Sample records for unconditionally secure protocols

  1. Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing.

    PubMed

    Scarani, Valerio; Renner, Renato

    2008-05-23

    We derive a bound for the security of quantum key distribution with finite resources under one-way postprocessing, based on a definition of security that is composable and has an operational meaning. While our proof relies on the assumption of collective attacks, unconditional security follows immediately for standard protocols such as Bennett-Brassard 1984 and six-states protocol. For single-qubit implementations of such protocols, we find that the secret key rate becomes positive when at least N approximately 10(5) signals are exchanged and processed. For any other discrete-variable protocol, unconditional security can be obtained using the exponential de Finetti theorem, but the additional overhead leads to very pessimistic estimates.

  2. Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation.

    PubMed

    Leverrier, Anthony; Grangier, Philippe

    2009-05-08

    We present a continuous-variable quantum key distribution protocol combining a discrete modulation and reverse reconciliation. This protocol is proven unconditionally secure and allows the distribution of secret keys over long distances, thanks to a reverse reconciliation scheme efficient at very low signal-to-noise ratio.

  3. Unconditional security of a three state quantum key distribution protocol.

    PubMed

    Boileau, J-C; Tamaki, K; Batuwantudawe, J; Laflamme, R; Renes, J M

    2005-02-04

    Quantum key distribution (QKD) protocols are cryptographic techniques with security based only on the laws of quantum mechanics. Two prominent QKD schemes are the Bennett-Brassard 1984 and Bennett 1992 protocols that use four and two quantum states, respectively. In 2000, Phoenix et al. proposed a new family of three-state protocols that offers advantages over the previous schemes. Until now, an error rate threshold for security of the symmetric trine spherical code QKD protocol has been shown only for the trivial intercept-resend eavesdropping strategy. In this Letter, we prove the unconditional security of the trine spherical code QKD protocol, demonstrating its security up to a bit error rate of 9.81%. We also discuss how this proof applies to a version of the trine spherical code QKD protocol where the error rate is evaluated from the number of inconclusive events.

  4. Collective attacks and unconditional security in continuous variable quantum key distribution.

    PubMed

    Grosshans, Frédéric

    2005-01-21

    We present here an information theoretic study of Gaussian collective attacks on the continuous variable key distribution protocols based on Gaussian modulation of coherent states. These attacks, overlooked in previous security studies, give a finite advantage to the eavesdropper in the experimentally relevant lossy channel, but are not powerful enough to reduce the range of the reverse reconciliation protocols. Secret key rates are given for the ideal case where Bob performs optimal collective measurements, as well as for the realistic cases where he performs homodyne or heterodyne measurements. We also apply the generic security proof of Christiandl et al. to obtain unconditionally secure rates for these protocols.

  5. Security of a single-state semi-quantum key distribution protocol

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Qiu, Daowen; Mateus, Paulo

    2018-06-01

    Semi-quantum key distribution protocols are allowed to set up a secure secret key between two users. Compared with their full quantum counterparts, one of the two users is restricted to perform some "classical" or "semi-quantum" operations, which potentially makes them easily realizable by using less quantum resource. However, the semi-quantum key distribution protocols mainly rely on a two-way quantum channel. The eavesdropper has two opportunities to intercept the quantum states transmitted in the quantum communication stage. It may allow the eavesdropper to get more information and make the security analysis more complicated. In the past ten years, many semi-quantum key distribution protocols have been proposed and proved to be robust. However, there are few works concerning their unconditional security. It is doubted that how secure the semi-quantum ones are and how much noise they can tolerate to establish a secure secret key. In this paper, we prove the unconditional security of a single-state semi-quantum key distribution protocol proposed by Zou et al. (Phys Rev A 79:052312, 2009). We present a complete proof from information theory aspect by deriving a lower bound of the protocol's key rate in the asymptotic scenario. Using this bound, we figure out an error threshold value such that for all error rates that are less than this threshold value, the secure secret key can be established between the legitimate users definitely. Otherwise, the users should abort the protocol. We make an illustration of the protocol under the circumstance that the reverse quantum channel is a depolarizing one with parameter q. Additionally, we compare the error threshold value with some full quantum protocols and several existing semi-quantum ones whose unconditional security proofs have been provided recently.

  6. Unconditional security proof of a deterministic quantum key distribution with a two-way quantum channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Hua; Department of Mathematics and Physics, Hubei University of Technology, Wuhan 430068; Fung, Chi-Hang Fred

    2011-10-15

    In a deterministic quantum key distribution (DQKD) protocol with a two-way quantum channel, Bob sends a qubit to Alice who then encodes a key bit onto the qubit and sends it back to Bob. After measuring the returned qubit, Bob can obtain Alice's key bit immediately, without basis reconciliation. Since an eavesdropper may attack the qubits traveling on either the Bob-Alice channel or the Alice-Bob channel, the security analysis of DQKD protocol with a two-way quantum channel is complicated and its unconditional security has been controversial. This paper presents a security proof of a single-photon four-state DQKD protocol against generalmore » attacks.« less

  7. Continuous-variable quantum-key-distribution protocols with a non-Gaussian modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leverrier, Anthony; Grangier, Philippe; Laboratoire Charles Fabry, Institut d'Optique, CNRS, Univ. Paris-Sud, Campus Polytechnique, RD 128, F-91127 Palaiseau Cedex

    2011-04-15

    In this paper, we consider continuous-variable quantum-key-distribution (QKD) protocols which use non-Gaussian modulations. These specific modulation schemes are compatible with very efficient error-correction procedures, hence allowing the protocols to outperform previous protocols in terms of achievable range. In their simplest implementation, these protocols are secure for any linear quantum channels (hence against Gaussian attacks). We also show how the use of decoy states makes the protocols secure against arbitrary collective attacks, which implies their unconditional security in the asymptotic limit.

  8. Security proof of a three-state quantum-key-distribution protocol without rotational symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fung, C.-H.F.; Lo, H.-K.

    2006-10-15

    Standard security proofs of quantum-key-distribution (QKD) protocols often rely on symmetry arguments. In this paper, we prove the security of a three-state protocol that does not possess rotational symmetry. The three-state QKD protocol we consider involves three qubit states, where the first two states |0{sub z}> and |1{sub z}> can contribute to key generation, and the third state |+>=(|0{sub z}>+|1{sub z}>)/{radical}(2) is for channel estimation. This protocol has been proposed and implemented experimentally in some frequency-based QKD systems where the three states can be prepared easily. Thus, by founding on the security of this three-state protocol, we prove that thesemore » QKD schemes are, in fact, unconditionally secure against any attacks allowed by quantum mechanics. The main task in our proof is to upper bound the phase error rate of the qubits given the bit error rates observed. Unconditional security can then be proved not only for the ideal case of a single-photon source and perfect detectors, but also for the realistic case of a phase-randomized weak coherent light source and imperfect threshold detectors. Our result in the phase error rate upper bound is independent of the loss in the channel. Also, we compare the three-state protocol with the Bennett-Brassard 1984 (BB84) protocol. For the single-photon source case, our result proves that the BB84 protocol strictly tolerates a higher quantum bit error rate than the three-state protocol, while for the coherent-source case, the BB84 protocol achieves a higher key generation rate and secure distance than the three-state protocol when a decoy-state method is used.« less

  9. Quantum And Relativistic Protocols For Secure Multi-Party Computation

    NASA Astrophysics Data System (ADS)

    Colbeck, Roger

    2009-11-01

    After a general introduction, the thesis is divided into four parts. In the first, we discuss the task of coin tossing, principally in order to highlight the effect different physical theories have on security in a straightforward manner, but, also, to introduce a new protocol for non-relativistic strong coin tossing. This protocol matches the security of the best protocol known to date while using a conceptually different approach to achieve the task. In the second part variable bias coin tossing is introduced. This is a variant of coin tossing in which one party secretly chooses one of two biased coins to toss. It is shown that this can be achieved with unconditional security for a specified range of biases, and with cheat-evident security for any bias. We also discuss two further protocols which are conjectured to be unconditionally secure for any bias. The third section looks at other two-party secure computations for which, prior to our work, protocols and no-go theorems were unknown. We introduce a general model for such computations, and show that, within this model, a wide range of functions are impossible to compute securely. We give explicit cheating attacks for such functions. In the final chapter we discuss the task of expanding a private random string, while dropping the usual assumption that the protocol's user trusts her devices. Instead we assume that all quantum devices are supplied by an arbitrarily malicious adversary. We give two protocols that we conjecture securely perform this task. The first allows a private random string to be expanded by a finite amount, while the second generates an arbitrarily large expansion of such a string.

  10. Secure satellite communication using multi-photon tolerant quantum communication protocol

    NASA Astrophysics Data System (ADS)

    Darunkar, Bhagyashri; Punekar, Nikhil; Verma, Pramode K.

    2015-09-01

    This paper proposes and analyzes the potential of a multi-photon tolerant quantum communication protocol to secure satellite communication. For securing satellite communication, quantum cryptography is the only known unconditionally secure method. A number of recent experiments have shown feasibility of satellite-aided global quantum key distribution (QKD) using different methods such as: Use of entangled photon pairs, decoy state methods, and entanglement swapping. The use of single photon in these methods restricts the distance and speed over which quantum cryptography can be applied. Contemporary quantum cryptography protocols like the BB84 and its variants suffer from the limitation of reaching the distances of only Low Earth Orbit (LEO) at the data rates of few kilobits per second. This makes it impossible to develop a general satellite-based secure global communication network using the existing protocols. The method proposed in this paper allows secure communication at the heights of the Medium Earth Orbit (MEO) and Geosynchronous Earth Orbit (GEO) satellites. The benefits of the proposed method are two-fold: First it enables the realization of a secure global communication network based on satellites and second it provides unconditional security for satellite networks at GEO heights. The multi-photon approach discussed in this paper ameliorates the distance and speed issues associated with quantum cryptography through the use of contemporary laser communication (lasercom) devices. This approach can be seen as a step ahead towards global quantum communication.

  11. Unconditionally Secure Credit/Debit Card Chip Scheme and Physical Unclonable Function

    NASA Astrophysics Data System (ADS)

    Kish, Laszlo B.; Entesari, Kamran; Granqvist, Claes-Göran; Kwan, Chiman

    The statistical-physics-based Kirchhoff-law-Johnson-noise (KLJN) key exchange offers a new and simple unclonable system for credit/debit card chip authentication and payment. The key exchange, the authentication and the communication are unconditionally secure so that neither mathematics- nor statistics-based attacks are able to crack the scheme. The ohmic connection and the short wiring lengths between the chips in the card and the terminal constitute an ideal setting for the KLJN protocol, and even its simplest versions offer unprecedented security and privacy for credit/debit card chips and applications of physical unclonable functions (PUFs).

  12. New Results on Unconditionally Secure Multi-receiver Manual Authentication

    NASA Astrophysics Data System (ADS)

    Wang, Shuhong; Safavi-Naini, Reihaneh

    Manual authentication is a recently proposed model of communication motivated by the settings where the only trusted infrastructure is a low bandwidth authenticated channel, possibly realized by the aid of a human, that connects the sender and the receiver who are otherwise connected through an insecure channel and do not have any shared key or public key infrastructure. A good example of such scenarios is pairing of devices in Bluetooth. Manual authentication systems are studied in computational and information theoretic security model and protocols with provable security have been proposed. In this paper we extend the results in information theoretic model in two directions. Firstly, we extend a single receiver scenario to multireceiver case where the sender wants to authenticate the same message to a group of receivers. We show new attacks (compared to single receiver case) that can launched in this model and demonstrate that the single receiver lower bound 2log(1/ɛ) + O(1) on the bandwidth of manual channel stays valid in the multireceiver scenario. We further propose a protocol that achieves this bound and provides security, in the sense that we define, if up to c receivers are corrupted. The second direction is the study of non-interactive protocols in unconditionally secure model. We prove that unlike computational security framework, without interaction a secure authentication protocol requires the bandwidth of the manual channel to be at least the same as the message size, hence non-trivial protocols do not exist.

  13. Multiparty Quantum English Auction Scheme Using Single Photons as Message Carrier

    NASA Astrophysics Data System (ADS)

    Liu, Ge; Zhang, Jian-Zhong; Xie, Shu-Cui

    2018-03-01

    In this paper, a secure and economic multiparty english auction protocol using the single photons as message carrier of bids is proposed. In order to achieve unconditional security, fairness, undeniability and so on, we adopt the decoy photon checking technique and quantum encryption algorithm. Analysis result shows that our protocol satisfies all the characteristics of traditional english auction, meanwhile, it can resist malicious attacks.

  14. Quantum key distribution protocol based on contextuality monogamy

    NASA Astrophysics Data System (ADS)

    Singh, Jaskaran; Bharti, Kishor; Arvind

    2017-06-01

    The security of quantum key distribution (QKD) protocols hinges upon features of physical systems that are uniquely quantum in nature. We explore the role of quantumness, as qualified by quantum contextuality, in a QKD scheme. A QKD protocol based on the Klyachko-Can-Binicioğlu-Shumovsky (KCBS) contextuality scenario using a three-level quantum system is presented. We explicitly show the unconditional security of the protocol by a generalized contextuality monogamy relationship based on the no-disturbance principle. This protocol provides a new framework for QKD which has conceptual and practical advantages over other protocols.

  15. Quantum Gambling

    NASA Astrophysics Data System (ADS)

    Goldenberg, Lior; Vaidman, Lev; Wiesner, Stephen

    1999-04-01

    We present a two-party protocol for ``quantum gambling,'' a new task closely related to coin tossing. The protocol allows two remote parties to play a gambling game such that in a certain limit it becomes a fair game. No unconditionally secure classical method is known to accomplish this task.

  16. Proposal for founding mistrustful quantum cryptography on coin tossing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kent, Adrian; Hewlett-Packard Laboratories, Filton Road, Stoke Gifford, Bristol BS34 8QZ,

    2003-07-01

    A significant branch of classical cryptography deals with the problems which arise when mistrustful parties need to generate, process, or exchange information. As Kilian showed a while ago, mistrustful classical cryptography can be founded on a single protocol, oblivious transfer, from which general secure multiparty computations can be built. The scope of mistrustful quantum cryptography is limited by no-go theorems, which rule out, inter alia, unconditionally secure quantum protocols for oblivious transfer or general secure two-party computations. These theorems apply even to protocols which take relativistic signaling constraints into account. The best that can be hoped for, in general, aremore » quantum protocols which are computationally secure against quantum attack. Here a method is described for building a classically certified bit commitment, and hence every other mistrustful cryptographic task, from a secure coin-tossing protocol. No security proof is attempted, but reasons are sketched why these protocols might resist quantum computational attack.« less

  17. Unconditional security of entanglement-based continuous-variable quantum secret sharing

    NASA Astrophysics Data System (ADS)

    Kogias, Ioannis; Xiang, Yu; He, Qiongyi; Adesso, Gerardo

    2017-01-01

    The need for secrecy and security is essential in communication. Secret sharing is a conventional protocol to distribute a secret message to a group of parties, who cannot access it individually but need to cooperate in order to decode it. While several variants of this protocol have been investigated, including realizations using quantum systems, the security of quantum secret sharing schemes still remains unproven almost two decades after their original conception. Here we establish an unconditional security proof for entanglement-based continuous-variable quantum secret sharing schemes, in the limit of asymptotic keys and for an arbitrary number of players. We tackle the problem by resorting to the recently developed one-sided device-independent approach to quantum key distribution. We demonstrate theoretically the feasibility of our scheme, which can be implemented by Gaussian states and homodyne measurements, with no need for ideal single-photon sources or quantum memories. Our results contribute to validating quantum secret sharing as a viable primitive for quantum technologies.

  18. Information Theoretically Secure, Enhanced Johnson Noise Based Key Distribution over the Smart Grid with Switched Filters

    PubMed Central

    2013-01-01

    We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions. PMID:23936164

  19. Information theoretically secure, enhanced Johnson noise based key distribution over the smart grid with switched filters.

    PubMed

    Gonzalez, Elias; Kish, Laszlo B; Balog, Robert S; Enjeti, Prasad

    2013-01-01

    We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions.

  20. Security of quantum key distribution with multiphoton components

    PubMed Central

    Yin, Hua-Lei; Fu, Yao; Mao, Yingqiu; Chen, Zeng-Bing

    2016-01-01

    Most qubit-based quantum key distribution (QKD) protocols extract the secure key merely from single-photon component of the attenuated lasers. However, with the Scarani-Acin-Ribordy-Gisin 2004 (SARG04) QKD protocol, the unconditionally secure key can be extracted from the two-photon component by modifying the classical post-processing procedure in the BB84 protocol. Employing the merits of SARG04 QKD protocol and six-state preparation, one can extract secure key from the components of single photon up to four photons. In this paper, we provide the exact relations between the secure key rate and the bit error rate in a six-state SARG04 protocol with single-photon, two-photon, three-photon, and four-photon sources. By restricting the mutual information between the phase error and bit error, we obtain a higher secure bit error rate threshold of the multiphoton components than previous works. Besides, we compare the performances of the six-state SARG04 with other prepare-and-measure QKD protocols using decoy states. PMID:27383014

  1. Experimental Measurement-Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S.; Fejer, M. M.; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei

    2013-09-01

    Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices.

  2. Experimental measurement-device-independent quantum key distribution.

    PubMed

    Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S; Fejer, M M; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei

    2013-09-27

    Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices.

  3. Analysis of Counterfactual Quantum Certificate Authorization

    NASA Astrophysics Data System (ADS)

    Wang, Tian-Yin; Li, Yan-Ping; Zhang, Rui-Ling

    2016-12-01

    A counterfactual quantum certificate authorization protocol was proposed recently (Shenoy et al., Phys. Rev. A 89, 052307 (20)), in which a trusted third party, Alice, authenticates an entity Bob (e.g., a bank) that a client Charlie wishes to securely transact with. However, this protocol requires a classical authenticated channel between Bob and Charlie to prevent possible attacks from the third party Alice, which is in conflict with the task of certificate authorization in the sense that Bob and Charlie can establish an unconditionally-secure key by a quantum key distribution protocol if there is a classical authenticated channel between them and hence securely transact with each other even without the assistance of the third party Alice.

  4. Security bound of cheat sensitive quantum bit commitment.

    PubMed

    He, Guang Ping

    2015-03-23

    Cheat sensitive quantum bit commitment (CSQBC) loosens the security requirement of quantum bit commitment (QBC), so that the existing impossibility proofs of unconditionally secure QBC can be evaded. But here we analyze the common features in all existing CSQBC protocols, and show that in any CSQBC having these features, the receiver can always learn a non-trivial amount of information on the sender's committed bit before it is unveiled, while his cheating can pass the security check with a probability not less than 50%. The sender's cheating is also studied. The optimal CSQBC protocols that can minimize the sum of the cheating probabilities of both parties are found to be trivial, as they are practically useless. We also discuss the possibility of building a fair protocol in which both parties can cheat with equal probabilities.

  5. Security of a semi-quantum protocol where reflections contribute to the secret key

    NASA Astrophysics Data System (ADS)

    Krawec, Walter O.

    2016-05-01

    In this paper, we provide a proof of unconditional security for a semi-quantum key distribution protocol introduced in a previous work. This particular protocol demonstrated the possibility of using X basis states to contribute to the raw key of the two users (as opposed to using only direct measurement results) even though a semi-quantum participant cannot directly manipulate such states. In this work, we provide a complete proof of security by deriving a lower bound of the protocol's key rate in the asymptotic scenario. Using this bound, we are able to find an error threshold value such that for all error rates less than this threshold, it is guaranteed that A and B may distill a secure secret key; for error rates larger than this threshold, A and B should abort. We demonstrate that this error threshold compares favorably to several fully quantum protocols. We also comment on some interesting observations about the behavior of this protocol under certain noise scenarios.

  6. Relativistic quantum cryptography

    NASA Astrophysics Data System (ADS)

    Molotkov, S. N.; Nazin, S. S.

    2003-07-01

    The problem of unconditional security of quantum cryptography (i.e. the security which is guaranteed by the fundamental laws of nature rather than by technical limitations) is one of the central points in quantum information theory. We propose a relativistic quantum cryptosystem and prove its unconditional security against any eavesdropping attempts. Relativistitic causality arguments allow to demonstrate the security of the system in a simple way. Since the proposed protocol does not empoly collective measurements and quantum codes, the cryptosystem can be experimentally realized with the present state-of-art in fiber optics technologies. The proposed cryptosystem employs only the individual measurements and classical codes and, in addition, the key distribution problem allows to postpone the choice of the state encoding scheme until after the states are already received instead of choosing it before sending the states into the communication channel (i.e. to employ a sort of "antedate" coding).

  7. Secure Multiparty Quantum Computation for Summation and Multiplication.

    PubMed

    Shi, Run-hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun

    2016-01-21

    As a fundamental primitive, Secure Multiparty Summation and Multiplication can be used to build complex secure protocols for other multiparty computations, specially, numerical computations. However, there is still lack of systematical and efficient quantum methods to compute Secure Multiparty Summation and Multiplication. In this paper, we present a novel and efficient quantum approach to securely compute the summation and multiplication of multiparty private inputs, respectively. Compared to classical solutions, our proposed approach can ensure the unconditional security and the perfect privacy protection based on the physical principle of quantum mechanics.

  8. Secure Multiparty Quantum Computation for Summation and Multiplication

    PubMed Central

    Shi, Run-hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun

    2016-01-01

    As a fundamental primitive, Secure Multiparty Summation and Multiplication can be used to build complex secure protocols for other multiparty computations, specially, numerical computations. However, there is still lack of systematical and efficient quantum methods to compute Secure Multiparty Summation and Multiplication. In this paper, we present a novel and efficient quantum approach to securely compute the summation and multiplication of multiparty private inputs, respectively. Compared to classical solutions, our proposed approach can ensure the unconditional security and the perfect privacy protection based on the physical principle of quantum mechanics. PMID:26792197

  9. Randomness determines practical security of BB84 quantum key distribution.

    PubMed

    Li, Hong-Wei; Yin, Zhen-Qiang; Wang, Shuang; Qian, Yong-Jun; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu

    2015-11-10

    Unconditional security of the BB84 quantum key distribution protocol has been proved by exploiting the fundamental laws of quantum mechanics, but the practical quantum key distribution system maybe hacked by considering the imperfect state preparation and measurement respectively. Until now, different attacking schemes have been proposed by utilizing imperfect devices, but the general security analysis model against all of the practical attacking schemes has not been proposed. Here, we demonstrate that the general practical attacking schemes can be divided into the Trojan horse attack, strong randomness attack and weak randomness attack respectively. We prove security of BB84 protocol under randomness attacking models, and these results can be applied to guarantee the security of the practical quantum key distribution system.

  10. Randomness determines practical security of BB84 quantum key distribution

    PubMed Central

    Li, Hong-Wei; Yin, Zhen-Qiang; Wang, Shuang; Qian, Yong-Jun; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu

    2015-01-01

    Unconditional security of the BB84 quantum key distribution protocol has been proved by exploiting the fundamental laws of quantum mechanics, but the practical quantum key distribution system maybe hacked by considering the imperfect state preparation and measurement respectively. Until now, different attacking schemes have been proposed by utilizing imperfect devices, but the general security analysis model against all of the practical attacking schemes has not been proposed. Here, we demonstrate that the general practical attacking schemes can be divided into the Trojan horse attack, strong randomness attack and weak randomness attack respectively. We prove security of BB84 protocol under randomness attacking models, and these results can be applied to guarantee the security of the practical quantum key distribution system. PMID:26552359

  11. Randomness determines practical security of BB84 quantum key distribution

    NASA Astrophysics Data System (ADS)

    Li, Hong-Wei; Yin, Zhen-Qiang; Wang, Shuang; Qian, Yong-Jun; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu

    2015-11-01

    Unconditional security of the BB84 quantum key distribution protocol has been proved by exploiting the fundamental laws of quantum mechanics, but the practical quantum key distribution system maybe hacked by considering the imperfect state preparation and measurement respectively. Until now, different attacking schemes have been proposed by utilizing imperfect devices, but the general security analysis model against all of the practical attacking schemes has not been proposed. Here, we demonstrate that the general practical attacking schemes can be divided into the Trojan horse attack, strong randomness attack and weak randomness attack respectively. We prove security of BB84 protocol under randomness attacking models, and these results can be applied to guarantee the security of the practical quantum key distribution system.

  12. Counterfactual attack on counterfactual quantum key distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Wnang, Jian; Tang, Chao Jing

    2012-05-01

    It is interesting that counterfactual quantum cryptography protocols allow two remotely separated parties to share a secret key without transmitting any signal particles. Generally, these protocols, expected to provide security advantages, base their security on a translated no-cloning theorem. Therefore, they potentially exhibit unconditional security in theory. In this letter, we propose a new Trojan horse attack, by which an eavesdropper Eve can gain full information about the key without being noticed, to real implementations of a counterfactual quantum cryptography system. Most importantly, the presented attack is available even if the system has negligible imperfections. Therefore, it shows that the present realization of counterfactual quantum key distribution is vulnerable.

  13. Insecurity of position-based quantum-cryptography protocols against entanglement attacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Hoi-Kwan; Lo, Hoi-Kwong

    2011-01-15

    Recently, position-based quantum cryptography has been claimed to be unconditionally secure. On the contrary, here we show that the existing proposals for position-based quantum cryptography are, in fact, insecure if entanglement is shared among two adversaries. Specifically, we demonstrate how the adversaries can incorporate ideas of quantum teleportation and quantum secret sharing to compromise the security with certainty. The common flaw to all current protocols is that the Pauli operators always map a codeword to a codeword (up to an irrelevant overall phase). We propose a modified scheme lacking this property in which the same cheating strategy used to underminemore » the previous protocols can succeed with a rate of at most 85%. We prove the modified protocol is secure when the shared quantum resource between the adversaries is a two- or three-level system.« less

  14. Deterministic entanglement distillation for secure double-server blind quantum computation.

    PubMed

    Sheng, Yu-Bo; Zhou, Lan

    2015-01-15

    Blind quantum computation (BQC) provides an efficient method for the client who does not have enough sophisticated technology and knowledge to perform universal quantum computation. The single-server BQC protocol requires the client to have some minimum quantum ability, while the double-server BQC protocol makes the client's device completely classical, resorting to the pure and clean Bell state shared by two servers. Here, we provide a deterministic entanglement distillation protocol in a practical noisy environment for the double-server BQC protocol. This protocol can get the pure maximally entangled Bell state. The success probability can reach 100% in principle. The distilled maximally entangled states can be remaind to perform the BQC protocol subsequently. The parties who perform the distillation protocol do not need to exchange the classical information and they learn nothing from the client. It makes this protocol unconditionally secure and suitable for the future BQC protocol.

  15. Deterministic entanglement distillation for secure double-server blind quantum computation

    PubMed Central

    Sheng, Yu-Bo; Zhou, Lan

    2015-01-01

    Blind quantum computation (BQC) provides an efficient method for the client who does not have enough sophisticated technology and knowledge to perform universal quantum computation. The single-server BQC protocol requires the client to have some minimum quantum ability, while the double-server BQC protocol makes the client's device completely classical, resorting to the pure and clean Bell state shared by two servers. Here, we provide a deterministic entanglement distillation protocol in a practical noisy environment for the double-server BQC protocol. This protocol can get the pure maximally entangled Bell state. The success probability can reach 100% in principle. The distilled maximally entangled states can be remaind to perform the BQC protocol subsequently. The parties who perform the distillation protocol do not need to exchange the classical information and they learn nothing from the client. It makes this protocol unconditionally secure and suitable for the future BQC protocol. PMID:25588565

  16. A Third-Party E-Payment Protocol Based on Quantum Group Blind Signature

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Zhong; Yang, Yuan-Yuan; Xie, Shu-Cui

    2017-09-01

    A third-party E-payment protocol based on quantum group blind signature is proposed in this paper. Our E-payment protocol could protect user's anonymity as the traditional E-payment systems do, and also have unconditional security which the classical E-payment systems can not provide. To achieve that, quantum key distribution, one-time pad and quantum group blind signature are adopted in our scheme. Furthermore, if there were a dispute, the manager Trent can identify who tells a lie.

  17. Application of Intrusion Tolerance Technology to Joint Battlespace Infosphere (JBI)

    DTIC Science & Technology

    2003-02-01

    performance, scalability and Security Issues and Requirements for Internet-Scale Publish-Subscribe Systems Chenxi Wang, Antonio Carzaniga, David ...by the Defense Advanced Research Agency, under the agreement number F30602-96-1-0314. The work of David Evans was supported by in part by the...Future Generations of Computer Science. October 1998. [10]. D. Chaum , C. Crepeau, and I. Damgard. “Multiparty Unconditionally Secure Protocols,” In

  18. A sessional blind signature based on quantum cryptography

    NASA Astrophysics Data System (ADS)

    Khodambashi, Siavash; Zakerolhosseini, Ali

    2014-01-01

    In this paper, we present a sessional blind signature protocol whose security is guaranteed by fundamental principles of quantum physics. It allows a message owner to get his message signed by an authorized signatory. However, the signatory is not capable of reading the message contents and everyone can verify authenticity of the message. For this purpose, we took advantage of a sessional signature as well as quantum entangled pairs which are generated with respect to it in our proposed protocol. We describe our proposed blind signature through an example and briefly discuss about its unconditional security. Due to the feasibility of the protocol, it can be widely employed for e-payment, e-government, e-business and etc.

  19. Two-party quantum key agreement protocols under collective noise channel

    NASA Astrophysics Data System (ADS)

    Gao, Hao; Chen, Xiao-Guang; Qian, Song-Rong

    2018-06-01

    Recently, quantum communication has become a very popular research field. The quantum key agreement (QKA) plays an important role in the field of quantum communication, based on its unconditional security in terms of theory. Among all kinds of QKA protocols, QKA protocols resisting collective noise are widely being studied. In this paper, we propose improved two-party QKA protocols resisting collective noise and present a feasible plan for information reconciliation. Our protocols' qubit efficiency has achieved 26.67%, which is the best among all the two-party QKA protocols against collective noise, thus showing that our protocol can improve the transmission efficiency of quantum key agreement.

  20. Three-step semiquantum secure direct communication protocol

    NASA Astrophysics Data System (ADS)

    Zou, XiangFu; Qiu, DaoWen

    2014-09-01

    Quantum secure direct communication is the direct communication of secret messages without need for establishing a shared secret key first. In the existing schemes, quantum secure direct communication is possible only when both parties are quantum. In this paper, we construct a three-step semiquantum secure direct communication (SQSDC) protocol based on single photon sources in which the sender Alice is classical. In a semiquantum protocol, a person is termed classical if he (she) can measure, prepare and send quantum states only with the fixed orthogonal quantum basis {|0>, |1>}. The security of the proposed SQSDC protocol is guaranteed by the complete robustness of semiquantum key distribution protocols and the unconditional security of classical one-time pad encryption. Therefore, the proposed SQSDC protocol is also completely robust. Complete robustness indicates that nonzero information acquired by an eavesdropper Eve on the secret message implies the nonzero probability that the legitimate participants can find errors on the bits tested by this protocol. In the proposed protocol, we suggest a method to check Eves disturbing in the doves returning phase such that Alice does not need to announce publicly any position or their coded bits value after the photons transmission is completed. Moreover, the proposed SQSDC protocol can be implemented with the existing techniques. Compared with many quantum secure direct communication protocols, the proposed SQSDC protocol has two merits: firstly the sender only needs classical capabilities; secondly to check Eves disturbing after the transmission of quantum states, no additional classical information is needed.

  1. Towards secure quantum key distribution protocol for wireless LANs: a hybrid approach

    NASA Astrophysics Data System (ADS)

    Naik, R. Lalu; Reddy, P. Chenna

    2015-12-01

    The primary goals of security such as authentication, confidentiality, integrity and non-repudiation in communication networks can be achieved with secure key distribution. Quantum mechanisms are highly secure means of distributing secret keys as they are unconditionally secure. Quantum key distribution protocols can effectively prevent various attacks in the quantum channel, while classical cryptography is efficient in authentication and verification of secret keys. By combining both quantum cryptography and classical cryptography, security of communications over networks can be leveraged. Hwang, Lee and Li exploited the merits of both cryptographic paradigms for provably secure communications to prevent replay, man-in-the-middle, and passive attacks. In this paper, we propose a new scheme with the combination of quantum cryptography and classical cryptography for 802.11i wireless LANs. Since quantum cryptography is premature in wireless networks, our work is a significant step forward toward securing communications in wireless networks. Our scheme is known as hybrid quantum key distribution protocol. Our analytical results revealed that the proposed scheme is provably secure for wireless networks.

  2. Practical quantum coin flipping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pappa, Anna; Diamanti, Eleni; Chailloux, Andre

    2011-11-15

    We show that in the unconditional security model, a single quantum strong coin flip with security guarantees that are strictly better than in any classical protocol is possible to implement with current technology. Our protocol takes into account all aspects of an experimental implementation, including losses, multiphoton pulses emitted by practical photon sources, channel noise, detector dark counts, and finite quantum efficiency. We calculate the abort probability when both players are honest, as well as the probability of one player forcing his desired outcome. For a channel length up to 21 km and commonly used parameter values, we can achievemore » honest abort and cheating probabilities that are better than in any classical protocol. Our protocol is, in principle, implementable using attenuated laser pulses, with no need for entangled photons or any other specific resources.« less

  3. Toward Practical Verification of Outsourced Computations Using Probabilistically Checkable Proofs (PCPs)

    DTIC Science & Technology

    2010-07-12

    Germany, 1999. [8] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. Checking Computations in Polylogarithmic Time. In STOC, 1991. [9] A. Ben- David ...their work. J. ACM, 42(1):269–291, 1995. [12] D. Chaum , C. Crépeau, and I. Damgard. Multiparty unconditionally secure protocols. In STOC, 1988. [13

  4. Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states

    NASA Astrophysics Data System (ADS)

    Farouk, Ahmed; Batle, J.; Elhoseny, M.; Naseri, Mosayeb; Lone, Muzaffar; Fedorov, Alex; Alkhambashi, Majid; Ahmed, Syed Hassan; Abdel-Aty, M.

    2018-04-01

    Quantum communication provides an enormous advantage over its classical counterpart: security of communications based on the very principles of quantum mechanics. Researchers have proposed several approaches for user identity authentication via entanglement. Unfortunately, these protocols fail because an attacker can capture some of the particles in a transmitted sequence and send what is left to the receiver through a quantum channel. Subsequently, the attacker can restore some of the confidential messages, giving rise to the possibility of information leakage. Here we present a new robust General N user authentication protocol based on N-particle Greenberger-Horne-Zeilinger (GHZ) states, which makes eavesdropping detection more effective and secure, as compared to some current authentication protocols. The security analysis of our protocol for various kinds of attacks verifies that it is unconditionally secure, and that an attacker will not obtain any information about the transmitted key. Moreover, as the number of transferred key bits N becomes larger, while the number of users for transmitting the information is increased, the probability of effectively obtaining the transmitted authentication keys is reduced to zero.

  5. A Third-Party E-payment Protocol Based on Quantum Multi-proxy Blind Signature

    NASA Astrophysics Data System (ADS)

    Niu, Xu-Feng; Zhang, Jian-Zhong; Xie, Shu-Cui; Chen, Bu-Qing

    2018-05-01

    A third-party E-payment protocol is presented in this paper. It is based on quantum multi-proxy blind signature. Adopting the techniques of quantum key distribution, one-time pad and quantum multi-proxy blind signature, our third-party E-payment system could protect user's anonymity as the traditional E-payment systems do, and also have unconditional security which the classical E-payment systems can not provide. Furthermore, compared with the existing quantum E-payment systems, the proposed system could support the E-payment which using the third-party platforms.

  6. Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry.

    PubMed

    Zhang, Zheshen; Mower, Jacob; Englund, Dirk; Wong, Franco N C; Shapiro, Jeffrey H

    2014-03-28

    High-dimensional quantum key distribution (HDQKD) offers the possibility of high secure-key rate with high photon-information efficiency. We consider HDQKD based on the time-energy entanglement produced by spontaneous parametric down-conversion and show that it is secure against collective attacks. Its security rests upon visibility data-obtained from Franson and conjugate-Franson interferometers-that probe photon-pair frequency correlations and arrival-time correlations. From these measurements, an upper bound can be established on the eavesdropper's Holevo information by translating the Gaussian-state security analysis for continuous-variable quantum key distribution so that it applies to our protocol. We show that visibility data from just the Franson interferometer provides a weaker, but nonetheless useful, secure-key rate lower bound. To handle multiple-pair emissions, we incorporate the decoy-state approach into our protocol. Our results show that over a 200-km transmission distance in optical fiber, time-energy entanglement HDQKD could permit a 700-bit/sec secure-key rate and a photon information efficiency of 2 secure-key bits per photon coincidence in the key-generation phase using receivers with a 15% system efficiency.

  7. Unconditionally Secure Blind Signatures

    NASA Astrophysics Data System (ADS)

    Hara, Yuki; Seito, Takenobu; Shikata, Junji; Matsumoto, Tsutomu

    The blind signature scheme introduced by Chaum allows a user to obtain a valid signature for a message from a signer such that the message is kept secret for the signer. Blind signature schemes have mainly been studied from a viewpoint of computational security so far. In this paper, we study blind signatures in unconditional setting. Specifically, we newly introduce a model of unconditionally secure blind signature schemes (USBS, for short). Also, we propose security notions and their formalization in our model. Finally, we propose a construction method for USBS that is provably secure in our security notions.

  8. Continuous-variable quantum homomorphic signature

    NASA Astrophysics Data System (ADS)

    Li, Ke; Shang, Tao; Liu, Jian-wei

    2017-10-01

    Quantum cryptography is believed to be unconditionally secure because its security is ensured by physical laws rather than computational complexity. According to spectrum characteristic, quantum information can be classified into two categories, namely discrete variables and continuous variables. Continuous-variable quantum protocols have gained much attention for their ability to transmit more information with lower cost. To verify the identities of different data sources in a quantum network, we propose a continuous-variable quantum homomorphic signature scheme. It is based on continuous-variable entanglement swapping and provides additive and subtractive homomorphism. Security analysis shows the proposed scheme is secure against replay, forgery and repudiation. Even under nonideal conditions, it supports effective verification within a certain verification threshold.

  9. Key Exchange Trust Evaluation in Peer-to-Peer Sensor Networks With Unconditionally Secure Key Exchange

    NASA Astrophysics Data System (ADS)

    Gonzalez, Elias; Kish, Laszlo B.

    2016-03-01

    As the utilization of sensor networks continue to increase, the importance of security becomes more profound. Many industries depend on sensor networks for critical tasks, and a malicious entity can potentially cause catastrophic damage. We propose a new key exchange trust evaluation for peer-to-peer sensor networks, where part of the network has unconditionally secure key exchange. For a given sensor, the higher the portion of channels with unconditionally secure key exchange the higher the trust value. We give a brief introduction to unconditionally secured key exchange concepts and mention current trust measures in sensor networks. We demonstrate the new key exchange trust measure on a hypothetical sensor network using both wired and wireless communication channels.

  10. Secure quantum private information retrieval using phase-encoded queries

    NASA Astrophysics Data System (ADS)

    Olejnik, Lukasz

    2011-08-01

    We propose a quantum solution to the classical private information retrieval (PIR) problem, which allows one to query a database in a private manner. The protocol offers privacy thresholds and allows the user to obtain information from a database in a way that offers the potential adversary, in this model the database owner, no possibility of deterministically establishing the query contents. This protocol may also be viewed as a solution to the symmetrically private information retrieval problem in that it can offer database security (inability for a querying user to steal its contents). Compared to classical solutions, the protocol offers substantial improvement in terms of communication complexity. In comparison with the recent quantum private queries [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.100.230502 100, 230502 (2008)] protocol, it is more efficient in terms of communication complexity and the number of rounds, while offering a clear privacy parameter. We discuss the security of the protocol and analyze its strengths and conclude that using this technique makes it challenging to obtain the unconditional (in the information-theoretic sense) privacy degree; nevertheless, in addition to being simple, the protocol still offers a privacy level. The oracle used in the protocol is inspired both by the classical computational PIR solutions as well as the Deutsch-Jozsa oracle.

  11. Secure quantum private information retrieval using phase-encoded queries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olejnik, Lukasz

    We propose a quantum solution to the classical private information retrieval (PIR) problem, which allows one to query a database in a private manner. The protocol offers privacy thresholds and allows the user to obtain information from a database in a way that offers the potential adversary, in this model the database owner, no possibility of deterministically establishing the query contents. This protocol may also be viewed as a solution to the symmetrically private information retrieval problem in that it can offer database security (inability for a querying user to steal its contents). Compared to classical solutions, the protocol offersmore » substantial improvement in terms of communication complexity. In comparison with the recent quantum private queries [Phys. Rev. Lett. 100, 230502 (2008)] protocol, it is more efficient in terms of communication complexity and the number of rounds, while offering a clear privacy parameter. We discuss the security of the protocol and analyze its strengths and conclude that using this technique makes it challenging to obtain the unconditional (in the information-theoretic sense) privacy degree; nevertheless, in addition to being simple, the protocol still offers a privacy level. The oracle used in the protocol is inspired both by the classical computational PIR solutions as well as the Deutsch-Jozsa oracle.« less

  12. Unconditionally verifiable blind quantum computation

    NASA Astrophysics Data System (ADS)

    Fitzsimons, Joseph F.; Kashefi, Elham

    2017-07-01

    Blind quantum computing (BQC) allows a client to have a server carry out a quantum computation for them such that the client's input, output, and computation remain private. A desirable property for any BQC protocol is verification, whereby the client can verify with high probability whether the server has followed the instructions of the protocol or if there has been some deviation resulting in a corrupted output state. A verifiable BQC protocol can be viewed as an interactive proof system leading to consequences for complexity theory. We previously proposed [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual Symposium on Foundations of Computer Science, Atlanta, 2009 (IEEE, Piscataway, 2009), p. 517] a universal and unconditionally secure BQC scheme where the client only needs to be able to prepare single qubits in separable states randomly chosen from a finite set and send them to the server, who has the balance of the required quantum computational resources. In this paper we extend that protocol with additional functionality allowing blind computational basis measurements, which we use to construct another verifiable BQC protocol based on a different class of resource states. We rigorously prove that the probability of failing to detect an incorrect output is exponentially small in a security parameter, while resource overhead remains polynomial in this parameter. This resource state allows entangling gates to be performed between arbitrary pairs of logical qubits with only constant overhead. This is a significant improvement on the original scheme, which required that all computations to be performed must first be put into a nearest-neighbor form, incurring linear overhead in the number of qubits. Such an improvement has important consequences for efficiency and fault-tolerance thresholds.

  13. Experimental measurement-device-independent verification of quantum steering

    NASA Astrophysics Data System (ADS)

    Kocsis, Sacha; Hall, Michael J. W.; Bennet, Adam J.; Saunders, Dylan J.; Pryde, Geoff J.

    2015-01-01

    Bell non-locality between distant quantum systems—that is, joint correlations which violate a Bell inequality—can be verified without trusting the measurement devices used, nor those performing the measurements. This leads to unconditionally secure protocols for quantum information tasks such as cryptographic key distribution. However, complete verification of Bell non-locality requires high detection efficiencies, and is not robust to typical transmission losses over long distances. In contrast, quantum or Einstein-Podolsky-Rosen steering, a weaker form of quantum correlation, can be verified for arbitrarily low detection efficiencies and high losses. The cost is that current steering-verification protocols require complete trust in one of the measurement devices and its operator, allowing only one-sided secure key distribution. Here we present measurement-device-independent steering protocols that remove this need for trust, even when Bell non-locality is not present. We experimentally demonstrate this principle for singlet states and states that do not violate a Bell inequality.

  14. Continuous variable quantum key distribution with modulated entangled states.

    PubMed

    Madsen, Lars S; Usenko, Vladyslav C; Lassen, Mikael; Filip, Radim; Andersen, Ulrik L

    2012-01-01

    Quantum key distribution enables two remote parties to grow a shared key, which they can use for unconditionally secure communication over a certain distance. The maximal distance depends on the loss and the excess noise of the connecting quantum channel. Several quantum key distribution schemes based on coherent states and continuous variable measurements are resilient to high loss in the channel, but are strongly affected by small amounts of channel excess noise. Here we propose and experimentally address a continuous variable quantum key distribution protocol that uses modulated fragile entangled states of light to greatly enhance the robustness to channel noise. We experimentally demonstrate that the resulting quantum key distribution protocol can tolerate more noise than the benchmark set by the ideal continuous variable coherent state protocol. Our scheme represents a very promising avenue for extending the distance for which secure communication is possible.

  15. Experimental measurement-device-independent verification of quantum steering.

    PubMed

    Kocsis, Sacha; Hall, Michael J W; Bennet, Adam J; Saunders, Dylan J; Pryde, Geoff J

    2015-01-07

    Bell non-locality between distant quantum systems--that is, joint correlations which violate a Bell inequality--can be verified without trusting the measurement devices used, nor those performing the measurements. This leads to unconditionally secure protocols for quantum information tasks such as cryptographic key distribution. However, complete verification of Bell non-locality requires high detection efficiencies, and is not robust to typical transmission losses over long distances. In contrast, quantum or Einstein-Podolsky-Rosen steering, a weaker form of quantum correlation, can be verified for arbitrarily low detection efficiencies and high losses. The cost is that current steering-verification protocols require complete trust in one of the measurement devices and its operator, allowing only one-sided secure key distribution. Here we present measurement-device-independent steering protocols that remove this need for trust, even when Bell non-locality is not present. We experimentally demonstrate this principle for singlet states and states that do not violate a Bell inequality.

  16. Practical private database queries based on a quantum-key-distribution protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakobi, Markus; Humboldt-Universitaet zu Berlin, D-10117 Berlin; Simon, Christoph

    2011-02-15

    Private queries allow a user, Alice, to learn an element of a database held by a provider, Bob, without revealing which element she is interested in, while limiting her information about the other elements. We propose to implement private queries based on a quantum-key-distribution protocol, with changes only in the classical postprocessing of the key. This approach makes our scheme both easy to implement and loss tolerant. While unconditionally secure private queries are known to be impossible, we argue that an interesting degree of security can be achieved by relying on fundamental physical principles instead of unverifiable security assumptions inmore » order to protect both the user and the database. We think that the scope exists for such practical private queries to become another remarkable application of quantum information in the footsteps of quantum key distribution.« less

  17. Unconditionally secure multi-party quantum commitment scheme

    NASA Astrophysics Data System (ADS)

    Wang, Ming-Qiang; Wang, Xue; Zhan, Tao

    2018-02-01

    A new unconditionally secure multi-party quantum commitment is proposed in this paper by encoding the committed message to the phase of a quantum state. Multi-party means that there are more than one recipient in our scheme. We show that our quantum commitment scheme is unconditional hiding and binding, and hiding is perfect. Our technique is based on the interference of phase-encoded coherent states of light. Its security proof relies on the no-cloning theorem of quantum theory and the properties of quantum information.

  18. Efficient and universal quantum key distribution based on chaos and middleware

    NASA Astrophysics Data System (ADS)

    Jiang, Dong; Chen, Yuanyuan; Gu, Xuemei; Xie, Ling; Chen, Lijun

    2017-01-01

    Quantum key distribution (QKD) promises unconditionally secure communications, however, the low bit rate of QKD cannot meet the requirements of high-speed applications. Despite the many solutions that have been proposed in recent years, they are neither efficient to generate the secret keys nor compatible with other QKD systems. This paper, based on chaotic cryptography and middleware technology, proposes an efficient and universal QKD protocol that can be directly deployed on top of any existing QKD system without modifying the underlying QKD protocol and optical platform. It initially takes the bit string generated by the QKD system as input, periodically updates the chaotic system, and efficiently outputs the bit sequences. Theoretical analysis and simulation results demonstrate that our protocol can efficiently increase the bit rate of the QKD system as well as securely generate bit sequences with perfect statistical properties. Compared with the existing methods, our protocol is more efficient and universal, it can be rapidly deployed on the QKD system to increase the bit rate when the QKD system becomes the bottleneck of its communication system.

  19. Unconditional security of quantum key distribution over arbitrarily long distances

    PubMed

    Lo; Chau

    1999-03-26

    Quantum key distribution is widely thought to offer unconditional security in communication between two users. Unfortunately, a widely accepted proof of its security in the presence of source, device, and channel noises has been missing. This long-standing problem is solved here by showing that, given fault-tolerant quantum computers, quantum key distribution over an arbitrarily long distance of a realistic noisy channel can be made unconditionally secure. The proof is reduced from a noisy quantum scheme to a noiseless quantum scheme and then from a noiseless quantum scheme to a noiseless classical scheme, which can then be tackled by classical probability theory.

  20. Adaptive real time selection for quantum key distribution in lossy and turbulent free-space channels

    NASA Astrophysics Data System (ADS)

    Vallone, Giuseppe; Marangon, Davide G.; Canale, Matteo; Savorgnan, Ilaria; Bacco, Davide; Barbieri, Mauro; Calimani, Simon; Barbieri, Cesare; Laurenti, Nicola; Villoresi, Paolo

    2015-04-01

    The unconditional security in the creation of cryptographic keys obtained by quantum key distribution (QKD) protocols will induce a quantum leap in free-space communication privacy in the same way that we are beginning to realize secure optical fiber connections. However, free-space channels, in particular those with long links and the presence of atmospheric turbulence, are affected by losses, fluctuating transmissivity, and background light that impair the conditions for secure QKD. Here we introduce a method to contrast the atmospheric turbulence in QKD experiments. Our adaptive real time selection (ARTS) technique at the receiver is based on the selection of the intervals with higher channel transmissivity. We demonstrate, using data from the Canary Island 143-km free-space link, that conditions with unacceptable average quantum bit error rate which would prevent the generation of a secure key can be used once parsed according to the instantaneous scintillation using the ARTS technique.

  1. Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices

    NASA Astrophysics Data System (ADS)

    Liang, Lin-Mei; Sun, Shi-Hai; Jiang, Mu-Sheng; Li, Chun-Yan

    2014-10-01

    In general, quantum key distribution (QKD) has been proved unconditionally secure for perfect devices due to quantum uncertainty principle, quantum noncloning theorem and quantum nondividing principle which means that a quantum cannot be divided further. However, the practical optical and electrical devices used in the system are imperfect, which can be exploited by the eavesdropper to partially or totally spy the secret key between the legitimate parties. In this article, we first briefly review the recent work on quantum hacking on some experimental QKD systems with respect to imperfect devices carried out internationally, then we will present our recent hacking works in details, including passive faraday mirror attack, partially random phase attack, wavelength-selected photon-number-splitting attack, frequency shift attack, and single-photon-detector attack. Those quantum attack reminds people to improve the security existed in practical QKD systems due to imperfect devices by simply adding countermeasure or adopting a totally different protocol such as measurement-device independent protocol to avoid quantum hacking on the imperfection of measurement devices [Lo, et al., Phys. Rev. Lett., 2012, 108: 130503].

  2. Blind quantum computation over a collective-noise channel

    NASA Astrophysics Data System (ADS)

    Takeuchi, Yuki; Fujii, Keisuke; Ikuta, Rikizo; Yamamoto, Takashi; Imoto, Nobuyuki

    2016-05-01

    Blind quantum computation (BQC) allows a client (Alice), who only possesses relatively poor quantum devices, to delegate universal quantum computation to a server (Bob) in such a way that Bob cannot know Alice's inputs, algorithm, and outputs. The quantum channel between Alice and Bob is noisy, and the loss over the long-distance quantum communication should also be taken into account. Here we propose to use decoherence-free subspace (DFS) to overcome the collective noise in the quantum channel for BQC, which we call DFS-BQC. We propose three variations of DFS-BQC protocols. One of them, a coherent-light-assisted DFS-BQC protocol, allows Alice to faithfully send the signal photons with a probability proportional to a transmission rate of the quantum channel. In all cases, we combine the ideas based on DFS and the Broadbent-Fitzsimons-Kashefi protocol, which is one of the BQC protocols, without degrading unconditional security. The proposed DFS-based schemes are generic and hence can be applied to other BQC protocols where Alice sends quantum states to Bob.

  3. Blind Quantum Signature with Blind Quantum Computation

    NASA Astrophysics Data System (ADS)

    Li, Wei; Shi, Ronghua; Guo, Ying

    2017-04-01

    Blind quantum computation allows a client without quantum abilities to interact with a quantum server to perform a unconditional secure computing protocol, while protecting client's privacy. Motivated by confidentiality of blind quantum computation, a blind quantum signature scheme is designed with laconic structure. Different from the traditional signature schemes, the signing and verifying operations are performed through measurement-based quantum computation. Inputs of blind quantum computation are securely controlled with multi-qubit entangled states. The unique signature of the transmitted message is generated by the signer without leaking information in imperfect channels. Whereas, the receiver can verify the validity of the signature using the quantum matching algorithm. The security is guaranteed by entanglement of quantum system for blind quantum computation. It provides a potential practical application for e-commerce in the cloud computing and first-generation quantum computation.

  4. Optimized decoy state QKD for underwater free space communication

    NASA Astrophysics Data System (ADS)

    Lopes, Minal; Sarwade, Nisha

    Quantum cryptography (QC) is envisioned as a solution for global key distribution through fiber optic, free space and underwater optical communication due to its unconditional security. In view of this, this paper investigates underwater free space quantum key distribution (QKD) model for enhanced transmission distance, secret key rates and security. It is reported that secure underwater free space QKD is feasible in the clearest ocean water with the sifted key rates up to 207kbps. This paper extends this work by testing performance of optimized decoy state QKD protocol with underwater free space communication model. The attenuation of photons, quantum bit error rate and the sifted key generation rate of underwater quantum communication is obtained with vector radiative transfer theory and Monte Carlo method. It is observed from the simulations that optimized decoy state QKD evidently enhances the underwater secret key transmission distance as well as secret key rates.

  5. Aggregating quantum repeaters for the quantum internet

    NASA Astrophysics Data System (ADS)

    Azuma, Koji; Kato, Go

    2017-09-01

    The quantum internet holds promise for accomplishing quantum teleportation and unconditionally secure communication freely between arbitrary clients all over the globe, as well as the simulation of quantum many-body systems. For such a quantum internet protocol, a general fundamental upper bound on the obtainable entanglement or secret key has been derived [K. Azuma, A. Mizutani, and H.-K. Lo, Nat. Commun. 7, 13523 (2016), 10.1038/ncomms13523]. Here we consider its converse problem. In particular, we present a universal protocol constructible from any given quantum network, which is based on running quantum repeater schemes in parallel over the network. For arbitrary lossy optical channel networks, our protocol has no scaling gap with the upper bound, even based on existing quantum repeater schemes. In an asymptotic limit, our protocol works as an optimal entanglement or secret-key distribution over any quantum network composed of practical channels such as erasure channels, dephasing channels, bosonic quantum amplifier channels, and lossy optical channels.

  6. Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hong-Wei; Zhengzhou Information Science and Technology Institute, Zhengzhou, 450004; Wang, Shuang

    2011-12-15

    It is well known that the unconditional security of quantum-key distribution (QKD) can be guaranteed by quantum mechanics. However, practical QKD systems have some imperfections, which can be controlled by the eavesdropper to attack the secret key. With current experimental technology, a realistic beam splitter, made by fused biconical technology, has a wavelength-dependent property. Based on this fatal security loophole, we propose a wavelength-dependent attacking protocol, which can be applied to all practical QKD systems with passive state modulation. Moreover, we experimentally attack a practical polarization encoding QKD system to obtain all the secret key information at the cost ofmore » only increasing the quantum bit error rate from 1.3 to 1.4%.« less

  7. Noise properties in the ideal Kirchhoff-Law-Johnson-Noise secure communication system.

    PubMed

    Gingl, Zoltan; Mingesz, Robert

    2014-01-01

    In this paper we determine the noise properties needed for unconditional security for the ideal Kirchhoff-Law-Johnson-Noise (KLJN) secure key distribution system using simple statistical analysis. It has already been shown using physical laws that resistors and Johnson-like noise sources provide unconditional security. However real implementations use artificial noise generators, therefore it is a question if other kind of noise sources and resistor values could be used as well. We answer this question and in the same time we provide a theoretical basis to analyze real systems as well.

  8. Unconditionally secure commitment in position-based quantum cryptography.

    PubMed

    Nadeem, Muhammad

    2014-10-27

    A new commitment scheme based on position-verification and non-local quantum correlations is presented here for the first time in literature. The only credential for unconditional security is the position of committer and non-local correlations generated; neither receiver has any pre-shared data with the committer nor does receiver require trusted and authenticated quantum/classical channels between him and the committer. In the proposed scheme, receiver trusts the commitment only if the scheme itself verifies position of the committer and validates her commitment through non-local quantum correlations in a single round. The position-based commitment scheme bounds committer to reveal valid commitment within allocated time and guarantees that the receiver will not be able to get information about commitment unless committer reveals. The scheme works for the commitment of both bits and qubits and is equally secure against committer/receiver as well as against any third party who may have interests in destroying the commitment. Our proposed scheme is unconditionally secure in general and evades Mayers and Lo-Chau attacks in particular.

  9. Prefixed-threshold real-time selection method in free-space quantum key distribution

    NASA Astrophysics Data System (ADS)

    Wang, Wenyuan; Xu, Feihu; Lo, Hoi-Kwong

    2018-03-01

    Free-space quantum key distribution allows two parties to share a random key with unconditional security, between ground stations, between mobile platforms, and even in satellite-ground quantum communications. Atmospheric turbulence causes fluctuations in transmittance, which further affect the quantum bit error rate and the secure key rate. Previous postselection methods to combat atmospheric turbulence require a threshold value determined after all quantum transmission. In contrast, here we propose a method where we predetermine the optimal threshold value even before quantum transmission. Therefore, the receiver can discard useless data immediately, thus greatly reducing data storage requirements and computing resources. Furthermore, our method can be applied to a variety of protocols, including, for example, not only single-photon BB84 but also asymptotic and finite-size decoy-state BB84, which can greatly increase its practicality.

  10. Proof-of-principle experimental realization of a qubit-like qudit-based quantum key distribution scheme

    NASA Astrophysics Data System (ADS)

    Wang, Shuang; Yin, Zhen-Qiang; Chau, H. F.; Chen, Wei; Wang, Chao; Guo, Guang-Can; Han, Zheng-Fu

    2018-04-01

    In comparison to qubit-based protocols, qudit-based quantum key distribution ones generally allow two cooperative parties to share unconditionally secure keys under a higher channel noise. However, it is very hard to prepare and measure the required quantum states in qudit-based protocols in general. One exception is the recently proposed highly error tolerant qudit-based protocol known as the Chau15 (Chau 2015 Phys. Rev. A 92 062324). Remarkably, the state preparation and measurement in this protocol can be done relatively easily since the required states are phase encoded almost like the diagonal basis states of a qubit. Here we report the first proof-of-principle demonstration of the Chau15 protocol. One highlight of our experiment is that its post-processing is based on practical one-way manner, while the original proposal in Chau (2015 Phys. Rev. A 92 062324) relies on complicated two-way post-processing, which is a great challenge in experiment. In addition, by manipulating time-bin qudit and measurement with a variable delay interferometer, our realization is extensible to qudit with high-dimensionality and confirms the experimental feasibility of the Chau15 protocol.

  11. Reconviction and revocation rates in Flanders after medium security treatment.

    PubMed

    Jeandarme, Inge; Habets, Petra; Oei, T I; Bogaerts, Stefan

    2016-01-01

    To examine the criminal outcome of Flemish forensic psychiatric patients ('internees') after medium security treatment. Also, the effect of conditional release on recidivism of two subgroups (internees under conditional release and internees who received unconditional release) was examined. Reconviction rates and revocation rates were collected for all participants. Kaplan-Meier survival analyses were used to investigate recidivism rates while controlling for time at risk. During the 10-year period, 502 offenders were discharged from medium security treatment. Over a follow-up period averaging 3.6years, 7.4% of discharged patients were reconvicted or received a new 'not guilty by reason of insanity' (NGRI) verdict for a violent offence. One-quarter of the population had their conditional release revoked. Part of the study population was granted unconditional release. Reconviction rates were higher after unconditional release in comparison to conditional release. The results of this study suggest that the court supervision of NGRI patients in Flanders is effective in protecting the community from further offending. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Experimentally feasible quantum-key-distribution scheme using qubit-like qudits and its comparison with existing qubit- and qudit-based protocols

    NASA Astrophysics Data System (ADS)

    Chau, H. F.; Wang, Qinan; Wong, Cardythy

    2017-02-01

    Recently, Chau [Phys. Rev. A 92, 062324 (2015), 10.1103/PhysRevA.92.062324] introduced an experimentally feasible qudit-based quantum-key-distribution (QKD) scheme. In that scheme, one bit of information is phase encoded in the prepared state in a 2n-dimensional Hilbert space in the form (|i > ±|j >) /√{2 } with n ≥2 . For each qudit prepared and measured in the same two-dimensional Hilbert subspace, one bit of raw secret key is obtained in the absence of transmission error. Here we show that by modifying the basis announcement procedure, the same experimental setup can generate n bits of raw key for each qudit prepared and measured in the same basis in the noiseless situation. The reason is that in addition to the phase information, each qudit also carries information on the Hilbert subspace used. The additional (n -1 ) bits of raw key comes from a clever utilization of this extra piece of information. We prove the unconditional security of this modified protocol and compare its performance with other existing provably secure qubit- and qudit-based protocols on market in the one-way classical communication setting. Interestingly, we find that for the case of n =2 , the secret key rate of this modified protocol using nondegenerate random quantum code to perform one-way entanglement distillation is equal to that of the six-state scheme.

  13. Unconditional security from noisy quantum storage

    NASA Astrophysics Data System (ADS)

    Wehner, Stephanie

    2010-03-01

    We consider the implementation of two-party cryptographic primitives based on the sole physical assumption that no large-scale reliable quantum storage is available to the cheating party. An important example of such a task is secure identification. Here, Alice wants to identify herself to Bob (possibly an ATM machine) without revealing her password. More generally, Alice and Bob wish to solve problems where Alice holds an input x (e.g. her password), and Bob holds an input y (e.g. the password an honest Alice should possess), and they want to obtain the value of some function f(x,y) (e.g. the equality function). Security means that the legitimate users should not learn anything beyond this specification. That is, Alice should not learn anything about y and Bob should not learn anything about x, other than what they may be able to infer from the value of f(x,y). We show that any such problem can be solved securely in the noisy-storage model by constructing protocols for bit commitment and oblivious transfer, where we prove security against the most general attack. Our protocols can be implemented with present-day hardware used for quantum key distribution. In particular, no quantum storage is required for the honest parties. Our work raises a large number of immediate theoretical as well as experimental questions related to many aspects of quantum information science, such as for example understanding the information carrying properties of quantum channels and memories, randomness extraction, min-entropy sampling, as well as constructing small handheld devices which are suitable for the task of secure identification. [4pt] Full version available at arXiv:0906.1030 (theoretical) and arXiv:0911.2302 (practically oriented).

  14. Physical Unclonable Function Hardware Keys Utilizing Kirchhoff-Law Secure Key Exchange and Noise-Based Logic

    NASA Astrophysics Data System (ADS)

    Kish, Laszlo B.; Kwan, Chiman

    Weak unclonable function (PUF) encryption key means that the manufacturer of the hardware can clone the key but not anybody else. Strong unclonable function (PUF) encryption key means that even the manufacturer of the hardware is unable to clone the key. In this paper, first we introduce an "ultra" strong PUF with intrinsic dynamical randomness, which is not only unclonable but also gets renewed to an independent key (with fresh randomness) during each use via the unconditionally secure key exchange. The solution utilizes the Kirchhoff-law-Johnson-noise (KLJN) method for dynamical key renewal and a one-time-pad secure key for the challenge/response process. The secure key is stored in a flash memory on the chip to provide tamper-resistance and nonvolatile storage with zero power requirements in standby mode. Simplified PUF keys are shown: a strong PUF utilizing KLJN protocol during the first run and noise-based logic (NBL) hyperspace vector string verification method for the challenge/response during the rest of its life or until it is re-initialized. Finally, the simplest PUF utilizes NBL without KLJN thus it can be cloned by the manufacturer but not by anybody else.

  15. Incompleteness and limit of security theory of quantum key distribution

    NASA Astrophysics Data System (ADS)

    Hirota, Osamu; Murakami, Dan; Kato, Kentaro; Futami, Fumio

    2012-10-01

    It is claimed in the many papers that a trace distance: d guarantees the universal composition security in quantum key distribution (QKD) like BB84 protocol. In this introduction paper, at first, it is explicitly explained what is the main misconception in the claim of the unconditional security for QKD theory. In general terms, the cause of the misunderstanding on the security claim is the Lemma in the paper of Renner. It suggests that the generation of the perfect random key is assured by the probability (1-d), and its failure probability is d. Thus, it concludes that the generated key provides the perfect random key sequence when the protocol is success. So the QKD provides perfect secrecy to the one time pad. This is the reason for the composition claim. However, the quantity of the trace distance (or variational distance) is not the probability for such an event. If d is not small enough, always the generated key sequence is not uniform. Now one needs the reconstruction of the evaluation of the trace distance if one wants to use it. One should first go back to the indistinguishability theory in the computational complexity based, and to clarify the meaning of the value of the variational distance. In addition, the same analysis for the information theoretic case is necessary. The recent serial papers by H.P.Yuen have given the answer on such questions. In this paper, we show more concise description of Yuen's theory, and clarify that the upper bound theories for the trace distance by Tomamichel et al and Hayashi et al are constructed by the wrong reasoning of Renner and it is unsuitable as the security analysis. Finally, we introduce a new macroscopic quantum communication to replace Q-bit QKD.

  16. Measurement-device-independent quantum digital signatures

    NASA Astrophysics Data System (ADS)

    Puthoor, Ittoop Vergheese; Amiri, Ryan; Wallden, Petros; Curty, Marcos; Andersson, Erika

    2016-08-01

    Digital signatures play an important role in software distribution, modern communication, and financial transactions, where it is important to detect forgery and tampering. Signatures are a cryptographic technique for validating the authenticity and integrity of messages, software, or digital documents. The security of currently used classical schemes relies on computational assumptions. Quantum digital signatures (QDS), on the other hand, provide information-theoretic security based on the laws of quantum physics. Recent work on QDS Amiri et al., Phys. Rev. A 93, 032325 (2016);, 10.1103/PhysRevA.93.032325 Yin, Fu, and Zeng-Bing, Phys. Rev. A 93, 032316 (2016), 10.1103/PhysRevA.93.032316 shows that such schemes do not require trusted quantum channels and are unconditionally secure against general coherent attacks. However, in practical QDS, just as in quantum key distribution (QKD), the detectors can be subjected to side-channel attacks, which can make the actual implementations insecure. Motivated by the idea of measurement-device-independent quantum key distribution (MDI-QKD), we present a measurement-device-independent QDS (MDI-QDS) scheme, which is secure against all detector side-channel attacks. Based on the rapid development of practical MDI-QKD, our MDI-QDS protocol could also be experimentally implemented, since it requires a similar experimental setup.

  17. Secure Quantum Technologies

    NASA Astrophysics Data System (ADS)

    Malik, Mehul

    Over the past three decades, quantum mechanics has allowed the development of technologies that provide unconditionally secure communication. In parallel, the quantum nature of the transverse electromagnetic field has spawned the field of quantum imaging that encompasses technologies such as quantum lithography, quantum ghost imaging, and high-dimensional quantum key distribution (QKD). The emergence of such quantum technologies also highlights the need for the development of accurate and efficient methods of measuring and characterizing the elusive quantum state itself. In this thesis, I present new technologies that use the quantum properties of light for security. The first of these is a technique that extends the principles behind QKD to the field of imaging and optical ranging. By applying the polarization-based BB84 protocol to individual photons in an active imaging system, we obtained images that were secure against any intercept-resend jamming attacks. The second technology presented in this thesis is based on an extension of quantum ghost imaging, a technique that uses position-momentum entangled photons to create an image of an object without directly gaining any spatial information from it. We used a holographic filtering technique to build a quantum ghost image identification system that uses a few pairs of photons to identify an object from a set of known objects. The third technology addressed in this thesis is a high-dimensional QKD system that uses orbital-angular-momentum (OAM) modes of light for encoding. Moving to a high-dimensional state space in QKD allows one to impress more information on each photon, as well as introduce higher levels of security. I discuss the development of two OAM-QKD protocols based on the BB84 and Ekert protocols of QKD. In addition, I present a study characterizing the effects of turbulence on a communication system using OAM modes for encoding. The fourth and final technology presented in this thesis is a relatively new technique called direct measurement that uses sequential weak and strong measurements to characterize a quantum state. I use this technique to characterize the quantum state of a photon with a dimensionality of d = 27, and visualize its rotation in the natural basis of OAM.

  18. Intrinsic imperfection of self-differencing single-photon detectors harms the security of high-speed quantum cryptography systems

    NASA Astrophysics Data System (ADS)

    Jiang, Mu-Sheng; Sun, Shi-Hai; Tang, Guang-Zhao; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2013-12-01

    Thanks to the high-speed self-differencing single-photon detector (SD-SPD), the secret key rate of quantum key distribution (QKD), which can, in principle, offer unconditionally secure private communications between two users (Alice and Bob), can exceed 1 Mbit/s. However, the SD-SPD may contain loopholes, which can be exploited by an eavesdropper (Eve) to hack into the unconditional security of the high-speed QKD systems. In this paper, we analyze the fact that the SD-SPD can be remotely controlled by Eve in order to spy on full information without being discovered, then proof-of-principle experiments are demonstrated. Here, we point out that this loophole is introduced directly by the operating principle of the SD-SPD, thus, it cannot be removed, except for the fact that some active countermeasures are applied by the legitimate parties.

  19. Unconditional cash transfers for clinical and economic outcomes among HIV-affected Ugandan households: a bayesian randomised trial.

    PubMed

    Mills, Edward J; Adhvaryu, Achyuta; Jakiela, Pamela; Birungi, Josephine; Okoboi, Stephen; Chimulwa, Teddy; Wangisi, Jonathan; Achilla, Tina; Popoff, Evan; Golchi, Shirin; Karlan, Dean

    2018-05-28

    HIV infection has profound clinical and economic costs at the household level. This is particularly important in low-income settings, where access to additional sources of income or loans may be limited. While several microfinance interventions have been proposed, unconditional cash grants, a strategy to allow participants to choose how to use finances that may improve household security and health, has not previously been evaluated. We examined the effect of an unconditional cash transfer to HIV-infected individuals using a 2 x 2 factorial randomised trial in two rural districts in Uganda. Our primary outcomes were changes in CD4 cell count, sexual behaviors, and adherence to ART. Secondary outcomes were changes in household food security and adult mental health. We applied a Bayesian approach for our primary analysis. We randomized 2170 patients as participatants, with 1081 receiving a cash grant. We found no important intervention effects on CD4 t-cell counts between groups (mean difference [MD] 35.48, 95% Credible Interval [CrI] -59.9-1131.6), food security (odds ratio [OR] 1.22, 95% CrI: 0.47, 3.02), medication adherence (OR 3.15, 95% CrI: 0.58, 18.15), or sexual behavior (OR 0.45 95% CrI: 0.12, 1.55), or health expenditure in the previous 3 weeks (Mean Difference $2.65, 95% CrI: -9.30, 15.69). In secondary analysis, we detected an effect of mental planning on CD4 change between groups (104.2 cells, 9% CrI: 5.99, 202.16). We did not have data on viral load outcomes. Although all outcomes were associated with favorable point estimates, our trial did not demonstrate important effects of unconditional cash grants on health outcomes.

  20. A Quantum Multi-proxy Blind Signature Scheme Based on Genuine Four-Qubit Entangled State

    NASA Astrophysics Data System (ADS)

    Tian, Juan-Hong; Zhang, Jian-Zhong; Li, Yan-Ping

    2016-02-01

    In this paper, we propose a multi-proxy blind signature scheme based on controlled teleportation. Genuine four-qubit entangled state functions as quantum channel. The scheme uses the physical characteristics of quantum mechanics to implement delegation, signature and verification. The security analysis shows the scheme satisfies the security features of multi-proxy signature, unforgeability, undeniability, blindness and unconditional security.

  1. Quantum Teamwork for Unconditional Multiparty Communication with Gaussian States

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Adesso, Gerardo; Xie, Changde; Peng, Kunchi

    2009-08-01

    We demonstrate the capability of continuous variable Gaussian states to communicate multipartite quantum information. A quantum teamwork protocol is presented according to which an arbitrary possibly entangled multimode state can be faithfully teleported between two teams each comprising many cooperative users. We prove that N-mode Gaussian weighted graph states exist for arbitrary N that enable unconditional quantum teamwork implementations for any arrangement of the teams. These perfect continuous variable maximally multipartite entangled resources are typical among pure Gaussian states and are unaffected by the entanglement frustration occurring in multiqubit states.

  2. U.S.-China Counterterrorism Cooperation: Issues for U.S. Policy

    DTIC Science & Technology

    2008-10-08

    detained Uighurs at Guantanamo Bay prison; weapons nonproliferation; port security; security for the Olympics in Beijing in August 2008; sanctions...the others for Resolution 1368 (to combat terrorism). On September 20, Beijing said that it offered “unconditional support” in fighting terrorism...transform — the closer bilateral relationship pursued by President Bush since late 2001. In the short-term, U.S. security policy toward Beijing sought

  3. Russia and NATO Enlargement: The Assurances in 1990 and Their Implications

    DTIC Science & Technology

    2009-06-01

    to achieve “an agreement on the final legal settlement of the German question, which would serve our security interests and the cause of stability... intrinsically coupled to new security structures in Europe with no dominant player, particularly not the Soviet Union’s rival, the United States...main European security issues and would unconditionally acknowledge the CIS [Commonwealth of Independent States] as a sphere of vital interest to

  4. Critical analysis of the Bennett-Riedel attack on secure cryptographic key distributions via the Kirchhoff-Law-Johnson-noise scheme.

    PubMed

    Kish, Laszlo B; Abbott, Derek; Granqvist, Claes G

    2013-01-01

    Recently, Bennett and Riedel (BR) (http://arxiv.org/abs/1303.7435v1) argued that thermodynamics is not essential in the Kirchhoff-law-Johnson-noise (KLJN) classical physical cryptographic exchange method in an effort to disprove the security of the KLJN scheme. They attempted to demonstrate this by introducing a dissipation-free deterministic key exchange method with two batteries and two switches. In the present paper, we first show that BR's scheme is unphysical and that some elements of its assumptions violate basic protocols of secure communication. All our analyses are based on a technically unlimited Eve with infinitely accurate and fast measurements limited only by the laws of physics and statistics. For non-ideal situations and at active (invasive) attacks, the uncertainly principle between measurement duration and statistical errors makes it impossible for Eve to extract the key regardless of the accuracy or speed of her measurements. To show that thermodynamics and noise are essential for the security, we crack the BR system with 100% success via passive attacks, in ten different ways, and demonstrate that the same cracking methods do not function for the KLJN scheme that employs Johnson noise to provide security underpinned by the Second Law of Thermodynamics. We also present a critical analysis of some other claims by BR; for example, we prove that their equations for describing zero security do not apply to the KLJN scheme. Finally we give mathematical security proofs for each BR-attack against the KLJN scheme and conclude that the information theoretic (unconditional) security of the KLJN method has not been successfully challenged.

  5. Critical Analysis of the Bennett–Riedel Attack on Secure Cryptographic Key Distributions via the Kirchhoff-Law–Johnson-Noise Scheme

    PubMed Central

    Kish, Laszlo B.; Abbott, Derek; Granqvist, Claes G.

    2013-01-01

    Recently, Bennett and Riedel (BR) (http://arxiv.org/abs/1303.7435v1) argued that thermodynamics is not essential in the Kirchhoff-law–Johnson-noise (KLJN) classical physical cryptographic exchange method in an effort to disprove the security of the KLJN scheme. They attempted to demonstrate this by introducing a dissipation-free deterministic key exchange method with two batteries and two switches. In the present paper, we first show that BR's scheme is unphysical and that some elements of its assumptions violate basic protocols of secure communication. All our analyses are based on a technically unlimited Eve with infinitely accurate and fast measurements limited only by the laws of physics and statistics. For non-ideal situations and at active (invasive) attacks, the uncertainly principle between measurement duration and statistical errors makes it impossible for Eve to extract the key regardless of the accuracy or speed of her measurements. To show that thermodynamics and noise are essential for the security, we crack the BR system with 100% success via passive attacks, in ten different ways, and demonstrate that the same cracking methods do not function for the KLJN scheme that employs Johnson noise to provide security underpinned by the Second Law of Thermodynamics. We also present a critical analysis of some other claims by BR; for example, we prove that their equations for describing zero security do not apply to the KLJN scheme. Finally we give mathematical security proofs for each BR-attack against the KLJN scheme and conclude that the information theoretic (unconditional) security of the KLJN method has not been successfully challenged. PMID:24358129

  6. All-photonic quantum repeaters

    PubMed Central

    Azuma, Koji; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2015-01-01

    Quantum communication holds promise for unconditionally secure transmission of secret messages and faithful transfer of unknown quantum states. Photons appear to be the medium of choice for quantum communication. Owing to photon losses, robust quantum communication over long lossy channels requires quantum repeaters. It is widely believed that a necessary and highly demanding requirement for quantum repeaters is the existence of matter quantum memories. Here we show that such a requirement is, in fact, unnecessary by introducing the concept of all-photonic quantum repeaters based on flying qubits. In particular, we present a protocol based on photonic cluster-state machine guns and a loss-tolerant measurement equipped with local high-speed active feedforwards. We show that, with such all-photonic quantum repeaters, the communication efficiency scales polynomially with the channel distance. Our result paves a new route towards quantum repeaters with efficient single-photon sources rather than matter quantum memories. PMID:25873153

  7. Practical challenges in quantum key distribution

    DOE PAGES

    Diamanti, Eleni; Lo, Hoi -Kwong; Qi, Bing; ...

    2016-11-08

    Here, quantum key distribution (QKD) promises unconditional security in data communication and is currently being deployed in commercial applications. Nonetheless, before QKD can be widely adopted, it faces a number of important challenges such as secret key rate, distance, size, cost and practical security. Here, we survey those key challenges and the approaches that are currently being taken to address them.

  8. Practical challenges in quantum key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamanti, Eleni; Lo, Hoi -Kwong; Qi, Bing

    Here, quantum key distribution (QKD) promises unconditional security in data communication and is currently being deployed in commercial applications. Nonetheless, before QKD can be widely adopted, it faces a number of important challenges such as secret key rate, distance, size, cost and practical security. Here, we survey those key challenges and the approaches that are currently being taken to address them.

  9. An Improved Quantum Proxy Blind Signature Scheme Based on Genuine Seven-Qubit Entangled State

    NASA Astrophysics Data System (ADS)

    Yang, Yuan-Yuan; Xie, Shu-Cui; Zhang, Jian-Zhong

    2017-07-01

    An improved quantum proxy blind signature scheme based on controlled teleportation is proposed in this paper. Genuine seven-qubit entangled state functions as quantum channel. We use the physical characteristics of quantum mechanics to implement delegation, signature and verification. Security analysis shows that our scheme is unforgeability, undeniability, blind and unconditionally secure. Meanwhile, we propose a trust party to provide higher security, the trust party is costless.

  10. Universal Blind Quantum Computation

    NASA Astrophysics Data System (ADS)

    Fitzsimons, Joseph; Kashefi, Elham

    2012-02-01

    Blind Quantum Computing (BQC) allows a client to have a server carry out a quantum computation for them such that the client's inputs, outputs and computation remain private. Recently we proposed a universal unconditionally secure BQC scheme, based on the conceptual framework of the measurement-based quantum computing model, where the client only needs to be able to prepare single qubits in separable states randomly chosen from a finite set and send them to the server, who has the balance of the required quantum computational resources. Here we present a refinement of the scheme which vastly expands the class of quantum circuits which can be directly implemented as a blind computation, by introducing a new class of resource states which we term dotted-complete graph states and expanding the set of single qubit states the client is required to prepare. These two modifications significantly simplify the overall protocol and remove the previously present restriction that only nearest-neighbor circuits could be implemented as blind computations directly. As an added benefit, the refined protocol admits a substantially more intuitive and simplified verification mechanism, allowing the correctness of a blind computation to be verified with arbitrarily small probability of error.

  11. Secure quantum signatures: a practical quantum technology (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Andersson, Erika

    2016-10-01

    Modern cryptography encompasses much more than encryption of secret messages. Signature schemes are widely used to guarantee that messages cannot be forged or tampered with, for example in e-mail, software updates and electronic commerce. Messages are also transferrable, which distinguishes digital signatures from message authentication. Transferability means that messages can be forwarded; in other words, that a sender is unlikely to be able to make one recipient accept a message which is subsequently rejected by another recipient if the message is forwarded. Similar to public-key encryption, the security of commonly used signature schemes relies on the assumed computational difficulty of problems such as finding discrete logarithms or factoring large primes. With quantum computers, such assumptions would no longer be valid. Partly for this reason, it is desirable to develop signature schemes with unconditional or information-theoretic security. Quantum signature schemes are one possible solution. Similar to quantum key distribution (QKD), their unconditional security relies only on the laws of quantum mechanics. Quantum signatures can be realized with the same system components as QKD, but are so far less investigated. This talk aims to provide an introduction to quantum signatures and to review theoretical and experimental progress so far.

  12. What Every Child Needs for Good Mental Health

    MedlinePlus

    ... guidance and discipline Give children unconditional love. Love, security and acceptance should be at the heart of ... school counselor Other families in the community Family network organizations Community-based psychiatric care Crisis outreach teams ...

  13. Wavelength and pulselength dependence of laser conditioning and bulk damage in doubler-cut KH2PO4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, J J; Bruere, J R; Bolourchi, M

    2005-10-28

    An experimental technique has been utilized to measure the variation of bulk damage scatter with damaging fluence in plates of KH{sub 2}PO{sub 4} (KDP) crystals. Bulk damage in unconditioned and laser-conditioned doubler-cut KDP crystals has been studied using 527 nm (2{omega}) light at pulselengths of 0.3-10 ns. It is found that there is less scatter due to damage at fixed fluence for longer pulselengths. In particular, there is {approx}4X increase in fluence for equivalent scatter for damage at 2{omega}, 10 ns as compared to 0.30 ns in unconditioned KDP. The results for the unconditioned and conditioned KDP show that formore » all the pulselengths the scatter due to the bulk damage is a strong function of the damaging fluence ({phi}{sup -5}). It is determined that the 2{omega} fluence pulselength-scaling for equivalent bulk damage scatter in unconditioned KDP varies as {tau}{sup 0.30{+-}0.11} and in 3{omega}, 3ns ramp-conditioned KDP varies as {tau}{sup 0.27{+-}0.14}. The effectiveness of 2{omega} and 3{omega} laser conditioning at pulselengths in the range of 0.30-23 ns for damage induced 2{omega}, 3 ns is analyzed in terms of scatter. For the protocols tested (i.e. peak conditioning irradiance, etc.), the 3{omega}, 300 ps conditioning to a peak fluence of 3 J/cm{sup 2} had the best performance under 2{omega}, 3 ns testing. The general trend in the performance of the conditioning protocols was shorter wavelength and shorter pulselength appear to produce better conditioning for testing at 2{omega}, 3 ns.« less

  14. Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Hughes, Richard

    2004-05-01

    Quantum key distribution (QKD) uses single-photon communications to generate the shared, secret random number sequences that are used to encrypt and decrypt secret communications. The unconditional security of QKD is based on the interplay between fundamental principles of quantum physics and information theory. An adversary can neither successfully tap the transmissions, nor evade detection (eavesdropping raises the key error rate above a threshold value). QKD could be particularly attractive for free-space optical communications, both ground-based and for satellites. I will describe a QKD experiment performed over multi-kilometer line-of-sight paths, which serves as a model for a satellite-to-ground key distribution system. The system uses single-photon polarization states, without active polarization switching, and for the first time implements the complete BB84 QKD protocol including, reconciliation, privacy amplification and the all-important authentication stage. It is capable of continuous operation throughout the day and night, achieving the self-sustaining production of error-free, shared, secret bits. I will also report on the results of satellite-to-ground QKD modeling.

  15. Appetitive but Not Aversive Olfactory Conditioning Modifies Antennal Movements in Honeybees

    ERIC Educational Resources Information Center

    Cholé, Hanna; Junca, Pierre; Sandoz, Jean-Christophe

    2015-01-01

    In honeybees, two olfactory conditioning protocols allow the study of appetitive and aversive Pavlovian associations. Appetitive conditioning of the proboscis extension response (PER) involves associating an odor, the conditioned stimulus (CS) with a sucrose solution, the unconditioned stimulus (US). Conversely, aversive conditioning of the sting…

  16. 7 CFR 4279.149 - Personal and corporate guarantee.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Personal and corporate guarantee. 4279.149 Section... Industry Loans § 4279.149 Personal and corporate guarantee. (a) Unconditional personal and corporate... adequately secured for loanmaking purposes. Agency approved personal and corporate guarantees for the full...

  17. 7 CFR 4279.149 - Personal and corporate guarantee.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Personal and corporate guarantee. 4279.149 Section... Industry Loans § 4279.149 Personal and corporate guarantee. (a) Unconditional personal and corporate... adequately secured for loanmaking purposes. Agency approved personal and corporate guarantees for the full...

  18. 7 CFR 4279.149 - Personal and corporate guarantee.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Personal and corporate guarantee. 4279.149 Section... Industry Loans § 4279.149 Personal and corporate guarantee. (a) Unconditional personal and corporate... adequately secured for loanmaking purposes. Agency approved personal and corporate guarantees for the full...

  19. 7 CFR 4279.149 - Personal and corporate guarantee.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Personal and corporate guarantee. 4279.149 Section... Industry Loans § 4279.149 Personal and corporate guarantee. (a) Unconditional personal and corporate... adequately secured for loanmaking purposes. Agency approved personal and corporate guarantees for the full...

  20. 7 CFR 4279.149 - Personal and corporate guarantee.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Personal and corporate guarantee. 4279.149 Section... Industry Loans § 4279.149 Personal and corporate guarantee. (a) Unconditional personal and corporate... adequately secured for loanmaking purposes. Agency approved personal and corporate guarantees for the full...

  1. A Quantum Proxy Signature Scheme Based on Genuine Five-qubit Entangled State

    NASA Astrophysics Data System (ADS)

    Cao, Hai-Jing; Huang, Jun; Yu, Yao-Feng; Jiang, Xiu-Li

    2014-09-01

    In this paper a very efficient and secure proxy signature scheme is proposed. It is based on controlled quantum teleportation. Genuine five-qubit entangled state functions as quantum channel. The scheme uses the physical characteristics of quantum mechanics to implement delegation, signature and verification. Quantum key distribution and one-time pad are adopted in our scheme, which could guarantee not only the unconditional security of the scheme but also the anonymity of the messages owner.

  2. Some methods for blindfolded record linkage.

    PubMed

    Churches, Tim; Christen, Peter

    2004-06-28

    The linkage of records which refer to the same entity in separate data collections is a common requirement in public health and biomedical research. Traditionally, record linkage techniques have required that all the identifying data in which links are sought be revealed to at least one party, often a third party. This necessarily invades personal privacy and requires complete trust in the intentions of that party and their ability to maintain security and confidentiality. Dusserre, Quantin, Bouzelat and colleagues have demonstrated that it is possible to use secure one-way hash transformations to carry out follow-up epidemiological studies without any party having to reveal identifying information about any of the subjects - a technique which we refer to as "blindfolded record linkage". A limitation of their method is that only exact comparisons of values are possible, although phonetic encoding of names and other strings can be used to allow for some types of typographical variation and data errors. A method is described which permits the calculation of a general similarity measure, the n-gram score, without having to reveal the data being compared, albeit at some cost in computation and data communication. This method can be combined with public key cryptography and automatic estimation of linkage model parameters to create an overall system for blindfolded record linkage. The system described offers good protection against misdeeds or security failures by any one party, but remains vulnerable to collusion between or simultaneous compromise of two or more parties involved in the linkage operation. In order to reduce the likelihood of this, the use of last-minute allocation of tasks to substitutable servers is proposed. Proof-of-concept computer programmes written in the Python programming language are provided to illustrate the similarity comparison protocol. Although the protocols described in this paper are not unconditionally secure, they do suggest the feasibility, with the aid of modern cryptographic techniques and high speed communication networks, of a general purpose probabilistic record linkage system which permits record linkage studies to be carried out with negligible risk of invasion of personal privacy.

  3. Some methods for blindfolded record linkage

    PubMed Central

    Churches, Tim; Christen, Peter

    2004-01-01

    Background The linkage of records which refer to the same entity in separate data collections is a common requirement in public health and biomedical research. Traditionally, record linkage techniques have required that all the identifying data in which links are sought be revealed to at least one party, often a third party. This necessarily invades personal privacy and requires complete trust in the intentions of that party and their ability to maintain security and confidentiality. Dusserre, Quantin, Bouzelat and colleagues have demonstrated that it is possible to use secure one-way hash transformations to carry out follow-up epidemiological studies without any party having to reveal identifying information about any of the subjects – a technique which we refer to as "blindfolded record linkage". A limitation of their method is that only exact comparisons of values are possible, although phonetic encoding of names and other strings can be used to allow for some types of typographical variation and data errors. Methods A method is described which permits the calculation of a general similarity measure, the n-gram score, without having to reveal the data being compared, albeit at some cost in computation and data communication. This method can be combined with public key cryptography and automatic estimation of linkage model parameters to create an overall system for blindfolded record linkage. Results The system described offers good protection against misdeeds or security failures by any one party, but remains vulnerable to collusion between or simultaneous compromise of two or more parties involved in the linkage operation. In order to reduce the likelihood of this, the use of last-minute allocation of tasks to substitutable servers is proposed. Proof-of-concept computer programmes written in the Python programming language are provided to illustrate the similarity comparison protocol. Conclusion Although the protocols described in this paper are not unconditionally secure, they do suggest the feasibility, with the aid of modern cryptographic techniques and high speed communication networks, of a general purpose probabilistic record linkage system which permits record linkage studies to be carried out with negligible risk of invasion of personal privacy. PMID:15222890

  4. Enhancement of antibody response by one-trial conditioning: contrasting results using different antigens.

    PubMed

    Espinosa, Enrique; Calderas, Tania; Flores-Muciño, Oscar; Pérez-García, Georgina; Vázquez-Camacho, Ana C; Bermúdez-Rattoni, Federico

    2004-01-01

    New research in conditioned enhancement of antibody response requires a general paradigm effective with different antigens. In this experiment series we applied a one-trial protocol using keyhole limpet hemocyanin immunization as an unconditioned stimulus. Several different conditions were tested. Two different times between conditioning and test trial, two relevant antigen doses and the use of an antigen booster during test trial were investigated. We did not find a conditioned effect in any of the conditions used. In contrast, we found a reliable albeit modest conditioned effect using hen egg lysozyme as unconditioned stimulus. By comparing these and other findings we conclude that the number of conditioning trials is a possible requirement for a more reliable conditioning of antibody response.

  5. Generalized Kirchhoff-Law-Johnson-Noise (KLJN) secure key exchange system using arbitrary resistors.

    PubMed

    Vadai, Gergely; Mingesz, Robert; Gingl, Zoltan

    2015-09-03

    The Kirchhoff-Law-Johnson-Noise (KLJN) secure key exchange system has been introduced as a simple, very low cost and efficient classical physical alternative to quantum key distribution systems. The ideal system uses only a few electronic components-identical resistor pairs, switches and interconnecting wires-in order to guarantee perfectly protected data transmission. We show that a generalized KLJN system can provide unconditional security even if it is used with significantly less limitations. The more universal conditions ease practical realizations considerably and support more robust protection against attacks. Our theoretical results are confirmed by numerical simulations.

  6. A Secure Routing Protocol for Wireless Sensor Networks Considering Secure Data Aggregation.

    PubMed

    Rahayu, Triana Mugia; Lee, Sang-Gon; Lee, Hoon-Jae

    2015-06-26

    The commonly unattended and hostile deployments of WSNs and their resource-constrained sensor devices have led to an increasing demand for secure energy-efficient protocols. Routing and data aggregation receive the most attention since they are among the daily network routines. With the awareness of such demand, we found that so far there has been no work that lays out a secure routing protocol as the foundation for a secure data aggregation protocol. We argue that the secure routing role would be rendered useless if the data aggregation scheme built on it is not secure. Conversely, the secure data aggregation protocol needs a secure underlying routing protocol as its foundation in order to be effectively optimal. As an attempt for the solution, we devise an energy-aware protocol based on LEACH and ESPDA that combines secure routing protocol and secure data aggregation protocol. We then evaluate its security effectiveness and its energy-efficiency aspects, knowing that there are always trade-off between both.

  7. A Secure Routing Protocol for Wireless Sensor Networks Considering Secure Data Aggregation

    PubMed Central

    Rahayu, Triana Mugia; Lee, Sang-Gon; Lee, Hoon-Jae

    2015-01-01

    The commonly unattended and hostile deployments of WSNs and their resource-constrained sensor devices have led to an increasing demand for secure energy-efficient protocols. Routing and data aggregation receive the most attention since they are among the daily network routines. With the awareness of such demand, we found that so far there has been no work that lays out a secure routing protocol as the foundation for a secure data aggregation protocol. We argue that the secure routing role would be rendered useless if the data aggregation scheme built on it is not secure. Conversely, the secure data aggregation protocol needs a secure underlying routing protocol as its foundation in order to be effectively optimal. As an attempt for the solution, we devise an energy-aware protocol based on LEACH and ESPDA that combines secure routing protocol and secure data aggregation protocol. We then evaluate its security effectiveness and its energy-efficiency aspects, knowing that there are always trade-off between both. PMID:26131669

  8. A Quantum Proxy Weak Blind Signature Scheme Based on Controlled Quantum Teleportation

    NASA Astrophysics Data System (ADS)

    Cao, Hai-Jing; Yu, Yao-Feng; Song, Qin; Gao, Lan-Xiang

    2015-04-01

    Proxy blind signature is applied to the electronic paying system, electronic voting system, mobile agent system, security of internet, etc. A quantum proxy weak blind signature scheme is proposed in this paper. It is based on controlled quantum teleportation. Five-qubit entangled state functions as quantum channel. The scheme uses the physical characteristics of quantum mechanics to implement message blinding, so it could guarantee not only the unconditional security of the scheme but also the anonymity of the messages owner.

  9. A noise immunity controlled quantum teleportation protocol

    NASA Astrophysics Data System (ADS)

    Li, Dong-fen; Wang, Rui-jin; Zhang, Feng-li; Baagyere, Edward; Qin, Zhen; Xiong, Hu; Zhan, Huayi

    2016-11-01

    With the advent of the Internet and information and communication technology, quantum teleportation has become an important field in information security and its application areas. This is because quantum teleportation has the ability to attain a timely secret information delivery and offers unconditional security. And as such, the field of quantum teleportation has become a hot research topic in recent years. However, noise has serious effect on the safety of quantum teleportation within the aspects of information fidelity, channel capacity and information transfer. Therefore, the main purpose of this paper is to address these problems of quantum teleportation. Firstly, in order to resist collective noise, we construct a decoherence-free subspace under different noise scenarios to establish a two-dimensional fidelity quantum teleportation models. And also create quantum teleportation of multiple degree of freedom, and these models ensure the accuracy and availability of the exchange of information and in multiple degree of freedom. Secondly, for easy preparation, measurement and implementation, we use super dense coding features to build an entangled quantum secret exchange channel. To improve the channel utilization and capacity, an efficient super dense coding method based on ultra-entanglement exchange is used. Thirdly, continuous variables of the controlled quantum key distribution were designed for quantum teleportation; in addition, we perform Bell-basis measurement under the collective noise and also prepare the storage technology of quantum states to achieve one-bit key by three-photon encoding to improve its security and efficiency. We use these two methods because they conceal information, resist a third party attack and can detect eavesdropping. Our proposed methods, according to the security analysis, are able to solve the problems associated with the quantum teleportation under various noise environments.

  10. Simple proof of security of the BB84 quantum key distribution protocol

    PubMed

    Shor; Preskill

    2000-07-10

    We prove that the 1984 protocol of Bennett and Brassard (BB84) for quantum key distribution is secure. We first give a key distribution protocol based on entanglement purification, which can be proven secure using methods from Lo and Chau's proof of security for a similar protocol. We then show that the security of this protocol implies the security of BB84. The entanglement purification based protocol uses Calderbank-Shor-Steane codes, and properties of these codes are used to remove the use of quantum computation from the Lo-Chau protocol.

  11. The Motherhood Earnings Dip: Evidence from Administrative Records

    ERIC Educational Resources Information Center

    Fernandez-Kranz, Daniel; Lacuesta, Aitor; Rodriguez-Planas, Nuria

    2013-01-01

    Using Spanish Social Security records, we document the channels through which mothers fall onto a lower earnings track, such as shifting into part- time work, accumulating lower experience, or transitioning to lower-paying jobs, and are able to explain 71 percent of the unconditional individual fixed- effects motherhood wage gap. The earnings…

  12. Confessions of an Anacoluthon: Avital Ronell on Writing, Technology, Pedagogy, Politics.

    ERIC Educational Resources Information Center

    Davis, D. Diane

    2000-01-01

    Describes Avital Ronell as attempting to "secure the space of academe as a sheltering place of unconditional hospitality for dissidence and insurrection." Provides an interview with Ronell which includes (1) what it means to be a writer; (2) what Ronell hoped the performance of "The Telephone Book" would accomplish; and (3) how…

  13. The Social and Productive Impacts of Zambia's Child Grant.

    PubMed

    Handa, Sudhanshu; Seidenfeld, David; Davis, Benjamin; Tembo, Gelson

    2016-01-01

    Accumulated evidence from dozens of cash transfer programs across the world suggest that there are few interventions that can match the range of impacts and cost-effectiveness of a small, predictable monetary transfer to poor families in developing countries. However, individual published impact assessments typically focus on only one program and one outcome. This article presents two-year impacts of the Zambian Government's Child Grant, an unconditional cash transfer to families with children under age five, across a wide range of domains including consumption, productive activity and women and children's outcomes, making this one of the first studies to assess both protective and productive impacts of a national unconditional cash transfer program. We show strong impacts on consumption, food security, savings and productive activity. However, impacts in areas such as child nutritional status and schooling depend on initial conditions of the household, suggesting that cash alone is not enough to solve all constraints faced by these poor, rural households. Nevertheless, the apparent transformative effects of this program suggest that unconditional transfers in very poor settings can contribute to both protection and development outcomes.

  14. Location-oblivious data transfer with flying entangled qudits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kent, Adrian

    2011-07-15

    We present a simple and practical quantum protocol involving two mistrustful agencies in Minkowski space, which allows Alice to transfer data to Bob at a space-time location that neither can predict in advance. The location depends on both Alice's and Bob's actions. The protocol guarantees unconditionally to Alice that Bob learns the data at a randomly determined location; it guarantees to Bob that Alice will not learn the transfer location even after the protocol is complete. The task implemented, transferring data at a space-time location that remains hidden from the transferrer, has no precise analog in nonrelativistic quantum cryptography. Itmore » illustrates further the scope for novel cryptographic applications of relativistic quantum theory.« less

  15. Security Verification of Secure MANET Routing Protocols

    DTIC Science & Technology

    2012-03-22

    SECURITY VERIFICATION OF SECURE MANET ROUTING PROTOCOLS THESIS Matthew F. Steele, Captain, USAF AFIT/GCS/ ENG /12-03 DEPARTMENT OF THE AIR FORCE AIR...States AFIT/GCS/ ENG /12-03 SECURITY VERIFICATION OF SECURE MANET ROUTING PROTOCOLS THESIS Presented to the Faculty Department of Electrical and Computer...DISTRIBUTION UNLIMITED AFIT/GCS/ ENG /12-03 SECURITY VERIFICATION OF SECURE MANET ROUTING PROTOCOLS Matthew F. Steele, B.S.E.E. Captain, USAF

  16. The QKD network: model and routing scheme

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Zhang, Hongqi; Su, Jinhai

    2017-11-01

    Quantum key distribution (QKD) technology can establish unconditional secure keys between two communicating parties. Although this technology has some inherent constraints, such as the distance and point-to-point mode limits, building a QKD network with multiple point-to-point QKD devices can overcome these constraints. Considering the development level of current technology, the trust relaying QKD network is the first choice to build a practical QKD network. However, the previous research didn't address a routing method on the trust relaying QKD network in detail. This paper focuses on the routing issues, builds a model of the trust relaying QKD network for easily analysing and understanding this network, and proposes a dynamical routing scheme for this network. From the viewpoint of designing a dynamical routing scheme in classical network, the proposed scheme consists of three components: a Hello protocol helping share the network topology information, a routing algorithm to select a set of suitable paths and establish the routing table and a link state update mechanism helping keep the routing table newly. Experiments and evaluation demonstrates the validity and effectiveness of the proposed routing scheme.

  17. Provably-Secure (Chinese Government) SM2 and Simplified SM2 Key Exchange Protocols

    PubMed Central

    Nam, Junghyun; Kim, Moonseong

    2014-01-01

    We revisit the SM2 protocol, which is widely used in Chinese commercial applications and by Chinese government agencies. Although it is by now standard practice for protocol designers to provide security proofs in widely accepted security models in order to assure protocol implementers of their security properties, the SM2 protocol does not have a proof of security. In this paper, we prove the security of the SM2 protocol in the widely accepted indistinguishability-based Bellare-Rogaway model under the elliptic curve discrete logarithm problem (ECDLP) assumption. We also present a simplified and more efficient version of the SM2 protocol with an accompanying security proof. PMID:25276863

  18. A Security Analysis of the 802.11s Wireless Mesh Network Routing Protocol and Its Secure Routing Protocols

    PubMed Central

    Tan, Whye Kit; Lee, Sang-Gon; Lam, Jun Huy; Yoo, Seong-Moo

    2013-01-01

    Wireless mesh networks (WMNs) can act as a scalable backbone by connecting separate sensor networks and even by connecting WMNs to a wired network. The Hybrid Wireless Mesh Protocol (HWMP) is the default routing protocol for the 802.11s WMN. The routing protocol is one of the most important parts of the network, and it requires protection, especially in the wireless environment. The existing security protocols, such as the Broadcast Integrity Protocol (BIP), Counter with cipher block chaining message authentication code protocol (CCMP), Secure Hybrid Wireless Mesh Protocol (SHWMP), Identity Based Cryptography HWMP (IBC-HWMP), Elliptic Curve Digital Signature Algorithm HWMP (ECDSA-HWMP), and Watchdog-HWMP aim to protect the HWMP frames. In this paper, we have analyzed the vulnerabilities of the HWMP and developed security requirements to protect these identified vulnerabilities. We applied the security requirements to analyze the existing secure schemes for HWMP. The results of our analysis indicate that none of these protocols is able to satisfy all of the security requirements. We also present a quantitative complexity comparison among the protocols and an example of a security scheme for HWMP to demonstrate how the result of our research can be utilized. Our research results thus provide a tool for designing secure schemes for the HWMP. PMID:24002231

  19. A security analysis of the 802.11s wireless mesh network routing protocol and its secure routing protocols.

    PubMed

    Tan, Whye Kit; Lee, Sang-Gon; Lam, Jun Huy; Yoo, Seong-Moo

    2013-09-02

    Wireless mesh networks (WMNs) can act as a scalable backbone by connecting separate sensor networks and even by connecting WMNs to a wired network. The Hybrid Wireless Mesh Protocol (HWMP) is the default routing protocol for the 802.11s WMN. The routing protocol is one of the most important parts of the network, and it requires protection, especially in the wireless environment. The existing security protocols, such as the Broadcast Integrity Protocol (BIP), Counter with cipher block chaining message authentication code protocol (CCMP), Secure Hybrid Wireless Mesh Protocol (SHWMP), Identity Based Cryptography HWMP (IBC-HWMP), Elliptic Curve Digital Signature Algorithm HWMP (ECDSA-HWMP), and Watchdog-HWMP aim to protect the HWMP frames. In this paper, we have analyzed the vulnerabilities of the HWMP and developed security requirements to protect these identified vulnerabilities. We applied the security requirements to analyze the existing secure schemes for HWMP. The results of our analysis indicate that none of these protocols is able to satisfy all of the security requirements. We also present a quantitative complexity comparison among the protocols and an example of a security scheme for HWMP to demonstrate how the result of our research can be utilized. Our research results thus provide a tool for designing secure schemes for the HWMP.

  20. Measurement-Device-Independent Quantum Cryptography

    NASA Astrophysics Data System (ADS)

    Tang, Zhiyuan

    Quantum key distribution (QKD) enables two legitimate parties to share a secret key even in the presence of an eavesdropper. The unconditional security of QKD is based on the fundamental laws of quantum physics. Original security proofs of QKD are based on a few assumptions, e.g., perfect single photon sources and perfect single-photon detectors. However, practical implementations of QKD systems do not fully comply with such assumptions due to technical limitations. The gap between theory and implementations leads to security loopholes in most QKD systems, and several attacks have been launched on sophisticated QKD systems. Particularly, the detectors have been found to be the most vulnerable part of QKD. Much effort has been put to build side-channel-free QKD systems. Solutions such as security patches and device-independent QKD have been proposed. However, the former are normally ad-hoc, and cannot close unidentified loopholes. The latter, while having the advantages of removing all assumptions on devices, is impractical to implement today. Measurement-device-independent QKD (MDI-QKD) turns out to be a promising solution to the security problem of QKD. In MDI-QKD, all security loopholes, including those yet-to-be discovered, have been removed from the detectors, the most critical part in QKD. In this thesis, we investigate issues related to the practical implementation and security of MDI-QKD. We first present a demonstration of polarization-encoding MDI-QKD. Taking finite key effect into account, we achieve a secret key rate of 0.005 bit per second (bps) over 10 km spooled telecom fiber, and a 1600-bit key is distributed. This work, together with other demonstrations, shows the practicality of MDI-QKD. Next we investigate a critical assumption of MDI-QKD: perfect state preparation. We apply the loss-tolerant QKD protocol and adapt it to MDI-QKD to quantify information leakage due to imperfect state preparation. We then present an experimental demonstration of MDI-QKD over 10 km and 40 km of spooled fiber, which for the first time considers the impact of inaccurate polarization state preparation on the secret key rate. This would not have been possible under previous security proofs, given the same amount of state preparation flaws.

  1. A quantum proxy group signature scheme based on an entangled five-qubit state

    NASA Astrophysics Data System (ADS)

    Wang, Meiling; Ma, Wenping; Wang, Lili; Yin, Xunru

    2015-09-01

    A quantum proxy group signature (QPGS) scheme based on controlled teleportation is presented, by using the entangled five-qubit quantum state functions as quantum channel. The scheme uses the physical characteristics of quantum mechanics to implement delegation, signature and verification. The security of the scheme is guaranteed by the entanglement correlations of the entangled five-qubit state, the secret keys based on the quantum key distribution (QKD) and the one-time pad algorithm, all of which have been proven to be unconditionally secure and the signature anonymity.

  2. An E-payment system based on quantum group signature

    NASA Astrophysics Data System (ADS)

    Xiaojun, Wen

    2010-12-01

    Security and anonymity are essential to E-payment systems. However, existing E-payment systems will easily be broken into soon with the emergence of quantum computers. In this paper, we propose an E-payment system based on quantum group signature. In contrast to classical E-payment systems, our quantum E-payment system can protect not only the users' anonymity but also the inner structure of customer groups. Because of adopting the two techniques of quantum key distribution, a one-time pad and quantum group signature, unconditional security of our E-payment system is guaranteed.

  3. Blind Quantum Signature with Controlled Four-Particle Cluster States

    NASA Astrophysics Data System (ADS)

    Li, Wei; Shi, Jinjing; Shi, Ronghua; Guo, Ying

    2017-08-01

    A novel blind quantum signature scheme based on cluster states is introduced. Cluster states are a type of multi-qubit entangled states and it is more immune to decoherence than other entangled states. The controlled four-particle cluster states are created by acting controlled-Z gate on particles of four-particle cluster states. The presented scheme utilizes the above entangled states and simplifies the measurement basis to generate and verify the signature. Security analysis demonstrates that the scheme is unconditional secure. It can be employed to E-commerce systems in quantum scenario.

  4. 3 CFR 8744 - Proclamation 8744 of November 1, 2011. National Adoption Month, 2011

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... have a family that shares with them the warmth, security, and unconditional love that will help them... and love that unite children with adoptive families, and we rededicate ourselves to the essential task... ensuring every child is given the sustaining love of family, the assurance of a permanent home, and the...

  5. The (in)adequacy of applicative use of quantum cryptography in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Turkanović, Muhamed; Hölbl, Marko

    2014-10-01

    Recently quantum computation and cryptography principles are exploited in the design of security systems for wireless sensor networks (WSNs), which are consequently named as quantum WSN. Quantum cryptography is presumably secure against any eavesdropper and thus labeled as providing unconditional security. This paper tries to analyze the aspect of the applicative use of quantum principles in WSN. The outcome of the analysis elaborates a summary about the inadequacy of applicative use of quantum cryptography in WSN and presents an overview of all possible applicative challenges and problems while designing quantum-based security systems for WSN. Since WSNs are highly complex frameworks, with many restrictions and constraints, every security system has to be fully compatible and worthwhile. The aim of the paper was to contribute a verdict about this topic, backed up by equitable facts.

  6. SPAR: a security- and power-aware routing protocol for wireless ad hoc and sensor networks

    NASA Astrophysics Data System (ADS)

    Oberoi, Vikram; Chigan, Chunxiao

    2005-05-01

    Wireless Ad Hoc and Sensor Networks (WAHSNs) are vulnerable to extensive attacks as well as severe resource constraints. To fulfill the security needs, many security enhancements have been proposed. Like wise, from resource constraint perspective, many power aware schemes have been proposed to save the battery power. However, we observe that for the severely resource limited and extremely vulnerable WAHSNs, taking security or power (or any other resource) alone into consideration for protocol design is rather inadequate toward the truly "secure-and-useful" WAHSNs. For example, from resource constraint perspective, we identify one of the potential problems, the Security-Capable-Congestion (SCC) behavior, for the WAHSNs routing protocols where only the security are concerned. On the other hand, the design approach where only scarce resource is concerned, such as many power-aware WAHSNs protocols, leaves security unconsidered and is undesirable to many WAHSNs application scenarios. Motivated by these observations, we propose a co-design approach, where both the high security and effective resource consumption are targeted for WAHSNs protocol design. Specifically, we propose a novel routing protocol, Security- and Power- Aware Routing (SPAR) protocol based on this co-design approach. In SPAR, the routing decisions are made based on both security and power as routing criteria. The idea of the SPAR mechanism is routing protocol independent and therefore can be broadly integrated into any of the existing WAHSNs routing protocols. The simulation results show that SPAR outperforms the WAHSNs routing protocols where security or power alone is considered, significantly. This research finding demonstrates the proposed security- and resource- aware co-design approach is promising towards the truly "secure-and-useful" WAHSNs.

  7. A Secure Three-Factor User Authentication and Key Agreement Protocol for TMIS With User Anonymity.

    PubMed

    Amin, Ruhul; Biswas, G P

    2015-08-01

    Telecare medical information system (TMIS) makes an efficient and convenient connection between patient(s)/user(s) and doctor(s) over the insecure internet. Therefore, data security, privacy and user authentication are enormously important for accessing important medical data over insecure communication. Recently, many user authentication protocols for TMIS have been proposed in the literature and it has been observed that most of the protocols cannot achieve complete security requirements. In this paper, we have scrutinized two (Mishra et al., Xu et al.) remote user authentication protocols using smart card and explained that both the protocols are suffering against several security weaknesses. We have then presented three-factor user authentication and key agreement protocol usable for TMIS, which fix the security pitfalls of the above mentioned schemes. The informal cryptanalysis makes certain that the proposed protocol provides well security protection on the relevant security attacks. Furthermore, the simulator AVISPA tool confirms that the protocol is secure against active and passive attacks including replay and man-in-the-middle attacks. The security functionalities and performance comparison analysis confirm that our protocol not only provide strong protection on security attacks, but it also achieves better complexities along with efficient login and password change phase as well as session key verification property.

  8. A Scenario-Based Protocol Checker for Public-Key Authentication Scheme

    NASA Astrophysics Data System (ADS)

    Saito, Takamichi

    Security protocol provides communication security for the internet. One of the important features of it is authentication with key exchange. Its correctness is a requirement of the whole of the communication security. In this paper, we introduce three attack models realized as their attack scenarios, and provide an authentication-protocol checker for applying three attack-scenarios based on the models. We also utilize it to check two popular security protocols: Secure SHell (SSH) and Secure Socket Layer/Transport Layer Security (SSL/TLS).

  9. A Model Based Security Testing Method for Protocol Implementation

    PubMed Central

    Fu, Yu Long; Xin, Xiao Long

    2014-01-01

    The security of protocol implementation is important and hard to be verified. Since the penetration testing is usually based on the experience of the security tester and the specific protocol specifications, a formal and automatic verification method is always required. In this paper, we propose an extended model of IOLTS to describe the legal roles and intruders of security protocol implementations, and then combine them together to generate the suitable test cases to verify the security of protocol implementation. PMID:25105163

  10. A model based security testing method for protocol implementation.

    PubMed

    Fu, Yu Long; Xin, Xiao Long

    2014-01-01

    The security of protocol implementation is important and hard to be verified. Since the penetration testing is usually based on the experience of the security tester and the specific protocol specifications, a formal and automatic verification method is always required. In this paper, we propose an extended model of IOLTS to describe the legal roles and intruders of security protocol implementations, and then combine them together to generate the suitable test cases to verify the security of protocol implementation.

  11. Security of six-state quantum key distribution protocol with threshold detectors

    PubMed Central

    Kato, Go; Tamaki, Kiyoshi

    2016-01-01

    The security of quantum key distribution (QKD) is established by a security proof, and the security proof puts some assumptions on the devices consisting of a QKD system. Among such assumptions, security proofs of the six-state protocol assume the use of photon number resolving (PNR) detector, and as a result the bit error rate threshold for secure key generation for the six-state protocol is higher than that for the BB84 protocol. Unfortunately, however, this type of detector is demanding in terms of technological level compared to the standard threshold detector, and removing the necessity of such a detector enhances the feasibility of the implementation of the six-state protocol. Here, we develop the security proof for the six-state protocol and show that we can use the threshold detector for the six-state protocol. Importantly, the bit error rate threshold for the key generation for the six-state protocol (12.611%) remains almost the same as the one (12.619%) that is derived from the existing security proofs assuming the use of PNR detectors. This clearly demonstrates feasibility of the six-state protocol with practical devices. PMID:27443610

  12. A secured authentication protocol for wireless sensor networks using elliptic curves cryptography.

    PubMed

    Yeh, Hsiu-Lien; Chen, Tien-Ho; Liu, Pin-Chuan; Kim, Tai-Hoo; Wei, Hsin-Wen

    2011-01-01

    User authentication is a crucial service in wireless sensor networks (WSNs) that is becoming increasingly common in WSNs because wireless sensor nodes are typically deployed in an unattended environment, leaving them open to possible hostile network attack. Because wireless sensor nodes are limited in computing power, data storage and communication capabilities, any user authentication protocol must be designed to operate efficiently in a resource constrained environment. In this paper, we review several proposed WSN user authentication protocols, with a detailed review of the M.L Das protocol and a cryptanalysis of Das' protocol that shows several security weaknesses. Furthermore, this paper proposes an ECC-based user authentication protocol that resolves these weaknesses. According to our analysis of security of the ECC-based protocol, it is suitable for applications with higher security requirements. Finally, we present a comparison of security, computation, and communication costs and performances for the proposed protocols. The ECC-based protocol is shown to be suitable for higher security WSNs.

  13. A Secured Authentication Protocol for Wireless Sensor Networks Using Elliptic Curves Cryptography

    PubMed Central

    Yeh, Hsiu-Lien; Chen, Tien-Ho; Liu, Pin-Chuan; Kim, Tai-Hoo; Wei, Hsin-Wen

    2011-01-01

    User authentication is a crucial service in wireless sensor networks (WSNs) that is becoming increasingly common in WSNs because wireless sensor nodes are typically deployed in an unattended environment, leaving them open to possible hostile network attack. Because wireless sensor nodes are limited in computing power, data storage and communication capabilities, any user authentication protocol must be designed to operate efficiently in a resource constrained environment. In this paper, we review several proposed WSN user authentication protocols, with a detailed review of the M.L Das protocol and a cryptanalysis of Das’ protocol that shows several security weaknesses. Furthermore, this paper proposes an ECC-based user authentication protocol that resolves these weaknesses. According to our analysis of security of the ECC-based protocol, it is suitable for applications with higher security requirements. Finally, we present a comparison of security, computation, and communication costs and performances for the proposed protocols. The ECC-based protocol is shown to be suitable for higher security WSNs. PMID:22163874

  14. Simple protocols for oblivious transfer and secure identification in the noisy-quantum-storage model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaffner, Christian

    2010-09-15

    We present simple protocols for oblivious transfer and password-based identification which are secure against general attacks in the noisy-quantum-storage model as defined in R. Koenig, S. Wehner, and J. Wullschleger [e-print arXiv:0906.1030]. We argue that a technical tool from Koenig et al. suffices to prove security of the known protocols. Whereas the more involved protocol for oblivious transfer from Koenig et al. requires less noise in storage to achieve security, our ''canonical'' protocols have the advantage of being simpler to implement and the security error is easier control. Therefore, our protocols yield higher OT rates for many realistic noise parameters.more » Furthermore, a proof of security of a direct protocol for password-based identification against general noisy-quantum-storage attacks is given.« less

  15. It’s The Information!

    PubMed Central

    Ward, Ryan D.; Gallistel, C.R.; Balsam, Peter D

    2013-01-01

    Learning in conditioning protocols has long been thought to depend on temporal contiguity between the conditioned stimulus and the unconditioned stimulus. This conceptualization has led to a preponderance of associative models of conditioning. We suggest that trial-based associative models that posit contiguity as the primary principle underlying learning are flawed, and provide a brief review of an alternative, information theoretic approach to conditioning. The information that a CS conveys about the timing of the next US can be derived from the temporal parameters of a conditioning protocol. According to this view, a CS will support conditioned responding if, and only if, it reduces uncertainty about the timing of the next US. PMID:23384660

  16. Design and Development of Layered Security: Future Enhancements and Directions in Transmission

    PubMed Central

    Shahzad, Aamir; Lee, Malrey; Kim, Suntae; Kim, Kangmin; Choi, Jae-Young; Cho, Younghwa; Lee, Keun-Kwang

    2016-01-01

    Today, security is a prominent issue when any type of communication is being undertaken. Like traditional networks, supervisory control and data acquisition (SCADA) systems suffer from a number of vulnerabilities. Numerous end-to-end security mechanisms have been proposed for the resolution of SCADA-system security issues, but due to insecure real-time protocol use and the reliance upon open protocols during Internet-based communication, these SCADA systems can still be compromised by security challenges. This study reviews the security challenges and issues that are commonly raised during SCADA/protocol transmissions and proposes a secure distributed-network protocol version 3 (DNP3) design, and the implementation of the security solution using a cryptography mechanism. Due to the insecurities found within SCADA protocols, the new development consists of a DNP3 protocol that has been designed as a part of the SCADA system, and the cryptographically derived security is deployed within the application layer as a part of the DNP3 stack. PMID:26751443

  17. Design and Development of Layered Security: Future Enhancements and Directions in Transmission.

    PubMed

    Shahzad, Aamir; Lee, Malrey; Kim, Suntae; Kim, Kangmin; Choi, Jae-Young; Cho, Younghwa; Lee, Keun-Kwang

    2016-01-06

    Today, security is a prominent issue when any type of communication is being undertaken. Like traditional networks, supervisory control and data acquisition (SCADA) systems suffer from a number of vulnerabilities. Numerous end-to-end security mechanisms have been proposed for the resolution of SCADA-system security issues, but due to insecure real-time protocol use and the reliance upon open protocols during Internet-based communication, these SCADA systems can still be compromised by security challenges. This study reviews the security challenges and issues that are commonly raised during SCADA/protocol transmissions and proposes a secure distributed-network protocol version 3 (DNP3) design, and the implementation of the security solution using a cryptography mechanism. Due to the insecurities found within SCADA protocols, the new development consists of a DNP3 protocol that has been designed as a part of the SCADA system, and the cryptographically derived security is deployed within the application layer as a part of the DNP3 stack.

  18. Password-only authenticated three-party key exchange proven secure against insider dictionary attacks.

    PubMed

    Nam, Junghyun; Choo, Kim-Kwang Raymond; Paik, Juryon; Won, Dongho

    2014-01-01

    While a number of protocols for password-only authenticated key exchange (PAKE) in the 3-party setting have been proposed, it still remains a challenging task to prove the security of a 3-party PAKE protocol against insider dictionary attacks. To the best of our knowledge, there is no 3-party PAKE protocol that carries a formal proof, or even definition, of security against insider dictionary attacks. In this paper, we present the first 3-party PAKE protocol proven secure against both online and offline dictionary attacks as well as insider and outsider dictionary attacks. Our construct can be viewed as a protocol compiler that transforms any 2-party PAKE protocol into a 3-party PAKE protocol with 2 additional rounds of communication. We also present a simple and intuitive approach of formally modelling dictionary attacks in the password-only 3-party setting, which significantly reduces the complexity of proving the security of 3-party PAKE protocols against dictionary attacks. In addition, we investigate the security of the well-known 3-party PAKE protocol, called GPAKE, due to Abdalla et al. (2005, 2006), and demonstrate that the security of GPAKE against online dictionary attacks depends heavily on the composition of its two building blocks, namely a 2-party PAKE protocol and a 3-party key distribution protocol.

  19. High speed and adaptable error correction for megabit/s rate quantum key distribution.

    PubMed

    Dixon, A R; Sato, H

    2014-12-02

    Quantum Key Distribution is moving from its theoretical foundation of unconditional security to rapidly approaching real world installations. A significant part of this move is the orders of magnitude increases in the rate at which secure key bits are distributed. However, these advances have mostly been confined to the physical hardware stage of QKD, with software post-processing often being unable to support the high raw bit rates. In a complete implementation this leads to a bottleneck limiting the final secure key rate of the system unnecessarily. Here we report details of equally high rate error correction which is further adaptable to maximise the secure key rate under a range of different operating conditions. The error correction is implemented both in CPU and GPU using a bi-directional LDPC approach and can provide 90-94% of the ideal secure key rate over all fibre distances from 0-80 km.

  20. High speed and adaptable error correction for megabit/s rate quantum key distribution

    PubMed Central

    Dixon, A. R.; Sato, H.

    2014-01-01

    Quantum Key Distribution is moving from its theoretical foundation of unconditional security to rapidly approaching real world installations. A significant part of this move is the orders of magnitude increases in the rate at which secure key bits are distributed. However, these advances have mostly been confined to the physical hardware stage of QKD, with software post-processing often being unable to support the high raw bit rates. In a complete implementation this leads to a bottleneck limiting the final secure key rate of the system unnecessarily. Here we report details of equally high rate error correction which is further adaptable to maximise the secure key rate under a range of different operating conditions. The error correction is implemented both in CPU and GPU using a bi-directional LDPC approach and can provide 90–94% of the ideal secure key rate over all fibre distances from 0–80 km. PMID:25450416

  1. Finite-key analysis for measurement-device-independent quantum key distribution.

    PubMed

    Curty, Marcos; Xu, Feihu; Cui, Wei; Lim, Charles Ci Wen; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2014-04-29

    Quantum key distribution promises unconditionally secure communications. However, as practical devices tend to deviate from their specifications, the security of some practical systems is no longer valid. In particular, an adversary can exploit imperfect detectors to learn a large part of the secret key, even though the security proof claims otherwise. Recently, a practical approach--measurement-device-independent quantum key distribution--has been proposed to solve this problem. However, so far its security has only been fully proven under the assumption that the legitimate users of the system have unlimited resources. Here we fill this gap and provide a rigorous security proof against general attacks in the finite-key regime. This is obtained by applying large deviation theory, specifically the Chernoff bound, to perform parameter estimation. For the first time we demonstrate the feasibility of long-distance implementations of measurement-device-independent quantum key distribution within a reasonable time frame of signal transmission.

  2. An eCK-Secure Authenticated Key Exchange Protocol without Random Oracles

    NASA Astrophysics Data System (ADS)

    Moriyama, Daisuke; Okamoto, Tatsuaki

    This paper presents a (PKI-based) two-pass authenticated key exchange (AKE) protocol that is secure in the extended Canetti-Krawczyk (eCK) security model. The security of the proposed protocol is proven without random oracles (under three assumptions), and relies on no implementation techniques such as a trick by LaMacchia, Lauter and Mityagin (so-called the NAXOS trick). Since an AKE protocol that is eCK-secure under a NAXOS-like implementation trick will be no more eCK-secure if some realistic information leakage occurs through side-channel attacks, it has been an important open problem how to realize an eCK-secure AKE protocol without using the NAXOS tricks (and without random oracles).

  3. Quantum key distribution in a multi-user network at gigahertz clock rates

    NASA Astrophysics Data System (ADS)

    Fernandez, Veronica; Gordon, Karen J.; Collins, Robert J.; Townsend, Paul D.; Cova, Sergio D.; Rech, Ivan; Buller, Gerald S.

    2005-07-01

    In recent years quantum information research has lead to the discovery of a number of remarkable new paradigms for information processing and communication. These developments include quantum cryptography schemes that offer unconditionally secure information transport guaranteed by quantum-mechanical laws. Such potentially disruptive security technologies could be of high strategic and economic value in the future. Two major issues confronting researchers in this field are the transmission range (typically <100km) and the key exchange rate, which can be as low as a few bits per second at long optical fiber distances. This paper describes further research of an approach to significantly enhance the key exchange rate in an optical fiber system at distances in the range of 1-20km. We will present results on a number of application scenarios, including point-to-point links and multi-user networks. Quantum key distribution systems have been developed, which use standard telecommunications optical fiber, and which are capable of operating at clock rates of up to 2GHz. They implement a polarization-encoded version of the B92 protocol and employ vertical-cavity surface-emitting lasers with emission wavelengths of 850 nm as weak coherent light sources, as well as silicon single-photon avalanche diodes as the single photon detectors. The point-to-point quantum key distribution system exhibited a quantum bit error rate of 1.4%, and an estimated net bit rate greater than 100,000 bits-1 for a 4.2 km transmission range.

  4. Orthogonal-state-based cryptography in quantum mechanics and local post-quantum theories

    NASA Astrophysics Data System (ADS)

    Aravinda, S.; Banerjee, Anindita; Pathak, Anirban; Srikanth, R.

    2014-02-01

    We introduce the concept of cryptographic reduction, in analogy with a similar concept in computational complexity theory. In this framework, class A of crypto-protocols reduces to protocol class B in a scenario X, if for every instance a of A, there is an instance b of B and a secure transformation X that reproduces a given b, such that the security of b guarantees the security of a. Here we employ this reductive framework to study the relationship between security in quantum key distribution (QKD) and quantum secure direct communication (QSDC). We show that replacing the streaming of independent qubits in a QKD scheme by block encoding and transmission (permuting the order of particles block by block) of qubits, we can construct a QSDC scheme. This forms the basis for the block reduction from a QSDC class of protocols to a QKD class of protocols, whereby if the latter is secure, then so is the former. Conversely, given a secure QSDC protocol, we can of course construct a secure QKD scheme by transmitting a random key as the direct message. Then the QKD class of protocols is secure, assuming the security of the QSDC class which it is built from. We refer to this method of deduction of security for this class of QKD protocols, as key reduction. Finally, we propose an orthogonal-state-based deterministic key distribution (KD) protocol which is secure in some local post-quantum theories. Its security arises neither from geographic splitting of a code state nor from Heisenberg uncertainty, but from post-measurement disturbance.

  5. On the security of a simple three-party key exchange protocol without server's public keys.

    PubMed

    Nam, Junghyun; Choo, Kim-Kwang Raymond; Park, Minkyu; Paik, Juryon; Won, Dongho

    2014-01-01

    Authenticated key exchange protocols are of fundamental importance in securing communications and are now extensively deployed for use in various real-world network applications. In this work, we reveal major previously unpublished security vulnerabilities in the password-based authenticated three-party key exchange protocol according to Lee and Hwang (2010): (1) the Lee-Hwang protocol is susceptible to a man-in-the-middle attack and thus fails to achieve implicit key authentication; (2) the protocol cannot protect clients' passwords against an offline dictionary attack; and (3) the indistinguishability-based security of the protocol can be easily broken even in the presence of a passive adversary. We also propose an improved password-based authenticated three-party key exchange protocol that addresses the security vulnerabilities identified in the Lee-Hwang protocol.

  6. On the Security of a Simple Three-Party Key Exchange Protocol without Server's Public Keys

    PubMed Central

    Nam, Junghyun; Choo, Kim-Kwang Raymond; Park, Minkyu; Paik, Juryon; Won, Dongho

    2014-01-01

    Authenticated key exchange protocols are of fundamental importance in securing communications and are now extensively deployed for use in various real-world network applications. In this work, we reveal major previously unpublished security vulnerabilities in the password-based authenticated three-party key exchange protocol according to Lee and Hwang (2010): (1) the Lee-Hwang protocol is susceptible to a man-in-the-middle attack and thus fails to achieve implicit key authentication; (2) the protocol cannot protect clients' passwords against an offline dictionary attack; and (3) the indistinguishability-based security of the protocol can be easily broken even in the presence of a passive adversary. We also propose an improved password-based authenticated three-party key exchange protocol that addresses the security vulnerabilities identified in the Lee-Hwang protocol. PMID:25258723

  7. A Quantum Multi-Proxy Weak Blind Signature Scheme Based on Entanglement Swapping

    NASA Astrophysics Data System (ADS)

    Yan, LiLi; Chang, Yan; Zhang, ShiBin; Han, GuiHua; Sheng, ZhiWei

    2017-02-01

    In this paper, we present a multi-proxy weak blind signature scheme based on quantum entanglement swapping of Bell states. In the scheme, proxy signers can finish the signature instead of original singer with his/her authority. It can be applied to the electronic voting system, electronic paying system, etc. The scheme uses the physical characteristics of quantum mechanics to implement delegation, signature and verification. It could guarantee not only the unconditionally security but also the anonymity of the message owner. The security analysis shows the scheme satisfies the security features of multi-proxy weak signature, singers cannot disavowal his/her signature while the signature cannot be forged by others, and the message owner can be traced.

  8. Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue

    NASA Astrophysics Data System (ADS)

    Shukla, Chitra; Thapliyal, Kishore; Pathak, Anirban

    2017-12-01

    Semi-quantum protocols that allow some of the users to remain classical are proposed for a large class of problems associated with secure communication and secure multiparty computation. Specifically, first-time semi-quantum protocols are proposed for key agreement, controlled deterministic secure communication and dialogue, and it is shown that the semi-quantum protocols for controlled deterministic secure communication and dialogue can be reduced to semi-quantum protocols for e-commerce and private comparison (socialist millionaire problem), respectively. Complementing with the earlier proposed semi-quantum schemes for key distribution, secret sharing and deterministic secure communication, set of schemes proposed here and subsequent discussions have established that almost every secure communication and computation tasks that can be performed using fully quantum protocols can also be performed in semi-quantum manner. Some of the proposed schemes are completely orthogonal-state-based, and thus, fundamentally different from the existing semi-quantum schemes that are conjugate coding-based. Security, efficiency and applicability of the proposed schemes have been discussed with appropriate importance.

  9. Password-Only Authenticated Three-Party Key Exchange Proven Secure against Insider Dictionary Attacks

    PubMed Central

    Nam, Junghyun; Choo, Kim-Kwang Raymond

    2014-01-01

    While a number of protocols for password-only authenticated key exchange (PAKE) in the 3-party setting have been proposed, it still remains a challenging task to prove the security of a 3-party PAKE protocol against insider dictionary attacks. To the best of our knowledge, there is no 3-party PAKE protocol that carries a formal proof, or even definition, of security against insider dictionary attacks. In this paper, we present the first 3-party PAKE protocol proven secure against both online and offline dictionary attacks as well as insider and outsider dictionary attacks. Our construct can be viewed as a protocol compiler that transforms any 2-party PAKE protocol into a 3-party PAKE protocol with 2 additional rounds of communication. We also present a simple and intuitive approach of formally modelling dictionary attacks in the password-only 3-party setting, which significantly reduces the complexity of proving the security of 3-party PAKE protocols against dictionary attacks. In addition, we investigate the security of the well-known 3-party PAKE protocol, called GPAKE, due to Abdalla et al. (2005, 2006), and demonstrate that the security of GPAKE against online dictionary attacks depends heavily on the composition of its two building blocks, namely a 2-party PAKE protocol and a 3-party key distribution protocol. PMID:25309956

  10. Design and Analysis of an Enhanced Patient-Server Mutual Authentication Protocol for Telecare Medical Information System.

    PubMed

    Amin, Ruhul; Islam, S K Hafizul; Biswas, G P; Khan, Muhammad Khurram; Obaidat, Mohammad S

    2015-11-01

    In order to access remote medical server, generally the patients utilize smart card to login to the server. It has been observed that most of the user (patient) authentication protocols suffer from smart card stolen attack that means the attacker can mount several common attacks after extracting smart card information. Recently, Lu et al.'s proposes a session key agreement protocol between the patient and remote medical server and claims that the same protocol is secure against relevant security attacks. However, this paper presents several security attacks on Lu et al.'s protocol such as identity trace attack, new smart card issue attack, patient impersonation attack and medical server impersonation attack. In order to fix the mentioned security pitfalls including smart card stolen attack, this paper proposes an efficient remote mutual authentication protocol using smart card. We have then simulated the proposed protocol using widely-accepted AVISPA simulation tool whose results make certain that the same protocol is secure against active and passive attacks including replay and man-in-the-middle attacks. Moreover, the rigorous security analysis proves that the proposed protocol provides strong security protection on the relevant security attacks including smart card stolen attack. We compare the proposed scheme with several related schemes in terms of computation cost and communication cost as well as security functionalities. It has been observed that the proposed scheme is comparatively better than related existing schemes.

  11. Secure authentication protocol for Internet applications over CATV network

    NASA Astrophysics Data System (ADS)

    Chin, Le-Pond

    1998-02-01

    An authentication protocol is proposed in this paper to implement secure functions which include two way authentication and key management between end users and head-end. The protocol can protect transmission from frauds, attacks such as reply and wiretap. Location privacy is also achieved. A rest protocol is designed to restore the system once when systems fail. The security is verified by taking several security and privacy requirements into consideration.

  12. Relativistic quantum private database queries

    NASA Astrophysics Data System (ADS)

    Sun, Si-Jia; Yang, Yu-Guang; Zhang, Ming-Ou

    2015-04-01

    Recently, Jakobi et al. (Phys Rev A 83, 022301, 2011) suggested the first practical private database query protocol (J-protocol) based on the Scarani et al. (Phys Rev Lett 92, 057901, 2004) quantum key distribution protocol. Unfortunately, the J-protocol is just a cheat-sensitive private database query protocol. In this paper, we present an idealized relativistic quantum private database query protocol based on Minkowski causality and the properties of quantum information. Also, we prove that the protocol is secure in terms of the user security and the database security.

  13. Secure quantum communication using classical correlated channel

    NASA Astrophysics Data System (ADS)

    Costa, D.; de Almeida, N. G.; Villas-Boas, C. J.

    2016-10-01

    We propose a secure protocol to send quantum information from one part to another without a quantum channel. In our protocol, which resembles quantum teleportation, a sender (Alice) and a receiver (Bob) share classical correlated states instead of EPR ones, with Alice performing measurements in two different bases and then communicating her results to Bob through a classical channel. Our secure quantum communication protocol requires the same amount of classical bits as the standard quantum teleportation protocol. In our scheme, as in the usual quantum teleportation protocol, once the classical channel is established in a secure way, a spy (Eve) will never be able to recover the information of the unknown quantum state, even if she is aware of Alice's measurement results. Security, advantages, and limitations of our protocol are discussed and compared with the standard quantum teleportation protocol.

  14. An Enhanced LoRaWAN Security Protocol for Privacy Preservation in IoT with a Case Study on a Smart Factory-Enabled Parking System.

    PubMed

    You, Ilsun; Kwon, Soonhyun; Choudhary, Gaurav; Sharma, Vishal; Seo, Jung Taek

    2018-06-08

    The Internet of Things (IoT) utilizes algorithms to facilitate intelligent applications across cities in the form of smart-urban projects. As the majority of devices in IoT are battery operated, their applications should be facilitated with a low-power communication setup. Such facility is possible through the Low-Power Wide-Area Network (LPWAN), but at a constrained bit rate. For long-range communication over LPWAN, several approaches and protocols are adopted. One such protocol is the Long-Range Wide Area Network (LoRaWAN), which is a media access layer protocol for long-range communication between the devices and the application servers via LPWAN gateways. However, LoRaWAN comes with fewer security features as a much-secured protocol consumes more battery because of the exorbitant computational overheads. The standard protocol fails to support end-to-end security and perfect forward secrecy while being vulnerable to the replay attack that makes LoRaWAN limited in supporting applications where security (especially end-to-end security) is important. Motivated by this, an enhanced LoRaWAN security protocol is proposed, which not only provides the basic functions of connectivity between the application server and the end device, but additionally averts these listed security issues. The proposed protocol is developed with two options, the Default Option (DO) and the Security-Enhanced Option (SEO). The protocol is validated through Burrows⁻Abadi⁻Needham (BAN) logic and the Automated Validation of Internet Security Protocols and Applications (AVISPA) tool. The proposed protocol is also analyzed for overheads through system-based and low-power device-based evaluations. Further, a case study on a smart factory-enabled parking system is considered for its practical application. The results, in terms of network latency with reliability fitting and signaling overheads, show paramount improvements and better performance for the proposed protocol compared with the two handshake options, Pre-Shared Key (PSK) and Elliptic Curve Cryptography (ECC), of Datagram Transport Layer Security (DTLS).

  15. A secure RFID mutual authentication protocol for healthcare environments using elliptic curve cryptography.

    PubMed

    Jin, Chunhua; Xu, Chunxiang; Zhang, Xiaojun; Zhao, Jining

    2015-03-01

    Radio Frequency Identification(RFID) is an automatic identification technology, which can be widely used in healthcare environments to locate and track staff, equipment and patients. However, potential security and privacy problems in RFID system remain a challenge. In this paper, we design a mutual authentication protocol for RFID based on elliptic curve cryptography(ECC). We use pre-computing method within tag's communication, so that our protocol can get better efficiency. In terms of security, our protocol can achieve confidentiality, unforgeability, mutual authentication, tag's anonymity, availability and forward security. Our protocol also can overcome the weakness in the existing protocols. Therefore, our protocol is suitable for healthcare environments.

  16. U.S.-China Counterterrorism Cooperation: Issues for U.S. Policy

    DTIC Science & Technology

    2008-10-29

    Resolution 1368 (to combat terrorism). On September 20, Beijing said that it offered “unconditional support” in fighting terrorism. On September 20-21...bilateral relationship pursued by President Bush since late 2001. In the short-term, U.S. security policy toward Beijing sought counterterrorism...attacks), and its image as a responsible world power helped explain China’s supportive stance. However, Beijing also worried about U.S. military action

  17. Quantum Proxy Multi-Signature Scheme Using Genuinely Entangled Six Qubits State

    NASA Astrophysics Data System (ADS)

    Cao, Hai-Jing; Wang, Huai-Sheng; Li, Peng-Fei

    2013-04-01

    A quantum proxy multi-signature scheme is presented based on controlled teleportation. Genuinely entangled six qubits quantum state functions as quantum channel. The scheme uses the physical characteristics of quantum mechanics to implement delegation, signature and verification. Quantum key distribution and one-time pad are adopted in our scheme, which could guarantee not only the unconditional security of the scheme but also the anonymity of the messages owner.

  18. Defining ’Anonymity’ in Networked Communication, Version 1

    DTIC Science & Technology

    2011-12-01

    conference that features many current works on anonymity [5]. 7. References [1] D . Chaum , “Security without Identification: Transaction Systems...to make Big Brother Obsolete,” Communications of the ACM 28:10 (1985), pp. 1030-1044. [2] D . Chaum , “The Dining Cryptographers Problem: Unconditional...Sender and Recipient Untraceability,” Journal of Cryptology 1:1 (1988), pp. 65-75. [3] D . Chaum , “Untraceable Electronic Mail, Return Addresses

  19. McNamara and Rumsfeld: Control and Imbalance in Civil-Military Relations

    DTIC Science & Technology

    2008-03-24

    Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT See attached 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF...for the Joint Staff came after an interview in which Keys reportedly gave the wrong answer to the question of whether he would give unconditional ...United States Army DISTRIBUTION STATEMENT A: Approved for Public Release. Distribution is Unlimited. USAWC CLASS OF 2008 This SRP is submitted

  20. A Secure RFID Tag Authentication Protocol with Privacy Preserving in Telecare Medicine Information System.

    PubMed

    Li, Chun-Ta; Weng, Chi-Yao; Lee, Cheng-Chi

    2015-08-01

    Radio Frequency Identification (RFID) based solutions are widely used for providing many healthcare applications include patient monitoring, object traceability, drug administration system and telecare medicine information system (TMIS) etc. In order to reduce malpractices and ensure patient privacy, in 2015, Srivastava et al. proposed a hash based RFID tag authentication protocol in TMIS. Their protocol uses lightweight hash operation and synchronized secret value shared between back-end server and tag, which is more secure and efficient than other related RFID authentication protocols. Unfortunately, in this paper, we demonstrate that Srivastava et al.'s tag authentication protocol has a serious security problem in that an adversary may use the stolen/lost reader to connect to the medical back-end server that store information associated with tagged objects and this privacy damage causing the adversary could reveal medical data obtained from stolen/lost readers in a malicious way. Therefore, we propose a secure and efficient RFID tag authentication protocol to overcome security flaws and improve the system efficiency. Compared with Srivastava et al.'s protocol, the proposed protocol not only inherits the advantages of Srivastava et al.'s authentication protocol for TMIS but also provides better security with high system efficiency.

  1. It's the information!

    PubMed

    Ward, Ryan D; Gallistel, C R; Balsam, Peter D

    2013-05-01

    Learning in conditioning protocols has long been thought to depend on temporal contiguity between the conditioned stimulus and the unconditioned stimulus. This conceptualization has led to a preponderance of associative models of conditioning. We suggest that trial-based associative models that posit contiguity as the primary principle underlying learning are flawed, and provide a brief review of an alternative, information theoretic approach to conditioning. The information that a CS conveys about the timing of the next US can be derived from the temporal parameters of a conditioning protocol. According to this view, a CS will support conditioned responding if, and only if, it reduces uncertainty about the timing of the next US. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. A Standard Mutual Authentication Protocol for Cloud Computing Based Health Care System.

    PubMed

    Mohit, Prerna; Amin, Ruhul; Karati, Arijit; Biswas, G P; Khan, Muhammad Khurram

    2017-04-01

    Telecare Medical Information System (TMIS) supports a standard platform to the patient for getting necessary medical treatment from the doctor(s) via Internet communication. Security protection is important for medical records (data) of the patients because of very sensitive information. Besides, patient anonymity is another most important property, which must be protected. Most recently, Chiou et al. suggested an authentication protocol for TMIS by utilizing the concept of cloud environment. They claimed that their protocol is patient anonymous and well security protected. We reviewed their protocol and found that it is completely insecure against patient anonymity. Further, the same protocol is not protected against mobile device stolen attack. In order to improve security level and complexity, we design a light weight authentication protocol for the same environment. Our security analysis ensures resilience of all possible security attacks. The performance of our protocol is relatively standard in comparison with the related previous research.

  3. Method of Performance-Aware Security of Unicast Communication in Hybrid Satellite Networks

    NASA Technical Reports Server (NTRS)

    Baras, John S. (Inventor); Roy-Chowdhury, Ayan (Inventor)

    2014-01-01

    A method and apparatus utilizes Layered IPSEC (LES) protocol as an alternative to IPSEC for network-layer security including a modification to the Internet Key Exchange protocol. For application-level security of web browsing with acceptable end-to-end delay, the Dual-mode SSL protocol (DSSL) is used instead of SSL. The LES and DSSL protocols achieve desired end-to-end communication security while allowing the TCP and HTTP proxy servers to function correctly.

  4. Distance bounded energy detecting ultra-wideband impulse radio secure protocol.

    PubMed

    Hedin, Daniel S; Kollmann, Daniel T; Gibson, Paul L; Riehle, Timothy H; Seifert, Gregory J

    2014-01-01

    We present a demonstration of a novel protocol for secure transmissions on a Ultra-wideband impulse radio that includes distance bounding. Distance bounding requires radios to be within a certain radius to communicate. This new protocol can be used in body area networks for medical devices where security is imperative. Many current wireless medical devices were not designed with security as a priority including devices that can be life threatening if controlled by a hacker. This protocol provides multiple levels of security including encryption and a distance bounding test to prevent long distance attacks.

  5. Impersonation attack on a quantum secure direct communication and authentication protocol with improvement

    NASA Astrophysics Data System (ADS)

    Amerimehr, Ali; Hadain Dehkordi, Massoud

    2018-03-01

    We analyze the security of a quantum secure direct communication and authentication protocol based on single photons. We first give an impersonation attack on the protocol. The cryptanalysis shows that there is a gap in the authentication procedure of the protocol so that an opponent can reveal the secret information by an undetectable attempt. We then propose an improvement for the protocol and show it closes the gap by applying a mutual authentication procedure. In the improved protocol single photons are transmitted once in a session, so it is easy to implement as the primary protocol. Furthermore, we use a novel technique for secret order rearrangement of photons by which not only quantum storage is eliminated also a secret key can be reused securely. So the new protocol is applicable in practical approaches like embedded system devices.

  6. Adequate Security Protocols Adopt in a Conceptual Model in Identity Management for the Civil Registry of Ecuador

    NASA Astrophysics Data System (ADS)

    Toapanta, Moisés; Mafla, Enrique; Orizaga, Antonio

    2017-08-01

    We analyzed the problems of security of the information of the civil registries and identification at world level that are considered strategic. The objective is to adopt the appropriate security protocols in a conceptual model in the identity management for the Civil Registry of Ecuador. In this phase, the appropriate security protocols were determined in a Conceptual Model in Identity Management with Authentication, Authorization and Auditing (AAA). We used the deductive method and exploratory research to define the appropriate security protocols to be adopted in the identity model: IPSec, DNSsec, Radius, SSL, TLS, IEEE 802.1X EAP, Set. It was a prototype of the location of the security protocols adopted in the logical design of the technological infrastructure considering the conceptual model for Identity, Authentication, Authorization, and Audit management. It was concluded that the adopted protocols are appropriate for a distributed database and should have a direct relationship with the algorithms, which allows vulnerability and risk mitigation taking into account confidentiality, integrity and availability (CIA).

  7. An Efficient Mutual Authentication Framework for Healthcare System in Cloud Computing.

    PubMed

    Kumar, Vinod; Jangirala, Srinivas; Ahmad, Musheer

    2018-06-28

    The increasing role of Telecare Medicine Information Systems (TMIS) makes its accessibility for patients to explore medical treatment, accumulate and approach medical data through internet connectivity. Security and privacy preservation is necessary for medical data of the patient in TMIS because of the very perceptive purpose. Recently, Mohit et al.'s proposed a mutual authentication protocol for TMIS in the cloud computing environment. In this work, we reviewed their protocol and found that it is not secure against stolen verifier attack, many logged in patient attack, patient anonymity, impersonation attack, and fails to protect session key. For enhancement of security level, we proposed a new mutual authentication protocol for the similar environment. The presented framework is also more capable in terms of computation cost. In addition, the security evaluation of the protocol protects resilience of all possible security attributes, and we also explored formal security evaluation based on random oracle model. The performance of the proposed protocol is much better in comparison to the existing protocol.

  8. Cloud-assisted mutual authentication and privacy preservation protocol for telecare medical information systems.

    PubMed

    Li, Chun-Ta; Shih, Dong-Her; Wang, Chun-Cheng

    2018-04-01

     With the rapid development of wireless communication technologies and the growing prevalence of smart devices, telecare medical information system (TMIS) allows patients to receive medical treatments from the doctors via Internet technology without visiting hospitals in person. By adopting mobile device, cloud-assisted platform and wireless body area network, the patients can collect their physiological conditions and upload them to medical cloud via their mobile devices, enabling caregivers or doctors to provide patients with appropriate treatments at anytime and anywhere. In order to protect the medical privacy of the patient and guarantee reliability of the system, before accessing the TMIS, all system participants must be authenticated.  Mohit et al. recently suggested a lightweight authentication protocol for cloud-based health care system. They claimed their protocol ensures resilience of all well-known security attacks and has several important features such as mutual authentication and patient anonymity. In this paper, we demonstrate that Mohit et al.'s authentication protocol has various security flaws and we further introduce an enhanced version of their protocol for cloud-assisted TMIS, which can ensure patient anonymity and patient unlinkability and prevent the security threats of report revelation and report forgery attacks.  The security analysis proves that our enhanced protocol is secure against various known attacks as well as found in Mohit et al.'s protocol. Compared with existing related protocols, our enhanced protocol keeps the merits of all desirable security requirements and also maintains the efficiency in terms of computation costs for cloud-assisted TMIS.  We propose a more secure mutual authentication and privacy preservation protocol for cloud-assisted TMIS, which fixes the mentioned security weaknesses found in Mohit et al.'s protocol. According to our analysis, our authentication protocol satisfies most functionality features for privacy preservation and effectively cope with cloud-assisted TMIS with better efficiency. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. U.S.-China Counterterrorism Cooperation: Issues for U.S. Policy

    DTIC Science & Technology

    2009-05-07

    the others for Resolution 1368 (to combat terrorism). On September 20, Beijing said that it offered “unconditional support” in fighting terrorism...Bush since late 2001. In the short-term, U.S. security policy toward Beijing sought counterterrorism cooperation, shifting from issues about weapons...supportive stance. However, Beijing also worried about U.S. military action near China, U.S.-led alliances, Japan’s active role in the war on terrorism

  10. The REFANI-S study protocol: a non-randomised cluster controlled trial to assess the role of an unconditional cash transfer, a non-food item kit, and free piped water in reducing the risk of acute malnutrition among children aged 6-59 months living in camps for internally displaced persons in the Afgooye corridor, Somalia.

    PubMed

    Jelle, Mohamed; Grijalva-Eternod, Carlos S; Haghparast-Bidgoli, Hassan; King, Sarah; Cox, Cassy L; Skordis-Worrall, Jolene; Morrison, Joanna; Colbourn, Timothy; Fottrell, Edward; Seal, Andrew J

    2017-07-06

    The prevalence of acute malnutrition is often high in emergency-affected populations and is associated with elevated mortality risk and long-term health consequences. Increasingly, cash transfer programmes (CTP) are used instead of direct food aid as a nutritional intervention, but there is sparse evidence on their nutritional impact. We aim to understand whether CTP reduces acute malnutrition and its known risk factors. A non-randomised, cluster-controlled trial will assess the impact of an unconditional cash transfer of US$84 per month for 5 months, a single non-food items kit, and free piped water on the risk of acute malnutrition in children, aged 6-59 months. The study will take place in camps for internally displaced persons (IDP) in peri-urban Mogadishu, Somalia. A cluster will consist of one IDP camp and 10 camps will be allocated to receive the intervention based on vulnerability targeting criteria. The control camps will then be selected from the same geographical area. Needs assessment data indicates small differences in vulnerability between camps. In each trial arm, 120 households will be randomly sampled and two detailed household surveys will be implemented at baseline and 3 months after the initiation of the cash transfer. The survey questionnaire will cover risk factors for malnutrition including household expenditure, assets, food security, diet diversity, coping strategies, morbidity, WASH, and access to health care. A community surveillance system will collect monthly mid-upper arm circumference measurements from all children aged 6-59 months in the study clusters to assess the incidence of acute malnutrition over the duration of the intervention. Process evaluation data will be compiled from routine quantitative programme data and primary qualitative data collected using key informant interviews and focus group discussions. The UK Department for International Development will provide funding for this study. The European Civil Protection and Humanitarian Aid Operations will fund the intervention. Concern Worldwide will implement the intervention as part of their humanitarian programming. This non-randomised cluster controlled trial will provide needed evidence on the role of unconditional CTP in reducing the risk of acute malnutrition among IDP in this context. ISRCTN29521514 . Registered 19 January 2016.

  11. An efficient RFID authentication protocol to enhance patient medication safety using elliptic curve cryptography.

    PubMed

    Zhang, Zezhong; Qi, Qingqing

    2014-05-01

    Medication errors are very dangerous even fatal since it could cause serious even fatal harm to patients. In order to reduce medication errors, automated patient medication systems using the Radio Frequency Identification (RFID) technology have been used in many hospitals. The data transmitted in those medication systems is very important and sensitive. In the past decade, many security protocols have been proposed to ensure its secure transition attracted wide attention. Due to providing mutual authentication between the medication server and the tag, the RFID authentication protocol is considered as the most important security protocols in those systems. In this paper, we propose a RFID authentication protocol to enhance patient medication safety using elliptic curve cryptography (ECC). The analysis shows the proposed protocol could overcome security weaknesses in previous protocols and has better performance. Therefore, the proposed protocol is very suitable for automated patient medication systems.

  12. The research and application of the NDP protocol vulnerability attack and the defense technology based on SEND

    NASA Astrophysics Data System (ADS)

    Xi, Huixing

    2017-05-01

    Neighbor discovery protocol (NDP) is the underlying protocol in the IPv6 protocol, which is mainly used to solve the problem of interconnection between nodes on the same link. But with wide use of IPV6, NDP becomes the main objects of a variety of attacks due to a lack of security mechanism. The paper introduces the working principle of the NDP and methods of how the SEND protocol to enhance NDP security defense. It also analyzes and summarizes the security threats caused by the defects of the protocol itself. On the basis of the SEND protocol, the NDP data packet structure is modified to enhance the security of the SEND. An improved NDP cheating defense technology is put forward to make up the defects of the SEND protocol which can't verify the correctness of the public key and cannot bind the MAC address.

  13. Security Enhanced User Authentication Protocol for Wireless Sensor Networks Using Elliptic Curves Cryptography

    PubMed Central

    Choi, Younsung; Lee, Donghoon; Kim, Jiye; Jung, Jaewook; Nam, Junghyun; Won, Dongho

    2014-01-01

    Wireless sensor networks (WSNs) consist of sensors, gateways and users. Sensors are widely distributed to monitor various conditions, such as temperature, sound, speed and pressure but they have limited computational ability and energy. To reduce the resource use of sensors and enhance the security of WSNs, various user authentication protocols have been proposed. In 2011, Yeh et al. first proposed a user authentication protocol based on elliptic curve cryptography (ECC) for WSNs. However, it turned out that Yeh et al.'s protocol does not provide mutual authentication, perfect forward secrecy, and key agreement between the user and sensor. Later in 2013, Shi et al. proposed a new user authentication protocol that improves both security and efficiency of Yeh et al.'s protocol. However, Shi et al.'s improvement introduces other security weaknesses. In this paper, we show that Shi et al.'s improved protocol is vulnerable to session key attack, stolen smart card attack, and sensor energy exhausting attack. In addition, we propose a new, security-enhanced user authentication protocol using ECC for WSNs. PMID:24919012

  14. Security enhanced user authentication protocol for wireless sensor networks using elliptic curves cryptography.

    PubMed

    Choi, Younsung; Lee, Donghoon; Kim, Jiye; Jung, Jaewook; Nam, Junghyun; Won, Dongho

    2014-06-10

    Wireless sensor networks (WSNs) consist of sensors, gateways and users. Sensors are widely distributed to monitor various conditions, such as temperature, sound, speed and pressure but they have limited computational ability and energy. To reduce the resource use of sensors and enhance the security of WSNs, various user authentication protocols have been proposed. In 2011, Yeh et al. first proposed a user authentication protocol based on elliptic curve cryptography (ECC) for WSNs. However, it turned out that Yeh et al.'s protocol does not provide mutual authentication, perfect forward secrecy, and key agreement between the user and sensor. Later in 2013, Shi et al. proposed a new user authentication protocol that improves both security and efficiency of Yeh et al.'s protocol. However, Shi et al.'s improvement introduces other security weaknesses. In this paper, we show that Shi et al.'s improved protocol is vulnerable to session key attack, stolen smart card attack, and sensor energy exhausting attack. In addition, we propose a new, security-enhanced user authentication protocol using ECC for WSNs.

  15. Design and Implementation of a Secure Modbus Protocol

    NASA Astrophysics Data System (ADS)

    Fovino, Igor Nai; Carcano, Andrea; Masera, Marcelo; Trombetta, Alberto

    The interconnectivity of modern and legacy supervisory control and data acquisition (SCADA) systems with corporate networks and the Internet has significantly increased the threats to critical infrastructure assets. Meanwhile, traditional IT security solutions such as firewalls, intrusion detection systems and antivirus software are relatively ineffective against attacks that specifically target vulnerabilities in SCADA protocols. This paper describes a secure version of the Modbus SCADA protocol that incorporates integrity, authentication, non-repudiation and anti-replay mechanisms. Experimental results using a power plant testbed indicate that the augmented protocol provides good security functionality without significant overhead.

  16. Agents Based e-Commerce and Securing Exchanged Information

    NASA Astrophysics Data System (ADS)

    Al-Jaljouli, Raja; Abawajy, Jemal

    Mobile agents have been implemented in e-Commerce to search and filter information of interest from electronic markets. When the information is very sensitive and critical, it is important to develop a novel security protocol that can efficiently protect the information from malicious tampering as well as unauthorized disclosure or at least detect any malicious act of intruders. In this chapter, we describe robust security techniques that ensure a sound security of information gathered throughout agent’s itinerary against various security attacks, as well as truncation attacks. A sound security protocol is described, which implements the various security techniques that would jointly prevent or at least detect any malicious act of intruders. We reason about the soundness of the protocol usingSymbolic Trace Analyzer (STA), a formal verification tool that is based on symbolic techniques. We analyze the protocol in key configurations and show that it is free of flaws. We also show that the protocol fulfils the various security requirements of exchanged information in MAS, including data-integrity, data-confidentiality, data-authenticity, origin confidentiality and data non-repudiability.

  17. Security of modified Ping-Pong protocol in noisy and lossy channel

    PubMed Central

    Han, Yun-Guang; Yin, Zhen-Qiang; Li, Hong-Wei; Chen, Wei; Wang, Shuang; Guo, Guang-Can; Han, Zheng-Fu

    2014-01-01

    The “Ping-Pong” (PP) protocol is a two-way quantum key protocol based on entanglement. In this protocol, Bob prepares one maximally entangled pair of qubits, and sends one qubit to Alice. Then, Alice performs some necessary operations on this qubit and sends it back to Bob. Although this protocol was proposed in 2002, its security in the noisy and lossy channel has not been proven. In this report, we add a simple and experimentally feasible modification to the original PP protocol, and prove the security of this modified PP protocol against collective attacks when the noisy and lossy channel is taken into account. Simulation results show that our protocol is practical. PMID:24816899

  18. Security of modified Ping-Pong protocol in noisy and lossy channel.

    PubMed

    Han, Yun-Guang; Yin, Zhen-Qiang; Li, Hong-Wei; Chen, Wei; Wang, Shuang; Guo, Guang-Can; Han, Zheng-Fu

    2014-05-12

    The "Ping-Pong" (PP) protocol is a two-way quantum key protocol based on entanglement. In this protocol, Bob prepares one maximally entangled pair of qubits, and sends one qubit to Alice. Then, Alice performs some necessary operations on this qubit and sends it back to Bob. Although this protocol was proposed in 2002, its security in the noisy and lossy channel has not been proven. In this report, we add a simple and experimentally feasible modification to the original PP protocol, and prove the security of this modified PP protocol against collective attacks when the noisy and lossy channel is taken into account. Simulation results show that our protocol is practical.

  19. A secure RFID authentication protocol for healthcare environments using elliptic curve cryptosystem.

    PubMed

    Zhao, Zhenguo

    2014-05-01

    With the fast advancement of the wireless communication technology and the widespread use of medical systems, the radio frequency identification (RFID) technology has been widely used in healthcare environments. As the first important protocol for ensuring secure communication in healthcare environment, the RFID authentication protocols derive more and more attentions. Most of RFID authentication protocols are based on hash function or symmetric cryptography. To get more security properties, elliptic curve cryptosystem (ECC) has been used in the design of RFID authentication protocol. Recently, Liao and Hsiao proposed a new RFID authentication protocol using ECC and claimed their protocol could withstand various attacks. In this paper, we will show that their protocol suffers from the key compromise problem, i.e. an adversary could get the private key stored in the tag. To enhance the security, we propose a new RFID authentication protocol using ECC. Detailed analysis shows the proposed protocol not only could overcome weaknesses in Liao and Hsiao's protocol but also has the same performance. Therefore, it is more suitable for healthcare environments.

  20. An Enhanced Biometric Based Authentication with Key-Agreement Protocol for Multi-Server Architecture Based on Elliptic Curve Cryptography.

    PubMed

    Reddy, Alavalapati Goutham; Das, Ashok Kumar; Odelu, Vanga; Yoo, Kee-Young

    2016-01-01

    Biometric based authentication protocols for multi-server architectures have gained momentum in recent times due to advancements in wireless technologies and associated constraints. Lu et al. recently proposed a robust biometric based authentication with key agreement protocol for a multi-server environment using smart cards. They claimed that their protocol is efficient and resistant to prominent security attacks. The careful investigation of this paper proves that Lu et al.'s protocol does not provide user anonymity, perfect forward secrecy and is susceptible to server and user impersonation attacks, man-in-middle attacks and clock synchronization problems. In addition, this paper proposes an enhanced biometric based authentication with key-agreement protocol for multi-server architecture based on elliptic curve cryptography using smartcards. We proved that the proposed protocol achieves mutual authentication using Burrows-Abadi-Needham (BAN) logic. The formal security of the proposed protocol is verified using the AVISPA (Automated Validation of Internet Security Protocols and Applications) tool to show that our protocol can withstand active and passive attacks. The formal and informal security analyses and performance analysis demonstrates that the proposed protocol is robust and efficient compared to Lu et al.'s protocol and existing similar protocols.

  1. Multi-Party Privacy-Preserving Set Intersection with Quasi-Linear Complexity

    NASA Astrophysics Data System (ADS)

    Cheon, Jung Hee; Jarecki, Stanislaw; Seo, Jae Hong

    Secure computation of the set intersection functionality allows n parties to find the intersection between their datasets without revealing anything else about them. An efficient protocol for such a task could have multiple potential applications in commerce, health care, and security. However, all currently known secure set intersection protocols for n>2 parties have computational costs that are quadratic in the (maximum) number of entries in the dataset contributed by each party, making secure computation of the set intersection only practical for small datasets. In this paper, we describe the first multi-party protocol for securely computing the set intersection functionality with both the communication and the computation costs that are quasi-linear in the size of the datasets. For a fixed security parameter, our protocols require O(n2k) bits of communication and Õ(n2k) group multiplications per player in the malicious adversary setting, where k is the size of each dataset. Our protocol follows the basic idea of the protocol proposed by Kissner and Song, but we gain efficiency by using different representations of the polynomials associated with users' datasets and careful employment of algorithms that interpolate or evaluate polynomials on multiple points more efficiently. Moreover, the proposed protocol is robust. This means that the protocol outputs the desired result even if some corrupted players leave during the execution of the protocol.

  2. A Lightweight Protocol for Secure Video Streaming

    PubMed Central

    Morkevicius, Nerijus; Bagdonas, Kazimieras

    2018-01-01

    The Internet of Things (IoT) introduces many new challenges which cannot be solved using traditional cloud and host computing models. A new architecture known as fog computing is emerging to address these technological and security gaps. Traditional security paradigms focused on providing perimeter-based protections and client/server point to point protocols (e.g., Transport Layer Security (TLS)) are no longer the best choices for addressing new security challenges in fog computing end devices, where energy and computational resources are limited. In this paper, we present a lightweight secure streaming protocol for the fog computing “Fog Node-End Device” layer. This protocol is lightweight, connectionless, supports broadcast and multicast operations, and is able to provide data source authentication, data integrity, and confidentiality. The protocol is based on simple and energy efficient cryptographic methods, such as Hash Message Authentication Codes (HMAC) and symmetrical ciphers, and uses modified User Datagram Protocol (UDP) packets to embed authentication data into streaming data. Data redundancy could be added to improve reliability in lossy networks. The experimental results summarized in this paper confirm that the proposed method efficiently uses energy and computational resources and at the same time provides security properties on par with the Datagram TLS (DTLS) standard. PMID:29757988

  3. A Lightweight Protocol for Secure Video Streaming.

    PubMed

    Venčkauskas, Algimantas; Morkevicius, Nerijus; Bagdonas, Kazimieras; Damaševičius, Robertas; Maskeliūnas, Rytis

    2018-05-14

    The Internet of Things (IoT) introduces many new challenges which cannot be solved using traditional cloud and host computing models. A new architecture known as fog computing is emerging to address these technological and security gaps. Traditional security paradigms focused on providing perimeter-based protections and client/server point to point protocols (e.g., Transport Layer Security (TLS)) are no longer the best choices for addressing new security challenges in fog computing end devices, where energy and computational resources are limited. In this paper, we present a lightweight secure streaming protocol for the fog computing "Fog Node-End Device" layer. This protocol is lightweight, connectionless, supports broadcast and multicast operations, and is able to provide data source authentication, data integrity, and confidentiality. The protocol is based on simple and energy efficient cryptographic methods, such as Hash Message Authentication Codes (HMAC) and symmetrical ciphers, and uses modified User Datagram Protocol (UDP) packets to embed authentication data into streaming data. Data redundancy could be added to improve reliability in lossy networks. The experimental results summarized in this paper confirm that the proposed method efficiently uses energy and computational resources and at the same time provides security properties on par with the Datagram TLS (DTLS) standard.

  4. Hacking on decoy-state quantum key distribution system with partial phase randomization

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2014-04-01

    Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.

  5. Faithful One-way Trip Deterministic Secure Quantum Communication Scheme Against Collective Rotating Noise Based on Order Rearrangement of Photon Pairs

    NASA Astrophysics Data System (ADS)

    Yuan, Hao; Zhang, Qin; Hong, Liang; Yin, Wen-jie; Xu, Dong

    2014-08-01

    We present a novel scheme for deterministic secure quantum communication (DSQC) over collective rotating noisy channel. Four special two-qubit states are found can constitute a noise-free subspaces, and so are utilized as quantum information carriers. In this scheme, the information carriers transmite over the quantum channel only one time, which can effectively reduce the influence of other noise existing in quantum channel. The information receiver need only perform two single-photon collective measurements to decode the secret messages, which can make the present scheme more convenient in practical application. It will be showed that our scheme has a relatively high information capacity and intrisic efficiency. Foremostly, the decoy photon pair checking technique and the order rearrangement of photon pairs technique guarantee that the present scheme is unconditionally secure.

  6. Hacking on decoy-state quantum key distribution system with partial phase randomization.

    PubMed

    Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2014-04-23

    Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.

  7. Continuous-variable quantum computing on encrypted data.

    PubMed

    Marshall, Kevin; Jacobsen, Christian S; Schäfermeier, Clemens; Gehring, Tobias; Weedbrook, Christian; Andersen, Ulrik L

    2016-12-14

    The ability to perform computations on encrypted data is a powerful tool for protecting a client's privacy, especially in today's era of cloud and distributed computing. In terms of privacy, the best solutions that classical techniques can achieve are unfortunately not unconditionally secure in the sense that they are dependent on a hacker's computational power. Here we theoretically investigate, and experimentally demonstrate with Gaussian displacement and squeezing operations, a quantum solution that achieves the security of a user's privacy using the practical technology of continuous variables. We demonstrate losses of up to 10 km both ways between the client and the server and show that security can still be achieved. Our approach offers a number of practical benefits (from a quantum perspective) that could one day allow the potential widespread adoption of this quantum technology in future cloud-based computing networks.

  8. Continuous-variable quantum computing on encrypted data

    PubMed Central

    Marshall, Kevin; Jacobsen, Christian S.; Schäfermeier, Clemens; Gehring, Tobias; Weedbrook, Christian; Andersen, Ulrik L.

    2016-01-01

    The ability to perform computations on encrypted data is a powerful tool for protecting a client's privacy, especially in today's era of cloud and distributed computing. In terms of privacy, the best solutions that classical techniques can achieve are unfortunately not unconditionally secure in the sense that they are dependent on a hacker's computational power. Here we theoretically investigate, and experimentally demonstrate with Gaussian displacement and squeezing operations, a quantum solution that achieves the security of a user's privacy using the practical technology of continuous variables. We demonstrate losses of up to 10 km both ways between the client and the server and show that security can still be achieved. Our approach offers a number of practical benefits (from a quantum perspective) that could one day allow the potential widespread adoption of this quantum technology in future cloud-based computing networks. PMID:27966528

  9. Continuous-variable quantum computing on encrypted data

    NASA Astrophysics Data System (ADS)

    Marshall, Kevin; Jacobsen, Christian S.; Schäfermeier, Clemens; Gehring, Tobias; Weedbrook, Christian; Andersen, Ulrik L.

    2016-12-01

    The ability to perform computations on encrypted data is a powerful tool for protecting a client's privacy, especially in today's era of cloud and distributed computing. In terms of privacy, the best solutions that classical techniques can achieve are unfortunately not unconditionally secure in the sense that they are dependent on a hacker's computational power. Here we theoretically investigate, and experimentally demonstrate with Gaussian displacement and squeezing operations, a quantum solution that achieves the security of a user's privacy using the practical technology of continuous variables. We demonstrate losses of up to 10 km both ways between the client and the server and show that security can still be achieved. Our approach offers a number of practical benefits (from a quantum perspective) that could one day allow the potential widespread adoption of this quantum technology in future cloud-based computing networks.

  10. Password-only authenticated three-party key exchange with provable security in the standard model.

    PubMed

    Nam, Junghyun; Choo, Kim-Kwang Raymond; Kim, Junghwan; Kang, Hyun-Kyu; Kim, Jinsoo; Paik, Juryon; Won, Dongho

    2014-01-01

    Protocols for password-only authenticated key exchange (PAKE) in the three-party setting allow two clients registered with the same authentication server to derive a common secret key from their individual password shared with the server. Existing three-party PAKE protocols were proven secure under the assumption of the existence of random oracles or in a model that does not consider insider attacks. Therefore, these protocols may turn out to be insecure when the random oracle is instantiated with a particular hash function or an insider attack is mounted against the partner client. The contribution of this paper is to present the first three-party PAKE protocol whose security is proven without any idealized assumptions in a model that captures insider attacks. The proof model we use is a variant of the indistinguishability-based model of Bellare, Pointcheval, and Rogaway (2000), which is one of the most widely accepted models for security analysis of password-based key exchange protocols. We demonstrated that our protocol achieves not only the typical indistinguishability-based security of session keys but also the password security against undetectable online dictionary attacks.

  11. An economic and feasible Quantum Sealed-bid Auction protocol

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Shi, Run-hua; Qin, Jia-qi; Peng, Zhen-wan

    2018-02-01

    We present an economic and feasible Quantum Sealed-bid Auction protocol using quantum secure direct communication based on single photons in both the polarization and the spatial-mode degrees of freedom, where each single photon can carry two bits of classical information. Compared with previous protocols, our protocol has higher efficiency. In addition, we propose a secure post-confirmation mechanism without quantum entanglement to guarantee the security and the fairness of the auction.

  12. Expressing the sense of Congress regarding the immediate and unconditional release of Aung San Suu Kyi, a meaningful tripartite political dialogue toward national reconciliation, and the full restoration of democracy, freedom of assembly, freedom of movement, freedom of speech, freedom of the press, and internationally recognized human rights for all Burmese citizens.

    THOMAS, 111th Congress

    Rep. King, Peter T. [R-NY-3

    2009-11-06

    House - 07/26/2010 Referred to the Subcommittee on Immigration, Citizenship, Refugees, Border Security, and International Law. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  13. The REFANI-N study protocol: a cluster-randomised controlled trial of the effectiveness and cost-effectiveness of early initiation and longer duration of emergency/seasonal unconditional cash transfers for the prevention of acute malnutrition among children, 6-59 months, in Tahoua, Niger.

    PubMed

    Sibson, Victoria L; Grijalva-Eternod, Carlos S; Bourahla, Leila; Haghparast-Bidgoli, Hassan; Morrison, Joanna; Puett, Chloe; Trenouth, Lani; Seal, Andrew

    2015-12-23

    The global burden of acute malnutrition among children remains high, and prevalence rates are highest in humanitarian contexts such as Niger. Unconditional cash transfers are increasingly used to prevent acute malnutrition in emergencies but lack a strong evidence base. In Niger, non-governmental organisations give unconditional cash transfers to the poorest households from June to September; the 'hunger gap'. However, rising admissions to feeding programmes from March/April suggest the intervention may be late. This cluster-randomised controlled trial will compare two types of unconditional cash transfer for 'very poor' households in 'vulnerable' villages defined and identified by the implementing organisation. 3,500 children (6-59 months) and 2,500 women (15-49 years) will be recruited exhaustively from households targeted for cash and from a random sample of non-recipient households in 40 villages in Tahoua district. Clusters of villages with a common cash distribution point will be assigned to either a control group which will receive the standard intervention (n = 10), or a modified intervention group (n = 10). The standard intervention is 32,500 FCFA/month for 4 months, June to September, given cash-in-hand to female representatives of 'very poor' households. The modified intervention is 21,500 FCFA/month for 5 months, April, May, July, August, September, and 22,500 FCFA in June, providing the same total amount. In both arms the recipient women attend an education session, women and children are screened and referred for acute malnutrition treatment, and the households receive nutrition supplements for children 6-23 months and pregnant and lactating women. The trial will evaluate whether the modified unconditional cash transfer leads to a reduction in acute malnutrition among children 6-59 months old compared to the standard intervention. The sample size provides power to detect a 5 percentage point difference in prevalence of acute malnutrition between trial arms. Quantitative and qualitative process evaluation data will be prospectively collected and programme costs will be collected and cost-effectiveness ratios calculated. This randomised study design with a concurrent process evaluation will provide evidence on the effectiveness and cost-effectiveness of earlier initiation of seasonal unconditional cash transfer for the prevention of acute malnutrition, which will be generalisable to similar humanitarian situations. ISRCTN25360839, registered March 19, 2015.

  14. Network Security via Biometric Recognition of Patterns of Gene Expression

    NASA Technical Reports Server (NTRS)

    Shaw, Harry C.

    2016-01-01

    Molecular biology provides the ability to implement forms of information and network security completely outside the bounds of legacy security protocols and algorithms. This paper addresses an approach which instantiates the power of gene expression for security. Molecular biology provides a rich source of gene expression and regulation mechanisms, which can be adopted to use in the information and electronic communication domains. Conventional security protocols are becoming increasingly vulnerable due to more intensive, highly capable attacks on the underlying mathematics of cryptography. Security protocols are being undermined by social engineering and substandard implementations by IT (Information Technology) organizations. Molecular biology can provide countermeasures to these weak points with the current security approaches. Future advances in instruments for analyzing assays will also enable this protocol to advance from one of cryptographic algorithms to an integrated system of cryptographic algorithms and real-time assays of gene expression products.

  15. Network Security via Biometric Recognition of Patterns of Gene Expression

    NASA Technical Reports Server (NTRS)

    Shaw, Harry C.

    2016-01-01

    Molecular biology provides the ability to implement forms of information and network security completely outside the bounds of legacy security protocols and algorithms. This paper addresses an approach which instantiates the power of gene expression for security. Molecular biology provides a rich source of gene expression and regulation mechanisms, which can be adopted to use in the information and electronic communication domains. Conventional security protocols are becoming increasingly vulnerable due to more intensive, highly capable attacks on the underlying mathematics of cryptography. Security protocols are being undermined by social engineering and substandard implementations by IT organizations. Molecular biology can provide countermeasures to these weak points with the current security approaches. Future advances in instruments for analyzing assays will also enable this protocol to advance from one of cryptographic algorithms to an integrated system of cryptographic algorithms and real-time expression and assay of gene expression products.

  16. A lightweight and secure two factor anonymous authentication protocol for Global Mobility Networks.

    PubMed

    Baig, Ahmed Fraz; Hassan, Khwaja Mansoor Ul; Ghani, Anwar; Chaudhry, Shehzad Ashraf; Khan, Imran; Ashraf, Muhammad Usman

    2018-01-01

    Global Mobility Networks(GLOMONETs) in wireless communication permits the global roaming services that enable a user to leverage the mobile services in any foreign country. Technological growth in wireless communication is also accompanied by new security threats and challenges. A threat-proof authentication protocol in wireless communication may overcome the security flaws by allowing only legitimate users to access a particular service. Recently, Lee et al. found Mun et al. scheme vulnerable to different attacks and proposed an advanced secure scheme to overcome the security flaws. However, this article points out that Lee et al. scheme lacks user anonymity, inefficient user authentication, vulnerable to replay and DoS attacks and Lack of local password verification. Furthermore, this article presents a more robust anonymous authentication scheme to handle the threats and challenges found in Lee et al.'s protocol. The proposed protocol is formally verified with an automated tool(ProVerif). The proposed protocol has superior efficiency in comparison to the existing protocols.

  17. A lightweight and secure two factor anonymous authentication protocol for Global Mobility Networks

    PubMed Central

    2018-01-01

    Global Mobility Networks(GLOMONETs) in wireless communication permits the global roaming services that enable a user to leverage the mobile services in any foreign country. Technological growth in wireless communication is also accompanied by new security threats and challenges. A threat-proof authentication protocol in wireless communication may overcome the security flaws by allowing only legitimate users to access a particular service. Recently, Lee et al. found Mun et al. scheme vulnerable to different attacks and proposed an advanced secure scheme to overcome the security flaws. However, this article points out that Lee et al. scheme lacks user anonymity, inefficient user authentication, vulnerable to replay and DoS attacks and Lack of local password verification. Furthermore, this article presents a more robust anonymous authentication scheme to handle the threats and challenges found in Lee et al.’s protocol. The proposed protocol is formally verified with an automated tool(ProVerif). The proposed protocol has superior efficiency in comparison to the existing protocols. PMID:29702675

  18. An Efficient and Secure Arbitrary N-Party Quantum Key Agreement Protocol Using Bell States

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Jie; Xu, Yong; Yang, Ching-Nung; Gao, Pei-Pei; Yu, Wen-Bin

    2018-01-01

    Two quantum key agreement protocols using Bell states and Bell measurement were recently proposed by Shukla et al. (Quantum Inf. Process. 13(11), 2391-2405, 2014). However, Zhu et al. pointed out that there are some security flaws and proposed an improved version (Quantum Inf. Process. 14(11), 4245-4254, 2015). In this study, we will show Zhu et al.'s improvement still exists some security problems, and its efficiency is not high enough. For solving these problems, we utilize four Pauli operations { I, Z, X, Y} to encode two bits instead of the original two operations { I, X} to encode one bit, and then propose an efficient and secure arbitrary N-party quantum key agreement protocol. In the protocol, the channel checking with decoy single photons is introduced to avoid the eavesdropper's flip attack, and a post-measurement mechanism is used to prevent against the collusion attack. The security analysis shows the present protocol can guarantee the correctness, security, privacy and fairness of quantum key agreement.

  19. Security Services Discovery by ATM Endsystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sholander, Peter; Tarman, Thomas

    This contribution proposes strawman techniques for Security Service Discovery by ATM endsystems in ATM networks. Candidate techniques include ILMI extensions, ANS extensions and new ATM anycast addresses. Another option is a new protocol based on an IETF service discovery protocol, such as Service Location Protocol (SLP). Finally, this contribution provides strawman requirements for Security-Based Routing in ATM networks.

  20. Secure and Fair Cluster Head Selection Protocol for Enhancing Security in Mobile Ad Hoc Networks

    PubMed Central

    Paramasivan, B.; Kaliappan, M.

    2014-01-01

    Mobile ad hoc networks (MANETs) are wireless networks consisting of number of autonomous mobile devices temporarily interconnected into a network by wireless media. MANETs become one of the most prevalent areas of research in the recent years. Resource limitations, energy efficiency, scalability, and security are the great challenging issues in MANETs. Due to its deployment nature, MANETs are more vulnerable to malicious attack. The secure routing protocols perform very basic security related functions which are not sufficient to protect the network. In this paper, a secure and fair cluster head selection protocol (SFCP) is proposed which integrates security factors into the clustering approach for achieving attacker identification and classification. Byzantine agreement based cooperative technique is used for attacker identification and classification to make the network more attack resistant. SFCP used to solve this issue by making the nodes that are totally surrounded by malicious neighbors adjust dynamically their belief and disbelief thresholds. The proposed protocol selects the secure and energy efficient cluster head which acts as a local detector without imposing overhead to the clustering performance. SFCP is simulated in network simulator 2 and compared with two protocols including AODV and CBRP. PMID:25143986

  1. Secure and fair cluster head selection protocol for enhancing security in mobile ad hoc networks.

    PubMed

    Paramasivan, B; Kaliappan, M

    2014-01-01

    Mobile ad hoc networks (MANETs) are wireless networks consisting of number of autonomous mobile devices temporarily interconnected into a network by wireless media. MANETs become one of the most prevalent areas of research in the recent years. Resource limitations, energy efficiency, scalability, and security are the great challenging issues in MANETs. Due to its deployment nature, MANETs are more vulnerable to malicious attack. The secure routing protocols perform very basic security related functions which are not sufficient to protect the network. In this paper, a secure and fair cluster head selection protocol (SFCP) is proposed which integrates security factors into the clustering approach for achieving attacker identification and classification. Byzantine agreement based cooperative technique is used for attacker identification and classification to make the network more attack resistant. SFCP used to solve this issue by making the nodes that are totally surrounded by malicious neighbors adjust dynamically their belief and disbelief thresholds. The proposed protocol selects the secure and energy efficient cluster head which acts as a local detector without imposing overhead to the clustering performance. SFCP is simulated in network simulator 2 and compared with two protocols including AODV and CBRP.

  2. Free-space quantum key distribution by rotation-invariant twisted photons.

    PubMed

    Vallone, Giuseppe; D'Ambrosio, Vincenzo; Sponselli, Anna; Slussarenko, Sergei; Marrucci, Lorenzo; Sciarrino, Fabio; Villoresi, Paolo

    2014-08-08

    "Twisted photons" are photons carrying a well-defined nonzero value of orbital angular momentum (OAM). The associated optical wave exhibits a helical shape of the wavefront (hence the name) and an optical vortex at the beam axis. The OAM of light is attracting a growing interest for its potential in photonic applications ranging from particle manipulation, microscopy, and nanotechnologies to fundamental tests of quantum mechanics, classical data multiplexing, and quantum communication. Hitherto, however, all results obtained with optical OAM were limited to laboratory scale. Here, we report the experimental demonstration of a link for free-space quantum communication with OAM operating over a distance of 210 m. Our method exploits OAM in combination with optical polarization to encode the information in rotation-invariant photonic states, so as to guarantee full independence of the communication from the local reference frames of the transmitting and receiving units. In particular, we implement quantum key distribution, a protocol exploiting the features of quantum mechanics to guarantee unconditional security in cryptographic communication, demonstrating error-rate performances that are fully compatible with real-world application requirements. Our results extend previous achievements of OAM-based quantum communication by over 2 orders of magnitude in the link scale, providing an important step forward in achieving the vision of a worldwide quantum network.

  3. Free-Space Quantum Key Distribution by Rotation-Invariant Twisted Photons

    NASA Astrophysics Data System (ADS)

    Vallone, Giuseppe; D'Ambrosio, Vincenzo; Sponselli, Anna; Slussarenko, Sergei; Marrucci, Lorenzo; Sciarrino, Fabio; Villoresi, Paolo

    2014-08-01

    "Twisted photons" are photons carrying a well-defined nonzero value of orbital angular momentum (OAM). The associated optical wave exhibits a helical shape of the wavefront (hence the name) and an optical vortex at the beam axis. The OAM of light is attracting a growing interest for its potential in photonic applications ranging from particle manipulation, microscopy, and nanotechnologies to fundamental tests of quantum mechanics, classical data multiplexing, and quantum communication. Hitherto, however, all results obtained with optical OAM were limited to laboratory scale. Here, we report the experimental demonstration of a link for free-space quantum communication with OAM operating over a distance of 210 m. Our method exploits OAM in combination with optical polarization to encode the information in rotation-invariant photonic states, so as to guarantee full independence of the communication from the local reference frames of the transmitting and receiving units. In particular, we implement quantum key distribution, a protocol exploiting the features of quantum mechanics to guarantee unconditional security in cryptographic communication, demonstrating error-rate performances that are fully compatible with real-world application requirements. Our results extend previous achievements of OAM-based quantum communication by over 2 orders of magnitude in the link scale, providing an important step forward in achieving the vision of a worldwide quantum network.

  4. Threshold Things That Think: Authorisation for Resharing

    NASA Astrophysics Data System (ADS)

    Peeters, Roel; Kohlweiss, Markulf; Preneel, Bart

    As we are evolving towards ubiquitous computing, users carry an increasing number of mobile devices with sensitive information. The security of this information can be protected using threshold cryptography, in which secret computations are shared between multiple devices. Threshold cryptography can be made more robust by resharing protocols, which allow recovery from partial compromises. This paper introduces user-friendly and secure protocols for the authorisation of resharing protocols. We present both automatic and manual protocols, utilising a group manual authentication protocol to add a new device. We analyse the security of these protocols: our analysis considers permanent and temporary compromises, denial of service attacks and manual authentications errors of the user.

  5. Secure and scalable deduplication of horizontally partitioned health data for privacy-preserving distributed statistical computation.

    PubMed

    Yigzaw, Kassaye Yitbarek; Michalas, Antonis; Bellika, Johan Gustav

    2017-01-03

    Techniques have been developed to compute statistics on distributed datasets without revealing private information except the statistical results. However, duplicate records in a distributed dataset may lead to incorrect statistical results. Therefore, to increase the accuracy of the statistical analysis of a distributed dataset, secure deduplication is an important preprocessing step. We designed a secure protocol for the deduplication of horizontally partitioned datasets with deterministic record linkage algorithms. We provided a formal security analysis of the protocol in the presence of semi-honest adversaries. The protocol was implemented and deployed across three microbiology laboratories located in Norway, and we ran experiments on the datasets in which the number of records for each laboratory varied. Experiments were also performed on simulated microbiology datasets and data custodians connected through a local area network. The security analysis demonstrated that the protocol protects the privacy of individuals and data custodians under a semi-honest adversarial model. More precisely, the protocol remains secure with the collusion of up to N - 2 corrupt data custodians. The total runtime for the protocol scales linearly with the addition of data custodians and records. One million simulated records distributed across 20 data custodians were deduplicated within 45 s. The experimental results showed that the protocol is more efficient and scalable than previous protocols for the same problem. The proposed deduplication protocol is efficient and scalable for practical uses while protecting the privacy of patients and data custodians.

  6. Modeling and Simulation of a Novel Relay Node Based Secure Routing Protocol Using Multiple Mobile Sink for Wireless Sensor Networks.

    PubMed

    Perumal, Madhumathy; Dhandapani, Sivakumar

    2015-01-01

    Data gathering and optimal path selection for wireless sensor networks (WSN) using existing protocols result in collision. Increase in collision further increases the possibility of packet drop. Thus there is a necessity to eliminate collision during data aggregation. Increasing the efficiency is the need of the hour with maximum security. This paper is an effort to come up with a reliable and energy efficient WSN routing and secure protocol with minimum delay. This technique is named as relay node based secure routing protocol for multiple mobile sink (RSRPMS). This protocol finds the rendezvous point for optimal transmission of data using a "splitting tree" technique in tree-shaped network topology and then to determine all the subsequent positions of a sink the "Biased Random Walk" model is used. In case of an event, the sink gathers the data from all sources, when they are in the sensing range of rendezvous point. Otherwise relay node is selected from its neighbor to transfer packets from rendezvous point to sink. A symmetric key cryptography is used for secure transmission. The proposed relay node based secure routing protocol for multiple mobile sink (RSRPMS) is experimented and simulation results are compared with Intelligent Agent-Based Routing (IAR) protocol to prove that there is increase in the network lifetime compared with other routing protocols.

  7. Practical Quantum Private Database Queries Based on Passive Round-Robin Differential Phase-shift Quantum Key Distribution.

    PubMed

    Li, Jian; Yang, Yu-Guang; Chen, Xiu-Bo; Zhou, Yi-Hua; Shi, Wei-Min

    2016-08-19

    A novel quantum private database query protocol is proposed, based on passive round-robin differential phase-shift quantum key distribution. Compared with previous quantum private database query protocols, the present protocol has the following unique merits: (i) the user Alice can obtain one and only one key bit so that both the efficiency and security of the present protocol can be ensured, and (ii) it does not require to change the length difference of the two arms in a Mach-Zehnder interferometer and just chooses two pulses passively to interfere with so that it is much simpler and more practical. The present protocol is also proved to be secure in terms of the user security and database security.

  8. Analysis and Improvement of Large Payload Bidirectional Quantum Secure Direct Communication Without Information Leakage

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-Hao; Chen, Han-Wu

    2018-02-01

    As we know, the information leakage problem should be avoided in a secure quantum communication protocol. Unfortunately, it is found that this problem does exist in the large payload bidirectional quantum secure direct communication (BQSDC) protocol (Ye Int. J. Quantum. Inf. 11(5), 1350051 2013) which is based on entanglement swapping between any two Greenberger-Horne-Zeilinger (GHZ) states. To be specific, one half of the information interchanged in this protocol is leaked out unconsciously without any active attack from an eavesdropper. Afterward, this BQSDC protocol is revised to the one without information leakage. It is shown that the improved BQSDC protocol is secure against the general individual attack and has some obvious features compared with the original one.

  9. An Enhanced Biometric Based Authentication with Key-Agreement Protocol for Multi-Server Architecture Based on Elliptic Curve Cryptography

    PubMed Central

    Reddy, Alavalapati Goutham; Das, Ashok Kumar; Odelu, Vanga; Yoo, Kee-Young

    2016-01-01

    Biometric based authentication protocols for multi-server architectures have gained momentum in recent times due to advancements in wireless technologies and associated constraints. Lu et al. recently proposed a robust biometric based authentication with key agreement protocol for a multi-server environment using smart cards. They claimed that their protocol is efficient and resistant to prominent security attacks. The careful investigation of this paper proves that Lu et al.’s protocol does not provide user anonymity, perfect forward secrecy and is susceptible to server and user impersonation attacks, man-in-middle attacks and clock synchronization problems. In addition, this paper proposes an enhanced biometric based authentication with key-agreement protocol for multi-server architecture based on elliptic curve cryptography using smartcards. We proved that the proposed protocol achieves mutual authentication using Burrows-Abadi-Needham (BAN) logic. The formal security of the proposed protocol is verified using the AVISPA (Automated Validation of Internet Security Protocols and Applications) tool to show that our protocol can withstand active and passive attacks. The formal and informal security analyses and performance analysis demonstrates that the proposed protocol is robust and efficient compared to Lu et al.’s protocol and existing similar protocols. PMID:27163786

  10. Protecting Privacy and Securing the Gathering of Location Proofs - The Secure Location Verification Proof Gathering Protocol

    NASA Astrophysics Data System (ADS)

    Graham, Michelle; Gray, David

    As wireless networks become increasingly ubiquitous, the demand for a method of locating a device has increased dramatically. Location Based Services are now commonplace but there are few methods of verifying or guaranteeing a location provided by a user without some specialised hardware, especially in larger scale networks. We propose a system for the verification of location claims, using proof gathered from neighbouring devices. In this paper we introduce a protocol to protect this proof gathering process, protecting the privacy of all involved parties and securing it from intruders and malicious claiming devices. We present the protocol in stages, extending the security of this protocol to allow for flexibility within its application. The Secure Location Verification Proof Gathering Protocol (SLVPGP) has been designed to function within the area of Vehicular Networks, although its application could be extended to any device with wireless & cryptographic capabilities.

  11. Poverty and perceived stress: Evidence from two unconditional cash transfer programs in Zambia.

    PubMed

    Hjelm, Lisa; Handa, Sudhanshu; de Hoop, Jacobus; Palermo, Tia

    2017-03-01

    Poverty is a chronic stressor that can lead to poor physical and mental health. This study examines whether two similar government poverty alleviation programs reduced the levels of perceived stress and poverty among poor households in Zambia. Secondary data from two cluster randomized controlled trials were used to evaluate the impacts of two unconditional cash transfer programs in Zambia. Participants were interviewed at baseline and followed over 36 months. Perceived stress among female caregivers was assessed using the Cohen Perceived Stress Scale (PSS). Poverty indicators assessed included per capita expenditure, household food security, and (nonproductive) asset ownership. Fixed effects and ordinary least squares regressions were run, controlling for age, education, marital status, household demographics, location, and poverty status at baseline. Cash transfers did not reduce perceived stress but improved economic security (per capita consumption expenditure, food insecurity, and asset ownership). Among these poverty indicators, only food insecurity was associated with perceived stress. Age and education showed no consistent association with stress, whereas death of a household member was associated with higher stress levels. In this setting, perceived stress was not reduced by a positive income shock but was correlated with food insecurity and household deaths, suggesting that food security is an important stressor in this context. Although the program did reduce food insecurity, the size of the reduction was not enough to generate a statistically significant change in stress levels. The measure used in this study appears not to be correlated with characteristics to which it has been linked in other settings, and thus, further research is needed to examine whether this widely used perceived stress measure appropriately captures the concept of perceived stress in this population. Copyright © 2017 UNICEF. Published by Elsevier Ltd.. All rights reserved.

  12. An enhanced password authentication scheme for session initiation protocol with perfect forward secrecy.

    PubMed

    Qiu, Shuming; Xu, Guoai; Ahmad, Haseeb; Guo, Yanhui

    2018-01-01

    The Session Initiation Protocol (SIP) is an extensive and esteemed communication protocol employed to regulate signaling as well as for controlling multimedia communication sessions. Recently, Kumari et al. proposed an improved smart card based authentication scheme for SIP based on Farash's scheme. Farash claimed that his protocol is resistant against various known attacks. But, we observe some accountable flaws in Farash's protocol. We point out that Farash's protocol is prone to key-compromise impersonation attack and is unable to provide pre-verification in the smart card, efficient password change and perfect forward secrecy. To overcome these limitations, in this paper we present an enhanced authentication mechanism based on Kumari et al.'s scheme. We prove that the proposed protocol not only overcomes the issues in Farash's scheme, but it can also resist against all known attacks. We also provide the security analysis of the proposed scheme with the help of widespread AVISPA (Automated Validation of Internet Security Protocols and Applications) software. At last, comparing with the earlier proposals in terms of security and efficiency, we conclude that the proposed protocol is efficient and more secure.

  13. A Low Cost Key Agreement Protocol Based on Binary Tree for EPCglobal Class 1 Generation 2 RFID Protocol

    NASA Astrophysics Data System (ADS)

    Jeng, Albert; Chang, Li-Chung; Chen, Sheng-Hui

    There are many protocols proposed for protecting Radio Frequency Identification (RFID) system privacy and security. A number of these protocols are designed for protecting long-term security of RFID system using symmetric key or public key cryptosystem. Others are designed for protecting user anonymity and privacy. In practice, the use of RFID technology often has a short lifespan, such as commodity check out, supply chain management and so on. Furthermore, we know that designing a long-term security architecture to protect the security and privacy of RFID tags information requires a thorough consideration from many different aspects. However, any security enhancement on RFID technology will jack up its cost which may be detrimental to its widespread deployment. Due to the severe constraints of RFID tag resources (e. g., power source, computing power, communication bandwidth) and open air communication nature of RFID usage, it is a great challenge to secure a typical RFID system. For example, computational heavy public key and symmetric key cryptography algorithms (e. g., RSA and AES) may not be suitable or over-killed to protect RFID security or privacy. These factors motivate us to research an efficient and cost effective solution for RFID security and privacy protection. In this paper, we propose a new effective generic binary tree based key agreement protocol (called BKAP) and its variations, and show how it can be applied to secure the low cost and resource constraint RFID system. This BKAP is not a general purpose key agreement protocol rather it is a special purpose protocol to protect privacy, un-traceability and anonymity in a single RFID closed system domain.

  14. A security analysis of version 2 of the Network Time Protocol (NTP): A report to the privacy and security research group

    NASA Technical Reports Server (NTRS)

    Bishop, Matt

    1991-01-01

    The Network Time Protocol is being used throughout the Internet to provide an accurate time service. The security requirements are examined of such a service, version 2 of the NTP protocol is analyzed to determine how well it meets these requirements, and improvements are suggested where appropriate.

  15. An Outline of Data Aggregation Security in Heterogeneous Wireless Sensor Networks.

    PubMed

    Boubiche, Sabrina; Boubiche, Djallel Eddine; Bilami, Azzedine; Toral-Cruz, Homero

    2016-04-12

    Data aggregation processes aim to reduce the amount of exchanged data in wireless sensor networks and consequently minimize the packet overhead and optimize energy efficiency. Securing the data aggregation process is a real challenge since the aggregation nodes must access the relayed data to apply the aggregation functions. The data aggregation security problem has been widely addressed in classical homogeneous wireless sensor networks, however, most of the proposed security protocols cannot guarantee a high level of security since the sensor node resources are limited. Heterogeneous wireless sensor networks have recently emerged as a new wireless sensor network category which expands the sensor nodes' resources and capabilities. These new kinds of WSNs have opened new research opportunities where security represents a most attractive area. Indeed, robust and high security level algorithms can be used to secure the data aggregation at the heterogeneous aggregation nodes which is impossible in classical homogeneous WSNs. Contrary to the homogeneous sensor networks, the data aggregation security problem is still not sufficiently covered and the proposed data aggregation security protocols are numberless. To address this recent research area, this paper describes the data aggregation security problem in heterogeneous wireless sensor networks and surveys a few proposed security protocols. A classification and evaluation of the existing protocols is also introduced based on the adopted data aggregation security approach.

  16. Applications of Multi-Channel Safety Authentication Protocols in Wireless Networks.

    PubMed

    Chen, Young-Long; Liau, Ren-Hau; Chang, Liang-Yu

    2016-01-01

    People can use their web browser or mobile devices to access web services and applications which are built into these servers. Users have to input their identity and password to login the server. The identity and password may be appropriated by hackers when the network environment is not safe. The multiple secure authentication protocol can improve the security of the network environment. Mobile devices can be used to pass the authentication messages through Wi-Fi or 3G networks to serve as a second communication channel. The content of the message number is not considered in a multiple secure authentication protocol. The more excessive transmission of messages would be easier to collect and decode by hackers. In this paper, we propose two schemes which allow the server to validate the user and reduce the number of messages using the XOR operation. Our schemes can improve the security of the authentication protocol. The experimental results show that our proposed authentication protocols are more secure and effective. In regard to applications of second authentication communication channels for a smart access control system, identity identification and E-wallet, our proposed authentication protocols can ensure the safety of person and property, and achieve more effective security management mechanisms.

  17. Password-Only Authenticated Three-Party Key Exchange with Provable Security in the Standard Model

    PubMed Central

    Nam, Junghyun; Kim, Junghwan; Kang, Hyun-Kyu; Kim, Jinsoo; Paik, Juryon

    2014-01-01

    Protocols for password-only authenticated key exchange (PAKE) in the three-party setting allow two clients registered with the same authentication server to derive a common secret key from their individual password shared with the server. Existing three-party PAKE protocols were proven secure under the assumption of the existence of random oracles or in a model that does not consider insider attacks. Therefore, these protocols may turn out to be insecure when the random oracle is instantiated with a particular hash function or an insider attack is mounted against the partner client. The contribution of this paper is to present the first three-party PAKE protocol whose security is proven without any idealized assumptions in a model that captures insider attacks. The proof model we use is a variant of the indistinguishability-based model of Bellare, Pointcheval, and Rogaway (2000), which is one of the most widely accepted models for security analysis of password-based key exchange protocols. We demonstrated that our protocol achieves not only the typical indistinguishability-based security of session keys but also the password security against undetectable online dictionary attacks. PMID:24977229

  18. [A security protocol for the exchange of personal medical data via Internet: monitoring treatment and drug effects].

    PubMed

    Viviani, R; Fischer, J; Spitzer, M; Freudenmann, R W

    2004-04-01

    We present a security protocol for the exchange of medical data via the Internet, based on the type/domain model. We discuss two applications of the protocol: in a system for the exchange of data for quality assurance, and in an on-line database of adverse reactions to drug use. We state that a type/domain security protocol can successfully comply with the complex requirements for data privacy and accessibility typical of such applications.

  19. A Secure Authenticated Key Exchange Protocol for Credential Services

    NASA Astrophysics Data System (ADS)

    Shin, Seonghan; Kobara, Kazukuni; Imai, Hideki

    In this paper, we propose a leakage-resilient and proactive authenticated key exchange (called LRP-AKE) protocol for credential services which provides not only a higher level of security against leakage of stored secrets but also secrecy of private key with respect to the involving server. And we show that the LRP-AKE protocol is provably secure in the random oracle model with the reduction to the computational Difie-Hellman problem. In addition, we discuss about some possible applications of the LRP-AKE protocol.

  20. Eavesdropping on the improved three-party quantum secret sharing protocol

    NASA Astrophysics Data System (ADS)

    Gao, Gan

    2011-02-01

    Lin et al. [Song Lin, Fei Gao, Qiao-yan Wen, Fu-chen Zhu, Opt. Commun. 281 (2008) 4553] pointed out that the multiparty quantum secret sharing protocol [Zhan-jun Zhang, Gan Gao, Xin Wang, Lian-fang Han, Shou-hua Shi, Opt. Commun. 269 (2007) 418] is not secure and proposed an improved three-party quantum secret sharing protocol. In this paper, we study the security of the improved three-party quantum secret sharing protocol and find that it is still not secure. Finally, a further improved three-party quantum secret sharing protocol is proposed.

  1. A Secure and Efficient Handover Authentication Protocol for Wireless Networks

    PubMed Central

    Wang, Weijia; Hu, Lei

    2014-01-01

    Handover authentication protocol is a promising access control technology in the fields of WLANs and mobile wireless sensor networks. In this paper, we firstly review an efficient handover authentication protocol, named PairHand, and its existing security attacks and improvements. Then, we present an improved key recovery attack by using the linearly combining method and reanalyze its feasibility on the improved PairHand protocol. Finally, we present a new handover authentication protocol, which not only achieves the same desirable efficiency features of PairHand, but enjoys the provable security in the random oracle model. PMID:24971471

  2. Research in DRM architecture based on watermarking and PKI

    NASA Astrophysics Data System (ADS)

    Liu, Ligang; Chen, Xiaosu; Xiao, Dao-ju; Yi, Miao

    2005-02-01

    Analyze the virtue and disadvantage of the present digital copyright protecting system, design a kind of security protocol model of digital copyright protection, which equilibrium consider the digital media"s use validity, integrality, security of transmission, and trade equity, make a detailed formalize description to the protocol model, analyze the relationship of the entities involved in the digital work copyright protection. The analysis of the security and capability of the protocol model shows that the model is good at security and practicability.

  3. Mobile Virtual Private Networking

    NASA Astrophysics Data System (ADS)

    Pulkkis, Göran; Grahn, Kaj; Mårtens, Mathias; Mattsson, Jonny

    Mobile Virtual Private Networking (VPN) solutions based on the Internet Security Protocol (IPSec), Transport Layer Security/Secure Socket Layer (SSL/TLS), Secure Shell (SSH), 3G/GPRS cellular networks, Mobile IP, and the presently experimental Host Identity Protocol (HIP) are described, compared and evaluated. Mobile VPN solutions based on HIP are recommended for future networking because of superior processing efficiency and network capacity demand features. Mobile VPN implementation issues associated with the IP protocol versions IPv4 and IPv6 are also evaluated. Mobile VPN implementation experiences are presented and discussed.

  4. Toward Synthesis, Analysis, and Certification of Security Protocols

    NASA Technical Reports Server (NTRS)

    Schumann, Johann

    2004-01-01

    Implemented security protocols are basically pieces of software which are used to (a) authenticate the other communication partners, (b) establish a secure communication channel between them (using insecure communication media), and (c) transfer data between the communication partners in such a way that these data only available to the desired receiver, but not to anyone else. Such an implementation usually consists of the following components: the protocol-engine, which controls in which sequence the messages of the protocol are sent over the network, and which controls the assembly/disassembly and processing (e.g., decryption) of the data. the cryptographic routines to actually encrypt or decrypt the data (using given keys), and t,he interface to the operating system and to the application. For a correct working of such a security protocol, all of these components must work flawlessly. Many formal-methods based techniques for the analysis of a security protocols have been developed. They range from using specific logics (e.g.: BAN-logic [4], or higher order logics [12] to model checking [2] approaches. In each approach, the analysis tries to prove that no (or at least not a modeled intruder) can get access to secret data. Otherwise, a scenario illustrating the &tack may be produced. Despite the seeming simplicity of security protocols ("only" a few messages are sent between the protocol partners in order to ensure a secure communication), many flaws have been detected. Unfortunately, even a perfect protocol engine does not guarantee flawless working of a security protocol, as incidents show. Many break-ins and security vulnerabilities are caused by exploiting errors in the implementation of the protocol engine or the underlying operating system. Attacks using buffer-overflows are a very common class of such attacks. Errors in the implementation of exception or error handling can open up additional vulnerabilities. For example, on a website with a log-in screen: multiple tries with invalid passwords caused the expected error message (too many retries). but let the user nevertheless pass. Finally, security can be compromised by silly implementation bugs or design decisions. In a commercial VPN software, all calls to the encryption routines were incidentally replaced by stubs, probably during factory testing. The product worked nicely. and the error (an open VPN) would have gone undetected, if a team member had not inspected the low-level traffic out of curiosity. Also, the use secret proprietary encryption routines can backfire, because such algorithms often exhibit weaknesses which can be exploited easily (see e.g., DVD encoding). Summarizing, there is large number of possibilities to make errors which can compromise the security of a protocol. In today s world with short time-to-market and the use of security protocols in open and hostile networks for safety-critical applications (e.g., power or air-traffic control), such slips could lead to catastrophic situations. Thus, formal methods and automatic reasoning techniques should not be used just for the formal proof of absence of an attack, but they ought to be used to provide an end-to-end tool-supported framework for security software. With such an approach all required artifacts (code, documentation, test cases) , formal analyses, and reliable certification will be generated automatically, given a single, high level specification. By a combination of program synthesis, formal protocol analysis, certification; and proof-carrying code, this goal is within practical reach, since all the important technologies for such an approach actually exist and only need to be assembled in the right way.

  5. A novel quantum solution to secure two-party distance computation

    NASA Astrophysics Data System (ADS)

    Peng, Zhen-wan; Shi, Run-hua; Wang, Pan-hong; Zhang, Shun

    2018-06-01

    Secure Two-Party Distance Computation is an important primitive of Secure Multiparty Computational Geometry that it involves two parties, where each party has a private point, and the two parties want to jointly compute the distance between their points without revealing anything about their respective private information. Secure Two-Party Distance Computation has very important and potential applications in settings of high secure requirements, such as privacy-preserving Determination of Spatial Location-Relation, Determination of Polygons Similarity, and so on. In this paper, we present a quantum protocol for Secure Two-Party Distance Computation by using QKD-based Quantum Private Query. The security of the protocol is based on the physical principles of quantum mechanics, instead of difficulty assumptions, and therefore, it can ensure higher security than the classical related protocols.

  6. A security proof of the round-robin differential phase shift quantum key distribution protocol based on the signal disturbance

    NASA Astrophysics Data System (ADS)

    Sasaki, Toshihiko; Koashi, Masato

    2017-06-01

    The round-robin differential phase shift (RRDPS) quantum key distribution (QKD) protocol is a unique QKD protocol whose security has not been understood through an information-disturbance trade-off relation, and a sufficient amount of privacy amplification was given independently of signal disturbance. Here, we discuss the security of the RRDPS protocol in the asymptotic regime when a good estimate of the bit error rate is available as a measure of signal disturbance. The uniqueness of the RRDPS protocol shows up as a peculiar form of information-disturbance trade-off curve. When the length of a block of pulses used for encoding and the signal disturbance are both small, it provides a significantly better key rate than that from the original security proof. On the other hand, when the block length is large, the use of the signal disturbance makes little improvement in the key rate. Our analysis will bridge a gap between the RRDPS protocol and the conventional QKD protocols.

  7. Key handling in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Li, Y.; Newe, T.

    2007-07-01

    With the rapid growth of Wireless Sensor Networks (WSNs), many advanced application areas have received significant attention. However, security will be an important factor for their full adoption. Wireless sensor nodes pose unique challenges and as such traditional security protocols, used in traditional networks cannot be applied directly. Some new protocols have been published recently with the goal of providing both privacy of data and authentication of sensor nodes for WSNs. Such protocols can employ private-key and/or public key cryptographic algorithms. Public key algorithms hold the promise of simplifying the network infrastructure required to provide security services such as: privacy, authentication and non-repudiation, while symmetric algorithms require less processing power on the lower power wireless node. In this paper a selection of key establishment/agreement protocols are reviewed and they are broadly divided into two categories: group key agreement protocols and pair-wise key establishment protocols. A summary of the capabilities and security related services provided by each protocol is provided.

  8. Cryptanalysis and improvement of a quantum communication-based online shopping mechanism

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Yang, Ying-Hui; Jia, Heng-Yue

    2015-06-01

    Recently, Chou et al. (Electron Commer Res 14:349-367, 2014) presented a novel controlled quantum secure direct communication protocol which can be used for online shopping. The authors claimed that their protocol was immune to the attacks from both external eavesdropper and internal betrayer. However, we find that this protocol is vulnerable to the attack from internal betrayer. In this paper, we analyze the security of this protocol to show that the controller in this protocol is able to eavesdrop the secret information of the sender (i.e., the customer's shopping information), which indicates that it cannot be used for secure online shopping as the authors expected. Accordingly, an improvement of this protocol, which could resist the controller's attack, is proposed. In addition, we present another protocol which is more appropriate for online shopping. Finally, a discussion about the difference in detail of the quantum secure direct communication process between regular quantum communications and online shopping is given.

  9. Experimental quantum key distribution at 1.3 gigabit-per-second secret-key rate over a 10 dB loss channel

    NASA Astrophysics Data System (ADS)

    Zhang, Zheshen; Chen, Changchen; Zhuang, Quntao; Wong, Franco N. C.; Shapiro, Jeffrey H.

    2018-04-01

    Quantum key distribution (QKD) enables unconditionally secure communication ensured by the laws of physics, opening a promising route to security infrastructure for the coming age of quantum computers. QKD’s demonstrated secret-key rates (SKRs), however, fall far short of the gigabit-per-second rates of classical communication, hindering QKD’s widespread deployment. QKD’s low SKRs are largely due to existing single-photon-based protocols’ vulnerability to channel loss. Floodlight QKD (FL-QKD) boosts SKR by transmitting many photons per encoding, while offering security against collective attacks. Here, we report an FL-QKD experiment operating at a 1.3 Gbit s‑1 SKR over a 10 dB loss channel. To the best of our knowledge, this is the first QKD demonstration that achieves a gigabit-per-second-class SKR, representing a critical advance toward high-rate QKD at metropolitan-area distances.

  10. A new quantum sealed-bid auction protocol with secret order in post-confirmation

    NASA Astrophysics Data System (ADS)

    Wang, Jing-Tao; Chen, Xiu-Bo; Xu, Gang; Meng, Xiang-Hua; Yang, Yi-Xian

    2015-10-01

    A new security protocol for quantum sealed-bid auction is proposed to resist the collusion attack from some malicious bidders. The most significant feature of this protocol is that bidders prepare their particles with secret order in post-confirmation for encoding bids. In addition, a new theorem and its proof are given based on the theory of combinatorial mathematics, which can be used as evaluation criteria for the collusion attack. It is shown that the new protocol is immune to the collusion attack and meets the demand for a secure auction. Compared with those previous protocols, the security, efficiency and availability of the proposed protocol are largely improved.

  11. Practical Quantum Private Database Queries Based on Passive Round-Robin Differential Phase-shift Quantum Key Distribution

    PubMed Central

    Li, Jian; Yang, Yu-Guang; Chen, Xiu-Bo; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-01

    A novel quantum private database query protocol is proposed, based on passive round-robin differential phase-shift quantum key distribution. Compared with previous quantum private database query protocols, the present protocol has the following unique merits: (i) the user Alice can obtain one and only one key bit so that both the efficiency and security of the present protocol can be ensured, and (ii) it does not require to change the length difference of the two arms in a Mach-Zehnder interferometer and just chooses two pulses passively to interfere with so that it is much simpler and more practical. The present protocol is also proved to be secure in terms of the user security and database security. PMID:27539654

  12. Genomics-Based Security Protocols: From Plaintext to Cipherprotein

    NASA Technical Reports Server (NTRS)

    Shaw, Harry; Hussein, Sayed; Helgert, Hermann

    2011-01-01

    The evolving nature of the internet will require continual advances in authentication and confidentiality protocols. Nature provides some clues as to how this can be accomplished in a distributed manner through molecular biology. Cryptography and molecular biology share certain aspects and operations that allow for a set of unified principles to be applied to problems in either venue. A concept for developing security protocols that can be instantiated at the genomics level is presented. A DNA (Deoxyribonucleic acid) inspired hash code system is presented that utilizes concepts from molecular biology. It is a keyed-Hash Message Authentication Code (HMAC) capable of being used in secure mobile Ad hoc networks. It is targeted for applications without an available public key infrastructure. Mechanics of creating the HMAC are presented as well as a prototype HMAC protocol architecture. Security concepts related to the implementation differences between electronic domain security and genomics domain security are discussed.

  13. An Authentication Protocol for Future Sensor Networks.

    PubMed

    Bilal, Muhammad; Kang, Shin-Gak

    2017-04-28

    Authentication is one of the essential security services in Wireless Sensor Networks (WSNs) for ensuring secure data sessions. Sensor node authentication ensures the confidentiality and validity of data collected by the sensor node, whereas user authentication guarantees that only legitimate users can access the sensor data. In a mobile WSN, sensor and user nodes move across the network and exchange data with multiple nodes, thus experiencing the authentication process multiple times. The integration of WSNs with Internet of Things (IoT) brings forth a new kind of WSN architecture along with stricter security requirements; for instance, a sensor node or a user node may need to establish multiple concurrent secure data sessions. With concurrent data sessions, the frequency of the re-authentication process increases in proportion to the number of concurrent connections. Moreover, to establish multiple data sessions, it is essential that a protocol participant have the capability of running multiple instances of the protocol run, which makes the security issue even more challenging. The currently available authentication protocols were designed for the autonomous WSN and do not account for the above requirements. Hence, ensuring a lightweight and efficient authentication protocol has become more crucial. In this paper, we present a novel, lightweight and efficient key exchange and authentication protocol suite called the Secure Mobile Sensor Network (SMSN) Authentication Protocol. In the SMSN a mobile node goes through an initial authentication procedure and receives a re-authentication ticket from the base station. Later a mobile node can use this re-authentication ticket when establishing multiple data exchange sessions and/or when moving across the network. This scheme reduces the communication and computational complexity of the authentication process. We proved the strength of our protocol with rigorous security analysis (including formal analysis using the BAN-logic) and simulated the SMSN and previously proposed schemes in an automated protocol verifier tool. Finally, we compared the computational complexity and communication cost against well-known authentication protocols.

  14. An Authentication Protocol for Future Sensor Networks

    PubMed Central

    Bilal, Muhammad; Kang, Shin-Gak

    2017-01-01

    Authentication is one of the essential security services in Wireless Sensor Networks (WSNs) for ensuring secure data sessions. Sensor node authentication ensures the confidentiality and validity of data collected by the sensor node, whereas user authentication guarantees that only legitimate users can access the sensor data. In a mobile WSN, sensor and user nodes move across the network and exchange data with multiple nodes, thus experiencing the authentication process multiple times. The integration of WSNs with Internet of Things (IoT) brings forth a new kind of WSN architecture along with stricter security requirements; for instance, a sensor node or a user node may need to establish multiple concurrent secure data sessions. With concurrent data sessions, the frequency of the re-authentication process increases in proportion to the number of concurrent connections. Moreover, to establish multiple data sessions, it is essential that a protocol participant have the capability of running multiple instances of the protocol run, which makes the security issue even more challenging. The currently available authentication protocols were designed for the autonomous WSN and do not account for the above requirements. Hence, ensuring a lightweight and efficient authentication protocol has become more crucial. In this paper, we present a novel, lightweight and efficient key exchange and authentication protocol suite called the Secure Mobile Sensor Network (SMSN) Authentication Protocol. In the SMSN a mobile node goes through an initial authentication procedure and receives a re-authentication ticket from the base station. Later a mobile node can use this re-authentication ticket when establishing multiple data exchange sessions and/or when moving across the network. This scheme reduces the communication and computational complexity of the authentication process. We proved the strength of our protocol with rigorous security analysis (including formal analysis using the BAN-logic) and simulated the SMSN and previously proposed schemes in an automated protocol verifier tool. Finally, we compared the computational complexity and communication cost against well-known authentication protocols. PMID:28452937

  15. A Unified Approach to Intra-Domain Security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shue, Craig A; Kalafut, Andrew J.; Gupta, Prof. Minaxi

    2009-01-01

    While a variety of mechanisms have been developed for securing individual intra-domain protocols, none address the issue in a holistic manner. We develop a unified framework to secure prominent networking protocols within a single domain. We begin with a secure version of the DHCP protocol, which has the additional feature of providing each host with a certificate. We then leverage these certificates to secure ARP, prevent spoofing within the domain, and secure SSH and VPN connections between the domain and hosts which have previously interacted with it locally. In doing so, we also develop an incrementally deployable public key infrastructuremore » which can later be leveraged to support inter-domain authentication.« less

  16. Multi-party quantum key agreement protocol secure against collusion attacks

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Sun, Zhiwei; Sun, Xiaoqiang

    2017-07-01

    The fairness of a secure multi-party quantum key agreement (MQKA) protocol requires that all involved parties are entirely peer entities and can equally influence the outcome of the protocol to establish a shared key wherein no one can decide the shared key alone. However, it is found that parts of the existing MQKA protocols are sensitive to collusion attacks, i.e., some of the dishonest participants can collaborate to predetermine the final key without being detected. In this paper, a multi-party QKA protocol resisting collusion attacks is proposed. Different from previous QKA protocol resisting N-1 coconspirators or resisting 1 coconspirators, we investigate the general circle-type MQKA protocol which can be secure against t dishonest participants' cooperation. Here, t < N. We hope the results of the presented paper will be helpful for further research on fair MQKA protocols.

  17. A Mutual Authentication Framework for Wireless Medical Sensor Networks.

    PubMed

    Srinivas, Jangirala; Mishra, Dheerendra; Mukhopadhyay, Sourav

    2017-05-01

    Wireless medical sensor networks (WMSN) comprise of distributed sensors, which can sense human physiological signs and monitor the health condition of the patient. It is observed that providing privacy to the patient's data is an important issue and can be challenging. The information passing is done via the public channel in WMSN. Thus, the patient, sensitive information can be obtained by eavesdropping or by unauthorized use of handheld devices which the health professionals use in monitoring the patient. Therefore, there is an essential need of restricting the unauthorized access to the patient's medical information. Hence, the efficient authentication scheme for the healthcare applications is needed to preserve the privacy of the patients' vital signs. To ensure secure and authorized communication in WMSN, we design a symmetric key based authentication protocol for WMSN environment. The proposed protocol uses only computationally efficient operations to achieve lightweight attribute. We analyze the security of the proposed protocol. We use a formal security proof algorithm to show the scheme security against known attacks. We also use the Automated Validation of Internet Security Protocols and Applications (AVISPA) simulator to show protocol secure against man-in-the-middle attack and replay attack. Additionally, we adopt an informal analysis to discuss the key attributes of the proposed scheme. From the formal proof of security, we can see that an attacker has a negligible probability of breaking the protocol security. AVISPA simulator also demonstrates the proposed scheme security against active attacks, namely, man-in-the-middle attack and replay attack. Additionally, through the comparison of computational efficiency and security attributes with several recent results, proposed scheme seems to be battered.

  18. An enhanced password authentication scheme for session initiation protocol with perfect forward secrecy

    PubMed Central

    2018-01-01

    The Session Initiation Protocol (SIP) is an extensive and esteemed communication protocol employed to regulate signaling as well as for controlling multimedia communication sessions. Recently, Kumari et al. proposed an improved smart card based authentication scheme for SIP based on Farash’s scheme. Farash claimed that his protocol is resistant against various known attacks. But, we observe some accountable flaws in Farash’s protocol. We point out that Farash’s protocol is prone to key-compromise impersonation attack and is unable to provide pre-verification in the smart card, efficient password change and perfect forward secrecy. To overcome these limitations, in this paper we present an enhanced authentication mechanism based on Kumari et al.’s scheme. We prove that the proposed protocol not only overcomes the issues in Farash’s scheme, but it can also resist against all known attacks. We also provide the security analysis of the proposed scheme with the help of widespread AVISPA (Automated Validation of Internet Security Protocols and Applications) software. At last, comparing with the earlier proposals in terms of security and efficiency, we conclude that the proposed protocol is efficient and more secure. PMID:29547619

  19. Secure multiparty computation of a comparison problem.

    PubMed

    Liu, Xin; Li, Shundong; Liu, Jian; Chen, Xiubo; Xu, Gang

    2016-01-01

    Private comparison is fundamental to secure multiparty computation. In this study, we propose novel protocols to privately determine [Formula: see text], or [Formula: see text] in one execution. First, a 0-1-vector encoding method is introduced to encode a number into a vector, and the Goldwasser-Micali encryption scheme is used to compare integers privately. Then, we propose a protocol by using a geometric method to compare rational numbers privately, and the protocol is information-theoretical secure. Using the simulation paradigm, we prove the privacy-preserving property of our protocols in the semi-honest model. The complexity analysis shows that our protocols are more efficient than previous solutions.

  20. An Outline of Data Aggregation Security in Heterogeneous Wireless Sensor Networks

    PubMed Central

    Boubiche, Sabrina; Boubiche, Djallel Eddine; Bilami, Azzedine; Toral-Cruz, Homero

    2016-01-01

    Data aggregation processes aim to reduce the amount of exchanged data in wireless sensor networks and consequently minimize the packet overhead and optimize energy efficiency. Securing the data aggregation process is a real challenge since the aggregation nodes must access the relayed data to apply the aggregation functions. The data aggregation security problem has been widely addressed in classical homogeneous wireless sensor networks, however, most of the proposed security protocols cannot guarantee a high level of security since the sensor node resources are limited. Heterogeneous wireless sensor networks have recently emerged as a new wireless sensor network category which expands the sensor nodes’ resources and capabilities. These new kinds of WSNs have opened new research opportunities where security represents a most attractive area. Indeed, robust and high security level algorithms can be used to secure the data aggregation at the heterogeneous aggregation nodes which is impossible in classical homogeneous WSNs. Contrary to the homogeneous sensor networks, the data aggregation security problem is still not sufficiently covered and the proposed data aggregation security protocols are numberless. To address this recent research area, this paper describes the data aggregation security problem in heterogeneous wireless sensor networks and surveys a few proposed security protocols. A classification and evaluation of the existing protocols is also introduced based on the adopted data aggregation security approach. PMID:27077866

  1. Comment on "Secure quantum private information retrieval using phase-encoded queries"

    NASA Astrophysics Data System (ADS)

    Shi, Run-hua; Mu, Yi; Zhong, Hong; Zhang, Shun

    2016-12-01

    In this Comment, we reexamine the security of phase-encoded quantum private query (QPQ). We find that the current phase-encoded QPQ protocols, including their applications, are vulnerable to a probabilistic entangle-and-measure attack performed by the owner of the database. Furthermore, we discuss how to overcome this security loophole and present an improved cheat-sensitive QPQ protocol without losing the good features of the original protocol.

  2. A Secured Authentication Protocol for SIP Using Elliptic Curves Cryptography

    NASA Astrophysics Data System (ADS)

    Chen, Tien-Ho; Yeh, Hsiu-Lien; Liu, Pin-Chuan; Hsiang, Han-Chen; Shih, Wei-Kuan

    Session initiation protocol (SIP) is a technology regularly performed in Internet Telephony, and Hyper Text Transport Protocol (HTTP) as digest authentication is one of the major methods for SIP authentication mechanism. In 2005, Yang et al. pointed out that HTTP could not resist server spoofing attack and off-line guessing attack and proposed a secret authentication with Diffie-Hellman concept. In 2009, Tsai proposed a nonce based authentication protocol for SIP. In this paper, we demonstrate that their protocol could not resist the password guessing attack and insider attack. Furthermore, we propose an ECC-based authentication mechanism to solve their issues and present security analysis of our protocol to show that ours is suitable for applications with higher security requirement.

  3. Continuous-variable protocol for oblivious transfer in the noisy-storage model.

    PubMed

    Furrer, Fabian; Gehring, Tobias; Schaffner, Christian; Pacher, Christoph; Schnabel, Roman; Wehner, Stephanie

    2018-04-13

    Cryptographic protocols are the backbone of our information society. This includes two-party protocols which offer protection against distrustful players. Such protocols can be built from a basic primitive called oblivious transfer. We present and experimentally demonstrate here a quantum protocol for oblivious transfer for optical continuous-variable systems, and prove its security in the noisy-storage model. This model allows us to establish security by sending more quantum signals than an attacker can reliably store during the protocol. The security proof is based on uncertainty relations which we derive for continuous-variable systems, that differ from the ones used in quantum key distribution. We experimentally demonstrate in a proof-of-principle experiment the proposed oblivious transfer protocol for various channel losses by using entangled two-mode squeezed states measured with balanced homodyne detection. Our work enables the implementation of arbitrary two-party quantum cryptographic protocols with continuous-variable communication systems.

  4. Secure anonymous mutual authentication for star two-tier wireless body area networks.

    PubMed

    Ibrahim, Maged Hamada; Kumari, Saru; Das, Ashok Kumar; Wazid, Mohammad; Odelu, Vanga

    2016-10-01

    Mutual authentication is a very important service that must be established between sensor nodes in wireless body area network (WBAN) to ensure the originality and integrity of the patient's data sent by sensors distributed on different parts of the body. However, mutual authentication service is not enough. An adversary can benefit from monitoring the traffic and knowing which sensor is in transmission of patient's data. Observing the traffic (even without disclosing the context) and knowing its origin, it can reveal to the adversary information about the patient's medical conditions. Therefore, anonymity of the communicating sensors is an important service as well. Few works have been conducted in the area of mutual authentication among sensor nodes in WBAN. However, none of them has considered anonymity among body sensor nodes. Up to our knowledge, our protocol is the first attempt to consider this service in a two-tier WBAN. We propose a new secure protocol to realize anonymous mutual authentication and confidential transmission for star two-tier WBAN topology. The proposed protocol uses simple cryptographic primitives. We prove the security of the proposed protocol using the widely-accepted Burrows-Abadi-Needham (BAN) logic, and also through rigorous informal security analysis. In addition, to demonstrate the practicality of our protocol, we evaluate it using NS-2 simulator. BAN logic and informal security analysis prove that our proposed protocol achieves the necessary security requirements and goals of an authentication service. The simulation results show the impact on the various network parameters, such as end-to-end delay and throughput. The nodes in the network require to store few hundred bits. Nodes require to perform very few hash invocations, which are computationally very efficient. The communication cost of the proposed protocol is few hundred bits in one round of communication. Due to the low computation cost, the energy consumed by the nodes is also low. Our proposed protocol is a lightweight anonymous mutually authentication protocol to mutually authenticate the sensor nodes with the controller node (hub) in a star two-tier WBAN topology. Results show that our protocol proves efficiency over previously proposed protocols and at the same time, achieves the necessary security requirements for a secure anonymous mutual authentication scheme. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Study on Cloud Security Based on Trust Spanning Tree Protocol

    NASA Astrophysics Data System (ADS)

    Lai, Yingxu; Liu, Zenghui; Pan, Qiuyue; Liu, Jing

    2015-09-01

    Attacks executed on Spanning Tree Protocol (STP) expose the weakness of link layer protocols and put the higher layers in jeopardy. Although the problems have been studied for many years and various solutions have been proposed, many security issues remain. To enhance the security and credibility of layer-2 network, we propose a trust-based spanning tree protocol aiming at achieving a higher credibility of LAN switch with a simple and lightweight authentication mechanism. If correctly implemented in each trusted switch, the authentication of trust-based STP can guarantee the credibility of topology information that is announced to other switch in the LAN. To verify the enforcement of the trusted protocol, we present a new trust evaluation method of the STP using a specification-based state model. We implement a prototype of trust-based STP to investigate its practicality. Experiment shows that the trusted protocol can achieve security goals and effectively avoid STP attacks with a lower computation overhead and good convergence performance.

  6. Multiparty quantum key agreement with single particles

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Gao, Fei; Huang, Wei; Wen, Qiao-yan

    2013-04-01

    Two conditions must be satisfied in a secure quantum key agreement (QKA) protocol: (1) outside eavesdroppers cannot gain the generated key without introducing any error; (2) the generated key cannot be determined by any non-trivial subset of the participants. That is, a secure QKA protocol can not only prevent the outside attackers from stealing the key, but also resist the attack from inside participants, i.e. some dishonest participants determine the key alone by illegal means. How to resist participant attack is an aporia in the design of QKA protocols, especially the multi-party ones. In this paper we present the first secure multiparty QKA protocol against both outside and participant attacks. Further more, we have proved its security in detail.

  7. A Weak Value Based QKD Protocol Robust Against Detector Attacks

    NASA Astrophysics Data System (ADS)

    Troupe, James

    2015-03-01

    We propose a variation of the BB84 quantum key distribution protocol that utilizes the properties of weak values to insure the validity of the quantum bit error rate estimates used to detect an eavesdropper. The protocol is shown theoretically to be secure against recently demonstrated attacks utilizing detector blinding and control and should also be robust against all detector based hacking. Importantly, the new protocol promises to achieve this additional security without negatively impacting the secure key generation rate as compared to that originally promised by the standard BB84 scheme. Implementation of the weak measurements needed by the protocol should be very feasible using standard quantum optical techniques.

  8. Lightweight and confidential data discovery and dissemination for wireless body area networks.

    PubMed

    He, Daojing; Chan, Sammy; Zhang, Yan; Yang, Haomiao

    2014-03-01

    As a special sensor network, a wireless body area network (WBAN) provides an economical solution to real-time monitoring and reporting of patients' physiological data. After a WBAN is deployed, it is sometimes necessary to disseminate data into the network through wireless links to adjust configuration parameters of body sensors or distribute management commands and queries to sensors. A number of such protocols have been proposed recently, but they all focus on how to ensure reliability and overlook security vulnerabilities. Taking into account the unique features and application requirements of a WBAN, this paper presents the design, implementation, and evaluation of a secure, lightweight, confidential, and denial-of-service-resistant data discovery and dissemination protocol for WBANs to ensure the data items disseminated are not altered or tampered. Based on multiple one-way key hash chains, our protocol provides instantaneous authentication and can tolerate node compromise. Besides the theoretical analysis that demonstrates the security and performance of the proposed protocol, this paper also reports the experimental evaluation of our protocol in a network of resource-limited sensor nodes, which shows its efficiency in practice. In particular, extensive security analysis shows that our protocol is provably secure.

  9. Elliptic Curve Cryptography-Based Authentication with Identity Protection for Smart Grids

    PubMed Central

    Zhang, Liping; Tang, Shanyu; Luo, He

    2016-01-01

    In a smart grid, the power service provider enables the expected power generation amount to be measured according to current power consumption, thus stabilizing the power system. However, the data transmitted over smart grids are not protected, and then suffer from several types of security threats and attacks. Thus, a robust and efficient authentication protocol should be provided to strength the security of smart grid networks. As the Supervisory Control and Data Acquisition system provides the security protection between the control center and substations in most smart grid environments, we focus on how to secure the communications between the substations and smart appliances. Existing security approaches fail to address the performance-security balance. In this study, we suggest a mitigation authentication protocol based on Elliptic Curve Cryptography with privacy protection by using a tamper-resistant device at the smart appliance side to achieve a delicate balance between performance and security of smart grids. The proposed protocol provides some attractive features such as identity protection, mutual authentication and key agreement. Finally, we demonstrate the completeness of the proposed protocol using the Gong-Needham- Yahalom logic. PMID:27007951

  10. Elliptic Curve Cryptography-Based Authentication with Identity Protection for Smart Grids.

    PubMed

    Zhang, Liping; Tang, Shanyu; Luo, He

    2016-01-01

    In a smart grid, the power service provider enables the expected power generation amount to be measured according to current power consumption, thus stabilizing the power system. However, the data transmitted over smart grids are not protected, and then suffer from several types of security threats and attacks. Thus, a robust and efficient authentication protocol should be provided to strength the security of smart grid networks. As the Supervisory Control and Data Acquisition system provides the security protection between the control center and substations in most smart grid environments, we focus on how to secure the communications between the substations and smart appliances. Existing security approaches fail to address the performance-security balance. In this study, we suggest a mitigation authentication protocol based on Elliptic Curve Cryptography with privacy protection by using a tamper-resistant device at the smart appliance side to achieve a delicate balance between performance and security of smart grids. The proposed protocol provides some attractive features such as identity protection, mutual authentication and key agreement. Finally, we demonstrate the completeness of the proposed protocol using the Gong-Needham-Yahalom logic.

  11. SPOT: Optimization Tool for Network Adaptable Security

    NASA Astrophysics Data System (ADS)

    Ksiezopolski, Bogdan; Szalachowski, Pawel; Kotulski, Zbigniew

    Recently we have observed the growth of the intelligent application especially with its mobile character, called e-anything. The implementation of these applications provides guarantee of security requirements of the cryptographic protocols which are used in the application. Traditionally the protocols have been configured with the strongest possible security mechanisms. Unfortunately, when the application is used by means of the mobile devices, the strongest protection can lead to the denial of services for them. The solution of this problem is introducing the quality of protection models which will scale the protection level depending on the actual threat level. In this article we would like to introduce the application which manages the protection level of the processes in the mobile environment. The Security Protocol Optimizing Tool (SPOT) optimizes the cryptographic protocol and defines the protocol version appropriate to the actual threat level. In this article the architecture of the SPOT is presented with a detailed description of the included modules.

  12. Loss-tolerant quantum secure positioning with weak laser sources

    NASA Astrophysics Data System (ADS)

    Lim, Charles Ci Wen; Xu, Feihu; Siopsis, George; Chitambar, Eric; Evans, Philip G.; Qi, Bing

    2016-09-01

    Quantum position verification (QPV) is the art of verifying the geographical location of an untrusted party. Recently, it has been shown that the widely studied Bennett & Brassard 1984 (BB84) QPV protocol is insecure after the 3 dB loss point assuming local operations and classical communication (LOCC) adversaries. Here, we propose a time-reversed entanglement swapping QPV protocol (based on measurement-device-independent quantum cryptography) that is highly robust against quantum channel loss. First, assuming ideal qubit sources, we show that the protocol is secure against LOCC adversaries for any quantum channel loss, thereby overcoming the 3 dB loss limit. Then, we analyze the security of the protocol in a more practical setting involving weak laser sources and linear optics. In this setting, we find that the security only degrades by an additive constant and the protocol is able to verify positions up to 47 dB channel loss.

  13. Quantum key distribution with an unknown and untrusted source

    NASA Astrophysics Data System (ADS)

    Zhao, Yi; Qi, Bing; Lo, Hoi-Kwong

    2008-05-01

    The security of a standard bidirectional “plug-and-play” quantum key distribution (QKD) system has been an open question for a long time. This is mainly because its source is equivalently controlled by an eavesdropper, which means the source is unknown and untrusted. Qualitative discussion on this subject has been made previously. In this paper, we solve this question directly by presenting the quantitative security analysis on a general class of QKD protocols whose sources are unknown and untrusted. The securities of standard Bennett-Brassard 1984 protocol, weak+vacuum decoy state protocol, and one-decoy state protocol, with unknown and untrusted sources are rigorously proved. We derive rigorous lower bounds to the secure key generation rates of the above three protocols. Our numerical simulation results show that QKD with an untrusted source gives a key generation rate that is close to that with a trusted source.

  14. An Improved Protocol for Controlled Deterministic Secure Quantum Communication Using Five-Qubit Entangled State

    NASA Astrophysics Data System (ADS)

    Kao, Shih-Hung; Lin, Jason; Tsai, Chia-Wei; Hwang, Tzonelih

    2018-03-01

    In early 2009, Xiu et al. (Opt. Commun. 282(2) 333-337 2009) presented a controlled deterministic secure quantum communication (CDSQC) protocol via a newly constructed five-qubit entangled quantum state. Later, Qin et al. (Opt. Commun. 282(13), 2656-2658 2009) pointed out two security loopholes in Xiu et al.'s protocol: (1) A correlation-elicitation (CE) attack can reveal the entire secret message; (2) A leakage of partial information for the receiver is noticed. Then, Xiu et al. (Opt. Commun. 283(2), 344-347 2010) presented a revised CDSQC protocol to remedy the CE attack problem. However, the information leakage problem still remains open. This work proposes a new CDSQC protocol using the same five-qubit entangled state which can work without the above mentioned security problems. Moreover, the Trojan Horse attacks can be automatically avoided without using detecting devices in the new CDSQC.

  15. An Improved Protocol for Controlled Deterministic Secure Quantum Communication Using Five-Qubit Entangled State

    NASA Astrophysics Data System (ADS)

    Kao, Shih-Hung; Lin, Jason; Tsai, Chia-Wei; Hwang, Tzonelih

    2018-06-01

    In early 2009, Xiu et al. (Opt. Commun. 282(2) 333-337 2009) presented a controlled deterministic secure quantum communication (CDSQC) protocol via a newly constructed five-qubit entangled quantum state. Later, Qin et al. (Opt. Commun. 282(13), 2656-2658 2009) pointed out two security loopholes in Xiu et al.'s protocol: (1) A correlation-elicitation (CE) attack can reveal the entire secret message; (2) A leakage of partial information for the receiver is noticed. Then, Xiu et al. (Opt. Commun. 283(2), 344-347 2010) presented a revised CDSQC protocol to remedy the CE attack problem. However, the information leakage problem still remains open. This work proposes a new CDSQC protocol using the same five-qubit entangled state which can work without the above mentioned security problems. Moreover, the Trojan Horse attacks can be automatically avoided without using detecting devices in the new CDSQC.

  16. Security of Y-00 and Similar Quantum Cryptographic Protocols

    DTIC Science & Technology

    2004-11-16

    security of Y-00 type protocols is clarified. Key words: Quantum cryptography PACS: 03.67.Dd Anew approach to quantum cryptog- raphy called KCQ, ( keyed ...classical- noise key generation [2] or the well known BB84 quantum protocol [3]. A special case called αη (or Y-00 in Japan) has been experimentally in... quantum noise for typical op- erating parameters. It weakens both the data and key security , possibly information-theoretically and cer- tainly

  17. 15 CFR 781.2 - Purposes of the Additional Protocol and APR.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE ADDITIONAL PROTOCOL... and less any information to which the U.S. Government applies the national security exclusion, is... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Purposes of the Additional Protocol...

  18. Advanced unambiguous state discrimination attack and countermeasure strategy in a practical B92 QKD system

    NASA Astrophysics Data System (ADS)

    Ko, Heasin; Choi, Byung-Seok; Choe, Joong-Seon; Youn, Chun Ju

    2018-01-01

    Even though unconditional security of B92 quantum key distribution (QKD) system is based on the assumption of perfect positive-operator-valued measures, practical B92 systems only utilize two projective measurements. Unfortunately, such implementation may degrade the security of the B92 QKD system due to Eve's potential attack exploiting the imperfection of system. In this paper, we propose an advanced attack strategy with an unambiguous state discrimination (USD) measurement which makes practical B92 QKD systems insecure even under a lossless channel. In addition, we propose an effective countermeasure against the advanced USD attack model by monitoring double-click events. We further address a fundamental approach to make the B92 QKD system tolerable to attack strategies with USD measurements using a multi-qubit scheme.

  19. Security Analysis of Measurement-Device-Independent Quantum Key Distribution in Collective-Rotation Noisy Environment

    NASA Astrophysics Data System (ADS)

    Li, Na; Zhang, Yu; Wen, Shuang; Li, Lei-lei; Li, Jian

    2018-01-01

    Noise is a problem that communication channels cannot avoid. It is, thus, beneficial to analyze the security of MDI-QKD in noisy environment. An analysis model for collective-rotation noise is introduced, and the information theory methods are used to analyze the security of the protocol. The maximum amount of information that Eve can eavesdrop is 50%, and the eavesdropping can always be detected if the noise level ɛ ≤ 0.68. Therefore, MDI-QKD protocol is secure as quantum key distribution protocol. The maximum probability that the relay outputs successful results is 16% when existing eavesdropping. Moreover, the probability that the relay outputs successful results when existing eavesdropping is higher than the situation without eavesdropping. The paper validates that MDI-QKD protocol has better robustness.

  20. A Novel Quantum Solution to Privacy-Preserving Nearest Neighbor Query in Location-Based Services

    NASA Astrophysics Data System (ADS)

    Luo, Zhen-yu; Shi, Run-hua; Xu, Min; Zhang, Shun

    2018-04-01

    We present a cheating-sensitive quantum protocol for Privacy-Preserving Nearest Neighbor Query based on Oblivious Quantum Key Distribution and Quantum Encryption. Compared with the classical related protocols, our proposed protocol has higher security, because the security of our protocol is based on basic physical principles of quantum mechanics, instead of difficulty assumptions. Especially, our protocol takes single photons as quantum resources and only needs to perform single-photon projective measurement. Therefore, it is feasible to implement this protocol with the present technologies.

  1. Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution.

    PubMed

    García-Patrón, Raúl; Cerf, Nicolas J

    2006-11-10

    A fully general approach to the security analysis of continuous-variable quantum key distribution (CV-QKD) is presented. Provided that the quantum channel is estimated via the covariance matrix of the quadratures, Gaussian attacks are shown to be optimal against all collective eavesdropping strategies. The proof is made strikingly simple by combining a physical model of measurement, an entanglement-based description of CV-QKD, and a recent powerful result on the extremality of Gaussian states [M. M. Wolf, Phys. Rev. Lett. 96, 080502 (2006)10.1103/PhysRevLett.96.080502].

  2. Cryptography in the Bounded-Quantum-Storage Model

    NASA Astrophysics Data System (ADS)

    Schaffner, Christian

    2007-09-01

    This thesis initiates the study of cryptographic protocols in the bounded-quantum-storage model. On the practical side, simple protocols for Rabin Oblivious Transfer, 1-2 Oblivious Transfer and Bit Commitment are presented. No quantum memory is required for honest players, whereas the protocols can only be broken by an adversary controlling a large amount of quantum memory. The protocols are efficient, non-interactive and can be implemented with today's technology. On the theoretical side, new entropic uncertainty relations involving min-entropy are established and used to prove the security of protocols according to new strong security definitions. For instance, in the realistic setting of Quantum Key Distribution (QKD) against quantum-memory-bounded eavesdroppers, the uncertainty relation allows to prove the security of QKD protocols while tolerating considerably higher error rates compared to the standard model with unbounded adversaries.

  3. A Source Anonymity-Based Lightweight Secure AODV Protocol for Fog-Based MANET

    PubMed Central

    Fang, Weidong; Zhang, Wuxiong; Xiao, Jinchao; Yang, Yang; Chen, Wei

    2017-01-01

    Fog-based MANET (Mobile Ad hoc networks) is a novel paradigm of a mobile ad hoc network with the advantages of both mobility and fog computing. Meanwhile, as traditional routing protocol, ad hoc on-demand distance vector (AODV) routing protocol has been applied widely in fog-based MANET. Currently, how to improve the transmission performance and enhance security are the two major aspects in AODV’s research field. However, the researches on joint energy efficiency and security seem to be seldom considered. In this paper, we propose a source anonymity-based lightweight secure AODV (SAL-SAODV) routing protocol to meet the above requirements. In SAL-SAODV protocol, source anonymous and secure transmitting schemes are proposed and applied. The scheme involves the following three parts: the source anonymity algorithm is employed to achieve the source node, without being tracked and located; the improved secure scheme based on the polynomial of CRC-4 is applied to substitute the RSA digital signature of SAODV and guarantee the data integrity, in addition to reducing the computation and energy consumption; the random delayed transmitting scheme (RDTM) is implemented to separate the check code and transmitted data, and achieve tamper-proof results. The simulation results show that the comprehensive performance of the proposed SAL-SAODV is a trade-off of the transmission performance, energy efficiency, and security, and better than AODV and SAODV. PMID:28629142

  4. A Source Anonymity-Based Lightweight Secure AODV Protocol for Fog-Based MANET.

    PubMed

    Fang, Weidong; Zhang, Wuxiong; Xiao, Jinchao; Yang, Yang; Chen, Wei

    2017-06-17

    Fog-based MANET (Mobile Ad hoc networks) is a novel paradigm of a mobile ad hoc network with the advantages of both mobility and fog computing. Meanwhile, as traditional routing protocol, ad hoc on-demand distance vector (AODV) routing protocol has been applied widely in fog-based MANET. Currently, how to improve the transmission performance and enhance security are the two major aspects in AODV's research field. However, the researches on joint energy efficiency and security seem to be seldom considered. In this paper, we propose a source anonymity-based lightweight secure AODV (SAL-SAODV) routing protocol to meet the above requirements. In SAL-SAODV protocol, source anonymous and secure transmitting schemes are proposed and applied. The scheme involves the following three parts: the source anonymity algorithm is employed to achieve the source node, without being tracked and located; the improved secure scheme based on the polynomial of CRC-4 is applied to substitute the RSA digital signature of SAODV and guarantee the data integrity, in addition to reducing the computation and energy consumption; the random delayed transmitting scheme (RDTM) is implemented to separate the check code and transmitted data, and achieve tamper-proof results. The simulation results show that the comprehensive performance of the proposed SAL-SAODV is a trade-off of the transmission performance, energy efficiency, and security, and better than AODV and SAODV.

  5. Redactions in protocols for drug trials: what industry sponsors concealed.

    PubMed

    Marquardsen, Mikkel; Ogden, Michelle; Gøtzsche, Peter C

    2018-04-01

    Objective To describe the redactions in contemporary protocols for industry-sponsored randomised drug trials with patient relevant outcomes and to evaluate whether there was a legitimate rationale for the redactions. Design Cohort study. Under the Freedom of Information Act, we requested access to trial protocols approved by a research ethics committee in Denmark from October 2012 to March 2013. We received 17 consecutive protocols, which had been redacted before we got them, and nine protocols without redactions. In five additional cases, the companies refused to let the committees give us access, and in three other cases, documents were missing. Participants Not applicable. Setting Not applicable. Main outcome measure Amount and nature of redactions in 22 predefined key protocol variables. Results The redactions were most widespread in those sections of the protocol where there is empirical evidence of substantial problems with the trustworthiness of published drug trials: data analysis, handling of missing data, detection and analysis of adverse events, definition of the outcomes, interim analyses and premature termination of the study, sponsor's access to incoming data while the study is running, ownership to the data and investigators' publication rights. The parts of the text that were redacted differed widely, both between companies and within the same company. Conclusions We could not identify any legitimate rationale for the redactions. The current mistrust in industry-sponsored drug trials can only change if the industry offers unconditional access to its trial protocols and other relevant documents and data.

  6. Can the use of the Leggett-Garg inequality enhance security of the BB84 protocol?

    NASA Astrophysics Data System (ADS)

    Shenoy H., Akshata; Aravinda, S.; Srikanth, R.; Home, Dipankar

    2017-08-01

    Prima facie, there are good reasons to answer in the negative the question posed in the title: the Bennett-Brassard 1984 (BB84) protocol is provably secure subject to the assumption of trusted devices, while the Leggett-Garg-type inequality (LGI) does not seem to be readily adaptable to the device independent (DI) or semi-DI scenario. Nevertheless, interestingly, here we identify a specific device attack, which has been shown to render the standard BB84 protocol completely insecure, but against which our formulated LGI-assisted BB84 protocol (based on an appropriate form of LGI) is secure.

  7. On the Composition of Public-Coin Zero-Knowledge Protocols

    DTIC Science & Technology

    2011-05-31

    only languages in BPP have public-coin black-box zero-knowledge protocols that are secure under an unbounded (polynomial) number of parallel...only languages in BPP have public-coin black-box zero-knowledge protocols that are secure under an unbounded (polynomial) number of parallel repetitions...and Krawczyk [GK96b] show that only languages in BPP have constant-round public-coin (stand-alone) black-box ZK protocols with negligible soundness

  8. Access and accounting schemes of wireless broadband

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Huang, Benxiong; Wang, Yan; Yu, Xing

    2004-04-01

    In this paper, two wireless broadband access and accounting schemes were introduced. There are some differences in the client and the access router module between them. In one scheme, Secure Shell (SSH) protocol is used in the access system. The SSH server makes the authentication based on private key cryptography. The advantage of this scheme is the security of the user's information, and we have sophisticated access control. In the other scheme, Secure Sockets Layer (SSL) protocol is used the access system. It uses the technology of public privacy key. Nowadays, web browser generally combines HTTP and SSL protocol and we use the SSL protocol to implement the encryption of the data between the clients and the access route. The schemes are same in the radius sever part. Remote Authentication Dial in User Service (RADIUS), as a security protocol in the form of Client/Sever, is becoming an authentication/accounting protocol for standard access to the Internet. It will be explained in a flow chart. In our scheme, the access router serves as the client to the radius server.

  9. Network security system for health and medical information using smart IC card

    NASA Astrophysics Data System (ADS)

    Kanai, Yoichi; Yachida, Masuyoshi; Yoshikawa, Hiroharu; Yamaguchi, Masahiro; Ohyama, Nagaaki

    1998-07-01

    A new network security protocol that uses smart IC cards has been designed to assure the integrity and privacy of medical information in communication over a non-secure network. Secure communication software has been implemented as a library based on this protocol, which is called the Integrated Secure Communication Layer (ISCL), and has been incorporated into information systems of the National Cancer Center Hospitals and the Health Service Center of the Tokyo Institute of Technology. Both systems have succeeded in communicating digital medical information securely.

  10. Security of a sessional blind signature based on quantum cryptograph

    NASA Astrophysics Data System (ADS)

    Wang, Tian-Yin; Cai, Xiao-Qiu; Zhang, Rui-Ling

    2014-08-01

    We analyze the security of a sessional blind signature protocol based on quantum cryptograph and show that there are two security leaks in this protocol. One is that the legal user Alice can change the signed message after she gets a valid blind signature from the signatory Bob, and the other is that an external opponent Eve also can forge a valid blind message by a special attack, which are not permitted for blind signature. Therefore, this protocol is not secure in the sense that it does not satisfy the non-forgeability of blind signatures. We also discuss the methods to prevent the attack strategies in the end.

  11. Analysis of MD5 authentication in various routing protocols using simulation tools

    NASA Astrophysics Data System (ADS)

    Dinakaran, M.; Darshan, K. N.; Patel, Harsh

    2017-11-01

    Authentication being an important paradigm of security and Computer Networks require secure paths to make the flow of the data even more secure through some security protocols. So MD-5(Message Digest 5) helps in providing data integrity to the data being sent through it and authentication to the network devices. This paper gives a brief introduction to the MD-5, simulation of the networks by including MD-5 authentication using various routing protocols like OSPF, EIGRP and RIPv2. GNS3 is being used to simulate the scenarios. Analysis of the MD-5 authentication is done in the later sections of the paper.

  12. Security of Continuous-Variable Quantum Key Distribution via a Gaussian de Finetti Reduction

    NASA Astrophysics Data System (ADS)

    Leverrier, Anthony

    2017-05-01

    Establishing the security of continuous-variable quantum key distribution against general attacks in a realistic finite-size regime is an outstanding open problem in the field of theoretical quantum cryptography if we restrict our attention to protocols that rely on the exchange of coherent states. Indeed, techniques based on the uncertainty principle are not known to work for such protocols, and the usual tools based on de Finetti reductions only provide security for unrealistically large block lengths. We address this problem here by considering a new type of Gaussian de Finetti reduction, that exploits the invariance of some continuous-variable protocols under the action of the unitary group U (n ) (instead of the symmetric group Sn as in usual de Finetti theorems), and by introducing generalized S U (2 ,2 ) coherent states. Crucially, combined with an energy test, this allows us to truncate the Hilbert space globally instead as at the single-mode level as in previous approaches that failed to provide security in realistic conditions. Our reduction shows that it is sufficient to prove the security of these protocols against Gaussian collective attacks in order to obtain security against general attacks, thereby confirming rigorously the widely held belief that Gaussian attacks are indeed optimal against such protocols.

  13. Security of Continuous-Variable Quantum Key Distribution via a Gaussian de Finetti Reduction.

    PubMed

    Leverrier, Anthony

    2017-05-19

    Establishing the security of continuous-variable quantum key distribution against general attacks in a realistic finite-size regime is an outstanding open problem in the field of theoretical quantum cryptography if we restrict our attention to protocols that rely on the exchange of coherent states. Indeed, techniques based on the uncertainty principle are not known to work for such protocols, and the usual tools based on de Finetti reductions only provide security for unrealistically large block lengths. We address this problem here by considering a new type of Gaussian de Finetti reduction, that exploits the invariance of some continuous-variable protocols under the action of the unitary group U(n) (instead of the symmetric group S_{n} as in usual de Finetti theorems), and by introducing generalized SU(2,2) coherent states. Crucially, combined with an energy test, this allows us to truncate the Hilbert space globally instead as at the single-mode level as in previous approaches that failed to provide security in realistic conditions. Our reduction shows that it is sufficient to prove the security of these protocols against Gaussian collective attacks in order to obtain security against general attacks, thereby confirming rigorously the widely held belief that Gaussian attacks are indeed optimal against such protocols.

  14. Quantum Dialogue with Authentication Based on Bell States

    NASA Astrophysics Data System (ADS)

    Shen, Dongsu; Ma, Wenping; Yin, Xunru; Li, Xiaoping

    2013-06-01

    We propose an authenticated quantum dialogue protocol, which is based on a shared private quantum entangled channel. In this protocol, the EPR pairs are randomly prepared in one of the four Bell states for communication. By performing four Pauli operations on the shared EPR pairs to encode their shared authentication key and secret message, two legitimate users can implement mutual identity authentication and quantum dialogue without the help from the third party authenticator. Furthermore, due to the EPR pairs which are used for secure communication are utilized to implement authentication and the whole authentication process is included in the direct secure communication process, it does not require additional particles to realize authentication in this protocol. The updated authentication key provides the counterparts with a new authentication key for the next authentication and direct communication. Compared with other secure communication with authentication protocols, this one is more secure and efficient owing to the combination of authentication and direct communication. Security analysis shows that it is secure against the eavesdropping attack, the impersonation attack and the man-in-the-middle (MITM) attack.

  15. Security Analysis of DTN Architecture and Bundle Protocol Specification for Space-Based Networks

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    2009-01-01

    A Delay-Tolerant Network (DTN) Architecture (Request for Comment, RFC-4838) and Bundle Protocol Specification, RFC-5050, have been proposed for space and terrestrial networks. Additional security specifications have been provided via the Bundle Security Specification (currently a work in progress as an Internet Research Task Force internet-draft) and, for link-layer protocols applicable to Space networks, the Licklider Transport Protocol Security Extensions. This document provides a security analysis of the current DTN RFCs and proposed security related internet drafts with a focus on space-based communication networks, which is a rather restricted subset of DTN networks. Note, the original focus and motivation of DTN work was for the Interplanetary Internet . This document does not address general store-and-forward network overlays, just the current work being done by the Internet Research Task Force (IRTF) and the Consultative Committee for Space Data Systems (CCSDS) Space Internetworking Services Area (SIS) - DTN working group under the DTN and Bundle umbrellas. However, much of the analysis is relevant to general store-and-forward overlays.

  16. Loss-tolerant quantum secure positioning with weak laser sources

    DOE PAGES

    Lim, Charles Ci Wen; Xu, Feihu; Siopsis, George; ...

    2016-09-14

    Quantum position verification (QPV) is the art of verifying the geographical location of an untrusted party. It has recently been shown that the widely studied Bennett & Brassard 1984 (BB84) QPV protocol is insecure after the 3 dB loss point assuming local operations and classical communication (LOCC) adversaries. Here in this paper, we propose a time-reversed entanglement swapping QPV protocol (based on measurement-device-independent quantum cryptography) that is highly robust against quantum channel loss. First, assuming ideal qubit sources, we show that the protocol is secure against LOCC adversaries for any quantum channel loss, thereby overcoming the 3 dB loss limit.more » Then, we analyze the security of the protocol in a more practical setting involving weak laser sources and linear optics. Lastly, in this setting, we find that the security only degrades by an additive constant and the protocol is able to verify positions up to 47 dB channel loss.« less

  17. Quantum key distribution with an unknown and untrusted source

    NASA Astrophysics Data System (ADS)

    Zhao, Yi; Qi, Bing; Lo, Hoi-Kwong

    2009-03-01

    The security of a standard bi-directional ``plug & play'' quantum key distribution (QKD) system has been an open question for a long time. This is mainly because its source is equivalently controlled by an eavesdropper, which means the source is unknown and untrusted. Qualitative discussion on this subject has been made previously. In this paper, we present the first quantitative security analysis on a general class of QKD protocols whose sources are unknown and untrusted. The securities of standard BB84 protocol, weak+vacuum decoy state protocol, and one-decoy decoy state protocol, with unknown and untrusted sources are rigorously proved. We derive rigorous lower bounds to the secure key generation rates of the above three protocols. Our numerical simulation results show that QKD with an untrusted source gives a key generation rate that is close to that with a trusted source. Our work is published in [1]. [4pt] [1] Y. Zhao, B. Qi, and H.-K. Lo, Phys. Rev. A, 77:052327 (2008).

  18. Entropy uncertainty relations and stability of phase-temporal quantum cryptography with finite-length transmitted strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molotkov, S. N., E-mail: sergei.molotkov@gmail.com

    2012-12-15

    Any key-generation session contains a finite number of quantum-state messages, and it is there-fore important to understand the fundamental restrictions imposed on the minimal length of a string required to obtain a secret key with a specified length. The entropy uncertainty relations for smooth min and max entropies considerably simplify and shorten the proof of security. A proof of security of quantum key distribution with phase-temporal encryption is presented. This protocol provides the maximum critical error compared to other protocols up to which secure key distribution is guaranteed. In addition, unlike other basic protocols (of the BB84 type), which aremore » vulnerable with respect to an attack by 'blinding' of avalanche photodetectors, this protocol is stable with respect to such an attack and guarantees key security.« less

  19. Unconditional regard buffers children's negative self-feelings.

    PubMed

    Brummelman, Eddie; Thomaes, Sander; Walton, Gregory M; Poorthuis, Astrid M G; Overbeek, Geertjan; Orobio de Castro, Bram; Bushman, Brad J

    2014-12-01

    Unconditional regard refers to the feeling that one is accepted and valued by others without conditions. Psychological theory suggests that experiences of unconditional regard lead children to feel that they are valuable despite setbacks. We hypothesized that reflecting on experiences of unconditional regard would buffer children's negative self-feelings (eg, shame, insecurity, powerlessness) in the face of setbacks. To test this hypothesis, we randomized children to reflect on experiences of unconditional regard or other experiences, and examined their response to an academic setback 3 weeks later. Participants (11-15 years old) were randomly assigned to reflect for 15 minutes on experiences of unconditional regard (n = 91), conditional regard (n = 80), or other social experiences (n = 76). Research personnel, teachers, and classmates remained blind to condition assignment. Three weeks later, after receiving their course grades, children reported their self-feelings. Course grades were obtained from school records. Receiving low course grades represents a salient and painful real-world setback for children. Replicating previous research, children who received lower grades experienced more negative self-feelings (P < .001). As predicted, this well-established relationship was significantly attenuated among children who had reflected, 3 weeks previously, on experiences of unconditional regard (Ps < .03). Reflecting on unconditional regard specifically reduced negative self-feelings after low grades (P = .01), not after average or high grades (Ps > .17). Reflecting on unconditional regard buffered children's selves against the adverse impact of an academic setback over an extended period of time. Unconditional regard may thus be an important psychological lever to reduce negative self-feelings in youth. Copyright © 2014 by the American Academy of Pediatrics.

  20. Security analysis with improved design of post-confirmation mechanism for quantum sealed-bid auction with single photons

    NASA Astrophysics Data System (ADS)

    Zhang, Ke-Jia; Kwek, Leong-Chuan; Ma, Chun-Guang; Zhang, Long; Sun, Hong-Wei

    2018-02-01

    Quantum sealed-bid auction (QSA) has been widely studied in quantum cryptography. For a successful auction, post-confirmation is regarded as an important mechanism to make every bidder verify the identity of the winner after the auctioneer has announced the result. However, since the auctioneer may be dishonest and collude with malicious bidders in practice, some potential loopholes could exist. In this paper, we point out two types of collusion attacks for a particular post-confirmation technique with EPR pairs. And it is not difficult to see that there exists no unconditionally secure post-confirmation mechanism in the existing QSA model, if the dishonest participants have the ability to control multiparticle entanglement. In the view of this, we note that some secure implementation could exist if the participants are supposed to be semi-quantum, i.e., they can only control single photons. Finally, two potential methods to design post-confirmation mechanism are presented in this restricted scenario.

  1. Cryptanalysis of an inter-bank E-payment protocol based on quantum proxy blind signature

    NASA Astrophysics Data System (ADS)

    Cai, Xiao-Qiu; Wei, Chun-Yan

    2013-04-01

    We analyze the security of an inter-bank E-payment protocol based on quantum proxy blind signature, and find that there is a security leak in the quantum channels of this protocol, which gives a chance for an outside opponent to launch a special denial-of-service attack. Furthermore, we show that the dishonest merchant can succeed to change the purchase information of the customer in this protocol.

  2. A Novel Re-keying Function Protocol (NRFP) For Wireless Sensor Network Security

    PubMed Central

    Abdullah, Maan Younis; Hua, Gui Wei; Alsharabi, Naif

    2008-01-01

    This paper describes a novel re-keying function protocol (NRFP) for wireless sensor network security. A re-keying process management system for sensor networks is designed to support in-network processing. The design of the protocol is motivated by decentralization key management for wireless sensor networks (WSNs), covering key deployment, key refreshment, and key establishment. NRFP supports the establishment of novel administrative functions for sensor nodes that derive/re-derive a session key for each communication session. The protocol proposes direct connection, in-direct connection and hybrid connection. NRFP also includes an efficient protocol for local broadcast authentication based on the use of one-way key chains. A salient feature of the authentication protocol is that it supports source authentication without precluding innetwork processing. Security and performance analysis shows that it is very efficient in computation, communication and storage and, that NRFP is also effective in defending against many sophisticated attacks. PMID:27873963

  3. A Novel Re-keying Function Protocol (NRFP) For Wireless Sensor Network Security.

    PubMed

    Abdullah, Maan Younis; Hua, Gui Wei; Alsharabi, Naif

    2008-12-04

    This paper describes a novel re-keying function protocol (NRFP) for wireless sensor network security. A re-keying process management system for sensor networks is designed to support in-network processing. The design of the protocol is motivated by decentralization key management for wireless sensor networks (WSNs), covering key deployment, key refreshment, and key establishment. NRFP supports the establishment of novel administrative functions for sensor nodes that derive/re-derive a session key for each communication session. The protocol proposes direct connection, in-direct connection and hybrid connection. NRFP also includes an efficient protocol for local broadcast authentication based on the use of one-way key chains. A salient feature of the authentication protocol is that it supports source authentication without precluding in-network processing. Security and performance analysis shows that it is very efficient in computation, communication and storage and, that NRFP is also effective in defending against many sophisticated attacks.

  4. Experimental eavesdropping attack against Ekert's protocol based on Wigner's inequality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovino, F. A.; Colla, A. M.; Castagnoli, G.

    2003-09-01

    We experimentally implemented an eavesdropping attack against the Ekert protocol for quantum key distribution based on the Wigner inequality. We demonstrate a serious lack of security of this protocol when the eavesdropper gains total control of the source. In addition we tested a modified Wigner inequality which should guarantee a secure quantum key distribution.

  5. Improved Wireless Security through Physical Layer Protocol Manipulation and Radio Frequency Fingerprinting

    DTIC Science & Technology

    2014-09-18

    radios in a cognitive radio network using a radio frequency fingerprinting based method. In IEEE International Conference on Communications (ICC...IMPROVEDWIRELESS SECURITY THROUGH PHYSICAL LAYER PROTOCOL MANIPULATION AND RADIO FREQUENCY FINGERPRINTING DISSERTATION Benjamin W. Ramsey, Captain...PHYSICAL LAYER PROTOCOL MANIPULATION AND RADIO FREQUENCY FINGERPRINTING DISSERTATION Presented to the Faculty Graduate School of Engineering and

  6. Security of counterfactual quantum cryptography

    NASA Astrophysics Data System (ADS)

    Yin, Zhen-Qiang; Li, Hong-Wei; Chen, Wei; Han, Zheng-Fu; Guo, Guang-Can

    2010-10-01

    Recently, a “counterfactual” quantum-key-distribution scheme was proposed by T.-G. Noh [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.103.230501 103, 230501 (2009)]. In this scheme, two legitimate distant peers may share secret keys even when the information carriers are not traveled in the quantum channel. We find that this protocol is equivalent to an entanglement distillation protocol. According to this equivalence, a strict security proof and the asymptotic key bit rate are both obtained when a perfect single-photon source is applied and a Trojan horse attack can be detected. We also find that the security of this scheme is strongly related to not only the bit error rate but also the yields of photons. And our security proof may shed light on the security of other two-way protocols.

  7. Security of counterfactual quantum cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin Zhenqiang; Li Hongwei; Chen Wei

    2010-10-15

    Recently, a 'counterfactual' quantum-key-distribution scheme was proposed by T.-G. Noh [Phys. Rev. Lett. 103, 230501 (2009)]. In this scheme, two legitimate distant peers may share secret keys even when the information carriers are not traveled in the quantum channel. We find that this protocol is equivalent to an entanglement distillation protocol. According to this equivalence, a strict security proof and the asymptotic key bit rate are both obtained when a perfect single-photon source is applied and a Trojan horse attack can be detected. We also find that the security of this scheme is strongly related to not only the bitmore » error rate but also the yields of photons. And our security proof may shed light on the security of other two-way protocols.« less

  8. Novel Multi-Party Quantum Key Agreement Protocol with G-Like States and Bell States

    NASA Astrophysics Data System (ADS)

    Min, Shi-Qi; Chen, Hua-Ying; Gong, Li-Hua

    2018-03-01

    A significant aspect of quantum cryptography is quantum key agreement (QKA), which ensures the security of key agreement protocols by quantum information theory. The fairness of an absolute security multi-party quantum key agreement (MQKA) protocol demands that all participants can affect the protocol result equally so as to establish a shared key and that nobody can determine the shared key by himself/herself. We found that it is difficult for the existing multi-party quantum key agreement protocol to withstand the collusion attacks. Put differently, it is possible for several cooperated and untruthful participants to determine the final key without being detected. To address this issue, based on the entanglement swapping between G-like state and Bell states, a new multi-party quantum key agreement protocol is put forward. The proposed protocol makes full use of EPR pairs as quantum resources, and adopts Bell measurement and unitary operation to share a secret key. Besides, the proposed protocol is fair, secure and efficient without involving a third party quantum center. It demonstrates that the protocol is capable of protecting users' privacy and meeting the requirement of fairness. Moreover, it is feasible to carry out the protocol with existing technologies.

  9. Novel Multi-Party Quantum Key Agreement Protocol with G-Like States and Bell States

    NASA Astrophysics Data System (ADS)

    Min, Shi-Qi; Chen, Hua-Ying; Gong, Li-Hua

    2018-06-01

    A significant aspect of quantum cryptography is quantum key agreement (QKA), which ensures the security of key agreement protocols by quantum information theory. The fairness of an absolute security multi-party quantum key agreement (MQKA) protocol demands that all participants can affect the protocol result equally so as to establish a shared key and that nobody can determine the shared key by himself/herself. We found that it is difficult for the existing multi-party quantum key agreement protocol to withstand the collusion attacks. Put differently, it is possible for several cooperated and untruthful participants to determine the final key without being detected. To address this issue, based on the entanglement swapping between G-like state and Bell states, a new multi-party quantum key agreement protocol is put forward. The proposed protocol makes full use of EPR pairs as quantum resources, and adopts Bell measurement and unitary operation to share a secret key. Besides, the proposed protocol is fair, secure and efficient without involving a third party quantum center. It demonstrates that the protocol is capable of protecting users' privacy and meeting the requirement of fairness. Moreover, it is feasible to carry out the protocol with existing technologies.

  10. High-Dimensional Circular Quantum Secret Sharing Using Orbital Angular Momentum

    NASA Astrophysics Data System (ADS)

    Tang, Dawei; Wang, Tie-jun; Mi, Sichen; Geng, Xiao-Meng; Wang, Chuan

    2016-11-01

    Quantum secret sharing is to distribute secret message securely between multi-parties. Here exploiting orbital angular momentum (OAM) state of single photons as the information carrier, we propose a high-dimensional circular quantum secret sharing protocol which increases the channel capacity largely. In the proposed protocol, the secret message is split into two parts, and each encoded on the OAM state of single photons. The security of the protocol is guaranteed by the laws of non-cloning theorem. And the secret messages could not be recovered except that the two receivers collaborated with each other. Moreover, the proposed protocol could be extended into high-level quantum systems, and the enhanced security could be achieved.

  11. Server-Controlled Identity-Based Authenticated Key Exchange

    NASA Astrophysics Data System (ADS)

    Guo, Hua; Mu, Yi; Zhang, Xiyong; Li, Zhoujun

    We present a threshold identity-based authenticated key exchange protocol that can be applied to an authenticated server-controlled gateway-user key exchange. The objective is to allow a user and a gateway to establish a shared session key with the permission of the back-end servers, while the back-end servers cannot obtain any information about the established session key. Our protocol has potential applications in strong access control of confidential resources. In particular, our protocol possesses the semantic security and demonstrates several highly-desirable security properties such as key privacy and transparency. We prove the security of the protocol based on the Bilinear Diffie-Hellman assumption in the random oracle model.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Juhui; School of Computatioal Sciences, Korea Institute for Advanced Study, Seoul 130-722; Lee, Soojoon

    Extending the eavesdropping strategy devised by Zhang, Li, and Guo [Zhang, Li, and Guo, Phys. Rev. A 63, 036301 (2001)], we show that the multiparty quantum communication protocol based on entanglement swapping, which was proposed by Cabello (e-print quant-ph/0009025), is not secure. We modify the protocol so that entanglement swapping can secure multiparty quantum communication, such as multiparty quantum key distribution and quantum secret sharing of classical information, and show that the modified protocol is secure against the Zhang-Li-Guo strategy for eavesdropping as well as the basic intercept-resend attack.0.

  13. Counterfactual quantum certificate authorization

    NASA Astrophysics Data System (ADS)

    Shenoy H., Akshata; Srikanth, R.; Srinivas, T.

    2014-05-01

    We present a multipartite protocol in a counterfactual paradigm. In counterfactual quantum cryptography, secure information is transmitted between two spatially separated parties even when there is no physical travel of particles transferring the information between them. We propose here a tripartite counterfactual quantum protocol for the task of certificate authorization. Here a trusted third party, Alice, authenticates an entity Bob (e.g., a bank) that a client Charlie wishes to securely transact with. The protocol is counterfactual with respect to either Bob or Charlie. We prove its security against a general incoherent attack, where Eve attacks single particles.

  14. One Step Quantum Key Distribution Based on EPR Entanglement.

    PubMed

    Li, Jian; Li, Na; Li, Lei-Lei; Wang, Tao

    2016-06-30

    A novel quantum key distribution protocol is presented, based on entanglement and dense coding and allowing asymptotically secure key distribution. Considering the storage time limit of quantum bits, a grouping quantum key distribution protocol is proposed, which overcomes the vulnerability of first protocol and improves the maneuverability. Moreover, a security analysis is given and a simple type of eavesdropper's attack would introduce at least an error rate of 46.875%. Compared with the "Ping-pong" protocol involving two steps, the proposed protocol does not need to store the qubit and only involves one step.

  15. Continuous-variable quantum authentication of physical unclonable keys: Security against an emulation attack

    NASA Astrophysics Data System (ADS)

    Nikolopoulos, Georgios M.

    2018-01-01

    We consider a recently proposed entity authentication protocol in which a physical unclonable key is interrogated by random coherent states of light, and the quadratures of the scattered light are analyzed by means of a coarse-grained homodyne detection. We derive a sufficient condition for the protocol to be secure against an emulation attack in which an adversary knows the challenge-response properties of the key and moreover, he can access the challenges during the verification. The security analysis relies on Holevo's bound and Fano's inequality, and suggests that the protocol is secure against the emulation attack for a broad range of physical parameters that are within reach of today's technology.

  16. Efficient multiparty quantum key agreement with collective detection.

    PubMed

    Huang, Wei; Su, Qi; Liu, Bin; He, Yuan-Hang; Fan, Fan; Xu, Bing-Jie

    2017-11-10

    As a burgeoning branch of quantum cryptography, quantum key agreement is a kind of key establishing processes where the security and fairness of the established common key should be guaranteed simultaneously. However, the difficulty on designing a qualified quantum key agreement protocol increases significantly with the increase of the number of the involved participants. Thus far, only few of the existing multiparty quantum key agreement (MQKA) protocols can really achieve security and fairness. Nevertheless, these qualified MQKA protocols are either too inefficient or too impractical. In this paper, an MQKA protocol is proposed with single photons in travelling mode. Since only one eavesdropping detection is needed in the proposed protocol, the qubit efficiency and measurement efficiency of it are higher than those of the existing ones in theory. Compared with the protocols which make use of the entangled states or multi-particle measurements, the proposed protocol is more feasible with the current technologies. Security and fairness analysis shows that the proposed protocol is not only immune to the attacks from external eavesdroppers, but also free from the attacks from internal betrayers.

  17. A New Cellular Architecture for Information Retrieval from Sensor Networks through Embedded Service and Security Protocols

    PubMed Central

    Shahzad, Aamir; Landry, René; Lee, Malrey; Xiong, Naixue; Lee, Jongho; Lee, Changhoon

    2016-01-01

    Substantial changes have occurred in the Information Technology (IT) sectors and with these changes, the demand for remote access to field sensor information has increased. This allows visualization, monitoring, and control through various electronic devices, such as laptops, tablets, i-Pads, PCs, and cellular phones. The smart phone is considered as a more reliable, faster and efficient device to access and monitor industrial systems and their corresponding information interfaces anywhere and anytime. This study describes the deployment of a protocol whereby industrial system information can be securely accessed by cellular phones via a Supervisory Control And Data Acquisition (SCADA) server. To achieve the study goals, proprietary protocol interconnectivity with non-proprietary protocols and the usage of interconnectivity services are considered in detail. They support the visualization of the SCADA system information, and the related operations through smart phones. The intelligent sensors are configured and designated to process real information via cellular phones by employing information exchange services between the proprietary protocol and non-proprietary protocols. SCADA cellular access raises the issue of security flaws. For these challenges, a cryptography-based security method is considered and deployed, and it could be considered as a part of a proprietary protocol. Subsequently, transmission flows from the smart phones through a cellular network. PMID:27314351

  18. A New Cellular Architecture for Information Retrieval from Sensor Networks through Embedded Service and Security Protocols.

    PubMed

    Shahzad, Aamir; Landry, René; Lee, Malrey; Xiong, Naixue; Lee, Jongho; Lee, Changhoon

    2016-06-14

    Substantial changes have occurred in the Information Technology (IT) sectors and with these changes, the demand for remote access to field sensor information has increased. This allows visualization, monitoring, and control through various electronic devices, such as laptops, tablets, i-Pads, PCs, and cellular phones. The smart phone is considered as a more reliable, faster and efficient device to access and monitor industrial systems and their corresponding information interfaces anywhere and anytime. This study describes the deployment of a protocol whereby industrial system information can be securely accessed by cellular phones via a Supervisory Control And Data Acquisition (SCADA) server. To achieve the study goals, proprietary protocol interconnectivity with non-proprietary protocols and the usage of interconnectivity services are considered in detail. They support the visualization of the SCADA system information, and the related operations through smart phones. The intelligent sensors are configured and designated to process real information via cellular phones by employing information exchange services between the proprietary protocol and non-proprietary protocols. SCADA cellular access raises the issue of security flaws. For these challenges, a cryptography-based security method is considered and deployed, and it could be considered as a part of a proprietary protocol. Subsequently, transmission flows from the smart phones through a cellular network.

  19. Chaotic maps and biometrics-based anonymous three-party authenticated key exchange protocol without using passwords

    NASA Astrophysics Data System (ADS)

    Xie, Qi; Hu, Bin; Chen, Ke-Fei; Liu, Wen-Hao; Tan, Xiao

    2015-11-01

    In three-party password authenticated key exchange (AKE) protocol, since two users use their passwords to establish a secure session key over an insecure communication channel with the help of the trusted server, such a protocol may suffer the password guessing attacks and the server has to maintain the password table. To eliminate the shortages of password-based AKE protocol, very recently, according to chaotic maps, Lee et al. [2015 Nonlinear Dyn. 79 2485] proposed a first three-party-authenticated key exchange scheme without using passwords, and claimed its security by providing a well-organized BAN logic test. Unfortunately, their protocol cannot resist impersonation attack, which is demonstrated in the present paper. To overcome their security weakness, by using chaotic maps, we propose a biometrics-based anonymous three-party AKE protocol with the same advantages. Further, we use the pi calculus-based formal verification tool ProVerif to show that our AKE protocol achieves authentication, security and anonymity, and an acceptable efficiency. Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LZ12F02005), the Major State Basic Research Development Program of China (Grant No. 2013CB834205), and the National Natural Science Foundation of China (Grant No. 61070153).

  20. Plug-and-play measurement-device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Choi, Yujun; Kwon, Osung; Woo, Minki; Oh, Kyunghwan; Han, Sang-Wook; Kim, Yong-Su; Moon, Sung

    2016-03-01

    Quantum key distribution (QKD) guarantees unconditional communication security based on the laws of quantum physics. However, practical QKD suffers from a number of quantum hackings due to the device imperfections. From the security standpoint, measurement-device-independent quantum key distribution (MDI-QKD) is in the limelight since it eliminates all the possible loopholes in detection. Due to active control units for mode matching between the photons from remote parties, however, the implementation of MDI-QKD is highly impractical. In this paper, we propose a method to resolve the mode matching problem while minimizing the use of active control units. By introducing the plug-and-play (P&P) concept into MDI-QKD, the indistinguishability in spectral and polarization modes between photons can naturally be guaranteed. We show the feasibility of P&P MDI-QKD with a proof-of-principle experiment.

  1. Putting the Human Back in the Protocol

    NASA Astrophysics Data System (ADS)

    Christianson, Bruce

    Hello, everyone, and welcome to the 14th International Security Protocols Workshop. I’m going to start with a quotation from someone who, at least in principle, is in charge of a very different security community than ours:

  2. Bundle Security Protocol for ION

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott C.; Birrane, Edward J.; Krupiarz, Christopher

    2011-01-01

    This software implements bundle authentication, conforming to the Delay-Tolerant Networking (DTN) Internet Draft on Bundle Security Protocol (BSP), for the Interplanetary Overlay Network (ION) implementation of DTN. This is the only implementation of BSP that is integrated with ION.

  3. Deterministic secure quantum communication using a single d-level system.

    PubMed

    Jiang, Dong; Chen, Yuanyuan; Gu, Xuemei; Xie, Ling; Chen, Lijun

    2017-03-22

    Deterministic secure quantum communication (DSQC) can transmit secret messages between two parties without first generating a shared secret key. Compared with quantum key distribution (QKD), DSQC avoids the waste of qubits arising from basis reconciliation and thus reaches higher efficiency. In this paper, based on data block transmission and order rearrangement technologies, we propose a DSQC protocol. It utilizes a set of single d-level systems as message carriers, which are used to directly encode the secret message in one communication process. Theoretical analysis shows that these employed technologies guarantee the security, and the use of a higher dimensional quantum system makes our protocol achieve higher security and efficiency. Since only quantum memory is required for implementation, our protocol is feasible with current technologies. Furthermore, Trojan horse attack (THA) is taken into account in our protocol. We give a THA model and show that THA significantly increases the multi-photon rate and can thus be detected.

  4. Research participation and the right to withdraw.

    PubMed

    Edwards, Sarah J L

    2005-04-01

    Most ethics committees which review research protocols insist that potential research participants reserve unconditional or absolute 'right' of withdrawal at any time and without giving any reason. In this paper, I examine what consent means for research participation and a sense of commitment in relation to this right to withdraw. I suggest that, once consent has been given (and here I am excluding incompetent minors and adults), participants should not necessarily have unconditional or absolute rights to withdraw. This does not imply that there should be a complete absence of rights, or, indeed, an abandonment of the right to withdraw. The point of this paper is to show that the supposed unconditional or absolute nature of these rights may be self-defeating and so fail to respect the autonomy of participants. In addition, and on a more positive note, I suggest that, attaching certain conditions on the right to withdraw, may better respect the autonomy of these participants by underlining the idea that autonomy is more than mere whim or indifference to the fate of others. On the contrary, research staff are currently unable to 'push' participants, who may merely have logistical difficulties unrelated to the research itself, but who really want to stay the course, for fear of coercing them. Furthermore, researchers now try to 'screen out' people they think may be unreliable to protect the science of the study and so groups at risk of dropping out may be unfairly denied access to research treatments. I conclude that on-going negotiation between the relevant parties could be on balance the only truly acceptable way forward but concede certain important limitations to take into account.

  5. A novel quantum scheme for secure two-party distance computation

    NASA Astrophysics Data System (ADS)

    Peng, Zhen-wan; Shi, Run-hua; Zhong, Hong; Cui, Jie; Zhang, Shun

    2017-12-01

    Secure multiparty computational geometry is an essential field of secure multiparty computation, which computes a computation geometric problem without revealing any private information of each party. Secure two-party distance computation is a primitive of secure multiparty computational geometry, which computes the distance between two points without revealing each point's location information (i.e., coordinate). Secure two-party distance computation has potential applications with high secure requirements in military, business, engineering and so on. In this paper, we present a quantum solution to secure two-party distance computation by subtly using quantum private query. Compared to the classical related protocols, our quantum protocol can ensure higher security and better privacy protection because of the physical principle of quantum mechanics.

  6. FuGeF: A Resource Bound Secure Forwarding Protocol for Wireless Sensor Networks.

    PubMed

    Umar, Idris Abubakar; Mohd Hanapi, Zurina; Sali, A; Zulkarnain, Zuriati A

    2016-06-22

    Resource bound security solutions have facilitated the mitigation of spatio-temporal attacks by altering protocol semantics to provide minimal security while maintaining an acceptable level of performance. The Dynamic Window Secured Implicit Geographic Forwarding (DWSIGF) routing protocol for Wireless Sensor Network (WSN) has been proposed to achieve a minimal selection of malicious nodes by introducing a dynamic collection window period to the protocol's semantics. However, its selection scheme suffers substantial packet losses due to the utilization of a single distance based parameter for node selection. In this paper, we propose a Fuzzy-based Geographic Forwarding protocol (FuGeF) to minimize packet loss, while maintaining performance. The FuGeF utilizes a new form of dynamism and introduces three selection parameters: remaining energy, connectivity cost, and progressive distance, as well as a Fuzzy Logic System (FLS) for node selection. These introduced mechanisms ensure the appropriate selection of a non-malicious node. Extensive simulation experiments have been conducted to evaluate the performance of the proposed FuGeF protocol as compared to DWSIGF variants. The simulation results show that the proposed FuGeF outperforms the two DWSIGF variants (DWSIGF-P and DWSIGF-R) in terms of packet delivery.

  7. Generic framework for the secure Yuen 2000 quantum-encryption protocol employing the wire-tap channel approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihaljevic, Miodrag J.

    2007-05-15

    It is shown that the security, against known-plaintext attacks, of the Yuen 2000 (Y00) quantum-encryption protocol can be considered via the wire-tap channel model assuming that the heterodyne measurement yields the sample for security evaluation. Employing the results reported on the wire-tap channel, a generic framework is proposed for developing secure Y00 instantiations. The proposed framework employs a dedicated encoding which together with inherent quantum noise at the attacker's side provides Y00 security.

  8. A secure distributed logistic regression protocol for the detection of rare adverse drug events

    PubMed Central

    El Emam, Khaled; Samet, Saeed; Arbuckle, Luk; Tamblyn, Robyn; Earle, Craig; Kantarcioglu, Murat

    2013-01-01

    Background There is limited capacity to assess the comparative risks of medications after they enter the market. For rare adverse events, the pooling of data from multiple sources is necessary to have the power and sufficient population heterogeneity to detect differences in safety and effectiveness in genetic, ethnic and clinically defined subpopulations. However, combining datasets from different data custodians or jurisdictions to perform an analysis on the pooled data creates significant privacy concerns that would need to be addressed. Existing protocols for addressing these concerns can result in reduced analysis accuracy and can allow sensitive information to leak. Objective To develop a secure distributed multi-party computation protocol for logistic regression that provides strong privacy guarantees. Methods We developed a secure distributed logistic regression protocol using a single analysis center with multiple sites providing data. A theoretical security analysis demonstrates that the protocol is robust to plausible collusion attacks and does not allow the parties to gain new information from the data that are exchanged among them. The computational performance and accuracy of the protocol were evaluated on simulated datasets. Results The computational performance scales linearly as the dataset sizes increase. The addition of sites results in an exponential growth in computation time. However, for up to five sites, the time is still short and would not affect practical applications. The model parameters are the same as the results on pooled raw data analyzed in SAS, demonstrating high model accuracy. Conclusion The proposed protocol and prototype system would allow the development of logistic regression models in a secure manner without requiring the sharing of personal health information. This can alleviate one of the key barriers to the establishment of large-scale post-marketing surveillance programs. We extended the secure protocol to account for correlations among patients within sites through generalized estimating equations, and to accommodate other link functions by extending it to generalized linear models. PMID:22871397

  9. A secure distributed logistic regression protocol for the detection of rare adverse drug events.

    PubMed

    El Emam, Khaled; Samet, Saeed; Arbuckle, Luk; Tamblyn, Robyn; Earle, Craig; Kantarcioglu, Murat

    2013-05-01

    There is limited capacity to assess the comparative risks of medications after they enter the market. For rare adverse events, the pooling of data from multiple sources is necessary to have the power and sufficient population heterogeneity to detect differences in safety and effectiveness in genetic, ethnic and clinically defined subpopulations. However, combining datasets from different data custodians or jurisdictions to perform an analysis on the pooled data creates significant privacy concerns that would need to be addressed. Existing protocols for addressing these concerns can result in reduced analysis accuracy and can allow sensitive information to leak. To develop a secure distributed multi-party computation protocol for logistic regression that provides strong privacy guarantees. We developed a secure distributed logistic regression protocol using a single analysis center with multiple sites providing data. A theoretical security analysis demonstrates that the protocol is robust to plausible collusion attacks and does not allow the parties to gain new information from the data that are exchanged among them. The computational performance and accuracy of the protocol were evaluated on simulated datasets. The computational performance scales linearly as the dataset sizes increase. The addition of sites results in an exponential growth in computation time. However, for up to five sites, the time is still short and would not affect practical applications. The model parameters are the same as the results on pooled raw data analyzed in SAS, demonstrating high model accuracy. The proposed protocol and prototype system would allow the development of logistic regression models in a secure manner without requiring the sharing of personal health information. This can alleviate one of the key barriers to the establishment of large-scale post-marketing surveillance programs. We extended the secure protocol to account for correlations among patients within sites through generalized estimating equations, and to accommodate other link functions by extending it to generalized linear models.

  10. Multiparty quantum key agreement protocol based on locally indistinguishable orthogonal product states

    NASA Astrophysics Data System (ADS)

    Jiang, Dong-Huan; Xu, Guang-Bao

    2018-07-01

    Based on locally indistinguishable orthogonal product states, we propose a novel multiparty quantum key agreement (QKA) protocol. In this protocol, the private key information of each party is encoded as some orthogonal product states that cannot be perfectly distinguished by local operations and classical communications. To ensure the security of the protocol with small amount of decoy particles, the different particles of each product state are transmitted separately. This protocol not only can make each participant fairly negotiate a shared key, but also can avoid information leakage in the maximum extent. We give a detailed security proof of this protocol. From comparison result with the existing QKA protocols, we can know that the new protocol is more efficient.

  11. Comparative study of key exchange and authentication methods in application, transport and network level security mechanisms

    NASA Astrophysics Data System (ADS)

    Fathirad, Iraj; Devlin, John; Jiang, Frank

    2012-09-01

    The key-exchange and authentication are two crucial elements of any network security mechanism. IPsec, SSL/TLS, PGP and S/MIME are well-known security approaches in providing security service to network, transport and application layers; these protocols use different methods (based on their requirements) to establish keying materials and authenticates key-negotiation and participated parties. This paper studies and compares the authenticated key negotiation methods in mentioned protocols.

  12. Quantum-key-distribution protocol with pseudorandom bases

    NASA Astrophysics Data System (ADS)

    Trushechkin, A. S.; Tregubov, P. A.; Kiktenko, E. O.; Kurochkin, Y. V.; Fedorov, A. K.

    2018-01-01

    Quantum key distribution (QKD) offers a way for establishing information-theoretical secure communications. An important part of QKD technology is a high-quality random number generator for the quantum-state preparation and for post-processing procedures. In this work, we consider a class of prepare-and-measure QKD protocols, utilizing additional pseudorandomness in the preparation of quantum states. We study one of such protocols and analyze its security against the intercept-resend attack. We demonstrate that, for single-photon sources, the considered protocol gives better secret key rates than the BB84 and the asymmetric BB84 protocols. However, the protocol strongly requires single-photon sources.

  13. A robust ECC based mutual authentication protocol with anonymity for session initiation protocol.

    PubMed

    Mehmood, Zahid; Chen, Gongliang; Li, Jianhua; Li, Linsen; Alzahrani, Bander

    2017-01-01

    Over the past few years, Session Initiation Protocol (SIP) is found as a substantial application-layer protocol for the multimedia services. It is extensively used for managing, altering, terminating and distributing the multimedia sessions. Authentication plays a pivotal role in SIP environment. Currently, Lu et al. presented an authentication protocol for SIP and profess that newly proposed protocol is protected against all the familiar attacks. However, the detailed analysis describes that the Lu et al.'s protocol is exposed against server masquerading attack and user's masquerading attack. Moreover, it also fails to protect the user's identity as well as it possesses incorrect login and authentication phase. In order to establish a suitable and efficient protocol, having ability to overcome all these discrepancies, a robust ECC-based novel mutual authentication mechanism with anonymity for SIP is presented in this manuscript. The improved protocol contains an explicit parameter for user to cope the issues of security and correctness and is found to be more secure and relatively effective to protect the user's privacy, user's masquerading and server masquerading as it is verified through the comprehensive formal and informal security analysis.

  14. Secure multi-party communication with quantum key distribution managed by trusted authority

    DOEpatents

    Nordholt, Jane Elizabeth; Hughes, Richard John; Peterson, Charles Glen

    2013-07-09

    Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution ("QKD") are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD are extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.

  15. Secure multi-party communication with quantum key distribution managed by trusted authority

    DOEpatents

    Hughes, Richard John; Nordholt, Jane Elizabeth; Peterson, Charles Glen

    2015-01-06

    Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution ("QKD") are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD are extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.

  16. SCODE: A Secure Coordination-Based Data Dissemination to Mobile Sinks in Sensor Networks

    NASA Astrophysics Data System (ADS)

    Hung, Lexuan; Lee, Sungyoung; Lee, Young-Koo; Lee, Heejo

    For many sensor network applications such as military, homeland security, it is necessary for users (sinks) to access sensor networks while they are moving. However, sink mobility brings new challenges to secure routing in large-scale sensor networks. Mobile sinks have to constantly propagate their current location to all nodes, and these nodes need to exchange messages with each other so that the sensor network can establish and maintain a secure multi-hop path between a source node and a mobile sink. This causes significant computation and communication overhead for sensor nodes. Previous studies on sink mobility have mainly focused on efficiency and effectiveness of data dissemination without security consideration. In this paper, we propose a secure and energy-efficient data dissemination protocol — Secure COodination-based Data dissEmination (SCODE) — for mobile sinks in sensor networks. We take advantages of coordination networks (grid structure) based on Geographical Adaptive Fidelity (GAF) protocol to construct a secure and efficient routing path between sources and sinks. Our security analysis demonstrates that the proposed protocol can defend against common attacks in sensor network routing such as replay attacks, selective forwarding attacks, sinkhole and wormhole, Sybil attacks, HELLO flood attacks. Our performance evaluation both in mathematical analysis and simulation shows that the SCODE significantly reduces communication overhead and energy consumption while the latency is similar compared with the existing routing protocols, and it always delivers more than 90 percentage of packets successfully.

  17. Security Issues for Mobile Medical Imaging: A Primer.

    PubMed

    Choudhri, Asim F; Chatterjee, Arindam R; Javan, Ramin; Radvany, Martin G; Shih, George

    2015-10-01

    The end-user of mobile device apps in the practice of clinical radiology should be aware of security measures that prevent unauthorized use of the device, including passcode policies, methods for dealing with failed login attempts, network manager-controllable passcode enforcement, and passcode enforcement for the protection of the mobile device itself. Protection of patient data must be in place that complies with the Health Insurance Portability and Accountability Act and U.S. Federal Information Processing Standards. Device security measures for data protection include methods for locally stored data encryption, hardware encryption, and the ability to locally and remotely clear data from the device. As these devices transfer information over both local wireless networks and public cell phone networks, wireless network security protocols, including wired equivalent privacy and Wi-Fi protected access, are important components in the chain of security. Specific virtual private network protocols, Secure Sockets Layer and related protocols (especially in the setting of hypertext transfer protocols), native apps, virtual desktops, and nonmedical commercial off-the-shelf apps require consideration in the transmission of medical data over both private and public networks. Enterprise security and management of both personal and enterprise mobile devices are discussed. Finally, specific standards for hardware and software platform security, including prevention of hardware tampering, protection from malicious software, and application authentication methods, are vital components in establishing a secure platform for the use of mobile devices in the medical field. © RSNA, 2015.

  18. Authenticated multi-user quantum key distribution with single particles

    NASA Astrophysics Data System (ADS)

    Lin, Song; Wang, Hui; Guo, Gong-De; Ye, Guo-Hua; Du, Hong-Zhen; Liu, Xiao-Fen

    2016-03-01

    Quantum key distribution (QKD) has been growing rapidly in recent years and becomes one of the hottest issues in quantum information science. During the implementation of QKD on a network, identity authentication has been one main problem. In this paper, an efficient authenticated multi-user quantum key distribution (MQKD) protocol with single particles is proposed. In this protocol, any two users on a quantum network can perform mutual authentication and share a secure session key with the assistance of a semi-honest center. Meanwhile, the particles, which are used as quantum information carriers, are not required to be stored, therefore the proposed protocol is feasible with current technology. Finally, security analysis shows that this protocol is secure in theory.

  19. Three-pass protocol scheme for bitmap image security by using vernam cipher algorithm

    NASA Astrophysics Data System (ADS)

    Rachmawati, D.; Budiman, M. A.; Aulya, L.

    2018-02-01

    Confidentiality, integrity, and efficiency are the crucial aspects of data security. Among the other digital data, image data is too prone to abuse of operation like duplication, modification, etc. There are some data security techniques, one of them is cryptography. The security of Vernam Cipher cryptography algorithm is very dependent on the key exchange process. If the key is leaked, security of this algorithm will collapse. Therefore, a method that minimizes key leakage during the exchange of messages is required. The method which is used, is known as Three-Pass Protocol. This protocol enables message delivery process without the key exchange. Therefore, the sending messages process can reach the receiver safely without fear of key leakage. The system is built by using Java programming language. The materials which are used for system testing are image in size 200×200 pixel, 300×300 pixel, 500×500 pixel, 800×800 pixel and 1000×1000 pixel. The result of experiments showed that Vernam Cipher algorithm in Three-Pass Protocol scheme could restore the original image.

  20. A New Proxy Electronic Voting Scheme Achieved by Six-Particle Entangled States

    NASA Astrophysics Data System (ADS)

    Cao, Hai-Jing; Ding, Li-Yuan; Jiang, Xiu-Li; Li, Peng-Fei

    2018-03-01

    In this paper, we use quantum proxy signature to construct a new secret electronic voting scheme. In our scheme, six particles entangled states function as quantum channels. The voter Alice, the Vote Management Center Bob, the scrutineer Charlie only perform two particles measurements on the Bell bases to realize the electronic voting process. So the scheme reduces the technical difficulty and increases operation efficiency. We use quantum key distribution and one-time pad to guarantee its unconditional security. The significant advantage of our scheme is that transmitted information capacity is twice as much as the capacity of other schemes.

  1. Multiparty Quantum Blind Signature Scheme Based on Graph States

    NASA Astrophysics Data System (ADS)

    Jian-Wu, Liang; Xiao-Shu, Liu; Jin-Jing, Shi; Ying, Guo

    2018-05-01

    A multiparty quantum blind signature scheme is proposed based on the principle of graph state, in which the unitary operations of graph state particles can be applied to generate the quantum blind signature and achieve verification. Different from the classical blind signature based on the mathematical difficulty, the scheme could guarantee not only the anonymity but also the unconditionally security. The analysis shows that the length of the signature generated in our scheme does not become longer as the number of signers increases, and it is easy to increase or decrease the number of signers.

  2. NASA's Plan for SDLS Testing

    NASA Technical Reports Server (NTRS)

    Bailey, Brandon

    2015-01-01

    The Space Data Link Security (SDLS) Protocol is a Consultative Committee for Space Data Systems (CCSDS) standard which extends the known Data Link protocols to secure data being sent over a space link by providing confidentiality and integrity services. This plan outlines the approach by National Aeronautics Space Administration (NASA) in performing testing of the SDLS protocol using a prototype based on an existing NASA missions simulator.

  3. Cryptanalysis and Improvements for the Quantum Private Comparison Protocol Using EPR Pairs

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Xu, Gang; Yang, Yi-Xian

    2013-07-01

    In this paper, we carry out an in-depth analysis of the quantum private comparison (QPC) protocol with the semi-honest third party (TP). The security of QPC protocol using the EPR pairs is re-examined. Unfortunately, we find that TP can use the fake EPR pairs to steal all the secret information. Furthermore, we give two simple and feasible solutions to improve the original QPC protocol. It is shown that the improved protocol is secure, which can resist various kinds of attacks from both the outside eavesdroppers and the inside participants, even the semi-honest TP.

  4. One Step Quantum Key Distribution Based on EPR Entanglement

    PubMed Central

    Li, Jian; Li, Na; Li, Lei-Lei; Wang, Tao

    2016-01-01

    A novel quantum key distribution protocol is presented, based on entanglement and dense coding and allowing asymptotically secure key distribution. Considering the storage time limit of quantum bits, a grouping quantum key distribution protocol is proposed, which overcomes the vulnerability of first protocol and improves the maneuverability. Moreover, a security analysis is given and a simple type of eavesdropper’s attack would introduce at least an error rate of 46.875%. Compared with the “Ping-pong” protocol involving two steps, the proposed protocol does not need to store the qubit and only involves one step. PMID:27357865

  5. Coherent attack on oblivious transfer based on single-qubit rotations

    NASA Astrophysics Data System (ADS)

    He, Guang Ping

    2018-04-01

    Recently a bit-string quantum oblivious transfer (OT) protocol based on single-qubit rotations was proposed (Rodrigues et al 2017 J. Phys. A: Math. Theor. 50 205301) and proven secure against few-qubit measurements. However, it was left as an open question whether the protocol remains secure against general attacks. Here, we close the gap by showing that if the receiver Bob can perform collective measurements on all qubits, then he can learn Alice’s secret message with a probability close to one. Thus the protocol fails to meet the security criterion of OT.

  6. Private quantum computation: an introduction to blind quantum computing and related protocols

    NASA Astrophysics Data System (ADS)

    Fitzsimons, Joseph F.

    2017-06-01

    Quantum technologies hold the promise of not only faster algorithmic processing of data, via quantum computation, but also of more secure communications, in the form of quantum cryptography. In recent years, a number of protocols have emerged which seek to marry these concepts for the purpose of securing computation rather than communication. These protocols address the task of securely delegating quantum computation to an untrusted device while maintaining the privacy, and in some instances the integrity, of the computation. We present a review of the progress to date in this emerging area.

  7. Security Analysis and Improvements of Authentication and Access Control in the Internet of Things

    PubMed Central

    Ndibanje, Bruce; Lee, Hoon-Jae; Lee, Sang-Gon

    2014-01-01

    Internet of Things is a ubiquitous concept where physical objects are connected over the internet and are provided with unique identifiers to enable their self-identification to other devices and the ability to continuously generate data and transmit it over a network. Hence, the security of the network, data and sensor devices is a paramount concern in the IoT network as it grows very fast in terms of exchanged data and interconnected sensor nodes. This paper analyses the authentication and access control method using in the Internet of Things presented by Jing et al (Authentication and Access Control in the Internet of Things. In Proceedings of the 2012 32nd International Conference on Distributed Computing Systems Workshops, Macau, China, 18–21 June 2012, pp. 588–592). According to our analysis, Jing et al.'s protocol is costly in the message exchange and the security assessment is not strong enough for such a protocol. Therefore, we propose improvements to the protocol to fill the discovered weakness gaps. The protocol enhancements facilitate many services to the users such as user anonymity, mutual authentication, and secure session key establishment. Finally, the performance and security analysis show that the improved protocol possesses many advantages against popular attacks, and achieves better efficiency at low communication cost. PMID:25123464

  8. Security analysis and improvements of authentication and access control in the Internet of Things.

    PubMed

    Ndibanje, Bruce; Lee, Hoon-Jae; Lee, Sang-Gon

    2014-08-13

    Internet of Things is a ubiquitous concept where physical objects are connected over the internet and are provided with unique identifiers to enable their self-identification to other devices and the ability to continuously generate data and transmit it over a network. Hence, the security of the network, data and sensor devices is a paramount concern in the IoT network as it grows very fast in terms of exchanged data and interconnected sensor nodes. This paper analyses the authentication and access control method using in the Internet of Things presented by Jing et al. (Authentication and Access Control in the Internet of Things. In Proceedings of the 2012 32nd International Conference on Distributed Computing Systems Workshops, Macau, China, 18-21 June 2012, pp. 588-592). According to our analysis, Jing et al.'s protocol is costly in the message exchange and the security assessment is not strong enough for such a protocol. Therefore, we propose improvements to the protocol to fill the discovered weakness gaps. The protocol enhancements facilitate many services to the users such as user anonymity, mutual authentication, and secure session key establishment. Finally, the performance and security analysis show that the improved protocol possesses many advantages against popular attacks, and achieves better efficiency at low communication cost.

  9. Recommended Methodology for Inter-Service/Agency Automated Message Processing Exchange (I-S/A AMPE). Cost and Schedule Analysis of Security Alternatives.

    DTIC Science & Technology

    1982-02-23

    segregate the computer and storage from the outside world 2. Administrative security to control access to secure computer facilities 3. Network security to...Classification Alternative A- 8 NETWORK KG GENSER DSSCS AMPE TERMINALS TP No. 022-4668-A Figure A-2. Dedicated Switching Architecture Alternative A- 9...communications protocol with the network and GENSER message transmission to the - I-S/A AMPE processor. 7. DSSCS TPU - Handles communications protocol with

  10. Design and Analysis of Secure Routing Protocol for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Wang, Jiong; Zhang, Hua

    2017-09-01

    In recent years, with the development of science and technology and the progress of the times, China's wireless network technology has become increasingly prosperous and it plays an important role in social production and life. In this context, in order to further to enhance the stability of wireless network data transmission and security enhancements, the staff need to focus on routing security and carry out related work. Based on this, this paper analyzes the design of wireless sensor based on secure routing protocol.

  11. Comparative Study on Various Authentication Protocols in Wireless Sensor Networks.

    PubMed

    Rajeswari, S Raja; Seenivasagam, V

    2016-01-01

    Wireless sensor networks (WSNs) consist of lightweight devices with low cost, low power, and short-ranged wireless communication. The sensors can communicate with each other to form a network. In WSNs, broadcast transmission is widely used along with the maximum usage of wireless networks and their applications. Hence, it has become crucial to authenticate broadcast messages. Key management is also an active research topic in WSNs. Several key management schemes have been introduced, and their benefits are not recognized in a specific WSN application. Security services are vital for ensuring the integrity, authenticity, and confidentiality of the critical information. Therefore, the authentication mechanisms are required to support these security services and to be resilient to distinct attacks. Various authentication protocols such as key management protocols, lightweight authentication protocols, and broadcast authentication protocols are compared and analyzed for all secure transmission applications. The major goal of this survey is to compare and find out the appropriate protocol for further research. Moreover, the comparisons between various authentication techniques are also illustrated.

  12. Comparative Study on Various Authentication Protocols in Wireless Sensor Networks

    PubMed Central

    Rajeswari, S. Raja; Seenivasagam, V.

    2016-01-01

    Wireless sensor networks (WSNs) consist of lightweight devices with low cost, low power, and short-ranged wireless communication. The sensors can communicate with each other to form a network. In WSNs, broadcast transmission is widely used along with the maximum usage of wireless networks and their applications. Hence, it has become crucial to authenticate broadcast messages. Key management is also an active research topic in WSNs. Several key management schemes have been introduced, and their benefits are not recognized in a specific WSN application. Security services are vital for ensuring the integrity, authenticity, and confidentiality of the critical information. Therefore, the authentication mechanisms are required to support these security services and to be resilient to distinct attacks. Various authentication protocols such as key management protocols, lightweight authentication protocols, and broadcast authentication protocols are compared and analyzed for all secure transmission applications. The major goal of this survey is to compare and find out the appropriate protocol for further research. Moreover, the comparisons between various authentication techniques are also illustrated. PMID:26881272

  13. Controlled quantum secure communication protocol with single photons in both polarization and spatial-mode degrees of freedom

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Ma, Wenping

    2016-02-01

    In this paper, we propose a new controlled quantum secure direct communication (CQSDC) protocol with single photons in both polarization and spatial-mode degrees of freedom. Based on the defined local collective unitary operations, the sender’s secret messages can be transmitted directly to the receiver through encoding secret messages on the particles. Only with the help of the third side, the receiver can reconstruct the secret messages. Each single photon in two degrees of freedom can carry two bits of information, so the cost of our protocol is less than others using entangled qubits. Moreover, the security of our QSDC network protocol is discussed comprehensively. It is shown that our new CQSDC protocol cannot only defend the outsider eavesdroppers’ several sorts of attacks but also the inside attacks. Besides, our protocol is feasible since the preparation and the measurement of single photon quantum states in both the polarization and the spatial-mode degrees of freedom are available with current quantum techniques.

  14. A secure RFID-based WBAN for healthcare applications.

    PubMed

    Ullah, Sana; Alamri, Atif

    2013-10-01

    A Wireless Body Area Network (WBAN) allows the seamless integration of small and intelligent invasive or non-invasive sensor nodes in, on or around a human body for continuous health monitoring. These nodes are expected to use different power-efficient protocols in order to extend the WBAN lifetime. This paper highlights the power consumption and security issues of WBAN for healthcare applications. Numerous power saving mechanisms are discussed and a secure RFID-based protocol for WBAN is proposed. The performance of the proposed protocol is analyzed and compared with that of IEEE 802.15.6-based CSMA/CA and preamble-based TDMA protocols using extensive simulations. It is shown that the proposed protocol is power-efficient and protects patients' data from adversaries. It is less vulnerable to different attacks compared to that of IEEE 802.15.6-based CSMA/CA and preamble-based TDMA protocols. For a low traffic load and a single alkaline battery of capacity 2.6 Ah, the proposed protocol could extend the WBAN lifetime, when deployed on patients in hospitals or at homes, to approximately five years.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Charles Ci Wen; Xu, Feihu; Siopsis, George

    Quantum position verification (QPV) is the art of verifying the geographical location of an untrusted party. It has recently been shown that the widely studied Bennett & Brassard 1984 (BB84) QPV protocol is insecure after the 3 dB loss point assuming local operations and classical communication (LOCC) adversaries. Here in this paper, we propose a time-reversed entanglement swapping QPV protocol (based on measurement-device-independent quantum cryptography) that is highly robust against quantum channel loss. First, assuming ideal qubit sources, we show that the protocol is secure against LOCC adversaries for any quantum channel loss, thereby overcoming the 3 dB loss limit.more » Then, we analyze the security of the protocol in a more practical setting involving weak laser sources and linear optics. Lastly, in this setting, we find that the security only degrades by an additive constant and the protocol is able to verify positions up to 47 dB channel loss.« less

  16. Efficiency and security problems of anonymous key agreement protocol based on chaotic maps

    NASA Astrophysics Data System (ADS)

    Yoon, Eun-Jun

    2012-07-01

    In 2011, Niu-Wang proposed an anonymous key agreement protocol based on chaotic maps in [Niu Y, Wang X. An anonymous key agreement protocol based on chaotic maps. Commun Nonlinear Sci Simulat 2011;16(4):1986-92]. Niu-Wang's protocol not only achieves session key agreement between a server and a user, but also allows the user to anonymously interact with the server. Nevertheless, this paper points out that Niu-Wang's protocol has the following efficiency and security problems: (1) The protocol has computational efficiency problem when a trusted third party decrypts the user sending message. (2) The protocol is vulnerable to Denial of Service (DoS) attack based on illegal message modification by an attacker.

  17. A secure RFID authentication protocol adopting error correction code.

    PubMed

    Chen, Chien-Ming; Chen, Shuai-Min; Zheng, Xinying; Chen, Pei-Yu; Sun, Hung-Min

    2014-01-01

    RFID technology has become popular in many applications; however, most of the RFID products lack security related functionality due to the hardware limitation of the low-cost RFID tags. In this paper, we propose a lightweight mutual authentication protocol adopting error correction code for RFID. Besides, we also propose an advanced version of our protocol to provide key updating. Based on the secrecy of shared keys, the reader and the tag can establish a mutual authenticity relationship. Further analysis of the protocol showed that it also satisfies integrity, forward secrecy, anonymity, and untraceability. Compared with other lightweight protocols, the proposed protocol provides stronger resistance to tracing attacks, compromising attacks and replay attacks. We also compare our protocol with previous works in terms of performance.

  18. A Secure RFID Authentication Protocol Adopting Error Correction Code

    PubMed Central

    Zheng, Xinying; Chen, Pei-Yu

    2014-01-01

    RFID technology has become popular in many applications; however, most of the RFID products lack security related functionality due to the hardware limitation of the low-cost RFID tags. In this paper, we propose a lightweight mutual authentication protocol adopting error correction code for RFID. Besides, we also propose an advanced version of our protocol to provide key updating. Based on the secrecy of shared keys, the reader and the tag can establish a mutual authenticity relationship. Further analysis of the protocol showed that it also satisfies integrity, forward secrecy, anonymity, and untraceability. Compared with other lightweight protocols, the proposed protocol provides stronger resistance to tracing attacks, compromising attacks and replay attacks. We also compare our protocol with previous works in terms of performance. PMID:24959619

  19. Secure and Lightweight Cloud-Assisted Video Reporting Protocol over 5G-Enabled Vehicular Networks

    PubMed Central

    2017-01-01

    In the vehicular networks, the real-time video reporting service is used to send the recorded videos in the vehicle to the cloud. However, when facilitating the real-time video reporting service in the vehicular networks, the usage of the fourth generation (4G) long term evolution (LTE) was proved to suffer from latency while the IEEE 802.11p standard does not offer sufficient scalability for a such congested environment. To overcome those drawbacks, the fifth-generation (5G)-enabled vehicular network is considered as a promising technology for empowering the real-time video reporting service. In this paper, we note that security and privacy related issues should also be carefully addressed to boost the early adoption of 5G-enabled vehicular networks. There exist a few research works for secure video reporting service in 5G-enabled vehicular networks. However, their usage is limited because of public key certificates and expensive pairing operations. Thus, we propose a secure and lightweight protocol for cloud-assisted video reporting service in 5G-enabled vehicular networks. Compared to the conventional public key certificates, the proposed protocol achieves entities’ authorization through anonymous credential. Also, by using lightweight security primitives instead of expensive bilinear pairing operations, the proposed protocol minimizes the computational overhead. From the evaluation results, we show that the proposed protocol takes the smaller computation and communication time for the cryptographic primitives than that of the well-known Eiza-Ni-Shi protocol. PMID:28946633

  20. Secure and Lightweight Cloud-Assisted Video Reporting Protocol over 5G-Enabled Vehicular Networks.

    PubMed

    Nkenyereye, Lewis; Kwon, Joonho; Choi, Yoon-Ho

    2017-09-23

    In the vehicular networks, the real-time video reporting service is used to send the recorded videos in the vehicle to the cloud. However, when facilitating the real-time video reporting service in the vehicular networks, the usage of the fourth generation (4G) long term evolution (LTE) was proved to suffer from latency while the IEEE 802.11p standard does not offer sufficient scalability for a such congested environment. To overcome those drawbacks, the fifth-generation (5G)-enabled vehicular network is considered as a promising technology for empowering the real-time video reporting service. In this paper, we note that security and privacy related issues should also be carefully addressed to boost the early adoption of 5G-enabled vehicular networks. There exist a few research works for secure video reporting service in 5G-enabled vehicular networks. However, their usage is limited because of public key certificates and expensive pairing operations. Thus, we propose a secure and lightweight protocol for cloud-assisted video reporting service in 5G-enabled vehicular networks. Compared to the conventional public key certificates, the proposed protocol achieves entities' authorization through anonymous credential. Also, by using lightweight security primitives instead of expensive bilinear pairing operations, the proposed protocol minimizes the computational overhead. From the evaluation results, we show that the proposed protocol takes the smaller computation and communication time for the cryptographic primitives than that of the well-known Eiza-Ni-Shi protocol.

  1. Performance evaluation of secured DICOM image communication with next generation internet protocol IPv6

    NASA Astrophysics Data System (ADS)

    Yu, Fenghai; Zhang, Jianguo; Chen, Xiaomeng; Huang, H. K.

    2005-04-01

    Next Generation Internet (NGI) technology with new communication protocol IPv6 emerges as a potential solution for low-cost and high-speed networks for image data transmission. IPv6 is designed to solve many of the problems of the current version of IP (known as IPv4) with regard to address depletion, security, autoconfiguration, extensibility, and more. We choose CTN (Central Test Node) DICOM software developed by The Mallinckrodt Institute of Radiology to implement IPv6/IPv4 enabled DICOM communication software on different operating systems (Windows/Linux), and used this DICOM software to evaluate the performance of the IPv6/IPv4 enabled DICOM image communication with different security setting and environments. We compared the security communications of IPsec with SSL/TLS on different TCP/IP protocols (IPv6/IPv4), and find that there are some trade-offs to choose security solution between IPsec and SSL/TLS in the security implementation of IPv6/IPv4 communication networks.

  2. Secure multi-party communication with quantum key distribution managed by trusted authority

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Richard John; Nordholt, Jane Elizabeth; Peterson, Charles Glen

    Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution ("QKD") are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD aremore » extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.« less

  3. Quantum Secure Group Communication.

    PubMed

    Li, Zheng-Hong; Zubairy, M Suhail; Al-Amri, M

    2018-03-01

    We propose a quantum secure group communication protocol for the purpose of sharing the same message among multiple authorized users. Our protocol can remove the need for key management that is needed for the quantum network built on quantum key distribution. Comparing with the secure quantum network based on BB84, we show our protocol is more efficient and securer. Particularly, in the security analysis, we introduce a new way of attack, i.e., the counterfactual quantum attack, which can steal information by "invisible" photons. This invisible photon can reveal a single-photon detector in the photon path without triggering the detector. Moreover, the photon can identify phase operations applied to itself, thereby stealing information. To defeat this counterfactual quantum attack, we propose a quantum multi-user authorization system. It allows us to precisely control the communication time so that the attack can not be completed in time.

  4. Enhanced Security and Pairing-free Handover Authentication Scheme for Mobile Wireless Networks

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Shu, Guangqiang; Chen, Peng; Zhang, Lijun

    2017-10-01

    With the widely deployment of mobile wireless networks, we aim to propose a secure and seamless handover authentication scheme that allows users to roam freely in wireless networks without worrying about security and privacy issues. Given the open characteristic of wireless networks, safety and efficiency should be considered seriously. Several previous protocols are designed based on a bilinear pairing mapping, which is time-consuming and inefficient work, as well as unsuitable for practical situations. To address these issues, we designed a new pairing-free handover authentication scheme for mobile wireless networks. This scheme is an effective improvement of the protocol by Xu et al., which is suffer from the mobile node impersonation attack. Security analysis and simulation experiment indicate that the proposed protocol has many excellent security properties when compared with other recent similar handover schemes, such as mutual authentication and resistance to known network threats, as well as requiring lower computation and communication cost.

  5. Cost-Effective Encryption-Based Autonomous Routing Protocol for Efficient and Secure Wireless Sensor Networks.

    PubMed

    Saleem, Kashif; Derhab, Abdelouahid; Orgun, Mehmet A; Al-Muhtadi, Jalal; Rodrigues, Joel J P C; Khalil, Mohammed Sayim; Ali Ahmed, Adel

    2016-03-31

    The deployment of intelligent remote surveillance systems depends on wireless sensor networks (WSNs) composed of various miniature resource-constrained wireless sensor nodes. The development of routing protocols for WSNs is a major challenge because of their severe resource constraints, ad hoc topology and dynamic nature. Among those proposed routing protocols, the biology-inspired self-organized secure autonomous routing protocol (BIOSARP) involves an artificial immune system (AIS) that requires a certain amount of time to build up knowledge of neighboring nodes. The AIS algorithm uses this knowledge to distinguish between self and non-self neighboring nodes. The knowledge-building phase is a critical period in the WSN lifespan and requires active security measures. This paper proposes an enhanced BIOSARP (E-BIOSARP) that incorporates a random key encryption mechanism in a cost-effective manner to provide active security measures in WSNs. A detailed description of E-BIOSARP is presented, followed by an extensive security and performance analysis to demonstrate its efficiency. A scenario with E-BIOSARP is implemented in network simulator 2 (ns-2) and is populated with malicious nodes for analysis. Furthermore, E-BIOSARP is compared with state-of-the-art secure routing protocols in terms of processing time, delivery ratio, energy consumption, and packet overhead. The findings show that the proposed mechanism can efficiently protect WSNs from selective forwarding, brute-force or exhaustive key search, spoofing, eavesdropping, replaying or altering of routing information, cloning, acknowledgment spoofing, HELLO flood attacks, and Sybil attacks.

  6. Cost-Effective Encryption-Based Autonomous Routing Protocol for Efficient and Secure Wireless Sensor Networks

    PubMed Central

    Saleem, Kashif; Derhab, Abdelouahid; Orgun, Mehmet A.; Al-Muhtadi, Jalal; Rodrigues, Joel J. P. C.; Khalil, Mohammed Sayim; Ali Ahmed, Adel

    2016-01-01

    The deployment of intelligent remote surveillance systems depends on wireless sensor networks (WSNs) composed of various miniature resource-constrained wireless sensor nodes. The development of routing protocols for WSNs is a major challenge because of their severe resource constraints, ad hoc topology and dynamic nature. Among those proposed routing protocols, the biology-inspired self-organized secure autonomous routing protocol (BIOSARP) involves an artificial immune system (AIS) that requires a certain amount of time to build up knowledge of neighboring nodes. The AIS algorithm uses this knowledge to distinguish between self and non-self neighboring nodes. The knowledge-building phase is a critical period in the WSN lifespan and requires active security measures. This paper proposes an enhanced BIOSARP (E-BIOSARP) that incorporates a random key encryption mechanism in a cost-effective manner to provide active security measures in WSNs. A detailed description of E-BIOSARP is presented, followed by an extensive security and performance analysis to demonstrate its efficiency. A scenario with E-BIOSARP is implemented in network simulator 2 (ns-2) and is populated with malicious nodes for analysis. Furthermore, E-BIOSARP is compared with state-of-the-art secure routing protocols in terms of processing time, delivery ratio, energy consumption, and packet overhead. The findings show that the proposed mechanism can efficiently protect WSNs from selective forwarding, brute-force or exhaustive key search, spoofing, eavesdropping, replaying or altering of routing information, cloning, acknowledgment spoofing, HELLO flood attacks, and Sybil attacks. PMID:27043572

  7. Security of the arbitrated quantum signature protocols revisited

    NASA Astrophysics Data System (ADS)

    Kejia, Zhang; Dan, Li; Qi, Su

    2014-01-01

    Recently, much attention has been paid to the study of arbitrated quantum signature (AQS). Among these studies, the cryptanalysis of some AQS protocols and a series of improved ideas have been proposed. Compared with the previous analysis, we present a security criterion, which can judge whether an AQS protocol is able to prevent the receiver (i.e. one participant in the signature protocol) from forging a legal signature. According to our results, it can be seen that most AQS protocols which are based on the Zeng and Keitel (ZK) model are susceptible to a forgery attack. Furthermore, we present an improved idea of the ZK protocol. Finally, some supplement discussions and several interesting topics are provided.

  8. A privacy preserving protocol for tracking participants in phase I clinical trials.

    PubMed

    El Emam, Khaled; Farah, Hanna; Samet, Saeed; Essex, Aleksander; Jonker, Elizabeth; Kantarcioglu, Murat; Earle, Craig C

    2015-10-01

    Some phase 1 clinical trials offer strong financial incentives for healthy individuals to participate in their studies. There is evidence that some individuals enroll in multiple trials concurrently. This creates safety risks and introduces data quality problems into the trials. Our objective was to construct a privacy preserving protocol to track phase 1 participants to detect concurrent enrollment. A protocol using secure probabilistic querying against a database of trial participants that allows for screening during telephone interviews and on-site enrollment was developed. The match variables consisted of demographic information. The accuracy (sensitivity, precision, and negative predictive value) of the matching and its computational performance in seconds were measured under simulated environments. Accuracy was also compared to non-secure matching methods. The protocol performance scales linearly with the database size. At the largest database size of 20,000 participants, a query takes under 20s on a 64 cores machine. Sensitivity, precision, and negative predictive value of the queries were consistently at or above 0.9, and were very similar to non-secure versions of the protocol. The protocol provides a reasonable solution to the concurrent enrollment problems in phase 1 clinical trials, and is able to ensure that personal information about participants is kept secure. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Security analysis of standards-driven communication protocols for healthcare scenarios.

    PubMed

    Masi, Massimiliano; Pugliese, Rosario; Tiezzi, Francesco

    2012-12-01

    The importance of the Electronic Health Record (EHR), that stores all healthcare-related data belonging to a patient, has been recognised in recent years by governments, institutions and industry. Initiatives like the Integrating the Healthcare Enterprise (IHE) have been developed for the definition of standard methodologies for secure and interoperable EHR exchanges among clinics and hospitals. Using the requisites specified by these initiatives, many large scale projects have been set up for enabling healthcare professionals to handle patients' EHRs. The success of applications developed in these contexts crucially depends on ensuring such security properties as confidentiality, authentication, and authorization. In this paper, we first propose a communication protocol, based on the IHE specifications, for authenticating healthcare professionals and assuring patients' safety. By means of a formal analysis carried out by using the specification language COWS and the model checker CMC, we reveal a security flaw in the protocol thus demonstrating that to simply adopt the international standards does not guarantee the absence of such type of flaws. We then propose how to emend the IHE specifications and modify the protocol accordingly. Finally, we show how to tailor our protocol for application to more critical scenarios with no assumptions on the communication channels. To demonstrate feasibility and effectiveness of our protocols we have fully implemented them.

  10. No information flow using statistical fluctuations and quantum cryptography

    NASA Astrophysics Data System (ADS)

    Larsson, Jan-Åke

    2004-04-01

    The communication protocol of Home and Whitaker [

    Phys. Rev. A 67, 022306 (2003)
    ] is examined in some detail, and found to work equally well using a separable state. The protocol is in fact completely classical, based on postselection of suitable experimental runs. The quantum-cryptography protocol proposed in the same publication is also examined, and this protocol uses entanglement, a strictly quantum property of the system. An individual eavesdropping attack on each qubit pair would be detected by the security test proposed in the mentioned paper. However, the key is provided by groups of qubits, and there exists a coherent attack, internal to these groups, that will go unnoticed in that security test. A modified test is proposed here that will ensure security, even against such a coherent attack.

  11. Deterministic Secure Quantum Communication and Authentication Protocol based on Extended GHZ-W State and Quantum One-time Pad

    NASA Astrophysics Data System (ADS)

    Li, Na; Li, Jian; Li, Lei-Lei; Wang, Zheng; Wang, Tao

    2016-08-01

    A deterministic secure quantum communication and authentication protocol based on extended GHZ-W state and quantum one-time pad is proposed. In the protocol, state | φ -> is used as the carrier. One photon of | φ -> state is sent to Alice, and Alice obtains a random key by measuring photons with bases determined by ID. The information of bases is secret to others except Alice and Bob. Extended GHZ-W states are used as decoy photons, the positions of which in information sequence are encoded with identity string ID of the legal user, and the eavesdropping detection rate reaches 81%. The eavesdropping detection based on extended GHZ-W state combines with authentication and the secret ID ensures the security of the protocol.

  12. Complete Insecurity of Quantum Protocols for Classical Two-Party Computation

    NASA Astrophysics Data System (ADS)

    Buhrman, Harry; Christandl, Matthias; Schaffner, Christian

    2012-10-01

    A fundamental task in modern cryptography is the joint computation of a function which has two inputs, one from Alice and one from Bob, such that neither of the two can learn more about the other’s input than what is implied by the value of the function. In this Letter, we show that any quantum protocol for the computation of a classical deterministic function that outputs the result to both parties (two-sided computation) and that is secure against a cheating Bob can be completely broken by a cheating Alice. Whereas it is known that quantum protocols for this task cannot be completely secure, our result implies that security for one party implies complete insecurity for the other. Our findings stand in stark contrast to recent protocols for weak coin tossing and highlight the limits of cryptography within quantum mechanics. We remark that our conclusions remain valid, even if security is only required to be approximate and if the function that is computed for Bob is different from that of Alice.

  13. Complete insecurity of quantum protocols for classical two-party computation.

    PubMed

    Buhrman, Harry; Christandl, Matthias; Schaffner, Christian

    2012-10-19

    A fundamental task in modern cryptography is the joint computation of a function which has two inputs, one from Alice and one from Bob, such that neither of the two can learn more about the other's input than what is implied by the value of the function. In this Letter, we show that any quantum protocol for the computation of a classical deterministic function that outputs the result to both parties (two-sided computation) and that is secure against a cheating Bob can be completely broken by a cheating Alice. Whereas it is known that quantum protocols for this task cannot be completely secure, our result implies that security for one party implies complete insecurity for the other. Our findings stand in stark contrast to recent protocols for weak coin tossing and highlight the limits of cryptography within quantum mechanics. We remark that our conclusions remain valid, even if security is only required to be approximate and if the function that is computed for Bob is different from that of Alice.

  14. Fully device-independent quantum key distribution.

    PubMed

    Vazirani, Umesh; Vidick, Thomas

    2014-10-03

    Quantum cryptography promises levels of security that are impossible to replicate in a classical world. Can this security be guaranteed even when the quantum devices on which the protocol relies are untrusted? This central question dates back to the early 1990s when the challenge of achieving device-independent quantum key distribution was first formulated. We answer this challenge by rigorously proving the device-independent security of a slight variant of Ekert's original entanglement-based protocol against the most general (coherent) attacks. The resulting protocol is robust: While assuming only that the devices can be modeled by the laws of quantum mechanics and are spatially isolated from each other and from any adversary's laboratory, it achieves a linear key rate and tolerates a constant noise rate in the devices. In particular, the devices may have quantum memory and share arbitrary quantum correlations with the eavesdropper. The proof of security is based on a new quantitative understanding of the monogamous nature of quantum correlations in the context of a multiparty protocol.

  15. Deterministic secure quantum communication using a single d-level system

    PubMed Central

    Jiang, Dong; Chen, Yuanyuan; Gu, Xuemei; Xie, Ling; Chen, Lijun

    2017-01-01

    Deterministic secure quantum communication (DSQC) can transmit secret messages between two parties without first generating a shared secret key. Compared with quantum key distribution (QKD), DSQC avoids the waste of qubits arising from basis reconciliation and thus reaches higher efficiency. In this paper, based on data block transmission and order rearrangement technologies, we propose a DSQC protocol. It utilizes a set of single d-level systems as message carriers, which are used to directly encode the secret message in one communication process. Theoretical analysis shows that these employed technologies guarantee the security, and the use of a higher dimensional quantum system makes our protocol achieve higher security and efficiency. Since only quantum memory is required for implementation, our protocol is feasible with current technologies. Furthermore, Trojan horse attack (THA) is taken into account in our protocol. We give a THA model and show that THA significantly increases the multi-photon rate and can thus be detected. PMID:28327557

  16. Fully Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Vazirani, Umesh; Vidick, Thomas

    2014-10-01

    Quantum cryptography promises levels of security that are impossible to replicate in a classical world. Can this security be guaranteed even when the quantum devices on which the protocol relies are untrusted? This central question dates back to the early 1990s when the challenge of achieving device-independent quantum key distribution was first formulated. We answer this challenge by rigorously proving the device-independent security of a slight variant of Ekert's original entanglement-based protocol against the most general (coherent) attacks. The resulting protocol is robust: While assuming only that the devices can be modeled by the laws of quantum mechanics and are spatially isolated from each other and from any adversary's laboratory, it achieves a linear key rate and tolerates a constant noise rate in the devices. In particular, the devices may have quantum memory and share arbitrary quantum correlations with the eavesdropper. The proof of security is based on a new quantitative understanding of the monogamous nature of quantum correlations in the context of a multiparty protocol.

  17. Controlled Secure Direct Communication with Seven-Qubit Entangled States

    NASA Astrophysics Data System (ADS)

    Wang, Shu-Kai; Zha, Xin-Wei; Wu, Hao

    2018-01-01

    In this paper, a new controlled secure direct communication protocol based on a maximally seven-qubit entangled state is proposed. the outcomes of measurement is performed by the sender and the controller, the receiver can obtain different secret messages in a deterministic way with unit successful probability.In this scheme,by using entanglement swapping, no qubits carrying secret messages are transmitted.Therefore, the protocol is completely secure.

  18. Session Initiation Protocol Network Encryption Device Plain Text Domain Discovery Service

    DTIC Science & Technology

    2007-12-07

    MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: a...such as the TACLANE, have developed unique discovery methods to establish Plain Text Domain (PTD) Security Associations (SA). All of these techniques...can include network and host Internet Protocol (IP) addresses, Information System Security Office (ISSO) point of contact information and PTD status

  19. Fingerprinting Reverse Proxies Using Timing Analysis of TCP Flows

    DTIC Science & Technology

    2013-09-01

    bayes classifier,” in Cloud Computing Security , ser. CCSW ’09. New York City, NY: ACM, 2009, pp. 31–42. [30] J. Zhang, R. Perdisci, W. Lee, U. Sarfraz...FSM Finite State Machine HTML Hypertext Markup Language HTTP Hypertext Transfer Protocol HTTPS Hypertext Transfer Protocol Secure ICMP Internet Control...This hidden traffic concept supports network access control, security protection through obfuscation, and performance boosts at the Internet facing

  20. Analysis of Security Protocols for Mobile Healthcare.

    PubMed

    Wazid, Mohammad; Zeadally, Sherali; Das, Ashok Kumar; Odelu, Vanga

    2016-11-01

    Mobile Healthcare (mHealth) continues to improve because of significant improvements and the decreasing costs of Information Communication Technologies (ICTs). mHealth is a medical and public health practice, which is supported by mobile devices (for example, smartphones) and, patient monitoring devices (for example, various types of wearable sensors, etc.). An mHealth system enables healthcare experts and professionals to have ubiquitous access to a patient's health data along with providing any ongoing medical treatment at any time, any place, and from any device. It also helps the patient requiring continuous medical monitoring to stay in touch with the appropriate medical staff and healthcare experts remotely. Thus, mHealth has become a major driving force in improving the health of citizens today. First, we discuss the security requirements, issues and threats to the mHealth system. We then present a taxonomy of recently proposed security protocols for mHealth system based on features supported and possible attacks, computation cost and communication cost. Our detailed taxonomy demonstrates the strength and weaknesses of recently proposed security protocols for the mHealth system. Finally, we identify some of the challenges in the area of security protocols for mHealth systems that still need to be addressed in the future to enable cost-effective, secure and robust mHealth systems.

  1. Measurement-device-independent quantum communication with an untrusted source

    NASA Astrophysics Data System (ADS)

    Xu, Feihu

    2015-07-01

    Measurement-device-independent quantum key distribution (MDI-QKD) can provide enhanced security compared to traditional QKD, and it constitutes an important framework for a quantum network with an untrusted network server. Still, a key assumption in MDI-QKD is that the sources are trusted. We propose here a MDI quantum network with a single untrusted source. We have derived a complete proof of the unconditional security of MDI-QKD with an untrusted source. Using simulations, we have considered various real-life imperfections in its implementation, and the simulation results show that MDI-QKD with an untrusted source provides a key generation rate that is close to the rate of initial MDI-QKD in the asymptotic setting. Our work proves the feasibility of the realization of a quantum network. The network users need only low-cost modulation devices, and they can share both an expensive detector and a complicated laser provided by an untrusted network server.

  2. An Energy Efficient Protocol For The Internet Of Things

    NASA Astrophysics Data System (ADS)

    Venčkauskas, Algimantas; Jusas, Nerijus; Kazanavičius, Egidijus; Štuikys, Vytautas

    2015-01-01

    The Internet of Things (IoT) is a technological revolution that represents the future of computing and communications. One of the most important challenges of IoT is security: protection of data and privacy. The SSL protocol is the de-facto standard for secure Internet communications. The extra energy cost of encrypting and authenticating of the application data with SSL is around 15%. For IoT devices, where energy resources are limited, the increase in the cost of energy is a very significant factor. In this paper we present the energy efficient SSL protocol which ensures the maximum bandwidth and the required level of security with minimum energy consumption. The proper selection of the security level and CPU multiplier, can save up to 85% of the energy required for data encryption.

  3. A Comprehensive Comparison of Multiparty Secure Additions with Differential Privacy

    PubMed Central

    Goryczka, Slawomir; Xiong, Li

    2016-01-01

    This paper considers the problem of secure data aggregation (mainly summation) in a distributed setting, while ensuring differential privacy of the result. We study secure multiparty addition protocols using well known security schemes: Shamir’s secret sharing, perturbation-based, and various encryptions. We supplement our study with our new enhanced encryption scheme EFT, which is efficient and fault tolerant. Differential privacy of the final result is achieved by either distributed Laplace or Geometric mechanism (respectively DLPA or DGPA), while approximated differential privacy is achieved by diluted mechanisms. Distributed random noise is generated collectively by all participants, which draw random variables from one of several distributions: Gamma, Gauss, Geometric, or their diluted versions. We introduce a new distributed privacy mechanism with noise drawn from the Laplace distribution, which achieves smaller redundant noise with efficiency. We compare complexity and security characteristics of the protocols with different differential privacy mechanisms and security schemes. More importantly, we implemented all protocols and present an experimental comparison on their performance and scalability in a real distributed environment. Based on the evaluations, we identify our security scheme and Laplace DLPA as the most efficient for secure distributed data aggregation with privacy. PMID:28919841

  4. A Comprehensive Comparison of Multiparty Secure Additions with Differential Privacy.

    PubMed

    Goryczka, Slawomir; Xiong, Li

    2017-01-01

    This paper considers the problem of secure data aggregation (mainly summation) in a distributed setting, while ensuring differential privacy of the result. We study secure multiparty addition protocols using well known security schemes: Shamir's secret sharing, perturbation-based, and various encryptions. We supplement our study with our new enhanced encryption scheme EFT, which is efficient and fault tolerant. Differential privacy of the final result is achieved by either distributed Laplace or Geometric mechanism (respectively DLPA or DGPA), while approximated differential privacy is achieved by diluted mechanisms. Distributed random noise is generated collectively by all participants, which draw random variables from one of several distributions: Gamma, Gauss, Geometric, or their diluted versions. We introduce a new distributed privacy mechanism with noise drawn from the Laplace distribution, which achieves smaller redundant noise with efficiency. We compare complexity and security characteristics of the protocols with different differential privacy mechanisms and security schemes. More importantly, we implemented all protocols and present an experimental comparison on their performance and scalability in a real distributed environment. Based on the evaluations, we identify our security scheme and Laplace DLPA as the most efficient for secure distributed data aggregation with privacy.

  5. An evaluation of resistance to change with unconditioned and conditioned reinforcers.

    PubMed

    Vargo, Kristina K; Ringdahl, Joel E

    2015-09-01

    Several reinforcer-related variables influence a response's resistance to change (Nevin, 1974). Reinforcer type (i.e., conditioned or unconditioned) is a reinforcer-related variable that has not been studied with humans but may have clinical implications. In Experiment 1, we identified unconditioned and conditioned reinforcers of equal preference. In Experiments 2, 3, and 4, we reinforced participants' behavior during a baseline phase using a multiple variable-interval (VI) 30-s VI 30-s schedule with either conditioned (i.e., token) or unconditioned (i.e., food; one type of reinforcement in each component) reinforcement. After equal reinforcement rates across components, we introduced a disruptor. Results of Experiments 2 and 3 showed that behaviors were more resistant to extinction and distraction, respectively, with conditioned than with unconditioned reinforcers. Results of Experiment 4, however, showed that when prefeeding disrupted responding, behaviors were more resistant to change with unconditioned reinforcers than with conditioned reinforcers. © Society for the Experimental Analysis of Behavior.

  6. General A Scheme to Share Information via Employing Discrete Algorithm to Quantum States

    NASA Astrophysics Data System (ADS)

    Kang, Guo-Dong; Fang, Mao-Fa

    2011-02-01

    We propose a protocol for information sharing between two legitimate parties (Bob and Alice) via public-key cryptography. In particular, we specialize the protocol by employing discrete algorithm under mod that maps integers to quantum states via photon rotations. Based on this algorithm, we find that the protocol is secure under various classes of attacks. Specially, owe to the algorithm, the security of the classical privacy contained in the quantum public-key and the corresponding ciphertext is guaranteed. And the protocol is robust against the impersonation attack and the active wiretapping attack by designing particular checking processing, thus the protocol is valid.

  7. Three-party quantum secure direct communication against collective noise

    NASA Astrophysics Data System (ADS)

    He, Ye-Feng; Ma, Wen-Ping

    2017-10-01

    Based on logical quantum states, two three-party quantum secure direct communication protocols are proposed, which can realize the exchange of the secret messages between three parties with the help of the measurement correlation property of six-particle entangled states. These two protocols can be immune to the collective-dephasing noise and the collective-rotation noise, respectively; neither of them has information leakage problem. The one-way transmission mode ensures that they can congenitally resist against the Trojan horse attacks and the teleportation attack. Furthermore, these two protocols are secure against other active attacks because of the use of the decoy state technology.

  8. FuGeF: A Resource Bound Secure Forwarding Protocol for Wireless Sensor Networks

    PubMed Central

    Umar, Idris Abubakar; Mohd Hanapi, Zurina; Sali, A.; Zulkarnain, Zuriati A.

    2016-01-01

    Resource bound security solutions have facilitated the mitigation of spatio-temporal attacks by altering protocol semantics to provide minimal security while maintaining an acceptable level of performance. The Dynamic Window Secured Implicit Geographic Forwarding (DWSIGF) routing protocol for Wireless Sensor Network (WSN) has been proposed to achieve a minimal selection of malicious nodes by introducing a dynamic collection window period to the protocol’s semantics. However, its selection scheme suffers substantial packet losses due to the utilization of a single distance based parameter for node selection. In this paper, we propose a Fuzzy-based Geographic Forwarding protocol (FuGeF) to minimize packet loss, while maintaining performance. The FuGeF utilizes a new form of dynamism and introduces three selection parameters: remaining energy, connectivity cost, and progressive distance, as well as a Fuzzy Logic System (FLS) for node selection. These introduced mechanisms ensure the appropriate selection of a non-malicious node. Extensive simulation experiments have been conducted to evaluate the performance of the proposed FuGeF protocol as compared to DWSIGF variants. The simulation results show that the proposed FuGeF outperforms the two DWSIGF variants (DWSIGF-P and DWSIGF-R) in terms of packet delivery. PMID:27338411

  9. Security of a discretely signaled continuous variable quantum key distribution protocol for high rate systems.

    PubMed

    Zhang, Zheshen; Voss, Paul L

    2009-07-06

    We propose a continuous variable based quantum key distribution protocol that makes use of discretely signaled coherent light and reverse error reconciliation. We present a rigorous security proof against collective attacks with realistic lossy, noisy quantum channels, imperfect detector efficiency, and detector electronic noise. This protocol is promising for convenient, high-speed operation at link distances up to 50 km with the use of post-selection.

  10. Privacy Preserved and Secured Reliable Routing Protocol for Wireless Mesh Networks.

    PubMed

    Meganathan, Navamani Thandava; Palanichamy, Yogesh

    2015-01-01

    Privacy preservation and security provision against internal attacks in wireless mesh networks (WMNs) are more demanding than in wired networks due to the open nature and mobility of certain nodes in the network. Several schemes have been proposed to preserve privacy and provide security in WMNs. To provide complete privacy protection in WMNs, the properties of unobservability, unlinkability, and anonymity are to be ensured during route discovery. These properties can be achieved by implementing group signature and ID-based encryption schemes during route discovery. Due to the characteristics of WMNs, it is more vulnerable to many network layer attacks. Hence, a strong protection is needed to avoid these attacks and this can be achieved by introducing a new Cross-Layer and Subject Logic based Dynamic Reputation (CLSL-DR) mechanism during route discovery. In this paper, we propose a new Privacy preserved and Secured Reliable Routing (PSRR) protocol for WMNs. This protocol incorporates group signature, ID-based encryption schemes, and CLSL-DR mechanism to ensure strong privacy, security, and reliability in WMNs. Simulation results prove this by showing better performance in terms of most of the chosen parameters than the existing protocols.

  11. An ethernet/IP security review with intrusion detection applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laughter, S. A.; Williams, R. D.

    2006-07-01

    Supervisory Control and Data Acquisition (SCADA) and automation networks, used throughout utility and manufacturing applications, have their own specific set of operational and security requirements when compared to corporate networks. The modern climate of heightened national security and awareness of terrorist threats has made the security of these systems of prime concern. There is a need to understand the vulnerabilities of these systems and how to monitor and protect them. Ethernet/IP is a member of a family of protocols based on the Control and Information Protocol (CIP). Ethernet/IP allows automation systems to be utilized on and integrated with traditional TCP/IPmore » networks, facilitating integration of these networks with corporate systems and even the Internet. A review of the CIP protocol and the additions Ethernet/IP makes to it has been done to reveal the kind of attacks made possible through the protocol. A set of rules for the SNORT Intrusion Detection software is developed based on the results of the security review. These can be used to monitor, and possibly actively protect, a SCADA or automation network that utilizes Ethernet/IP in its infrastructure. (authors)« less

  12. A Security-façade Library for Virtual-observatory Software

    NASA Astrophysics Data System (ADS)

    Rixon, G.

    2009-09-01

    The security-façade library implements, for Java, IVOA's security standards. It supports the authentication mechanisms for SOAP and REST web-services, the sign-on mechanisms (with MyProxy, AstroGrid Accounts protocol or local credential-caches), the delegation protocol, and RFC3820-enabled HTTPS for Apache Tomcat. Using the façade, a developer who is not a security specialist can easily add access control to a virtual-observatory service and call secured services from an application. The library has been an internal part of AstroGrid software for some time and it is now offered for use by other developers.

  13. An Efficient Quantum Somewhat Homomorphic Symmetric Searchable Encryption

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqiang; Wang, Ting; Sun, Zhiwei; Wang, Ping; Yu, Jianping; Xie, Weixin

    2017-04-01

    In 2009, Gentry first introduced an ideal lattices fully homomorphic encryption (FHE) scheme. Later, based on the approximate greatest common divisor problem, learning with errors problem or learning with errors over rings problem, FHE has developed rapidly, along with the low efficiency and computational security. Combined with quantum mechanics, Liang proposed a symmetric quantum somewhat homomorphic encryption (QSHE) scheme based on quantum one-time pad, which is unconditional security. And it was converted to a quantum fully homomorphic encryption scheme, whose evaluation algorithm is based on the secret key. Compared with Liang's QSHE scheme, we propose a more efficient QSHE scheme for classical input states with perfect security, which is used to encrypt the classical message, and the secret key is not required in the evaluation algorithm. Furthermore, an efficient symmetric searchable encryption (SSE) scheme is constructed based on our QSHE scheme. SSE is important in the cloud storage, which allows users to offload search queries to the untrusted cloud. Then the cloud is responsible for returning encrypted files that match search queries (also encrypted), which protects users' privacy.

  14. Tooth pulp stimulation as an unconditioned stimulus in defensive instrumental conditioning.

    PubMed

    Jastreboff, P J; Keller, O; Zieliński, K

    1977-01-01

    In an experiment performed on five cats, stable escape and avoidance reflexes in a bar-pressing situation were established using tooth pulp electric stimulation as the unconditioned stimulus. The influence of changes in parameters of the unconditioned stimulus (current intensity, single pulse and train durations, frequency of pulses and rate of train presentations) on unconditioned and instrumental responses was analysed in three additional subjects. Among other relationships the dependence of the threshold of bar press responses on the amount of charge in a single pulse was determined.

  15. Securing TCP/IP and Dial-up Access to Administrative Data.

    ERIC Educational Resources Information Center

    Conrad, L. Dean

    1992-01-01

    This article describes Arizona State University's solution to security risk inherent in general access systems such as TCP/IP (Transmission Control Protocol/INTERNET Protocol). Advantages and disadvantages of various options are compared, and the process of selecting a log-on authentication approach involving generation of a different password at…

  16. Quantum gambling using three nonorthogonal states

    NASA Astrophysics Data System (ADS)

    Hwang, Won-Young; Matsumoto, Keiji

    2002-11-01

    We provide a quantum gambling protocol using three (symmetric) nonorthogonal states. The bias of the proposed protocol is less than that of previous ones, making it more practical. We show that the proposed scheme is secure against nonentanglement attacks. The security of the proposed scheme against entanglement attacks is shown heuristically.

  17. Entanglement-secured single-qubit quantum secret sharing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherpelz, P.; Resch, R.; Berryrieser, D.

    In single-qubit quantum secret sharing, a secret is shared between N parties via manipulation and measurement of one qubit at a time. Each qubit is sent to all N parties in sequence; the secret is encoded in the first participant's preparation of the qubit state and the subsequent participants' choices of state rotation or measurement basis. We present a protocol for single-qubit quantum secret sharing using polarization entanglement of photon pairs produced in type-I spontaneous parametric downconversion. We investigate the protocol's security against eavesdropping attack under common experimental conditions: a lossy channel for photon transmission, and imperfect preparation of themore » initial qubit state. A protocol which exploits entanglement between photons, rather than simply polarization correlation, is more robustly secure. We implement the entanglement-based secret-sharing protocol with 87% secret-sharing fidelity, limited by the purity of the entangled state produced by our present apparatus. We demonstrate a photon-number splitting eavesdropping attack, which achieves no success against the entanglement-based protocol while showing the predicted rate of success against a correlation-based protocol.« less

  18. High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states

    NASA Astrophysics Data System (ADS)

    Wu, FangZhou; Yang, GuoJian; Wang, HaiBo; Xiong, Jun; Alzahrani, Faris; Hobiny, Aatef; Deng, FuGuo

    2017-12-01

    This study proposes the first high-capacity quantum secure direct communication (QSDC) with two-photon six-qubit hyper-entangled Bell states in two longitudinal momentum and polarization degrees of freedom (DOFs) of photon pairs, which can be generated using two 0.5 mm-thick type-I β barium borate crystal slabs aligned one behind the other and an eight-hole screen. The secret message can be independently encoded on the photon pairs with 64 unitary operations in all three DOFs. This protocol has a higher capacity than previous QSDC protocols because each photon pair can carry 6 bits of information, not just 2 or 4 bits. Our QSDC protocol decreases the influence of decoherence from environment noise by exploiting the decoy photons to check the security of the transmission of the first photon sequence. Compared with two-way QSDC protocols, our QSDC protocol is immune to an attack by an eavesdropper using Trojan horse attack strategies because it is a one-way quantum communication. The QSDC protocol has good applications in the future quantum communication because of all these features.

  19. RSA-Based Password-Authenticated Key Exchange, Revisited

    NASA Astrophysics Data System (ADS)

    Shin, Seonghan; Kobara, Kazukuni; Imai, Hideki

    The RSA-based Password-Authenticated Key Exchange (PAKE) protocols have been proposed to realize both mutual authentication and generation of secure session keys where a client is sharing his/her password only with a server and the latter should generate its RSA public/private key pair (e, n), (d, n) every time due to the lack of PKI (Public-Key Infrastructures). One of the ways to avoid a special kind of off-line (so called e-residue) attacks in the RSA-based PAKE protocols is to deploy a challenge/response method by which a client verifies the relative primality of e and φ(n) interactively with a server. However, this kind of RSA-based PAKE protocols did not give any proof of the underlying challenge/response method and therefore could not specify the exact complexity of their protocols since there exists another security parameter, needed in the challenge/response method. In this paper, we first present an RSA-based PAKE (RSA-PAKE) protocol that can deploy two different challenge/response methods (denoted by Challenge/Response Method1 and Challenge/Response Method2). The main contributions of this work include: (1) Based on the number theory, we prove that the Challenge/Response Method1 and the Challenge/Response Method2 are secure against e-residue attacks for any odd prime e (2) With the security parameter for the on-line attacks, we show that the RSA-PAKE protocol is provably secure in the random oracle model where all of the off-line attacks are not more efficient than on-line dictionary attacks; and (3) By considering the Hamming weight of e and its complexity in the. RSA-PAKE protocol, we search for primes to be recommended for a practical use. We also compare the RSA-PAKE protocol with the previous ones mainly in terms of computation and communication complexities.

  20. An efficient and secure certificateless authentication protocol for healthcare system on wireless medical sensor networks.

    PubMed

    Guo, Rui; Wen, Qiaoyan; Jin, Zhengping; Zhang, Hua

    2013-01-01

    Sensor networks have opened up new opportunities in healthcare systems, which can transmit patient's condition to health professional's hand-held devices in time. The patient's physiological signals are very sensitive and the networks are extremely vulnerable to many attacks. It must be ensured that patient's privacy is not exposed to unauthorized entities. Therefore, the control of access to healthcare systems has become a crucial challenge. An efficient and secure authentication protocol will thus be needed in wireless medical sensor networks. In this paper, we propose a certificateless authentication scheme without bilinear pairing while providing patient anonymity. Compared with other related protocols, the proposed scheme needs less computation and communication cost and preserves stronger security. Our performance evaluations show that this protocol is more practical for healthcare system in wireless medical sensor networks.

  1. An Efficient and Secure Certificateless Authentication Protocol for Healthcare System on Wireless Medical Sensor Networks

    PubMed Central

    Guo, Rui; Wen, Qiaoyan; Jin, Zhengping; Zhang, Hua

    2013-01-01

    Sensor networks have opened up new opportunities in healthcare systems, which can transmit patient's condition to health professional's hand-held devices in time. The patient's physiological signals are very sensitive and the networks are extremely vulnerable to many attacks. It must be ensured that patient's privacy is not exposed to unauthorized entities. Therefore, the control of access to healthcare systems has become a crucial challenge. An efficient and secure authentication protocol will thus be needed in wireless medical sensor networks. In this paper, we propose a certificateless authentication scheme without bilinear pairing while providing patient anonymity. Compared with other related protocols, the proposed scheme needs less computation and communication cost and preserves stronger security. Our performance evaluations show that this protocol is more practical for healthcare system in wireless medical sensor networks. PMID:23710147

  2. No information flow using statistical fluctuations and quantum cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsson, Jan-Aake

    2004-04-01

    The communication protocol of Home and Whitaker [Phys. Rev. A 67, 022306 (2003)] is examined in some detail, and found to work equally well using a separable state. The protocol is in fact completely classical, based on postselection of suitable experimental runs. The quantum-cryptography protocol proposed in the same publication is also examined, and this protocol uses entanglement, a strictly quantum property of the system. An individual eavesdropping attack on each qubit pair would be detected by the security test proposed in the mentioned paper. However, the key is provided by groups of qubits, and there exists a coherent attack,more » internal to these groups, that will go unnoticed in that security test. A modified test is proposed here that will ensure security, even against such a coherent attack.« less

  3. Cryptanalysis and improvement of an improved two factor authentication protocol for telecare medical information systems.

    PubMed

    Chaudhry, Shehzad Ashraf; Naqvi, Husnain; Shon, Taeshik; Sher, Muhammad; Farash, Mohammad Sabzinejad

    2015-06-01

    Telecare medical information systems (TMIS) provides rapid and convenient health care services remotely. Efficient authentication is a prerequisite to guarantee the security and privacy of patients in TMIS. Authentication is used to verify the legality of the patients and TMIS server during remote access. Very recently Islam et al. (J. Med. Syst. 38(10):135, 2014) proposed a two factor authentication protocol for TMIS using elliptic curve cryptography (ECC) to improve Xu et al.'s (J. Med. Syst. 38(1):9994, 2014) protocol. They claimed their improved protocol to be efficient and provides all security requirements. However our analysis reveals that Islam et al.'s protocol suffers from user impersonation and server impersonation attacks. Furthermore we proposed an enhanced protocol. The proposed protocol while delivering all the virtues of Islam et al.'s protocol resists all known attacks.

  4. Two RFID standard-based security protocols for healthcare environments.

    PubMed

    Picazo-Sanchez, Pablo; Bagheri, Nasour; Peris-Lopez, Pedro; Tapiador, Juan E

    2013-10-01

    Radio Frequency Identification (RFID) systems are widely used in access control, transportation, real-time inventory and asset management, automated payment systems, etc. Nevertheless, the use of this technology is almost unexplored in healthcare environments, where potential applications include patient monitoring, asset traceability and drug administration systems, to mention just a few. RFID technology can offer more intelligent systems and applications, but privacy and security issues have to be addressed before its adoption. This is even more dramatical in healthcare applications where very sensitive information is at stake and patient safety is paramount. In Wu et al. (J. Med. Syst. 37:19, 43) recently proposed a new RFID authentication protocol for healthcare environments. In this paper we show that this protocol puts location privacy of tag holders at risk, which is a matter of gravest concern and ruins the security of this proposal. To facilitate the implementation of secure RFID-based solutions in the medical sector, we suggest two new applications (authentication and secure messaging) and propose solutions that, in contrast to previous proposals in this field, are fully based on ISO Standards and NIST Security Recommendations.

  5. Practical and secure telemedicine systems for user mobility.

    PubMed

    Rezaeibagha, Fatemeh; Mu, Yi

    2018-02-01

    The application of wireless devices has led to a significant improvement in the quality delivery of care in telemedicine systems. Patients who live in a remote area are able to communicate with the healthcare provider and benefit from the doctor consultations. However, it has been a challenge to provide a secure telemedicine system, which captures users (patients and doctors) mobility and patient privacy. In this work, we present several secure protocols for telemedicine systems, which ensure the secure communication between patients and doctors who are located in different geographical locations. Our protocols are the first of this kind featured with confidentiality of patient information, mutual authentication, patient anonymity, data integrity, freshness of communication, and mobility. Our protocols are based on symmetric-key schemes and capture all desirable security requirements in order to better serve our objectives of research for secure telemedicine services; therefore, they are very efficient in implementation. A comparison with related works shows that our work contributes first comprehensive solution to capture user mobility and patient privacy for telemedicine systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Practical State Machine Replication with Confidentiality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Sisi; Zhang, Haibin

    2016-01-01

    We study how to enable arbitrary randomized algorithms in Byzantine fault-tolerant (BFT) settings. We formalize a randomized BFT protocol and provide a simple and efficient construction that can be built on any existing BFT protocols while adding practically no overhead. We go one step further to revisit a confidential BFT protocol (Yin et al., SOSP '03). We show that their scheme is potentially susceptible to safety and confidentiality attacks. We then present a new protocol that is secure in the stronger model we formalize, by extending the idea of a randomized BFT protocol. Our protocol uses only efficient symmetric cryptography,more » while Yin et al.'s uses costly threshold signatures. We implemented and evaluated our protocols on microbenchmarks and real-world use cases. We show that our randomized BFT protocol is as efficient as conventional BFT protocols, and our confidential BFT protocol is two to three orders of magnitude faster than Yin et al.'s, which is less secure than ours.« less

  7. New secure communication-layer standard for medical image management (ISCL)

    NASA Astrophysics Data System (ADS)

    Kita, Kouichi; Nohara, Takashi; Hosoba, Minoru; Yachida, Masuyoshi; Yamaguchi, Masahiro; Ohyama, Nagaaki

    1999-07-01

    This paper introduces a summary of the standard draft of ISCL 1.00 which will be published by MEDIS-DC officially. ISCL is abbreviation of Integrated Secure Communication Layer Protocols for Secure Medical Image Management Systems. ISCL is a security layer which manages security function between presentation layer and TCP/IP layer. ISCL mechanism depends on basic function of a smart IC card and symmetric secret key mechanism. A symmetry key for each session is made by internal authentication function of a smart IC card with a random number. ISCL has three functions which assure authentication, confidently and integrity. Entity authentication process is done through 3 path 4 way method using functions of internal authentication and external authentication of a smart iC card. Confidentially algorithm and MAC algorithm for integrity are able to be selected. ISCL protocols are communicating through Message Block which consists of Message Header and Message Data. ISCL protocols are evaluating by applying to regional collaboration system for image diagnosis, and On-line Secure Electronic Storage system for medical images. These projects are supported by Medical Information System Development Center. These project shows ISCL is useful to keep security.

  8. Secure Skyline Queries on Cloud Platform.

    PubMed

    Liu, Jinfei; Yang, Juncheng; Xiong, Li; Pei, Jian

    2017-04-01

    Outsourcing data and computation to cloud server provides a cost-effective way to support large scale data storage and query processing. However, due to security and privacy concerns, sensitive data (e.g., medical records) need to be protected from the cloud server and other unauthorized users. One approach is to outsource encrypted data to the cloud server and have the cloud server perform query processing on the encrypted data only. It remains a challenging task to support various queries over encrypted data in a secure and efficient way such that the cloud server does not gain any knowledge about the data, query, and query result. In this paper, we study the problem of secure skyline queries over encrypted data. The skyline query is particularly important for multi-criteria decision making but also presents significant challenges due to its complex computations. We propose a fully secure skyline query protocol on data encrypted using semantically-secure encryption. As a key subroutine, we present a new secure dominance protocol, which can be also used as a building block for other queries. Finally, we provide both serial and parallelized implementations and empirically study the protocols in terms of efficiency and scalability under different parameter settings, verifying the feasibility of our proposed solutions.

  9. The general theory of three-party quantum secret sharing protocols over phase-damping channels

    NASA Astrophysics Data System (ADS)

    Song, Ting-Ting; Wen, Qiao-Yan; Qin, Su-Juan; Zhang, Wei-Wei; Sun, Ying

    2013-10-01

    The general theory of three-party QSS protocols with the noisy quantum channels is discussed. When the particles are transmitted through the noisy quantum channels, the initial pure three-qubit tripartite entangled states would be changed into mixed states. We analyze the security of QSS protocols with the different kinds of three-qubit tripartite entangled states under phase-damping channels and figure out, for different kinds of initial states, the successful probabilities that Alice's secret can be recovered by legal agents are different. Comparing with one recent QSS protocol based on GHZ states, our scheme is secure, and has a little smaller key rate than that of the recent protocol.

  10. Protocol vulnerability detection based on network traffic analysis and binary reverse engineering.

    PubMed

    Wen, Shameng; Meng, Qingkun; Feng, Chao; Tang, Chaojing

    2017-01-01

    Network protocol vulnerability detection plays an important role in many domains, including protocol security analysis, application security, and network intrusion detection. In this study, by analyzing the general fuzzing method of network protocols, we propose a novel approach that combines network traffic analysis with the binary reverse engineering method. For network traffic analysis, the block-based protocol description language is introduced to construct test scripts, while the binary reverse engineering method employs the genetic algorithm with a fitness function designed to focus on code coverage. This combination leads to a substantial improvement in fuzz testing for network protocols. We build a prototype system and use it to test several real-world network protocol implementations. The experimental results show that the proposed approach detects vulnerabilities more efficiently and effectively than general fuzzing methods such as SPIKE.

  11. Multiple Object Based RFID System Using Security Level

    NASA Astrophysics Data System (ADS)

    Kim, Jiyeon; Jung, Jongjin; Ryu, Ukjae; Ko, Hoon; Joe, Susan; Lee, Yongjun; Kim, Boyeon; Chang, Yunseok; Lee, Kyoonha

    2007-12-01

    RFID systems are increasingly applied for operational convenience in wide range of industries and individual life. However, it is uneasy for a person to control many tags because common RFID systems have the restriction that a tag used to identify just a single object. In addition, RFID systems can make some serious problems in violation of privacy and security because of their radio frequency communication. In this paper, we propose a multiple object RFID tag which can keep multiple object identifiers for different applications in a same tag. The proposed tag allows simultaneous access for their pair applications. We also propose an authentication protocol for multiple object tag to prevent serious problems of security and privacy in RFID applications. Especially, we focus on efficiency of the authentication protocol by considering security levels of applications. In the proposed protocol, the applications go through different authentication procedures according to security level of the object identifier stored in the tag. We implemented the proposed RFID scheme and made experimental results about efficiency and stability for the scheme.

  12. Memory attacks on device-independent quantum cryptography.

    PubMed

    Barrett, Jonathan; Colbeck, Roger; Kent, Adrian

    2013-01-04

    Device-independent quantum cryptographic schemes aim to guarantee security to users based only on the output statistics of any components used, and without the need to verify their internal functionality. Since this would protect users against untrustworthy or incompetent manufacturers, sabotage, or device degradation, this idea has excited much interest, and many device-independent schemes have been proposed. Here we identify a critical weakness of device-independent protocols that rely on public communication between secure laboratories. Untrusted devices may record their inputs and outputs and reveal information about them via publicly discussed outputs during later runs. Reusing devices thus compromises the security of a protocol and risks leaking secret data. Possible defenses include securely destroying or isolating used devices. However, these are costly and often impractical. We propose other more practical partial defenses as well as a new protocol structure for device-independent quantum key distribution that aims to achieve composable security in the case of two parties using a small number of devices to repeatedly share keys with each other (and no other party).

  13. Practical quantum digital signature

    NASA Astrophysics Data System (ADS)

    Yin, Hua-Lei; Fu, Yao; Chen, Zeng-Bing

    2016-03-01

    Guaranteeing nonrepudiation, unforgeability as well as transferability of a signature is one of the most vital safeguards in today's e-commerce era. Based on fundamental laws of quantum physics, quantum digital signature (QDS) aims to provide information-theoretic security for this cryptographic task. However, up to date, the previously proposed QDS protocols are impractical due to various challenging problems and most importantly, the requirement of authenticated (secure) quantum channels between participants. Here, we present the first quantum digital signature protocol that removes the assumption of authenticated quantum channels while remaining secure against the collective attacks. Besides, our QDS protocol can be practically implemented over more than 100 km under current mature technology as used in quantum key distribution.

  14. An Online Banking System Based on Quantum Cryptography Communication

    NASA Astrophysics Data System (ADS)

    Zhou, Ri-gui; Li, Wei; Huan, Tian-tian; Shen, Chen-yi; Li, Hai-sheng

    2014-07-01

    In this paper, an online banking system has been built. Based on quantum cryptography communication, this system is proved unconditional secure. Two sets of GHZ states are applied, which can ensure the safety of purchase and payment, respectively. In another word, three trading participants in each triplet state group form an interdependent and interactive relationship. In the meantime, trading authorization and blind signature is introduced by means of controllable quantum teleportation. Thus, an effective monitor is practiced on the premise that the privacy of trading partners is guaranteed. If there is a dispute or deceptive behavior, the system will find out the deceiver immediately according to the relationship mentioned above.

  15. Reasoning about Probabilistic Security Using Task-PIOAs

    NASA Astrophysics Data System (ADS)

    Jaggard, Aaron D.; Meadows, Catherine; Mislove, Michael; Segala, Roberto

    Task-structured probabilistic input/output automata (Task-PIOAs) are concurrent probabilistic automata that, among other things, have been used to provide a formal framework for the universal composability paradigms of protocol security. One of their advantages is that that they allow one to distinguish high-level nondeterminism that can affect the outcome of the protocol, from low-level choices, which can't. We present an alternative approach to analyzing the structure of Task-PIOAs that relies on ordered sets. We focus on two of the components that are required to define and apply Task-PIOAs: discrete probability theory and automata theory. We believe our development gives insight into the structure of Task-PIOAs and how they can be utilized to model crypto-protocols. We illustrate our approach with an example from anonymity, an area that has not previously been addressed using Task-PIOAs. We model Chaum's Dining Cryptographers Protocol at a level that does not require cryptographic primitives in the analysis. We show via this example how our approach can leverage a proof of security in the case a principal behaves deterministically to prove security when that principal behaves probabilistically.

  16. Achieving the physical limits of the bounded-storage model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandayam, Prabha; Wehner, Stephanie; Centre for Quantum Technologies, National University of Singapore, 2 Science Drive 3, 117543 Singapore

    2011-02-15

    Secure two-party cryptography is possible if the adversary's quantum storage device suffers imperfections. For example, security can be achieved if the adversary can store strictly less then half of the qubits transmitted during the protocol. This special case is known as the bounded-storage model, and it has long been an open question whether security can still be achieved if the adversary's storage were any larger. Here, we answer this question positively and demonstrate a two-party protocol which is secure as long as the adversary cannot store even a small fraction of the transmitted pulses. We also show that security canmore » be extended to a larger class of noisy quantum memories.« less

  17. Watermarking protocols for authentication and ownership protection based on timestamps and holograms

    NASA Astrophysics Data System (ADS)

    Dittmann, Jana; Steinebach, Martin; Croce Ferri, Lucilla

    2002-04-01

    Digital watermarking has become an accepted technology for enabling multimedia protection schemes. One problem here is the security of these schemes. Without a suitable framework, watermarks can be replaced and manipulated. We discuss different protocols providing security against rightful ownership attacks and other fraud attempts. We compare the characteristics of existing protocols for different media like direct embedding or seed based and required attributes of the watermarking technology like robustness or payload. We introduce two new media independent protocol schemes for rightful ownership authentication. With the first scheme we ensure security of digital watermarks used for ownership protection with a combination of two watermarks: first watermark of the copyright holder and a second watermark from a Trusted Third Party (TTP). It is based on hologram embedding and the watermark consists of e.g. a company logo. As an example we use digital images and specify the properties of the embedded additional security information. We identify components necessary for the security protocol like timestamp, PKI and cryptographic algorithms. The second scheme is used for authentication. It is designed for invertible watermarking applications which require high data integrity. We combine digital signature schemes and digital watermarking to provide a public verifiable integrity. The original data can only be reproduced with a secret key. Both approaches provide solutions for copyright and authentication watermarking and are introduced for image data but can be easily adopted for video and audio data as well.

  18. Establishing rational networking using the DL04 quantum secure direct communication protocol

    NASA Astrophysics Data System (ADS)

    Qin, Huawang; Tang, Wallace K. S.; Tso, Raylin

    2018-06-01

    The first rational quantum secure direct communication scheme is proposed, in which we use the game theory with incomplete information to model the rational behavior of the participant, and give the strategy space and utility function. The rational participant can get his maximal utility when he performs the protocol faithfully, and then the Nash equilibrium of the protocol can be achieved. Compared to the traditional schemes, our scheme will be more practical in the presence of rational participant.

  19. Proceedings of the IFIP WG 11.3 Working Conference on Database Security (6th) Held in Vancouver, British Columbia on 19-22 August 1992.

    DTIC Science & Technology

    1992-01-01

    multiversioning scheme for this purpose was presented in [9]. The scheme guarantees that high level methods would read down object states at lower levels that...order given by fork-stamp, and terminated writing versions with timestamp WStamp. Such a history is needed to implement the multiversioning scheme...recovery protocol for multiversion schedulers and show that this protocol is both correct and secure. The behavior of the recovery protocol depends

  20. Secure Transaction Protocol for CEPS Compliant EPS in Limited Connectivity Environment

    NASA Astrophysics Data System (ADS)

    Devane, Satish; Phatak, Deepak

    Common Electronic Purse Specification (CEPS) used by European countries, elaborately defines the transaction between customer’s CEP card and merchant’s point of sales (POS) terminal. However it merely defines the specification to transfer the transactions between the Merchant and Merchant Acquirer (MA). This paper proposes a novel approach by introducing an entity, mobile merchant acquirer (MMA) which is a trusted agent of MA and principally works on man in middle concept, but facilitates remote two fold mutual authentication and secure transaction transfer between Merchant and MA through MMA. This approach removes the bottle-neck of connectivity issues between Merchant and MA in limited connectivity environment. The proposed protocol ensures the confidentiality, integrity and money atomicity of transaction batch. The proposed protocol has been verified for correctness by Spin, a model checker and security properties of the protocol have been verified by avispa.

  1. Protocols development for security and privacy of radio frequency identification systems

    NASA Astrophysics Data System (ADS)

    Sabbagha, Fatin

    There are benefits to adopting radio frequency identification (RFID) technology, although there are methods of attack that can compromise the system. This research determined how that may happen and what possible solutions can keep that from happening. Protocols were developed to implement better security. In addition, new topologies were developed to handle the problems of the key management. Previously proposed protocols focused on providing mutual authentication and privacy between readers and tags. However, those protocols are still vulnerable to be attacked. These protocols were analyzed and the disadvantages shown for each one. Previous works assumed that the channels between readers and the servers were secure. In the proposed protocols, a compromised reader is considered along with how to prevent tags from being read by that reader. The new protocols provide mutual authentication between readers and tags and, at the same time, remove the compromised reader from the system. Three protocols are proposed. In the first protocol, a mutual authentication is achieved and a compromised reader is not allowed in the network. In the second protocol, the number of times a reader contacts the server is reduced. The third protocol provides authentication and privacy between tags and readers using a trusted third party. The developed topology is implemented using python language and simulates work to check the efficiency regarding the processing time. The three protocols are implemented by writing codes in C language and then compiling them in MSP430. IAR Embedded workbench is used, which is an integrated development environment with the C/C++ compiler to generate a faster code and to debug the microcontroller. In summary, the goal of this research is to find solutions for the problems on previously proposed protocols, handle a compromised reader, and solve key management problems.

  2. Secret-key expansion from covert communication

    NASA Astrophysics Data System (ADS)

    Arrazola, Juan Miguel; Amiri, Ryan

    2018-02-01

    Covert communication allows the transmission of messages in such a way that it is not possible for adversaries to detect that the communication is occurring. This provides protection in situations where knowledge that two parties are talking to each other may be incriminating to them. In this work, we study how covert communication can be used for a different purpose: secret key expansion. First, we show that any message transmitted in a secure covert protocol is also secret and therefore unknown to an adversary. We then propose a covert communication protocol where the amount of key consumed in the protocol is smaller than the transmitted key, thus leading to secure secret key expansion. We derive precise conditions for secret key expansion to occur, showing that it is possible when there are sufficiently low levels of noise for a given security level. We conclude by examining how secret key expansion from covert communication can be performed in a computational security model.

  3. A secure cluster-based multipath routing protocol for WMSNs.

    PubMed

    Almalkawi, Islam T; Zapata, Manel Guerrero; Al-Karaki, Jamal N

    2011-01-01

    The new characteristics of Wireless Multimedia Sensor Network (WMSN) and its design issues brought by handling different traffic classes of multimedia content (video streams, audio, and still images) as well as scalar data over the network, make the proposed routing protocols for typical WSNs not directly applicable for WMSNs. Handling real-time multimedia data requires both energy efficiency and QoS assurance in order to ensure efficient utility of different capabilities of sensor resources and correct delivery of collected information. In this paper, we propose a Secure Cluster-based Multipath Routing protocol for WMSNs, SCMR, to satisfy the requirements of delivering different data types and support high data rate multimedia traffic. SCMR exploits the hierarchical structure of powerful cluster heads and the optimized multiple paths to support timeliness and reliable high data rate multimedia communication with minimum energy dissipation. Also, we present a light-weight distributed security mechanism of key management in order to secure the communication between sensor nodes and protect the network against different types of attacks. Performance evaluation from simulation results demonstrates a significant performance improvement comparing with existing protocols (which do not even provide any kind of security feature) in terms of average end-to-end delay, network throughput, packet delivery ratio, and energy consumption.

  4. A Secure Cluster-Based Multipath Routing Protocol for WMSNs

    PubMed Central

    Almalkawi, Islam T.; Zapata, Manel Guerrero; Al-Karaki, Jamal N.

    2011-01-01

    The new characteristics of Wireless Multimedia Sensor Network (WMSN) and its design issues brought by handling different traffic classes of multimedia content (video streams, audio, and still images) as well as scalar data over the network, make the proposed routing protocols for typical WSNs not directly applicable for WMSNs. Handling real-time multimedia data requires both energy efficiency and QoS assurance in order to ensure efficient utility of different capabilities of sensor resources and correct delivery of collected information. In this paper, we propose a Secure Cluster-based Multipath Routing protocol for WMSNs, SCMR, to satisfy the requirements of delivering different data types and support high data rate multimedia traffic. SCMR exploits the hierarchical structure of powerful cluster heads and the optimized multiple paths to support timeliness and reliable high data rate multimedia communication with minimum energy dissipation. Also, we present a light-weight distributed security mechanism of key management in order to secure the communication between sensor nodes and protect the network against different types of attacks. Performance evaluation from simulation results demonstrates a significant performance improvement comparing with existing protocols (which do not even provide any kind of security feature) in terms of average end-to-end delay, network throughput, packet delivery ratio, and energy consumption. PMID:22163854

  5. Double C-NOT attack and counterattack on `Three-step semi-quantum secure direct communication protocol'

    NASA Astrophysics Data System (ADS)

    Gu, Jun; Lin, Po-hua; Hwang, Tzonelih

    2018-07-01

    Recently, Zou and Qiu (Sci China Phys Mech Astron 57:1696-1702, 2014) proposed a three-step semi-quantum secure direct communication protocol allowing a classical participant who does not have a quantum register to securely send his/her secret message to a quantum participant. However, this study points out that an eavesdropper can use the double C-NOT attack to obtain the secret message. To solve this problem, a modification is proposed.

  6. Developing and validating trace fear conditioning protocols in C57BL/6 mice.

    PubMed

    Burman, Michael A; Simmons, Cassandra A; Hughes, Miles; Lei, Lei

    2014-01-30

    Classical fear conditioning is commonly used to study the biology of fear, anxiety and memory. Previous research demonstrated that delay conditioning requires a neural circuit involving the amygdala, but not usually the hippocampus. Trace and contextual fear conditioning require the amygdala and hippocampus. While these paradigms were developed primarily using rat models, they are increasingly being used in mice. The current studies develop trace fear conditioning and control paradigms to allow for the assessment of trace and delay fear conditioning in C57BL/6N mice. Our initial protocol yielded clear delay and contextual conditioning. However, trace conditioning failed to differentiate from an unpaired group and was not hippocampus-dependent. These results suggested that the protocol needed to be modified to specifically accommodate trace conditioning the mice. In order to reduce unconditioned freezing and increase learning, the final protocol was developed by decreasing the intensity of the tone and by increasing the inter-trial interval. Our final protocol produced trace conditioned freezing that was significantly greater than that followed unpaired stimulus exposure and was disrupted by hippocampus lesions. A review of the literature produced 90 articles using trace conditioning in mice. Few of those articles used any kind of behavioral control group, which is required to rule out non-associative factors causing fearful behavior. Fewer used unpaired groups involving tones and shocks within a session, which is the optimal control group. Our final trace conditioning protocol can be used in future studies examining genetically modified C57BL/6N mice. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Developing and Validating Trace Fear Conditioning Protocols in C57BL/6 Mice

    PubMed Central

    Burman, Michael A; Simmons, Cassandra A; Hughes, Miles; Lei, Lei

    2013-01-01

    Background Classical fear conditioning is commonly used to study the biology of fear, anxiety and memory. Previous research demonstrated that delay conditioning requires a neural circuit involving the amygdala, but not usually the hippocampus. Trace and contextual fear conditioning require the amygdala and hippocampus. While these paradigms were developed primarily using rat models, they are increasingly being used in mice. New Method The current studies develop trace fear conditioning and control paradigms to allow for the assessment of trace and delay fear conditioning in C57BL/6N mice. Our initial protocol yielded clear delay and contextual conditioning. However, trace conditioning failed to differentiate from an unpaired group and was not hippocampus-dependent. These results suggested that the protocol needed to be modified to specifically accommodate trace conditioning the mice. In order to reduce unconditioned freezing and increase learning, the final protocol was developed by decreasing the intensity of the tone and by increasing the inter-trial interval. Results Our final protocol produced trace conditioned freezing that was significantly greater than that followed unpaired stimulus exposure and was disrupted by hippocampus lesions. Comparison with Existing Methods A review of the literature produced 90 articles using trace conditioning in mice. Few of those articles used any kind of behavioral control group, which is required to rule out non-associative factors causing fearful behavior. Fewer used unpaired groups involving tones and shocks within a session, which is the optimal control group. Conclusions Our final trace conditioning protocol can be used in future studies examining genetically modified C57BL/6N mice. PMID:24269252

  8. Adolescents' unconditional acceptance by parents and teachers and educational outcomes: A structural model of gender differences.

    PubMed

    Makri-Botsari, Evi

    2015-08-01

    The purpose of this study was to detect gender specific patterns in the network of relations between unconditionality of parental and teacher acceptance in the form of unconditional positive regard and a range of educational outcomes, as indexed by academic self-perception, academic intrinsic motivation, and academic achievement. To test the role of gender as a moderator, a multi-group analysis was employed within the framework of structural equation modelling with increasing restrictions placed on the structural paths across genders. The results on a sample of 427 adolescents in grades 7-9 showed that conditionality of acceptance undermined level of perceived acceptance for both social agents. Moreover, unconditionality of teacher acceptance exerted stronger influences on students' educational outcomes than unconditionality of parental acceptance, with effect sizes being larger for girls than for boys. Copyright © 2015 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  9. A Secure Region-Based Geographic Routing Protocol (SRBGR) for Wireless Sensor Networks

    PubMed Central

    Adnan, Ali Idarous; Hanapi, Zurina Mohd; Othman, Mohamed; Zukarnain, Zuriati Ahmad

    2017-01-01

    Due to the lack of dependency for routing initiation and an inadequate allocated sextant on responding messages, the secure geographic routing protocols for Wireless Sensor Networks (WSNs) have attracted considerable attention. However, the existing protocols are more likely to drop packets when legitimate nodes fail to respond to the routing initiation messages while attackers in the allocated sextant manage to respond. Furthermore, these protocols are designed with inefficient collection window and inadequate verification criteria which may lead to a high number of attacker selections. To prevent the failure to find an appropriate relay node and undesirable packet retransmission, this paper presents Secure Region-Based Geographic Routing Protocol (SRBGR) to increase the probability of selecting the appropriate relay node. By extending the allocated sextant and applying different message contention priorities more legitimate nodes can be admitted in the routing process. Moreover, the paper also proposed the bound collection window for a sufficient collection time and verification cost for both attacker identification and isolation. Extensive simulation experiments have been performed to evaluate the performance of the proposed protocol in comparison with other existing protocols. The results demonstrate that SRBGR increases network performance in terms of the packet delivery ratio and isolates attacks such as Sybil and Black hole. PMID:28121992

  10. A Secure Region-Based Geographic Routing Protocol (SRBGR) for Wireless Sensor Networks.

    PubMed

    Adnan, Ali Idarous; Hanapi, Zurina Mohd; Othman, Mohamed; Zukarnain, Zuriati Ahmad

    2017-01-01

    Due to the lack of dependency for routing initiation and an inadequate allocated sextant on responding messages, the secure geographic routing protocols for Wireless Sensor Networks (WSNs) have attracted considerable attention. However, the existing protocols are more likely to drop packets when legitimate nodes fail to respond to the routing initiation messages while attackers in the allocated sextant manage to respond. Furthermore, these protocols are designed with inefficient collection window and inadequate verification criteria which may lead to a high number of attacker selections. To prevent the failure to find an appropriate relay node and undesirable packet retransmission, this paper presents Secure Region-Based Geographic Routing Protocol (SRBGR) to increase the probability of selecting the appropriate relay node. By extending the allocated sextant and applying different message contention priorities more legitimate nodes can be admitted in the routing process. Moreover, the paper also proposed the bound collection window for a sufficient collection time and verification cost for both attacker identification and isolation. Extensive simulation experiments have been performed to evaluate the performance of the proposed protocol in comparison with other existing protocols. The results demonstrate that SRBGR increases network performance in terms of the packet delivery ratio and isolates attacks such as Sybil and Black hole.

  11. Technical Analysis of SSP-21 Protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromberger, S.

    As part of the California Energy Systems for the Twenty-First Century (CES-21) program, in December 2016 San Diego Gas and Electric (SDG&E) contracted with Lawrence Livermore National Laboratory (LLNL) to perform an independent verification and validation (IV&V) of a white paper describing their Secure SCADA Protocol for the Twenty-First Century (SSP-21) in order to analyze the effectiveness and propriety of cryptographic protocol use within the SSP-21 specification. SSP-21 is designed to use cryptographic protocols to provide (optional) encryption, authentication, and nonrepudiation, among other capabilities. The cryptographic protocols to be used reflect current industry standards; future versions of SSP-21 will usemore » other advanced technologies to provide a subset of security services.« less

  12. Multi-Bit Quantum Private Query

    NASA Astrophysics Data System (ADS)

    Shi, Wei-Xu; Liu, Xing-Tong; Wang, Jian; Tang, Chao-Jing

    2015-09-01

    Most of the existing Quantum Private Queries (QPQ) protocols provide only single-bit queries service, thus have to be repeated several times when more bits are retrieved. Wei et al.'s scheme for block queries requires a high-dimension quantum key distribution system to sustain, which is still restricted in the laboratory. Here, based on Markus Jakobi et al.'s single-bit QPQ protocol, we propose a multi-bit quantum private query protocol, in which the user can get access to several bits within one single query. We also extend the proposed protocol to block queries, using a binary matrix to guard database security. Analysis in this paper shows that our protocol has better communication complexity, implementability and can achieve a considerable level of security.

  13. Breaking Megrelishvili protocol using matrix diagonalization

    NASA Astrophysics Data System (ADS)

    Arzaki, Muhammad; Triantoro Murdiansyah, Danang; Adi Prabowo, Satrio

    2018-03-01

    In this article we conduct a theoretical security analysis of Megrelishvili protocol—a linear algebra-based key agreement between two participants. We study the computational complexity of Megrelishvili vector-matrix problem (MVMP) as a mathematical problem that strongly relates to the security of Megrelishvili protocol. In particular, we investigate the asymptotic upper bounds for the running time and memory requirement of the MVMP that involves diagonalizable public matrix. Specifically, we devise a diagonalization method for solving the MVMP that is asymptotically faster than all of the previously existing algorithms. We also found an important counterintuitive result: the utilization of primitive matrix in Megrelishvili protocol makes the protocol more vulnerable to attacks.

  14. Quantum private query with perfect user privacy against a joint-measurement attack

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Guang; Liu, Zhi-Chao; Li, Jian; Chen, Xiu-Bo; Zuo, Hui-Juan; Zhou, Yi-Hua; Shi, Wei-Min

    2016-12-01

    The joint-measurement (JM) attack is the most powerful threat to the database security for existing quantum-key-distribution (QKD)-based quantum private query (QPQ) protocols. Wei et al. (2016) [28] proposed a novel QPQ protocol against the JM attack. However, their protocol relies on two-way quantum communication thereby affecting its real implementation and communication efficiency. Moreover, it cannot ensure perfect user privacy. In this paper, we present a new one-way QPQ protocol in which the special way of classical post-processing of oblivious key ensures the security against the JM attack. Furthermore, it realizes perfect user privacy and lower complexity of communication.

  15. 75 FR 73117 - New Agency Information Collection Activity Under OMB Review: Pipeline Corporate Security Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... Collection Activity Under OMB Review: Pipeline Corporate Security Review AGENCY: Transportation Security.... Information Collection Requirement Title: Pipeline Corporate Security Review (PCSR). Type of Request: New collection. OMB Control Number: Not yet assigned. Form(s): Pipeline Corporate Security Review (PCSR) Protocol...

  16. Planning Considerations for Secure Network Protocols

    DTIC Science & Technology

    1999-03-01

    distribution / management ) requirements needed to support network security services are examined. The thesis concludes by identifying tactical user network requirements and suggests security issues to be considered in concert with network

  17. 3D Digital Legos for Teaching Security Protocols

    ERIC Educational Resources Information Center

    Yu, Li; Harrison, L.; Lu, Aidong; Li, Zhiwei; Wang, Weichao

    2011-01-01

    We have designed and developed a 3D digital Lego system as an education tool for teaching security protocols effectively in Information Assurance courses (Lego is a trademark of the LEGO Group. Here, we use it only to represent the pieces of a construction set.). Our approach applies the pedagogical methods learned from toy construction sets by…

  18. Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources.

    PubMed

    Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue

    2015-10-16

    In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation.

  19. Securing Real-Time Sessions in an IMS-Based Architecture

    NASA Astrophysics Data System (ADS)

    Cennamo, Paolo; Fresa, Antonio; Longo, Maurizio; Postiglione, Fabio; Robustelli, Anton Luca; Toro, Francesco

    The emerging all-IP mobile network infrastructures based on 3rd Generation IP Multimedia Subsystem philosophy are characterised by radio access technology independence and ubiquitous connectivity for mobile users. Currently, great focus is being devoted to security issues since most of the security threats presently affecting the public Internet domain, and the upcoming ones as well, are going to be suffered by mobile users in the years to come. While a great deal of research activity, together with standardisation efforts and experimentations, is carried out on mechanisms for signalling protection, very few integrated frameworks for real-time multimedia data protection have been proposed in a context of IP Multimedia Subsystem, and even fewer experimental results based on testbeds are available. In this paper, after a general overview of the security issues arising in an advanced IP Multimedia Subsystem scenario, a comprehensive infrastructure for real-time multimedia data protection, based on the adoption of the Secure Real-Time Protocol, is proposed; then, the development of a testbed incorporating such functionalities, including mechanisms for key management and cryptographic context transfer, and allowing the setup of Secure Real-Time Protocol sessions is presented; finally, experimental results are provided together with quantitative assessments and comparisons of system performances for audio sessions with and without the adoption of the Secure Real-Time Protocol framework.

  20. Secure Skyline Queries on Cloud Platform

    PubMed Central

    Liu, Jinfei; Yang, Juncheng; Xiong, Li; Pei, Jian

    2017-01-01

    Outsourcing data and computation to cloud server provides a cost-effective way to support large scale data storage and query processing. However, due to security and privacy concerns, sensitive data (e.g., medical records) need to be protected from the cloud server and other unauthorized users. One approach is to outsource encrypted data to the cloud server and have the cloud server perform query processing on the encrypted data only. It remains a challenging task to support various queries over encrypted data in a secure and efficient way such that the cloud server does not gain any knowledge about the data, query, and query result. In this paper, we study the problem of secure skyline queries over encrypted data. The skyline query is particularly important for multi-criteria decision making but also presents significant challenges due to its complex computations. We propose a fully secure skyline query protocol on data encrypted using semantically-secure encryption. As a key subroutine, we present a new secure dominance protocol, which can be also used as a building block for other queries. Finally, we provide both serial and parallelized implementations and empirically study the protocols in terms of efficiency and scalability under different parameter settings, verifying the feasibility of our proposed solutions. PMID:28883710

  1. Authentication Binding between SSL/TLS and HTTP

    NASA Astrophysics Data System (ADS)

    Saito, Takamichi; Sekiguchi, Kiyomi; Hatsugai, Ryosuke

    While the Secure Socket Layer or Transport Layer Security (SSL/TLS) is assumed to provide secure communications over the Internet, many web applications utilize basic or digest authentication of Hyper Text Transport Protocol (HTTP) over SSL/TLS. Namely, in the scheme, there are two different authentication schemes in a session. Since they are separated by a layer, these are not convenient for a web application. Moreover, the scheme may also cause problems in establishing secure communication. Then we provide a scheme of authentication binding between SSL/TLS and HTTP without modifying SSL/TLS protocols and its implementation, and we show the effectiveness of our proposed scheme.

  2. A Multifactor Secure Authentication System for Wireless Payment

    NASA Astrophysics Data System (ADS)

    Sanyal, Sugata; Tiwari, Ayu; Sanyal, Sudip

    Organizations are deploying wireless based online payment applications to expand their business globally, it increases the growing need of regulatory requirements for the protection of confidential data, and especially in internet based financial areas. Existing internet based authentication systems often use either the Web or the Mobile channel individually to confirm the claimed identity of the remote user. The vulnerability is that access is based on only single factor authentication which is not secure to protect user data, there is a need of multifactor authentication. This paper proposes a new protocol based on multifactor authentication system that is both secure and highly usable. It uses a novel approach based on Transaction Identification Code and SMS to enforce another security level with the traditional Login/password system. The system provides a highly secure environment that is simple to use and deploy with in a limited resources that does not require any change in infrastructure or underline protocol of wireless network. This Protocol for Wireless Payment is extended as a two way authentications system to satisfy the emerging market need of mutual authentication and also supports secure B2B communication which increases faith of the user and business organizations on wireless financial transaction using mobile devices.

  3. Secure and Robust Transmission and Verification of Unknown Quantum States in Minkowski Space

    PubMed Central

    Kent, Adrian; Massar, Serge; Silman, Jonathan

    2014-01-01

    An important class of cryptographic applications of relativistic quantum information work as follows. B generates a random qudit and supplies it to A at point P. A is supposed to transmit it at near light speed c to to one of a number of possible pairwise spacelike separated points Q1, …, Qn. A's transmission is supposed to be secure, in the sense that B cannot tell in advance which Qj will be chosen. This poses significant practical challenges, since secure reliable long-range transmission of quantum data at speeds near to c is presently not easy. Here we propose different techniques to overcome these diffculties. We introduce protocols that allow secure long-range implementations even when both parties control only widely separated laboratories of small size. In particular we introduce a protocol in which A needs send the qudit only over a short distance, and securely transmits classical information (for instance using a one time pad) over the remaining distance. We further show that by using parallel implementations of the protocols security can be maintained in the presence of moderate amounts of losses and errors. PMID:24469425

  4. Emulation Platform for Cyber Analysis of Wireless Communication Network Protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Leeuwen, Brian P.; Eldridge, John M.

    Wireless networking and mobile communications is increasing around the world and in all sectors of our lives. With increasing use, the density and complexity of the systems increase with more base stations and advanced protocols to enable higher data throughputs. The security of data transported over wireless networks must also evolve with the advances in technologies enabling more capable wireless networks. However, means for analysis of the effectiveness of security approaches and implementations used on wireless networks are lacking. More specifically a capability to analyze the lower-layer protocols (i.e., Link and Physical layers) is a major challenge. An analysis approachmore » that incorporates protocol implementations without the need for RF emissions is necessary. In this research paper several emulation tools and custom extensions that enable an analysis platform to perform cyber security analysis of lower layer wireless networks is presented. A use case of a published exploit in the 802.11 (i.e., WiFi) protocol family is provided to demonstrate the effectiveness of the described emulation platform.« less

  5. Unconditional and conditional incentives differentially improved general practitioners' participation in an online survey: randomized controlled trial.

    PubMed

    Young, Jane M; O'Halloran, Anna; McAulay, Claire; Pirotta, Marie; Forsdike, Kirsty; Stacey, Ingrid; Currow, David

    2015-06-01

    To compare the impact of unconditional and conditional financial incentives on response rates among Australian general practitioners invited by mail to participate in an online survey about cancer care and to investigate possible differential response bias between incentive groups. Australian general practitioners were randomly allocated to unconditional incentive (book voucher mailed with letter of invitation), conditional incentive (book voucher mailed on completion of the online survey), or control (no incentive). Nonresponders were asked to complete a small subset of questions from the online survey. Among 3,334 eligible general practitioners, significantly higher response rates were achieved in the unconditional group (167 of 1,101, 15%) compared with the conditional group (118 of 1,111, 11%) (P = 0.0014), and both were significantly higher than the control group (74 of 1,122, 7%; both P < 0.001). Although more positive opinions about cancer care were expressed by online responders compared with nonresponders, there was no evidence that the magnitude of difference varied by the incentive group. The incremental cost for each additional 1% increase above the control group response rate was substantially higher for the unconditional incentive group compared with the conditional incentive group. Both unconditional and conditional financial incentives significantly increased response with no evidence of differential response bias. Although unconditional incentives had the largest effect, the conditional approach was more cost-effective. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Anti-Noise Bidirectional Quantum Steganography Protocol with Large Payload

    NASA Astrophysics Data System (ADS)

    Qu, Zhiguo; Chen, Siyi; Ji, Sai; Ma, Songya; Wang, Xiaojun

    2018-06-01

    An anti-noise bidirectional quantum steganography protocol with large payload protocol is proposed in this paper. In the new protocol, Alice and Bob enable to transmit classical information bits to each other while teleporting secret quantum states covertly. The new protocol introduces the bidirectional quantum remote state preparation into the bidirectional quantum secure communication, not only to expand secret information from classical bits to quantum state, but also extract the phase and amplitude values of secret quantum state for greatly enlarging the capacity of secret information. The new protocol can also achieve better imperceptibility, since the eavesdropper can hardly detect the hidden channel or even obtain effective secret quantum states. Comparing with the previous quantum steganography achievements, due to its unique bidirectional quantum steganography, the new protocol can obtain higher transmission efficiency and better availability. Furthermore, the new algorithm can effectively resist quantum noises through theoretical analysis. Finally, the performance analysis proves the conclusion that the new protocol not only has good imperceptibility, high security, but also large payload.

  7. Anti-Noise Bidirectional Quantum Steganography Protocol with Large Payload

    NASA Astrophysics Data System (ADS)

    Qu, Zhiguo; Chen, Siyi; Ji, Sai; Ma, Songya; Wang, Xiaojun

    2018-03-01

    An anti-noise bidirectional quantum steganography protocol with large payload protocol is proposed in this paper. In the new protocol, Alice and Bob enable to transmit classical information bits to each other while teleporting secret quantum states covertly. The new protocol introduces the bidirectional quantum remote state preparation into the bidirectional quantum secure communication, not only to expand secret information from classical bits to quantum state, but also extract the phase and amplitude values of secret quantum state for greatly enlarging the capacity of secret information. The new protocol can also achieve better imperceptibility, since the eavesdropper can hardly detect the hidden channel or even obtain effective secret quantum states. Comparing with the previous quantum steganography achievements, due to its unique bidirectional quantum steganography, the new protocol can obtain higher transmission efficiency and better availability. Furthermore, the new algorithm can effectively resist quantum noises through theoretical analysis. Finally, the performance analysis proves the conclusion that the new protocol not only has good imperceptibility, high security, but also large payload.

  8. Security and SCADA protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Igure, V. M.; Williams, R. D.

    2006-07-01

    Supervisory control and data acquisition (SCADA) networks have replaced discrete wiring for many industrial processes, and the efficiency of the network alternative suggests a trend toward more SCADA networks in the future. This paper broadly considers SCADA to include distributed control systems (DCS) and digital control systems. These networks offer many advantages, but they also introduce potential vulnerabilities that can be exploited by adversaries. Inter-connectivity exposes SCADA networks to many of the same threats that face the public internet and many of the established defenses therefore show promise if adapted to the SCADA differences. This paper provides an overview ofmore » security issues in SCADA networks and ongoing efforts to improve the security of these networks. Initially, a few samples from the range of threats to SCADA network security are offered. Next, attention is focused on security assessment of SCADA communication protocols. Three challenges must be addressed to strengthen SCADA networks. Access control mechanisms need to be introduced or strengthened, improvements are needed inside of the network to enhance security and network monitoring, and SCADA security management improvements and policies are needed. This paper discusses each of these challenges. This paper uses the Profibus protocol as an example to illustrate some of the vulnerabilities that arise within SCADA networks. The example Profibus security assessment establishes a network model and an attacker model before proceeding to a list of example attacks. (authors)« less

  9. A Hybrid Analysis for Security Protocols with State

    DTIC Science & Technology

    2014-07-16

    Approved for Public Release; Distribution Unlimited. 14-1013. A Hybrid Analysis for Security Protocols with State∗ John D. Ramsdell Daniel J ...their consequences in the anno - tated protocol theory Tannot(Π, ) use only the limited vocabulary of Tbnd(Π); we call them bridge lemmas. Lemma 3 is a...and we proved it using pvs. Lemma 1 (Prefix Boot Extend). ∀π ∈ path, t :>, i, k ∈ N. i ≤ k ∧ π(k) has t ⊃ subterm(π(i), π(k)) ∨ ∃ j ∈ N. i ≤ j < k ∧ π

  10. Secure password-based authenticated key exchange for web services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Fang; Meder, Samuel; Chevassut, Olivier

    This paper discusses an implementation of an authenticated key-exchange method rendered on message primitives defined in the WS-Trust and WS-SecureConversation specifications. This IEEE-specified cryptographic method (AuthA) is proven-secure for password-based authentication and key exchange, while the WS-Trust and WS-Secure Conversation are emerging Web Services Security specifications that extend the WS-Security specification. A prototype of the presented protocol is integrated in the WSRF-compliant Globus Toolkit V4. Further hardening of the implementation is expected to result in a version that will be shipped with future Globus Toolkit releases. This could help to address the current unavailability of decent shared-secret-based authentication options inmore » the Web Services and Grid world. Future work will be to integrate One-Time-Password (OTP) features in the authentication protocol.« less

  11. Secure and Efficient Network Fault Localization

    DTIC Science & Technology

    2012-02-27

    ORGANIZATION NAME(S) AND ADDRESS (ES) Carnegie Mellon University,School of Computer Science,Computer Science Department,Pittsburgh,PA,15213 8. PERFORMING...ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS (ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT...efficiency than previously known protocols for fault localization. Our proposed fault localization protocols also address the security threats that

  12. A secure medical data exchange protocol based on cloud environment.

    PubMed

    Chen, Chin-Ling; Yang, Tsai-Tung; Shih, Tzay-Farn

    2014-09-01

    In recent years, health care technologies already became matured such as electronic medical records that can be easily stored. However, how to get medical resources more convenient is currently concern issue. In spite of many literatures discussed about medical systems, but these literatures should face many security challenges. The most important issue is patients' privacy. Therefore, we propose a secure medical data exchange protocol based on cloud environment. In our scheme, we use mobile device's characteristics, allowing peoples use medical resources on the cloud environment to seek medical advice conveniently.

  13. Security of Distributed-Phase-Reference Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Moroder, Tobias; Curty, Marcos; Lim, Charles Ci Wen; Thinh, Le Phuc; Zbinden, Hugo; Gisin, Nicolas

    2012-12-01

    Distributed-phase-reference quantum key distribution stands out for its easy implementation with present day technology. For many years, a full security proof of these schemes in a realistic setting has been elusive. We solve this long-standing problem and present a generic method to prove the security of such protocols against general attacks. To illustrate our result, we provide lower bounds on the key generation rate of a variant of the coherent-one-way quantum key distribution protocol. In contrast to standard predictions, it appears to scale quadratically with the system transmittance.

  14. Developing a Standard Method for Link-Layer Security of CCSDS Space Communications

    NASA Technical Reports Server (NTRS)

    Biggerstaff, Craig

    2009-01-01

    Communications security for space systems has been a specialized field generally far removed from considerations of mission interoperability and cross-support in fact, these considerations often have been viewed as intrinsically opposed to security objectives. The space communications protocols defined by the Consultative Committee for Space Data Systems (CCSDS) have a twenty-five year history of successful use in over 400 missions. While the CCSDS Telemetry, Telecommand, and Advancing Orbiting Systems protocols for use at OSI Layer 2 are operationally mature, there has been no direct support within these protocols for communications security techniques. Link-layer communications security has been successfully implemented in the past using mission-unique methods, but never before with an objective of facilitating cross-support and interoperability. This paper discusses the design of a standard method for cryptographic authentication, encryption, and replay protection at the data link layer that can be integrated into existing CCSDS protocols without disruption to legacy communications services. Integrating cryptographic operations into existing data structures and processing sequences requires a careful assessment of the potential impediments within spacecraft, ground stations, and operations centers. The objective of this work is to provide a sound method for cryptographic encapsulation of frame data that also facilitates Layer 2 virtual channel switching, such that a mission may procure data transport services as needed without involving third parties in the cryptographic processing, or split independent data streams for separate cryptographic processing.

  15. Secure multi-party quantum summation based on quantum Fourier transform

    NASA Astrophysics Data System (ADS)

    Yang, Hui-Yi; Ye, Tian-Yu

    2018-06-01

    In this paper, we propose a novel secure multi-party quantum summation protocol based on quantum Fourier transform, where the traveling particles are transmitted in a tree-type mode. The party who prepares the initial quantum states is assumed to be semi-honest, which means that she may misbehave on her own but will not conspire with anyone. The proposed protocol can resist both the outside attacks and the participant attacks. Especially, one party cannot obtain other parties' private integer strings; and it is secure for the colluding attack performed by at most n - 2 parties, where n is the number of parties. In addition, the proposed protocol calculates the addition of modulo d and implements the calculation of addition in a secret-by-secret way rather than a bit-by-bit way.

  16. Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources

    PubMed Central

    Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue

    2015-01-01

    In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation. PMID:26471947

  17. Atom-Role-Based Access Control Model

    NASA Astrophysics Data System (ADS)

    Cai, Weihong; Huang, Richeng; Hou, Xiaoli; Wei, Gang; Xiao, Shui; Chen, Yindong

    Role-based access control (RBAC) model has been widely recognized as an efficient access control model and becomes a hot research topic of information security at present. However, in the large-scale enterprise application environments, the traditional RBAC model based on the role hierarchy has the following deficiencies: Firstly, it is unable to reflect the role relationships in complicated cases effectively, which does not accord with practical applications. Secondly, the senior role unconditionally inherits all permissions of the junior role, thus if a user is under the supervisor role, he may accumulate all permissions, and this easily causes the abuse of permission and violates the least privilege principle, which is one of the main security principles. To deal with these problems, we, after analyzing permission types and role relationships, proposed the concept of atom role and built an atom-role-based access control model, called ATRBAC, by dividing the permission set of each regular role based on inheritance path relationships. Through the application-specific analysis, this model can well meet the access control requirements.

  18. Beneficiaries' perceptions and reported use of unconditional cash transfers intended to prevent acute malnutrition in children in poor rural communities in Burkina Faso: qualitative results from the MAM'Out randomized controlled trial.

    PubMed

    Tonguet-Papucci, Audrey; Houngbe, Freddy; Lompo, Palamanga; Yameogo, Wambi Maurice Evariste; Huneau, Jean-François; Ait Aissa, Myriam; Kolsteren, Patrick

    2017-05-30

    Acute malnutrition is a public health issue worldwide, and particularly in the Eastern region of Burkina Faso. Following a needs assessment, unconditional seasonal, multiannual cash transfers were implemented as a safety net to prevent childhood undernutrition. The objectives of this study were to explore the types of purchases made by beneficiaries of this cash transfer program and to understand the perceived effects of and changes induced by regular cash transfers in the daily lives of women, and at the household and community level. The design of this study was a two-arm cluster randomized controlled trial. Qualitative data were collected each month during the cash transfer period for two years, leading to a total of more than 300 interviews and focus group discussions with various participants: beneficiary mothers, heads of households, mothers-in-law, co-wives, key members of the community, and participants of the control group. The two main types of expenses reported were food and health care for the child and the whole family. The program was also associated with positive perceived changes at the household level, mainly related to gender equality and improvement of women's status, and has promoted an increase in dignity and social integration of the poorest at the community level through cash sharing. Unexpected effects of this program included some women planning new pregnancies and some individuals not expecting the transfers to end. Although the transfers were unconditional, the cash was mainly used to improve the children's and households' food security and health, which correspond to two main underlying causes of undernutrition. Therefore, spending mainly in these areas can help to prevent undernutrition in children. ClinicalTrials.gov , identifier: NCT01866124 , registered May 7, 2013.

  19. Olfactory memory formation and the influence of reward pathway during appetitive learning by honey bees.

    PubMed

    Wright, Geraldine A; Mustard, Julie A; Kottcamp, Sonya M; Smith, Brian H

    2007-11-01

    Animals possess the ability to assess food quality via taste and via changes in state that occur after ingestion. Here, we investigate the extent to which a honey bee's ability to assess food quality affected the formation of association with an odor stimulus and the retention of olfactory memories associated with reward. We used three different conditioning protocols in which the unconditioned stimulus (food) was delivered as sucrose stimulation to the proboscis (mouthparts), the antennae or to both proboscis and antennae. All means of delivery of the unconditioned stimulus produced robust associative conditioning with an odor. However, the memory of a conditioned odor decayed at a significantly greater rate for subjects experiencing antennal-only stimulation after either multiple- or single-trial conditioning. Finally, to test whether the act of feeding on a reward containing sucrose during conditioning affected olfactory memory formation, we conditioned honey bees to associate an odor with antennal stimulation with sucrose followed by feeding on a water droplet. We observed that a honey bee's ability to recall the conditioned odor was not significantly different from that of subjects conditioned with an antennal-only sucrose stimulus. Our results show that stimulation of the sensory receptors on the proboscis and/or ingestion of the sucrose reward during appetitive olfactory conditioning are necessary for long-term memory formation.

  20. Reexamination of quantum bit commitment: The possible and the impossible

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Ariano, Giacomo Mauro; Kretschmann, Dennis; Institut fuer Mathematische Physik, Technische Universitaet Braunschweig, Mendelssohnstrasse 3, 38106 Braunschweig

    2007-09-15

    Bit commitment protocols whose security is based on the laws of quantum mechanics alone are generally held to be impossible. We give a strengthened and explicit proof of this result. We extend its scope to a much larger variety of protocols, which may have an arbitrary number of rounds, in which both classical and quantum information is exchanged, and which may include aborts and resets. Moreover, we do not consider the receiver to be bound to a fixed 'honest' strategy, so that 'anonymous state protocols', which were recently suggested as a possible way to beat the known no-go results, aremore » also covered. We show that any concealing protocol allows the sender to find a cheating strategy, which is universal in the sense that it works against any strategy of the receiver. Moreover, if the concealing property holds only approximately, the cheat goes undetected with a high probability, which we explicitly estimate. The proof uses an explicit formalization of general two-party protocols, which is applicable to more general situations, and an estimate about the continuity of the Stinespring dilation of a general quantum channel. The result also provides a natural characterization of protocols that fall outside the standard setting of unlimited available technology and thus may allow secure bit commitment. We present such a protocol whose security, perhaps surprisingly, relies on decoherence in the receiver's laboratory.« less

  1. A Hybrid Authentication and Authorization Process for Control System Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manz, David O.; Edgar, Thomas W.; Fink, Glenn A.

    2010-08-25

    Convergence of control system and IT networks require that security, privacy, and trust be addressed. Trust management continues to plague traditional IT managers and is even more complex when extended into control system networks, with potentially millions of entities, a mission that requires 100% availability. Yet these very networks necessitate a trusted secure environment where controllers and managers can be assured that the systems are secure and functioning properly. We propose a hybrid authentication management protocol that addresses the unique issues inherent within control system networks, while leveraging the considerable research and momentum in existing IT authentication schemes. Our hybridmore » authentication protocol for control systems provides end device to end device authentication within a remote station and between remote stations and control centers. Additionally, the hybrid protocol is failsafe and will not interrupt communication or control of vital systems in a network partition or device failure. Finally, the hybrid protocol is resilient to transitory link loss and can operate in an island mode until connectivity is reestablished.« less

  2. GUI implementation of image encryption and decryption using Open CV-Python script on secured TFTP protocol

    NASA Astrophysics Data System (ADS)

    Reddy, K. Rasool; Rao, Ch. Madhava

    2018-04-01

    Currently safety is one of the primary concerns in the transmission of images due to increasing the use of images within the industrial applications. So it's necessary to secure the image facts from unauthorized individuals. There are various strategies are investigated to secure the facts. In that encryption is certainly one of maximum distinguished method. This paper gives a sophisticated Rijndael (AES) algorithm to shield the facts from unauthorized humans. Here Exponential Key Change (EKE) concept is also introduced to exchange the key between client and server. The things are exchange in a network among client and server through a simple protocol is known as Trivial File Transfer Protocol (TFTP). This protocol is used mainly in embedded servers to transfer the data and also provide protection to the data if protection capabilities are integrated. In this paper, implementing a GUI environment for image encryption and decryption. All these experiments carried out on Linux environment the usage of Open CV-Python script.

  3. A secure protocol for protecting the identity of providers when disclosing data for disease surveillance

    PubMed Central

    Hu, Jun; Mercer, Jay; Peyton, Liam; Kantarcioglu, Murat; Malin, Bradley; Buckeridge, David; Samet, Saeed; Earle, Craig

    2011-01-01

    Background Providers have been reluctant to disclose patient data for public-health purposes. Even if patient privacy is ensured, the desire to protect provider confidentiality has been an important driver of this reluctance. Methods Six requirements for a surveillance protocol were defined that satisfy the confidentiality needs of providers and ensure utility to public health. The authors developed a secure multi-party computation protocol using the Paillier cryptosystem to allow the disclosure of stratified case counts and denominators to meet these requirements. The authors evaluated the protocol in a simulated environment on its computation performance and ability to detect disease outbreak clusters. Results Theoretical and empirical assessments demonstrate that all requirements are met by the protocol. A system implementing the protocol scales linearly in terms of computation time as the number of providers is increased. The absolute time to perform the computations was 12.5 s for data from 3000 practices. This is acceptable performance, given that the reporting would normally be done at 24 h intervals. The accuracy of detection disease outbreak cluster was unchanged compared with a non-secure distributed surveillance protocol, with an F-score higher than 0.92 for outbreaks involving 500 or more cases. Conclusion The protocol and associated software provide a practical method for providers to disclose patient data for sentinel, syndromic or other indicator-based surveillance while protecting patient privacy and the identity of individual providers. PMID:21486880

  4. Effect of source tampering in the security of quantum cryptography

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Hai; Xu, Feihu; Jiang, Mu-Sheng; Ma, Xiang-Chun; Lo, Hoi-Kwong; Liang, Lin-Mei

    2015-08-01

    The security of source has become an increasingly important issue in quantum cryptography. Based on the framework of measurement-device-independent quantum key distribution (MDI-QKD), the source becomes the only region exploitable by a potential eavesdropper (Eve). Phase randomization is a cornerstone assumption in most discrete-variable (DV) quantum communication protocols (e.g., QKD, quantum coin tossing, weak-coherent-state blind quantum computing, and so on), and the violation of such an assumption is thus fatal to the security of those protocols. In this paper, we show a simple quantum hacking strategy, with commercial and homemade pulsed lasers, by Eve that allows her to actively tamper with the source and violate such an assumption, without leaving a trace afterwards. Furthermore, our attack may also be valid for continuous-variable (CV) QKD, which is another main class of QKD protocol, since, excepting the phase random assumption, other parameters (e.g., intensity) could also be changed, which directly determine the security of CV-QKD.

  5. DS-ARP: a new detection scheme for ARP spoofing attacks based on routing trace for ubiquitous environments.

    PubMed

    Song, Min Su; Lee, Jae Dong; Jeong, Young-Sik; Jeong, Hwa-Young; Park, Jong Hyuk

    2014-01-01

    Despite the convenience, ubiquitous computing suffers from many threats and security risks. Security considerations in the ubiquitous network are required to create enriched and more secure ubiquitous environments. The address resolution protocol (ARP) is a protocol used to identify the IP address and the physical address of the associated network card. ARP is designed to work without problems in general environments. However, since it does not include security measures against malicious attacks, in its design, an attacker can impersonate another host using ARP spoofing or access important information. In this paper, we propose a new detection scheme for ARP spoofing attacks using a routing trace, which can be used to protect the internal network. Tracing routing can find the change of network movement path. The proposed scheme provides high constancy and compatibility because it does not alter the ARP protocol. In addition, it is simple and stable, as it does not use a complex algorithm or impose extra load on the computer system.

  6. DS-ARP: A New Detection Scheme for ARP Spoofing Attacks Based on Routing Trace for Ubiquitous Environments

    PubMed Central

    Song, Min Su; Lee, Jae Dong; Jeong, Hwa-Young; Park, Jong Hyuk

    2014-01-01

    Despite the convenience, ubiquitous computing suffers from many threats and security risks. Security considerations in the ubiquitous network are required to create enriched and more secure ubiquitous environments. The address resolution protocol (ARP) is a protocol used to identify the IP address and the physical address of the associated network card. ARP is designed to work without problems in general environments. However, since it does not include security measures against malicious attacks, in its design, an attacker can impersonate another host using ARP spoofing or access important information. In this paper, we propose a new detection scheme for ARP spoofing attacks using a routing trace, which can be used to protect the internal network. Tracing routing can find the change of network movement path. The proposed scheme provides high constancy and compatibility because it does not alter the ARP protocol. In addition, it is simple and stable, as it does not use a complex algorithm or impose extra load on the computer system. PMID:25243205

  7. Reducing software security risk through an integrated approach research initiative model based verification of the Secure Socket Layer (SSL) Protocol

    NASA Technical Reports Server (NTRS)

    Powell, John D.

    2003-01-01

    This document discusses the verification of the Secure Socket Layer (SSL) communication protocol as a demonstration of the Model Based Verification (MBV) portion of the verification instrument set being developed under the Reducing Software Security Risk (RSSR) Trough an Integrated Approach research initiative. Code Q of the National Aeronautics and Space Administration (NASA) funds this project. The NASA Goddard Independent Verification and Validation (IV&V) facility manages this research program at the NASA agency level and the Assurance Technology Program Office (ATPO) manages the research locally at the Jet Propulsion Laboratory (California institute of Technology) where the research is being carried out.

  8. A Security Proof of Measurement Device Independent Quantum Key Distribution: From the View of Information Theory

    NASA Astrophysics Data System (ADS)

    Li, Fang-Yi; Yin, Zhen-Qiang; Li, Hong-Wei; Chen, Wei; Wang, Shuang; Wen, Hao; Zhao, Yi-Bo; Han, Zheng-Fu

    2014-07-01

    Although some ideal quantum key distribution protocols have been proved to be secure, there have been some demonstrations that practical quantum key distribution implementations were hacked due to some real-life imperfections. Among these attacks, detector side channel attacks may be the most serious. Recently, a measurement device independent quantum key distribution protocol [Phys. Rev. Lett. 108 (2012) 130503] was proposed and all detector side channel attacks are removed in this scheme. Here a new security proof based on quantum information theory is given. The eavesdropper's information of the sifted key bits is bounded. Then with this bound, the final secure key bit rate can be obtained.

  9. Fully Integrated Passive UHF RFID Tag for Hash-Based Mutual Authentication Protocol.

    PubMed

    Mikami, Shugo; Watanabe, Dai; Li, Yang; Sakiyama, Kazuo

    2015-01-01

    Passive radio-frequency identification (RFID) tag has been used in many applications. While the RFID market is expected to grow, concerns about security and privacy of the RFID tag should be overcome for the future use. To overcome these issues, privacy-preserving authentication protocols based on cryptographic algorithms have been designed. However, to the best of our knowledge, evaluation of the whole tag, which includes an antenna, an analog front end, and a digital processing block, that runs authentication protocols has not been studied. In this paper, we present an implementation and evaluation of a fully integrated passive UHF RFID tag that runs a privacy-preserving mutual authentication protocol based on a hash function. We design a single chip including the analog front end and the digital processing block. We select a lightweight hash function supporting 80-bit security strength and a standard hash function supporting 128-bit security strength. We show that when the lightweight hash function is used, the tag completes the protocol with a reader-tag distance of 10 cm. Similarly, when the standard hash function is used, the tag completes the protocol with the distance of 8.5 cm. We discuss the impact of the peak power consumption of the tag on the distance of the tag due to the hash function.

  10. Performing private database queries in a real-world environment using a quantum protocol.

    PubMed

    Chan, Philip; Lucio-Martinez, Itzel; Mo, Xiaofan; Simon, Christoph; Tittel, Wolfgang

    2014-06-10

    In the well-studied cryptographic primitive 1-out-of-N oblivious transfer, a user retrieves a single element from a database of size N without the database learning which element was retrieved. While it has previously been shown that a secure implementation of 1-out-of-N oblivious transfer is impossible against arbitrarily powerful adversaries, recent research has revealed an interesting class of private query protocols based on quantum mechanics in a cheat sensitive model. Specifically, a practical protocol does not need to guarantee that the database provider cannot learn what element was retrieved if doing so carries the risk of detection. The latter is sufficient motivation to keep a database provider honest. However, none of the previously proposed protocols could cope with noisy channels. Here we present a fault-tolerant private query protocol, in which the novel error correction procedure is integral to the security of the protocol. Furthermore, we present a proof-of-concept demonstration of the protocol over a deployed fibre.

  11. Performing private database queries in a real-world environment using a quantum protocol

    PubMed Central

    Chan, Philip; Lucio-Martinez, Itzel; Mo, Xiaofan; Simon, Christoph; Tittel, Wolfgang

    2014-01-01

    In the well-studied cryptographic primitive 1-out-of-N oblivious transfer, a user retrieves a single element from a database of size N without the database learning which element was retrieved. While it has previously been shown that a secure implementation of 1-out-of-N oblivious transfer is impossible against arbitrarily powerful adversaries, recent research has revealed an interesting class of private query protocols based on quantum mechanics in a cheat sensitive model. Specifically, a practical protocol does not need to guarantee that the database provider cannot learn what element was retrieved if doing so carries the risk of detection. The latter is sufficient motivation to keep a database provider honest. However, none of the previously proposed protocols could cope with noisy channels. Here we present a fault-tolerant private query protocol, in which the novel error correction procedure is integral to the security of the protocol. Furthermore, we present a proof-of-concept demonstration of the protocol over a deployed fibre. PMID:24913129

  12. Numerical simulation of the optimal two-mode attacks for two-way continuous-variable quantum cryptography in reverse reconciliation

    NASA Astrophysics Data System (ADS)

    Zhang, Yichen; Li, Zhengyu; Zhao, Yijia; Yu, Song; Guo, Hong

    2017-02-01

    We analyze the security of the two-way continuous-variable quantum key distribution protocol in reverse reconciliation against general two-mode attacks, which represent all accessible attacks at fixed channel parameters. Rather than against one specific attack model, the expression of secret key rates of the two-way protocol are derived against all accessible attack models. It is found that there is an optimal two-mode attack to minimize the performance of the protocol in terms of both secret key rates and maximal transmission distances. We identify the optimal two-mode attack, give the specific attack model of the optimal two-mode attack and show the performance of the two-way protocol against the optimal two-mode attack. Even under the optimal two-mode attack, the performances of two-way protocol are still better than the corresponding one-way protocol, which shows the advantage of making double use of the quantum channel and the potential of long-distance secure communication using a two-way protocol.

  13. A Secure, Intelligent, and Smart-Sensing Approach for Industrial System Automation and Transmission over Unsecured Wireless Networks

    PubMed Central

    Shahzad, Aamir; Lee, Malrey; Xiong, Neal Naixue; Jeong, Gisung; Lee, Young-Keun; Choi, Jae-Young; Mahesar, Abdul Wheed; Ahmad, Iftikhar

    2016-01-01

    In Industrial systems, Supervisory control and data acquisition (SCADA) system, the pseudo-transport layer of the distributed network protocol (DNP3) performs the functions of the transport layer and network layer of the open systems interconnection (OSI) model. This study used a simulation design of water pumping system, in-which the network nodes are directly and wirelessly connected with sensors, and are monitored by the main controller, as part of the wireless SCADA system. This study also intends to focus on the security issues inherent in the pseudo-transport layer of the DNP3 protocol. During disassembly and reassembling processes, the pseudo-transport layer keeps track of the bytes sequence. However, no mechanism is available that can verify the message or maintain the integrity of the bytes in the bytes received/transmitted from/to the data link layer or in the send/respond from the main controller/sensors. To properly and sequentially keep track of the bytes, a mechanism is required that can perform verification while bytes are received/transmitted from/to the lower layer of the DNP3 protocol or the send/respond to/from field sensors. For security and byte verification purposes, a mechanism needs to be proposed for the pseudo-transport layer, by employing cryptography algorithm. A dynamic choice security buffer (SB) is designed and employed during the security development. To achieve the desired goals of the proposed study, a pseudo-transport layer stack model is designed using the DNP3 protocol open library and the security is deployed and tested, without changing the original design. PMID:26950129

  14. A Secure, Intelligent, and Smart-Sensing Approach for Industrial System Automation and Transmission over Unsecured Wireless Networks.

    PubMed

    Shahzad, Aamir; Lee, Malrey; Xiong, Neal Naixue; Jeong, Gisung; Lee, Young-Keun; Choi, Jae-Young; Mahesar, Abdul Wheed; Ahmad, Iftikhar

    2016-03-03

    In Industrial systems, Supervisory control and data acquisition (SCADA) system, the pseudo-transport layer of the distributed network protocol (DNP3) performs the functions of the transport layer and network layer of the open systems interconnection (OSI) model. This study used a simulation design of water pumping system, in-which the network nodes are directly and wirelessly connected with sensors, and are monitored by the main controller, as part of the wireless SCADA system. This study also intends to focus on the security issues inherent in the pseudo-transport layer of the DNP3 protocol. During disassembly and reassembling processes, the pseudo-transport layer keeps track of the bytes sequence. However, no mechanism is available that can verify the message or maintain the integrity of the bytes in the bytes received/transmitted from/to the data link layer or in the send/respond from the main controller/sensors. To properly and sequentially keep track of the bytes, a mechanism is required that can perform verification while bytes are received/transmitted from/to the lower layer of the DNP3 protocol or the send/respond to/from field sensors. For security and byte verification purposes, a mechanism needs to be proposed for the pseudo-transport layer, by employing cryptography algorithm. A dynamic choice security buffer (SB) is designed and employed during the security development. To achieve the desired goals of the proposed study, a pseudo-transport layer stack model is designed using the DNP3 protocol open library and the security is deployed and tested, without changing the original design.

  15. Lessons Learned from the Afghan Mission Network: Developing a Coalition Contingency Network

    DTIC Science & Technology

    2014-01-01

    SIPRNet Secret Internet Protocol Router Network SOP Standard Operating Procedure SVTC Secure Video Teleconference (or –Conferencing) TTP Tactics...Voice over internet protocol (VOIP) telephone connectivity • Email • Web browsing • Secure video teleconferencing (SVTC...10, 2012. As of January 15, 2013: http://www.guardian.co.uk/world/2012/oct/10/us-troops-jordan-syria-crisis Baldor, Lolita C., and Pauline Jelinek

  16. Survey on Security Issues in File Management in Cloud Computing Environment

    NASA Astrophysics Data System (ADS)

    Gupta, Udit

    2015-06-01

    Cloud computing has pervaded through every aspect of Information technology in past decade. It has become easier to process plethora of data, generated by various devices in real time, with the advent of cloud networks. The privacy of users data is maintained by data centers around the world and hence it has become feasible to operate on that data from lightweight portable devices. But with ease of processing comes the security aspect of the data. One such security aspect is secure file transfer either internally within cloud or externally from one cloud network to another. File management is central to cloud computing and it is paramount to address the security concerns which arise out of it. This survey paper aims to elucidate the various protocols which can be used for secure file transfer and analyze the ramifications of using each protocol.

  17. Simple group password-based authenticated key agreements for the integrated EPR information system.

    PubMed

    Lee, Tian-Fu; Chang, I-Pin; Wang, Ching-Cheng

    2013-04-01

    The security and privacy are important issues for electronic patient records (EPRs). The goal of EPRs is sharing the patients' medical histories such as the diagnosis records, reports and diagnosis image files among hospitals by the Internet. So the security issue for the integrated EPR information system is essential. That is, to ensure the information during transmission through by the Internet is secure and private. The group password-based authenticated key agreement (GPAKE) allows a group of users like doctors, nurses and patients to establish a common session key by using password authentication. Then the group of users can securely communicate by using this session key. Many approaches about GAPKE employ the public key infrastructure (PKI) in order to have higher security. However, it not only increases users' overheads and requires keeping an extra equipment for storing long-term secret keys, but also requires maintaining the public key system. This investigation presents a simple group password-based authenticated key agreement (SGPAKE) protocol for the integrated EPR information system. The proposed SGPAKE protocol does not require using the server or users' public keys. Each user only remembers his weak password shared with a trusted server, and then can obtain a common session key. Then all users can securely communicate by using this session key. The proposed SGPAKE protocol not only provides users with convince, but also has higher security.

  18. An 'unconditional-like' structure for the conditional estimator of odds ratio from 2 x 2 tables.

    PubMed

    Hanley, James A; Miettinen, Olli S

    2006-02-01

    In the estimation of the odds ratio (OR), the conditional maximum-likelihood estimate (cMLE) is preferred to the more readily computed unconditional one (uMLE). However, the exact cMLE does not have a closed form to help divine it from the uMLE or to understand in what circumstances the difference between the two is appreciable. Here, the cMLE is shown to have the same 'ratio of cross-products' structure as its unconditional counterpart, but with two of the cell frequencies augmented, so as to shrink the unconditional estimator towards unity. The augmentation involves a factor, similar to the finite population correction, derived from the minimum of the marginal totals.

  19. Building a gateway with open source software for secure-DICOM communication over insecure networks

    NASA Astrophysics Data System (ADS)

    Emmel, Dirk; Ricke, Jens; Stohlmann, Lutz; Haderer, Alexander; Felix, Roland

    2002-05-01

    For Teleradiology the exchange of DICOM-images is needed for several purposes. Existing solutions often don't consider about the needs for data security and data privacy. Communication is done without any encryption over insecure networks or with encryption using proprietary solutions, which reduces the data communication possibilities to partners with the same equipment. Our goal was to build a gateway, which offers a transparent solution for secure DICOM-communication in a heterogeneous environment We developed a PC-based gateway system with DICOM-communication to the in-house network and secure DICOM communication for the communication over the insecure network. One gateway installed at each location is responsible for encryption/decryption. The sender just transfers the image data over the DICOM protocol to the local gateway. The gateway forwards the data to the gateway on the destination site using the secure DICOM protocol, which is part of the DICOM standard. The receiving gateway forwards the image data to the final destination again using the DICOM-Protocol. The gateway is based on Open Source software and runs under several operating systems. Our experience shows a reliable solution, which solves security issues for DICOM communication of image data and integrates seamless into a heterogeneous DICOM environment.

  20. Automating Security Protocol Analysis

    DTIC Science & Technology

    2004-03-01

    language that allows easy representation of pattern interaction. Using CSP, Lowe tests whether a protocol achieves authentication. In the case of...only to correctly code whatever protocol they intend to evaluate. The tool, OCaml 3.04 [1], translates the protocol into Horn clauses and then...model protocol transactions. One example of automated modeling software is Maude [19]. Maude was the intended language for this research, but Java

  1. Quantum direct communication protocol strengthening against Pavičić’s attack

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Shi, Wei-Xu; Wang, Jian; Tang, Chao-Jing

    2015-12-01

    A quantum circuit providing an undetectable eavesdropping of information in message mode, which compromises all two-state ψ-ϕ quantum direct communication (QDC) protocols, has been recently proposed by Pavičić [Phys. Rev. A 87 (2013) 042326]. A modification of the protocol’s control mode is proposed, which improves users’ 25% detection probability of Eve to 50% at best, as that in ping-pong protocol. The modification also improves the detection probability of Wójcik’s attack [Phys. Rev. Lett 90 (2003) 157901] to 75% at best. The resistance against man-in-the-middle (MITM) attack as well as the discussion of security for four Bell state protocols is presented. As a result, the protocol security is strengthened both theoretically and practically, and quantum advantage of superdense coding is restored.

  2. Internetting tactical security sensor systems

    NASA Astrophysics Data System (ADS)

    Gage, Douglas W.; Bryan, W. D.; Nguyen, Hoa G.

    1998-08-01

    The Multipurpose Surveillance and Security Mission Platform (MSSMP) is a distributed network of remote sensing packages and control stations, designed to provide a rapidly deployable, extended-range surveillance capability for a wide variety of military security operations and other tactical missions. The baseline MSSMP sensor suite consists of a pan/tilt unit with video and FLIR cameras and laser rangefinder. With an additional radio transceiver, MSSMP can also function as a gateway between existing security/surveillance sensor systems such as TASS, TRSS, and IREMBASS, and IP-based networks, to support the timely distribution of both threat detection and threat assessment information. The MSSMP system makes maximum use of Commercial Off The Shelf (COTS) components for sensing, processing, and communications, and of both established and emerging standard communications networking protocols and system integration techniques. Its use of IP-based protocols allows it to freely interoperate with the Internet -- providing geographic transparency, facilitating development, and allowing fully distributed demonstration capability -- and prepares it for integration with the IP-based tactical radio networks that will evolve in the next decade. Unfortunately, the Internet's standard Transport layer protocol, TCP, is poorly matched to the requirements of security sensors and other quasi- autonomous systems in being oriented to conveying a continuous data stream, rather than discrete messages. Also, its canonical 'socket' interface both conceals short losses of communications connectivity and simply gives up and forces the Application layer software to deal with longer losses. For MSSMP, a software applique is being developed that will run on top of User Datagram Protocol (UDP) to provide a reliable message-based Transport service. In addition, a Session layer protocol is being developed to support the effective transfer of control of multiple platforms among multiple control stations.

  3. A note on the security of IS-RFID, an inpatient medication safety.

    PubMed

    Safkhani, Masoumeh; Bagheri, Nasour; Naderi, Majid

    2014-01-01

    In this paper we investigate the security level of a comprehensive RFID solution to enhance inpatient medication safety, named IS-RFID, which has been recently proposed by Peris-Lopez et al. We analyses the security of the protocol against the known attacks in the context. The main target of this paper is to determine whether the new protocol provides the confidentiality property, which is expected to be provided by such a protocol. It was found that IS-RFID has critical weaknesses. The presented security investigations show that a passive adversary can retrieve secret parameters of patient's tag in cost of O(2(16)) off-line PRNG evaluations. Given the tag's secret parameters, any security claims are ruined. In this paper we presented an efficient passive secret disclosure attack which retrieves the main secret parameters related to the patient which shows that IS-RFID may put the patient safety on risk. The proposed attacking technique is in light of two vulnerabilities of the protocol: (1) the short length of the used PRNG, which is urged by the target technology, EPC C1 Gen2 ; (2) the message-generating mechanism utilizing PRNG was not carefully scrutinized. While the later point can be fixed by careful designing of the transferred messages between the protocol's party, the earlier point, i.e., the short length of the available PRNG for EPC C1 Gen2 tags, is a limitation which is forced by the technology. In addition, over the last years, schemes based solely on using simple operations or short PRNG (such as IS-RFID) have been shown to offer very low or no security at all. Recent advances in lightweight ciphers, such as PRESENT or Grain , seem a much more appropriate solution rather than relying on short PRNGs. However, such solutions breaks the EPC C1 Gen2 compatibility. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Reinstatement of contextual conditioned anxiety in virtual reality and the effects of transcutaneous vagus nerve stimulation in humans.

    PubMed

    Genheimer, Hannah; Andreatta, Marta; Asan, Esther; Pauli, Paul

    2017-12-20

    Since exposure therapy for anxiety disorders incorporates extinction of contextual anxiety, relapses may be due to reinstatement processes. Animal research demonstrated more stable extinction memory and less anxiety relapse due to vagus nerve stimulation (VNS). We report a valid human three-day context conditioning, extinction and return of anxiety protocol, which we used to examine effects of transcutaneous VNS (tVNS). Seventy-five healthy participants received electric stimuli (unconditioned stimuli, US) during acquisition (Day1) when guided through one virtual office (anxiety context, CTX+) but never in another (safety context, CTX-). During extinction (Day2), participants received tVNS, sham, or no stimulation and revisited both contexts without US delivery. On Day3, participants received three USs for reinstatement followed by a test phase. Successful acquisition, i.e. startle potentiation, lower valence, higher arousal, anxiety and contingency ratings in CTX+ versus CTX-, the disappearance of these effects during extinction, and successful reinstatement indicate validity of this paradigm. Interestingly, we found generalized reinstatement in startle responses and differential reinstatement in valence ratings. Altogether, our protocol serves as valid conditioning paradigm. Reinstatement effects indicate different anxiety networks underlying physiological versus verbal responses. However, tVNS did neither affect extinction nor reinstatement, which asks for validation and improvement of the stimulation protocol.

  5. Backup key generation model for one-time password security protocol

    NASA Astrophysics Data System (ADS)

    Jeyanthi, N.; Kundu, Sourav

    2017-11-01

    The use of one-time password (OTP) has ushered new life into the existing authentication protocols used by the software industry. It introduced a second layer of security to the traditional username-password authentication, thus coining the term, two-factor authentication. One of the drawbacks of this protocol is the unreliability of the hardware token at the time of authentication. This paper proposes a simple backup key model that can be associated with the real world applications’user database, which would allow a user to circumvent the second authentication stage, in the event of unavailability of the hardware token.

  6. Cryptanalysis of the Quantum Group Signature Protocols

    NASA Astrophysics Data System (ADS)

    Zhang, Ke-Jia; Sun, Ying; Song, Ting-Ting; Zuo, Hui-Juan

    2013-11-01

    Recently, the researches of quantum group signature (QGS) have attracted a lot of attentions and some typical protocols have been designed for e-payment system, e-government, e-business, etc. In this paper, we analyze the security of the quantum group signature with the example of two novel protocols. It can be seen that both of them cannot be implemented securely since the arbitrator cannot solve the disputes fairly. In order to show that, some possible attack strategies, which can be used by the malicious participants, are proposed. Moreover, the further discussions of QGS are presented finally, including some insecurity factors and improved ideas.

  7. Secured Communication for Business Process Outsourcing Using Optimized Arithmetic Cryptography Protocol Based on Virtual Parties

    NASA Astrophysics Data System (ADS)

    Pathak, Rohit; Joshi, Satyadhar

    Within a span of over a decade, India has become one of the most favored destinations across the world for Business Process Outsourcing (BPO) operations. India has rapidly achieved the status of being the most preferred destination for BPO for companies located in the US and Europe. Security and privacy are the two major issues needed to be addressed by the Indian software industry to have an increased and long-term outsourcing contract from the US. Another important issue is about sharing employee’s information to ensure that data and vital information of an outsourcing company is secured and protected. To ensure that the confidentiality of a client’s information is maintained, BPOs need to implement some data security measures. In this paper, we propose a new protocol for specifically for BPO Secure Multi-Party Computation (SMC). As there are many computations and surveys which involve confidential data from many parties or organizations and the concerned data is property of the organization, preservation and security of this data is of prime importance for such type of computations. Although the computation requires data from all the parties, but none of the associated parties would want to reveal their data to the other parties. We have proposed a new efficient and scalable protocol to perform computation on encrypted information. The information is encrypted in a manner that it does not affect the result of the computation. It uses modifier tokens which are distributed among virtual parties, and finally used in the computation. The computation function uses the acquired data and modifier tokens to compute right result from the encrypted data. Thus without revealing the data, right result can be computed and privacy of the parties is maintained. We have given a probabilistic security analysis of hacking the protocol and shown how zero hacking security can be achieved. Also we have analyzed the specific case of Indian BPO.

  8. An Enhanced Secure Identity-Based Certificateless Public Key Authentication Scheme for Vehicular Sensor Networks.

    PubMed

    Li, Congcong; Zhang, Xi; Wang, Haiping; Li, Dongfeng

    2018-01-11

    Vehicular sensor networks have been widely applied in intelligent traffic systems in recent years. Because of the specificity of vehicular sensor networks, they require an enhanced, secure and efficient authentication scheme. Existing authentication protocols are vulnerable to some problems, such as a high computational overhead with certificate distribution and revocation, strong reliance on tamper-proof devices, limited scalability when building many secure channels, and an inability to detect hardware tampering attacks. In this paper, an improved authentication scheme using certificateless public key cryptography is proposed to address these problems. A security analysis of our scheme shows that our protocol provides an enhanced secure anonymous authentication, which is resilient against major security threats. Furthermore, the proposed scheme reduces the incidence of node compromise and replication attacks. The scheme also provides a malicious-node detection and warning mechanism, which can quickly identify compromised static nodes and immediately alert the administrative department. With performance evaluations, the scheme can obtain better trade-offs between security and efficiency than the well-known available schemes.

  9. Secure Continuous Variable Teleportation and Einstein-Podolsky-Rosen Steering

    NASA Astrophysics Data System (ADS)

    He, Qiongyi; Rosales-Zárate, Laura; Adesso, Gerardo; Reid, Margaret D.

    2015-10-01

    We investigate the resources needed for secure teleportation of coherent states. We extend continuous variable teleportation to include quantum teleamplification protocols that allow nonunity classical gains and a preamplification or postattenuation of the coherent state. We show that, for arbitrary Gaussian protocols and a significant class of Gaussian resources, two-way steering is required to achieve a teleportation fidelity beyond the no-cloning threshold. This provides an operational connection between Gaussian steerability and secure teleportation. We present practical recipes suggesting that heralded noiseless preamplification may enable high-fidelity heralded teleportation, using minimally entangled yet steerable resources.

  10. Improving security of the ping-pong protocol

    NASA Astrophysics Data System (ADS)

    Zawadzki, Piotr

    2013-01-01

    A security layer for the asymptotically secure ping-pong protocol is proposed and analyzed in the paper. The operation of the improvement exploits inevitable errors introduced by the eavesdropping in the control and message modes. Its role is similar to the privacy amplification algorithms known from the quantum key distribution schemes. Messages are processed in blocks which guarantees that an eavesdropper is faced with a computationally infeasible problem as long as the system parameters are within reasonable limits. The introduced additional information preprocessing does not require quantum memory registers and confidential communication is possible without prior key agreement or some shared secret.

  11. Design and implementation of a high performance network security processor

    NASA Astrophysics Data System (ADS)

    Wang, Haixin; Bai, Guoqiang; Chen, Hongyi

    2010-03-01

    The last few years have seen many significant progresses in the field of application-specific processors. One example is network security processors (NSPs) that perform various cryptographic operations specified by network security protocols and help to offload the computation intensive burdens from network processors (NPs). This article presents a high performance NSP system architecture implementation intended for both internet protocol security (IPSec) and secure socket layer (SSL) protocol acceleration, which are widely employed in virtual private network (VPN) and e-commerce applications. The efficient dual one-way pipelined data transfer skeleton and optimised integration scheme of the heterogenous parallel crypto engine arrays lead to a Gbps rate NSP, which is programmable with domain specific descriptor-based instructions. The descriptor-based control flow fragments large data packets and distributes them to the crypto engine arrays, which fully utilises the parallel computation resources and improves the overall system data throughput. A prototyping platform for this NSP design is implemented with a Xilinx XC3S5000 based FPGA chip set. Results show that the design gives a peak throughput for the IPSec ESP tunnel mode of 2.85 Gbps with over 2100 full SSL handshakes per second at a clock rate of 95 MHz.

  12. Twenty Seven Years of Quantum Cryptography!

    NASA Astrophysics Data System (ADS)

    Hughes, Richard

    2011-03-01

    One of the fundamental goals of cryptographic research is to minimize the assumptions underlying the protocols that enable secure communications between pairs or groups of users. In 1984, building on earlier research by Stephen Wiesner, Charles Bennett and Gilles Brassard showed how quantum physics could be harnessed to provide information-theoretic security for protocols such as the distribution of cryptographic keys, which enables two parties to secure their conventional communications. Bennett and Brassard and colleagues performed a proof-of-principle quantum key distribution (QKD) experiment with single-photon quantum state transmission over a 32-cm air path in 1991. This seminal experiment led other researchers to explore QKD in optical fibers and over line-of-sight outdoor atmospheric paths (``free-space''), resulting in dramatic increases in range, bit rate and security. These advances have been enabled by improvements in sources and single-photon detectors. Also in 1991 Artur Ekert showed how the security of QKD could be related to quantum entanglement. This insight led to a deeper understanding and proof of QKD security with practical sources and detectors in the presence of transmission loss and channel noise. Today, QKD has been implemented over ranges much greater than 100km in both fiber and free-space, multi-node network testbeds have been demonstrated, and satellite-based QKD is under study in several countries. ``Quantum hacking'' researchers have shown the importance of extending security considerations to the classical devices that produce and detect the photon quantum states. New quantum cryptographic protocols such as secure identification have been proposed, and others such as quantum secret splitting have been demonstrated. It is now possible to envision quantum cryptography providing a more secure alternative to present-day cryptographic methods for many secure communications functions. My talk will survey these remarkable developments.

  13. From Fob to Noc: A Pathway to a Cyber Career for Combat Veterans

    DTIC Science & Technology

    2014-06-01

    Assurance Certifications GS general schedule HSAC Homeland Security Advisory Council IDS intrusion detection system IP internet protocol IPS...NIPRNET non-secure internet protocol router network NIST National Institute for Standards and Technology NOC network operations center NSA National...twice a day on an irregular schedule or during contact with the enemy to keep any observing enemy wary of the force protection 13 condition at any

  14. Lemnos interoperable security project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halbgewachs, Ronald D.

    2010-03-01

    With the Lemnos framework, interoperability of control security equipment is straightforward. To obtain interoperability between proprietary security appliance units, one or both vendors must now write cumbersome 'translation code.' If one party changes something, the translation code 'breaks.' The Lemnos project is developing and testing a framework that uses widely available security functions and protocols like IPsec - to form a secure communications channel - and Syslog, to exchange security log messages. Using this model, security appliances from two or more different vendors can clearly and securely exchange information, helping to better protect the total system. Simplify regulatory compliance inmore » a complicated security environment by leveraging the Lemnos framework. As an electric utility, are you struggling to implement the NERC CIP standards and other regulations? Are you weighing the misery of multiple management interfaces against committing to a ubiquitous single-vendor solution? When vendors build their security appliances to interoperate using the Lemnos framework, it becomes practical to match best-of-breed offerings from an assortment of vendors to your specific control systems needs. The Lemnos project is developing and testing a framework that uses widely available open-source security functions and protocols like IPsec and Syslog to create a secure communications channel between appliances in order to exchange security data.« less

  15. Secure Authentication for Remote Patient Monitoring with Wireless Medical Sensor Networks †

    PubMed Central

    Hayajneh, Thaier; Mohd, Bassam J; Imran, Muhammad; Almashaqbeh, Ghada; Vasilakos, Athanasios V.

    2016-01-01

    There is broad consensus that remote health monitoring will benefit all stakeholders in the healthcare system and that it has the potential to save billions of dollars. Among the major concerns that are preventing the patients from widely adopting this technology are data privacy and security. Wireless Medical Sensor Networks (MSNs) are the building blocks for remote health monitoring systems. This paper helps to identify the most challenging security issues in the existing authentication protocols for remote patient monitoring and presents a lightweight public-key-based authentication protocol for MSNs. In MSNs, the nodes are classified into sensors that report measurements about the human body and actuators that receive commands from the medical staff and perform actions. Authenticating these commands is a critical security issue, as any alteration may lead to serious consequences. The proposed protocol is based on the Rabin authentication algorithm, which is modified in this paper to improve its signature signing process, making it suitable for delay-sensitive MSN applications. To prove the efficiency of the Rabin algorithm, we implemented the algorithm with different hardware settings using Tmote Sky motes and also programmed the algorithm on an FPGA to evaluate its design and performance. Furthermore, the proposed protocol is implemented and tested using the MIRACL (Multiprecision Integer and Rational Arithmetic C/C++) library. The results show that secure, direct, instant and authenticated commands can be delivered from the medical staff to the MSN nodes. PMID:27023540

  16. Secure Authentication for Remote Patient Monitoring with Wireless Medical Sensor Networks.

    PubMed

    Hayajneh, Thaier; Mohd, Bassam J; Imran, Muhammad; Almashaqbeh, Ghada; Vasilakos, Athanasios V

    2016-03-24

    There is broad consensus that remote health monitoring will benefit all stakeholders in the healthcare system and that it has the potential to save billions of dollars. Among the major concerns that are preventing the patients from widely adopting this technology are data privacy and security. Wireless Medical Sensor Networks (MSNs) are the building blocks for remote health monitoring systems. This paper helps to identify the most challenging security issues in the existing authentication protocols for remote patient monitoring and presents a lightweight public-key-based authentication protocol for MSNs. In MSNs, the nodes are classified into sensors that report measurements about the human body and actuators that receive commands from the medical staff and perform actions. Authenticating these commands is a critical security issue, as any alteration may lead to serious consequences. The proposed protocol is based on the Rabin authentication algorithm, which is modified in this paper to improve its signature signing process, making it suitable for delay-sensitive MSN applications. To prove the efficiency of the Rabin algorithm, we implemented the algorithm with different hardware settings using Tmote Sky motes and also programmed the algorithm on an FPGA to evaluate its design and performance. Furthermore, the proposed protocol is implemented and tested using the MIRACL (Multiprecision Integer and Rational Arithmetic C/C++) library. The results show that secure, direct, instant and authenticated commands can be delivered from the medical staff to the MSN nodes.

  17. A Systematic Comprehensive Computational Model for Stake Estimation in Mission Assurance: Applying Cyber Security Econometrics System (CSES) to Mission Assurance Analysis Protocol (MAAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abercrombie, Robert K; Sheldon, Frederick T; Grimaila, Michael R

    2010-01-01

    In earlier works, we presented a computational infrastructure that allows an analyst to estimate the security of a system in terms of the loss that each stakeholder stands to sustain as a result of security breakdowns. In this paper, we discuss how this infrastructure can be used in the subject domain of mission assurance as defined as the full life-cycle engineering process to identify and mitigate design, production, test, and field support deficiencies of mission success. We address the opportunity to apply the Cyberspace Security Econometrics System (CSES) to Carnegie Mellon University and Software Engineering Institute s Mission Assurance Analysismore » Protocol (MAAP) in this context.« less

  18. A new method of enhancing telecommand security: the application of GCM in TC protocol

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Tang, Chaojing; Zhang, Quan

    2007-11-01

    In recent times, security has grown to a topic of major importance for the space missions. Many space agencies have been engaged in research on the selection of proper algorithms for ensuring Telecommand security according to the space communication environment, especially in regard to the privacy and authentication. Since space missions with high security levels need to ensure both privacy and authentication, Authenticated Encryption with Associated Data schemes (AEAD) be integrated into normal Telecommand protocols. This paper provides an overview of the Galois Counter Mode (GCM) of operation, which is one of the available two-pass AEAD schemes, and some preliminary considerations and analyses about its possible application to Telecommand frames specified by CCSDS.

  19. A Provably Secure RFID Authentication Protocol Based on Elliptic Curve for Healthcare Environments.

    PubMed

    Farash, Mohammad Sabzinejad; Nawaz, Omer; Mahmood, Khalid; Chaudhry, Shehzad Ashraf; Khan, Muhammad Khurram

    2016-07-01

    To enhance the quality of healthcare in the management of chronic disease, telecare medical information systems have increasingly been used. Very recently, Zhang and Qi (J. Med. Syst. 38(5):47, 32), and Zhao (J. Med. Syst. 38(5):46, 33) separately proposed two authentication schemes for telecare medical information systems using radio frequency identification (RFID) technology. They claimed that their protocols achieve all security requirements including forward secrecy. However, this paper demonstrates that both Zhang and Qi's scheme, and Zhao's scheme could not provide forward secrecy. To augment the security, we propose an efficient RFID authentication scheme using elliptic curves for healthcare environments. The proposed RFID scheme is secure under common random oracle model.

  20. A Lightweight Continuous Authentication Protocol for the Internet of Things.

    PubMed

    Chuang, Yo-Hsuan; Lo, Nai-Wei; Yang, Cheng-Ying; Tang, Ssu-Wei

    2018-04-05

    Modern societies are moving toward an information-oriented environment. To gather and utilize information around people's modern life, tiny devices with all kinds of sensing devices and various sizes of gateways need to be deployed and connected with each other through the Internet or proxy-based wireless sensor networks (WSNs). Within this kind of Internet of Things (IoT) environment, how to authenticate each other between two communicating devices is a fundamental security issue. As a lot of IoT devices are powered by batteries and they need to transmit sensed data periodically, it is necessary for IoT devices to adopt a lightweight authentication protocol to reduce their energy consumption when a device wants to authenticate and transmit data to its targeted peer. In this paper, a lightweight continuous authentication protocol for sensing devices and gateway devices in general IoT environments is introduced. The concept of valid authentication time period is proposed to enhance robustness of authentication between IoT devices. To construct the proposed lightweight continuous authentication protocol, token technique and dynamic features of IoT devices are adopted in order to reach the design goals: the reduction of time consumption for consecutive authentications and energy saving for authenticating devices through by reducing the computation complexity during session establishment of continuous authentication. Security analysis is conducted to evaluate security strength of the proposed protocol. In addition, performance analysis has shown the proposed protocol is a strong competitor among existing protocols for device-to-device authentication in IoT environments.

  1. The AgMIP Coordinated Global and Regional Assessments (CGRA) of Climate Change Impacts on Agriculture and Food Security

    NASA Technical Reports Server (NTRS)

    Ruane, Alex; Rosenzweig, Cynthia; Elliott, Joshua; Antle, John

    2015-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) has been working since 2010 to construct a protocol-based framework enabling regional assessments (led by regional experts and modelers) that can provide consistent inputs to global economic and integrated assessment models. These global models can then relay important global-level information that drive regional decision-making and outcomes throughout an interconnected agricultural system. AgMIPs community of nearly 800 climate, crop, livestock, economics, and IT experts has improved the state-of-the-art through model intercomparisons, validation exercises, regional integrated assessments, and the launch of AgMIP programs on all six arable continents. AgMIP is now launching Coordinated Global and Regional Assessments (CGRA) of climate change impacts on agriculture and food security to link global and regional crop and economic models using a protocol-based framework. The CGRA protocols are being developed to utilize historical observations, climate projections, and RCPsSSPs from CMIP5 (and potentially CMIP6), and will examine stakeholder-driven agricultural development and adaptation scenarios to provide cutting-edge assessments of climate changes impact on agriculture and food security. These protocols will build on the foundation of established protocols from AgMIPs 30+ activities, and will emphasize the use of multiple models, scenarios, and scales to enable an accurate assessment of related uncertainties. The CGRA is also designed to provide the outputs necessary to feed into integrated assessment models (IAMs), nutrition and food security assessments, nitrogen and carbon cycle models, and additional impact-sector assessments (e.g., water resources, land-use, biomes, urban areas). This presentation will describe the current status of CGRA planning and initial prototype experiments to demonstrate key aspects of the protocols before wider implementation ahead of the IPCC Sixth Assessment Report.

  2. The AgMIP Coordinated Global and Regional Assessments (CGRA) of Climate Change Impacts on Agriculture and Food Security

    NASA Astrophysics Data System (ADS)

    Ruane, A. C.; Rosenzweig, C.; Antle, J. M.; Elliott, J. W.

    2015-12-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) has been working since 2010 to construct a protocol-based framework enabling regional assessments (led by regional experts and modelers) that can provide consistent inputs to global economic and integrated assessment models. These global models can then relay important global-level information that drive regional decision-making and outcomes throughout an interconnected agricultural system. AgMIP's community of nearly 800 climate, crop, livestock, economics, and IT experts has improved the state-of-the-art through model intercomparisons, validation exercises, regional integrated assessments, and the launch of AgMIP programs on all six arable continents. AgMIP is now launching Coordinated Global and Regional Assessments (CGRA) of climate change impacts on agriculture and food security to link global and regional crop and economic models using a protocol-based framework. The CGRA protocols are being developed to utilize historical observations, climate projections, and RCPs/SSPs from CMIP5 (and potentially CMIP6), and will examine stakeholder-driven agricultural development and adaptation scenarios to provide cutting-edge assessments of climate change's impact on agriculture and food security. These protocols will build on the foundation of established protocols from AgMIP's 30+ activities, and will emphasize the use of multiple models, scenarios, and scales to enable an accurate assessment of related uncertainties. The CGRA is also designed to provide the outputs necessary to feed into integrated assessment models (IAMs), nutrition and food security assessments, nitrogen and carbon cycle models, and additional impact-sector assessments (e.g., water resources, land-use, biomes, urban areas). This presentation will describe the current status of CGRA planning and initial prototype experiments to demonstrate key aspects of the protocols before wider implementation ahead of the IPCC Sixth Assessment Report.

  3. Quality of protection evaluation of security mechanisms.

    PubMed

    Ksiezopolski, Bogdan; Zurek, Tomasz; Mokkas, Michail

    2014-01-01

    Recent research indicates that during the design of teleinformatic system the tradeoff between the systems performance and the system protection should be made. The traditional approach assumes that the best way is to apply the strongest possible security measures. Unfortunately, the overestimation of security measures can lead to the unreasonable increase of system load. This is especially important in multimedia systems where the performance has critical character. In many cases determination of the required level of protection and adjustment of some security measures to these requirements increase system efficiency. Such an approach is achieved by means of the quality of protection models where the security measures are evaluated according to their influence on the system security. In the paper, we propose a model for QoP evaluation of security mechanisms. Owing to this model, one can quantify the influence of particular security mechanisms on ensuring security attributes. The methodology of our model preparation is described and based on it the case study analysis is presented. We support our method by the tool where the models can be defined and QoP evaluation can be performed. Finally, we have modelled TLS cryptographic protocol and presented the QoP security mechanisms evaluation for the selected versions of this protocol.

  4. 42 CFR 401.713 - Ensuring the privacy and security of data.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 2 2014-10-01 2014-10-01 false Ensuring the privacy and security of data. 401.713... Performance Measurement § 401.713 Ensuring the privacy and security of data. (a) A qualified entity must... require the qualified entity to maintain privacy and security protocols throughout the duration of the...

  5. A Public-Key Based Authentication and Key Establishment Protocol Coupled with a Client Puzzle.

    ERIC Educational Resources Information Center

    Lee, M. C.; Fung, Chun-Kan

    2003-01-01

    Discusses network denial-of-service attacks which have become a security threat to the Internet community and suggests the need for reliable authentication protocols in client-server applications. Presents a public-key based authentication and key establishment protocol coupled with a client puzzle protocol and validates it through formal logic…

  6. On the vulnerability of basic quantum key distribution protocols and three protocols stable to attack with 'blinding' of avalanche photodetectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molotkov, S. N., E-mail: sergei.molotkov@gmail.com

    2012-05-15

    The fundamental quantum mechanics prohibitions on the measurability of quantum states allow secure key distribution between spatially remote users to be performed. Experimental and commercial implementations of quantum cryptography systems, however, use components that exist at the current technology level, in particular, one-photon avalanche photodetectors. These detectors are subject to the blinding effect. It was shown that all the known basic quantum key distribution protocols and systems based on them are vulnerable to attacks with blinding of photodetectors. In such attacks, an eavesdropper knows all the key transferred, does not produce errors at the reception side, and remains undetected. Threemore » protocols of quantum key distribution stable toward such attacks are suggested. The security of keys and detection of eavesdropping attempts are guaranteed by the internal structure of protocols themselves rather than additional technical improvements.« less

  7. Quantum secret information equal exchange protocol based on dense coding

    NASA Astrophysics Data System (ADS)

    Jiang, Ying-Hua; Zhang, Shi-Bin; Dai, Jin-Qiao; Shi, Zhi-Ping

    2018-04-01

    In this paper, we design a novel quantum secret information equal exchange protocol, which implements the equal exchange of secret information between the two parties with the help of semi-trusted third party (TP). In the protocol, EPR pairs prepared by the TP are, respectively, distributed to both the communication parties. Then, the two parties perform Pauli operation on each particle and return the new particles to TP, respectively. TP measures each new pair with Bell basis and announces the measurement results. Both parties deduce the secret information of each other according to the result of announcement by TP. Finally, the security analysis shows that this protocol solves the problem about equal exchange of secret information between two parties and verifies the security of semi-trusted TPs. It proves that the protocol can effectively resist glitch attacks, intercept retransmission attacks and entanglement attack.

  8. Fully Integrated Passive UHF RFID Tag for Hash-Based Mutual Authentication Protocol

    PubMed Central

    Mikami, Shugo; Watanabe, Dai; Li, Yang; Sakiyama, Kazuo

    2015-01-01

    Passive radio-frequency identification (RFID) tag has been used in many applications. While the RFID market is expected to grow, concerns about security and privacy of the RFID tag should be overcome for the future use. To overcome these issues, privacy-preserving authentication protocols based on cryptographic algorithms have been designed. However, to the best of our knowledge, evaluation of the whole tag, which includes an antenna, an analog front end, and a digital processing block, that runs authentication protocols has not been studied. In this paper, we present an implementation and evaluation of a fully integrated passive UHF RFID tag that runs a privacy-preserving mutual authentication protocol based on a hash function. We design a single chip including the analog front end and the digital processing block. We select a lightweight hash function supporting 80-bit security strength and a standard hash function supporting 128-bit security strength. We show that when the lightweight hash function is used, the tag completes the protocol with a reader-tag distance of 10 cm. Similarly, when the standard hash function is used, the tag completes the protocol with the distance of 8.5 cm. We discuss the impact of the peak power consumption of the tag on the distance of the tag due to the hash function. PMID:26491714

  9. Electronic Clinical Trial Protocol Distribution via the World-Wide Web

    PubMed Central

    Afrin, Lawrence B.; Kuppuswamy, Valarmathi; Slater, Barbara; Stuart, Robert K.

    1997-01-01

    Clinical trials today typically are inefficient, paper-based operations. Poor community physician awareness of available trials and difficult referral mechanisms also contribute to poor accrual. The Physicians Research Network (PRN) web was developed for more efficient trial protocol distribution and eligibility inquiries. The Medical University of South Carolina's Hollings Cancer Center trials program and two community oncology practices served as a testbed. In 581 man-hours over 18 months, 147 protocols were loaded into PRN. The trials program eliminated all protocol hardcopies except the masters, reduced photocopier use 59%, and saved 1.0 full-time equivalents (FTE), but 1.0 FTE was needed to manage PRN. There were no known security breaches, downtime, or content-related problems. Therefore, PRN is a paperless, user-preferred, reliable, secure method for distributing protocols and reducing distribution errors and delays because only a single copy of each protocol is maintained. Furthermore, PRN is being extended to serve other aspects of trial operations. PMID:8988471

  10. Three-party Quantum Secure Direct Communication with Single Photons in both Polarization and Spatial-mode Degrees of Freedom

    NASA Astrophysics Data System (ADS)

    Wang, LiLi; Ma, WenPing; Wang, MeiLing; Shen, DongSu

    2016-05-01

    We present an efficient three-party quantum secure direct communication (QSDC) protocol with single photos in both polarization and spatial-mode degrees of freedom. The three legal parties' messages can be encoded on the polarization and the spatial-mode states of single photons independently with desired unitary operations. A party can obtain the other two parties' messages simultaneously through a quantum channel. Because no extra public information is transmitted in the classical channels, the drawback of information leakage or classical correlation does not exist in the proposed scheme. Moreover, the comprehensive security analysis shows that the presented QSDC network protocol can defend the outsider eavesdropper's several sorts of attacks. Compared with the single photons with only one degree of freedom, our protocol based on the single photons in two degrees of freedom has higher capacity. Since the preparation and the measurement of single photon quantum states in both the polarization and the spatial-mode degrees of freedom are available with current quantum techniques, the proposed protocol is practical.

  11. Design and Analysis of Optimization Algorithms to Minimize Cryptographic Processing in BGP Security Protocols.

    PubMed

    Sriram, Vinay K; Montgomery, Doug

    2017-07-01

    The Internet is subject to attacks due to vulnerabilities in its routing protocols. One proposed approach to attain greater security is to cryptographically protect network reachability announcements exchanged between Border Gateway Protocol (BGP) routers. This study proposes and evaluates the performance and efficiency of various optimization algorithms for validation of digitally signed BGP updates. In particular, this investigation focuses on the BGPSEC (BGP with SECurity extensions) protocol, currently under consideration for standardization in the Internet Engineering Task Force. We analyze three basic BGPSEC update processing algorithms: Unoptimized, Cache Common Segments (CCS) optimization, and Best Path Only (BPO) optimization. We further propose and study cache management schemes to be used in conjunction with the CCS and BPO algorithms. The performance metrics used in the analyses are: (1) routing table convergence time after BGPSEC peering reset or router reboot events and (2) peak-second signature verification workload. Both analytical modeling and detailed trace-driven simulation were performed. Results show that the BPO algorithm is 330% to 628% faster than the unoptimized algorithm for routing table convergence in a typical Internet core-facing provider edge router.

  12. A Survey of Authentication Schemes in Telecare Medicine Information Systems.

    PubMed

    Aslam, Muhammad Umair; Derhab, Abdelouahid; Saleem, Kashif; Abbas, Haider; Orgun, Mehmet; Iqbal, Waseem; Aslam, Baber

    2017-01-01

    E-Healthcare is an emerging field that provides mobility to its users. The protected health information of the users are stored at a remote server (Telecare Medical Information System) and can be accessed by the users at anytime. Many authentication protocols have been proposed to ensure the secure authenticated access to the Telecare Medical Information System. These protocols are designed to provide certain properties such as: anonymity, untraceability, unlinkability, privacy, confidentiality, availability and integrity. They also aim to build a key exchange mechanism, which provides security against some attacks such as: identity theft, password guessing, denial of service, impersonation and insider attacks. This paper reviews these proposed authentication protocols and discusses their strengths and weaknesses in terms of ensured security and privacy properties, and computation cost. The schemes are divided in three broad categories of one-factor, two-factor and three-factor authentication schemes. Inter-category and intra-category comparison has been performed for these schemes and based on the derived results we propose future directions and recommendations that can be very helpful to the researchers who work on the design and implementation of authentication protocols.

  13. Domain Name Server Security (DNSSEC) Protocol Deployment

    DTIC Science & Technology

    2014-10-01

    all the time. For mobile devices, end-system validation is much more difficult due to the state of their networks, many of which do not allow...way to distribute keying information than the current public-key infrastructure (PKI) allows. In addition, it will take work to convince CDNs and...Control Protocol (TCP) or even DNS over Secure Sockets Layer (SSL). One of the important outcomes of our work is the realization that that a " mobile

  14. Comment on "Bit-string oblivious transfer based on quantum state computational distinguishability"

    NASA Astrophysics Data System (ADS)

    He, Guang Ping

    2015-10-01

    We show that in the protocol proposed in Phys. Rev. A 91, 042306 (2015), 10.1103/PhysRevA.91.042306, a dishonest sender can always ensure with certainty that the receiver fails to get the secret message. Thus the security requirement of oblivious transfer is not met. This security problem also makes the protocol unsuitable for serving as a building block for 1-out-of-2 oblivious transfer.

  15. Nonequivalence of two flavors of oblivious transfer at the quantum level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He Guangping; Wang, Z. D.; Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong

    2006-04-15

    Though all-or-nothing oblivious transfer and one-out-of-two oblivious transfer are equivalent in classical cryptography, we here show that a protocol built upon secure quantum all-or-nothing oblivious transfer cannot satisfy the rigorous definition of quantum one-out-of-two oblivious transfer due to the nature of quantum cryptography. Thus the securities of the two oblivious transfer protocols are not equivalent at the quantum level.

  16. Quantum random oracle model for quantum digital signature

    NASA Astrophysics Data System (ADS)

    Shang, Tao; Lei, Qi; Liu, Jianwei

    2016-10-01

    The goal of this work is to provide a general security analysis tool, namely, the quantum random oracle (QRO), for facilitating the security analysis of quantum cryptographic protocols, especially protocols based on quantum one-way function. QRO is used to model quantum one-way function and different queries to QRO are used to model quantum attacks. A typical application of quantum one-way function is the quantum digital signature, whose progress has been hampered by the slow pace of the experimental realization. Alternatively, we use the QRO model to analyze the provable security of a quantum digital signature scheme and elaborate the analysis procedure. The QRO model differs from the prior quantum-accessible random oracle in that it can output quantum states as public keys and give responses to different queries. This tool can be a test bed for the cryptanalysis of more quantum cryptographic protocols based on the quantum one-way function.

  17. Loss-tolerant measurement-device-independent quantum private queries

    NASA Astrophysics Data System (ADS)

    Zhao, Liang-Yuan; Yin, Zhen-Qiang; Chen, Wei; Qian, Yong-Jun; Zhang, Chun-Mei; Guo, Guang-Can; Han, Zheng-Fu

    2017-01-01

    Quantum private queries (QPQ) is an important cryptography protocol aiming to protect both the user’s and database’s privacy when the database is queried privately. Recently, a variety of practical QPQ protocols based on quantum key distribution (QKD) have been proposed. However, for QKD-based QPQ the user’s imperfect detectors can be subjected to some detector- side-channel attacks launched by the dishonest owner of the database. Here, we present a simple example that shows how the detector-blinding attack can damage the security of QKD-based QPQ completely. To remove all the known and unknown detector side channels, we propose a solution of measurement-device-independent QPQ (MDI-QPQ) with single- photon sources. The security of the proposed protocol has been analyzed under some typical attacks. Moreover, we prove that its security is completely loss independent. The results show that practical QPQ will remain the same degree of privacy as before even with seriously uncharacterized detectors.

  18. Quantum key distribution using basis encoding of Gaussian-modulated coherent states

    NASA Astrophysics Data System (ADS)

    Huang, Peng; Huang, Jingzheng; Zhang, Zheshen; Zeng, Guihua

    2018-04-01

    The continuous-variable quantum key distribution (CVQKD) has been demonstrated to be available in practical secure quantum cryptography. However, its performance is restricted strongly by the channel excess noise and the reconciliation efficiency. In this paper, we present a quantum key distribution (QKD) protocol by encoding the secret keys on the random choices of two measurement bases: the conjugate quadratures X and P . The employed encoding method can dramatically weaken the effects of channel excess noise and reconciliation efficiency on the performance of the QKD protocol. Subsequently, the proposed scheme exhibits the capability to tolerate much higher excess noise and enables us to reach a much longer secure transmission distance even at lower reconciliation efficiency. The proposal can work alternatively to strengthen significantly the performance of the known Gaussian-modulated CVQKD protocol and serve as a multiplier for practical secure quantum cryptography with continuous variables.

  19. Loss-tolerant measurement-device-independent quantum private queries.

    PubMed

    Zhao, Liang-Yuan; Yin, Zhen-Qiang; Chen, Wei; Qian, Yong-Jun; Zhang, Chun-Mei; Guo, Guang-Can; Han, Zheng-Fu

    2017-01-04

    Quantum private queries (QPQ) is an important cryptography protocol aiming to protect both the user's and database's privacy when the database is queried privately. Recently, a variety of practical QPQ protocols based on quantum key distribution (QKD) have been proposed. However, for QKD-based QPQ the user's imperfect detectors can be subjected to some detector- side-channel attacks launched by the dishonest owner of the database. Here, we present a simple example that shows how the detector-blinding attack can damage the security of QKD-based QPQ completely. To remove all the known and unknown detector side channels, we propose a solution of measurement-device-independent QPQ (MDI-QPQ) with single- photon sources. The security of the proposed protocol has been analyzed under some typical attacks. Moreover, we prove that its security is completely loss independent. The results show that practical QPQ will remain the same degree of privacy as before even with seriously uncharacterized detectors.

  20. Quantum steganography with large payload based on entanglement swapping of χ-type entangled states

    NASA Astrophysics Data System (ADS)

    Qu, Zhi-Guo; Chen, Xiu-Bo; Luo, Ming-Xing; Niu, Xin-Xin; Yang, Yi-Xian

    2011-04-01

    In this paper, we firstly propose a new simple method to calculate entanglement swapping of χ-type entangled states, and then present a novel quantum steganography protocol with large payload. The new protocol adopts entanglement swapping to build up the hidden channel within quantum secure direct communication with χ-type entangled states for securely transmitting secret messages. Comparing with the previous quantum steganographies, the capacity of the hidden channel is much higher, which is increased to eight bits. Meanwhile, due to the quantum uncertainty theorem and the no-cloning theorem its imperceptibility is proved to be great in the analysis, and its security is also analyzed in detail, which is proved that intercept-resend attack, measurement-resend attack, ancilla attack, man-in-the-middle attack or even Dos(Denial of Service) attack couldn't threaten it. As a result, the protocol can be applied in various fields of quantum communication.

Top