIC Educational Resources Information Center

    Peslak, John, Jr.

    1979-01-01

    Comparisons are made for the particle-in-a-box, the harmonic oscillator, and the one-electron atom. A classical uncertainty principle is derived and compared with its quantum-mechanical counterpart. The results are discussed in terms of the statistical interpretation of the uncertainty principle. (Author/BB)

  18. Quantum theory of the generalised uncertainty principle

    NASA Astrophysics Data System (ADS)

    Bruneton, Jean-Philippe; Larena, Julien

    2017-04-01

    We extend significantly previous works on the Hilbert space representations of the generalized uncertainty principle (GUP) in 3 + 1 dimensions of the form [X_i,P_j] = i F_{ij} where F_{ij} = f({{P}}^2) δ _{ij} + g({{P}}^2) P_i P_j for any functions f. However, we restrict our study to the case of commuting X's. We focus in particular on the symmetries of the theory, and the minimal length that emerge in some cases. We first show that, at the algebraic level, there exists an unambiguous mapping between the GUP with a deformed quantum algebra and a quadratic Hamiltonian into a standard, Heisenberg algebra of operators and an aquadratic Hamiltonian, provided the boost sector of the symmetries is modified accordingly. The theory can also be mapped to a completely standard Quantum Mechanics with standard symmetries, but with momentum dependent position operators. Next, we investigate the Hilbert space representations of these algebraically equivalent models, and focus specifically on whether they exhibit a minimal length. We carry the functional analysis of the various operators involved, and show that the appearance of a minimal length critically depends on the relationship between the generators of translations and the physical momenta. In particular, because this relationship is preserved by the algebraic mapping presented in this paper, when a minimal length is present in the standard GUP, it is also present in the corresponding Aquadratic Hamiltonian formulation, despite the perfectly standard algebra of this model. In general, a minimal length requires bounded generators of translations, i.e. a specific kind of quantization of space, and this depends on the precise shape of the function f defined previously. This result provides an elegant and unambiguous classification of which universal quantum gravity corrections lead to the emergence of a minimal length.

  19. Two new kinds of uncertainty relations

    NASA Technical Reports Server (NTRS)

    Uffink, Jos

    1994-01-01

    We review a statistical-geometrical and a generalized entropic approach to the uncertainty principle. Both approaches provide a strengthening and generalization of the standard Heisenberg uncertainty relations, but in different directions.

  20. An uncertainty budget for VHF and UHF reflectometers

    NASA Astrophysics Data System (ADS)

    Ridler, N. M.; Medley, C. J.

    1992-05-01

    Details of the derivation of an uncertainty budget for one port immittance or complex voltage reflection coefficient measuring instruments, operating at VHF and UHF in the 14 mm 50 ohm coaxial line size, are reported. The principles of the uncertainty budget are given along with experimental results obtained using six ports and a network analyzer as the measuring instruments. Details of the types of calibration for which the uncertainty budget is suitable are reported. Various aspects of the uncertainty budget are considered and general principles and treatment of the type A and type B contributions are discussed. Experimental results obtained using the uncertainty budget are given. A summary of uncertainties for the six ports and HP8753B automatic network analyzer are also given.

  1. Generalized uncertainty principle impact onto the black holes information flux and the sparsity of Hawking radiation

    NASA Astrophysics Data System (ADS)

    Alonso-Serrano, Ana; DÄ browski, Mariusz P.; Gohar, Hussain

    2018-02-01

    We investigate the generalized uncertainty principle (GUP) corrections to the entropy content and the information flux of black holes, as well as the corrections to the sparsity of the Hawking radiation at the late stages of evaporation. We find that due to these quantum gravity motivated corrections, the entropy flow per particle reduces its value on the approach to the Planck scale due to a better accuracy in counting the number of microstates. We also show that the radiation flow is no longer sparse when the mass of a black hole approaches Planck mass which is not the case for non-GUP calculations.

  2. The precautionary principle within European Union public health policy. The implementation of the principle under conditions of supranationality and citizenship.

    PubMed

    Antonopoulou, Lila; van Meurs, Philip

    2003-11-01

    The present study examines the precautionary principle within the parameters of public health policy in the European Union, regarding both its meaning, as it has been shaped by relevant EU institutions and their counterparts within the Member States, and its implementation in practice. In the initial section I concentrate on the methodological question of "scientific uncertainty" concerning the calculation of risk and possible damage. Calculation of risk in many cases justifies the adopting of preventive measures, but, as it is argued, the principle of precaution and its implementation cannot be wholly captured by a logic of calculation; such a principle does not only contain scientific uncertainty-as the preventive principle does-but it itself is generated as a principle by this scientific uncertainty, recognising the need for a society to act. Thus, the implementation of the precautionary principle is also a simultaneous search for justification of its status as a principle. This justification would result in the adoption of precautionary measures against risk although no proof of this principle has been produced based on the "cause-effect" model. The main part of the study is occupied with an examination of three cases from which the stance of the official bodies of the European Union towards the precautionary principle and its implementation emerges: the case of the "mad cows" disease, the case of production and commercialization of genetically modified foodstuffs. The study concludes with the assessment that the effective implementation of the precautionary principle on a European level depends on the emergence of a concerned Europe-wide citizenship and its acting as a mechanism to counteract the material and social conditions that pose risks for human health.

  3. Uncertainty relations with the generalized Wigner-Yanase-Dyson skew information

    NASA Astrophysics Data System (ADS)

    Fan, Yajing; Cao, Huaixin; Wang, Wenhua; Meng, Huixian; Chen, Liang

    2018-07-01

    The uncertainty principle in quantum mechanics is a fundamental relation with different forms, including Heisenberg's uncertainty relation and Schrödinger's uncertainty relation. We introduce the generalized Wigner-Yanase-Dyson correlation and the related quantities. Various properties of them are discussed. Finally, we establish several generalizations of uncertainty relation expressed in terms of the generalized Wigner-Yanase-Dyson skew information.

  4. The Irrelevance of the Risk-Uncertainty Distinction.

    PubMed

    Roser, Dominic

    2017-10-01

    Precautionary Principles are often said to be appropriate for decision-making in contexts of uncertainty such as climate policy. Contexts of uncertainty are contrasted to contexts of risk depending on whether we have probabilities or not. Against this view, I argue that the risk-uncertainty distinction is practically irrelevant. I start by noting that the history of the distinction between risk and uncertainty is more varied than is sometimes assumed. In order to examine the distinction, I unpack the idea of having probabilities, in particular by distinguishing three interpretations of probability: objective, epistemic, and subjective probability. I then claim that if we are concerned with whether we have probabilities at all-regardless of how low their epistemic credentials are-then we almost always have probabilities for policy-making. The reason is that subjective and epistemic probability are the relevant interpretations of probability and we almost always have subjective and epistemic probabilities. In contrast, if we are only concerned with probabilities that have sufficiently high epistemic credentials, then we obviously do not always have probabilities. Climate policy, for example, would then be a case of decision-making under uncertainty. But, so I argue, we should not dismiss probabilities with low epistemic credentials. Rather, when they are the best available probabilities our decision principles should make use of them. And, since they are almost always available, the risk-uncertainty distinction remains irrelevant.

  5. Imperfect pitch: Gabor's uncertainty principle and the pitch of extremely brief sounds.

    PubMed

    Hsieh, I-Hui; Saberi, Kourosh

    2016-02-01

    How brief must a sound be before its pitch is no longer perceived? The uncertainty tradeoff between temporal and spectral resolution (Gabor's principle) limits the minimum duration required for accurate pitch identification or discrimination. Prior studies have reported that pitch can be extracted from sinusoidal pulses as brief as half a cycle. This finding has been used in a number of classic papers to develop models of pitch encoding. We have found that phase randomization, which eliminates timbre confounds, degrades this ability to chance, raising serious concerns over the foundation on which classic pitch models have been built. The current study investigated whether subthreshold pitch cues may still exist in partial-cycle pulses revealed through statistical integration in a time series containing multiple pulses. To this end, we measured frequency-discrimination thresholds in a two-interval forced-choice task for trains of partial-cycle random-phase tone pulses. We found that residual pitch cues exist in these pulses but discriminating them requires an order of magnitude (ten times) larger frequency difference than that reported previously, necessitating a re-evaluation of pitch models built on earlier findings. We also found that as pulse duration is decreased to less than two cycles its pitch becomes biased toward higher frequencies, consistent with predictions of an auto-correlation model of pitch extraction.

  6. Generalized Entropic Uncertainty Relations with Tsallis' Entropy

    NASA Technical Reports Server (NTRS)

    Portesi, M.; Plastino, A.

    1996-01-01

    A generalization of the entropic formulation of the Uncertainty Principle of Quantum Mechanics is considered with the introduction of the q-entropies recently proposed by Tsallis. The concomitant generalized measure is illustrated for the case of phase and number operators in quantum optics. Interesting results are obtained when making use of q-entropies as the basis for constructing generalized entropic uncertainty measures.

  7. Principles of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Landé, Alfred

    2013-10-01

    Preface; Introduction: 1. Observation and interpretation; 2. Difficulties of the classical theories; 3. The purpose of quantum theory; Part I. Elementary Theory of Observation (Principle of Complementarity): 4. Refraction in inhomogeneous media (force fields); 5. Scattering of charged rays; 6. Refraction and reflection at a plane; 7. Absolute values of momentum and wave length; 8. Double ray of matter diffracting light waves; 9. Double ray of matter diffracting photons; 10. Microscopic observation of ρ (x) and σ (p); 11. Complementarity; 12. Mathematical relation between ρ (x) and σ (p) for free particles; 13. General relation between ρ (q) and σ (p); 14. Crystals; 15. Transition density and transition probability; 16. Resultant values of physical functions; matrix elements; 17. Pulsating density; 18. General relation between ρ (t) and σ (є); 19. Transition density; matrix elements; Part II. The Principle of Uncertainty: 20. Optical observation of density in matter packets; 21. Distribution of momenta in matter packets; 22. Mathematical relation between ρ and σ; 23. Causality; 24. Uncertainty; 25. Uncertainty due to optical observation; 26. Dissipation of matter packets; rays in Wilson Chamber; 27. Density maximum in time; 28. Uncertainty of energy and time; 29. Compton effect; 30. Bothe-Geiger and Compton-Simon experiments; 31. Doppler effect; Raman effect; 32. Elementary bundles of rays; 33. Jeans' number of degrees of freedom; 34. Uncertainty of electromagnetic field components; Part III. The Principle of Interference and Schrödinger's equation: 35. Physical functions; 36. Interference of probabilities for p and q; 37. General interference of probabilities; 38. Differential equations for Ψp (q) and Xq (p); 39. Differential equation for фβ (q); 40. The general probability amplitude Φβ' (Q); 41. Point transformations; 42. General theorem of interference; 43. Conjugate variables; 44. Schrödinger's equation for conservative systems; 45. Schr

  8. Niels Bohr's discussions with Albert Einstein, Werner Heisenberg, and Erwin Schroedinger: the origins of the principles of uncertainty and complementarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehra, J.

    1987-05-01

    In this paper, the main outlines of the discussions between Niels Bohr with Albert Einstein, Werner Heisenberg, and Erwin Schroedinger during 1920-1927 are treated. From the formulation of quantum mechanics in 1925-1926 and wave mechanics in 1926, there emerged Born's statistical interpretation of the wave function in summer 1926, and on the basis of the quantum mechanical transformation theory - formulated in fall 1926 by Dirac, London, and Jordan - Heisenberg formulated the uncertainty principle in early 1927. At the Volta Conference in Como in September 1927 and at the fifth Solvay Conference in Brussels the following month, Bohr publiclymore » enunciated his complementarity principle, which had been developing in his mind for several years. The Bohr-Einstein discussions about the consistency and completeness of quantum mechanics and of physical theory as such - formally begun in October 1927 at the fifth Solvay Conference and carried on at the sixth Solvay Conference in October 1930 - were continued during the next decades. All these aspects are briefly summarized.« less

  9. On entropic uncertainty relations in the presence of a minimal length

    NASA Astrophysics Data System (ADS)

    Rastegin, Alexey E.

    2017-07-01

    Entropic uncertainty relations for the position and momentum within the generalized uncertainty principle are examined. Studies of this principle are motivated by the existence of a minimal observable length. Then the position and momentum operators satisfy the modified commutation relation, for which more than one algebraic representation is known. One of them is described by auxiliary momentum so that the momentum and coordinate wave functions are connected by the Fourier transform. However, the probability density functions of the physically true and auxiliary momenta are different. As the corresponding entropies differ, known entropic uncertainty relations are changed. Using differential Shannon entropies, we give a state-dependent formulation with correction term. State-independent uncertainty relations are obtained in terms of the Rényi entropies and the Tsallis entropies with binning. Such relations allow one to take into account a finiteness of measurement resolution.

  10. Uncertainty information in climate data records from Earth observation

    NASA Astrophysics Data System (ADS)

    Merchant, C. J.

    2017-12-01

    How to derive and present uncertainty in climate data records (CDRs) has been debated within the European Space Agency Climate Change Initiative, in search of common principles applicable across a range of essential climate variables. Various points of consensus have been reached, including the importance of improving provision of uncertainty information and the benefit of adopting international norms of metrology for language around the distinct concepts of uncertainty and error. Providing an estimate of standard uncertainty per datum (or the means to readily calculate it) emerged as baseline good practice, and should be highly relevant to users of CDRs when the uncertainty in data is variable (the usual case). Given this baseline, the role of quality flags is clarified as being complementary to and not repetitive of uncertainty information. Data with high uncertainty are not poor quality if a valid estimate of the uncertainty is available. For CDRs and their applications, the error correlation properties across spatio-temporal scales present important challenges that are not fully solved. Error effects that are negligible in the uncertainty of a single pixel may dominate uncertainty in the large-scale and long-term. A further principle is that uncertainty estimates should themselves be validated. The concepts of estimating and propagating uncertainty are generally acknowledged in geophysical sciences, but less widely practised in Earth observation and development of CDRs. Uncertainty in a CDR depends in part (and usually significantly) on the error covariance of the radiances and auxiliary data used in the retrieval. Typically, error covariance information is not available in the fundamental CDR (FCDR) (i.e., with the level-1 radiances), since provision of adequate level-1 uncertainty information is not yet standard practice. Those deriving CDRs thus cannot propagate the radiance uncertainty to their geophysical products. The FIDUCEO project (www.fiduceo.eu) is

  11. Addressing global uncertainty and sensitivity in first-principles based microkinetic models by an adaptive sparse grid approach

    NASA Astrophysics Data System (ADS)

    Döpking, Sandra; Plaisance, Craig P.; Strobusch, Daniel; Reuter, Karsten; Scheurer, Christoph; Matera, Sebastian

    2018-01-01

    In the last decade, first-principles-based microkinetic modeling has been developed into an important tool for a mechanistic understanding of heterogeneous catalysis. A commonly known, but hitherto barely analyzed issue in this kind of modeling is the presence of sizable errors from the use of approximate Density Functional Theory (DFT). We here address the propagation of these errors to the catalytic turnover frequency (TOF) by global sensitivity and uncertainty analysis. Both analyses require the numerical quadrature of high-dimensional integrals. To achieve this efficiently, we utilize and extend an adaptive sparse grid approach and exploit the confinement of the strongly non-linear behavior of the TOF to local regions of the parameter space. We demonstrate the methodology on a model of the oxygen evolution reaction at the Co3O4 (110)-A surface, using a maximum entropy error model that imposes nothing but reasonable bounds on the errors. For this setting, the DFT errors lead to an absolute uncertainty of several orders of magnitude in the TOF. We nevertheless find that it is still possible to draw conclusions from such uncertain models about the atomistic aspects controlling the reactivity. A comparison with derivative-based local sensitivity analysis instead reveals that this more established approach provides incomplete information. Since the adaptive sparse grids allow for the evaluation of the integrals with only a modest number of function evaluations, this approach opens the way for a global sensitivity analysis of more complex models, for instance, models based on kinetic Monte Carlo simulations.

  12. Uncertainty Analysis of Thermal Comfort Parameters

    NASA Astrophysics Data System (ADS)

    Ribeiro, A. Silva; Alves e Sousa, J.; Cox, Maurice G.; Forbes, Alistair B.; Matias, L. Cordeiro; Martins, L. Lages

    2015-08-01

    International Standard ISO 7730:2005 defines thermal comfort as that condition of mind that expresses the degree of satisfaction with the thermal environment. Although this definition is inevitably subjective, the Standard gives formulae for two thermal comfort indices, predicted mean vote ( PMV) and predicted percentage dissatisfied ( PPD). The PMV formula is based on principles of heat balance and experimental data collected in a controlled climate chamber under steady-state conditions. The PPD formula depends only on PMV. Although these formulae are widely recognized and adopted, little has been done to establish measurement uncertainties associated with their use, bearing in mind that the formulae depend on measured values and tabulated values given to limited numerical accuracy. Knowledge of these uncertainties are invaluable when values provided by the formulae are used in making decisions in various health and civil engineering situations. This paper examines these formulae, giving a general mechanism for evaluating the uncertainties associated with values of the quantities on which the formulae depend. Further, consideration is given to the propagation of these uncertainties through the formulae to provide uncertainties associated with the values obtained for the indices. Current international guidance on uncertainty evaluation is utilized.

  13. Role of information theoretic uncertainty relations in quantum theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jizba, Petr, E-mail: p.jizba@fjfi.cvut.cz; ITP, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin; Dunningham, Jacob A., E-mail: J.Dunningham@sussex.ac.uk

    2015-04-15

    Uncertainty relations based on information theory for both discrete and continuous distribution functions are briefly reviewed. We extend these results to account for (differential) Rényi entropy and its related entropy power. This allows us to find a new class of information-theoretic uncertainty relations (ITURs). The potency of such uncertainty relations in quantum mechanics is illustrated with a simple two-energy-level model where they outperform both the usual Robertson–Schrödinger uncertainty relation and Shannon entropy based uncertainty relation. In the continuous case the ensuing entropy power uncertainty relations are discussed in the context of heavy tailed wave functions and Schrödinger cat states. Again,more » improvement over both the Robertson–Schrödinger uncertainty principle and Shannon ITUR is demonstrated in these cases. Further salient issues such as the proof of a generalized entropy power inequality and a geometric picture of information-theoretic uncertainty relations are also discussed.« less

  14. Uncertainty for Part Density Determination: An Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdez, Mario Orlando

    2016-12-14

    Accurate and precise density measurements by hydrostatic weighing requires the use of an analytical balance, configured with a suspension system, to both measure the weight of a part in water and in air. Additionally, the densities of these liquid media (water and air) must be precisely known for the part density determination. To validate the accuracy and precision of these measurements, uncertainty statements are required. The work in this report is a revision of an original report written more than a decade ago, specifically applying principles and guidelines suggested by the Guide to the Expression of Uncertainty in Measurement (GUM)more » for determining the part density uncertainty through sensitivity analysis. In this work, updated derivations are provided; an original example is revised with the updated derivations and appendix, provided solely to uncertainty evaluations using Monte Carlo techniques, specifically using the NIST Uncertainty Machine, as a viable alternative method.« less

  15. The physical origins of the uncertainty theorem

    NASA Astrophysics Data System (ADS)

    Giese, Albrecht

    2013-10-01

    The uncertainty principle is an important element of quantum mechanics. It deals with certain pairs of physical parameters which cannot be determined to an arbitrary level of precision at the same time. According to the so-called Copenhagen interpretation of quantum mechanics, this uncertainty is an intrinsic property of the physical world. - This paper intends to show that there are good reasons for adopting a different view. According to the author, the uncertainty is not a property of the physical world but rather a limitation of our knowledge about the actual state of a physical process. This view conforms to the quantum theory of Louis de Broglie and to Albert Einstein's interpretation.

  16. On the relativity and uncertainty of distance, time, and energy measurements by man. (1) Derivation of the Weber psychophysical law from the Heisenberg uncertainty principle applied to a superconductive biological detector. (2) The reverse derivation. (3) A human theory of relativity.

    PubMed

    Cope, F W

    1981-01-01

    The Weber psychophysical law, which describes much experimental data on perception by man, is derived from the Heisenberg uncertainty principle on the assumption that human perception occurs by energy detection by superconductive microregions within man . This suggests that psychophysical perception by man might be considered merely a special case of physical measurement in general. The reverse derivation-i.e., derivation of the Heisenberg principle from the Weber law-may be of even greater interest. It suggest that physical measurements could be regarded as relative to the perceptions by the detectors within man. Thus one may develop a "human" theory of relativity that could have the advantage of eliminating hidden assumptions by forcing physical theories to conform more completely to the measurements made by man rather than to concepts that might not accurately describe nature.

  17. Tightening the entropic uncertainty bound in the presence of quantum memory

    NASA Astrophysics Data System (ADS)

    Adabi, F.; Salimi, S.; Haseli, S.

    2016-06-01

    The uncertainty principle is a fundamental principle in quantum physics. It implies that the measurement outcomes of two incompatible observables cannot be predicted simultaneously. In quantum information theory, this principle can be expressed in terms of entropic measures. M. Berta et al. [Nat. Phys. 6, 659 (2010), 10.1038/nphys1734] have indicated that uncertainty bound can be altered by considering a particle as a quantum memory correlating with the primary particle. In this article, we obtain a lower bound for entropic uncertainty in the presence of a quantum memory by adding an additional term depending on the Holevo quantity and mutual information. We conclude that our lower bound will be tightened with respect to that of Berta et al. when the accessible information about measurements outcomes is less than the mutual information about the joint state. Some examples have been investigated for which our lower bound is tighter than Berta et al.'s lower bound. Using our lower bound, a lower bound for the entanglement of formation of bipartite quantum states has been obtained, as well as an upper bound for the regularized distillable common randomness.

  18. Is the Precautionary Principle Really Incoherent?

    PubMed

    Boyer-Kassem, Thomas

    2017-11-01

    The Precautionary Principle has been an increasingly important principle in international treaties since the 1980s. Through varying formulations, it states that when an activity can lead to a catastrophe for human health or the environment, measures should be taken to prevent it even if the cause-and-effect relationship is not fully established scientifically. The Precautionary Principle has been critically discussed from many sides. This article concentrates on a theoretical argument by Peterson (2006) according to which the Precautionary Principle is incoherent with other desiderata of rational decision making, and thus cannot be used as a decision rule that selects an action among several ones. I claim here that Peterson's argument fails to establish the incoherence of the Precautionary Principle, by attacking three of its premises. I argue (i) that Peterson's treatment of uncertainties lacks generality, (ii) that his Archimedian condition is problematic for incommensurability reasons, and (iii) that his explication of the Precautionary Principle is not adequate. This leads me to conjecture that the Precautionary Principle can be envisaged as a coherent decision rule, again. © 2017 Society for Risk Analysis.

  19. Entropic uncertainty and measurement reversibility

    NASA Astrophysics Data System (ADS)

    Berta, Mario; Wehner, Stephanie; Wilde, Mark M.

    2016-07-01

    The entropic uncertainty relation with quantum side information (EUR-QSI) from (Berta et al 2010 Nat. Phys. 6 659) is a unifying principle relating two distinctive features of quantum mechanics: quantum uncertainty due to measurement incompatibility, and entanglement. In these relations, quantum uncertainty takes the form of preparation uncertainty where one of two incompatible measurements is applied. In particular, the ‘uncertainty witness’ lower bound in the EUR-QSI is not a function of a post-measurement state. An insightful proof of the EUR-QSI from (Coles et al 2012 Phys. Rev. Lett. 108 210405) makes use of a fundamental mathematical consequence of the postulates of quantum mechanics known as the non-increase of quantum relative entropy under quantum channels. Here, we exploit this perspective to establish a tightening of the EUR-QSI which adds a new state-dependent term in the lower bound, related to how well one can reverse the action of a quantum measurement. As such, this new term is a direct function of the post-measurement state and can be thought of as quantifying how much disturbance a given measurement causes. Our result thus quantitatively unifies this feature of quantum mechanics with the others mentioned above. We have experimentally tested our theoretical predictions on the IBM quantum experience and find reasonable agreement between our predictions and experimental outcomes.

  20. Energy and Uncertainty in General Relativity

    NASA Astrophysics Data System (ADS)

    Cooperstock, F. I.; Dupre, M. J.

    2018-03-01

    The issue of energy and its potential localizability in general relativity has challenged physicists for more than a century. Many non-invariant measures were proposed over the years but an invariant measure was never found. We discovered the invariant localized energy measure by expanding the domain of investigation from space to spacetime. We note from relativity that the finiteness of the velocity of propagation of interactions necessarily induces indefiniteness in measurements. This is because the elements of actual physical systems being measured as well as their detectors are characterized by entire four-velocity fields, which necessarily leads to information from a measured system being processed by the detector in a spread of time. General relativity adds additional indefiniteness because of the variation in proper time between elements. The uncertainty is encapsulated in a generalized uncertainty principle, in parallel with that of Heisenberg, which incorporates the localized contribution of gravity to energy. This naturally leads to a generalized uncertainty principle for momentum as well. These generalized forms and the gravitational contribution to localized energy would be expected to be of particular importance in the regimes of ultra-strong gravitational fields. We contrast our invariant spacetime energy measure with the standard 3-space energy measure which is familiar from special relativity, appreciating why general relativity demands a measure in spacetime as opposed to 3-space. We illustrate the misconceptions by certain authors of our approach.

  1. Precautionary Principles: General Definitions and Specific Applications to Genetically Modified Organisms

    ERIC Educational Resources Information Center

    Lofstedt, Ragnar E.; Fischhoff, Baruch; Fischhoff, Ilya R.

    2002-01-01

    Precautionary principles have been proposed as a fundamental element of sound risk management. Their advocates see them as guiding action in the face of uncertainty, encouraging the adoption of measures that reduce serious risks to health, safety, and the environment. Their opponents may reject the very idea of precautionary principles, find…

  2. Uncertainty in Bohr's response to the Heisenberg microscope

    NASA Astrophysics Data System (ADS)

    Tanona, Scott

    2004-09-01

    In this paper, I analyze Bohr's account of the uncertainty relations in Heisenberg's gamma-ray microscope thought experiment and address the question of whether Bohr thought uncertainty was epistemological or ontological. Bohr's account seems to allow that the electron being investigated has definite properties which we cannot measure, but other parts of his Como lecture seem to indicate that he thought that electrons are wave-packets which do not have well-defined properties. I argue that his account merges the ontological and epistemological aspects of uncertainty. However, Bohr reached this conclusion not from positivism, as perhaps Heisenberg did, but because he was led to that conclusion by his understanding of the physics in terms of nonseparability and the correspondence principle. Bohr argued that the wave theory from which he derived the uncertainty relations was not to be taken literally, but rather symbolically, as an expression of the limited applicability of classical concepts to parts of entangled quantum systems. Complementarity and uncertainty are consequences of the formalism, properly interpreted, and not something brought to the physics from external philosophical views.

  3. Measurement of optical to electrical and electrical to optical delays with ps-level uncertainty.

    PubMed

    Peek, H Z; Pinkert, T J; Jansweijer, P P M; Koelemeij, J C J

    2018-05-28

    We present a new measurement principle to determine the absolute time delay of a waveform from an optical reference plane to an electrical reference plane and vice versa. We demonstrate a method based on this principle with 2 ps uncertainty. This method can be used to perform accurate time delay determinations of optical transceivers used in fiber-optic time-dissemination equipment. As a result the time scales in optical and electrical domain can be related to each other with the same uncertainty. We expect this method will be a new breakthrough in high-accuracy time transfer and absolute calibration of time-transfer equipment.

  4. The equivalence principle in a quantum world

    NASA Astrophysics Data System (ADS)

    Bjerrum-Bohr, N. E. J.; Donoghue, John F.; El-Menoufi, Basem Kamal; Holstein, Barry R.; Planté, Ludovic; Vanhove, Pierre

    2015-09-01

    We show how modern methods can be applied to quantum gravity at low energy. We test how quantum corrections challenge the classical framework behind the equivalence principle (EP), for instance through introduction of nonlocality from quantum physics, embodied in the uncertainty principle. When the energy is small, we now have the tools to address this conflict explicitly. Despite the violation of some classical concepts, the EP continues to provide the core of the quantum gravity framework through the symmetry — general coordinate invariance — that is used to organize the effective field theory (EFT).

  5. Fundamental uncertainty limit for speckle displacement measurements.

    PubMed

    Fischer, Andreas

    2017-09-01

    The basic metrological task in speckle photography is to quantify displacements of speckle patterns, allowing for instance the investigation of the mechanical load and modification of objects with rough surfaces. However, the fundamental limit of the measurement uncertainty due to photon shot noise is unknown. For this reason, the Cramér-Rao bound (CRB) is derived for speckle displacement measurements, representing the squared minimal achievable measurement uncertainty. As result, the CRB for speckle patterns is only two times the CRB for an ideal point light source. Hence, speckle photography is an optimal measurement approach for contactless displacement measurements on rough surfaces. In agreement with a derivation from Heisenberg's uncertainty principle, the CRB depends on the number of detected photons and the diffraction limit of the imaging system described by the speckle size. The theoretical results are verified and validated, demonstrating the capability for displacement measurements with nanometer resolution.

  6. Estimating uncertainties in complex joint inverse problems

    NASA Astrophysics Data System (ADS)

    Afonso, Juan Carlos

    2016-04-01

    Sources of uncertainty affecting geophysical inversions can be classified either as reflective (i.e. the practitioner is aware of her/his ignorance) or non-reflective (i.e. the practitioner does not know that she/he does not know!). Although we should be always conscious of the latter, the former are the ones that, in principle, can be estimated either empirically (by making measurements or collecting data) or subjectively (based on the experience of the researchers). For complex parameter estimation problems in geophysics, subjective estimation of uncertainty is the most common type. In this context, probabilistic (aka Bayesian) methods are commonly claimed to offer a natural and realistic platform from which to estimate model uncertainties. This is because in the Bayesian approach, errors (whatever their nature) can be naturally included as part of the global statistical model, the solution of which represents the actual solution to the inverse problem. However, although we agree that probabilistic inversion methods are the most powerful tool for uncertainty estimation, the common claim that they produce "realistic" or "representative" uncertainties is not always justified. Typically, ALL UNCERTAINTY ESTIMATES ARE MODEL DEPENDENT, and therefore, besides a thorough characterization of experimental uncertainties, particular care must be paid to the uncertainty arising from model errors and input uncertainties. We recall here two quotes by G. Box and M. Gunzburger, respectively, of special significance for inversion practitioners and for this session: "…all models are wrong, but some are useful" and "computational results are believed by no one, except the person who wrote the code". In this presentation I will discuss and present examples of some problems associated with the estimation and quantification of uncertainties in complex multi-observable probabilistic inversions, and how to address them. Although the emphasis will be on sources of uncertainty related

  7. Steering the measured uncertainty under decoherence through local PT -symmetric operations

    NASA Astrophysics Data System (ADS)

    Shi, Wei-Nan; Wang, Dong; Sun, Wen-Yang; Ming, Fei; Huang, Ai-Jun; Ye, Liu

    2018-07-01

    The uncertainty principle is viewed as one of the appealing properties in the context of quantum mechanics, which intrinsically offers a lower bound with regard to the measurement outcomes of a pair of incompatible observables within a given system. In this letter, we attempt to observe entropic uncertainty in the presence of quantum memory under different local noisy channels. To be specific, we develop the dynamics of the measured uncertainty under local bit-phase-flipping (unital) and depolarization (nonunital) noise, respectively, and attractively put forward an effective strategy to manipulate its magnitude of the uncertainty of interest by means of parity-time symmetric (-symmetric) operations on the subsystem to be measured. It is interesting to find that there exist different evolution characteristics of the uncertainty in the channels considered here, i.e. the monotonic behavior in the nonunital channels, and the non-monotonic behavior in the unital channels. Moreover, the amount of the measured uncertainty can be reduced to some degree by properly modulating the -symmetric operations.

  8. On the Minimal Length Uncertainty Relation and the Foundations of String Theory

    DOE PAGES

    Chang, Lay Nam; Lewis, Zachary; Minic, Djordje; ...

    2011-01-01

    We review our work on the minimal length uncertainty relation as suggested by perturbative string theory. We discuss simple phenomenological implications of the minimal length uncertainty relation and then argue that the combination of the principles of quantum theory and general relativity allow for a dynamical energy-momentum space. We discuss the implication of this for the problem of vacuum energy and the foundations of nonperturbative string theory.

  9. Position-momentum uncertainty relations in the presence of quantum memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furrer, Fabian, E-mail: furrer@eve.phys.s.u-tokyo.ac.jp; Berta, Mario; Institute for Theoretical Physics, ETH Zurich, Wolfgang-Pauli-Str. 27, 8093 Zürich

    2014-12-15

    A prominent formulation of the uncertainty principle identifies the fundamental quantum feature that no particle may be prepared with certain outcomes for both position and momentum measurements. Often the statistical uncertainties are thereby measured in terms of entropies providing a clear operational interpretation in information theory and cryptography. Recently, entropic uncertainty relations have been used to show that the uncertainty can be reduced in the presence of entanglement and to prove security of quantum cryptographic tasks. However, much of this recent progress has been focused on observables with only a finite number of outcomes not including Heisenberg’s original setting ofmore » position and momentum observables. Here, we show entropic uncertainty relations for general observables with discrete but infinite or continuous spectrum that take into account the power of an entangled observer. As an illustration, we evaluate the uncertainty relations for position and momentum measurements, which is operationally significant in that it implies security of a quantum key distribution scheme based on homodyne detection of squeezed Gaussian states.« less

  10. Uncertainty in quantum mechanics: faith or fantasy?

    PubMed

    Penrose, Roger

    2011-12-13

    The word 'uncertainty', in the context of quantum mechanics, usually evokes an impression of an essential unknowability of what might actually be going on at the quantum level of activity, as is made explicit in Heisenberg's uncertainty principle, and in the fact that the theory normally provides only probabilities for the results of quantum measurement. These issues limit our ultimate understanding of the behaviour of things, if we take quantum mechanics to represent an absolute truth. But they do not cause us to put that very 'truth' into question. This article addresses the issue of quantum 'uncertainty' from a different perspective, raising the question of whether this term might be applied to the theory itself, despite its unrefuted huge success over an enormously diverse range of observed phenomena. There are, indeed, seeming internal contradictions in the theory that lead us to infer that a total faith in it at all levels of scale leads us to almost fantastical implications.

  11. Uncertainty and stress: Why it causes diseases and how it is mastered by the brain.

    PubMed

    Peters, Achim; McEwen, Bruce S; Friston, Karl

    2017-09-01

    The term 'stress' - coined in 1936 - has many definitions, but until now has lacked a theoretical foundation. Here we present an information-theoretic approach - based on the 'free energy principle' - defining the essence of stress; namely, uncertainty. We address three questions: What is uncertainty? What does it do to us? What are our resources to master it? Mathematically speaking, uncertainty is entropy or 'expected surprise'. The 'free energy principle' rests upon the fact that self-organizing biological agents resist a tendency to disorder and must therefore minimize the entropy of their sensory states. Applied to our everyday life, this means that we feel uncertain, when we anticipate that outcomes will turn out to be something other than expected - and that we are unable to avoid surprise. As all cognitive systems strive to reduce their uncertainty about future outcomes, they face a critical constraint: Reducing uncertainty requires cerebral energy. The characteristic of the vertebrate brain to prioritize its own high energy is captured by the notion of the 'selfish brain'. Accordingly, in times of uncertainty, the selfish brain demands extra energy from the body. If, despite all this, the brain cannot reduce uncertainty, a persistent cerebral energy crisis may develop, burdening the individual by 'allostatic load' that contributes to systemic and brain malfunction (impaired memory, atherogenesis, diabetes and subsequent cardio- and cerebrovascular events). Based on the basic tenet that stress originates from uncertainty, we discuss the strategies our brain uses to avoid surprise and thereby resolve uncertainty. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Application of Risk Management and Uncertainty Concepts and Methods for Ecosystem Restoration: Principles and Best Practice

    DTIC Science & Technology

    2012-08-01

    habitats for specific species of trout . The report noted that these uncertainties — and the SMEs, who had past experience in such topic areas — were...reduce uncertainty in HREP projects is reflected in the completion of the Pool 11 Islands (UMRS RM 583-593) HREP in 2003. In 1989 the Browns Lake

  13. Applying the conservativeness principle to REDD to deal with the uncertainties of the estimates

    NASA Astrophysics Data System (ADS)

    Grassi, Giacomo; Monni, Suvi; Federici, Sandro; Achard, Frederic; Mollicone, Danilo

    2008-07-01

    A common paradigm when the reduction of emissions from deforestations is estimated for the purpose of promoting it as a mitigation option in the context of the United Nations Framework Convention on Climate Change (UNFCCC) is that high uncertainties in input data—i.e., area change and C stock change/area—may seriously undermine the credibility of the estimates and therefore of reduced deforestation as a mitigation option. In this paper, we show how a series of concepts and methodological tools—already existing in UNFCCC decisions and IPCC guidance documents—may greatly help to deal with the uncertainties of the estimates of reduced emissions from deforestation.

  14. Uncertainty estimation of the self-thinning process by Maximum-Entropy Principle

    Treesearch

    Shoufan Fang; George Z. Gertner

    2000-01-01

    When available information is scarce, the Maximum-Entropy Principle can estimate the distributions of parameters. In our case study, we estimated the distributions of the parameters of the forest self-thinning process based on literature information, and we derived the conditional distribution functions and estimated the 95 percent confidence interval (CI) of the self-...

  15. Information theoretic quantification of diagnostic uncertainty.

    PubMed

    Westover, M Brandon; Eiseman, Nathaniel A; Cash, Sydney S; Bianchi, Matt T

    2012-01-01

    Diagnostic test interpretation remains a challenge in clinical practice. Most physicians receive training in the use of Bayes' rule, which specifies how the sensitivity and specificity of a test for a given disease combine with the pre-test probability to quantify the change in disease probability incurred by a new test result. However, multiple studies demonstrate physicians' deficiencies in probabilistic reasoning, especially with unexpected test results. Information theory, a branch of probability theory dealing explicitly with the quantification of uncertainty, has been proposed as an alternative framework for diagnostic test interpretation, but is even less familiar to physicians. We have previously addressed one key challenge in the practical application of Bayes theorem: the handling of uncertainty in the critical first step of estimating the pre-test probability of disease. This essay aims to present the essential concepts of information theory to physicians in an accessible manner, and to extend previous work regarding uncertainty in pre-test probability estimation by placing this type of uncertainty within a principled information theoretic framework. We address several obstacles hindering physicians' application of information theoretic concepts to diagnostic test interpretation. These include issues of terminology (mathematical meanings of certain information theoretic terms differ from clinical or common parlance) as well as the underlying mathematical assumptions. Finally, we illustrate how, in information theoretic terms, one can understand the effect on diagnostic uncertainty of considering ranges instead of simple point estimates of pre-test probability.

  16. Risk, Uncertainty and Precaution in Science: The Threshold of the Toxicological Concern Approach in Food Toxicology.

    PubMed

    Bschir, Karim

    2017-04-01

    Environmental risk assessment is often affected by severe uncertainty. The frequently invoked precautionary principle helps to guide risk assessment and decision-making in the face of scientific uncertainty. In many contexts, however, uncertainties play a role not only in the application of scientific models but also in their development. Building on recent literature in the philosophy of science, this paper argues that precaution should be exercised at the stage when tools for risk assessment are developed as well as when they are used to inform decision-making. The relevance and consequences of this claim are discussed in the context of the threshold of the toxicological concern approach in food toxicology. I conclude that the approach does not meet the standards of an epistemic version of the precautionary principle.

  17. Entropic Uncertainty Relation and Information Exclusion Relation for multiple measurements in the presence of quantum memory

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Zhang, Yang; Yu, Chang-Shui

    2015-06-01

    The Heisenberg uncertainty principle shows that no one can specify the values of the non-commuting canonically conjugated variables simultaneously. However, the uncertainty relation is usually applied to two incompatible measurements. We present tighter bounds on both entropic uncertainty relation and information exclusion relation for multiple measurements in the presence of quantum memory. As applications, three incompatible measurements on Werner state and Horodecki’s bound entangled state are investigated in details.

  18. Understanding and applying principles of social cognition and ...

    EPA Pesticide Factsheets

    Environmental governance systems are under greater pressure to adapt and to cope with increased social and ecological uncertainty from stressors like climate change. We review principles of social cognition and decision making that shape and constrain how environmental governance systems adapt. We focus primarily on the interplay between key decision makers in society and legal systems. We argue that adaptive governance must overcome three cooperative dilemmas to facilitate adaptation: (1) encouraging collaborative problem solving, (2) garnering social acceptance and commitment, and (3) cultivating a culture of trust and tolerance for change and uncertainty. However, to do so governance systems must cope with biases in people’s decision making that cloud their judgment and create conflict. These systems must also satisfy people’s fundamental needs for self-determination, fairness, and security, ensuring that changes to environmental governance are perceived as legitimate, trustworthy, and acceptable. We discuss the implications of these principles for common governance solutions (e.g., public participation, enforcement) and conclude with methodological recommendations. We outline how scholars can investigate the social cognitive principles involved in cases of adaptive governance. Social-ecological stressors place significant pressure on major societal systems, triggering adaptive reforms in human governance and environmental law. Though potentially benefici

  19. A Bayesian Framework of Uncertainties Integration in 3D Geological Model

    NASA Astrophysics Data System (ADS)

    Liang, D.; Liu, X.

    2017-12-01

    3D geological model can describe complicated geological phenomena in an intuitive way while its application may be limited by uncertain factors. Great progress has been made over the years, lots of studies decompose the uncertainties of geological model to analyze separately, while ignored the comprehensive impacts of multi-source uncertainties. Great progress has been made over the years, while lots of studies ignored the comprehensive impacts of multi-source uncertainties when analyzed them item by item from each source. To evaluate the synthetical uncertainty, we choose probability distribution to quantify uncertainty, and propose a bayesian framework of uncertainties integration. With this framework, we integrated data errors, spatial randomness, and cognitive information into posterior distribution to evaluate synthetical uncertainty of geological model. Uncertainties propagate and cumulate in modeling process, the gradual integration of multi-source uncertainty is a kind of simulation of the uncertainty propagation. Bayesian inference accomplishes uncertainty updating in modeling process. Maximum entropy principle makes a good effect on estimating prior probability distribution, which ensures the prior probability distribution subjecting to constraints supplied by the given information with minimum prejudice. In the end, we obtained a posterior distribution to evaluate synthetical uncertainty of geological model. This posterior distribution represents the synthetical impact of all the uncertain factors on the spatial structure of geological model. The framework provides a solution to evaluate synthetical impact on geological model of multi-source uncertainties and a thought to study uncertainty propagation mechanism in geological modeling.

  20. The precautionary principle and pharmaceutical risk management.

    PubMed

    Callréus, Torbjörn

    2005-01-01

    Although it is often vigorously contested and has several different formulations, the precautionary principle has in recent decades guided environmental policy making in the face of scientific uncertainty. Originating from a criticism of traditional risk assessment, the key element of the precautionary principle is the justification for acting in the face of uncertain knowledge about risks. In the light of its growing invocation in various areas that are related to public health and recently in relation to drug safety issues, this article presents an introductory review of the main elements of the precautionary principle and some arguments conveyed by its advocates and opponents. A comparison of the characteristics of pharmaceutical risk management and environmental policy making (i.e. the setting within which the precautionary principle evolved), indicates that several important differences exist. If believed to be of relevance, in order to avoid arbitrary and unpredictable decision making, both the interpretation and possible application of the precautionary principle need to be adapted to the conditions of pharmaceutical risk management.

  1. Enhancing the Therapy Experience Using Principles of Video Game Design.

    PubMed

    Folkins, John Wm; Brackenbury, Tim; Krause, Miriam; Haviland, Allison

    2016-02-01

    This article considers the potential benefits that applying design principles from contemporary video games may have on enhancing therapy experiences. Six principles of video game design are presented, and their relevance for enriching clinical experiences is discussed. The motivational and learning benefits of each design principle have been discussed in the education literature as having positive impacts on student motivation and learning and are related here to aspects of clinical practice. The essential experience principle suggests connecting all aspects of the experience around a central emotion or cognitive connection. The discovery principle promotes indirect learning in focused environments. The risk-taking principle addresses the uncertainties clients face when attempting newly learned skills in novel situations. The generalization principle encourages multiple opportunities for skill transfer. The reward system principle directly relates to the scaffolding of frequent and varied feedback in treatment. Last, the identity principle can assist clients in using their newly learned communication skills to redefine self-perceptions. These principles highlight areas for research and interventions that may be used to reinforce or advance current practice.

  2. Uncertainty Analysis in Space Radiation Protection

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high energy and charge (HZE) nuclei, protons, and secondary radiation including neutrons. The uncertainties in estimating the health risks from galactic cosmic rays (GCR) are a major limitation to the length of space missions, the evaluation of potential risk mitigation approaches, and application of the As Low As Reasonably Achievable (ALARA) principle. For long duration space missio ns, risks may approach radiation exposure limits, therefore the uncertainties in risk projections become a major safety concern and methodologies used for ground-based works are not deemed to be sufficient. NASA limits astronaut exposures to a 3% risk of exposure induced death (REID) and protects against uncertainties in risks projections using an assessment of 95% confidence intervals in the projection model. We discuss NASA s approach to space radiation uncertainty assessments and applications for the International Space Station (ISS) program and design studies of future missions to Mars and other destinations. Several features of NASA s approach will be discussed. Radiation quality descriptions are based on the properties of radiation tracks rather than LET with probability distribution functions (PDF) for uncertainties derived from radiobiology experiments at particle accelerators. The application of age and gender specific models for individual astronauts is described. Because more than 90% of astronauts are never-smokers, an alternative risk calculation for never-smokers is used and will be compared to estimates for an average U.S. population. Because of the high energies of the GCR limits the benefits of shielding and the limited role expected for pharmaceutical countermeasures, uncertainty reduction continues to be the optimal approach to improve radiation safety for space missions.

  3. Entropic Uncertainty Relation and Information Exclusion Relation for multiple measurements in the presence of quantum memory

    PubMed Central

    Zhang, Jun; Zhang, Yang; Yu, Chang-shui

    2015-01-01

    The Heisenberg uncertainty principle shows that no one can specify the values of the non-commuting canonically conjugated variables simultaneously. However, the uncertainty relation is usually applied to two incompatible measurements. We present tighter bounds on both entropic uncertainty relation and information exclusion relation for multiple measurements in the presence of quantum memory. As applications, three incompatible measurements on Werner state and Horodecki’s bound entangled state are investigated in details. PMID:26118488

  4. Measuring uncertainty by extracting fuzzy rules using rough sets and extracting fuzzy rules under uncertainty and measuring definability using rough sets

    NASA Technical Reports Server (NTRS)

    Worm, Jeffrey A.; Culas, Donald E.

    1991-01-01

    Computers are not designed to handle terms where uncertainty is present. To deal with uncertainty, techniques other than classical logic must be developed. This paper examines the concepts of statistical analysis, the Dempster-Shafer theory, rough set theory, and fuzzy set theory to solve this problem. The fundamentals of these theories are combined to provide the possible optimal solution. By incorporating principles from these theories, a decision-making process may be simulated by extracting two sets of fuzzy rules: certain rules and possible rules. From these rules a corresponding measure of how much we believe these rules is constructed. From this, the idea of how much a fuzzy diagnosis is definable in terms of its fuzzy attributes is studied.

  5. [Theoretical risk management and legitimacy of the precautionary principle in medicine. Look back at HIV contamination through blood transfusion in France, twenty years ago].

    PubMed

    Moutel, G; Hergon, E; Duchange, N; Bellier, L; Rouger, P; Hervé, C

    2005-02-01

    The precautionary principle first appeared in France during the health crisis following the contamination of patients with HIV via blood transfusion. This study analyses whether the risk associated with blood transfusion was taken into account early enough considering the context of scientific uncertainty between 1982 and 1985. The aim was to evaluate whether a precautionary principle was applied and whether it was relevant. First, we investigated the context of scientific uncertainty and controversies prevailing between 1982 and 1985. Then we analysed the attitude and decisions of the French authorities in this situation to determine whether a principle of precaution was applied. Finally, we explored the reasons at the origin of the delay in controlling the risk. Despite the scientific uncertainties associated with the potential risk of HIV contamination by transfusion in 1983, we found that a list of recommendations aiming to reduce this risk was published in June of that year. In the prevailing climate of uncertainty, these measures could be seen as precautionary. However, the recommended measures were not widely applied. Cultural, structural and economic factors hindered their implementation. Our analysis provides insight into the use of precautionary principle in the domain of blood transfusion and, more generally, medicine. It also sheds light on the expectations that health professionals should have of this principle. The aim of the precautionary principle is to manage rather than to reduce scientific uncertainty. The principle is not a futile search for zero risk. Rather, it is a principle for action allowing precautionary measures to be taken. However, we show that these measures must appear legitimate to be applied. This legitimacy requires an adapted decision-making process, involving all those concerned in the management of collective risks.

  6. Uncertainty relations as Hilbert space geometry

    NASA Technical Reports Server (NTRS)

    Braunstein, Samuel L.

    1994-01-01

    Precision measurements involve the accurate determination of parameters through repeated measurements of identically prepared experimental setups. For many parameters there is a 'natural' choice for the quantum observable which is expected to give optimal information; and from this observable one can construct an Heinsenberg uncertainty principle (HUP) bound on the precision attainable for the parameter. However, the classical statistics of multiple sampling directly gives us tools to construct bounds for the precision available for the parameters of interest (even when no obvious natural quantum observable exists, such as for phase, or time); it is found that these direct bounds are more restrictive than those of the HUP. The implication is that the natural quantum observables typically do not encode the optimal information (even for observables such as position, and momentum); we show how this can be understood simply in terms of the Hilbert space geometry. Another striking feature of these bounds to parameter uncertainty is that for a large enough number of repetitions of the measurements all V quantum states are 'minimum uncertainty' states - not just Gaussian wave-packets. Thus, these bounds tell us what precision is achievable as well as merely what is allowed.

  7. Asymmetric Uncertainty Expression for High Gradient Aerodynamics

    NASA Technical Reports Server (NTRS)

    Pinier, Jeremy T

    2012-01-01

    When the physics of the flow around an aircraft changes very abruptly either in time or space (e.g., flow separation/reattachment, boundary layer transition, unsteadiness, shocks, etc), the measurements that are performed in a simulated environment like a wind tunnel test or a computational simulation will most likely incorrectly predict the exact location of where (or when) the change in physics happens. There are many reasons for this, includ- ing the error introduced by simulating a real system at a smaller scale and at non-ideal conditions, or the error due to turbulence models in a computational simulation. The un- certainty analysis principles that have been developed and are being implemented today do not fully account for uncertainty in the knowledge of the location of abrupt physics changes or sharp gradients, leading to a potentially underestimated uncertainty in those areas. To address this problem, a new asymmetric aerodynamic uncertainty expression containing an extra term to account for a phase-uncertainty, the magnitude of which is emphasized in the high-gradient aerodynamic regions is proposed in this paper. Additionally, based on previous work, a method for dispersing aerodynamic data within asymmetric uncer- tainty bounds in a more realistic way has been developed for use within Monte Carlo-type analyses.

  8. Target Uncertainty Mediates Sensorimotor Error Correction.

    PubMed

    Acerbi, Luigi; Vijayakumar, Sethu; Wolpert, Daniel M

    2017-01-01

    Human movements are prone to errors that arise from inaccuracies in both our perceptual processing and execution of motor commands. We can reduce such errors by both improving our estimates of the state of the world and through online error correction of the ongoing action. Two prominent frameworks that explain how humans solve these problems are Bayesian estimation and stochastic optimal feedback control. Here we examine the interaction between estimation and control by asking if uncertainty in estimates affects how subjects correct for errors that may arise during the movement. Unbeknownst to participants, we randomly shifted the visual feedback of their finger position as they reached to indicate the center of mass of an object. Even though participants were given ample time to compensate for this perturbation, they only fully corrected for the induced error on trials with low uncertainty about center of mass, with correction only partial in trials involving more uncertainty. The analysis of subjects' scores revealed that participants corrected for errors just enough to avoid significant decrease in their overall scores, in agreement with the minimal intervention principle of optimal feedback control. We explain this behavior with a term in the loss function that accounts for the additional effort of adjusting one's response. By suggesting that subjects' decision uncertainty, as reflected in their posterior distribution, is a major factor in determining how their sensorimotor system responds to error, our findings support theoretical models in which the decision making and control processes are fully integrated.

  9. Participatory Development Principles and Practice: Reflections of a Western Development Worker.

    ERIC Educational Resources Information Center

    Keough, Noel

    1998-01-01

    Principles for participatory community development are as follows: humility and respect; power of local knowledge; democratic practice; diverse ways of knowing; sustainability; reality before theory; uncertainty; relativity of time and efficiency; holistic approach; and decisions rooted in the community. (SK)

  10. The optimisation approach of ALARA in nuclear practice: an early application of the precautionary principle. Scientific uncertainty versus legal uncertainty.

    PubMed

    Lierman, S; Veuchelen, L

    2005-01-01

    The late health effects of exposure to low doses of ionising radiation are subject to scientific controversy: one view finds threats of high cancer incidence exaggerated, while the other view thinks the effects are underestimated. Both views have good scientific arguments in favour of them. Since the nuclear field, both industry and medicine have had to deal with this controversy for many decades. One can argue that the optimisation approach to keep the effective doses as low as reasonably achievable, taking economic and social factors into account (ALARA), is a precautionary approach. However, because of these stochastic effects, no scientific proof can be provided. This paper explores how ALARA and the Precautionary Principle are influential in the legal field and in particular in tort law, because liability should be a strong incentive for safer behaviour. This so-called "deterrence effect" of liability seems to evaporate in today's technical and highly complex society, in particular when dealing with the late health effects of low doses of ionising radiation. Two main issues will be dealt with in the paper: 1. How are the health risks attributable to "low doses" of radiation regulated in nuclear law and what lessons can be learned from the field of radiation protection? 2. What does ALARA have to inform the discussion of the Precautionary Principle and vice-versa, in particular, as far as legal sanctions and liability are concerned? It will be shown that the Precautionary Principle has not yet been sufficiently implemented into nuclear law.

  11. Revealing a quantum feature of dimensionless uncertainty in linear and quadratic potentials by changing potential intervals

    NASA Astrophysics Data System (ADS)

    Kheiri, R.

    2016-09-01

    As an undergraduate exercise, in an article (2012 Am. J. Phys. 80 780-14), quantum and classical uncertainties for dimensionless variables of position and momentum were evaluated in three potentials: infinite well, bouncing ball, and harmonic oscillator. While original quantum uncertainty products depend on {{\\hslash }} and the number of states (n), a dimensionless approach makes the comparison between quantum uncertainty and classical dispersion possible by excluding {{\\hslash }}. But the question is whether the uncertainty still remains dependent on quantum number n. In the above-mentioned article, there lies this contrast; on the one hand, the dimensionless quantum uncertainty of the potential box approaches classical dispersion only in the limit of large quantum numbers (n\\to ∞ )—consistent with the correspondence principle. On the other hand, similar evaluations for bouncing ball and harmonic oscillator potentials are equal to their classical counterparts independent of n. This equality may hide the quantum feature of low energy levels. In the current study, we change the potential intervals in order to make them symmetric for the linear potential and non-symmetric for the quadratic potential. As a result, it is shown in this paper that the dimensionless quantum uncertainty of these potentials in the new potential intervals is expressed in terms of quantum number n. In other words, the uncertainty requires the correspondence principle in order to approach the classical limit. Therefore, it can be concluded that the dimensionless analysis, as a useful pedagogical method, does not take away the quantum feature of the n-dependence of quantum uncertainty in general. Moreover, our numerical calculations include the higher powers of the position for the potentials.

  12. Principles for high-quality, high-value testing.

    PubMed

    Power, Michael; Fell, Greg; Wright, Michael

    2013-02-01

    A survey of doctors working in two large NHS hospitals identified over 120 laboratory tests, imaging investigations and investigational procedures that they considered not to be overused. A common suggestion in this survey was that more training was required. And, this prompted the development of a list of core principles for high-quality, high-value testing. The list can be used as a framework for training and as a reference source. The core principles are: (1) Base testing practices on the best available evidence. (2) Apply the evidence on test performance with careful judgement. (3) Test efficiently. (4) Consider the value (and affordability) of a test before requesting it. (5) Be aware of the downsides and drivers of overdiagnosis. (6) Confront uncertainties. (7) Be patient-centred in your approach. (8) Consider ethical issues. (9) Be aware of normal cognitive limitations and biases when testing. (10) Follow the 'knowledge journey' when teaching and learning these core principles.

  13. Unifying decoherence and the Heisenberg Principle

    NASA Astrophysics Data System (ADS)

    Janssens, Bas

    2017-08-01

    We exhibit three inequalities involving quantum measurement, all of which are sharp and state independent. The first inequality bounds the performance of joint measurement. The second quantifies the trade-off between the measurement quality and the disturbance caused on the measured system. Finally, the third inequality provides a sharp lower bound on the amount of decoherence in terms of the measurement quality. This gives a unified description of both the Heisenberg uncertainty principle and the collapse of the wave function.

  14. Target Uncertainty Mediates Sensorimotor Error Correction

    PubMed Central

    Vijayakumar, Sethu; Wolpert, Daniel M.

    2017-01-01

    Human movements are prone to errors that arise from inaccuracies in both our perceptual processing and execution of motor commands. We can reduce such errors by both improving our estimates of the state of the world and through online error correction of the ongoing action. Two prominent frameworks that explain how humans solve these problems are Bayesian estimation and stochastic optimal feedback control. Here we examine the interaction between estimation and control by asking if uncertainty in estimates affects how subjects correct for errors that may arise during the movement. Unbeknownst to participants, we randomly shifted the visual feedback of their finger position as they reached to indicate the center of mass of an object. Even though participants were given ample time to compensate for this perturbation, they only fully corrected for the induced error on trials with low uncertainty about center of mass, with correction only partial in trials involving more uncertainty. The analysis of subjects’ scores revealed that participants corrected for errors just enough to avoid significant decrease in their overall scores, in agreement with the minimal intervention principle of optimal feedback control. We explain this behavior with a term in the loss function that accounts for the additional effort of adjusting one’s response. By suggesting that subjects’ decision uncertainty, as reflected in their posterior distribution, is a major factor in determining how their sensorimotor system responds to error, our findings support theoretical models in which the decision making and control processes are fully integrated. PMID:28129323

  15. Application of fuzzy system theory in addressing the presence of uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusmye, A. Y. N.; Goh, B. Y.; Adnan, N. F.

    In this paper, the combinations of fuzzy system theory with the finite element methods are present and discuss to deal with the uncertainties. The present of uncertainties is needed to avoid for prevent the failure of the material in engineering. There are three types of uncertainties, which are stochastic, epistemic and error uncertainties. In this paper, the epistemic uncertainties have been considered. For the epistemic uncertainty, it exists as a result of incomplete information and lack of knowledge or data. Fuzzy system theory is a non-probabilistic method, and this method is most appropriate to interpret the uncertainty compared to statisticalmore » approach when the deal with the lack of data. Fuzzy system theory contains a number of processes started from converting the crisp input to fuzzy input through fuzzification process and followed by the main process known as mapping process. The term mapping here means that the logical relationship between two or more entities. In this study, the fuzzy inputs are numerically integrated based on extension principle method. In the final stage, the defuzzification process is implemented. Defuzzification is an important process to allow the conversion of the fuzzy output to crisp outputs. Several illustrative examples are given and from the simulation, the result showed that propose the method produces more conservative results comparing with the conventional finite element method.« less

  16. Application of fuzzy system theory in addressing the presence of uncertainties

    NASA Astrophysics Data System (ADS)

    Yusmye, A. Y. N.; Goh, B. Y.; Adnan, N. F.; Ariffin, A. K.

    2015-02-01

    In this paper, the combinations of fuzzy system theory with the finite element methods are present and discuss to deal with the uncertainties. The present of uncertainties is needed to avoid for prevent the failure of the material in engineering. There are three types of uncertainties, which are stochastic, epistemic and error uncertainties. In this paper, the epistemic uncertainties have been considered. For the epistemic uncertainty, it exists as a result of incomplete information and lack of knowledge or data. Fuzzy system theory is a non-probabilistic method, and this method is most appropriate to interpret the uncertainty compared to statistical approach when the deal with the lack of data. Fuzzy system theory contains a number of processes started from converting the crisp input to fuzzy input through fuzzification process and followed by the main process known as mapping process. The term mapping here means that the logical relationship between two or more entities. In this study, the fuzzy inputs are numerically integrated based on extension principle method. In the final stage, the defuzzification process is implemented. Defuzzification is an important process to allow the conversion of the fuzzy output to crisp outputs. Several illustrative examples are given and from the simulation, the result showed that propose the method produces more conservative results comparing with the conventional finite element method.

  17. The Sapir-Whorf hypothesis and inference under uncertainty.

    PubMed

    Regier, Terry; Xu, Yang

    2017-11-01

    The Sapir-Whorf hypothesis holds that human thought is shaped by language, leading speakers of different languages to think differently. This hypothesis has sparked both enthusiasm and controversy, but despite its prominence it has only occasionally been addressed in computational terms. Recent developments support a view of the Sapir-Whorf hypothesis in terms of probabilistic inference. This view may resolve some of the controversy surrounding the Sapir-Whorf hypothesis, and may help to normalize the hypothesis by linking it to established principles that also explain other phenomena. On this view, effects of language on nonlinguistic cognition or perception reflect standard principles of inference under uncertainty. WIREs Cogn Sci 2017, 8:e1440. doi: 10.1002/wcs.1440 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  18. Uncertainty information in climate data records from Earth observation

    NASA Astrophysics Data System (ADS)

    Merchant, Christopher J.; Paul, Frank; Popp, Thomas; Ablain, Michael; Bontemps, Sophie; Defourny, Pierre; Hollmann, Rainer; Lavergne, Thomas; Laeng, Alexandra; de Leeuw, Gerrit; Mittaz, Jonathan; Poulsen, Caroline; Povey, Adam C.; Reuter, Max; Sathyendranath, Shubha; Sandven, Stein; Sofieva, Viktoria F.; Wagner, Wolfgang

    2017-07-01

    error distribution, and the propagation of the uncertainty to the geophysical variable in the CDR accounting for its error correlation properties. Uncertainty estimates can and should be validated as part of CDR validation when possible. These principles are quite general, but the approach to providing uncertainty information appropriate to different ECVs is varied, as confirmed by a brief review across different ECVs in the CCI. User requirements for uncertainty information can conflict with each other, and a variety of solutions and compromises are possible. The concept of an ensemble CDR as a simple means of communicating rigorous uncertainty information to users is discussed. Our review concludes by providing eight concrete recommendations for good practice in providing and communicating uncertainty in EO-based climate data records.

  19. Uncertainty evaluation of thickness and warp of a silicon wafer measured by a spectrally resolved interferometer

    NASA Astrophysics Data System (ADS)

    Praba Drijarkara, Agustinus; Gergiso Gebrie, Tadesse; Lee, Jae Yong; Kang, Chu-Shik

    2018-06-01

    Evaluation of uncertainty of thickness and gravity-compensated warp of a silicon wafer measured by a spectrally resolved interferometer is presented. The evaluation is performed in a rigorous manner, by analysing the propagation of uncertainty from the input quantities through all the steps of measurement functions, in accordance with the ISO Guide to the Expression of Uncertainty in Measurement. In the evaluation, correlation between input quantities as well as uncertainty attributed to thermal effect, which were not included in earlier publications, are taken into account. The temperature dependence of the group refractive index of silicon was found to be nonlinear and varies widely within a wafer and also between different wafers. The uncertainty evaluation described here can be applied to other spectral interferometry applications based on similar principles.

  20. Decoherence effect on quantum-memory-assisted entropic uncertainty relations

    NASA Astrophysics Data System (ADS)

    Ming, Fei; Wang, Dong; Huang, Ai-Jun; Sun, Wen-Yang; Ye, Liu

    2018-01-01

    Uncertainty principle significantly provides a bound to predict precision of measurement with regard to any two incompatible observables, and thereby plays a nontrivial role in quantum precision measurement. In this work, we observe the dynamical features of the quantum-memory-assisted entropic uncertainty relations (EUR) for a pair of incompatible measurements in an open system characterized by local generalized amplitude damping (GAD) noises. Herein, we derive the dynamical evolution of the entropic uncertainty with respect to the measurement affecting by the canonical GAD noises when particle A is initially entangled with quantum memory B. Specifically, we examine the dynamics of EUR in the frame of three realistic scenarios: one case is that particle A is affected by environmental noise (GAD) while particle B as quantum memory is free from any noises, another case is that particle B is affected by the external noise while particle A is not, and the last case is that both of the particles suffer from the noises. By analytical methods, it turns out that the uncertainty is not full dependent of quantum correlation evolution of the composite system consisting of A and B, but the minimal conditional entropy of the measured subsystem. Furthermore, we present a possible physical interpretation for the behavior of the uncertainty evolution by means of the mixedness of the observed system; we argue that the uncertainty might be dramatically correlated with the systematic mixedness. Furthermore, we put forward a simple and effective strategy to reduce the measuring uncertainty of interest upon quantum partially collapsed measurement. Therefore, our explorations might offer an insight into the dynamics of the entropic uncertainty relation in a realistic system, and be of importance to quantum precision measurement during quantum information processing.

  1. Investment, regulation, and uncertainty

    PubMed Central

    Smyth, Stuart J; McDonald, Jillian; Falck-Zepeda, Jose

    2014-01-01

    As with any technological innovation, time refines the technology, improving upon the original version of the innovative product. The initial GM crops had single traits for either herbicide tolerance or insect resistance. Current varieties have both of these traits stacked together and in many cases other abiotic and biotic traits have also been stacked. This innovation requires investment. While this is relatively straight forward, certain conditions need to exist such that investments can be facilitated. The principle requirement for investment is that regulatory frameworks render consistent and timely decisions. If the certainty of regulatory outcomes weakens, the potential for changes in investment patterns increases.   This article provides a summary background to the leading plant breeding technologies that are either currently being used to develop new crop varieties or are in the pipeline to be applied to plant breeding within the next few years. Challenges for existing regulatory systems are highlighted. Utilizing an option value approach from investment literature, an assessment of uncertainty regarding the regulatory approval for these varying techniques is undertaken. This research highlights which technology development options have the greatest degree of uncertainty and hence, which ones might be expected to see an investment decline. PMID:24499745

  2. Understanding and applying principles of social cognition and decision making in adaptive environmental governance.

    PubMed

    DeCaro, Daniel A; Arnol, Craig Anthony Tony; Boama, Emmanuel Frimpong; Garmestani, Ahjond S

    2017-03-01

    Environmental governance systems are under greater pressure to adapt and to cope with increased social and ecological uncertainty from stressors like climate change. We review principles of social cognition and decision making that shape and constrain how environmental governance systems adapt. We focus primarily on the interplay between key decision makers in society and legal systems. We argue that adaptive governance must overcome three cooperative dilemmas to facilitate adaptation: (1) encouraging collaborative problem solving, (2) garnering social acceptance and commitment, and (3) cultivating a culture of trust and tolerance for change and uncertainty. However, to do so governance systems must cope with biases in people's decision making that cloud their judgment and create conflict. These systems must also satisfy people's fundamental needs for self-determination, fairness, and security, ensuring that changes to environmental governance are perceived as legitimate, trustworthy, and acceptable. We discuss the implications of these principles for common governance solutions (e.g., public participation, enforcement) and conclude with methodological recommendations. We outline how scholars can investigate the social cognitive principles involved in cases of adaptive governance.

  3. Understanding and applying principles of social cognition and decision making in adaptive environmental governance

    PubMed Central

    DeCaro, Daniel A.; Arnol, Craig Anthony (Tony); Boama, Emmanuel Frimpong; Garmestani, Ahjond S.

    2018-01-01

    Environmental governance systems are under greater pressure to adapt and to cope with increased social and ecological uncertainty from stressors like climate change. We review principles of social cognition and decision making that shape and constrain how environmental governance systems adapt. We focus primarily on the interplay between key decision makers in society and legal systems. We argue that adaptive governance must overcome three cooperative dilemmas to facilitate adaptation: (1) encouraging collaborative problem solving, (2) garnering social acceptance and commitment, and (3) cultivating a culture of trust and tolerance for change and uncertainty. However, to do so governance systems must cope with biases in people’s decision making that cloud their judgment and create conflict. These systems must also satisfy people’s fundamental needs for self-determination, fairness, and security, ensuring that changes to environmental governance are perceived as legitimate, trustworthy, and acceptable. We discuss the implications of these principles for common governance solutions (e.g., public participation, enforcement) and conclude with methodological recommendations. We outline how scholars can investigate the social cognitive principles involved in cases of adaptive governance. PMID:29780425

  4. Exploration of quantum-memory-assisted entropic uncertainty relations in a noninertial frame

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ming, Fei; Huang, Ai-Jun; Sun, Wen-Yang; Shi, Jia-Dong; Ye, Liu

    2017-05-01

    The uncertainty principle offers a bound to show accuracy of the simultaneous measurement outcome for two incompatible observables. In this letter, we investigate quantum-memory-assisted entropic uncertainty relation (QMA-EUR) when the particle to be measured stays at an open system, and another particle is treated as quantum memory under a noninertial frame. In such a scenario, the collective influence of the unital and nonunital noise environment, and of the relativistic motion of the system, on the QMA-EUR is examined. By numerical analysis, we conclude that, firstly, the noises and the Unruh effect can both increase the uncertainty, due to the decoherence of the bipartite system induced by the noise or Unruh effect; secondly, the uncertainty is more affected by the noises than by the Unruh effect from the acceleration; thirdly, unital noises can reduce the uncertainty in long-time regime. We give a possible physical interpretation for those results: that the information of interest is redistributed among the bipartite, the noisy environment and the physically inaccessible region in the noninertial frame. Therefore, we claim that our observations provide an insight into dynamics of the entropic uncertainty in a noninertial frame, and might be important to quantum precision measurement under relativistic motion.

  5. Heisenberg Uncertainty and the Allowable Masses of the Up Quark and Down Quark

    NASA Astrophysics Data System (ADS)

    Orr, Brian

    2004-05-01

    A possible explanation for the inability to attain deterministic measurements of an elementary particle's energy, as given by the Heisenberg Uncertainty Principle, manifests itself in an interesting anthropic consequent of Andrei Linde's Self-reproducing Inflationary Multiverse model. In Linde's model, the physical laws and constants that govern our universe adopt other values in other universes, due to variable Higgs fields. While the physics in our universe allow for the advent of life and consciousness, the physics necessary for life are not likely to exist in other universes -- Linde demonstrates this through a kind of Darwinism for universes. Our universe, then, is unique. But what are the physical laws and constants that make our universe what it is? Craig Hogan identifies five physical constants that are not bound by symmetry. Fine-tuning these constants gives rise to the basic behavior and structures of the universe. Three of the non-symmetric constants are fermion masses: the up quark mass, the down quark mass, and the electron mass. I will explore Linde's and Hogan's works by comparing the amount of uncertainty in quark masses, as calculated from the Heisenberg Uncertainty Principle, to the range of quark mass values consistent with our observed universe. Should the fine-tuning of the up quark and down quark masses be greater than the range of Heisenberg uncertainties in their respective masses (as I predict, due to quantum tunneling), then perhaps there is a correlation between the measured Heisenberg uncertainty in quark masses and the fine-tuning of masses required for our universe to be as it is. Hogan; "Why the Universe is Just So;" Reviews of Modern Physics; Issue 4; Vol. 72; pg. 1149-1161; Oct. 2000 Linde, "The Self-Reproducing Inflationary Universe;" Scientific American; No. 5; Vol. 271; pg. 48-55; Nov. 1994

  6. A stochastic approach to estimate the uncertainty of dose mapping caused by uncertainties in b-spline registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hub, Martina; Thieke, Christian; Kessler, Marc L.

    2012-04-15

    Purpose: In fractionated radiation therapy, image guidance with daily tomographic imaging becomes more and more clinical routine. In principle, this allows for daily computation of the delivered dose and for accumulation of these daily dose distributions to determine the actually delivered total dose to the patient. However, uncertainties in the mapping of the images can translate into errors of the accumulated total dose, depending on the dose gradient. In this work, an approach to estimate the uncertainty of mapping between medical images is proposed that identifies areas bearing a significant risk of inaccurate dose accumulation. Methods: This method accounts formore » the geometric uncertainty of image registration and the heterogeneity of the dose distribution, which is to be mapped. Its performance is demonstrated in context of dose mapping based on b-spline registration. It is based on evaluation of the sensitivity of dose mapping to variations of the b-spline coefficients combined with evaluation of the sensitivity of the registration metric with respect to the variations of the coefficients. It was evaluated based on patient data that was deformed based on a breathing model, where the ground truth of the deformation, and hence the actual true dose mapping error, is known. Results: The proposed approach has the potential to distinguish areas of the image where dose mapping is likely to be accurate from other areas of the same image, where a larger uncertainty must be expected. Conclusions: An approach to identify areas where dose mapping is likely to be inaccurate was developed and implemented. This method was tested for dose mapping, but it may be applied in context of other mapping tasks as well.« less

  7. A stochastic approach to estimate the uncertainty of dose mapping caused by uncertainties in b-spline registration

    PubMed Central

    Hub, Martina; Thieke, Christian; Kessler, Marc L.; Karger, Christian P.

    2012-01-01

    Purpose: In fractionated radiation therapy, image guidance with daily tomographic imaging becomes more and more clinical routine. In principle, this allows for daily computation of the delivered dose and for accumulation of these daily dose distributions to determine the actually delivered total dose to the patient. However, uncertainties in the mapping of the images can translate into errors of the accumulated total dose, depending on the dose gradient. In this work, an approach to estimate the uncertainty of mapping between medical images is proposed that identifies areas bearing a significant risk of inaccurate dose accumulation. Methods: This method accounts for the geometric uncertainty of image registration and the heterogeneity of the dose distribution, which is to be mapped. Its performance is demonstrated in context of dose mapping based on b-spline registration. It is based on evaluation of the sensitivity of dose mapping to variations of the b-spline coefficients combined with evaluation of the sensitivity of the registration metric with respect to the variations of the coefficients. It was evaluated based on patient data that was deformed based on a breathing model, where the ground truth of the deformation, and hence the actual true dose mapping error, is known. Results: The proposed approach has the potential to distinguish areas of the image where dose mapping is likely to be accurate from other areas of the same image, where a larger uncertainty must be expected. Conclusions: An approach to identify areas where dose mapping is likely to be inaccurate was developed and implemented. This method was tested for dose mapping, but it may be applied in context of other mapping tasks as well. PMID:22482640

  8. Uncertainty

    USGS Publications Warehouse

    Hunt, Randall J.

    2012-01-01

    Management decisions will often be directly informed by model predictions. However, we now know there can be no expectation of a single ‘true’ model; thus, model results are uncertain. Understandable reporting of underlying uncertainty provides necessary context to decision-makers, as model results are used for management decisions. This, in turn, forms a mechanism by which groundwater models inform a risk-management framework because uncertainty around a prediction provides the basis for estimating the probability or likelihood of some event occurring. Given that the consequences of management decisions vary, it follows that the extent of and resources devoted to an uncertainty analysis may depend on the consequences. For events with low impact, a qualitative, limited uncertainty analysis may be sufficient for informing a decision. For events with a high impact, on the other hand, the risks might be better assessed and associated decisions made using a more robust and comprehensive uncertainty analysis. The purpose of this chapter is to provide guidance on uncertainty analysis through discussion of concepts and approaches, which can vary from heuristic (i.e. the modeller’s assessment of prediction uncertainty based on trial and error and experience) to a comprehensive, sophisticated, statistics-based uncertainty analysis. Most of the material presented here is taken from Doherty et al. (2010) if not otherwise cited. Although the treatment here is necessarily brief, the reader can find citations for the source material and additional references within this chapter.

  9. Optimism in the face of uncertainty supported by a statistically-designed multi-armed bandit algorithm.

    PubMed

    Kamiura, Moto; Sano, Kohei

    2017-10-01

    The principle of optimism in the face of uncertainty is known as a heuristic in sequential decision-making problems. Overtaking method based on this principle is an effective algorithm to solve multi-armed bandit problems. It was defined by a set of some heuristic patterns of the formulation in the previous study. The objective of the present paper is to redefine the value functions of Overtaking method and to unify the formulation of them. The unified Overtaking method is associated with upper bounds of confidence intervals of expected rewards on statistics. The unification of the formulation enhances the universality of Overtaking method. Consequently we newly obtain Overtaking method for the exponentially distributed rewards, numerically analyze it, and show that it outperforms UCB algorithm on average. The present study suggests that the principle of optimism in the face of uncertainty should be regarded as the statistics-based consequence of the law of large numbers for the sample mean of rewards and estimation of upper bounds of expected rewards, rather than as a heuristic, in the context of multi-armed bandit problems. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Understanding and applying principles of social cognition and decision making in adaptive environmental governance

    EPA Science Inventory

    Environmental governance systems are under greater pressure to adapt and to cope with increased social and ecological uncertainty from stressors like climate change. We review principles of social cognition and decision making that shape and constrain how environmental governance...

  11. Measuring uncertainty by extracting fuzzy rules using rough sets

    NASA Technical Reports Server (NTRS)

    Worm, Jeffrey A.

    1991-01-01

    Despite the advancements in the computer industry in the past 30 years, there is still one major deficiency. Computers are not designed to handle terms where uncertainty is present. To deal with uncertainty, techniques other than classical logic must be developed. The methods are examined of statistical analysis, the Dempster-Shafer theory, rough set theory, and fuzzy set theory to solve this problem. The fundamentals of these theories are combined to possibly provide the optimal solution. By incorporating principles from these theories, a decision making process may be simulated by extracting two sets of fuzzy rules: certain rules and possible rules. From these rules a corresponding measure of how much these rules is believed is constructed. From this, the idea of how much a fuzzy diagnosis is definable in terms of a set of fuzzy attributes is studied.

  12. Mass Uncertainty and Application For Space Systems

    NASA Technical Reports Server (NTRS)

    Beech, Geoffrey

    2013-01-01

    Expected development maturity under contract (spec) should correlate with Project/Program Approved MGA Depletion Schedule in Mass Properties Control Plan. If specification NTE, MGA is inclusive of Actual MGA (A5 & A6). If specification is not an NTE Actual MGA (e.g. nominal), then MGA values are reduced by A5 values and A5 is representative of remaining uncertainty. Basic Mass = Engineering Estimate based on design and construction principles with NO embedded margin MGA Mass = Basic Mass * assessed % from approved MGA schedule. Predicted Mass = Basic + MGA. Aggregate MGA % = (Aggregate Predicted - Aggregate Basic) /Aggregate Basic.

  13. A precautionary principle for dual use research in the life sciences.

    PubMed

    Kuhlau, Frida; Höglund, Anna T; Evers, Kathinka; Eriksson, Stefan

    2011-01-01

    Most life science research entails dual-use complexity and may be misused for harmful purposes, e.g. biological weapons. The Precautionary Principle applies to special problems characterized by complexity in the relationship between human activities and their consequences. This article examines whether the principle, so far mainly used in environmental and public health issues, is applicable and suitable to the field of dual-use life science research. Four central elements of the principle are examined: threat, uncertainty, prescription and action. Although charges against the principle exist - for example that it stifles scientific development, lacks practical applicability and is poorly defined and vague - the analysis concludes that a Precautionary Principle is applicable to the field. Certain factors such as credibility of the threat, availability of information, clear prescriptive demands on responsibility and directives on how to act, determine the suitability and success of a Precautionary Principle. Moreover, policy-makers and researchers share a responsibility for providing and seeking information about potential sources of harm. A central conclusion is that the principle is meaningful and useful if applied as a context-dependent moral principle and allowed flexibility in its practical use. The principle may then inspire awareness-raising and the establishment of practical routines which appropriately reflect the fact that life science research may be misused for harmful purposes. © 2009 Blackwell Publishing Ltd.

  14. Multi-Case Review of the Application of the Precautionary Principle in European Union Law and Case Law.

    PubMed

    Garnett, Kenisha; Parsons, David J

    2017-03-01

    The precautionary principle was formulated to provide a basis for political action to protect the environment from potentially severe or irreversible harm in circumstances of scientific uncertainty that prevent a full risk or cost-benefit analysis. It underpins environmental law in the European Union and has been extended to include public health and consumer safety. The aim of this study was to examine how the precautionary principle has been interpreted and subsequently applied in practice, whether these applications were consistent, and whether they followed the guidance from the Commission. A review of the literature was used to develop a framework for analysis, based on three attributes: severity of potential harm, standard of evidence (or degree of uncertainty), and nature of the regulatory action. This was used to examine 15 pieces of legislation or judicial decisions. The decision whether or not to apply the precautionary principle appears to be poorly defined, with ambiguities inherent in determining what level of uncertainty and significance of hazard justifies invoking it. The cases reviewed suggest that the Commission's guidance was not followed consistently in forming legislation, although judicial decisions tended to be more consistent and to follow the guidance by requiring plausible evidence of potential hazard in order to invoke precaution. © 2016 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  15. Recognizing and responding to uncertainty: a grounded theory of nurses' uncertainty.

    PubMed

    Cranley, Lisa A; Doran, Diane M; Tourangeau, Ann E; Kushniruk, Andre; Nagle, Lynn

    2012-08-01

    There has been little research to date exploring nurses' uncertainty in their practice. Understanding nurses' uncertainty is important because it has potential implications for how care is delivered. The purpose of this study is to develop a substantive theory to explain how staff nurses experience and respond to uncertainty in their practice. Between 2006 and 2008, a grounded theory study was conducted that included in-depth semi-structured interviews. Fourteen staff nurses working in adult medical-surgical intensive care units at two teaching hospitals in Ontario, Canada, participated in the study. The theory recognizing and responding to uncertainty characterizes the processes through which nurses' uncertainty manifested and how it was managed. Recognizing uncertainty involved the processes of assessing, reflecting, questioning, and/or being unable to predict aspects of the patient situation. Nurses' responses to uncertainty highlighted the cognitive-affective strategies used to manage uncertainty. Study findings highlight the importance of acknowledging uncertainty and having collegial support to manage uncertainty. The theory adds to our understanding the processes involved in recognizing uncertainty, strategies and outcomes of managing uncertainty, and influencing factors. Tailored nursing education programs should be developed to assist nurses in developing skills in articulating and managing their uncertainty. Further research is needed to extend, test and refine the theory of recognizing and responding to uncertainty to develop strategies for managing uncertainty. This theory advances the nursing perspective of uncertainty in clinical practice. The theory is relevant to nurses who are faced with uncertainty and complex clinical decisions, to managers who support nurses in their clinical decision-making, and to researchers who investigate ways to improve decision-making and care delivery. ©2012 Sigma Theta Tau International.

  16. Precaution or Integrated Responsibility Approach to Nanovaccines in Fish Farming? A Critical Appraisal of the UNESCO Precautionary Principle.

    PubMed

    Myhr, Anne Ingeborg; Myskja, Bjørn K

    2011-04-01

    Nanoparticles have multifaceted advantages in drug administration as vaccine delivery and hence hold promises for improving protection of farmed fish against diseases caused by pathogens. However, there are concerns that the benefits associated with distribution of nanoparticles may also be accompanied with risks to the environment and health. The complexity of the natural and social systems involved implies that the information acquired in quantified risk assessments may be inadequate for evidence-based decisions. One controversial strategy for dealing with this kind of uncertainty is the precautionary principle. A few years ago, an UNESCO expert group suggested a new approach for implementation of the principle. Here we compare the UNESCO principle with earlier versions and explore the advantages and disadvantages by employing the UNESCO version to the use of PLGA nanoparticles for delivery of vaccines in aquaculture. Finally, we discuss whether a combined scientific and ethical analysis that involves the concept of responsibility will enable approaches that can provide a supplement to the precautionary principle as basis for decision-making in areas of scientific uncertainty, such as the application of nanoparticles in the vaccination of farmed fish.

  17. Entropic uncertainty relations in the Heisenberg XXZ model and its controlling via filtering operations

    NASA Astrophysics Data System (ADS)

    Ming, Fei; Wang, Dong; Shi, Wei-Nan; Huang, Ai-Jun; Sun, Wen-Yang; Ye, Liu

    2018-04-01

    The uncertainty principle is recognized as an elementary ingredient of quantum theory and sets up a significant bound to predict outcome of measurement for a couple of incompatible observables. In this work, we develop dynamical features of quantum memory-assisted entropic uncertainty relations (QMA-EUR) in a two-qubit Heisenberg XXZ spin chain with an inhomogeneous magnetic field. We specifically derive the dynamical evolutions of the entropic uncertainty with respect to the measurement in the Heisenberg XXZ model when spin A is initially correlated with quantum memory B. It has been found that the larger coupling strength J of the ferromagnetism ( J < 0 ) and the anti-ferromagnetism ( J > 0 ) chains can effectively degrade the measuring uncertainty. Besides, it turns out that the higher temperature can induce the inflation of the uncertainty because the thermal entanglement becomes relatively weak in this scenario, and there exists a distinct dynamical behavior of the uncertainty when an inhomogeneous magnetic field emerges. With the growing magnetic field | B | , the variation of the entropic uncertainty will be non-monotonic. Meanwhile, we compare several different optimized bounds existing with the initial bound proposed by Berta et al. and consequently conclude Adabi et al.'s result is optimal. Moreover, we also investigate the mixedness of the system of interest, dramatically associated with the uncertainty. Remarkably, we put forward a possible physical interpretation to explain the evolutionary phenomenon of the uncertainty. Finally, we take advantage of a local filtering operation to steer the magnitude of the uncertainty. Therefore, our explorations may shed light on the entropic uncertainty under the Heisenberg XXZ model and hence be of importance to quantum precision measurement over solid state-based quantum information processing.

  18. Uncertainties in Air Exchange using Continuous-Injection, Long-Term Sampling Tracer-Gas Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, Max H.; Walker, Iain S.; Lunden, Melissa M.

    2013-12-01

    The PerFluorocarbon Tracer (PFT) method is a low-cost approach commonly used for measuring air exchange in buildings using tracer gases. It is a specific application of the more general Continuous-Injection, Long-Term Sampling (CILTS) method. The technique is widely used but there has been little work on understanding the uncertainties (both precision and bias) associated with its use, particularly given that it is typically deployed by untrained or lightly trained people to minimize experimental costs. In this article we will conduct a first-principles error analysis to estimate the uncertainties and then compare that analysis to CILTS measurements that were over-sampled, throughmore » the use of multiple tracers and emitter and sampler distribution patterns, in three houses. We find that the CILTS method can have an overall uncertainty of 10-15percent in ideal circumstances, but that even in highly controlled field experiments done by trained experimenters expected uncertainties are about 20percent. In addition, there are many field conditions (such as open windows) where CILTS is not likely to provide any quantitative data. Even avoiding the worst situations of assumption violations CILTS should be considered as having a something like a ?factor of two? uncertainty for the broad field trials that it is typically used in. We provide guidance on how to deploy CILTS and design the experiment to minimize uncertainties.« less

  19. Evaluating the uncertainty of input quantities in measurement models

    NASA Astrophysics Data System (ADS)

    Possolo, Antonio; Elster, Clemens

    2014-06-01

    uncertainty propagation exercises. In this we deviate markedly and emphatically from the GUM Supplement 1, which gives pride of place to the Principle of Maximum Entropy as a means to assign probability distributions to input quantities.

  20. Uncertainty as knowledge

    PubMed Central

    Lewandowsky, Stephan; Ballard, Timothy; Pancost, Richard D.

    2015-01-01

    This issue of Philosophical Transactions examines the relationship between scientific uncertainty about climate change and knowledge. Uncertainty is an inherent feature of the climate system. Considerable effort has therefore been devoted to understanding how to effectively respond to a changing, yet uncertain climate. Politicians and the public often appeal to uncertainty as an argument to delay mitigative action. We argue that the appropriate response to uncertainty is exactly the opposite: uncertainty provides an impetus to be concerned about climate change, because greater uncertainty increases the risks associated with climate change. We therefore suggest that uncertainty can be a source of actionable knowledge. We survey the papers in this issue, which address the relationship between uncertainty and knowledge from physical, economic and social perspectives. We also summarize the pervasive psychological effects of uncertainty, some of which may militate against a meaningful response to climate change, and we provide pointers to how those difficulties may be ameliorated. PMID:26460108

  1. Simulation Credibility: Advances in Verification, Validation, and Uncertainty Quantification

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B. (Editor); Eklund, Dean R.; Romero, Vicente J.; Pearce, Jeffrey A.; Keim, Nicholas S.

    2016-01-01

    Decision makers and other users of simulations need to know quantified simulation credibility to make simulation-based critical decisions and effectively use simulations, respectively. The credibility of a simulation is quantified by its accuracy in terms of uncertainty, and the responsibility of establishing credibility lies with the creator of the simulation. In this volume, we present some state-of-the-art philosophies, principles, and frameworks. The contributing authors involved in this publication have been dedicated to advancing simulation credibility. They detail and provide examples of key advances over the last 10 years in the processes used to quantify simulation credibility: verification, validation, and uncertainty quantification. The philosophies and assessment methods presented here are anticipated to be useful to other technical communities conducting continuum physics-based simulations; for example, issues related to the establishment of simulation credibility in the discipline of propulsion are discussed. We envision that simulation creators will find this volume very useful to guide and assist them in quantitatively conveying the credibility of their simulations.

  2. Learning Weight Uncertainty with Stochastic Gradient MCMC for Shape Classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chunyuan; Stevens, Andrew J.; Chen, Changyou

    2016-08-10

    Learning the representation of shape cues in 2D & 3D objects for recognition is a fundamental task in computer vision. Deep neural networks (DNNs) have shown promising performance on this task. Due to the large variability of shapes, accurate recognition relies on good estimates of model uncertainty, ignored in traditional training of DNNs, typically learned via stochastic optimization. This paper leverages recent advances in stochastic gradient Markov Chain Monte Carlo (SG-MCMC) to learn weight uncertainty in DNNs. It yields principled Bayesian interpretations for the commonly used Dropout/DropConnect techniques and incorporates them into the SG-MCMC framework. Extensive experiments on 2D &more » 3D shape datasets and various DNN models demonstrate the superiority of the proposed approach over stochastic optimization. Our approach yields higher recognition accuracy when used in conjunction with Dropout and Batch-Normalization.« less

  3. Scenario-based fitted Q-iteration for adaptive control of water reservoir systems under uncertainty

    NASA Astrophysics Data System (ADS)

    Bertoni, Federica; Giuliani, Matteo; Castelletti, Andrea

    2017-04-01

    Over recent years, mathematical models have largely been used to support planning and management of water resources systems. Yet, the increasing uncertainties in their inputs - due to increased variability in the hydrological regimes - are a major challenge to the optimal operations of these systems. Such uncertainty, boosted by projected changing climate, violates the stationarity principle generally used for describing hydro-meteorological processes, which assumes time persisting statistical characteristics of a given variable as inferred by historical data. As this principle is unlikely to be valid in the future, the probability density function used for modeling stochastic disturbances (e.g., inflows) becomes an additional uncertain parameter of the problem, which can be described in a deterministic and set-membership based fashion. This study contributes a novel method for designing optimal, adaptive policies for controlling water reservoir systems under climate-related uncertainty. The proposed method, called scenario-based Fitted Q-Iteration (sFQI), extends the original Fitted Q-Iteration algorithm by enlarging the state space to include the space of the uncertain system's parameters (i.e., the uncertain climate scenarios). As a result, sFQI embeds the set-membership uncertainty of the future inflow scenarios in the action-value function and is able to approximate, with a single learning process, the optimal control policy associated to any scenario included in the uncertainty set. The method is demonstrated on a synthetic water system, consisting of a regulated lake operated for ensuring reliable water supply to downstream users. Numerical results show that the sFQI algorithm successfully identifies adaptive solutions to operate the system under different inflow scenarios, which outperform the control policy designed under historical conditions. Moreover, the sFQI policy generalizes over inflow scenarios not directly experienced during the policy design

  4. Two additional principles for determining which species to monitor.

    PubMed

    Wilson, Howard B; Rhodes, Jonathan R; Possingham, Hugh P

    2015-11-01

    Monitoring to detect population declines is widespread, but also costly. There is, consequently, a need to optimize monitoring to maximize cost-effectiveness. Here we develop a quantitative decision analysis framework for how to optimally allocate resources for monitoring among species. By keeping the framework simple, we analytically establish two new principles about which species are optimal to monitor for detecting declines: (1) those that lie on the boundary between species being allocated resources for conservation action and species that are not and (2) those with the greatest uncertainty in whether they are declining. These two principles are in addition to other factors that are also important in monitoring decisions, such as complementarity. We demonstrate the efficacy of these principles when other factors are not present, and show how the two principles can be combined. This analysis demonstrates that the most cost-effective species to monitor are ones where the information gained from monitoring is most likely to change the allocation of funds for action, not necessarily the most vulnerable or endangered. We suggest these results are general and apply to all ecological monitoring, not just of biological species: monitoring and information are only valuable when they are likely to change how people act.

  5. The uncertainty of reference standards--a guide to understanding factors impacting uncertainty, uncertainty calculations, and vendor certifications.

    PubMed

    Gates, Kevin; Chang, Ning; Dilek, Isil; Jian, Huahua; Pogue, Sherri; Sreenivasan, Uma

    2009-10-01

    Certified solution standards are widely used in forensic toxicological, clinical/diagnostic, and environmental testing. Typically, these standards are purchased as ampouled solutions with a certified concentration. Vendors present concentration and uncertainty differently on their Certificates of Analysis. Understanding the factors that impact uncertainty and which factors have been considered in the vendor's assignment of uncertainty are critical to understanding the accuracy of the standard and the impact on testing results. Understanding these variables is also important for laboratories seeking to comply with ISO/IEC 17025 requirements and for those preparing reference solutions from neat materials at the bench. The impact of uncertainty associated with the neat material purity (including residual water, residual solvent, and inorganic content), mass measurement (weighing techniques), and solvent addition (solution density) on the overall uncertainty of the certified concentration is described along with uncertainty calculations.

  6. Measurement Uncertainty

    NASA Astrophysics Data System (ADS)

    Koch, Michael

    Measurement uncertainty is one of the key issues in quality assurance. It became increasingly important for analytical chemistry laboratories with the accreditation to ISO/IEC 17025. The uncertainty of a measurement is the most important criterion for the decision whether a measurement result is fit for purpose. It also delivers help for the decision whether a specification limit is exceeded or not. Estimation of measurement uncertainty often is not trivial. Several strategies have been developed for this purpose that will shortly be described in this chapter. In addition the different possibilities to take into account the uncertainty in compliance assessment are explained.

  7. Intelligent Information Retrieval: Diagnosing Information Need. Part II. Uncertainty Expansion in a Prototype of a Diagnostic IR Tool.

    ERIC Educational Resources Information Center

    Cole, Charles; Cantero, Pablo; Sauve, Diane

    1998-01-01

    Outlines a prototype of an intelligent information-retrieval tool to facilitate information access for an undergraduate seeking information for a term paper. Topics include diagnosing the information need, Kuhlthau's information-search-process model, Shannon's mathematical theory of communication, and principles of uncertainty expansion and…

  8. Physical insight into the thermodynamic uncertainty relation using Brownian motion in tilted periodic potentials

    NASA Astrophysics Data System (ADS)

    Hyeon, Changbong; Hwang, Wonseok

    2017-07-01

    Using Brownian motion in periodic potentials V (x ) tilted by a force f , we provide physical insight into the thermodynamic uncertainty relation, a recently conjectured principle for statistical errors and irreversible heat dissipation in nonequilibrium steady states. According to the relation, nonequilibrium output generated from dissipative processes necessarily incurs an energetic cost or heat dissipation q , and in order to limit the output fluctuation within a relative uncertainty ɛ , at least 2 kBT /ɛ2 of heat must be dissipated. Our model shows that this bound is attained not only at near-equilibrium [f ≪V'(x ) ] but also at far-from-equilibrium [f ≫V'(x ) ] , more generally when the dissipated heat is normally distributed. Furthermore, the energetic cost is maximized near the critical force when the barrier separating the potential wells is about to vanish and the fluctuation of Brownian particles is maximized. These findings indicate that the deviation of heat distribution from Gaussianity gives rise to the inequality of the uncertainty relation, further clarifying the meaning of the uncertainty relation. Our derivation of the uncertainty relation also recognizes a bound of nonequilibrium fluctuations that the variance of dissipated heat (σq2) increases with its mean (μq), and it cannot be smaller than 2 kBT μq .

  9. Physical insight into the thermodynamic uncertainty relation using Brownian motion in tilted periodic potentials.

    PubMed

    Hyeon, Changbong; Hwang, Wonseok

    2017-07-01

    Using Brownian motion in periodic potentials V(x) tilted by a force f, we provide physical insight into the thermodynamic uncertainty relation, a recently conjectured principle for statistical errors and irreversible heat dissipation in nonequilibrium steady states. According to the relation, nonequilibrium output generated from dissipative processes necessarily incurs an energetic cost or heat dissipation q, and in order to limit the output fluctuation within a relative uncertainty ε, at least 2k_{B}T/ε^{2} of heat must be dissipated. Our model shows that this bound is attained not only at near-equilibrium [f≪V^{'}(x)] but also at far-from-equilibrium [f≫V^{'}(x)], more generally when the dissipated heat is normally distributed. Furthermore, the energetic cost is maximized near the critical force when the barrier separating the potential wells is about to vanish and the fluctuation of Brownian particles is maximized. These findings indicate that the deviation of heat distribution from Gaussianity gives rise to the inequality of the uncertainty relation, further clarifying the meaning of the uncertainty relation. Our derivation of the uncertainty relation also recognizes a bound of nonequilibrium fluctuations that the variance of dissipated heat (σ_{q}^{2}) increases with its mean (μ_{q}), and it cannot be smaller than 2k_{B}Tμ_{q}.

  10. [Influence of Uncertainty and Uncertainty Appraisal on Self-management in Hemodialysis Patients].

    PubMed

    Jang, Hyung Suk; Lee, Chang Suk; Yang, Young Hee

    2015-04-01

    This study was done to examine the relation of uncertainty, uncertainty appraisal, and self-management in patients undergoing hemodialysis, and to identify factors influencing self-management. A convenience sample of 92 patients receiving hemodialysis was selected. Data were collected using a structured questionnaire and medical records. The collected data were analyzed using descriptive statistics, t-test, ANOVA, Pearson correlations and multiple regression analysis with the SPSS/WIN 20.0 program. The participants showed a moderate level of uncertainty with the highest score being for ambiguity among the four uncertainty subdomains. Scores for uncertainty danger or opportunity appraisals were under the mid points. The participants were found to perform a high level of self-management such as diet control, management of arteriovenous fistula, exercise, medication, physical management, measurements of body weight and blood pressure, and social activity. The self-management of participants undergoing hemodialysis showed a significant relationship with uncertainty and uncertainty appraisal. The significant factors influencing self-management were uncertainty, uncertainty opportunity appraisal, hemodialysis duration, and having a spouse. These variables explained 32.8% of the variance in self-management. The results suggest that intervention programs to reduce the level of uncertainty and to increase the level of uncertainty opportunity appraisal among patients would improve the self-management of hemodialysis patients.

  11. MICROSCOPE Mission: First Results of a Space Test of the Equivalence Principle.

    PubMed

    Touboul, Pierre; Métris, Gilles; Rodrigues, Manuel; André, Yves; Baghi, Quentin; Bergé, Joël; Boulanger, Damien; Bremer, Stefanie; Carle, Patrice; Chhun, Ratana; Christophe, Bruno; Cipolla, Valerio; Damour, Thibault; Danto, Pascale; Dittus, Hansjoerg; Fayet, Pierre; Foulon, Bernard; Gageant, Claude; Guidotti, Pierre-Yves; Hagedorn, Daniel; Hardy, Emilie; Huynh, Phuong-Anh; Inchauspe, Henri; Kayser, Patrick; Lala, Stéphanie; Lämmerzahl, Claus; Lebat, Vincent; Leseur, Pierre; Liorzou, Françoise; List, Meike; Löffler, Frank; Panet, Isabelle; Pouilloux, Benjamin; Prieur, Pascal; Rebray, Alexandre; Reynaud, Serge; Rievers, Benny; Robert, Alain; Selig, Hanns; Serron, Laura; Sumner, Timothy; Tanguy, Nicolas; Visser, Pieter

    2017-12-08

    According to the weak equivalence principle, all bodies should fall at the same rate in a gravitational field. The MICROSCOPE satellite, launched in April 2016, aims to test its validity at the 10^{-15} precision level, by measuring the force required to maintain two test masses (of titanium and platinum alloys) exactly in the same orbit. A nonvanishing result would correspond to a violation of the equivalence principle, or to the discovery of a new long-range force. Analysis of the first data gives δ(Ti,Pt)=[-1±9(stat)±9(syst)]×10^{-15} (1σ statistical uncertainty) for the titanium-platinum Eötvös parameter characterizing the relative difference in their free-fall accelerations.

  12. MICROSCOPE Mission: First Results of a Space Test of the Equivalence Principle

    NASA Astrophysics Data System (ADS)

    Touboul, Pierre; Métris, Gilles; Rodrigues, Manuel; André, Yves; Baghi, Quentin; Bergé, Joël; Boulanger, Damien; Bremer, Stefanie; Carle, Patrice; Chhun, Ratana; Christophe, Bruno; Cipolla, Valerio; Damour, Thibault; Danto, Pascale; Dittus, Hansjoerg; Fayet, Pierre; Foulon, Bernard; Gageant, Claude; Guidotti, Pierre-Yves; Hagedorn, Daniel; Hardy, Emilie; Huynh, Phuong-Anh; Inchauspe, Henri; Kayser, Patrick; Lala, Stéphanie; Lämmerzahl, Claus; Lebat, Vincent; Leseur, Pierre; Liorzou, Françoise; List, Meike; Löffler, Frank; Panet, Isabelle; Pouilloux, Benjamin; Prieur, Pascal; Rebray, Alexandre; Reynaud, Serge; Rievers, Benny; Robert, Alain; Selig, Hanns; Serron, Laura; Sumner, Timothy; Tanguy, Nicolas; Visser, Pieter

    2017-12-01

    According to the weak equivalence principle, all bodies should fall at the same rate in a gravitational field. The MICROSCOPE satellite, launched in April 2016, aims to test its validity at the 10-15 precision level, by measuring the force required to maintain two test masses (of titanium and platinum alloys) exactly in the same orbit. A nonvanishing result would correspond to a violation of the equivalence principle, or to the discovery of a new long-range force. Analysis of the first data gives δ (Ti ,Pt )=[-1 ±9 (stat)±9 (syst)]×10-15 (1 σ statistical uncertainty) for the titanium-platinum Eötvös parameter characterizing the relative difference in their free-fall accelerations.

  13. Particle image velocimetry correlation signal-to-noise ratio metrics and measurement uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Xue, Zhenyu; Charonko, John J.; Vlachos, Pavlos P.

    2014-11-01

    In particle image velocimetry (PIV) the measurement signal is contained in the recorded intensity of the particle image pattern superimposed on a variety of noise sources. The signal-to-noise-ratio (SNR) strength governs the resulting PIV cross correlation and ultimately the accuracy and uncertainty of the resulting PIV measurement. Hence we posit that correlation SNR metrics calculated from the correlation plane can be used to quantify the quality of the correlation and the resulting uncertainty of an individual measurement. In this paper we extend the original work by Charonko and Vlachos and present a framework for evaluating the correlation SNR using a set of different metrics, which in turn are used to develop models for uncertainty estimation. Several corrections have been applied in this work. The SNR metrics and corresponding models presented herein are expanded to be applicable to both standard and filtered correlations by applying a subtraction of the minimum correlation value to remove the effect of the background image noise. In addition, the notion of a ‘valid’ measurement is redefined with respect to the correlation peak width in order to be consistent with uncertainty quantification principles and distinct from an ‘outlier’ measurement. Finally the type and significance of the error distribution function is investigated. These advancements lead to more robust and reliable uncertainty estimation models compared with the original work by Charonko and Vlachos. The models are tested against both synthetic benchmark data as well as experimental measurements. In this work, {{U}68.5} uncertainties are estimated at the 68.5% confidence level while {{U}95} uncertainties are estimated at 95% confidence level. For all cases the resulting calculated coverage factors approximate the expected theoretical confidence intervals, thus demonstrating the applicability of these new models for estimation of uncertainty for individual PIV measurements.

  14. Forest management under uncertainty for multiple bird population objectives

    USGS Publications Warehouse

    Moore, C.T.; Plummer, W.T.; Conroy, M.J.; Ralph, C. John; Rich, Terrell D.

    2005-01-01

    We advocate adaptive programs of decision making and monitoring for the management of forest birds when responses by populations to management, and particularly management trade-offs among populations, are uncertain. Models are necessary components of adaptive management. Under this approach, uncertainty about the behavior of a managed system is explicitly captured in a set of alternative models. The models generate testable predictions about the response of populations to management, and monitoring data provide the basis for assessing these predictions and informing future management decisions. To illustrate these principles, we examine forest management at the Piedmont National Wildlife Refuge, where management attention is focused on the recovery of the Red-cockaded Woodpecker (Picoides borealis) population. However, managers are also sensitive to the habitat needs of many non-target organisms, including Wood Thrushes (Hylocichla mustelina) and other forest interior Neotropical migratory birds. By simulating several management policies on a set of-alternative forest and bird models, we found a decision policy that maximized a composite response by woodpeckers and Wood Thrushes despite our complete uncertainty regarding system behavior. Furthermore, we used monitoring data to update our measure of belief in each alternative model following one cycle of forest management. This reduction of uncertainty translates into a reallocation of model influence on the choice of optimal decision action at the next decision opportunity.

  15. Solving Navigational Uncertainty Using Grid Cells on Robots

    PubMed Central

    Milford, Michael J.; Wiles, Janet; Wyeth, Gordon F.

    2010-01-01

    To successfully navigate their habitats, many mammals use a combination of two mechanisms, path integration and calibration using landmarks, which together enable them to estimate their location and orientation, or pose. In large natural environments, both these mechanisms are characterized by uncertainty: the path integration process is subject to the accumulation of error, while landmark calibration is limited by perceptual ambiguity. It remains unclear how animals form coherent spatial representations in the presence of such uncertainty. Navigation research using robots has determined that uncertainty can be effectively addressed by maintaining multiple probabilistic estimates of a robot's pose. Here we show how conjunctive grid cells in dorsocaudal medial entorhinal cortex (dMEC) may maintain multiple estimates of pose using a brain-based robot navigation system known as RatSLAM. Based both on rodent spatially-responsive cells and functional engineering principles, the cells at the core of the RatSLAM computational model have similar characteristics to rodent grid cells, which we demonstrate by replicating the seminal Moser experiments. We apply the RatSLAM model to a new experimental paradigm designed to examine the responses of a robot or animal in the presence of perceptual ambiguity. Our computational approach enables us to observe short-term population coding of multiple location hypotheses, a phenomenon which would not be easily observable in rodent recordings. We present behavioral and neural evidence demonstrating that the conjunctive grid cells maintain and propagate multiple estimates of pose, enabling the correct pose estimate to be resolved over time even without uniquely identifying cues. While recent research has focused on the grid-like firing characteristics, accuracy and representational capacity of grid cells, our results identify a possible critical and unique role for conjunctive grid cells in filtering sensory uncertainty. We anticipate our

  16. Uncertainty in hydrological signatures

    NASA Astrophysics Data System (ADS)

    McMillan, Hilary; Westerberg, Ida

    2015-04-01

    Information that summarises the hydrological behaviour or flow regime of a catchment is essential for comparing responses of different catchments to understand catchment organisation and similarity, and for many other modelling and water-management applications. Such information types derived as an index value from observed data are known as hydrological signatures, and can include descriptors of high flows (e.g. mean annual flood), low flows (e.g. mean annual low flow, recession shape), the flow variability, flow duration curve, and runoff ratio. Because the hydrological signatures are calculated from observed data such as rainfall and flow records, they are affected by uncertainty in those data. Subjective choices in the method used to calculate the signatures create a further source of uncertainty. Uncertainties in the signatures may affect our ability to compare different locations, to detect changes, or to compare future water resource management scenarios. The aim of this study was to contribute to the hydrological community's awareness and knowledge of data uncertainty in hydrological signatures, including typical sources, magnitude and methods for its assessment. We proposed a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrated it for a variety of commonly used signatures. The study was made for two data rich catchments, the 50 km2 Mahurangi catchment in New Zealand and the 135 km2 Brue catchment in the UK. For rainfall data the uncertainty sources included point measurement uncertainty, the number of gauges used in calculation of the catchment spatial average, and uncertainties relating to lack of quality control. For flow data the uncertainty sources included uncertainties in stage/discharge measurement and in the approximation of the true stage-discharge relation by a rating curve. The resulting uncertainties were compared across the different signatures and catchments, to quantify uncertainty

  17. The principle of finiteness - a guideline for physical laws

    NASA Astrophysics Data System (ADS)

    Sternlieb, Abraham

    2013-04-01

    I propose a new principle in physics-the principle of finiteness (FP). It stems from the definition of physics as a science that deals with measurable dimensional physical quantities. Since measurement results including their errors, are always finite, FP postulates that the mathematical formulation of legitimate laws in physics should prevent exactly zero or infinite solutions. I propose finiteness as a postulate, as opposed to a statement whose validity has to be corroborated by, or derived theoretically or experimentally from other facts, theories or principles. Some consequences of FP are discussed, first in general, and then more specifically in the fields of special relativity, quantum mechanics, and quantum gravity. The corrected Lorentz transformations include an additional translation term depending on the minimum length epsilon. The relativistic gamma is replaced by a corrected gamma, that is finite for v=c. To comply with FP, physical laws should include the relevant extremum finite values in their mathematical formulation. An important prediction of FP is that there is a maximum attainable relativistic mass/energy which is the same for all subatomic particles, meaning that there is a maximum theoretical value for cosmic rays energy. The Generalized Uncertainty Principle required by Quantum Gravity is actually a necessary consequence of FP at Planck's scale. Therefore, FP may possibly contribute to the axiomatic foundation of Quantum Gravity.

  18. Accounting for uncertainty in health economic decision models by using model averaging.

    PubMed

    Jackson, Christopher H; Thompson, Simon G; Sharples, Linda D

    2009-04-01

    Health economic decision models are subject to considerable uncertainty, much of which arises from choices between several plausible model structures, e.g. choices of covariates in a regression model. Such structural uncertainty is rarely accounted for formally in decision models but can be addressed by model averaging. We discuss the most common methods of averaging models and the principles underlying them. We apply them to a comparison of two surgical techniques for repairing abdominal aortic aneurysms. In model averaging, competing models are usually either weighted by using an asymptotically consistent model assessment criterion, such as the Bayesian information criterion, or a measure of predictive ability, such as Akaike's information criterion. We argue that the predictive approach is more suitable when modelling the complex underlying processes of interest in health economics, such as individual disease progression and response to treatment.

  19. Accounting for uncertainty in health economic decision models by using model averaging

    PubMed Central

    Jackson, Christopher H; Thompson, Simon G; Sharples, Linda D

    2009-01-01

    Health economic decision models are subject to considerable uncertainty, much of which arises from choices between several plausible model structures, e.g. choices of covariates in a regression model. Such structural uncertainty is rarely accounted for formally in decision models but can be addressed by model averaging. We discuss the most common methods of averaging models and the principles underlying them. We apply them to a comparison of two surgical techniques for repairing abdominal aortic aneurysms. In model averaging, competing models are usually either weighted by using an asymptotically consistent model assessment criterion, such as the Bayesian information criterion, or a measure of predictive ability, such as Akaike's information criterion. We argue that the predictive approach is more suitable when modelling the complex underlying processes of interest in health economics, such as individual disease progression and response to treatment. PMID:19381329

  20. Uncertainty and the difficulty of thinking through disjunctions.

    PubMed

    Shafir, E

    1994-01-01

    This paper considers the relationship between decision under uncertainty and thinking through disjunctions. Decision situations that lead to violations of Savage's sure-thing principle are examined, and a variety of simple reasoning problems that often generate confusion and error are reviewed. The common difficulty is attributed to people's reluctance to think through disjunctions. Instead of hypothetically traveling through the branches of a decision tree, it is suggested, people suspend judgement and remain at the node. This interpretation is applied to instances of decision making, information search, deductive and inductive reasoning, probabilistic judgement, games, puzzles and paradoxes. Some implications of the reluctance to think through disjunctions, as well as potential corrective procedures, are discussed.

  1. [A correlational study on uncertainty, mastery and appraisal of uncertainty in hospitalized children's mothers].

    PubMed

    Yoo, Kyung Hee

    2007-06-01

    This study was conducted to investigate the correlation among uncertainty, mastery and appraisal of uncertainty in hospitalized children's mothers. Self report questionnaires were used to measure the variables. Variables were uncertainty, mastery and appraisal of uncertainty. In data analysis, the SPSSWIN 12.0 program was utilized for descriptive statistics, Pearson's correlation coefficients, and regression analysis. Reliability of the instruments was cronbach's alpha=.84~.94. Mastery negatively correlated with uncertainty(r=-.444, p=.000) and danger appraisal of uncertainty(r=-.514, p=.000). In regression of danger appraisal of uncertainty, uncertainty and mastery were significant predictors explaining 39.9%. Mastery was a significant mediating factor between uncertainty and danger appraisal of uncertainty in hospitalized children's mothers. Therefore, nursing interventions which improve mastery must be developed for hospitalized children's mothers.

  2. Uncertainty as Knowledge: Constraints on Policy Choices Provided by Analysis of Uncertainty

    NASA Astrophysics Data System (ADS)

    Lewandowsky, S.; Risbey, J.; Smithson, M.; Newell, B. R.

    2012-12-01

    Uncertainty forms an integral part of climate science, and it is often cited in connection with arguments against mitigative action. We argue that an analysis of uncertainty must consider existing knowledge as well as uncertainty, and the two must be evaluated with respect to the outcomes and risks associated with possible policy options. Although risk judgments are inherently subjective, an analysis of the role of uncertainty within the climate system yields two constraints that are robust to a broad range of assumptions. Those constraints are that (a) greater uncertainty about the climate system is necessarily associated with greater expected damages from warming, and (b) greater uncertainty translates into a greater risk of the failure of mitigation efforts. These ordinal constraints are unaffected by subjective or cultural risk-perception factors, they are independent of the discount rate, and they are independent of the magnitude of the estimate for climate sensitivity. The constraints mean that any appeal to uncertainty must imply a stronger, rather than weaker, need to cut greenhouse gas emissions than in the absence of uncertainty.

  3. Image restoration, uncertainty, and information.

    PubMed

    Yu, F T

    1969-01-01

    Some of the physical interpretations about image restoration are discussed. From the theory of information the unrealizability of an inverse filter can be explained by degradation of information, which is due to distortion on the recorded image. The image restoration is a time and space problem, which can be recognized from the theory of relativity (the problem of image restoration is related to Heisenberg's uncertainty principle in quantum mechanics). A detailed discussion of the relationship between information and energy is given. Two general results may be stated: (1) the restoration of the image from the distorted signal is possible only if it satisfies the detectability condition. However, the restored image, at the best, can only approach to the maximum allowable time criterion. (2) The restoration of an image by superimposing the distorted signal (due to smearing) is a physically unrealizable method. However, this restoration procedure may be achieved by the expenditure of an infinite amount of energy.

  4. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  5. Quantum-memory-assisted entropic uncertainty relation in a Heisenberg XYZ chain with an inhomogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Huang, Aijun; Ming, Fei; Sun, Wenyang; Lu, Heping; Liu, Chengcheng; Ye, Liu

    2017-06-01

    The uncertainty principle provides a nontrivial bound to expose the precision for the outcome of the measurement on a pair of incompatible observables in a quantum system. Therefore, it is of essential importance for quantum precision measurement in the area of quantum information processing. Herein, we investigate quantum-memory-assisted entropic uncertainty relation (QMA-EUR) in a two-qubit Heisenberg \\boldsymbol{X}\\boldsymbol{Y}\\boldsymbol{Z} spin chain. Specifically, we observe the dynamics of QMA-EUR in a realistic model there are two correlated sites linked by a thermal entanglement in the spin chain with an inhomogeneous magnetic field. It turns out that the temperature, the external inhomogeneous magnetic field and the field inhomogeneity can lift the uncertainty of the measurement due to the reduction of the thermal entanglement, and explicitly higher temperature, stronger magnetic field or larger inhomogeneity of the field can result in inflation of the uncertainty. Besides, it is found that there exists distinct dynamical behaviors of the uncertainty for ferromagnetism \\boldsymbol{}≤ft(\\boldsymbol{J}<\\boldsymbol{0}\\right) and antiferromagnetism \\boldsymbol{}≤ft(\\boldsymbol{J}>\\boldsymbol{0}\\right) chains. Moreover, we also verify that the measuring uncertainty is dramatically anti-correlated with the purity of the bipartite spin system, the greater purity can result in the reduction of the measuring uncertainty, vice versa. Therefore, our observations might provide a better understanding of the dynamics of the entropic uncertainty in the Heisenberg spin chain, and thus shed light on quantum precision measurement in the framework of versatile systems, particularly solid states.

  6. Coupled semivariogram uncertainty of hydrogeological and geophysical data on capture zone uncertainty analysis

    USGS Publications Warehouse

    Rahman, A.; Tsai, F.T.-C.; White, C.D.; Willson, C.S.

    2008-01-01

    This study investigates capture zone uncertainty that relates to the coupled semivariogram uncertainty of hydrogeological and geophysical data. Semivariogram uncertainty is represented by the uncertainty in structural parameters (range, sill, and nugget). We used the beta distribution function to derive the prior distributions of structural parameters. The probability distributions of structural parameters were further updated through the Bayesian approach with the Gaussian likelihood functions. Cokriging of noncollocated pumping test data and electrical resistivity data was conducted to better estimate hydraulic conductivity through autosemivariograms and pseudo-cross-semivariogram. Sensitivities of capture zone variability with respect to the spatial variability of hydraulic conductivity, porosity and aquifer thickness were analyzed using ANOVA. The proposed methodology was applied to the analysis of capture zone uncertainty at the Chicot aquifer in Southwestern Louisiana, where a regional groundwater flow model was developed. MODFLOW-MODPATH was adopted to delineate the capture zone. The ANOVA results showed that both capture zone area and compactness were sensitive to hydraulic conductivity variation. We concluded that the capture zone uncertainty due to the semivariogram uncertainty is much higher than that due to the kriging uncertainty for given semivariograms. In other words, the sole use of conditional variances of kriging may greatly underestimate the flow response uncertainty. Semivariogram uncertainty should also be taken into account in the uncertainty analysis. ?? 2008 ASCE.

  7. Maximum predictive power and the superposition principle

    NASA Technical Reports Server (NTRS)

    Summhammer, Johann

    1994-01-01

    In quantum physics the direct observables are probabilities of events. We ask how observed probabilities must be combined to achieve what we call maximum predictive power. According to this concept the accuracy of a prediction must only depend on the number of runs whose data serve as input for the prediction. We transform each probability to an associated variable whose uncertainty interval depends only on the amount of data and strictly decreases with it. We find that for a probability which is a function of two other probabilities maximum predictive power is achieved when linearly summing their associated variables and transforming back to a probability. This recovers the quantum mechanical superposition principle.

  8. Moving Beyond 2% Uncertainty: A New Framework for Quantifying Lidar Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, Jennifer F.; Clifton, Andrew

    2017-03-08

    Remote sensing of wind using lidar is revolutionizing wind energy. However, current generations of wind lidar are ascribed a climatic value of uncertainty, which is based on a poor description of lidar sensitivity to external conditions. In this presentation, we show how it is important to consider the complete lidar measurement process to define the measurement uncertainty, which in turn offers the ability to define a much more granular and dynamic measurement uncertainty. This approach is a progression from the 'white box' lidar uncertainty method.

  9. Embracing uncertainty, managing complexity: applying complexity thinking principles to transformation efforts in healthcare systems.

    PubMed

    Khan, Sobia; Vandermorris, Ashley; Shepherd, John; Begun, James W; Lanham, Holly Jordan; Uhl-Bien, Mary; Berta, Whitney

    2018-03-21

    Complexity thinking is increasingly being embraced in healthcare, which is often described as a complex adaptive system (CAS). Applying CAS to healthcare as an explanatory model for understanding the nature of the system, and to stimulate changes and transformations within the system, is valuable. A seminar series on systems and complexity thinking hosted at the University of Toronto in 2016 offered a number of insights on applications of CAS perspectives to healthcare that we explore here. We synthesized topics from this series into a set of six insights on how complexity thinking fosters a deeper understanding of accepted ideas in healthcare, applications of CAS to actors within the system, and paradoxes in applications of complexity thinking that may require further debate: 1) a complexity lens helps us better understand the nebulous term "context"; 2) concepts of CAS may be applied differently when actors are cognizant of the system in which they operate; 3) actor responses to uncertainty within a CAS is a mechanism for emergent and intentional adaptation; 4) acknowledging complexity supports patient-centred intersectional approaches to patient care; 5) complexity perspectives can support ways that leaders manage change (and transformation) in healthcare; and 6) complexity demands different ways of implementing ideas and assessing the system. To enhance our exploration of key insights, we augmented the knowledge gleaned from the series with key articles on complexity in the literature. Ultimately, complexity thinking acknowledges the "messiness" that we seek to control in healthcare and encourages us to embrace it. This means seeing challenges as opportunities for adaptation, stimulating innovative solutions to ensure positive adaptation, leveraging the social system to enable ideas to emerge and spread across the system, and even more important, acknowledging that these adaptive actions are part of system behaviour just as much as periods of stability are. By

  10. The precautionary principle in environmental science.

    PubMed Central

    Kriebel, D; Tickner, J; Epstein, P; Lemons, J; Levins, R; Loechler, E L; Quinn, M; Rudel, R; Schettler, T; Stoto, M

    2001-01-01

    Environmental scientists play a key role in society's responses to environmental problems, and many of the studies they perform are intended ultimately to affect policy. The precautionary principle, proposed as a new guideline in environmental decision making, has four central components: taking preventive action in the face of uncertainty; shifting the burden of proof to the proponents of an activity; exploring a wide range of alternatives to possibly harmful actions; and increasing public participation in decision making. In this paper we examine the implications of the precautionary principle for environmental scientists, whose work often involves studying highly complex, poorly understood systems, while at the same time facing conflicting pressures from those who seek to balance economic growth and environmental protection. In this complicated and contested terrain, it is useful to examine the methodologies of science and to consider ways that, without compromising integrity and objectivity, research can be more or less helpful to those who would act with precaution. We argue that a shift to more precautionary policies creates opportunities and challenges for scientists to think differently about the ways they conduct studies and communicate results. There is a complicated feedback relation between the discoveries of science and the setting of policy. While maintaining their objectivity and focus on understanding the world, environmental scientists should be aware of the policy uses of their work and of their social responsibility to do science that protects human health and the environment. The precautionary principle highlights this tight, challenging linkage between science and policy. PMID:11673114

  11. Constrained sampling experiments reveal principles of detection in natural scenes.

    PubMed

    Sebastian, Stephen; Abrams, Jared; Geisler, Wilson S

    2017-07-11

    A fundamental everyday visual task is to detect target objects within a background scene. Using relatively simple stimuli, vision science has identified several major factors that affect detection thresholds, including the luminance of the background, the contrast of the background, the spatial similarity of the background to the target, and uncertainty due to random variations in the properties of the background and in the amplitude of the target. Here we use an experimental approach based on constrained sampling from multidimensional histograms of natural stimuli, together with a theoretical analysis based on signal detection theory, to discover how these factors affect detection in natural scenes. We sorted a large collection of natural image backgrounds into multidimensional histograms, where each bin corresponds to a particular luminance, contrast, and similarity. Detection thresholds were measured for a subset of bins spanning the space, where a natural background was randomly sampled from a bin on each trial. In low-uncertainty conditions, both the background bin and the amplitude of the target were fixed, and, in high-uncertainty conditions, they varied randomly on each trial. We found that thresholds increase approximately linearly along all three dimensions and that detection accuracy is unaffected by background bin and target amplitude uncertainty. The results are predicted from first principles by a normalized matched-template detector, where the dynamic normalizing gain factor follows directly from the statistical properties of the natural backgrounds. The results provide an explanation for classic laws of psychophysics and their underlying neural mechanisms.

  12. The ends of uncertainty: Air quality science and planning in Central California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fine, James

    Air quality planning in Central California is complicated and controversial despite millions of dollars invested to improve scientific understanding. This research describes and critiques the use of photochemical air quality simulation modeling studies in planning to attain standards for ground-level ozone in the San Francisco Bay Area and the San Joaquin Valley during the 1990's. Data are gathered through documents and interviews with planners, modelers, and policy-makers at public agencies and with representatives from the regulated and environmental communities. Interactions amongst organizations are diagramed to identify significant nodes of interaction. Dominant policy coalitions are described through narratives distinguished by theirmore » uses of and responses to uncertainty, their exposures to risks, and their responses to the principles of conservatism, civil duty, and caution. Policy narratives are delineated using aggregated respondent statements to describe and understand advocacy coalitions. I found that models impacted the planning process significantly, but were used not purely for their scientific capabilities. Modeling results provided justification for decisions based on other constraints and political considerations. Uncertainties were utilized opportunistically by stakeholders instead of managed explicitly. Ultimately, the process supported the partisan views of those in control of the modeling. Based on these findings, as well as a review of model uncertainty analysis capabilities, I recommend modifying the planning process to allow for the development and incorporation of uncertainty information, while addressing the need for inclusive and meaningful public participation. By documenting an actual air quality planning process these findings provide insights about the potential for using new scientific information and understanding to achieve environmental goals, most notably the analysis of uncertainties in modeling applications. Concurrently

  13. Predicting uncertainty in future marine ice sheet volume using Bayesian statistical methods

    NASA Astrophysics Data System (ADS)

    Davis, A. D.

    2015-12-01

    The marine ice instability can trigger rapid retreat of marine ice streams. Recent observations suggest that marine ice systems in West Antarctica have begun retreating. However, unknown ice dynamics, computationally intensive mathematical models, and uncertain parameters in these models make predicting retreat rate and ice volume difficult. In this work, we fuse current observational data with ice stream/shelf models to develop probabilistic predictions of future grounded ice sheet volume. Given observational data (e.g., thickness, surface elevation, and velocity) and a forward model that relates uncertain parameters (e.g., basal friction and basal topography) to these observations, we use a Bayesian framework to define a posterior distribution over the parameters. A stochastic predictive model then propagates uncertainties in these parameters to uncertainty in a particular quantity of interest (QoI)---here, the volume of grounded ice at a specified future time. While the Bayesian approach can in principle characterize the posterior predictive distribution of the QoI, the computational cost of both the forward and predictive models makes this effort prohibitively expensive. To tackle this challenge, we introduce a new Markov chain Monte Carlo method that constructs convergent approximations of the QoI target density in an online fashion, yielding accurate characterizations of future ice sheet volume at significantly reduced computational cost.Our second goal is to attribute uncertainty in these Bayesian predictions to uncertainties in particular parameters. Doing so can help target data collection, for the purpose of constraining the parameters that contribute most strongly to uncertainty in the future volume of grounded ice. For instance, smaller uncertainties in parameters to which the QoI is highly sensitive may account for more variability in the prediction than larger uncertainties in parameters to which the QoI is less sensitive. We use global sensitivity

  14. A Hierarchical Multi-Model Approach for Uncertainty Segregation, Prioritization and Comparative Evaluation of Competing Modeling Propositions

    NASA Astrophysics Data System (ADS)

    Tsai, F. T.; Elshall, A. S.; Hanor, J. S.

    2012-12-01

    Subsurface modeling is challenging because of many possible competing propositions for each uncertain model component. How can we judge that we are selecting the correct proposition for an uncertain model component out of numerous competing propositions? How can we bridge the gap between synthetic mental principles such as mathematical expressions on one hand, and empirical observation such as observation data on the other hand when uncertainty exists on both sides? In this study, we introduce hierarchical Bayesian model averaging (HBMA) as a multi-model (multi-proposition) framework to represent our current state of knowledge and decision for hydrogeological structure modeling. The HBMA framework allows for segregating and prioritizing different sources of uncertainty, and for comparative evaluation of competing propositions for each source of uncertainty. We applied the HBMA to a study of hydrostratigraphy and uncertainty propagation of the Southern Hills aquifer system in the Baton Rouge area, Louisiana. We used geophysical data for hydrogeological structure construction through indictor hydrostratigraphy method and used lithologic data from drillers' logs for model structure calibration. However, due to uncertainty in model data, structure and parameters, multiple possible hydrostratigraphic models were produced and calibrated. The study considered four sources of uncertainties. To evaluate mathematical structure uncertainty, the study considered three different variogram models and two geological stationarity assumptions. With respect to geological structure uncertainty, the study considered two geological structures with respect to the Denham Springs-Scotlandville fault. With respect to data uncertainty, the study considered two calibration data sets. These four sources of uncertainty with their corresponding competing modeling propositions resulted in 24 calibrated models. The results showed that by segregating different sources of uncertainty, HBMA analysis

  15. BOOK REVIEW: Evaluating the Measurement Uncertainty: Fundamentals and practical guidance

    NASA Astrophysics Data System (ADS)

    Lira, Ignacio

    2003-08-01

    on to treat evaluation of expanded uncertainty, joint treatment of several measurands, least-squares adjustment, curve fitting and more. Chapter 6 is devoted to Bayesian inference. Perhaps one can say that Evaluating the Measurement Uncertainty caters to a wider reader-base than the GUM; however, a mathematical or statistical background is still advantageous. Also, this is not a book with a library of worked overall uncertainty evaluations for various measurements; the feel of the book is rather theoretical. The novice will still have some work to do—but this is a good place to start. I think this book is a fitting companion to the GUM because the text complements the GUM, from fundamental principles to more sophisticated measurement situations, and moreover includes intelligent discussion regarding intent and interpretation. Evaluating the Measurement Uncertainty is detailed, and I think most metrologists will really enjoy the detail and care put into this book. Jennifer Decker

  16. Scientific basis for the Precautionary Principle.

    PubMed

    Vineis, Paolo

    2005-09-01

    The Precautionary Principle is based on two general criteria: (a) appropriate public action should be taken in response to limited, but plausible and credible, evidence of likely and substantial harm; (b) the burden of proof is shifted from demonstrating the presence of risk to demonstrating the absence of risk. Not much has been written about the scientific basis of the precautionary principle, apart from the uncertainty that characterizes epidemiologic research on chronic disease, and the use of surrogate evidence when human evidence cannot be provided. It is proposed in this paper that a new scientific paradigm, based on the theory of evolution, is emerging; this might offer stronger support to the need for precaution in the regulation of environmental risks. Environmental hazards do not consist only in direct attacks to the integrity of DNA or other macromolecules. They can consist in changes that take place already in utero, and that condition disease risks many years later. Also, environmental exposures can act as "stressors", inducing hypermutability (the mutator phenotype) as an adaptive response. Finally, environmental changes should be evaluated against a background of a not-so-easily modifiable genetic make-up, inherited from a period in which humans were mainly hunters-gatherers and had dietary habits very different from the current ones.

  17. Pediatric disaster response in developed countries: ten guiding principles.

    PubMed

    Brandenburg, Mark A; Arneson, Wendy L

    2007-01-01

    Mass casualty incidents and large-scale disasters involving children are likely to overwhelm a regional disaster response system. Children have unique vulnerabilities that require special considerations when developing pediatric response systems. Although medical and trauma strategies exist for the evaluation and treatment of children on a daily basis, the application of these strategies under conditions of resource-constrained triage and treatment have rarely been evaluated. A recent report, however, by the Institute of Medicine did conclude that on a day-to-day basis the U.S. healthcare system does not adequately provide emergency medical services for children. The variability, scale, and uncertainty of disasters call for a set of guiding principles rather than rigid protocols when developing pediatric response plans. The authors propose the following guiding principles in addressing the well-recognized, unique vulnerabilities of children: (1) terrorism prevention and preparedness, (2) all-hazards preparedness, (3) postdisaster disease and injury prevention, (4) nutrition and hydration, (5) equipment and supplies, (6) pharmacology, (7) mental health, (8) identification and reunification of displaced children, (9) day care and school, and (10) perinatology. It is hoped that the 10 guiding principles discussed in this article will serve as a basic framework for developing pediatric response plans and teams in developed countries.

  18. Assessing dynamics, spatial scale, and uncertainty in task-related brain network analyses.

    PubMed

    Stephen, Emily P; Lepage, Kyle Q; Eden, Uri T; Brunner, Peter; Schalk, Gerwin; Brumberg, Jonathan S; Guenther, Frank H; Kramer, Mark A

    2014-01-01

    The brain is a complex network of interconnected elements, whose interactions evolve dynamically in time to cooperatively perform specific functions. A common technique to probe these interactions involves multi-sensor recordings of brain activity during a repeated task. Many techniques exist to characterize the resulting task-related activity, including establishing functional networks, which represent the statistical associations between brain areas. Although functional network inference is commonly employed to analyze neural time series data, techniques to assess the uncertainty-both in the functional network edges and the corresponding aggregate measures of network topology-are lacking. To address this, we describe a statistically principled approach for computing uncertainty in functional networks and aggregate network measures in task-related data. The approach is based on a resampling procedure that utilizes the trial structure common in experimental recordings. We show in simulations that this approach successfully identifies functional networks and associated measures of confidence emergent during a task in a variety of scenarios, including dynamically evolving networks. In addition, we describe a principled technique for establishing functional networks based on predetermined regions of interest using canonical correlation. Doing so provides additional robustness to the functional network inference. Finally, we illustrate the use of these methods on example invasive brain voltage recordings collected during an overt speech task. The general strategy described here-appropriate for static and dynamic network inference and different statistical measures of coupling-permits the evaluation of confidence in network measures in a variety of settings common to neuroscience.

  19. Information Seeking in Uncertainty Management Theory: Exposure to Information About Medical Uncertainty and Information-Processing Orientation as Predictors of Uncertainty Management Success.

    PubMed

    Rains, Stephen A; Tukachinsky, Riva

    2015-01-01

    Uncertainty management theory outlines the processes through which individuals cope with health-related uncertainty. Information seeking has been frequently documented as an important uncertainty management strategy. The reported study investigates exposure to specific types of medical information during a search, and one's information-processing orientation as predictors of successful uncertainty management (i.e., a reduction in the discrepancy between the level of uncertainty one feels and the level one desires). A lab study was conducted in which participants were primed to feel more or less certain about skin cancer and then were allowed to search the World Wide Web for skin cancer information. Participants' search behavior was recorded and content analyzed. The results indicate that exposure to two health communication constructs that pervade medical forms of uncertainty (i.e., severity and susceptibility) and information-processing orientation predicted uncertainty management success.

  20. Investment, regulation, and uncertainty: managing new plant breeding techniques.

    PubMed

    Smyth, Stuart J; McDonald, Jillian; Falck-Zepeda, Jose

    2014-01-01

    As with any technological innovation, time refines the technology, improving upon the original version of the innovative product. The initial GM crops had single traits for either herbicide tolerance or insect resistance. Current varieties have both of these traits stacked together and in many cases other abiotic and biotic traits have also been stacked. This innovation requires investment. While this is relatively straight forward, certain conditions need to exist such that investments can be facilitated. The principle requirement for investment is that regulatory frameworks render consistent and timely decisions. If the certainty of regulatory outcomes weakens, the potential for changes in investment patterns increases.   This article provides a summary background to the leading plant breeding technologies that are either currently being used to develop new crop varieties or are in the pipeline to be applied to plant breeding within the next few years. Challenges for existing regulatory systems are highlighted. Utilizing an option value approach from investment literature, an assessment of uncertainty regarding the regulatory approval for these varying techniques is undertaken. This research highlights which technology development options have the greatest degree of uncertainty and hence, which ones might be expected to see an investment decline.

  1. Measurement uncertainty relations: characterising optimal error bounds for qubits

    NASA Astrophysics Data System (ADS)

    Bullock, T.; Busch, P.

    2018-07-01

    In standard formulations of the uncertainty principle, two fundamental features are typically cast as impossibility statements: two noncommuting observables cannot in general both be sharply defined (for the same state), nor can they be measured jointly. The pioneers of quantum mechanics were acutely aware and puzzled by this fact, and it motivated Heisenberg to seek a mitigation, which he formulated in his seminal paper of 1927. He provided intuitive arguments to show that the values of, say, the position and momentum of a particle can at least be unsharply defined, and they can be measured together provided some approximation errors are allowed. Only now, nine decades later, a working theory of approximate joint measurements is taking shape, leading to rigorous and experimentally testable formulations of associated error tradeoff relations. Here we briefly review this new development, explaining the concepts and steps taken in the construction of optimal joint approximations of pairs of incompatible observables. As a case study, we deduce measurement uncertainty relations for qubit observables using two distinct error measures. We provide an operational interpretation of the error bounds and discuss some of the first experimental tests of such relations.

  2. Uncertainty and Cognitive Control

    PubMed Central

    Mushtaq, Faisal; Bland, Amy R.; Schaefer, Alexandre

    2011-01-01

    A growing trend of neuroimaging, behavioral, and computational research has investigated the topic of outcome uncertainty in decision-making. Although evidence to date indicates that humans are very effective in learning to adapt to uncertain situations, the nature of the specific cognitive processes involved in the adaptation to uncertainty are still a matter of debate. In this article, we reviewed evidence suggesting that cognitive control processes are at the heart of uncertainty in decision-making contexts. Available evidence suggests that: (1) There is a strong conceptual overlap between the constructs of uncertainty and cognitive control; (2) There is a remarkable overlap between the neural networks associated with uncertainty and the brain networks subserving cognitive control; (3) The perception and estimation of uncertainty might play a key role in monitoring processes and the evaluation of the “need for control”; (4) Potential interactions between uncertainty and cognitive control might play a significant role in several affective disorders. PMID:22007181

  3. Addressing uncertainty in modelling cumulative impacts within maritime spatial planning in the Adriatic and Ionian region.

    PubMed

    Gissi, Elena; Menegon, Stefano; Sarretta, Alessandro; Appiotti, Federica; Maragno, Denis; Vianello, Andrea; Depellegrin, Daniel; Venier, Chiara; Barbanti, Andrea

    2017-01-01

    Maritime spatial planning (MSP) is envisaged as a tool to apply an ecosystem-based approach to the marine and coastal realms, aiming at ensuring that the collective pressure of human activities is kept within acceptable limits. Cumulative impacts (CI) assessment can support science-based MSP, in order to understand the existing and potential impacts of human uses on the marine environment. A CI assessment includes several sources of uncertainty that can hinder the correct interpretation of its results if not explicitly incorporated in the decision-making process. This study proposes a three-level methodology to perform a general uncertainty analysis integrated with the CI assessment for MSP, applied to the Adriatic and Ionian Region (AIR). We describe the nature and level of uncertainty with the help of expert judgement and elicitation to include all of the possible sources of uncertainty related to the CI model with assumptions and gaps related to the case-based MSP process in the AIR. Next, we use the results to tailor the global uncertainty analysis to spatially describe the uncertainty distribution and variations of the CI scores dependent on the CI model factors. The results show the variability of the uncertainty in the AIR, with only limited portions robustly identified as the most or the least impacted areas under multiple model factors hypothesis. The results are discussed for the level and type of reliable information and insights they provide to decision-making. The most significant uncertainty factors are identified to facilitate the adaptive MSP process and to establish research priorities to fill knowledge gaps for subsequent planning cycles. The method aims to depict the potential CI effects, as well as the extent and spatial variation of the data and scientific uncertainty; therefore, this method constitutes a suitable tool to inform the potential establishment of the precautionary principle in MSP.

  4. Uncertainties in internal gas counting

    NASA Astrophysics Data System (ADS)

    Unterweger, M.; Johansson, L.; Karam, L.; Rodrigues, M.; Yunoki, A.

    2015-06-01

    The uncertainties in internal gas counting will be broken down into counting uncertainties and gas handling uncertainties. Counting statistics, spectrum analysis, and electronic uncertainties will be discussed with respect to the actual counting of the activity. The effects of the gas handling and quantities of counting and sample gases on the uncertainty in the determination of the activity will be included when describing the uncertainties arising in the sample preparation.

  5. High-Throughput Thermodynamic Modeling and Uncertainty Quantification for ICME

    NASA Astrophysics Data System (ADS)

    Otis, Richard A.; Liu, Zi-Kui

    2017-05-01

    One foundational component of the integrated computational materials engineering (ICME) and Materials Genome Initiative is the computational thermodynamics based on the calculation of phase diagrams (CALPHAD) method. The CALPHAD method pioneered by Kaufman has enabled the development of thermodynamic, atomic mobility, and molar volume databases of individual phases in the full space of temperature, composition, and sometimes pressure for technologically important multicomponent engineering materials, along with sophisticated computational tools for using the databases. In this article, our recent efforts will be presented in terms of developing new computational tools for high-throughput modeling and uncertainty quantification based on high-throughput, first-principles calculations and the CALPHAD method along with their potential propagations to downstream ICME modeling and simulations.

  6. Risk-based principles for defining and managing water security

    PubMed Central

    Hall, Jim; Borgomeo, Edoardo

    2013-01-01

    The concept of water security implies concern about potentially harmful states of coupled human and natural water systems. Those harmful states may be associated with water scarcity (for humans and/or the environment), floods or harmful water quality. The theories and practices of risk analysis and risk management have been developed and elaborated to deal with the uncertain occurrence of harmful events. Yet despite their widespread application in public policy, theories and practices of risk management have well-known limitations, particularly in the context of severe uncertainties and contested values. Here, we seek to explore the boundaries of applicability of risk-based principles as a means of formalizing discussion of water security. Not only do risk concepts have normative appeal, but they also provide an explicit means of addressing the variability that is intrinsic to hydrological, ecological and socio-economic systems. We illustrate the nature of these interconnections with a simulation study, which demonstrates how water resources planning could take more explicit account of epistemic uncertainties, tolerability of risk and the trade-offs in risk among different actors. PMID:24080616

  7. A statistical method for lung tumor segmentation uncertainty in PET images based on user inference.

    PubMed

    Zheng, Chaojie; Wang, Xiuying; Feng, Dagan

    2015-01-01

    PET has been widely accepted as an effective imaging modality for lung tumor diagnosis and treatment. However, standard criteria for delineating tumor boundary from PET are yet to develop largely due to relatively low quality of PET images, uncertain tumor boundary definition, and variety of tumor characteristics. In this paper, we propose a statistical solution to segmentation uncertainty on the basis of user inference. We firstly define the uncertainty segmentation band on the basis of segmentation probability map constructed from Random Walks (RW) algorithm; and then based on the extracted features of the user inference, we use Principle Component Analysis (PCA) to formulate the statistical model for labeling the uncertainty band. We validated our method on 10 lung PET-CT phantom studies from the public RIDER collections [1] and 16 clinical PET studies where tumors were manually delineated by two experienced radiologists. The methods were validated using Dice similarity coefficient (DSC) to measure the spatial volume overlap. Our method achieved an average DSC of 0.878 ± 0.078 on phantom studies and 0.835 ± 0.039 on clinical studies.

  8. Quantifying catchment water balances and their uncertainties by expert elicitation

    NASA Astrophysics Data System (ADS)

    Sebok, Eva; Refsgaard, Jens Christian; Warmink, Jord J.; Stisen, Simon; Høgh Jensen, Karsten

    2017-04-01

    The increasing demand on water resources necessitates a more responsible and sustainable water management requiring a thorough understanding of hydrological processes both on small scale and on catchment scale. On catchment scale, the characterization of hydrological processes is often carried out by calculating a water balance based on the principle of mass conservation in hydrological fluxes. Assuming a perfect water balance closure and estimating one of these fluxes as a residual of the water balance is a common practice although this estimate will contain uncertainties related to uncertainties in the other components. Water balance closure on the catchment scale is also an issue in Denmark, thus, it was one of the research objectives of the HOBE hydrological observatory, that has been collecting data in the Skjern river catchment since 2008. Water balance components in the 1050 km2 Ahlergaarde catchment and the nested 120 km2 Holtum catchment, located in the glacial outwash plan of the Skjern catchment, were estimated using a multitude of methods. As the collected data enables the complex assessment of uncertainty of both the individual water balance components and catchment-scale water balances, the expert elicitation approach was chosen to integrate the results of the hydrological observatory. This approach relies on the subjective opinion of experts whose available knowledge and experience about the subject allows to integrate complex information from multiple sources. In this study 35 experts were involved in a multi-step elicitation process with the aim of (1) eliciting average annual values of water balance components for two nested catchments and quantifying the contribution of different sources of uncertainties to the total uncertainty in these average annual estimates; (2) calculating water balances for two catchments by reaching consensus among experts interacting in form of group discussions. To address the complex problem of water balance closure

  9. Decision-Making under Criteria Uncertainty

    NASA Astrophysics Data System (ADS)

    Kureychik, V. M.; Safronenkova, I. B.

    2018-05-01

    Uncertainty is an essential part of a decision-making procedure. The paper deals with the problem of decision-making under criteria uncertainty. In this context, decision-making under uncertainty, types and conditions of uncertainty were examined. The decision-making problem under uncertainty was formalized. A modification of the mathematical decision support method under uncertainty via ontologies was proposed. A critical distinction of the developed method is ontology usage as its base elements. The goal of this work is a development of a decision-making method under criteria uncertainty with the use of ontologies in the area of multilayer board designing. This method is oriented to improvement of technical-economic values of the examined domain.

  10. Embracing uncertainty in applied ecology.

    PubMed

    Milner-Gulland, E J; Shea, K

    2017-12-01

    Applied ecologists often face uncertainty that hinders effective decision-making.Common traps that may catch the unwary are: ignoring uncertainty, acknowledging uncertainty but ploughing on, focussing on trivial uncertainties, believing your models, and unclear objectives.We integrate research insights and examples from a wide range of applied ecological fields to illustrate advances that are generally underused, but could facilitate ecologists' ability to plan and execute research to support management.Recommended approaches to avoid uncertainty traps are: embracing models, using decision theory, using models more effectively, thinking experimentally, and being realistic about uncertainty. Synthesis and applications . Applied ecologists can become more effective at informing management by using approaches that explicitly take account of uncertainty.

  11. Water Table Uncertainties due to Uncertainties in Structure and Properties of an Unconfined Aquifer.

    PubMed

    Hauser, Juerg; Wellmann, Florian; Trefry, Mike

    2018-03-01

    We consider two sources of geology-related uncertainty in making predictions of the steady-state water table elevation for an unconfined aquifer. That is the uncertainty in the depth to base of the aquifer and in the hydraulic conductivity distribution within the aquifer. Stochastic approaches to hydrological modeling commonly use geostatistical techniques to account for hydraulic conductivity uncertainty within the aquifer. In the absence of well data allowing derivation of a relationship between geophysical and hydrological parameters, the use of geophysical data is often limited to constraining the structural boundaries. If we recover the base of an unconfined aquifer from an analysis of geophysical data, then the associated uncertainties are a consequence of the geophysical inversion process. In this study, we illustrate this by quantifying water table uncertainties for the unconfined aquifer formed by the paleochannel network around the Kintyre Uranium deposit in Western Australia. The focus of the Bayesian parametric bootstrap approach employed for the inversion of the available airborne electromagnetic data is the recovery of the base of the paleochannel network and the associated uncertainties. This allows us to then quantify the associated influences on the water table in a conceptualized groundwater usage scenario and compare the resulting uncertainties with uncertainties due to an uncertain hydraulic conductivity distribution within the aquifer. Our modeling shows that neither uncertainties in the depth to the base of the aquifer nor hydraulic conductivity uncertainties alone can capture the patterns of uncertainty in the water table that emerge when the two are combined. © 2017, National Ground Water Association.

  12. Test of Equivalence Principle at 10(-8) Level by a Dual-Species Double-Diffraction Raman Atom Interferometer.

    PubMed

    Zhou, Lin; Long, Shitong; Tang, Biao; Chen, Xi; Gao, Fen; Peng, Wencui; Duan, Weitao; Zhong, Jiaqi; Xiong, Zongyuan; Wang, Jin; Zhang, Yuanzhong; Zhan, Mingsheng

    2015-07-03

    We report an improved test of the weak equivalence principle by using a simultaneous 85Rb-87Rb dual-species atom interferometer. We propose and implement a four-wave double-diffraction Raman transition scheme for the interferometer, and demonstrate its ability in suppressing common-mode phase noise of Raman lasers after their frequencies and intensity ratios are optimized. The statistical uncertainty of the experimental data for Eötvös parameter η is 0.8×10(-8) at 3200 s. With various systematic errors corrected, the final value is η=(2.8±3.0)×10(-8). The major uncertainty is attributed to the Coriolis effect.

  13. Trajectory formation principles are the same after mild or moderate stroke

    PubMed Central

    van Dokkum, Liesjet Elisabeth Henriette; Froger, Jérôme; Gouaïch, Abdelkader; Laffont, Isabelle

    2017-01-01

    When we make rapid reaching movements, we have to trade speed for accuracy. To do so, the trajectory of our hand is the result of an optimal balance between feed-forward and feed-back control in the face of signal-dependant noise in the sensorimotor system. How far do these principles of trajectory formation still apply after a stroke, for persons with mild to moderate sensorimotor deficits who recovered some reaching ability? Here, we examine the accuracy of fast hand reaching movements with a focus on the information capacity of the sensorimotor system and its relation to trajectory formation in young adults, in persons who had a stroke and in age-matched control participants. We find that persons with stroke follow the same trajectory formation principles, albeit parameterized differently in the face of higher sensorimotor uncertainty. Higher directional errors after a stroke result in less feed-forward control, hence more feed-back loops responsible for segmented movements. As a consequence, movements are globally slower to reach the imposed accuracy, and the information throughput of the sensorimotor system is lower after a stroke. The fact that the most abstract principles of motor control remain after a stroke suggests that clinicians can capitalize on existing theories of motor control and learning to derive principled rehabilitation strategies. PMID:28329000

  14. Genetic concepts and uncertainties in restoring fish populations and species

    USGS Publications Warehouse

    Reisenbichler, R.R.; Utter, F.M.; Krueger, C.C.

    2003-01-01

    Genetic considerations can be crucially important to the success of reintroductions of lotic species. Current paradigms for conservation and population genetics provide guidance for reducing uncertainties in genetic issues and for increasing the likelihood of achieving restoration. Effective restoration is facilitated through specific goals and objectives developed from the definition that a restored or healthy population is (i) genetically adapted to the local environment, (ii) self-sustaining at abundances consistent with the carrying capacity of the river system, (iii) genetically compatible with neighboring populations so that substantial outbreeding depression does not result from straying and interbreeding between populations, and (iv) sufficiently diverse genetically to accommodate environmental variability over many decades. Genetic principles reveal the importance of describing and adhering to the ancestral lineages for the species to be restored and enabling genetic processes to maintain diversity and fitness in the populations under restoration. Newly established populations should be protected from unnecessary human sources of mortality, gene flow from maladapted (e.g., hatchery) or exotic populations, and inadvertent selection by fisheries or other human activities. Such protection facilitates initial, rapid adaptation of the population to its environment and should enhance the chances for persistence. Various uncertainties about specific restoration actions must be addressed on a case-by-case basis. Such uncertainties include whether to allow natural colonization or to introduce fish, which populations are suitable as sources for reintroduction, appropriate levels of gene flow from other populations, appropriate levels of artificial production, appropriate minimum numbers of individuals released or maintained in the population, and the best developmental stages for releasing fish into the restored stream. Rigorous evaluation or

  15. Uncertainty Propagation in OMFIT

    NASA Astrophysics Data System (ADS)

    Smith, Sterling; Meneghini, Orso; Sung, Choongki

    2017-10-01

    A rigorous comparison of power balance fluxes and turbulent model fluxes requires the propagation of uncertainties in the kinetic profiles and their derivatives. Making extensive use of the python uncertainties package, the OMFIT framework has been used to propagate covariant uncertainties to provide an uncertainty in the power balance calculation from the ONETWO code, as well as through the turbulent fluxes calculated by the TGLF code. The covariant uncertainties arise from fitting 1D (constant on flux surface) density and temperature profiles and associated random errors with parameterized functions such as a modified tanh. The power balance and model fluxes can then be compared with quantification of the uncertainties. No effort is made at propagating systematic errors. A case study will be shown for the effects of resonant magnetic perturbations on the kinetic profiles and fluxes at the top of the pedestal. A separate attempt at modeling the random errors with Monte Carlo sampling will be compared to the method of propagating the fitting function parameter covariant uncertainties. Work supported by US DOE under DE-FC02-04ER54698, DE-FG2-95ER-54309, DE-SC 0012656.

  16. Innovative surgery and the precautionary principle.

    PubMed

    Meyerson, Denise

    2013-12-01

    Surgical innovation involves practices, such as new devices, technologies, procedures, or applications, which are novel and untested. Although innovative practices are believed to offer an improvement on the standard surgical approach, they may prove to be inefficacious or even dangerous. This article considers how surgeons considering innovation should reason in the conditions of uncertainty that characterize innovative surgery. What attitude to the unknown risks of innovative surgery should they take? The answer to this question involves value judgments about the acceptability of risk taking when satisfactory scientific information is not available. This question has been confronted in legal contexts, where risk aversion in the form of the precautionary principle has become increasingly influential as a regulatory response to innovative technologies that pose uncertain future hazards. This article considers whether it is appropriate to apply a precautionary approach when making decisions about innovative surgery.

  17. Entropic uncertainty for spin-1/2 XXX chains in the presence of inhomogeneous magnetic fields and its steering via weak measurement reversals

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ming, Fei; Huang, Ai-Jun; Sun, Wen-Yang; Ye, Liu

    2017-09-01

    The uncertainty principle configures a low bound to the measuring precision for a pair of non-commuting observables, and hence is considerably nontrivial to quantum precision measurement in the field of quantum information theory. In this letter, we consider the entropic uncertainty relation (EUR) in the context of quantum memory in a two-qubit isotropic Heisenberg spin chain. Specifically, we explore the dynamics of EUR in a practical scenario, where two associated nodes of a one-dimensional XXX-spin chain, under an inhomogeneous magnetic field, are connected to a thermal entanglement. We show that the temperature and magnetic field effect can lead to the inflation of the measuring uncertainty, stemming from the reduction of systematic quantum correlation. Notably, we reveal that, firstly, the uncertainty is not fully dependent on the observed quantum correlation of the system; secondly, the dynamical behaviors of the measuring uncertainty are relatively distinct with respect to ferromagnetism and antiferromagnetism chains. Meanwhile, we deduce that the measuring uncertainty is dramatically correlated with the mixedness of the system, implying that smaller mixedness tends to reduce the uncertainty. Furthermore, we propose an effective strategy to control the uncertainty of interest by means of quantum weak measurement reversal. Therefore, our work may shed light on the dynamics of the measuring uncertainty in the Heisenberg spin chain, and thus be important to quantum precision measurement in various solid-state systems.

  18. "He loves me, he loves me not . . . ": uncertainty can increase romantic attraction.

    PubMed

    Whitchurch, Erin R; Wilson, Timothy D; Gilbert, Daniel T

    2011-02-01

    This research qualifies a social psychological truism: that people like others who like them (the reciprocity principle). College women viewed the Facebook profiles of four male students who had previously seen their profiles. They were told that the men (a) liked them a lot, (b) liked them only an average amount, or (c) liked them either a lot or an average amount (uncertain condition). Comparison of the first two conditions yielded results consistent with the reciprocity principle. Participants were more attracted to men who liked them a lot than to men who liked them an average amount. Results for the uncertain condition, however, were consistent with research on the pleasures of uncertainty. Participants in the uncertain condition were most attracted to the men-even more attracted than were participants who were told that the men liked them a lot. Uncertain participants reported thinking about the men the most, and this increased their attraction toward the men.

  19. Preparing Teachers for Uncertainty.

    ERIC Educational Resources Information Center

    Floden, Robert E.; Clark, Christopher M.

    An examination of the various ways in which teaching is uncertain and how uncertainty pervades teachers' lives points out that teachers face uncertainties in their instructional content, ranging from difficult concepts, to unclarity about how teaching might be improved. These forms of uncertainty undermine teachers' authority, creating situations…

  20. The state of the art of the impact of sampling uncertainty on measurement uncertainty

    NASA Astrophysics Data System (ADS)

    Leite, V. J.; Oliveira, E. C.

    2018-03-01

    The measurement uncertainty is a parameter that marks the reliability and can be divided into two large groups: sampling and analytical variations. Analytical uncertainty is a controlled process, performed in the laboratory. The same does not occur with the sampling uncertainty, which, because it faces several obstacles and there is no clarity on how to perform the procedures, has been neglected, although it is admittedly indispensable to the measurement process. This paper aims at describing the state of the art of sampling uncertainty and at assessing its relevance to measurement uncertainty.

  1. NetCDF-U - Uncertainty conventions for netCDF datasets

    NASA Astrophysics Data System (ADS)

    Bigagli, Lorenzo; Nativi, Stefano; Domenico, Ben

    2013-04-01

    To facilitate the automated processing of uncertain data (e.g. uncertainty propagation in modeling applications), we have proposed a set of conventions for expressing uncertainty information within the netCDF data model and format: the NetCDF Uncertainty Conventions (NetCDF-U). From a theoretical perspective, it can be said that no dataset is a perfect representation of the reality it purports to represent. Inevitably, errors arise from the observation process, including the sensor system and subsequent processing, differences in scales of phenomena and the spatial support of the observation mechanism, lack of knowledge about the detailed conversion between the measured quantity and the target variable. This means that, in principle, all data should be treated as uncertain. The most natural representation of an uncertain quantity is in terms of random variables, with a probabilistic approach. However, it must be acknowledged that almost all existing data resources are not treated in this way. Most datasets come simply as a series of values, often without any uncertainty information. If uncertainty information is present, then it is typically within the metadata, as a data quality element. This is typically a global (dataset wide) representation of uncertainty, often derived through some form of validation process. Typically, it is a statistical measure of spread, for example the standard deviation of the residuals. The introduction of a mechanism by which such descriptions of uncertainty can be integrated into existing geospatial applications is considered a practical step towards a more accurate modeling of our uncertain understanding of any natural process. Given the generality and flexibility of the netCDF data model, conventions on naming, syntax, and semantics have been adopted by several communities of practice, as a means of improving data interoperability. Some of the existing conventions include provisions on uncertain elements and concepts, but, to our

  2. Physical Uncertainty Bounds (PUB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, Diane Elizabeth; Preston, Dean L.

    2015-03-19

    This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switchingmore » out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.« less

  3. Quantum scattering in one-dimensional systems satisfying the minimal length uncertainty relation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernardo, Reginald Christian S., E-mail: rcbernardo@nip.upd.edu.ph; Esguerra, Jose Perico H., E-mail: jesguerra@nip.upd.edu.ph

    In quantum gravity theories, when the scattering energy is comparable to the Planck energy the Heisenberg uncertainty principle breaks down and is replaced by the minimal length uncertainty relation. In this paper, the consequences of the minimal length uncertainty relation on one-dimensional quantum scattering are studied using an approach involving a recently proposed second-order differential equation. An exact analytical expression for the tunneling probability through a locally-periodic rectangular potential barrier system is obtained. Results show that the existence of a non-zero minimal length uncertainty tends to shift the resonant tunneling energies to the positive direction. Scattering through a locally-periodic potentialmore » composed of double-rectangular potential barriers shows that the first band of resonant tunneling energies widens for minimal length cases when the double-rectangular potential barrier is symmetric but narrows down when the double-rectangular potential barrier is asymmetric. A numerical solution which exploits the use of Wronskians is used to calculate the transmission probabilities through the Pöschl–Teller well, Gaussian barrier, and double-Gaussian barrier. Results show that the probability of passage through the Pöschl–Teller well and Gaussian barrier is smaller in the minimal length cases compared to the non-minimal length case. For the double-Gaussian barrier, the probability of passage for energies that are more positive than the resonant tunneling energy is larger in the minimal length cases compared to the non-minimal length case. The approach is exact and applicable to many types of scattering potential.« less

  4. Spectral optimization and uncertainty quantification in combustion modeling

    NASA Astrophysics Data System (ADS)

    Sheen, David Allan

    Reliable simulations of reacting flow systems require a well-characterized, detailed chemical model as a foundation. Accuracy of such a model can be assured, in principle, by a multi-parameter optimization against a set of experimental data. However, the inherent uncertainties in the rate evaluations and experimental data leave a model still characterized by some finite kinetic rate parameter space. Without a careful analysis of how this uncertainty space propagates into the model's predictions, those predictions can at best be trusted only qualitatively. In this work, the Method of Uncertainty Minimization using Polynomial Chaos Expansions is proposed to quantify these uncertainties. In this method, the uncertainty in the rate parameters of the as-compiled model is quantified. Then, the model is subjected to a rigorous multi-parameter optimization, as well as a consistency-screening process. Lastly, the uncertainty of the optimized model is calculated using an inverse spectral optimization technique, and then propagated into a range of simulation conditions. An as-compiled, detailed H2/CO/C1-C4 kinetic model is combined with a set of ethylene combustion data to serve as an example. The idea that the hydrocarbon oxidation model should be understood and developed in a hierarchical fashion has been a major driving force in kinetics research for decades. How this hierarchical strategy works at a quantitative level, however, has never been addressed. In this work, we use ethylene and propane combustion as examples and explore the question of hierarchical model development quantitatively. The Method of Uncertainty Minimization using Polynomial Chaos Expansions is utilized to quantify the amount of information that a particular combustion experiment, and thereby each data set, contributes to the model. This knowledge is applied to explore the relationships among the combustion chemistry of hydrogen/carbon monoxide, ethylene, and larger alkanes. Frequently, new data will

  5. Uncertainty and Clinical Psychology: Therapists' Responses.

    ERIC Educational Resources Information Center

    Bienenfeld, Sheila

    Three sources of professional uncertainty have been described: uncertainty about the practitioner's mastery of knowledge; uncertainty due to gaps in the knowledge base itself; and uncertainty about the source of the uncertainty, i.e., the practitioner does not know whether his uncertainty is due to gaps in the knowledge base or to personal…

  6. Conservation in the face of climate change: The roles of alternative models, monitoring, and adaptation in confronting and reducing uncertainty

    USGS Publications Warehouse

    Conroy, M.J.; Runge, M.C.; Nichols, J.D.; Stodola, K.W.; Cooper, R.J.

    2011-01-01

    The broad physical and biological principles behind climate change and its potential large scale ecological impacts on biota are fairly well understood, although likely responses of biotic communities at fine spatio-temporal scales are not, limiting the ability of conservation programs to respond effectively to climate change outside the range of human experience. Much of the climate debate has focused on attempts to resolve key uncertainties in a hypothesis-testing framework. However, conservation decisions cannot await resolution of these scientific issues and instead must proceed in the face of uncertainty. We suggest that conservation should precede in an adaptive management framework, in which decisions are guided by predictions under multiple, plausible hypotheses about climate impacts. Under this plan, monitoring is used to evaluate the response of the system to climate drivers, and management actions (perhaps experimental) are used to confront testable predictions with data, in turn providing feedback for future decision making. We illustrate these principles with the problem of mitigating the effects of climate change on terrestrial bird communities in the southern Appalachian Mountains, USA. ?? 2010 Elsevier Ltd.

  7. Uncertainty in Agricultural Impact Assessment

    NASA Technical Reports Server (NTRS)

    Wallach, Daniel; Mearns, Linda O.; Rivington, Michael; Antle, John M.; Ruane, Alexander C.

    2014-01-01

    This chapter considers issues concerning uncertainty associated with modeling and its use within agricultural impact assessments. Information about uncertainty is important for those who develop assessment methods, since that information indicates the need for, and the possibility of, improvement of the methods and databases. Such information also allows one to compare alternative methods. Information about the sources of uncertainties is an aid in prioritizing further work on the impact assessment method. Uncertainty information is also necessary for those who apply assessment methods, e.g., for projecting climate change impacts on agricultural production and for stakeholders who want to use the results as part of a decision-making process (e.g., for adaptation planning). For them, uncertainty information indicates the degree of confidence they can place in the simulated results. Quantification of uncertainty also provides stakeholders with an important guideline for making decisions that are robust across the known uncertainties. Thus, uncertainty information is important for any decision based on impact assessment. Ultimately, we are interested in knowledge about uncertainty so that information can be used to achieve positive outcomes from agricultural modeling and impact assessment.

  8. Effects of correlated parameters and uncertainty in electronic-structure-based chemical kinetic modelling

    NASA Astrophysics Data System (ADS)

    Sutton, Jonathan E.; Guo, Wei; Katsoulakis, Markos A.; Vlachos, Dionisios G.

    2016-04-01

    Kinetic models based on first principles are becoming common place in heterogeneous catalysis because of their ability to interpret experimental data, identify the rate-controlling step, guide experiments and predict novel materials. To overcome the tremendous computational cost of estimating parameters of complex networks on metal catalysts, approximate quantum mechanical calculations are employed that render models potentially inaccurate. Here, by introducing correlative global sensitivity analysis and uncertainty quantification, we show that neglecting correlations in the energies of species and reactions can lead to an incorrect identification of influential parameters and key reaction intermediates and reactions. We rationalize why models often underpredict reaction rates and show that, despite the uncertainty being large, the method can, in conjunction with experimental data, identify influential missing reaction pathways and provide insights into the catalyst active site and the kinetic reliability of a model. The method is demonstrated in ethanol steam reforming for hydrogen production for fuel cells.

  9. Bernoulli's Principle

    ERIC Educational Resources Information Center

    Hewitt, Paul G.

    2004-01-01

    Some teachers have difficulty understanding Bernoulli's principle particularly when the principle is applied to the aerodynamic lift. Some teachers favor using Newton's laws instead of Bernoulli's principle to explain the physics behind lift. Some also consider Bernoulli's principle too difficult to explain to students and avoid teaching it…

  10. The Precautionary Principle: implications for risk management strategies.

    PubMed

    Saltelli, Andrea; Funtowicz, Silvio

    2004-01-01

    The European Commission has published a Communication on the Precautionary Principle and a White Book on Governance. These provide us (as research civil servants of the Commission) an institutional framework for handling scientific information that is often incomplete, uncertain, and contested. But, although the Precautionary Principle is intuitively straightforward to understand, there is no agreed way of applying it to real decision-making. To meet this perceived need, researchers have proposed a vast number of taxonomies. These include ignorance auditing, type one-two-three errors, a combination of uncertainty and decision stakes through post-normal science and the plotting of ignorance of probabilities against ignorance of consequences. Any of these could be used to define a precautionary principle region inside a multidimensional space and to position an issue within that region. The role of anticipatory research is clearly critical but scientific input is only part of the picture. It is difficult to imagine an issue where the application of the Precautionary Principle would be non-contentious. From genetically-modified food to electro-smog, from climate change to hormone growth in meat, it is clear that: 1) risk and cost-benefit are only part of the picture; 2) there are ethical issues involved; 3) there is a plurality of interests and perspectives that are often in conflict; 4) there will be losers and winners whatever decision is made. Operationalization of the Precautionary Principle must preserve transparency. Only in this way will the incommensurable costs and benefits associated with different stakeholders be registered. A typical decision will include the following sorts of considerations: 1) the commercial interests of companies and the communities that depend on them; 2) the worldviews of those who might want a greener, less consumerist society and/or who believe in the sanctity of human or animal life; 3) potential benefits such as enabling the

  11. The uncertainty room: strategies for managing uncertainty in a surgical waiting room.

    PubMed

    Stone, Anne M; Lammers, John C

    2012-01-01

    To describe experiences of uncertainty and management strategies for staff working with families in a hospital waiting room. A 288-bed, nonprofit community hospital in a Midwestern city. Data were collected during individual, semistructured interviews with 3 volunteers, 3 technical staff members, and 1 circulating nurse (n = 7), and during 40 hours of observation in a surgical waiting room. Interview transcripts were analyzed using constant comparative techniques. The surgical waiting room represents the intersection of several sources of uncertainty that families experience. Findings also illustrate the ways in which staff manage the uncertainty of families in the waiting room by communicating support. Staff in surgical waiting rooms are responsible for managing family members' uncertainty related to insufficient information. Practically, this study provided some evidence that staff are expected to help manage the uncertainty that is typical in a surgical waiting room, further highlighting the important role of communication in improving family members' experiences.

  12. The Thermal Conductivity of Earth's Core: A Key Geophysical Parameter's Constraints and Uncertainties

    NASA Astrophysics Data System (ADS)

    Williams, Q.

    2018-05-01

    The thermal conductivity of iron alloys at high pressures and temperatures is a critical parameter in governing ( a) the present-day heat flow out of Earth's core, ( b) the inferred age of Earth's inner core, and ( c) the thermal evolution of Earth's core and lowermost mantle. It is, however, one of the least well-constrained important geophysical parameters, with current estimates for end-member iron under core-mantle boundary conditions varying by about a factor of 6. Here, the current state of calculations, measurements, and inferences that constrain thermal conductivity at core conditions are reviewed. The applicability of the Wiedemann-Franz law, commonly used to convert electrical resistivity data to thermal conductivity data, is probed: Here, whether the constant of proportionality, the Lorenz number, is constant at extreme conditions is of vital importance. Electron-electron inelastic scattering and increases in Fermi-liquid-like behavior may cause uncertainties in thermal conductivities derived from both first-principles-associated calculations and electrical conductivity measurements. Additional uncertainties include the role of alloying constituents and local magnetic moments of iron in modulating the thermal conductivity. Thus, uncertainties in thermal conductivity remain pervasive, and hence a broad range of core heat flows and inner core ages appear to remain plausible.

  13. Long Term Uncertainty Investigations of 1 MN Force Calibration Machine at NPL, India (NPLI)

    NASA Astrophysics Data System (ADS)

    Kumar, Rajesh; Kumar, Harish; Kumar, Anil; Vikram

    2012-01-01

    The present paper is an attempt to study the long term uncertainty of 1 MN hydraulic multiplication system (HMS) force calibration machine (FCM) at the National Physical Laboratory, India (NPLI), which is used for calibration of the force measuring instruments in the range of 100 kN - 1 MN. The 1 MN HMS FCM was installed at NPLI in 1993 and was built on the principle of hydraulic amplifications of dead weights. The best measurement capability (BMC) of the machine is ± 0.025% (k = 2) and it is traceable to national standards by means of precision force transfer standards (FTS). The present study discusses the uncertainty variations of the 1 MN HMS FCM over the years and describes the other parameters in detail, too. The 1 MN HMS FCM was calibrated in the years 2004, 2006, 2007, 2008, 2009 and 2010 and the results have been reported.

  14. Uncertainty prediction for PUB

    NASA Astrophysics Data System (ADS)

    Mendiondo, E. M.; Tucci, C. M.; Clarke, R. T.; Castro, N. M.; Goldenfum, J. A.; Chevallier, P.

    2003-04-01

    IAHS’ initiative of Prediction in Ungaged Basins (PUB) attempts to integrate monitoring needs and uncertainty prediction for river basins. This paper outlines alternative ways of uncertainty prediction which could be linked with new blueprints for PUB, thereby showing how equifinality-based models should be grasped using practical strategies of gauging like the Nested Catchment Experiment (NCE). Uncertainty prediction is discussed from observations of Potiribu Project, which is a NCE layout at representative basins of a suptropical biome of 300,000 km2 in South America. Uncertainty prediction is assessed at the microscale (1 m2 plots), at the hillslope (0,125 km2) and at the mesoscale (0,125 - 560 km2). At the microscale, uncertainty-based models are constrained by temporal variations of state variables with changing likelihood surfaces of experiments using Green-Ampt model. Two new blueprints emerged from this NCE for PUB: (1) the Scale Transferability Scheme (STS) at the hillslope scale and the Integrating Process Hypothesis (IPH) at the mesoscale. The STS integrates a multi-dimensional scaling with similarity thresholds, as a generalization of the Representative Elementary Area (REA), using spatial correlation from point (distributed) to area (lumped) process. In this way, STS addresses uncertainty-bounds of model parameters, into an upscaling process at the hillslope. In the other hand, the IPH approach regionalizes synthetic hydrographs, thereby interpreting the uncertainty bounds of streamflow variables. Multiscale evidences from Potiribu NCE layout show novel pathways of uncertainty prediction under a PUB perspective in representative basins of world biomes.

  15. Thermodynamic properties of ideal Fermi gases in a harmonic potential in an n-dimensional space under the generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    Li, Heling; Ren, Jinxiu; Wang, Wenwei; Yang, Bin; Shen, Hongjun

    2018-02-01

    Using the semi-classical (Thomas-Fermi) approximation, the thermodynamic properties of ideal Fermi gases in a harmonic potential in an n-dimensional space are studied under the generalized uncertainty principle (GUP). The mean particle number, internal energy, heat capacity and other thermodynamic variables of the Fermi system are calculated analytically. Then, analytical expressions of the mean particle number, internal energy, heat capacity, chemical potential, Fermi energy, ground state energy and amendments of the GUP are obtained at low temperatures. The influence of both the GUP and the harmonic potential on the thermodynamic properties of a copper-electron gas and other systems with higher electron densities are studied numerically at low temperatures. We find: (1) When the GUP is considered, the influence of the harmonic potential is very much larger, and the amendments produced by the GUP increase by eight to nine orders of magnitude compared to when no external potential is applied to the electron gas. (2) The larger the particle density, or the smaller the particle masses, the bigger the influence of the GUP. (3) The effect of the GUP increases with the increase in the spatial dimensions. (4) The amendments of the chemical potential, Fermi energy and ground state energy increase with an increase in temperature, while the heat capacity decreases. T F0 is the Fermi temperature of the ideal Fermi system in a harmonic potential. When the temperature is lower than a certain value (0.22 times T F0 for the copper-electron gas, and this value decreases with increasing electron density), the amendment to the internal energy is positive, however, the amendment decreases with increasing temperature. When the temperature increases to the value, the amendment is zero, and when the temperature is higher than the value, the amendment to the internal energy is negative and the absolute value of the amendment increases with increasing temperature. (5) When electron

  16. Communicating scientific uncertainty

    PubMed Central

    Fischhoff, Baruch; Davis, Alex L.

    2014-01-01

    All science has uncertainty. Unless that uncertainty is communicated effectively, decision makers may put too much or too little faith in it. The information that needs to be communicated depends on the decisions that people face. Are they (i) looking for a signal (e.g., whether to evacuate before a hurricane), (ii) choosing among fixed options (e.g., which medical treatment is best), or (iii) learning to create options (e.g., how to regulate nanotechnology)? We examine these three classes of decisions in terms of how to characterize, assess, and convey the uncertainties relevant to each. We then offer a protocol for summarizing the many possible sources of uncertainty in standard terms, designed to impose a minimal burden on scientists, while gradually educating those whose decisions depend on their work. Its goals are better decisions, better science, and better support for science. PMID:25225390

  17. Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states

    PubMed Central

    Rosi, G.; D'Amico, G.; Cacciapuoti, L.; Sorrentino, F.; Prevedelli, M.; Zych, M.; Brukner, Č.; Tino, G. M.

    2017-01-01

    The Einstein equivalence principle (EEP) has a central role in the understanding of gravity and space–time. In its weak form, or weak equivalence principle (WEP), it directly implies equivalence between inertial and gravitational mass. Verifying this principle in a regime where the relevant properties of the test body must be described by quantum theory has profound implications. Here we report on a novel WEP test for atoms: a Bragg atom interferometer in a gravity gradiometer configuration compares the free fall of rubidium atoms prepared in two hyperfine states and in their coherent superposition. The use of the superposition state allows testing genuine quantum aspects of EEP with no classical analogue, which have remained completely unexplored so far. In addition, we measure the Eötvös ratio of atoms in two hyperfine levels with relative uncertainty in the low 10−9, improving previous results by almost two orders of magnitude. PMID:28569742

  18. Visualization of Uncertainty

    NASA Astrophysics Data System (ADS)

    Jones, P. W.; Strelitz, R. A.

    2012-12-01

    The output of a simulation is best comprehended through the agency and methods of visualization, but a vital component of good science is knowledge of uncertainty. While great strides have been made in the quantification of uncertainty, especially in simulation, there is still a notable gap: there is no widely accepted means of simultaneously viewing the data and the associated uncertainty in one pane. Visualization saturates the screen, using the full range of color, shadow, opacity and tricks of perspective to display even a single variable. There is no room in the visualization expert's repertoire left for uncertainty. We present a method of visualizing uncertainty without sacrificing the clarity and power of the underlying visualization that works as well in 3-D and time-varying visualizations as it does in 2-D. At its heart, it relies on a principal tenet of continuum mechanics, replacing the notion of value at a point with a more diffuse notion of density as a measure of content in a region. First, the uncertainties calculated or tabulated at each point are transformed into a piecewise continuous field of uncertainty density . We next compute a weighted Voronoi tessellation of a user specified N convex polygonal/polyhedral cells such that each cell contains the same amount of uncertainty as defined by . The problem thus devolves into minimizing . Computation of such a spatial decomposition is O(N*N ), and can be computed iteratively making it possible to update easily over time as well as faster. The polygonal mesh does not interfere with the visualization of the data and can be easily toggled on or off. In this representation, a small cell implies a great concentration of uncertainty, and conversely. The content weighted polygons are identical to the cartogram familiar to the information visualization community in the depiction of things voting results per stat. Furthermore, one can dispense with the mesh or edges entirely to be replaced by symbols or glyphs

  19. Equilibration and analysis of first-principles molecular dynamics simulations of water

    NASA Astrophysics Data System (ADS)

    Dawson, William; Gygi, François

    2018-03-01

    First-principles molecular dynamics (FPMD) simulations based on density functional theory are becoming increasingly popular for the description of liquids. In view of the high computational cost of these simulations, the choice of an appropriate equilibration protocol is critical. We assess two methods of estimation of equilibration times using a large dataset of first-principles molecular dynamics simulations of water. The Gelman-Rubin potential scale reduction factor [A. Gelman and D. B. Rubin, Stat. Sci. 7, 457 (1992)] and the marginal standard error rule heuristic proposed by White [Simulation 69, 323 (1997)] are evaluated on a set of 32 independent 64-molecule simulations of 58 ps each, amounting to a combined cumulative time of 1.85 ns. The availability of multiple independent simulations also allows for an estimation of the variance of averaged quantities, both within MD runs and between runs. We analyze atomic trajectories, focusing on correlations of the Kohn-Sham energy, pair correlation functions, number of hydrogen bonds, and diffusion coefficient. The observed variability across samples provides a measure of the uncertainty associated with these quantities, thus facilitating meaningful comparisons of different approximations used in the simulations. We find that the computed diffusion coefficient and average number of hydrogen bonds are affected by a significant uncertainty in spite of the large size of the dataset used. A comparison with classical simulations using the TIP4P/2005 model confirms that the variability of the diffusivity is also observed after long equilibration times. Complete atomic trajectories and simulation output files are available online for further analysis.

  20. Equilibration and analysis of first-principles molecular dynamics simulations of water.

    PubMed

    Dawson, William; Gygi, François

    2018-03-28

    First-principles molecular dynamics (FPMD) simulations based on density functional theory are becoming increasingly popular for the description of liquids. In view of the high computational cost of these simulations, the choice of an appropriate equilibration protocol is critical. We assess two methods of estimation of equilibration times using a large dataset of first-principles molecular dynamics simulations of water. The Gelman-Rubin potential scale reduction factor [A. Gelman and D. B. Rubin, Stat. Sci. 7, 457 (1992)] and the marginal standard error rule heuristic proposed by White [Simulation 69, 323 (1997)] are evaluated on a set of 32 independent 64-molecule simulations of 58 ps each, amounting to a combined cumulative time of 1.85 ns. The availability of multiple independent simulations also allows for an estimation of the variance of averaged quantities, both within MD runs and between runs. We analyze atomic trajectories, focusing on correlations of the Kohn-Sham energy, pair correlation functions, number of hydrogen bonds, and diffusion coefficient. The observed variability across samples provides a measure of the uncertainty associated with these quantities, thus facilitating meaningful comparisons of different approximations used in the simulations. We find that the computed diffusion coefficient and average number of hydrogen bonds are affected by a significant uncertainty in spite of the large size of the dataset used. A comparison with classical simulations using the TIP4P/2005 model confirms that the variability of the diffusivity is also observed after long equilibration times. Complete atomic trajectories and simulation output files are available online for further analysis.

  1. Assessing and reporting uncertainties in dietary exposure analysis: Mapping of uncertainties in a tiered approach.

    PubMed

    Kettler, Susanne; Kennedy, Marc; McNamara, Cronan; Oberdörfer, Regina; O'Mahony, Cian; Schnabel, Jürgen; Smith, Benjamin; Sprong, Corinne; Faludi, Roland; Tennant, David

    2015-08-01

    Uncertainty analysis is an important component of dietary exposure assessments in order to understand correctly the strength and limits of its results. Often, standard screening procedures are applied in a first step which results in conservative estimates. If through those screening procedures a potential exceedance of health-based guidance values is indicated, within the tiered approach more refined models are applied. However, the sources and types of uncertainties in deterministic and probabilistic models can vary or differ. A key objective of this work has been the mapping of different sources and types of uncertainties to better understand how to best use uncertainty analysis to generate more realistic comprehension of dietary exposure. In dietary exposure assessments, uncertainties can be introduced by knowledge gaps about the exposure scenario, parameter and the model itself. With this mapping, general and model-independent uncertainties have been identified and described, as well as those which can be introduced and influenced by the specific model during the tiered approach. This analysis identifies that there are general uncertainties common to point estimates (screening or deterministic methods) and probabilistic exposure assessment methods. To provide further clarity, general sources of uncertainty affecting many dietary exposure assessments should be separated from model-specific uncertainties. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. [Ethics, empiricism and uncertainty].

    PubMed

    Porz, R; Zimmermann, H; Exadaktylos, A K

    2011-01-01

    Accidents can lead to difficult boundary situations. Such situations often take place in the emergency units. The medical team thus often and inevitably faces professional uncertainty in their decision-making. It is essential to communicate these uncertainties within the medical team, instead of downplaying or overriding existential hurdles in decision-making. Acknowledging uncertainties might lead to alert and prudent decisions. Thus uncertainty can have ethical value in treatment or withdrawal of treatment. It does not need to be covered in evidence-based arguments, especially as some singular situations of individual tragedies cannot be grasped in terms of evidence-based medicine. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Network planning under uncertainties

    NASA Astrophysics Data System (ADS)

    Ho, Kwok Shing; Cheung, Kwok Wai

    2008-11-01

    One of the main focuses for network planning is on the optimization of network resources required to build a network under certain traffic demand projection. Traditionally, the inputs to this type of network planning problems are treated as deterministic. In reality, the varying traffic requirements and fluctuations in network resources can cause uncertainties in the decision models. The failure to include the uncertainties in the network design process can severely affect the feasibility and economics of the network. Therefore, it is essential to find a solution that can be insensitive to the uncertain conditions during the network planning process. As early as in the 1960's, a network planning problem with varying traffic requirements over time had been studied. Up to now, this kind of network planning problems is still being active researched, especially for the VPN network design. Another kind of network planning problems under uncertainties that has been studied actively in the past decade addresses the fluctuations in network resources. One such hotly pursued research topic is survivable network planning. It considers the design of a network under uncertainties brought by the fluctuations in topology to meet the requirement that the network remains intact up to a certain number of faults occurring anywhere in the network. Recently, the authors proposed a new planning methodology called Generalized Survivable Network that tackles the network design problem under both varying traffic requirements and fluctuations of topology. Although all the above network planning problems handle various kinds of uncertainties, it is hard to find a generic framework under more general uncertainty conditions that allows a more systematic way to solve the problems. With a unified framework, the seemingly diverse models and algorithms can be intimately related and possibly more insights and improvements can be brought out for solving the problem. This motivates us to seek a

  4. Uncertainty relation in Schwarzschild spacetime

    NASA Astrophysics Data System (ADS)

    Feng, Jun; Zhang, Yao-Zhong; Gould, Mark D.; Fan, Heng

    2015-04-01

    We explore the entropic uncertainty relation in the curved background outside a Schwarzschild black hole, and find that Hawking radiation introduces a nontrivial modification on the uncertainty bound for particular observer, therefore it could be witnessed by proper uncertainty game experimentally. We first investigate an uncertainty game between a free falling observer and his static partner holding a quantum memory initially entangled with the quantum system to be measured. Due to the information loss from Hawking decoherence, we find an inevitable increase of the uncertainty on the outcome of measurements in the view of static observer, which is dependent on the mass of the black hole, the distance of observer from event horizon, and the mode frequency of quantum memory. To illustrate the generality of this paradigm, we relate the entropic uncertainty bound with other uncertainty probe, e.g., time-energy uncertainty. In an alternative game between two static players, we show that quantum information of qubit can be transferred to quantum memory through a bath of fluctuating quantum fields outside the black hole. For a particular choice of initial state, we show that the Hawking decoherence cannot counteract entanglement generation after the dynamical evolution of system, which triggers an effectively reduced uncertainty bound that violates the intrinsic limit -log2 ⁡ c. Numerically estimation for a proper choice of initial state shows that our result is comparable with possible real experiments. Finally, a discussion on the black hole firewall paradox in the context of entropic uncertainty relation is given.

  5. A Framework for Quantifying Measurement Uncertainties and Uncertainty Propagation in HCCI/LTGC Engine Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petitpas, Guillaume; McNenly, Matthew J.; Whitesides, Russell A.

    In this study, a framework for estimating experimental measurement uncertainties for a Homogenous Charge Compression Ignition (HCCI)/Low-Temperature Gasoline Combustion (LTGC) engine testing facility is presented. Detailed uncertainty quantification is first carried out for the measurement of the in-cylinder pressure, whose variations during the cycle provide most of the information for performance evaluation. Standard uncertainties of other measured quantities, such as the engine geometry and speed, the air and fuel flow rate and the intake/exhaust dry molar fractions are also estimated. Propagating those uncertainties using a Monte Carlo simulation and Bayesian inference methods then allows for estimation of uncertainties of themore » mass-average temperature and composition at IVC and throughout the cycle; and also of the engine performances such as gross Integrated Mean Effective Pressure, Heat Release and Ringing Intensity. Throughout the analysis, nominal values for uncertainty inputs were taken from a well-characterized engine test facility. However, the analysis did not take into account the calibration practice of experiments run in that facility and the resulting uncertainty values are therefore not indicative of the expected accuracy of those experimental results. A future study will employ the methodology developed here to explore the effects of different calibration methods on the different uncertainty values in order to evaluate best practices for accurate engine measurements.« less

  6. A Framework for Quantifying Measurement Uncertainties and Uncertainty Propagation in HCCI/LTGC Engine Experiments

    DOE PAGES

    Petitpas, Guillaume; McNenly, Matthew J.; Whitesides, Russell A.

    2017-03-28

    In this study, a framework for estimating experimental measurement uncertainties for a Homogenous Charge Compression Ignition (HCCI)/Low-Temperature Gasoline Combustion (LTGC) engine testing facility is presented. Detailed uncertainty quantification is first carried out for the measurement of the in-cylinder pressure, whose variations during the cycle provide most of the information for performance evaluation. Standard uncertainties of other measured quantities, such as the engine geometry and speed, the air and fuel flow rate and the intake/exhaust dry molar fractions are also estimated. Propagating those uncertainties using a Monte Carlo simulation and Bayesian inference methods then allows for estimation of uncertainties of themore » mass-average temperature and composition at IVC and throughout the cycle; and also of the engine performances such as gross Integrated Mean Effective Pressure, Heat Release and Ringing Intensity. Throughout the analysis, nominal values for uncertainty inputs were taken from a well-characterized engine test facility. However, the analysis did not take into account the calibration practice of experiments run in that facility and the resulting uncertainty values are therefore not indicative of the expected accuracy of those experimental results. A future study will employ the methodology developed here to explore the effects of different calibration methods on the different uncertainty values in order to evaluate best practices for accurate engine measurements.« less

  7. Conceptual uncertainty in crystalline bedrock: Is simple evaluation the only practical approach?

    USGS Publications Warehouse

    Geier, J.; Voss, C.I.; Dverstorp, B.

    2002-01-01

    A simple evaluation can be used to characterize the capacity of crystalline bedrock to act as a barrier to release radionuclides from a nuclear waste repository. Physically plausible bounds on groundwater flow and an effective transport-resistance parameter are estimated based on fundamental principles and idealized models of pore geometry. Application to an intensively characterized site in Sweden shows that, due to high spatial variability and uncertainty regarding properties of transport paths, the uncertainty associated with the geological barrier is too high to allow meaningful discrimination between good and poor performance. Application of more complex (stochastic-continuum and discrete-fracture-network) models does not yield a significant improvement in the resolution of geological barrier performance. Comparison with seven other less intensively characterized crystalline study sites in Sweden leads to similar results, raising a question as to what extent the geological barrier function can be characterized by state-of-the art site investigation methods prior to repository construction. A simple evaluation provides a simple and robust practical approach for inclusion in performance assessment.

  8. Conceptual uncertainty in crystalline bedrock: Is simple evaluation the only practical approach?

    USGS Publications Warehouse

    Geier, J.; Voss, C.I.; Dverstorp, B.

    2002-01-01

    A simple evaluation can be used to characterise the capacity of crystalline bedrock to act as a barrier to releases of radionuclides from a nuclear waste repository. Physically plausible bounds on groundwater flow and an effective transport-resistance parameter are estimated based on fundamental principles and idealised models of pore geometry. Application to an intensively characterised site in Sweden shows that, due to high spatial variability and uncertainty regarding properties of transport paths, the uncertainty associated with the geological barrier is too high to allow meaningful discrimination between good and poor performance. Application of more complex (stochastic-continuum and discrete-fracture-network) models does not yield a significant improvement in the resolution of geologic-barrier performance. Comparison with seven other less intensively characterised crystalline study sites in Sweden leads to similar results, raising a question as to what extent the geological barrier function can be characterised by state-of-the art site investigation methods prior to repository construction. A simple evaluation provides a simple and robust practical approach for inclusion in performance assessment.

  9. Uncertainty vs. Information (Invited)

    NASA Astrophysics Data System (ADS)

    Nearing, Grey

    2017-04-01

    Information theory is the branch of logic that describes how rational epistemic states evolve in the presence of empirical data (Knuth, 2005), and any logic of science is incomplete without such a theory. Developing a formal philosophy of science that recognizes this fact results in essentially trivial solutions to several longstanding problems are generally considered intractable, including: • Alleviating the need for any likelihood function or error model. • Derivation of purely logical falsification criteria for hypothesis testing. • Specification of a general quantitative method for process-level model diagnostics. More generally, I make the following arguments: 1. Model evaluation should not proceed by quantifying and/or reducing error or uncertainty, and instead should be approached as a problem of ensuring that our models contain as much information as our experimental data. I propose that the latter is the only question a scientist actually has the ability to ask. 2. Instead of building geophysical models as solutions to differential equations that represent conservation laws, we should build models as maximum entropy distributions constrained by conservation symmetries. This will allow us to derive predictive probabilities directly from first principles. Knuth, K. H. (2005) 'Lattice duality: The origin of probability and entropy', Neurocomputing, 67, pp. 245-274.

  10. Water, Resilience and the Law: From General Concepts and Governance Design Principles to Actionable Mechanisms

    NASA Astrophysics Data System (ADS)

    Hill Clarvis, M.; Allan, A.; Hannah, D. M.

    2013-12-01

    Climate change has significant ramifications for water law and governance, yet, there is strong evidence that legal regulations have often failed to protect environments or promote sustainable development. Scholars have increasingly suggested that the preservation and restoration paradigms of legislation and regulation are no longer adequate for climate change related challenges in complex and cross-scale social-ecological systems. This is namely due to past assumptions of stationarity, uniformitarianism and the perception of ecosystem change as predictable and reversible. This paper reviews the literature on law and resilience and then presents and discusses a set of practical examples of legal mechanisms from the water resources management sector, identified according to a set of guiding principles from the literature on adaptive capacity, adaptive governance as well as adaptive and integrated water resources management. It then assesses the aptness of these different measures according to scientific evidence of increased uncertainty and changing ecological baselines. A review of the best practice examples demonstrates that there are a number of best practice examples attempting to integrate adaptive elements of flexibility, iterativity, connectivity and subsidiarity into a variety of legislative mechanisms, suggesting that there is not as significant a tension between resilience and the law as many scholars have suggested. However, while many of the mechanisms may indeed be suitable for addressing challenges relating to current levels of change and uncertainty, analysis across a broader range of uncertainty highlights challenges relating to more irreversible changes associated with greater levels of warming. Furthermore the paper identifies a set of pre-requisites that are fundamental to the successful implementation of such mechanisms, namely monitoring and data sharing, financial and technical capacity, particularly in nations that are most at risk with the

  11. Contemporary treatment principles for early rheumatoid arthritis: a consensus statement.

    PubMed

    Kiely, Patrick D W; Brown, Andrew K; Edwards, Christopher J; O'Reilly, David T; Ostör, Andrew J K; Quinn, Mark; Taggart, Allister; Taylor, Peter C; Wakefield, Richard J; Conaghan, Philip G

    2009-07-01

    RA has a substantial impact on both patients and healthcare systems. Our objective is to advance the understanding of modern management principles in light of recent evidence concerning the condition's diagnosis and treatment. A group of practicing UK rheumatologists formulated contemporary management principles and clinical practice recommendations concerning both diagnosis and treatment. Areas of clinical uncertainty were documented, leading to research recommendations. A fundamental concept governing treatment of RA is minimization of cumulative inflammation, referred to as the inflammation-time area under the curve (AUC). To achieve this, four core principles of management were identified: (i) detect and refer patients early, even if the diagnosis is uncertain: patients should be referred at the first suspicion of persistent inflammatory polyarthritis and rheumatology departments should provide rapid access to a diagnostic and prognostic service; (ii) treat RA immediately: optimizing outcomes with conventional DMARDs and biologics requires that effective treatment be started early-ideally within 3 months of symptom onset; (iii) tight control of inflammation in RA improves outcome: frequent assessments and an objective protocol should be used to make treatment changes that maintain low-disease activity/remission at an agreed target; (iv) consider the risk-benefit ratio and tailor treatment to each patient: differing patient, disease and drug characteristics require long-term monitoring of risks and benefits with adaptations of treatments to suit individual circumstances. These principles focus on effective control of the inflammatory process in RA, but optimal uptake may require changes in service provision to accommodate appropriate care pathways.

  12. Uncertainty Analysis Principles and Methods

    DTIC Science & Technology

    2007-09-01

    error source . The Data Processor converts binary coded numbers to values, performs D/A curve fitting and applies any correction factors that may be...describes the stages or modules involved in the measurement process. We now need to identify all relevant error sources and develop the mathematical... sources , gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden

  13. Uncertainty of Polarized Parton Distributions

    NASA Astrophysics Data System (ADS)

    Hirai, M.; Goto, Y.; Horaguchi, T.; Kobayashi, H.; Kumano, S.; Miyama, M.; Saito, N.; Shibata, T.-A.

    Polarized parton distribution functions are determined by a χ2 analysis of polarized deep inelastic experimental data. In this paper, uncertainty of obtained distribution functions is investigated by a Hessian method. We find that the uncertainty of the polarized gluon distribution is fairly large. Then, we estimate the gluon uncertainty by including the fake data which are generated from prompt photon process at RHIC. We observed that the uncertainty could be reduced with these data.

  14. Religion in the face of uncertainty: an uncertainty-identity theory account of religiousness.

    PubMed

    Hogg, Michael A; Adelman, Janice R; Blagg, Robert D

    2010-02-01

    The authors characterize religions as social groups and religiosity as the extent to which a person identifies with a religion, subscribes to its ideology or worldview, and conforms to its normative practices. They argue that religions have attributes that make them well suited to reduce feelings of self-uncertainty. According to uncertainty-identity theory, people are motivated to reduce feelings of uncertainty about or reflecting on self; and identification with groups, particularly highly entitative groups, is a very effective way to reduce uncertainty. All groups provide belief systems and normative prescriptions related to everyday life. However, religions also address the nature of existence, invoking sacred entities and associated rituals and ceremonies. They are entitative groups that provide a moral compass and rules for living that pervade a person's life, making them particularly attractive in times of uncertainty. The authors document data supporting their analysis and discuss conditions that transform religiosity into religious zealotry and extremism.

  15. Uncertainty in Measurement: Procedures for Determining Uncertainty With Application to Clinical Laboratory Calculations.

    PubMed

    Frenkel, Robert B; Farrance, Ian

    2018-01-01

    The "Guide to the Expression of Uncertainty in Measurement" (GUM) is the foundational document of metrology. Its recommendations apply to all areas of metrology including metrology associated with the biomedical sciences. When the output of a measurement process depends on the measurement of several inputs through a measurement equation or functional relationship, the propagation of uncertainties in the inputs to the uncertainty in the output demands a level of understanding of the differential calculus. This review is intended as an elementary guide to the differential calculus and its application to uncertainty in measurement. The review is in two parts. In Part I, Section 3, we consider the case of a single input and introduce the concepts of error and uncertainty. Next we discuss, in the following sections in Part I, such notions as derivatives and differentials, and the sensitivity of an output to errors in the input. The derivatives of functions are obtained using very elementary mathematics. The overall purpose of this review, here in Part I and subsequently in Part II, is to present the differential calculus for those in the medical sciences who wish to gain a quick but accurate understanding of the propagation of uncertainties. © 2018 Elsevier Inc. All rights reserved.

  16. Uncertainty of a hydrological climate change impact assessment - Is it really all about climate uncertainty?

    NASA Astrophysics Data System (ADS)

    Honti, Mark; Reichert, Peter; Scheidegger, Andreas; Stamm, Christian

    2013-04-01

    Climate change impact assessments have become more and more popular in hydrology since the middle 1980's with another boost after the publication of the IPCC AR4 report. During hundreds of impact studies a quasi-standard methodology emerged, which is mainly shaped by the growing public demand for predicting how water resources management or flood protection should change in the close future. The ``standard'' workflow considers future climate under a specific IPCC emission scenario simulated by global circulation models (GCMs), possibly downscaled by a regional climate model (RCM) and/or a stochastic weather generator. The output from the climate models is typically corrected for bias before feeding it into a calibrated hydrological model, which is run on the past and future meteorological data to analyse the impacts of climate change on the hydrological indicators of interest. The impact predictions are as uncertain as any forecast that tries to describe the behaviour of an extremely complex system decades into the future. Future climate predictions are uncertain due to the scenario uncertainty and the GCM model uncertainty that is obvious on finer resolution than continental scale. Like in any hierarchical model system, uncertainty propagates through the descendant components. Downscaling increases uncertainty with the deficiencies of RCMs and/or weather generators. Bias correction adds a strong deterministic shift to the input data. Finally the predictive uncertainty of the hydrological model ends the cascade that leads to the total uncertainty of the hydrological impact assessment. There is an emerging consensus between many studies on the relative importance of the different uncertainty sources. The prevailing perception is that GCM uncertainty dominates hydrological impact studies. There are only few studies, which found that the predictive uncertainty of hydrological models can be in the same range or even larger than climatic uncertainty. We carried out a

  17. Where do uncertainties reside within environmental risk assessments? Testing UnISERA, a guide for uncertainty assessment.

    PubMed

    Skinner, Daniel J C; Rocks, Sophie A; Pollard, Simon J T

    2017-06-01

    A means for identifying and prioritising the treatment of uncertainty (UnISERA) in environmental risk assessments (ERAs) is tested, using three risk domains where ERA is an established requirement and one in which ERA practice is emerging. UnISERA's development draws on 19 expert elicitations across genetically modified higher plants, particulate matter, and agricultural pesticide release and is stress tested here for engineered nanomaterials (ENM). We are concerned with the severity of uncertainty; its nature; and its location across four accepted stages of ERAs. Using an established uncertainty scale, the risk characterisation stage of ERA harbours the highest severity level of uncertainty, associated with estimating, aggregating and evaluating expressions of risk. Combined epistemic and aleatory uncertainty is the dominant nature of uncertainty. The dominant location of uncertainty is associated with data in problem formulation, exposure assessment and effects assessment. Testing UnISERA produced agreements of 55%, 90%, and 80% for the severity level, nature and location dimensions of uncertainty between the combined case studies and the ENM stress test. UnISERA enables environmental risk analysts to prioritise risk assessment phases, groups of tasks, or individual ERA tasks and it can direct them towards established methods for uncertainty treatment. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. A method for acquiring random range uncertainty probability distributions in proton therapy

    NASA Astrophysics Data System (ADS)

    Holloway, S. M.; Holloway, M. D.; Thomas, S. J.

    2018-01-01

    In treatment planning we depend upon accurate knowledge of geometric and range uncertainties. If the uncertainty model is inaccurate then the plan will produce under-dosing of the target and/or overdosing of OAR. We aim to provide a method for which centre and site-specific population range uncertainty due to inter-fraction motion can be quantified to improve the uncertainty model in proton treatment planning. Daily volumetric MVCT data from previously treated radiotherapy patients has been used to investigate inter-fraction changes to water equivalent path-length (WEPL). Daily image-guidance scans were carried out for each patient and corrected for changes in CTV position (using rigid transformations). An effective depth algorithm was used to determine residual range changes, after corrections had been applied, throughout the treatment by comparing WEPL within the CTV at each fraction for several beam angles. As a proof of principle this method was used to quantify uncertainties for inter-fraction range changes for a sample of head and neck patients of Σ=3.39 mm, σ = 4.72 mm and overall mean = -1.82 mm. For prostate Σ=5.64 mm, σ = 5.91 mm and overall mean = 0.98 mm. The choice of beam angle for head and neck did not affect the inter-fraction range error significantly; however this was not the same for prostate. Greater range changes were seen using a lateral beam compared to an anterior beam for prostate due to relative motion of the prostate and femoral heads. A method has been developed to quantify population range changes due to inter-fraction motion that can be adapted for the clinic. The results of this work highlight the importance of robust planning and analysis in proton therapy. Such information could be used in robust optimisation algorithms or treatment plan robustness analysis. Such knowledge will aid in establishing beam start conditions at planning and for establishing adaptive planning protocols.

  19. An optimization based sampling approach for multiple metrics uncertainty analysis using generalized likelihood uncertainty estimation

    NASA Astrophysics Data System (ADS)

    Zhou, Rurui; Li, Yu; Lu, Di; Liu, Haixing; Zhou, Huicheng

    2016-09-01

    This paper investigates the use of an epsilon-dominance non-dominated sorted genetic algorithm II (ɛ-NSGAII) as a sampling approach with an aim to improving sampling efficiency for multiple metrics uncertainty analysis using Generalized Likelihood Uncertainty Estimation (GLUE). The effectiveness of ɛ-NSGAII based sampling is demonstrated compared with Latin hypercube sampling (LHS) through analyzing sampling efficiency, multiple metrics performance, parameter uncertainty and flood forecasting uncertainty with a case study of flood forecasting uncertainty evaluation based on Xinanjiang model (XAJ) for Qing River reservoir, China. Results obtained demonstrate the following advantages of the ɛ-NSGAII based sampling approach in comparison to LHS: (1) The former performs more effective and efficient than LHS, for example the simulation time required to generate 1000 behavioral parameter sets is shorter by 9 times; (2) The Pareto tradeoffs between metrics are demonstrated clearly with the solutions from ɛ-NSGAII based sampling, also their Pareto optimal values are better than those of LHS, which means better forecasting accuracy of ɛ-NSGAII parameter sets; (3) The parameter posterior distributions from ɛ-NSGAII based sampling are concentrated in the appropriate ranges rather than uniform, which accords with their physical significance, also parameter uncertainties are reduced significantly; (4) The forecasted floods are close to the observations as evaluated by three measures: the normalized total flow outside the uncertainty intervals (FOUI), average relative band-width (RB) and average deviation amplitude (D). The flood forecasting uncertainty is also reduced a lot with ɛ-NSGAII based sampling. This study provides a new sampling approach to improve multiple metrics uncertainty analysis under the framework of GLUE, and could be used to reveal the underlying mechanisms of parameter sets under multiple conflicting metrics in the uncertainty analysis process.

  20. Uncertainty quantification in volumetric Particle Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sayantan; Charonko, John; Vlachos, Pavlos

    2016-11-01

    Particle Image Velocimetry (PIV) uncertainty quantification is challenging due to coupled sources of elemental uncertainty and complex data reduction procedures in the measurement chain. Recent developments in this field have led to uncertainty estimation methods for planar PIV. However, no framework exists for three-dimensional volumetric PIV. In volumetric PIV the measurement uncertainty is a function of reconstructed three-dimensional particle location that in turn is very sensitive to the accuracy of the calibration mapping function. Furthermore, the iterative correction to the camera mapping function using triangulated particle locations in space (volumetric self-calibration) has its own associated uncertainty due to image noise and ghost particle reconstructions. Here we first quantify the uncertainty in the triangulated particle position which is a function of particle detection and mapping function uncertainty. The location uncertainty is then combined with the three-dimensional cross-correlation uncertainty that is estimated as an extension of the 2D PIV uncertainty framework. Finally the overall measurement uncertainty is quantified using an uncertainty propagation equation. The framework is tested with both simulated and experimental cases. For the simulated cases the variation of estimated uncertainty with the elemental volumetric PIV error sources are also evaluated. The results show reasonable prediction of standard uncertainty with good coverage.

  1. Experimental evolution of bet hedging under manipulated environmental uncertainty in Neurospora crassa.

    PubMed

    Graham, Jeffrey K; Smith, Myron L; Simons, Andrew M

    2014-07-22

    All organisms are faced with environmental uncertainty. Bet-hedging theory expects unpredictable selection to result in the evolution of traits that maximize the geometric-mean fitness even though such traits appear to be detrimental over the shorter term. Despite the centrality of fitness measures to evolutionary analysis, no direct test of the geometric-mean fitness principle exists. Here, we directly distinguish between predictions of competing fitness maximization principles by testing Cohen's 1966 classic bet-hedging model using the fungus Neurospora crassa. The simple prediction is that propagule dormancy will evolve in proportion to the frequency of 'bad' years, whereas the prediction of the alternative arithmetic-mean principle is the evolution of zero dormancy as long as the expectation of a bad year is less than 0.5. Ascospore dormancy fraction in N. crassa was allowed to evolve under five experimental selection regimes that differed in the frequency of unpredictable 'bad years'. Results were consistent with bet-hedging theory: final dormancy fraction in 12 genetic lineages across 88 independently evolving samples was proportional to the frequency of bad years, and evolved both upwards and downwards as predicted from a range of starting dormancy fractions. These findings suggest that selection results in adaptation to variable rather than to expected environments. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. Some applications of the most general form of the higher-order GUP with minimal length uncertainty and maximal momentum

    NASA Astrophysics Data System (ADS)

    Shababi, Homa; Chung, Won Sang

    2018-04-01

    In this paper, using the new type of D-dimensional nonperturbative Generalized Uncertainty Principle (GUP) which has predicted both a minimal length uncertainty and a maximal observable momentum,1 first, we obtain the maximally localized states and express their connections to [P. Pedram, Phys. Lett. B 714, 317 (2012)]. Then, in the context of our proposed GUP and using the generalized Schrödinger equation, we solve some important problems including particle in a box and one-dimensional hydrogen atom. Next, implying modified Bohr-Sommerfeld quantization, we obtain energy spectra of quantum harmonic oscillator and quantum bouncer. Finally, as an example, we investigate some statistical properties of a free particle, including partition function and internal energy, in the presence of the mentioned GUP.

  3. Lognormal Uncertainty Estimation for Failure Rates

    NASA Technical Reports Server (NTRS)

    Britton, Paul T.; Al Hassan, Mohammad; Ring, Robert W.

    2017-01-01

    "Uncertainty analysis itself is uncertain, therefore, you cannot evaluate it exactly," Source Uncertain. Quantitative results for aerospace engineering problems are influenced by many sources of uncertainty. Uncertainty analysis aims to make a technical contribution to decision-making through the quantification of uncertainties in the relevant variables as well as through the propagation of these uncertainties up to the result. Uncertainty can be thought of as a measure of the 'goodness' of a result and is typically represented as statistical dispersion. This presentation will explain common measures of centrality and dispersion; and-with examples-will provide guidelines for how they may be estimated to ensure effective technical contributions to decision-making.

  4. Reliable estimates of predictive uncertainty for an Alpine catchment using a non-parametric methodology

    NASA Astrophysics Data System (ADS)

    Matos, José P.; Schaefli, Bettina; Schleiss, Anton J.

    2017-04-01

    Uncertainty affects hydrological modelling efforts from the very measurements (or forecasts) that serve as inputs to the more or less inaccurate predictions that are produced. Uncertainty is truly inescapable in hydrology and yet, due to the theoretical and technical hurdles associated with its quantification, it is at times still neglected or estimated only qualitatively. In recent years the scientific community has made a significant effort towards quantifying this hydrologic prediction uncertainty. Despite this, most of the developed methodologies can be computationally demanding, are complex from a theoretical point of view, require substantial expertise to be employed, and are constrained by a number of assumptions about the model error distribution. These assumptions limit the reliability of many methods in case of errors that show particular cases of non-normality, heteroscedasticity, or autocorrelation. The present contribution builds on a non-parametric data-driven approach that was developed for uncertainty quantification in operational (real-time) forecasting settings. The approach is based on the concept of Pareto optimality and can be used as a standalone forecasting tool or as a postprocessor. By virtue of its non-parametric nature and a general operating principle, it can be applied directly and with ease to predictions of streamflow, water stage, or even accumulated runoff. Also, it is a methodology capable of coping with high heteroscedasticity and seasonal hydrological regimes (e.g. snowmelt and rainfall driven events in the same catchment). Finally, the training and operation of the model are very fast, making it a tool particularly adapted to operational use. To illustrate its practical use, the uncertainty quantification method is coupled with a process-based hydrological model to produce statistically reliable forecasts for an Alpine catchment located in Switzerland. Results are presented and discussed in terms of their reliability and

  5. Linear Programming Problems for Generalized Uncertainty

    ERIC Educational Resources Information Center

    Thipwiwatpotjana, Phantipa

    2010-01-01

    Uncertainty occurs when there is more than one realization that can represent an information. This dissertation concerns merely discrete realizations of an uncertainty. Different interpretations of an uncertainty and their relationships are addressed when the uncertainty is not a probability of each realization. A well known model that can handle…

  6. Uncertainty and Anticipation in Anxiety

    PubMed Central

    Grupe, Dan W.; Nitschke, Jack B.

    2014-01-01

    Uncertainty about a possible future threat disrupts our ability to avoid it or to mitigate its negative impact, and thus results in anxiety. Here, we focus the broad literature on the neurobiology of anxiety through the lens of uncertainty. We identify five processes essential for adaptive anticipatory responses to future threat uncertainty, and propose that alterations to the neural instantiation of these processes results in maladaptive responses to uncertainty in pathological anxiety. This framework has the potential to advance the classification, diagnosis, and treatment of clinical anxiety. PMID:23783199

  7. Uncertainties of Mayak urine data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Guthrie; Vostrotin, Vadim; Vvdensky, Vladimir

    2008-01-01

    For internal dose calculations for the Mayak worker epidemiological study, quantitative estimates of uncertainty of the urine measurements are necessary. Some of the data consist of measurements of 24h urine excretion on successive days (e.g. 3 or 4 days). In a recent publication, dose calculations were done where the uncertainty of the urine measurements was estimated starting from the statistical standard deviation of these replicate mesurements. This approach is straightforward and accurate when the number of replicate measurements is large, however, a Monte Carlo study showed it to be problematic for the actual number of replicate measurements (median from 3more » to 4). Also, it is sometimes important to characterize the uncertainty of a single urine measurement. Therefore this alternate method has been developed. A method of parameterizing the uncertainty of Mayak urine bioassay measmements is described. The Poisson lognormal model is assumed and data from 63 cases (1099 urine measurements in all) are used to empirically determine the lognormal normalization uncertainty, given the measurement uncertainties obtained from count quantities. The natural logarithm of the geometric standard deviation of the normalization uncertainty is found to be in the range 0.31 to 0.35 including a measurement component estimated to be 0.2.« less

  8. Measurement uncertainty: Friend or foe?

    PubMed

    Infusino, Ilenia; Panteghini, Mauro

    2018-02-02

    The definition and enforcement of a reference measurement system, based on the implementation of metrological traceability of patients' results to higher order reference methods and materials, together with a clinically acceptable level of measurement uncertainty, are fundamental requirements to produce accurate and equivalent laboratory results. The uncertainty associated with each step of the traceability chain should be governed to obtain a final combined uncertainty on clinical samples fulfilling the requested performance specifications. It is important that end-users (i.e., clinical laboratory) may know and verify how in vitro diagnostics (IVD) manufacturers have implemented the traceability of their calibrators and estimated the corresponding uncertainty. However, full information about traceability and combined uncertainty of calibrators is currently very difficult to obtain. Laboratory professionals should investigate the need to reduce the uncertainty of the higher order metrological references and/or to increase the precision of commercial measuring systems. Accordingly, the measurement uncertainty should not be considered a parameter to be calculated by clinical laboratories just to fulfil the accreditation standards, but it must become a key quality indicator to describe both the performance of an IVD measuring system and the laboratory itself. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  9. Form of prior for constrained thermodynamic processes with uncertainty

    NASA Astrophysics Data System (ADS)

    Aneja, Preety; Johal, Ramandeep S.

    2015-05-01

    We consider the quasi-static thermodynamic processes with constraints, but with additional uncertainty about the control parameters. Motivated by inductive reasoning, we assign prior distribution that provides a rational guess about likely values of the uncertain parameters. The priors are derived explicitly for both the entropy-conserving and the energy-conserving processes. The proposed form is useful when the constraint equation cannot be treated analytically. The inference is performed using spin-1/2 systems as models for heat reservoirs. Analytical results are derived in the high-temperatures limit. An agreement beyond linear response is found between the estimates of thermal quantities and their optimal values obtained from extremum principles. We also seek an intuitive interpretation for the prior and the estimated value of temperature obtained therefrom. We find that the prior over temperature becomes uniform over the quantity kept conserved in the process.

  10. Strategy under uncertainty.

    PubMed

    Courtney, H; Kirkland, J; Viguerie, P

    1997-01-01

    At the heart of the traditional approach to strategy lies the assumption that by applying a set of powerful analytic tools, executives can predict the future of any business accurately enough to allow them to choose a clear strategic direction. But what happens when the environment is so uncertain that no amount of analysis will allow us to predict the future? What makes for a good strategy in highly uncertain business environments? The authors, consultants at McKinsey & Company, argue that uncertainty requires a new way of thinking about strategy. All too often, they say, executives take a binary view: either they underestimate uncertainty to come up with the forecasts required by their companies' planning or capital-budging processes, or they overestimate it, abandon all analysis, and go with their gut instinct. The authors outline a new approach that begins by making a crucial distinction among four discrete levels of uncertainty that any company might face. They then explain how a set of generic strategies--shaping the market, adapting to it, or reserving the right to play at a later time--can be used in each of the four levels. And they illustrate how these strategies can be implemented through a combination of three basic types of actions: big bets, options, and no-regrets moves. The framework can help managers determine which analytic tools can inform decision making under uncertainty--and which cannot. At a broader level, it offers executives a discipline for thinking rigorously and systematically about uncertainty and its implications for strategy.

  11. Adjoint-Based Uncertainty Quantification with MCNP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seifried, Jeffrey E.

    2011-09-01

    This work serves to quantify the instantaneous uncertainties in neutron transport simulations born from nuclear data and statistical counting uncertainties. Perturbation and adjoint theories are used to derive implicit sensitivity expressions. These expressions are transformed into forms that are convenient for construction with MCNP6, creating the ability to perform adjoint-based uncertainty quantification with MCNP6. These new tools are exercised on the depleted-uranium hybrid LIFE blanket, quantifying its sensitivities and uncertainties to important figures of merit. Overall, these uncertainty estimates are small (< 2%). Having quantified the sensitivities and uncertainties, physical understanding of the system is gained and some confidence inmore » the simulation is acquired.« less

  12. Where do uncertainties reside within environmental risk assessments? Expert opinion on uncertainty distributions for pesticide risks to surface water organisms.

    PubMed

    Skinner, Daniel J C; Rocks, Sophie A; Pollard, Simon J T

    2016-12-01

    A reliable characterisation of uncertainties can aid uncertainty identification during environmental risk assessments (ERAs). However, typologies can be implemented inconsistently, causing uncertainties to go unidentified. We present an approach based on nine structured elicitations, in which subject-matter experts, for pesticide risks to surface water organisms, validate and assess three dimensions of uncertainty: its level (the severity of uncertainty, ranging from determinism to ignorance); nature (whether the uncertainty is epistemic or aleatory); and location (the data source or area in which the uncertainty arises). Risk characterisation contains the highest median levels of uncertainty, associated with estimating, aggregating and evaluating the magnitude of risks. Regarding the locations in which uncertainty is manifest, data uncertainty is dominant in problem formulation, exposure assessment and effects assessment. The comprehensive description of uncertainty described will enable risk analysts to prioritise the required phases, groups of tasks, or individual tasks within a risk analysis according to the highest levels of uncertainty, the potential for uncertainty to be reduced or quantified, or the types of location-based uncertainty, thus aiding uncertainty prioritisation during environmental risk assessments. In turn, it is expected to inform investment in uncertainty reduction or targeted risk management action. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Performance of Trajectory Models with Wind Uncertainty

    NASA Technical Reports Server (NTRS)

    Lee, Alan G.; Weygandt, Stephen S.; Schwartz, Barry; Murphy, James R.

    2009-01-01

    Typical aircraft trajectory predictors use wind forecasts but do not account for the forecast uncertainty. A method for generating estimates of wind prediction uncertainty is described and its effect on aircraft trajectory prediction uncertainty is investigated. The procedure for estimating the wind prediction uncertainty relies uses a time-lagged ensemble of weather model forecasts from the hourly updated Rapid Update Cycle (RUC) weather prediction system. Forecast uncertainty is estimated using measures of the spread amongst various RUC time-lagged ensemble forecasts. This proof of concept study illustrates the estimated uncertainty and the actual wind errors, and documents the validity of the assumed ensemble-forecast accuracy relationship. Aircraft trajectory predictions are made using RUC winds with provision for the estimated uncertainty. Results for a set of simulated flights indicate this simple approach effectively translates the wind uncertainty estimate into an aircraft trajectory uncertainty. A key strength of the method is the ability to relate uncertainty to specific weather phenomena (contained in the various ensemble members) allowing identification of regional variations in uncertainty.

  14. Optimal Universal Uncertainty Relations

    PubMed Central

    Li, Tao; Xiao, Yunlong; Ma, Teng; Fei, Shao-Ming; Jing, Naihuan; Li-Jost, Xianqing; Wang, Zhi-Xi

    2016-01-01

    We study universal uncertainty relations and present a method called joint probability distribution diagram to improve the majorization bounds constructed independently in [Phys. Rev. Lett. 111, 230401 (2013)] and [J. Phys. A. 46, 272002 (2013)]. The results give rise to state independent uncertainty relations satisfied by any nonnegative Schur-concave functions. On the other hand, a remarkable recent result of entropic uncertainty relation is the direct-sum majorization relation. In this paper, we illustrate our bounds by showing how they provide a complement to that in [Phys. Rev. A. 89, 052115 (2014)]. PMID:27775010

  15. Decision strategies for handling the uncertainty of future extreme rainfall under the influence of climate change.

    PubMed

    Gregersen, I B; Arnbjerg-Nielsen, K

    2012-01-01

    Several extraordinary rainfall events have occurred in Denmark within the last few years. For each event, problems in urban areas occurred as the capacity of the existing drainage systems were exceeded. Adaptation to climate change is necessary but also very challenging as urban drainage systems are characterized by long technical lifetimes and high, unrecoverable construction costs. One of the most important barriers for the initiation and implementation of the adaptation strategies is therefore the uncertainty when predicting the magnitude of the extreme rainfall in the future. This challenge is explored through the application and discussion of three different theoretical decision support strategies: the precautionary principle, the minimax strategy and Bayesian decision support. The reviewed decision support strategies all proved valuable for addressing the identified uncertainties, at best applied together as they all yield information that improved decision making and thus enabled more robust decisions.

  16. Irreducible Uncertainty in Terrestrial Carbon Projections

    NASA Astrophysics Data System (ADS)

    Lovenduski, N. S.; Bonan, G. B.

    2016-12-01

    We quantify and isolate the sources of uncertainty in projections of carbon accumulation by the ocean and terrestrial biosphere over 2006-2100 using output from Earth System Models participating in the 5th Coupled Model Intercomparison Project. We consider three independent sources of uncertainty in our analysis of variance: (1) internal variability, driven by random, internal variations in the climate system, (2) emission scenario, driven by uncertainty in future radiative forcing, and (3) model structure, wherein different models produce different projections given the same emission scenario. Whereas uncertainty in projections of ocean carbon accumulation by 2100 is 100 Pg C and driven primarily by emission scenario, uncertainty in projections of terrestrial carbon accumulation by 2100 is 50% larger than that of the ocean, and driven primarily by model structure. This structural uncertainty is correlated with emission scenario: the variance associated with model structure is an order of magnitude larger under a business-as-usual scenario (RCP8.5) than a mitigation scenario (RCP2.6). In an effort to reduce this structural uncertainty, we apply various model weighting schemes to our analysis of variance in terrestrial carbon accumulation projections. The largest reductions in uncertainty are achieved when giving all the weight to a single model; here the uncertainty is of a similar magnitude to the ocean projections. Such an analysis suggests that this structural uncertainty is irreducible given current terrestrial model development efforts.

  17. ISO/GUM UNCERTAINTIES AND CIAAW (UNCERTAINTY TREATMENT FOR RECOMMENDED ATOMIC WEIGHTS AND ISOTOPIC ABUNDANCES)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HOLDEN,N.E.

    2007-07-23

    The International Organization for Standardization (ISO) has published a Guide to the expression of Uncertainty in Measurement (GUM). The IUPAC Commission on Isotopic Abundance and Atomic Weight (CIAAW) began attaching uncertainty limits to their recommended values about forty years ago. CIAAW's method for determining and assigning uncertainties has evolved over time. We trace this evolution to their present method and their effort to incorporate the basic ISO/GUM procedures into evaluations of these uncertainties. We discuss some dilemma the CIAAW faces in their present method and whether it is consistent with the application of the ISO/GUM rules. We discuss the attemptmore » to incorporate variations in measured isotope ratios, due to natural fractionation, into the ISO/GUM system. We make some observations about the inconsistent treatment in the incorporation of natural variations into recommended data and uncertainties. A recommendation for expressing atomic weight values using a tabulated range of values for various chemical elements is discussed.« less

  18. Do Orthopaedic Surgeons Acknowledge Uncertainty?

    PubMed

    Teunis, Teun; Janssen, Stein; Guitton, Thierry G; Ring, David; Parisien, Robert

    2016-06-01

    Much of the decision-making in orthopaedics rests on uncertain evidence. Uncertainty is therefore part of our normal daily practice, and yet physician uncertainty regarding treatment could diminish patients' health. It is not known if physician uncertainty is a function of the evidence alone or if other factors are involved. With added experience, uncertainty could be expected to diminish, but perhaps more influential are things like physician confidence, belief in the veracity of what is published, and even one's religious beliefs. In addition, it is plausible that the kind of practice a physician works in can affect the experience of uncertainty. Practicing physicians may not be immediately aware of these effects on how uncertainty is experienced in their clinical decision-making. We asked: (1) Does uncertainty and overconfidence bias decrease with years of practice? (2) What sociodemographic factors are independently associated with less recognition of uncertainty, in particular belief in God or other deity or deities, and how is atheism associated with recognition of uncertainty? (3) Do confidence bias (confidence that one's skill is greater than it actually is), degree of trust in the orthopaedic evidence, and degree of statistical sophistication correlate independently with recognition of uncertainty? We created a survey to establish an overall recognition of uncertainty score (four questions), trust in the orthopaedic evidence base (four questions), confidence bias (three questions), and statistical understanding (six questions). Seven hundred six members of the Science of Variation Group, a collaboration that aims to study variation in the definition and treatment of human illness, were approached to complete our survey. This group represents mainly orthopaedic surgeons specializing in trauma or hand and wrist surgery, practicing in Europe and North America, of whom the majority is involved in teaching. Approximately half of the group has more than 10 years

  19. [The beginning of the first principles: the anthropic principle].

    PubMed

    González de Posada, Francisco

    2004-01-01

    The nowadays classical Anthropic Principle is put both in the historical perspective of the traditional problem of "the place of man in the Universe', and in the confluence of several scientific "border" issues, some of which, due to their problematical nature, are also subject of philosophical analysis. On the one hand, the scientific uses of the Principle, related to the initial and constitutional conditions of "our Universe", are enumerated, as they are supposedly necessary for the appearance and consequent development of Life--up to Man--. On the other, an organized collection of the principles of today's Physics is synthetically exhibited. The object of this work is to determine the intrinsic scientific nature of the Anthropic Principle, and the role it plays in the global frame of the principles of Physics (Astrophysics, Astrobiology and Cosmology).

  20. Uncertainty as Impetus for Climate Mitigation

    NASA Astrophysics Data System (ADS)

    Lewandowsky, S.; Oreskes, N.; Risbey, J.

    2015-12-01

    For decades, the scientific community has called for actions to be taken to mitigate the adverse consequences of climate change. To date, those calls have found little substantial traction, and politicians and the general public are instead engaged in a debate about the causes and effects of climate change that bears little resemblance to the state of scientific knowledge. Uncertainty plays a pivotal role in that public debate, and arguments against mitigation are frequently couched in terms of uncertainty. We show that the rhetorical uses of scientific uncertainty in public debate by some actors (often with vested interests or political agendas) contrast with the mathematical result that greater uncertainty about the extent of warming is virtually always associated with an increased risk: The expected damage costs increase as a function of uncertainty about future warming. We suggest ways in which the actual implications of scientific uncertainty can be better communicated and how scientific uncertainty should be understood as an impetus, rather than a barrier, for climate mitigation.

  1. Autistic Heterogeneity: Linking Uncertainties and Indeterminacies

    PubMed Central

    Hollin, Gregory

    2017-01-01

    Abstract Autism is a highly uncertain entity and little is said about it with any degree of certainty. Scientists must, and do, work through these uncertainties in the course of their work. Scientists explain uncertainty in autism research through discussion of epistemological uncertainties which suggest that diverse methods and techniques make results hard to reconcile, ontological uncertainties which suggest doubt over taxonomic coherence, but also through reference to autism’s indeterminacy which suggests that the condition is inherently heterogeneous. Indeed, indeterminacy takes two forms—an inter-personal form which suggests that there are fundamental differences between individuals with autism and an intra-personal form which suggests that no one factor is able to explain all features of autism within a given individual. What is apparent in the case of autism is that scientists put uncertainty and indeterminacy into discussion with one another and, rather than a well-policed epistemic-ontic boundary, there is a movement between, and an entwinement of, the two. Understanding scientists’ dialogue concerning uncertainty and indeterminacy is of importance for understanding autism and autistic heterogeneity but also for understanding uncertainty and ‘uncertainty work’ within science more generally. PMID:28515574

  2. Characterizing Epistemic Uncertainty for Launch Vehicle Designs

    NASA Technical Reports Server (NTRS)

    Novack, Steven D.; Rogers, Jim; Al Hassan, Mohammad; Hark, Frank

    2016-01-01

    NASA Probabilistic Risk Assessment (PRA) has the task of estimating the aleatory (randomness) and epistemic (lack of knowledge) uncertainty of launch vehicle loss of mission and crew risk, and communicating the results. Launch vehicles are complex engineered systems designed with sophisticated subsystems that are built to work together to accomplish mission success. Some of these systems or subsystems are in the form of heritage equipment, while some have never been previously launched. For these cases, characterizing the epistemic uncertainty is of foremost importance, and it is anticipated that the epistemic uncertainty of a modified launch vehicle design versus a design of well understood heritage equipment would be greater. For reasons that will be discussed, standard uncertainty propagation methods using Monte Carlo simulation produce counter intuitive results, and significantly underestimate epistemic uncertainty for launch vehicle models. Furthermore, standard PRA methods, such as Uncertainty-Importance analyses used to identify components that are significant contributors to uncertainty, are rendered obsolete, since sensitivity to uncertainty changes are not reflected in propagation of uncertainty using Monte Carlo methods. This paper provides a basis of the uncertainty underestimation for complex systems and especially, due to nuances of launch vehicle logic, for launch vehicles. It then suggests several alternative methods for estimating uncertainty and provides examples of estimation results. Lastly, the paper describes how to implement an Uncertainty-Importance analysis using one alternative approach, describes the results, and suggests ways to reduce epistemic uncertainty by focusing on additional data or testing of selected components.

  3. Characterizing Epistemic Uncertainty for Launch Vehicle Designs

    NASA Technical Reports Server (NTRS)

    Novack, Steven D.; Rogers, Jim; Hark, Frank; Al Hassan, Mohammad

    2016-01-01

    NASA Probabilistic Risk Assessment (PRA) has the task of estimating the aleatory (randomness) and epistemic (lack of knowledge) uncertainty of launch vehicle loss of mission and crew risk and communicating the results. Launch vehicles are complex engineered systems designed with sophisticated subsystems that are built to work together to accomplish mission success. Some of these systems or subsystems are in the form of heritage equipment, while some have never been previously launched. For these cases, characterizing the epistemic uncertainty is of foremost importance, and it is anticipated that the epistemic uncertainty of a modified launch vehicle design versus a design of well understood heritage equipment would be greater. For reasons that will be discussed, standard uncertainty propagation methods using Monte Carlo simulation produce counter intuitive results and significantly underestimate epistemic uncertainty for launch vehicle models. Furthermore, standard PRA methods such as Uncertainty-Importance analyses used to identify components that are significant contributors to uncertainty are rendered obsolete since sensitivity to uncertainty changes are not reflected in propagation of uncertainty using Monte Carlo methods.This paper provides a basis of the uncertainty underestimation for complex systems and especially, due to nuances of launch vehicle logic, for launch vehicles. It then suggests several alternative methods for estimating uncertainty and provides examples of estimation results. Lastly, the paper shows how to implement an Uncertainty-Importance analysis using one alternative approach, describes the results, and suggests ways to reduce epistemic uncertainty by focusing on additional data or testing of selected components.

  4. Serenity in political uncertainty.

    PubMed

    Doumit, Rita; Afifi, Rema A; Devon, Holli A

    2015-01-01

    College students are often faced with academic and personal stressors that threaten their well-being. Added to that may be political and environmental stressors such as acts of violence on the streets, interruptions in schooling, car bombings, targeted religious intimidations, financial hardship, and uncertainty of obtaining a job after graduation. Research on how college students adapt to the latter stressors is limited. The aims of this study were (1) to investigate the associations between stress, uncertainty, resilience, social support, withdrawal coping, and well-being for Lebanese youth during their first year of college and (2) to determine whether these variables predicted well-being. A sample of 293 first-year students enrolled in a private university in Lebanon completed a self-reported questionnaire in the classroom setting. The mean age of sample participants was 18.1 years, with nearly an equal percentage of males and females (53.2% vs 46.8%), who lived with their family (92.5%), and whose family reported high income levels (68.4%). Multiple regression analyses revealed that best determinants of well-being are resilience, uncertainty, social support, and gender that accounted for 54.1% of the variance. Despite living in an environment of frequent violence and political uncertainty, Lebanese youth in this study have a strong sense of well-being and are able to go on with their lives. This research adds to our understanding on how adolescents can adapt to stressors of frequent violence and political uncertainty. Further research is recommended to understand the mechanisms through which young people cope with political uncertainty and violence.

  5. Intolerance of uncertainty, causal uncertainty, causal importance, self-concept clarity and their relations to generalized anxiety disorder.

    PubMed

    Kusec, Andrea; Tallon, Kathleen; Koerner, Naomi

    2016-06-01

    Although numerous studies have provided support for the notion that intolerance of uncertainty plays a key role in pathological worry (the hallmark feature of generalized anxiety disorder (GAD)), other uncertainty-related constructs may also have relevance for the understanding of individuals who engage in pathological worry. Three constructs from the social cognition literature, causal uncertainty, causal importance, and self-concept clarity, were examined in the present study to assess the degree to which these explain unique variance in GAD, over and above intolerance of uncertainty. N = 235 participants completed self-report measures of trait worry, GAD symptoms, and uncertainty-relevant constructs. A subgroup was subsequently classified as low in GAD symptoms (n = 69) or high in GAD symptoms (n = 54) based on validated cut scores on measures of trait worry and GAD symptoms. In logistic regressions, only elevated intolerance of uncertainty and lower self-concept clarity emerged as unique correlates of high (vs. low) GAD symptoms. The possible role of self-concept uncertainty in GAD and the utility of integrating social cognition theories and constructs into clinical research on intolerance of uncertainty are discussed.

  6. Mapping and uncertainty analysis of energy and pitch angle phase space in the DIII-D fast ion loss detector.

    PubMed

    Pace, D C; Pipes, R; Fisher, R K; Van Zeeland, M A

    2014-11-01

    New phase space mapping and uncertainty analysis of energetic ion loss data in the DIII-D tokamak provides experimental results that serve as valuable constraints in first-principles simulations of energetic ion transport. Beam ion losses are measured by the fast ion loss detector (FILD) diagnostic system consisting of two magnetic spectrometers placed independently along the outer wall. Monte Carlo simulations of mono-energetic and single-pitch ions reaching the FILDs are used to determine the expected uncertainty in the measurements. Modeling shows that the variation in gyrophase of 80 keV beam ions at the FILD aperture can produce an apparent measured energy signature spanning across 50-140 keV. These calculations compare favorably with experiments in which neutral beam prompt loss provides a well known energy and pitch distribution.

  7. Revealing Risks in Adaptation Planning: expanding Uncertainty Treatment and dealing with Large Projection Ensembles during Planning Scenario development

    NASA Astrophysics Data System (ADS)

    Brekke, L. D.; Clark, M. P.; Gutmann, E. D.; Wood, A.; Mizukami, N.; Mendoza, P. A.; Rasmussen, R.; Ikeda, K.; Pruitt, T.; Arnold, J. R.; Rajagopalan, B.

    2015-12-01

    Adaptation planning assessments often rely on single methods for climate projection downscaling and hydrologic analysis, do not reveal uncertainties from associated method choices, and thus likely produce overly confident decision-support information. Recent work by the authors has highlighted this issue by identifying strengths and weaknesses of widely applied methods for downscaling climate projections and assessing hydrologic impacts. This work has shown that many of the methodological choices made can alter the magnitude, and even the sign of the climate change signal. Such results motivate consideration of both sources of method uncertainty within an impacts assessment. Consequently, the authors have pursued development of improved downscaling techniques spanning a range of method classes (quasi-dynamical and circulation-based statistical methods) and developed approaches to better account for hydrologic analysis uncertainty (multi-model; regional parameter estimation under forcing uncertainty). This presentation summarizes progress in the development of these methods, as well as implications of pursuing these developments. First, having access to these methods creates an opportunity to better reveal impacts uncertainty through multi-method ensembles, expanding on present-practice ensembles which are often based only on emissions scenarios and GCM choices. Second, such expansion of uncertainty treatment combined with an ever-expanding wealth of global climate projection information creates a challenge of how to use such a large ensemble for local adaptation planning. To address this challenge, the authors are evaluating methods for ensemble selection (considering the principles of fidelity, diversity and sensitivity) that is compatible with present-practice approaches for abstracting change scenarios from any "ensemble of opportunity". Early examples from this development will also be presented.

  8. Climate Twins - a tool to explore future climate impacts by assessing real world conditions: Exploration principles, underlying data, similarity conditions and uncertainty ranges

    NASA Astrophysics Data System (ADS)

    Loibl, Wolfgang; Peters-Anders, Jan; Züger, Johann

    2010-05-01

    To achieve public awareness and thorough understanding about expected climate changes and their future implications, ways have to be found to communicate model outputs to the public in a scientifically sound and easily understandable way. The newly developed Climate Twins tool tries to fulfil these requirements via an intuitively usable web application, which compares spatial patterns of current climate with future climate patterns, derived from regional climate model results. To get a picture of the implications of future climate in an area of interest, users may click on a certain location within an interactive map with underlying future climate information. A second map depicts the matching Climate Twin areas according to current climate conditions. In this way scientific output can be communicated to the public which allows for experiencing climate change through comparison with well-known real world conditions. To identify climatic coincidence seems to be a simple exercise, but the accuracy and applicability of the similarity identification depends very much on the selection of climate indicators, similarity conditions and uncertainty ranges. Too many indicators representing various climate characteristics and too narrow uncertainty ranges will judge little or no area as regions with similar climate, while too little indicators and too wide uncertainty ranges will address too large regions as those with similar climate which may not be correct. Similarity cannot be just explored by comparing mean values or by calculating correlation coefficients. As climate change triggers an alteration of various indicators, like maxima, minima, variation magnitude, frequency of extreme events etc., the identification of appropriate similarity conditions is a crucial question to be solved. For Climate Twins identification, it is necessary to find a right balance of indicators, similarity conditions and uncertainty ranges, unless the results will be too vague conducting a

  9. Decay heat uncertainty for BWR used fuel due to modeling and nuclear data uncertainties

    DOE PAGES

    Ilas, Germina; Liljenfeldt, Henrik

    2017-05-19

    Characterization of the energy released from radionuclide decay in nuclear fuel discharged from reactors is essential for the design, safety, and licensing analyses of used nuclear fuel storage, transportation, and repository systems. There are a limited number of decay heat measurements available for commercial used fuel applications. Because decay heat measurements can be expensive or impractical for covering the multitude of existing fuel designs, operating conditions, and specific application purposes, decay heat estimation relies heavily on computer code prediction. Uncertainty evaluation for calculated decay heat is an important aspect when assessing code prediction and a key factor supporting decision makingmore » for used fuel applications. While previous studies have largely focused on uncertainties in code predictions due to nuclear data uncertainties, this study discusses uncertainties in calculated decay heat due to uncertainties in assembly modeling parameters as well as in nuclear data. Capabilities in the SCALE nuclear analysis code system were used to quantify the effect on calculated decay heat of uncertainties in nuclear data and selected manufacturing and operation parameters for a typical boiling water reactor (BWR) fuel assembly. Furthermore, the BWR fuel assembly used as the reference case for this study was selected from a set of assemblies for which high-quality decay heat measurements are available, to assess the significance of the results through comparison with calculated and measured decay heat data.« less

  10. Decay heat uncertainty for BWR used fuel due to modeling and nuclear data uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Germina; Liljenfeldt, Henrik

    Characterization of the energy released from radionuclide decay in nuclear fuel discharged from reactors is essential for the design, safety, and licensing analyses of used nuclear fuel storage, transportation, and repository systems. There are a limited number of decay heat measurements available for commercial used fuel applications. Because decay heat measurements can be expensive or impractical for covering the multitude of existing fuel designs, operating conditions, and specific application purposes, decay heat estimation relies heavily on computer code prediction. Uncertainty evaluation for calculated decay heat is an important aspect when assessing code prediction and a key factor supporting decision makingmore » for used fuel applications. While previous studies have largely focused on uncertainties in code predictions due to nuclear data uncertainties, this study discusses uncertainties in calculated decay heat due to uncertainties in assembly modeling parameters as well as in nuclear data. Capabilities in the SCALE nuclear analysis code system were used to quantify the effect on calculated decay heat of uncertainties in nuclear data and selected manufacturing and operation parameters for a typical boiling water reactor (BWR) fuel assembly. Furthermore, the BWR fuel assembly used as the reference case for this study was selected from a set of assemblies for which high-quality decay heat measurements are available, to assess the significance of the results through comparison with calculated and measured decay heat data.« less

  11. Uncertainty in BRCA1 cancer susceptibility testing.

    PubMed

    Baty, Bonnie J; Dudley, William N; Musters, Adrian; Kinney, Anita Y

    2006-11-15

    This study investigated uncertainty in individuals undergoing genetic counseling/testing for breast/ovarian cancer susceptibility. Sixty-three individuals from a single kindred with a known BRCA1 mutation rated uncertainty about 12 items on a five-point Likert scale before and 1 month after genetic counseling/testing. Factor analysis identified a five-item total uncertainty scale that was sensitive to changes before and after testing. The items in the scale were related to uncertainty about obtaining health care, positive changes after testing, and coping well with results. The majority of participants (76%) rated reducing uncertainty as an important reason for genetic testing. The importance of reducing uncertainty was stable across time and unrelated to anxiety or demographics. Yet, at baseline, total uncertainty was low and decreased after genetic counseling/testing (P = 0.004). Analysis of individual items showed that after genetic counseling/testing, there was less uncertainty about the participant detecting cancer early (P = 0.005) and coping well with their result (P < 0.001). Our findings support the importance to clients of genetic counseling/testing as a means of reducing uncertainty. Testing may help clients to reduce the uncertainty about items they can control, and it may be important to differentiate the sources of uncertainty that are more or less controllable. Genetic counselors can help clients by providing anticipatory guidance about the role of uncertainty in genetic testing. (c) 2006 Wiley-Liss, Inc.

  12. Uncertainty Analysis of Instrument Calibration and Application

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Tcheng, Ping

    1999-01-01

    Experimental aerodynamic researchers require estimated precision and bias uncertainties of measured physical quantities, typically at 95 percent confidence levels. Uncertainties of final computed aerodynamic parameters are obtained by propagation of individual measurement uncertainties through the defining functional expressions. In this paper, rigorous mathematical techniques are extended to determine precision and bias uncertainties of any instrument-sensor system. Through this analysis, instrument uncertainties determined through calibration are now expressed as functions of the corresponding measurement for linear and nonlinear univariate and multivariate processes. Treatment of correlated measurement precision error is developed. During laboratory calibration, calibration standard uncertainties are assumed to be an order of magnitude less than those of the instrument being calibrated. Often calibration standards do not satisfy this assumption. This paper applies rigorous statistical methods for inclusion of calibration standard uncertainty and covariance due to the order of their application. The effects of mathematical modeling error on calibration bias uncertainty are quantified. The effects of experimental design on uncertainty are analyzed. The importance of replication is emphasized, techniques for estimation of both bias and precision uncertainties using replication are developed. Statistical tests for stationarity of calibration parameters over time are obtained.

  13. Uncertainties in land use data

    NASA Astrophysics Data System (ADS)

    Castilla, G.; Hay, G. J.

    2006-11-01

    This paper deals with the description and assessment of uncertainties in gridded land use data derived from Remote Sensing observations, in the context of hydrological studies. Land use is a categorical regionalised variable returning the main socio-economic role each location has, where the role is inferred from the pattern of occupation of land. There are two main uncertainties surrounding land use data, positional and categorical. This paper focuses on the second one, as the first one has in general less serious implications and is easier to tackle. The conventional method used to asess categorical uncertainty, the confusion matrix, is criticised in depth, the main critique being its inability to inform on a basic requirement to propagate uncertainty through distributed hydrological models, namely the spatial distribution of errors. Some existing alternative methods are reported, and finally the need for metadata is stressed as a more reliable means to assess the quality, and hence the uncertainty, of these data.

  14. Effect of minimal length uncertainty on the mass-radius relation of white dwarfs

    NASA Astrophysics Data System (ADS)

    Mathew, Arun; Nandy, Malay K.

    2018-06-01

    Generalized uncertainty relation that carries the imprint of quantum gravity introduces a minimal length scale into the description of space-time. It effectively changes the invariant measure of the phase space through a factor (1 + βp2) - 3 so that the equation of state for an electron gas undergoes a significant modification from the ideal case. It has been shown in the literature (Rashidi 2016) that the ideal Chandrasekhar limit ceases to exist when the modified equation of state due to the generalized uncertainty is taken into account. To assess the situation in a more complete fashion, we analyze in detail the mass-radius relation of Newtonian white dwarfs whose hydrostatic equilibria are governed by the equation of state of the degenerate relativistic electron gas subjected to the generalized uncertainty principle. As the constraint of minimal length imposes a severe restriction on the availability of high momentum states, it is speculated that the central Fermi momentum cannot have values arbitrarily higher than pmax ∼β - 1 / 2. When this restriction is imposed, it is found that the system approaches limiting mass values higher than the Chandrasekhar mass upon decreasing the parameter β to a value given by a legitimate upper bound. Instead, when the more realistic restriction due to inverse β-decay is considered, it is found that the mass and radius approach the values 1.4518 M⊙ and 601.18 km near the legitimate upper bound for the parameter β.

  15. Uncertainty in Measurement: A Review of Monte Carlo Simulation Using Microsoft Excel for the Calculation of Uncertainties Through Functional Relationships, Including Uncertainties in Empirically Derived Constants

    PubMed Central

    Farrance, Ian; Frenkel, Robert

    2014-01-01

    The Guide to the Expression of Uncertainty in Measurement (usually referred to as the GUM) provides the basic framework for evaluating uncertainty in measurement. The GUM however does not always provide clearly identifiable procedures suitable for medical laboratory applications, particularly when internal quality control (IQC) is used to derive most of the uncertainty estimates. The GUM modelling approach requires advanced mathematical skills for many of its procedures, but Monte Carlo simulation (MCS) can be used as an alternative for many medical laboratory applications. In particular, calculations for determining how uncertainties in the input quantities to a functional relationship propagate through to the output can be accomplished using a readily available spreadsheet such as Microsoft Excel. The MCS procedure uses algorithmically generated pseudo-random numbers which are then forced to follow a prescribed probability distribution. When IQC data provide the uncertainty estimates the normal (Gaussian) distribution is generally considered appropriate, but MCS is by no means restricted to this particular case. With input variations simulated by random numbers, the functional relationship then provides the corresponding variations in the output in a manner which also provides its probability distribution. The MCS procedure thus provides output uncertainty estimates without the need for the differential equations associated with GUM modelling. The aim of this article is to demonstrate the ease with which Microsoft Excel (or a similar spreadsheet) can be used to provide an uncertainty estimate for measurands derived through a functional relationship. In addition, we also consider the relatively common situation where an empirically derived formula includes one or more ‘constants’, each of which has an empirically derived numerical value. Such empirically derived ‘constants’ must also have associated uncertainties which propagate through the functional

  16. Uncertainty in measurement: a review of monte carlo simulation using microsoft excel for the calculation of uncertainties through functional relationships, including uncertainties in empirically derived constants.

    PubMed

    Farrance, Ian; Frenkel, Robert

    2014-02-01

    The Guide to the Expression of Uncertainty in Measurement (usually referred to as the GUM) provides the basic framework for evaluating uncertainty in measurement. The GUM however does not always provide clearly identifiable procedures suitable for medical laboratory applications, particularly when internal quality control (IQC) is used to derive most of the uncertainty estimates. The GUM modelling approach requires advanced mathematical skills for many of its procedures, but Monte Carlo simulation (MCS) can be used as an alternative for many medical laboratory applications. In particular, calculations for determining how uncertainties in the input quantities to a functional relationship propagate through to the output can be accomplished using a readily available spreadsheet such as Microsoft Excel. The MCS procedure uses algorithmically generated pseudo-random numbers which are then forced to follow a prescribed probability distribution. When IQC data provide the uncertainty estimates the normal (Gaussian) distribution is generally considered appropriate, but MCS is by no means restricted to this particular case. With input variations simulated by random numbers, the functional relationship then provides the corresponding variations in the output in a manner which also provides its probability distribution. The MCS procedure thus provides output uncertainty estimates without the need for the differential equations associated with GUM modelling. The aim of this article is to demonstrate the ease with which Microsoft Excel (or a similar spreadsheet) can be used to provide an uncertainty estimate for measurands derived through a functional relationship. In addition, we also consider the relatively common situation where an empirically derived formula includes one or more 'constants', each of which has an empirically derived numerical value. Such empirically derived 'constants' must also have associated uncertainties which propagate through the functional relationship

  17. Uncertainty Analysis in 3D Equilibrium Reconstruction

    DOE PAGES

    Cianciosa, Mark R.; Hanson, James D.; Maurer, David A.

    2018-02-21

    Reconstruction is an inverse process where a parameter space is searched to locate a set of parameters with the highest probability of describing experimental observations. Due to systematic errors and uncertainty in experimental measurements, this optimal set of parameters will contain some associated uncertainty. This uncertainty in the optimal parameters leads to uncertainty in models derived using those parameters. V3FIT is a three-dimensional (3D) equilibrium reconstruction code that propagates uncertainty from the input signals, to the reconstructed parameters, and to the final model. Here in this paper, we describe the methods used to propagate uncertainty in V3FIT. Using the resultsmore » of whole shot 3D equilibrium reconstruction of the Compact Toroidal Hybrid, this propagated uncertainty is validated against the random variation in the resulting parameters. Two different model parameterizations demonstrate how the uncertainty propagation can indicate the quality of a reconstruction. As a proxy for random sampling, the whole shot reconstruction results in a time interval that will be used to validate the propagated uncertainty from a single time slice.« less

  18. Uncertainty Analysis in 3D Equilibrium Reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cianciosa, Mark R.; Hanson, James D.; Maurer, David A.

    Reconstruction is an inverse process where a parameter space is searched to locate a set of parameters with the highest probability of describing experimental observations. Due to systematic errors and uncertainty in experimental measurements, this optimal set of parameters will contain some associated uncertainty. This uncertainty in the optimal parameters leads to uncertainty in models derived using those parameters. V3FIT is a three-dimensional (3D) equilibrium reconstruction code that propagates uncertainty from the input signals, to the reconstructed parameters, and to the final model. Here in this paper, we describe the methods used to propagate uncertainty in V3FIT. Using the resultsmore » of whole shot 3D equilibrium reconstruction of the Compact Toroidal Hybrid, this propagated uncertainty is validated against the random variation in the resulting parameters. Two different model parameterizations demonstrate how the uncertainty propagation can indicate the quality of a reconstruction. As a proxy for random sampling, the whole shot reconstruction results in a time interval that will be used to validate the propagated uncertainty from a single time slice.« less

  19. Pharmacological Fingerprints of Contextual Uncertainty

    PubMed Central

    Ruge, Diane; Stephan, Klaas E.

    2016-01-01

    Successful interaction with the environment requires flexible updating of our beliefs about the world. By estimating the likelihood of future events, it is possible to prepare appropriate actions in advance and execute fast, accurate motor responses. According to theoretical proposals, agents track the variability arising from changing environments by computing various forms of uncertainty. Several neuromodulators have been linked to uncertainty signalling, but comprehensive empirical characterisation of their relative contributions to perceptual belief updating, and to the selection of motor responses, is lacking. Here we assess the roles of noradrenaline, acetylcholine, and dopamine within a single, unified computational framework of uncertainty. Using pharmacological interventions in a sample of 128 healthy human volunteers and a hierarchical Bayesian learning model, we characterise the influences of noradrenergic, cholinergic, and dopaminergic receptor antagonism on individual computations of uncertainty during a probabilistic serial reaction time task. We propose that noradrenaline influences learning of uncertain events arising from unexpected changes in the environment. In contrast, acetylcholine balances attribution of uncertainty to chance fluctuations within an environmental context, defined by a stable set of probabilistic associations, or to gross environmental violations following a contextual switch. Dopamine supports the use of uncertainty representations to engender fast, adaptive responses. PMID:27846219

  20. Wildfire Decision Making Under Uncertainty

    NASA Astrophysics Data System (ADS)

    Thompson, M.

    2013-12-01

    Decisions relating to wildfire management are subject to multiple sources of uncertainty, and are made by a broad range of individuals, across a multitude of environmental and socioeconomic contexts. In this presentation I will review progress towards identification and characterization of uncertainties and how this information can support wildfire decision-making. First, I will review a typology of uncertainties common to wildfire management, highlighting some of the more salient sources of uncertainty and how they present challenges to assessing wildfire risk. This discussion will cover the expanding role of burn probability modeling, approaches for characterizing fire effects, and the role of multi-criteria decision analysis, and will provide illustrative examples of integrated wildfire risk assessment across a variety of planning scales. Second, I will describe a related uncertainty typology that focuses on the human dimensions of wildfire management, specifically addressing how social, psychological, and institutional factors may impair cost-effective risk mitigation. This discussion will encompass decision processes before, during, and after fire events, with a specific focus on active management of complex wildfire incidents. An improved ability to characterize uncertainties faced in wildfire management could lead to improved delivery of decision support, targeted communication strategies, and ultimately to improved wildfire management outcomes.

  1. Uncertainty, God, and scrupulosity: Uncertainty salience and priming God concepts interact to cause greater fears of sin.

    PubMed

    Fergus, Thomas A; Rowatt, Wade C

    2015-03-01

    Difficulties tolerating uncertainty are considered central to scrupulosity, a moral/religious presentation of obsessive-compulsive disorder (OCD). We examined whether uncertainty salience (i.e., exposure to a state of uncertainty) caused fears of sin and fears of God, as well as whether priming God concepts affected the impact of uncertainty salience on those fears. An internet sample of community adults (N = 120) who endorsed holding a belief in God or a higher power were randomly assigned to an experimental manipulation of (1) salience (uncertainty or insecurity) and (2) prime (God concepts or neutral). As predicted, participants who received the uncertainty salience and God concept priming reported the greatest fears of sin. There were no mean-level differences in the other conditions. The effect was not attributable to religiosity and the manipulations did not cause negative affect. We used a nonclinical sample recruited from the internet. These results support cognitive-behavioral models suggesting that religious uncertainty is important to scrupulosity. Implications of these results for future research are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density

    NASA Astrophysics Data System (ADS)

    Dorini, F. A.; Cecconello, M. S.; Dorini, L. B.

    2016-04-01

    It is recognized that handling uncertainty is essential to obtain more reliable results in modeling and computer simulation. This paper aims to discuss the logistic equation subject to uncertainties in two parameters: the environmental carrying capacity, K, and the initial population density, N0. We first provide the closed-form results for the first probability density function of time-population density, N(t), and its inflection point, t*. We then use the Maximum Entropy Principle to determine both K and N0 density functions, treating such parameters as independent random variables and considering fluctuations of their values for a situation that commonly occurs in practice. Finally, closed-form results for the density functions and statistical moments of N(t), for a fixed t > 0, and of t* are provided, considering the uniform distribution case. We carried out numerical experiments to validate the theoretical results and compared them against that obtained using Monte Carlo simulation.

  3. Revisiting thermodynamics and kinetic diffusivities of uranium–niobium with Bayesian uncertainty analysis

    DOE PAGES

    Duong, Thien C.; Hackenberg, Robert E.; Landa, Alex; ...

    2016-09-20

    In this paper, thermodynamic and kinetic diffusivities of uranium–niobium (U–Nb) are re-assessed by means of the CALPHAD (CALculation of PHAse Diagram) methodology. In order to improve the consistency and reliability of the assessments, first-principles calculations are coupled with CALPHAD. In particular, heats of formation of γ -U–Nb are estimated and verified using various density-functional theory (DFT) approaches. These thermochemistry data are then used as constraints to guide the thermodynamic optimization process in such a way that the mutual-consistency between first-principles calculations and CALPHAD assessment is satisfactory. In addition, long-term aging experiments are conducted in order to generate new phase equilibriamore » data at the γ 2/α+γ 2 boundary. These data are meant to verify the thermodynamic model. Assessment results are generally in good agreement with experiments and previous calculations, without showing the artifacts that were observed in previous modeling. The mutual-consistent thermodynamic description is then used to evaluate atomic mobility and diffusivity of γ-U–Nb. Finally, Bayesian analysis is conducted to evaluate the uncertainty of the thermodynamic model and its impact on the system's phase stability.« less

  4. Uncertainty in the Work-Place: Hierarchical Differences of Uncertainty Levels and Reduction Strategies.

    ERIC Educational Resources Information Center

    Petelle, John L.; And Others

    A study examined the uncertainty levels and types reported by supervisors and employees at three hierarchical levels of an organization: first-line supervisors, full-time employees, and part-time employees. It investigated differences in uncertainty-reduction strategies employed by these three hierarchical groups. The 61 subjects who completed…

  5. Reusable launch vehicle model uncertainties impact analysis

    NASA Astrophysics Data System (ADS)

    Chen, Jiaye; Mu, Rongjun; Zhang, Xin; Deng, Yanpeng

    2018-03-01

    Reusable launch vehicle(RLV) has the typical characteristics of complex aerodynamic shape and propulsion system coupling, and the flight environment is highly complicated and intensely changeable. So its model has large uncertainty, which makes the nominal system quite different from the real system. Therefore, studying the influences caused by the uncertainties on the stability of the control system is of great significance for the controller design. In order to improve the performance of RLV, this paper proposes the approach of analyzing the influence of the model uncertainties. According to the typical RLV, the coupling dynamic and kinematics models are built. Then different factors that cause uncertainties during building the model are analyzed and summed up. After that, the model uncertainties are expressed according to the additive uncertainty model. Choosing the uncertainties matrix's maximum singular values as the boundary model, and selecting the uncertainties matrix's norm to show t how much the uncertainty factors influence is on the stability of the control system . The simulation results illustrate that the inertial factors have the largest influence on the stability of the system, and it is necessary and important to take the model uncertainties into consideration before the designing the controller of this kind of aircraft( like RLV, etc).

  6. The precautionary principle in fisheries management under climate change: How the international legal framework formulate it?

    NASA Astrophysics Data System (ADS)

    Latifah, E.; Imanullah, M. N.

    2018-03-01

    One of the objectives of fisheries management is to reach long-term sustainable benefits of the fish stocks while reducing the risk of severe or irreversible damage to the marine ecosystem. Achieving this objective needs, the good scientific knowledge and understanding on fisheries management including scientific data and information on the fish stock, fishing catch, distribution, migration, the proportion of mature fish, the mortality rate, reproduction as well as the knowledge on the impact of fishing on dependent and associated species and other species belonging to the same ecosystem, and further the impact of climate change and climate variability on the fish stocks and marine ecosystem. Lack of this scientific knowledge may lead to high levels of uncertainty. The precautionary principle is one of the basic environmental principles needed in overcoming this problem. An essence of this principle is that, in facing the serious risk as a result of the limited scientific knowledge or the absence of complete evidence of harm, it should not prevent the precautionary measures in minimizing risks and protecting the fish stocks and ecosystem. This study aims to examine how the precautionary principle in fisheries management be formulated into the international legal framework, especially under the climate change framework.

  7. Basic Principles of Electrical Network Reliability Optimization in Liberalised Electricity Market

    NASA Astrophysics Data System (ADS)

    Oleinikova, I.; Krishans, Z.; Mutule, A.

    2008-01-01

    The authors propose to select long-term solutions to the reliability problems of electrical networks in the stage of development planning. The guide lines or basic principles of such optimization are: 1) its dynamical nature; 2) development sustainability; 3) integrated solution of the problems of network development and electricity supply reliability; 4) consideration of information uncertainty; 5) concurrent consideration of the network and generation development problems; 6) application of specialized information technologies; 7) definition of requirements for independent electricity producers. In the article, the major aspects of liberalized electricity market, its functions and tasks are reviewed, with emphasis placed on the optimization of electrical network development as a significant component of sustainable management of power systems.

  8. Uncertainty in a monthly water balance model using the generalized likelihood uncertainty estimation methodology

    NASA Astrophysics Data System (ADS)

    Rivera, Diego; Rivas, Yessica; Godoy, Alex

    2015-02-01

    Hydrological models are simplified representations of natural processes and subject to errors. Uncertainty bounds are a commonly used way to assess the impact of an input or model architecture uncertainty in model outputs. Different sets of parameters could have equally robust goodness-of-fit indicators, which is known as Equifinality. We assessed the outputs from a lumped conceptual hydrological model to an agricultural watershed in central Chile under strong interannual variability (coefficient of variability of 25%) by using the Equifinality concept and uncertainty bounds. The simulation period ran from January 1999 to December 2006. Equifinality and uncertainty bounds from GLUE methodology (Generalized Likelihood Uncertainty Estimation) were used to identify parameter sets as potential representations of the system. The aim of this paper is to exploit the use of uncertainty bounds to differentiate behavioural parameter sets in a simple hydrological model. Then, we analyze the presence of equifinality in order to improve the identification of relevant hydrological processes. The water balance model for Chillan River exhibits, at a first stage, equifinality. However, it was possible to narrow the range for the parameters and eventually identify a set of parameters representing the behaviour of the watershed (a behavioural model) in agreement with observational and soft data (calculation of areal precipitation over the watershed using an isohyetal map). The mean width of the uncertainty bound around the predicted runoff for the simulation period decreased from 50 to 20 m3s-1 after fixing the parameter controlling the areal precipitation over the watershed. This decrement is equivalent to decreasing the ratio between simulated and observed discharge from 5.2 to 2.5. Despite the criticisms against the GLUE methodology, such as the lack of statistical formality, it is identified as a useful tool assisting the modeller with the identification of critical parameters.

  9. A review of uncertainty research in impact assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, Wanda, E-mail: wanda.leung@usask.ca; Noble, Bram, E-mail: b.noble@usask.ca; Gunn, Jill, E-mail: jill.gunn@usask.ca

    2015-01-15

    This paper examines uncertainty research in Impact Assessment (IA) and the focus of attention of the IA scholarly literature. We do so by first exploring ‘outside’ the IA literature, identifying three main themes of uncertainty research, and then apply these themes to examine the focus of scholarly research on uncertainty ‘inside’ IA. Based on a search of the database Scopus, we identified 134 journal papers published between 1970 and 2013 that address uncertainty in IA, 75% of which were published since 2005. We found that 90% of IA research addressing uncertainty focused on uncertainty in the practice of IA, includingmore » uncertainty in impact predictions, models and managing environmental impacts. Notwithstanding early guidance on uncertainty treatment in IA from the 1980s, we found no common, underlying conceptual framework that was guiding research on uncertainty in IA practice. Considerably less attention, only 9% of papers, focused on uncertainty communication, disclosure and decision-making under uncertain conditions, the majority of which focused on the need to disclose uncertainties as opposed to providing guidance on how to do so and effectively use that information to inform decisions. Finally, research focused on theory building for explaining human behavior with respect to uncertainty avoidance constituted only 1% of the IA published literature. We suggest the need for further conceptual framework development for researchers focused on identifying and addressing uncertainty in IA practice; the need for guidance on how best to communicate uncertainties in practice, versus criticizing practitioners for not doing so; research that explores how best to interpret and use disclosures about uncertainty when making decisions about project approvals, and the implications of doing so; and academic theory building and exploring the utility of existing theories to better understand and explain uncertainty avoidance behavior in IA. - Highlights: • We

  10. Intuitions, principles and consequences

    PubMed Central

    Shaw, A

    2001-01-01

    Some approaches to the assessment of moral intuitions are discussed. The controlled ethical trial isolates a moral issue from confounding factors and thereby clarifies what a person's intuition actually is. Casuistic reasoning from situations, where intuitions are clear, suggests or modifies principles, which can then help to make decisions in situations where intuitions are unclear. When intuitions are defended by a supporting principle, that principle can be tested by finding extreme cases, in which it is counterintuitive to follow the principle. An approach to the resolution of conflict between valid moral principles, specifically the utilitarian and justice principles, is considered. It is argued that even those who justify intuitions by a priori principles are often obliged to modify or support their principles by resort to the consideration of consequences. Key Words: Intuitions • principles • consequences • utilitarianism PMID:11233371

  11. Uncertainty in tsunami sediment transport modeling

    USGS Publications Warehouse

    Jaffe, Bruce E.; Goto, Kazuhisa; Sugawara, Daisuke; Gelfenbaum, Guy R.; La Selle, SeanPaul M.

    2016-01-01

    Erosion and deposition from tsunamis record information about tsunami hydrodynamics and size that can be interpreted to improve tsunami hazard assessment. We explore sources and methods for quantifying uncertainty in tsunami sediment transport modeling. Uncertainty varies with tsunami, study site, available input data, sediment grain size, and model. Although uncertainty has the potential to be large, published case studies indicate that both forward and inverse tsunami sediment transport models perform well enough to be useful for deciphering tsunami characteristics, including size, from deposits. New techniques for quantifying uncertainty, such as Ensemble Kalman Filtering inversion, and more rigorous reporting of uncertainties will advance the science of tsunami sediment transport modeling. Uncertainty may be decreased with additional laboratory studies that increase our understanding of the semi-empirical parameters and physics of tsunami sediment transport, standardized benchmark tests to assess model performance, and development of hybrid modeling approaches to exploit the strengths of forward and inverse models.

  12. Fear of self-annihilation and existential uncertainty as predictors of worldview defense: Comparing terror management and uncertainty theories.

    PubMed

    Rubin, Mark

    2018-01-01

    Terror management theory (TMT) proposes that thoughts of death trigger a concern about self-annihilation that motivates the defense of cultural worldviews. In contrast, uncertainty theorists propose that thoughts of death trigger feelings of uncertainty that motivate worldview defense. University students (N = 414) completed measures of the chronic fear of self-annihilation and existential uncertainty as well as the need for closure. They then evaluated either a meaning threat stimulus or a control stimulus. Consistent with TMT, participants with a high fear of self-annihilation and a high need for closure showed the greatest dislike of the meaning threat stimulus, even after controlling for their existential uncertainty. Contrary to the uncertainty perspective, fear of existential uncertainty showed no significant effects.

  13. Nuclear Data Uncertainty Propagation in Depletion Calculations Using Cross Section Uncertainties in One-group or Multi-group

    NASA Astrophysics Data System (ADS)

    Díez, C. J.; Cabellos, O.; Martínez, J. S.

    2015-01-01

    Several approaches have been developed in last decades to tackle nuclear data uncertainty propagation problems of burn-up calculations. One approach proposed was the Hybrid Method, where uncertainties in nuclear data are propagated only on the depletion part of a burn-up problem. Because only depletion is addressed, only one-group cross sections are necessary, and hence, their collapsed one-group uncertainties. This approach has been applied successfully in several advanced reactor systems like EFIT (ADS-like reactor) or ESFR (Sodium fast reactor) to assess uncertainties on the isotopic composition. However, a comparison with using multi-group energy structures was not carried out, and has to be performed in order to analyse the limitations of using one-group uncertainties.

  14. Measuring, Estimating, and Deciding under Uncertainty.

    PubMed

    Michel, Rolf

    2016-03-01

    The problem of uncertainty as a general consequence of incomplete information and the approach to quantify uncertainty in metrology is addressed. Then, this paper discusses some of the controversial aspects of the statistical foundation of the concepts of uncertainty in measurements. The basics of the ISO Guide to the Expression of Uncertainty in Measurement as well as of characteristic limits according to ISO 11929 are described and the needs for a revision of the latter standard are explained. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Experimental Test of Heisenberg's Measurement Uncertainty Relation Based on Statistical Distances

    NASA Astrophysics Data System (ADS)

    Ma, Wenchao; Ma, Zhihao; Wang, Hengyan; Chen, Zhihua; Liu, Ying; Kong, Fei; Li, Zhaokai; Peng, Xinhua; Shi, Mingjun; Shi, Fazhan; Fei, Shao-Ming; Du, Jiangfeng

    2016-04-01

    Incompatible observables can be approximated by compatible observables in joint measurement or measured sequentially, with constrained accuracy as implied by Heisenberg's original formulation of the uncertainty principle. Recently, Busch, Lahti, and Werner proposed inaccuracy trade-off relations based on statistical distances between probability distributions of measurement outcomes [P. Busch et al., Phys. Rev. Lett. 111, 160405 (2013); P. Busch et al., Phys. Rev. A 89, 012129 (2014)]. Here we reformulate their theoretical framework, derive an improved relation for qubit measurement, and perform an experimental test on a spin system. The relation reveals that the worst-case inaccuracy is tightly bounded from below by the incompatibility of target observables, and is verified by the experiment employing joint measurement in which two compatible observables designed to approximate two incompatible observables on one qubit are measured simultaneously.

  16. Experimental Test of Heisenberg's Measurement Uncertainty Relation Based on Statistical Distances.

    PubMed

    Ma, Wenchao; Ma, Zhihao; Wang, Hengyan; Chen, Zhihua; Liu, Ying; Kong, Fei; Li, Zhaokai; Peng, Xinhua; Shi, Mingjun; Shi, Fazhan; Fei, Shao-Ming; Du, Jiangfeng

    2016-04-22

    Incompatible observables can be approximated by compatible observables in joint measurement or measured sequentially, with constrained accuracy as implied by Heisenberg's original formulation of the uncertainty principle. Recently, Busch, Lahti, and Werner proposed inaccuracy trade-off relations based on statistical distances between probability distributions of measurement outcomes [P. Busch et al., Phys. Rev. Lett. 111, 160405 (2013); P. Busch et al., Phys. Rev. A 89, 012129 (2014)]. Here we reformulate their theoretical framework, derive an improved relation for qubit measurement, and perform an experimental test on a spin system. The relation reveals that the worst-case inaccuracy is tightly bounded from below by the incompatibility of target observables, and is verified by the experiment employing joint measurement in which two compatible observables designed to approximate two incompatible observables on one qubit are measured simultaneously.

  17. Quantifying uncertainty in forest nutrient budgets

    Treesearch

    Ruth D. Yanai; Carrie R. Levine; Mark B. Green; John L. Campbell

    2012-01-01

    Nutrient budgets for forested ecosystems have rarely included error analysis, in spite of the importance of uncertainty to interpretation and extrapolation of the results. Uncertainty derives from natural spatial and temporal variation and also from knowledge uncertainty in measurement and models. For example, when estimating forest biomass, researchers commonly report...

  18. Micro-Pulse Lidar Signals: Uncertainty Analysis

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Campbell, James R.; Starr, David OC. (Technical Monitor)

    2002-01-01

    Micro-pulse lidar (MPL) systems are small, autonomous, eye-safe lidars used for continuous observations of the vertical distribution of cloud and aerosol layers. Since the construction of the first MPL in 1993, procedures have been developed to correct for various instrument effects present in MPL signals. The primary instrument effects include afterpulse, laser-detector cross-talk, and overlap, poor near-range (less than 6 km) focusing. The accurate correction of both afterpulse and overlap effects are required to study both clouds and aerosols. Furthermore, the outgoing energy of the laser pulses and the statistical uncertainty of the MPL detector must also be correctly determined in order to assess the accuracy of MPL observations. The uncertainties associated with the afterpulse, overlap, pulse energy, detector noise, and all remaining quantities affecting measured MPL signals, are determined in this study. The uncertainties are propagated through the entire MPL correction process to give a net uncertainty on the final corrected MPL signal. The results show that in the near range, the overlap uncertainty dominates. At altitudes above the overlap region, the dominant source of uncertainty is caused by uncertainty in the pulse energy. However, if the laser energy is low, then during mid-day, high solar background levels can significantly reduce the signal-to-noise of the detector. In such a case, the statistical uncertainty of the detector count rate becomes dominant at altitudes above the overlap region.

  19. Uncertainty Quantification Techniques of SCALE/TSUNAMI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rearden, Bradley T; Mueller, Don

    2011-01-01

    The Standardized Computer Analysis for Licensing Evaluation (SCALE) code system developed at Oak Ridge National Laboratory (ORNL) includes Tools for Sensitivity and Uncertainty Analysis Methodology Implementation (TSUNAMI). The TSUNAMI code suite can quantify the predicted change in system responses, such as k{sub eff}, reactivity differences, or ratios of fluxes or reaction rates, due to changes in the energy-dependent, nuclide-reaction-specific cross-section data. Where uncertainties in the neutron cross-section data are available, the sensitivity of the system to the cross-section data can be applied to propagate the uncertainties in the cross-section data to an uncertainty in the system response. Uncertainty quantification ismore » useful for identifying potential sources of computational biases and highlighting parameters important to code validation. Traditional validation techniques often examine one or more average physical parameters to characterize a system and identify applicable benchmark experiments. However, with TSUNAMI correlation coefficients are developed by propagating the uncertainties in neutron cross-section data to uncertainties in the computed responses for experiments and safety applications through sensitivity coefficients. The bias in the experiments, as a function of their correlation coefficient with the intended application, is extrapolated to predict the bias and bias uncertainty in the application through trending analysis or generalized linear least squares techniques, often referred to as 'data adjustment.' Even with advanced tools to identify benchmark experiments, analysts occasionally find that the application models include some feature or material for which adequately similar benchmark experiments do not exist to support validation. For example, a criticality safety analyst may want to take credit for the presence of fission products in spent nuclear fuel. In such cases, analysts sometimes rely on 'expert judgment' to select

  20. Principlism and communitarianism

    PubMed Central

    Callahan, D

    2003-01-01

    The decline in the interest in ethical theory is first outlined, as a background to the author's discussion of principlism. The author's own stance, that of a communitarian philosopher, is then described, before the subject of principlism itself is addressed. Two problems stand in the way of the author's embracing principlism: its individualistic bias and its capacity to block substantive ethical inquiry. The more serious problem the author finds to be its blocking function. Discussing the four scenarios the author finds that the utility of principlism is shown in the two scenarios about Jehovah's Witnesses but that when it comes to selling kidneys for transplantation and germline enhancement, principlism is of little help. PMID:14519838

  1. Principlism and communitarianism.

    PubMed

    Callahan, D

    2003-10-01

    The decline in the interest in ethical theory is first outlined, as a background to the author's discussion of principlism. The author's own stance, that of a communitarian philosopher, is then described, before the subject of principlism itself is addressed. Two problems stand in the way of the author's embracing principlism: its individualistic bias and its capacity to block substantive ethical inquiry. The more serious problem the author finds to be its blocking function. Discussing the four scenarios the author finds that the utility of principlism is shown in the two scenarios about Jehovah's Witnesses but that when it comes to selling kidneys for transplantation and germline enhancement, principlism is of little help.

  2. Dynamic sealing principles

    NASA Technical Reports Server (NTRS)

    Zuk, J.

    1976-01-01

    The fundamental principles governing dynamic sealing operation are discussed. Different seals are described in terms of these principles. Despite the large variety of detailed construction, there appear to be some basic principles, or combinations of basic principles, by which all seals function, these are presented and discussed. Theoretical and practical considerations in the application of these principles are discussed. Advantages, disadvantages, limitations, and application examples of various conventional and special seals are presented. Fundamental equations governing liquid and gas flows in thin film seals, which enable leakage calculations to be made, are also presented. Concept of flow functions, application of Reynolds lubrication equation, and nonlubrication equation flow, friction and wear; and seal lubrication regimes are explained.

  3. Number-phase minimum-uncertainty state with reduced number uncertainty in a Kerr nonlinear interferometer

    NASA Astrophysics Data System (ADS)

    Kitagawa, M.; Yamamoto, Y.

    1987-11-01

    An alternative scheme for generating amplitude-squeezed states of photons based on unitary evolution which can properly be described by quantum mechanics is presented. This scheme is a nonlinear Mach-Zehnder interferometer containing an optical Kerr medium. The quasi-probability density (QPD) and photon-number distribution of the output field are calculated, and it is demonstrated that the reduced photon-number uncertainty and enhanced phase uncertainty maintain the minimum-uncertainty product. A self-phase-modulation of the single-mode quantized field in the Kerr medium is described based on localized operators. The spatial evolution of the state is demonstrated by QPD in the Schroedinger picture. It is shown that photon-number variance can be reduced to a level far below the limit for an ordinary squeezed state, and that the state prepared using this scheme remains a number-phase minimum-uncertainty state until the maximum reduction of number fluctuations is surpassed.

  4. Orbital State Uncertainty Realism

    NASA Astrophysics Data System (ADS)

    Horwood, J.; Poore, A. B.

    2012-09-01

    Fundamental to the success of the space situational awareness (SSA) mission is the rigorous inclusion of uncertainty in the space surveillance network. The *proper characterization of uncertainty* in the orbital state of a space object is a common requirement to many SSA functions including tracking and data association, resolution of uncorrelated tracks (UCTs), conjunction analysis and probability of collision, sensor resource management, and anomaly detection. While tracking environments, such as air and missile defense, make extensive use of Gaussian and local linearity assumptions within algorithms for uncertainty management, space surveillance is inherently different due to long time gaps between updates, high misdetection rates, nonlinear and non-conservative dynamics, and non-Gaussian phenomena. The latter implies that "covariance realism" is not always sufficient. SSA also requires "uncertainty realism"; the proper characterization of both the state and covariance and all non-zero higher-order cumulants. In other words, a proper characterization of a space object's full state *probability density function (PDF)* is required. In order to provide a more statistically rigorous treatment of uncertainty in the space surveillance tracking environment and to better support the aforementioned SSA functions, a new class of multivariate PDFs are formulated which more accurately characterize the uncertainty of a space object's state or orbit. The new distribution contains a parameter set controlling the higher-order cumulants which gives the level sets a distinctive "banana" or "boomerang" shape and degenerates to a Gaussian in a suitable limit. Using the new class of PDFs within the general Bayesian nonlinear filter, the resulting filter prediction step (i.e., uncertainty propagation) is shown to have the *same computational cost as the traditional unscented Kalman filter* with the former able to maintain a proper characterization of the uncertainty for up to *ten

  5. Numerical Uncertainty Quantification for Radiation Analysis Tools

    NASA Technical Reports Server (NTRS)

    Anderson, Brooke; Blattnig, Steve; Clowdsley, Martha

    2007-01-01

    Recently a new emphasis has been placed on engineering applications of space radiation analyses and thus a systematic effort of Verification, Validation and Uncertainty Quantification (VV&UQ) of the tools commonly used for radiation analysis for vehicle design and mission planning has begun. There are two sources of uncertainty in geometric discretization addressed in this paper that need to be quantified in order to understand the total uncertainty in estimating space radiation exposures. One source of uncertainty is in ray tracing, as the number of rays increase the associated uncertainty decreases, but the computational expense increases. Thus, a cost benefit analysis optimizing computational time versus uncertainty is needed and is addressed in this paper. The second source of uncertainty results from the interpolation over the dose vs. depth curves that is needed to determine the radiation exposure. The question, then, is what is the number of thicknesses that is needed to get an accurate result. So convergence testing is performed to quantify the uncertainty associated with interpolating over different shield thickness spatial grids.

  6. Impact of uncertainty on modeling and testing

    NASA Technical Reports Server (NTRS)

    Coleman, Hugh W.; Brown, Kendall K.

    1995-01-01

    A thorough understanding of the uncertainties associated with the modeling and testing of the Space Shuttle Main Engine (SSME) Engine will greatly aid decisions concerning hardware performance and future development efforts. This report will describe the determination of the uncertainties in the modeling and testing of the Space Shuttle Main Engine test program at the Technology Test Bed facility at Marshall Space Flight Center. Section 2 will present a summary of the uncertainty analysis methodology used and discuss the specific applications to the TTB SSME test program. Section 3 will discuss the application of the uncertainty analysis to the test program and the results obtained. Section 4 presents the results of the analysis of the SSME modeling effort from an uncertainty analysis point of view. The appendices at the end of the report contain a significant amount of information relative to the analysis, including discussions of venturi flowmeter data reduction and uncertainty propagation, bias uncertainty documentations, technical papers published, the computer code generated to determine the venturi uncertainties, and the venturi data and results used in the analysis.

  7. Accounting for uncertainty in marine reserve design.

    PubMed

    Halpern, Benjamin S; Regan, Helen M; Possingham, Hugh P; McCarthy, Michael A

    2006-01-01

    Ecosystems and the species and communities within them are highly complex systems that defy predictions with any degree of certainty. Managing and conserving these systems in the face of uncertainty remains a daunting challenge, particularly with respect to developing networks of marine reserves. Here we review several modelling frameworks that explicitly acknowledge and incorporate uncertainty, and then use these methods to evaluate reserve spacing rules given increasing levels of uncertainty about larval dispersal distances. Our approach finds similar spacing rules as have been proposed elsewhere - roughly 20-200 km - but highlights several advantages provided by uncertainty modelling over more traditional approaches to developing these estimates. In particular, we argue that uncertainty modelling can allow for (1) an evaluation of the risk associated with any decision based on the assumed uncertainty; (2) a method for quantifying the costs and benefits of reducing uncertainty; and (3) a useful tool for communicating to stakeholders the challenges in managing highly uncertain systems. We also argue that incorporating rather than avoiding uncertainty will increase the chances of successfully achieving conservation and management goals.

  8. Nuclear Data Uncertainty Propagation in Depletion Calculations Using Cross Section Uncertainties in One-group or Multi-group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Díez, C.J., E-mail: cj.diez@upm.es; Cabellos, O.; Instituto de Fusión Nuclear, Universidad Politécnica de Madrid, 28006 Madrid

    Several approaches have been developed in last decades to tackle nuclear data uncertainty propagation problems of burn-up calculations. One approach proposed was the Hybrid Method, where uncertainties in nuclear data are propagated only on the depletion part of a burn-up problem. Because only depletion is addressed, only one-group cross sections are necessary, and hence, their collapsed one-group uncertainties. This approach has been applied successfully in several advanced reactor systems like EFIT (ADS-like reactor) or ESFR (Sodium fast reactor) to assess uncertainties on the isotopic composition. However, a comparison with using multi-group energy structures was not carried out, and has tomore » be performed in order to analyse the limitations of using one-group uncertainties.« less

  9. Mapping and uncertainty analysis of energy and pitch angle phase space in the DIII-D fast ion loss detector

    DOE PAGES

    Pace, D. C.; Pipes, R.; Fisher, R. K.; ...

    2014-08-05

    New phase space mapping and uncertainty analysis of energetic ion loss data in the DIII-D tokamak provides experimental results that serve as valuable constraints in first-principles simulations of energetic ion transport. Beam ion losses are measured by the fast ion loss detector (FILD) diagnostic system consisting of two magnetic spectrometers placed independently along the outer wall. Monte Carlo simulations of mono-energetic and single-pitch ions reaching the FILDs are used to determine the expected uncertainty in the measurements. Modeling shows that the variation in gyrophase of 80 keV beam ions at the FILD aperture can produce an apparent measured energy signaturemore » spanning across 50-140 keV. As a result, these calculations compare favorably with experiments in which neutral beam prompt loss provides a well known energy and pitch distribution.« less

  10. Towards Characterization, Modeling, and Uncertainty Quantification in Multi-scale Mechanics of Oragnic-rich Shales

    NASA Astrophysics Data System (ADS)

    Abedi, S.; Mashhadian, M.; Noshadravan, A.

    2015-12-01

    Increasing the efficiency and sustainability in operation of hydrocarbon recovery from organic-rich shales requires a fundamental understanding of chemomechanical properties of organic-rich shales. This understanding is manifested in form of physics-bases predictive models capable of capturing highly heterogeneous and multi-scale structure of organic-rich shale materials. In this work we present a framework of experimental characterization, micromechanical modeling, and uncertainty quantification that spans from nanoscale to macroscale. Application of experiments such as coupled grid nano-indentation and energy dispersive x-ray spectroscopy and micromechanical modeling attributing the role of organic maturity to the texture of the material, allow us to identify unique clay mechanical properties among different samples that are independent of maturity of shale formations and total organic content. The results can then be used to inform the physically-based multiscale model for organic rich shales consisting of three levels that spans from the scale of elementary building blocks (e.g. clay minerals in clay-dominated formations) of organic rich shales to the scale of the macroscopic inorganic/organic hard/soft inclusion composite. Although this approach is powerful in capturing the effective properties of organic-rich shale in an average sense, it does not account for the uncertainty in compositional and mechanical model parameters. Thus, we take this model one step forward by systematically incorporating the main sources of uncertainty in modeling multiscale behavior of organic-rich shales. In particular we account for the uncertainty in main model parameters at different scales such as porosity, elastic properties and mineralogy mass percent. To that end, we use Maximum Entropy Principle and random matrix theory to construct probabilistic descriptions of model inputs based on available information. The Monte Carlo simulation is then carried out to propagate the

  11. Integrating uncertainties for climate change mitigation

    NASA Astrophysics Data System (ADS)

    Rogelj, Joeri; McCollum, David; Reisinger, Andy; Meinshausen, Malte; Riahi, Keywan

    2013-04-01

    The target of keeping global average temperature increase to below 2°C has emerged in the international climate debate more than a decade ago. In response, the scientific community has tried to estimate the costs of reaching such a target through modelling and scenario analysis. Producing such estimates remains a challenge, particularly because of relatively well-known, but ill-quantified uncertainties, and owing to limited integration of scientific knowledge across disciplines. The integrated assessment community, on one side, has extensively assessed the influence of technological and socio-economic uncertainties on low-carbon scenarios and associated costs. The climate modelling community, on the other side, has worked on achieving an increasingly better understanding of the geophysical response of the Earth system to emissions of greenhouse gases (GHG). This geophysical response remains a key uncertainty for the cost of mitigation scenarios but has only been integrated with assessments of other uncertainties in a rudimentary manner, i.e., for equilibrium conditions. To bridge this gap between the two research communities, we generate distributions of the costs associated with limiting transient global temperature increase to below specific temperature limits, taking into account uncertainties in multiple dimensions: geophysical, technological, social and political. In other words, uncertainties resulting from our incomplete knowledge about how the climate system precisely reacts to GHG emissions (geophysical uncertainties), about how society will develop (social uncertainties and choices), which technologies will be available (technological uncertainty and choices), when we choose to start acting globally on climate change (political choices), and how much money we are or are not willing to spend to achieve climate change mitigation. We find that political choices that delay mitigation have the largest effect on the cost-risk distribution, followed by

  12. Equivalence principles and electromagnetism

    NASA Technical Reports Server (NTRS)

    Ni, W.-T.

    1977-01-01

    The implications of the weak equivalence principles are investigated in detail for electromagnetic systems in a general framework. In particular, it is shown that the universality of free-fall trajectories (Galileo weak equivalence principle) does not imply the validity of the Einstein equivalence principle. However, the Galileo principle plus the universality of free-fall rotation states does imply the Einstein principle.

  13. Uncertainties in derived temperature-height profiles

    NASA Technical Reports Server (NTRS)

    Minzner, R. A.

    1974-01-01

    Nomographs were developed for relating uncertainty in temperature T to uncertainty in the observed height profiles of both pressure p and density rho. The relative uncertainty delta T/T is seen to depend not only upon the relative uncertainties delta P/P or delta rho/rho, and to a small extent upon the value of T or H, but primarily upon the sampling-height increment Delta h, the height increment between successive observations of p or delta. For a fixed value of delta p/p, the value of delta T/T varies inversely with Delta h. No limit exists in the fineness of usable height resolution of T which may be derived from densities, while a fine height resolution in pressure-height data leads to temperatures with unacceptably large uncertainties.

  14. Radiologist Uncertainty and the Interpretation of Screening

    PubMed Central

    Carney, Patricia A.; Elmore, Joann G.; Abraham, Linn A.; Gerrity, Martha S.; Hendrick, R. Edward; Taplin, Stephen H.; Barlow, William E.; Cutter, Gary R.; Poplack, Steven P.; D’Orsi, Carl J.

    2011-01-01

    Objective To determine radiologists’ reactions to uncertainty when interpreting mammography and the extent to which radiologist uncertainty explains variability in interpretive performance. Methods The authors used a mailed survey to assess demographic and clinical characteristics of radiologists and reactions to uncertainty associated with practice. Responses were linked to radiologists’ actual interpretive performance data obtained from 3 regionally located mammography registries. Results More than 180 radiologists were eligible to participate, and 139 consented for a response rate of 76.8%. Radiologist gender, more years interpreting, and higher volume were associated with lower uncertainty scores. Positive predictive value, recall rates, and specificity were more affected by reactions to uncertainty than sensitivity or negative predictive value; however, none of these relationships was statistically significant. Conclusion Certain practice factors, such as gender and years of interpretive experience, affect uncertainty scores. Radiologists’ reactions to uncertainty do not appear to affect interpretive performance. PMID:15155014

  15. A New Principle in Physiscs: the Principle "Finiteness", and Some Consequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham Sternlieb

    2010-06-25

    In this paper I propose a new principle in physics: the principle of "finiteness". It stems from the definition of physics as a science that deals (among other things) with measurable dimensional physical quantities. Since measurement results, including their errors, are always finite, the principle of finiteness postulates that the mathematical formulation of "legitimate" laws of physics should prevent exactly zero or infinite solutions. Some consequences of the principle of finiteness are discussed, in general, and then more specifically in the fields of special relativity, quantum mechanics, and quantum gravity. The consequences are derived independently of any other theory ormore » principle in physics. I propose "finiteness" as a postulate (like the constancy of the speed of light in vacuum, "c"), as opposed to a notion whose validity has to be corroborated by, or derived theoretically or experimentally from other facts, theories, or principles.« less

  16. Reducing, Maintaining, or Escalating Uncertainty? The Development and Validation of Four Uncertainty Preference Scales Related to Cancer Information Seeking and Avoidance.

    PubMed

    Carcioppolo, Nick; Yang, Fan; Yang, Qinghua

    2016-09-01

    Uncertainty is a central characteristic of many aspects of cancer prevention, screening, diagnosis, and treatment. Brashers's (2001) uncertainty management theory details the multifaceted nature of uncertainty and describes situations in which uncertainty can both positively and negatively affect health outcomes. The current study extends theory on uncertainty management by developing four scale measures of uncertainty preferences in the context of cancer. Two national surveys were conducted to validate the scales and assess convergent and concurrent validity. Results support the factor structure of each measure and provide general support across multiple validity assessments. These scales can advance research on uncertainty and cancer communication by providing researchers with measures that address multiple aspects of uncertainty management.

  17. Visual Semiotics & Uncertainty Visualization: An Empirical Study.

    PubMed

    MacEachren, A M; Roth, R E; O'Brien, J; Li, B; Swingley, D; Gahegan, M

    2012-12-01

    This paper presents two linked empirical studies focused on uncertainty visualization. The experiments are framed from two conceptual perspectives. First, a typology of uncertainty is used to delineate kinds of uncertainty matched with space, time, and attribute components of data. Second, concepts from visual semiotics are applied to characterize the kind of visual signification that is appropriate for representing those different categories of uncertainty. This framework guided the two experiments reported here. The first addresses representation intuitiveness, considering both visual variables and iconicity of representation. The second addresses relative performance of the most intuitive abstract and iconic representations of uncertainty on a map reading task. Combined results suggest initial guidelines for representing uncertainty and discussion focuses on practical applicability of results.

  18. Uncertainty in temperature-based determination of time of death

    NASA Astrophysics Data System (ADS)

    Weiser, Martin; Erdmann, Bodo; Schenkl, Sebastian; Muggenthaler, Holger; Hubig, Michael; Mall, Gita; Zachow, Stefan

    2018-03-01

    Temperature-based estimation of time of death (ToD) can be performed either with the help of simple phenomenological models of corpse cooling or with detailed mechanistic (thermodynamic) heat transfer models. The latter are much more complex, but allow a higher accuracy of ToD estimation as in principle all relevant cooling mechanisms can be taken into account. The potentially higher accuracy depends on the accuracy of tissue and environmental parameters as well as on the geometric resolution. We investigate the impact of parameter variations and geometry representation on the estimated ToD. For this, numerical simulation of analytic heat transport models is performed on a highly detailed 3D corpse model, that has been segmented and geometrically reconstructed from a computed tomography (CT) data set, differentiating various organs and tissue types. From that and prior information available on thermal parameters and their variability, we identify the most crucial parameters to measure or estimate, and obtain an a priori uncertainty quantification for the ToD.

  19. Forecast communication through the newspaper Part 2: perceptions of uncertainty

    NASA Astrophysics Data System (ADS)

    Harris, Andrew J. L.

    2015-04-01

    In the first part of this review, I defined the media filter and how it can operate to frame and blame the forecaster for losses incurred during an environmental disaster. In this second part, I explore the meaning and role of uncertainty when a forecast, and its basis, is communicated through the response and decision-making chain to the newspaper, especially during a rapidly evolving natural disaster which has far-reaching business, political, and societal impacts. Within the media-based communication system, there remains a fundamental disconnect of the definition of uncertainty and the interpretation of the delivered forecast between various stakeholders. The definition and use of uncertainty differs especially between scientific, media, business, and political stakeholders. This is a serious problem for the scientific community when delivering forecasts to the public though the press. As reviewed in Part 1, the media filter can result in a negative frame, which itself is a result of bias, slant, spin, and agenda setting introduced during passage of the forecast and its uncertainty through the media filter. The result is invariably one of anger and fury, which causes loss of credibility and blaming of the forecaster. Generation of a negative frame can be aided by opacity of the decision-making process that the forecast is used to support. The impact of the forecast will be determined during passage through the decision-making chain where the precautionary principle and cost-benefit analysis, for example, will likely be applied. Choice of forecast delivery format, vehicle of communication, syntax of delivery, and lack of follow-up measures can further contribute to causing the forecast and its role to be misrepresented. Follow-up measures to negative frames may include appropriately worded press releases and conferences that target forecast misrepresentation or misinterpretation in an attempt to swing the slant back in favor of the forecaster. Review of

  20. Uncertainty in Climate Change Research: An Integrated Approach

    NASA Astrophysics Data System (ADS)

    Mearns, L.

    2017-12-01

    Uncertainty has been a major theme in research regarding climate change from virtually the very beginning. And appropriately characterizing and quantifying uncertainty has been an important aspect of this work. Initially, uncertainties were explored regarding the climate system and how it would react to future forcing. A concomitant area of concern was viewed in the future emissions and concentrations of important forcing agents such as greenhouse gases and aerosols. But, of course we know there are important uncertainties in all aspects of climate change research, not just that of the climate system and emissions. And as climate change research has become more important and of pragmatic concern as possible solutions to the climate change problem are addressed, exploring all the relevant uncertainties has become more relevant and urgent. More recently, over the past five years or so, uncertainties in impacts models, such as agricultural and hydrological models, have received much more attention, through programs such as AgMIP, and some research in this arena has indicated that the uncertainty in the impacts models can be as great or greater than that in the climate system. Still there remains other areas of uncertainty that remain underexplored and/or undervalued. This includes uncertainty in vulnerability and governance. Without more thoroughly exploring these last uncertainties, we likely will underestimate important uncertainties particularly regarding how different systems can successfully adapt to climate change . In this talk I will discuss these different uncertainties and how to combine them to give a complete picture of the total uncertainty individual systems are facing. And as part of this, I will discuss how the uncertainty can be successfully managed even if it is fairly large and deep. Part of my argument will be that large uncertainty is not the enemy, but rather false certainty is the true danger.

  1. Visualizing uncertainty about the future.

    PubMed

    Spiegelhalter, David; Pearson, Mike; Short, Ian

    2011-09-09

    We are all faced with uncertainty about the future, but we can get the measure of some uncertainties in terms of probabilities. Probabilities are notoriously difficult to communicate effectively to lay audiences, and in this review we examine current practice for communicating uncertainties visually, using examples drawn from sport, weather, climate, health, economics, and politics. Despite the burgeoning interest in infographics, there is limited experimental evidence on how different types of visualizations are processed and understood, although the effectiveness of some graphics clearly depends on the relative numeracy of an audience. Fortunately, it is increasingly easy to present data in the form of interactive visualizations and in multiple types of representation that can be adjusted to user needs and capabilities. Nonetheless, communicating deeper uncertainties resulting from incomplete or disputed knowledge--or from essential indeterminacy about the future--remains a challenge.

  2. ICYESS 2013: Understanding and Interpreting Uncertainty

    NASA Astrophysics Data System (ADS)

    Rauser, F.; Niederdrenk, L.; Schemann, V.; Schmidt, A.; Suesser, D.; Sonntag, S.

    2013-12-01

    We will report the outcomes and highlights of the Interdisciplinary Conference of Young Earth System Scientists (ICYESS) on Understanding and Interpreting Uncertainty in September 2013, Hamburg, Germany. This conference is aimed at early career scientists (Masters to Postdocs) from a large variety of scientific disciplines and backgrounds (natural, social and political sciences) and will enable 3 days of discussions on a variety of uncertainty-related aspects: 1) How do we deal with implicit and explicit uncertainty in our daily scientific work? What is uncertain for us, and for which reasons? 2) How can we communicate these uncertainties to other disciplines? E.g., is uncertainty in cloud parameterization and respectively equilibrium climate sensitivity a concept that is understood equally well in natural and social sciences that deal with Earth System questions? Or vice versa, is, e.g., normative uncertainty as in choosing a discount rate relevant for natural scientists? How can those uncertainties be reconciled? 3) How can science communicate this uncertainty to the public? Is it useful at all? How are the different possible measures of uncertainty understood in different realms of public discourse? Basically, we want to learn from all disciplines that work together in the broad Earth System Science community how to understand and interpret uncertainty - and then transfer this understanding to the problem of how to communicate with the public, or its different layers / agents. ICYESS is structured in a way that participation is only possible via presentation, so every participant will give their own professional input into how the respective disciplines deal with uncertainty. Additionally, a large focus is put onto communication techniques; there are no 'standard presentations' in ICYESS. Keynote lectures by renowned scientists and discussions will lead to a deeper interdisciplinary understanding of what we do not really know, and how to deal with it. Many

  3. Uncertainty Modeling for Structural Control Analysis and Synthesis

    NASA Technical Reports Server (NTRS)

    Campbell, Mark E.; Crawley, Edward F.

    1996-01-01

    The development of an accurate model of uncertainties for the control of structures that undergo a change in operational environment, based solely on modeling and experimentation in the original environment is studied. The application used throughout this work is the development of an on-orbit uncertainty model based on ground modeling and experimentation. A ground based uncertainty model consisting of mean errors and bounds on critical structural parameters is developed. The uncertainty model is created using multiple data sets to observe all relevant uncertainties in the system. The Discrete Extended Kalman Filter is used as an identification/parameter estimation method for each data set, in addition to providing a covariance matrix which aids in the development of the uncertainty model. Once ground based modal uncertainties have been developed, they are localized to specific degrees of freedom in the form of mass and stiffness uncertainties. Two techniques are presented: a matrix method which develops the mass and stiffness uncertainties in a mathematical manner; and a sensitivity method which assumes a form for the mass and stiffness uncertainties in macroelements and scaling factors. This form allows the derivation of mass and stiffness uncertainties in a more physical manner. The mass and stiffness uncertainties of the ground based system are then mapped onto the on-orbit system, and projected to create an analogous on-orbit uncertainty model in the form of mean errors and bounds on critical parameters. The Middeck Active Control Experiment is introduced as experimental verification for the localization and projection methods developed. In addition, closed loop results from on-orbit operations of the experiment verify the use of the uncertainty model for control analysis and synthesis in space.

  4. Perceptual uncertainty supports design reasoning

    NASA Astrophysics Data System (ADS)

    Tseng, Winger S. W.

    2018-06-01

    The unstructured, ambiguous figures used as design cues in the experiment were classified as being at high, moderate, and low ambiguity. Participants were required to use the ideas suggested by the visual cues to design a novel table. Results showed that different levels of ambiguity within the cues significantly influenced the quantity of idea development of expert designers, but not novice designers, whose idea generation remained relatively low across all levels of ambiguity. For experts, as the level of ambiguity in the cue increased so did the number of design ideas that were generated. Most design interpretations created by both experts and novices were affected by geometric contours within the figures. In addition, when viewing cues of high ambiguity, experts produced more interpretative transformations than when viewing cues of moderate or low ambiguity. Furthermore, experts produced significantly more new functions or meanings than novices. We claim that increased ambiguity within presented visual cues engenders uncertainty in designers that facilitates flexible transformations and interpretations that prevent premature commitment to uncreative solutions. Such results could be applied in design learning and education, focused on differences between experts and novices, to generalize the principles and strategies of interpretations by experts during concept sketching to train novices when face design problems, and the development of CACD tools to support designers.

  5. An individualized strategy to estimate the effect of deformable registration uncertainty on accumulated dose in the upper abdomen

    NASA Astrophysics Data System (ADS)

    Wang, Yibing; Petit, Steven F.; Vásquez Osorio, Eliana; Gupta, Vikas; Méndez Romero, Alejandra; Heijmen, Ben

    2018-06-01

    uncertainties in DIR on accumulated dose is in principle applicable for all DIR algorithms allowing variation in registration parameters.

  6. Public perception and communication of scientific uncertainty.

    PubMed

    Broomell, Stephen B; Kane, Patrick Bodilly

    2017-02-01

    Understanding how the public perceives uncertainty in scientific research is fundamental for effective communication about research and its inevitable uncertainty. Previous work found that scientific evidence differentially influenced beliefs from individuals with different political ideologies. Evidence that threatens an individual's political ideology is perceived as more uncertain than nonthreatening evidence. The authors present 3 studies examining perceptions of scientific uncertainty more broadly by including sciences that are not politically polarizing. Study 1 develops scales measuring perceptions of scientific uncertainty. It finds (a) 3 perceptual dimensions of scientific uncertainty, with the primary dimension representing a perception of precision; (b) the precision dimension of uncertainty is strongly associated with the perceived value of a research field; and (c) differences in perceived uncertainty across political affiliations. Study 2 manipulated these dimensions, finding that Republicans were more sensitive than Democrats to descriptions of uncertainty associated with a research field (e.g., psychology). Study 3 found that these views of a research field did not extend to the evaluation of individual results produced by the field. Together, these studies show that perceptions of scientific uncertainty associated with entire research fields are valid predictors of abstract perceptions of scientific quality, benefit, and allocation of funding. Yet, they do not inform judgments about individual results. Therefore, polarization in the acceptance of specific results is not likely due to individual differences in perceived scientific uncertainty. Further, the direction of influence potentially could be reversed, such that perceived quality of scientific results could be used to influence perceptions about scientific research fields. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. Uncertainty in gridded CO 2 emissions estimates

    DOE PAGES

    Hogue, Susannah; Marland, Eric; Andres, Robert J.; ...

    2016-05-19

    We are interested in the spatial distribution of fossil-fuel-related emissions of CO 2 for both geochemical and geopolitical reasons, but it is important to understand the uncertainty that exists in spatially explicit emissions estimates. Working from one of the widely used gridded data sets of CO 2 emissions, we examine the elements of uncertainty, focusing on gridded data for the United States at the scale of 1° latitude by 1° longitude. Uncertainty is introduced in the magnitude of total United States emissions, the magnitude and location of large point sources, the magnitude and distribution of non-point sources, and from themore » use of proxy data to characterize emissions. For the United States, we develop estimates of the contribution of each component of uncertainty. At 1° resolution, in most grid cells, the largest contribution to uncertainty comes from how well the distribution of the proxy (in this case population density) represents the distribution of emissions. In other grid cells, the magnitude and location of large point sources make the major contribution to uncertainty. Uncertainty in population density can be important where a large gradient in population density occurs near a grid cell boundary. Uncertainty is strongly scale-dependent with uncertainty increasing as grid size decreases. In conclusion, uncertainty for our data set with 1° grid cells for the United States is typically on the order of ±150%, but this is perhaps not excessive in a data set where emissions per grid cell vary over 8 orders of magnitude.« less

  8. Chemical Principles Exemplified

    ERIC Educational Resources Information Center

    Plumb, Robert C.

    1970-01-01

    This is the first of a new series of brief ancedotes about materials and phenomena which exemplify chemical principles. Examples include (1) the sea-lab experiment illustrating principles of the kinetic theory of gases, (2) snow-making machines illustrating principles of thermodynamics in gas expansions and phase changes, and (3) sunglasses that…

  9. Uncertainty and Decision Making

    DTIC Science & Technology

    1979-09-01

    higher productivity and satisfaction than a nonsupportive co-worker and enriched tasks affected attitudes but not performance . The greatest uncertainty...leadership V- 4••,,. • , -9- style, goals, and task HLructure) on psychological uncertainty and the resultant effect on performance and satisfaction . People...turn related to satisfaction and performance . In general, a stric- turing leadership style, specific goals and a structured task result in lower unce

  10. Evaluating Predictive Uncertainty of Hyporheic Exchange Modelling

    NASA Astrophysics Data System (ADS)

    Chow, R.; Bennett, J.; Dugge, J.; Wöhling, T.; Nowak, W.

    2017-12-01

    Hyporheic exchange is the interaction of water between rivers and groundwater, and is difficult to predict. One of the largest contributions to predictive uncertainty for hyporheic fluxes have been attributed to the representation of heterogeneous subsurface properties. This research aims to evaluate which aspect of the subsurface representation - the spatial distribution of hydrofacies or the model for local-scale (within-facies) heterogeneity - most influences the predictive uncertainty. Also, we seek to identify data types that help reduce this uncertainty best. For this investigation, we conduct a modelling study of the Steinlach River meander, in Southwest Germany. The Steinlach River meander is an experimental site established in 2010 to monitor hyporheic exchange at the meander scale. We use HydroGeoSphere, a fully integrated surface water-groundwater model, to model hyporheic exchange and to assess the predictive uncertainty of hyporheic exchange transit times (HETT). A highly parameterized complex model is built and treated as `virtual reality', which is in turn modelled with simpler subsurface parameterization schemes (Figure). Then, we conduct Monte-Carlo simulations with these models to estimate the predictive uncertainty. Results indicate that: Uncertainty in HETT is relatively small for early times and increases with transit times. Uncertainty from local-scale heterogeneity is negligible compared to uncertainty in the hydrofacies distribution. Introducing more data to a poor model structure may reduce predictive variance, but does not reduce predictive bias. Hydraulic head observations alone cannot constrain the uncertainty of HETT, however an estimate of hyporheic exchange flux proves to be more effective at reducing this uncertainty. Figure: Approach for evaluating predictive model uncertainty. A conceptual model is first developed from the field investigations. A complex model (`virtual reality') is then developed based on that conceptual model

  11. Radiometer uncertainty equation research of 2D planar scanning PMMW imaging system

    NASA Astrophysics Data System (ADS)

    Hu, Taiyang; Xu, Jianzhong; Xiao, Zelong

    2009-07-01

    With advances in millimeter-wave technology, passive millimeter-wave (PMMW) imaging technology has received considerable concerns, and it has established itself in a wide range of military and civil practical applications, such as in the areas of remote sensing, blind landing, precision guidance and security inspection. Both the high transparency of clothing at millimeter wavelengths and the spatial resolution required to generate adequate images combine to make imaging at millimeter wavelengths a natural approach of screening people for concealed contraband detection. And at the same time, the passive operation mode does not present a safety hazard to the person who is under inspection. Based on the description to the design and engineering implementation of a W-band two-dimensional (2D) planar scanning imaging system, a series of scanning methods utilized in PMMW imaging are generally compared and analyzed, followed by a discussion on the operational principle of the mode of 2D planar scanning particularly. Furthermore, it is found that the traditional radiometer uncertainty equation, which is derived from a moving platform, does not hold under this 2D planar scanning mode due to the fact that there is no absolute connection between the scanning rates in horizontal direction and vertical direction. Consequently, an improved radiometer uncertainty equation is carried out in this paper, by means of taking the total time spent on scanning and imaging into consideration, with the purpose of solving the problem mentioned above. In addition, the related factors which affect the quality of radiometric images are further investigated under the improved radiometer uncertainty equation, and ultimately some original results are presented and analyzed to demonstrate the significance and validity of this new methodology.

  12. Clarity of objectives and working principles enhances the success of biomimetic programs.

    PubMed

    Wolff, Jonas O; Wells, David; Reid, Chris R; Blamires, Sean J

    2017-09-26

    Biomimetics, the transfer of functional principles from living systems into product designs, is increasingly being utilized by engineers. Nevertheless, recurring problems must be overcome if it is to avoid becoming a short-lived fad. Here we assess the efficiency and suitability of methods typically employed by examining three flagship examples of biomimetic design approaches from different disciplines: (1) the creation of gecko-inspired adhesives; (2) the synthesis of spider silk, and (3) the derivation of computer algorithms from natural self-organizing systems. We find that identification of the elemental working principles is the most crucial step in the biomimetic design process. It bears the highest risk of failure (e.g. losing the target function) due to false assumptions about the working principle. Common problems that hamper successful implementation are: (i) a discrepancy between biological functions and the desired properties of the product, (ii) uncertainty about objectives and applications, (iii) inherent limits in methodologies, and (iv) false assumptions about the biology of the models. Projects that aim for multi-functional products are particularly challenging to accomplish. We suggest a simplification, modularisation and specification of objectives, and a critical assessment of the suitability of the model. Comparative analyses, experimental manipulation, and numerical simulations followed by tests of artificial models have led to the successful extraction of working principles. A searchable database of biological systems would optimize the choice of a model system in top-down approaches that start at an engineering problem. Only when biomimetic projects become more predictable will there be wider acceptance of biomimetics as an innovative problem-solving tool among engineers and industry.

  13. The NASA Langley Multidisciplinary Uncertainty Quantification Challenge

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2014-01-01

    This paper presents the formulation of an uncertainty quantification challenge problem consisting of five subproblems. These problems focus on key aspects of uncertainty characterization, sensitivity analysis, uncertainty propagation, extreme-case analysis, and robust design.

  14. Quantifying and Qualifying USGS ShakeMap Uncertainty

    USGS Publications Warehouse

    Wald, David J.; Lin, Kuo-Wan; Quitoriano, Vincent

    2008-01-01

    We describe algorithms for quantifying and qualifying uncertainties associated with USGS ShakeMap ground motions. The uncertainty values computed consist of latitude/longitude grid-based multiplicative factors that scale the standard deviation associated with the ground motion prediction equation (GMPE) used within the ShakeMap algorithm for estimating ground motions. The resulting grid-based 'uncertainty map' is essential for evaluation of losses derived using ShakeMaps as the hazard input. For ShakeMap, ground motion uncertainty at any point is dominated by two main factors: (i) the influence of any proximal ground motion observations, and (ii) the uncertainty of estimating ground motions from the GMPE, most notably, elevated uncertainty due to initial, unconstrained source rupture geometry. The uncertainty is highest for larger magnitude earthquakes when source finiteness is not yet constrained and, hence, the distance to rupture is also uncertain. In addition to a spatially-dependant, quantitative assessment, many users may prefer a simple, qualitative grading for the entire ShakeMap. We developed a grading scale that allows one to quickly gauge the appropriate level of confidence when using rapidly produced ShakeMaps as part of the post-earthquake decision-making process or for qualitative assessments of archived or historical earthquake ShakeMaps. We describe an uncertainty letter grading ('A' through 'F', for high to poor quality, respectively) based on the uncertainty map. A middle-range ('C') grade corresponds to a ShakeMap for a moderate-magnitude earthquake suitably represented with a point-source location. Lower grades 'D' and 'F' are assigned for larger events (M>6) where finite-source dimensions are not yet constrained. The addition of ground motion observations (or observed macroseismic intensities) reduces uncertainties over data-constrained portions of the map. Higher grades ('A' and 'B') correspond to ShakeMaps with constrained fault dimensions

  15. Weather uncertainty versus climate change uncertainty in a short television weather broadcast

    NASA Astrophysics Data System (ADS)

    Witte, J.; Ward, B.; Maibach, E.

    2011-12-01

    For TV meteorologists talking about uncertainty in a two-minute forecast can be a real challenge. It can quickly open the way to viewer confusion. TV meteorologists understand the uncertainties of short term weather models and have different methods to convey the degrees of confidence to the viewing public. Visual examples are seen in the 7-day forecasts and the hurricane track forecasts. But does the public really understand a 60 percent chance of rain or the hurricane cone? Communication of climate model uncertainty is even more daunting. The viewing public can quickly switch to denial of solid science. A short review of the latest national survey of TV meteorologists by George Mason University and lessons learned from a series of climate change workshops with TV broadcasters provide valuable insights into effectively using visualizations and invoking multimedia-learning theories in weather forecasts to improve public understanding of climate change.

  16. Quantification of Emission Factor Uncertainty

    EPA Science Inventory

    Emissions factors are important for estimating and characterizing emissions from sources of air pollution. There is no quantitative indication of uncertainty for these emission factors, most factors do not have an adequate data set to compute uncertainty, and it is very difficult...

  17. Predictive uncertainty in auditory sequence processing

    PubMed Central

    Hansen, Niels Chr.; Pearce, Marcus T.

    2014-01-01

    Previous studies of auditory expectation have focused on the expectedness perceived by listeners retrospectively in response to events. In contrast, this research examines predictive uncertainty—a property of listeners' prospective state of expectation prior to the onset of an event. We examine the information-theoretic concept of Shannon entropy as a model of predictive uncertainty in music cognition. This is motivated by the Statistical Learning Hypothesis, which proposes that schematic expectations reflect probabilistic relationships between sensory events learned implicitly through exposure. Using probability estimates from an unsupervised, variable-order Markov model, 12 melodic contexts high in entropy and 12 melodic contexts low in entropy were selected from two musical repertoires differing in structural complexity (simple and complex). Musicians and non-musicians listened to the stimuli and provided explicit judgments of perceived uncertainty (explicit uncertainty). We also examined an indirect measure of uncertainty computed as the entropy of expectedness distributions obtained using a classical probe-tone paradigm where listeners rated the perceived expectedness of the final note in a melodic sequence (inferred uncertainty). Finally, we simulate listeners' perception of expectedness and uncertainty using computational models of auditory expectation. A detailed model comparison indicates which model parameters maximize fit to the data and how they compare to existing models in the literature. The results show that listeners experience greater uncertainty in high-entropy musical contexts than low-entropy contexts. This effect is particularly apparent for inferred uncertainty and is stronger in musicians than non-musicians. Consistent with the Statistical Learning Hypothesis, the results suggest that increased domain-relevant training is associated with an increasingly accurate cognitive model of probabilistic structure in music. PMID:25295018

  18. Sensitivity-Uncertainty Techniques for Nuclear Criticality Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.; Rising, Michael Evan; Alwin, Jennifer Louise

    2017-08-07

    The sensitivity and uncertainty analysis course will introduce students to k eff sensitivity data, cross-section uncertainty data, how k eff sensitivity data and k eff uncertainty data are generated and how they can be used. Discussion will include how sensitivity/uncertainty data can be used to select applicable critical experiments, to quantify a defensible margin to cover validation gaps and weaknesses, and in development of upper subcritical limits.

  19. Climate Projections and Uncertainty Communication.

    PubMed

    Joslyn, Susan L; LeClerc, Jared E

    2016-01-01

    Lingering skepticism about climate change might be due in part to the way climate projections are perceived by members of the public. Variability between scientists' estimates might give the impression that scientists disagree about the fact of climate change rather than about details concerning the extent or timing. Providing uncertainty estimates might clarify that the variability is due in part to quantifiable uncertainty inherent in the prediction process, thereby increasing people's trust in climate projections. This hypothesis was tested in two experiments. Results suggest that including uncertainty estimates along with climate projections leads to an increase in participants' trust in the information. Analyses explored the roles of time, place, demographic differences (e.g., age, gender, education level, political party affiliation), and initial belief in climate change. Implications are discussed in terms of the potential benefit of adding uncertainty estimates to public climate projections. Copyright © 2015 Cognitive Science Society, Inc.

  20. Children acquire the later-greater principle after the cardinal principle

    PubMed Central

    Le Corre, Mathieu

    2014-01-01

    Many have proposed that the acquisition of the cardinal principle is a result of the discovery of the numerical significance of the order of the number words in the count list. However, this need not be the case. Indeed, the cardinal principle does not state anything about the numerical significance of the order of the number words. It only states that the last word of a correct count denotes the numerosity of the counted set. Here we test whether the acquisition of the cardinal principle involves the discovery of the later-greater principle – i.e., that the order of the number words corresponds to the relative size of the numerosities they denote. Specifically, we tested knowledge of verbal numerical comparisons (e.g., Is “ten” more than “six”?) in children who had recently learned the cardinal principle. We find that these children can compare number words between “six” and “ten” only if they have mapped them onto non-verbal representations of numerosity. We suggest that this means that the acquisition of the cardinal principle does not involve the discovery of the correspondence between the order of the number words and the relative size of the numerosities they denote. PMID:24372336

  1. Some applications of uncertainty relations in quantum information

    NASA Astrophysics Data System (ADS)

    Majumdar, A. S.; Pramanik, T.

    2016-08-01

    We discuss some applications of various versions of uncertainty relations for both discrete and continuous variables in the context of quantum information theory. The Heisenberg uncertainty relation enables demonstration of the Einstein, Podolsky and Rosen (EPR) paradox. Entropic uncertainty relations (EURs) are used to reveal quantum steering for non-Gaussian continuous variable states. EURs for discrete variables are studied in the context of quantum memory where fine-graining yields the optimum lower bound of uncertainty. The fine-grained uncertainty relation is used to obtain connections between uncertainty and the nonlocality of retrieval games for bipartite and tripartite systems. The Robertson-Schrödinger (RS) uncertainty relation is applied for distinguishing pure and mixed states of discrete variables.

  2. Uncertainty Considerations for Ballistic Limit Equations

    NASA Technical Reports Server (NTRS)

    Schonberg, W. P.; Evans, H. J.; Williamsen, J. E.; Boyer, R. L.; Nakayama, G. S.

    2005-01-01

    The overall risk for any spacecraft system is typically determined using a Probabilistic Risk Assessment (PRA). A PRA attempts to determine the overall risk associated with a particular mission by factoring in all known risks (and their corresponding uncertainties, if known) to the spacecraft during its mission. The threat to mission and human life posed by the mircro-meteoroid & orbital debris (MMOD) environment is one of the risks. NASA uses the BUMPER II program to provide point estimate predictions of MMOD risk for the Space Shuttle and the International Space Station. However, BUMPER II does not provide uncertainty bounds or confidence intervals for its predictions. With so many uncertainties believed to be present in the models used within BUMPER II, providing uncertainty bounds with BUMPER II results would appear to be essential to properly evaluating its predictions of MMOD risk. The uncertainties in BUMPER II come primarily from three areas: damage prediction/ballistic limit equations, environment models, and failure criteria definitions. In order to quantify the overall uncertainty bounds on MMOD risk predictions, the uncertainties in these three areas must be identified. In this paper, possible approaches through which uncertainty bounds can be developed for the various damage prediction and ballistic limit equations encoded within the shuttle and station versions of BUMPER II are presented and discussed. We begin the paper with a review of the current approaches used by NASA to perform a PRA for the Space Shuttle and the International Space Station, followed by a review of the results of a recent sensitivity analysis performed by NASA using the shuttle version of the BUMPER II code. Following a discussion of the various equations that are encoded in BUMPER II, we propose several possible approaches for establishing uncertainty bounds for the equations within BUMPER II. We conclude with an evaluation of these approaches and present a recommendation

  3. Quantifying Mixed Uncertainties in Cyber Attacker Payoffs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Samrat; Halappanavar, Mahantesh; Tipireddy, Ramakrishna

    Representation and propagation of uncertainty in cyber attacker payoffs is a key aspect of security games. Past research has primarily focused on representing the defender’s beliefs about attacker payoffs as point utility estimates. More recently, within the physical security domain, attacker payoff uncertainties have been represented as Uniform and Gaussian probability distributions, and intervals. Within cyber-settings, continuous probability distributions may still be appropriate for addressing statistical (aleatory) uncertainties where the defender may assume that the attacker’s payoffs differ over time. However, systematic (epistemic) uncertainties may exist, where the defender may not have sufficient knowledge or there is insufficient information aboutmore » the attacker’s payoff generation mechanism. Such epistemic uncertainties are more suitably represented as probability boxes with intervals. In this study, we explore the mathematical treatment of such mixed payoff uncertainties.« less

  4. The Paradox of Equipoise: The Principle That Drives and Limits Therapeutic Discoveries in Clinical Research

    PubMed Central

    Djulbegovic, Benjamin

    2009-01-01

    randomization. This in turn would halt the RCT system as we know it. Conclusions The “principle or law of clinical discovery” described herein predicts the efficiency of the current system of RCTs at generating discoveries of new treatments. The principle is derived from the requirement for uncertainty or equipoise as a precondition for RCTs, the precept that paradoxically drives discoveries of new treatments while limiting the proportion and rate of new therapeutic discoveries. PMID:19910921

  5. Computation and visualization of uncertainty in surgical navigation.

    PubMed

    Simpson, Amber L; Ma, Burton; Vasarhelyi, Edward M; Borschneck, Dan P; Ellis, Randy E; James Stewart, A

    2014-09-01

    Surgical displays do not show uncertainty information with respect to the position and orientation of instruments. Data is presented as though it were perfect; surgeons unaware of this uncertainty could make critical navigational mistakes. The propagation of uncertainty to the tip of a surgical instrument is described and a novel uncertainty visualization method is proposed. An extensive study with surgeons has examined the effect of uncertainty visualization on surgical performance with pedicle screw insertion, a procedure highly sensitive to uncertain data. It is shown that surgical performance (time to insert screw, degree of breach of pedicle, and rotation error) is not impeded by the additional cognitive burden imposed by uncertainty visualization. Uncertainty can be computed in real time and visualized without adversely affecting surgical performance, and the best method of uncertainty visualization may depend upon the type of navigation display. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Decay heat uncertainty quantification of MYRRHA

    NASA Astrophysics Data System (ADS)

    Fiorito, Luca; Buss, Oliver; Hoefer, Axel; Stankovskiy, Alexey; Eynde, Gert Van den

    2017-09-01

    MYRRHA is a lead-bismuth cooled MOX-fueled accelerator driven system (ADS) currently in the design phase at SCK·CEN in Belgium. The correct evaluation of the decay heat and of its uncertainty level is very important for the safety demonstration of the reactor. In the first part of this work we assessed the decay heat released by the MYRRHA core using the ALEPH-2 burnup code. The second part of the study focused on the nuclear data uncertainty and covariance propagation to the MYRRHA decay heat. Radioactive decay data, independent fission yield and cross section uncertainties/covariances were propagated using two nuclear data sampling codes, namely NUDUNA and SANDY. According to the results, 238U cross sections and fission yield data are the largest contributors to the MYRRHA decay heat uncertainty. The calculated uncertainty values are deemed acceptable from the safety point of view as they are well within the available regulatory limits.

  7. Driving Toward Guiding Principles

    PubMed Central

    Buckovich, Suzy A.; Rippen, Helga E.; Rozen, Michael J.

    1999-01-01

    As health care moves from paper to electronic data collection, providing easier access and dissemination of health information, the development of guiding privacy, confidentiality, and security principles is necessary to help balance the protection of patients' privacy interests against appropriate information access. A comparative review and analysis was done, based on a compilation of privacy, confidentiality, and security principles from many sources. Principles derived from ten identified sources were compared with each of the compiled principles to assess support level, uniformity, and inconsistencies. Of 28 compiled principles, 23 were supported by at least 50 percent of the sources. Technology could address at least 12 of the principles. Notable consistencies among the principles could provide a basis for consensus for further legislative and organizational work. It is imperative that all participants in our health care system work actively toward a viable resolution of this information privacy debate. PMID:10094065

  8. Uncertainty in hydrological signatures for gauged and ungauged catchments

    NASA Astrophysics Data System (ADS)

    Westerberg, Ida K.; Wagener, Thorsten; Coxon, Gemma; McMillan, Hilary K.; Castellarin, Attilio; Montanari, Alberto; Freer, Jim

    2016-03-01

    Reliable information about hydrological behavior is needed for water-resource management and scientific investigations. Hydrological signatures quantify catchment behavior as index values, and can be predicted for ungauged catchments using a regionalization procedure. The prediction reliability is affected by data uncertainties for the gauged catchments used in prediction and by uncertainties in the regionalization procedure. We quantified signature uncertainty stemming from discharge data uncertainty for 43 UK catchments and propagated these uncertainties in signature regionalization, while accounting for regionalization uncertainty with a weighted-pooling-group approach. Discharge uncertainty was estimated using Monte Carlo sampling of multiple feasible rating curves. For each sampled rating curve, a discharge time series was calculated and used in deriving the gauged signature uncertainty distribution. We found that the gauged uncertainty varied with signature type, local measurement conditions and catchment behavior, with the highest uncertainties (median relative uncertainty ±30-40% across all catchments) for signatures measuring high- and low-flow magnitude and dynamics. Our regionalization method allowed assessing the role and relative magnitudes of the gauged and regionalized uncertainty sources in shaping the signature uncertainty distributions predicted for catchments treated as ungauged. We found that (1) if the gauged uncertainties were neglected there was a clear risk of overconditioning the regionalization inference, e.g., by attributing catchment differences resulting from gauged uncertainty to differences in catchment behavior, and (2) uncertainty in the regionalization results was lower for signatures measuring flow distribution (e.g., mean flow) than flow dynamics (e.g., autocorrelation), and for average flows (and then high flows) compared to low flows.

  9. Uncertainties in selected river water quality data

    NASA Astrophysics Data System (ADS)

    Rode, M.; Suhr, U.

    2007-02-01

    Monitoring of surface waters is primarily done to detect the status and trends in water quality and to identify whether observed trends arise from natural or anthropogenic causes. Empirical quality of river water quality data is rarely certain and knowledge of their uncertainties is essential to assess the reliability of water quality models and their predictions. The objective of this paper is to assess the uncertainties in selected river water quality data, i.e. suspended sediment, nitrogen fraction, phosphorus fraction, heavy metals and biological compounds. The methodology used to structure the uncertainty is based on the empirical quality of data and the sources of uncertainty in data (van Loon et al., 2005). A literature review was carried out including additional experimental data of the Elbe river. All data of compounds associated with suspended particulate matter have considerable higher sampling uncertainties than soluble concentrations. This is due to high variability within the cross section of a given river. This variability is positively correlated with total suspended particulate matter concentrations. Sampling location has also considerable effect on the representativeness of a water sample. These sampling uncertainties are highly site specific. The estimation of uncertainty in sampling can only be achieved by taking at least a proportion of samples in duplicates. Compared to sampling uncertainties, measurement and analytical uncertainties are much lower. Instrument quality can be stated well suited for field and laboratory situations for all considered constituents. Analytical errors can contribute considerably to the overall uncertainty of river water quality data. Temporal autocorrelation of river water quality data is present but literature on general behaviour of water quality compounds is rare. For meso scale river catchments (500-3000 km2) reasonable yearly dissolved load calculations can be achieved using biweekly sample frequencies. For

  10. Uncertainties in selected surface water quality data

    NASA Astrophysics Data System (ADS)

    Rode, M.; Suhr, U.

    2006-09-01

    Monitoring of surface waters is primarily done to detect the status and trends in water quality and to identify whether observed trends arise form natural or anthropogenic causes. Empirical quality of surface water quality data is rarely certain and knowledge of their uncertainties is essential to assess the reliability of water quality models and their predictions. The objective of this paper is to assess the uncertainties in selected surface water quality data, i.e. suspended sediment, nitrogen fraction, phosphorus fraction, heavy metals and biological compounds. The methodology used to structure the uncertainty is based on the empirical quality of data and the sources of uncertainty in data (van Loon et al., 2006). A literature review was carried out including additional experimental data of the Elbe river. All data of compounds associated with suspended particulate matter have considerable higher sampling uncertainties than soluble concentrations. This is due to high variability's within the cross section of a given river. This variability is positively correlated with total suspended particulate matter concentrations. Sampling location has also considerable effect on the representativeness of a water sample. These sampling uncertainties are highly site specific. The estimation of uncertainty in sampling can only be achieved by taking at least a proportion of samples in duplicates. Compared to sampling uncertainties measurement and analytical uncertainties are much lower. Instrument quality can be stated well suited for field and laboratory situations for all considered constituents. Analytical errors can contribute considerable to the overall uncertainty of surface water quality data. Temporal autocorrelation of surface water quality data is present but literature on general behaviour of water quality compounds is rare. For meso scale river catchments reasonable yearly dissolved load calculations can be achieved using biweekly sample frequencies. For suspended

  11. Reducing uncertainty about objective functions in adaptive management

    USGS Publications Warehouse

    Williams, B.K.

    2012-01-01

    This paper extends the uncertainty framework of adaptive management to include uncertainty about the objectives to be used in guiding decisions. Adaptive decision making typically assumes explicit and agreed-upon objectives for management, but allows for uncertainty as to the structure of the decision process that generates change through time. Yet it is not unusual for there to be uncertainty (or disagreement) about objectives, with different stakeholders expressing different views not only about resource responses to management but also about the appropriate management objectives. In this paper I extend the treatment of uncertainty in adaptive management, and describe a stochastic structure for the joint occurrence of uncertainty about objectives as well as models, and show how adaptive decision making and the assessment of post-decision monitoring data can be used to reduce uncertainties of both kinds. Different degrees of association between model and objective uncertainty lead to different patterns of learning about objectives. ?? 2011.

  12. Monte Carlo analysis of uncertainty propagation in a stratospheric model. 2: Uncertainties due to reaction rates

    NASA Technical Reports Server (NTRS)

    Stolarski, R. S.; Butler, D. M.; Rundel, R. D.

    1977-01-01

    A concise stratospheric model was used in a Monte-Carlo analysis of the propagation of reaction rate uncertainties through the calculation of an ozone perturbation due to the addition of chlorine. Two thousand Monte-Carlo cases were run with 55 reaction rates being varied. Excellent convergence was obtained in the output distributions because the model is sensitive to the uncertainties in only about 10 reactions. For a 1 ppby chlorine perturbation added to a 1.5 ppby chlorine background, the resultant 1 sigma uncertainty on the ozone perturbation is a factor of 1.69 on the high side and 1.80 on the low side. The corresponding 2 sigma factors are 2.86 and 3.23. Results are also given for the uncertainties, due to reaction rates, in the ambient concentrations of stratospheric species.

  13. Conclusions on measurement uncertainty in microbiology.

    PubMed

    Forster, Lynne I

    2009-01-01

    Since its first issue in 1999, testing laboratories wishing to comply with all the requirements of ISO/IEC 17025 have been collecting data for estimating uncertainty of measurement for quantitative determinations. In the microbiological field of testing, some debate has arisen as to whether uncertainty needs to be estimated for each method performed in the laboratory for each type of sample matrix tested. Queries also arise concerning the estimation of uncertainty when plate/membrane filter colony counts are below recommended method counting range limits. A selection of water samples (with low to high contamination) was tested in replicate with the associated uncertainty of measurement being estimated from the analytical results obtained. The analyses performed on the water samples included total coliforms, fecal coliforms, fecal streptococci by membrane filtration, and heterotrophic plate counts by the pour plate technique. For those samples where plate/membrane filter colony counts were > or =20, uncertainty estimates at a 95% confidence level were very similar for the methods, being estimated as 0.13, 0.14, 0.14, and 0.12, respectively. For those samples where plate/membrane filter colony counts were <20, estimated uncertainty values for each sample showed close agreement with published confidence limits established using a Poisson distribution approach.

  14. Correlated Uncertainties in Radiation Shielding Effectiveness

    NASA Technical Reports Server (NTRS)

    Werneth, Charles M.; Maung, Khin Maung; Blattnig, Steve R.; Clowdsley, Martha S.; Townsend, Lawrence W.

    2013-01-01

    The space radiation environment is composed of energetic particles which can deliver harmful doses of radiation that may lead to acute radiation sickness, cancer, and even death for insufficiently shielded crew members. Spacecraft shielding must provide structural integrity and minimize the risk associated with radiation exposure. The risk of radiation exposure induced death (REID) is a measure of the risk of dying from cancer induced by radiation exposure. Uncertainties in the risk projection model, quality factor, and spectral fluence are folded into the calculation of the REID by sampling from probability distribution functions. Consequently, determining optimal shielding materials that reduce the REID in a statistically significant manner has been found to be difficult. In this work, the difference of the REID distributions for different materials is used to study the effect of composition on shielding effectiveness. It is shown that the use of correlated uncertainties allows for the determination of statistically significant differences between materials despite the large uncertainties in the quality factor. This is in contrast to previous methods where uncertainties have been generally treated as uncorrelated. It is concluded that the use of correlated quality factor uncertainties greatly reduces the uncertainty in the assessment of shielding effectiveness for the mitigation of radiation exposure.

  15. Uncertainty Propagation for Terrestrial Mobile Laser Scanner

    NASA Astrophysics Data System (ADS)

    Mezian, c.; Vallet, Bruno; Soheilian, Bahman; Paparoditis, Nicolas

    2016-06-01

    Laser scanners are used more and more in mobile mapping systems. They provide 3D point clouds that are used for object reconstruction and registration of the system. For both of those applications, uncertainty analysis of 3D points is of great interest but rarely investigated in the literature. In this paper we present a complete pipeline that takes into account all the sources of uncertainties and allows to compute a covariance matrix per 3D point. The sources of uncertainties are laser scanner, calibration of the scanner in relation to the vehicle and direct georeferencing system. We suppose that all the uncertainties follow the Gaussian law. The variances of the laser scanner measurements (two angles and one distance) are usually evaluated by the constructors. This is also the case for integrated direct georeferencing devices. Residuals of the calibration process were used to estimate the covariance matrix of the 6D transformation between scanner laser and the vehicle system. Knowing the variances of all sources of uncertainties, we applied uncertainty propagation technique to compute the variance-covariance matrix of every obtained 3D point. Such an uncertainty analysis enables to estimate the impact of different laser scanners and georeferencing devices on the quality of obtained 3D points. The obtained uncertainty values were illustrated using error ellipsoids on different datasets.

  16. The visualization of spatial uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, R.M.

    1994-12-31

    Geostatistical conditions simulation is gaining acceptance as a numerical modeling tool in the petroleum industry. Unfortunately, many of the new users of conditional simulation work with only one outcome or ``realization`` and ignore the many other outcomes that could be produced by their conditional simulation tools. 3-D visualization tools allow them to create very realistic images of this single outcome as reality. There are many methods currently available for presenting the uncertainty information from a family of possible outcomes; most of these, however, use static displays and many present uncertainty in a format that is not intuitive. This paper exploresmore » the visualization of uncertainty through dynamic displays that exploit the intuitive link between uncertainty and change by presenting the use with a constantly evolving model. The key technical challenge to such a dynamic presentation is the ability to create numerical models that honor the available well data and geophysical information and yet are incrementally different so that successive frames can be viewed rapidly as an animated cartoon. An example of volumetric uncertainty from a Gulf Coast reservoir will be used to demonstrate that such a dynamic presentation is the ability to create numerical models that honor the available well data and geophysical information and yet are incrementally different so that successive frames can be viewed rapidly as an animated cartoon. An example of volumetric uncertainty from a Gulf Coast reservoir will be used to demonstrate that such animation is possible and to show that such dynamic displays can be an effective tool in risk analysis for the petroleum industry.« less

  17. Representation of analysis results involving aleatory and epistemic uncertainty.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jay Dean; Helton, Jon Craig; Oberkampf, William Louis

    2008-08-01

    Procedures are described for the representation of results in analyses that involve both aleatory uncertainty and epistemic uncertainty, with aleatory uncertainty deriving from an inherent randomness in the behavior of the system under study and epistemic uncertainty deriving from a lack of knowledge about the appropriate values to use for quantities that are assumed to have fixed but poorly known values in the context of a specific study. Aleatory uncertainty is usually represented with probability and leads to cumulative distribution functions (CDFs) or complementary cumulative distribution functions (CCDFs) for analysis results of interest. Several mathematical structures are available for themore » representation of epistemic uncertainty, including interval analysis, possibility theory, evidence theory and probability theory. In the presence of epistemic uncertainty, there is not a single CDF or CCDF for a given analysis result. Rather, there is a family of CDFs and a corresponding family of CCDFs that derive from epistemic uncertainty and have an uncertainty structure that derives from the particular uncertainty structure (i.e., interval analysis, possibility theory, evidence theory, probability theory) used to represent epistemic uncertainty. Graphical formats for the representation of epistemic uncertainty in families of CDFs and CCDFs are investigated and presented for the indicated characterizations of epistemic uncertainty.« less

  18. Quantifying radar-rainfall uncertainties in urban drainage flow modelling

    NASA Astrophysics Data System (ADS)

    Rico-Ramirez, M. A.; Liguori, S.; Schellart, A. N. A.

    2015-09-01

    This work presents the results of the implementation of a probabilistic system to model the uncertainty associated to radar rainfall (RR) estimates and the way this uncertainty propagates through the sewer system of an urban area located in the North of England. The spatial and temporal correlations of the RR errors as well as the error covariance matrix were computed to build a RR error model able to generate RR ensembles that reproduce the uncertainty associated with the measured rainfall. The results showed that the RR ensembles provide important information about the uncertainty in the rainfall measurement that can be propagated in the urban sewer system. The results showed that the measured flow peaks and flow volumes are often bounded within the uncertainty area produced by the RR ensembles. In 55% of the simulated events, the uncertainties in RR measurements can explain the uncertainties observed in the simulated flow volumes. However, there are also some events where the RR uncertainty cannot explain the whole uncertainty observed in the simulated flow volumes indicating that there are additional sources of uncertainty that must be considered such as the uncertainty in the urban drainage model structure, the uncertainty in the urban drainage model calibrated parameters, and the uncertainty in the measured sewer flows.

  19. Anatomy of the Higgs fits: A first guide to statistical treatments of the theoretical uncertainties

    NASA Astrophysics Data System (ADS)

    Fichet, Sylvain; Moreau, Grégory

    2016-04-01

    The studies of the Higgs boson couplings based on the recent and upcoming LHC data open up a new window on physics beyond the Standard Model. In this paper, we propose a statistical guide to the consistent treatment of the theoretical uncertainties entering the Higgs rate fits. Both the Bayesian and frequentist approaches are systematically analysed in a unified formalism. We present analytical expressions for the marginal likelihoods, useful to implement simultaneously the experimental and theoretical uncertainties. We review the various origins of the theoretical errors (QCD, EFT, PDF, production mode contamination…). All these individual uncertainties are thoroughly combined with the help of moment-based considerations. The theoretical correlations among Higgs detection channels appear to affect the location and size of the best-fit regions in the space of Higgs couplings. We discuss the recurrent question of the shape of the prior distributions for the individual theoretical errors and find that a nearly Gaussian prior arises from the error combinations. We also develop the bias approach, which is an alternative to marginalisation providing more conservative results. The statistical framework to apply the bias principle is introduced and two realisations of the bias are proposed. Finally, depending on the statistical treatment, the Standard Model prediction for the Higgs signal strengths is found to lie within either the 68% or 95% confidence level region obtained from the latest analyses of the 7 and 8 TeV LHC datasets.

  20. Improving Forecasts Through Realistic Uncertainty Estimates: A Novel Data Driven Method for Model Uncertainty Quantification in Data Assimilation

    NASA Astrophysics Data System (ADS)

    Pathiraja, S. D.; Moradkhani, H.; Marshall, L. A.; Sharma, A.; Geenens, G.

    2016-12-01

    Effective combination of model simulations and observations through Data Assimilation (DA) depends heavily on uncertainty characterisation. Many traditional methods for quantifying model uncertainty in DA require some level of subjectivity (by way of tuning parameters or by assuming Gaussian statistics). Furthermore, the focus is typically on only estimating the first and second moments. We propose a data-driven methodology to estimate the full distributional form of model uncertainty, i.e. the transition density p(xt|xt-1). All sources of uncertainty associated with the model simulations are considered collectively, without needing to devise stochastic perturbations for individual components (such as model input, parameter and structural uncertainty). A training period is used to derive the distribution of errors in observed variables conditioned on hidden states. Errors in hidden states are estimated from the conditional distribution of observed variables using non-linear optimization. The theory behind the framework and case study applications are discussed in detail. Results demonstrate improved predictions and more realistic uncertainty bounds compared to a standard perturbation approach.

  1. Principled Narrative

    ERIC Educational Resources Information Center

    MacBeath, John; Swaffield, Sue; Frost, David

    2009-01-01

    This article provides an overview of the "Carpe Vitam: Leadership for Learning" project, accounting for its provenance and purposes, before focusing on the principles for practice that constitute an important part of the project's legacy. These principles framed the dialogic process that was a dominant feature of the project and are presented,…

  2. Uncertainty quantification of effective nuclear interactions

    DOE PAGES

    Pérez, R. Navarro; Amaro, J. E.; Arriola, E. Ruiz

    2016-03-02

    We give a brief review on the development of phenomenological NN interactions and the corresponding quanti cation of statistical uncertainties. We look into the uncertainty of effective interactions broadly used in mean eld calculations through the Skyrme parameters and effective eld theory counter-terms by estimating both statistical and systematic uncertainties stemming from the NN interaction. We also comment on the role played by different tting strategies on the light of recent developments.

  3. Uncertainty quantification of effective nuclear interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pérez, R. Navarro; Amaro, J. E.; Arriola, E. Ruiz

    We give a brief review on the development of phenomenological NN interactions and the corresponding quanti cation of statistical uncertainties. We look into the uncertainty of effective interactions broadly used in mean eld calculations through the Skyrme parameters and effective eld theory counter-terms by estimating both statistical and systematic uncertainties stemming from the NN interaction. We also comment on the role played by different tting strategies on the light of recent developments.

  4. Uncertainty and Variability in Physiologically-Based ...

    EPA Pesticide Factsheets

    EPA announced the availability of the final report, Uncertainty and Variability in Physiologically-Based Pharmacokinetic (PBPK) Models: Key Issues and Case Studies. This report summarizes some of the recent progress in characterizing uncertainty and variability in physiologically-based pharmacokinetic models and their predictions for use in risk assessment. This report summarizes some of the recent progress in characterizing uncertainty and variability in physiologically-based pharmacokinetic models and their predictions for use in risk assessment.

  5. Uncertainty in structural interpretation: Lessons to be learnt

    NASA Astrophysics Data System (ADS)

    Bond, Clare E.

    2015-05-01

    Uncertainty in the interpretation of geological data is an inherent element of geology. Datasets from different sources: remotely sensed seismic imagery, field data and borehole data, are often combined and interpreted to create a geological model of the sub-surface. The data have limited resolution and spatial distribution that results in uncertainty in the interpretation of the data and in the subsequent geological model(s) created. Methods to determine the extent of interpretational uncertainty of a dataset, how to capture and express that uncertainty, and consideration of uncertainties in terms of risk have been investigated. Here I review the work that has taken place and discuss best practice in accounting for uncertainties in structural interpretation workflows. Barriers to best practice are reflected on, including the use of software packages for interpretation. Experimental evidence suggests that minimising interpretation error through the use of geological reasoning and rules can help decrease interpretation uncertainty; through identification of inadmissible interpretations and in highlighting areas of uncertainty. Understanding expert thought processes and reasoning, including the use of visuospatial skills, during interpretation may aid in the identification of uncertainties, and in the education of new geoscientists.

  6. Evaluating measurement uncertainty in fluid phase equilibrium calculations

    NASA Astrophysics Data System (ADS)

    van der Veen, Adriaan M. H.

    2018-04-01

    The evaluation of measurement uncertainty in accordance with the ‘Guide to the expression of uncertainty in measurement’ (GUM) has not yet become widespread in physical chemistry. With only the law of the propagation of uncertainty from the GUM, many of these uncertainty evaluations would be cumbersome, as models are often non-linear and require iterative calculations. The methods from GUM supplements 1 and 2 enable the propagation of uncertainties under most circumstances. Experimental data in physical chemistry are used, for example, to derive reference property data and support trade—all applications where measurement uncertainty plays an important role. This paper aims to outline how the methods for evaluating and propagating uncertainty can be applied to some specific cases with a wide impact: deriving reference data from vapour pressure data, a flash calculation, and the use of an equation-of-state to predict the properties of both phases in a vapour-liquid equilibrium. The three uncertainty evaluations demonstrate that the methods of GUM and its supplements are a versatile toolbox that enable us to evaluate the measurement uncertainty of physical chemical measurements, including the derivation of reference data, such as the equilibrium thermodynamical properties of fluids.

  7. Methods for handling uncertainty within pharmaceutical funding decisions

    NASA Astrophysics Data System (ADS)

    Stevenson, Matt; Tappenden, Paul; Squires, Hazel

    2014-01-01

    This article provides a position statement regarding decision making under uncertainty within the economic evaluation of pharmaceuticals, with a particular focus upon the National Institute for Health and Clinical Excellence context within England and Wales. This area is of importance as funding agencies have a finite budget from which to purchase a selection of competing health care interventions. The objective function generally used is that of maximising societal health with an explicit acknowledgement that there will be opportunity costs associated with purchasing a particular intervention. Three components of uncertainty are discussed within a pharmaceutical funding perspective: methodological uncertainty, parameter uncertainty and structural uncertainty, alongside a discussion of challenges that are particularly pertinent to health economic evaluation. The discipline has focused primarily on handling methodological and parameter uncertainty and a clear reference case has been developed for consistency across evaluations. However, uncertainties still remain. Less attention has been given to methods for handling structural uncertainty. The lack of adequate methods to explicitly incorporate this aspect of model development may result in the true uncertainty surrounding health care investment decisions being underestimated. Research in this area is ongoing as we review.

  8. Uncertainty Estimation Cheat Sheet for Probabilistic Risk Assessment

    NASA Technical Reports Server (NTRS)

    Britton, Paul T.; Al Hassan, Mohammad; Ring, Robert W.

    2017-01-01

    "Uncertainty analysis itself is uncertain, therefore, you cannot evaluate it exactly," Source Uncertain Quantitative results for aerospace engineering problems are influenced by many sources of uncertainty. Uncertainty analysis aims to make a technical contribution to decision-making through the quantification of uncertainties in the relevant variables as well as through the propagation of these uncertainties up to the result. Uncertainty can be thought of as a measure of the 'goodness' of a result and is typically represented as statistical dispersion. This paper will explain common measures of centrality and dispersion; and-with examples-will provide guidelines for how they may be estimated to ensure effective technical contributions to decision-making.

  9. Designing for Uncertainty: Three Approaches

    ERIC Educational Resources Information Center

    Bennett, Scott

    2007-01-01

    Higher education wishes to get long life and good returns on its investment in learning spaces. Doing this has become difficult because rapid changes in information technology have created fundamental uncertainties about the future in which capital investments must deliver value. Three approaches to designing for this uncertainty are described…

  10. Inviting Uncertainty into the Classroom

    ERIC Educational Resources Information Center

    Beghetto, Ronald A.

    2017-01-01

    Most teachers try to avoid having students experience uncertainty in their schoolwork. But if we want to prepare students to tackle complex problems (and the uncertainty that accompanies such problems), we must give them learning experiences that involve feeling unsure and sometimes even confused. Beghetto presents five strategies that help…

  11. Housing Uncertainty and Childhood Impatience

    ERIC Educational Resources Information Center

    Anil, Bulent; Jordan, Jeffrey L.; Zahirovic-Herbert, Velma

    2011-01-01

    The study demonstrates a direct link between housing uncertainty and children's time preferences, or patience. We show that students who face housing uncertainties through mortgage foreclosures and eviction learn impatient behavior and are therefore at greater risk of making poor intertemporal choices such as dropping out of school. We find that…

  12. Sources of uncertainty in flood inundation maps

    USGS Publications Warehouse

    Bales, J.D.; Wagner, C.R.

    2009-01-01

    Flood inundation maps typically have been used to depict inundated areas for floods having specific exceedance levels. The uncertainty associated with the inundation boundaries is seldom quantified, in part, because all of the sources of uncertainty are not recognized and because data available to quantify uncertainty seldom are available. Sources of uncertainty discussed in this paper include hydrologic data used for hydraulic model development and validation, topographic data, and the hydraulic model. The assumption of steady flow, which typically is made to produce inundation maps, has less of an effect on predicted inundation at lower flows than for higher flows because more time typically is required to inundate areas at high flows than at low flows. Difficulties with establishing reasonable cross sections that do not intersect and that represent water-surface slopes in tributaries contribute additional uncertainties in the hydraulic modelling. As a result, uncertainty in the flood inundation polygons simulated with a one-dimensional model increases with distance from the main channel.

  13. Generalizing Landauer's principle

    NASA Astrophysics Data System (ADS)

    Maroney, O. J. E.

    2009-03-01

    In a recent paper [Stud. Hist. Philos. Mod. Phys. 36, 355 (2005)] it is argued that to properly understand the thermodynamics of Landauer’s principle it is necessary to extend the concept of logical operations to include indeterministic operations. Here we examine the thermodynamics of such operations in more detail, extending the work of Landauer to include indeterministic operations and to include logical states with variable entropies, temperatures, and mean energies. We derive the most general statement of Landauer’s principle and prove its universality, extending considerably the validity of previous proofs. This confirms conjectures made that all logical operations may, in principle, be performed in a thermodynamically reversible fashion, although logically irreversible operations would require special, practically rather difficult, conditions to do so. We demonstrate a physical process that can perform any computation without work requirements or heat exchange with the environment. Many widespread statements of Landauer’s principle are shown to be special cases of our generalized principle.

  14. Capturing total chronological and spatial uncertainties in palaeo-ice sheet reconstructions: the DATED example

    NASA Astrophysics Data System (ADS)

    Hughes, Anna; Gyllencreutz, Richard; Mangerud, Jan; Svendsen, John Inge

    2017-04-01

    Glacial geologists generate empirical reconstructions of former ice-sheet dynamics by combining evidence from the preserved record of glacial landforms (e.g. end moraines, lineations) and sediments with chronological evidence (mainly numerical dates derived predominantly from radiocarbon, exposure and luminescence techniques). However the geomorphological and sedimentological footprints and chronological data are both incomplete records in both space and time, and all have multiple types of uncertainty associated with them. To understand ice sheets' response to climate we need numerical models of ice-sheet dynamics based on physical principles. To test and/or constrain such models, empirical reconstructions of past ice sheets that capture and acknowledge all uncertainties are required. In 2005 we started a project (Database of the Eurasian Deglaciation, DATED) to produce an empirical reconstruction of the evolution of the last Eurasian ice sheets, (including the British-Irish, Scandinavian and Svalbard-Barents-Kara Seas ice sheets) that is fully documented, specified in time, and includes uncertainty estimates. Over 5000 dates relevant to constraining ice build-up and retreat were assessed for reliability and used together with published ice-sheet margin positions based on glacial geomorphology to reconstruct time-slice maps of the ice sheets' extent. The DATED maps show synchronous ice margins with maximum-minimum uncertainty bounds for every 1000 years between 25-10 kyr ago. In the first version of results (DATED-1; Hughes et al. 2016) all uncertainties (both quantitative and qualitative, e.g. precision and accuracy of numerical dates, correlation of moraines, stratigraphic interpretations) were combined based on our best glaciological-geological assessment and expressed in terms of distance as a 'fuzzy' margin. Large uncertainties (>100 km) exist; predominantly across marine sectors and other locations where there are spatial gaps in the dating record (e.g. the

  15. Risk communication and the Precautionary Principle.

    PubMed

    Biocca, Marco

    2004-01-01

    The perception of risks for environment and health deriving from globalization processes and an uncontrolled use of modern technologies is growing everywhere. The greater the capacity of controlling living conditions, the larger is the possibility of misusing this power. In environmental and occupational health research we tend to reduce the complexity of the observed phenomena in order to facilitate conclusions. In social and political sciences complexity is an essential element of the context, which needs to be continuously considered. The Precautionary Principle is a tool for facing complexity and uncertainty in health risk management. This paper is aimed at demonstrating that this is not only a problem of technical risk assessment. Great attention should also be paid to improve risk communication. Communication between the stakeholders (experts, decision makers, political and social leaders, media, groups of interest and people involved) is possibly the best condition to be successful in health risk management. Nevertheless, this process usually runs up against severe obstacles. These are not only caused by existing conflicts of interest. Differences in values, languages, perceptions, resources to have access to information, and to express one's own point of view are other key aspects.

  16. The impact of uncertainty on optimal emission policies

    NASA Astrophysics Data System (ADS)

    Botta, Nicola; Jansson, Patrik; Ionescu, Cezar

    2018-05-01

    We apply a computational framework for specifying and solving sequential decision problems to study the impact of three kinds of uncertainties on optimal emission policies in a stylized sequential emission problem.We find that uncertainties about the implementability of decisions on emission reductions (or increases) have a greater impact on optimal policies than uncertainties about the availability of effective emission reduction technologies and uncertainties about the implications of trespassing critical cumulated emission thresholds. The results show that uncertainties about the implementability of decisions on emission reductions (or increases) call for more precautionary policies. In other words, delaying emission reductions to the point in time when effective technologies will become available is suboptimal when these uncertainties are accounted for rigorously. By contrast, uncertainties about the implications of exceeding critical cumulated emission thresholds tend to make early emission reductions less rewarding.

  17. Uncertainty Budget Analysis for Dimensional Inspection Processes (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdez, Lucas M.

    2012-07-26

    This paper is intended to provide guidance and describe how to prepare an uncertainty analysis of a dimensional inspection process through the utilization of an uncertainty budget analysis. The uncertainty analysis is stated in the same methodology as that of the ISO GUM standard for calibration and testing. There is a specific distinction between how Type A and Type B uncertainty analysis is used in a general and specific process. All theory and applications are utilized to represent both a generalized approach to estimating measurement uncertainty and how to report and present these estimations for dimensional measurements in a dimensionalmore » inspection process. The analysis of this uncertainty budget shows that a well-controlled dimensional inspection process produces a conservative process uncertainty, which can be attributed to the necessary assumptions in place for best possible results.« less

  18. Uncertainty representation of grey numbers and grey sets.

    PubMed

    Yang, Yingjie; Liu, Sifeng; John, Robert

    2014-09-01

    In the literature, there is a presumption that a grey set and an interval-valued fuzzy set are equivalent. This presumption ignores the existence of discrete components in a grey number. In this paper, new measurements of uncertainties of grey numbers and grey sets, consisting of both absolute and relative uncertainties, are defined to give a comprehensive representation of uncertainties in a grey number and a grey set. Some simple examples are provided to illustrate that the proposed uncertainty measurement can give an effective representation of both absolute and relative uncertainties in a grey number and a grey set. The relationships between grey sets and interval-valued fuzzy sets are also analyzed from the point of view of the proposed uncertainty representation. The analysis demonstrates that grey sets and interval-valued fuzzy sets provide different but overlapping models for uncertainty representation in sets.

  19. Benchmarking observational uncertainties for hydrology (Invited)

    NASA Astrophysics Data System (ADS)

    McMillan, H. K.; Krueger, T.; Freer, J. E.; Westerberg, I.

    2013-12-01

    There is a pressing need for authoritative and concise information on the expected error distributions and magnitudes in hydrological data, to understand its information content. Many studies have discussed how to incorporate uncertainty information into model calibration and implementation, and shown how model results can be biased if uncertainty is not appropriately characterised. However, it is not always possible (for example due to financial or time constraints) to make detailed studies of uncertainty for every research study. Instead, we propose that the hydrological community could benefit greatly from sharing information on likely uncertainty characteristics and the main factors that control the resulting magnitude. In this presentation, we review the current knowledge of uncertainty for a number of key hydrological variables: rainfall, flow and water quality (suspended solids, nitrogen, phosphorus). We collated information on the specifics of the data measurement (data type, temporal and spatial resolution), error characteristics measured (e.g. standard error, confidence bounds) and error magnitude. Our results were primarily split by data type. Rainfall uncertainty was controlled most strongly by spatial scale, flow uncertainty was controlled by flow state (low, high) and gauging method. Water quality presented a more complex picture with many component errors. For all variables, it was easy to find examples where relative error magnitude exceeded 40%. We discuss some of the recent developments in hydrology which increase the need for guidance on typical error magnitudes, in particular when doing comparative/regionalisation and multi-objective analysis. Increased sharing of data, comparisons between multiple catchments, and storage in national/international databases can mean that data-users are far removed from data collection, but require good uncertainty information to reduce bias in comparisons or catchment regionalisation studies. Recently it has

  20. Determination of Uncertainties for the New SSME Model

    NASA Technical Reports Server (NTRS)

    Coleman, Hugh W.; Hawk, Clark W.

    1996-01-01

    This report discusses the uncertainty analysis performed in support of a new test analysis and performance prediction model for the Space Shuttle Main Engine. The new model utilizes uncertainty estimates for experimental data and for the analytical model to obtain the most plausible operating condition for the engine system. This report discusses the development of the data sets and uncertainty estimates to be used in the development of the new model. It also presents the application of uncertainty analysis to analytical models and the uncertainty analysis for the conservation of mass and energy balance relations is presented. A new methodology for the assessment of the uncertainty associated with linear regressions is presented.

  1. Probabilistic Methods for Uncertainty Propagation Applied to Aircraft Design

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.; Lin, Hong-Zong; Khalessi, Mohammad R.

    2002-01-01

    Three methods of probabilistic uncertainty propagation and quantification (the method of moments, Monte Carlo simulation, and a nongradient simulation search method) are applied to an aircraft analysis and conceptual design program to demonstrate design under uncertainty. The chosen example problems appear to have discontinuous design spaces and thus these examples pose difficulties for many popular methods of uncertainty propagation and quantification. However, specific implementation features of the first and third methods chosen for use in this study enable successful propagation of small uncertainties through the program. Input uncertainties in two configuration design variables are considered. Uncertainties in aircraft weight are computed. The effects of specifying required levels of constraint satisfaction with specified levels of input uncertainty are also demonstrated. The results show, as expected, that the designs under uncertainty are typically heavier and more conservative than those in which no input uncertainties exist.

  2. Assessing uncertainties in land cover projections.

    PubMed

    Alexander, Peter; Prestele, Reinhard; Verburg, Peter H; Arneth, Almut; Baranzelli, Claudia; Batista E Silva, Filipe; Brown, Calum; Butler, Adam; Calvin, Katherine; Dendoncker, Nicolas; Doelman, Jonathan C; Dunford, Robert; Engström, Kerstin; Eitelberg, David; Fujimori, Shinichiro; Harrison, Paula A; Hasegawa, Tomoko; Havlik, Petr; Holzhauer, Sascha; Humpenöder, Florian; Jacobs-Crisioni, Chris; Jain, Atul K; Krisztin, Tamás; Kyle, Page; Lavalle, Carlo; Lenton, Tim; Liu, Jiayi; Meiyappan, Prasanth; Popp, Alexander; Powell, Tom; Sands, Ronald D; Schaldach, Rüdiger; Stehfest, Elke; Steinbuks, Jevgenijs; Tabeau, Andrzej; van Meijl, Hans; Wise, Marshall A; Rounsevell, Mark D A

    2017-02-01

    Understanding uncertainties in land cover projections is critical to investigating land-based climate mitigation policies, assessing the potential of climate adaptation strategies and quantifying the impacts of land cover change on the climate system. Here, we identify and quantify uncertainties in global and European land cover projections over a diverse range of model types and scenarios, extending the analysis beyond the agro-economic models included in previous comparisons. The results from 75 simulations over 18 models are analysed and show a large range in land cover area projections, with the highest variability occurring in future cropland areas. We demonstrate systematic differences in land cover areas associated with the characteristics of the modelling approach, which is at least as great as the differences attributed to the scenario variations. The results lead us to conclude that a higher degree of uncertainty exists in land use projections than currently included in climate or earth system projections. To account for land use uncertainty, it is recommended to use a diverse set of models and approaches when assessing the potential impacts of land cover change on future climate. Additionally, further work is needed to better understand the assumptions driving land use model results and reveal the causes of uncertainty in more depth, to help reduce model uncertainty and improve the projections of land cover. © 2016 John Wiley & Sons Ltd.

  3. Research strategies for addressing uncertainties

    USGS Publications Warehouse

    Busch, David E.; Brekke, Levi D.; Averyt, Kristen; Jardine, Angela; Welling, Leigh; Garfin, Gregg; Jardine, Angela; Merideth, Robert; Black, Mary; LeRoy, Sarah

    2013-01-01

    Research Strategies for Addressing Uncertainties builds on descriptions of research needs presented elsewhere in the book; describes current research efforts and the challenges and opportunities to reduce the uncertainties of climate change; explores ways to improve the understanding of changes in climate and hydrology; and emphasizes the use of research to inform decision making.

  4. The genetic difference principle.

    PubMed

    Farrelly, Colin

    2004-01-01

    In the newly emerging debates about genetics and justice three distinct principles have begun to emerge concerning what the distributive aim of genetic interventions should be. These principles are: genetic equality, a genetic decent minimum, and the genetic difference principle. In this paper, I examine the rationale of each of these principles and argue that genetic equality and a genetic decent minimum are ill-equipped to tackle what I call the currency problem and the problem of weight. The genetic difference principle is the most promising of the three principles and I develop this principle so that it takes seriously the concerns of just health care and distributive justice in general. Given the strains on public funds for other important social programmes, the costs of pursuing genetic interventions and the nature of genetic interventions, I conclude that a more lax interpretation of the genetic difference principle is appropriate. This interpretation stipulates that genetic inequalities should be arranged so that they are to the greatest reasonable benefit of the least advantaged. Such a proposal is consistent with prioritarianism and provides some practical guidance for non-ideal societies--that is, societies that do not have the endless amount of resources needed to satisfy every requirement of justice.

  5. Quantum uncertainty switches on or off the error-disturbance tradeoff

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Xiang; Su, Zu-En; Zhu, Xuanmin; Wu, Shengjun; Chen, Zeng-Bing

    2016-06-01

    The indeterminacy of quantum mechanics was originally presented by Heisenberg through the tradeoff between the measuring error of the observable A and the consequential disturbance to the value of another observable B. This tradeoff now has become a popular interpretation of the uncertainty principle. However, the historic idea has never been exactly formulated previously and is recently called into question. A theory built upon operational and state-relevant definitions of error and disturbance is called for to rigorously reexamine the relationship. Here by putting forward such natural definitions, we demonstrate both theoretically and experimentally that there is no tradeoff if the outcome of measuring B is more uncertain than that of A. Otherwise, the tradeoff will be switched on and well characterized by the Jensen-Shannon divergence. Our results reveal the hidden effect of the uncertain nature possessed by the measured state, and conclude that the state-relevant relation between error and disturbance is not almosteverywhere a tradeoff as people usually believe.

  6. Entropic uncertainty from effective anticommutators

    NASA Astrophysics Data System (ADS)

    Kaniewski, Jedrzej; Tomamichel, Marco; Wehner, Stephanie

    2014-07-01

    We investigate entropic uncertainty relations for two or more binary measurements, for example, spin-1/2 or polarization measurements. We argue that the effective anticommutators of these measurements, i.e., the anticommutators evaluated on the state prior to measuring, are an expedient measure of measurement incompatibility. Based on the knowledge of pairwise effective anticommutators we derive a class of entropic uncertainty relations in terms of conditional Rényi entropies. Our uncertainty relations are formulated in terms of effective measures of incompatibility, which can be certified in a device-independent fashion. Consequently, we discuss potential applications of our findings to device-independent quantum cryptography. Moreover, to investigate the tightness of our analysis we consider the simplest (and very well studied) scenario of two measurements on a qubit. We find that our results outperform the celebrated bound due to Maassen and Uffink [Phys. Rev. Lett. 60, 1103 (1988), 10.1103/PhysRevLett.60.1103] and provide an analytical expression for the minimum uncertainty which also outperforms some recent bounds based on majorization.

  7. Uncertainties in Climatological Seawater Density Calculations

    NASA Astrophysics Data System (ADS)

    Dai, Hao; Zhang, Xining

    2018-03-01

    In most applications, with seawater conductivity, temperature, and pressure data measured in situ by various observation instruments e.g., Conductivity-Temperature-Depth instruments (CTD), the density which has strong ties to ocean dynamics and so on is computed according to equations of state for seawater. This paper, based on density computational formulae in the Thermodynamic Equation of Seawater 2010 (TEOS-10), follows the Guide of the expression of Uncertainty in Measurement (GUM) and assesses the main sources of uncertainties. By virtue of climatological decades-average temperature/Practical Salinity/pressure data sets in the global ocean provided by the National Oceanic and Atmospheric Administration (NOAA), correlation coefficients between uncertainty sources are determined and the combined standard uncertainties uc>(ρ>) in seawater density calculations are evaluated. For grid points in the world ocean with 0.25° resolution, the standard deviations of uc>(ρ>) in vertical profiles cover the magnitude order of 10-4 kg m-3. The uc>(ρ>) means in vertical profiles of the Baltic Sea are about 0.028kg m-3 due to the larger scatter of Absolute Salinity anomaly. The distribution of the uc>(ρ>) means in vertical profiles of the world ocean except for the Baltic Sea, which covers the range of >(0.004,0.01>) kg m-3, is related to the correlation coefficient r>(SA,p>) between Absolute Salinity SA and pressure p. The results in the paper are based on sensors' measuring uncertainties of high accuracy CTD. Larger uncertainties in density calculations may arise if connected with lower sensors' specifications. This work may provide valuable uncertainty information required for reliability considerations of ocean circulation and global climate models.

  8. Uncertainties in Forecasting Streamflow using Entropy Theory

    NASA Astrophysics Data System (ADS)

    Cui, H.; Singh, V. P.

    2017-12-01

    Streamflow forecasting is essential in river restoration, reservoir operation, power generation, irrigation, navigation, and water management. However, there is always uncertainties accompanied in forecast, which may affect the forecasting results and lead to large variations. Therefore, uncertainties must be considered and be assessed properly when forecasting streamflow for water management. The aim of our work is to quantify the uncertainties involved in forecasting streamflow and provide reliable streamflow forecast. Despite that streamflow time series are stochastic, they exhibit seasonal and periodic patterns. Therefore, streamflow forecasting entails modeling seasonality, periodicity, and its correlation structure, and assessing uncertainties. This study applies entropy theory to forecast streamflow and measure uncertainties during the forecasting process. To apply entropy theory for streamflow forecasting, spectral analysis is combined to time series analysis, as spectral analysis can be employed to characterize patterns of streamflow variation and identify the periodicity of streamflow. That is, it permits to extract significant information for understanding the streamflow process and prediction thereof. Application of entropy theory for streamflow forecasting involves determination of spectral density, determination of parameters, and extension of autocorrelation function. The uncertainties brought by precipitation input, forecasting model and forecasted results are measured separately using entropy. With information theory, how these uncertainties transported and aggregated during these processes will be described.

  9. Aeroservoelastic Uncertainty Model Identification from Flight Data

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.

    2001-01-01

    Uncertainty modeling is a critical element in the estimation of robust stability margins for stability boundary prediction and robust flight control system development. There has been a serious deficiency to date in aeroservoelastic data analysis with attention to uncertainty modeling. Uncertainty can be estimated from flight data using both parametric and nonparametric identification techniques. The model validation problem addressed in this paper is to identify aeroservoelastic models with associated uncertainty structures from a limited amount of controlled excitation inputs over an extensive flight envelope. The challenge to this problem is to update analytical models from flight data estimates while also deriving non-conservative uncertainty descriptions consistent with the flight data. Multisine control surface command inputs and control system feedbacks are used as signals in a wavelet-based modal parameter estimation procedure for model updates. Transfer function estimates are incorporated in a robust minimax estimation scheme to get input-output parameters and error bounds consistent with the data and model structure. Uncertainty estimates derived from the data in this manner provide an appropriate and relevant representation for model development and robust stability analysis. This model-plus-uncertainty identification procedure is applied to aeroservoelastic flight data from the NASA Dryden Flight Research Center F-18 Systems Research Aircraft.

  10. Developing a spectroradiometer data uncertainty methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Josh; Vignola, Frank; Habte, Aron

    The proper calibration and measurement uncertainty of spectral data obtained from spectroradiometers is essential in accurately quantifying the output of photovoltaic (PV) devices. PV cells and modules are initially characterized using solar simulators but field performance is evaluated using natural sunlight. Spectroradiometers are used to measure the spectrum of both these light sources in an effort to understand the spectral dependence of various PV output capabilities. These chains of characterization and measurement are traceable to National Metrology Institutes such as National Institute of Standards and Technology, and therefore there is a need for a comprehensive uncertainty methodology to determine themore » accuracy of spectroradiometer data. In this paper, the uncertainties associated with the responsivity of a spectroradiometer are examined using the Guide to the Expression of Uncertainty in Measurement (GUM) protocols. This is first done for a generic spectroradiometer, and then, to illustrate the methodology, the calibration of a LI-COR 1800 spectroradiometer is performed. The reader should be aware that the implementation of this methodology will be specific to the spectroradiometer being analyzed and the experimental setup that is used. Depending of the characteristics of the spectroradiometer being evaluated additional sources of uncertainty may need to be included, but the general GUM methodology is the same. Several sources of uncertainty are associated with the spectroradiometer responsivity. Major sources of uncertainty associated with the LI-COR spectroradiometer are noise in the signal at wavelengths less than 400 nm. At wavelengths more than 400 nm, the responsivity can vary drastically, and it is dependent on the wavelength of light, the temperature dependence, the angle of incidence, and the azimuthal orientation of the sensor to the light source. As a result, the expanded uncertainties in the responsivity of the LI-COR spectroradiometer

  11. Developing a spectroradiometer data uncertainty methodology

    DOE PAGES

    Peterson, Josh; Vignola, Frank; Habte, Aron; ...

    2017-04-11

    The proper calibration and measurement uncertainty of spectral data obtained from spectroradiometers is essential in accurately quantifying the output of photovoltaic (PV) devices. PV cells and modules are initially characterized using solar simulators but field performance is evaluated using natural sunlight. Spectroradiometers are used to measure the spectrum of both these light sources in an effort to understand the spectral dependence of various PV output capabilities. These chains of characterization and measurement are traceable to National Metrology Institutes such as National Institute of Standards and Technology, and therefore there is a need for a comprehensive uncertainty methodology to determine themore » accuracy of spectroradiometer data. In this paper, the uncertainties associated with the responsivity of a spectroradiometer are examined using the Guide to the Expression of Uncertainty in Measurement (GUM) protocols. This is first done for a generic spectroradiometer, and then, to illustrate the methodology, the calibration of a LI-COR 1800 spectroradiometer is performed. The reader should be aware that the implementation of this methodology will be specific to the spectroradiometer being analyzed and the experimental setup that is used. Depending of the characteristics of the spectroradiometer being evaluated additional sources of uncertainty may need to be included, but the general GUM methodology is the same. Several sources of uncertainty are associated with the spectroradiometer responsivity. Major sources of uncertainty associated with the LI-COR spectroradiometer are noise in the signal at wavelengths less than 400 nm. At wavelengths more than 400 nm, the responsivity can vary drastically, and it is dependent on the wavelength of light, the temperature dependence, the angle of incidence, and the azimuthal orientation of the sensor to the light source. As a result, the expanded uncertainties in the responsivity of the LI-COR spectroradiometer

  12. On the formulation of a minimal uncertainty model for robust control with structured uncertainty

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.; Chang, B.-C.; Fischl, Robert

    1991-01-01

    In the design and analysis of robust control systems for uncertain plants, representing the system transfer matrix in the form of what has come to be termed an M-delta model has become widely accepted and applied in the robust control literature. The M represents a transfer function matrix M(s) of the nominal closed loop system, and the delta represents an uncertainty matrix acting on M(s). The nominal closed loop system M(s) results from closing the feedback control system, K(s), around a nominal plant interconnection structure P(s). The uncertainty can arise from various sources, such as structured uncertainty from parameter variations or multiple unsaturated uncertainties from unmodeled dynamics and other neglected phenomena. In general, delta is a block diagonal matrix, but for real parameter variations delta is a diagonal matrix of real elements. Conceptually, the M-delta structure can always be formed for any linear interconnection of inputs, outputs, transfer functions, parameter variations, and perturbations. However, very little of the currently available literature addresses computational methods for obtaining this structure, and none of this literature addresses a general methodology for obtaining a minimal M-delta model for a wide class of uncertainty, where the term minimal refers to the dimension of the delta matrix. Since having a minimally dimensioned delta matrix would improve the efficiency of structured singular value (or multivariable stability margin) computations, a method of obtaining a minimal M-delta would be useful. Hence, a method of obtaining the interconnection system P(s) is required. A generalized procedure for obtaining a minimal P-delta structure for systems with real parameter variations is presented. Using this model, the minimal M-delta model can then be easily obtained by closing the feedback loop. The procedure involves representing the system in a cascade-form state-space realization, determining the minimal uncertainty matrix

  13. State-independent uncertainty relations and entanglement detection

    NASA Astrophysics Data System (ADS)

    Qian, Chen; Li, Jun-Li; Qiao, Cong-Feng

    2018-04-01

    The uncertainty relation is one of the key ingredients of quantum theory. Despite the great efforts devoted to this subject, most of the variance-based uncertainty relations are state-dependent and suffering from the triviality problem of zero lower bounds. Here we develop a method to get uncertainty relations with state-independent lower bounds. The method works by exploring the eigenvalues of a Hermitian matrix composed by Bloch vectors of incompatible observables and is applicable for both pure and mixed states and for arbitrary number of N-dimensional observables. The uncertainty relation for the incompatible observables can be explained by geometric relations related to the parallel postulate and the inequalities in Horn's conjecture on Hermitian matrix sum. Practical entanglement criteria are also presented based on the derived uncertainty relations.

  14. Uncertainty Quantification in Aeroelasticity

    NASA Astrophysics Data System (ADS)

    Beran, Philip; Stanford, Bret; Schrock, Christopher

    2017-01-01

    Physical interactions between a fluid and structure, potentially manifested as self-sustained or divergent oscillations, can be sensitive to many parameters whose values are uncertain. Of interest here are aircraft aeroelastic interactions, which must be accounted for in aircraft certification and design. Deterministic prediction of these aeroelastic behaviors can be difficult owing to physical and computational complexity. New challenges are introduced when physical parameters and elements of the modeling process are uncertain. By viewing aeroelasticity through a nondeterministic prism, where key quantities are assumed stochastic, one may gain insights into how to reduce system uncertainty, increase system robustness, and maintain aeroelastic safety. This article reviews uncertainty quantification in aeroelasticity using traditional analytical techniques not reliant on computational fluid dynamics; compares and contrasts this work with emerging methods based on computational fluid dynamics, which target richer physics; and reviews the state of the art in aeroelastic optimization under uncertainty. Barriers to continued progress, for example, the so-called curse of dimensionality, are discussed.

  15. Mitigating Provider Uncertainty in Service Provision Contracts

    NASA Astrophysics Data System (ADS)

    Smith, Chris; van Moorsel, Aad

    Uncertainty is an inherent property of open, distributed and multiparty systems. The viability of the mutually beneficial relationships which motivate these systems relies on rational decision-making by each constituent party under uncertainty. Service provision in distributed systems is one such relationship. Uncertainty is experienced by the service provider in his ability to deliver a service with selected quality level guarantees due to inherent non-determinism, such as load fluctuations and hardware failures. Statistical estimators utilized to model this non-determinism introduce additional uncertainty through sampling error. Inability of the provider to accurately model and analyze uncertainty in the quality level guarantees can result in the formation of sub-optimal service provision contracts. Emblematic consequences include loss of revenue, inefficient resource utilization and erosion of reputation and consumer trust. We propose a utility model for contract-based service provision to provide a systematic approach to optimal service provision contract formation under uncertainty. Performance prediction methods to enable the derivation of statistical estimators for quality level are introduced, with analysis of their resultant accuracy and cost.

  16. Optimization Under Uncertainty for Wake Steering Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quick, Julian; Annoni, Jennifer; King, Ryan N

    Offsetting turbines' yaw orientations from incoming wind is a powerful tool that may be leveraged to reduce undesirable wake effects on downstream turbines. First, we examine a simple two-turbine case to gain intuition as to how inflow direction uncertainty affects the optimal solution. The turbines are modeled with unidirectional inflow such that one turbine directly wakes the other, using ten rotor diameter spacing. We perform optimization under uncertainty (OUU) via a parameter sweep of the front turbine. The OUU solution generally prefers less steering. We then do this optimization for a 60-turbine wind farm with unidirectional inflow, varying the degreemore » of inflow uncertainty and approaching this OUU problem by nesting a polynomial chaos expansion uncertainty quantification routine within an outer optimization. We examined how different levels of uncertainty in the inflow direction effect the ratio of the expected values of deterministic and OUU solutions for steering strategies in the large wind farm, assuming the directional uncertainty used to reach said OUU solution (this ratio is defined as the value of the stochastic solution or VSS).« less

  17. Core principles of evolutionary medicine

    PubMed Central

    Grunspan, Daniel Z; Nesse, Randolph M; Barnes, M Elizabeth; Brownell, Sara E

    2018-01-01

    Abstract Background and objectives Evolutionary medicine is a rapidly growing field that uses the principles of evolutionary biology to better understand, prevent and treat disease, and that uses studies of disease to advance basic knowledge in evolutionary biology. Over-arching principles of evolutionary medicine have been described in publications, but our study is the first to systematically elicit core principles from a diverse panel of experts in evolutionary medicine. These principles should be useful to advance recent recommendations made by The Association of American Medical Colleges and the Howard Hughes Medical Institute to make evolutionary thinking a core competency for pre-medical education. Methodology The Delphi method was used to elicit and validate a list of core principles for evolutionary medicine. The study included four surveys administered in sequence to 56 expert panelists. The initial open-ended survey created a list of possible core principles; the three subsequent surveys winnowed the list and assessed the accuracy and importance of each principle. Results Fourteen core principles elicited at least 80% of the panelists to agree or strongly agree that they were important core principles for evolutionary medicine. These principles over-lapped with concepts discussed in other articles discussing key concepts in evolutionary medicine. Conclusions and implications This set of core principles will be helpful for researchers and instructors in evolutionary medicine. We recommend that evolutionary medicine instructors use the list of core principles to construct learning goals. Evolutionary medicine is a young field, so this list of core principles will likely change as the field develops further. PMID:29493660

  18. Precautionary principles: a jurisdiction-free framework for decision-making under risk.

    PubMed

    Ricci, Paolo F; Cox, Louis A; MacDonald, Thomas R

    2004-12-01

    Fundamental principles of precaution are legal maxims that ask for preventive actions, perhaps as contingent interim measures while relevant information about causality and harm remains unavailable, to minimize the societal impact of potentially severe or irreversible outcomes. Such principles do not explain how to make choices or how to identify what is protective when incomplete and inconsistent scientific evidence of causation characterizes the potential hazards. Rather, they entrust lower jurisdictions, such as agencies or authorities, to make current decisions while recognizing that future information can contradict the scientific basis that supported the initial decision. After reviewing and synthesizing national and international legal aspects of precautionary principles, this paper addresses the key question: How can society manage potentially severe, irreversible or serious environmental outcomes when variability, uncertainty, and limited causal knowledge characterize their decision-making? A decision-analytic solution is outlined that focuses on risky decisions and accounts for prior states of information and scientific beliefs that can be updated as subsequent information becomes available. As a practical and established approach to causal reasoning and decision-making under risk, inherent to precautionary decision-making, these (Bayesian) methods help decision-makers and stakeholders because they formally account for probabilistic outcomes, new information, and are consistent and replicable. Rational choice of an action from among various alternatives--defined as a choice that makes preferred consequences more likely--requires accounting for costs, benefits and the change in risks associated with each candidate action. Decisions under any form of the precautionary principle reviewed must account for the contingent nature of scientific information, creating a link to the decision-analytic principle of expected value of information (VOI), to show the

  19. Changes of heart: the switch-value method for assessing value uncertainty.

    PubMed

    John, Leslie K; Fischhoff, Baruch

    2010-01-01

    Medical choices often evoke great value uncertainty, as patients face difficult, unfamiliar tradeoffs. Those seeking to aid such choices must be able to assess patients' ability to reduce that uncertainty, to reach stable, informed choices. The authors demonstrate a new method for evaluating how well people have articulated their preferences for difficult health decisions. The method uses 2 evaluative criteria. One is internal consistency, across formally equivalent ways of posing a choice. The 2nd is compliance with principles of prospect theory, indicating sufficient task mastery to respond in predictable ways. Subjects considered a hypothetical choice between noncurative surgery and palliative care, posed by a brain tumor. The choice options were characterized on 6 outcomes (e.g., pain, life expectancy, treatment risk), using a drug facts box display. After making an initial choice, subjects indicated their willingness to switch, given plausible changes in the outcomes. These changes involved either gains (improvements) in the unchosen option or losses (worsening) in the chosen one. A 2 x 2 mixed design manipulated focal change (gains v. losses) within subjects and change order between subjects. In this demonstration, subjects' preferences were generally consistent 1) with one another: with similar percentages willing to switch for gains and losses, and 2) with prospect theory, requiring larger gains than losses, to make those switches. Informed consent requires understanding decisions well enough to articulate coherent references. The authors' method allows assessing individuals' success in doing so.

  20. Neural Mechanisms of Updating under Reducible and Irreducible Uncertainty

    PubMed Central

    2017-01-01

    Adaptive decision making depends on an agent's ability to use environmental signals to reduce uncertainty. However, because of multiple types of uncertainty, agents must take into account not only the extent to which signals violate prior expectations but also whether uncertainty can be reduced in the first place. Here we studied how human brains of both sexes respond to signals under conditions of reducible and irreducible uncertainty. We show behaviorally that subjects' value updating was sensitive to the reducibility of uncertainty, and could be quantitatively characterized by a Bayesian model where agents ignore expectancy violations that do not update beliefs or values. Using fMRI, we found that neural processes underlying belief and value updating were separable from responses to expectancy violation, and that reducibility of uncertainty in value modulated connections from belief-updating regions to value-updating regions. Together, these results provide insights into how agents use knowledge about uncertainty to make better decisions while ignoring mere expectancy violation. SIGNIFICANCE STATEMENT To make good decisions, a person must observe the environment carefully, and use these observations to reduce uncertainty about consequences of actions. Importantly, uncertainty should not be reduced purely based on how surprising the observations are, particularly because in some cases uncertainty is not reducible. Here we show that the human brain indeed reduces uncertainty adaptively by taking into account the nature of uncertainty and ignoring mere surprise. Behaviorally, we show that human subjects reduce uncertainty in a quasioptimal Bayesian manner. Using fMRI, we characterize brain regions that may be involved in uncertainty reduction, as well as the network they constitute, and dissociate them from brain regions that respond to mere surprise. PMID:28626019

  1. Visualizing uncertainties with the North Wyke Farm Platform Data Sets

    NASA Astrophysics Data System (ADS)

    Harris, Paul; Brunsdon, Chris; Lee, Michael

    2016-04-01

    The North Wyke Farm Platform (NWFP) is a systems-based, farm-scale experiment with the aim of addressing agricultural productivity and ecosystem responses to different management practices. The 63 ha site captures the spatial and/or temporal data necessary to develop a better understanding of the dynamic processes and underlying mechanisms that can be used to model how agricultural grassland systems respond to different management inputs. Via cattle beef and sheep production, the underlying principle is to manage each of three farmlets (each consisting of five hydrologically-isolated sub-catchments) in three contrasting ways: (i) improvement of permanent pasture through use of mineral fertilizers; (ii) improvement through use of legumes; and (iii) improvement through innovation. The connectivity between the timing and intensity of the different management operations, together with the transport of nutrients and potential pollutants from the NWFP is evaluated using numerous inter-linked data collection exercises. In this paper, we introduce some of the visualization opportunities that are possible with this rich data resource, and methods of analysis that might be applied to it, in particular with respect to data and model uncertainty operating across both temporal and spatial dimensions. An important component of the NWFP experiment is the representation of trade-offs with respect to: (a) economic profits, (b) environmental concerns, and (c) societal benefits, under the umbrella of sustainable intensification. Various visualizations exist to display such trade-offs and here we demonstrate ways to tailor them to relay key uncertainties and assessments of risk; and also consider how these visualizations can be honed to suit different audiences.

  2. The precautionary principle.

    PubMed

    Hayes, A Wallace

    2005-06-01

    The Precautionary Principle in its simplest form states: "When an activity raises threats of harm to human health or the environment, precautionary measures should be taken even if some cause-and-effect relationships are not fully established scientifically". This Principle is the basis for European environmental law, and plays an increasing role in developing environmental health policies as well. It also is used in environmental decision-making in Canada and in several European countries, especially in Denmark, Sweden, and Germany. The Precautionary Principle has been used in the environmental decision-making process and in regulating drugs and other consumer products in the United States. The Precautionary Principle enhances the collection of risk information for, among other items, high production volume chemicals and risk-based analyses in general. It does not eliminate the need for good science or for science-based risk assessments. Public participation is encouraged in both the review process and the decision-making process. The Precautionary Principle encourages, and in some cases may require, transparency of the risk assessment process on health risk of chemicals both for public health and the environment. A debate continues on whether the Principle should embrace the "polluter pays" directive and place the responsibility for providing risk assessment on industry. The best elements of a precautionary approach demand good science and challenge the scientific community to improve methods used for risk assessment.

  3. Quantifying and Reducing Curve-Fitting Uncertainty in Isc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campanelli, Mark; Duck, Benjamin; Emery, Keith

    2015-06-14

    Current-voltage (I-V) curve measurements of photovoltaic (PV) devices are used to determine performance parameters and to establish traceable calibration chains. Measurement standards specify localized curve fitting methods, e.g., straight-line interpolation/extrapolation of the I-V curve points near short-circuit current, Isc. By considering such fits as statistical linear regressions, uncertainties in the performance parameters are readily quantified. However, the legitimacy of such a computed uncertainty requires that the model be a valid (local) representation of the I-V curve and that the noise be sufficiently well characterized. Using more data points often has the advantage of lowering the uncertainty. However, more data pointsmore » can make the uncertainty in the fit arbitrarily small, and this fit uncertainty misses the dominant residual uncertainty due to so-called model discrepancy. Using objective Bayesian linear regression for straight-line fits for Isc, we investigate an evidence-based method to automatically choose data windows of I-V points with reduced model discrepancy. We also investigate noise effects. Uncertainties, aligned with the Guide to the Expression of Uncertainty in Measurement (GUM), are quantified throughout.« less

  4. Incorporating parametric uncertainty into population viability analysis models

    USGS Publications Warehouse

    McGowan, Conor P.; Runge, Michael C.; Larson, Michael A.

    2011-01-01

    Uncertainty in parameter estimates from sampling variation or expert judgment can introduce substantial uncertainty into ecological predictions based on those estimates. However, in standard population viability analyses, one of the most widely used tools for managing plant, fish and wildlife populations, parametric uncertainty is often ignored in or discarded from model projections. We present a method for explicitly incorporating this source of uncertainty into population models to fully account for risk in management and decision contexts. Our method involves a two-step simulation process where parametric uncertainty is incorporated into the replication loop of the model and temporal variance is incorporated into the loop for time steps in the model. Using the piping plover, a federally threatened shorebird in the USA and Canada, as an example, we compare abundance projections and extinction probabilities from simulations that exclude and include parametric uncertainty. Although final abundance was very low for all sets of simulations, estimated extinction risk was much greater for the simulation that incorporated parametric uncertainty in the replication loop. Decisions about species conservation (e.g., listing, delisting, and jeopardy) might differ greatly depending on the treatment of parametric uncertainty in population models.

  5. Chemical Principls Exemplified

    ERIC Educational Resources Information Center

    Plumb, Robert C.

    1973-01-01

    Two topics are discussed: (1) Stomach Upset Caused by Aspirin, illustrating principles of acid-base equilibrium and solubility; (2) Physical Chemistry of the Drinking Duck, illustrating principles of phase equilibria and thermodynamics. (DF)

  6. The legacy of uncertainty

    NASA Technical Reports Server (NTRS)

    Brown, Laurie M.

    1993-01-01

    An historical account is given of the circumstances whereby the uncertainty relations were introduced into physics by Heisenberg. The criticisms of QED on measurement-theoretical grounds by Landau and Peierls are then discussed, as well as the response to them by Bohr and Rosenfeld. Finally, some examples are given of how the new freedom to advance radical proposals, in part the result of the revolution brought about by 'uncertainty,' was implemented in dealing with the new phenomena encountered in elementary particle physics in the 1930's.

  7. Can evolutionary principles explain patterns of family violence?

    PubMed

    Archer, John

    2013-03-01

    The article's aim is to evaluate the application of the evolutionary principles of kin selection, reproductive value, and resource holding power to the understanding of family violence. The principles are described in relation to specific predictions and the mechanisms underlying these. Predictions are evaluated for physical violence perpetrated by (a) parents to unrelated children, (b) parents to genetic offspring, and (c) offspring to parents and between (d) siblings and (e) sexual partners. Precise figures for risks have been calculated where possible. The major conclusions are that most of the evidence is consistent with evolutionary predictions derived from kin selection and reproductive value: There were (a) higher rates of violence to stepchildren, (b) a decline in violence with the age of offspring, and (c) an increase in violence with parental age, while (d) violence between siblings was generally at a low level and concerned resource disputes. The issue of distinguishing evolutionary from alternative explanations is addressed throughout and is problematic for predictions derived from reproductive value. The main evolutionary explanation for male partner violence, mate guarding as a result of paternity uncertainty, cannot explain Western studies where sex differences in control and violence between partners were absent, although other aspects of male partner violence are consistent with it, and it may explain sex differences in traditional cultures. Recurrent problems in evaluating the evidence were to control for possible confounds and thus to distinguish evolutionary from alternative explanations. Suggestions are outlined to address this and other issues arising from the review. © 2013 American Psychological Association

  8. Facing uncertainty in ecosystem services-based resource management.

    PubMed

    Grêt-Regamey, Adrienne; Brunner, Sibyl H; Altwegg, Jürg; Bebi, Peter

    2013-09-01

    The concept of ecosystem services is increasingly used as a support for natural resource management decisions. While the science for assessing ecosystem services is improving, appropriate methods to address uncertainties in a quantitative manner are missing. Ignoring parameter uncertainties, modeling uncertainties and uncertainties related to human-environment interactions can modify decisions and lead to overlooking important management possibilities. In this contribution, we present a new approach for mapping the uncertainties in the assessment of multiple ecosystem services. The spatially explicit risk approach links Bayesian networks to a Geographic Information System for forecasting the value of a bundle of ecosystem services and quantifies the uncertainties related to the outcomes in a spatially explicit manner. We demonstrate that mapping uncertainties in ecosystem services assessments provides key information for decision-makers seeking critical areas in the delivery of ecosystem services in a case study in the Swiss Alps. The results suggest that not only the total value of the bundle of ecosystem services is highly dependent on uncertainties, but the spatial pattern of the ecosystem services values changes substantially when considering uncertainties. This is particularly important for the long-term management of mountain forest ecosystems, which have long rotation stands and are highly sensitive to pressing climate and socio-economic changes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Public Perception of Uncertainties Within Climate Change Science.

    PubMed

    Visschers, Vivianne H M

    2018-01-01

    Climate change is a complex, multifaceted problem involving various interacting systems and actors. Therefore, the intensities, locations, and timeframes of the consequences of climate change are hard to predict and cause uncertainties. Relatively little is known about how the public perceives this scientific uncertainty and how this relates to their concern about climate change. In this article, an online survey among 306 Swiss people is reported that investigated whether people differentiate between different types of uncertainty in climate change research. Also examined was the way in which the perception of uncertainty is related to people's concern about climate change, their trust in science, their knowledge about climate change, and their political attitude. The results of a principal component analysis showed that respondents differentiated between perceived ambiguity in climate research, measurement uncertainty, and uncertainty about the future impact of climate change. Using structural equation modeling, it was found that only perceived ambiguity was directly related to concern about climate change, whereas measurement uncertainty and future uncertainty were not. Trust in climate science was strongly associated with each type of uncertainty perception and was indirectly associated with concern about climate change. Also, more knowledge about climate change was related to less strong perceptions of each type of climate science uncertainty. Hence, it is suggested that to increase public concern about climate change, it may be especially important to consider the perceived ambiguity about climate research. Efforts that foster trust in climate science also appear highly worthwhile. © 2017 Society for Risk Analysis.

  10. Modeling uncertainty: quicksand for water temperature modeling

    USGS Publications Warehouse

    Bartholow, John M.

    2003-01-01

    Uncertainty has been a hot topic relative to science generally, and modeling specifically. Modeling uncertainty comes in various forms: measured data, limited model domain, model parameter estimation, model structure, sensitivity to inputs, modelers themselves, and users of the results. This paper will address important components of uncertainty in modeling water temperatures, and discuss several areas that need attention as the modeling community grapples with how to incorporate uncertainty into modeling without getting stuck in the quicksand that prevents constructive contributions to policy making. The material, and in particular the reference, are meant to supplement the presentation given at this conference.

  11. Uncertainty relation for non-Hamiltonian quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarasov, Vasily E.

    2013-01-15

    General forms of uncertainty relations for quantum observables of non-Hamiltonian quantum systems are considered. Special cases of uncertainty relations are discussed. The uncertainty relations for non-Hamiltonian quantum systems are considered in the Schroedinger-Robertson form since it allows us to take into account Lie-Jordan algebra of quantum observables. In uncertainty relations, the time dependence of quantum observables and the properties of this dependence are discussed. We take into account that a time evolution of observables of a non-Hamiltonian quantum system is not an endomorphism with respect to Lie, Jordan, and associative multiplications.

  12. Monthly Fossil-Fuel CO2 Emissions: Uncertainty of Emissions Gridded by On Degree Latitude by One Degree Longitude (Uncertainties, V.2016)

    DOE Data Explorer

    Andres, J.A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boden, T.A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-01-01

    The monthly, gridded fossil-fuel CO2 emissions uncertainty estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016). Andres et al. (2016) describes the basic methodology in estimating the uncertainty in the (gridded fossil fuel data product ). This uncertainty is gridded at the same spatial and temporal scales as the mass magnitude maps. This gridded uncertainty includes uncertainty contributions from the spatial, temporal, proxy, and magnitude components used to create the magnitude map of FFCO2 emissions. Throughout this process, when assumptions had to be made or expert judgment employed, the general tendency in most cases was toward overestimating or increasing the magnitude of uncertainty.

  13. Estimation of the uncertainty of analyte concentration from the measurement uncertainty.

    PubMed

    Brown, Simon; Cooke, Delwyn G; Blackwell, Leonard F

    2015-09-01

    Ligand-binding assays, such as immunoassays, are usually analysed using standard curves based on the four-parameter and five-parameter logistic models. An estimate of the uncertainty of an analyte concentration obtained from such curves is needed for confidence intervals or precision profiles. Using a numerical simulation approach, it is shown that the uncertainty of the analyte concentration estimate becomes significant at the extremes of the concentration range and that this is affected significantly by the steepness of the standard curve. We also provide expressions for the coefficient of variation of the analyte concentration estimate from which confidence intervals and the precision profile can be obtained. Using three examples, we show that the expressions perform well.

  14. Uncertainty visualisation in the Model Web

    NASA Astrophysics Data System (ADS)

    Gerharz, L. E.; Autermann, C.; Hopmann, H.; Stasch, C.; Pebesma, E.

    2012-04-01

    Visualisation of geospatial data as maps is a common way to communicate spatially distributed information. If temporal and furthermore uncertainty information are included in the data, efficient visualisation methods are required. For uncertain spatial and spatio-temporal data, numerous visualisation methods have been developed and proposed, but only few tools for visualisation of data in a standardised way exist. Furthermore, usually they are realised as thick clients, and lack functionality of handling data coming from web services as it is envisaged in the Model Web. We present an interactive web tool for visualisation of uncertain spatio-temporal data developed in the UncertWeb project. The client is based on the OpenLayers JavaScript library. OpenLayers provides standard map windows and navigation tools, i.e. pan, zoom in/out, to allow interactive control for the user. Further interactive methods are implemented using jStat, a JavaScript library for statistics plots developed in UncertWeb, and flot. To integrate the uncertainty information into existing standards for geospatial data, the Uncertainty Markup Language (UncertML) was applied in combination with OGC Observations&Measurements 2.0 and JavaScript Object Notation (JSON) encodings for vector and NetCDF for raster data. The client offers methods to visualise uncertain vector and raster data with temporal information. Uncertainty information considered for the tool are probabilistic and quantified attribute uncertainties which can be provided as realisations or samples, full probability distributions functions and statistics. Visualisation is supported for uncertain continuous and categorical data. In the client, the visualisation is realised using a combination of different methods. Based on previously conducted usability studies, a differentiation between expert (in statistics or mapping) and non-expert users has been indicated as useful. Therefore, two different modes are realised together in the tool

  15. Balancing certainty and uncertainty in clinical medicine.

    PubMed

    Hayward, Richard

    2006-01-01

    Nothing in clinical medicine is one hundred per cent certain. Part of a doctor's education involves learning how to cope with the anxiety that uncertainty in decisions affecting life and death inevitably produces. This paper examines: (1) the role of anxiety -- both rational and irrational -- in the provision of health care; (2) the effects of uncertainty upon the doctor-patient relationship; (3) the threat uncertainty poses to medical authority (and the assumption of infallibility that props it up); (4) the contribution of clinical uncertainty to the rising popularity of alternative therapies; and (5) the clash between the medical and the legal understanding of how certainty should be defined, particularly as it affects the paediatric community. It concludes by suggesting some strategies that might facilitate successful navigation between the opposing and ever-present forces of certainty and uncertainty.

  16. Optimization Under Uncertainty for Electronics Cooling Design

    NASA Astrophysics Data System (ADS)

    Bodla, Karthik K.; Murthy, Jayathi Y.; Garimella, Suresh V.

    Optimization under uncertainty is a powerful methodology used in design and optimization to produce robust, reliable designs. Such an optimization methodology, employed when the input quantities of interest are uncertain, produces output uncertainties, helping the designer choose input parameters that would result in satisfactory thermal solutions. Apart from providing basic statistical information such as mean and standard deviation in the output quantities, auxiliary data from an uncertainty based optimization, such as local and global sensitivities, help the designer decide the input parameter(s) to which the output quantity of interest is most sensitive. This helps the design of experiments based on the most sensitive input parameter(s). A further crucial output of such a methodology is the solution to the inverse problem - finding the allowable uncertainty range in the input parameter(s), given an acceptable uncertainty range in the output quantity of interest...

  17. Uncertainty Estimation Cheat Sheet for Probabilistic Risk Assessment

    NASA Technical Reports Server (NTRS)

    Britton, Paul; Al Hassan, Mohammad; Ring, Robert

    2017-01-01

    Quantitative results for aerospace engineering problems are influenced by many sources of uncertainty. Uncertainty analysis aims to make a technical contribution to decision-making through the quantification of uncertainties in the relevant variables as well as through the propagation of these uncertainties up to the result. Uncertainty can be thought of as a measure of the 'goodness' of a result and is typically represented as statistical dispersion. This paper will explain common measures of centrality and dispersion; and-with examples-will provide guidelines for how they may be estimated to ensure effective technical contributions to decision-making.

  18. Quantification of uncertainties for application in detonation simulation

    NASA Astrophysics Data System (ADS)

    Zheng, Miao; Ma, Zhibo

    2016-06-01

    Numerical simulation has become an important means in designing detonation systems, and the quantification of its uncertainty is also necessary to reliability certification. As to quantifying the uncertainty, it is the most important to analyze how the uncertainties occur and develop, and how the simulations develop from benchmark models to new models. Based on the practical needs of engineering and the technology of verification & validation, a framework of QU(quantification of uncertainty) is brought forward in the case that simulation is used on detonation system for scientific prediction. An example is offered to describe the general idea of quantification of simulation uncertainties.

  19. Incorporating uncertainty in RADTRAN 6.0 input files.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, Matthew L.; Weiner, Ruth F.; Heames, Terence John

    Uncertainty may be introduced into RADTRAN analyses by distributing input parameters. The MELCOR Uncertainty Engine (Gauntt and Erickson, 2004) has been adapted for use in RADTRAN to determine the parameter shape and minimum and maximum of the distribution, to sample on the distribution, and to create an appropriate RADTRAN batch file. Coupling input parameters is not possible in this initial application. It is recommended that the analyst be very familiar with RADTRAN and able to edit or create a RADTRAN input file using a text editor before implementing the RADTRAN Uncertainty Analysis Module. Installation of the MELCOR Uncertainty Engine ismore » required for incorporation of uncertainty into RADTRAN. Gauntt and Erickson (2004) provides installation instructions as well as a description and user guide for the uncertainty engine.« less

  20. Uncertainty quantification in flood risk assessment

    NASA Astrophysics Data System (ADS)

    Blöschl, Günter; Hall, Julia; Kiss, Andrea; Parajka, Juraj; Perdigão, Rui A. P.; Rogger, Magdalena; Salinas, José Luis; Viglione, Alberto

    2017-04-01

    Uncertainty is inherent to flood risk assessments because of the complexity of the human-water system, which is characterised by nonlinearities and interdependencies, because of limited knowledge about system properties and because of cognitive biases in human perception and decision-making. On top of the uncertainty associated with the assessment of the existing risk to extreme events, additional uncertainty arises because of temporal changes in the system due to climate change, modifications of the environment, population growth and the associated increase in assets. Novel risk assessment concepts are needed that take into account all these sources of uncertainty. They should be based on the understanding of how flood extremes are generated and how they change over time. They should also account for the dynamics of risk perception of decision makers and population in the floodplains. In this talk we discuss these novel risk assessment concepts through examples from Flood Frequency Hydrology, Socio-Hydrology and Predictions Under Change. We believe that uncertainty quantification in flood risk assessment should lead to a robust approach of integrated flood risk management aiming at enhancing resilience rather than searching for optimal defense strategies.

  1. Hard Constraints in Optimization Under Uncertainty

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Giesy, Daniel P.; Kenny, Sean P.

    2008-01-01

    This paper proposes a methodology for the analysis and design of systems subject to parametric uncertainty where design requirements are specified via hard inequality constraints. Hard constraints are those that must be satisfied for all parameter realizations within a given uncertainty model. Uncertainty models given by norm-bounded perturbations from a nominal parameter value, i.e., hyper-spheres, and by sets of independently bounded uncertain variables, i.e., hyper-rectangles, are the focus of this paper. These models, which are also quite practical, allow for a rigorous mathematical treatment within the proposed framework. Hard constraint feasibility is determined by sizing the largest uncertainty set for which the design requirements are satisfied. Analytically verifiable assessments of robustness are attained by comparing this set with the actual uncertainty model. Strategies that enable the comparison of the robustness characteristics of competing design alternatives, the description and approximation of the robust design space, and the systematic search for designs with improved robustness are also proposed. Since the problem formulation is generic and the tools derived only require standard optimization algorithms for their implementation, this methodology is applicable to a broad range of engineering problems.

  2. Uncertainty in prostate cancer. Ethnic and family patterns.

    PubMed

    Germino, B B; Mishel, M H; Belyea, M; Harris, L; Ware, A; Mohler, J

    1998-01-01

    Prostate cancer occurs 37% more often in African-American men than in white men. Patients and their family care providers (FCPs) may have different experiences of cancer and its treatment. This report addresses two questions: 1) What is the relationship of uncertainty to family coping, psychological adjustment to illness, and spiritual factors? and 2) Are these patterns of relationship similar for patients and their family care givers and for whites and African-Americans? A sample of white and African-American men and their family care givers (N = 403) was drawn from an ongoing study, testing the efficacy of an uncertainty management intervention with men with stage B prostate cancer. Data were collected at study entry, either 1 week after post-surgical catheter removal or at the beginning of primary radiation treatment. Measures of uncertainty, adult role behavior, problem solving, social support, importance of God in one's life, family coping, psychological adjustment to illness, and perceptions of health and illness met standard criteria for internal consistency. Analyses of baseline data using Pearson's product moment correlations were conducted to examine the relationships of person, disease, and contextual factors to uncertainty. For family coping, uncertainty was significantly and positively related to two domains in white family care providers only. In African-American and white family care providers, the more uncertainty experienced, the less positive they felt about treatment. Uncertainty for all care givers was related inversely to positive feelings about the patient recovering from the illness. For all patients and for white family members, uncertainty was related inversely to the quality of the domestic environment. For everyone, uncertainty was related inversely to psychological distress. Higher levels of uncertainty were related to a poorer social environment for African-American patients and for white family members. For white patients and their

  3. Neural Mechanisms of Updating under Reducible and Irreducible Uncertainty.

    PubMed

    Kobayashi, Kenji; Hsu, Ming

    2017-07-19

    Adaptive decision making depends on an agent's ability to use environmental signals to reduce uncertainty. However, because of multiple types of uncertainty, agents must take into account not only the extent to which signals violate prior expectations but also whether uncertainty can be reduced in the first place. Here we studied how human brains of both sexes respond to signals under conditions of reducible and irreducible uncertainty. We show behaviorally that subjects' value updating was sensitive to the reducibility of uncertainty, and could be quantitatively characterized by a Bayesian model where agents ignore expectancy violations that do not update beliefs or values. Using fMRI, we found that neural processes underlying belief and value updating were separable from responses to expectancy violation, and that reducibility of uncertainty in value modulated connections from belief-updating regions to value-updating regions. Together, these results provide insights into how agents use knowledge about uncertainty to make better decisions while ignoring mere expectancy violation. SIGNIFICANCE STATEMENT To make good decisions, a person must observe the environment carefully, and use these observations to reduce uncertainty about consequences of actions. Importantly, uncertainty should not be reduced purely based on how surprising the observations are, particularly because in some cases uncertainty is not reducible. Here we show that the human brain indeed reduces uncertainty adaptively by taking into account the nature of uncertainty and ignoring mere surprise. Behaviorally, we show that human subjects reduce uncertainty in a quasioptimal Bayesian manner. Using fMRI, we characterize brain regions that may be involved in uncertainty reduction, as well as the network they constitute, and dissociate them from brain regions that respond to mere surprise. Copyright © 2017 the authors 0270-6474/17/376972-11$15.00/0.

  4. Insights into water managers' perception and handling of uncertainties - a study of the role of uncertainty in practitioners' planning and decision-making

    NASA Astrophysics Data System (ADS)

    Höllermann, Britta; Evers, Mariele

    2017-04-01

    Planning and decision-making under uncertainty is common in water management due to climate variability, simplified models, societal developments, planning restrictions just to name a few. Dealing with uncertainty can be approached from two sites, hereby affecting the process and form of communication: Either improve the knowledge base by reducing uncertainties or apply risk-based approaches to acknowledge uncertainties throughout the management process. Current understanding is that science more strongly focusses on the former approach, while policy and practice are more actively applying a risk-based approach to handle incomplete and/or ambiguous information. The focus of this study is on how water managers perceive and handle uncertainties at the knowledge/decision interface in their daily planning and decision-making routines. How they evaluate the role of uncertainties for their decisions and how they integrate this information into the decision-making process. Expert interviews and questionnaires among practitioners and scientists provided an insight into their perspectives on uncertainty handling allowing a comparison of diverse strategies between science and practice as well as between different types of practitioners. Our results confirmed the practitioners' bottom up approach from potential measures upwards instead of impact assessment downwards common in science-based approaches. This science-practice gap may hinder effective uncertainty integration and acknowledgement in final decisions. Additionally, the implementation of an adaptive and flexible management approach acknowledging uncertainties is often stalled by rigid regulations favouring a predict-and-control attitude. However, the study showed that practitioners' level of uncertainty recognition varies with respect to his or her affiliation to type of employer and business unit, hence, affecting the degree of the science-practice-gap with respect to uncertainty recognition. The level of working

  5. A calculation and uncertainty evaluation method for the effective area of a piston rod used in quasi-static pressure calibration

    NASA Astrophysics Data System (ADS)

    Gu, Tingwei; Kong, Deren; Shang, Fei; Chen, Jing

    2018-04-01

    This paper describes the merits and demerits of different sensors for measuring propellant gas pressure, the applicable range of the frequently used dynamic pressure calibration methods, and the working principle of absolute quasi-static pressure calibration based on the drop-weight device. The main factors affecting the accuracy of pressure calibration are analyzed from two aspects of the force sensor and the piston area. To calculate the effective area of the piston rod and evaluate the uncertainty between the force sensor and the corresponding peak pressure in the absolute quasi-static pressure calibration process, a method for solving these problems based on the least squares principle is proposed. According to the relevant quasi-static pressure calibration experimental data, the least squares fitting model between the peak force and the peak pressure, and the effective area of the piston rod and its measurement uncertainty, are obtained. The fitting model is tested by an additional group of experiments, and the peak pressure obtained by the existing high-precision comparison calibration method is taken as the reference value. The test results show that the peak pressure obtained by the least squares fitting model is closer to the reference value than the one directly calculated by the cross-sectional area of the piston rod. When the peak pressure is higher than 150 MPa, the percentage difference is less than 0.71%, which can meet the requirements of practical application.

  6. Radar stage uncertainty

    USGS Publications Warehouse

    Fulford, J.M.; Davies, W.J.

    2005-01-01

    The U.S. Geological Survey is investigating the performance of radars used for stage (or water-level) measurement. This paper presents a comparison of estimated uncertainties and data for radar water-level measurements with float, bubbler, and wire weight water-level measurements. The radar sensor was also temperature-tested in a laboratory. The uncertainty estimates indicate that radar measurements are more accurate than uncorrected pressure sensors at higher water stages, but are less accurate than pressure sensors at low stages. Field data at two sites indicate that radar sensors may have a small negative bias. Comparison of field radar measurements with wire weight measurements found that the radar tends to measure slightly lower values as stage increases. Copyright ASCE 2005.

  7. Teaching Uncertainties

    ERIC Educational Resources Information Center

    Duerdoth, Ian

    2009-01-01

    The subject of uncertainties (sometimes called errors) is traditionally taught (to first-year science undergraduates) towards the end of a course on statistics that defines probability as the limit of many trials, and discusses probability distribution functions and the Gaussian distribution. We show how to introduce students to the concepts of…

  8. Uncertainty in the Modeling of Tsunami Sediment Transport

    NASA Astrophysics Data System (ADS)

    Jaffe, B. E.; Sugawara, D.; Goto, K.; Gelfenbaum, G. R.; La Selle, S.

    2016-12-01

    Erosion and deposition from tsunamis record information about tsunami hydrodynamics and size that can be interpreted to improve tsunami hazard assessment. A recent study (Jaffe et al., 2016) explores sources and methods for quantifying uncertainty in tsunami sediment transport modeling. Uncertainty varies with tsunami properties, study site characteristics, available input data, sediment grain size, and the model used. Although uncertainty has the potential to be large, case studies for both forward and inverse models have shown that sediment transport modeling provides useful information on tsunami inundation and hydrodynamics that can be used to improve tsunami hazard assessment. New techniques for quantifying uncertainty, such as Ensemble Kalman Filtering inversion, and more rigorous reporting of uncertainties will advance the science of tsunami sediment transport modeling. Uncertainty may be decreased with additional laboratory studies that increase our understanding of the semi-empirical parameters and physics of tsunami sediment transport, standardized benchmark tests to assess model performance, and the development of hybrid modeling approaches to exploit the strengths of forward and inverse models. As uncertainty in tsunami sediment transport modeling is reduced, and with increased ability to quantify uncertainty, the geologic record of tsunamis will become more valuable in the assessment of tsunami hazard. Jaffe, B., Goto, K., Sugawara, D., Gelfenbaum, G., and La Selle, S., "Uncertainty in Tsunami Sediment Transport Modeling", Journal of Disaster Research Vol. 11 No. 4, pp. 647-661, 2016, doi: 10.20965/jdr.2016.p0647 https://www.fujipress.jp/jdr/dr/dsstr001100040647/

  9. Incorporating uncertainty in predictive species distribution modelling.

    PubMed

    Beale, Colin M; Lennon, Jack J

    2012-01-19

    Motivated by the need to solve ecological problems (climate change, habitat fragmentation and biological invasions), there has been increasing interest in species distribution models (SDMs). Predictions from these models inform conservation policy, invasive species management and disease-control measures. However, predictions are subject to uncertainty, the degree and source of which is often unrecognized. Here, we review the SDM literature in the context of uncertainty, focusing on three main classes of SDM: niche-based models, demographic models and process-based models. We identify sources of uncertainty for each class and discuss how uncertainty can be minimized or included in the modelling process to give realistic measures of confidence around predictions. Because this has typically not been performed, we conclude that uncertainty in SDMs has often been underestimated and a false precision assigned to predictions of geographical distribution. We identify areas where development of new statistical tools will improve predictions from distribution models, notably the development of hierarchical models that link different types of distribution model and their attendant uncertainties across spatial scales. Finally, we discuss the need to develop more defensible methods for assessing predictive performance, quantifying model goodness-of-fit and for assessing the significance of model covariates.

  10. Scientific principles for the identification of endocrine-disrupting chemicals: a consensus statement.

    PubMed

    Solecki, Roland; Kortenkamp, Andreas; Bergman, Åke; Chahoud, Ibrahim; Degen, Gisela H; Dietrich, Daniel; Greim, Helmut; Håkansson, Helen; Hass, Ulla; Husoy, Trine; Jacobs, Miriam; Jobling, Susan; Mantovani, Alberto; Marx-Stoelting, Philip; Piersma, Aldert; Ritz, Vera; Slama, Remy; Stahlmann, Ralf; van den Berg, Martin; Zoeller, R Thomas; Boobis, Alan R

    2017-02-01

    Endocrine disruption is a specific form of toxicity, where natural and/or anthropogenic chemicals, known as "endocrine disruptors" (EDs), trigger adverse health effects by disrupting the endogenous hormone system. There is need to harmonize guidance on the regulation of EDs, but this has been hampered by what appeared as a lack of consensus among scientists. This publication provides summary information about a consensus reached by a group of world-leading scientists that can serve as the basis for the development of ED criteria in relevant EU legislation. Twenty-three international scientists from different disciplines discussed principles and open questions on ED identification as outlined in a draft consensus paper at an expert meeting hosted by the German Federal Institute for Risk Assessment (BfR) in Berlin, Germany on 11-12 April 2016. Participants reached a consensus regarding scientific principles for the identification of EDs. The paper discusses the consensus reached on background, definition of an ED and related concepts, sources of uncertainty, scientific principles important for ED identification, and research needs. It highlights the difficulty in retrospectively reconstructing ED exposure, insufficient range of validated test systems for EDs, and some issues impacting on the evaluation of the risk from EDs, such as non-monotonic dose-response and thresholds, modes of action, and exposure assessment. This report provides the consensus statement on EDs agreed among all participating scientists. The meeting facilitated a productive debate and reduced a number of differences in views. It is expected that the consensus reached will serve as an important basis for the development of regulatory ED criteria.

  11. Perseveration induces dissociative uncertainty in obsessive-compulsive disorder.

    PubMed

    Giele, Catharina L; van den Hout, Marcel A; Engelhard, Iris M; Dek, Eliane C P; Toffolo, Marieke B J; Cath, Danielle C

    2016-09-01

    Obsessive compulsive (OC)-like perseveration paradoxically increases feelings of uncertainty. We studied whether the underlying mechanism between perseveration and uncertainty is a reduced accessibility of meaning ('semantic satiation'). OCD patients (n = 24) and matched non-clinical controls (n = 24) repeated words 2 (non-perseveration) or 20 times (perseveration). They decided whether this word was related to another target word. Speed of relatedness judgments and feelings of dissociative uncertainty were measured. The effects of real-life perseveration on dissociative uncertainty were tested in a smaller subsample of the OCD group (n = 9). Speed of relatedness judgments was not affected by perseveration. However, both groups reported more dissociative uncertainty after perseveration compared to non-perseveration, which was higher in OCD patients. Patients reported more dissociative uncertainty after 'clinical' perseveration compared to non-perseveration.. Both parts of this study are limited by some methodological issues and a small sample size. Although the mechanism behind 'perseveration → uncertainty' is still unclear, results suggest that the effects of perseveration are counterproductive. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Quantifying uncertainty in discharge measurements: A new approach

    USGS Publications Warehouse

    Kiang, J.E.; Cohn, T.A.; Mason, R.R.

    2009-01-01

    The accuracy of discharge measurements using velocity meters and the velocity-area method is typically assessed based on empirical studies that may not correspond to conditions encountered in practice. In this paper, a statistical approach for assessing uncertainty based on interpolated variance estimation (IVE) is introduced. The IVE method quantifies all sources of random uncertainty in the measured data. This paper presents results employing data from sites where substantial over-sampling allowed for the comparison of IVE-estimated uncertainty and observed variability among repeated measurements. These results suggest that the IVE approach can provide approximate estimates of measurement uncertainty. The use of IVE to estimate the uncertainty of a discharge measurement would provide the hydrographer an immediate determination of uncertainty and help determine whether there is a need for additional sampling in problematic river cross sections. ?? 2009 ASCE.

  13. Space shuttle launch vehicle aerodynamic uncertainties: Lessons learned

    NASA Technical Reports Server (NTRS)

    Hamilton, J. T.

    1983-01-01

    The chronological development and evolution of an uncertainties model which defines the complex interdependency and interaction of the individual Space Shuttle element and component uncertainties for the launch vehicle are presented. Emphasis is placed on user requirements which dictated certain concessions, simplifications, and assumptions in the analytical model. The use of the uncertainty model in the vehicle design process and flight planning support is discussed. The terminology and justification associated with tolerances as opposed to variations are also presented. Comparisons of and conclusions drawn from flight minus predicted data and uncertainties are given. Lessons learned from the Space Shuttle program concerning aerodynamic uncertainties are examined.

  14. Uncertainties in Galactic Chemical Evolution Models

    DOE PAGES

    Cote, Benoit; Ritter, Christian; Oshea, Brian W.; ...

    2016-06-15

    Here we use a simple one-zone galactic chemical evolution model to quantify the uncertainties generated by the input parameters in numerical predictions for a galaxy with properties similar to those of the Milky Way. We compiled several studies from the literature to gather the current constraints for our simulations regarding the typical value and uncertainty of the following seven basic parameters: the lower and upper mass limits of the stellar initial mass function (IMF), the slope of the high-mass end of the stellar IMF, the slope of the delay-time distribution function of Type Ia supernovae (SNe Ia), the number ofmore » SNe Ia per M ⊙ formed, the total stellar mass formed, and the final mass of gas. We derived a probability distribution function to express the range of likely values for every parameter, which were then included in a Monte Carlo code to run several hundred simulations with randomly selected input parameters. This approach enables us to analyze the predicted chemical evolution of 16 elements in a statistical manner by identifying the most probable solutions along with their 68% and 95% confidence levels. Our results show that the overall uncertainties are shaped by several input parameters that individually contribute at different metallicities, and thus at different galactic ages. The level of uncertainty then depends on the metallicity and is different from one element to another. Among the seven input parameters considered in this work, the slope of the IMF and the number of SNe Ia are currently the two main sources of uncertainty. The thicknesses of the uncertainty bands bounded by the 68% and 95% confidence levels are generally within 0.3 and 0.6 dex, respectively. When looking at the evolution of individual elements as a function of galactic age instead of metallicity, those same thicknesses range from 0.1 to 0.6 dex for the 68% confidence levels and from 0.3 to 1.0 dex for the 95% confidence levels. The uncertainty in our chemical

  15. [Bioethics of principles].

    PubMed

    Pérez-Soba Díez del Corral, Juan José

    2008-01-01

    Bioethics emerges about the tecnological problems of acting in human life. Emerges also the problem of the moral limits determination, because they seem exterior of this practice. The Bioethics of Principles, take his rationality of the teleological thinking, and the autonomism. These divergence manifest the epistemological fragility and the great difficulty of hmoralñ thinking. This is evident in the determination of autonomy's principle, it has not the ethical content of Kant's propose. We need a new ethic rationality with a new refelxion of new Principles whose emerges of the basic ethic experiences.

  16. 32 CFR 776.19 - Principles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Principles. 776.19 Section 776.19 National... Professional Conduct § 776.19 Principles. The Rules of this subpart are based on the following principles... exists, this subpart should be interpreted consistent with these general principles. (a) Covered...

  17. The Principle of General Tovariance

    NASA Astrophysics Data System (ADS)

    Heunen, C.; Landsman, N. P.; Spitters, B.

    2008-06-01

    We tentatively propose two guiding principles for the construction of theories of physics, which should be satisfied by a possible future theory of quantum gravity. These principles are inspired by those that led Einstein to his theory of general relativity, viz. his principle of general covariance and his equivalence principle, as well as by the two mysterious dogmas of Bohr's interpretation of quantum mechanics, i.e. his doctrine of classical concepts and his principle of complementarity. An appropriate mathematical language for combining these ideas is topos theory, a framework earlier proposed for physics by Isham and collaborators. Our principle of general tovariance states that any mathematical structure appearing in the laws of physics must be definable in an arbitrary topos (with natural numbers object) and must be preserved under so-called geometric morphisms. This principle identifies geometric logic as the mathematical language of physics and restricts the constructions and theorems to those valid in intuitionism: neither Aristotle's principle of the excluded third nor Zermelo's Axiom of Choice may be invoked. Subsequently, our equivalence principle states that any algebra of observables (initially defined in the topos Sets) is empirically equivalent to a commutative one in some other topos.

  18. Numerical uncertainty in computational engineering and physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemez, Francois M

    2009-01-01

    Obtaining a solution that approximates ordinary or partial differential equations on a computational mesh or grid does not necessarily mean that the solution is accurate or even 'correct'. Unfortunately assessing the quality of discrete solutions by questioning the role played by spatial and temporal discretizations generally comes as a distant third to test-analysis comparison and model calibration. This publication is contributed to raise awareness of the fact that discrete solutions introduce numerical uncertainty. This uncertainty may, in some cases, overwhelm in complexity and magnitude other sources of uncertainty that include experimental variability, parametric uncertainty and modeling assumptions. The concepts ofmore » consistency, convergence and truncation error are overviewed to explain the articulation between the exact solution of continuous equations, the solution of modified equations and discrete solutions computed by a code. The current state-of-the-practice of code and solution verification activities is discussed. An example in the discipline of hydro-dynamics illustrates the significant effect that meshing can have on the quality of code predictions. A simple method is proposed to derive bounds of solution uncertainty in cases where the exact solution of the continuous equations, or its modified equations, is unknown. It is argued that numerical uncertainty originating from mesh discretization should always be quantified and accounted for in the overall uncertainty 'budget' that supports decision-making for applications in computational physics and engineering.« less

  19. [Dealing with diagnostic uncertainty in general practice].

    PubMed

    Wübken, Magdalena; Oswald, Jana; Schneider, Antonius

    2013-01-01

    In general, the prevalence of diseases is low in primary care. Therefore, the positive predictive value of diagnostic tests is lower than in hospitals where patients are highly selected. In addition, the patients present with milder forms of disease; and many diseases might hide behind the initial symptom(s). These facts lead to diagnostic uncertainty which is somewhat inherent to general practice. This narrative review discusses different sources of and reasons for uncertainty and strategies to deal with it in the context of the current literature. Fear of uncertainty correlates with higher diagnostic activities. The attitude towards uncertainty correlates with the choice of medical speciality by vocational trainees or medical students. An intolerance of uncertainty, which still increases as medicine is making steady progress, might partly explain the growing shortage of general practitioners. The bio-psycho-social context appears to be important to diagnostic decision-making. The effect of intuition and heuristics are investigated by cognitive psychologists. It is still unclear whether these aspects are prone to bias or useful, which might depend on the context of medical decisions. Good communication is of great importance to share uncertainty with the patients in a transparent way and to alleviate shared decision-making. Dealing with uncertainty should be seen as an important core component of general practice and needs to be investigated in more detail to improve the respective medical decisions. Copyright © 2013. Published by Elsevier GmbH.

  20. A critique of principlism.

    PubMed

    Clouser, K D; Gert, B

    1990-04-01

    The authors use the term "principlism" to refer to the practice of using "principles" to replace both moral theory and particular moral rules and ideals in dealing with the moral problems that arise in medical practice. The authors argue that these "principles" do not function as claimed, and that their use is misleading both practically and theoretically. The "principles" are in fact not guides to action, but rather they are merely names for a collection of sometimes superficially related matters for consideration when dealing with a moral problem. The "principles" lack any systematic relationship to each other, and they often conflict with each other. These conflicts are unresolvable, since there is no unified moral theory from which they are all derived. For comparison the authors sketch the advantages of using a unified moral theory.

  1. Communicating spatial uncertainty to non-experts using R

    NASA Astrophysics Data System (ADS)

    Luzzi, Damiano; Sawicka, Kasia; Heuvelink, Gerard; de Bruin, Sytze

    2016-04-01

    Effective visualisation methods are important for the efficient use of uncertainty information for various groups of users. Uncertainty propagation analysis is often used with spatial environmental models to quantify the uncertainty within the information. A challenge arises when trying to effectively communicate the uncertainty information to non-experts (not statisticians) in a wide range of cases. Due to the growing popularity and applicability of the open source programming language R, we undertook a project to develop an R package that facilitates uncertainty propagation analysis in spatial environmental modelling. The package has implemented Monte Carlo algorithms for uncertainty propagation, the output of which is represented by an ensemble of model outputs (i.e. a sample from a probability distribution). Numerous visualisation methods exist that aim to present such spatial uncertainty information both statically, dynamically and interactively. To provide the most universal visualisation tools for non-experts, we conducted a survey on a group of 20 university students and assessed the effectiveness of selected static and interactive methods for visualising uncertainty in spatial variables such as DEM and land cover. The static methods included adjacent maps and glyphs for continuous variables. Both allow for displaying maps with information about the ensemble mean, variance/standard deviation and prediction intervals. Adjacent maps were also used for categorical data, displaying maps of the most probable class, as well as its associated probability. The interactive methods included a graphical user interface, which in addition to displaying the previously mentioned variables also allowed for comparison of joint uncertainties at multiple locations. The survey indicated that users could understand the basics of the uncertainty information displayed in the static maps, with the interactive interface allowing for more in-depth information. Subsequently, the R

  2. Risk assessment principle for engineered nanotechnology in food and drug.

    PubMed

    Hwang, Myungsil; Lee, Eun Ji; Kweon, Se Young; Park, Mi Sun; Jeong, Ji Yoon; Um, Jun Ho; Kim, Sun Ah; Han, Bum Suk; Lee, Kwang Ho; Yoon, Hae Jung

    2012-06-01

    While the ability to develop nanomaterials and incorporate them into products is advancing rapidly worldwide, understanding of the potential health safety effects of nanomaterials has proceeded at a much slower pace. Since 2008, Korea Food and Drug Administration (KFDA) started an investigation to prepare "Strategic Action Plan" to evaluate safety and nano risk management associated with foods, drugs, medical devices and cosmetics using nano-scale materials. Although there are some studies related to potential risk of nanomaterials, physical-chemical characterization of nanomaterials is not clear yet and these do not offer enough information due to their limitations. Their uncertainties make it impossible to determine whether nanomaterials are actually hazardous to human. According to the above mention, we have some problems to conduct the human exposure risk assessment currently. On the other hand, uncertainty about safety may lead to polarized public debate and to businesses unwillingness for further nanotechnology investigation. Therefore, the criteria and methods to assess possible adverse effects of nanomaterials have been vigorously taken into consideration by many international organizations: the World Health Organization, the Organization for Economic and Commercial Development and the European Commission. The object of this study was to develop risk assessment principles for safety management of future nanoproducts and also to identify areas of research to strengthen risk assessment for nanomaterials. The research roadmaps which were proposed in this study will be helpful to fill up the current gaps in knowledge relevant nano risk assessment.

  3. Quantifying model uncertainty in seasonal Arctic sea-ice forecasts

    NASA Astrophysics Data System (ADS)

    Blanchard-Wrigglesworth, Edward; Barthélemy, Antoine; Chevallier, Matthieu; Cullather, Richard; Fučkar, Neven; Massonnet, François; Posey, Pamela; Wang, Wanqiu; Zhang, Jinlun; Ardilouze, Constantin; Bitz, Cecilia; Vernieres, Guillaume; Wallcraft, Alan; Wang, Muyin

    2017-04-01

    Dynamical model forecasts in the Sea Ice Outlook (SIO) of September Arctic sea-ice extent over the last decade have shown lower skill than that found in both idealized model experiments and hindcasts of previous decades. Additionally, it is unclear how different model physics, initial conditions or post-processing techniques contribute to SIO forecast uncertainty. In this work, we have produced a seasonal forecast of 2015 Arctic summer sea ice using SIO dynamical models initialized with identical sea-ice thickness in the central Arctic. Our goals are to calculate the relative contribution of model uncertainty and irreducible error growth to forecast uncertainty and assess the importance of post-processing, and to contrast pan-Arctic forecast uncertainty with regional forecast uncertainty. We find that prior to forecast post-processing, model uncertainty is the main contributor to forecast uncertainty, whereas after forecast post-processing forecast uncertainty is reduced overall, model uncertainty is reduced by an order of magnitude, and irreducible error growth becomes the main contributor to forecast uncertainty. While all models generally agree in their post-processed forecasts of September sea-ice volume and extent, this is not the case for sea-ice concentration. Additionally, forecast uncertainty of sea-ice thickness grows at a much higher rate along Arctic coastlines relative to the central Arctic ocean. Potential ways of offering spatial forecast information based on the timescale over which the forecast signal beats the noise are also explored.

  4. Climate change adaptation under uncertainty in the developing world: A case study of sea level rise in Kiribati

    NASA Astrophysics Data System (ADS)

    Donner, S. D.; Webber, S.

    2011-12-01

    Climate change is expected to have the greatest impact in parts of the developing world. At the 2010 meeting of U.N. Framework Convention on Climate Change in Cancun, industrialized countries agreed in principle to provide US$100 billion per year by 2020 to assist the developing world respond to climate change. This "Green Climate Fund" is a critical step towards addressing the challenge of climate change. However, the policy and discourse on supporting adaptation in the developing world remains highly idealized. For example, the efficacy of "no regrets" adaptation efforts or "mainstreaming" adaptation into decision-making are rarely evaluated in the real world. In this presentation, I will discuss the gap between adaptation theory and practice using a multi-year case study of the cultural, social and scientific obstacles to adapting to sea level rise in the Pacific atoll nation of Kiribati. Our field research reveals how scientific and institutional uncertainty can limit international efforts to fund adaptation and lead to spiraling costs. Scientific uncertainty about hyper-local impacts of sea level rise, though irreducible, can at times limit decision-making about adaptation measures, contrary to the notion that "good" decision-making practices can incorporate scientific uncertainty. Efforts to improve institutional capacity must be done carefully, or they risk inadvertently slowing the implementation of adaptation measures and increasing the likelihood of "mal"-adaptation.

  5. Uncertainties in Past and Future Global Water Availability

    NASA Astrophysics Data System (ADS)

    Sheffield, J.; Kam, J.

    2014-12-01

    Understanding how water availability changes on inter-annual to decadal time scales and how it may change in the future under climate change are a key part of understanding future stresses on water and food security. Historic evaluations of water availability on regional to global scales are generally based on large-scale model simulations with their associated uncertainties, in particular for long-term changes. Uncertainties are due to model errors and missing processes, parameter uncertainty, and errors in meteorological forcing data. Recent multi-model inter-comparisons and impact studies have highlighted large differences for past reconstructions, due to different simplifying assumptions in the models or the inclusion of physical processes such as CO2 fertilization. Modeling of direct anthropogenic factors such as water and land management also carry large uncertainties in their physical representation and from lack of socio-economic data. Furthermore, there is little understanding of the impact of uncertainties in the meteorological forcings that underpin these historic simulations. Similarly, future changes in water availability are highly uncertain due to climate model diversity, natural variability and scenario uncertainty, each of which dominates at different time scales. In particular, natural climate variability is expected to dominate any externally forced signal over the next several decades. We present results from multi-land surface model simulations of the historic global availability of water in the context of natural variability (droughts) and long-term changes (drying). The simulations take into account the impact of uncertainties in the meteorological forcings and the incorporation of water management in the form of reservoirs and irrigation. The results indicate that model uncertainty is important for short-term drought events, and forcing uncertainty is particularly important for long-term changes, especially uncertainty in precipitation due

  6. Assessment of Uncertainty-Infused Scientific Argumentation

    ERIC Educational Resources Information Center

    Lee, Hee-Sun; Liu, Ou Lydia; Pallant, Amy; Roohr, Katrina Crotts; Pryputniewicz, Sarah; Buck, Zoë E.

    2014-01-01

    Though addressing sources of uncertainty is an important part of doing science, it has largely been neglected in assessing students' scientific argumentation. In this study, we initially defined a scientific argumentation construct in four structural elements consisting of claim, justification, uncertainty qualifier, and uncertainty…

  7. Treatment of uncertainty in artificial intelligence

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1988-01-01

    The present assessment of the development status of research efforts concerned with AI reasoning under conditions of uncertainty emphasizes the importance of appropriateness in the approach selected for both the epistemic and the computational levels. At the former level, attention is given to the form of uncertainty-representation and the fidelity of its reflection of actual problems' uncertainties; at the latter level, such issues as the availability of the requisite information and the complexity of the reasoning process must be considered. The tradeoff between these levels must always be the focus of AI system-developers' attention.

  8. Experimental joint quantum measurements with minimum uncertainty.

    PubMed

    Ringbauer, Martin; Biggerstaff, Devon N; Broome, Matthew A; Fedrizzi, Alessandro; Branciard, Cyril; White, Andrew G

    2014-01-17

    Quantum physics constrains the accuracy of joint measurements of incompatible observables. Here we test tight measurement-uncertainty relations using single photons. We implement two independent, idealized uncertainty-estimation methods, the three-state method and the weak-measurement method, and adapt them to realistic experimental conditions. Exceptional quantum state fidelities of up to 0.999 98(6) allow us to verge upon the fundamental limits of measurement uncertainty.

  9. Estimation of uncertainty for contour method residual stress measurements

    DOE PAGES

    Olson, Mitchell D.; DeWald, Adrian T.; Prime, Michael B.; ...

    2014-12-03

    This paper describes a methodology for the estimation of measurement uncertainty for the contour method, where the contour method is an experimental technique for measuring a two-dimensional map of residual stress over a plane. Random error sources including the error arising from noise in displacement measurements and the smoothing of the displacement surfaces are accounted for in the uncertainty analysis. The output is a two-dimensional, spatially varying uncertainty estimate such that every point on the cross-section where residual stress is determined has a corresponding uncertainty value. Both numerical and physical experiments are reported, which are used to support the usefulnessmore » of the proposed uncertainty estimator. The uncertainty estimator shows the contour method to have larger uncertainty near the perimeter of the measurement plane. For the experiments, which were performed on a quenched aluminum bar with a cross section of 51 × 76 mm, the estimated uncertainty was approximately 5 MPa (σ/E = 7 · 10⁻⁵) over the majority of the cross-section, with localized areas of higher uncertainty, up to 10 MPa (σ/E = 14 · 10⁻⁵).« less

  10. Proposed standardized definitions for vertical resolution and uncertainty in the NDACC lidar ozone and temperature algorithms - Part 3: Temperature uncertainty budget

    NASA Astrophysics Data System (ADS)

    Leblanc, Thierry; Sica, Robert J.; van Gijsel, Joanna A. E.; Haefele, Alexander; Payen, Guillaume; Liberti, Gianluigi

    2016-08-01

    A standardized approach for the definition, propagation, and reporting of uncertainty in the temperature lidar data products contributing to the Network for the Detection for Atmospheric Composition Change (NDACC) database is proposed. One important aspect of the proposed approach is the ability to propagate all independent uncertainty components in parallel through the data processing chain. The individual uncertainty components are then combined together at the very last stage of processing to form the temperature combined standard uncertainty. The identified uncertainty sources comprise major components such as signal detection, saturation correction, background noise extraction, temperature tie-on at the top of the profile, and absorption by ozone if working in the visible spectrum, as well as other components such as molecular extinction, the acceleration of gravity, and the molecular mass of air, whose magnitudes depend on the instrument, data processing algorithm, and altitude range of interest. The expression of the individual uncertainty components and their step-by-step propagation through the temperature data processing chain are thoroughly estimated, taking into account the effect of vertical filtering and the merging of multiple channels. All sources of uncertainty except detection noise imply correlated terms in the vertical dimension, which means that covariance terms must be taken into account when vertical filtering is applied and when temperature is integrated from the top of the profile. Quantitatively, the uncertainty budget is presented in a generic form (i.e., as a function of instrument performance and wavelength), so that any NDACC temperature lidar investigator can easily estimate the expected impact of individual uncertainty components in the case of their own instrument. Using this standardized approach, an example of uncertainty budget is provided for the Jet Propulsion Laboratory (JPL) lidar at Mauna Loa Observatory, Hawai'i, which is

  11. Assessment of Radiative Heating Uncertainty for Hyperbolic Earth Entry

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Mazaheri, Alireza; Gnoffo, Peter A.; Kleb, W. L.; Sutton, Kenneth; Prabhu, Dinesh K.; Brandis, Aaron M.; Bose, Deepak

    2011-01-01

    This paper investigates the shock-layer radiative heating uncertainty for hyperbolic Earth entry, with the main focus being a Mars return. In Part I of this work, a baseline simulation approach involving the LAURA Navier-Stokes code with coupled ablation and radiation is presented, with the HARA radiation code being used for the radiation predictions. Flight cases representative of peak-heating Mars or asteroid return are de ned and the strong influence of coupled ablation and radiation on their aerothermodynamic environments are shown. Structural uncertainties inherent in the baseline simulations are identified, with turbulence modeling, precursor absorption, grid convergence, and radiation transport uncertainties combining for a +34% and ..24% structural uncertainty on the radiative heating. A parametric uncertainty analysis, which assumes interval uncertainties, is presented. This analysis accounts for uncertainties in the radiation models as well as heat of formation uncertainties in the flow field model. Discussions and references are provided to support the uncertainty range chosen for each parameter. A parametric uncertainty of +47.3% and -28.3% is computed for the stagnation-point radiative heating for the 15 km/s Mars-return case. A breakdown of the largest individual uncertainty contributors is presented, which includes C3 Swings cross-section, photoionization edge shift, and Opacity Project atomic lines. Combining the structural and parametric uncertainty components results in a total uncertainty of +81.3% and ..52.3% for the Mars-return case. In Part II, the computational technique and uncertainty analysis presented in Part I are applied to 1960s era shock-tube and constricted-arc experimental cases. It is shown that experiments contain shock layer temperatures and radiative ux values relevant to the Mars-return cases of present interest. Comparisons between the predictions and measurements, accounting for the uncertainty in both, are made for a range

  12. Photometric Uncertainties

    NASA Astrophysics Data System (ADS)

    Zou, Xiao-Duan; Li, Jian-Yang; Clark, Beth Ellen; Golish, Dathon

    2018-01-01

    The OSIRIS-REx spacecraft, launched in September, 2016, will study the asteroid Bennu and return a sample from its surface to Earth in 2023. Bennu is a near-Earth carbonaceous asteroid which will provide insight into the formation and evolution of the solar system. OSIRIS-REx will first approach Bennu in August 2018 and will study the asteroid for approximately two years before sampling. OSIRIS-REx will develop its photometric model (including Lommel-Seelinger, ROLO, McEwen, Minnaert and Akimov) of Bennu with OCAM and OVIRS during the Detailed Survey mission phase. The model developed during this phase will be used to photometrically correct the OCAM and OVIRS data.Here we present the analysis of the error for the photometric corrections. Based on our testing data sets, we find:1. The model uncertainties is only correct when we use the covariance matrix to calculate, because the parameters are highly correlated.2. No evidence of domination of any parameter in each model.3. And both model error and the data error contribute to the final correction error comparably.4. We tested the uncertainty module on fake and real data sets, and find that model performance depends on the data coverage and data quality. These tests gave us a better understanding of how different model behave in different case.5. L-S model is more reliable than others. Maybe because the simulated data are based on L-S model. However, the test on real data (SPDIF) does show slight advantage of L-S, too. ROLO is not reliable to use when calculating bond albedo. The uncertainty of McEwen model is big in most cases. Akimov performs unphysical on SOPIE 1 data.6. Better use L-S as our default choice, this conclusion is based mainly on our test on SOPIE data and IPDIF.

  13. Students' Uncertainty Management in the College Classroom

    ERIC Educational Resources Information Center

    Sollitto, Michael; Brott, Jan; Cole, Catherine; Gil, Elia; Selim, Heather

    2018-01-01

    The uncertainty experienced by college students can have serious repercussions for their success and subsequent retention. Drawing parallels between instructional context and organizational context will enrich theory and research about students' experiences of uncertainty in their college courses. Therefore, this study used Uncertainty Management…

  14. MODIS land cover uncertainty in regional climate simulations

    NASA Astrophysics Data System (ADS)

    Li, Xue; Messina, Joseph P.; Moore, Nathan J.; Fan, Peilei; Shortridge, Ashton M.

    2017-12-01

    MODIS land cover datasets are used extensively across the climate modeling community, but inherent uncertainties and associated propagating impacts are rarely discussed. This paper modeled uncertainties embedded within the annual MODIS Land Cover Type (MCD12Q1) products and propagated these uncertainties through the Regional Atmospheric Modeling System (RAMS). First, land cover uncertainties were modeled using pixel-based trajectory analyses from a time series of MCD12Q1 for Urumqi, China. Second, alternative land cover maps were produced based on these categorical uncertainties and passed into RAMS. Finally, simulations from RAMS were analyzed temporally and spatially to reveal impacts. Our study found that MCD12Q1 struggles to discriminate between grasslands and croplands or grasslands and barren in this study area. Such categorical uncertainties have significant impacts on regional climate model outputs. All climate variables examined demonstrated impact across the various regions, with latent heat flux affected most with a magnitude of 4.32 W/m2 in domain average. Impacted areas were spatially connected to locations of greater land cover uncertainty. Both biophysical characteristics and soil moisture settings in regard to land cover types contribute to the variations among simulations. These results indicate that formal land cover uncertainty analysis should be included in MCD12Q1-fed climate modeling as a routine procedure.

  15. Task uncertainty and communication during nursing shift handovers.

    PubMed

    Mayor, Eric; Bangerter, Adrian; Aribot, Myriam

    2012-09-01

    We explore variations in handover duration and communication in nursing units. We hypothesize that duration per patient is higher in units facing high task uncertainty. We expect both topics and functions of communication to vary depending on task uncertainty. Handovers are changing in modern healthcare organizations, where standardized procedures are increasingly advocated for efficiency and reliability reasons. However, redesign of handover should take environmental contingencies of different clinical unit types into account. An important contingency in institutions is task uncertainty, which may affect how communicative routines like handover are accomplished. Nurse unit managers of 80 care units in 18 hospitals were interviewed in 2008 about topics and functions of handover communication and duration in their unit. Interviews were content-analysed. Clinical units were classified into a theory-based typology (unit type) that gradually increases on task uncertainty. Quantitative analyses were performed. Unit type affected resource allocation. Unit types facing higher uncertainty had higher handover duration per patient. As expected, unit type also affected communication content. Clinical units facing higher uncertainty discussed fewer topics, discussing treatment and care and organization of work less frequently. Finally, unit type affected functions of handover: sharing emotions was less often mentioned in unit types facing higher uncertainty. Task uncertainty and its relationship with functions and topics of handover should be taken into account during the design of handover procedures. © 2011 Blackwell Publishing Ltd.

  16. Striatal dopamine release codes uncertainty in pathological gambling.

    PubMed

    Linnet, Jakob; Mouridsen, Kim; Peterson, Ericka; Møller, Arne; Doudet, Doris Jeanne; Gjedde, Albert

    2012-10-30

    Two mechanisms of midbrain and striatal dopaminergic projections may be involved in pathological gambling: hypersensitivity to reward and sustained activation toward uncertainty. The midbrain-striatal dopamine system distinctly codes reward and uncertainty, where dopaminergic activation is a linear function of expected reward and an inverse U-shaped function of uncertainty. In this study, we investigated the dopaminergic coding of reward and uncertainty in 18 pathological gambling sufferers and 16 healthy controls. We used positron emission tomography (PET) with the tracer [(11)C]raclopride to measure dopamine release, and we used performance on the Iowa Gambling Task (IGT) to determine overall reward and uncertainty. We hypothesized that we would find a linear function between dopamine release and IGT performance, if dopamine release coded reward in pathological gambling. If, on the other hand, dopamine release coded uncertainty, we would find an inversely U-shaped function. The data supported an inverse U-shaped relation between striatal dopamine release and IGT performance if the pathological gambling group, but not in the healthy control group. These results are consistent with the hypothesis of dopaminergic sensitivity toward uncertainty, and suggest that dopaminergic sensitivity to uncertainty is pronounced in pathological gambling, but not among non-gambling healthy controls. The findings have implications for understanding dopamine dysfunctions in pathological gambling and addictive behaviors. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Strong Unitary and Overlap Uncertainty Relations: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Bong, Kok-Wei; Tischler, Nora; Patel, Raj B.; Wollmann, Sabine; Pryde, Geoff J.; Hall, Michael J. W.

    2018-06-01

    We derive and experimentally investigate a strong uncertainty relation valid for any n unitary operators, which implies the standard uncertainty relation and others as special cases, and which can be written in terms of geometric phases. It is saturated by every pure state of any n -dimensional quantum system, generates a tight overlap uncertainty relation for the transition probabilities of any n +1 pure states, and gives an upper bound for the out-of-time-order correlation function. We test these uncertainty relations experimentally for photonic polarization qubits, including the minimum uncertainty states of the overlap uncertainty relation, via interferometric measurements of generalized geometric phases.

  18. Applying principles from the game theory to acute stroke care: Learning from the prisoner's dilemma, stag-hunt, and other strategies.

    PubMed

    Saposnik, Gustavo; Johnston, S Claiborne

    2016-04-01

    Acute stroke care represents a challenge for decision makers. Decisions based on erroneous assessments may generate false expectations of patients and their family members, and potentially inappropriate medical advice. Game theory is the analysis of interactions between individuals to study how conflict and cooperation affect our decisions. We reviewed principles of game theory that could be applied to medical decisions under uncertainty. Medical decisions in acute stroke care are usually made under constrains: short period of time, with imperfect clinical information, limit understanding about patients and families' values and beliefs. Game theory brings some strategies to help us manage complex medical situations under uncertainty. For example, it offers a different perspective by encouraging the consideration of different alternatives through the understanding of patients' preferences and the careful evaluation of cognitive distortions when applying 'real-world' data. The stag-hunt game teaches us the importance of trust to strength cooperation for a successful patient-physician interaction that is beyond a good or poor clinical outcome. The application of game theory to stroke care may improve our understanding of complex medical situations and help clinicians make practical decisions under uncertainty. © 2016 World Stroke Organization.

  19. Probabilistic accident consequence uncertainty analysis -- Uncertainty assessment for internal dosimetry. Volume 2: Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goossens, L.H.J.; Kraan, B.C.P.; Cooke, R.M.

    1998-04-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library ofmore » uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA internal dosimetry models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the panel on internal dosimetry, (4) short biographies of the experts, and (5) the aggregated results of their responses.« less

  20. Optimization Under Uncertainty for Wake Steering Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quick, Julian; Annoni, Jennifer; King, Ryan N.

    Here, wind turbines in a wind power plant experience significant power losses because of aerodynamic interactions between turbines. One control strategy to reduce these losses is known as 'wake steering,' in which upstream turbines are yawed to direct wakes away from downstream turbines. Previous wake steering research has assumed perfect information, however, there can be significant uncertainty in many aspects of the problem, including wind inflow and various turbine measurements. Uncertainty has significant implications for performance of wake steering strategies. Consequently, the authors formulate and solve an optimization under uncertainty (OUU) problem for finding optimal wake steering strategies in themore » presence of yaw angle uncertainty. The OUU wake steering strategy is demonstrated on a two-turbine test case and on the utility-scale, offshore Princess Amalia Wind Farm. When we accounted for yaw angle uncertainty in the Princess Amalia Wind Farm case, inflow-direction-specific OUU solutions produced between 0% and 1.4% more power than the deterministically optimized steering strategies, resulting in an overall annual average improvement of 0.2%. More importantly, the deterministic optimization is expected to perform worse and with more downside risk than the OUU result when realistic uncertainty is taken into account. Additionally, the OUU solution produces fewer extreme yaw situations than the deterministic solution.« less

  1. Not Normal: the uncertainties of scientific measurements

    PubMed Central

    2017-01-01

    Judging the significance and reproducibility of quantitative research requires a good understanding of relevant uncertainties, but it is often unclear how well these have been evaluated and what they imply. Reported scientific uncertainties were studied by analysing 41 000 measurements of 3200 quantities from medicine, nuclear and particle physics, and interlaboratory comparisons ranging from chemistry to toxicology. Outliers are common, with 5σ disagreements up to five orders of magnitude more frequent than naively expected. Uncertainty-normalized differences between multiple measurements of the same quantity are consistent with heavy-tailed Student’s t-distributions that are often almost Cauchy, far from a Gaussian Normal bell curve. Medical research uncertainties are generally as well evaluated as those in physics, but physics uncertainty improves more rapidly, making feasible simple significance criteria such as the 5σ discovery convention in particle physics. Contributions to measurement uncertainty from mistakes and unknown problems are not completely unpredictable. Such errors appear to have power-law distributions consistent with how designed complex systems fail, and how unknown systematic errors are constrained by researchers. This better understanding may help improve analysis and meta-analysis of data, and help scientists and the public have more realistic expectations of what scientific results imply. PMID:28280557

  2. Not Normal: the uncertainties of scientific measurements

    NASA Astrophysics Data System (ADS)

    Bailey, David C.

    2017-01-01

    Judging the significance and reproducibility of quantitative research requires a good understanding of relevant uncertainties, but it is often unclear how well these have been evaluated and what they imply. Reported scientific uncertainties were studied by analysing 41 000 measurements of 3200 quantities from medicine, nuclear and particle physics, and interlaboratory comparisons ranging from chemistry to toxicology. Outliers are common, with 5σ disagreements up to five orders of magnitude more frequent than naively expected. Uncertainty-normalized differences between multiple measurements of the same quantity are consistent with heavy-tailed Student's t-distributions that are often almost Cauchy, far from a Gaussian Normal bell curve. Medical research uncertainties are generally as well evaluated as those in physics, but physics uncertainty improves more rapidly, making feasible simple significance criteria such as the 5σ discovery convention in particle physics. Contributions to measurement uncertainty from mistakes and unknown problems are not completely unpredictable. Such errors appear to have power-law distributions consistent with how designed complex systems fail, and how unknown systematic errors are constrained by researchers. This better understanding may help improve analysis and meta-analysis of data, and help scientists and the public have more realistic expectations of what scientific results imply.

  3. Optimization Under Uncertainty for Wake Steering Strategies

    NASA Astrophysics Data System (ADS)

    Quick, Julian; Annoni, Jennifer; King, Ryan; Dykes, Katherine; Fleming, Paul; Ning, Andrew

    2017-05-01

    Wind turbines in a wind power plant experience significant power losses because of aerodynamic interactions between turbines. One control strategy to reduce these losses is known as “wake steering,” in which upstream turbines are yawed to direct wakes away from downstream turbines. Previous wake steering research has assumed perfect information, however, there can be significant uncertainty in many aspects of the problem, including wind inflow and various turbine measurements. Uncertainty has significant implications for performance of wake steering strategies. Consequently, the authors formulate and solve an optimization under uncertainty (OUU) problem for finding optimal wake steering strategies in the presence of yaw angle uncertainty. The OUU wake steering strategy is demonstrated on a two-turbine test case and on the utility-scale, offshore Princess Amalia Wind Farm. When we accounted for yaw angle uncertainty in the Princess Amalia Wind Farm case, inflow-direction-specific OUU solutions produced between 0% and 1.4% more power than the deterministically optimized steering strategies, resulting in an overall annual average improvement of 0.2%. More importantly, the deterministic optimization is expected to perform worse and with more downside risk than the OUU result when realistic uncertainty is taken into account. Additionally, the OUU solution produces fewer extreme yaw situations than the deterministic solution.

  4. Optimization Under Uncertainty for Wake Steering Strategies

    DOE PAGES

    Quick, Julian; Annoni, Jennifer; King, Ryan N.; ...

    2017-06-13

    Here, wind turbines in a wind power plant experience significant power losses because of aerodynamic interactions between turbines. One control strategy to reduce these losses is known as 'wake steering,' in which upstream turbines are yawed to direct wakes away from downstream turbines. Previous wake steering research has assumed perfect information, however, there can be significant uncertainty in many aspects of the problem, including wind inflow and various turbine measurements. Uncertainty has significant implications for performance of wake steering strategies. Consequently, the authors formulate and solve an optimization under uncertainty (OUU) problem for finding optimal wake steering strategies in themore » presence of yaw angle uncertainty. The OUU wake steering strategy is demonstrated on a two-turbine test case and on the utility-scale, offshore Princess Amalia Wind Farm. When we accounted for yaw angle uncertainty in the Princess Amalia Wind Farm case, inflow-direction-specific OUU solutions produced between 0% and 1.4% more power than the deterministically optimized steering strategies, resulting in an overall annual average improvement of 0.2%. More importantly, the deterministic optimization is expected to perform worse and with more downside risk than the OUU result when realistic uncertainty is taken into account. Additionally, the OUU solution produces fewer extreme yaw situations than the deterministic solution.« less

  5. The balance principle in scientific research.

    PubMed

    Hu, Liang-ping; Bao, Xiao-lei; Wang, Qi

    2012-05-01

    The principles of balance, randomization, control and repetition, which are closely related, constitute the four principles of scientific research. The balance principle is the kernel of the four principles which runs through the other three. However, in scientific research, the balance principle is always overlooked. If the balance principle is not well performed, the research conclusion is easy to be denied, which may lead to the failure of the whole research. Therefore, it is essential to have a good command of the balance principle in scientific research. This article stresses the definition and function of the balance principle, the strategies and detailed measures to improve balance in scientific research, and the analysis of the common mistakes involving the use of the balance principle in scientific research.

  6. Uncertainty in temperature response of current consumption-based emissions estimates

    NASA Astrophysics Data System (ADS)

    Karstensen, J.; Peters, G. P.; Andrew, R. M.

    2015-05-01

    Several studies have connected emissions of greenhouse gases to economic and trade data to quantify the causal chain from consumption to emissions and climate change. These studies usually combine data and models originating from different sources, making it difficult to estimate uncertainties along the entire causal chain. We estimate uncertainties in economic data, multi-pollutant emission statistics, and metric parameters, and use Monte Carlo analysis to quantify contributions to uncertainty and to determine how uncertainty propagates to estimates of global temperature change from regional and sectoral territorial- and consumption-based emissions for the year 2007. We find that the uncertainties are sensitive to the emission allocations, mix of pollutants included, the metric and its time horizon, and the level of aggregation of the results. Uncertainties in the final results are largely dominated by the climate sensitivity and the parameters associated with the warming effects of CO2. Based on our assumptions, which exclude correlations in the economic data, the uncertainty in the economic data appears to have a relatively small impact on uncertainty at the national level in comparison to emissions and metric uncertainty. Much higher uncertainties are found at the sectoral level. Our results suggest that consumption-based national emissions are not significantly more uncertain than the corresponding production-based emissions since the largest uncertainties are due to metric and emissions which affect both perspectives equally. The two perspectives exhibit different sectoral uncertainties, due to changes of pollutant compositions. We find global sectoral consumption uncertainties in the range of ±10 to ±27 % using the Global Temperature Potential with a 50-year time horizon, with metric uncertainties dominating. National-level uncertainties are similar in both perspectives due to the dominance of CO2 over other pollutants. The consumption emissions of the top

  7. From Quantification to Visualization: A Taxonomy of Uncertainty Visualization Approaches

    PubMed Central

    Potter, Kristin; Rosen, Paul; Johnson, Chris R.

    2014-01-01

    Quantifying uncertainty is an increasingly important topic across many domains. The uncertainties present in data come with many diverse representations having originated from a wide variety of disciplines. Communicating these uncertainties is a task often left to visualization without clear connection between the quantification and visualization. In this paper, we first identify frequently occurring types of uncertainty. Second, we connect those uncertainty representations to ones commonly used in visualization. We then look at various approaches to visualizing this uncertainty by partitioning the work based on the dimensionality of the data and the dimensionality of the uncertainty. We also discuss noteworthy exceptions to our taxonomy along with future research directions for the uncertainty visualization community. PMID:25663949

  8. The inconstant "principle of constancy".

    PubMed

    Kanzer, M

    1983-01-01

    A review of the principle of constancy, as it appeared in Freud's writings, shows that it was inspired by his clinical observations, first with Breuer in the field of cathartic therapy and then through experiences in the early usage of psychoanalysis. The recognition that memories repressed in the unconscious created increasing tension, and that this was relieved with dischargelike phenomena when the unconscious was made conscious, was the basis for his claim to originality in this area. The two principles of "neuronic inertia" Freud expounded in the Project (1895), are found to offer the key to the ambiguous definition of the principle of constancy he was to offer in later years. The "original" principle, which sought the complete discharge of energy (or elimination of stimuli), became the forerunner of the death drive; the "extended" principle achieved balances that were relatively constant, but succumbed in the end to complete discharge. This was the predecessor of the life drives. The relation between the constancy and pleasure-unpleasure principles was maintained for twenty-five years largely on an empirical basis which invoked the concept of psychophysical parallelism between "quantity" and "quality." As the links between the two principles were weakened by clinical experiences attendant upon the growth of ego psychology, a revision of the principle of constancy was suggested, and it was renamed the Nirvana principle. Actually it was shifted from alignment with the "extended" principle of inertia to the original, so that "constancy" was incongruously identified with self-extinction. The former basis for the constancy principle, the extended principle of inertia, became identified with Eros. Only a few commentators seem aware of this radical transformation, which has been overlooked in the Standard Edition of Freud's writings. Physiological biases in the history and conception of the principle of constancy are noted in the Standard Edition. The historical

  9. 10 CFR 436.24 - Uncertainty analyses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Procedures for Life Cycle Cost Analyses § 436.24 Uncertainty analyses. If particular items of cost data or... impact of uncertainty on the calculation of life cycle cost effectiveness or the assignment of rank order... and probabilistic analysis. If additional analysis casts substantial doubt on the life cycle cost...

  10. 10 CFR 436.24 - Uncertainty analyses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Procedures for Life Cycle Cost Analyses § 436.24 Uncertainty analyses. If particular items of cost data or... impact of uncertainty on the calculation of life cycle cost effectiveness or the assignment of rank order... and probabilistic analysis. If additional analysis casts substantial doubt on the life cycle cost...

  11. 10 CFR 436.24 - Uncertainty analyses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Procedures for Life Cycle Cost Analyses § 436.24 Uncertainty analyses. If particular items of cost data or... impact of uncertainty on the calculation of life cycle cost effectiveness or the assignment of rank order... and probabilistic analysis. If additional analysis casts substantial doubt on the life cycle cost...

  12. 10 CFR 436.24 - Uncertainty analyses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Procedures for Life Cycle Cost Analyses § 436.24 Uncertainty analyses. If particular items of cost data or... impact of uncertainty on the calculation of life cycle cost effectiveness or the assignment of rank order... and probabilistic analysis. If additional analysis casts substantial doubt on the life cycle cost...

  13. Lognormal Approximations of Fault Tree Uncertainty Distributions.

    PubMed

    El-Shanawany, Ashraf Ben; Ardron, Keith H; Walker, Simon P

    2018-01-26

    Fault trees are used in reliability modeling to create logical models of fault combinations that can lead to undesirable events. The output of a fault tree analysis (the top event probability) is expressed in terms of the failure probabilities of basic events that are input to the model. Typically, the basic event probabilities are not known exactly, but are modeled as probability distributions: therefore, the top event probability is also represented as an uncertainty distribution. Monte Carlo methods are generally used for evaluating the uncertainty distribution, but such calculations are computationally intensive and do not readily reveal the dominant contributors to the uncertainty. In this article, a closed-form approximation for the fault tree top event uncertainty distribution is developed, which is applicable when the uncertainties in the basic events of the model are lognormally distributed. The results of the approximate method are compared with results from two sampling-based methods: namely, the Monte Carlo method and the Wilks method based on order statistics. It is shown that the closed-form expression can provide a reasonable approximation to results obtained by Monte Carlo sampling, without incurring the computational expense. The Wilks method is found to be a useful means of providing an upper bound for the percentiles of the uncertainty distribution while being computationally inexpensive compared with full Monte Carlo sampling. The lognormal approximation method and Wilks's method appear attractive, practical alternatives for the evaluation of uncertainty in the output of fault trees and similar multilinear models. © 2018 Society for Risk Analysis.

  14. Uncertainty in temperature response of current consumption-based emissions estimates

    NASA Astrophysics Data System (ADS)

    Karstensen, J.; Peters, G. P.; Andrew, R. M.

    2014-09-01

    Several studies have connected emissions of greenhouse gases to economic and trade data to quantify the causal chain from consumption to emissions and climate change. These studies usually combine data and models originating from different sources, making it difficult to estimate uncertainties in the end results. We estimate uncertainties in economic data, multi-pollutant emission statistics and metric parameters, and use Monte Carlo analysis to quantify contributions to uncertainty and to determine how uncertainty propagates to estimates of global temperature change from regional and sectoral territorial- and consumption-based emissions for the year 2007. We find that the uncertainties are sensitive to the emission allocations, mix of pollutants included, the metric and its time horizon, and the level of aggregation of the results. Uncertainties in the final results are largely dominated by the climate sensitivity and the parameters associated with the warming effects of CO2. The economic data have a relatively small impact on uncertainty at the global and national level, while much higher uncertainties are found at the sectoral level. Our results suggest that consumption-based national emissions are not significantly more uncertain than the corresponding production based emissions, since the largest uncertainties are due to metric and emissions which affect both perspectives equally. The two perspectives exhibit different sectoral uncertainties, due to changes of pollutant compositions. We find global sectoral consumption uncertainties in the range of ±9-±27% using the global temperature potential with a 50 year time horizon, with metric uncertainties dominating. National level uncertainties are similar in both perspectives due to the dominance of CO2 over other pollutants. The consumption emissions of the top 10 emitting regions have a broad uncertainty range of ±9-±25%, with metric and emissions uncertainties contributing similarly. The Absolute global

  15. Uncertainty Assessment of Synthetic Design Hydrographs for Gauged and Ungauged Catchments

    NASA Astrophysics Data System (ADS)

    Brunner, Manuela I.; Sikorska, Anna E.; Furrer, Reinhard; Favre, Anne-Catherine

    2018-03-01

    Design hydrographs described by peak discharge, hydrograph volume, and hydrograph shape are essential for engineering tasks involving storage. Such design hydrographs are inherently uncertain as are classical flood estimates focusing on peak discharge only. Various sources of uncertainty contribute to the total uncertainty of synthetic design hydrographs for gauged and ungauged catchments. These comprise model uncertainties, sampling uncertainty, and uncertainty due to the choice of a regionalization method. A quantification of the uncertainties associated with flood estimates is essential for reliable decision making and allows for the identification of important uncertainty sources. We therefore propose an uncertainty assessment framework for the quantification of the uncertainty associated with synthetic design hydrographs. The framework is based on bootstrap simulations and consists of three levels of complexity. On the first level, we assess the uncertainty due to individual uncertainty sources. On the second level, we quantify the total uncertainty of design hydrographs for gauged catchments and the total uncertainty of regionalizing them to ungauged catchments but independently from the construction uncertainty. On the third level, we assess the coupled uncertainty of synthetic design hydrographs in ungauged catchments, jointly considering construction and regionalization uncertainty. We find that the most important sources of uncertainty in design hydrograph construction are the record length and the choice of the flood sampling strategy. The total uncertainty of design hydrographs in ungauged catchments depends on the catchment properties and is not negligible in our case.

  16. Detailed Uncertainty Analysis of the ZEM-3 Measurement System

    NASA Technical Reports Server (NTRS)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    The measurement of Seebeck coefficient and electrical resistivity are critical to the investigation of all thermoelectric systems. Therefore, it stands that the measurement uncertainty must be well understood to report ZT values which are accurate and trustworthy. A detailed uncertainty analysis of the ZEM-3 measurement system has been performed. The uncertainty analysis calculates error in the electrical resistivity measurement as a result of sample geometry tolerance, probe geometry tolerance, statistical error, and multi-meter uncertainty. The uncertainty on Seebeck coefficient includes probe wire correction factors, statistical error, multi-meter uncertainty, and most importantly the cold-finger effect. The cold-finger effect plagues all potentiometric (four-probe) Seebeck measurement systems, as heat parasitically transfers through thermocouple probes. The effect leads to an asymmetric over-estimation of the Seebeck coefficient. A thermal finite element analysis allows for quantification of the phenomenon, and provides an estimate on the uncertainty of the Seebeck coefficient. The thermoelectric power factor has been found to have an uncertainty of +9-14 at high temperature and 9 near room temperature.

  17. Dealing with uncertainties in environmental burden of disease assessment

    PubMed Central

    2009-01-01

    Disability Adjusted Life Years (DALYs) combine the number of people affected by disease or mortality in a population and the duration and severity of their condition into one number. The environmental burden of disease is the number of DALYs that can be attributed to environmental factors. Environmental burden of disease estimates enable policy makers to evaluate, compare and prioritize dissimilar environmental health problems or interventions. These estimates often have various uncertainties and assumptions which are not always made explicit. Besides statistical uncertainty in input data and parameters – which is commonly addressed – a variety of other types of uncertainties may substantially influence the results of the assessment. We have reviewed how different types of uncertainties affect environmental burden of disease assessments, and we give suggestions as to how researchers could address these uncertainties. We propose the use of an uncertainty typology to identify and characterize uncertainties. Finally, we argue that uncertainties need to be identified, assessed, reported and interpreted in order for assessment results to adequately support decision making. PMID:19400963

  18. Proton and neutron electromagnetic form factors and uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Zhihong; Arrington, John; Hill, Richard J.

    We determine the nucleon electromagnetic form factors and their uncertainties from world electron scattering data. The analysis incorporates two-photon exchange corrections, constraints on the low-Q 2 and high-Q 2 behavior, and additional uncertainties to account for tensions between different data sets and uncertainties in radiative corrections.

  19. Proton and neutron electromagnetic form factors and uncertainties

    DOE PAGES

    Ye, Zhihong; Arrington, John; Hill, Richard J.; ...

    2017-12-06

    We determine the nucleon electromagnetic form factors and their uncertainties from world electron scattering data. The analysis incorporates two-photon exchange corrections, constraints on the low-Q 2 and high-Q 2 behavior, and additional uncertainties to account for tensions between different data sets and uncertainties in radiative corrections.

  20. An uncertainty analysis of wildfire modeling [Chapter 13

    Treesearch

    Karin Riley; Matthew Thompson

    2017-01-01

    Before fire models can be understood, evaluated, and effectively applied to support decision making, model-based uncertainties must be analyzed. In this chapter, we identify and classify sources of uncertainty using an established analytical framework, and summarize results graphically in an uncertainty matrix. Our analysis facilitates characterization of the...

  1. The water sensitive city: principles for practice.

    PubMed

    Wong, T H F; Brown, R R

    2009-01-01

    With the widespread realisation of the significance of climate change, urban communities are increasingly seeking to ensure resilience to future uncertainties in urban water supplies, yet change seems slow with many cities facing ongoing investment in the conventional approach. This is because transforming cities to more sustainable urban water cities, or to Water Sensitive Cities, requires a major overhaul of the hydro-social contract that underpins conventional approaches. This paper provides an overview of the emerging research and practice focused on system resilience and principles of sustainable urban water management Three key pillars that need to underpin the development and practice of a Water Sensitive City are proposed: (i) access to a diversity of water sources underpinned by a diversity of centralised and decentralised infrastructure; (ii) provision of ecosystem services for the built and natural environment; and (iii) socio-political capital for sustainability and water sensitive behaviours. While there is not one example in the world of a Water Sensitive City, there are cities that lead on distinct and varying attributes of the water sensitive approach and examples from Australia and Singapore are presented.

  2. Is my bottom-up uncertainty estimation on metal measurement adequate?

    NASA Astrophysics Data System (ADS)

    Marques, J. R.; Faustino, M. G.; Monteiro, L. R.; Ulrich, J. C.; Pires, M. A. F.; Cotrim, M. E. B.

    2018-03-01

    Is the estimated uncertainty under GUM recommendation associated with metal measurement adequately estimated? How to evaluate if the measurement uncertainty really covers all uncertainty that is associated with the analytical procedure? Considering that, many laboratories frequently underestimate or less frequently overestimate uncertainties on its results; this paper presents the evaluation of estimated uncertainties on two ICP-OES procedures of seven metal measurements according to GUM approach. Horwitz function and proficiency tests scaled standard uncertainties were used in this evaluation. Our data shows that most elements expanded uncertainties were from two to four times underestimated. Possible causes and corrections are discussed herein.

  3. Visualizing Uncertainty of Point Phenomena by Redesigned Error Ellipses

    NASA Astrophysics Data System (ADS)

    Murphy, Christian E.

    2018-05-01

    Visualizing uncertainty remains one of the great challenges in modern cartography. There is no overarching strategy to display the nature of uncertainty, as an effective and efficient visualization depends, besides on the spatial data feature type, heavily on the type of uncertainty. This work presents a design strategy to visualize uncertainty con-nected to point features. The error ellipse, well-known from mathematical statistics, is adapted to display the uncer-tainty of point information originating from spatial generalization. Modified designs of the error ellipse show the po-tential of quantitative and qualitative symbolization and simultaneous point based uncertainty symbolization. The user can intuitively depict the centers of gravity, the major orientation of the point arrays as well as estimate the ex-tents and possible spatial distributions of multiple point phenomena. The error ellipse represents uncertainty in an intuitive way, particularly suitable for laymen. Furthermore it is shown how applicable an adapted design of the er-ror ellipse is to display the uncertainty of point features originating from incomplete data. The suitability of the error ellipse to display the uncertainty of point information is demonstrated within two showcases: (1) the analysis of formations of association football players, and (2) uncertain positioning of events on maps for the media.

  4. Uncertainty propagation in the calibration equations for NTC thermistors

    NASA Astrophysics Data System (ADS)

    Liu, Guang; Guo, Liang; Liu, Chunlong; Wu, Qingwen

    2018-06-01

    The uncertainty propagation problem is quite important for temperature measurements, since we rely so much on the sensors and calibration equations. Although uncertainty propagation for platinum resistance or radiation thermometers is well known, there have been few publications concerning negative temperature coefficient (NTC) thermistors. Insight into the propagation characteristics of uncertainty that develop when equations are determined using the Lagrange interpolation or least-squares fitting method is presented here with respect to several of the most common equations used in NTC thermistor calibration. Within this work, analytical expressions of the propagated uncertainties for both fitting methods are derived for the uncertainties in the measured temperature and resistance at each calibration point. High-precision calibration of an NTC thermistor in a precision water bath was performed by means of the comparison method. Results show that, for both fitting methods, the propagated uncertainty is flat in the interpolation region but rises rapidly beyond the calibration range. Also, for temperatures interpolated between calibration points, the propagated uncertainty is generally no greater than that associated with the calibration points. For least-squares fitting, the propagated uncertainty is significantly reduced by increasing the number of calibration points and can be well kept below the uncertainty of the calibration points.

  5. Uncertainty Assessment: What Good Does it Do? (Invited)

    NASA Astrophysics Data System (ADS)

    Oreskes, N.; Lewandowsky, S.

    2013-12-01

    The scientific community has devoted considerable time and energy to understanding, quantifying and articulating the uncertainties related to anthropogenic climate change. However, informed decision-making and good public policy arguably rely far more on a central core of understanding of matters that are scientifically well established than on detailed understanding and articulation of all relevant uncertainties. Advocates of vaccination, for example, stress its overall efficacy in preventing morbidity and mortality--not the uncertainties over how long the protective effects last. Advocates for colonoscopy for cancer screening stress its capacity to detect polyps before they become cancerous, with relatively little attention paid to the fact that many, if not most, polyps, would not become cancerous even if left unremoved. So why has the climate science community spent so much time focused on uncertainty? One reason, of course, is that articulation of uncertainty is a normal and appropriate part of scientific work. However, we argue that there is another reason that involves the pressure that the scientific community has experienced from individuals and groups promoting doubt about anthropogenic climate change. Specifically, doubt-mongering groups focus public attention on scientific uncertainty as a means to undermine scientific claims, equating uncertainty with untruth. Scientists inadvertently validate these arguments by agreeing that much of the science is uncertain, and thus seemingly implying that our knowledge is insecure. The problem goes further, as the scientific community attempts to articulate more clearly, and reduce, those uncertainties, thus, seemingly further agreeing that the knowledge base is insufficient to warrant public and governmental action. We refer to this effect as 'seepage,' as the effects of doubt-mongering seep into the scientific community and the scientific agenda, despite the fact that addressing these concerns does little to alter

  6. Cross-hierarchy systems principles.

    PubMed

    Goentoro, Lea

    2017-02-01

    One driving motivation of systems biology is the search for general principles that govern the design of biological systems. But questions often arise as to what kind of general principles biology could have. Concepts from engineering such as robustness and modularity are indeed becoming a regular way of describing biological systems. Another source of potential general principles is the emerging similarities found in processes across biological hierarchies. In this piece, I describe several emerging cross-hierarchy similarities. Identification of more cross-hierarchy principles, and understanding the implications these convergence have on the construction of biological systems, I believe, present exciting challenges for systems biology in the decades to come.

  7. Uncertainty relation for the discrete Fourier transform.

    PubMed

    Massar, Serge; Spindel, Philippe

    2008-05-16

    We derive an uncertainty relation for two unitary operators which obey a commutation relation of the form UV=e(i phi) VU. Its most important application is to constrain how much a quantum state can be localized simultaneously in two mutually unbiased bases related by a discrete fourier transform. It provides an uncertainty relation which smoothly interpolates between the well-known cases of the Pauli operators in two dimensions and the continuous variables position and momentum. This work also provides an uncertainty relation for modular variables, and could find applications in signal processing. In the finite dimensional case the minimum uncertainty states, discrete analogues of coherent and squeezed states, are minimum energy solutions of Harper's equation, a discrete version of the harmonic oscillator equation.

  8. Uncertainty Quantification in Climate Modeling and Projection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Yun; Jackson, Charles; Giorgi, Filippo

    The projection of future climate is one of the most complex problems undertaken by the scientific community. Although scientists have been striving to better understand the physical basis of the climate system and to improve climate models, the overall uncertainty in projections of future climate has not been significantly reduced (e.g., from the IPCC AR4 to AR5). With the rapid increase of complexity in Earth system models, reducing uncertainties in climate projections becomes extremely challenging. Since uncertainties always exist in climate models, interpreting the strengths and limitations of future climate projections is key to evaluating risks, and climate change informationmore » for use in Vulnerability, Impact, and Adaptation (VIA) studies should be provided with both well-characterized and well-quantified uncertainty. The workshop aimed at providing participants, many of them from developing countries, information on strategies to quantify the uncertainty in climate model projections and assess the reliability of climate change information for decision-making. The program included a mixture of lectures on fundamental concepts in Bayesian inference and sampling, applications, and hands-on computer laboratory exercises employing software packages for Bayesian inference, Markov Chain Monte Carlo methods, and global sensitivity analyses. The lectures covered a range of scientific issues underlying the evaluation of uncertainties in climate projections, such as the effects of uncertain initial and boundary conditions, uncertain physics, and limitations of observational records. Progress in quantitatively estimating uncertainties in hydrologic, land surface, and atmospheric models at both regional and global scales was also reviewed. The application of Uncertainty Quantification (UQ) concepts to coupled climate system models is still in its infancy. The Coupled Model Intercomparison Project (CMIP) multi-model ensemble currently represents the primary data for

  9. Estimating discharge measurement uncertainty using the interpolated variance estimator

    USGS Publications Warehouse

    Cohn, T.; Kiang, J.; Mason, R.

    2012-01-01

    Methods for quantifying the uncertainty in discharge measurements typically identify various sources of uncertainty and then estimate the uncertainty from each of these sources by applying the results of empirical or laboratory studies. If actual measurement conditions are not consistent with those encountered in the empirical or laboratory studies, these methods may give poor estimates of discharge uncertainty. This paper presents an alternative method for estimating discharge measurement uncertainty that uses statistical techniques and at-site observations. This Interpolated Variance Estimator (IVE) estimates uncertainty based on the data collected during the streamflow measurement and therefore reflects the conditions encountered at the site. The IVE has the additional advantage of capturing all sources of random uncertainty in the velocity and depth measurements. It can be applied to velocity-area discharge measurements that use a velocity meter to measure point velocities at multiple vertical sections in a channel cross section.

  10. Evaluation of measurement uncertainty of glucose in clinical chemistry.

    PubMed

    Berçik Inal, B; Koldas, M; Inal, H; Coskun, C; Gümüs, A; Döventas, Y

    2007-04-01

    The definition of the uncertainty of measurement used in the International Vocabulary of Basic and General Terms in Metrology (VIM) is a parameter associated with the result of a measurement, which characterizes the dispersion of the values that could reasonably be attributed to the measurand. Uncertainty of measurement comprises many components. In addition to every parameter, the measurement uncertainty is that a value should be given by all institutions that have been accredited. This value shows reliability of the measurement. GUM, published by NIST, contains uncertainty directions. Eurachem/CITAC Guide CG4 was also published by Eurachem/CITAC Working Group in the year 2000. Both of them offer a mathematical model, for uncertainty can be calculated. There are two types of uncertainty in measurement. Type A is the evaluation of uncertainty through the statistical analysis and type B is the evaluation of uncertainty through other means, for example, certificate reference material. Eurachem Guide uses four types of distribution functions: (1) rectangular distribution that gives limits without specifying a level of confidence (u(x)=a/ radical3) to a certificate; (2) triangular distribution that values near to the same point (u(x)=a/ radical6); (3) normal distribution in which an uncertainty is given in the form of a standard deviation s, a relative standard deviation s/ radicaln, or a coefficient of variance CV% without specifying the distribution (a = certificate value, u = standard uncertainty); and (4) confidence interval.

  11. Uncertainty Quantification in High Throughput Screening ...

    EPA Pesticide Factsheets

    Using uncertainty quantification, we aim to improve the quality of modeling data from high throughput screening assays for use in risk assessment. ToxCast is a large-scale screening program that analyzes thousands of chemicals using over 800 assays representing hundreds of biochemical and cellular processes, including endocrine disruption, cytotoxicity, and zebrafish development. Over 2.6 million concentration response curves are fit to models to extract parameters related to potency and efficacy. Models built on ToxCast results are being used to rank and prioritize the toxicological risk of tested chemicals and to predict the toxicity of tens of thousands of chemicals not yet tested in vivo. However, the data size also presents challenges. When fitting the data, the choice of models, model selection strategy, and hit call criteria must reflect the need for computational efficiency and robustness, requiring hard and somewhat arbitrary cutoffs. When coupled with unavoidable noise in the experimental concentration response data, these hard cutoffs cause uncertainty in model parameters and the hit call itself. The uncertainty will then propagate through all of the models built on the data. Left unquantified, this uncertainty makes it difficult to fully interpret the data for risk assessment. We used bootstrap resampling methods to quantify the uncertainty in fitting models to the concentration response data. Bootstrap resampling determines confidence intervals for

  12. Uncertainty Analysis of Consequence Management (CM) Data Products.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, Brian D.; Eckert-Gallup, Aubrey Celia; Cochran, Lainy Dromgoole

    The goal of this project is to develop and execute methods for characterizing uncertainty in data products that are deve loped and distributed by the DOE Consequence Management (CM) Program. A global approach to this problem is necessary because multiple sources of error and uncertainty from across the CM skill sets contribute to the ultimate p roduction of CM data products. This report presents the methods used to develop a probabilistic framework to characterize this uncertainty and provides results for an uncertainty analysis for a study scenario analyzed using this framework.

  13. A method for approximating acoustic-field-amplitude uncertainty caused by environmental uncertainties.

    PubMed

    James, Kevin R; Dowling, David R

    2008-09-01

    In underwater acoustics, the accuracy of computational field predictions is commonly limited by uncertainty in environmental parameters. An approximate technique for determining the probability density function (PDF) of computed field amplitude, A, from known environmental uncertainties is presented here. The technique can be applied to several, N, uncertain parameters simultaneously, requires N+1 field calculations, and can be used with any acoustic field model. The technique implicitly assumes independent input parameters and is based on finding the optimum spatial shift between field calculations completed at two different values of each uncertain parameter. This shift information is used to convert uncertain-environmental-parameter distributions into PDF(A). The technique's accuracy is good when the shifted fields match well. Its accuracy is evaluated in range-independent underwater sound channels via an L(1) error-norm defined between approximate and numerically converged results for PDF(A). In 50-m- and 100-m-deep sound channels with 0.5% uncertainty in depth (N=1) at frequencies between 100 and 800 Hz, and for ranges from 1 to 8 km, 95% of the approximate field-amplitude distributions generated L(1) values less than 0.52 using only two field calculations. Obtaining comparable accuracy from traditional methods requires of order 10 field calculations and up to 10(N) when N>1.

  14. MOMENTS OF UNCERTAINTY: ETHICAL CONSIDERATIONS AND EMERGING CONTAMINANTS

    PubMed Central

    Cordner, Alissa; Brown, Phil

    2013-01-01

    Science on emerging environmental health threats involves numerous ethical concerns related to scientific uncertainty about conducting, interpreting, communicating, and acting upon research findings, but the connections between ethical decision making and scientific uncertainty are under-studied in sociology. Under conditions of scientific uncertainty, researcher conduct is not fully prescribed by formal ethical codes of conduct, increasing the importance of ethical reflection by researchers, conflicts over research conduct, and reliance on informal ethical standards. This paper draws on in-depth interviews with scientists, regulators, activists, industry representatives, and fire safety experts to explore ethical considerations of moments of uncertainty using a case study of flame retardants, chemicals widely used in consumer products with potential negative health and environmental impacts. We focus on the uncertainty that arises in measuring people’s exposure to these chemicals through testing of their personal environments or bodies. We identify four sources of ethical concerns relevant to scientific uncertainty: 1) choosing research questions or methods, 2) interpreting scientific results, 3) communicating results to multiple publics, and 4) applying results for policy-making. This research offers lessons about professional conduct under conditions of uncertainty, ethical research practice, democratization of scientific knowledge, and science’s impact on policy. PMID:24249964

  15. Sources of uncertainty in annual forest inventory estimates

    Treesearch

    Ronald E. McRoberts

    2000-01-01

    Although design and estimation aspects of annual forest inventories have begun to receive considerable attention within the forestry and natural resources communities, little attention has been devoted to identifying the sources of uncertainty inherent in these systems or to assessing the impact of those uncertainties on the total uncertainties of inventory estimates....

  16. Assessing Uncertainty in Expert Judgments About Natural Resources

    Treesearch

    David A. Cleaves

    1994-01-01

    Judgments are necessary in natural resources management, but uncertainty about these judgments should be assessed. When all judgments are rejected in the absence of hard data, valuable professional experience and knowledge are not utilized fully. The objective of assessing uncertainty is to get the best representation of knowledge and its bounds. Uncertainty...

  17. Section summary: Uncertainty and design considerations

    Treesearch

    Stephen Hagen

    2013-01-01

    Well planned sampling designs and robust approaches to estimating uncertainty are critical components of forest monitoring. The importance of uncertainty estimation increases as deforestation and degradation issues become more closely tied to financing incentives for reducing greenhouse gas emissions in the forest sector. Investors like to know risk and risk is tightly...

  18. The Stock Market: Risk vs. Uncertainty.

    ERIC Educational Resources Information Center

    Griffitts, Dawn

    2002-01-01

    This economics education publication focuses on the U.S. stock market and the risk and uncertainty that an individual faces when investing in the market. The material explains that risk and uncertainty relate to the same underlying concept randomness. It defines and discusses both concepts and notes that although risk is quantifiable, uncertainty…

  19. A brief review of 210Pb sediment dating models and uncertainties in a world of global change

    NASA Astrophysics Data System (ADS)

    Sanchez-Cabeza, J. A.; Ruiz-Fernandez, A. C.

    2016-12-01

    Irrespective of the model names used, assumptions and (usually forgotten) uncertainties, the fact is that 210Pb sediment dating is an increasingly relevant tool in our world of global change. 210Pb dating results are needed to assess historical trends of sea level rise, quantify blue carbon fluxes and reconstruct environmental records of biogeochemical proxies for diverse processes in the aquatic ecosystems (such as ocean acidification, hypoxia and pollution). Although in the past 210Pb profiles departing from "ideal" decay trends were usually discarded, all profiles have useful information. In this work we review the principles and assumptions of the most common 210Pb dating models, and propose a logical formulation and classification of the models. 210Pb dating models provide two kinds of results: chronologies (i.e. age models) and accumulation rates. In many cases, the use of sediment and/or mass accumulation rates (SAR and MAR) is needed to assess environmental fluxes or, simply, to describe changes, such as catchment erosion or saltmarsh accretion. Although uncertainty quadratic propagation is a well-known technique, it requires that all variables are fully independent and requires demanding mathematical expressions which might lead to wrong results. We present here a Monte Carlo method that makes calculation easier and, likely, error-free. Not unexpectedly, the most important uncertainty sources are measurement uncertainties, which impose limitations on common techniques such as gamma spectrometry. 210Pb chronology does not cover all anthropogenic impacts, such as those caused by ancient civilizations, so radiocarbon also plays an important role in this kind of work. We also conceptually revise the limitations of both techniques and encourage scientists to link both dating techniques with a symmetrically open mind. Acknowledgements: projects CONACYT PDCPN2013-01/214349 and CB2010/153492, UNAM PAPIIT-IN203313, PRODEP network "Aquatic contamination: levels and

  20. Durability reliability analysis for corroding concrete structures under uncertainty

    NASA Astrophysics Data System (ADS)

    Zhang, Hao

    2018-02-01

    This paper presents a durability reliability analysis of reinforced concrete structures subject to the action of marine chloride. The focus is to provide insight into the role of epistemic uncertainties on durability reliability. The corrosion model involves a number of variables whose probabilistic characteristics cannot be fully determined due to the limited availability of supporting data. All sources of uncertainty, both aleatory and epistemic, should be included in the reliability analysis. Two methods are available to formulate the epistemic uncertainty: the imprecise probability-based method and the purely probabilistic method in which the epistemic uncertainties are modeled as random variables. The paper illustrates how the epistemic uncertainties are modeled and propagated in the two methods, and shows how epistemic uncertainties govern the durability reliability.