Sample records for underdense ionization front

  1. The effects of microstructure on propagation of laser-driven radiative heat waves in under-dense high-Z plasma

    NASA Astrophysics Data System (ADS)

    Colvin, J. D.; Matsukuma, H.; Brown, K. C.; Davis, J. F.; Kemp, G. E.; Koga, K.; Tanaka, N.; Yogo, A.; Zhang, Z.; Nishimura, H.; Fournier, K. B.

    2018-03-01

    This work was motivated by previous findings that the measured laser-driven heat front propagation velocity in under-dense TiO2/SiO2 foams is slower than the simulated one [Pérez et al., Phys. Plasmas 21, 023102 (2014)]. In attempting to test the hypothesis that these differences result from effects of the foam microstructure, we designed and conducted an experiment on the GEKKO laser using an x-ray streak camera to compare the heat front propagation velocity in "equivalent" gas and foam targets, that is, targets that have the same initial density, atomic weight, and average ionization state. We first discuss the design and the results of this comparison experiment. To supplement the x-ray streak camera data, we designed and conducted an experiment on the Trident laser using a new high-resolution, time-integrated, spatially resolved crystal spectrometer to image the Ti K-shell spectrum along the laser-propagation axis in an under-dense TiO2/SiO2 foam cylinder. We discuss the details of the design of this experiment, and present the measured Ti K-shell spectra compared to the spectra simulated with a detailed superconfiguration non-LTE atomic model for Ti incorporated into a 2D radiation hydrodynamic code. We show that there is indeed a microstructure effect on heat front propagation in under-dense foams, and that the measured heat front velocities in the TiO2/SiO2 foams are consistent with the analytical model of Gus'kov et al. [Phys. Plasmas 18, 103114 (2011)].

  2. Picosecond Thermal Dynamics in an Underdense Plasma Measured with Thomson Scattering

    NASA Astrophysics Data System (ADS)

    Haberberger, D.; Katz, J.; Bucht, S.; Davies, A.; Bromage, J.; Zuegel, J. D.; Froula, D. H.; Trines, R.; Bingham, R.; Sadler, J.; Norreys, P. A.

    2017-10-01

    Field-ionized underdense plasmas have many promising applications within the laser-plasma interaction field: nuclear fusion, particle accelerators, x-ray sources, and laser-plasma amplification. Having complete knowledge of the plasma dynamics is essential to establishing optimal parameters for a given application. Here picosecond-resolved Thomson scattering measurements have been used to determine the electron thermal dynamics of an underdense ( 1019/cm) H2 plasma irradiated by a 60-ps, 1053-nm laser pulse with an intensity of 2 × 1014 W/cm2. The picosecond-resolved spectra were obtained with a novel pulse-front tilt compensated streaked optical spectrometer. The electron temperature was observed to rise from an initial 5 eV to a density-dependent plateau in 23 ps. Simulation results indicate that inverse bremsstrahlung heating, radiative cooling, and radial conduction cooling all play an important role in modeling the thermal dynamics. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  3. IslandFAST: A Semi-numerical Tool for Simulating the Late Epoch of Reionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yidong; Chen, Xuelei; Yue, Bin

    2017-08-01

    We present the algorithm and main results of our semi-numerical simulation, islandFAST, which was developed from 21cmFAST and designed for the late stage of reionization. The islandFAST simulation predicts the evolution and size distribution of the large-scale underdense neutral regions (neutral islands), and we find that the late Epoch of Reionization proceeds very fast, showing a characteristic scale of the neutral islands at each redshift. Using islandFAST, we compare the impact of two types of absorption systems, i.e., the large-scale underdense neutral islands versus small-scale overdense absorbers, in regulating the reionization process. The neutral islands dominate the morphology of themore » ionization field, while the small-scale absorbers dominate the mean-free path of ionizing photons, and also delay and prolong the reionization process. With our semi-numerical simulation, the evolution of the ionizing background can be derived self-consistently given a model for the small absorbers. The hydrogen ionization rate of the ionizing background is reduced by an order of magnitude in the presence of dense absorbers.« less

  4. Dependence of optimal initial density on laser parameters for multi-keV x-ray radiators generated by nanosecond laser-produced underdense plasma

    NASA Astrophysics Data System (ADS)

    Tu, Shao-yong; Yuan, Yong-teng; Hu, Guang-yue; Miao, Wen-yong; Zhao, Bin; Zheng, Jian; Jiang, Shao-en; Ding, Yong-kun

    2016-01-01

    Efficient multi-keV x-ray sources can be produced using nanosecond laser pulse-heated middle-Z underdense plasmas generated using gas or foam. Previous experimental results show that an optimal initial target density exists for efficient multi-keV x-ray emission at which the laser ionization wave is supersonic. Here we explore the influence of the laser intensity and the pulse duration on this optimal initial target density via a one-dimensional radiation hydrodynamic simulation. The simulation shows that the optimal initial density is sensitive to both the laser intensity and the pulse duration. However, the speed of the supersonic ionization wave at the end of the laser irradiation is always maintained at 1.5 to 1.7 times that of the ion acoustic wave under the optimal initial density conditions.

  5. The Neutral Islands during the Late Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Xu, Yidong; Yue, Bin; Chen, Xuelei

    2018-05-01

    The large-scale structure of the ionization field during the epoch of reionization (EoR) can be modeled by the excursion set theory. While the growth of ionized regions during the early stage are described by the ``bubble model'', the shrinking process of neutral regions after the percolation of the ionized region calls for an ``island model''. An excursion set based analytical model and a semi-numerical code (islandFAST) have been developed. The ionizing background and the bubbles inside the islands are also included in the treatment. With two kinds of absorbers of ionizing photons, i.e. the large-scale under-dense neutral islands and the small-scale over-dense clumps, the ionizing background are self-consistently evolved in the model.

  6. Distinguishing models of reionization using future radio observations of 21-cm 1-point statistics

    NASA Astrophysics Data System (ADS)

    Watkinson, C. A.; Pritchard, J. R.

    2014-10-01

    We explore the impact of reionization topology on 21-cm statistics. Four reionization models are presented which emulate large ionized bubbles around overdense regions (21CMFAST/global-inside-out), small ionized bubbles in overdense regions (local-inside-out), large ionized bubbles around underdense regions (global-outside-in) and small ionized bubbles around underdense regions (local-outside-in). We show that first generation instruments might struggle to distinguish global models using the shape of the power spectrum alone. All instruments considered are capable of breaking this degeneracy with the variance, which is higher in outside-in models. Global models can also be distinguished at small scales from a boost in the power spectrum from a positive correlation between the density and neutral-fraction fields in outside-in models. Negative skewness is found to be unique to inside-out models and we find that pre-Square Kilometre Array (SKA) instruments could detect this feature in maps smoothed to reduce noise errors. The early, mid- and late phases of reionization imprint signatures in the brightness-temperature moments, we examine their model dependence and find pre-SKA instruments capable of exploiting these timing constraints in smoothed maps. The dimensional skewness is introduced and is shown to have stronger signatures of the early and mid-phase timing if the inside-out scenario is correct.

  7. 1997 Technical Digest Series. Volume 7: Applications of High Field and Short Wavelength Sources VII

    DTIC Science & Technology

    1997-03-01

    clusters irradiated with ultrashort , high intensity laser pulses can exhibit "ionization ig- nition" which leads...8, 9]. 25-atom Ne clusters and 25-atom Ar clusters are modelled as irradiated by a 800 nm, 15 fs (fwhm) laser pulse with peak intensities ranging...Measurements of the spatial and spectral properties of ultrashort , intense laser pulses propagating in underdense plasmas demonstrate

  8. Characteristics of plasma plume in ultrafast laser ablation with a weakly ionized air channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Huaming; Yang, Bo; Mao, Xianglei

    We report the influence of femtosecond (fs) laser weakly ionized air channel on characteristics of plasma induced from fs-laser ablation of solid Zr metal target. A novel method to create high temperature, low electron density plasma with intense elemental emission and weak bremsstrahlung emission was demonstrated. Weakly ionized air channel was generated as a result of a non-linear phenomenon. Two-dimensional time-resolved optical-emission images of plasma plumes were taken for plume dynamics analysis. Dynamic physical properties of filament channels were simulated. In particular, we investigated the influence of weakly ionized air channel on the evolution of solid plasma plume. Plasma plumemore » splitting was observed whilst longer weakly ionized air channel formed above the ablation spot. The domination mechanism for splitting is attributed to the long-lived underdense channel created by fs-laser induced weakly ionization of air. The evolutions of atomic/molecular emission intensity, peak broadening, and plasma temperature were analyzed, and the results show that the part of plasma entering weakly ionized air channel features higher initial temperature, lower electron density and faster decay.« less

  9. Characteristics of plasma plume in ultrafast laser ablation with a weakly ionized air channel

    DOE PAGES

    Hou, Huaming; Yang, Bo; Mao, Xianglei; ...

    2018-05-10

    We report the influence of femtosecond (fs) laser weakly ionized air channel on characteristics of plasma induced from fs-laser ablation of solid Zr metal target. A novel method to create high temperature, low electron density plasma with intense elemental emission and weak bremsstrahlung emission was demonstrated. Weakly ionized air channel was generated as a result of a non-linear phenomenon. Two-dimensional time-resolved optical-emission images of plasma plumes were taken for plume dynamics analysis. Dynamic physical properties of filament channels were simulated. In particular, we investigated the influence of weakly ionized air channel on the evolution of solid plasma plume. Plasma plumemore » splitting was observed whilst longer weakly ionized air channel formed above the ablation spot. The domination mechanism for splitting is attributed to the long-lived underdense channel created by fs-laser induced weakly ionization of air. The evolutions of atomic/molecular emission intensity, peak broadening, and plasma temperature were analyzed, and the results show that the part of plasma entering weakly ionized air channel features higher initial temperature, lower electron density and faster decay.« less

  10. Pulsed discharges produced by high-power surface waves

    NASA Astrophysics Data System (ADS)

    Böhle, A.; Ivanov, O.; Kolisko, A.; Kortshagen, U.; Schlüter, H.; Vikharev, A.

    1996-02-01

    The mechanisms of the ionization front advance in surface-wave-produced discharges are investigated using two experimental set-ups. The high-power surface waves are excited in a 3 cm wavelength band by a surfaguide and a novel type of launcher (an E-plane junction). The ionization front velocity of the surface wave is measured for a wide range of gas pressures, incident microwave power and initial pre-ionization. The experimental results are compared with theoretical ones based on three different models. The comparison between theory and experiment allows one to suggest a new interpretation of the ionization front's advance. The ionization front velocity is determined by a breakdown wave or an ionization wave in the electric field of a high-power surface wave in the zone near the ionization front.

  11. A photoionization instability in the early intergalactic medium

    NASA Technical Reports Server (NTRS)

    Hogan, Craig J.

    1992-01-01

    It is argued that any fairly uniform source of ionizing photons can be the cause of an instability in the pregalactic medium on scales larger than a photon path length. Underdense regions receive more ionizing energy per atom and reach higher temperature and entropy, driving the density down still further. Fluctuations created by this instability can lead to the formation of structures resembling protogalaxies and intergalactic clouds, obviating the need for gas clouds or density perturbations of earlier cosmological provenance, as is usually assumed in theories of galaxy and structure formation. Characteristic masses for clouds produced by the instability, with log mass in solar units plotted against log radius in kpc, are illustrated.

  12. Effects of stellar evolution and ionizing radiation on the environments of massive stars

    NASA Astrophysics Data System (ADS)

    Mackey, J.; Langer, N.; Mohamed, S.; Gvaramadze, V. V.; Neilson, H. R.; Meyer, D. M.-A.

    2014-09-01

    We discuss two important effects for the astrospheres of runaway stars: the propagation of ionizing photons far beyond the astropause, and the rapid evolution of massive stars (and their winds) near the end of their lives. Hot stars emit ionizing photons with associated photoheating that has a significant dynamical effect on their surroundings. 3-D simulations show that H ii regions around runaway O stars drive expanding conical shells and leave underdense wakes in the medium they pass through. For late O stars this feedback to the interstellar medium is more important than that from stellar winds. Late in life, O stars evolve to cool red supergiants more rapidly than their environment can react, producing transient circumstellar structures such as double bow shocks. This provides an explanation for the bow shock and linear bar-shaped structure observed around Betelgeuse.

  13. A Multistep Algorithm for the Radiation Hydrodynamical Transport of Cosmological Ionization Fronts and Ionized Flows

    NASA Astrophysics Data System (ADS)

    Whalen, Daniel; Norman, Michael L.

    2006-02-01

    Radiation hydrodynamical transport of ionization fronts (I-fronts) in the next generation of cosmological reionization simulations holds the promise of predicting UV escape fractions from first principles as well as investigating the role of photoionization in feedback processes and structure formation. We present a multistep integration scheme for radiative transfer and hydrodynamics for accurate propagation of I-fronts and ionized flows from a point source in cosmological simulations. The algorithm is a photon-conserving method that correctly tracks the position of I-fronts at much lower resolutions than nonconservative techniques. The method applies direct hierarchical updates to the ionic species, bypassing the need for the costly matrix solutions required by implicit methods while retaining sufficient accuracy to capture the true evolution of the fronts. We review the physics of ionization fronts in power-law density gradients, whose analytical solutions provide excellent validation tests for radiation coupling schemes. The advantages and potential drawbacks of direct and implicit schemes are also considered, with particular focus on problem time-stepping, which if not properly implemented can lead to morphologically plausible I-front behavior that nonetheless departs from theory. We also examine the effect of radiation pressure from very luminous central sources on the evolution of I-fronts and flows.

  14. Relativistic runaway ionization fronts.

    PubMed

    Luque, A

    2014-01-31

    We investigate the first example of self-consistent impact ionization fronts propagating at relativistic speeds and involving interacting, high-energy electrons. These fronts, which we name relativistic runaway ionization fronts, show remarkable features such as a bulk speed within less than one percent of the speed of light and the stochastic selection of high-energy electrons for further acceleration, which leads to a power-law distribution of particle energies. A simplified model explains this selection in terms of the overrun of Coulomb-scattered electrons. Appearing as the electromagnetic interaction between electrons saturates the exponential growth of a relativistic runaway electron avalanche, relativistic runaway ionization fronts may occur in conjunction with terrestrial gamma-ray flashes and thus explain recent observations of long, power-law tails in the terrestrial gamma-ray flash energy spectrum.

  15. Predicting pulsar scintillation from refractive plasma sheets

    NASA Astrophysics Data System (ADS)

    Simard, Dana; Pen, Ue-Li

    2018-07-01

    The dynamic and secondary spectra of many pulsars show evidence for long-lived, aligned images of the pulsar that are stationary on a thin scattering sheet. One explanation for this phenomenon considers the effects of wave crests along sheets in the ionized interstellar medium, such as those due to Alfvén waves propagating along current sheets. If these sheets are closely aligned to our line of sight to the pulsar, high bending angles arise at the wave crests and a selection effect causes alignment of images produced at different crests, similar to grazing reflection off of a lake. Using geometric optics, we develop a simple parametrized model of these corrugated sheets that can be constrained with a single observation and that makes observable predictions for variations in the scintillation of the pulsar over time and frequency. This model reveals qualitative differences between lensing from overdense and underdense corrugated sheets: only if the sheet is overdense compared to the surrounding interstellar medium can the lensed images be brighter than the line-of-sight image to the pulsar, and the faint lensed images are closer to the pulsar at higher frequencies if the sheet is underdense, but at lower frequencies if the sheet is overdense.

  16. Beyond injection: Trojan horse underdense photocathode plasma wakefield acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hidding, B.; Rosenzweig, J. B.; Xi, Y.

    2012-12-21

    An overview on the underlying principles of the hybrid plasma wakefield acceleration scheme dubbed 'Trojan Horse' acceleration is given. The concept is based on laser-controlled release of electrons directly into a particle-beam-driven plasma blowout, paving the way for controlled, shapeable electron bunches with ultralow emittance and ultrahigh brightness. Combining the virtues of a low-ionization-threshold underdense photocathode with the GV/m-scale electric fields of a practically dephasing-free beam-driven plasma blowout, this constitutes a 4th generation electron acceleration scheme. It is applicable as a beam brightness transformer for electron bunches from LWFA and PWFA systems alike. At FACET, the proof-of-concept experiment 'E-210: Trojanmore » Horse Plasma Wakefield Acceleration' has recently been approved and is in preparation. At the same time, various LWFA facilities are currently considered to host experiments aiming at stabilizing and boosting the electron bunch output quality via a trojan horse afterburner stage. Since normalized emittance and brightness can be improved by many orders of magnitude, the scheme is an ideal candidate for light sources such as free-electron-lasers and those based on Thomson scattering and betatron radiation alike.« less

  17. Predicting Pulsar Scintillation from Refractive Plasma Sheets

    NASA Astrophysics Data System (ADS)

    Simard, Dana; Pen, Ue-Li

    2018-05-01

    The dynamic and secondary spectra of many pulsars show evidence for long-lived, aligned images of the pulsar that are stationary on a thin scattering sheet. One explanation for this phenomenon considers the effects of wave crests along sheets in the ionized interstellar medium, such as those due to Alfvén waves propagating along current sheets. If these sheets are closely aligned to our line-of-sight to the pulsar, high bending angles arise at the wave crests and a selection effect causes alignment of images produced at different crests, similar to grazing reflection off of a lake. Using geometric optics, we develop a simple parameterized model of these corrugated sheets that can be constrained with a single observation and that makes observable predictions for variations in the scintillation of the pulsar over time and frequency. This model reveals qualitative differences between lensing from overdense and underdense corrugated sheets: Only if the sheet is overdense compared to the surrounding interstellar medium can the lensed images be brighter than the line-of-sight image to the pulsar, and the faint lensed images are closer to the pulsar at higher frequencies if the sheet is underdense, but at lower frequencies if the sheet is overdense.

  18. Analysis of conductive target influence in plasma jet experiments through helium metastable and electric field measurements

    NASA Astrophysics Data System (ADS)

    Darny, T.; Pouvesle, J.-M.; Puech, V.; Douat, C.; Dozias, S.; Robert, Eric

    2017-04-01

    The use of cold atmospheric pressure plasma jets for in vivo treatments implies most of the time plasma interaction with conductive targets. The effect of conductive target contact on the discharge behavior is studied here for a grounded metallic target and compared to the free jet configuration. In this work, realized with a plasma gun, we measured helium metastable HeM (23S1) concentration (by laser absorption spectroscopy) and electric field (EF) longitudinal and radial components (by electro-optic probe). Both diagnostics were temporally and spatially resolved. Mechanisms after ionization front impact on the target surface have been identified. The remnant conductive ionized channel behind the ionization front electrically transiently connects the inner high voltage electrode to the target. Due to impedance mismatching between the ionized channel and the target, a secondary ionization front is initiated and rapidly propagates from the target surface to the inner electrode through this ionized channel. This leads to a greatly enhanced HeM production inside the plasma plume and the capillary. Forward and reverse dynamics occur with further multi reflections of more or less damped ionization fronts between the inner electrode and the target as long as the ionized channel is persisting. This phenomenon is very sensitive to parameters such as target distance and ionized channel conductivity affecting electrical coupling between these two and evidenced using positive or negative voltage polarity and nitrogen admixture. In typical operating conditions for the plasma gun used in this work, it has been found that after the secondary ionization front propagation, when the ionized channel is conductive enough, a glow like discharge occurs with strong conduction current. HeM production and all species excitation, especially reactive ones, are then driven by high voltage pulse evolution. The control of forward and reverse dynamics, impacting on the production of the glow like discharge, will be useful for biomedical applications on living tissues.

  19. Measurements of ion velocity separation and ionization in multi-species plasma shocks

    NASA Astrophysics Data System (ADS)

    Rinderknecht, Hans G.; Park, H.-S.; Ross, J. S.; Amendt, P. A.; Wilks, S. C.; Katz, J.; Hoffman, N. M.; Kagan, G.; Vold, E. L.; Keenan, B. D.; Simakov, A. N.; Chacón, L.

    2018-05-01

    The ion velocity structure of a strong collisional shock front in a plasma with multiple ion species is directly probed in laser-driven shock-tube experiments. Thomson scattering of a 263.25 nm probe beam is used to diagnose ion composition, temperature, and flow velocity in strong shocks ( M ˜6 ) propagating through low-density ( ρ˜0.1 mg/cc) plasmas composed of mixtures of hydrogen (98%) and neon (2%). Within the preheat region of the shock front, two velocity populations of ions are observed, a characteristic feature of strong plasma shocks. The ionization state of the Ne is observed to change within the shock front, demonstrating an ionization-timescale effect on the shock front structure. The forward-streaming proton feature is shown to be unexpectedly cool compared to predictions from ion Fokker-Planck simulations; the neon ionization gradient is evaluated as a possible cause.

  20. Laser-driven heat-front propagation in foam vs. gas

    NASA Astrophysics Data System (ADS)

    Pérez, F.; Colvin, J. D.; May, M. J.; Gammon, S. A.; Fournier, K. B.

    2014-10-01

    A high-energy laser (several kJ, 1015 W/cm2) can propagate inside an underdense plasma over millimeters, along its associated heat front. This creates a large volume of hot plasma (several keV) able to produce bright hard-x-ray sources when a high-Z dopant is included in the material. In the past years, we investigated the behavior of both gases and foams under these circumstances. Their design and predictability relies on the understanding of the heat front propagation. In the case of foams, several studies tried to assess the effect of their micro-structure in altering the laser interaction and the heat front propagation, but no experimental data has shown clear evidence. We present here the design and results of a recent experiment, using the OMEGA laser, where a Ge-doped silica foam was compared to a Ne/Kr gas of very similar characteristics, the only difference between these two materials being their micro-structure to allow for a straightforward determination of its influence. The design of future similar experiments will also be reported. J. Colvin presents theoretical and modeling aspects of this subject in a companion presentation. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract No. DE-AC52-07NA27344.

  1. Time-Dependent Photoionization of Gaseous Nebulae: The Pure Hydrogen Case

    NASA Technical Reports Server (NTRS)

    Garcia, J.; Elhoussieny, E. E.; Bautista, M. A.; Kallman, Timothy R.

    2013-01-01

    We study the problem of time-dependent photoionization of low density gaseous nebulae subjected to sudden changes in the intensity of ionizing radiation. To this end, we write a computer code that solves the full timedependent energy balance, ionization balance, and radiation transfer equations in a self-consistent fashion for a simplified pure hydrogen case. It is shown that changes in the ionizing radiation yield ionizationthermal fronts that propagate through the cloud, but the propagation times and response times to such fronts vary widely and nonlinearly from the illuminated face of the cloud to the ionization front (IF). IFthermal fronts are often supersonic, and in slabs initially in pressure equilibrium such fronts yield large pressure imbalances that are likely to produce important dynamical effects in the cloud. Further, we studied the case of periodic variations in the ionizing flux. It is found that the physical conditions of the plasma have complex behaviors that differ from any steady-state solution. Moreover, even the time average of ionization and temperature is different from any steady-state case. This time average is characterized by overionization and a broader IF with respect to the steady-state solution for a mean value of the radiation flux. Around the time average of physical conditions there is a large dispersion in instantaneous conditions, particularly across the IF, which increases with the period of radiation flux variations. Moreover, the variations in physical conditions are asynchronous along the slab due to the combination of nonlinear propagation times for thermal frontsIFs and equilibration times.

  2. Radiation hydrodynamical instabilities in cosmological and galactic ionization fronts

    NASA Astrophysics Data System (ADS)

    Whalen, Daniel J.; Norman, Michael L.

    2011-11-01

    Ionization fronts, the sharp radiation fronts behind which H/He ionizing photons from massive stars and galaxies propagate through space, were ubiquitous in the universe from its earliest times. The cosmic dark ages ended with the formation of the first primeval stars and galaxies a few hundred Myr after the Big Bang. Numerical simulations suggest that stars in this era were very massive, 25-500 solar masses, with H(II) regions of up to 30,000 light-years in diameter. We present three-dimensional radiation hydrodynamical calculations that reveal that the I-fronts of the first stars and galaxies were prone to violent instabilities, enhancing the escape of UV photons into the early intergalactic medium (IGM) and forming clumpy media in which supernovae later exploded. The enrichment of such clumps with metals by the first supernovae may have led to the prompt formation of a second generation of low-mass stars, profoundly transforming the nature of the first protogalaxies. Cosmological radiation hydrodynamics is unique because ionizing photons coupled strongly to both gas flows and primordial chemistry at early epochs, introducing a hierarchy of disparate characteristic timescales whose relative magnitudes can vary greatly throughout a given calculation. We describe the adaptive multistep integration scheme we have developed for the self-consistent transport of both cosmological and galactic ionization fronts.

  3. Simulation study of the ionizing front in the critical ionization velocity phenomenon

    NASA Technical Reports Server (NTRS)

    Machida, S.; Goertz, C. K.; Lu, G.

    1988-01-01

    The simulation of the critical ionization velocity for a neutral gas cloud moving across the static magnetic field is presented. A low-beta plasma is studied, using a two and a half-dimensional electrostatic code linked with the Plasma and Neutral Interaction Code (Goertz and Machida, 1987). The physics of the ionizing front and the instabilities which occur there are discussed. Results are presented from four numerical runs designed so that the effects of the charge separation field can be distinguished from the wave heating.

  4. Observation of ionization fronts in low density foam targets

    NASA Astrophysics Data System (ADS)

    Hoarty, D.; Willi, O.; Barringer, L.; Vickers, C.; Watt, R.; Nazarov, W.

    1999-05-01

    Ionization fronts have been observed in low density chlorinated foam targets and low density foams confined in gold tubes using time resolved K-shell absorption spectroscopy. The front was driven by an intense pulse of soft x-rays produced by high power laser irradiation. The density and temperature profiles inferred from the radiographs provided detailed measurement of the conditions. The experimental data were compared to radiation hydrodynamics simulations and reasonable agreement was obtained.

  5. Laser propagation measurements in long-scale-length underdense plasmas relevant to magnetized liner inertial fusion.

    PubMed

    Harvey-Thompson, A J; Sefkow, A B; Wei, M S; Nagayama, T; Campbell, E M; Blue, B E; Heeter, R F; Koning, J M; Peterson, K J; Schmitt, A

    2016-11-01

    We report experimental results and simulations showing efficient laser energy coupling into plasmas at conditions relevant to the magnetized liner inertial fusion (MagLIF) concept. In MagLIF, to limit convergence and increase the hydrodynamic stability of the implosion, the fuel must be efficiently preheated. To determine the efficiency and physics of preheating by a laser, an Ar plasma with n_{e}/n_{crit}∼0.04 is irradiated by a multi-ns, multi-kJ, 0.35-μm, phase-plate-smoothed laser at spot-averaged intensities ranging from 1.0×10^{14} to 2.5×10^{14}W/cm^{2} and pulse widths from 2 to 10 ns. Time-resolved x-ray images of the laser-heated plasma are compared to two-dimensional radiation-hydrodynamic simulations that show agreement with the propagating emission front, a comparison that constrains laser energy deposition to the plasma. The experiments show that long-pulse, modest-intensity (I=1.5×10^{14}W/cm^{2}) beams can efficiently couple energy (∼82% of the incident energy) to MagLIF-relevant long-length (9.5 mm) underdense plasmas. The demonstrated heating efficiency is significantly higher than is thought to have been achieved in early integrated MagLIF experiments [A. B. Sefkow et al., Phys. Plasmas 21, 072711 (2014)10.1063/1.4890298].

  6. Laser propagation measurements in long-scale-length underdense plasmas relevant to magnetized liner inertial fusion

    NASA Astrophysics Data System (ADS)

    Harvey-Thompson, A. J.; Sefkow, A. B.; Wei, M. S.; Nagayama, T.; Campbell, E. M.; Blue, B. E.; Heeter, R. F.; Koning, J. M.; Peterson, K. J.; Schmitt, A.

    2016-11-01

    We report experimental results and simulations showing efficient laser energy coupling into plasmas at conditions relevant to the magnetized liner inertial fusion (MagLIF) concept. In MagLIF, to limit convergence and increase the hydrodynamic stability of the implosion, the fuel must be efficiently preheated. To determine the efficiency and physics of preheating by a laser, an Ar plasma with ne/nc r i t˜0.04 is irradiated by a multi-ns, multi-kJ, 0.35-μm, phase-plate-smoothed laser at spot-averaged intensities ranging from 1.0 ×1014 to 2.5 ×1014W /c m2 and pulse widths from 2 to 10 ns. Time-resolved x-ray images of the laser-heated plasma are compared to two-dimensional radiation-hydrodynamic simulations that show agreement with the propagating emission front, a comparison that constrains laser energy deposition to the plasma. The experiments show that long-pulse, modest-intensity (I =1.5 ×1014W /c m2 ) beams can efficiently couple energy (˜82 % of the incident energy) to MagLIF-relevant long-length (9.5 mm) underdense plasmas. The demonstrated heating efficiency is significantly higher than is thought to have been achieved in early integrated MagLIF experiments [A. B. Sefkow et al., Phys. Plasmas 21, 072711 (2014), 10.1063/1.4890298].

  7. Laser propagation measurements in long-scale-length underdense plasmas relevant to magnetized liner inertial fusion

    DOE PAGES

    Harvey-Thompson, A. J.; Sefkow, A. B.; Wei, M. S.; ...

    2016-11-02

    Here, we report experimental results and simulations showing efficient laser energy coupling into plasmas at conditions relevant to the magnetized liner inertial fusion (MagLIF) concept. In MagLIF, to limit convergence and increase the hydrodynamic stability of the implosion, the fuel must be efficiently preheated. To determine the efficiency and physics of preheating by a laser, an Ar plasma with n e / n c r i t ~ 0.04 is irradiated by a multi-ns, multi-kJ, 0.35-μm, phase-plate-smoothed laser at spot-averaged intensities ranging from 1.0 × 10 14 to 2.5 × 10 14 W / c m 2 andmore » pulse widths from 2 to 10 ns. Time-resolved x-ray images of the laser-heated plasma are compared to two-dimensional radiation-hydrodynamic simulations that show agreement with the propagating emission front, a comparison that constrains laser energy deposition to the plasma. The experiments show that long-pulse, modest-intensity ( I = 1.5 × 10 14 W / c m 2 ) beams can efficiently couple energy ( ~ 82 % of the incident energy) to MagLIF-relevant long-length (9.5 mm) underdense plasmas. The heating efficiency we demonstrate is significantly higher than it was thought to have been achieved in early integrated MagLIF experiments [A. B. Sefkow et al., Phys. Plasmas 21, 072711 (2014)].« less

  8. Laser propagation measurements in long-scale-length underdense plasmas relevant to magnetized liner inertial fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey-Thompson, A. J.; Sefkow, A. B.; Wei, M. S.

    Here, we report experimental results and simulations showing efficient laser energy coupling into plasmas at conditions relevant to the magnetized liner inertial fusion (MagLIF) concept. In MagLIF, to limit convergence and increase the hydrodynamic stability of the implosion, the fuel must be efficiently preheated. To determine the efficiency and physics of preheating by a laser, an Ar plasma with n e / n c r i t ~ 0.04 is irradiated by a multi-ns, multi-kJ, 0.35-μm, phase-plate-smoothed laser at spot-averaged intensities ranging from 1.0 × 10 14 to 2.5 × 10 14 W / c m 2 andmore » pulse widths from 2 to 10 ns. Time-resolved x-ray images of the laser-heated plasma are compared to two-dimensional radiation-hydrodynamic simulations that show agreement with the propagating emission front, a comparison that constrains laser energy deposition to the plasma. The experiments show that long-pulse, modest-intensity ( I = 1.5 × 10 14 W / c m 2 ) beams can efficiently couple energy ( ~ 82 % of the incident energy) to MagLIF-relevant long-length (9.5 mm) underdense plasmas. The heating efficiency we demonstrate is significantly higher than it was thought to have been achieved in early integrated MagLIF experiments [A. B. Sefkow et al., Phys. Plasmas 21, 072711 (2014)].« less

  9. Distributions of underdense meteor trail amplitudes and its application to meteor scatter communication system design

    NASA Astrophysics Data System (ADS)

    Weitzen, J. A.; Bourque, S.; Ostergaard, J. C.; Bench, P. M.; Baily, A. D.

    1991-04-01

    Analysis of data from recent experiments leads to the observation that distributions of underdense meteor trail peak signal amplitudes differ from classic predictions. In this paper the distribution of trail amplitudes in decibels relative 1 W (dBw) is considered, and it is shown that Lindberg's theorem can be used to apply central limit arguments to this problem. It is illustrated that a Gaussian model for the distribution of the logarithm of the peak received signal level of underdense trails provides a better fit to data than classic approaches. Distributions of underdense meteor trail amplitudes at five frequencies are compared to a Gaussian distribution and the classic model. Implications of the Gaussian assumption on the design of communication systems are discussed.

  10. Observation of Transonic Ionization Fronts in Low-Density Foam Targets

    NASA Astrophysics Data System (ADS)

    Hoarty, D.; Barringer, L.; Vickers, C.; Willi, O.; Nazarov, W.

    1999-04-01

    Transonic ionization fronts have been observed in low-density chlorinated foam targets using time-resolved K-shell absorption spectroscopy. The front was driven by an intense pulse of soft x rays produced by high-power laser irradiation of a thin foil. The density and temperature profiles inferred from the radiographs provided detailed measurement of the conditions at a number of times. The experimental data were compared to radiation hydrodynamics simulations and reasonable agreement was obtained.

  11. Non-stationary self-focusing of intense laser beam in plasma using ramp density profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habibi, M.; Ghamari, F.

    2011-10-15

    The non-stationary self-focusing of high intense laser beam in under-dense plasma with upward increasing density ramp is investigated. The obtained results show that slowly increasing plasma density ramp is very important in enhancing laser self-focusing. Also, the spot size oscillations of laser beam in front and rear of the pulse for two different density profiles are shown. We have selected density profiles that already were used by Sadighi-Bonabi et al.[Phys. Plasmas 16, 083105 (2009)]. Ramp density profile causes the laser beam to become more focused and penetrations deeps into the plasma by reduction of diffraction effects. Our computations show moremore » reliable results in comparison to the previous works.« less

  12. A Numerical Simulation of the Energy Conversion Process in Microwave Rocket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shibata, Teppei; Oda, Yasuhisa; Komurasaki, Kimiya

    2008-04-28

    In Microwave Rocket, a high power microwave beam ionizes atmospheric air inside of the thruster and the ionization front drives a shock wave. In this paper, CFD simulation was conducted using measured propagation velocity of the ionization front to evaluate the engine performance. As a result, maximum cycle efficiency was obtained at the power density of about 200 kW/m{sup 2} which is the transitional beam power condition between Microwave Supported Combustion and Microwave Supported Detonation regimes.

  13. Electron residual energy due to stochastic heating in field-ionized plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalilzadeh, Elnaz; The Plasma Physics and Fusion Research School, Tehran; Yazdanpanah, Jam, E-mail: jamal.yazdan@gmail.com

    2015-11-15

    The electron residual energy originated from the stochastic heating in under-dense field-ionized plasma is investigated here. Initially, the optical response of plasma is modeled by using two counter-propagating electromagnetic waves. In this case, the solution of motion equation of a single electron indicates that by including the ionization, the electron with higher residual energy compared with that without ionization could be obtained. In agreement with chaotic nature of the motion, it is found that the electron residual energy will be significantly changed by applying a minor change in the initial conditions. Extensive kinetic 1D-3V particle-in-cell simulations have been performed inmore » order to resolve full plasma reactions. In this way, two different regimes of plasma behavior are observed by varying the pulse length. The results indicate that the amplitude of scattered fields in a proper long pulse length is high enough to act as a second counter-propagating wave and trigger the stochastic electron motion. On the contrary, the analyses of intensity spectrum reveal the fact that the dominant scattering mechanism tends to Thomson rather than Raman scattering by increasing the pulse length. A covariant formalism is used to describe the plasma heating so that it enables us to measure electron temperature inside and outside of the pulse region.« less

  14. Analyses of electron runaway in front of the negative streamer channel

    NASA Astrophysics Data System (ADS)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.; Neubert, T.; Chanrion, O.

    2017-08-01

    X-ray and γ-ray emissions, observed in correlation with negative leaders of lightning and long sparks of high-voltage laboratory experiments, are conventionally connected with the bremsstrahlung of high-energy runaway electrons (REs). Here we extend a focusing mechanism, analyzed in our previous paper, which allows the electric field to reach magnitudes, required for a generation of significant RE fluxes and associated bremsstrahlung, when the ionization wave propagates in a narrow, ionized channel created by a previous streamer. Under such conditions we compute the production rate of REs per unit streamer length as a function of the streamer velocity and predict that, once a streamer is formed with the electric field capable of producing REs ahead of the streamer front, the ionization induced by the REs is capable of creating an ionized channel that allows for self-sustained propagation of the RE-emitting ionization wave independent of the initial electron concentration. Thus, the streamer coronas of the leaders are probable sources of REs producing the observed high-energy radiation. To prove these predictions, new simulations are planned, which would show explicitly that the preionization in front of the channel via REs will lead to the ionization wave propagation self-consistent with RE generation.

  15. Kinetics of a plasma streamer ionization front

    NASA Astrophysics Data System (ADS)

    Taccogna, Francesco; Pellegrini, Fabrizio

    2018-02-01

    A streamer is a non-linear and non-local gas breakdown mode. Its large-scale coherent structures, such as the ionization front, are the final results of a hierarchical cascade starting from the single particle dynamics. Therefore, this phenomenon covers, by definition, different space and time scales. In this study, we have reproduced the ionization front formation and development by means of a particle-based numerical methodology. The physical system investigated concerns of a high-voltage ns-pulsed surface dielectric barrier discharge. Different reduced electric field regimes ranging from 50 to 500 Td have been considered for two gases: pure atomic Ar and molecular N2. Results have shown the detailed structure of the negative streamer: the leading edge, the head, the interior and the tail. Its dynamical evolution and the front propagation velocity have been calculated for the different cases. Finally, the deviation of the electron energy distribution function from equilibrium behavior has been pointed out as a result of a fast and very localized phenomenon.

  16. Ionization waves of arbitrary velocity driven by a flying focus

    NASA Astrophysics Data System (ADS)

    Palastro, J. P.; Turnbull, D.; Bahk, S.-W.; Follett, R. K.; Shaw, J. L.; Haberberger, D.; Bromage, J.; Froula, D. H.

    2018-03-01

    A chirped laser pulse focused by a chromatic lens exhibits a dynamic, or flying, focus in which the trajectory of the peak intensity decouples from the group velocity. In a medium, the flying focus can trigger an ionization front that follows this trajectory. By adjusting the chirp, the ionization front can be made to travel at an arbitrary velocity along the optical axis. We present analytical calculations and simulations describing the propagation of the flying focus pulse, the self-similar form of its intensity profile, and ionization wave formation. The ability to control the speed of the ionization wave and, in conjunction, mitigate plasma refraction has the potential to advance several laser-based applications, including Raman amplification, photon acceleration, high-order-harmonic generation, and THz generation.

  17. Application of dynamic displacement current for diagnostics of subnanosecond breakdowns in an inhomogeneous electric field

    NASA Astrophysics Data System (ADS)

    Shao, Tao; Tarasenko, Victor F.; Zhang, Cheng; Burachenko, Alexandr G.; Rybka, Dmitry V.; Kostyrya, Igor'D.; Lomaev, Mikhail I.; Baksht, Evgeni Kh.; Yan, Ping

    2013-05-01

    The breakdown of different air gaps at high overvoltages in an inhomogeneous electric field was investigated with a time resolution of up to 100 ps. Dynamic displacement current was used for diagnostics of ionization processes between the ionization wave front and a plane anode. It is demonstrated that during the generation of a supershort avalanche electron beam (SAEB) with amplitudes of ˜10 A and more, conductivity in the air gaps at the breakdown stage is ensured by the ionization wave, whose front propagates from the electrode of small curvature radius, and by the dynamic displacement current between the ionization wave front and the plane electrode. The amplitude of the dynamic displacement current measured by a current shunt is 100 times greater than the SAEB. It is shown that with small gaps and with a large cathode diameter, the amplitude of the dynamic displacement current during a subnanosecond rise time of applied pulse voltage can be higher than 4 kA.

  18. A correlation between hard gamma-ray sources and cosmic voids along the line of sight

    DOE PAGES

    Furniss, A.; Sutter, P. M.; Primack, J. R.; ...

    2014-11-25

    We estimate the galaxy density along lines of sight to hard extragalactic gamma-ray sources by correlating source positions on the sky with a void catalog based on the Sloan Digital Sky Survey (SDSS). Extragalactic gamma-ray sources that are detected at very high energy (VHE; E > 100 GeV) or have been highlighted as VHE-emitting candidates in the Fermi Large Area Telescope hard source catalog (together referred to as “VHE-like” sources) are distributed along underdense lines of sight at the 2.4σ level. There is a less suggestive correlation for the Fermi hard source population (1.7σ). A correlation between 10-500 GeV fluxmore » and underdense fraction along the line of sight for VHE-like and Fermi hard sources is found at 2.4σ and 2.6σ, calculated from the Pearson correlation coefficients of r = 0.57 and 0.47, respectively. The preference for underdense sight lines is not displayed by gamma-ray emitting galaxies within the second Fermi catalog, containing sources detected above 100 MeV, or the SDSS DR7 quasar catalog. We investigate whether this marginal correlation might be a result of lower extragalactic background light (EBL) photon density within the underdense regions and find that, even in the most extreme case of a entirely underdense sight line, the EBL photon density is only 2% less than the nominal EBL density. Translating this into gamma-ray attenuation along the line of sight for a highly attenuated source with opacity τ(E, z) ~ 5, we estimate that the attentuation of gamma-rays decreases no more than 10%. This decrease, although non-neglible, is unable to account for the apparent hard source correlation with underdense lines of sight.« less

  19. Confluence or independence of microwave plasma bullets in atmospheric argon plasma jet plumes

    NASA Astrophysics Data System (ADS)

    Li, Ping; Chen, Zhaoquan; Mu, Haibao; Xu, Guimin; Yao, Congwei; Sun, Anbang; Zhou, Yuming; Zhang, Guanjun

    2018-03-01

    Plasma bullet is the formation and propagation of a guided ionization wave (streamer), normally generated in atmospheric pressure plasma jet (APPJ). In most cases, only an ionization front produces in a dielectric tube. The present study shows that two or three ionization fronts can be generated in a single quartz tube by using a microwave coaxial resonator. The argon APPJ plumes with a maximum length of 170 mm can be driven by continuous microwaves or microwave pulses. When the input power is higher than 90 W, two or three ionization fronts propagate independently at first; thereafter, they confluence to form a central plasma jet plume. On the other hand, the plasma bullets move independently as the lower input power is applied. For pulsed microwave discharges, the discharge images captured by a fast camera show the ionization process in detail. Another interesting finding is that the strongest lightening plasma jet plumes always appear at the shrinking phase. Both the discharge images and electromagnetic simulations suggest that the confluence or independent propagation of plasma bullets is resonantly excited by the local enhanced electric fields, in terms of wave modes of traveling surface plasmon polaritons.

  20. High resolution far-infrared observations of the evolved H II region M16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBreen, B.; Fazio, G.G.; Jaffe, D.T.

    1982-03-01

    M16 is an evolved, extremely density bounded H II region, which now consists only of a series of ionization fronts at molecular cloud boundaries. The source of ionization is the OB star cluster (NGC 6611) which is about 5 x 10/sup 6/ years old. We used the CFA/UA 102 cm balloon-borne telescope to map this region and detected three far-infrared (far-IR) sources embedded in an extended ridge of emission. Source I is an unresolved far-IR source embedded in a molecular cloud near a sharp ionization front. An H/sub 2/O maser is associated with this source, but no radio continuum emissionmore » has been observed. The other two far-IR sources (II and III) are associated with ionized gas-molecular cloud interfaces, with the far-IR radiation arising from dust at the boundary heated by the OB cluster. Source II is located at the southern prominent neutral intrusion with its associated bright rims and dark ''elephant trunk'' globules that delineate the current progress of the ionization front into the neutral material, and Source III arises at the interface of the northern molecular cloud fragment.« less

  1. Ionization Readout Electronics for SuperCDMS SNOLAB Employing a HEMT Front-End

    NASA Astrophysics Data System (ADS)

    Partridge, R.

    2014-09-01

    The SuperCDMS SNOLAB experiment seeks to deploy 200 kg of cryogenic Ge detectors employing phonon and ionization readout to identify dark matter interactions. One of the design challenges for the experiment is to provide amplification of the high impedance ionization signal while minimizing power dissipation and noise. This paper describes the design and expected performance of the ionization readout being developed for an engineering model of the SuperCDMS SNOLAB Ge Tower System. The readout features the use of a low-noise HEMT front end transistor operating at 4 K to achieve a power dissipation of 100 W per channel, local grounding to minimize noise injection, and biasing circuitry that allows precise control of the HEMT operating point.

  2. Inertial confinement fusion and fast ignitor studies

    NASA Astrophysics Data System (ADS)

    Willi, O.; Barringer, L.; Bell, A.; Borghesi, M.; Davies, J.; Gaillard, R.; Iwase, A.; MacKinnon, A.; Malka, G.; Meyer, C.; Nuruzzaman, S.; Taylor, R.; Vickers, C.; Hoarty, D.; Gobby, P.; Johnson, R.; Watt, R. G.; Blanchot, N.; Canaud, B.; Croso, H.; Meyer, B.; Miquel, J. L.; Reverdin, C.; Pukhov, A.; Meyer-ter-Vehn, J.

    2000-03-01

    Laser imprinting has been studied and, in particular, saturation of areal density perturbations induced by near single mode laser imprinting was observed. Several issues important for the foam buffered direct drive scheme have been investigated. These studies included measurements of the absolute levels of stimulated Brillouin and Raman scattering observed from laser irradiated low density foam targets, either bare or overcoated with a thin layer of gold. A novel scheme is proposed to increase the pressure in indirectly driven targets. By heating a foam supersonically that is attached to a solid target the pressure generated is not only the ablation pressure but also the combined pressure due to ablation at the foam-foil interface and the heated foam material. Planar brominated plastic foil targets overcoated with a low density foam were irradiated by a soft X ray pulse. The pressure was obtained by comparing the rear side trajectory of the driven target observed by soft X ray radiography with one dimensional radiation hydrodynamic simulations. Observations were also carried out of the transition from supersonic to subsonic propagation of an ionization front in low density chlorinated foam targets irradiated by an intense soft X ray pulse. The diagnostic for these measurements was K shell point projection absorption spectroscopy. In the fast ignitor area the channelling and guiding of picosecond laser pulses through underdense plasmas, preformed density channels and microtubes were investigated. It was observed that a large fraction of the incident laser energy can be propagated. Megagauss magnetic fields were measured, with a polarimetric technique, during and after propagation of intense picosecond pulses in preionized plasmas. Two types of toroidal fields, of opposite orientation, were detected. In addition, the production and propagation of an electron beam through solid glass targets irradiated at intensities above 1019W/cm2 were observed using optical probing techniques.

  3. Study of Super- and Subsonic Ionization Fronts in Low-Density, Soft X-Ray-Irradiated Foam Targets

    NASA Astrophysics Data System (ADS)

    Willi, O.; Barringer, L.; Vickers, C.; Hoarty, D.

    2000-04-01

    The transition from super- to subsonic propagation of an ionization front has been studied in X-ray irradiated, low-density foam targets using soft X-ray imaging and point projection absorption spectroscopy. The foams were doped with chlorine and irradiated with an intense pulse of soft X-ray radiation with a temperature up to 120 eV produced by laser heating a burnthrough converter foil. The cylindrical foam targets were radiographed side-on allowing the change in the chlorine ionization and hence the front to be observed. From the absolute target transmission the density profile was obtained. Comparison of experimental absorption spectra with simulated ones allowed the temperature of the heated material to be inferred for the first time without reliance on detailed hydrodynamic simulations to interpret the data. The experimental observations were compared to radiation hydrodynamic simulations.

  4. Miniature Free-Space Electrostatic Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.; Stephens, James B.

    2006-01-01

    A miniature electrostatic ion thruster is proposed for maneuvering small spacecraft. In a thruster based on this concept, one or more propellant gases would be introduced into an ionizer based on the same principles as those of the device described in an earlier article, "Miniature Bipolar Electrostatic Ion Thruster". On the front side, positive ions leaving an ionizer element would be accelerated to high momentum by an electric field between the ionizer and an accelerator grid around the periphery of the concave laminate structure. On the front side, electrons leaving an ionizer element would be ejected into free space by a smaller accelerating field. The equality of the ion and electron currents would eliminate the need for an additional electron- or ion-emitting device to keep the spacecraft charge-neutral. In a thruster design consisting of multiple membrane ionizers in a thin laminate structure with a peripheral accelerator grid, the direction of thrust could then be controlled (without need for moving parts in the thruster) by regulating the supply of gas to specific ionizer.

  5. The concerted impact of galaxies and QSOs on the ionization and thermal state of the intergalactic medium

    NASA Astrophysics Data System (ADS)

    Kakiichi, Koki; Graziani, Luca; Ciardi, Benedetta; Meiksin, Avery; Compostella, Michele; Eide, Marius B.; Zaroubi, Saleem

    2017-07-01

    We present a detailed analysis of the ionization and thermal structure of the intergalactic medium (IGM) around a high-redshift (z = 10) QSO, using a large suite of cosmological, multifrequency radiative transfer simulations, exploring the contribution from galaxies as well as the QSO, and the effect of X-rays and secondary ionization. We show that in high-z QSO environments both the central QSO and the surrounding galaxies concertedly control the reionization morphology of hydrogen and helium and have a non-linear impact on the thermal structure of the IGM. A QSO imprints a distinctive morphology on H II regions if its total ionizing photon budget exceeds that of the surrounding galaxies since the onset of hydrogen reionization; otherwise, the morphology shows little difference from that of H II regions produced only by galaxies. In addition, the spectral shape of the collective radiation field from galaxies and QSOs controls the thickness of the I-fronts. While a UV-obscured QSO can broaden the I-front, the contribution from other UV sources, either galaxies or unobscured QSOs, is sufficient to maintain a sharp I-front. X-ray photons from the QSO are responsible for a prominent extended tail of partial ionization ahead of the I-front. QSOs leave a unique imprint on the morphology of He II/He III regions. We suggest that, while the physical state of the IGM is modified by QSOs, the most direct test to understand the role of galaxies and QSOs during reionization is to perform galaxy surveys in a region of sky imaged by 21 cm tomography.

  6. Method and apparatus for generating radiation utilizing DC to AC conversion with a conductive front

    DOEpatents

    Dawson, John M.; Mori, Warren B.; Lai, Chih-Hsiang; Katsouleas, Thomas C.

    1998-01-01

    Method and apparatus for generating radiation of high power, variable duration and broad tunability over several orders of magnitude from a laser-ionized gas-filled capacitor array. The method and apparatus convert a DC electric field pattern into a coherent electromagnetic wave train when a relativistic ionization front passes between the capacitor plates. The frequency and duration of the radiation is controlled by the gas pressure and capacitor spacing.

  7. The first H II regions in the universe

    NASA Astrophysics Data System (ADS)

    Whalen, Daniel James

    State of the art simulations of primordial star formation suggest that the first stars in the universe were likely very massive, from 30 to 300 solar masses. These metal-free, Population III stars were prodigious sources of ionizing UV radiation that permeated the early intergalactic medium (IGM). As agents of early reionization, Pop III stars likely contributed to the cosmic free electrons recently observed at high redshifts by the WMAP satellite. However, until recently it was unknown what percentage of ionizing photons escaped the cosmological minihalos hosting these luminous objects, seriously hampering the power of large scale reionization calculations to predict the optical depths to electron scattering revealed by WMAP. UV escape from high-redshift minihalos crucially depends on the radiation hydrodynamics of ionization front transitions deep within the halos. I describe a multistep integration scheme for radiative transfer and reactive flow hydrodynamics developed for the accurate propagation of I-fronts and ionized flows from UV point sources or plane waves in cosmological simulations. The algorithm is a photon-conserving method which correctly tracks the position of I-fronts at much lower resolutions than non-conservative techniques. The method applies direct hierarchical updates to ionic species, bypassing the need for the costly matrix solutions required by implicit updates while retaining sufficient accuracy to capture the true evolution of the fronts. This radiation-matter coupling scheme is a significant advance beyond the radiative transfer performed in static media that is the current industry standard in cosmological reionization simulations. I review the major analytical and numerical studies of H II regions performed to date as well as the physics of ionization fronts in uniform and stratified media. My algorithm development greatly benefited from some recent analyses of I-front evolution in radially-symmetric power-law envelopes. These studies provided benchmarks that became severe tests of my code's accuracy. I present tests of I-front propagation in both static and hydrodynamical media, in both constant and radial density gradients. The code converges to the proper results with grid resolution and exhibits excellent agreement with theory in the density gradients most likely to be encountered in cosmological simulations. I next describe 1D radiation-hydrodynamical calculations of UV escape from minihalo density profiles taken from adaptive mesh refinement calculations of first star formation. These simulations demonstrate that in excess of 90% of the ionizing photons will exit the halo if the central star is greater than 80 solar masses, and that the final H II regions range from 2000 pc to 5000 pc in radius for 80 [Special characters omitted.] < M star < 500 [Special characters omitted.] . Of equal interest, they show the rise of shocked ionized flows capable of ejecting half of the baryons from the halo over the main sequence lifetime of the star, with important consequences to chemical enrichment of the early IGM and subsequent star formation. Finally, I detail the first three-dimensional massively parallel simulations of I-front instabilities ever performed. This suite is a survey of the morphological features we expect to arise in 3D minihalo evaporation studies currently in progress. Our numerical work has uncovered important evolutionary departures from earlier 2D work that may be due to the higher dimensionality of our 3D flows. I-front instabilities in high-redshift minihalos may have serious impact on the escape of metals into the early universe as well as foster the formation of the second generation of stars.

  8. Method and apparatus for generating radiation utilizing DC to AC conversion with a conductive front

    DOEpatents

    Dawson, J.M.; Mori, W.B.; Lai, C.H.; Katsouleas, T.C.

    1998-07-14

    Method and apparatus ar disclosed for generating radiation of high power, variable duration and broad tunability over several orders of magnitude from a laser-ionized gas-filled capacitor array. The method and apparatus convert a DC electric field pattern into a coherent electromagnetic wave train when a relativistic ionization front passes between the capacitor plates. The frequency and duration of the radiation is controlled by the gas pressure and capacitor spacing. 4 figs.

  9. Ionization waves of arbitrary velocity driven by a flying focus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palastro, J. P.; Turnbull, D.; Bahk, S. -W.

    A chirped laser pulse focused by a chromatic lens exhibits a dynamic, or flying, focus in which the trajectory of the peak intensity decouples from the group velocity. In a medium, the flying focus can trigger an ionization front that follows this trajectory. By adjusting the chirp, the ionization front can be made to travel at an arbitrary velocity along the optical axis. For this study, we present analytical calculations and simulations describing the propagation of the flying focus pulse, the self-similar form of its intensity profile, and ionization wave formation. The ability to control the speed of the ionizationmore » wave and, in conjunction, mitigate plasma refraction has the potential to advance several laser-based applications, including Raman amplification, photon acceleration, high-order-harmonic generation, and THz generation.« less

  10. Ionization waves of arbitrary velocity driven by a flying focus

    DOE PAGES

    Palastro, J. P.; Turnbull, D.; Bahk, S. -W.; ...

    2018-03-01

    A chirped laser pulse focused by a chromatic lens exhibits a dynamic, or flying, focus in which the trajectory of the peak intensity decouples from the group velocity. In a medium, the flying focus can trigger an ionization front that follows this trajectory. By adjusting the chirp, the ionization front can be made to travel at an arbitrary velocity along the optical axis. For this study, we present analytical calculations and simulations describing the propagation of the flying focus pulse, the self-similar form of its intensity profile, and ionization wave formation. The ability to control the speed of the ionizationmore » wave and, in conjunction, mitigate plasma refraction has the potential to advance several laser-based applications, including Raman amplification, photon acceleration, high-order-harmonic generation, and THz generation.« less

  11. Non-LTE radiating acoustic shocks and Ca II K2V bright points

    NASA Technical Reports Server (NTRS)

    Carlsson, Mats; Stein, Robert F.

    1992-01-01

    We present, for the first time, a self-consistent solution of the time-dependent 1D equations of non-LTE radiation hydrodynamics in solar chromospheric conditions. The vertical propagation of sinusoidal acoustic waves with periods of 30, 180, and 300 s is calculated. We find that departures from LTE and ionization recombination determine the temperature profiles of the shocks that develop. In LTE almost all the thermal energy goes into ionization, so the temperature rise is very small. In non-LTE, the finite transition rates delay the ionization to behind the shock front. The compression thus goes into thermal energy at the shock front leading to a high temperature amplitude. Further behind the shock front, the delayed ionization removes energy from the thermal pool, which reduces the temperature, producing a temperature spike. The 180 s waves reproduce the observed temporal changes in the calcium K line profiles quite well. The observed wing brightening pattern, the violet/red peak asymmetry and the observed line center behavior are all well reproduced. The short-period waves and the 5 minute period waves fail especially in reproducing the observed behavior of the wings.

  12. A Semi-analytical Model for Wind-fed Black Hole High-mass X-Ray Binaries: State Transition Triggered by Magnetic Fields from the Companion Star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaji, Kentaro; Yamada, Shinya; Masai, Kuniaki

    We propose a mechanism of state transition in wind-fed black hole (BH) binaries (high-mass X-ray binaries) such as Cyg X-1 and LMC X-1. Modeling a line-driven stellar wind from the companion by two-dimensional hydrodynamical calculations, we investigate the processes of wind capture by, and accretion onto, the BH. We assume that the wind acceleration is terminated at the He ii ionization front because ions responsible for line-driven acceleration are ionized within the front, i.e., the He iii region. It is found that the mass accretion rate inferred from the luminosity is remarkably smaller than the capture rate. Considering the difference,more » we construct a model for the state transition based on the accretion flow being controlled by magnetorotational instability. The outer flow is torus-like, and plays an important role to trigger the transition. The model can explain why state transition does occur in Cyg X-1, while not in LMC X-1. Cyg X-1 exhibits a relatively low luminosity, and then the He ii ionization front is located and can move between the companion and BH, depending on its ionizing photon flux. On the other hand, LMC X-1 exhibits too high luminosity for the front to move considerably; the front is too close to the companion atmosphere. The model also predicts that each state of high-soft or low-hard would last fairly long because the luminosity depends weakly on the wind velocity. In the context of the model, the state transition is triggered by a fluctuation of the magnetic field when its amplitude becomes comparable to the field strength in the torus-like outer flow.« less

  13. Reionization of the Universe and the Photoevaporation of Cosmological Minihalos

    NASA Technical Reports Server (NTRS)

    Shapiro, Paul R.; Raga, Alejandro C.

    2000-01-01

    The first sources of ionizing radiation to condense out of the dark and neutral Intergalactic Medium (IGM) sent ionization fronts sweeping outward through their surroundings, overtaking other condensed objects and photoevaporating them. This feedback effect of universal reionization on cosmic structure formation is demonstrated here for the case of a cosmological minihalo of dark matter and baryons exposed to an external source of ionizing radiation with a quasar-like spectrum, just after the passage of the global ionization front created by the source. We model the pre-ionization minihalo as a truncated, nonsingular isothermal sphere in hydrostatic equilibrium following its collapse out of the expanding background universe and virialization. Results are presented of the first, gas dynamical simulations of this process, including radiative transfer. A sample of observational diagnostics is also presented, including the spatially-varying ionization levels of C, N, and O in the flow if a trace of heavy elements is present and the integrated column densities of H I, He I and He II, and C IV through the photoevaporating gas at different velocities, which would be measured in absorption against a background source like that responsible for the ionization.

  14. The reflection of an ionized shock wave

    NASA Astrophysics Data System (ADS)

    Asakura, Fumioki; Corli, Andrea

    2018-03-01

    In a previous paper, we studied the thermodynamic and kinetic theory for an ionized gas, in one space dimension; in this paper, we provide an application of those results to the reflection of a shock wave in an electromagnetic shock tube. Under some reasonable limitations, which fully agree with experimental data, we prove that both the incident and the reflected shock waves satisfy the Lax entropy conditions; this result holds even outside genuinely nonlinear regions, which are present in the model. We show that the temperature increases in a significant way behind the incident shock front but the degree of ionization does not undergo a similar growth. On the contrary, the degree of ionization increases substantially behind the reflected shock front. We explain these phenomena by means of the concavity of the Hugoniot loci. Therefore, our results not only fit perfectly but explain what was remarked in experiments.

  15. Measurements of laser-hole boring into overdense plasmas using x-ray laser refractometry (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodama, R.; Takahashi, K.; Tanaka, K.A.

    We developed a 19.6 nm laser x-ray laser grid-image refractometer (XRL-GIR) to diagnose laser-hole boring into overdense plasmas. The XRL-GIR was optimized to measure two-dimensional electron density perturbation on a scale of a few tens of {mu}m in underdense plasmas. Electron density profiles of laser-produced plasmas were obtained for 10{sup 20}{endash}10{sup 22}thinspcm{sup {minus}3} with the XRL-GIR and for 10{sup 19}{endash}10{sup 20}thinspcm{sup {minus}3} from an ultraviolet interferometer, the profiles of which were compared with those from hydrodynamic simulation. By using this XRL-GIR, we directly observed laser channeling into overdense plasmas accompanied by a bow shock wave showing a Mach cone ascribedmore » to supersonic propagation of the channel front. {copyright} {ital 1999 American Institute of Physics.}« less

  16. Shock Wave Dynamics in Weakly Ionized Plasmas

    NASA Technical Reports Server (NTRS)

    Johnson, Joseph A., III

    1999-01-01

    An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.

  17. Ionization Waves of Arbitrary Velocity

    NASA Astrophysics Data System (ADS)

    Turnbull, D.; Franke, P.; Katz, J.; Palastro, J. P.; Begishev, I. A.; Boni, R.; Bromage, J.; Milder, A. L.; Shaw, J. L.; Froula, D. H.

    2018-06-01

    Flying focus is a technique that uses a chirped laser beam focused by a highly chromatic lens to produce an extended focal region within which the peak laser intensity can propagate at any velocity. When that intensity is high enough to ionize a background gas, an ionization wave will track the intensity isosurface corresponding to the ionization threshold. We report on the demonstration of such ionization waves of arbitrary velocity. Subluminal and superluminal ionization fronts were produced that propagated both forward and backward relative to the ionizing laser. All backward and all superluminal cases mitigated the issue of ionization-induced refraction that typically inhibits the formation of long, contiguous plasma channels.

  18. Supression of laser breakdown by pulsed nonequilibrium ns discharge

    NASA Astrophysics Data System (ADS)

    Starikovskiy, A. Y.; Semenov, I. E.; Shneider, M. N.

    2016-10-01

    The avalanche ionization induced by infrared laser pulses was investigated in a pre-ionized argon gas. Pre-ionization was created by a high-voltage pulsed nanosecond discharge developed in the form of a fast ionization wave. Then, behind the front of ionization wave additional avalanche ionization was initiated by the focused Nd-YAG laser pulse. It was shown that the gas pre-ionization inhibits the laser spark generation. It was demonstrated that the suppression of laser spark development in the case of strong gas pre-ionization is because of fast electron energy transfer from the laser beam focal region. The main mechanism of this energy transfer is free electrons diffusion.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barreira, Alexandre; Bose, Sownak; Li, Baojiu

    We study the imprints that theories of gravity beyond GR can leave on the lensing signal around line of sight directions that are predominantly halo-underdense (called troughs) and halo-overdense. To carry out our investigations, we consider the normal branch of DGP gravity, as well as a phenomenological variant thereof that directly modifies the lensing potential. The predictions of these models are obtained with N-body simulation and ray-tracing methods using the ECOSMOG and Ray-Ramses codes. We analyse the stacked lensing convergence profiles around the underdense and overdense lines of sight, which exhibit, respectively, a suppression and a boost w.r.t. the meanmore » in the field of view. The modifications to gravity in these models strengthen the signal w.r.t. ΛCDM in a scale-independent way. We find that the size of this effect is the same for both underdense and overdense lines of sight, which implies that the density field along the overdense directions on the sky is not sufficiently evolved to trigger the suppression effects of the screening mechanism. These results are robust to variations in the minimum halo mass and redshift ranges used to identify the lines of sight, as well as to different line of sight aperture sizes and criteria for their underdensity and overdensity thresholds.« less

  20. The influence of bremsstrahlung on electric discharge streamers in N2, O2 gas mixtures

    NASA Astrophysics Data System (ADS)

    Köhn, C.; Chanrion, O.; Neubert, T.

    2017-01-01

    Streamers are ionization filaments of electric gas discharges. Negative polarity streamers propagate primarily through electron impact ionization, whereas positive streamers in air develop through ionization of oxygen by UV photons emitted by excited nitrogen; however, experiments show that positive streamers may develop even for low oxygen concentrations. Here we explore if bremsstrahlung ionization facilitates positive streamer propagation. To discriminate between effects of UV and bremsstrahlung ionization, we simulate the formation of a double headed streamer at three different oxygen concentrations: no oxygen, 1 ppm O2 and 20% O2, as in air. At these oxygen levels, UV-relative to bremsstrahlung ionization is zero, small, and large. The simulations are conducted with a particle-in-cell code in a cylindrically symmetric configuration at ambient electric field magnitudes three times the conventional breakdown field. We find that bremsstrahlung induced ionization in air, contrary to expectations, reduces the propagation velocity of both positive and negative streamers by about 15%. At low oxygen levels, positive streamers stall; however, bremsstrahlung creates branching sub-streamers emerging from the streamer front that allow propagation of the streamer. Negative streamers propagate more readily forming branching sub-streamers. These results are in agreement with experiments. At both polarities, ionization patches are created ahead of the streamer front. Electrons with the highest energies are in the sub-streamer tips and the patches.

  1. Ionization Waves of Arbitrary Velocity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turnbull, D.; Franke, P.; Katz, J.

    The flying focus is a technique in which a chirped laser beam is focused by a chromatic lens to produce an extended focal spot within which laser intensity can propagate at any velocity. If the intensity is above the ionization threshold of a background gas, an ionization wave will track the ionization threshold intensity isosurface as it propagates. We report on the demonstration of such ionization waves of arbitrary velocity. Subluminal and superluminal ionization fronts were produced, both forward- and backward-propagating relative to the ionizing laser. In conclusion, all backward and all superluminal cases mitigated the issue of ionization-induced refractionmore » that typically challenges the formation of long, contiguous plasma channels.« less

  2. Ionization Waves of Arbitrary Velocity

    DOE PAGES

    Turnbull, D.; Franke, P.; Katz, J.; ...

    2018-05-31

    The flying focus is a technique in which a chirped laser beam is focused by a chromatic lens to produce an extended focal spot within which laser intensity can propagate at any velocity. If the intensity is above the ionization threshold of a background gas, an ionization wave will track the ionization threshold intensity isosurface as it propagates. We report on the demonstration of such ionization waves of arbitrary velocity. Subluminal and superluminal ionization fronts were produced, both forward- and backward-propagating relative to the ionizing laser. In conclusion, all backward and all superluminal cases mitigated the issue of ionization-induced refractionmore » that typically challenges the formation of long, contiguous plasma channels.« less

  3. Ionization oscillations in Hall accelerators

    NASA Astrophysics Data System (ADS)

    Barral, S.; Peradzyński, Z.

    2010-01-01

    The underlying mechanism of low-frequency oscillations in Hall accelerators is investigated theoretically. It is shown that relaxation oscillations arise from a competition between avalanche ionization and the advective transport of the working gas. The model derived recovers the slow progression and fast recession of the ionization front. Analytical approximations of the shape of current pulses and of the oscillation frequency are provided for the case of large amplitude oscillations.

  4. On the formation and expansion of H II regions

    NASA Technical Reports Server (NTRS)

    Franco, Jose; Tenorio-Tagle, Guillermo; Bodenheimer, Peter

    1990-01-01

    The evolution of H II regions in spherical clouds with small, constant-density cores and power-law density distributions r exp -w outside the core is described analytically. It is found that there is a critical exponent above which the cloud becomes completely ionized. Its value in the formation phase depends on the initial conditions, but it has a well-defined value w(crit) = 3/2 during the expansion phase. For w less than w(crit), the radius of the H II region grows at a given rate, while neutral mass accumulates in the interphase between the ionization and shock fronts. For w = w(crit), the fronts move together without mass accumulation. Cases with w greater than w(crit) lead to the champagne phase: once the cloud is fully ionized, the expansion becomes supersonic. For self-gravitating disks without magnetic fields, the main features include a new 'variable-size' stage. The initial shape of the H II region has a critical point beyond which the disk becomes completely ionized.

  5. Dynamics of ionization processes in high-pressure nitrogen, air, and SF{sub 6} during a subnanosecond breakdown initiated by runaway electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarasenko, V. F., E-mail: vft@loi.hcei.tsc.ru; Beloplotov, D. V.; Lomaev, M. I.

    2015-10-15

    The dynamics of ionization processes in high-pressure nitrogen, air, and SF{sub 6} during breakdown of a gap with a nonuniform distribution of the electric field by nanosecond high-voltage pulses was studied experimentally. Measurements of the amplitude and temporal characteristics of a diffuse discharge and its radiation with a subnanosecond time resolution have shown that, at any polarity of the electrode with a small curvature radius, breakdown of the gap occurs via two ionization waves, the first of which is initiated by runaway electrons. For a voltage pulse with an ∼500-ps front, UV radiation from different zones of a diffuse dischargemore » is measured with a subnanosecond time resolution. It is shown that the propagation velocity of the first ionization wave increases after its front has passed one-half of the gap, as well as when the pressure in the discharge chamber is reduced and/or when SF{sub 6} is replaced with air or nitrogen. It is found that, at nitrogen pressures of 0.4 and 0.7 MPa and the positive polarity of the high-voltage electrode with a small curvature radius, the ionization wave forms with a larger (∼30 ps) time delay with respect to applying the voltage pulse to the gap than at the negative polarity. The velocity of the second ionization wave propagating from the plane electrode is measured. In a discharge in nitrogen at a pressure of 0.7 MPa, this velocity is found to be ∼10 cm/ns. It is shown that, as the nitrogen pressure increases to 0.7 MPa, the propagation velocity of the front of the first ionization wave at the positive polarity of the electrode with a small curvature radius becomes lower than that at the negative polarity.« less

  6. Particle versus density models in spark formation: X-rays from pulled fronts?

    NASA Astrophysics Data System (ADS)

    Ebert, Ute

    2008-03-01

    Streamer discharges govern the early stages of sparks and lightning, of spark-like phenomena in water, oil, and semiconductors, in industrial corona reactors, or in gigantic sprite discharges above thunderclouds [1,2]. Thunderstorms recently have been found to emit terrestrial gamma-ray flashes or X-rays towards satellites and towards the ground. These emissions might be explained by particle models of ``pulled'' streamer ionization fronts. In general, the growing discharge channel has an inner structure with multiple scales [1-3]. While the largest part of this channel can be treated in a density approximation for the electrons and ions, the dynamics of the ionization front is that of a pulled front; it is determined in the leading edge where the density approach eventually breaks down. We therefore investigate a realistic MC particle model for the motion of single electrons in a discharge in pure nitrogen. The particle model not only incorporates particle fluctuations, but also shows that the electron energies are systematically larger in the leading edge of the front than in the corresponding density model, and that the ionization level behind the front is higher as well, while the front velocity hardly changes [3]. These effects increase with increasing applied electric field and might actually cause the recently observed X-ray emission from lightning through rare very energetic runaway electrons in the tail of the distribution. Comparing the leading edge of the particle front with a linear particle avalanche, the avalanche shows the same mean density gradient and energy overshoot in its leading edge as the nonlinear front; hence the pulled front concept in this sense applies to discrete particle models as well [3]. This gives a key to understanding the above effects through analytical approximations and to develop efficient numerical methods coupling particle and density models in space.[1] U. Ebert et al., Plasma Sources Sci. Techn. 15, S118 (2006) (arXiv:physics/0604023).[2] Streamers, sprites, leaders, lightning: From micro- to macroscales, workshop in Oct. 2007: http://www.lorentzcenter.nl/lc/web/2007/265/info.php3?wsid=265; and cluster issue in J. Phys. D in fall 2008; organizers/editors: U. Ebert and D.D. Sentman.[3] C. Li et al., J. Appl. Phys. 101, 123305 (2007) (arXiv:physics/0702129).

  7. Regularization of moving boundaries in a laplacian field by a mixed Dirichlet-Neumann boundary condition: exact results.

    PubMed

    Meulenbroek, Bernard; Ebert, Ute; Schäfer, Lothar

    2005-11-04

    The dynamics of ionization fronts that generate a conducting body are in the simplest approximation equivalent to viscous fingering without regularization. Going beyond this approximation, we suggest that ionization fronts can be modeled by a mixed Dirichlet-Neumann boundary condition. We derive exact uniformly propagating solutions of this problem in 2D and construct a single partial differential equation governing small perturbations of these solutions. For some parameter value, this equation can be solved analytically, which shows rigorously that the uniformly propagating solution is linearly convectively stable and that the asymptotic relaxation is universal and exponential in time.

  8. Aerobrake plasmadynamics - Macroscopic effects

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1990-01-01

    The flow around an aerobraking spacecraft (such as the Aeroassist Flight Experiment reentry vehicle) will contain a region of partially ionized gas, that is, a plasma. It is shown here by numerical simulation that macroscopic plasmadynamic effects (which are not included in standard aerothermodynamic simulations) will have a noticeable effect on the reentry flow field. In particular, there are thermoelectric phenomena which can have a major influence in flow dynamics at the front of an ionizing bowshock. These thermoelectric phenomena arise because of the presence of large density and temperature gradients at the front of a reentry bowshock, and they include strong local magnetic fields, electric currents, and ohmic heating. One important result is the dramatic increase in temperature (over the case where plasma effects are neglected) at a reentry shock front; the implication is that macroscopic plasmadynamic effects can no longer be neglected in simulations of hypersonic reentry flow fields.

  9. Beam Propagation Experimental Study.

    DTIC Science & Technology

    1983-04-01

    pressures, the beam front velocity is limited by the rate at which the gas can be ionized. The first portion of the beam is lost due to radial electric...from the ionized- gas electrons and low-energy secondaries by a thin graphite sheet in the original array developed during the FX-25 exper- iments. The...calorimeter in vacuum, and isolated from the ionized- gas channel by a Titanium foil. The results of these measurements indicated that the energy

  10. Laser opacity in underdense preplasma of solid targets due to quantum electrodynamics effects

    NASA Astrophysics Data System (ADS)

    Wang, W.-M.; Gibbon, P.; Sheng, Z.-M.; Li, Y.-T.; Zhang, J.

    2017-07-01

    We investigate how next-generation laser pulses at 10 -200 PW interact with a solid target in the presence of a relativistically underdense preplasma produced by amplified spontaneous emission (ASE). Laser hole boring and relativistic transparency are strongly restrained due to the generation of electron-positron pairs and γ -ray photons via quantum electrodynamics (QED) processes. A pair plasma with a density above the initial preplasma density is formed, counteracting the electron-free channel produced by hole boring. This pair-dominated plasma can block laser transport and trigger an avalanchelike QED cascade, efficiently transferring the laser energy to the photons. This renders a 1 -μ m scale-length, underdense preplasma completely opaque to laser pulses at this power level. The QED-induced opacity therefore sets much higher contrast requirements for such a pulse in solid-target experiments than expected by classical plasma physics. Our simulations show, for example, that proton acceleration from the rear of a solid with a preplasma would be strongly impaired.

  11. Spectral effects in the propagation of chirped laser pulses in uniform underdense plasma

    NASA Astrophysics Data System (ADS)

    Pathak, Naveen; Zhidkov, Alexei; Hosokai, Tomonao; Kodama, Ryosuke

    2018-01-01

    Propagation of linearly chirped and linearly polarized, powerful laser pulses in uniform underdense plasma with their duration exceeding the plasma wave wavelength is examined via 3D fully relativistic particle-in-cell simulations. Spectral evolution of chirped laser pulses, determined by Raman scattering, essentially depends on the nonlinear electron evacuation from the first wake bucket via modulation of the known parameter /n e ( r ) ω0 2 γ . Conversely, the relative motion of different spectral components inside a pulse changes the evolution of the pulse length and, therefore, the ponderomotive forces at the pulse rear. Such longitudinal dynamics of the pulse length provoke a parametric resonance in the laser wake with continuous electron self-injection for any chirped pulses. However, the total charge of accelerated electrons and their energy distribution essentially depends on the chirp. Besides, negatively chirped laser pulses are shown to be useful for spatially resolved measurements of the plasma density profiles and for rough estimations of the laser pulse intensity evolution in underdense plasma.

  12. Field ionizing elements and applications thereof

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2003-01-01

    A field ionizing element formed of a membrane that houses electrodes therein that are located closer to one another than the mean free path of the gas being ionized. The membrane includes a supporting portion, and a non supporting portion where the ions are formed. The membrane may be used as the front end for a number of different applications including a mass spectrometer, a thruster, an ion mobility element, or an electrochemical device such as a fuel cell.

  13. Ionization processes in combined high-voltage nanosecond - laser discharges in inert gas

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Shneider, Mikhail; PU Team

    2016-09-01

    Remote control of plasmas induced by laser radiation in the atmosphere is one of the challenging issues of free space communication, long-distance energy transmission, remote sensing of the atmosphere, and standoff detection of trace gases and bio-threat species. Sequences of laser pulses, as demonstrated by an extensive earlier work, offer an advantageous tool providing access to the control of air-plasma dynamics and optical interactions. The avalanche ionization induced in a pre-ionized region by infrared laser pulses where investigated. Pre-ionization was created by an ionization wave, initiated by high-voltage nanosecond pulse. Then, behind the front of ionization wave extra avalanche ionization was initiated by the focused infrared laser pulse. The experiment was carried out in argon. It is shown that the gas pre-ionization inhibits the laser spark generation under low pressure conditions.

  14. Variations in the 3 micron spectrum across the Orion Bar: polycyclic aromatic hydrocarbons and related molecules

    NASA Technical Reports Server (NTRS)

    Sloan, G. C.; Bregman, J. D.; Geballe, T. R.; Allamandola, L. J.; Woodward, C. E.

    1997-01-01

    Long-slit spectra across the Orion Bar reveal significant differences in the spatial behavior of the components of the 3 microns polycyclic aromatic hydrocarbon (PAH) spectrum. The strong PAH band at 3.29 microns generally decreases exponentially with distance from the ionization front into the molecular cloud (scale height approximately 12"), although excesses appear approximately 10" and 20" behind the ionization front, close to layers of H2 and CO emission, respectively. The 3.40 microns PAH feature separates into two components with very different spatial distributions. The main component (at 3.395 microns), along with the 3.51 microns band and the PAH plateau (3.3-3.6 microns), shows excess emission approximately 10" and approximately 20" behind the ionization front, stronger than the excesses in the 3.29 microns band. The extra component of the 3.40 microns band, which peaks at approximately 3.405 microns, has a spatial distribution very similar to the H2 emission. Aromatic C-H stretches in PAHs most likely produce the 3.29 microns feature. Aliphatic C-H stretches in either attached methyl side-groups or superhydrogenated PAHs, or perhaps both, could produce the complicated spectral and spatial structure at 3.40 microns.

  15. An analytical theory of a scattering of radio waves on meteoric ionization - II. Solution of the integro-differential equation in case of backscatter

    NASA Astrophysics Data System (ADS)

    Pecina, P.

    2016-12-01

    The integro-differential equation for the polarization vector P inside the meteor trail, representing the analytical solution of the set of Maxwell equations, is solved for the case of backscattering of radio waves on meteoric ionization. The transversal and longitudinal dimensions of a typical meteor trail are small in comparison to the distances to both transmitter and receiver and so the phase factor appearing in the kernel of the integral equation is large and rapidly changing. This allows us to use the method of stationary phase to obtain an approximate solution of the integral equation for the scattered field and for the corresponding generalized radar equation. The final solution is obtained by expanding it into the complete set of Bessel functions, which results in solving a system of linear algebraic equations for the coefficients of the expansion. The time behaviour of the meteor echoes is then obtained using the generalized radar equation. Examples are given for values of the electron density spanning a range from underdense meteor echoes to overdense meteor echoes. We show that the time behaviour of overdense meteor echoes using this method is very different from the one obtained using purely numerical solutions of the Maxwell equations. Our results are in much better agreement with the observations performed e.g. by the Ondřejov radar.

  16. Supernovae as probes of cosmic parameters: estimating the bias from under-dense lines of sight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busti, V.C.; Clarkson, C.; Holanda, R.F.L., E-mail: vinicius.busti@uct.ac.za, E-mail: holanda@uepb.edu.br, E-mail: chris.clarkson@uct.ac.za

    2013-11-01

    Correctly interpreting observations of sources such as type Ia supernovae (SNe Ia) require knowledge of the power spectrum of matter on AU scales — which is very hard to model accurately. Because under-dense regions account for much of the volume of the universe, light from a typical source probes a mean density significantly below the cosmic mean. The relative sparsity of sources implies that there could be a significant bias when inferring distances of SNe Ia, and consequently a bias in cosmological parameter estimation. While the weak lensing approximation should in principle give the correct prediction for this, linear perturbationmore » theory predicts an effectively infinite variance in the convergence for ultra-narrow beams. We attempt to quantify the effect typically under-dense lines of sight might have in parameter estimation by considering three alternative methods for estimating distances, in addition to the usual weak lensing approximation. We find in each case this not only increases the errors in the inferred density parameters, but also introduces a bias in the posterior value.« less

  17. High-current fast electron beam propagation in a dielectric target.

    PubMed

    Klimo, Ondrej; Tikhonchuk, V T; Debayle, A

    2007-01-01

    Recent experiments demonstrate an efficient transformation of high intensity laser pulse into a relativistic electron beam with a very high current density exceeding 10(12) A cm(-2). The propagation of such a beam inside the target is possible if its current is neutralized. This phenomenon is not well understood, especially in dielectric targets. In this paper, we study the propagation of high current density electron beam in a plastic target using a particle-in-cell simulation code. The code includes both ionization of the plastic and collisions of newborn electrons. The numerical results are compared with a relatively simple analytical model and a reasonable agreement is found. The temporal evolution of the beam velocity distribution, the spatial density profile, and the propagation velocity of the ionization front are analyzed and their dependencies on the beam density and energy are discussed. The beam energy losses are mainly due to the target ionization induced by the self-generated electric field and the return current. For the highest beam density, a two-stream instability is observed to develop in the plasma behind the ionization front and it contributes to the beam energy losses.

  18. Far-infrared image restoration analysis of the protostellar cluster in S140

    NASA Technical Reports Server (NTRS)

    Lester, D. F.; Harvey, P. M.; Joy, M.; Ellis, H. B., Jr.

    1986-01-01

    Image restoration techniques are applied to one-dimensional scans at 50 and 100 microns of the protostellar cluster in S140. These measurements resolve the surrounding nebula clearly, and Fourier methods are used to match the effective beam profiles at these wavelengths. This allows the radial distribution of temperature and dust column density to be derived at a diffraction limited spatial resolution of 23 arcsec (0.1 pc). Evidence for heating of the S140 molecular cloud by a nearby ionization front is established, and the dissociation of molecules inside the ionization front is spatially well correlated with the heating of the dust. The far-infrared spectral distribution of the three near-infrared sources within 10 arcsesc of the cluster center is presented.

  19. Characterization of a gamma-ray source based on a laser-plasma accelerator with applications to radiography

    NASA Astrophysics Data System (ADS)

    Edwards, R. D.; Sinclair, M. A.; Goldsack, T. J.; Krushelnick, K.; Beg, F. N.; Clark, E. L.; Dangor, A. E.; Najmudin, Z.; Tatarakis, M.; Walton, B.; Zepf, M.; Ledingham, K. W. D.; Spencer, I.; Norreys, P. A.; Clarke, R. J.; Kodama, R.; Toyama, Y.; Tampo, M.

    2002-03-01

    The application of high intensity laser-produced gamma rays is discussed with regard to picosecond resolution deep-penetration radiography. The spectrum and angular distribution of these gamma rays is measured using an array of thermoluminescent detectors for both an underdense (gas) target and an overdense (solid) target. It is found that the use of an underdense target in a laser plasma accelerator configuration produces a much more intense and directional source. The peak dose is also increased significantly. Radiography is demonstrated in these experiments and the source size is also estimated.

  20. Does radiative feedback by the first stars promote or prevent second generation star formation?

    NASA Astrophysics Data System (ADS)

    Ahn, Kyungjin; Shapiro, Paul R.

    2007-03-01

    We study the effect of starlight from the first stars on the ability of other minihaloes in their neighbourhood to form additional stars. The first stars in the Λ cold dark matter (ΛCDM) universe are believed to have formed in minihaloes of total mass ~105-6 Msolar at redshifts z >~ 20, when molecular hydrogen (H2) formed and cooled the dense gas at their centres, leading to gravitational collapse. Simulations suggest that the Population III (Pop III) stars thus formed were massive (~100 Msolar) and luminous enough in ionizing radiation to cause an ionization front (I-front) to sweep outward, through their host minihalo and beyond, into the intergalactic medium. Our previous work suggested that this I-front was trapped when it encountered other, nearby minihaloes, and that it failed to penetrate the dense gas at their centres within the lifetime of the Pop III stars (<~3 Myr). The question of what the dynamical consequences were for these target minihaloes, of their exposure to the ionizing and dissociating starlight from the Pop III star requires further study, however. Towards this end, we have performed a series of detailed, one-dimensional (1D), radiation-hydrodynamical simulations to answer the question of whether star formation in these surrounding minihaloes was triggered or suppressed by radiation from the first stars. We have varied the distance to the source (and, hence, the flux) and the mass and evolutionary stage of the target haloes to quantify this effect. We find (1) trapping of the I-front and its transformation from R-type to D-type, preceded by a shock front; (2) photoevaporation of the ionized gas (i.e. all gas originally located outside the trapping radius); (3) formation of an H2 precursor shell which leads the I-front, stimulated by partial photoionization; and (4) the shock-induced formation of H2 in the minihalo neutral core when the shock speeds up and partially ionizes the gas. The fate of the neutral core is mostly determined by the response of the core to this shock front, which leads to molecular cooling and collapse that, when compared to the same halo without external radiation, is (a) expedited, or (b) delayed, or (c) unaltered, or (d) reversed or prevented, depending upon the flux (i.e. distance to the source) and the halo mass and evolutionary stage. When collapse is expedited, star formation in neighbouring minihaloes or in merging subhaloes within the host minihalo sometimes occurs within the lifetime of the first star. Roughly speaking, most haloes that were destined to cool, collapse and form stars in the absence of external radiation are found to do so even when exposed to the first Pop III star in their neighbourhood, while those that would not have done so are still not able to. A widely held view that the first Pop III stars must exert either positive or negative feedback on the formation of the stars in neighbouring minihaloes should, therefore, be revisited.

  1. Reduced atomic shadowing in HiPIMS: Role of the thermalized metal ions

    NASA Astrophysics Data System (ADS)

    Oliveira, João Carlos; Ferreira, Fábio; Anders, André; Cavaleiro, Albano

    2018-03-01

    In magnetron sputtering, the ability to tailor film properties depends primarily on the control of the flux of particles impinging on the growing film. Among deposition mechanisms, the shadowing effect leads to the formation of a rough surface and a porous, columnar microstructure. Re-sputtered species may be re-deposited in the valleys of the films surface and thereby contribute to a reduction of roughness and to fill the underdense regions. Both effects are non-local and they directly compete to shape the final properties of the deposited films. Additional control of the bombarding flux can be obtained by ionizing the sputtered flux, because ions can be controlled with respect to their energy and impinging direction, such as in High-Power Impulse Magnetron Sputtering (HiPIMS). In this work, the relation between ionization of the sputtered species and thin film properties is investigated in order to identify the mechanisms which effectively influence the shadowing effect in Deep Oscillation Magnetron Sputtering (DOMS), a variant of HiPIMS. The properties of two Cr films deposited using the same averaged target power by d.c. magnetron sputtering and DOMS have been compared. Additionally, the angle distribution of the Cr species impinging on the substrate was simulated using Monte Carlo-based programs while the energy distribution of the energetic particles bombarding the substrate was evaluated by energy-resolved mass analysis. It was found that the acceleration of the thermalized chromium ions at the substrate sheath in DOMS significantly reduces the high angle component of their impinging angle distribution and, thus, efficiently reduces atomic shadowing. Therefore, a high degree of ionization in HiPIMS results in almost shadowing effect-free film deposition and allows us to deposit dense and compact films without the need of high energy particle bombardment during growth.

  2. Galaxy Properties and UV Escape Fractions during the Epoch of Reionization: Results from the Renaissance Simulations

    NASA Astrophysics Data System (ADS)

    Xu, Hao; Wise, John H.; Norman, Michael L.; Ahn, Kyungjin; O'Shea, Brian W.

    2016-12-01

    Cosmic reionization is thought to be primarily fueled by the first generations of galaxies. We examine their stellar and gaseous properties, focusing on the star formation rates and the escape of ionizing photons, as a function of halo mass, redshift, and environment using the full suite of the Renaissance Simulations with an eye to provide better inputs to global reionization simulations. This suite probes overdense, average, and underdense regions of the universe of several hundred comoving Mpc3, each yielding a sample of over 3000 halos in the mass range of 107-109.5 {M}⊙ at their final redshifts of 15, 12.5, and 8, respectively. In the process, we simulate the effects of radiative and supernova feedback from 5000 to 10,000 Population III stars in each simulation. We find that halos as small as 107 {M}⊙ are able to host bursty star formation due to metal-line cooling from earlier enrichment by massive Population III stars. Using our large sample, we find that the galaxy-halo occupation fraction drops from unity at virial masses above 108.5 {M}⊙ to ˜50% at 108 {M}⊙ and ˜10% at 107 {M}⊙ , quite independent of redshift and region. Their average ionizing escape fraction is ˜5% in the mass range of 108-109 {M}⊙ and increases with decreasing halo mass below this range, reaching 40%-60% at 107 {M}⊙ . Interestingly, we find that the escape fraction varies between 10%-20% in halos with virial masses of ˜3 × 109 {M}⊙ . Taken together, our results confirm the importance of the smallest galaxies as sources of ionizing radiation contributing to the reionization of the universe.

  3. Molecules, dust, and protostars in NGC 3503

    NASA Astrophysics Data System (ADS)

    Duronea, N. U.; Vasquez, J.; Romero, G. A.; Cappa, C. E.; Barbá, R.; Bronfman, L.

    2014-05-01

    Aims: We present here a follow-up study of the molecular gas and dust in the environs of the star forming region NGC 3503. This study aims at dealing with the interaction of the Hii region NGC 3503 with its parental molecular cloud, and also with the star formation in the region, that was possibly triggered by the expansion of the ionization front against the parental cloud. Methods: To analyze the molecular gas we use CO(J = 2 → 1), 13CO(J = 2 → 1), C18O(J = 2 → 1), and HCN(J = 3 → 2) line data obtained with the on-the-fly technique from the APEX telescope. To study the distribution of the dust, we make use of unpublished images at 870 μm from the ATLASGAL survey and IRAC-GLIMPSE archival images. We use public 2MASS and WISE data to search for infrared candidate young stellar objects (YSOs) in the region. Results: The new APEX observations allowed the substructure of the molecular gas in the velocity range from ~-28 km s-1 to -23 km s-1 to be imaged in detail. The morphology of the molecular gas close to the nebula, the location of the PDR, and the shape of radio continuum emission suggest that the ionized gas is expanding against its parental cloud, and confirm the champagne flow scenario. We have identified several molecular clumps and determined some of their physical and dynamical properties such as density, excitation temperature, mass, and line width. Clumps adjacent to the ionization front are expected to be affected by the Hii region, unlike those that are distant from it. We have compared the physical properties of the two kinds of clumps to investigate how the molecular gas has been affected by the Hii region. Clumps adjacent to the ionization fronts of NGC 3503 and/or the bright rimmed cloud SFO 62 have been heated and compressed by the ionized gas, but their line width is not different from those that are too distant from the ionization fronts. We identified several candidate YSOs in the region. Their spatial distribution suggests that stellar formation might have been boosted by the expansion of the nebula. We discard the collect-and-collapse scenario and propose alternative mechanisms such as radiatively driven implosion on pre-existing molecular clumps or small-scale Jeans gravitational instabilities. Tables 5 and 6 are available in electronic form at http://www.aanda.org

  4. Using a short-pulse diffraction-limited laser beam to probe filamentation of a random phase plate smoothed beam.

    PubMed

    Kline, J L; Montgomery, D S; Flippo, K A; Johnson, R P; Rose, H A; Shimada, T; Williams, E A

    2008-10-01

    A short pulse (few picoseconds) laser probe provides high temporal resolution measurements to elucidate details of fast dynamic phenomena not observable with typical longer laser pulse probes and gated diagnostics. Such a short pulse laser probe (SPLP) has been used to measure filamentation of a random phase plate (RPP) smoothed laser beam in a gas-jet plasma. The plasma index of refraction due to driven density and temperature fluctuations by the RPP beam perturbs the phase front of a SPLP propagating at a 90 degree angle with respect to the RPP interaction beam. The density and temperature fluctuations are quasistatic on the time scale of the SPLP (approximately 2 ps). The transmitted near-field intensity distribution from the SPLP provides a measure of the phase front perturbation. At low plasma densities, the transmitted intensity pattern is asymmetric with striations across the entire probe beam in the direction of the RPP smoothed beam. As the plasma density increases, the striations break up into smaller sizes along the direction of the RPP beam propagation. The breakup of the intensity pattern is consistent with self-focusing of the RPP smoothed interaction beam. Simulations of the experiment using the wave propagation code, PF3D, are in qualitative agreement demonstrating that the asymmetric striations can be attributed to the RPP driven density fluctuations. Quantification of the beam breakup measured by the transmitted SPLP could lead to a new method for measuring self-focusing of lasers in underdense plasmas.

  5. Laboratory Photoionization Fronts in Nitrogen Gas: A Numerical Feasibility and Parameter Study

    NASA Astrophysics Data System (ADS)

    Gray, William J.; Keiter, P. A.; Lefevre, H.; Patterson, C. R.; Davis, J. S.; van Der Holst, B.; Powell, K. G.; Drake, R. P.

    2018-05-01

    Photoionization fronts play a dominant role in many astrophysical situations but remain difficult to achieve in a laboratory experiment. We present the results from a computational parameter study evaluating the feasibility of the photoionization experiment presented in the design paper by Drake et al. in which a photoionization front is generated in a nitrogen medium. The nitrogen gas density and the Planckian radiation temperature of the X-ray source define each simulation. Simulations modeled experiments in which the X-ray flux is generated by a laser-heated gold foil, suitable for experiments using many kJ of laser energy, and experiments in which the flux is generated by a “z-pinch” device, which implodes a cylindrical shell of conducting wires. The models are run using CRASH, our block-adaptive-mesh code for multimaterial radiation hydrodynamics. The radiative transfer model uses multigroup, flux-limited diffusion with 30 radiation groups. In addition, electron heat conduction is modeled using a single-group, flux-limited diffusion. In the theory, a photoionization front can exist only when the ratios of the electron recombination rate to the photoionization rate and the electron-impact ionization rate to the recombination rate lie in certain ranges. These ratios are computed for several ionization states of nitrogen. Photoionization fronts are found to exist for laser-driven models with moderate nitrogen densities (∼1021 cm‑3) and radiation temperatures above 90 eV. For “z-pinch”-driven models, lower nitrogen densities are preferred (<1021 cm‑3). We conclude that the proposed experiments are likely to generate photoionization fronts.

  6. Near infrared spectra of the Orion bar

    NASA Astrophysics Data System (ADS)

    Marconi, A.; Testi, L.; Natta, A.; Walmsley, C. M.

    1998-02-01

    We have used the LONGSP spectrometer on the 1.5-m TIRGO telescope to obtain long slit spectra in the J, H, and K wavelength bands towards two positions along the Orion bar. These data have been supplemented with images made using the ARNICA camera mounted on TIRGO as well as with an ESO NTT observation carried out by Dr A. Moorwood. We detect a variety of transitions of hydrogen, helium, OI, FeII, FeIII, and H_2. From our molecular hydrogen data, we conclude that densities are moderate (3-6x 10(4) cm(-3) ) in the layer responsible for the molecular hydrogen emission and give no evidence for the presence of dense neutral clumps. We also find that the molecular hydrogen bar is likely to be tilted by ~ 10 degrees relative to the line of sight. We discuss the relative merits of several models of the structure of the bar and conclude that it may be split into two structures separated by 0.2-0.3 parsec along the line of sight. It also seems likely to us that in both structures, density increases along a line perpendicular to the ionization front which penetrates into the neutral gas. We have used the 1.317mum OI line to estimate the FUV radiation field incident at the ionization front and find values of 1-3x 10(4) greater than the average interstellar field. From [FeII] line measurements, we conclude that the electron density in the ionized layer associated with the ionization front is of order 10(4) \\percc. Finally, our analysis of the helium and hydrogen recombination lines implies essential coincidence of the helium and hydrogen Stromgren spheres.

  7. Integral field spectroscopy of selected areas of the Bright bar and Orion-S cloud in the Orion nebula

    NASA Astrophysics Data System (ADS)

    Mesa-Delgado, A.; Núñez-Díaz, M.; Esteban, C.; López-Martín, L.; García-Rojas, J.

    2011-10-01

    We present integral field spectroscopy of two selected zones in the Orion nebula obtained with the Potsdam Multi-Aperture Spectrophotometer, covering the optical spectral range from 3500 to 7200 Å and with a spatial resolution of 1 arcsec. The observed zones are located on the prominent Bright bar and on the brightest area at the north-east of the Orion south cloud, both containing remarkable ionization fronts. We obtain maps of emission-line fluxes and ratios, electron density and temperatures, and chemical abundances. We study the ionization structure and morphology of both fields, whose ionization fronts show different inclination angles with respect to the plane of the sky. We find that the maps of electron density, O+/H+ and O/H ratios show a rather similar structure. We interpret this as produced by the strong dependence on density of the [O II] lines used to derive the O+ abundance, and that our nominal values of electron density - derived from the [S II] line ratio - may be slightly higher than the appropriate value for the O+ zone. We measure the faint recombination lines of O II in the field at the north-east of the Orion south cloud, allowing us to explore the so-called abundance discrepancy problem. We find a rather constant abundance discrepancy across the field and a mean value similar to that determined in other areas of the Orion nebula, indicating that the particular physical conditions of this ionization front do not contribute to this discrepancy. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).

  8. Development of high intensity X-ray sources at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    May, M. J.; Colvin, J. D.; Kemp, G. E.; Barrios, M. A.; Widmann, K.; Benjamin, R.; Thorn, D.; Poole, P.; Blue, B.

    2018-05-01

    Laser heated plasmas have provided recently some of the most powerful and energetic nanosecond length laboratory sources of x-ray photons (Ephoton = 1-30 keV). The highest x-ray to laser conversion is currently accessible by using underdense (ne ˜ 0.25 nc) plasmas since optimal laser coupling is obtained in millimeter scale targets. The targets can have conversion efficiencies of up to 10%. Several types of targets can be used to produce underdense plasmas: metal lined cylindrical cavities, gas pipes, and most recently nano-wire foams. Both the experimental and simulation details of these high intensity x-ray sources are discussed.

  9. Staging and laser acceleration of ions in underdense plasma

    NASA Astrophysics Data System (ADS)

    Ting, Antonio; Hafizi, Bahman; Helle, Michael; Chen, Yu-Hsin; Gordon, Daniel; Kaganovich, Dmitri; Polyanskiy, Mikhail; Pogorelsky, Igor; Babzien, Markus; Miao, Chenlong; Dover, Nicholas; Najmudin, Zulfikar; Ettlinger, Oliver

    2017-03-01

    Accelerating ions from rest in a plasma requires extra considerations because of their heavy mass. Low phase velocity fields or quasi-electrostatic fields are often necessary, either by operating above or near the critical density or by applying other slow wave generating mechanisms. Solid targets have been a favorite and have generated many good results. High density gas targets have also been reported to produce energetic ions. It is interesting to consider acceleration of ions in laser-driven plasma configurations that will potentially allow continuous acceleration in multiple consecutive stages. The plasma will be derived from gaseous targets, producing plasma densities slightly below the critical plasma density (underdense) for the driving laser. Such a plasma is experimentally robust, being repeatable and relatively transparent to externally injected ions from a previous stage. When optimized, multiple stages of this underdense laser plasma acceleration mechanism can progressively accelerate the ions to a high final energy. For a light mass ion such as the proton, relativistic velocities could be reached, making it suitable for further acceleration by high phase velocity plasma accelerators to energies appropriate for High Energy Physics applications. Negatively charged ions such as antiprotons could be similarly accelerated in this multi-staged ion acceleration scheme.

  10. TESTING FOR A LARGE LOCAL VOID BY INVESTIGATING THE NEAR-INFRARED GALAXY LUMINOSITY FUNCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keenan, R. C.; Wang, W.-H.; Barger, A. J.

    2012-08-01

    Recent cosmological modeling efforts have shown that a local underdensity on scales of a few hundred Mpc (out to z {approx} 0.1) could produce the apparent acceleration of the expansion of the universe observed via Type Ia supernovae. Several studies of galaxy counts in the near-infrared (NIR) have found that the local universe appears underdense by {approx}25%-50% compared with regions a few hundred Mpc distant. Galaxy counts at low redshifts sample primarily L {approx} L* galaxies. Thus, if the local universe is underdense, then the normalization of the NIR galaxy luminosity function (LF) at z > 0.1 should be highermore » than that measured for z < 0.1. Here we present a highly complete (>90%) spectroscopic sample of 1436 galaxies selected in the H band (1.6 {mu}m) to study the normalization of the NIR LF at 0.1 < z < 0.3 and address the question of whether or not we reside in a large local underdensity. Our survey sample consists of all galaxies brighter than 18th magnitude in the H band drawn from six widely separated fields at high Galactic latitudes, which cover a total of {approx}2 deg{sup 2} on the sky. We find that for the combination of our six fields, the product {phi}*L* at 0.1 < z < 0.3 is {approx}30% higher than that measured at lower redshifts. While our statistical errors in this measurement are on the {approx}10% level, we find the systematics due to cosmic variance may be larger still. We investigate the effects of cosmic variance on our measurement using the COSMOS cone mock catalogs from the Millennium Simulation and recent empirical estimates of cosmic variance. We find that our survey is subject to systematic uncertainties due to cosmic variance at the 15% level (1{sigma}), representing an improvement by a factor of {approx}2 over previous studies in this redshift range. We conclude that observations cannot yet rule out the possibility that the local universe is underdense at z < 0.1. The fields studied in this work have a large amount of publicly available ancillary data and we make available the images and catalogs used here.« less

  11. The Giga Bit Transceiver based Expandable Front-End (GEFE)—a new radiation tolerant acquisition system for beam instrumentation

    NASA Astrophysics Data System (ADS)

    Barros Marin, M.; Boccardi, A.; Donat Godichal, C.; Gonzalez, J. L.; Lefevre, T.; Levens, T.; Szuk, B.

    2016-02-01

    The Giga Bit Transceiver based Expandable Front-End (GEFE) is a multi-purpose FPGA-based radiation tolerant card. It is foreseen to be the new standard FMC carrier for digital front-end applications in the CERN BE-BI group. Its intended use ranges from fast data acquisition systems to slow control installed close to the beamlines, in a radioactive environment exposed to total ionizing doses of up to 750 Gy. This paper introduces the architecture of the GEFE, its features as well as examples of its application in different setups.

  12. Analysis of ionization wave dynamics in low-temperature plasma jets from fluid modeling supported by experimental investigations

    NASA Astrophysics Data System (ADS)

    Yousfi, M.; Eichwald, O.; Merbahi, N.; Jomaa, N.

    2012-08-01

    This work is devoted to fluid modeling based on experimental investigations of a classical setup of a low-temperature plasma jet. The latter is generated at atmospheric pressure using a quartz tube of small diameter crossed by helium gas flow and surrounded by an electrode system powered by a mono-polar high-voltage pulse. The streamer-like behavior of the fast plasma bullets or ionization waves launched in ambient air for every high-voltage pulse, already emphasized in the literature from experimental or analytical considerations or recent preliminary fluid models, is confirmed by a numerical one-moment fluid model for the simulation of the ionization wave dynamics. The dominant interactions between electron and the main ions present in He-air mixtures with their associated basic data are taken into account. The gradual dilution of helium in air outside the tube along the axis is also considered using a gas hydrodynamics model based on the Navier-Stokes equation assuming a laminar flow. Due to the low magnitude of the reduced electric field E/N (not exceeding 15 Td), it is first shown that consideration of the stepwise ionization of helium metastables is required to reach the critical size of the electron avalanches in order to initiate the formation of ionization waves. It is also shown that a gas pre-ionization ahead of the wave front of about 109 cm-3 (coming from Penning ionization without considering the gas photo-ionization) is required for the propagation. Furthermore, the second ionization wave experimentally observed during the falling time of the voltage pulse, between the powered electrode and the tube exit, is correlated with the electric field increase inside the ionized channel in the whole region between the electrode and the tube exit. The propagation velocity and the distance traveled by the front of the ionization wave outside the tube in the downstream side are consistent with the present experimental measurements. In comparison with the streamer dynamics in a classical corona discharge, it is shown that under the same gas composition the plasma jet ionization waves propagate with a lower velocity (about 5 times), and have a higher diameter (at least 10 times) and a lower plasma density (at least 100 times).

  13. Progress in indirect and direct-drive planar experiments on hydrodynamic instabilities at the ablation front

    DOE PAGES

    Casner, A.; Masse, L.; Delorme, B.; ...

    2014-12-01

    Understanding and mitigating hydrodynamic instabilities and the fuel mix are the key elements for achieving ignition in Inertial Confinement Fusion. Cryogenic indirect-drive implosions on the National Ignition Facility have evidenced that the ablative Rayleigh-Taylor Instability (RTI) is a driver of the hot spot mix. This motivates the switch to a more flexible higher adiabat implosion design [O. A. Hurricane et al., Phys. Plasmas 21, 056313 (2014)]. The shell instability is also the main candidate for performance degradation in low-adiabat direct drive cryogenic implosions [Goncharov et al., Phys. Plasmas 21, 056315 (2014)]. This paper reviews recent results acquired in planar experimentsmore » performed on the OMEGA laser facility and devoted to the modeling and mitigation of hydrodynamic instabilities at the ablation front. In application to the indirect-drive scheme, we describe results obtained with a specific ablator composition such as the laminated ablator or a graded-dopant emulator. In application to the direct drive scheme, we discuss experiments devoted to the study of laser imprinted perturbations with special phase plates. The simulations of the Richtmyer-Meshkov phase reversal during the shock transit phase are challenging, and of crucial interest because this phase sets the seed of the RTI growth. Recent works were dedicated to increasing the accuracy of measurements of the phase inversion. We conclude by presenting a novel imprint mitigation mechanism based on the use of underdense foams. Lastly, the foams induce laser smoothing by parametric instabilities thus reducing the laser imprint on the CH foil.« less

  14. Radiation-driven Turbulent Accretion onto Massive Black Holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, KwangHo; Wise, John H.; Bogdanović, Tamara, E-mail: kwangho.park@physics.gatech.edu

    Accretion of gas and interaction of matter and radiation are at the heart of many questions pertaining to black hole (BH) growth and coevolution of massive BHs and their host galaxies. To answer them, it is critical to quantify how the ionizing radiation that emanates from the innermost regions of the BH accretion flow couples to the surrounding medium and how it regulates the BH fueling. In this work, we use high-resolution three-dimensional (3D) radiation-hydrodynamic simulations with the code Enzo , equipped with adaptive ray-tracing module Moray , to investigate radiation-regulated BH accretion of cold gas. Our simulations reproduce findingsmore » from an earlier generation of 1D/2D simulations: the accretion-powered UV and X-ray radiation forms a highly ionized bubble, which leads to suppression of BH accretion rate characterized by quasi-periodic outbursts. A new feature revealed by the 3D simulations is the highly turbulent nature of the gas flow in vicinity of the ionization front. During quiescent periods between accretion outbursts, the ionized bubble shrinks in size and the gas density that precedes the ionization front increases. Consequently, the 3D simulations show oscillations in the accretion rate of only ∼2–3 orders of magnitude, significantly smaller than 1D/2D models. We calculate the energy budget of the gas flow and find that turbulence is the main contributor to the kinetic energy of the gas but corresponds to less than 10% of its thermal energy and thus does not contribute significantly to the pressure support of the gas.« less

  15. Enhanced target normal sheath acceleration based on the laser relativistic self-focusing

    NASA Astrophysics Data System (ADS)

    Zou, D. B.; Zhuo, H. B.; Yang, X. H.; Shao, F. Q.; Ma, Y. Y.; Yu, T. P.; Wu, H. C.; Yin, Y.; Ge, Z. Y.; Li, X. H.

    2014-06-01

    The enhanced target normal sheath acceleration of ions in laser target interaction via the laser relativistic self-focusing effect is investigated by theoretical analysis and particle-in-cell simulations. The temperature of the hot electrons in the underdense plasma is greatly increased due to the occurrence of resonant absorption, while the electron-betatron-oscillation frequency is close to its witnessed laser frequency [Pukhov et al., Phys. Plasma 6, 2847 (1999)]. While these hot electrons penetrate through the backside solid target, a stronger sheath electric field at the rear surface of the target is induced, which can accelerate the protons to a higher energy. It is also shown that the optimum length of the underdense plasma is approximately equal to the self-focusing distance.

  16. Temperature dependence of underdense nanostructure formation in tungsten under helium irradiation

    DOE PAGES

    Valles, G.; Martin-Bragado, I.; Nordlund, K.; ...

    2017-04-19

    Recently, tungsten has been found to form a highly underdense nanostructured morphology (“W fuzz”) when bombarded by an intense flux of He ions, but only in the temperature window 900–2000 K. Furthermore, using object kinetic Monte Carlo simulations (pseudo-3D simulations) parameterized from first principles, we show that this temperature dependence can be understood based on He and point defect clustering, cluster growth, and detrapping reactions. At low temperatures (<900 K), fuzz does not grow because almost all He is trapped in very small He-vacancy clusters. At high temperatures (>2300 K), all He is detrapped from clusters, preventing the formation ofmore » the large clusters that lead to fuzz growth in the intermediate temperature range.« less

  17. A comparison of three regions of Puppis A

    NASA Technical Reports Server (NTRS)

    Fischbach, K. F.; Bateman, L. M.; Canizares, C. R.; Markert, T. H.; Saez, P. J.

    1990-01-01

    High resolution X-ray spectral observations of Puppis A were performed with the FPCS on the Einstein Observatory at three regions of the remnant: the shock front, the bright eastern knot, and the interior. Plasma diagnostics of lines from OVII and OVIII constrain the values of electron temperature, ionization timescale, and hydrogen column density. Results of the diagnostics for these three regions are compared. A nonequilibrium analysis of previously published fluxes of oxygen lines shows that the interior has not yet reached ionization equilibrium.

  18. Concepts for a Muon Accelerator Front-End

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratakis, Diktys; Berg, Scott; Neuffer, David

    2017-03-16

    We present a muon capture front-end scheme for muon based applications. In this Front-End design, a proton bunch strikes a target and creates secondary pions that drift into a capture channel, decaying into muons. A series of rf cavities forms the resulting muon beams into a series of bunches of differerent energies, aligns the bunches to equal central energies, and initiates ionization cooling. We also discuss the design of a chicane system for the removal of unwanted secondary particles from the muon capture region and thus reduce activation of the machine. With the aid of numerical simulations we evaluate themore » performance of this Front-End scheme as well as study its sensitivity against key parameters such as the type of target, the number of rf cavities and the gas pressure of the channel.« less

  19. Investigation of longitudinal proton acceleration in exploded targets irradiated by intense short-pulse laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauthier, M.; CEA, DAM, DIF, 91297 Arpajon; Lévy, A.

    2014-01-15

    It was recently shown that a promising way to accelerate protons in the forward direction to high energies is to use under-dense or near-critical density targets instead of solids. Simulations have revealed that the acceleration process depends on the density gradients of the plasma target. Indeed, under certain conditions, the most energetic protons are predicted to be accelerated by a collisionless shock mechanism that significantly increases their energy. We report here the results of a recent experiment dedicated to the study of longitudinal ion acceleration in partially exploded foils using a high intensity (∼5 × 10{sup 18} W/cm{sup 2}) picosecond laser pulse. Wemore » show that protons accelerated using targets having moderate front and rear plasma gradients (up to ∼8 μm gradient length) exhibit similar maximum proton energy and number compared to proton beams that are produced, in similar laser conditions, from solid targets, in the well-known target normal sheath acceleration regime. Particle-In-Cell simulations, performed in the same conditions as the experiment and consistent with the measurements, allow laying a path for further improvement of this acceleration scheme.« less

  20. Intact capture of hypervelocity projectiles

    NASA Technical Reports Server (NTRS)

    Tsou, P.

    1990-01-01

    The ability to capture projectiles intact at hypervelocities opens new applications in science and technology that would either not be possible or would be very costly by other means. This capability has been demonstrated in the laboratory for aluminum projectiles of 1.6 mm diameter, captured at 6 km/s, in one unmelted piece, and retaining up to 95% of the original mass. Furthermore, capture was accomplished passively using microcellular underdense polymer foam. Another advantage of capturing projectiles in an underdense medium is the ability of such a medium to preserve a record of the projectile's original velocity components of speed and direction. A survey of these experimental results is described in terms of a dozen parameters which characterize the amount of capture and the effect on the projectile due to different capture media.

  1. Intact capture of hypervelocity projectiles.

    PubMed

    Tsou, P

    1990-01-01

    The ability to capture projectiles intact at hypervelocities opens new applications in science and technology that would either not be possible or would be very costly by other means. This capability has been demonstrated in the laboratory for aluminum projectiles of 1.6 mm diameter, captured at 6 km/s, in one unmelted piece, and retaining up to 95% of the original mass. Furthermore, capture was accomplished passively using microcellular underdense polymer foam. Another advantage of capturing projectiles in an underdense medium is the ability of such a medium to preserve a record of the projectile's original velocity components of speed and direction. A survey of these experimental results is described in terms of a dozen parameters which characterize the amount of capture and the effect on the projectile due to different capture media.

  2. Application of hollow anodes in a Hall thruster with double-peak magnetic fields

    NASA Astrophysics Data System (ADS)

    Ding, Yongjie; Sun, Hezhi; Li, Peng; Wei, Liqiu; Su, Hongbo; Peng, Wuji; Li, Hong; Yu, Daren

    2017-08-01

    A low-power Hall thruster was designed with two permanent magnet rings. Unlike conventional Hall thrusters, this one has a symmetrical double-peak magnetic field with a larger gradient. Moreover, the highest magnetic field strength appears in the plume region; hence, the distance from the zero-magnetic region to the channel outlet is shorter than that of other Hall thrusters. This paper presents the law and mechanism of the effect of a U-shaped hollow anode with the front end in the zero-magnetic region and anodes at the first magnetic peak and zero-magnetic point (corresponding to the front and rear end faces of the U-shaped anode, respectively) on the discharge characteristics of the thruster. The study shows that the overall performance of the hollow anode under the same operating conditions is the highest. For the anode at the magnetic peak, although the ionization rate is the highest, most of the ions generated by ionization collide with the walls, causing greater energy loss and minimizing its performance. For the anode at the zero-magnetic point, although its maximum ionization rate is higher than that of the hollow anode, and the power deposition on the walls is slightly smaller, its propellant utilization and voltage utilization are lower than those of the hollow anode; furthermore, its overall performance is poorer than that of the hollow anode because of the short channel and shorter ionization region.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Masayuki, E-mail: m.takahashi@al.t.u-tokyo.ac.jp; Ohnishi, Naofumi

    A filamentary plasma is reproduced based on a fully kinetic model of electron and ion transports coupled with electromagnetic wave propagation. The discharge plasma transits from discrete to diffusive patterns at a 110-GHz breakdown, with decrease in the ambient pressure, because of the rapid electron diffusion that occurs during an increase in the propagation speed of the ionization front. A discrete plasma is obtained at low pressures when a low-frequency microwave is irradiated because the ionization process becomes more dominant than the electron diffusion, when the electrons are effectively heated by the low-frequency microwave. The propagation speed of the plasmamore » increases with decrease in the incident microwave frequency because of the higher ionization frequency and faster plasma diffusion resulting from the increase in the energy-absorption rate. An external magnetic field is applied to the breakdown volume, which induces plasma filamentation at lower pressures because the electron diffusion is suppressed by the magnetic field. The thrust performance of a microwave rocket is improved by the magnetic fields corresponding to the electron cyclotron resonance (ECR) and its higher-harmonic heating, because slower propagation of the ionization front and larger energy-absorption rates are obtained at lower pressures. It would be advantageous if the fundamental mode of ECR heating is coupled with a lower frequency microwave instead of combining the higher-harmonic ECR heating with the higher frequency microwave. This can improve the thrust performance with smaller magnetic fields even if the propagation speed increases because of the decrease in the incident microwave frequency.« less

  4. Interpretation of the electric fields measured in an ionospheric critical ionization velocity experiment

    NASA Technical Reports Server (NTRS)

    Brenning, N.; Faelthammar, C.-G.; Marklund, G.; Haerendel, G.; Kelley, M. C.; Pfaff, R.

    1991-01-01

    The quasi-dc electric fields measured in the CRIT I ionospheric release experiment are studied. In the experiment, two identical barium shaped charges were fired toward a main payload, and three-dimensional measurements of the electric field inside the streams were made. The relevance of proposed mechanisms for electron heating in the critical ionization velocity (CIV) mechanism is addressed. It is concluded that both the 'homogeneous' and the 'ionizing front' models probably are valid, but in different parts of the streams. It is also possible that electrons are directly accelerated by a magnetic field-aligned component of the electric field. The coupling between the ambient ionosphere and the ionized barium stream is more complicated that is usually assumed in CIV theories, with strong magnetic-field-aligned electric fields and probably current limitation as important processes.

  5. New Evidence for Efficient Collisionless Heating of Electrons at the Reverse Shock of a Young Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Yamaguchi, Hiroya; Eriksen, Kristoffer A.; Badenes, Carles; Hughes, John P.; Brickhouse, Nancy S.; Foster, Adam R.; Patnaude, Daniel J.; Petre, Robert; Slane, Patrick O.; Smith, Randall K.

    2013-01-01

    Although collisionless shocks are ubiquitous in astrophysics, certain key aspects of them are not well understood. In particular, the process known as collisionless electron heating, whereby electrons are rapidly energized at the shock front, is one of the main open issues in shock physics. Here, we present the first clear evidence for efficient collisionless electron heating at the reverse shock of Tycho's supernova remnant (SNR), revealed by Fe K diagnostics using high-quality X-ray data obtained by the Suzaku satellite. We detect K beta (3p yields 1s) fluorescence emission from low-ionization Fe ejecta excited by energetic thermal electrons at the reverse shock front, which peaks at a smaller radius than Fe K alpha (2p yields 1s) emission dominated by a relatively highly ionized component. Comparisons with our hydrodynamical simulations imply instantaneous electron heating to a temperature 1000 times higher than expected from Coulomb collisions alone. The unique environment of the reverse shock, which is propagating with a high Mach number into rarefied ejecta with a low magnetic field strength, puts strong constraints on the physical mechanism responsible for this heating and favors a cross-shock potential created by charge deflection at the shock front. Our sensitive observation also reveals that the reverse shock radius of this SNR is about 10% smaller than the previous measurement using the Fe K alpha morphology from the Chandra observations. Since strong Fe K beta fluorescence is expected only from low-ionization plasma where Fe ions still have many 3p electrons, this feature is key to diagnosing the plasma state and distribution of the immediate postshock ejecta in a young SNR.

  6. Kinematics of the Horsehead Nebula and IC 434 Ionization Front in CO and C+

    NASA Astrophysics Data System (ADS)

    Bally, John; Chambers, Ed; Guzman, Viviana; Keto, Eric; Mookerjea, Bhaswati; Sandell, Goran; Stanke, Thomas; Zinnecker, Hans

    2018-02-01

    Stratospheric Observatory for Infrared Astronomy [C II] 157 μm, APEX 860 μm J = 3‑2 CO, and archival James Clerk Maxwell Telescope J = 2‑1 CO and 13CO observations of the Horsehead Nebula are presented. The photon-dominated region (PDR) between the Orion B molecular cloud and the adjacent IC 434 H II region is used to study the radial velocity structure of the region and the feedback impacts of UV radiation. Multiple west-facing cloud edges are superimposed along the line of sight with radial velocities that differ by a few kilometers per second. The Horsehead lies in the foreground blueshifted portion of the Orion B molecular cloud and is predominantly illuminated from the rear. The mean H2 density of the Horsehead, ∼ 6× {10}3 {{cm}}-3, results in a spatially thin PDR where the photoablation flow has compressed the western cloud edge to an H2 density of (2{--}6)× {10}4 {{cm}}-3. The associated [C II] 157 μm layer has a width L < 0.05 pc. The background parts of the Orion B cloud in the imaged field consist of a clumpy medium surrounded by molecular gas with H2 densities lower by one to two orders of magnitude. Along the straight part of the IC 434 ionization front, the PDR layer probed by [C II] 157 μm emission is much thicker with L ∼ 0.5 pc. A possible model for the formation and evolution of this edge-on ionization front and PDR is presented. The [C II] data were independently analyzed and published by Pabst et al.

  7. Shock implosion of a small homogeneous pellet

    NASA Astrophysics Data System (ADS)

    Fujimoto, Yasuichi; Mishkin, Eli A.; Alejaldre, Carlos

    1985-10-01

    A small spherical, or cylindrical, pellet is imploded by an intensive, evenly distributed, short energy pulse. At the surface of the pellet the matter ionizes, its temperature and pressure rapidly rise, and the ablated plasma, by reaction, implodes the inner nucleus of the pellet. The involved structure of the energy absorbing zone is idealized and a sharp deflagration front is considered. With an almost square energy pulse, slightly dropping with time, the solution of the mass, momentum, and energy conservation equations of the compressed matter, is self-similar. The differential equation of the nondimensional position of the deflagration front, its integral, and the magnitude and shape of the outside energy pulse are derived. The process of ablation is shown to depend solely on the nondimensional velocity of the gas just ahead of the deflagration front, minus the speed of sound, or the ratio of the gas densities across the deflagration front.

  8. HST/WFPC2 and VLT/ISAAC Observations of Proplyds in the Giant H II Region NGC 3603

    NASA Astrophysics Data System (ADS)

    Brandner, Wolfgang; Grebel, Eva K.; Chu, You-Hua; Dottori, Horacio; Brandl, Bernhard; Richling, Sabine; Yorke, Harold W.; Points, Sean D.; Zinnecker, Hans

    2000-01-01

    We report the discovery of three proplyd-like structures in the giant H II region NGC 3603. The emission nebulae are clearly resolved in narrowband and broadband HST/WFPC2 observations in the optical and broadband VLT/ISAAC observations in the near-infrared. All three nebulae are tadpole shaped, with the bright ionization front at the head facing the central cluster and a fainter ionization front around the tail pointing away from the cluster. Typical sizes are 6000 AUx20,000 AU The nebulae share the overall morphology of the proplyds (PROto PLanetarY DiskS) in Orion, but are 20 to 30 times larger in size. Additional faint filaments located between the nebulae and the central ionizing cluster can be interpreted as bow shocks resulting from the interaction of the fast winds from the high-mass stars in the cluster with the evaporation flow from the proplyds. Low-resolution spectra of the brightest nebula, which is at a projected separation of 1.3 pc from the cluster, reveal that it has the spectral excitation characteristics of an ultra compact H II region with electron densities well in excess of 104 cm-3. The near-infrared data reveal a point source superposed on the ionization front. The striking similarity of the tadpole-shaped emission nebulae in NGC 3603 to the proplyds in Orion suggests that the physical structure of both types of objects might be the same. We present two-dimensional radiation hydrodynamical simulations of an externally illuminated star-disk-envelope system, which was still in its main accretion phase when first exposed to ionizing radiation from the central cluster. The simulations reproduce the overall morphology of the proplyds in NGC 3603 very well, but also indicate that mass-loss rates of up to 10-5 Msolar yr-1 are required in order to explain the size of the proplyds. Due to these high mass-loss rates, the proplyds in NGC 3603 should only survive ~105 yr. Despite this short survival time, we detect three proplyds. This indicates that circumstellar disks must be common around young stars in NGC 3603 and that these particular proplyds have only recently been exposed to their present harsh UV environment.

  9. Infrared spectroscopy of interstellar shocks

    NASA Technical Reports Server (NTRS)

    Mckee, C. F.; Chernoff, D. F.; Hollenbach, D. J.

    1984-01-01

    Infrared emission lines from interstellar shocks provide valuable diagnostics for violent events in the interstellar medium, such as supernova remnants and mass outflow from young stellar objects. There are two types of interstellar shocks: in J shocks, gas properties 'jump' from their preshock to their postshock values in a shock front with a thickness equal to or less than one mean free path; radiation is emitted behind the shock front, primarily in the visible and ultraviolet, but with a few strong infrared lines, such as OI(63 microns). Such shocks occur in ionized or neutral atomic gas, or at high velocities (equal to or greater than 50 km/s) in molecular gas. In C shocks, gas is accelerated and heated by collisions between charged particles, which have a low concentration and are coupled to the magnetic field, and neutral particles; radiation is generated throughout the shock and is emitted almost entirely in infrared emission lines. Such shocks occur in weakly ionized molecular gas for shock velocities below about 50 km/s.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraljic, David; Sarkar, Subir, E-mail: David.Kraljic@physics.ox.ac.uk, E-mail: Subir.Sarkar@physics.ox.ac.uk

    It has been observed [1,2] that the locally measured Hubble parameter converges quickest to the background value and the dipole structure of the velocity field is smallest in the reference frame of the Local Group of galaxies. We study the statistical properties of Lorentz boosts with respect to the Cosmic Microwave Background frame which make the Hubble flow look most uniform around a particular observer. We use a very large N-Body simulation to extract the dependence of the boost velocities on the local environment such as underdensities, overdensities, and bulk flows. We find that the observation [1,2] is not unexpectedmore » if we are located in an underdensity, which is indeed the case for our position in the universe. The amplitude of the measured boost velocity for our location is consistent with the expectation in the standard cosmology.« less

  11. Spectral modeling of laser-produced underdense titanium plasmas

    NASA Astrophysics Data System (ADS)

    Chung, Hyun-Kyung; Back, Christina A.; Scott, Howard A.; Constantin, Carmen; Lee, Richard W.

    2004-11-01

    Experiments were performed at the NIKE laser to create underdense low-Z plasmas with a small amount of high-Z dopant in order to study non-LTE population kinetics. An absolutely calibrated spectra in 470-3000 eV was measured in time-resolved and time-averaged fashion from SiO2 aerogel target with 3% Ti dopant. K-shell Ti emission was observed as well as L-shell Ti emission. Time-resolved emission show that lower energy photons peak later than higher energy photons due to plasma cooling. In this work, we compare the measured spectra with non-LTE spectral calculations of titanium emission at relatively low temperatures < 1 keV and electron densities from 1e19 to 1e21 cm-3. A temperature diagnostics using the charge state distributions dominated by L-shell ions will be discussed.

  12. Experimental realization of underdense plasma photocathode wakefield acceleration at FACET

    NASA Astrophysics Data System (ADS)

    Scherkl, Paul

    2017-10-01

    Novel electron beam sources from compact plasma accelerator concepts currently mature into the driving technology for next generation high-energy physics and light source facilities. Particularly electron beams of ultra-high brightness could pave the way for major advances for both scientific and commercial applications, but their generation remains tremendously challenging. The presentation outlines the experimental demonstration of the world's first bright electron beam source from spatiotemporally synchronized laser pulses injecting electrons into particle-driven plasma wakefields at FACET. Two distinctive types of operation - laser-triggered density downramp injection (``Plasma Torch'') and underdense plasma photocathode acceleration (``Trojan Horse'') - and their intermediate transitions are characterized and contrasted. Extensive particle-in-cell simulations substantiate the presentation of experimental results. In combination with novel techniques to minimize the beam energy spread, the acceleration scheme presented here promises ultra-high beam quality and brightness.

  13. DO NOT FORGET THE FOREST FOR THE TREES: THE STELLAR-MASS HALO-MASS RELATION IN DIFFERENT ENVIRONMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonnesen, Stephanie; Cen, Renyue, E-mail: stonnes@gmail.com, E-mail: cen@astro.princeton.edu

    2015-10-20

    The connection between dark matter halos and galactic baryons is often not well constrained nor well resolved in cosmological hydrodynamical simulations. Thus, halo occupation distribution models that assign galaxies to halos based on halo mass are frequently used to interpret clustering observations, even though it is well known that the assembly history of dark matter halos is related to their clustering. In this paper we use high-resolution hydrodynamical cosmological simulations to compare the halo and stellar mass growth of galaxies in a large-scale overdensity to those in a large-scale underdensity (on scales of about 20 Mpc). The simulation reproduces assemblymore » bias, in which halos have earlier formation times in overdense environments than in underdense regions. We find that the ratio of stellar mass to halo mass is larger in overdense regions in central galaxies residing in halos with masses between 10{sup 11} and 10{sup 12.9} M{sub ⊙}. When we force the local density (within 2 Mpc) at z = 0 to be the same for galaxies in the large-scale over- and underdensities, we find the same results. We posit that this difference can be explained by a combination of earlier formation times, more interactions at early times with neighbors, and more filaments feeding galaxies in overdense regions. This result puts the standard practice of assigning stellar mass to halos based only on their mass, rather than considering their larger environment, into question.« less

  14. New Evidence for a Large Local Void From the UKIDSS LAS + SDSS

    NASA Astrophysics Data System (ADS)

    Keenan, Ryan; Barger, A. J.

    2013-01-01

    Recent cosmological modeling efforts have shown that a local under-density on scales of a few hundred Mpc (out to z ~ 0.1) could produce the apparent acceleration of the expansion of the universe observed via type Ia supernovae. Several studies of galaxy counts in the near-infrared (NIR) have found that the local universe appears underdense by ~25 - 50% compared with regions a few hundred Mpc distant (e.g. Keenan et al., 2010). An accurate characterization of any such under-density will be important for studies seeking to understand the nature of dark energy. If the space density of galaxies is rising as a function of redshift, then the luminosity density, as measured via the NIR galaxy luminosity function (LF), should be rising as well. In Keenan et al. (2012), we presented a study of the NIR LF at z ~ 0.2 and found that the product φ*L* (the peak of the luminosity density distribution) at z ~ 0.2 is roughly ~ 30% higher than that measured at z ~ 0.05. Here we present the results from a study of the NIR LF derived from galaxies selected from the UKIRT Infrared Deep Sky Large Area Survey (UKIDSS LAS) combined with spectroscopy from the Sloan Digital Sky Survey (SDSS). We confirm the apparent rise in luminosity density found in Keenan et al. (2012) from z = 0.05 to z = 0.1 and provide the first self-consistent measurements of the NIR luminosity density out to z ~ 0.15.

  15. Weak lensing by galaxy troughs in DES Science Verification data

    DOE PAGES

    Gruen, D.; Friedrich, O.; Amara, A.; ...

    2015-11-29

    In this study, we measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10σ–15σ for the smallest angular scales) for troughs with the redshift range z ϵ [0.2, 0.5] of the projected galaxy field and angular diameters of 10 arcmin…1°. These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers ofmore » the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial Λ cold dark matter model. The prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy counts is consistent with a symmetry between galaxy and matter over- and underdensities. In addition, we measure the two-point angular correlation of troughs with galaxies which, in contrast to the lensing signal, is sensitive to galaxy bias on all scales. The lensing signal of troughs and their clustering with galaxies is therefore a promising probe of the statistical properties of matter underdensities and their connection to the galaxy field.« less

  16. Structure and physical conditions in the Huygens region of the Orion nebula

    NASA Astrophysics Data System (ADS)

    O'Dell, C. R.; Ferland, G. J.; Peimbert, M.

    2017-02-01

    Hubble Space Telescope images, MUSE maps of emission lines, and an atlas of high velocity resolution emission-line spectra have been used to establish for the first time correlations of the electron temperature, electron density, radial velocity, turbulence, and orientation within the main ionization front of the nebula. From the study of the combined properties of multiple features, it is established that variations in the radial velocity are primarily caused by the photoevaporating ionization front being viewed at different angles. There is a progressive increase of the electron temperature and density with decreasing distance from the dominant ionizing star θ1 Ori C. The product of these characteristics (ne × Te) is the most relevant parameter in modelling a blister-type nebula like the Huygens region, where this quantity should vary with the surface brightness in Hα. Several lines of evidence indicate that small-scale structure and turbulence exist down to the level of our resolution of a few arcseconds. Although photoevaporative flow must contribute at some level to the well-known non-thermal broadening of the emission lines, comparison of quantitative predictions with the observed optical line widths indicates that it is not the major additive broadening component. Derivation of Te values for H+ from radio+optical and optical-only ionized hydrogen emission showed that this temperature is close to that derived from [N II] and that the transition from the well-known flat extinction curve which applies in the Huygens region to a more normal steep extinction curve occurs immediately outside of the Bright Bar feature of the nebula.

  17. An analytical theory of radio-wave scattering from meteoric ionization - I. Basic equation

    NASA Astrophysics Data System (ADS)

    Pecina, P.

    2016-01-01

    We have developed an analytical theory of radio-wave scattering from ionization of meteoric origin. It is based on an integro-differential equation for the polarization vector, P, inside the meteor trail, representing an analytical solution of the set of Maxwell equations, in combination with a generalized radar equation involving an integral of the trail volume electron density, Ne, and P represented by an auxiliary vector, Q, taken over the whole trail volume. During the derivation of the final formulae, the following assumptions were applied: transversal as well as longitudinal dimensions of the meteor trail are small compared with the distances of the relevant trail point to both the transmitter and receiver and the ratio of these distances to the wavelength of the wave emitted by the radar is very large, so that the stationary-phase method can be employed for evaluation of the relevant integrals. Further, it is shown that in the case of sufficiently low electron density, Ne, corresponding to the case of underdense trails, the classical McKinley's radar equation results as a special case of the general theory. The same also applies regarding the Fresnel characteristics. Our approach is also capable of yielding solutions to the problems of the formation of Fresnel characteristics on trails having any electron density, forward scattering and scattering on trails immersed in the magnetic field. However, we have also shown that the geomagnetic field can be removed from consideration, due to its low strength. The full solution of the above integro-differential equation, valid for any electron volume densities, has been left to subsequent works dealing with this particular problem, due to its complexity.

  18. High density plasma gun generates plasmas at 190 kilometers per second

    NASA Technical Reports Server (NTRS)

    Espy, P. N.

    1971-01-01

    Gun has thin metal foil disc which positions or localizes gas to be ionized during electrical discharge cycle, overcoming major limiting factor in obtaining such plasmas. Expanding plasma front travels at 190 km/sec, compared to plasmas of 50 to 60 km/sec previously achieved.

  19. GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma

    PubMed Central

    Lécz, Zs.; Konoplev, I. V.; Seryi, A.; Andreev, A.

    2016-01-01

    This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration. PMID:27796327

  20. GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma

    NASA Astrophysics Data System (ADS)

    Lécz, Zs.; Konoplev, I. V.; Seryi, A.; Andreev, A.

    2016-10-01

    This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration.

  1. Experimental demonstration of laser imprint reduction using underdense foams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delorme, B.; Casner, A.; CELIA, University of Bordeaux-CNRS-CEA, F-33400 Talence

    2016-04-15

    Reducing the detrimental effect of the Rayleigh-Taylor (RT) instability on the target performance is a critical challenge. In this purpose, the use of targets coated with low density foams is a promising approach to reduce the laser imprint. This article presents results of ablative RT instability growth measurements, performed on the OMEGA laser facility in direct-drive for plastic foils coated with underdense foams. The laser beam smoothing is explained by the parametric instabilities developing in the foam and reducing the laser imprint on the plastic (CH) foil. The initial perturbation pre-imposed by the means of a specific phase plate wasmore » shown to be smoothed using different foam characteristics. Numerical simulations of the laser beam smoothing in the foam and of the RT growth are performed with a suite of paraxial electromagnetic and radiation hydrodynamic codes. They confirmed the foam smoothing effect in the experimental conditions.« less

  2. New exact solutions of the Dirac and Klein-Gordon equations of a charged particle propagating in a strong laser field in an underdense plasma

    NASA Astrophysics Data System (ADS)

    Varró, Sándor

    2014-03-01

    Exact solutions are presented of the Dirac and Klein-Gordon equations of a charged particle propagating in a classical monochromatic electromagnetic plane wave in a medium of index of refraction nm<1. In the Dirac case the solutions are expressed in terms of new complex polynomials, and in the Klein-Gordon case the found solutions are expressed in terms of Ince polynomials. In each case they form a doubly infinite set, labeled by two integer quantum numbers. These integer numbers represent quantized momentum components of the charged particle along the polarization vector and along the propagation direction of the electromagnetic radiation. Since this radiation may represent a plasmon wave of arbitrary high amplitude, propagating in an underdense plasma, the solutions obtained may have relevance in describing possible quantum features of novel acceleration mechanisms.

  3. High energy protons generation by two sequential laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaofeng; Shen, Baifei, E-mail: bfshen@mail.shcnc.ac.cn, E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei, E-mail: bfshen@mail.shcnc.ac.cn, E-mail: zhxm@siom.ac.cn

    2015-04-15

    The sequential proton acceleration by two laser pulses of relativistic intensity is proposed to produce high energy protons. In the scheme, a relativistic super-Gaussian (SG) laser pulse followed by a Laguerre-Gaussian (LG) pulse irradiates dense plasma attached by underdense plasma. A proton beam is produced from the target and accelerated in the radiation pressure regime by the short SG pulse and then trapped and re-accelerated in a special bubble driven by the LG pulse in the underdense plasma. The advantages of radiation pressure acceleration and LG transverse structure are combined to achieve the effective trapping and acceleration of protons. Inmore » a two-dimensional particle-in-cell simulation, protons of 6.7 GeV are obtained from a 2 × 10{sup 22 }W/cm{sup 2} SG laser pulse and a LG pulse at a lower peak intensity.« less

  4. Mode transition of plasma expansion for laser induced breakdown in Air

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei; Matsui, Kohei; Ofosu, Joseph A.; Yokota, Ippei; Komurasaki, Kimiya

    2017-03-01

    High-speed shadowgraph visualization experiments conducted using a 10 J pulse transversely excited atmospheric (TEA) CO2 laser in ambient air provided a state transition from overdriven to Chapman-Jouguet in the laser-supported detonation regime. At the state transition, the propagation velocity of the laser-supported detonation wave and the threshold laser intensity were 10 km/s and 1011 W/m2, respectively. State transition information, such as the photoionization caused by plasma UV radiation, of the avalanche ionization ahead of the ionization wave front can be elucidated from examination of the source seed electrons.

  5. Observations of 85. cap alpha. recombination lines from M16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgs, L.A.; Doherty, L.H.; MacLeod, J.M.

    1979-01-01

    Hydrogen and helium recombination-line observations have been made at eight positions in M16. These observations are compatible with a two-component model of the ionized gas, one component being an extended low-excitation region, the other being a higher-excitation region (with the helium ionized) at a radial velocity about 10 km s/sup -1/ greater than the mean velocity of the first component. The observed radial-velocity variations in the first component appear to be related to streaming motions from ionization fronts. The helium line emission is at a velocity comparable to that of the hottest exciting stars. The continuum radio emission is verymore » low considering the number of O stars in the nebula, indicating that it is probably density bounded.« less

  6. Rapid ionization of the environment of SN 1987A

    NASA Technical Reports Server (NTRS)

    Raga, A. C.

    1987-01-01

    It has been suggested by some authors that IUE observations of the supernova SN 1987A show the presence of a strong component of the interstellar C IV 1550 and Si IV 1393 absorption lines at a velocity that approximately corresponds to the velocity of the LMC. It is possible that this component might come from originally neutral (or at least not very highly ionized) gas which has been photoionized by the initially very strong ionizing radiation field of the supernova. Theoretical considerations of this scenario lead to the study of fast (with velocities of about c) ionization fronts. It is shown that for reasonable model parameters it is possible to obtain considerably large C IV column densities, in agreement with the IUE observations. On the other hand, the models do not so easily predict the large Si IV column densities that are also obtained from the IUE observations. It is found that only models in which the interstellar medium surrounding SN 1987A is initially composed of already ionized hydrogen and helium predict substantial Si IV column densities. This result provides an interesting prediction of the ionization state of the environment of the presupernova star.

  7. Development of High Fluence, High Conversion Efficiency X-Ray Sources at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    May, Mark

    2017-10-01

    Laser heated millimeter scale targets have provided recently some of the most powerful and energetic laboratory sources of x-ray photons (E = 6 - 24 keV) with high fluence and conversion efficiency (CE). These sources have included the K-shell of stainless steel (E = 5-9 keV) from cylindrical cavities having a CE of 6.8% (Etot 31 kJ), the K-shell of Kr (E = 8-20 keV) from gas pipes having a CE of 1.6% ( 20 kJ) and the L-shell of Ag (E = 3-5 keV) from novel nano-wire foam targets having a CE of 16% ( 81 kJ). The x-ray power and CE are dependent upon the peak electron temperature in the radiating plasma created from these underdense (ne < 0.25 nc) sources. The temperature can be limited by the available laser power and energy which can cause the fluence and the CE to be suboptimal especially for high Z K-shell sources. Cavity targets require several nanoseconds for the underdense plasma to fill the cavity but do have an increase in temperature and emission at late time from plasma stagnation on axis. In contrast the gas or foam targets heat volumetrically to an underdense source in less than a nanosecond which can be more efficient. Both the experimental and simulation details of these high fluence x-ray sources will be discussed. This work was done under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  8. The Santiago-Harvard-Edinburgh-Durham void comparison - I. SHEDding light on chameleon gravity tests

    NASA Astrophysics Data System (ADS)

    Cautun, Marius; Paillas, Enrique; Cai, Yan-Chuan; Bose, Sownak; Armijo, Joaquin; Li, Baojiu; Padilla, Nelson

    2018-05-01

    We present a systematic comparison of several existing and new void-finding algorithms, focusing on their potential power to test a particular class of modified gravity models - chameleon f(R) gravity. These models deviate from standard general relativity (GR) more strongly in low-density regions and thus voids are a promising venue to test them. We use halo occupation distribution (HOD) prescriptions to populate haloes with galaxies, and tune the HOD parameters such that the galaxy two-point correlation functions are the same in both f(R) and GR models. We identify both three-dimensional (3D) voids and two-dimensional (2D) underdensities in the plane of the sky to find the same void abundance and void galaxy number density profiles across all models, which suggests that they do not contain much information beyond galaxy clustering. However, the underlying void dark matter density profiles are significantly different, with f(R) voids being more underdense than GR ones, which leads to f(R) voids having a larger tangential shear signal than their GR analogues. We investigate the potential of each void finder to test f(R) models with near-future lensing surveys such as EUCLID and LSST. The 2D voids have the largest power to probe f(R) gravity, with an LSST analysis of tunnel (which is a new type of 2D underdensity introduced here) lensing distinguishing at 80 and 11σ (statistical error) f(R) models with parameters, |fR0| = 10-5 and 10-6, from GR.

  9. Spark formation as a moving boundary process

    NASA Astrophysics Data System (ADS)

    Ebert, Ute

    2006-03-01

    The growth process of spark channels recently becomes accessible through complementary methods. First, I will review experiments with nanosecond photographic resolution and with fast and well defined power supplies that appropriately resolve the dynamics of electric breakdown [1]. Second, I will discuss the elementary physical processes as well as present computations of spark growth and branching with adaptive grid refinement [2]. These computations resolve three well separated scales of the process that emerge dynamically. Third, this scale separation motivates a hierarchy of models on different length scales. In particular, I will discuss a moving boundary approximation for the ionization fronts that generate the conducting channel. The resulting moving boundary problem shows strong similarities with classical viscous fingering. For viscous fingering, it is known that the simplest model forms unphysical cusps within finite time that are suppressed by a regularizing condition on the moving boundary. For ionization fronts, we derive a new condition on the moving boundary of mixed Dirichlet-Neumann type (φ=ɛnφ) that indeed regularizes all structures investigated so far. In particular, we present compact analytical solutions with regularization, both for uniformly translating shapes and for their linear perturbations [3]. These solutions are so simple that they may acquire a paradigmatic role in the future. Within linear perturbation theory, they explicitly show the convective stabilization of a curved front while planar fronts are linearly unstable against perturbations of arbitrary wave length. [1] T.M.P. Briels, E.M. van Veldhuizen, U. Ebert, TU Eindhoven. [2] C. Montijn, J. Wackers, W. Hundsdorfer, U. Ebert, CWI Amsterdam. [3] B. Meulenbroek, U. Ebert, L. Schäfer, Phys. Rev. Lett. 95, 195004 (2005).

  10. Spatiotemporal pH dynamics in concentration polarization near ion-selective membranes.

    PubMed

    Andersen, Mathias B; Rogers, David M; Mai, Junyu; Schudel, Benjamin; Hatch, Anson V; Rempe, Susan B; Mani, Ali

    2014-07-08

    We present a detailed analysis of the transient pH dynamics for a weak, buffered electrolyte subject to voltage-driven transport through an ion-selective membrane. We show that pH fronts emanate from the concentration polarization zone next to the membrane and that these propagating fronts change the pH in the system several units from its equilibrium value. The analysis is based on a 1D model using the unsteady Poisson-Nernst-Planck equations with nonequilibrium chemistry and without assumptions of electroneutrality or asymptotically thin electric double layers. Nonequilibrium chemical effects, especially for water splitting, are shown to be important for the dynamical and spatiotemporal evolution of the pH fronts. Nonetheless, the model also shows that at steady state the assumption of chemical equilibrium can still lead to good approximations of the global pH distribution. Moreover, our model shows that the transport of the hydronium ion in the extended space charge region is governed by a balance between electromigration and water self-ionization. On the basis of this observation, we present a simple model showing that the net flux of the hydronium ion is proportional to the length of the extended space charge region and the water self-ionization rate. To demonstrate these effects in practice, we have adopted the experiment of Mai et al. (Mai, J.; Miller, H.; Hatch, A. V. Spatiotemporal Mapping of Concentration Polarization Induced pH Changes at Nanoconstrictions. ACS Nano 2012, 6, 10206) as a model problem, and by including the full chemistry and transport, we show that the present model can capture the experimentally observed pH fronts. Our model can, among other things, be used to predict and engineer pH dynamics, which can be essential to the performance of membrane-based systems for biochemical separation and analysis.

  11. Unraveling the Helix Nebula: Its Structure and Knots

    NASA Astrophysics Data System (ADS)

    O'Dell, C. R.; McCullough, Peter R.; Meixner, Margaret

    2004-11-01

    Through Hubble Space Telescope (HST) imaging of the inner part of the main ring of the Helix Nebula, together with CTIO 4 m images of the fainter outer parts, we have a view of unprecedented quality of the nearest bright planetary nebula. These images have allowed us to determine that the main ring of the nebula is composed of an inner disk of about 499" diameter (0.52 pc) surrounded by an outer ring (in reality a torus) of 742" diameter (0.77 pc) whose plane is highly inclined to the plane of the disk. This outer ring is surrounded by an outermost ring of 1500" (1.76 pc) diameter, which is flattened on the side colliding with the ambient interstellar medium. The inner disk has an extended distribution of low-density gas along its rotational axis of symmetry, and the disk is optically thick to ionizing radiation, as is the outer ring. Published radial velocities of the knots provide support for the two-component structure of the main ring of the nebula and for the idea that the knots found there are expanding along with the nebular material from which they recently originated. These velocities indicate a spatial expansion velocity of the inner disk of 40 and 32 km s-1 for the outer ring, which yields expansion ages of 6560 and 12,100 yr, respectively. The outermost ring may be partially ionized through scattered recombination continuum from the inner parts of the nebula, but shocks certainly are occurring in it. This outermost ring probably represents a third period of mass loss by the central star. There is one compact, outer object that is unexplained, showing shock structures indicating a different orientation of the gas flow from that of the nebula. There is a change in the morphology of the knots as a function of the distance from the local ionization front. This supports a scenario in which the knots are formed in or near the ionization front and are then sculpted by the stellar radiation from the central star as the ionization front advances beyond them. Based in part on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Based in part on observations obtained at the Cerro Tololo Inter-American Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a Cooperative Agreement with the National Science Foundation.

  12. Mitigation of hot electrons from laser-plasma instabilities in high-Z, highly ionized plasmas

    DOE PAGES

    Fein, J. R.; Holloway, J. P.; Trantham, M. R.; ...

    2017-03-20

    Intense lasers interacting with under-dense plasma can drive laser-plasma instabilities (LPIs) that generate largeamplitude electron plasma waves (EPWs). Suprathermal or “hot” electrons produced in the EPWs are detrimental to inertial confinement fusion (ICF), by reducing capsule implosion efficiency through preheat, and also present an unwanted source of background on x-ray diagnostics. Mitigation of hot electrons was demonstrated in the past by altering plasma conditions near the quarter-critical density, n c/4, with the interpretation of reduced growth of the twoplasmon decay (TPD) instability. Here, we present measurements of hot electrons generated in laser-irradiated planar foils of material ranging from low- tomore » high-Z, where the fraction of laser energy converted to hot electrons, fhot was reduced by a factor of 10 3 going from CH to Au. This correlates with steepening density gradient length-scales that were also measured. Radiation hydrodynamic simulations produced electron density profiles in reasonable agreement with our measurements. According to the simulations, both multi-beam TPD and stimulated Raman scattering were predicted to be above threshold with linear threshold parameters that decreased with increasing Z due to steepening length-scales, as well as enhanced laser absorption and increased EPW collisional and Landau damping.« less

  13. Mitigation of hot electrons from laser-plasma instabilities in high-Z, highly ionized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fein, J. R.; Holloway, J. P.; Trantham, M. R.

    Intense lasers interacting with under-dense plasma can drive laser-plasma instabilities (LPIs) that generate largeamplitude electron plasma waves (EPWs). Suprathermal or “hot” electrons produced in the EPWs are detrimental to inertial confinement fusion (ICF), by reducing capsule implosion efficiency through preheat, and also present an unwanted source of background on x-ray diagnostics. Mitigation of hot electrons was demonstrated in the past by altering plasma conditions near the quarter-critical density, n c/4, with the interpretation of reduced growth of the twoplasmon decay (TPD) instability. Here, we present measurements of hot electrons generated in laser-irradiated planar foils of material ranging from low- tomore » high-Z, where the fraction of laser energy converted to hot electrons, fhot was reduced by a factor of 10 3 going from CH to Au. This correlates with steepening density gradient length-scales that were also measured. Radiation hydrodynamic simulations produced electron density profiles in reasonable agreement with our measurements. According to the simulations, both multi-beam TPD and stimulated Raman scattering were predicted to be above threshold with linear threshold parameters that decreased with increasing Z due to steepening length-scales, as well as enhanced laser absorption and increased EPW collisional and Landau damping.« less

  14. Proton and Ion Acceleration on the Contrast Upgraded Texas Petawatt Laser

    NASA Astrophysics Data System (ADS)

    McCary, Edward; Roycroft, Rebecca; Jiao, Xuejing; Kupfer, Rotem; Tiwari, Ganesh; Wagner, Craig; Yandow, Andrew; Franke, Philip; Dyer, Gilliss; Gaul, Erhard; Toncian, Toma; Ditmire, Todd; Hegelich, Bjorn; CenterHigh Energy Density Science Team

    2016-10-01

    Recent upgrades to the Texas Petawatt (TPW) laser system have eliminated pre-pulses and reduced the laser pedestal, resulting in improved laser contrast. Previously unwanted pre-pulses and amplified spontaneous emission (ASE) would ionize targets thinner than 1 micron, leaving an under-dense plasma which was not capable of accelerating ions to high energies. After the upgrade the contrast was drastically improved allowing us to successfully shoot targets as thin as 20 nm without plasma mirrors. We have also observed evidence of relativistic transparency and Break-Out Afterburner (BOA) ion acceleration when shooting ultra-thin, nanometer scale targets. Data taken with a wide angle ion spectrometer (IWASP) showed the characteristic asymmetry of BOA in the plane orthogonal to the laser polarization on thin targets but not on micron scale targets. Thick micron scale targets saw improvement as well; shots on 2 μm thick gold targets saw ions with energies up to 100 MeV, which broke the former record proton energy on the TPW. Switching the focusing optic from an f/3 parabolic mirror to an f/40 spherical mirror showed improvement in the number of low energy protons created, and provided a source for hundreds of picosecond heating of aluminum foils for warm dense matter measurements.

  15. Design of laboratory experiments to study photoionization fronts driven by thermal sources

    DOE PAGES

    Drake, R. P.; Hazak, G.; Keiter, P. A.; ...

    2016-12-20

    This study analyzes the requirements of a photoionization-front experiment that could be driven in the laboratory, using thermal sources to produce the necessary flux of ionizing photons. It reports several associated conclusions. Such experiments will need to employ the largest available facilities, capable of delivering many kJ to MJ of energy to an x-ray source. They will use this source to irradiate a volume of neutral gas, likely of N, on a scale of a few mm to a few cm, increasing with source energy. For a gas pressure of several to ten atmospheres at room temperature, and a sourcemore » temperature near 100 eV, one will be able to drive a photoionization front through a system of tens to hundreds of photon mean free paths. The front should make the familiar transition from the so-called R-Type to D-Type as the radiation flux diminishes with distance. The N is likely to reach the He-like state. Preheating from the energetic photons appears unlikely to become large enough to alter the essential dynamics of the front beyond some layer near the surface. For well-chosen experimental conditions, competing energy transport mechanisms are small.« less

  16. DESIGN OF LABORATORY EXPERIMENTS TO STUDY PHOTOIONIZATION FRONTS DRIVEN BY THERMAL SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake, R. P.; Keiter, P. A.; Davis, J. S.

    2016-12-20

    This paper analyzes the requirements of a photoionization-front experiment that could be driven in the laboratory, using thermal sources to produce the necessary flux of ionizing photons. It reports several associated conclusions. Such experiments will need to employ the largest available facilities, capable of delivering many kJ to MJ of energy to an X-ray source. They will use this source to irradiate a volume of neutral gas, likely of N, on a scale of a few mm to a few cm, increasing with source energy. For a gas pressure of several to ten atmospheres at room temperature, and a sourcemore » temperature near 100 eV, one will be able to drive a photoionization front through a system of tens to hundreds of photon mean free paths. The front should make the familiar transition from the so-called R-Type to D-Type as the radiation flux diminishes with distance. The N is likely to reach the He-like state. Preheating from the energetic photons appears unlikely to become large enough to alter the essential dynamics of the front beyond some layer near the surface. For well-chosen experimental conditions, competing energy transport mechanisms are small.« less

  17. Does laser-driven heat front propagation depend on material microstructure?

    NASA Astrophysics Data System (ADS)

    Colvin, J. D.; Matsukuma, H.; Fournier, K. B.; Yoga, A.; Kemp, G. E.; Tanaka, N.; Zhang, Z.; Kota, K.; Tosaki, S.; Ikenouchi, T.; Nishimura, H.

    2016-10-01

    We showed earlier that the laser-driven heat front propagation velocity in low-density Ti-silica aerogel and TiO2 foam targets was slower than that simulated with a 2D radiation-hydrodynamics code incorporating an atomic kinetics model in non-LTE and assuming initially homogeneous material. Some theoretical models suggest that the heat front is slowed over what it would be in a homogeneous medium by the microstructure of the foam. In order to test this hypothesis we designed and conducted a comparison experiment on the GEKKO laser to measure heat front propagation velocity in two targets, one an Ar/CO2 gas mixture and the other a TiO2 foam, that had identical initial densities and average ionization states. We found that the heat front traveled about ten times faster in the gas than in the foam. We present the details of the experiment design and a comparison of the data with the simulations. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract No. DE-AC52-07NA27344, and the joint research project of ILE Osaka U. (contract Nos. 2014A1-04 and 2015A1-02).

  18. CRIT II electric, magnetic, and density measurements within an ionizing neutral stream

    NASA Technical Reports Server (NTRS)

    Swenson, C. M.; Kelley, M. C.; Primdahl, F.; Baker, K. D.

    1990-01-01

    Measurements from rocket-borne sensors inside a high-velocity neutral barium beam show a-factor-of-six increase in plasma density in a moving ionizing front. This region was colocated with intense fluctuating electric fields at frequencies well under the lower hybrid frequency for a barium plasma. Large quasi-dc electric and magnetic field fluctuations were also detected with a large component of the current and the electric field parallel to B(0). An Alfven wave with a finite electric field component parallel to the geomagnetic field was observed to propagate along B(0), where it was detected by an instrumented subpayload.

  19. Layers in the Central Orion nebula

    NASA Astrophysics Data System (ADS)

    O'Dell, C. R.

    2018-07-01

    The existence of multiple layers in the inner Orion nebula has been revealed using data from an Atlas of spectra at 2 arcsec and 12 km s-1 resolution. These data were sometimes grouped over Samples of 10 arcsec×10 arcsecto produce high signal-to-noise spectra and sometimes grouped into sequences of pseudo-slit Spectra of 12^''.8-39 arcsec width for high spatial resolution studies. Multiple velocity systems were found: V_{MIF} traces the Main Ionization Front (MIF), V_{scat} arises from back-scattering of V_{MIF} emission by particles in the background Photon Dissociation Region (PDR), V_{low} is an ionized layer in front of the MIF and if it is the source of the stellar absorption lines seen in the Trapezium stars, it must lie between the foreground Veil and those stars, V_{new,[O III] may represent ionized gas evaporating from the Veil away from the observer. There are features such as the Bright Bar where variations of velocities are due to changing tilts of the MIF, but velocity changes above about 25 arcsec arise from variations in velocity of the background PDR. In a region 25 arcsec ENE of the Orion-S Cloud one finds dramatic changes in the [OIII] components, including the signals from the V_{low,[O III] and V_{MIF,[O III] becoming equal, indicating shadowing of gas from stellar photons of >24.6 eV. This feature is also seen in areas to the west and south of the Orion-S Cloud.

  20. Layers in the Central Orion Nebula

    NASA Astrophysics Data System (ADS)

    O'Dell, C. R.

    2018-04-01

    The existence of multiple layers in the inner Orion Nebula has been revealed using data from an Atlas of spectra at 2″ and 12 km s-1 resolution. These data were sometimes grouped over Samples of 10″×10″ to produce high Signal to Noise spectra and sometimes grouped into sequences of pseudo-slit Spectra of 12{^''.}8 - 39″width for high spatial resolution studies. Multiple velocity systems were found: V_{MIF} traces the Main Ionization Front (MIF), V_{scat} arises from back-scattering of V_{MIF} emission by particles in the background Photon Dissociation Region (PDR), V_{low} is an ionized layer in front of the MIF and if it is the source of the stellar absorption lines seen in the Trapezium stars, it must lie between the foreground Veil and those stars, V_{new,[O III]} may represent ionized gas evaporating from the Veil away from the observer. There are features such as the Bright Bar where variations of velocities are due to changing tilts of the MIF, but velocity changes above about 25″ arise from variations in velocity of the background PDR. In a region 25″ ENE of the Orion-S Cloud one finds dramatic changes in the [O III] components, including the signals from the V_{low,[O III]} and V_{MIF,[O III]} becoming equal, indicating shadowing of gas from stellar photons of >24.6 eV. This feature is also seen in areas to the west and south of the Orion-S Cloud.

  1. High harmonic generation in underdense plasmas by intense laser pulses with orbital angular momentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendonça, J. T., E-mail: josetitomend@gmail.com; Vieira, J., E-mail: jorge.vieira@ist.utl.pt

    We study high harmonic generation produced by twisted laser pulses, with orbital angular momentum in the relativistic regime, for pulse propagation in underdense plasma. We consider fast time scale processes associated with an ultra-short pulse, where the ion motion can be neglected. We use both analytical models and numerical simulations using a relativistic particle-in-cell code. The present description is valid for relativistic laser intensities, when the normalized field amplitude is much larger than one, a ≫ 1. We also discuss two distinct processes associated with linear and circular polarization. Using both analytical solutions and particle-in-cell simulations, we are able tomore » show that, for laser pulses in a well defined Laguerre-Gauss mode, angular momentum conservation is observed during the process of harmonic generation. Intensity modulation of the harmonic spectrum is also verified, as imposed by the nonlinear time-scale for energy transfer between different harmonics.« less

  2. Laser plasma coupling with moderate Z, long scalelength underdense plasma

    NASA Astrophysics Data System (ADS)

    Kruer, William; Berger, Richard; Meezan, Nathaniel; Suter, Larry; Moody, John; Glenzer, Siegfried; Stevenson, R. M.; Oades, K.

    2004-11-01

    Recent experiments1,2 have focussed new attention on the coupling of laser light with moderate Z, long scalelength underdense plasmas. We discuss some intriguing features of these experiments, including a significant reduction of stimulated Raman and Brillouin scattering in higher Z plasmas, such as Krypton and Xenon. Threshold conditions for various instabilities are discussed, and potential consequences of thermal filamentation and self-focussing are explored. The presence of significant temperature modulations in the plasma can lead to a number of interesting effects not usually taken into account, such as ion wave refraction out of hot spots and instability reduction by the long wavelength modulations. We also consider the extrapolation of these results to the higher temperature regimes more relevant to ignition-scale hohlraums. 1. R. M. Stevenson, et. al, Phys. Plasmas 11, 2709 (2004) 2. J. Moody (to be published) Work performed under the auspices of the U.S. DOE by the Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.

  3. Relativistic frequency upshift to the extreme ultraviolet regime using self-induced oscillatory flying mirrors

    PubMed Central

    Kim, I Jong; Pae, Ki Hong; Kim, Chul Min; Kim, Hyung Taek; Yun, Hyeok; Yun, Sang Jae; Sung, Jae Hee; Lee, Seong Ku; Yoon, Jin Woo; Yu, Tae Jun; Jeong, Tae Moon; Nam, Chang Hee; Lee, Jongmin

    2012-01-01

    Coherent short-wavelength radiation from laser–plasma interactions is of increasing interest in disciplines including ultrafast biomolecular imaging and attosecond physics. Using solid targets instead of atomic gases could enable the generation of coherent extreme ultraviolet radiation with higher energy and more energetic photons. Here we present the generation of extreme ultraviolet radiation through coherent high-harmonic generation from self-induced oscillatory flying mirrors—a new-generation mechanism established in a long underdense plasma on a solid target. Using a 30-fs, 100-TW Ti:sapphire laser, we obtain wavelengths as short as 4.9 nm for an optimized level of amplified spontaneous emission. Particle-in-cell simulations show that oscillatory flying electron nanosheets form in a long underdense plasma, and suggest that the high-harmonic generation is caused by reflection of the laser pulse from electron nanosheets. We expect this extreme ultraviolet radiation to be valuable in realizing a compact X-ray instrument for research in biomolecular imaging and attosecond physics. PMID:23187631

  4. Does Radiative Feedback by the First Stars Promote or Prevent Second Generation Star Formation?

    NASA Astrophysics Data System (ADS)

    Ahn, Kyungjin; Shapiro, Paul R.

    2008-03-01

    We present a self-consistent study of formation of Pop III stars in the early stage of cosmic reionization. We study the effect of starlight from the first stars on the ability of other minihalos in their neighborhood to form additional stars. We show that the ionization front (I-front) is trapped by the neighboring minihalos, after it is transformed from R-type to D-type and preceded by a shock front. The fate of the core of nearby minihalos is mostly determined by the response of the core to this shock front, which leads to molecular cooling and collapse that, when compared to the same halo without external radiation, is (a) expedited, (b) delayed, (c) unaltered, or (d) reversed and prevented, depending upon the flux and halo mass and evolutionary stage. Roughly speaking, most halos that were destined to cool, collapse and form stars in the absence of external radiation are found to do so even when exposed to the first Pop III star in their neighborhood, while those that would not have done so are still not able to.

  5. Radiative thermal conduction fronts

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Balbus, Steven A.; Fristrom, Carl C.

    1990-01-01

    The discovery of the O VI interstellar absorption lines in our Galaxy by the Copernicus observatory was a turning point in our understanding of the Interstellar Medium (ISM). It implied the presence of widespread hot (approx. 10 to the 6th power K) gas in disk galaxies. The detection of highly ionized species in quasi-stellar objects' absorption spectra may be the first indirect observation of this hot phase in external disk galaxies. Previous efforts to understand extensive O VI absorption line data from our Galaxy were not very successful in locating the regions where this absorption originates. The location at interfaces between evaporating ISM clouds and hot gas was favored, but recent studies of steady-state conduction fronts in spherical clouds by Ballet, Arnaud, and Rothenflug (1986) and Bohringer and Hartquist (1987) rejected evaporative fronts as the absorption sites. Researchers report here on time-dependent nonequilibrium calculations of planar conductive fronts whose properties match well with observations, and suggest reasons for the difference between the researchers' results and the above. They included magnetic fields in additional models, not reported here, and the conclusions are not affected by their presence.

  6. Radiative thermal conduction fronts

    NASA Astrophysics Data System (ADS)

    Borkowski, Kazimierz J.; Balbus, Steven A.; Fristrom, Carl C.

    1990-07-01

    The discovery of the O VI interstellar absorption lines in our Galaxy by the Copernicus observatory was a turning point in our understanding of the Interstellar Medium (ISM). It implied the presence of widespread hot (approx. 10 to the 6th power K) gas in disk galaxies. The detection of highly ionized species in quasi-stellar objects' absorption spectra may be the first indirect observation of this hot phase in external disk galaxies. Previous efforts to understand extensive O VI absorption line data from our Galaxy were not very successful in locating the regions where this absorption originates. The location at interfaces between evaporating ISM clouds and hot gas was favored, but recent studies of steady-state conduction fronts in spherical clouds by Ballet, Arnaud, and Rothenflug (1986) and Bohringer and Hartquist (1987) rejected evaporative fronts as the absorption sites. Researchers report here on time-dependent nonequilibrium calculations of planar conductive fronts whose properties match well with observations, and suggest reasons for the difference between the researchers' results and the above. They included magnetic fields in additional models, not reported here, and the conclusions are not affected by their presence.

  7. The effect of working gas impurities on plasma jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X. Y.; He, M. B., E-mail: pulhmb@mail.hust.edu.cn; IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240

    Air intrusion reduced the purity of working gas inside the tube for plasma jet, and thereby, affected the discharge dynamics. In this paper, the effect of using working gas with different purity level (helium purity 99.99999%, 99.99%, 99.9%, and 99%) on photoionization and the chemical reactivity of plasma jet were studied using a 2 dimensional plasma jet model. Photoionization of air species acted as a source of pre-ionization in front of the ionization region, which facilitated the transition from localized discharge to streamers inside the tube. The density of reactive species inside the tube was found to increase with themore » concentration of working gas impurities. For the highest purity helium (99.99999%), despite a low photoionization rate and the distance between the photoionization region and ionization region inside the tube, by increasing the applied voltage and decreasing the distance between the electrode and nozzle, plasma jets were formed.« less

  8. PIG (partially ionized globule) anatomy - Density and temperature structure of the bright-rimmed globule IC 1396E

    NASA Technical Reports Server (NTRS)

    Serabyn, E.; Guesten, R.; Mundy, L.

    1993-01-01

    The density and temperature structure of the bright-rimmed cometary globule IC 1396E is estimated, and the possibility that recent internal star formation was triggered by the ionization front in its southern surface is assessed. On the basis of NH3 data, gas temperatures in the globule are found to increase outward from the center, from a minimum of 17 K in its tail to a maximum of 26 K on the surface most directly facing the stars ionizing IC 1396. On the basis of a microturbulent radiative transfer code to model the radial dependence of the CS line intensities, and also the intensities of the optically thin 2-1 and 5-4 lines toward the cloud center, a radial density dependence of r exp -1.55 to r exp -1.75 is found.

  9. Connecting the dots: a correlation between ionizing radiation and cloud mass-loss rate traced by optical integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    McLeod, A. F.; Gritschneder, M.; Dale, J. E.; Ginsburg, A.; Klaassen, P. D.; Mottram, J. C.; Preibisch, T.; Ramsay, S.; Reiter, M.; Testi, L.

    2016-11-01

    We present an analysis of the effect of feedback from O- and B-type stars with data from the integral field spectrograph Multi Unit Spectroscopic Explorer (MUSE) mounted on the Very Large Telescope of pillar-like structures in the Carina Nebular Complex, one of the most massive star-forming regions in the Galaxy. For the observed pillars, we compute gas electron densities and temperatures maps, produce integrated line and velocity maps of the ionized gas, study the ionization fronts at the pillar tips, analyse the properties of the single regions, and detect two ionized jets originating from two distinct pillar tips. For each pillar tip, we determine the incident ionizing photon flux Q0, pil originating from the nearby massive O- and B-type stars and compute the mass-loss rate dot{M} of the pillar tips due to photoevaporation caused by the incident ionizing radiation. We combine the results of the Carina data set with archival MUSE data of a pillar in NGC 3603 and with previously published MUSE data of the Pillars of Creation in M16, and with a total of 10 analysed pillars, find tight correlations between the ionizing photon flux and the electron density, the electron density and the distance from the ionizing sources, and the ionizing photon flux and the mass-loss rate. The combined MUSE data sets of pillars in regions with different physical conditions and stellar content therefore yield an empirical quantification of the feedback effects of ionizing radiation. In agreement with models, we find that dot{M}∝ Q_0,pil^{1/2}.

  10. Electronic drive and acquisition system for mass spectrometry

    NASA Technical Reports Server (NTRS)

    Schaefer, Rembrandt Thomas (Inventor); Chutjian, Ara (Inventor); Tran, Tuan (Inventor); Madzunkov, Stojan M. (Inventor); Thomas, John L. (Inventor); Mojarradi, Mohammad (Inventor); MacAskill, John (Inventor); Blaes, Brent R. (Inventor); Darrach, Murray R. (Inventor); Burke, Gary R. (Inventor)

    2010-01-01

    The present invention discloses a mixed signal RF drive electronics board that offers small, low power, reliable, and customizable method for driving and generating mass spectra from a mass spectrometer, and for control of other functions such as electron ionizer, ion focusing, single-ion detection, multi-channel data accumulation and, if desired, front-end interfaces such as pumps, valves, heaters, and columns.

  11. The classical D-type expansion of spherical H II regions

    NASA Astrophysics Data System (ADS)

    Williams, Robin J. R.; Bibas, Thomas G.; Haworth, Thomas J.; Mackey, Jonathan

    2018-06-01

    Recent numerical and analytic work has highlighted some shortcomings in our understanding of the dynamics of H II region expansion, especially at late times, when the H II region approaches pressure equilibrium with the ambient medium. Here we reconsider the idealized case of a constant radiation source in a uniform and spherically symmetric ambient medium, with an isothermal equation of state. A thick-shell solution is developed which captures the stalling of the ionization front and the decay of the leading shock to a weak compression wave as it escapes to large radii. An acoustic approximation is introduced to capture the late-time damped oscillations of the H II region about the stagnation radius. Putting these together, a matched asymptotic equation is derived for the radius of the ionization front which accounts for both the inertia of the expanding shell and the finite temperature of the ambient medium. The solution to this equation is shown to agree very well with the numerical solution at all times, and is superior to all previously published solutions. The matched asymptotic solution can also accurately model the variation of H II region radius for a time-varying radiation source.

  12. Effect of a grounded object on radon measurement using AlphaGUARD.

    PubMed

    Ichitsubo, Hirokazu; Yamada, Yuji

    2004-07-01

    ABSTRACT-: The effects on radon concentration measurement of a grounded object near the opening of a cylindrical ionization chamber were studied using AlphaGUARD. AlphaGUARD comes with a flow measurement adapter that fits on the front of the AlphaGUARD ionization chamber. If the adapter nozzle is grounded, the radon concentration is falsely measured at 0 Bq m. A metal connector for use between the AlphaGUARD and the air duct wall was manufactured in our laboratory. When the connector is grounded, the radon concentration is again falsely measured as 0 Bq m. If the nozzle or connector is ungrounded, the AlphaGUARD measures radon concentration accurately. Health Phys.

  13. Far-infrared observations of the evolved H II region M16

    NASA Technical Reports Server (NTRS)

    Mcbreen, B.; Fazio, G. G.; Jaffe, D. T.

    1982-01-01

    The results of far infrared (FIR) observations of the larger H II region M16, associated with the young open star cluster NGC 6611, are discussed. Three FIR sources detected on an extended ridge of FIR emission within the scanned region are described. The observations confirm that M16 is an H II region in a late stage of evolution. The H II region has expanded and is now extremely density bounded, consisting of an extended region of ionized gas and a series of ionization fronts located at the surrounding molecular cloud boundaries nearest to the exciting OB star cluster. The FIR radiation arises from heated dust at these boundaries.

  14. Hot interstellar gas and ionization of embedded clouds

    NASA Technical Reports Server (NTRS)

    Cheng, K.-P.; Bruhweiler, F.

    1990-01-01

    Researchers present detailed photoionization calculations for the instellar cloud in which the Sun is embedded. They consider the EUV radiation field with contribution from discrete stellar sources and from a thermal bremsstrahlung-radiative recombination spectrum emitted from the surrounding 10 to the 6th power k coronal substrate. They establish lower limits to the fractional ionization of hydrogen and helium of 0.17 and 0.29 respectively. The high He ionization fraction results primarily from very strong line emission below 500 A originating in the surrounding coronal substrate while the H ionization is dominated by the EUV radiation from the discrete stellar sources. The dual effects of thermal conduction and the EUV spectrum of the 10 to the 6th k plasma on ionization in the cloud skin are explored. The EUV radiation field and Auger ionization have insignificant effects on the resulting ionic column densities of Si IV, C IV, N V and O VI through the cloud skin. Calculations show that the abundances of these species are dominated by collisional ionization in the thermal conduction front. Because of a low charge exchange rate with hydrogen, the ionic column density ratios of N (CIII)/N (CII) and N (NII)/N (NI) are dominated by the EUV radiation field in the local interstellar medium. These ratios should be important diagnostics for the EUV radiation field and serve as surrogate indicators of the interstellar He and H ionization fraction respectively. Spacecraft such as Lyman which is designed to obtain high resolution spectral data down to the Lyman limit at 912 A could sample interstellar lines of these ions.

  15. Characterization and application of droplet spray ionization for real-time reaction monitoring.

    PubMed

    Zhang, Hong; Li, Na; Li, Xiao-di; Jiang, Jie; Zhao, Dan-Dan; You, Hong

    2016-08-01

    The ionization source for real-time reaction monitoring has attracted tremendous interest in recent years. We have previously reported a reliable approach in which droplet spray ionization (DSI) was used for monitoring chemical reactions in real-time. Herein, we systematically investigated the characterization and application of DSI for real-time reaction monitoring. Analyte ions are generated by loading a sample solution onto a corner of a microscope cover glass positioned in front of the MS inlet and applying a high voltage to the sample. The tolerance to positioning, solvent effect, spray angle and spray time were investigated. Extension to real-time monitoring of macromolecule reactions was also demonstrated by the charge state change of cytochrome c in the presence of acetic acid. The corner could be positioned within an area of approximately 10 × 6 × 5 mm (x, y, z) in front of the MS inlet. The broad polarities of solvents from methanol to PhF were suitable for DSI. It featured monitoring real-time changes in reactions on the time scale of seconds to minutes. A real-time charge state change of cytochrome c was captured. DSI-MS features ease of use, durability of the spray platform and reusability of the ion source. Eliminating the need for a sample transport capillary, DSI opens a new avenue for the in situ analysis and real-time monitoring of short-lived key reaction intermediates even at subsecond dead times. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. How Artificial Should the Treatment of a Plasma's Viscosity Be?

    NASA Astrophysics Data System (ADS)

    Whitney, K. G.; Velikovich, A. L.; Thornhill, J. W.; Davis, J.

    1999-11-01

    Electron viscosity dominates over ion viscosity and is important in describing the generation of shock fronts in highly ionizable plasmas. The sizes of shock front jumps in electron and ion temperature are determined from the magnitudes of the heat flow vector and pressure tensor, which, in turn, acquire non-negligible nonlinear contributions from the temperature and density gradients when these gradients are large. Thus, a consistent treatment of steep gradient formation in plasmas must come from investigations that include the effects of these nonlinear contributions to heat and momentum transport. Coefficients for each of five nonlinear contributions to the pressure tensor for an (r,z) Z-pinch geometry are presented and discussed in this talk. Hydrodynamic code calculations generally are not designed to provide a testbed for directly evaluating the kinetic energy dissipation that occurs at shock fronts; therefore, the strength of these nonlinear pressure tensor terms will be estimated by post-processing a Z-pinch hydrodynamics calculation and a steady-state planar shock wave calculation.

  17. Self-Channelling of a Short Laser Pulse at Relativistic Intensity in Near Critical Underdense Plasma

    NASA Astrophysics Data System (ADS)

    Willi, O.; Borghesi, M.; MacKinnon, A. J.; Barringer, L.; Gaillard, R.; Meyer, C.; Gizzi, L.; Pukhov, A.; Meyer-Ter-Vehn, J.

    1996-11-01

    Self channelling of a picosecond pulse at relativistic intensities has been observed in near critical underdense plasmas. The plasma was preformed by laser heating of a thin film. The interaction pulse (1-3 ps duration, 1.054 μm) was focused onto the plasma at irradiances above 5 × 10^18 W/cm^2. Self-channelling of the pulse was detected via second harmonic and optical probe measurements. Intense, localised 2ω emission suggests the formation of channel structures of less than 5 μm in diameter, extending for several Rayleigh lengths. The temporal evolution of the electron density profile across the channel was measured via interferometry with picosecond temporal resolution. PIC code simulations, performed for the conditions of the experiment, predict the formation of similar channel structures. In this model, in addition to relativistic and ponderomotive self-focusing mechanisms, pinching by large self-generated magnetic fields also contributes to the single channel formation. Measurements of magnetic fields were also performed that seem to be consistent with the computational model.

  18. Spaced antenna diversity in temperate latitude meteor burst systems operating near 40 MHz - Variation of signal cross-correlation coefficients with antenna separation

    NASA Astrophysics Data System (ADS)

    Cannon, Paul S.; Shukla, Anil K.; Lester, Mark

    1993-04-01

    We have studied 37-MHz signals received over an 800-km temperate latitude path using 400-W continuous wave transmissions. Signals collected during a 9-day period in February 1990 on two antennas at separations of 5, 10, and 20 lambda were analyzed. Three signal categories were identified (overdense, underdense, and not known (NK)) and cross-correlation coefficients between the signals received by the two antennas were calculated for each signal category. No spatial variation, and in particular no decrease, in average cross-correlation coefficient was observed for underdense or NK signals as the antenna spacing was increased from 5 to 20 lambda. At each antenna separation the cross-correlation coefficients of these two categories were strongly dependent on time. Overdense signals, however, showed no cross-correlation time dependency at 5 and 10 lambda, but there was a strong time dependency at 20 lambda. Recommendations are made in regard to the optimum antenna spacing for a meteor burst communication system using spaced antenna diversity.

  19. Hubble Space Telescope images and follow-up spectroscopy of the Orion nebula

    NASA Technical Reports Server (NTRS)

    O'Dell, C. R.; Wen, Zheng; Hester, J. J.

    1991-01-01

    Recently published HST images of the Orion nebula reveal elephant-trunk structures, an apparent jet of material, and fine-scale structure in the Herbig-Haro object HH2, which is located at the base of an elephant trunk. High-resolution spectroscopy shows that the apparent jet is actually an ionization front seen edge-on. HH2 shows a complex structure in the several stages of ionization observed. There seem to be two velocity systems characterized by a bright central region and an accompanying shell-like emission. These two systems are most likely to be the result of a bow shock and corresponding Mach disk formed from the interaction of a collimated jet and the ambient gas of the nebula.

  20. Dynamical models for the formation of elephant trunks in HII regions

    NASA Astrophysics Data System (ADS)

    Mackey, Jonathan; Lim, Andrew J.

    2010-04-01

    The formation of pillars of dense gas at the boundaries of HII regions is investigated with hydrodynamical numerical simulations including ionizing radiation from a point source. We show that shadowing of ionizing radiation by an inhomogeneous density field is capable of forming so-called elephant trunks (pillars of dense gas as in e.g. M16) without the assistance of self-gravity or of ionization front and cooling instabilities. A large simulation of a density field containing randomly generated clumps of gas is shown to naturally generate elephant trunks with certain clump configurations. These configurations are simulated in isolation and analysed in detail to show the formation mechanism and determine possible observational signatures. Pillars formed by the shadowing mechanism are shown to have rather different velocity profiles depending on the initial gas configuration, but asymmetries mean that the profiles also vary significantly with perspective, limiting their ability to discriminate between formation scenarios. Neutral and molecular gas cooling are shown to have a strong effect on these results.

  1. The Influence of the Photoionizing Radiation Spectrum on Metal-Line Ratios in Ly(alpha) Forest Clouds

    NASA Technical Reports Server (NTRS)

    Giroux, Mark L.; Shull, J. Michael

    1997-01-01

    Recent measurements of Si IV/C IV ratios in the high-redshift Ly(alpha) forest (Songaila & Cowie, AJ, 112, 335 (1996a); Savaglio et at., A&A (in press) (1997)) have opened a new window on chemical enrichment and the first generations of stars. However, the derivation of accurate Si/C abundances requires reliable ionization corrections, which are strongly dependent on the spectral shape of the metagalactic ionizing background and on the 'local effects' of hot stars in nearby galaxies. Recent models have assumed power-law quasar ionizing backgrounds plus a decrement at 4 Ryd to account for He II attenuation in intervening clouds. However, we show that realistic ionizing backgrounds based on cosmological radiative transfer models produce more complex ionizing spectra between 1-5 Ryd that are critical to interpreting ions of Si and C. We also make a preliminary investigation of the effects of He II ionization front nonoverlap. Because the attenuation and reemission by intervening clouds enhance Si IV relative to C the observed high Si IV/C IV ratios do not require an unrealistic Si overproduction (Si/C greater than or equal to 3 (Si/C)(solar mass)). If the ionizing spectrum is dominated by 'local effects' from massive stars, even larger Si IV/C IV ratios are possible. However, unless stellar radiation dominates quasars by more than a factor of 10, we confirm the evidence for some Si overproduction by massive stars; values Si/C approx. 2(Si/C)(solar mass) fit the measurements better than solar abundances. Ultimately, an adequate interpretation of the ratios of C IV, Si IV, and C II may require hot, collisionally ionized gas in a multiphase medium.

  2. Ionization in the local interstellar and intergalactic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, K.

    1990-01-01

    Detailed photoionization calculations for the local interstellar medium (LISM) and the intergalactic medium (IGM) are presented. Constraints in the LISM are imposed by H I column density derived from IUE and Copernicus data toward nearby B stars and hot white dwarfs. The EUV radiation field is modeled including contributions from discrete stellar sources and from a thermal bremsstrahlung-radiative recombination spectrum emitted from the surrounding 10(exp 6) K coronal substrate. Lower limits to the fractional ionization of hydrogen and helium of 0.17 and 0.30 respectively are established. The derived limits have important implications for the interpretation of the H I andmore » He I backscattering results. The high He ionization fraction results primarily from very strong line emission below 500 A originating in the surrounding coronal substrate while the H ionization is dominated by the EUV radiation from the discrete stellar sources. The dual effects of thermal conduction and the EUV spectrum of the 10(exp 6) K plasma on ionization in the cloud skin are explored. The EUV radiation field and Auger ionization have insignificant effects on the resulting ionic column densities of Si IV, C IV, N V and O VI through the cloud skin. Calculations show that the abundances of these species are dominated by collisional ionization in the thermal conduction front. Because of a low charge exchange rate with hydrogen, the ionic column density ratios of N(C III)/N(C II) and N(N II)/N(N I) are dominated by the EUV radiation field in the local interstellar medium. These ratios should be important diagnostics for the EUV radiation field and serve as surrogate indicators of the interstellar He and H ionization fraction respectively. The same photoionization model is applied to the intergalactic medium.« less

  3. The size-luminosity relationship of quasar narrow-line regions

    NASA Astrophysics Data System (ADS)

    Dempsey, Ross; Zakamska, Nadia L.

    2018-07-01

    The presence of an active galactic nucleus (AGN) can strongly affect its host. Due to the copious radiative power of the nucleus, the effects of radiative feedback can be detected over the entire host galaxy and sometimes well into the intergalactic space. In this paper we model the observed size-luminosity relationship of the narrow-line regions (NLRs) of AGN. We model the NLR as a collection of clouds in pressure equilibrium with the ionizing radiation, with each cloud producing line emission calculated by Cloudy. The sizes of the NLRs of powerful quasars are reproduced without any free parameters, as long as they contain massive (105-107 M⊙) ionization-bounded clouds. At lower AGN luminosities the observed sizes are larger than the model sizes, likely due to additional unmodeled sources of ionization (e.g. star formation). We find that the observed saturation of sizes at ˜10 kpc which is observed at high AGN luminosities (Lion ≃ 1046 erg s-1) is naturally explained by optically thick clouds absorbing the ionizing radiation and preventing illumination beyond a critical distance. Using our models in combination with observations of the [O III]/IR ratio and the [O III] size-IR luminosity relationship, we calculate the covering factor of the obscuring torus (and therefore the type 2 fraction within the quasar population) to be f = 0.5, though this is likely an upper bound. Finally, because the gas behind the ionization front is invisible in ionized gas transitions, emission-based NLR mass calculations underestimate the mass of the NLR and therefore of the energetics of ionized-gas winds.

  4. The Size-Luminosity Relationship of Quasar Narrow-Line Regions

    NASA Astrophysics Data System (ADS)

    Dempsey, Ross; Zakamska, Nadia L.

    2018-04-01

    The presence of an active galactic nucleus (AGN) can strongly affect its host. Due to the copious radiative power of the nucleus, the effects of radiative feedback can be detected over the entire host galaxy and sometimes well into the intergalactic space. In this paper we model the observed size-luminosity relationship of the narrow-line regions (NLRs) of AGN. We model the NLR as a collection of clouds in pressure equilibrium with the ionizing radiation, with each cloud producing line emission calculated by Cloudy. The sizes of the NLRs of powerful quasars are reproduced without any free parameters, as long as they contain massive (105M⊙ to 107M⊙) ionization-bounded clouds. At lower AGN luminosities the observed sizes are larger than the model sizes, likely due to additional unmodeled sources of ionization (e.g., star formation). We find that the observed saturation of sizes at ˜10kpc which is observed at high AGN luminosities (Lion ≃ 1046erg/s) is naturally explained by optically thick clouds absorbing the ionizing radiation and preventing illumination beyond a critical distance. Using our models in combination with observations of the [O III]/IR ratio and the [O III] size - IR luminosity relationship, we calculate the covering factor of the obscuring torus (and therefore the type 2 fraction within the quasar population) to be f = 0.5, though this is likely an upper bound. Finally, because the gas behind the ionization front is invisible in ionized gas transitions, emission-based NLR mass calculations underestimate the mass of the NLR and therefore of the energetics of ionized-gas winds.

  5. Externally Induced Evaporation of Young Stellar Disks: The Case for HST 10 in Orion's Trapezium.

    NASA Astrophysics Data System (ADS)

    Johnstone, D.; Hollenbach, D.; Storzer, H.; Bally, J.; Sutherland, R.

    1996-12-01

    The Trapezium region in Orion is composed of a few high-mass stars, responsible for the ionization of the surrounding gas, and a plethora of low-mass stars with disks. Observations at infrared, optical, and radio wavelengths have led to the discovery of extended ionized envelopes around many of the young low-mass stars requiring evaporation rates dot M ~ 10(-7) Modot/yr. In this poster we explain these observations through a model for the evaporation of disks around young low-mass stars by an external source of high energy photons. In particular, the externally produced ultraviolet continuum longward of the Lyman limit is used to heat the disk surface and produce a warm neutral flow. The model results in an offset ionization front, where the neutral flow encounters Lyman continuum radiation, and a mass-loss rate which is fixed due to the self-regulating nature of FUV heating. Applying this model to the Trapezium region evaporating objects, particularly HST 10, produces a satisfactory solution to both the mass-loss rate and the size of the ionized envelopes. The resulting short destruction times for these disks constrain the gestation period for planet embryos around stars in dense clusters.

  6. Planar SiC MEMS flame ionization sensor for in-engine monitoring

    NASA Astrophysics Data System (ADS)

    Rolfe, D. A.; Wodin-Schwartz, S.; Alonso, R.; Pisano, A. P.

    2013-12-01

    A novel planar silicon carbide (SiC) MEMS flame ionization sensor was developed, fabricated and tested to measure the presence of a flame from the surface of an engine or other cooled surface while withstanding the high temperature and soot of a combustion environment. Silicon carbide, a ceramic semiconductor, was chosen as the sensor material because it has low surface energy and excellent mechanical and electrical properties at high temperatures. The sensor measures the conductivity of scattered charge carriers in the flame's quenching layer. This allows for flame detection, even when the sensor is situated several millimetres from the flame region. The sensor has been shown to detect the ionization of premixed methane and butane flames in a wide temperature range starting from room temperature. The sensors can measure both the flame chemi-ionization and the deposition of water vapour on the sensor surface. The width and speed of a premixed methane laminar flame front were measured with a series of two sensors fabricated on a single die. This research points to the feasibility of using either single sensors or arrays in internal combustion engine cylinders to optimize engine performance, or for using sensors to monitor flame stability in gas turbine applications.

  7. X-ray ionization of the intergalactic medium by quasars

    NASA Astrophysics Data System (ADS)

    Graziani, Luca; Ciardi, B.; Glatzle, M.

    2018-06-01

    We investigate the impact of quasars on the ionization of the surrounding intergalactic medium (IGM) with the radiative transfer code CRASH4, now accounting for X-rays and secondary electrons. After comparing with analytic solutions, we post-process a cosmic volume (≈1.5 × 104 Mpc3h-3) containing a ULAS J1120+0641-like quasar (QSO) hosted by a 5 × 1011M⊙h-1 dark matter (DM) halo. We find that: (i) the average HII region (R ˜ 3.2 pMpc in a lifetime tf = 107 yrs) is mainly set by UV flux, in agreement with semi-analytic scaling relations; (ii) a largely neutral (xHII < 0.001), warm (T ˜ 103 K) tail extends up to few Mpc beyond the ionization front, as a result of the X-ray flux; (iii) LyC-opaque inhomogeneities induce a line of sight (LOS) scatter in R as high as few physical Mpc, consistent with the DLA scenario proposed to explain the anomalous size of the ULAS J1120+0641 ionized region. On the other hand, with an ionization rate \\dot{N}_{γ ,0} ˜ 10^{57} s-1, the assumed DLA clustering and gas opacity, only one LOS shows an HII region compatible with the observed one. We deduce that either the ionization rate of the QSO is at least one order of magnitude lower or the ULAS J1120+0641 bright phase is shorter than 107 yrs.

  8. PHOTOEVAPORATING PROPLYD-LIKE OBJECTS IN CYGNUS OB2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Nicholas J.; Drake, Jeremy J.; Guarcello, Mario G.

    2012-02-20

    We report the discovery of 10 proplyd-like objects in the vicinity of the massive OB association Cygnus OB2. They were discovered in IPHAS H{alpha} images and are clearly resolved in broadband Hubble Space Telescope/Advanced Camera for Surveys, near-IR, and Spitzer mid-IR images. All exhibit the familiar tadpole shape seen in photoevaporating objects such as the Orion proplyds, with a bright ionization front at the head facing the central cluster of massive stars and a tail stretching in the opposite direction. Many also show secondary ionization fronts, complex tail morphologies, or multiple heads. We consider the evidence that these are eithermore » proplyds or 'evaporating gaseous globules' (EGGs) left over from a fragmenting molecular cloud, but find that neither scenario fully explains the observations. Typical sizes are 50,000-100,000 AU, larger than the Orion proplyds, but in agreement with the theoretical scaling of proplyd size with distance from the ionizing source. These objects are located at projected separations of {approx}6-14 pc from the OB association, compared to {approx}0.1 pc for the Orion proplyds, but are clearly being photoionized by the {approx}65 O-type stars in Cyg OB2. Central star candidates are identified in near- and mid-IR images, supporting the proplyd scenario, though their large sizes and notable asymmetries are more consistent with the EGG scenario. A third possibility is therefore considered that these are a unique class of photoevaporating partially embedded young stellar objects that have survived the destruction of their natal molecular cloud. This has implications for the properties of stars that form in the vicinity of massive stars.« less

  9. Single event effects on the APV25 front-end chip

    NASA Astrophysics Data System (ADS)

    Friedl, M.; Bauer, T.; Pernicka, M.

    2003-03-01

    The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider at CERN will include a Silicon Strip Tracker covering a sensitive area of 206 m2. About ten million channels will be read out by APV25 front-end chips, fabricated in the 0.25 μm deep submicron process. Although permanent damage is not expected within CMS radiation levels, transient Single Event Upsets are inevitable. Moreover, localized ionization can also produce fake signals in the analog circuitry. Eight APV25 chips were exposed to a high-intensity pion beam at the Paul Scherrer Institute (Villigen/CH) to study the radiation induced effects in detail. The results, which are compatible to similar measurements performed with heavy ions, are used to predict the chip error rate at CMS.

  10. The formation of diffuse discharge by short-front nanosecond voltage pulses and the modification of dielectrics in this discharge

    NASA Astrophysics Data System (ADS)

    Orlovskii, V. M.; Panarin, V. A.; Shulepov, M. A.

    2014-07-01

    The dynamics of diffuse discharge formation under the action of nanosecond voltage pulses with short fronts (below 1 ns) in the absence of a source of additional preionization and the influence of a dielectric film on this process have been studied. It is established that the diffuse discharge is induced by the avalanche multiplication of charge initiated by high-energy electrons and then maintained due to secondary breakdowns propagating via ionized gas channels. If a dielectric film (polyethylene, Lavsan, etc.) is placed on the anode, then multiply repeated discharge will lead to surface and bulk modification of the film material. Discharge-treated polyethylene film exhibits a change in the optical absorption spectrum in the near-IR range.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casner, A.; Masse, L.; Delorme, B.

    Understanding and mitigating hydrodynamic instabilities and the fuel mix are the key elements for achieving ignition in Inertial Confinement Fusion. Cryogenic indirect-drive implosions on the National Ignition Facility have evidenced that the ablative Rayleigh-Taylor Instability (RTI) is a driver of the hot spot mix. This motivates the switch to a more flexible higher adiabat implosion design [O. A. Hurricane et al., Phys. Plasmas 21, 056313 (2014)]. The shell instability is also the main candidate for performance degradation in low-adiabat direct drive cryogenic implosions [Goncharov et al., Phys. Plasmas 21, 056315 (2014)]. This paper reviews recent results acquired in planar experimentsmore » performed on the OMEGA laser facility and devoted to the modeling and mitigation of hydrodynamic instabilities at the ablation front. In application to the indirect-drive scheme, we describe results obtained with a specific ablator composition such as the laminated ablator or a graded-dopant emulator. In application to the direct drive scheme, we discuss experiments devoted to the study of laser imprinted perturbations with special phase plates. The simulations of the Richtmyer-Meshkov phase reversal during the shock transit phase are challenging, and of crucial interest because this phase sets the seed of the RTI growth. Recent works were dedicated to increasing the accuracy of measurements of the phase inversion. We conclude by presenting a novel imprint mitigation mechanism based on the use of underdense foams. Lastly, the foams induce laser smoothing by parametric instabilities thus reducing the laser imprint on the CH foil.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casner, A., E-mail: alexis.casner@cea.fr; Masse, L.; Huser, G.

    Understanding and mitigating hydrodynamic instabilities and the fuel mix are the key elements for achieving ignition in Inertial Confinement Fusion. Cryogenic indirect-drive implosions on the National Ignition Facility have evidenced that the ablative Rayleigh-Taylor Instability (RTI) is a driver of the hot spot mix. This motivates the switch to a more flexible higher adiabat implosion design [O. A. Hurricane et al., Phys. Plasmas 21, 056313 (2014)]. The shell instability is also the main candidate for performance degradation in low-adiabat direct drive cryogenic implosions [Goncharov et al., Phys. Plasmas 21, 056315 (2014)]. This paper reviews recent results acquired in planar experimentsmore » performed on the OMEGA laser facility and devoted to the modeling and mitigation of hydrodynamic instabilities at the ablation front. In application to the indirect-drive scheme, we describe results obtained with a specific ablator composition such as the laminated ablator or a graded-dopant emulator. In application to the direct drive scheme, we discuss experiments devoted to the study of laser imprinted perturbations with special phase plates. The simulations of the Richtmyer-Meshkov phase reversal during the shock transit phase are challenging, and of crucial interest because this phase sets the seed of the RTI growth. Recent works were dedicated to increasing the accuracy of measurements of the phase inversion. We conclude by presenting a novel imprint mitigation mechanism based on the use of underdense foams. The foams induce laser smoothing by parametric instabilities thus reducing the laser imprint on the CH foil.« less

  13. Miniature Bipolar Electrostatic Ion Thruster

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    The figure presents a concept of a bipolar miniature electrostatic ion thruster for maneuvering a small spacecraft. The ionization device in the proposed thruster would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several mega-volts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. In a thruster-based on this concept, one or more propellant gases would be introduced into such a membrane ionizer. Unlike in larger prior ion thrusters, all of the propellant molecules would be ionized. This thruster would be capable of bipolar operation. There would be two accelerator grids - one located forward and one located aft of the membrane ionizer. In one mode of operation, which one could denote the forward mode, positive ions leaving the ionizer on the backside would be accelerated to high momentum by an electric field between the ionizer and an accelerator grid. Electrons leaving the ionizer on the front side would be ejected into free space by a smaller accelerating field. The equality of the ion and electron currents would eliminate the need for an additional electron- or ion-emitting device to keep the spacecraft charge-neutral. In another mode of operation, which could denote the reverse mode, the polarities of the voltages applied to the accelerator grids and to the electrodes of the membrane ionizer would be the reverse of those of the forward mode. The reversal of electric fields would cause the ion and electrons to be ejected in the reverse of their forward mode directions, thereby giving rise to thrust in the direction opposite that of the forward mode.

  14. Large-scale microwave anisotropy from gravitating seeds

    NASA Technical Reports Server (NTRS)

    Veeraraghavan, Shoba; Stebbins, Albert

    1992-01-01

    Topological defects could have seeded primordial inhomogeneities in cosmological matter. We examine the horizon-scale matter and geometry perturbations generated by such seeds in an expanding homogeneous and isotropic universe. Evolving particle horizons generally lead to perturbations around motionless seeds, even when there are compensating initial underdensities in the matter. We describe the pattern of the resulting large angular scale microwave anisotropy.

  15. PW-class laser-driven super acceleration systems in underdense plasmas

    NASA Astrophysics Data System (ADS)

    Yano, Masahiro; Zhidkov, Alexei; Kodama, Ryosuke

    2017-10-01

    Probing laser driven super-acceleration systems can be important tool to understand physics related to vacuum, space time, and particle acceleration. We show two proposals to probe the systems through Hawking-like effect using PW class lasers and x-ray free electron lasers. For that we study the interaction of ultrahigh intense laser pulses with intensity 1022 -1024 W/cm2 and underdense plasmas including ion motion and plasma radiation for the first time. While the acceleration w a0ωp /ωL in a wake is not maximal, the pulse propagation is much stable. The effect is that a constantly accelerated detector with acceleration w sees a boson's thermal bath at temperature ℏw / 2 πkB c . We present two designs for x-ray scattering from highly accelerated electrons produced in the plasma irradiated by intense laser pulses for such detection. Properly chosen observation angles enable us to distinguish spectral broadening from Doppler shift with a reasonable photon number. Also, ion motion and radiation damping on the interaction are investigated via fully relativistic 3D particle-in-cell simulation. We observe high quality electron bunches under super-acceleration when transverse plasma waves are excited by ponderomotive force producing plasma channel.

  16. Subgrid Modeling of AGN-driven Turbulence in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Scannapieco, Evan; Brüggen, Marcus

    2008-10-01

    Hot, underdense bubbles powered by active galactic nuclei (AGNs) are likely to play a key role in halting catastrophic cooling in the centers of cool-core galaxy clusters. We present three-dimensional simulations that capture the evolution of such bubbles, using an adaptive mesh hydrodynamic code, FLASH3, to which we have added a subgrid model of turbulence and mixing. While pure hydro simulations indicate that AGN bubbles are disrupted into resolution-dependent pockets of underdense gas, proper modeling of subgrid turbulence indicates that this is a poor approximation to a turbulent cascade that continues far beyond the resolution limit. Instead, Rayleigh-Taylor instabilities act to effectively mix the heated region with its surroundings, while at the same time preserving it as a coherent structure, consistent with observations. Thus, bubbles are transformed into hot clouds of mixed material as they move outward in the hydrostatic intracluster medium (ICM), much as large airbursts lead to a distinctive "mushroom cloud" structure as they rise in the hydrostatic atmosphere of Earth. Properly capturing the evolution of such clouds has important implications for many ICM properties. In particular, it significantly changes the impact of AGNs on the distribution of entropy and metals in cool-core clusters such as Perseus.

  17. The dark matter of galaxy voids

    NASA Astrophysics Data System (ADS)

    Sutter, P. M.; Lavaux, Guilhem; Wandelt, Benjamin D.; Weinberg, David H.; Warren, Michael S.

    2014-03-01

    How do observed voids relate to the underlying dark matter distribution? To examine the spatial distribution of dark matter contained within voids identified in galaxy surveys, we apply Halo Occupation Distribution models representing sparsely and densely sampled galaxy surveys to a high-resolution N-body simulation. We compare these galaxy voids to voids found in the halo distribution, low-resolution dark matter and high-resolution dark matter. We find that voids at all scales in densely sampled surveys - and medium- to large-scale voids in sparse surveys - trace the same underdensities as dark matter, but they are larger in radius by ˜20 per cent, they have somewhat shallower density profiles and they have centres offset by ˜ 0.4Rv rms. However, in void-to-void comparison we find that shape estimators are less robust to sampling, and the largest voids in sparsely sampled surveys suffer fragmentation at their edges. We find that voids in galaxy surveys always correspond to underdensities in the dark matter, though the centres may be offset. When this offset is taken into account, we recover almost identical radial density profiles between galaxies and dark matter. All mock catalogues used in this work are available at http://www.cosmicvoids.net.

  18. Structure and Feedback in 30 Doradus. I. Observations

    NASA Astrophysics Data System (ADS)

    Pellegrini, E. W.; Baldwin, J. A.; Ferland, G. J.

    2010-11-01

    We have completed a new optical imaging and spectrophotometric survey of a 140 × 80 pc2 region of 30 Doradus centered on R136, covering key optical diagnostic emission lines including Hα, Hβ, Hγ, [O III] λλ4363, 4959, 5007, [N II] λλ6548, 6584, [S II] λλ6717, 6731 [S III] λ6312, and in some locations [S III] λ9069. We present maps of fluxes and intensity ratios for these lines, and catalogs of isolated ionizing stars, elephant-trunk pillars, and edge-on ionization fronts. The final science-quality spectroscopic data products are available to the public. Our analysis of the new data finds that, while stellar winds and supernovae undoubtedly produce shocks and are responsible for shaping the nebula, there are no global spectral signatures to indicate that shocks are currently an important source of ionization. We conclude that the considerable region covered by our survey is well described by photoionization from the central cluster where the ionizing continuum is dominated by the most massive O stars. We show that if 30 Dor were viewed at a cosmological distance, its integrated light would be dominated by its extensive regions of lower surface brightness rather than by the bright, eye-catching arcs.

  19. Multi-fluid Modeling of Magnetosonic Wave Propagation in the Solar Chromosphere: Effects of Impact Ionization and Radiative Recombination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maneva, Yana G.; Laguna, Alejandro Alvarez; Poedts, Stefaan

    2017-02-20

    In order to study chromospheric magnetosonic wave propagation including, for the first time, the effects of ion–neutral interactions in the partially ionized solar chromosphere, we have developed a new multi-fluid computational model accounting for ionization and recombination reactions in gravitationally stratified magnetized collisional media. The two-fluid model used in our 2D numerical simulations treats neutrals as a separate fluid and considers charged species (electrons and ions) within the resistive MHD approach with Coulomb collisions and anisotropic heat flux determined by Braginskiis transport coefficients. The electromagnetic fields are evolved according to the full Maxwell equations and the solenoidality of the magneticmore » field is enforced with a hyperbolic divergence-cleaning scheme. The initial density and temperature profiles are similar to VAL III chromospheric model in which dynamical, thermal, and chemical equilibrium are considered to ensure comparison to existing MHD models and avoid artificial numerical heating. In this initial setup we include simple homogeneous flux tube magnetic field configuration and an external photospheric velocity driver to simulate the propagation of MHD waves in the partially ionized reactive chromosphere. In particular, we investigate the loss of chemical equilibrium and the plasma heating related to the steepening of fast magnetosonic wave fronts in the gravitationally stratified medium.« less

  20. Subnanosecond breakdown in high-pressure gases

    NASA Astrophysics Data System (ADS)

    Naidis, George V.; Tarasenko, Victor F.; Babaeva, Natalia Yu; Lomaev, Mikhail I.

    2018-01-01

    Pulsed discharges in high-pressure gases are of considerable interest as sources of nonequilibrium plasma for various technological applications: pollution control, pumping of laser media, plasma-assisted combustion, etc. Recently, attention has been attracted to the use of subnanosecond voltage fronts, producing diffuse discharges with radii of several millimeters. Such plasma structures, similar to pulsed glow discharges, are of special interest for applications due to quasi-uniformity of plasma parameters in relatively large gas volumes. This review presents the results of experimental and computational study of subnanosecond diffuse discharge formation. A description of generators of short high-voltage pulses with subnanosecond fronts and of discharge setups is given. Diagnostic methods for the measurement of various discharge parameters with high temporal and spatial resolution are described. Obtained experimental data on plasma properties for a wide range of governing factors are discussed. A review of various theoretical approaches used for computational study of the dynamics and structure of fast ionization waves is given; the applicability of conventional fluid streamer models for simulation of subnanosecond ionization waves is discussed. Calculated spatial-temporal profiles of plasma parameters during streamer propagation are presented. The efficiency of subnanosecond discharges for the production of reactive species is evaluated. On the basis of the comparison of simulation results and experimental data the effects of various factors (voltage rise time, polarity, etc.) on discharge characteristics are revealed. The major physical phenomena governing the properties of subnanosecond breakdown are analyzed.

  1. Micromodel observations of evaporative drying and salt deposition in porous media

    NASA Astrophysics Data System (ADS)

    Rufai, Ayorinde; Crawshaw, John

    2017-12-01

    Most evaporation experiments using artificial porous media have focused on single capillaries or sand packs. We have carried out, for the first time, evaporation studies on a 2.5D micromodel based on a thin section of a sucrosic dolomite rock. This allowed direct visual observation of pore-scale processes in a network of pores. NaCl solutions from 0 wt. % (de-ionized water) to 36 wt. % (saturated brine) were evaporated by passing dry air through a channel in front of the micromodel matrix. For de-ionized water, we observed the three classical periods of evaporation: the constant rate period (CRP) in which liquid remains connected to the matrix surface, the falling rate period, and the receding front period, in which the capillary connection is broken and water transport becomes dominated by vapour diffusion. However, when brine was dried in the micromodel, we observed that the length of the CRP decreased with increasing brine concentration and became almost non-existent for the saturated brine. In the experiments with brine, the mass lost by evaporation became linear with the square root of time after the short CRP. However, this is unlikely to be due to capillary disconnection from the surface of the matrix, as salt crystals continued to be deposited in the channel above the matrix. We propose that this is due to salt deposition at the matrix surface progressively impeding hydraulic connectivity to the evaporating surface.

  2. Voids in Gravitational Instability Scenarios - Part One - Global Density and Velocity Fields in an Einstein - De-Sitter Universe

    NASA Astrophysics Data System (ADS)

    van de Weygaert, R.; van Kampen, E.

    1993-07-01

    The first results of an extensive study of the structure and dynamics of underdense regions in gravitational instability scenarios are presented. Instead of adopting spherically symmetric voids with some idealized initial density and velocity profile, underdense regions of a given size and depth, embedded in an initial density fluctuation field, are generated. In order to accomplish this in a consistent way, these initial conditions are set up by means of Bertschinger's constrained random field code. The generated particle samples of 64^3^ particles in a box of side 100 Mpc are followed into the non-linear regime by Bertschinger's PM N- body code. In this way we address the dependence of the structure and kinematics of the void both on the initial depth of the void and on the fluctuation field in which it is embedded. In particular, this study provides some understanding of how far fluctuations on small scales modify the dynamics of the large-scale void, and especially of how far the properties of small structures inside the void are affected by the global properties of the void. One of the conspicuous features of the initial density fields inside protovoids appears to be the existence of a `void hierarchy', with small voids embedded in larger voids. The survival of this hierarchy during the riot evolution of the void depends critically on the initial depth as well as on the clustering scenario involved. As well as presenting a qualitative discussion of the structure of underdense regions in initial density fields in different scenarios, and the results of simulations of the ensuing non-linear evolution, we concentrate in particular on a comparison of the global density and velocity fields in voids with predictions from linear theory as well as from the spherical outflow model. The relation between the initial linear depth, the resulting non-linear depth and the excess expansion velocities in voids is addressed. In addition, we find that, while near its centre a void becomes more and more spherical, the shape of its boundary is influenced to a large extent by the structures surrounding the void and therefore is generally more irregular. In this first study we concentrate on single voids in Einstein-de Sitter universes. The underdense regions considered are linear 1 σ_0_, 2 σ_0_ and 3 σ_0_ dips in fields that are Gaussian-smoothed on a scale of R_G_ = 10 h^-1^ Mpc, approximately half the size of the Bootes void. These regions are studied in terms of the Cold Dark Matter and Hot Dark Matter scenarios as well as in terms of the scale-free scenarios P(k) is proportional to k^0^, k^-1^ and k^-2^. The Hubble constant is taken to be H_0_ = 100 h km s^-1^ Mpc^-1^.

  3. The advanced thermionic converter with microwave power as an auxiliary ionization source

    NASA Technical Reports Server (NTRS)

    Manikopoulos, C. N.; Hatziprocopiou, M.; Chiu, H. S.; Shaw, D. T.

    1978-01-01

    In the search for auxiliary sources of ionization for the advanced thermionic converter plasma, as required for terrestial applications, the use of externally applied microwave power is considered. The present work is part of the advanced model thermionic converter development research currently performed at the laboratory for Power and Environmental Studies at SUNY Buffalo. Microwave power in the frequency range 1-3 GHz is used to externally pump a thermionic converter and the results are compared to the theoretical model proposed by Lam (1976) in describing the thermionic converter plasma. The electron temperature of the plasma is found to be raised considerably by effective microwave heating which results in the disappearance of the double sheath ordinarily erected in front of the emitter. The experimental data agree satisfactorily with theory in the low current region.

  4. Hydrodynamic Models for Multicomponent Plasmas with Collisional-Radiative Kinetics

    DTIC Science & Technology

    2014-12-01

    16, 17]. The plasma, typically created by electric discharges , can deposit heat locally in the vicinity the flame, which quickly raises the gas...the corona layer of laser produced plasmas (LPP). Secondly, the self-consistent coupling of the plasma with the field gives rise to particle...excited species and reaction radicals; 7 n ncr solid transport layer (overdense) corona layer (underdense) temperature density shock wave ablation

  5. Investigating the laser heating of underdense plasmas at conditions relevant to MagLIF

    NASA Astrophysics Data System (ADS)

    Harvey-Thompson, Adam

    2015-11-01

    The magnetized Liner Inertial Fusion (MagLIF) scheme has achieved thermonuclear fusion yields on Sandia's Z Facility by imploding a cylindrical liner filled with D2 fuel that is preheated with a multi-kJ laser and pre-magnetized with an axial field Bz = 10 T. The challenge of fuel preheating in MagLIF is to deposit several kJ's of energy into an underdense (ne/ncrit<0.1) fusion fuel over ~ 10 mm target length efficiently and without introducing contaminants that could contribute to unacceptable radiative losses during the implosion. Very little experimental work has previously been done to investigate laser heating of gas at densities, scale lengths, modest intensities (Iλ2 ~ 1014 watts- μm2 /cm2) and magnetization parameters (ωceτe ~ 10) necessary for MagLIF. In particular, magnetization of the preheated plasma suppresses electron thermal conduction, which can modify laser energy coupling. Providing an experimental dataset in this regime is essential to not only understand the dynamics of a MagLIF implosion and stagnation, but also to validate magnetized transport models and better understand the physics of laser propagation in magnetized plasmas. In this talk, we present data and analysis of several experiments conducted at OMEGA-EP and at Z to investigate laser propagation and plasma heating in underdense D2 plasmas under a range of conditions, including densities (ne = 0.05-0.1 nc) and magnetization parmaters (ωceτe ~ 0-10). The results show differences in the electron temperature of the heated plasma and the velocity of the laser burn wave with and without an applied magnetic field. We will show comparisons of these experimental results to 2D and 3D HYDRA simulations, which show that the effect of the magnetic field on the electron thermal conduction needs to be taken into account when modeling laser preheat. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  6. UV DRIVEN EVAPORATION OF CLOSE-IN PLANETS: ENERGY-LIMITED, RECOMBINATION-LIMITED, AND PHOTON-LIMITED FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, James E.; Alvarez, Marcelo A., E-mail: jowen@ias.edu

    2016-01-01

    We have investigated the evaporation of close-in exoplanets irradiated by ionizing photons. We find that the properties of the flow are controlled by the ratio of the recombination time to the flow timescale. When the recombination timescale is short compared to the flow timescale, the flow is in approximate local ionization equilibrium with a thin ionization front where the photon mean free path is short compared to the flow scale. In this “recombination-limited” flow the mass-loss scales roughly with the square root of the incident flux. When the recombination time is long compared to the flow timescale the ionization frontmore » becomes thick and encompasses the entire flow with the mass-loss rate scaling linearly with flux. If the planet's potential is deep, then the flow is approximately “energy-limited”; however, if the planet's potential is shallow, then we identify a new limiting mass-loss regime, which we term “photon-limited.” In this scenario, the mass-loss rate is purely limited by the incoming flux of ionizing photons. We have developed a new numerical approach that takes into account the frequency dependence of the incoming ionizing spectrum and performed a large suite of 1D simulations to characterize UV driven mass-loss around low-mass planets. We find that the flow is “recombination-limited” at high fluxes but becomes “energy-limited” at low fluxes; however, the transition is broad occurring over several orders of magnitude in flux. Finally, we point out that the transitions between the different flow types do not occur at a single flux value but depend on the planet's properties, with higher-mass planets becoming “energy-limited” at lower fluxes.« less

  7. Single laser pulse compression via strongly coupled stimulated Brillouin scattering in plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, H.; Wu, Z. H.; Zhang, Z. M.

    2016-07-15

    Laser amplification in plasma, including stimulated Raman scattering amplification and strongly coupled stimulated Brillouin scattering (sc-SBS) amplification, is very promising to generate ultrahigh-power and ultrashort laser pulses. But both are quite complex in experiments: at least three different laser pulses must be prepared; temporal delay and spatial overlap of these three pulses are difficult. We propose a single pulse compression scheme based on sc-SBS in plasma. Only one moderately long laser is applied, the front part of which ionizes the gas to produced plasma, and gets reflected by a plasma mirror at the end of the gas channel. The reflectedmore » front quickly depletes the remaining part of the laser by sc-SBS in the self-similar regime. The output laser is much stronger and shorter. This scheme is at first considered theoretically, then validated by using 1D PIC simulations.« less

  8. Purity and Cleanness of Aeorgel as a Cosmic Dust Capture Medium

    NASA Technical Reports Server (NTRS)

    Tsou, P.; Fleming, R.; Lindley, P.; Craig, A.; Blake, D.

    1994-01-01

    The capability for capturing micrometeoroids intact through laboratory simulations [Tsou 1988] and in space [Tsou 1993] in passive underdense silica aerogel offers a valuable tool for cosmic dust research. The integrity of the sample handling medium can substantially modify the integrity of the sample. Intact capture is a violent hypervelocity event: the integrity of the capturing medium can cause even greater modification of the sample.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanderveld, R. Ali; Flanagan, Eanna E.; Wasserman, Ira

    Recently, there have been suggestions that the Type Ia supernova data can be explained using only general relativity and cold dark matter with no dark energy. In 'Swiss cheese' models of the Universe, the standard Friedmann-Robertson-Walker picture is modified by the introduction of mass-compensating spherical inhomogeneities, typically described by the Lemaitre-Tolman-Bondi metric. If these inhomogeneities correspond to underdense cores surrounded by mass-compensating overdense shells, then they can modify the luminosity distance-redshift relation in a way that can mimic accelerated expansion. It has been argued that this effect could be large enough to explain the supernova data without introducing dark energymore » or modified gravity. We show that the large apparent acceleration seen in some models can be explained in terms of standard weak field gravitational lensing together with insufficient randomization of void locations. The underdense regions focus the light less than the homogeneous background, thus dimming supernovae in a way that can mimic the effects of acceleration. With insufficient randomization of the spatial location of the voids and of the lines of sight, coherent defocusing can lead to anomalously large demagnification effects. We show that a proper randomization of the voids and lines of sight reduces the effect to the point that it can no longer explain the supernova data.« less

  10. Testing the conditional mass function of dark matter haloes against numerical N-body simulations

    NASA Astrophysics Data System (ADS)

    Tramonte, D.; Rubiño-Martín, J. A.; Betancort-Rijo, J.; Dalla Vecchia, C.

    2017-05-01

    We compare the predicted conditional mass function (CMF) of dark matter haloes from two theoretical prescriptions against numerical N-body simulations, both in overdense and underdense regions and at different Eulerian scales ranging from 5 to 30 h-1 Mpc. In particular, we consider in detail a locally implemented rescaling of the unconditional mass function (UMF) already discussed in the literature, and also a generalization of the standard rescaling method described in the extended Press-Schechter formalism. First, we test the consistency of these two rescalings by verifying the normalization of the CMF at different scales, and showing that none of the proposed cases provides a normalized CMF. In order to satisfy the normalization condition, we include a modification in the rescaling procedure. After this modification, the resulting CMF generally provides a better description of numerical results. We finally present an analytical fit to the ratio between the CMF and the UMF (also known as the matter-to-halo bias function) in underdense regions, which could be of special interest to speed up the computation of the halo abundance when studying void statistics. In this case, the CMF prescription based on the locally implemented rescaling provides a slightly better description of the numerical results when compared to the standard rescaling.

  11. Multiscale Magnetic Underdense Regions on the Solar Surface: Granular and Mesogranular Scales

    NASA Astrophysics Data System (ADS)

    Berrilli, F.; Scardigli, S.; Giordano, S.

    2013-02-01

    The Sun is a non-equilibrium, dissipative system subject to an energy flow that originates in its core. Convective overshooting motions create temperature and velocity structures that show a temporal and spatial multiscale evolution. As a result, photospheric structures are generally considered to be a direct manifestation of convective plasma motions. The plasma flows in the photosphere govern the motion of single magnetic elements. These elements are arranged in typical patterns, which are observed as a variety of multiscale magnetic patterns. High-resolution magnetograms of the quiet solar surface revealed the presence of multiscale magnetic underdense regions in the solar photosphere, commonly called voids, which may be considered to be a signature of the underlying convective structure. The analysis of such patterns paves the way for the investigation of all turbulent convective scales, from granular to global. In order to address the question of magnetic structures driven by turbulent convection at granular and mesogranular scales, we used a voids-detection method. The computed distribution of void length scales shows an exponential behavior at scales between 2 and 10 Mm and the absence of features at mesogranular scales. The absence of preferred scales of organization in the 2 - 10 Mm range supports the multiscale nature of flows on the solar surface and the absence of a mesogranular convective scale.

  12. Measurements of Electron Density Profiles of Plasmas Produced by Nike KrF Laser for Laser Plasma Instability (LPI) Research

    NASA Astrophysics Data System (ADS)

    Oh, Jaechul; Weaver, J. L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Karasik, M.; Chan, L.-Y.; Serlin, V.; Phillips, L.

    2013-10-01

    Knowing spatial profiles of electron density (ne) in the underdense coronal region (n

  13. Probing supervoids with weak lensing

    NASA Astrophysics Data System (ADS)

    Higuchi, Yuichi; Inoue, Kaiki Taro

    2018-05-01

    The cosmic microwave background (CMB) has non-Gaussian features in the temperature fluctuations. An anomalous cold spot surrounded with a hot ring, called the Cold Spot, is one of such features. If a large underdense region (supervoid) resides towards the Cold Spot, we would be able to detect a systematic shape distortion in the images of background source galaxies via weak lensing effect. In order to estimate the detectability of such signals, we used the data of N-body simulations to simulate full-sky ray-tracing of source galaxies. We searched for a most prominent underdense region using the simulated convergence maps smoothed at a scale of 20° and obtained tangential shears around it. The lensing signal expected in a concordant Λ cold dark matter model can be detected at a signal-to-noise ratio S/N ˜ 3. If a supervoid with a radius of ˜200 h-1 Mpc and a density contrast δ0 ˜ -0.3 at the centre resides at a redshift z ˜ 0.2, on-going and near-future weak gravitational lensing surveys would detect a lensing signal with S/N ≳ 4 without resorting to stacking. From the tangential shear profile, we can obtain a constraint on the projected mass distribution of the supervoid.

  14. VLF wave generation by beating of two HF waves in the ionosphere

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer; Snyder, Arnold; Kossey, Paul; Chang, Chia-Lie; Labenski, John

    2011-05-01

    Theory of a beat-wave mechanism for very low frequency (VLF) wave generation in the ionosphere is presented. The VLF current is produced by beating two high power HF waves of slightly different frequencies through the nonlinearity and inhomogeneity of the ionospheric plasma. Theory also shows that the density irregularities can enhance the beat-wave generation. An experiment was conducted by transmitting two high power HF waves of 3.2 MHz and 3.2 MHz + f, where f = 5, 8, 13, and 2.02 kHz, from the HAARP transmitter. In the experiment, the ionosphere was underdense to the O-mode heater, i.e., the heater frequency f0 > foF2, and overdense or slightly underdense to the X-mode heater, i.e., f0 < fxF2 or f0 ≥ fxF2. The radiation intensity increased with the VLF wave frequency, was much stronger with the X-mode heaters, and was not sensitive to the electrojet. The strongest VLF radiation of 13 kHz was generated when the reflection layer of the X-mode heater was just slightly below the foF2 layer and the spread of the O-mode sounding echoes had the largest enhancement, suggesting an optimal setting for beat-wave generation of VLF waves by the HF heaters.

  15. Observable Signatures of Cosmic Reionization and the End of the Dark Ages

    NASA Astrophysics Data System (ADS)

    Shapiro, Paul R.; Iliev, I. T.; Mellema, G.; Pen, U. L.; McDonald, P.; Bond, J. R.; Alvarez, M.; Ahn, K.

    2007-12-01

    Reionization exerted a strong feedback effect which left its imprint on all scales and on radiation backgrounds at all wavelengths. When the first stars formed inside minihalos of mass 106 solar masses at z > 20, ionizing radiation heated and expelled the gas inside their minihalos and escaped to create intergalactic H II regions. As these H II regions grew, their ionization fronts encountered other minihalos, which blocked their path and trapped them, causing this minihalo gas, too, to escape in a photoevaporative wind. Further star formation inside minihalos was affected not only by these I-fronts, but also by the rising dissociating background. Eventually, hierarchical clustering formed dwarf galaxies > 108 solar masses, where atomic cooling was effective enough to trigger more star formation, and intergalactic H II regions grew and merged to become 10's of comoving Mpc's in size. Inside these H II regions, gas pressure inhibited gravitational collapse, so the minimum mass of newly-formed galaxies jumped above 109 solar masses. Reionization ended when the intergalactic H II regions finally overlapped everywhere. We have studied this process by a variety of techniques, on a hierarchy of mass- and length-scales. The latter span the range from interiors of minihalos, to giant H II regions produced by the clustered formation of galaxies, to large-scale structure of the patchy distribution of neutral and ionized gas during the epoch of reionization. These results lead to predictions of a fluctuating background of redshifted 21-cm line radiation, temperature and polarization anisotropy of the CMB, gaps in the Gunn-Peterson absorption spectra of high-z quasars, and distortion of the luminosity function and spatial clustering of Lyman alpha emission-line galaxies during this epoch, among other things. I will summarize the latest theoretical developments in this talk. This work supported by NASA grants NNX07AH09G and NNG04GI77G and NSF AST-0708176.

  16. Thermodynamics of giant planet formation: shocking hot surfaces on circumplanetary discs

    NASA Astrophysics Data System (ADS)

    Szulágyi, J.; Mordasini, C.

    2017-02-01

    The luminosity of young giant planets can inform about their formation and accretion history. The directly imaged planets detected so far are consistent with the `hot-start' scenario of high entropy and luminosity. If nebular gas passes through a shock front before being accreted into a protoplanet, the entropy can be substantially altered. To investigate this, we present high-resolution, three-dimensional radiative hydrodynamic simulations of accreting giant planets. The accreted gas is found to fall with supersonic speed in the gap from the circumstellar disc's upper layers on to the surface of the circumplanetary disc and polar region of the protoplanet. There it shocks, creating an extended hot supercritical shock surface. This shock front is optically thick; therefore, it can conceal the planet's intrinsic luminosity beneath. The gas in the vertical influx has high entropy which when passing through the shock front decreases significantly while the gas becomes part of the disc and protoplanet. This shows that circumplanetary discs play a key role in regulating a planet's thermodynamic state. Our simulations furthermore indicate that around the shock surface extended regions of atomic - sometimes ionized - hydrogen develop. Therefore, circumplanetary disc shock surfaces could influence significantly the observational appearance of forming gas giants.

  17. Through the X-ray looking glass, and what plasma physics found there

    NASA Astrophysics Data System (ADS)

    Su, Yuanyuan; Kraft, Ralph P.; Nulsen, Paul; Forman, William R.; Jones, Christine; Roediger, Elke

    2017-08-01

    How energy is transported and dissipated is the most fundamental process in the thermalization and evolution of galaxy clusters. At temperatures of 1--10 keV, intracluster medium (ICM) approximates a highly ionized plasma. Contemporary X-ray observations have revealed a wealth of substructures in the ICM, even in relatively relaxed clusters. Of particular interest is the ubiquitous presence of cold fronts, resulting from the shear interface between gaseous regions of different entropies. This configuration inevitably leads to the Kelvin-Helmholtz Instability (KHI), appearing as “horn” or “roll” features in X-ray images. Both viscosity and ordered magnetic field can suppress the growth of KHI. We present results of Chandra, XMM-Newton, and Suzaku observations of Fornax and Virgo. We probe the cluster plasma physics through the gas properties of the sloshing cold fronts, merging cold fronts, AGN bubbles, and gaseous stripped tails in these systems. We found that the ICM ought to be inviscous and we can put an upper limit on the intracluster magnetic field. Our results have also provided insights into the merging history of galaxy clusters, which have been reproduced in tailored simulations.

  18. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating

    NASA Astrophysics Data System (ADS)

    Shen, X. F.; Qiao, B.; Zhang, H.; Kar, S.; Zhou, C. T.; Chang, H. X.; Borghesi, M.; He, X. T.

    2017-05-01

    A method to achieve stable radiation pressure acceleration (RPA) of heavy ions from laser-irradiated ultrathin foils is proposed, where a high-Z material coating in front is used. The coated high-Z material, acting as a moving electron repository, continuously replenishes the accelerating heavy ion foil with comoving electrons in the light-sail acceleration stage due to its successive ionization under laser fields with Gaussian temporal profile. As a result, the detrimental effects such as foil deformation and electron loss induced by the Rayleigh-Taylor-like and other instabilities in RPA are significantly offset and suppressed so that stable acceleration of heavy ions are maintained. Particle-in-cell simulations show that a monoenergetic Al13 + beam with peak energy 3.8 GeV and particle number 1 010 (charge >20 nC ) can be obtained at intensity 1 022 W /cm2 .

  19. Back bias induced dynamic and steep subthreshold swing in junctionless transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parihar, Mukta Singh; Kranti, Abhinav, E-mail: akranti@iiti.ac.in

    In this work, we analyze back bias induced steep and dynamic subthreshold swing in junctionless double gate transistors operated in the asymmetric mode. This impact ionization induced dynamic subthreshold swing is explained in terms of the ratio between minimum hole concentration and peak electron concentration, and the dynamic change in the location of the conduction channel with applied front gate voltage. The reason for the occurrence of impact ionization at sub-bandgap drain voltages in silicon junctionless transistors is also accounted for. The optimum junctionless transistor operating at a back gate bias of −0.9 V, achieves over 5 orders of change inmore » drain current at a gate overdrive of 200 mV and drain bias of 1 V. These results for junctionless transistors are significantly better than those exhibited by silicon tunnel field effect transistors operating at the same drain bias.« less

  20. Shock tubes and waves; Proceedings of the Thirteenth International Symposium, Niagara Falls, NY, July 6-9, 1981

    NASA Astrophysics Data System (ADS)

    Treanor, C. E.; Hall, J. G.

    1982-10-01

    The present conference on shock tubes and waves considers shock tube drivers, luminous shock tubes, shock tube temperature and pressure measurement, shock front distortion in real gases, nonlinear standing waves, transonic flow shock wave turbulent boundary interactions, wall roughness effects on reflected shock bifurcation, argon thermal conductivity, pattern generation in gaseous detonations, cylindrical resonators, shock tunnel-produced high gain lasers, fluid dynamic aspects of laser-metal interaction, and the ionization of argon gas behind reflected shock waves. Also discussed are the ionization relaxation of shock-heated plasmas and gases, discharge flow/shock tube studies of singlet oxygen, rotational and vibrational relaxation, chemiluminescence thermal and shock wave decomposition of hydrogen cyanide and hydrogen azide, shock wave structure in gas-particle mixtures at low Mach numbers, binary nucleation in a Ludwieg tube, shock liquefaction experiments, pipeline explosions, the shock wave ignition of pulverized coal, and shock-initiated methane combustion.

  1. The 30 Doradus Nebula: An Imaging Study of Molecular and Ionized Hydrogen

    NASA Astrophysics Data System (ADS)

    Yeh, Sherry; Seaquist, E. R.; Matzner, C. D.

    2013-01-01

    We present the very first, fully calibrated H2 1--0 S(1) image of the entire 30 Doradus nebula. The observations were carried out using the NOAO Extremely Wide Field Infrared Imager on the CTIO 4-meter telescope. Together with a Brγ image of 30 Dor taken by NEWFIRM, our images reveal the morphologies of the warm molecular gas and ionized gas in 30 Doradus. Based on the morphologies of H2 and Brγ, line ratio H2 to Brγ, and Cloudy models, we found that the H2 emission is formed inside the photodissociation regions of 30 Doradus, very close to the surface in association with the ionization front of the HII region. We also suggest that the bright H2-emitting area, which expands from the northeast to the southwest of R136, is a photodissociation region viewed face-on, while many clumps and elephant trunk features located at the outer shells of 30 Doradus are also photodissociation regions viewed edge-on. The characteristic radiation to gas pressure ratio is evaluated at selected regions in 30 Doradus, and we conclude that radiation pressure is not the dominating force at the current phase of 30 Doradus, while the pressurization of stellar winds and the injection of photoevaporative flows are likely the major feedback mechanisms acting to reduce the observed ionization parameter in 30 Doradus.

  2. New insights on the propagation of pulsed atmospheric plasma streams: From single jet to multi jet arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert, E.; Darny, T.; Dozias, S.

    2015-12-15

    Atmospheric pressure plasma propagation inside long dielectric tubes is analyzed for the first time through nonintrusive and nonperturbative time resolved bi-directional electric field (EF) measurements. This study unveils that plasma propagation occurs in a region where longitudinal EF exists ahead the ionization front position usually revealed from plasma emission with ICCD measurement. The ionization front propagation induces the sudden rise of a radial EF component. Both of these EF components have an amplitude of several kV/cm for helium or neon plasmas and are preserved almost constant along a few tens of cm inside a capillary. All these experimental measurements aremore » in excellent agreement with previous model calculations. The key roles of the voltage pulse polarity and of the target nature on the helium flow patterns when plasma jet is emerging in ambient air are documented from Schlieren visualization. The second part of this work is then dedicated to the development of multi jet systems, using two different setups, based on a single plasma source. Plasma splitting in dielectric tubes drilled with sub millimetric orifices, but also plasma transfer across metallic tubes equipped with such orifices are reported and analyzed from ICCD imaging and time resolved EF measurements. This allows for the design and the feasibility validation of plasma jet arrays but also emphasizes the necessity to account for voltage pulse polarity, target potential status, consecutive helium flow modulation, and electrostatic influence between the produced secondary jets.« less

  3. Measuring ionizing radiation with a mobile device

    NASA Astrophysics Data System (ADS)

    Michelsburg, Matthias; Fehrenbach, Thomas; Puente León, Fernando

    2012-02-01

    In cases of nuclear disasters it is desirable to know one's personal exposure to radioactivity and the related health risk. Usually, Geiger-Mueller tubes are used to assess the situation. Equipping everyone with such a device in a short period of time is very expensive. We propose a method to detect ionizing radiation using the integrated camera of a mobile consumer device, e.g., a cell phone. In emergency cases, millions of existing mobile devices could then be used to monitor the exposure of its owners. In combination with internet access and GPS, measured data can be collected by a central server to get an overview of the situation. During a measurement, the CMOS sensor of a mobile device is shielded from surrounding light by an attachment in front of the lens or an internal shutter. The high-energy radiation produces free electrons on the sensor chip resulting in an image signal. By image analysis by means of the mobile device, signal components due to incident ionizing radiation are separated from the sensor noise. With radioactive sources present significant increases in detected pixels can be seen. Furthermore, the cell phone application can make a preliminary estimate on the collected dose of an individual and the associated health risks.

  4. Physical Conditions in Shocked Interstellar Gas Interacting with the Supernova Remnant IC 443

    NASA Astrophysics Data System (ADS)

    Ritchey, Adam M.; Federman, Steven Robert; Jenkins, Edward B.; Caprioli, Damiano; Wallerstein, George

    2018-06-01

    We present the results of a detailed investigation into the physical conditions in interstellar material interacting with the supernova remnant IC 443. Our analysis is based on an examination of high-resolution HST/STIS spectra of two stars probing predominantly neutral gas located both ahead of and behind the supernova shock front. The pre-shock neutral gas is characterized by densities and temperatures typical of diffuse interstellar clouds, while the post-shock material exhibits a range of more extreme physical conditions, including high temperatures (>104 K) in some cases, which may require a sudden heating event to explain. The ionization level is enhanced in the high-temperature post-shock material, which could be the result of enhanced radiation from shocks or from an increase in cosmic-ray ionization. The gas-phase abundances of refractory elements are also enhanced in the high-pressure gas, suggesting efficient destruction of dust grains by shock sputtering. Observations of highly-ionized species at very high velocity indicate a post-shock temperature of 107 K for the hot X-ray emitting plasma of the remnant’s interior, in agreement with studies of thermal X-ray emission from IC 443.

  5. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating

    NASA Astrophysics Data System (ADS)

    Shen, X. F.; Qiao, B.; Chang, H. X.; Kar, S.; Zhou, C. T.; Borghesi, M.; He, X. T.

    2016-10-01

    Generation of monoenergetic heavy ion beams aroused more scientific interest in recent years. Radiation pressure acceleration (RPA) is an ideal mechanism for obtaining high-quality heavy ion beams, in principle. However, to achieve the same energy per nucleon (velocity) as protons, heavy ions undergo much more serious Rayleigh-Taylor-like (RT) instability and afterwards much worse Coulomb explosion due to loss of co-moving electrons. This leads to premature acceleration termination of heavy ions and very low energy attained in experiment. The utilization of a high-Z coating in front of the target may suppress the RT instability and Coulomb explosion by continuously replenishing the accelerating heavy ion foil with co-moving electrons due to its successive ionization under laser fields with Gaussian temporal and spatial profiles. Thus stable RPA can be realized. Two-dimensional and three-dimensional particles-in-cell simulations with dynamic ionization show that a monoenergetic Al13+ beam with peak energy 4.0GeV and particle number 1010 (charge > 20nC) can be obtained at intensity 1022 W/cm2. Supported by the NSF, Nos. 11575298 and 1000-Talents Program of China.

  6. Molecular Ionization-Desorption Analysis Source (MIDAS) for Mass Spectrometry: Thin-Layer Chromatography.

    PubMed

    Winter, Gregory T; Wilhide, Joshua A; LaCourse, William R

    2016-02-01

    Molecular ionization-desorption analysis source (MIDAS), which is a desorption atmospheric pressure chemical ionization (DAPCI) type source, for mass spectrometry has been developed as a multi-functional platform for the direct sampling of surfaces. In this article, its utility for the analysis of thin-layer chromatography (TLC) plates is highlighted. Amino acids, which are difficult to visualize without staining reagents or charring, were detected and identified directly from a TLC plate. To demonstrate the full potential of MIDAS, all active ingredients from an analgesic tablet, separated on a TLC plate, were successfully detected using both positive and negative ion modes. The identity of each of the compounds was confirmed from their mass spectra and compared against standards. Post separation, the chemical signal (blue permanent marker) as reference marks placed at the origin and solvent front were used to calculate retention factor (Rf) values from the resulting ion chromatogram. The quantitative capabilities of the device were exhibited by scanning caffeine spots on a TLC plate of increasing sample amount. A linear curve based on peak are, R2 = 0.994, was generated for seven spots ranging from 50 to 1000 ng of caffeine per spot.

  7. Molecular Ionization-Desorption Analysis Source (MIDAS) for Mass Spectrometry: Thin-Layer Chromatography

    NASA Astrophysics Data System (ADS)

    Winter, Gregory T.; Wilhide, Joshua A.; LaCourse, William R.

    2016-02-01

    Molecular ionization-desorption analysis source (MIDAS), which is a desorption atmospheric pressure chemical ionization (DAPCI) type source, for mass spectrometry has been developed as a multi-functional platform for the direct sampling of surfaces. In this article, its utility for the analysis of thin-layer chromatography (TLC) plates is highlighted. Amino acids, which are difficult to visualize without staining reagents or charring, were detected and identified directly from a TLC plate. To demonstrate the full potential of MIDAS, all active ingredients from an analgesic tablet, separated on a TLC plate, were successfully detected using both positive and negative ion modes. The identity of each of the compounds was confirmed from their mass spectra and compared against standards. Post separation, the chemical signal (blue permanent marker) as reference marks placed at the origin and solvent front were used to calculate retention factor (Rf) values from the resulting ion chromatogram. The quantitative capabilities of the device were exhibited by scanning caffeine spots on a TLC plate of increasing sample amount. A linear curve based on peak are, R2 = 0.994, was generated for seven spots ranging from 50 to 1000 ng of caffeine per spot.

  8. A tale of seven narrow spikes and a long trough: constraining the timing of the percolation of H II bubbles at the tail end of reionization with ULAS J1120+0641

    NASA Astrophysics Data System (ADS)

    Chardin, Jonathan; Haehnelt, Martin G.; Bosman, Sarah E. I.; Puchwein, Ewald

    2018-01-01

    High signal-to-noise observations of the Ly α forest transmissivity in the z = 7.085 quasi-stellar object (QSO) ULAS J1120+0641 show seven narrow transmission spikes followed by a long 240 cMpc h-1 trough. Here, we use radiative transfer simulations of cosmic reionization previously calibrated to match a wider range of Ly α forest data to show that the occurrence of seven transmission spikes in the narrow redshift range z = 5.85-6.1 is very sensitive to the exact timing of reionization. Occurrence of the spikes requires the most underdense regions of the intergalactic medium to be already fully ionized. The rapid onset of a long trough at z = 6.12 requires a strong decrease of the photoionization rate Γ at z ≳ 6.1 in this line of sight, consistent with the end of percolation at this redshift. The narrow range of reionization histories that we previously found to be consistent with a wider range of Ly α forest data have a reasonable probability of showing seven spikes and the mock absorption spectra provide an excellent match to the spikes and the trough in the observed spectrum of ULAS J1120+0641. Larger samples of high signal-to-noise searches for rare Ly α transmission spikes at z > 5.8 should therefore provide important further insights into the exact timing of the percolation of H II bubbles at the tail end of reionization.

  9. On the description of the turbulent flame acceleration with Kolmogorov law

    NASA Astrophysics Data System (ADS)

    Golub, V. V.; Volodin, V. V.

    2018-01-01

    A series of experiments on the flame propagation in a hydrogen-air mixtures in a cylindrical envelope of 4.5 m3 volume were carried out. Flame front propagation was recorded using ionization probes and video in the visible and infrared ranges. The flame propagation data interpretation using the Kolmogorov law has been applied. For the first time variation of turbulent energy dissipation rate per weight with combustion propagation was used. This approach allows the experimental data for mixtures with different compositions in non-spherical volumes to be described.

  10. Understanding the Links among the Magnetic Fields, Filament, Bipolar Bubble, and Star Formation in RCW 57A Using NIR Polarimetry

    NASA Astrophysics Data System (ADS)

    Eswaraiah, Chakali; Lai, Shih-Ping; Chen, Wen-Ping; Pandey, A. K.; Tamura, M.; Maheswar, G.; Sharma, S.; Wang, Jia-Wei; Nishiyama, S.; Nakajima, Y.; Kwon, Jungmi; Purcell, R.; Magalhães, A. M.

    2017-12-01

    The influence of magnetic fields (B-fields) on the formation and evolution of bipolar bubbles, due to the expanding ionization fronts (I-fronts) driven by the H II regions that are formed and embedded in filamentary molecular clouds, has not been well-studied yet. In addition to the anisotropic expansion of I-fronts into a filament, B-fields are expected to introduce an additional anisotropic pressure, which might favor the expansion and propagation of I-fronts forming a bipolar bubble. We present results based on near-infrared polarimetric observations toward the central ˜8‧ × 8‧ area of the star-forming region RCW 57A, which hosts an H II region, a filament, and a bipolar bubble. Polarization measurements of 178 reddened background stars, out of the 919 detected sources in the JHK s bands, reveal B-fields that thread perpendicularly to the filament long axis. The B-fields exhibit an hourglass morphology that closely follows the structure of the bipolar bubble. The mean B-field strength, estimated using the Chandrasekhar-Fermi method (CF method), is 91 ± 8 μG. B-field pressure dominates over turbulent and thermal pressures. Thermal pressure might act in the same orientation as the B-fields to accelerate the expansion of those I-fronts. The observed morphological correspondence among the B-fields, filament, and bipolar bubble demonstrate that the B-fields are important to the cloud contraction that formed the filament, to the gravitational collapse and star formation in it, and in feedback processes. The last one includes the formation and evolution of mid-infrared bubbles by means of B-field supported propagation and expansion of I-fronts. These may shed light on preexisting conditions favoring the formation of the massive stellar cluster in RCW 57A.

  11. Voids and constraints on nonlinear clustering of galaxies

    NASA Technical Reports Server (NTRS)

    Vogeley, Michael S.; Geller, Margaret J.; Park, Changbom; Huchra, John P.

    1994-01-01

    Void statistics of the galaxy distribution in the Center for Astrophysics Redshift Survey provide strong constraints on galaxy clustering in the nonlinear regime, i.e., on scales R equal to or less than 10/h Mpc. Computation of high-order moments of the galaxy distribution requires a sample that (1) densely traces the large-scale structure and (2) covers sufficient volume to obtain good statistics. The CfA redshift survey densely samples structure on scales equal to or less than 10/h Mpc and has sufficient depth and angular coverage to approach a fair sample on these scales. In the nonlinear regime, the void probability function (VPF) for CfA samples exhibits apparent agreement with hierarchical scaling (such scaling implies that the N-point correlation functions for N greater than 2 depend only on pairwise products of the two-point function xi(r)) However, simulations of cosmological models show that this scaling in redshift space does not necessarily imply such scaling in real space, even in the nonlinear regime; peculiar velocities cause distortions which can yield erroneous agreement with hierarchical scaling. The underdensity probability measures the frequency of 'voids' with density rho less than 0.2 -/rho. This statistic reveals a paucity of very bright galaxies (L greater than L asterisk) in the 'voids.' Underdensities are equal to or greater than 2 sigma more frequent in bright galaxy samples than in samples that include fainter galaxies. Comparison of void statistics of CfA samples with simulations of a range of cosmological models favors models with Gaussian primordial fluctuations and Cold Dark Matter (CDM)-like initial power spectra. Biased models tend to produce voids that are too empty. We also compare these data with three specific models of the Cold Dark Matter cosmogony: an unbiased, open universe CDM model (omega = 0.4, h = 0.5) provides a good match to the VPF of the CfA samples. Biasing of the galaxy distribution in the 'standard' CDM model (omega = 1, b = 1.5; see below for definitions) and nonzero cosmological constant CDM model (omega = 0.4, h = 0.6 lambda(sub 0) = 0.6, b = 1.3) produce voids that are too empty. All three simulations match the observed VPF and underdensity probability for samples of very bright (M less than M asterisk = -19.2) galaxies, but produce voids that are too empty when compared with samples that include fainter galaxies.

  12. Ionospheric Modification from Under-Dense Heating by High-Power HF Transmitter

    DTIC Science & Technology

    2011-03-03

    Auroral Research Program ( HAARP ) is a HF transmitter, which delivers 0.36 to 3.6 GW effective isotropic radiated powers (F.IRP) for the radiation...dense heating, the EIRP of the HAARP heater can be increased significantly by increasing the heater frequency. With higher heater frequency, the loss...1304 local time) and on 13 April from 0812 to 0844 UTC (0012 to 0044 local time), using the HAARP transmitter facility at Gakona, AK, at full power

  13. Cosmic void clumps

    NASA Astrophysics Data System (ADS)

    Lares, M.; Luparello, H. E.; Garcia Lambas, D.; Ruiz, A. N.; Ceccarelli, L.; Paz, D.

    2017-10-01

    Cosmic voids are of great interest given their relation to the large scale distribution of mass and the way they trace cosmic flows shaping the cosmic web. Here we show that the distribution of voids has, in consonance with the distribution of mass, a characteristic scale at which void pairs are preferentially located. We identify clumps of voids with similar environments and use them to define second order underdensities. Also, we characterize its properties and analyze its impact on the cosmic microwave background.

  14. The interaction of intense subpicosecond laser pulses with underdense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coverdale, Christine Ann

    1995-05-11

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 10 16 W/cm 2 laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by L plasma ≥ 2L Rayleigh > cτ. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (n o ≤ 0.05n cr). Specifically, themore » parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in ω-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.« less

  15. The effect of external magnetic field on the bremsstrahlung nonlinear absorption mechanism in the interaction of high intensity short laser pulse with collisional underdense plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sedaghat, M.; Ettehadi-Abari, M.; Shokri, B., E-mail: b-shokri@sbu.ac.ir

    2015-03-15

    Laser absorption in the interaction between ultra-intense femtosecond laser and solid density plasma is studied theoretically here in the intensity range Iλ{sup 2}≃10{sup 14}−10{sup 16}Wcm{sup −2}μm{sup 2}. The collisional effect is found to be significant when the incident laser intensity is less than 10{sup 16}Wcm{sup −2}μm{sup 2}. In the current work, the propagation of a high frequency electromagnetic wave, for underdense collisional plasma in the presence of an external magnetic field is investigated. It is shown that, by considering the effect of the ponderomotive force in collisional magnetized plasmas, the increase of laser pulse intensity leads to steepening of themore » electron density profile and the electron bunches of plasma makes narrower. Moreover, it is found that the wavelength of electric and magnetic fields oscillations increases by increasing the external magnetic field and the density distribution of electrons also grows in comparison with the unmagnetized collisional plasma. Furthermore, the spatial damping rate of laser energy and the nonlinear bremsstrahlung absorption coefficient are obtained in the collisional regime of magnetized plasma. The other remarkable result is that by increasing the external magnetic field in this case, the absorption coefficient increases strongly.« less

  16. Measurements of Electron Temperature and Density Profiles of Plasmas Produced by Nike KrF Laser for Laser Plasma Instability (LPI) Research

    NASA Astrophysics Data System (ADS)

    Oh, Jaechul; Weaver, J. L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Karasik, M.; Chan, L.-Y.; Serlin, V.; Phillips, L.

    2012-10-01

    ExperimentsfootnotetextJ. Oh, et al, GO5.4, APS DPP (2010).^,footnotetextJ. L. Weaver, et al, GO5.3, APS DPP (2010). using Nike KrF laser observed LPI signatures from CH plasmas at the laser intensities above ˜1x10^15 W/cm^2. Knowing spatial profiles of temperature (Te) and density (ne) in the underdense coronal region (0 < n < nc/4) of the plasma is essential to understanding the LPI observation. However, numerical simulation was the only way to access the profiles for the previous experiments. In the current Nike LPI experiment, a side-on grid imaging refractometer (GIR)footnotetextR. S. Craxton, et al, Phys. Fluids B 5, 4419 (1993). is being deployed for measuring the underdense plasma profiles. The GIR will resolve Te and ne in space taking a 2D snapshot of probe laser (λ= 263 nm, δt = 10 psec) beamlets (50μm spacing) refracted by the plasma at a selected time during the laser illumination. Time-resolved spectrometers with an absolute-intensity-calibrated photodiode array and a streak camera will simultaneously monitor light emission from the plasma in spectral ranges relevant to Raman (SRS) and two plasmon decay (TDP) instabilities. The experimental study of effects of the plasma profiles on the LPI initiation will be presented.

  17. Study of laser preheating dependence on laser wavelength and intensity for MagLIF

    NASA Astrophysics Data System (ADS)

    Wei, M. S.; Harvey-Thompson, A. J.; Glinsky, M.; Nagayama, T.; Weis, M.; Geissel, M.; Peterson, K.; Fooks, J.; Krauland, C.; Giraldez, E.; Davies, J.; Campbell, E. M.; Bahr, R.; Edgell, D.; Stoeckl, C.; Glebov, V.; Emig, J.; Heeter, R.; Strozzi, D.

    2017-10-01

    The magnetized liner inertial fusion (MagLIF) scheme requires preheating underdense fuel to 100's eV temperature by a TW-scale long pulse laser via collisional absorption. To better understand how laser preheat scales with laser wavelength and intensity as well as to provide data for code validation, we have conducted a well-characterized experiment on OMEGA to directly compare laser propagation, energy deposition and laser plasma instabilities (LPI) using 2 ω (527 nm) and 3 ω (351 nm) lasers with intensity in the range of (1-5)x1014 Wcm-2. The laser beam (1 - 1.5 ns square pulse) enters the gas-filled plastic liner though a 2-µm thick polyimide window to heat an underdense Ar-doped deuterium gas with electron density of 5.5% of critical density. Laser propagation and plasma temperature are diagnosed by time-resolved 2D x-ray images and Ar emission spectroscopy, respectively. LPI is monitored by backscattering and hard x-ray diagnostics. The 2 ω beam propagation shows a noticeable larger lateral spread than the 3 ω beam, indicating laser spray due to filamentation. LPI is observed to increase with laser intensity and the 2 ω beam produces more hot electrons compared with the 3 ω beam under similar conditions. Results will be compared with radiation hydrodynamic simulations. Work supported by the U.S. DOE ARPA-E and NNSA.

  18. Fragmentation studies of relativistic iron ions using plastic nuclear track detectors.

    PubMed

    Scampoli, P; Durante, M; Grossi, G; Manti, L; Pugliese, M; Gialanella, G

    2005-01-01

    We measured fluence and fragmentation of high-energy (1 or 5 A GeV) 56Fe ions accelerated at the Alternating Gradient Synchrotron or at the NASA Space Radiation Laboratory (Brookhaven National Laboratory, NY, USA) using solid-state CR-39 nuclear track detectors. Different targets (polyethylene, PMMA, C, Al, Pb) were used to produce a large spectrum of charged fragments. CR-39 plastics were exposed both in front and behind the shielding block (thickness ranging from 5 to 30 g/cm2) at a normal incidence and low fluence. The radiation dose deposited by surviving Fe ions and charged fragments was measured behind the shield using an ionization chamber. The distribution of the measured track size was exploited to distinguish the primary 56Fe ions tracks from the lighter fragments. Measurements of projectile's fluence in front of the shield were used to determine the dose per incident particle behind the block. Simultaneous measurements of primary 56Fe ion tracks in front and behind the shield were used to evaluate the fraction of surviving iron projectiles and the total charge-changing fragmentation cross-section. These physical measurements will be used to characterize the beam used in parallel biological experiments. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

  19. Magnetic Field Amplification in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Xu, Siyao; Lazarian, Alex

    2017-12-01

    Based on the new findings on the turbulent dynamo in Xu & Lazarian, we examine the magnetic field amplification in the context of supernova remnants. Due to the strong ion-neutral collisional damping in the weakly ionized interstellar medium, the dynamo in the preshock turbulence remains in the damping kinematic regime, which leads to a linear-in-time growth of the magnetic field strength. The resultant magnetic field structure enables effective diffusion upstream and shock acceleration of cosmic rays to energies above the “knee.” Differently, the nonlinear dynamo in the postshock turbulence leads to a linear-in-time growth of the magnetic energy due to the turbulent magnetic diffusion. Given a weak initial field strength in the postshock region, the magnetic field saturates at a significant distance from the shock front as a result of the inefficiency of the nonlinear dynamo. This result is in a good agreement with existing numerical simulations and well explains the X-ray spots detected far behind the shock front.

  20. Supporting Structure of the LSD Wave in an Energy Absorption Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukui, Akihiro; Hatai, Keigo; Cho, Shinatora

    In Repetitively Pulsed (RP) Laser Propulsion, laser energy irradiated to a vehicle is converted to blast wave enthalpy during the Laser Supported Detonation (LSD) regime. Based on the measured post-LSD electron number density profiles by two-wavelength Mach Zehnder interferometer in a line-focusing optics, electron temperature and absorption coefficient were estimated assuming Local Thermal Equilibrium. A 10J/pulse CO{sub 2} laser was used. As a result, laser absorption was found completed in the layer between the shock wave and the electron density peak. Although the LSD-termination timing was not clear from the shock-front/ionization-front separation in the shadowgraph images, there observed drastic changesmore » in the absorption layer thickness from 0.2 mm to 0.5 mm and in the peak heating rate from 12-17x10{sup 13} kW/m{sup 3} to 5x10{sup 13} kW/m{sup 3} at the termination.« less

  1. Abundances of O, Mg, S, Cr, Mn, Ti, NI and Zn from absorption lines of neutral gas in the Large Magellanic Cloud in front of R136

    NASA Astrophysics Data System (ADS)

    de Boer, K. S.; Fitzpatrick, E. L.; Savage, B. D.

    1985-11-01

    The authors have searched six high-dispersion IUE spectra of R136 for weak absorption lines of C I, O I, Mg I, Mg II, Si I, Si II, P I, Cl I, Cr II, Mn II, Fe I, Ni II, Zn II, CO and C2. The absorption detected is from neutral gas in front of the 30 Doradus H II region. For the first time abundances of Mg, Cr, Mn, Ti, Ni, and Zn are determined for an extragalactic system. The LMC abundances from the absorption lines are a factor of 2 to 3 below those of the Milky Way, in agreement with general results from emission line studies. The density and temperature of the neutral gas are estimates from the observed excitation and ionization at approximately n(H) = 300 cm-3 and T = 100K, implying a gas pressure of about 3×104cm-3K.

  2. Parametric excitation of multiple resonant radiations from localized wavepackets

    PubMed Central

    Conforti, Matteo; Trillo, Stefano; Mussot, Arnaud; Kudlinski, Alexandre

    2015-01-01

    Fundamental physical phenomena such as laser-induced ionization, driven quantum tunneling, Faraday waves, Bogoliubov quasiparticle excitations, and the control of new states of matter rely on time-periodic driving of the system. A remarkable property of such driving is that it can induce the localized (bound) states to resonantly couple to the continuum. Therefore experiments that allow for enlightening and controlling the mechanisms underlying such coupling are of paramount importance. We implement such an experiment in a special optical fiber characterized by a dispersion oscillating along the propagation coordinate, which mimics “time”. The quasi-momentum associated with such periodic perturbation is responsible for the efficient coupling of energy from the localized wave-packets (solitons in anomalous dispersion and shock fronts in normal dispersion) sustained by the fiber nonlinearity, into free-running linear dispersive waves (continuum) at multiple resonant frequencies. Remarkably, the observed resonances can be explained by means of a unified approach, regardless of the fact that the localized state is a soliton-like pulse or a shock front. PMID:25801054

  3. How Very Massive Metal-Free Stars Start Cosmological Reionization

    NASA Technical Reports Server (NTRS)

    Wise, John H.; Abel, Tom

    2008-01-01

    The initial conditions and relevant physics for the formation of the earliest galaxies are well specified in the concordance cosmology. Using ab initio cosmological Eulerian adaptive mesh refinement radiation hydrodynamical calculations, we discuss how very massive stars start the process of cosmological reionization. The models include nonequilibrium primordial gas chemistry and cooling processes and accurate radiation transport in the case B approximation using adaptively ray-traced photon packages, retaining the time derivative in the transport equation. Supernova feedback is modeled by thermal explosions triggered at parsec scales. All calculations resolve the local Jeans length by at least 16 grid cells at all times and as such cover a spatial dynamic range of approx.10(exp 6). These first sources of reionization are highly intermittent and anisotropic and first photoionize the small-scale voids surrounding the halos they form in, rather than the dense filaments they are embedded in. As the merging objects form larger, dwarf-sized galaxies, the escape fraction of UV radiation decreases and the H II regions only break out on some sides of the galaxies, making them even more anisotropic. In three cases, SN blast waves induce star formation in overdense regions that were formed earlier from ionization front instabilities. These stars form tens of parsecs away from the center of their parent DM halo. Approximately five ionizing photons are needed per sustained ionization when star formation in 10(exp 6) stellar Mass halos is dominant in the calculation. As the halos become larger than approx.10(exp 7) Stellar Mass, the ionizing photon escape fraction decreases, which in turn increases the number of photons per ionization to 15-50, in calculations with stellar feedback only. Radiative feedback decreases clumping factors by 25% when compared to simulations without star formation and increases the average temperature of ionized gas to values between 3000 and 10,000 K.

  4. Characterization of total ionizing dose damage in COTS pinned photodiode CMOS image sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zujun, E-mail: wangzujun@nint.ac.cn; Ma, Wuying; Huang, Shaoyan

    The characterization of total ionizing dose (TID) damage in COTS pinned photodiode (PPD) CMOS image sensors (CISs) is investigated. The radiation experiments are carried out at a {sup 60}Co γ-ray source. The CISs are produced by 0.18-μm CMOS technology and the pixel architecture is 8T global shutter pixel with correlated double sampling (CDS) based on a 4T PPD front end. The parameters of CISs such as temporal domain, spatial domain, and spectral domain are measured at the CIS test system as the EMVA 1288 standard before and after irradiation. The dark current, random noise, dark signal non-uniformity (DSNU), photo responsemore » non-uniformity (PRNU), overall system gain, saturation output, dynamic range (DR), signal to noise ratio (SNR), quantum efficiency (QE), and responsivity versus the TID are reported. The behaviors of the tested CISs show remarkable degradations after radiation. The degradation mechanisms of CISs induced by TID damage are also analyzed.« less

  5. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating.

    PubMed

    Shen, X F; Qiao, B; Zhang, H; Kar, S; Zhou, C T; Chang, H X; Borghesi, M; He, X T

    2017-05-19

    A method to achieve stable radiation pressure acceleration (RPA) of heavy ions from laser-irradiated ultrathin foils is proposed, where a high-Z material coating in front is used. The coated high-Z material, acting as a moving electron repository, continuously replenishes the accelerating heavy ion foil with comoving electrons in the light-sail acceleration stage due to its successive ionization under laser fields with Gaussian temporal profile. As a result, the detrimental effects such as foil deformation and electron loss induced by the Rayleigh-Taylor-like and other instabilities in RPA are significantly offset and suppressed so that stable acceleration of heavy ions are maintained. Particle-in-cell simulations show that a monoenergetic Al^{13+} beam with peak energy 3.8 GeV and particle number 10^{10} (charge >20  nC) can be obtained at intensity 10^{22}  W/cm^{2}.

  6. Laser characterization of electric field oscillations in the Hall thruster breathing mode

    NASA Astrophysics Data System (ADS)

    Young, Christopher; Lucca Fabris, Andrea; MacDonald-Tenenbaum, Natalia; Hargus, William, Jr.; Cappelli, Mark

    2016-10-01

    Hall thrusters are a mature technology for space propulsion applications that exhibit a wide array of dynamic behavior, including plasma waves, instabilities and turbulence. One common low frequency (10-50 kHz) discharge current oscillation is the breathing mode, a cycle of neutral propellant injection, strong ionization, and ion acceleration by a steep potential gradient. A time-resolved laser-induced fluorescence diagnostic non-intrusively captures this propagating ionization front in the channel of a commercial BHT-600 Hall thruster manufactured by Busek Co. Measurements of ion velocity and relative ion density (using the 5 d[ 4 ] 7 / 2 - 6 p[ 3 ] 5 / 2 Xe II transition at 834.95 nm, vacuum) reveal a dynamic electric field structure traversing the channel throughout the breathing mode cycle. This work is sponsored by the U.S. Air Force Office of Scientific Research, with Dr. M. Birkan as program manager. C.Y. acknowledges support from the DOE NSSA Stewardship Science Graduate Fellowship under contract DE-FC52-08NA28752.

  7. Characterization of total ionizing dose damage in COTS pinned photodiode CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Wang, Zujun; Ma, Wuying; Huang, Shaoyan; Yao, Zhibin; Liu, Minbo; He, Baoping; Liu, Jing; Sheng, Jiangkun; Xue, Yuan

    2016-03-01

    The characterization of total ionizing dose (TID) damage in COTS pinned photodiode (PPD) CMOS image sensors (CISs) is investigated. The radiation experiments are carried out at a 60Co γ-ray source. The CISs are produced by 0.18-μm CMOS technology and the pixel architecture is 8T global shutter pixel with correlated double sampling (CDS) based on a 4T PPD front end. The parameters of CISs such as temporal domain, spatial domain, and spectral domain are measured at the CIS test system as the EMVA 1288 standard before and after irradiation. The dark current, random noise, dark signal non-uniformity (DSNU), photo response non-uniformity (PRNU), overall system gain, saturation output, dynamic range (DR), signal to noise ratio (SNR), quantum efficiency (QE), and responsivity versus the TID are reported. The behaviors of the tested CISs show remarkable degradations after radiation. The degradation mechanisms of CISs induced by TID damage are also analyzed.

  8. Sporadic E ionization layers observed with radar imaging and ionospheric modification

    NASA Astrophysics Data System (ADS)

    Hysell, D. L.; Munk, J.; McCarrick, M.

    2014-10-01

    Sporadic E ionization layers have been observed in the daytime subauroral ionospheric E layer by a 30 MHz radar in Alaska. The radar detects coherent backscatter from meter-scale field-aligned plasma density irregularities. The irregularities were generated by ionospheric modification—by the emission of strong HF electromagnetic waves directly beneath the layers—making the layers visible to the radar. Aperture-synthesis methods are used to generate imagery of the layers from the radar data. The layers are patchy, with patches organized along fronts spaced by tens of kilometers and propagating slowly toward the southwest. Similar, naturally occurring layers are commonly observed at middle latitudes at night in the absence of ionospheric modification. That the patchy layers can be found at high magnetic latitudes during the day argues that they are most likely produced through the interaction of the ionospheric layer with neutral atmospheric waves and instabilities. Attenuation of the radar echoes when the HF emission frequency exceeded the third harmonic of the electron gyrofrequency was observed and is discussed.

  9. MOLECULAR AND IONIZED HYDROGEN IN 30 DORADUS. I. IMAGING OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, Sherry C. C.; Seaquist, Ernest R.; Matzner, Christopher D.

    2015-07-10

    We present the first fully calibrated H{sub 2} 1–0 S(1) image of the entire 30 Doradus nebula. The observations were conducted using the NOAO Extremely Wide-field Infrared Imager (NEWFIRM) on the CTIO 4 m Blanco Telescope. Together with a NEWFIRM Brγ image of 30 Doradus, our data reveal the morphologies of the warm molecular gas and ionized gas in 30 Doradus. The brightest H{sub 2}-emitting area, which extends from the northeast to the southwest of R136, is a photodissociation region (PDR) viewed face-on, while many clumps and pillar features located at the outer shells of 30 Doradus are PDRs viewedmore » edge-on. Based on the morphologies of H{sub 2}, Brγ, CO, and 8 μm emission, the H{sub 2} to Brγ line ratio, and Cloudy models, we find that the H{sub 2} emission is formed inside the PDRs of 30 Doradus, 2–3 pc to the ionization front of the H ii region, in a relatively low-density environment <10{sup 4} cm{sup −3}. Comparisons with Brγ, 8 μm, and CO emission indicate that H{sub 2} emission is due to fluorescence, and provide no evidence for shock excited emission of this line.« less

  10. Ion and neutral dynamics in Hall plasma accelerator ionization instabilities

    NASA Astrophysics Data System (ADS)

    Lucca Fabris, Andrea; Young, Christopher; Cappelli, Mark

    2015-09-01

    Hall thrusters, the extensively studied E × B devices used for space propulsion applications, are rife with instabilities and fluctuations. Many are thought to be fundamentally linked to microscopic processes like electron transport across magnetic field lines and propellant ionization that in turn affect macroscopic properties like device performance and lifetime. One of the strongest oscillatory regimes is the ``breathing mode,'' characterized by a propagating ionization front, time-varying ion acceleration profiles, and quasi-periodic 10-50 kHz current oscillations. Determining the temporal and spatial evolution of plasma properties is critical to achieving a fundamental physical understanding of these processes. We present non-intrusive laser-induced fluorescence measurements of the local ion and neutral velocity distribution functions synchronized with the breathing mode oscillations. Measurements reveal strong ion velocity fluctuations, multiple ion populations arising in narrow time windows throughout the near-field plume, and the periodic population and depopulation of neutral excited states. Analyzing these detailed experimental results in the context of the existing literature clarifies the fundamental physical processes underlying the breathing mode. This work is sponsored by the U.S. Air Force Office of Scientific Research with Dr. M. Birkan as program manager. C.Y. acknowledges support from the DOE NSSA Stewardship Science Graduate Fellowship under contract DE-FC52-08NA28752.

  11. Mode-locking observation of a CO2 laser by intracavity plasma injection

    NASA Astrophysics Data System (ADS)

    John, P. K.; Dembinski, M.

    1980-06-01

    A TEA CO2 laser was simultaneously Q-switched and mode-locked when an underdense plasma was injected into the cavity. The plasma was produced in an electromagnetic shock tube. Plasma density and temperature were N sub e of approximately 10 to the 17th/cu cm and T sub e of approximately 2 eV, respectively. Phase perturbation of the cavity due to the time dependent plasma refractive index could account for the observed mode-locking.

  12. Lyman-Werner escape fractions from the first galaxies

    NASA Astrophysics Data System (ADS)

    Schauer, Anna T. P.; Agarwal, Bhaskar; Glover, Simon C. O.; Klessen, Ralf S.; Latif, Muhammad A.; Mas-Ribas, Lluís; Rydberg, Claes-Erik; Whalen, Daniel J.; Zackrisson, Erik

    2017-05-01

    Direct collapse black holes forming in pristine, atomically cooling haloes at z ≈ 10-20 may act as the seeds of supermassive black holes (BHs) at high redshifts. In order to create a massive BH seed, the host halo needs to be prevented from forming stars. H2 therefore needs to be irradiated by a large flux of Lyman-Werner (LW) UV photons in order to suppress H2 cooling. A key uncertainty in this scenario is the escape fraction of LW radiation from first galaxies, which is the dominant source of UV photons at this epoch. To better constrain this escape fraction, we have performed radiation-hydrodynamical simulations of the growth of H II regions and their associated photodissociation regions in the first galaxies using the zeus-mp code. We find that the LW escape fraction crucially depends on the propagation of the ionization front (I-front). For an R-type I-front overrunning the halo, the LW escape fraction is always larger than 95 per cent. If the halo recombines later from the outside-in, due to a softened and weakened spectrum, the LW escape fraction in the rest frame of the halo (the near-field) drops to zero. A detailed and careful analysis is required to analyse slowly moving, D-type I-fronts, where the escape fraction depends on the microphysics and can be as small as 3 per cent in the near-field and 61 per cent in the far-field or as large as 100 per cent in both the near-field and the far-field.

  13. Interpreting HST observations with simulations of reionization: the ionizing photon budget and the decline of Lyman-alpha emission in z>6 dropouts

    NASA Astrophysics Data System (ADS)

    D'Aloisio, Anson

    2017-08-01

    In recent years, HST surveys such as CANDELS, HUDF, BoRG/HIPPIES, ERS, and the Frontier Fields, have made possible the first robust measurements of the rest-frame UV luminosity function of z =6-10 galaxies, spanning much of the redshift range over which reionization likely occurred. These measurements provide an estimate of the galactic ionizing photon output, addressing the critical question of whether these galaxies could have reionized the Universe. In addition, follow-up spectroscopy has measured the fraction of these galaxies that show Lyman-alpha emission. Interestingly, a dramatic decrease in this fraction above z 6 has been observed, and this evolution has (controversially) been interpreted as evidence that much of reionization happened over z=6-8 (as intergalactic neutral gas leads to large damping wings that scatter the Lyman-alpha line). The clumpiness of the IGM and how it self shields to ionizing photons impacts whether the observed population of galaxies can reionize the Universe, as well as the interpretation of the evolving Lyman-alpha emitter fraction. We propose to run fully coupled radiative-hydrodynamics simulations that are the first to resolve the evaporation of small structures by passing ionization fronts and, hence, to accurately assess the level of clumpiness and self-shielding from the IGM. Our study will nail down the clumping factor used to assess whether the observed population of galaxies can drive reionization, and it will address whether neutral self-shielding clumps in recently reionized regions can scatter galaxies' Lyman-alpha lines.

  14. HOW THE DENSITY ENVIRONMENT CHANGES THE INFLUENCE OF THE DARK MATTER–BARYON STREAMING VELOCITY ON COSMOLOGICAL STRUCTURE FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Kyungjin, E-mail: kjahn@chosun.ac.kr

    We study the dynamical effect of the relative velocity between dark matter and baryonic fluids, which remained supersonic after the epoch of recombination. The impact of this supersonic motion on the formation of cosmological structures was first formulated by Tseliakhovich and Hirata, in terms of the linear theory of small-scale fluctuations coupled to large-scale, relative velocities in mean-density regions. In their formalism, they limited the large-scale density environment to be that of the global mean density. We improve on their formulation by allowing variation in the density environment as well as the relative velocities. This leads to a new typemore » of coupling between large-scale and small-scale modes. We find that the small-scale fluctuation grows in a biased way: faster in the overdense environment and slower in the underdense environment. We also find that the net effect on the global power spectrum of the density fluctuation is to boost its overall amplitude from the prediction by Tseliakhovich and Hirata. Correspondingly, the conditional mass function of cosmological halos and the halo bias parameter are both affected in a similar way. The discrepancy between our prediction and that of Tseliakhovich and Hirata is significant, and therefore, the related cosmology and high-redshift astrophysics should be revisited. The mathematical formalism of this study can be used for generating cosmological initial conditions of small-scale perturbations in generic, overdense (underdense) background patches.« less

  15. Development of a 1-m plasma source for heavy ion beam charge neutralization

    NASA Astrophysics Data System (ADS)

    Efthimion, Philip C.; Gilson, Erik P.; Grisham, Larry; Davidson, Ronald C.; Yu, Simon; Waldron, William; Grant Logan, B.

    2005-05-01

    Highly ionized plasmas are being employed as a medium for charge neutralizing heavy ion beams in order to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length ˜0.1-1 m would be suitable for achieving a high level of charge neutralization. A radio frequency (RF) source was constructed at the Princeton Plasma Physics Laboratory (PPPL) in support of the joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization. Pulsing the source enabled operation at pressures ˜10 -6 Torr with plasma densities of 10 11 cm -3. Near 100% ionization was achieved. The plasma was 10 cm in length, but future experiments require a source 1 m long. The RF source does not easily scale to the length. Consequently, large-volume plasma sources based upon ferroelectric ceramics are being considered. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source will utilize the ferroelectric ceramic BaTiO 3 to form metal plasma. A 1 m long section of the drift tube inner surface of NTX will be covered with ceramic. A high voltage (˜1-5 kV) is applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. Plasma densities of 10 12 cm -3 and neutral pressures ˜10 -6 Torr are expected. A test stand to produce 20 cm long plasma is being constructed and will be tested before a 1 m long source is developed.

  16. Probing the Mechanisms of an Air Amplifier using a LTQ-FT-ICR-MS and Fluorescence Spectroscopy

    PubMed Central

    Dixon, R. Brent; Muddiman, David C.; Hawkridge, Adam M.; Fedorov, A. G.

    2008-01-01

    We report the first quantitative assessment of electrosprayed droplet/ion focusing enabled by the use of a voltage-assisted air amplifier between an electrospray ionization emitter and a hybrid linear ion trap Fourier transform ion cyclotron resonance mass spectrometer (ESI-LTQ-FT-ICR-MS). A solution of fluorescent dye was electrosprayed with a stainless steel mesh screen placed in front of the MS inlet capillary acting as a gas-permeable imaging plate for fluorescence spectroscopy. Without use of the air amplifier no detectable FT-ICR signal was observed, as well as no detectable fluorescence on the screen upon imaging using a fluorescence scanner. When the air amplifier was turned ON while electrospraying the fluorescent dye, FT-ICR mass spectra with high signal to noise ratio were obtained with an average ion injection time of 21 milliseconds for an AGC target value of 5 × 105. Imaging of the screen using a fluorescence scanner produced a distinct spot of cross-sectional area ~33.5 mm2 in front of the MS inlet capillary. These experimental results provide direct evidence of aerodynamic focusing of electrosprayed droplets/ions enabled by an air amplifier, resulting in improved electrospray droplet/ion capture efficiency and reduced ion injection time. A second set of experiments was carried out to explore whether the air amplifier assists in desolvation. By electrospraying a mix of quaternary amines, ratios of increasingly hydrophobic molecules were obtained. Observation of the solvophobic effect associated with electrospray ionization resulted in a higher abundance of the hydrophobic molecule. This bias was eliminated when the air amplifier was turned ON and a response indicative of the respective component concentrations of the molecules in the bulk solution was observed. PMID:17855111

  17. Compression and ablation of the photo-irradiated molecular cloud the Orion Bar.

    PubMed

    Goicoechea, Javier R; Pety, Jérôme; Cuadrado, Sara; Cernicharo, José; Chapillon, Edwige; Fuente, Asunción; Gerin, Maryvonne; Joblin, Christine; Marcelino, Nuria; Pilleri, Paolo

    2016-09-08

    The Orion Bar is the archetypal edge-on molecular cloud surface illuminated by strong ultraviolet radiation from nearby massive stars. Our relative closeness to the Orion nebula (about 1,350 light years away from Earth) means that we can study the effects of stellar feedback on the parental cloud in detail. Visible-light observations of the Orion Bar show that the transition between the hot ionized gas and the warm neutral atomic gas (the ionization front) is spatially well separated from the transition between atomic and molecular gas (the dissociation front), by about 15 arcseconds or 6,200 astronomical units (one astronomical unit is the Earth-Sun distance). Static equilibrium models used to interpret previous far-infrared and radio observations of the neutral gas in the Orion Bar (typically at 10-20 arcsecond resolution) predict an inhomogeneous cloud structure comprised of dense clumps embedded in a lower-density extended gas component. Here we report one-arcsecond-resolution millimetre-wave images that allow us to resolve the molecular cloud surface. In contrast to stationary model predictions, there is no appreciable offset between the peak of the H 2 vibrational emission (delineating the H/H 2 transition) and the edge of the observed CO and HCO + emission. This implies that the H/H 2 and C + /C/CO transition zones are very close. We find a fragmented ridge of high-density substructures, photoablative gas flows and instabilities at the molecular cloud surface. The results suggest that the cloud edge has been compressed by a high-pressure wave that is moving into the molecular cloud, demonstrating that dynamical and non-equilibrium effects are important for the cloud evolution.

  18. Compression and ablation of the photo-irradiated molecular cloud the Orion Bar

    NASA Astrophysics Data System (ADS)

    Goicoechea, Javier R.; Pety, Jérôme; Cuadrado, Sara; Cernicharo, José; Chapillon, Edwige; Fuente, Asunción; Gerin, Maryvonne; Joblin, Christine; Marcelino, Nuria; Pilleri, Paolo

    2016-09-01

    The Orion Bar is the archetypal edge-on molecular cloud surface illuminated by strong ultraviolet radiation from nearby massive stars. Our relative closeness to the Orion nebula (about 1,350 light years away from Earth) means that we can study the effects of stellar feedback on the parental cloud in detail. Visible-light observations of the Orion Bar show that the transition between the hot ionized gas and the warm neutral atomic gas (the ionization front) is spatially well separated from the transition between atomic and molecular gas (the dissociation front), by about 15 arcseconds or 6,200 astronomical units (one astronomical unit is the Earth-Sun distance). Static equilibrium models used to interpret previous far-infrared and radio observations of the neutral gas in the Orion Bar (typically at 10-20 arcsecond resolution) predict an inhomogeneous cloud structure comprised of dense clumps embedded in a lower-density extended gas component. Here we report one-arcsecond-resolution millimetre-wave images that allow us to resolve the molecular cloud surface. In contrast to stationary model predictions, there is no appreciable offset between the peak of the H2 vibrational emission (delineating the H/H2 transition) and the edge of the observed CO and HCO+ emission. This implies that the H/H2 and C+/C/CO transition zones are very close. We find a fragmented ridge of high-density substructures, photoablative gas flows and instabilities at the molecular cloud surface. The results suggest that the cloud edge has been compressed by a high-pressure wave that is moving into the molecular cloud, demonstrating that dynamical and non-equilibrium effects are important for the cloud evolution.

  19. Localized microwave pulsed plasmas for ignition and flame front enhancement

    NASA Astrophysics Data System (ADS)

    Michael, James Bennett

    Modern combustor technologies require the ability to match operational parameters to rapidly changing demands. Challenges include variable power output requirements, variations in air and fuel streams, the requirement for rapid and well-controlled ignition, and the need for reliability at low fuel mixture fractions. Work on subcritical microwave coupling to flames and to weakly ionized laser-generated plasmas has been undertaken to investigate the potential for pulsed microwaves to allow rapid combustion control, volumetric ignition, and leaner combustion. Two strategies are investigated. First, subcritical microwaves are coupled to femtosecond laser-generated ionization to ignite methane/air mixtures in a quasi-volumetric fashion. Total energy levels are comparable to the total minimum ignition energies for laser and spark discharges, but the combined strategy allows a 90 percent reduction in the required laser energy. In addition, well-defined multi-dimensional ignition patterns are designated with multiple laser passes. Second, microwave pulse coupling to laminar flame fronts is achieved through interaction with chemiionization-produced electrons in the reaction zone. This energy deposition remains well-localized for a single microwave pulse, resulting in rapid temperature rises of greater than 200 K and maintaining flame propagation in extremely lean methane/air mixtures. The lean flammability limit in methane/air mixtures with microwave coupling has been decreased from an equivalence ratio 0.6 to 0.3. Additionally, a diagnostic technique for laser tagging of nitrogen for velocity measurements is presented. The femtosecond laser electronic excitation tagging (FLEET) technique utilizes a 120 fs laser to dissociate nitrogen along a laser line. The relatively long-lived emission from recombining nitrogen atoms is imaged with a delayed and fast-gated camera to measure instantaneous velocities. The emission strength and lifetime in air and pure nitrogen allow instantaneous velocity measurements. FLEET is shown to perform in high temperature and reactive mixtures.

  20. Ionization compression impact on dense gas distribution and star formation. Probability density functions around H II regions as seen by Herschel

    NASA Astrophysics Data System (ADS)

    Tremblin, P.; Schneider, N.; Minier, V.; Didelon, P.; Hill, T.; Anderson, L. D.; Motte, F.; Zavagno, A.; André, Ph.; Arzoumanian, D.; Audit, E.; Benedettini, M.; Bontemps, S.; Csengeri, T.; Di Francesco, J.; Giannini, T.; Hennemann, M.; Nguyen Luong, Q.; Marston, A. P.; Peretto, N.; Rivera-Ingraham, A.; Russeil, D.; Rygl, K. L. J.; Spinoglio, L.; White, G. J.

    2014-04-01

    Aims: Ionization feedback should impact the probability distribution function (PDF) of the column density of cold dust around the ionized gas. We aim to quantify this effect and discuss its potential link to the core and initial mass function (CMF/IMF). Methods: We used Herschel column density maps of several regions observed within the HOBYS key program in a systematic way: M 16, the Rosette and Vela C molecular clouds, and the RCW 120 H ii region. We computed the PDFs in concentric disks around the main ionizing sources, determined their properties, and discuss the effect of ionization pressure on the distribution of the column density. Results: We fitted the column density PDFs of all clouds with two lognormal distributions, since they present a "double-peak" or an enlarged shape in the PDF. Our interpretation is that the lowest part of the column density distribution describes the turbulent molecular gas, while the second peak corresponds to a compression zone induced by the expansion of the ionized gas into the turbulent molecular cloud. Such a double peak is not visible for all clouds associated with ionization fronts, but it depends on the relative importance of ionization pressure and turbulent ram pressure. A power-law tail is present for higher column densities, which are generally ascribed to the effect of gravity. The condensations at the edge of the ionized gas have a steep compressed radial profile, sometimes recognizable in the flattening of the power-law tail. This could lead to an unambiguous criterion that is able to disentangle triggered star formation from pre-existing star formation. Conclusions: In the context of the gravo-turbulent scenario for the origin of the CMF/IMF, the double-peaked or enlarged shape of the PDF may affect the formation of objects at both the low-mass and the high-mass ends of the CMF/IMF. In particular, a broader PDF is required by the gravo-turbulent scenario to fit the IMF properly with a reasonable initial Mach number for the molecular cloud. Since other physical processes (e.g., the equation of state and the variations among the core properties) have already been said to broaden the PDF, the relative importance of the different effects remains an open question. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  1. The distribution of emission-line galaxies in selected areas of the sky

    NASA Astrophysics Data System (ADS)

    Moody, J. Ward

    1988-11-01

    The author discusses the spatial distribution of emission-line galaxies (ELGs) relative to normal galaxies in several areas of the sky. Current evidence supports the notion that ELGs trace a low-density population in all the surveyed areas with the possible exception of the CfA "Slice of the Universe" survey. Based on this and other survey data in the north galactic cap, it is suggested that the ELGs inside the Bootes void may actually define the edge of a totally empty volume within an underdense distribution of normal galaxies.

  2. The distribution of emission-line galaxies in selected areas of the sky

    NASA Technical Reports Server (NTRS)

    Moody, J. Ward

    1988-01-01

    The spatial distribution of emission-line galaxies (ELGs) relative to normal galaxies in several areas of the sky is discussed. Current evidence supports the notion that ELGs trace a low-density population in all the surveyed areas with the possible exception of the CfA 'Slice of the Universe' survey. Based on this and other survey data in the north galactic cap, it is suggested that the ELGs inside the Bootes void may actually define the edge of a totally empty volume within an underdense distribution of normal galaxies.

  3. Thomson-Scattering Study of the Subharmonic Decay of Ion-Acoustic Waves Driven by the Brillouin Instability

    NASA Astrophysics Data System (ADS)

    Bandulet, H. C.; Labaune, C.; Lewis, K.; Depierreux, S.

    2004-07-01

    Thomson scattering (TS) has been used to investigate the two-ion decay instability of ion acoustic waves generated by stimulated Brillouin scattering in an underdense CH plasma. Two complementary TS diagnostics, spectrally and spatially resolved, demonstrate the occurrence of the subharmonic decay of the primary ion acoustic wave into two secondary waves. The study of the laser intensity dependence shows that the secondary ion acoustic waves are correlated with the SBS reflectivity saturation, at a level of a few percent.

  4. Measurement of concrete strength using the emission intensity ratio between Ca(II) 396.8 nm and Ca(I) 422.6 nm in a Nd:YAG laser-induced plasma.

    PubMed

    Tsuyuki, Kenichiro; Miura, Satoru; Idris, Nasrullah; Kurniawan, Koo Hendrik; Lie, Tjung Jie; Kagawa, Kiichiro

    2006-01-01

    An experiment to investigate the potential of a laser-induced plasma method for determining concrete compressive strength was conducted by focusing a Nd:YAG laser on concrete samples with different degrees of compressive strength. This technique was developed in light of the role of the shock wave in the generation of a laser-induced plasma. It was found that the speed of the shock front depends on the hardness of the sample. It was also found that a positive relationship exists between the speed of the shock front and the ionization rate of the ablated atoms. Hence, the ratio of the intensity between the Ca(II) 396.8 nm and Ca(I) 422.6 nm emission lines detected from the laser-induced plasma can be used to examine the hardness of the material. In fact, it was observed that the ratio changes with respect to the change in the concrete compressive strength. The findings also show that the ratio increases with time after the cement is mixed with water.

  5. Hydrodynamic modeling of laser interaction with micro-structured targets

    DOE PAGES

    Velechovsky, Jan; Limpouch, Jiri; Liska, Richard; ...

    2016-08-03

    A model is developed for numerical simulations of laser absorption in plasmas made of porous materials, with particular interest in low-density foams. Laser absorption is treated on two spatial scales simultaneously. At the microscale, the expansion of a thin solid pore wall is modeled in one dimension and the information obtained is used in the macroscale fluid simulations for the description of the plasma homogenization behind the ionization front. This two-scale laser absorption model is implemented in the arbitrary Lagrangian–Eulerian hydrocode PALE. In conclusion, the numerical simulations of laser penetration into low-density foams compare favorably with published experimental data.

  6. Making MUSIC: A multiple sampling ionization chamber

    NASA Astrophysics Data System (ADS)

    Shumard, B.; Henderson, D. J.; Rehm, K. E.; Tang, X. D.

    2007-08-01

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the (α, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for (α, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only (α, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. × 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the (α, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the (α, p) reaction to reach the anode segment below the reaction.

  7. Communications Blackout Prediction for Atmospheric Entry of Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Morabito, David; Edquist, Karl

    2005-01-01

    When a supersonic spacecraft enters a planetary atmosphere with v >> v(sub sound), a shock layer forms in the front of the body. An ionized sheath of plasma develops around the spacecraft, which results from the ionization of the atmospheric constituents as they are compressed and heated by the shock or heated within the boundary layer next to the surface. When the electron density surrounding the spacecraft becomes sufficiently high, communications can be disrupted (attenuation/blackout). During Mars Science Laboratory's (MSL's) atmospheric entry there will likely be a communication outage due to charged particles on the order of 60 to 100 seconds using a UHF link frequency looking out the shoulders of the wake region to orbiting relay asset. A UHF link looking out the base region would experience a shorter duration blackout, about 35 seconds for the stressed trajectory and possibly no blackout for the nominal trajectory. There is very little likelihood of a communications outage using X-band (however, X-band is not currently planned to be used during peak electron density phase of EDL).

  8. Evaluation of commercial ADC radiation tolerance for accelerator experiments

    DOE PAGES

    Chen, K.; Chen, H.; Kierstead, J.; ...

    2015-08-17

    Electronic components used in high energy physics experiments are subjected to a radiation background composed of high energy hadrons, mesons and photons. These particles can induce permanent and transient effects that affect the normal device operation. Ionizing dose and displacement damage can cause chronic damage which disable the device permanently. Transient effects or single event effects are in general recoverable with time intervals that depend on the nature of the failure. The magnitude of these effects is technology dependent with feature size being one of the key parameters. Analog to digital converters are components that are frequently used in detectormore » front end electronics, generally placed as close as possible to the sensing elements to maximize signal fidelity. We report on radiation effects tests conducted on 17 commercially available analog to digital converters and extensive single event effect measurements on specific twelve and fourteen bit ADCs that presented high tolerance to ionizing dose. We discuss mitigation strategies for single event effects (SEE) for their use in the large hadron collider environment.« less

  9. Formation and dynamics of plasma bullets in a non-thermal plasma jet: influence of the high-voltage parameters on the plume characteristics

    NASA Astrophysics Data System (ADS)

    Jarrige, Julien; Laroussi, Mounir; Karakas, Erdinc

    2010-12-01

    Non-thermal plasma jets in open air are composed of ionization waves commonly known as 'plasma bullets' propagating at high velocities. We present in this paper an experimental study of plasma bullets produced in a dielectric barrier discharge linear-field reactor fed with helium and driven by microsecond high-voltage pulses. Two discharges were produced between electrodes for every pulse (at the rising and falling edge), but only one bullet was generated. Fast intensified charge coupled device camera imaging showed that bullet velocity and diameter increase with applied voltage. Spatially resolved optical emission spectroscopy measurements provided evidence of the hollow structure of the jet and its contraction. It was shown that the pulse amplitude significantly enhances electron energy and production of active species. The plasma bullet appeared to behave like a surface discharge in the tube, and like a positive streamer in air. A kinetics mechanism based on electron impact, Penning effect and charge transfer reactions is proposed to explain the propagation of the ionization front and temporal behavior of the radiative species.

  10. Local reionization histories with a merger tree of the HII regions

    NASA Astrophysics Data System (ADS)

    Chardin, Jonathan; Aubert, Dominique; Ocvirk, Pierre

    2014-08-01

    Aims: We investigate simple properties of the initial stage of the reionization process around progenitors of galaxies, such as the extent of the initial HII region before its fusion with the UV background, and the duration of its propagation. Methods: We used a set of four reionization simulations with different resolutions and ionizing source prescriptions. By using a merger tree of the HII regions we compiled a catalog of the HII region properties. When the ionized regions undergo a major-merger event, we considered that they belong to the global UV background. From the lifetime of the region and from their volume until this moment we drew typical local reionization histories as a function of time and investigated the relation between these histories and the halo mass progenitors of the regions. We then used an average mass accretion history model (AMAH) to extrapolate the halo mass inside the region from high z to z = 0 to predict the past reionization histories of galaxies we see today. Results: We found that the later an HII region appears during the reionization period, the shorter their related lifetime is and the smaller their volume before they merge with the global UV background. Quantitatively, the duration and extent of the initial growth of an HII region is strongly dependent on the mass of the inner halo and can be as long as ~50% of the reionization epoch. We found that the more massive a halo is today, the earlier it appears and the larger is the extension and the longer the propagation duration of its HII region. Quantitative predictions differ depending on the box size or the source model: small simulated volumes are affected by proximity effects between HII regions, and halo-based source models predict smaller regions and slower I-front expansion than models that use star particles as ionizing sources. Applying this extrapolation to Milky Way-type halos leads to a maximal extent of 1.1 Mpc/h for the initial HII region that established itself in ~150-200 ± 20 Myr. This is consistent with the prediction made using constrained Local Group simulations. For halos with masses similar to those of the Local Group (MW + M31), our result suggests that statistically it has not been influenced by an external front coming from a Virgo-like cluster.

  11. Early and Extended Helium Reionization over More Than 600 Million Years of Cosmic Time

    NASA Astrophysics Data System (ADS)

    Worseck, Gábor; Prochaska, J. Xavier; Hennawi, Joseph F.; McQuinn, Matthew

    2016-07-01

    We measure the effective optical depth of He II Lyα absorption {τ }{eff,{He}{{II}}} at 2.3\\lt z\\lt 3.5 in 17 UV-transmitting quasars observed with UV spectrographs on the Hubble Space Telescope. The median {τ }{eff,{He}{{II}}} values increase gradually from 1.95 at z=2.7 to 5.17 at z=3.4, but with a strong sightline-to-sightline variance. Many ≃ 35 comoving Mpc regions of the z\\gt 3 intergalactic medium (IGM) remain transmissive ({τ }{eff,{He}{{II}}}\\lt 4), and the gradual trend with redshift appears consistent with density evolution of a fully reionized IGM. These modest optical depths imply average He II fractions of {x}{He{{II}}}\\lt 0.01 and He II ionizing photon mean free paths of ≃ 50 comoving Mpc at z≃ 3.4, thus requiring that a substantial volume of the helium in the universe was already doubly ionized at early times; this stands in conflict with current models of He II reionization driven by luminous quasars. Along 10 sightlines we measure the coeval H I Lyα effective optical depths, allowing us to study the density dependence of {τ }{eff,{He}{{II}}} at z˜ 3. We establish that the dependence of {τ }{eff,{He}{{II}}} on increasing {τ }{eff,{{H}}{{I}}} is significantly shallower than expected from simple models of an IGM reionized in He II. This requires higher He II photoionization rates in overdense regions or underdense regions being not in photoionization equilibrium. Moreover, there are very large fluctuations in {τ }{eff,{He}{{II}}} at all {τ }{eff,{{H}}{{I}}} which greatly exceed the expectations from these simple models. These data present a distinct challenge to scenarios of He II reionization—an IGM where He II appears to be predominantly ionized at z≃ 3.4, and with a radiation field strength that may be correlated with the density field, but exhibits large fluctuations at all densities. Based on observations made with the NASA/ESA Hubble Space Telescope (HST), obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. These observations are associated with Program #11742. Archival HST data (#7575, 9350, 11528, 12178, 12249) were obtained from the Mikulski Archive for Space Telescopes (MAST). Several HST programs provided ancillary calibration data (#11860, 11895, 12414, 12423, 12716, 12775, 12870, 13108). Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and NASA; it was made possible by the generous financial support of the W.M. Keck Foundation. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program IDs 166.A-0106, 071.A-0066 and 083.A-0421.

  12. Gadolinium-based nanoparticles to improve the hadrontherapy performances.

    PubMed

    Porcel, Erika; Tillement, Olivier; Lux, François; Mowat, Pierre; Usami, Noriko; Kobayashi, Katsumi; Furusawa, Yoshiya; Le Sech, Claude; Li, Sha; Lacombe, Sandrine

    2014-11-01

    Nanomedicine is proposed as a novel strategy to improve the performance of radiotherapy. High-Z nanoparticles are known to enhance the effects of ionizing radiation. Recently, multimodal nanoparticles such as gadolinium-based nanoagents were proposed to amplify the effects of x-rays and g-rays and to improve MRI diagnosis. For tumors sited in sensitive tissues, childhood cases and radioresistant cancers, hadrontherapy is considered superior to x-rays and g-rays. Hadrontherapy, based on fast ion radiation, has the advantage of avoiding damage to the tissues behind the tumor; however, the damage caused in front of the tumor is its major limitation. Here, we demonstrate that multimodal gadolinium-based nanoparticles amplify cell death with fast ions used as radiation. Molecular scale experiments give insights into the mechanisms underlying the amplification of radiation effects. This proof-of-concept opens up novel perspectives for multimodal nanomedicine in hadrontherapy, ultimately reducing negative radiation effects in healthy tissues in front of the tumor. Gadolinium-chelating polysiloxane nanoparticles were previously reported to amplify the anti-tumor effects of x-rays and g-rays and to serve as MRI contrast agents. Fast ion radiation-based hadrontherapy avoids damage to the tissues behind the tumor, with a major limitation of tissue damage in front of the tumor. This study demonstrates a potential role for the above nanoagents in optimizing hadrontherapy with preventive effects in healthy tissue and amplified cell death in the tumor. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Single-cycle powerful megawatt to gigawatt terahertz pulse radiated from a wavelength-scale plasma oscillator

    NASA Astrophysics Data System (ADS)

    Wu, Hui-Chun; Sheng, Zheng-Ming; Zhang, Jie

    2008-04-01

    We propose a scheme to generate single-cycle powerful terahertz (THz) pulses by ultrashort intense laser pulses obliquely incident on an underdense plasma slab of a few THz wavelengths in thickness. THz waves are radiated from a transient net current driven by the laser ponderomotive force in the plasma slab. Analysis and particle-in-cell simulations show that such a THz source is capable of providing power of megawatts to gigawatts, field strength of MV/cm-GV/cm, and broad tunability range, which is potentially useful for nonlinear and high-field THz science and applications.

  14. Self-similar perturbations of a Friedmann universe

    NASA Technical Reports Server (NTRS)

    Carr, Bernard J.; Yahil, Amos

    1990-01-01

    The present analysis of spherically symmetric self-similar solutions to the Einstein equations gives attention to those solutions that are asymptotically k = 0 Friedmann at large z values, and possess finite but perturbed density at the origin. Such solutions represent nonlinear density fluctuations which grow at the same rate as the universe's particle horizon. The overdense solutions span only a narrow range of parameters, and resemble static isothermal gas spheres just within the sonic point; the underdense solutions may have arbitrarily low density at the origin while exhibiting a unique relationship between amplitude and scale. Their relevance to large-scale void formation is considered.

  15. Laser-driven plasma photonic crystals for high-power lasers

    NASA Astrophysics Data System (ADS)

    Lehmann, G.; Spatschek, K. H.

    2017-05-01

    Laser-driven plasma density gratings in underdense plasma are shown to act as photonic crystals for high power lasers. The gratings are created by counterpropagating laser beams that trap electrons, followed by ballistic ion motion. This leads to strong periodic plasma density modulations with a lifetime on the order of picoseconds. The grating structure is interpreted as a plasma photonic crystal time-dependent property, e.g., the photonic band gap width. In Maxwell-Vlasov and particle-in-cell simulations it is demonstrated that the photonic crystals may act as a frequency filter and mirror for ultra-short high-power laser pulses.

  16. The multiscale nature of magnetic pattern on the solar surface

    NASA Astrophysics Data System (ADS)

    Scardigli, S.; Del Moro, D.; Berrilli, F.

    Multiscale magnetic underdense regions (voids) appear in high resolution magnetograms of quiet solar surface. These regions may be considered a signature of the underlying convective structure. The study of the associated pattern paves the way for the study of turbulent convective scales from granular to global. In order to address the question of magnetic pattern driven by turbulent convection we used a novel automatic void detection method to calculate void distributions. The absence of preferred scales of organization in the calculated distributions supports the multiscale nature of flows on the solar surface and the absence of preferred convective scales.

  17. Laser singular Theta-pinch

    NASA Astrophysics Data System (ADS)

    Okulov, A. Yu.

    2010-10-01

    The interaction of the two counter-propagating ultrashort laser pulses with singular wavefronts in the thin slice of the underdense plasma is considered. It is shown that ion-acoustic wave is excited via Brillouin three-wave resonance by corkscrew interference pattern of paraxial singular laser beams. The orbital angular momentum carried by light is transferred to plasma ion-acoustic vortex. The rotation of the density perturbations of electron fluid is the cause of helical current which produces the kilogauss axial quasi-static magnetic field. The exact analytical configurations are presented for an ion-acoustic current field and magnetic induction. The range of experimentally accessible parameters is evaluated.

  18. FIRST OBSERVATIONAL SUPPORT FOR OVERLAPPING REIONIZED BUBBLES GENERATED BY A GALAXY OVERDENSITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castellano, M.; Pentericci, L.; Fontana, A.

    2016-02-10

    We present an analysis of deep Hubble Space Telescope (HST) multi-band imaging of the BDF field specifically designed to identify faint companions around two of the few Lyα emitting galaxies spectroscopically confirmed at z ∼ 7. Although separated by only 4.4 proper Mpc these galaxies cannot generate H ii regions large enough to explain the visibility of their Lyα lines, thus requiring a population of fainter ionizing sources in their vicinity. We use deep HST and VLT-Hawk-I data to select z ∼ 7 Lyman break galaxies around the emitters. We select six new robust z ∼ 7 LBGs at Y ∼ 26.5–27.5 whose average spectral energy distribution ismore » consistent with the objects being at the redshift of the close-by Lyα emitters. The resulting number density of z ∼ 7 LBGs in the BDF field is a factor of approximately three to four higher than expected in random pointings of the same size. We compare these findings with cosmological hydrodynamic plus radiative transfer simulations of a universe with a half neutral IGM: we find that indeed Lyα emitter pairs are only found in completely ionized regions characterized by significant LBG overdensities. Our findings match the theoretical prediction that the first ionization fronts are generated within significant galaxy overdensities and support a scenario where faint, “normal” star-forming galaxies are responsible for reionization.« less

  19. Exposure to non-ionizing radiation provokes changes in rat thyroid morphology and expression of HSP-90

    PubMed Central

    Misa-Agustiño, Maria J; Jorge-Mora, Teresa; Jorge-Barreiro, Francisco J; Suarez-Quintanilla, Juan; Moreno-Piquero, Eduardo; Ares-Pena, Francisco J

    2015-01-01

    Non-ionizing radiation at 2.45 GHz may modify the morphology and expression of genes that codify heat shock proteins (HSP) in the thyroid gland. Diathermy is the therapeutic application of non-ionizing radiation to humans for its beneficial effects in rheumatological and musculo-skeletal pain processes. We used a diathermy model on laboratory rats subjected to maximum exposure in the left front leg, in order to study the effects of radiation on the nearby thyroid tissue. Fifty-six rats were individually exposed once or repeatedly (10 times in two weeks) for 30 min to 2.45 GHz radiation in a commercial chamber at different non-thermal specific absorption rates (SARs), which were calculated using the finite difference time domain technique. We used immunohistochemistry methods to study the expression of HSP-90 and morphological changes in thyroid gland tissues. Ninety minutes after radiation with the highest SAR, the central and peripheral follicles presented increased size and the thickness of the peripheral septa had decreased. Twenty-four hours after radiation, only peripheral follicles radiated at 12 W were found to be smaller. Peripheral follicles increased in size with repeated exposure at 3 W power. Morphological changes in the thyroid tissue may indicate a glandular response to acute or repeated stress from radiation in the hypothalamic–pituitary–thyroid axis. Further research is needed to determine if the effect of this physical agent over time may cause disease in the human thyroid gland. PMID:25649190

  20. Gamma-insensitive optical sensor

    DOEpatents

    Kruger, Hans W.

    1994-01-01

    An ultra-violet/visible/infra-red gamma-insensitive gas avalanche focal plane array comprising a planar photocathode and a planar anode pad array separated by a gas-filled gap and across which is applied an electric potential. Electrons ejected from the photocathode are accelerated sufficiently between collisions with the gas molecules to ionize them, forming an electron avalanche. The gap acts like a proportional counter. The array of anode pad are mounted on the front of an anode plate and are connected to matching contact pads on the back of the anode via feed through wires. Connection of the anode to signal processing electronics is made from the contact pads using standard indium bump techniques, for example.

  1. New thermal neutron calibration channel at LNMRI/IRD

    NASA Astrophysics Data System (ADS)

    Astuto, A.; Patrão, K. C. S.; Fonseca, E. S.; Pereira, W. W.; Lopes, R. T.

    2016-07-01

    A new standard thermal neutron flux unit was designed in the National Ionizing Radiation Metrology Laboratory (LNMRI) for calibration of neutron detectors. Fluence is achieved by moderation of four 241Am-Be sources with 0.6 TBq each, in a facility built with graphite and paraffin blocks. The study was divided into two stages. First, simulations were performed using MCNPX code in different geometric arrangements, seeking the best performance in terms of fluence and their uncertainties. Last, the system was assembled based on the results obtained on the simulations. The simulation results indicate quasi-homogeneous fluence in the central chamber and H*(10) at 50 cm from the front face with the polyethylene filter.

  2. Galactic Teamwork Makes Distant Bubbles

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    During the period of reionization that followed the dark ages of our universe, hydrogen was transformed from a neutral state, which is opaque to radiation, to an ionized one, which is transparent to radiation. But what generated the initial ionizing radiation? The recent discovery of multiple distant galaxies offers evidence for how this process occurred.Two Distant GalaxiesWe believe reionization occurred somewhere between a redshift of z = 6 and 7, because Ly-emitting galaxies drop out at roughly this redshift. Beyond this distance, were generally unable to see the light from these galaxies, because the universe is no longer transparent to their emission. This is not always the case, however: if a bubble of ionized gas exists around a distant galaxy, the radiation can escape, allowing us to see the galaxy.This is true of two recently-discovered Ly-emitting galaxies, confirmed to be at a redshift of z~7 and located near one another in a region known as the Bremer Deep Field. The fact that were able to see the radiation from these galaxies means that they are in an ionized HII region presumably one of the earlier regions to have become reionized in the universe.But on their own, neither of these galaxies is capable of generating an ionized bubble large enough for their light to escape. So what ionized the region around them, and what does this mean for our understanding of how reionization occurred in the universe?A Little Help From FriendsLocation in different filters of the objects in the Hubble Bremer Deep Field catalog. The z~7 selection region is outlined by the grey box. BDF-521 and BDF-3299 were the two originally discovered galaxies; the remaining red markers indicate the additional six galaxies discovered in the same region. [Castellano et al. 2016]A team of scientists led by Marco Castellano (Rome Observatory, INAF) investigated the possibility that there are other, faint galaxies near these two that have helped to ionize the region. Performing a survey using deep field Hubble observations, Castellano and collaborators found an additional 6 galaxies in the same region as the first two, also at a redshift of z~7!The authors believe these galaxies provide a simple explanation of the ionized bubble: each of these faint, normal galaxies produced a small ionized bubble. The overlap of these many small bubbles provided the larger ionized region from which the light of the two originally discovered galaxies was able to escape.How normal is this clustering of galaxies found by Castellano and collaborators? The team demonstrates via cosmological modeling that the number density of galaxies in this region is a factor of 34 greater than would be expected at this distance in a random pointing of the same size.These results greatly support the theoretical prediction that the first ionization fronts in the universe were formed in regions with significant galaxy overdensities. The discovery of this deep-field collection of galaxies strongly suggests that reionization was driven by faint, normal star-forming galaxies in a clumpy process.CitationM. Castellano et al 2016 ApJ 818 L3. doi:10.3847/2041-8205/818/1/L3

  3. UV EFFECTS IN TOOTH ENAMEL AND THEIR POSSIBLE APPLICATION IN EPR DOSIMETRY WITH FRONT TEETH

    PubMed Central

    Sholom, S.; Desrosiers, M.; Chumak, V.; Luckyanov, N.; Simon, S.L.; Bouville, A.

    2009-01-01

    The effects of ultraviolet (UV) radiation on ionizing radiation biodosimetry were studied in human tooth enamel samples using the technique of electron paramagnetic resonance (EPR) in X-band. For samples in the form of grains, UV-specific EPR spectra were spectrally distinct from that produced by exposure to gamma radiation. From larger enamel samples, the UV penetration depth was determined to be in the 60–120 μm range. The difference in EPR spectra from UV exposure and from exposure to gamma radiation samples was found to be a useful marker of UV equivalent dose (defined as the apparent contribution to the gamma dose in mGy that results from UV radiation absorption) in tooth enamel. This concept was preliminarily tested on front teeth from inhabitants of the region of the Semipalatinsk Nuclear Test Site (Kazakhstan) who might have received some exposure to gamma radiation from the nuclear tests conducted there as well as from normal UV radiation in sunlight. The technique developed here to quantify and subtract the UV contribution to the measured tooth is currently limited to cumulative dose measurements with a component of UV equivalent dose equal to or greater than 300 mGy. PMID:20065706

  4. Preliminary investigation of the effects of lower hybrid power on asymmetric behaviors in the scrape-off layer in experimental advanced superconducting tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, L.; Ding, B. J., E-mail: bjding@ipp.ac.cn; Li, M. H.

    2014-02-15

    The striations in front of the lower hybrid (LH) launcher have been observed during LH injection by a visible video camera in the Experimental Advanced Superconducting Tokamak. Edge density at the top of the LH launcher tends to be much larger in reversed magnetic field (B{sub t}) than that in the normal B{sub t}. To study the mechanisms of the observations, the diffusive-convective model is employed. Simulations show that the LH power makes the density in scrape-off layer asymmetric in poloidal direction with five density peaks. The locations of the striations are approximately in agreement with the locations of themore » density peaks in different directions of B{sub t}. Higher LH power strengths the asymmetry of the density and leads to a bad coupling which is in conflict with the experimental results showing a good coupling with a higher power. Furthermore, an ionization term is introduced into this model and the increase of edge density with LH power can be qualitatively explained. The simulations also show that the density peaks in front of the waveguides become clearer when taking into account gas puffing.« less

  5. INDIRECT EVIDENCE FOR ESCAPING IONIZING PHOTONS IN LOCAL LYMAN BREAK GALAXY ANALOGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandroff, Rachael M.; Heckman, Timothy M.; Borthakur, Sanchayeeta

    2015-09-10

    A population of early star-forming galaxies is the leading candidate for the re-ionization of the universe. It is still unclear, however, what conditions and physical processes would enable a significant fraction of the ionizing (Lyman continuum) photons to escape from these gas-rich galaxies. In this paper we present the results of the analysis of Hubble Space Telescope Cosmic Origins Spectrograph far-UV (FUV) spectroscopy plus ancillary multi-waveband data of a sample of 22 low-redshift galaxies that are good analogs to typical star-forming galaxies at high redshift. We measure three parameters that provide indirect evidence of the escape of ionizing radiation (leakiness):more » (1) the residual intensity in the cores of saturated interstellar low-ionization absorption lines, which indicates incomplete covering by that gas in the galaxy; (2) the relative amount of blueshifted Lyα line emission, which can indicate the existence of holes in the neutral hydrogen on the front-side of the galaxy outflow, and (3) the relative weakness of the [S ii] optical emission lines that trace matter-bounded H ii regions. We show that our residual intensity measures are only negligibly affected by infilling from resonance emission lines. We find all three diagnostics agree well with one another. We use these diagnostics to rank-order our sample in terms of likely leakiness, noting that a direct measure of escaping Lyman continuum has recently been made for one of the leakiest members of our sample. We then examine the correlations between our ranking and other proposed diagnostics of leakiness. We find a good correlation with the equivalent width of the Lyα emission line, but no significant correlations with either the flux ratio of the [O iii]/[O ii] emission lines or the ratio of star-formation rates derived from the (dust-corrected) FUV and Hα luminosities. Turning to galaxy properties, we find the strongest correlations with leakiness are with the compactness of the star-forming region (Star formation rate/area) and the speed of the galactic outflow. This suggests that extreme feedback—a high intensity of ionizing radiation and strong pressure from both radiation and a hot galactic wind—combines to create significant holes in the neutral gas. These results not only shed new light on the physical mechanisms that can allow ionizing radiation to escape from intensely star-forming galaxies, they also provide indirect observational indicators that can be used at high redshift where direct measurements of escaping Lyman continuum radiation are impossible.« less

  6. ONLY THE LONELY: H I IMAGING OF VOID GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreckel, K.; Van Gorkom, J. H.; Platen, E.

    2011-01-15

    Void galaxies, residing within the deepest underdensities of the Cosmic Web, present an ideal population for the study of galaxy formation and evolution in an environment undisturbed by the complex processes modifying galaxies in clusters and groups, as well as provide an observational test for theories of cosmological structure formation. We have completed a pilot survey for the H I imaging aspects of a new Void Galaxy Survey (VGS), imaging 15 void galaxies in H I in local (d < 100 Mpc) voids. H I masses range from 3.5 x 10{sup 8} to 3.8 x 10{sup 9} M{sub sun}, withmore » one nondetection with an upper limit of 2.1 x 10{sup 8} M{sub sun}. Our galaxies were selected using a structural and geometric technique to produce a sample that is purely environmentally selected and uniformly represents the void galaxy population. In addition, we use a powerful new backend of the Westerbork Synthesis Radio Telescope that allows us to probe a large volume around each targeted galaxy, simultaneously providing an environmentally constrained sample of fore- and background control samples of galaxies while still resolving individual galaxy kinematics and detecting faint companions in H I. This small sample makes up a surprisingly interesting collection of perturbed and interacting galaxies, all with small stellar disks. Four galaxies have significantly perturbed H I disks, five have previously unidentified companions at distances ranging from 50 to 200 kpc, two are in interacting systems, and one was found to have a polar H I disk. Our initial findings suggest void galaxies are a gas-rich, dynamic population which present evidence of ongoing gas accretion, major and minor interactions, and filamentary alignment despite the surrounding underdense environment.« less

  7. Formic and Acetic Acid Observations over Colorado by Chemical Ionization Mass Spectrometry and Organic Acids' Role in Air Quality

    NASA Astrophysics Data System (ADS)

    Treadaway, V.; O'Sullivan, D. W.; Heikes, B.; Silwal, I.; McNeill, A.

    2015-12-01

    Formic acid (HFo) and acetic acid (HAc) have both natural and anthropogenic sources and a role in the atmospheric processing of carbon. These organic acids also have an increasing importance in setting the acidity of rain and snow as precipitation nitrate and sulfate concentrations have decreased. Primary emissions for both organic acids include biomass burning, agriculture, and motor vehicle emissions. Secondary production is also a substantial source for both acids especially from biogenic precursors, secondary organic aerosols (SOAs), and photochemical production from volatile organic compounds (VOCs) and oxygenated volatile organic compounds (OVOCs). Chemical transport models underestimate organic acid concentrations and recent research has sought to develop additional production mechanisms. Here we report HFo and HAc measurements during two campaigns over Colorado using the peroxide chemical ionization mass spectrometer (PCIMS). Iodide clusters of both HFo and HAc were recorded at mass-to-charge ratios of 173 and 187, respectively. The PCIMS was flown aboard the NCAR Gulfstream-V platform during the Deep Convective Clouds and Chemistry Experiment (DC3) and aboard the NCAR C-130 during the Front Range Air Pollution and Photochemistry Experiment (FRAPPE). The DC3 observations were made in May and June 2012 extending from the surface to 13 km over the central and eastern United States. FRAPPE observations were made in July and August 2014 from the surface to 7 km over Colorado. DC3 measurements reported here are focused over the Colorado Front Range and complement the FRAPPE observations. DC3 HFo altitude profiles are characterized by a decrease up to 6 km followed by an increase either back to boundary layer mixing ratio values or higher (a "C" shape). Organic acid measurements from both campaigns are interpreted with an emphasis on emission sources (both natural and anthropogenic) over Colorado and in situ photochemical production especially ozone precursors.

  8. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating

    NASA Astrophysics Data System (ADS)

    Qiao, Bin; Shen, X. F.; Zhang, H.; Kar, S.; Zhou, C. T.; Chang, H. X.; Borghesi, M.; He, X. T.

    2017-10-01

    Among various laser-driven acceleration schemes, radiation pressure acceleration (RPA) is regarded as one of the most promising schemes to obtain high-quality ion beams. Although RPA is very attractive in principle, it is difficult to be achieved experimentally. One of the most important reasons is the dramatic growth of the multi-dimensional Rayleigh-Taylor-like (RT) instabilities. In this talk, we report a novel method to achieve stable RPA of ions from laser-irradiated ultrathin foils, where a high-Z material coating in front is used. The coated high-Z material, acting as a moving electron repository, continuously replenishes the accelerating ion foil with comoving electrons in the light-sail acceleration stage due to its successive ionization under laser fields with Gaussian temporal profile. As a result, the detrimental effects such as electron loss induced by the RT and other instabilities are significantly offset and suppressed so that stable acceleration of ions are maintained. Supported by the NSAF, Grant No. U1630246; the NNSF China Grants No. 11575298; and the National Key Program of S&T Research and Development, Grant No. 2016YFA0401100.

  9. Propagation of current pulses with an amplitude of up to 85 kA in soil over distances of several tens of meters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, V. P.; Fortov, V. E.; Bykov, Yu. A.

    Conditions for the propagation in soil of current pulses with an amplitude of up to 85 kA and temporal characteristics typical of a lightning stroke are studied with the help of a specially designed mobile test complex on the basis of a 4-MJ capacitive energy storage with an output voltage of up to 2 MV. In contrast to the conventional opinion that the ionization processes in highly conductive soils are weakly pronounced, a dramatic reduction in the grounding resistance at a resistivity of about 100 Ω m and currents above 10 kA was observed. A time interval in which themore » grounding resistance is determined by the skin effect in soil is revealed. It is shown that the grounding resistance continues to decrease behind the front of the current pulse due to the continuous growth of spark channels in soil. Time variations in the grounding resistance cannot be related to the formation of a continuous ionization zone near the grounding electrodes and are explained only by the simultaneous growth of several long spark channels extending from the grounding device.« less

  10. Laser characterization of the unsteady 2-D ion flow field in a Hall thruster with breathing mode oscillations

    NASA Astrophysics Data System (ADS)

    Lucca Fabris, Andrea; Young, Christopher; MacDonald-Tenenbaum, Natalia; Hargus, William, Jr.; Cappelli, Mark

    2016-10-01

    Hall thrusters are a mature form of electric propulsion for spacecraft. One commonly observed low frequency (10-50 kHz) discharge current oscillation in these E × B devices is the breathing mode, linked to a propagating ionization front traversing the channel. The complex time histories of ion production and acceleration in the discharge channel and near-field plume lead to interesting dynamics and interactions in the central plasma jet and downstream plume regions. A time-resolved laser-induced fluorescence (LIF) diagnostic non-intrusively measures 2-D ion velocity and relative ion density throughout the plume of a commercial BHT-600 Hall thruster manufactured by Busek Co. Low velocity classes of ions observed in addition to the main accelerated population are linked to propellant ionization outside of the device. Effects of breathing mode dynamics are shown to persist far downstream where modulations in ion velocity and LIF intensity are correlated with discharge current oscillations. This work is sponsored by the U.S. Air Force Office of Scientific Research with Dr. M. Birkan as program manager. C.Y. acknowledges support from the DOE NSSA Stewardship Science Graduate Fellowship under contract DE-FC52-08NA28752.

  11. Investigation of OSL signal of resistors from mobile phones for accidental dosimetry

    NASA Astrophysics Data System (ADS)

    Mrozik, A.; Marczewska, B.; Bilski, P.; Gieszczyk, W.

    2014-12-01

    Resistors from mobile phones, usually located near the human body, are considered as individual dosimeters of ionizing radiation in emergency situations. The resistors contain Al2O3, which is optically stimulated luminescence (OSL) material sensitive to ionizing radiation. This work is focused on determination of dose homogeneity within a mobile phones which was carried out by OSL measurements of resistors placed in different parts inside the mobile phone. Separate, commercially available resistors, similar in the shape and size to the resistors from circuit board of the studied mobile phone, were situated in different locations inside it. The irradiations were performed in uniform 60Co and 137Cs radiation fields, with the mobile phones connected and not connected to the cellular network. The dose decrease of 9% was measured for original resistors situated between layer of copper-clad laminate and battery, in comparison to the dose at the front of the phone. The resistors showed the lower signal when the mobile phone was connected to the cellular network, due to higher temperature inside the housing. The profile of fading was investigated within 3 month period for resistors irradiated with 1 Gy of gamma rays to estimate of the fading coefficient.

  12. Radiative effects during the assembly of direct collapse black holes

    NASA Astrophysics Data System (ADS)

    Smith, Aaron; Becerra, Fernando; Bromm, Volker; Hernquist, Lars

    2017-11-01

    We perform a post-processing radiative feedback analysis on a 3D ab initio cosmological simulation of an atomic cooling halo under the direct collapse black hole (DCBH) scenario. We maintain the spatial resolution of the simulation by incorporating native ray-tracing on unstructured mesh data, including Monte Carlo Lyman α (Ly α) radiative transfer. DCBHs are born in gas-rich, metal-poor environments with the possibility of Compton-thick conditions, NH ≳ 1024 cm-2. Therefore, the surrounding gas is capable of experiencing the full impact of the bottled-up radiation pressure. In particular, we find that multiple scattering of Ly α photons provides an important source of mechanical feedback after the gas in the sub-parsec region becomes partially ionized, avoiding the bottleneck of destruction via the two-photon emission mechanism. We provide detailed discussion of the simulation environment, expansion of the ionization front, emission and escape of Ly α radiation, and Compton scattering. A sink particle prescription allows us to extract approximate limits on the post-formation evolution of the radiative feedback. Fully coupled Ly α radiation hydrodynamics will be crucial to consider in future DCBH simulations.

  13. Effects of magnetic fields on photoionized pillars and globules

    NASA Astrophysics Data System (ADS)

    Mackey, Jonathan; Lim, Andrew J.

    2011-04-01

    The effects of initially uniform magnetic fields on the formation and evolution of dense pillars and cometary globules at the boundaries of H II regions are investigated using 3D radiation-magnetohydrodynamics simulations. It is shown, in agreement with previous work, that a strong initial magnetic field is required to significantly alter the non-magnetized dynamics because the energy input from photoionization is so large that it remains the dominant driver of the dynamics in most situations. Additionally, it is found that for weak and medium field strengths an initially perpendicular field is swept into alignment with the pillar during its dynamical evolution, matching magnetic field observations of the 'Pillars of Creation' in M16 and also some cometary globules. A strong perpendicular magnetic field remains in its initial configuration and also confines the photoevaporation flow into a bar-shaped dense ionized ribbon which partially shields the ionization front and would be readily observable in recombination lines. A simple analytic model is presented to explain the properties of this bright linear structure. These results show that magnetic field strengths in star-forming regions can in principle be significantly constrained by the morphology of structures which form at the borders of H II regions.

  14. Cancer radiotherapy based on femtosecond IR laser-beam filamentation yielding ultra-high dose rates and zero entrance dose.

    PubMed

    Meesat, Ridthee; Belmouaddine, Hakim; Allard, Jean-François; Tanguay-Renaud, Catherine; Lemay, Rosalie; Brastaviceanu, Tiberius; Tremblay, Luc; Paquette, Benoit; Wagner, J Richard; Jay-Gerin, Jean-Paul; Lepage, Martin; Huels, Michael A; Houde, Daniel

    2012-09-18

    Since the invention of cancer radiotherapy, its primary goal has been to maximize lethal radiation doses to the tumor volume while keeping the dose to surrounding healthy tissues at zero. Sadly, conventional radiation sources (γ or X rays, electrons) used for decades, including multiple or modulated beams, inevitably deposit the majority of their dose in front or behind the tumor, thus damaging healthy tissue and causing secondary cancers years after treatment. Even the most recent pioneering advances in costly proton or carbon ion therapies can not completely avoid dose buildup in front of the tumor volume. Here we show that this ultimate goal of radiotherapy is yet within our reach: Using intense ultra-short infrared laser pulses we can now deposit a very large energy dose at unprecedented microscopic dose rates (up to 10(11) Gy/s) deep inside an adjustable, well-controlled macroscopic volume, without any dose deposit in front or behind the target volume. Our infrared laser pulses produce high density avalanches of low energy electrons via laser filamentation, a phenomenon that results in a spatial energy density and temporal dose rate that both exceed by orders of magnitude any values previously reported even for the most intense clinical radiotherapy systems. Moreover, we show that (i) the type of final damage and its mechanisms in aqueous media, at the molecular and biomolecular level, is comparable to that of conventional ionizing radiation, and (ii) at the tumor tissue level in an animal cancer model, the laser irradiation method shows clear therapeutic benefits.

  15. Time-resolved spectral investigations of laser light induced microplasma

    NASA Astrophysics Data System (ADS)

    Nánai, L.; Hevesi, I.

    1992-01-01

    The dynamical and spectral properties of an optical breakdown microplasma created by pulses of different lasers on surfaces of insulators (KCI), metals (Cu) and semiconductors (V 2O 5), have been investigated. Experiments were carried out in air and vacuum using different wavelengths (λ = 0.694μm, type OGM-20,λ = 1.06μm with a home-made laser based on neodymium glass crystal, and λ = 10.6μm, similarly home-made) and pulse durations (Q-switched and free-running regimes). To follow the integral, dynamical and spectral characteristics of the luminous spot of microplasma we have used fast cameras (SFR-2M, IMACON-HADLAND), a high speed spectral camera (AGAT-2) and a spectrograph (STE-1). It has been shown that the microplasma consists of two parts: fast front (peak) with τ≈100 ns and slow front (tail) with τ≈1μs durations. The detonation front speed is of the order of ≈10 5 cm s -1 and follows the temporal dependence of to t0.4. It depends on the composition of the surrounding gas and its pressure and could be connected with quick evaporation of the material investigated (peak) and optical breakdown of the ambient gaseous atmosphere (tail). From the delay in appearance of different characteristic spectral lines of the target material and its gaseous surrounding we have shown that the evolution of the microplasma involves evaporation and ionization of the atoms of the parent material followed by optical breakdown due to the incident and absorbed laser light, together with microplasma expansion.

  16. The 3-D ionization structure and evolution of NGC 7009 (Saturn Nebula)

    NASA Astrophysics Data System (ADS)

    Sabbadin, F.; Turatto, M.; Cappellaro, E.; Benetti, S.; Ragazzoni, R.

    2004-03-01

    Tomographic and 3-D analyses for extended, emission-line objects are applied to long-slit ESO NTT + EMMI high-resolution spectra of the intriguing planetary nebula NGC 7009, covered at twelve position angles. We derive the gas expansion law, the diagnostics and ionic radial profiles, the distance and the central star parameters, the nebular photo-ionization model and the spatial recovery of the plasma structure and evolution. The Saturn Nebula (distance≃1.4 kpc, age≃6000 yr, ionized mass≃0.18 M⊙) consists of several interconnected components, characterized by different morphology, physical conditions, excitation and kinematics. We identify four ``large-scale'', mean-to-high excitation sub-systems (the internal shell, the main shell, the outer shell and the halo), and as many ``small-scale'' ones: the caps (strings of low-excitation knots within the outer shell), the ansae (polar, low-excitation, likely shocked layers), the streams (high-excitation polar regions connecting the main shell with the ansae), and an equatorial, medium-to-low excitation pseudo-ring within the outer shell. The internal shell, the main shell, the streams and the ansae expand at Vexp≃4.0 × R arcsec km s-1, the outer shell, the caps and the equatorial pseudo-ring at Vexp≃3.15 × R arcsec km s-1, and the halo at Vexp≃10 km s-1. We compare the radial distribution of the physical conditions and the line fluxes observed in the eight sub-systems with the theoretical profiles coming from the photo-ionization code CLOUDY, inferring that all the spectral characteristics of NGC 7009 are explainable in terms of photo-ionization by the central star, a hot ( log T* ≃4.95) and luminous ( log L*/L⊙≃3.70) 0.60-0.61 M⊙ post-AGB star in the hydrogen-shell nuclear burning phase. The 3-D shaping of the Saturn Nebula is discussed within an evolutionary scenario dominated by photo-ionization and supported by the fast stellar wind: it begins with the superwind ejection (first isotropic, then polar deficient), passes through the neutral, transition phase ({lasting} ≃3000 yr), the ionization start (occurred ≃2000 yr ago), and the full ionization of the main shell (≃1000 yr ago), at last reaching the present days: the whole nebula is optically thin to the UV stellar flux, except the caps (mean latitude condensations in the outer shell, shadowed by the main shell) and the ansae (supersonic ionization fronts along the major axis). Based on observations made with: ESO Telescopes at the La Silla Observatories (program ID 65.I-0524), and the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Institute. Observing programs: GO 6117 (P.I. Bruce Balick), GO 6119 (P.I. Howard Bond) and GO 8390 (P.I. Arsen Hajian). STScI is operated by the association of Universities for Research in Astronomy, Inc. under the NASA contract NAS 5-26555. We extensively apply the photo-ionization code CLOUDY, developed at the Institute of Astronomy of the Cambridge University (Ferland et al. 1998).

  17. Plasma Wake-field Acceleration in the Blow-out Regime

    NASA Astrophysics Data System (ADS)

    Barov, Nikolai; Rosenzweig, James

    1999-11-01

    Recent experiments at Argonne National Laboratory, investigating the blow-out regime of the plasma wake-field accelerator, are discussed. These experiments achieved stable underdense (beam denser than the ambient plasma density) beam transport, and measured average acceleration of 25 MV/m, corresponding to peak wave fields of over 60 MVm. A comparison of the results to simulation is given, and the physics of the system is discussed. Potential for improvements in performance and achieved acceleration gradient, as well as accelerated beam quality are examined within the context of the next generation of experiments at the Fermilab Test Facility. The status of these experiments will be given.

  18. Characterization of plasma wake excitation and particle trapping in the nonlinear bubble regime

    NASA Astrophysics Data System (ADS)

    Benedetti, Carlo; Schroeder, Carl; Esarey, Eric; Leemans, Wim

    2010-11-01

    We investigate the excitation of nonlinear wake (bubble) formation by an ultra-short (kpL ˜2), intense (e Alaser/mc^2 > 2) laser pulse interacting with an underdense plasma. A detailed analysis of particle orbits in the wakefield is performed by using reduced analytical models and numerical simulations performed with the 2D cylindrical, envelope, ponderomotive, hybrid PIC/fluid code INF&RNO, recently developed at LBNL. In particular we study the requirements for injection and/or trapping of background plasma electrons in the nonlinear wake. Characterization of the phase-space properties of the injected particle bunch will also be discussed.

  19. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode.

    PubMed

    Poehlmann, Flavio R; Cappelli, Mark A; Rieker, Gregory B

    2010-12-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma deflagration. The effects of varying the bank capacitance, transmission line inductance, and applied electrode voltage were studied over the range from 14 to 112 μF, 50 to 200 nH, and 1 to 3 kV, respectively.

  20. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode

    PubMed Central

    Poehlmann, Flavio R.; Cappelli, Mark A.; Rieker, Gregory B.

    2010-01-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma deflagration. The effects of varying the bank capacitance, transmission line inductance, and applied electrode voltage were studied over the range from 14 to 112 μF, 50 to 200 nH, and 1 to 3 kV, respectively. PMID:21267082

  1. Stability of Nonstationary Cooling of Pure Hydrogen Gas with Respect to the Number of Discrete Levels Taken into Account

    NASA Astrophysics Data System (ADS)

    Belova, O. M.; Bychkov, K. V.

    2018-03-01

    The effect of the number K of atomic hydrogen levels taken into account on the cooling of the gas behind a shock front is studied. The calculations are done for the conditions in the atmospheres of long-period Mira Ceti type variables. K ranges from 2 to 25. The electron temperature Te(t; K) and ionization state x(r,K) asymptotically approach limiting functions Te(t) and x(t) that are independent of K. After the maximum electron temperature is reached, a partial equilibrium phase sets in, during which the populations of the highly excited discrete levels with principal quantum numbers ≥ 8 obey the Saha equation for the instantaneous electron temperature and density.

  2. Theory of the corrugation instability of a piston-driven shock wave.

    PubMed

    Bates, J W

    2015-01-01

    We analyze the two-dimensional stability of a shock wave driven by a steadily moving corrugated piston in an inviscid fluid with an arbitrary equation of state. For h≤-1 or h>h(c), where h is the D'yakov parameter and h(c) is the Kontorovich limit, we find that small perturbations on the shock front are unstable and grow--at first quadratically and later linearly--with time. Such instabilities are associated with nonequilibrium fluid states and imply a nonunique solution to the hydrodynamic equations. The above criteria are consistent with instability limits observed in shock-tube experiments involving ionizing and dissociating gases and may have important implications for driven shocks in laser-fusion, astrophysical, and/or detonation studies.

  3. The 3-D ionization structure of the planetary nebula NGC 6565

    NASA Astrophysics Data System (ADS)

    Turatto, M.; Cappellaro, E.; Ragazzoni, R.; Benetti, S.; Sabbadin, F.

    2002-03-01

    A detailed study of the planetary nebula NGC 6565 has been carried out on long-slit echellograms (lambda /Delta lambda =60 000, spectral range = lambda lambda 3900-7750 Å) at six, equally spaced position angles. The expansion velocity field, the c(Hβ ) distribution and the radial profile of the physical conditions (electron temperature and density) are obtained. The distance, radius, mass and filling factor of the nebula and the temperature and luminosity of the central star are derived. The radial ionization structure is analyzed using both the classical method and the photo-ionization code CLOUDY. Moreover, we present the spatial structure in a series of images from different directions, allowing the reader to ``see'' the nebula in 3-D. NGC 6565 results to be a young (2000-2500 years), patchy, optically thick triaxial ellipsoid (a=10.1 arcsec, a/b=1.4, a/c=1.7) projected almost pole-on. The matter close to major axis was swept-up by some accelerating agent (fast wind? ionization? magnetic fields?), forming two faint and asymmetric polar cups. A large cocoon of almost neutral gas completely embeds the ionized nebula. NGC 6565 is in a recombination phase, because of the luminosity drop of the massive powering star, which is reaching the white dwarf domain (log T* =~ 5.08 K; log L*/Lsun =~ 2.0). The stellar decline started about 1000 years ago, but the main nebula remained optically thin for other 600 years before the recombination phase occurred. In the near future the ionization front will re-grow, since the dilution factor due to the expansion will prevail on the slower and slower stellar decline. NGC 6565 is at a distance of 2.0 (+/-0.5) kpc and can be divided into three radial zones: the ``fully ionized'' one, extending up to 0.029-0.035 pc at the equator (0.050 pc at the poles), the ``transition'' one, up to 0.048-0.054 pc (0.080 pc), the ``halo'', detectable up to 0.110 pc. The ionized mass ( =~ 0.03 Msun) is only a fraction of the total mass (>= 0.15 Msun), which has been ejected by an equatorial enhanced superwind of 4 (+/-2) x 10-5 Msun yr-1 lasted for 4 (+/-2) x 103 years. Based on observations made with ESO Telescopes at the La Silla Observatories, under programme ID 65.I-0524, and on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Institute (observing program GO 7501; P.I. Arsen Hajian). STScI is operated by the association of Universities for Research in Astronomy, Inc. under the NASA contract NAS 5-26555. We have applied the photoionization code CLOUDY, developed at the Institute of Astronomy of the Cambridge University.

  4. Development of a compact radiation-hardened low-noise front-end readout ASIC for CZT-based hard X-ray imager

    NASA Astrophysics Data System (ADS)

    Gao, W.; Gan, B.; Li, X.; Wei, T.; Gao, D.; Hu, Y.

    2015-04-01

    In this paper, we present the development and performances of a radiation-hardened front-end readout application-specific integrated circuit (ASIC) dedicated to CZT detectors for a hard X-ray imager in space applications. The readout channel consists of a charge sensitive amplifier (CSA), a CR-RC shaper, a fast shaper, a discriminator and a driving buffer. With the additional digital filtering, the readout channel can achieve very low noise performances and low power dissipation. An eight-channel prototype ASIC is designed and fabricated in 0.35 μm CMOS process. The energy range of the detected X-rays is evaluated as 1.45 keV to 281 keV. The gain is larger than 100 mV/fC. The equivalent noise charge (ENC) of the ASIC is 53 e- at zero farad plus 10 e- per picofarad. The power dissipation is less than 4.4 mW/channel. Through the measurement with a CZT detector, the energy resolution is less than 3.45 keV (FWHM) under the irradiation of the radioactive source 241Am. The radiation effect experiments indicate that the proposed ASIC can resist the total ionization dose (TID) irradiation of higher than 200 krad (Si).

  5. Evidence of feasible hardness test on Mars using ratio of ionic/neutral emission intensities measured with laser-induced breakdown spectroscopy in low pressure CO{sub 2} ambient gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdulmadjid, Syahrun Nur; Lahna, Kurnia; Idris, Nasrullah

    An experimental study is conducted on the possibility and viability of performing hardness measurement of the various stone and chert samples in low pressure (600 Pa) CO{sub 2} ambient gas, a condition that is encountered in the Mars atmosphere. For this study, a nanosecond Nd-YAG laser is employed to generate plasma emission from the samples with different degrees of hardness. This technique is developed in light of the role of the shock wave in the generation of a laser-induced plasma. It was previously shown that the speed of the shock front depends on the hardness of the sample, and a positivemore » relationship was found between the speed of the shock front and the ionization rate of the ablated atoms. Hence, the ratio of the intensity between the Mg II 279.5 nm and Mg I 285.2 nm emission lines detected from the laser-induced plasma can be used to estimate the hardness of a material. In fact, it is shown that the ratio changes linearly with respect to changes of sample hardness. The result has thus demonstrated the feasibility and viability of using LIBS for non contact hardness measurement on Mars.« less

  6. Spectroscopic diagnostics of plume rebound and shockwave dynamics of confined aluminum laser plasma plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeates, P.; Kennedy, E. T.; School of Physical Sciences, Dublin City University

    2011-06-15

    Generation and expansion dynamics of aluminum laser plasma plumes generated between parallel plates of varying separation ({Delta}Z = 2.0, 3.2, 4.0, and 5.6 mm), which confined plume expansion normal to the ablation surface, were diagnosed. Space and time resolved visible emission spectroscopy in the spectral range {lambda} = 355-470 nm and time gated visible imaging were employed to record emission spectra and plume dynamics. Space and time resolved profiles of N{sub e} (the electron density), T{sub e} (the electron temperature), and T{sub ionz} (the ionization temperature) were compared for different positions in the plasma plume. Significant modifications of the profilesmore » of the above parameters were observed for plasma-surface collisions at the inner surface of the front plate, which formed a barrier to the free expansion of the plasma plume generated by the laser light on the surface of the back plate. Shockwave generation at the collision interface resulted in delayed compression of the low-density plasma plume near the inner ablation surface, at late stages in the plasma history. Upon exiting the cavity formed by the two plates, through an aperture in the front plate, the plasma plume underwent a second phase of free expansion.« less

  7. On the Traversal Time of Barriers

    NASA Astrophysics Data System (ADS)

    Aichmann, Horst; Nimtz, Günter

    2014-06-01

    Fifty years ago Hartman studied the barrier transmission time of wave packets (J Appl Phys 33:3427-3433, 1962). He was inspired by the tunneling experiments across thin insulating layers at that time. For opaque barriers he calculated faster than light propagation and a transmission time independent of barrier length, which is called the Hartman effect. A faster than light (FTL or superluminal) wave packet velocity was deduced in analog tunneling experiments with microwaves and with infrared light thirty years later. Recently, the conjectured zero time of electron tunneling was claimed to have been observed in ionizing helium inside the barrier. The calculated and measured short tunneling time arises at the barrier front. This tunneling time was found to be universal for elastic fields as well as for electromagnetic fields. Remarkable is that the delay time is the same for the reflected and the transmitted waves in the case of symmetric barriers. Several theoretical physicists predicted this strange nature of the tunneling process. However, even with this background many members of the physics community do not accept a FTL signal velocity interpretation of the experimental tunneling results. Instead a luminal front velocity was calculated to explain the FTL experimental results frequently. However, Brillouin stated in his book on wave propagation and group velocity that the front velocity is given by the group velocity of wave packets in the case of physical signals, which have only finite frequency bandwidths. Some studies assumed barriers to be cavities and the observed tunneling time does represent the cavity lifetime. We are going to discus these continuing misleading interpretations, which are found in journals and in textbooks till today.

  8. Absolute Hugoniot measurements from a spherically convergent shock using x-ray radiography

    NASA Astrophysics Data System (ADS)

    Swift, Damian C.; Kritcher, Andrea L.; Hawreliak, James A.; Lazicki, Amy; MacPhee, Andrew; Bachmann, Benjamin; Döppner, Tilo; Nilsen, Joseph; Collins, Gilbert W.; Glenzer, Siegfried; Rothman, Stephen D.; Kraus, Dominik; Falcone, Roger W.

    2018-05-01

    The canonical high pressure equation of state measurement is to induce a shock wave in the sample material and measure two mechanical properties of the shocked material or shock wave. For accurate measurements, the experiment is normally designed to generate a planar shock which is as steady as possible in space and time, and a single state is measured. A converging shock strengthens as it propagates, so a range of shock pressures is induced in a single experiment. However, equation of state measurements must then account for spatial and temporal gradients. We have used x-ray radiography of spherically converging shocks to determine states along the shock Hugoniot. The radius-time history of the shock, and thus its speed, was measured by radiographing the position of the shock front as a function of time using an x-ray streak camera. The density profile of the shock was then inferred from the x-ray transmission at each instant of time. Simultaneous measurement of the density at the shock front and the shock speed determines an absolute mechanical Hugoniot state. The density profile was reconstructed using the known, unshocked density which strongly constrains the density jump at the shock front. The radiographic configuration and streak camera behavior were treated in detail to reduce systematic errors. Measurements were performed on the Omega and National Ignition Facility lasers, using a hohlraum to induce a spatially uniform drive over the outside of a solid, spherical sample and a laser-heated thermal plasma as an x-ray source for radiography. Absolute shock Hugoniot measurements were demonstrated for carbon-containing samples of different composition and initial density, up to temperatures at which K-shell ionization reduced the opacity behind the shock. Here we present the experimental method using measurements of polystyrene as an example.

  9. ORION’S VEIL: MAGNETIC FIELD STRENGTHS AND OTHER PROPERTIES OF A PDR IN FRONT OF THE TRAPEZIUM CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troland, T. H.; Goss, W. M.; Brogan, C. L.

    2016-07-01

    We present an analysis of physical conditions in the Orion Veil, an atomic photon-dominated region (PDR) that lies just in front (≈2 pc) of the Trapezium stars of Orion. This region offers an unusual opportunity to study the properties of PDRs, including the magnetic field. We have obtained 21 cm H i and 18 cm (1665 and 1667 MHz) OH Zeeman effect data that yield images of the line-of-sight magnetic field strength B {sub los} in atomic and molecular regions of the Veil. We find B {sub los} ≈ −50 to −75 μ G in the atomic gas across muchmore » of the Veil (25″ resolution) and B {sub los} ≈ −350 μ G at one position in the molecular gas (40″ resolution). The Veil has two principal H i velocity components. Magnetic and kinematical data suggest a close connection between these components. They may represent gas on either side of a shock wave preceding a weak-D ionization front. Magnetic fields in the Veil H i components are 3–5 times stronger than they are elsewhere in the interstellar medium where N (H) and n (H) are comparable. The H i components are magnetically subcritical (magnetically dominated), like the cold neutral medium, although they are about 1 dex denser. Comparatively strong fields in the Veil H i components may have resulted from low-turbulence conditions in the diffuse gas that gave rise to OMC-1. Strong fields may also be related to magnetostatic equilibrium that has developed in the Veil since star formation. We also consider the location of the Orion-S molecular core, proposing a location behind the main Orion H{sup +} region.« less

  10. High-performance thin-layer chromatography screening of multi class antibiotics in animal food by bioluminescent bioautography and electrospray ionization mass spectrometry.

    PubMed

    Chen, Yisheng; Schwack, Wolfgang

    2014-08-22

    The world-wide usage and partly abuse of veterinary antibiotics resulted in a pressing need to control residues in animal-derived foods. Large-scale screening for residues of antibiotics is typically performed by microbial agar diffusion tests. This work employing high-performance thin-layer chromatography (HPTLC) combined with bioautography and electrospray ionization mass spectrometry introduces a rapid and efficient method for a multi-class screening of antibiotic residues. The viability of the bioluminescent bacterium Aliivibrio fischeri to the studied antibiotics (16 species of 5 groups) was optimized on amino plates, enabling detection sensitivity down to the strictest maximum residue limits. The HPTLC method was developed not to separate the individual antibiotics, but for cleanup of sample extracts. The studied antibiotics either remained at the start zones (tetracyclines, aminoglycosides, fluoroquinolones, and macrolides) or migrated into the front (amphenicols), while interfering co-extracted matrix compounds were dispersed at hRf 20-80. Only after a few hours, the multi-sample plate image clearly revealed the presence or absence of antibiotic residues. Moreover, molecular information as to the suspected findings was rapidly achieved by HPTLC-mass spectrometry. Showing remarkable sensitivity and matrix-tolerance, the established method was successfully applied to milk and kidney samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Observation of ionization shifts in K-shell emission from short-pulse laser irradiated micro-dot targets

    NASA Astrophysics Data System (ADS)

    Neumayer, Paul; Kritcher, Andrea; Landen, Otto; Lee, Haeja; Offerman, Dustin; Shipton, Eric; Glenzer, Siegfried

    2006-10-01

    X-ray Thomson scattering using short pulse laser generated intense line radiation has a great potential as a time-resolved temperature and density diagnostic for high-energy density states of matter. We present recent results characterizing Chlorine K-alpha and K-beta line emission obtained by irradiating Saran foil with 50 Terawatt laser pulses from the Callisto laser (Jupiter Laser Facility, Lawrence Livermore National Laboratory). Spectra from front and rear side emission are recorded simultaneously with high resolution HOPG spectrometers employing imaging plate detectors. Conversion efficiencies of laser pulse energy into x-ray line emission of several 10-5 are achieved and are maintained throughout up to 7 J of laser energy, thus constituting a short pulsed narrow band x-ray source of more than 10^11 photons. When the target size is reduced to 50 micrometer (``micro-dot'') a significant blue-shift of up to 5 eV is clearly observed. This can be attributed to higher ionization states of the target atoms indicating achievement of a high-temperature solid density state. This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48 and LDRD 05-ERI-003.

  12. Atomic Processes in a Plasma Opening Switch.

    NASA Astrophysics Data System (ADS)

    Klepper, C. C.; Moschella, J. J.; Hazelton, R. C.; Yadlowsky, E. J.; Maron, Y.

    1998-11-01

    Detailed measurements of carbon emission have been carried out in a Plasma Opening Switch (POS) with a planar geometry, in order to characterize the plasma conditions and the ionization process in the POS. Emission from various transitions of C^circ to C^3+ has been measured as a function of time from several viewing chords. For these experiments, the POS was operated with a shorted load at 130kA and with a ~700ns conduction time. A single-chord, heterodyne interferometer measured the electron density evolution along a chord coincident with one of the spectroscopic views. The passage of the ionization front across the line of sight is witnessed by both diagnostics. The data are interpreted by analyzing the time-dependent atomic processes. The measured ne rises from 1.5×10^15 to 3×10^15cm-3 as the current crosses the view. An initial electron temperature in the 1.3-2 eV range is obtained from the ratio of the C II 4267 Åand 6578 Ålines. The time dependent line emission of the various charge states shows that Te rises to a few tens of eV at the peak current. The charge state distribution during the pulse will be discussed.

  13. Simulating Cosmic Reionization and Its Observable Consequences

    NASA Astrophysics Data System (ADS)

    Shapiro, Paul

    2017-01-01

    I summarize recent progress in modelling the epoch of reionization by large- scale simulations of cosmic structure formation, radiative transfer and their interplay, which trace the ionization fronts that swept across the IGM, to predict observable signatures. Reionization by starlight from early galaxies affected their evolution, impacting reionization, itself, and imprinting the galaxies with a memory of reionization. Star formation suppression, e.g., may explain the observed underabundance of Local Group dwarfs relative to N-body predictions for Cold Dark Matter. I describe CoDa (''Cosmic Dawn''), the first fully-coupled radiation-hydrodynamical simulation of reionization and galaxy formation in the Local Universe, in a volume large enough to model reionization globally but with enough resolving power to follow all the atomic-cooling galactic halos in that volume. A 90 Mpc box was simulated from a constrained realization of primordial fluctuations, chosen to reproduce present-day features of the Local Group, including the Milky Way and M31, and the local universe beyond, including the Virgo cluster. The new RAMSES-CUDATON hybrid CPU-GPU code took 11 days to perform this simulation on the Titan supercomputer at Oak Ridge National Laboratory, with 4096-cubed N-body particles for the dark matter and 4096-cubed cells for the atomic gas and ionizing radiation.

  14. Development of multi-layer crystal detector and related front end electronics

    NASA Astrophysics Data System (ADS)

    Cardarelli, R.; Di Ciaccio, A.; Paolozzi, L.

    2014-05-01

    A crystal (diamond) particle detector has been developed and tested, whose constitute elements are a multi-layer polycrystalline diamond and a pick-up system capable of collecting in parallel the charge produced in the layers. The charge is read with a charge-to-voltage amplifier (5-6 mV/fC) realized with bipolar junction transistors in order to minimize the effect of the detector capacitance. The tests performed with cosmic rays and at the beam test facility of Frascati with 500 MeV electrons in single electron mode operation have shown that a detector with 4-5 layers of 250 μm thickness each and 9 mm2 active area exhibits an upper limit of 150 ps time resolution for minimum ionizing particles at an operating voltage of about 350 V.

  15. Double shock front formation in cylindrical radiative blast waves produced by laser irradiation of krypton gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, I.; Quevedo, H. J.; Feldman, S.

    2013-12-15

    Radiative blast waves were created by irradiating a krypton cluster source from a supersonic jet with a high intensity femtosecond laser pulse. It was found that the radiation from the shock surface is absorbed in the optically thick upstream medium creating a radiative heat wave that travels supersonically ahead of the main shock. As the blast wave propagates into the heated medium, it slows and loses energy, and the radiative heat wave also slows down. When the radiative heat wave slows down to the transonic regime, a secondary shock in the ionization precursor is produced. This paper presents experimental datamore » characterizing both the initial and secondary shocks and numerical simulations to analyze the double-shock dynamics.« less

  16. The Abundance of Iron-Peak Elements and the Dust Composition in eta Carinae: Manganese

    NASA Technical Reports Server (NTRS)

    Bautista, M. A.; Melendez, M.; Hartman, H.; Gull, T. R.; Lodders, K.

    2010-01-01

    We study the chemical abundances of the Strontium Filament found in the ejecta of (eta) Carinae. In particular, we derive the abundances of iron-peak elements front spectra of their singly ionized ions present in the optical/IR spectra. In this paper we analyze the spectrum of Mn II using a new non-LTE model for this system. In constructing this models we carried out theoretical calculations of radiative transition rates and electron impact excitation rate coefficients. We find that relative to Ni the gas phase abundance ratio of Mn is roughly solar, similar to the Cr abundance but in contrast to the large enhancements in the abundances of Sc and Ti. NVe interpret this result as an indication of non-equilibrium condensation in the ejecta of (eta) Carinae.

  17. Ion acceleration by laser hole-boring into plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogorelsky, I. V.; Dover, N. P.; Babzien, M.

    By experiment and simulations, we study the interaction of an intense CO{sub 2} laser pulse with slightly overcritical plasmas of fully ionized helium gas. Transverse optical probing is used to show a recession of the front plasma surface with an initial velocity >10{sup 6} m/s driven by hole-boring by the laser pulse and the resulting radiation pressure driven electrostatic shocks. The collisionless shock propagates through the plasma, dissipates into an ion-acoustic solitary wave, and eventually becomes collisional as it slows further. These observations are supported by PIC simulations which prove the conclusion that monoenergetic protons observed in our earlier reportedmore » experiment with a hydrogen jet result from ion trapping and reflection from a shock wave driven through the plasma.« less

  18. Radar research on thunderstorms and lightning

    NASA Technical Reports Server (NTRS)

    Rust, W. D.; Doviak, R. J.

    1982-01-01

    Applications of Doppler radar to detection of storm hazards are reviewed. Normal radar sweeps reveal data on reflectivity fields of rain drops, ionized lightning paths, and irregularities in humidity and temperature. Doppler radar permits identification of the targets' speed toward or away from the transmitter through interpretation of the shifts in the microwave frequency. Wind velocity fields can be characterized in three dimensions by the use of two radar units, with a Nyquist limit on the highest wind speeds that may be recorded. Comparisons with models numerically derived from Doppler radar data show substantial agreement in storm formation predictions based on information gathered before the storm. Examples are provided of tornado observations with expanded Nyquist limits, gust fronts, turbulence, lightning and storm structures. Obtaining vertical velocities from reflectivity spectra is discussed.

  19. A cocoon of freshly accelerated cosmic rays detected by Fermi in the Cygnus superbubble.

    PubMed

    Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Belfiore, A; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bottacini, E; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; de Angelis, A; de Palma, F; Dermer, C D; do Couto E Silva, E; Drell, P S; Dumora, D; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Fukazawa, Y; Fusco, P; Gargano, F; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Guillemot, L; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hayashi, K; Hays, E; Jóhannesson, G; Johnson, A S; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Martin, P; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pohl, M; Prokhorov, D; Rainò, S; Rando, R; Razzano, M; Reposeur, T; Ritz, S; Parkinson, P M Saz; Sgrò, C; Siskind, E J; Smith, P D; Spinelli, P; Strong, A W; Takahashi, H; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Yang, Z; Zimmer, S; Bontemps, S

    2011-11-25

    The origin of Galactic cosmic rays is a century-long puzzle. Indirect evidence points to their acceleration by supernova shockwaves, but we know little of their escape from the shock and their evolution through the turbulent medium surrounding massive stars. Gamma rays can probe their spreading through the ambient gas and radiation fields. The Fermi Large Area Telescope (LAT) has observed the star-forming region of Cygnus X. The 1- to 100-gigaelectronvolt images reveal a 50-parsec-wide cocoon of freshly accelerated cosmic rays that flood the cavities carved by the stellar winds and ionization fronts from young stellar clusters. It provides an example to study the youth of cosmic rays in a superbubble environment before they merge into the older Galactic population.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valles, G.; Martin-Bragado, I.; Nordlund, K.

    Recently, tungsten has been found to form a highly underdense nanostructured morphology (“W fuzz”) when bombarded by an intense flux of He ions, but only in the temperature window 900–2000 K. Furthermore, using object kinetic Monte Carlo simulations (pseudo-3D simulations) parameterized from first principles, we show that this temperature dependence can be understood based on He and point defect clustering, cluster growth, and detrapping reactions. At low temperatures (<900 K), fuzz does not grow because almost all He is trapped in very small He-vacancy clusters. At high temperatures (>2300 K), all He is detrapped from clusters, preventing the formation ofmore » the large clusters that lead to fuzz growth in the intermediate temperature range.« less

  1. A new class of exact solutions of the Klein-Gordon equation of a charged particle interacting with an electromagnetic plane wave in a medium

    NASA Astrophysics Data System (ADS)

    Varró, Sándor

    2014-01-01

    Exact solutions are presented of the Klein-Gordon equation of a charged particle moving in a transverse monochromatic plasmon wave of arbitrary high amplitude, which propagates in an underdense plasma. These solutions are expressed in terms of Ince polynomials, forming a doubly infinite set, parametrized by discrete momentum components of the charged particle’s de Broglie wave along the polarization vector and along the propagation direction of the plasmon radiation. The envelope of the exact wavefunctions describes a high-contrast periodic structure of the particle density on the plasma length scale, which may have relevance in novel particle acceleration mechanisms.

  2. Polarization rotation in meteor burst communication systems

    NASA Astrophysics Data System (ADS)

    Cannon, P. S.

    1986-06-01

    Theoretical modeling of several meteor burst communication (MBC) paths indicates that polarization rotation losses are significant for a linearly polarized system operating near 40 MHz. Losses for a hybrid system with physical installation problems, consisting of linearly polarized transmitting and circularly polarized receiving antennas, were found to be less. Both ionospheric Faraday rotation polarization changes, and underdense meteor trail scattering wave polarization rotation, are considered. These losses are found to cause a 15-70 percent data throughput reduction of the value predicted for the situation without polarization rotation, in the two 40-MHz linearly polarized links considered for noon summer solstice conditions during high solar sunspot number periods. Qualitative experimental confirmation is provided through a cross polarization approach.

  3. Calculating the radiation characteristics of accelerated electrons in laser-plasma interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X. F.; Graduate School of Engineering, Utsunomiya University, 7-1-2 Yohtoh, Utsunomiya 321-8585; Yu, Q.

    2016-03-15

    In this paper, we studied the characteristics of radiation emitted by electrons accelerated in a laser–plasma interaction by using the Lienard–Wiechert field. In the interaction of a laser pulse with a underdense plasma, electrons are accelerated by two mechanisms: direct laser acceleration (DLA) and laser wakefield acceleration (LWFA). At the beginning of the process, the DLA electrons emit most of the radiation, and the DLA electrons emit a much higher peak photon energy than the LWFA electrons. As the laser–plasma interaction progresses, the LWFA electrons become the major radiation emitter; however, even at this stage, the contribution from DLA electronsmore » is significant, especially to the peak photon energy.« less

  4. Development of radiation tolerant monolithic active pixel sensors with fast column parallel read-out

    NASA Astrophysics Data System (ADS)

    Koziel, M.; Dorokhov, A.; Fontaine, J.-C.; De Masi, R.; Winter, M.

    2010-12-01

    Monolithic active pixel sensors (MAPS) [1] (Turchetta et al., 2001) are being developed at IPHC—Strasbourg to equip the EUDET telescope [2] (Haas, 2006) and vertex detectors for future high energy physics experiments, including the STAR upgrade at RHIC [3] (T.S. Collaboration, 2005) and the CBM experiment at FAIR/GSI [4] (Heuser, 2006). High granularity, low material budget and high read-out speed are systematically required for most applications, complemented, for some of them, with high radiation tolerance. A specific column-parallel architecture, implemented in the MIMOSA-22 sensor, was developed to achieve fast read-out MAPS. Previous studies of the front-end architecture integrated in this sensor, which includes in-pixel amplification, have shown that the fixed pattern noise increase consecutive to ionizing radiation can be controlled by means of a negative feedback [5] (Hu-Guo et al., 2008). However, an unexpected rise of the temporal noise was observed. A second version of this chip (MIMOSA-22bis) was produced in order to search for possible improvements of the radiation tolerance, regarding this type of noise. In this prototype, the feedback transistor was tuned in order to mitigate the sensitivity of the pixel to ionizing radiation. The performances of the pixels after irradiation were investigated for two types of feedback transistors: enclosed layout transistor (ELT) [6] (Snoeys et al., 2000) and "standard" transistor with either large or small transconductance. The noise performance of all test structures was studied in various conditions (expected in future experiments) regarding temperature, integration time and ionizing radiation dose. Test results are presented in this paper. Based on these observations, ideas for further improvement of the radiation tolerance of column parallel MAPS are derived.

  5. ORION’S VEIL. IV. H{sub 2} EXCITATION AND GEOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abel, N. P.; Ferland, G. J.; Troland, T. H.

    2016-03-10

    The foreground Veil of material that lies in front of the Orion Nebula is the best studied sample of the interstellar medium because we know where it is located, how it is illuminated, and the balance of thermal and magnetic energy. In this work, we present high-resolution STIS observations toward the Trapezium, with the goal of better understanding the chemistry and geometry of the two primary Veil layers, along with ionized gas along the line of sight. The most complete characterization of the rotational/vibrational column densities of H{sub 2} in the almost purely atomic components of the Veil are presented,more » including updates to the Cloudy model for H{sub 2} formation on grain surfaces. The observed H{sub 2} is found to correlate almost exclusively with Component B. The observed H{sub 2}, observations of CI, CI*, and CI**, and theoretical calculations using Cloudy allow us to place the tightest constraints yet on the distance, density, temperature, and other physical characteristics for each cloud component. We find the H{sub 2} excitation spectrum observed in the Veil is incompatible with a recent study that argued that the Veil was quite close to the Trapezium. The nature of a layer of ionized gas lying between the Veil and the Trapezium is characterized through the emission and absorption lines it produces, which we find to be the blueshifted component observed in S iii and P iii absorption. We deduce that, within the next 30–60 thousand years, the blueshifted ionized layer and Component B will merge, which will subsequently merge with Component A in the next one million years.« less

  6. Open Port Probe Sampling Interface for the Direct Coupling of Biocompatible Solid-Phase Microextraction to Atmospheric Pressure Ionization Mass Spectrometry.

    PubMed

    Gómez-Ríos, Germán Augusto; Liu, Chang; Tascon, Marcos; Reyes-Garcés, Nathaly; Arnold, Don W; Covey, Thomas R; Pawliszyn, Janusz

    2017-04-04

    In recent years, the direct coupling of solid phase microextraction (SPME) and mass spectrometry (MS) has shown its great potential to improve limits of quantitation, accelerate analysis throughput, and diminish potential matrix effects when compared to direct injection to MS. In this study, we introduce the open port probe (OPP) as a robust interface to couple biocompatible SPME (Bio-SPME) fibers to MS systems for direct electrospray ionization. The presented design consisted of minimal alterations to the front-end of the instrument and provided better sensitivity, simplicity, speed, wider compound coverage, and high-throughput in comparison to the LC-MS based approach. Quantitative determination of clenbuterol, fentanyl, and buprenorphine was successfully achieved in human urine. Despite the use of short extraction/desorption times (5 min/5 s), limits of quantitation below the minimum required performance levels (MRPL) set by the world antidoping agency (WADA) were obtained with good accuracy (≥90%) and linearity (R 2 > 0.99) over the range evaluated for all analytes using sample volumes of 300 μL. In-line technologies such as multiple reaction monitoring with multistage fragmentation (MRM 3 ) and differential mobility spectrometry (DMS) were used to enhance the selectivity of the method without compromising analysis speed. On the basis of calculations, once coupled to high throughput, this method can potentially yield preparation times as low as 15 s per sample based on the 96-well plate format. Our results demonstrated that Bio-SPME-OPP-MS efficiently integrates sampling/sample cleanup and atmospheric pressure ionization, making it an advantageous configuration for several bioanalytical applications, including doping in sports, in vivo tissue sampling, and therapeutic drug monitoring.

  7. Coupling frontal elution paper chromatography with desorption corona beam ionization mass spectrometry for rapid analysis of chlorphenamine in herbal medicines and dietary supplements.

    PubMed

    Huang, Yun-Qing; You, Jing-Qing; Zhang, Junsheng; Sun, Wenjian; Ding, Li; Feng, Yu-Qi

    2011-10-14

    We developed a convenient method by coupling frontal elution paper chromatography with desorption corona beam ionization mass spectrometry (DCBI-MS) for rapid determination of chlorphenamine added in herbal medicines or dietary supplements. In this method, the ethanol extract of the herbal products was spotted directly onto an isosceles triangular filter paper sheet, and then the paper sheet was developed under strong elution condition with the sample zone migrating at the solvent front. The analyte was finally condensed at the V-shaped tip which could then be placed under the visible plasma beam of DCBI for ionization. The overall procedure took less than 5 min. The frontal elution paper chromatography on a triangular plate used in this work improved the signal intensity of chlorphenamine by 30-fold due to the analyte condensing at the tip and the reduction of the background suppression. Furthermore, the paper sheet also functioned as a filter in the analysis of solid or powder samples, which can increase the analytical throughput by omitting the step of centrifugation. The proposed method in current study was successfully applied in the determination of chlorphenamine in herbal medicines. Chlorphenamine was detected in four of the twelve types of herbal medicines examined in this study. The limit of detection was 200 ng/mL (2.0 ng absolute) in full-scan positive-ion mode and the linear range was from 5.0 μg/mL to 50 μg/mL with satisfactory linear coefficient (R(2) (the square of the correlation coefficient)=0.895). Good reproducibility was achieved with relative standard deviations (RSDs) less than 15.0% and the recoveries of chlorphenamine ranged from 84.3 to 90.6%. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Suzaku Observations of Near-Relativistic Outflows in the BAL Quasar APM 08279+5255

    NASA Astrophysics Data System (ADS)

    Saez, C.; Chartas, G.; Brandt, W. N.

    2009-05-01

    We present results from three Suzaku observations of the z = 3.91 gravitationally lensed broad absorption line quasar APM 08279+5255. We detect strong and broad absorption at rest-frame energies of lsim2 keV (low energy) and 7-12 keV (high energy). The detection of these features confirms the results of previous long-exposure (80-90 ks) Chandra and XMM-Newton observations. The low- and high-energy absorption is detected in both the back-illuminated (BI) and front-illuminated (FI) Suzaku X-ray Imaging Spectrometer spectra (with an F-test significance of gsim99%). We interpret the low-energy absorption as arising from a low-ionization absorber with log N H ~ 23 and the high-energy absorption as due to lines arising from highly ionized (2.75 lsim logξ lsim 4.0, where ξ is the ionization parameter) iron in a near-relativistic outflowing wind. Assuming this interpretation we find that the velocities in the outflow range between 0.1c and 0.6c. We constrain the angle between the outflow direction of the X-ray absorber and our line of sight to be lsim36°. We also detect likely variability of the absorption lines (at the gsim99.9% and gsim98% significance levels in the FI and BI spectra, respectively) with a rest-frame timescale of ~1 month. Assuming that the detected high-energy absorption features arise from Fe XXV, we estimate that the fraction of the total bolometric energy injected over the quasar's lifetime into the intergalactic medium in the form of kinetic energy to be gsim10%.

  9. Paradigm shifts in plasma processing and application of fundamental kinetics to problems targeting 5 nm technology device technology

    NASA Astrophysics Data System (ADS)

    Chen, Lee

    2016-09-01

    It is often said that semiconductor technology is approaching the end of scaling. While fundamental device limits do approach, plasma etching has been doing the heavy lifting to supplement the basic limits in lithography. RF plasmas, pulsing in many forms, diffusion plasmas are but a few of the important developments over the last 20 years that have succeeded in the seemingly impossible tasks. The commonality of these plasmas is being self-consistent: their near-Boltzmann EEDf maintains ionization with its tail while providing charge-balance with its Te . To control the plasma chemistry is to control its EEDf; the entanglement of ionization with charge-balance in self-consistent plasmas places a constraint on the decoupling of plasma chemistry from ionization. Example like DC/RF parallel-plate hybridizes stochastic heating with DC-cathode injected e- -beam. While such arrangement offers some level of decoupling, it raised more questions than what it helped answered along the lines of beam-plasma instabilities, bounce-resonance ionization, etc. Pure e- -beam plasmas could be a drastic departure from the self-consistent plasmas. Examples like the NRL e- -beam system and the more recent TEL NEP (Nonambipolar e- Plasma) show strong decoupling of Te from ionization but it is almost certain, many more questions lurk: the functions connecting collisional relaxation with instabilities, the channels causing the dissociation of large fluorocarbons (controlling the ion-to- radical ratio), the production of the damaging deep UV in e- -beam plasmas, etc., and the list goes on. IADf is one factor on feature-profile and IEDf determines the surgical surface-excitation governing the selectivity, and both functions have Ti as the origin; what controls the e- -beam plasmas' Ti ? RF-bias has served well in applications requiring energetic excitation but, are there ways to improve the IEDf tightness? What are the adverse side-effects of ``improved IEDf''? Decades ago an infant RF-plasma was thrown into the dry-etch arena and it hit the ground running with much of the understandings as after the facts. While the etching industry enjoys the heavy lifting by the successful self-consistent plasmas, perhaps time can be used on front-loaded soul searching of the ``maybe needed'' plasmas, for the future etching needs.

  10. SPD very front end electronics

    NASA Astrophysics Data System (ADS)

    Luengo, S.; Gascón, D.; Comerma, A.; Garrido, L.; Riera, J.; Tortella, S.; Vilasís, X.

    2006-11-01

    The Scintillator Pad Detector (SPD) is part of the LHCb calorimetry system [D. Breton, The front-end electronics for LHCb calorimeters, Tenth International Conference on Calorimetry in Particle Physics, CALOR, Pasadena, 2002] that provides high-energy hadron, electron and photon candidates for the first level trigger. The SPD is designed to distinguish electrons from photons. It consists of a plastic scintillator layer, divided into about 6000 cells of different size to obtain better granularity near the beam [S. Amato, et al., LHCb technical design report, CERN/LHCC/2000-0036, 2000]. Charged particles will produce, and photons will not, ionization in the scintillator. This ionization generates a light pulse that is collected by a WaveLength Shifting (WLS) fiber that is coiled inside the scintillator cell. The light is transmitted through a clear fiber to the readout system that is placed at the periphery of the detector. Due to space constraints, and in order to reduce costs, these 6000 cells are divided in groups using a MAPMT [Z. Ajaltouni, et al., Nucl. Instr. and Meth. A 504 (2003) 9] of 64 channels that provides information to the VFE readout electronics. The SPD signal has rather large statistical fluctuations because of the low number (20-30) of photoelectrons per MIP. Therefore the signal is integrated over the whole bunch crossing length of 25 ns in order to have the maximum value. Since in average about 85% of the SPD signal is within 25 ns, 15% of a sample is subtracted from the following one using an operational amplifier. The SPD VFE readout system that will be presented consists of the following components. A specific ASIC [D. Gascon, et al., Discriminator ASIC for the VFE SPD of the LHCb Calorimeter, LHCB Technical Note, LHCB 2004-xx] integrates the signal, makes the signal-tail subtraction, and compares the level obtained to a programmable threshold (to distinguish electrons from photons). A FPGA programmes the ASIC threshold and the value for signal-tail subtraction. Finally, a LVDS serializer sends the information to the first level trigger system.

  11. Large-scale Environment of a z = 6.61 Luminous Quasar Probed by Lyα Emitters and Lyman Break Galaxies

    NASA Astrophysics Data System (ADS)

    Ota, Kazuaki; Venemans, Bram P.; Taniguchi, Yoshiaki; Kashikawa, Nobunari; Nakata, Fumiaki; Harikane, Yuichi; Bañados, Eduardo; Overzier, Roderik; Riechers, Dominik A.; Walter, Fabian; Toshikawa, Jun; Shibuya, Takatoshi; Jiang, Linhua

    2018-04-01

    Quasars (QSOs) hosting supermassive black holes are believed to reside in massive halos harboring galaxy overdensities. However, many observations revealed average or low galaxy densities around z ≳ 6 QSOs. This could be partly because they measured galaxy densities in only tens of arcmin2 around QSOs and might have overlooked potential larger-scale galaxy overdensities. Some previous studies also observed only Lyman break galaxies (LBGs; massive older galaxies) and missed low-mass young galaxies, like Lyα emitters (LAEs), around QSOs. Here we present observations of LAE and LBG candidates in ∼700 arcmin2 around a z = 6.61 luminous QSO using the Subaru Telescope Suprime-Cam with narrowband/broadband. We compare their sky distributions, number densities, and angular correlation functions with those of LAEs/LBGs detected in the same manner and comparable data quality in our control blank field. In the QSO field, LAEs and LBGs are clustering in 4–20 comoving Mpc angular scales, but LAEs show mostly underdensity over the field while LBGs are forming 30 × 60 comoving Mpc2 large-scale structure containing 3σ–7σ high-density clumps. The highest-density clump includes a bright (23.78 mag in the narrowband) extended (≳16 kpc) Lyα blob candidate, indicative of a dense environment. The QSO could be part of the structure but is not located exactly at any of the high-density peaks. Near the QSO, LAEs show underdensity while LBGs average to 4σ excess densities compared to the control field. If these environments reflect halo mass, the QSO may not be in the most massive halo but still in a moderately massive one. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  12. Statistical Measures of Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Vogeley, Michael; Geller, Margaret; Huchra, John; Park, Changbom; Gott, J. Richard

    1993-12-01

    \\inv Mpc} To quantify clustering in the large-scale distribution of galaxies and to test theories for the formation of structure in the universe, we apply statistical measures to the CfA Redshift Survey. This survey is complete to m_{B(0)}=15.5 over two contiguous regions which cover one-quarter of the sky and include ~ 11,000 galaxies. The salient features of these data are voids with diameter 30-50\\hmpc and coherent dense structures with a scale ~ 100\\hmpc. Comparison with N-body simulations rules out the ``standard" CDM model (Omega =1, b=1.5, sigma_8 =1) at the 99% confidence level because this model has insufficient power on scales lambda >30\\hmpc. An unbiased open universe CDM model (Omega h =0.2) and a biased CDM model with non-zero cosmological constant (Omega h =0.24, lambda_0 =0.6) match the observed power spectrum. The amplitude of the power spectrum depends on the luminosity of galaxies in the sample; bright (L>L(*) ) galaxies are more strongly clustered than faint galaxies. The paucity of bright galaxies in low-density regions may explain this dependence. To measure the topology of large-scale structure, we compute the genus of isodensity surfaces of the smoothed density field. On scales in the ``non-linear" regime, <= 10\\hmpc, the high- and low-density regions are multiply-connected over a broad range of density threshold, as in a filamentary net. On smoothing scales >10\\hmpc, the topology is consistent with statistics of a Gaussian random field. Simulations of CDM models fail to produce the observed coherence of structure on non-linear scales (>95% confidence level). The underdensity probability (the frequency of regions with density contrast delta rho //lineρ=-0.8) depends strongly on the luminosity of galaxies; underdense regions are significantly more common (>2sigma ) in bright (L>L(*) ) galaxy samples than in samples which include fainter galaxies.

  13. Impact of Pre-Plasma on Electron Generation and Transport in Laser Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Peebles, Jonathan Lee

    Relativistic laser plasma interactions in conjunction with an underdense pre-plasma have been shown to generate a two temperature component electron spectrum. The lower temperature component described by "ponderomotive scaling'" is relatively well known and understood and is useful for applications such as the fast ignition inertial confinement fusion scheme. The higher energy electrons generated due to pre-plasma are denoted as "super-ponderomotive" electrons and facilitate interesting and useful applications. These include but are not limited to table top particle acceleration and generating high energy protons, x-rays and neutrons from secondary interactions. This dissertation describes experimental and particle-in-cell computational studies of the electron spectra produced from interactions between short pulse high intensity lasers and controlled pre-plasma conditions. Experiments were conducted at 3 laser labs: Texas Petawatt (University of Texas at Austin), Titan (Lawrence Livermore National Laboratory) and OMEGA-EP (University of Rochester). These lasers have different capabilities, and multiple experiments were carried out in order to fully understand super-ponderomotive electron generation and transport in the high intensity laser regime (I > 1018 W/cm2). In these experiments, an additional secondary long pulse beam was used to generate different scale lengths of "injected" pre-plasma while the pulse length and intensity of the short pulse beam were varied. The temperature and quantity of super-ponderomotive electrons were monitored with magnetic spectrometers and inferred via bremsstrahlung spectrometers while trajectory was estimated via Cu-Kalpha imaging. The experimental and simulation data show that super-ponderomotive electrons require pulse lengths of at least 450 fs to be accelerated and that higher intensity interactions generate large magnetic fields which cause severe deflection of the super-ponderomotive electrons. Laser incidence angle is shown to be extremely important in determining hot electron trajectory. Longer pulse length data taken on OMEGA-EP and Titan showed that super-ponderomotive electrons could be created without the need for an initial pre-plasma due to the underdense plasma created during the high intensity interaction alone.

  14. Multiple ion species fluid modeling of sprite halos and the role of electron detachment from O- in their dynamics

    NASA Astrophysics Data System (ADS)

    Liu, N.

    2011-12-01

    Sprite halos are brief descending glows appearing at the lower ionosphere boundary, which follow impulsive cloud-to-ground lightning discharges [e.g., Barrington-Leigh et al., JGR, 106, 1741, 2001, Wescott et al., JGR, 106, 10467, 2001; Pasko, JGR, 115, A00E35, 2010]. They last for a few milliseconds, with horizontal extension of tens of kilometers and vertical thickness of several kilometers. According to global survey of the occurrence of transient luminous events by the ISUAL instruments on the FORMOSAT-2 satellite, on average sprite halos occur once every minute on Earth [Chen et al., JGR, 113, A08306, 2008]. It has been established that sprite halos are caused by electron heating, and molecule excitation and ionization in the lower ionosphere due to lightning quasi-electrostatic field [e.g., Pasko et al., JGR, 102, 4529, 1997; Barrington-Leigh et al., 2001; Pasko, 2010]. Past modeling work on sprite halos was conducted using either a two dimensional (2D) model of at most three charged species or a zero dimensional model of multiple ion species. In this talk, we report a modeling study of sprite halos using a recently developed 2D fluid model of multiple charged species. The model charged species include the ion species set used in [Lehtinen and Inan, GRL, 34, L08804, 2007] to study the dynamics of ionization perturbations produced by gigantic jets in the middle and upper atmosphere. In addition, another charged species, O-, is added to this set, because electron detachment of O- can proceed very fast under moderate electric field [Rayment and Moruzzi, Int. J. Mass Spectrom., 26, 321, 1978], requiring a separate treatment from the other light negative ions. The modeling results of a sprite halo driven by positive cloud-to-ground lightning indicate that the halo can descend to lower altitude with much higher electron density behind its front when the O- detachment process is included. Electron density ahead of the halo front is not significantly reduced from the ambient value, so that there is no attachment "hole" forming in that region that is commonly observed in previous modeling work. According to recent work by Qin et al. [JGR, 116, A06305, 2011], electron density must be around 10^3 1/m^3 or less at sprite initiation altitude in order for individual streamers to form. This requires the ambient electron density at the sprite initiation altitude to be close to 10^3 1/m^3 from our results, because electron density is not greatly decreased below the halo front. In addition, the large downward extent of the halo shown by our results may offer an explanation for the initiation of sprite streamers at 65-70 km altitude observed previously.

  15. An X-ray look at the first head-trail nebula in an X-ray binary

    NASA Astrophysics Data System (ADS)

    Soleri, Paolo

    2011-09-01

    Head-tail trails are a common feature in active galactic nuclei and pulsar bow-shocks. Heinz et al. (2008) suggested that also X-ray binaries, being jet sources moving with high velocities in dense media, can leave trails of highly ionized plasma that should be detectable at radio frequencies. During bservations of faint-persistent X-ray binaries, we discovered an optical nebula around the X-ray binary SAX J1712.6-3739, consisting of a bow-shock ring-like nebula in front of the binary and two trails originating close to it. This is the first detection of such structure in a X-ray binary and it opens a new sub-field in the study of these objects. Observations with XMM-Newton and Chandra are now needed to investigate the properties of the surrounding nebula.

  16. An X-ray look at the first head-trail nebula in an X-ray binary

    NASA Astrophysics Data System (ADS)

    Soleri, Paolo

    2010-10-01

    Head-tail trails are a common feature in active galactic nuclei and pulsar bow-shocks. Heinz et al. (2008) suggested that also X-ray binaries, being jet sources moving with high velocities in dense media, can leave trails of highly ionized plasma that should be detectable at radio frequencies. During observations of faint-persistent X-ray binaries, we discovered an optical nebula around the X-ray binary SAX J1712.6-3739, consisting of a bow-shock ring-like nebula ``in front'' of the binary and two trails originating close to it. This is the first detection of such structure in a X-ray binary and it opens a new sub-field in the study of these objects. Observations with XMM-Newton and Chandra are now needed to investigate the properties of the surrounding nebula.

  17. Optical emission from a fast shock wave - The remnants of Tycho's supernova and SN 1006

    NASA Technical Reports Server (NTRS)

    Chevalier, R. A.; Raymond, J. C.

    1978-01-01

    The faint optical filaments in Tycho's supernova remnant appear to be emission from a shock front moving at 5600 km/s. The intensity of the hydrogen lines, the absence of forbidden lines of heavy elements in the spectrum, and the width of the filaments are explained by a model in which a collisionless shock wave is moving into partially neutral gas. The presence of the neutral gas can be used to set an upper limit of approximately 5 x 10 to the 47th power ergs to the energy in ionizing radiation emitted by a Type I supernova. The patchy neutral gas is probably part of the warm neutral component of the interstellar medium. The existing information on the remnant of SN 1006 indicates that its emission is similar in nature to that from Tycho's remnant.

  18. New far infrared images of bright, nearby, star-forming regions

    NASA Technical Reports Server (NTRS)

    Harper, D. AL, Jr.; Cole, David M.; Dowell, C. Darren; Lees, Joanna F.; Lowenstein, Robert F.

    1995-01-01

    Broadband imaging in the far infrared is a vital tool for understanding how young stars form, evolve, and interact with their environment. As the sensitivity and size of detector arrays has increased, a richer and more detailed picture has emerged of the nearest and brightest regions of active star formation. We present data on M 17, M 42, and S 106 taken recently on the Kuiper Airborne Observatory with the Yerkes Observatory 60-channel far infrared camera, which has pixel sizes of 17 in. at 60 microns, 27 in. at 100 microns, and 45 in. at 160 and 200 microns. In addition to providing a clearer view of the complex central cores of the regions, the images reveal new details of the structure and heating of ionization fronts and photodissociation zones where radiation form luminous stars interacts with adjacent molecular clouds.

  19. Temperature relaxation in supernova remnants, revisited

    NASA Technical Reports Server (NTRS)

    Itoh, H.

    1984-01-01

    Some supernova remnants are expanding into a partially neutral medium. The neutral atoms which are engulfed by the fast blast shock are collisionally ionized to eject low-energy secondary electrons. Calculations are conducted of the temperature relaxation through Coulomb collisions among the secondary electrons, the shocked electrons, and the ions, assuming that the three species have Maxwellian velocity distributions. The results are applied to a self-similar blast wave. If the efficiency of collisionless electron heating at the shock front is high in young remnants such as Tycho, the secondary electrons may be much cooler than both the shocked electrons and the ions. In this case, the emergent X-ray continuum spectrum will have a two-temperature, or a power-law, appearance. This effect may have been observed in the bright rim of the remnant of SN 1006.

  20. The effects of shock wave precursors ahead of hypersonic entry vehicles

    NASA Technical Reports Server (NTRS)

    Stanley, Scott A.; Carlson, Leland A.

    1991-01-01

    A model has been developed to predict the magnitude and characteristics of the shock wave precursor ahead of a hypervelocity vehicle. This model includes both chemical and thermal nonequilibrium, utilizes detailed mass production rates for the photodissociation and photoionization reactions, and accounts for the effects of radiative absorption and emission on the individual internal energy modes of both atomic and diatomic species. Comparison of the present results with shock tube data indicates that the model is reasonably accurate. A series of test cases representing earth aerocapture return from Mars indicate that there is significant production of atoms, ions and electrons ahead of the shock front due to radiative absorption and that the precursor is characterized by an enhanced electron/electronic temperature and molecular ionization. However, the precursor has a negligible effect on the shock layer flow field.

  1. The operation of 0.35 μm partially depleted SOI CMOS technology in extreme environments

    NASA Astrophysics Data System (ADS)

    Li, Ying; Niu, Guofu; Cressler, John D.; Patel, Jagdish; Liu, S. T.; Reed, Robert A.; Mojarradi, Mohammad M.; Blalock, Benjamin J.

    2003-06-01

    We evaluate the usefulness of partially depleted SOI CMOS devices fabricated in a 0.35 μm technology on UNIBOND material for electronics applications requiring robust operation under extreme environment conditions consisting of low and/or high temperature, and under substantial radiation exposure. The threshold voltage, effective mobility, and the impact ionization parameters were determined across temperature for both the nFETs and the pFETs. The radiation response was characterized using threshold voltage shifts of both the front-gate and back-gate transistors. These results suggest that this 0.35 μm partially depleted SOI CMOS technology is suitable for operation across a wide range of extreme environment conditions consisting of: cryogenic temperatures down to 86 K, elevated temperatures up to 573 K, and under radiation exposure to 1.3 Mrad(Si) total dose.

  2. A Study of SDT in an Ammonium Nitrate (NH4 NO3) Based Granular Explosive

    NASA Astrophysics Data System (ADS)

    Burns, Malcolm; Taylor, Peter

    2007-06-01

    In order to study the SDT process in a granular non ideal explosive (NIE) an experimental technique has been developed that allows the granular explosive to be shock initiated at a well controlled ``tap density''. The granular NIE was contained in a PMMA cone and a planar shock was delivered to the explosive through buffer plates of varying material. A combination of piezoelectric probes, ionization pins, PVDF stress gauges and a high speed framing camera were used to measure the input shock pressure and shock and detonation wave positions in the explosive. Four trials were performed to characterize the run to detonation distance versus pressure relationship (Pop plot) of the granular NH4 NO3 explosive. Input pressures ranged from close to the 4GPa predicted CJ pressure of the granular explosive down to 1.4 GPa, giving run distances up to 14mm for the lowest pressure. The data indicates a steady acceleration of the input shock to the detonation velocity, implying significant reaction growth at the shock front. This is in contrast to the behaviour of most high density pressed PBXs which show little growth in shock front velocity before transit to detonation. The experimentally observed initiation behaviour is compared to that predicted by a simple JWL++ reactive burn model for the granular NH4 NO3 explosive which has been fitted to other detonics experiments on this material.

  3. Lightning Step Leader and Return Stroke Spectra at 100,000 fps

    NASA Astrophysics Data System (ADS)

    Harley, J.; McHarg, M.; Stenbaek-Nielsen, H. C.; Haaland, R. K.; Sonnenfeld, R.; Edens, H. E.; Cummer, S.; Lapierre, J. L.; Maddocks, S.

    2017-12-01

    A fundamental understanding of lightning can be inferred from the spectral emissions resulting from the leader and return stroke channels. We examine events recorded at 00:58:07 on 19 July 2015 and 06:44:24 on 23 July 2017, both at Langmuir Laboratory. Analysis of both events is supplemented by data from the Lightning Mapping Array at Langmuir. The 00:58:07 event spectra was recorded using a 100 line per mm grating in front of a Phantom V2010 camera with an 85mm (9o FOV) Nikon lens recording at 100,000 frames per second. Coarse resolution spectra (approximately 5 nm resolution) are produced from approximately 400 nm to 800 nm for each frame. We analyze several nitrogen and oxygen lines to understand step leader temperature behavior between cloud and ground. The 06:44:24 event spectra was recorded using a 300 line per mm grating (approximately 1.5 nm resolution) in front of a Phantom V2010 camera with an 50mm (32o FOV) Nikon lens also recording at 100,000 frames per second. Two ionized atomic nitrogen lines at 502 nm and 569 nm appear upon attachment and disappear as the return stroke travels from ground to cloud in approximately 5 frames. We analyze these lines to understand initial return stroke temperature and species behavior.

  4. Quasi-monoenergetic electron acceleration in relativistic laser-plasmas

    NASA Astrophysics Data System (ADS)

    Pukhov, Alexander; Gordienko, Sergei; Seredov, Vasili; Kostyukov, Igor

    2009-03-01

    Using Particle-in-Cell simulations as well as analytical theory we study electron acceleration in underdense plasmas both in the Bubble regime and in the weakly relativistic periodic wake fields. In the Bubble regime, electron trapping is taken as a function of the propagated distance. The number of trapped electrons depends on the effective phase velocity of the X-point at the rear of the Bubble. For the weakly relativistic periodic wakes, we show that the phase synchronism between the wake and the relativistic electrons can be maintained over very long distances when the plasma density is tapered properly. Moreover, one can use layered plasmas to control and improve the accelerated beam quality. To cite this article: A. Pukhov et al., C. R. Physique 10 (2009).

  5. Relativistic Eulerian Vlasov simulations of the amplification of seed pulses by Brillouin backscattering in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoucri, M., E-mail: Shoucri.Magdi@ireq.ca; Matte, J.-P.; Vidal, F.

    We apply an Eulerian Vlasov code to study the amplification by Brillouin scattering of a short seed laser pulse by a long pump laser pulse in an underdense plasma. The stimulated Brillouin backscattering interaction is the coupling of the pump and seed electromagnetic waves propagating in opposite directions, and the ion plasma wave. The code solves the one-dimensional relativistic Vlasov-Maxwell set of equations. Large amplitude ion waves are generated. In the simulations we present, the density plateau of the plasma is n{sub e}=0.3 n{sub c} (n{sub c} is the critical density), which excludes spurious stimulated Raman scattering amplification (which can occurmore » only if n{sub e}« less

  6. Parametric decay instability near the upper hybrid resonance in magnetically confined fusion plasmas

    NASA Astrophysics Data System (ADS)

    Hansen, S. K.; Nielsen, S. K.; Salewski, M.; Stejner, M.; Stober, J.; the ASDEX Upgrade Team

    2017-10-01

    In this paper we investigate parametric decay of an electromagnetic pump wave into two electrostatic daughter waves, particularly an X-mode pump wave decaying into a warm upper hybrid wave (a limit of an electron Bernstein wave) and a warm lower hybrid wave. We describe the general theory of the above parametric decay instability (PDI), unifying earlier treatments, and show that it may occur in underdense and weakly overdense plasmas. The PDI theory is used to explain anomalous sidebands observed in collective Thomson scattering (CTS) spectra at the ASDEX Upgrade tokamak. The theory may also account for similar observations during CTS experiments in stellarators, as well as in some 1st harmonic electron cyclotron resonance and O-X-B heating experiments.

  7. PROPLYDS AROUND A B1 STAR: 42 ORIONIS IN NGC 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jinyoung Serena; Fang, Min; Clarke, Cathie J.

    2016-07-20

    We present the discovery of seven new proplyds (i.e., sources surrounded by cometary H α emission characteristic of offset ionization fronts (IFs)) in NGC 1977, located about 30′ north of the Orion Nebula Cluster (ONC) at a distance of ∼400 pc. Each of these proplyds is situated at projected distances 0.04–0.27 pc from the B1V star 42 Orionis ( c Ori), which is the main source of UV photons in the region. In all cases the IFs of the proplyds are clearly pointing toward the common ionizing source, 42 Ori, and six of the seven proplyds clearly show tails pointingmore » away from it. These are the first proplyds to be found around a B star, with previously known examples instead being located around O stars, including those in the ONC around θ {sup 1} Ori C. The radii of the offset IFs in our proplyds are between ∼200 and 550 au; two objects also contain clearly resolved central sources that we associate with disks of radii 50–70 au. The estimated strength of the FUV radiation field impinging on the proplyds is around 10–30 times less than that incident on the classic proplyds in the ONC. We show that the observed proplyd sizes are however consistent with recent models for FUV photoevaporation in relatively weak FUV radiation fields.« less

  8. Intense laser pulse propagation in capillary discharge plasma channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, R. F.; Moore, C. I.; Sprangle, P.

    Optical guiding of intense laser pulses is required for plasma-based accelerator concepts such as the laser wakefield accelerator. Reported experiments have successfully transported intense laser pulses in the hollow plasma column produced by a capillary discharge. The hollow plasma has an index of refraction which peaks on-axis, thus providing optical guiding which overcomes beam expansion due to diffraction. In more recent experiments at Hebrew University, 800 nm wavelength, 0.1 mJ, 100 fs pulses have been guided in {approx}300 micron radius capillaries over distances as long as 6.6 cm. Simulations of these experiments using a 2-D nonlinear laser propagation model producemore » the expected optical guiding, with the laser pulse radius r{sub L} exhibiting oscillations about the equilibrium value predicted by an analytical envelope equation model. The oscillations are damped at the front of the pulse and grow in amplitude in the back of the pulse. This growth and damping is attributed to finite pulse length effects. Simulations also show that further ionization of the discharge plasma by the laser pulse may hollow the laser pulse and introduce modulations in the spot size. This ionization-defocusing effect is expected to be significant at the high intensities required for accelerator application. Capillary discharge experiments at much higher intensities are in progress on the Naval Research Laboratory T{sup 3} laser, and preliminary results are reported.« less

  9. Testing for characterization of the materials from radiological point of view

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bercea, Sorin; Iliescu, Elena; Dudu, Dorin

    2013-12-16

    The nuclear techniques and materials are now used in a large number of applications, both in medicine and industry. Due to this fact, new materials are needed in order to assure the radiological protection of the personnel involved in these activities. But, finally, all these materials have to be tested for some specific parameters, in order to prove that they are adequate for the purposed for which they were created. One of the important parameters of the materials used for the radiological protection is the attenuation coefficient. The attenuation coefficient of the ionizing radiation composed by particles without electrical chargemore » (X,γ-ray and neutron) is the most important parameter for the materials used for the shielding of these ionizing radiation. This paper deals with the experimental methods developed for the determination of the attenuation of fast and thermal neutrons. These experimental methods, involved the use of Am-Be source and U-120 Cyclotron of IFIN-HH. For the tests which were done at the U-120 Cyclotron, a number of experiments had to be performed, in order to establish the irradiation geometry and the dose equivalent rates in front of and behind the material samples. The experimental results obtained for samples of several materials, confirmed the methods as adequate for the aim of the test.« less

  10. Exploring the multifaceted circumstellar environment of the luminous blue variable HR Carinae

    NASA Astrophysics Data System (ADS)

    Buemi, C. S.; Trigilio, C.; Leto, P.; Umana, G.; Ingallinera, A.; Cavallaro, F.; Cerrigone, L.; Agliozzo, C.; Bufano, F.; Riggi, S.; Molinari, S.; Schillirò, F.

    2017-03-01

    We present a multiwavelength study of the Galactic luminous blue variable HR Carinae, based on new high-resolution mid-infrared (IR) and radio images obtained with the Very Large Telescope (VLT) and the Australia Telescope Compact Array (ATCA), which have been complemented by far-infrared Herschel-Photodetector Array Camera and Spectrometer (PACS) observations and ATCA archive data. The Herschel images reveal the large-scale distribution of the dusty emitting nebula, which extends mainly to the north-east direction, up to 70 arcsec from the central star, and is oriented along the direction of the space motion of the star. In the mid-infrared images, the brightness distribution is characterized by two arc-shaped structures, tracing an inner envelope surrounding the central star more closely. At radio wavelengths, the ionized gas emission lies on the opposite side of the cold dust with respect to the position of the star, as if the ionized front were confined by the surrounding medium in the north-south direction. Comparison with previous data indicates significant changes in the radio nebula morphology and in the mass-loss rate from the central star, which has increased from 6.1 × 10-6 M⊙ yr-1 in 1994-1995 to 1.17 × 10-5 M⊙ yr-1 in 2014. We investigate possible scenarios that could have generated the complex circumstellar environment revealed by our multiwavelength data.

  11. Microwave Triggered Laser Ionization of Air

    NASA Astrophysics Data System (ADS)

    Vadiee, Ehsan; Prasad, Sarita; Jerald Buchenauer, C.; Schamiloglu, Edl

    2012-10-01

    The goal of this work is to study the evolution and dynamics of plasma expansion when a high power microwave (HPM) pulse is overlapped in time and space on a very small, localized region of plasma formed by a high energy laser pulse. The pulsed Nd:YAG laser (8 ns, 600mJ, repetition rate 10 Hz) is focused to generate plasma filaments in air with electron density of 10^17/cm^3. When irradiated with a high power microwave pulse these electrons would gain enough kinetic energy and further escalate avalanche ionization of air due to elastic electron-neutral collisions thereby causing an increased volumetric discharge region. An X-band relativistic backward wave oscillator(RBWO) at the Pulsed Power,Beams and Microwaves laboratory at UNM is constructed as the microwave source. The RBWO produces a microwave pulse of maximum power 400 MW, frequency of 10.1 GHz, and energy of 6.8 Joules. Special care is being given to synchronize the RBWO and the pulsed laser system in order to achieve a high degree of spatial and temporal overlap. A photodiode and a microwave waveguide detector will be used to ensure the overlap. Also, a new shadowgraph technique with a nanosecond time resolution will be used to detect changes in the shock wave fronts when the HPM signal overlaps the laser pulse in time and space.

  12. Commercial Buck Converters and Custom Coil Development for the ATLAS Inner Detector Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhawan, S.; Lanni, F.; Baker, O.

    2010-04-01

    A new generation of higher gain commercial buck converters built using advanced short channel CMOS processes has the potential to operate in the Atlas Inner Detector at the Super Large Hadron Collider (sLHC). This approach would inherently be more efficient than the existing practice of locating the power conversion external to the detector. The converters must operate in a large magnetic field and be able to survive both high doses of ionizing radiation and large neutron fluences. The presence of a large magnetic field necessitates the use of an air core inductor which is developed and discussed here. Noise measurementsmore » will be made to investigate the effect of the high frequency switching of the buck converter on the sensitive front end electronics. Radiation hardness of selected buck converters and mosfets will also be reported.« less

  13. Thrust generation experiments on microwave rocket with a beam concentrator for long distance wireless power feeding

    NASA Astrophysics Data System (ADS)

    Fukunari, Masafumi; Yamaguchi, Toshikazu; Nakamura, Yusuke; Komurasaki, Kimiya; Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Sakamoto, Keishi

    2018-04-01

    Experiments using a 1 MW-class gyrotron were conducted to examine a beamed energy propulsion rocket, a microwave rocket with a beam concentrator for long-distance wireless power feeding. The incident beam is transmitted from a beam transmission mirror system. The beam transmission mirror system expands the incident beam diameter to 240 mm to extend the Rayleigh length. The beam concentrator receives the beam and guides it into a 56-mm-diameter cylindrical thruster tube. Plasma ignition and ionization front propagation in the thruster were observed through an acrylic window using a fast-framing camera. Atmospheric air was used as a propellant. Thrust generation was achieved with the beam concentrator. The maximum thrust impulse was estimated as 71 mN s/pulse from a pressure history at the thrust wall at the input energy of 638 J/pulse. The corresponding momentum coupling coefficient, Cm was inferred as 204 N/MW.

  14. A numerical algorithm for MHD of free surface flows at low magnetic Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Du, Jian; Glimm, James; Xu, Zhiliang

    2007-10-01

    We have developed a numerical algorithm and computational software for the study of magnetohydrodynamics (MHD) of free surface flows at low magnetic Reynolds numbers. The governing system of equations is a coupled hyperbolic-elliptic system in moving and geometrically complex domains. The numerical algorithm employs the method of front tracking and the Riemann problem for material interfaces, second order Godunov-type hyperbolic solvers, and the embedded boundary method for the elliptic problem in complex domains. The numerical algorithm has been implemented as an MHD extension of FronTier, a hydrodynamic code with free interface support. The code is applicable for numerical simulations of free surface flows of conductive liquids or weakly ionized plasmas. The code has been validated through the comparison of numerical simulations of a liquid metal jet in a non-uniform magnetic field with experiments and theory. Simulations of the Muon Collider/Neutrino Factory target have also been discussed.

  15. Coherent control of plasma dynamics by feedback-optimized wavefront manipulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Z.-H.; Hou, B.; Gao, G.

    2015-05-15

    Plasmas generated by an intense laser pulse can support coherent structures such as large amplitude wakefield that can affect the outcome of an experiment. We investigate the coherent control of plasma dynamics by feedback-optimized wavefront manipulation using a deformable mirror. The experimental outcome is directly used as feedback in an evolutionary algorithm for optimization of the phase front of the driving laser pulse. In this paper, we applied this method to two different experiments: (i) acceleration of electrons in laser driven plasma waves and (ii) self-compression of optical pulses induced by ionization nonlinearity. The manipulation of the laser wavefront leadsmore » to orders of magnitude improvement to electron beam properties such as the peak charge, beam divergence, and transverse emittance. The demonstration of coherent control for plasmas opens new possibilities for future laser-based accelerators and their applications.« less

  16. Limitations to laser machining of silicon using femtosecond micro-Bessel beams in the infrared

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grojo, David, E-mail: grojo@lp3.univ-mrs.fr; Mouskeftaras, Alexandros; Delaporte, Philippe

    We produce and characterize high-angle femtosecond Bessel beams at 1300-nm wavelength leading to nonlinearly ionized plasma micro-channels in both glass and silicon. With microjoule pulse energy, we demonstrate controlled through-modifications in 150-μm glass substrates. In silicon, strong two-photon absorption leads to larger damages at the front surface but also a clamping of the intensity inside the bulk at a level of ≈4 × 10{sup 11 }W cm{sup −2} which is below the threshold for volume and rear surface modification. We show that the intensity clamping is associated with a strong degradation of the Bessel-like profile. The observations highlight that the inherent limitation tomore » ultrafast energy deposition inside semiconductors with Gaussian focusing [Mouskeftaras et al., Appl. Phys. Lett. 105, 191103 (2014)] applies also for high-angle Bessel beams.« less

  17. Simulations of nanosecond-pulsed dielectric barrier discharges in atmospheric pressure air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soo Bak, Moon; Cappelli, Mark A.

    2013-03-21

    This paper describes simulations of nanosecond pulse plasma formation between planer electrodes covered by dielectric barriers in air at atmospheric pressure and 340 K. The plasma formation process starts as electrons detach from negative ions of molecular oxygen that are produced from the previous discharge pulse. An ionization front is found to form close to the positively biased electrode and then strengthens and propagates towards the grounded electrode with increasing gap voltage. Charge accumulation and secondary emission from the grounded electrode eventually lead to sheath collapse. One interesting feature is a predicted reversal in gap potential due to the accumulatedmore » charge, even when there is no reversal in applied potential. The simulation results are compared to recent measurement of mid-gap electric field under the same discharge conditions [Ito et al., Phys. Rev. Lett. 107, 065002 (2011)].« less

  18. Plasma diagnostics of non-equilibrium atmospheric plasma jets

    NASA Astrophysics Data System (ADS)

    Shashurin, Alexey; Scott, David; Keidar, Michael; Shneider, Mikhail

    2014-10-01

    Intensive development and biomedical application of non-equilibrium atmospheric plasma jet (NEAPJ) facilitates rapid growth of the plasma medicine field. The NEAPJ facility utilized at the George Washington University (GWU) demonstrated efficacy for treatment of various cancer types (lung, bladder, breast, head, neck, brain and skin). In this work we review recent advances of the research conducted at GWU concerned with the development of NEAPJ diagnostics including Rayleigh Microwave Scattering setup, method of streamer scattering on DC potential, Rogowski coils, ICCD camera and optical emission spectroscopy. These tools allow conducting temporally-resolved measurements of plasma density, electrical potential, charge and size of the streamer head, electrical currents flowing though the jet, ionization front propagation speed etc. Transient dynamics of plasma and discharge parameters will be considered and physical processes involved in the discharge will be analyzed including streamer breakdown, electrical coupling of the streamer tip with discharge electrodes, factors determining NEAPJ length, cross-sectional shape and propagation path etc.

  19. Development and application of computational aerothermodynamics flowfield computer codes

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    1993-01-01

    Computations are presented for one-dimensional, strong shock waves that are typical of those that form in front of a reentering spacecraft. The fluid mechanics and thermochemistry are modeled using two different approaches. The first employs traditional continuum techniques in solving the Navier-Stokes equations. The second-approach employs a particle simulation technique (the direct simulation Monte Carlo method, DSMC). The thermochemical models employed in these two techniques are quite different. The present investigation presents an evaluation of thermochemical models for nitrogen under hypersonic flow conditions. Four separate cases are considered. The cases are governed, respectively, by the following: vibrational relaxation; weak dissociation; strong dissociation; and weak ionization. In near-continuum, hypersonic flow, the nonequilibrium thermochemical models employed in continuum and particle simulations produce nearly identical solutions. Further, the two approaches are evaluated successfully against available experimental data for weakly and strongly dissociating flows.

  20. Applications of Radiative Heating for Space Exploration

    NASA Technical Reports Server (NTRS)

    Brandis, Aaron

    2017-01-01

    Vehicles entering planetary atmospheres at high speeds (6 - 12 kms) experience intense heating by flows with temperatures of the order 10 000K. The flow around the vehicle experiences significant dissociation and ionization and is characterized by thermal and chemical non-equilibrium near the shock front, relaxing toward equilibrium. Emission from the plasma is intense enough to impart a significant heat flux on the entering spacecraft, making it necessary to predict the magnitude of radiative heating. Shock tubes represent a unique method capable of characterizing these processes in a flight-similar environment. The Electric Arc Shock tube (EAST) facility is one of the only facilities in its class, able to produce hypersonic flows at speeds up to Mach 50. This talk will review the characterization of radiation measured in EAST with simulations by the codes DPLR and NEQAIR, and in particular, focus on the impact these analyses have on recent missions to explore the solar system.

  1. Propagation of an ultrashort, intense laser pulse in a relativistic plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritchie, B.; Decker, C.D.

    1997-12-31

    A Maxwell-relativistic fluid model is developed for the propagation of an ultrashort, intense laser pulse through an underdense plasma. The separability of plasma and optical frequencies ({omega}{sub p} and {omega} respectively) for small {omega}{sub p}/{omega} is not assumed; thus the validity of multiple-scales theory (MST) can be tested. The theory is valid when {omega}{sub p}/{omega} is of order unity or for cases in which {omega}{sub p}/{omega} {much_lt} 1 but strongly relativistic motion causes higher-order plasma harmonics to be generated which overlap the region of the first-order laser harmonic, such that MST would not expected to be valid although its principalmore » validity criterion {omega}{sub p}/{omega} {much_lt} 1 holds.« less

  2. Laser-pulse shape effects on magnetic field generation in underdense plasmas

    NASA Astrophysics Data System (ADS)

    Gopal, Krishna; Raja, Md. Ali; Gupta, Devki Nandan; Avinash, K.; Sharma, Suresh C.

    2018-07-01

    Laser pulse shape effect has been considered to estimate the self-generated magnetic field in laser-plasma interaction. A ponderomotive force based physical mechanism has been proposed to investigate the self-generated magnetic field for different spatial profiles of the laser pulse in inhomogeneous plasmas. The spatially inhomogeneous electric field of a laser pulse imparts a stronger ponderomotive force on plasma electrons. Thus, the stronger ponderomotive force associated with the asymmetric laser pulse generates a stronger magnetic field in comparison to the case of a symmetric laser pulse. Scaling laws for magnetic field strength with the laser and plasma parameters for different shape of the pulse have been suggested. Present study might be helpful to understand the plasma dynamics relevant to the particle trapping and injection in laser-plasma accelerators.

  3. Plasma optical modulators for intense lasers

    PubMed Central

    Yu, Lu-Le; Zhao, Yao; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D. A.; Mori, W. B.; Zhang, Jie

    2016-01-01

    Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 1016 W cm−2 to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations. PMID:27283369

  4. Delaunay based algorithm for finding polygonal voids in planar point sets

    NASA Astrophysics Data System (ADS)

    Alonso, R.; Ojeda, J.; Hitschfeld, N.; Hervías, C.; Campusano, L. E.

    2018-01-01

    This paper presents a new algorithm to find under-dense regions called voids inside a 2D point set. The algorithm starts from terminal-edges (local longest-edges) in a Delaunay triangulation and builds the largest possible low density terminal-edge regions around them. A terminal-edge region can represent either an entire void or part of a void (subvoid). Using artificial data sets, the case of voids that are detected as several adjacent subvoids is analyzed and four subvoid joining criteria are proposed and evaluated. Since this work is inspired on searches of a more robust, effective and efficient algorithm to find 3D cosmological voids the evaluation of the joining criteria considers this context. However, the design of the algorithm permits its adaption to the requirements of any similar application.

  5. Field ion microscopic studies of the CO oxidation on platinum: Field ion imaging and titration reactions

    NASA Astrophysics Data System (ADS)

    Gorodetskii, V.; Drachsel, W.; Block, J. H.

    1994-05-01

    Elementary steps of the CO oxidation—which are important for understanding the oscillatory behavior of this catalytic reaction—are investigated simultaneously on different Pt-single crystal surfaces by field ion microscopy. Due to preferential ionization probabilities of oxygen as imaging gas on those surface sites, which are adsorbed with oxygen, these sites can be imaged in a lateral resolution on the atomic scale. In the titration reaction a COad-precovered field emitter surface reacts with gaseous oxygen adsorbed from the gas phase or, vice versa, the Oad-precovered surface with carbon monoxide adsorbed from the gas phase. The competition of the manifold of single crystal planes exposed to the titration reaction at the field emitter tip is studied. The surface specificity can be documented in the specific reaction delay times of the different planes and in the propagation rates of the reaction-diffusion wave fronts measured on these individual planes during the titration reaction with a time resolution of 40 ms. At 300 K the COad-precovered surfaces display the {011} regions, precisely the {331} planes as the most active, followed by {012}, {122}, {001}, and finally by {111}. Reaction wave fronts move with a velocity of 8 Å/s at {012}, with ≊0.8 Å/s at {111}, and have a very fast ``switch-on'' reaction at the (001) plane with 500 Å/s. At higher temperature, T=350 K, an acceleration of reaction rates is combined with shorter delay times. The titration reaction of a precovered Oad surface with COgas at T=373 K shows the formation of CO islands starting in the {011} regions with a quickly moving reaction front into the other surface areas without showing particular delay times for different surface symmetries. The two reverse titration reactions have a largely different character. The titration of COad with oxygen adsorbed from the gas phase consists of three different steps, (i) the induction times, (ii) the highly surface specific reaction, and (iii) different rates of wave front propagation. The reaction of COgas with a precovered Oad layer on the other hand starts with nucleating islands around the {011} planes from where the whole emitter surface is populated with COad without pronounced surface specifity.

  6. MHD heat flux mitigation in hypersonic flow around a blunt body with ablating surface

    NASA Astrophysics Data System (ADS)

    Bityurin, V. A.; Bocharov, A. N.

    2018-07-01

    One of the possible applications of magnetohydrodynamic flow control is considered. Namely, the surface heat flux mitigation by means of magnetohydrodynamic (MHD) interaction in hypersonic flow around a blunt body. The 2D computational model realizes a coupled solution of chemically non-equilibrium ionized airflow in magnetic field. Heat- and mass-transfer due to the ablation of materials from the body surface is taken into account. Two cases of free-stream flow conditions are considered: moderate free-stream velocity (7500 m s‑1) case and high free-stream velocity (11 000 m s‑1) case. It is shown that the first flow case results in moderate ionization in the shock layer, while the second flow case results in high ionization. In the first case, the Hall effect is significant, and effective electrical conductivity in the shock layer is rather low. In the second case, the Hall effect reduces, and effective conductivity is high. Even if the Hall effect is strong, as in the first case, intensive MHD deceleration of the flow behind the shock is provided due to the presence of insulating boundaries, the bow shock front and non-conductive wall of the blunt body. In the second case, high effective conductivity provides a high intensity of MHD flow deceleration. In both cases, a strong effect of MHD interaction on the flow structure is observed. As a consequence, a noticeable reduction of the surface heat flux is revealed for reasonable values of magnetic induction. The new treatment of mechanism for the surface heat flux reduction is proposed, which is different from commonly used one assuming that MHD interaction increases the bow shock stand-off distance, and, consequently results in a decrease of the mean temperature drop across the shock layer. The new effect of ‘saturation of heat flux’ is discussed.

  7. Formation of structures around HII regions: ionization feedback from massive stars

    NASA Astrophysics Data System (ADS)

    Tremblin, P.; Audit, E.; Minier, V.; Schmidt, W.; Schneider, N.

    2015-03-01

    We present a new model for the formation of dense clumps and pillars around HII regions based on shocks curvature at the interface between a HII region and a molecular cloud. UV radiation leads to the formation of an ionization front and of a shock ahead. The gas is compressed between them forming a dense shell at the interface. This shell may be curved due to initial interface or density modulation caused by the turbulence of the molecular cloud. Low curvature leads to instabilities in the shell that form dense clumps while sufficiently curved shells collapse on itself to form pillars. When turbulence is high compared to the ionized-gas pressure, bubbles of cold gas have sufficient kinetic energy to penetrate into the HII region and detach themselves from the parent cloud, forming cometary globules. Using computational simulations, we show that these new models are extremely efficient to form dense clumps and stable and growing elongated structures, pillars, in which star formation might occur (see Tremblin et al. 2012a). The inclusion of turbulence in the model shows its importance in the formation of cometary globules (see Tremblin et al. 2012b). Globally, the density enhancement in the simulations is of one or two orders of magnitude higher than the density enhancement of the classical ``collect and collapse`` scenario. The code used for the simulation is the HERACLES code, that comprises hydrodynamics with various equation of state, radiative transfer, gravity, cooling and heating. Our recent observations with Herschel (see Schneider et al. 2012a) and SOFIA (see Schneider et al. 2012b) and additional Spitzer data archives revealed many more of these structures in regions where OB stars have already formed such as the Rosette Nebula, Cygnus X, M16 and Vela, suggesting that the UV radiation from massive stars plays an important role in their formation. We present a first comparison between the simulations described above and recent observations of these regions.

  8. Automatic sampling and analysis of organics and biomolecules by capillary action-supported contactless atmospheric pressure ionization mass spectrometry.

    PubMed

    Hsieh, Cheng-Huan; Meher, Anil Kumar; Chen, Yu-Chie

    2013-01-01

    Contactless atmospheric pressure ionization (C-API) method has been recently developed for mass spectrometric analysis. A tapered capillary is used as both the sampling tube and spray emitter in C-API. No electric contact is required on the capillary tip during C-API mass spectrometric analysis. The simple design of the ionization method enables the automation of the C-API sampling system. In this study, we propose an automatic C-API sampling system consisting of a capillary (∼1 cm), an aluminium sample holder, and a movable XY stage for the mass spectrometric analysis of organics and biomolecules. The aluminium sample holder is controlled by the movable XY stage. The outlet of the C-API capillary is placed in front of the orifice of a mass spectrometer, whereas the sample well on the sample holder is moved underneath the capillary inlet. The sample droplet on the well can be readily infused into the C-API capillary through capillary action. When the sample solution reaches the capillary outlet, the sample spray is readily formed in the proximity of the mass spectrometer applied with a high electric field. The gas phase ions generated from the spray can be readily monitored by the mass spectrometer. We demonstrate that six samples can be analyzed in sequence within 3.5 min using this automatic C-API MS setup. Furthermore, the well containing the rinsing solvent is alternately arranged between the sample wells. Therefore, the C-API capillary could be readily flushed between runs. No carryover problems are observed during the analyses. The sample volume required for the C-API MS analysis is minimal, with less than 1 nL of the sample solution being sufficient for analysis. The feasibility of using this setup for quantitative analysis is also demonstrated.

  9. 3D ion velocity distribution function measurement in an electric thruster using laser induced fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Elias, P. Q.; Jarrige, J.; Cucchetti, E.; Cannat, F.; Packan, D.

    2017-09-01

    Measuring the full ion velocity distribution function (IVDF) by non-intrusive techniques can improve our understanding of the ionization processes and beam dynamics at work in electric thrusters. In this paper, a Laser-Induced Fluorescence (LIF) tomographic reconstruction technique is applied to the measurement of the IVDF in the plume of a miniature Hall effect thruster. A setup is developed to move the laser axis along two rotation axes around the measurement volume. The fluorescence spectra taken from different viewing angles are combined using a tomographic reconstruction algorithm to build the complete 3D (in phase space) time-averaged distribution function. For the first time, this technique is used in the plume of a miniature Hall effect thruster to measure the full distribution function of the xenon ions. Two examples of reconstructions are provided, in front of the thruster nose-cone and in front of the anode channel. The reconstruction reveals the features of the ion beam, in particular on the thruster axis where a toroidal distribution function is observed. These findings are consistent with the thruster shape and operation. This technique, which can be used with other LIF schemes, could be helpful in revealing the details of the ion production regions and the beam dynamics. Using a more powerful laser source, the current implementation of the technique could be improved to reduce the measurement time and also to reconstruct the temporal evolution of the distribution function.

  10. Strong z ~ 0.5 OVI absorption towards PKS 0405-123: implications for ionization and metallicity of the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Howk, J. Christopher; Ribaudo, Joseph S.; Lehner, Nicolas; Prochaska, J. Xavier; Chen, Hsiao-Wen

    2009-07-01

    We present observations of the intervening OVI absorption-line system at zabs = 0.495096 towards the quasi-stellar object (QSO) PKS 0405-123 (zem = 0.5726) obtained with the Far Ultraviolet Spectroscopic Explorer and Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. In addition to strong OVI, with , and moderate HI, with , this absorber shows absorption from CIII, NIV, OIV and OV, with upper limits for another seven ions. The large number of available ions allows us to test ionization models usually adopted with far fewer constraints. We find that the observed ionic column densities cannot be matched by single-temperature collisional ionization models, in or out of equilibrium. Photoionization models can match all of the observed column densities, including OVI. If one assumes photoionization by an ultraviolet (UV) background dominated by QSOs, the metallicity of the gas is [O/H] ~ -0.15, while if one assumes a model for the UV background with contributions from ionizing photons escaping from galaxies the metallicity is [O/H] ~ -0.62. Both give [N/O] ~ -0.6 and [C/H] ~ -0.2 to ~-0.1, though a solar C/O ratio is not ruled out. The choice of ionizing spectrum is poorly constrained and leads to systematic abundance uncertainties of ~0.5 dex, despite the wide range of available ions. Multiphase models with a contribution from both photoionized gas (at T ~ 104 K) and collisionally ionized gas [at T ~ (1-3) × 105 K] can also match the observations for either assumed UV background giving very similar metallicities. We do not detect NeVIII or MgX absorption. The limit on NeVIII/OVI < 0.21 (3σ) is the lowest yet observed. Thus, this absorber shows no firm evidence of the `warm-hot intergalactic medium' at T ~ (0.5-3) × 106K thought to contain a significant fraction of the baryons at low redshift. The OVI in this system is not necessarily a reliable tracer of the warm-hot intergalactic medium given the ambiguity in its origins. We present limits on the total column of warm-hot gas in this absorber as a function of temperature. This system would be unlikely to provide detectable X-ray absorption in the ions OVII or OVIII even if it resided in front of the brighter X-ray sources in the sky. Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer (FUSE). FUSE is operated for NASA by the Johns Hopkins University under NASA contract NAS5-32985. Also based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 7576. E-mail: jhowk@nd.edu

  11. EXPANSION OF HYDROGEN-POOR KNOTS IN THE BORN-AGAIN PLANETARY NEBULAE A30 AND A78

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, X.; Guerrero, M. A.; Marquez-Lugo, R. A.

    2014-12-20

    We analyze the expansion of hydrogen-poor knots and filaments in the born-again planetary nebulae A30 and A78 based on Hubble Space Telescope (HST) images obtained almost 20 yr apart. The proper motion of these features generally increases with distance to the central star, but the fractional expansion decreases, i.e., the expansion is not homologous. As a result, there is not a unique expansion age, which is estimated to be 610-950 yr for A30 and 600-1140 yr for A78. The knots and filaments have experienced complex dynamical processes: the current fast stellar wind is mass loaded by the material ablated from the inner knots;more » the ablated material is then swept up until it shocks the inner edges of the outer, hydrogen-rich nebula. The angular expansion of the outer filaments shows a clear dependence on position angle, indicating that the interaction of the stellar wind with the innermost knots channels the wind along preferred directions. The apparent angular expansion of the innermost knots seems to be dominated by the rocket effect of evaporating gas and by the propagation of the ionization front inside them. Radiation-hydrodynamical simulations show that a single ejection of material followed by a rapid onset of the stellar wind and ionizing flux can reproduce the variety of clumps and filaments at different distances from the central star found in A30 and A78.« less

  12. THE GALACTIC CENTER CLOUD G2-A YOUNG LOW-MASS STAR WITH A STELLAR WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scoville, N.; Burkert, A.

    2013-05-10

    We explore the possibility that the G2 gas cloud falling in toward SgrA* is the mass-loss envelope of a young T Tauri star. As the star plunges to smaller radius at 1000-6000 km s{sup -1}, a strong bow shock forms where the stellar wind is impacted by the hot X-ray emitting gas in the vicinity of SgrA*. For a stellar mass-loss rate of 4 Multiplication-Sign 10{sup -8} M{sub Sun} yr{sup -1} and wind velocity 100 km s{sup -1}, the bow shock will have an emission measure (EM = n {sup 2} vol) at a distance {approx}10{sup 16} cm, similar tomore » that inferred from the IR emission lines. The ionization of the dense bow shock gas is potentially provided by collisional ionization at the shock front and cooling radiation (X-ray and UV) from the post shock gas. The former would predict a constant line flux as a function of distance from SgrA*, while the latter will have increasing emission at lesser distances. In this model, the star and its mass-loss wind should survive pericenter passage since the wind is likely launched at 0.2 AU and this is much less than the Roche radius at pericenter ({approx}3 AU for a stellar mass of 2 M{sub Sun }). In this model, the emission cloud will probably survive pericenter passage, discriminating this scenario from others.« less

  13. Triggered lightning spectroscopy: Part 1. A qualitative analysis

    NASA Astrophysics Data System (ADS)

    Walker, T. Daniel; Christian, Hugh J.

    2017-08-01

    The first high-speed spectra of triggered lightning have been obtained. During the summers of 2012 and 2013, spectra were recorded at the International Center for Lightning Research and Testing, Camp Blanding, FL. The spectra were recorded with a high-speed camera with a grism mounted in front of it. The triggered lightning channels observed were generally at low altitude in a region that included the copper wire. Spectral emissions were recorded at each phase: the initial stage, dart leader, return stroke, and continuing current. These spectra are separated into two major regions: soft ultraviolet to visible (3800-6200 Å) and visible to near infrared (6200-8700 Å). The emissions during the initial stage reflect those of a copper wire burn in air. The majority of the emissions are neutral copper. After the initial stage comes the first return stroke which contains no detected molecular emissions; however, it does contain neutral, singly, and doubly ionized nitrogen and oxygen, neutral argon, and neutral hydrogen. Occasionally, before a return stroke, the dart leader coming down the channel will be stepped. During these occasions the leader spectra resemble that of the return stroke but are dimmer and shorter lived. After the initial portion of the return stroke, there are often changes in the luminosity of the spectrum which corresponds with fluctuations in the continuing current. During these "reillumination phases" no singly or doubly ionized lines have been observed to reemerge over the detection threshold, only neutral emission features.

  14. Intense laser pulse propagation in capillary discharge plasma channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, R.F.; Moore, C.I.; Sprangle, P.

    Optical guiding of intense laser pulses is required for plasma-based accelerator concepts such as the laser wakefield accelerator. Reported experiments have successfully transported intense laser pulses in the hollow plasma column produced by a capillary discharge. The hollow plasma has an index of refraction which peaks on-axis, thus providing optical guiding which overcomes beam expansion due to diffraction. In more recent experiments at Hebrew University, 800 nm wavelength, 0.1 mJ, 100 fs pulses have been guided in {approximately}300 micron radius capillaries over distances as long as 6.6 cm. Simulations of these experiments using a 2-D nonlinear laser propagation model producemore » the expected optical guiding, with the laser pulse radius r{sub L} exhibiting oscillations about the equilibrium value predicted by an analytical envelope equation model. The oscillations are damped at the front of the pulse and grow in amplitude in the back of the pulse. This growth and damping is attributed to finite pulse length effects. Simulations also show that further ionization of the discharge plasma by the laser pulse may hollow the laser pulse and introduce modulations in the spot size. This ionization-defocusing effect is expected to be significant at the high intensities required for accelerator application. Capillary discharge experiments at much higher intensities are in progress on the Naval Research Laboratory T{sup 3} laser, and preliminary results are reported. {copyright} {ital 1999 American Institute of Physics.}« less

  15. Magnetic Fields Recorded by Chondrules Formed in Nebular Shocks

    NASA Astrophysics Data System (ADS)

    Mai, Chuhong; Desch, Steven J.; Boley, Aaron C.; Weiss, Benjamin P.

    2018-04-01

    Recent laboratory efforts have constrained the remanent magnetizations of chondrules and the magnetic field strengths to which the chondrules were exposed as they cooled below their Curie points. An outstanding question is whether the inferred paleofields represent the background magnetic field of the solar nebula or were unique to the chondrule-forming environment. We investigate the amplification of the magnetic field above background values for two proposed chondrule formation mechanisms, large-scale nebular shocks and planetary bow shocks. Behind large-scale shocks, the magnetic field parallel to the shock front is amplified by factors of ∼10–30, regardless of the magnetic diffusivity. Therefore, chondrules melted in these shocks probably recorded an amplified magnetic field. Behind planetary bow shocks, the field amplification is sensitive to the magnetic diffusivity. We compute the gas properties behind a bow shock around a 3000 km radius planetary embryo, with and without atmospheres, using hydrodynamics models. We calculate the ionization state of the hot, shocked gas, including thermionic emission from dust, thermal ionization of gas-phase potassium atoms, and the magnetic diffusivity due to Ohmic dissipation and ambipolar diffusion. We find that the diffusivity is sufficiently large that magnetic fields have already relaxed to background values in the shock downstream where chondrules acquire magnetizations, and that these locations are sufficiently far from the planetary embryos that chondrules should not have recorded a significant putative dynamo field generated on these bodies. We conclude that, if melted in planetary bow shocks, chondrules probably recorded the background nebular field.

  16. Online monitoring of chemical reactions by polarization-induced electrospray ionization.

    PubMed

    Meher, Anil Kumar; Chen, Yu-Chie

    2016-09-21

    Polarization-induced electrospray ionization (PI-ESI) is a simple technique for instant generation of gas-phase ions directly from a microliter-sized droplet for mass spectrometric analysis. A sample droplet was placed over a dielectric substrate and in proximity (2-3 mm) to the inlet of a mass spectrometer. Owing to the polarization effect induced by the high electric field provided by the mass spectrometer, the droplet was polarized and the electrospray was generated from the apex of the droplet. The polarization-induced electrospray could last for tens of seconds, which was sufficiently long to monitor fast reactions occurring within few seconds. Thus, we demonstrated the feasibility of using the droplet-based PI-ESI MS for the online monitoring of fast reactions by simply mixing two droplets (5-10 μL) containing reactants on a dielectric substrate placed in front of a mass spectrometer applied with a high voltage (-4500 V). Schiff base reactions and oxidation reactions that can generate intermediates/products within a few seconds were selected as the model reactions. The ionic reaction species generated from intermediates and products can be simultaneously monitored by PI-ESI MS in real time. We also used this approach to selectively detect acetone from a urine sample, in which acetone was derivatized in situ. In addition, the possibility of using this approach for quantitative analysis of acetone from urine samples was examined. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Suzaku Observations Of Near-relativistic Outflows In The Bal Quasar APM 08279+5255.

    NASA Astrophysics Data System (ADS)

    Saez, Cristian; Chartas, G.; Brandt, N.

    2009-12-01

    We present results from three Suzaku observations of the z =3.91 gravitationally lensed broad absorption line quasar APM 08279+5255. We detect strong and broad absorption at rest-frame energies of <2 keV (low-energy) and 7-12 keV (high-energy). The detection of these features confirms the results of previous long-exposure (80-90 ks) Chandra and XMM-Newton observations. The low and high-energy absorption is detected in both the back-illuminated (BI) and front-illuminated (FI) Suzaku XIS spectra (with an F-test significance of <99%). We interpret the low-energy absorption as arising from a low ionization absorber with logNH 23 and the high-energy absorption as due to lines arising from highly ionized iron in a near-relativistic outflowing wind. Assuming this interpretation we find that the velocities in the outflow range between 0.1c and 0.6c. We constrain the angle between the outflow direction of the X-ray absorber and our line of sight to be <36 degrees. We also detect possible variability of the absorption lines (at the <99.9% and <98% significance levels in the FI and BI spectra, respectively) with a rest-frame time scale of 1 month. Assuming that the detected high-energy absorption features arise from FeXXV, we estimate that the fraction of the total bolometric energy injected over the quasar's lifetime into the intergalactic medium in the form of kinetic energy to be >10%.

  18. Detailed Experimental Study of Ion Acceleration by Interaction of an Ultra-Short Intense Laser with an Underdense Plasma

    PubMed Central

    Kahaly, S.; Sylla, F.; Lifschitz, A.; Flacco, A.; Veltcheva, M.; Malka, V.

    2016-01-01

    Ion acceleration from intense (Iλ2 > 1018 Wcm−2 μm2) laser-plasma interaction is experimentally studied within a wide range of He gas densities. Focusing an ultrashort pulse (duration  ion plasma period) on a newly designed submillimetric gas jet system, enabled us to inhibit total evacuation of electrons from the central propagation channel reducing the radial ion acceleration associated with ponderomotive Coulomb explosion, a mechanism predominant in the long pulse scenario. New ion acceleration mechanism have been unveiled in this regime leading to non-Maxwellian quasi monoenergetic features in the ion energy spectra. The emitted nonthermal ion bunches show a new scaling of the ion peak energy with plasma density. The scaling identified in this new regime differs from previously reported studies. PMID:27531755

  19. Propagation of an ultra-short, intense laser in a relativistic fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritchie, A.B.; Decker, C.D.

    1997-12-31

    A Maxwell-relativistic fluid model is developed to describe the propagation of an ultrashort, intense laser pulse through an underdense plasma. The model makes use of numerically stabilizing fast Fourier transform (FFT) computational methods for both the Maxwell and fluid equations, and it is benchmarked against particle-in-cell (PIC) simulations. Strong fields generated in the wake of the laser are calculated, and the authors observe coherent wake-field radiation generated at harmonics of the plasma frequency due to nonlinearities in the laser-plasma interaction. For a plasma whose density is 10% of critical, the highest members of the plasma harmonic series begin to overlapmore » with the first laser harmonic, suggesting that widely used multiple-scales-theory, by which the laser and plasma frequencies are assumed to be separable, ceases to be a useful approximation.« less

  20. Purity and cleanness of aerogel as a cosmic dust capture medium

    NASA Technical Reports Server (NTRS)

    Tsou, P.; Fleming, R. H.; Lindley, P. M.; Craig, A. Y.; Blake, D.

    1994-01-01

    The capability for capturing micrometeoroids intact through laboratory simulations and in space in passive underdense silica aerogel offers a valuable tool for cosmic dust research. The integrity of the sample handling medium can substantially modify the integrity of the sample. Intact capture is a violent hypervelocity event: the integrity of the capturing medium can cause even greater modification of the sample. Doubts of the suitability of silica aerogel as a capture medium were raised at the 20th LPSC, and questions were raised again at the recent workshop on Particle Capture, Recovery, and Velocity Trajectory Measurement Technologies. Assessment of aerogel's volatile components and carbon contents have been made. We report the results of laboratory measurements of the purity and cleanliness of silica aerogel used for several Sample Return Experiments flown on the Get Away Special program.

  1. Efficient Modeling of Laser-Plasma Accelerators with INF&RNO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedetti, C.; Schroeder, C. B.; Esarey, E.

    2010-06-01

    The numerical modeling code INF&RNO (INtegrated Fluid& paRticle simulatioN cOde, pronounced"inferno") is presented. INF&RNO is an efficient 2D cylindrical code to model the interaction of a short laser pulse with an underdense plasma. The code is based on an envelope model for the laser while either a PIC or a fluid description can be used for the plasma. The effect of the laser pulse on the plasma is modeled with the time-averaged poderomotive force. These and other features allow for a speedup of 2-4 orders of magnitude compared to standard full PIC simulations while still retaining physical fidelity. The codemore » has been benchmarked against analytical solutions and 3D PIC simulations and here a set of validation tests together with a discussion of the performances are presented.« less

  2. Efficient Modeling of Laser-Plasma Accelerators with INF&RNO

    NASA Astrophysics Data System (ADS)

    Benedetti, C.; Schroeder, C. B.; Esarey, E.; Geddes, C. G. R.; Leemans, W. P.

    2010-11-01

    The numerical modeling code INF&RNO (INtegrated Fluid & paRticle simulatioN cOde, pronounced "inferno") is presented. INF&RNO is an efficient 2D cylindrical code to model the interaction of a short laser pulse with an underdense plasma. The code is based on an envelope model for the laser while either a PIC or a fluid description can be used for the plasma. The effect of the laser pulse on the plasma is modeled with the time-averaged poderomotive force. These and other features allow for a speedup of 2-4 orders of magnitude compared to standard full PIC simulations while still retaining physical fidelity. The code has been benchmarked against analytical solutions and 3D PIC simulations and here a set of validation tests together with a discussion of the performances are presented.

  3. Ultrarelativistic electromagnetic pulses in plasmas

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; Leboeuf, J. N.; Tajima, T.; Dawson, J. M.; Kennel, C. F.

    1981-01-01

    The physical processes of a linearly polarized electromagnetic pulse of highly relativistic amplitude in an underdense plasma accelerating particles to very high energies are studied through computer simulation. An electron-positron plasma is considered first. The maximum momenta achieved scale as the square of the wave amplitude. This acceleration stops when the bulk of the wave energy is converted to particle energy. The pulse leaves behind as a wake a vacuum region whose length scales as the amplitude of the wave. The results can be explained in terms of a snow plow or piston-like action of the radiation on the plasma. When a mass ratio other than unity is chosen and electrostatic effects begin to play a role, first the ion energy increases faster than the electron energy and then the electron energy catches up later, eventually reaching the same value.

  4. Frequency up-conversion of a high-power microwave pulse propagating in a self-generated plasma

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Ren, A.

    1992-01-01

    In the study of the propagation of a high-power microwave pulse, one of the main concerns is how to minimize the energy loss of the pulse before reaching the destination. A frequency autoconversion process that can lead to reflectionless propagation of powerful electromagnetic pulses in self-generated plasmas is studied. The theory shows that, under the proper condition, the carrier frequency omega of the pulse shifts upward during the growth of local plasma frequency omega(pe). Thus, the self-generated plasma remains underdense to the pulse. A chamber experiment to demonstrate the frequency autoconversion during the pulse propagation through the self-generated plasma is conducted. The detected frequency shift is compared with the theoretical result calculated by using the measured electron density distribution along the propagation path of the pulse. Good agreement is obtained.

  5. Ionosphere/microwave beam interaction study. [satellite solar energy conversion

    NASA Technical Reports Server (NTRS)

    Duncan, L. M.; Gordon, W. E.

    1977-01-01

    A solar power satellite microwave power density of 20mw sq cm was confirmed as the level where nonlinear interactions may occur in the ionosphere, particularly at 100 km altitude. Radio wave heating at this altitude, produced at the Arecibo Observatory, yielded negative results for radio wave heating of an underdense ionosphere. Overdense heating produced striations in the ionosphere which may cause severe radio frequency interference problems under certain conditions. The effects of thermal self-focusing are shown to be limited severely geographically. The aspect sensitivity of field-aligned striations makes interference-free regions above magnetic latitude about 60 deg. A test program is proposed to simulate the interaction of the SPS beam with the ionosphere, to measure the effects of the interaction on the ionosphere and on communication and navigation systems, and to interpret the results.

  6. Thermal conduction study of warm dense aluminum by proton differential heating

    NASA Astrophysics Data System (ADS)

    Ping, Y.; Kemp, G.; McKelvey, A.; Fernandez-Panella, A.; Shepherd, R.; Collins, G.; Sio, H.; King, J.; Freeman, R.; Hua, R.; McGuffey, C.; Kim, J.; Beg, F.

    2016-10-01

    A differential heating platform has been developed for thermal conduction study (Ping et al. PoP 2015), where a temperature gradient is induced and subsequent heat flow is probed by time-resolved diagnostics. An experiment using proton differential heating has been carried out at Titan laser for Au/Al targets. Two single-shot time-resolved diagnostics are employed, SOP (streaked optical pyrometry) for surface temperature and FDI (Fourier Domain Interferometry) for surface expansion. Hydrodynamic simulations show that after 15ps, absorption in underdense plasma needs to be taken into account to correctly interpret SOP data. Comparison between simulations with different thermal conductivity models and a set of data with varying target thickness will be presented. This work was performed under DOE contract DE-AC52-07NA27344 with support from OFES Early Career program and LLNL LDRD program.

  7. RADIATION HYDRODYNAMICS MODELS OF THE INNER RIM IN PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flock, M.; Turner, N. J.; Fromang, S.

    2016-08-20

    Many stars host planets orbiting within a few astronomical units (AU). The occurrence rate and distributions of masses and orbits vary greatly with the host star’s mass. These close planets’ origins are a mystery that motivates investigating protoplanetary disks’ central regions. A key factor governing the conditions near the star is the silicate sublimation front, which largely determines where the starlight is absorbed, and which is often called the inner rim. We present the first radiation hydrodynamical modeling of the sublimation front in the disks around the young intermediate-mass stars called Herbig Ae stars. The models are axisymmetric and includemore » starlight heating; silicate grains sublimating and condensing to equilibrium at the local, time-dependent temperature and density; and accretion stresses parameterizing the results of MHD magnetorotational turbulence models. The results compare well with radiation hydrostatic solutions and prove to be dynamically stable. Passing the model disks into Monte Carlo radiative transfer calculations, we show that the models satisfy observational constraints on the inner rim’s location. A small optically thin halo of hot dust naturally arises between the inner rim and the star. The inner rim has a substantial radial extent, corresponding to several disk scale heights. While the front’s overall position varies with the stellar luminosity, its radial extent depends on the mass accretion rate. A pressure maximum develops near the location of thermal ionization at temperatures of about 1000 K. The pressure maximum is capable of halting solid pebbles’ radial drift and concentrating them in a zone where temperatures are sufficiently high for annealing to form crystalline silicates.« less

  8. The effects of shallow traps on the positive streamer electrodynamics in transformer oil based nanofluids

    NASA Astrophysics Data System (ADS)

    Zhou, You; Sui, Sanyi; Li, Jie; Ouyang, Zigui; Lv, Yuzhen; Li, Chengrong; Lu, Wu

    2018-03-01

    Nanotechnology provides a new way to improve the insulating properties of traditional dielectric materials. In this study, three types of mineral oil based nanofluids were prepared by suspending Fe3O4, TiO2 and Al2O3 nanoparticles all of which were surface modified by oleic acid. The inception voltage, stopping length and propagating velocity of streamers in the nanofluids under positive lightning impulse voltage were experimentally studied. It is found that nanoparticles can restrain the initiation and propagation processes of positive streamers in transformer oil depending on the types of nanoparticles. In addition, the trap characteristics in pure oil and nanofluids were comparably studied. The relationship between the trap characteristics and mobility of charge carriers in oil samples were then established. The increased trap density in nanofluids diffuses kinetic energy of ionized electrons and converts them into negative ions, resulting in the reduced electrical field strength in front of positive streamer and increased breakdown strength of nanofluids.

  9. Electron pressure balance in the SOL through the transition to detachment

    DOE PAGES

    McLean, A. G.; Leonard, A. W.; Makowski, M. A.; ...

    2015-02-07

    Upgrades to core and divertor Thomson scattering (DTS) diagnostics at DIII-D have provided measurements of electron pressure profiles in the lower divertor from attached- to fully-detached divertor plasma conditions. Detailed, multistep sequences of discharges with increasing line-averaged density were run at several levels of P inj. Strike point sweeping allowed 2D divertor characterization using DTS optimized to measure T e down to 0.5 eV. The ionization front at the onset of detachment is found to move upwards in a controlled manner consistent with the indication that scrape-off layer parallel power flux is converted from conducted to convective heat transport. Measurementsmore » of n e, T e and p e in the divertor versus Lparallel demonstrate a rapid transition from Te ≥ 15 eV to ≤3 eV occurring both at the outer strike point and upstream of the X-point. Furthermore, these observations provide a strong benchmark for ongoing modeling of divertor detachment for existing and future tokamak devices.« less

  10. Protostars in the Elephant Trunk Nebula

    NASA Astrophysics Data System (ADS)

    Reach, W. T.; Rho, J.; Young, E.; Muzerolle, J.; Fajardo-Acosta, S.; Hartmann, L.; Sicilia-Aguilar, A.; Allen, L. E.; Carey, S.; Cuillandre, J.-C.; Jarrett, T. H.; Lowrance, P.; Noriega-Crespo, A.; Marston, A. P.

    2004-05-01

    The optically-dark globule IC 1396A is revealed using Spitzer images at 3.6, 4.5, 5.8, 8, and 24 microns to be infrared-bright and to contain a set of previously unknown protostars. The mid-infrared colors of the 24 micon sources indicate several very young (Class I or 0) protostars and a dozen Class II stars. Three of the new sources emit over 90% of their bolometric luminosities at wavelengths greater than 3 microns, and they are located within ˜ 0.02 pc of the ionization front at the edge of the globule. Many of the sources have spectra that are still rising at 24 microns. The two previously-known young stars LkHα 349 a and c are both detected, with component c harboring a massive disk and component a being bare. Of order 5% of the mass of material in the globule is presently in the form of protostars in the 105--106 yr age range. This high star formation rate was likely triggered by radiation from a nearby O star.

  11. Electron pressure balance in the SOL through the transition to detachment

    NASA Astrophysics Data System (ADS)

    McLean, A. G.; Leonard, A. W.; Makowski, M. A.; Groth, M.; Allen, S. L.; Boedo, J. A.; Bray, B. D.; Briesemeister, A. R.; Carlstrom, T. N.; Eldon, D.; Fenstermacher, M. E.; Hill, D. N.; Lasnier, C. J.; Liu, C.; Osborne, T. H.; Petrie, T. W.; Soukhanovskii, V. A.; Stangeby, P. C.; Tsui, C.; Unterberg, E. A.; Watkins, J. G.

    2015-08-01

    Upgrades to core and divertor Thomson scattering (DTS) diagnostics at DIII-D have provided measurements of electron pressure profiles in the lower divertor from attached- to fully-detached divertor plasma conditions. Detailed, multistep sequences of discharges with increasing line-averaged density were run at several levels of Pinj. Strike point sweeping allowed 2D divertor characterization using DTS optimized to measure Te down to 0.5 eV. The ionization front at the onset of detachment is found to move upwards in a controlled manner consistent with the indication that scrape-off layer parallel power flux is converted from conducted to convective heat transport. Measurements of ne, Te and pe in the divertor versus Lparallel demonstrate a rapid transition from Te ⩾ 15 eV to ⩽3 eV occurring both at the outer strike point and upstream of the X-point. These observations provide a strong benchmark for ongoing modeling of divertor detachment for existing and future tokamak devices.

  12. Large-Scale Structure of the Carina Nebula.

    PubMed

    Smith; Egan; Carey; Price; Morse; Price

    2000-04-01

    Observations obtained with the Midcourse Space Experiment (MSX) satellite reveal for the first time the complex mid-infrared morphology of the entire Carina Nebula (NGC 3372). On the largest size scale of approximately 100 pc, the thermal infrared emission from the giant H ii region delineates one coherent structure: a (somewhat distorted) bipolar nebula with the major axis perpendicular to the Galactic plane. The Carina Nebula is usually described as an evolved H ii region that is no longer actively forming stars, clearing away the last vestiges of its natal molecular cloud. However, the MSX observations presented here reveal numerous embedded infrared sources that are good candidates for sites of current star formation. Several compact infrared sources are located at the heads of dust pillars or in dark globules behind ionization fronts. Because their morphology suggests a strong interaction with the peculiar collection of massive stars in the nebula, we speculate that these new infrared sources may be sites of triggered star formation in NGC 3372.

  13. HIGH RESOLUTION H{alpha} IMAGES OF THE BINARY LOW-MASS PROPLYD LV 1 WITH THE MAGELLAN AO SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Y.-L.; Close, L. M.; Males, J. R.

    2013-09-01

    We utilize the new Magellan adaptive optics system (MagAO) to image the binary proplyd LV 1 in the Orion Trapezium at H{alpha}. This is among the first AO results in visible wavelengths. The H{alpha} image clearly shows the ionization fronts, the interproplyd shell, and the cometary tails. Our astrometric measurements find no significant relative motion between components over {approx}18 yr, implying that LV 1 is a low-mass system. We also analyze Large Binocular Telescope AO observations, and find a point source which may be the embedded protostar's photosphere in the continuum. Converting the H magnitudes to mass, we show thatmore » the LV 1 binary may consist of one very-low-mass star with a likely brown dwarf secondary, or even plausibly a double brown dwarf. Finally, the magnetopause of the minor proplyd is estimated to have a radius of 110 AU, consistent with the location of the bow shock seen in H{alpha}.« less

  14. Reagent Precoated Targets for Rapid In-Tissue Derivatization of the Anti-Tuberculosis Drug Isoniazid Followed by MALDI Imaging Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Manier, M. Lisa; Reyzer, Michelle L.; Goh, Anne; Dartois, Veronique; Via, Laura E.; Barry, Clifton E.; Caprioli, Richard M.

    2011-08-01

    Isoniazid (INH) is an important component of front-line anti-tuberculosis therapy with good serum pharmacokinetics but unknown ability to penetrate tuberculous lesions. However, endogenous background interferences hinder our ability to directly analyze INH in tissues. Chemical derivatization has been successfully used to measure isoniazid directly from tissue samples using matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS). MALDI targets were pretreated with trans-cinnamaldehyde (CA) prior to mounting tissue slices. Isoniazid present in the tissues was efficiently derivatized and the INH-CA product measured by MS/MS. Precoating of MALDI targets allows the tissues to be directly thaw-mounted and derivatized, thus simplifying the preparation. A time-course series of tissues from tuberculosis infected/INH dosed animals were assayed and the MALDI MS/MS response correlates well with the amount of INH determined to be in the tissues by high-performance liquid chromatography (HPLC)-MS/MS.

  15. Formation of annular plasma downstream by magnetic aperture in the helicon experimental device

    NASA Astrophysics Data System (ADS)

    Ghosh, Soumen; Yadav, S.; Barada, K. K.; Chattopadhyay, P. K.; Ghosh, J.; Pal, R.; Bora, D.

    2017-02-01

    In the Helicon eXperimental (HeX) device, the geometric aperture is fixed, but the position of the magnetic aperture can be varied. Working with Argon gas in the pressure range of 1 - 10 × 10 - 4 mbar, an annular plasma (density ˜ 10 16 m - 3 ) is formed downstream, always in front of the magnetic aperture. This occurs irrespective of the relative position of the geometric aperture or the presence of a radial electric field. This is in contrary to the earlier proposition made by others that a radial electric field is necessary to produce a hollow plasma profile. Instead, the ionization of neutrals in the radially outer region by the tail electrons, rotating fast due to gradient-B drift in the azimuthal direction, seems to account for the observed off-axis density peaking in the present experiment. This also explains the variation of the plasma annulus diameter seen here by changing the input radio frequency power ( 100 - 800 W ) .

  16. Silicon drift detectors with on-chip electronics for x-ray spectroscopy.

    PubMed

    Fiorini, C; Longoni, A; Hartmann, R; Lechner, P; Strüder, L

    1997-01-01

    The silicon drift detector (SDD) is a semiconductor device based on high resistivity silicon fully depleted through junctions implanted on both sides of the semiconductor wafer. The electrons generated by the ionizing radiation are driven by means of a suitable electric field from the point of interaction toward a collecting anode of small capacitance, independent of the active area of the detector. A suitably designed front-end JFET has been directly integrated on the detector chip close to the anode region, in order to obtain a nearly ideal capacitive matching between detector and transistor and to minimize the stray capacitances of the connections. This feature allows it to reach high energy resolution also at high count rates and near room temperature. The present work describes the structure and the performance of SDDs specially designed for high resolution spectroscopy with soft x rays at high detection rate. Experimental results of SDDs used in spectroscopy applications are also reported.

  17. The Massive Star-Forming Regions Omnibus X-Ray Catalog

    NASA Astrophysics Data System (ADS)

    Townsley, Leisa K.; Broos, Patrick S.; Garmire, Gordon P.; Bouwman, Jeroen; Povich, Matthew S.; Feigelson, Eric D.; Getman, Konstantin V.; Kuhn, Michael A.

    2014-07-01

    We present the Massive Star-forming Regions (MSFRs) Omnibus X-ray Catalog (MOXC), a compendium of X-ray point sources from Chandra/ACIS observations of a selection of MSFRs across the Galaxy, plus 30 Doradus in the Large Magellanic Cloud. MOXC consists of 20,623 X-ray point sources from 12 MSFRs with distances ranging from 1.7 kpc to 50 kpc. Additionally, we show the morphology of the unresolved X-ray emission that remains after the cataloged X-ray point sources are excised from the ACIS data, in the context of Spitzer and WISE observations that trace the bubbles, ionization fronts, and photon-dominated regions that characterize MSFRs. In previous work, we have found that this unresolved X-ray emission is dominated by hot plasma from massive star wind shocks. This diffuse X-ray emission is found in every MOXC MSFR, clearly demonstrating that massive star feedback (and the several-million-degree plasmas that it generates) is an integral component of MSFR physics.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaurov, Alexander A., E-mail: kaurov@uchicago.edu

    The methods for studying the epoch of cosmic reionization vary from full radiative transfer simulations to purely analytical models. While numerical approaches are computationally expensive and are not suitable for generating many mock catalogs, analytical methods are based on assumptions and approximations. We explore the interconnection between both methods. First, we ask how the analytical framework of excursion set formalism can be used for statistical analysis of numerical simulations and visual representation of the morphology of ionization fronts. Second, we explore the methods of training the analytical model on a given numerical simulation. We present a new code which emergedmore » from this study. Its main application is to match the analytical model with a numerical simulation. Then, it allows one to generate mock reionization catalogs with volumes exceeding the original simulation quickly and computationally inexpensively, meanwhile reproducing large-scale statistical properties. These mock catalogs are particularly useful for cosmic microwave background polarization and 21 cm experiments, where large volumes are required to simulate the observed signal.« less

  19. Observations of the 51.8 micron (O III) emission line in Orion

    NASA Technical Reports Server (NTRS)

    Melnick, G.; Gull, G. E.; Harwit, M.; Ward, D. B.

    1978-01-01

    The 51.8 micron fine structure transition P2:3P2 3P1 for doubly ionized oxygen was observed in the Orion nebula. The observed line strength is of 5 plus or minus 3 times 10 to the minus 15th power watt/sq cm is in good agreement with theoretical predictions. Observations are consistent with the newly predicted 51.8 micron line position. The line lies close to an atmospheric water vapor feature at 51.7 micron, but is sufficiently distant so that corrections for this feature are straightforward. Observations of the 51.8 (O III) line are particularly important since the previously discovered 88 micron line from the same ion also is strong. This pair of lines should, therefore, yield new data about densities in observed H II regions; or else, if density data already are available from radio or other observations, the lines can be used to determine the differential dust absorption between 52 and 88 micron in front of heavily obscured regions.

  20. The sonic window: second generation results

    NASA Astrophysics Data System (ADS)

    Walker, William F.; Fuller, Michael I.; Brush, Edward V.; Eames, Matthew D. C.; Owen, Kevin; Ranganathan, Karthik; Blalock, Travis N.; Hossack, John A.

    2006-03-01

    Medical Ultrasound Imaging is widely used clinically because of its relatively low cost, portability, lack of ionizing radiation, and real-time nature. However, even with these advantages ultrasound has failed to permeate the broad array of clinical applications where its use could be of value. A prime example of this untapped potential is the routine use of ultrasound to guide intravenous access. In this particular application existing systems lack the required portability, low cost, and ease-of-use required for widespread acceptance. Our team has been working for a number of years to develop an extremely low-cost, pocket-sized, and intuitive ultrasound imaging system that we refer to as the "Sonic Window." We have previously described the first generation Sonic Window prototype that was a bench-top device using a 1024 element, fully populated array operating at a center frequency of 3.3 MHz. Through a high degree of custom front-end integration combined with multiplexing down to a 2 channel PC based digitizer this system acquired a full set of RF data over a course of 512 transmit events. While initial results were encouraging, this system exhibited limitations resulting from low SNR, relatively coarse array sampling, and relatively slow data acquisition. We have recently begun assembling a second-generation Sonic Window system. This system uses a 3600 element fully sampled array operating at 5.0 MHz with a 300 micron element pitch. This system extends the integration of the first generation system to include front-end protection, pre-amplification, a programmable bandpass filter, four sample and holds, and four A/D converters for all 3600 channels in a set of custom integrated circuits with a combined area smaller than the 1.8 x 1.8 cm footprint of the transducer array. We present initial results from this front-end and present benchmark results from a software beamformer implemented on the Analog Devices BF-561 DSP. We discuss our immediate plans for further integration and testing. This second prototype represents a major reduction in size and forms the foundation of a fully functional, fully integrated, pocket sized prototype.

  1. Development of a synthetic single crystal diamond dosimeter for dose measurement of clinical proton beams

    NASA Astrophysics Data System (ADS)

    Moignier, Cyril; Tromson, Dominique; de Marzi, Ludovic; Marsolat, Fanny; García Hernández, Juan Carlos; Agelou, Mathieu; Pomorski, Michal; Woo, Romuald; Bourbotte, Jean-Michel; Moignau, Fabien; Lazaro, Delphine; Mazal, Alejandro

    2017-07-01

    The scope of this work was to develop a synthetic single crystal diamond dosimeter (SCDD-Pro) for accurate relative dose measurements of clinical proton beams in water. Monte Carlo simulations were carried out based on the MCNPX code in order to investigate and reduce the dose curve perturbation caused by the SCDD-Pro. In particular, various diamond thicknesses were simulated to evaluate the influence of the active volume thickness (e AV) as well as the influence of the addition of a front silver resin (250 µm in thickness in front of the diamond crystal) on depth-dose curves. The simulations indicated that the diamond crystal alone, with a small e AV of just 5 µm, already affects the dose at Bragg peak position (Bragg peak dose) by more than 2% with respect to the Bragg peak dose deposited in water. The optimal design that resulted from the Monte Carlo simulations consists of a diamond crystal of 1 mm in width and 150 µm in thickness with the front silver resin, enclosed by a water-equivalent packaging. This design leads to a deviation between the Bragg peak dose from the full detector modeling and the Bragg peak dose deposited in water of less than 1.2%. Based on those optimizations, an SCDD-Pro prototype was built and evaluated in broad passive scattering proton beams. The experimental evaluation led to probed SCDD-Pro repeatability, dose rate dependence and linearity, that were better than 0.2%, 0.4% (in the 1.0-5.5 Gy min-1 range) and 0.4% (for dose higher than 0.05 Gy), respectively. The depth-dose curves in the 90-160 MeV energy range, measured with the SCDD-Pro without applying any correction, were in good agreement with those measured using a commercial IBA PPC05 plane-parallel ionization chamber, differing by less than 1.6%. The experimental results confirmed that this SCDD-Pro is suitable for measurements with standard electrometers and that the depth-dose curve perturbation is negligible, with no energy dependence and no significant dose rate dependence.

  2. Development of a synthetic single crystal diamond dosimeter for dose measurement of clinical proton beams.

    PubMed

    Moignier, Cyril; Tromson, Dominique; de Marzi, Ludovic; Marsolat, Fanny; García Hernández, Juan Carlos; Agelou, Mathieu; Pomorski, Michal; Woo, Romuald; Bourbotte, Jean-Michel; Moignau, Fabien; Lazaro, Delphine; Mazal, Alejandro

    2017-07-07

    The scope of this work was to develop a synthetic single crystal diamond dosimeter (SCDD-Pro) for accurate relative dose measurements of clinical proton beams in water. Monte Carlo simulations were carried out based on the MCNPX code in order to investigate and reduce the dose curve perturbation caused by the SCDD-Pro. In particular, various diamond thicknesses were simulated to evaluate the influence of the active volume thickness (e AV ) as well as the influence of the addition of a front silver resin (250 µm in thickness in front of the diamond crystal) on depth-dose curves. The simulations indicated that the diamond crystal alone, with a small e AV of just 5 µm, already affects the dose at Bragg peak position (Bragg peak dose) by more than 2% with respect to the Bragg peak dose deposited in water. The optimal design that resulted from the Monte Carlo simulations consists of a diamond crystal of 1 mm in width and 150 µm in thickness with the front silver resin, enclosed by a water-equivalent packaging. This design leads to a deviation between the Bragg peak dose from the full detector modeling and the Bragg peak dose deposited in water of less than 1.2%. Based on those optimizations, an SCDD-Pro prototype was built and evaluated in broad passive scattering proton beams. The experimental evaluation led to probed SCDD-Pro repeatability, dose rate dependence and linearity, that were better than 0.2%, 0.4% (in the 1.0-5.5 Gy min -1 range) and 0.4% (for dose higher than 0.05 Gy), respectively. The depth-dose curves in the 90-160 MeV energy range, measured with the SCDD-Pro without applying any correction, were in good agreement with those measured using a commercial IBA PPC05 plane-parallel ionization chamber, differing by less than 1.6%. The experimental results confirmed that this SCDD-Pro is suitable for measurements with standard electrometers and that the depth-dose curve perturbation is negligible, with no energy dependence and no significant dose rate dependence.

  3. Correction factors for the NMi free-air ionization chamber for medium-energy x-rays calculated with the Monte Carlo method.

    PubMed

    Grimbergen, T W; van Dijk, E; de Vries, W

    1998-11-01

    A new method is described for the determination of x-ray quality dependent correction factors for free-air ionization chambers. The method is based on weighting correction factors for mono-energetic photons, which are calculated using the Monte Carlo method, with measured air kerma spectra. With this method, correction factors for electron loss, scatter inside the chamber and transmission through the diaphragm and front wall have been calculated for the NMi free-air chamber for medium-energy x-rays for a wide range of x-ray qualities in use at NMi. The newly obtained correction factors were compared with the values in use at present, which are based on interpolation of experimental data for a specific set of x-ray qualities. For x-ray qualities which are similar to this specific set, the agreement between the correction factors determined with the new method and those based on the experimental data is better than 0.1%, except for heavily filtered x-rays generated at 250 kV. For x-ray qualities dissimilar to the specific set, differences up to 0.4% exist, which can be explained by uncertainties in the interpolation procedure of the experimental data. Since the new method does not depend on experimental data for a specific set of x-ray qualities, the new method allows for a more flexible use of the free-air chamber as a primary standard for air kerma for any x-ray quality in the medium-energy x-ray range.

  4. Real time monitoring of accelerated chemical reactions by ultrasonication-assisted spray ionization mass spectrometry.

    PubMed

    Lin, Shu-Hsuan; Lo, Ta-Ju; Kuo, Fang-Yin; Chen, Yu-Chie

    2014-01-01

    Ultrasonication has been used to accelerate chemical reactions. It would be ideal if ultrasonication-assisted chemical reactions could be monitored by suitable detection tools such as mass spectrometry in real time. It would be helpful to clarify reaction intermediates/products and to have a better understanding of reaction mechanism. In this work, we developed a system for ultrasonication-assisted spray ionization mass spectrometry (UASI-MS) with an ~1.7 MHz ultrasonic transducer to monitor chemical reactions in real time. We demonstrated that simply depositing a sample solution on the MHz-based ultrasonic transducer, which was placed in front of the orifice of a mass spectrometer, the analyte signals can be readily detected by the mass spectrometer. Singly and multiply charged ions from small and large molecules, respectively, can be observed in the UASI mass spectra. Furthermore, the ultrasonic transducer used in the UASI setup accelerates the chemical reactions while being monitored via UASI-MS. The feasibility of using this approach for real-time acceleration/monitoring of chemical reactions was demonstrated. The reactions of Girard T reagent and hydroxylamine with steroids were used as the model reactions. Upon the deposition of reactant solutions on the ultrasonic transducer, the intermediate/product ions are readily generated and instantaneously monitored using MS within 1 s. Additionally, we also showed the possibility of using this reactive UASI-MS approach to assist the confirmation of trace steroids from complex urine samples by monitoring the generation of the product ions. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Portable, Battery Operated Capillary Electrophoresis with Optical Isomer Resolution Integrated with Ionization Source for Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Moini, Mehdi; Rollman, Christopher M.

    2016-03-01

    We introduce a battery operated capillary electrophoresis electrospray ionization (CE/ESI) source for mass spectrometry with optical isomer separation capability. The source fits in front of low or high resolution mass spectrometers similar to a nanospray source with about the same weight and size. The source has two high voltage power supplies (±25 kV HVPS) capable of operating in forward or reverse polarity modes and powered by a 12 V rechargeable lithium ion battery with operation time of ~10 h. In ultrafast CE mode, in which short narrow capillaries (≤15 μm i.d., 15-25 cm long) and field gradients ≥1000 V/cm are used, peak widths at the base are <1 s wide. Under these conditions, the source provides high resolution separation, including optical isomer resolution in ~1 min. Using a low resolution mass spectrometer (LTQ Velos) with a scan time of 0.07 s/scan, baseline separation of amino acids and their optical isomers were achieved in ~1 min. Moreover, bovine serum albumin (BSA) was analyzed in ~1 min with 56% coverage using the data-dependent MS/MS. Using a high resolution mass spectrometer (Thermo Orbitrap Elite) with 15,000 resolution, the fastest scan time achieved was 0.15 s, which was adequate for CE-MS analysis when optical isomer separation is not required or when the optical isomers were well separated. Figures of merit including a detection limit of 2 fmol and linear dynamic range of two orders of magnitude were achieved for amino acids.

  6. RADIO IMAGING OF THE NGC 2024 FIR 5/6 REGION: A HYPERCOMPACT H II REGION CANDIDATE IN ORION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Minho; Kang, Miju; Lee, Jeong-Eun, E-mail: minho@kasi.re.kr

    The NGC 2024 FIR 5/6 region was observed in the 6.9 mm continuum with an angular resolution of about 1.5 arcsec. The 6.9 mm continuum map shows four compact sources, FIR 5w, 5e, 6c, and 6n, as well as an extended structure of the ionization front associated with the optical nebulosity. FIR 6c has a source size of about 0.4 arcsec or 150 AU. The spectral energy distribution (SED) of FIR 6c is peculiar: rising steeply around 6.9 mm and flat around 1 mm. The possibility of a hypercompact H II region is explored. If the millimeter flux of FIRmore » 6c comes from hot ionized gas heated by a single object at the center, the central object may be a B1 star of about 5800 solar luminosities and about 13 solar masses. The 6.9 mm continuum of FIR 6n may be a mixture of free-free emission and dust continuum emission. Archival data show that both FIR 6n and 6c exhibit water maser activity, suggesting the existence of shocked gas around them. The 6.9 mm continuum emission from FIR 5w has a size of about 1.8 arcsec or 760 AU. The SEDs suggest that the 6.9 mm emission of FIR 5w and 5e comes from dust, and the masses of the dense molecular gas are about 0.6 and 0.5 solar masses, respectively.« less

  7. Peering Inside the Pillars of Creation

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-06-01

    On 1 April 1995, Hubble captured one of its most well-known images: a stunning photo of towering features known as the Pillars of Creation, located in the Eagle Nebula just 7,000 light-years away. A new study explores how these iconic columns are influenced by the magnetic fields within them.Pillars from ShocksAn illustrative figure of the BISTRO magnetic-field vectors observed in the Pillars of Creation, overlaid on a Hubble composite of the pillars. [Pattle et al. 2018]In the Hubble image, we see the result of young, hot stars that have driven a photoionization shock into the cloud around them, forming complex structures in the dense gas at the shock interfaces. These structures in this case, dense columns of neutral gas and dust are then bombarded with hot radiation from the young stars, giving the structures a misty, ethereal look as they photoevaporate.Though we have a rough picture, the specifics of how the Pillars of Creation were formed and how they evolve in this harsh radiation environment arent yet fully understood. In particular, the role of magnetic fields in shaping and sustaining these pillars is poorly constrained, both observationally and theoretically.To address this problem, a team of scientists led by Kate Pattle (University of Central Lancashire, UK and National Tsing Hua University, Taiwan), has now made the first direct observations of the magnetic-field morphology within the Pillars of Creation.The authors proposed formation scenario: a) an ionization front approaches an overdensity in the molecular gas, b) the front is slowed at the overdensity, causing the magnetic field lines to bend, c) the compressed magnetic field supports the pillar against radial collapse, but cant support against longitudinal erosion. [Adapted from Pattle et al. 2018]Observing FieldsPattle and collaborators imaged the pillars as a part of the B-Fields in Star-Forming Region Observations (BISTRO) project, which uses a camera and polarimeter mounted on the James Clerk Maxwell Telescope in Hawaii. The high-resolution, submillimeter-wavelength polarimetric observations allowed the team to measure the orientations of the magnetic fields within the pillars.Pattle and collaborators found that the magnetic fields inside the Pillars of Creation are actually quite organized: they generally run along the length of the pillars, perpendicular to and decoupled from the field in the surrounding cloud. The authors use their observations to estimate the strength of the fields: roughly 170320 G in the pillars.Magnetic SupportWhat do these results tell us? First, the strength of the fields is consistent with a formation scenario in which very weakly magnetized gas was compressed to form columns. The authors propose that the Pillars of Creation were formed when an ionization front driven by radiation from nearby young, hot stars encountered a dense clump as it moved through the cloud of molecular gas. The overdensity slowed the front, causing the magnetic field to bend as the surrounding gas moved. The compressed magnetic field then supported the resulting column from collapse.Pattle and collaborators argue that the magnetic fields in the Pillars of Creation are supporting the pillars radially against collapse even now. They may also be preventing the pillar ends from breaking off into disconnected clumps known as cometary globules, a process that could eventually disintegrate the pillars.So whats BISTRO up to now? The project is continuing to survey magnetic fields in the dense gas of other nearby high-mass star-forming regions. This may help confirm the results found for the Pillars of Creation, bringing us another step closer to understanding how magnetic fields influence the some of the striking features that Hubble and other telescopes have revealed in our astronomical backyard.CitationKate Pattle et al 2018 ApJL 860 L6. doi:10.3847/2041-8213/aac771

  8. Reducing parametric backscattering by polarization rotation

    DOE PAGES

    Barth, Ido; Fisch, Nathaniel J.

    2016-10-01

    When a laser passes through underdense plasmas, Raman and Brillouin Backscattering can reflect a substantial portion of the incident laser energy. This is a major loss mechanism, for example, in employing lasers in inertial confinement fusion. But, by slow rotation of the incident linear polarization, the overall reflectivity can be reduced significantly. Particle in cell simulations show that, for parameters similar to those of indirect drive fusion experiments, polarization rotation reduces the reflectivity by a factor of 5. A general, fluid-model based analytical estimation for the reflectivity reduction agrees with simulations. However, in identifying the source of the backscatter reduction,more » it is difficult to disentangle the rotating polarization from the frequency separation based approach used to engineer the beam's polarization. Though the backscatter reduction arises similarly to other approaches that employ frequency separation, in the case here, the intensity remains constant in time.« less

  9. The large-scale effect of environment on galactic conformity

    NASA Astrophysics Data System (ADS)

    Sun, Shuangpeng; Guo, Qi; Wang, Lan; Lacey, Cedric G.; Wang, Jie; Gao, Liang; Pan, Jun

    2018-07-01

    We use a volume-limited galaxy sample from the Sloan Digital Sky Survey Data Release 7 to explore the dependence of galactic conformity on the large-scale environment, measured on ˜4 Mpc scales. We find that the star formation activity of neighbour galaxies depends more strongly on the environment than on the activity of their primary galaxies. In underdense regions most neighbour galaxies tend to be active, while in overdense regions neighbour galaxies are mostly passive, regardless of the activity of their primary galaxies. At a given stellar mass, passive primary galaxies reside in higher density regions than active primary galaxies, leading to the apparently strong conformity signal. The dependence of the activity of neighbour galaxies on environment can be explained by the corresponding dependence of the fraction of satellite galaxies. Similar results are found for galaxies in a semi-analytical model, suggesting that no new physics is required to explain the observed large-scale conformity.

  10. Surveyor 3 Preliminary Science Results

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Surveyor III soft-landed on the Moon at 00:04 GMT on April 20, 1967. Data obtained have significantly increased our knowledge of the Moon. The Surveyor III spacecraft was similar to Surveyor I; the only major change in scientific instrumentation was the addition of a soil mechanics surface sampler. Surveyor III results at this preliminary evaluation of data give valuable information about the relation between the surface skin of under-dense material responsible for the photometric properties and the deeper layers of material whose properties resemble those of ordinary terrestrial soils. In addition, they provide new insight into the relation between the general lunar surface as seen by Surveyor I and the interior of a large subdued crater. The new results have also contributed to our understanding of the mechanism of downhill transport. Many critical questions cannot, however, be answered until final reduction of experimental data.

  11. Inhibition of stimulated Raman scattering due to the excitation of stimulated Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Zhao, Yao; Yu, Lu-Le; Weng, Su-Ming; Ren, Chuang; Liu, Chuan-Sheng; Sheng, Zheng-Ming

    2017-09-01

    The nonlinear coupling between stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) of intense laser in underdense plasma is studied theoretically and numerically. Based upon the fluid model, their coupling equations are derived, and a threshold condition of plasma density perturbations due to SBS for the inhibition of SRS is given. Particle-in-cell simulations show that this condition can be achieved easily by SBS in the so-called fluid regime with kLλD<0.15 , where kL is the Langmuir wave number and λD is the Debye length [Kline et al., Phys. Plasmas 13, 055906 (2006)]. SBS can reduce the saturation level of SRS and the temperature of electrons in both homogeneous and inhomogeneous plasma. Numerical simulations also show that this reduced SRS saturation is retained even if the fluid regime condition mentioned above is violated at a later time due to plasma heating.

  12. Propagation characteristics of two-color laser pulses in homogeneous plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemlata,; Saroch, Akanksha; Jha, Pallavi

    2015-11-15

    An analytical and numerical study of the evolution of two-color, sinusoidal laser pulses in cold, underdense, and homogeneous plasma has been presented. The wave equations for the radiation fields driven by linear as well as nonlinear contributions due to the two-color laser pulses have been set up. A variational technique is used to obtain the simultaneous equations describing the evolution of the laser spot size, pulse length, and chirp parameter. Numerical methods are used to graphically analyze the simultaneous evolution of these parameters due to the combined effect of the two-color laser pulses. Further, the pulse parameters are compared withmore » those obtained for a single laser pulse. Significant focusing, compression, and enhanced positive chirp is obtained due to the combined effect of simultaneously propagating two-color pulses as compared to a single pulse propagating in plasma.« less

  13. Environments of z~0.2 Star Forming Galaxies: Building on the Citizen Science Discovery of the Green Peas

    NASA Astrophysics Data System (ADS)

    Cardamone, Carolin; Cappelluti, Nico; Powell, Meredith; Urry, Meg; Galaxy Zoo Science Team

    2018-01-01

    ‘Green Pea’ galaxies, discovered in the Galaxy Zoo citizen science project, are rare low-mass (M < 1 x 1010 M⊙) galaxies, experiencing an episode of compact, relatively low-metalicity (z ≈ 1/5 z⊙), intense starformation (3-60 M⊙/yr). While their spectra have been investigated in a wide-array of follow-up studies, a detailed study of their environments is missing. Two-point correlation functions have been used to show the environmental dependence of an array of galaxy properties (eg., mass, luminosity, color, star formation, and morphology). In this study, we present a cross-correlation analysis between the Green Peas and the Luminous Red Galaxies throughout the SDSS footprint, and we find that the population of Green Peas at 0.11

  14. Transition from wakefield generation to soliton formation.

    PubMed

    Holkundkar, Amol R; Brodin, Gert

    2018-04-01

    It is well known that when a short laser pulse propagates in an underdense plasma, it induces longitudinal plasma oscillations at the plasma frequency after the pulse, typically referred to as the wakefield. However, for plasma densities approaching the critical density, wakefield generation is suppressed, and instead the EM-pulse (electromagnetic pulse) undergoes nonlinear self-modulation. In this article we have studied the transition from the wakefield generation to formation of quasi-solitons as the plasma density is increased. For this purpose we have applied a one-dimensional relativistic cold fluid model, which has also been compared with particle-in-cell simulations. A key result is that the energy loss of the EM-pulse due to wakefield generation has its maximum for a plasma density of the order 10% of the critical density, but that wakefield generation is sharply suppressed when the density is increased further.

  15. Diagnosing laser-preheated magnetized plasmas relevant to magnetized liner inertial fusion

    DOE PAGES

    Harvey-Thompson, Adam James; Sefkow, Adam B.; Nagayama, Taisuke N.; ...

    2015-12-22

    In this paper, we present a platform on the OMEGA EP Laser Facility that creates and diagnoses the conditions present during the preheat stage of the MAGnetized Liner Inertial Fusion (MagLIF) concept. Experiments were conducted using 9 kJ of 3ω (355 nm) light to heat an underdense deuterium gas (electron density: 2.5 × 10 20 cm -3 = 0.025 of critical density) magnetized with a 10 T axial field. Results show that the deuterium plasma reached a peak electron temperature of 670 ± 140 eV, diagnosed using streaked spectroscopy of an argon dopant. The results demonstrate that plasmas relevant tomore » the preheat stage of MagLIF can be produced at multiple laser facilities, thereby enabling more rapid progress in understanding magnetized preheat. Results are compared with magneto-radiation-hydrodynamics simulations, and plans for future experiments are described.« less

  16. Threshold for electron self-injection in a nonlinear laser-plasma accelerator

    NASA Astrophysics Data System (ADS)

    Benedetti, Carlo; Schroeder, Carl; Esarey, Eric; Leemans, Wim

    2012-10-01

    The process of electron self-injection in the nonlinear bubble-wake generated by a short and intense laser pulse propagating in an uniform underdense plasma is investigated. A detailed analysis of particle orbit in the wakefield is performed by using reduced analytical models and numerical simulations carried out with the 2D cylindrical, envelope, ponderomotive, hybrid PIC/fluid code INF&RNO. In particular, we consider a wake generated by a frozen (non-evolving) laser driver traveling with a prescribed velocity, which then sets the properties of the wake, so the injection dynamics is decoupled from driver evolution but a realistic structure for the wakefield is retained. We investigate the dependence of the injection threshold on laser intensity, plasma temperature and wake velocity for a range of parameters of interest for current and future laser plasma accelerators. The phase-space properties of the injected particle bunch will also be discussed.

  17. Efficient Modeling of Laser-Plasma Accelerators with INF and RNO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedetti, C.; Schroeder, C. B.; Esarey, E.

    2010-11-04

    The numerical modeling code INF and RNO (INtegrated Fluid and paRticle simulatioN cOde, pronounced 'inferno') is presented. INF and RNO is an efficient 2D cylindrical code to model the interaction of a short laser pulse with an underdense plasma. The code is based on an envelope model for the laser while either a PIC or a fluid description can be used for the plasma. The effect of the laser pulse on the plasma is modeled with the time-averaged poderomotive force. These and other features allow for a speedup of 2-4 orders of magnitude compared to standard full PIC simulations whilemore » still retaining physical fidelity. The code has been benchmarked against analytical solutions and 3D PIC simulations and here a set of validation tests together with a discussion of the performances are presented.« less

  18. Cosmology with void-galaxy correlations.

    PubMed

    Hamaus, Nico; Wandelt, Benjamin D; Sutter, P M; Lavaux, Guilhem; Warren, Michael S

    2014-01-31

    Galaxy bias, the unknown relationship between the clustering of galaxies and the underlying dark matter density field is a major hurdle for cosmological inference from large-scale structure. While traditional analyses focus on the absolute clustering amplitude of high-density regions mapped out by galaxy surveys, we propose a relative measurement that compares those to the underdense regions, cosmic voids. On the basis of realistic mock catalogs we demonstrate that cross correlating galaxies and voids opens up the possibility to calibrate galaxy bias and to define a static ruler thanks to the observable geometric nature of voids. We illustrate how the clustering of voids is related to mass compensation and show that volume-exclusion significantly reduces the degree of stochasticity in their spatial distribution. Extracting the spherically averaged distribution of galaxies inside voids from their cross correlations reveals a remarkable concordance with the mass-density profile of voids.

  19. Reducing the number of templates for aligned-spin compact binary coalescence gravitational wave searches using metric-agnostic template nudging

    NASA Astrophysics Data System (ADS)

    Indik, Nathaniel; Fehrmann, Henning; Harke, Franz; Krishnan, Badri; Nielsen, Alex B.

    2018-06-01

    Efficient multidimensional template placement is crucial in computationally intensive matched-filtering searches for gravitational waves (GWs). Here, we implement the neighboring cell algorithm (NCA) to improve the detection volume of an existing compact binary coalescence (CBC) template bank. This algorithm has already been successfully applied for a binary millisecond pulsar search in data from the Fermi satellite. It repositions templates from overdense regions to underdense regions and reduces the number of templates that would have been required by a stochastic method to achieve the same detection volume. Our method is readily generalizable to other CBC parameter spaces. Here we apply this method to the aligned-single-spin neutron star-black hole binary coalescence inspiral-merger-ringdown gravitational wave parameter space. We show that the template nudging algorithm can attain the equivalent effectualness of the stochastic method with 12% fewer templates.

  20. Transition from wakefield generation to soliton formation

    NASA Astrophysics Data System (ADS)

    Holkundkar, Amol R.; Brodin, Gert

    2018-04-01

    It is well known that when a short laser pulse propagates in an underdense plasma, it induces longitudinal plasma oscillations at the plasma frequency after the pulse, typically referred to as the wakefield. However, for plasma densities approaching the critical density, wakefield generation is suppressed, and instead the EM-pulse (electromagnetic pulse) undergoes nonlinear self-modulation. In this article we have studied the transition from the wakefield generation to formation of quasi-solitons as the plasma density is increased. For this purpose we have applied a one-dimensional relativistic cold fluid model, which has also been compared with particle-in-cell simulations. A key result is that the energy loss of the EM-pulse due to wakefield generation has its maximum for a plasma density of the order 10% of the critical density, but that wakefield generation is sharply suppressed when the density is increased further.

  1. The 3-D ionization structure of NGC 6818: A Planetary Nebula threatened by recombination

    NASA Astrophysics Data System (ADS)

    Benetti, S.; Cappellaro, E.; Ragazzoni, R.; Sabbadin, F.; Turatto, M.

    2003-03-01

    Long-slit NTT+EMMI echellograms of NGC 6818 (the Little Gem) at nine equally spaced position angles, reduced according to the 3-D methodology introduced by Sabbadin et al. (\\cite{Sabbadin00}a,b), allowed us to derive: the expansion law, the diagnostics and ionic radial profiles, the distance and the central star parameters, the nebular photo-ionization model, the 3-D reconstruction in He II, [O III] and [N II], the multicolor projection and a series of movies. The Little Gem results to be a young (3500 years), optically thin (quasi-thin in some directions) double shell (Mion =~ 0.13 Msun) at a distance of 1.7 kpc, seen almost equatorial on: a tenuous and patchy spherical envelope (r =~ 0.090 pc) encircles a dense and inhomogeneous tri-axial ellipsoid (a/2 =~ 0.077 pc, a/b =~ 1.25, b/c =~ 1.15) characterized by a hole along the major axis and a pair of equatorial, thick moustaches. NGC 6818 is at the start of the recombination phase following the luminosity decline of the 0.625 Msun central star, which has recently exhausted the hydrogen shell nuclear burning and is rapidly moving toward the white dwarf domain (log T* =~ 5.22 K; log L*/Lsun =~ 3.1). The nebula is destined to become thicker and thicker, with an increasing fraction of neutral, dusty gas in the outermost layers. Only over some hundreds of years the plasma rarefaction due to the expansion will prevail against the slower and slower stellar decline, leading to a gradual re-growing of the ionization front. The exciting star of NGC 6818 (mV =~ 17.06) is a visual binary: a faint, red companion (mV =~ 17.73) appears at 0.09 arcsec in PA =190degr , corresponding to a separation ge 150 AU and to an orbital period ge 1500 years. Based on observations made with ESO Telescopes at the La Silla Observatories, under programme ID 65.I-0524, and on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Institute (observing programs GO 7501 and GO 8773; P.I. Arsen Hajian). STScI is operated by the association of Universities for Research in Astronomy, Inc. under the NASA contract NAS 5-26555. We have applied the photo-ionization code CLOUDY, developed at the Institute of Astronomy of the Cambridge University.

  2. Fast Breakdown as Coronal/Ionization Waves?

    NASA Astrophysics Data System (ADS)

    Krehbiel, P. R.; Petersen, D.; da Silva, C. L.

    2017-12-01

    Studies of high-power narrow bipolar events (NBEs) have shown they are produced by a newly-recognized breakdown process called fast positive breakdown (FPB, Rison et al., 2016, doi:10.1038/ncomms10721). The breakdown was inferred to be produced by a system of positive streamers that propagate at high speed ( ˜3-6 x 107 m/s) due to occurring in a localized region of strong electric field. The polarity of the breakdown was determined from broadband interferometer (INTF) observations of the propagation direction of its VHF radiation, which was downward into the main negative charge region of a normally-electrified storm. Subsequent INTF observations being conducted in at Kennedy Space Center in Florida have shown a much greater incidence of NBEs than in New Mexico. Among the larger dataset have been clear-cut instances of some NBEs being produced by upward breakdown that would be of negative polarity. The speed and behavior of the negative breakdown is the same as that of the fast positive, leading to it being termed fast negative breakdown (FNB). The similarity (not too mention its occurrence) is surprising, given the fact that negative streamers and breakdown develops much differently than that of positive breakdown. The question is how this happens. In this study, we compare fast breakdown characteristics to well-known streamer properties as inferred from laboratory experiments and theoretical analysis. Additionally, we begin to explore the possibility that both polarities of fast breakdown are produced by what may be called coronal or ionization waves, in which the enhanced electric field produced by streamer or coronal breakdown of either polarity propagates away from the advancing front at the speed of light into a medium that is in a metastable condition of being at the threshold of hydrometeor-mediated corona onset or other ionization processes. The wave would develop at a faster speed than the streamer breakdown that gives rise to it, and thus would be somewhat analogous to a phase velocity. Once started, the breakdown would tend to be polarity independent. The main difference would be that FNB would be more difficult to initiate and therefore less common, which agrees with current observations.

  3. Wind bubbles within H ii regions around slowly moving stars

    NASA Astrophysics Data System (ADS)

    Mackey, Jonathan; Gvaramadze, Vasilii V.; Mohamed, Shazrene; Langer, Norbert

    2015-01-01

    Interstellar bubbles around O stars are driven by a combination of the star's wind and ionizing radiation output. The wind contribution is uncertain because the boundary between the wind and interstellar medium is difficult to observe. Mid-infrared observations (e.g., of the H ii region RCW 120) show arcs of dust emission around O stars, contained well within the H ii region bubble. These arcs could indicate the edge of an asymmetric stellar wind bubble, distorted by density gradients and/or stellar motion. We present two-dimensional, radiation-hydrodynamics simulations investigating the evolution of wind bubbles and H ii regions around massive stars moving through a dense (nH = 3000 cm-3), uniform medium with velocities ranging from 4 to 16 km s-1. The H ii region morphology is strongly affected by stellar motion, as expected, but the wind bubble is also very aspherical from birth, even for the lowest space velocity considered. Wind bubbles do not fill their H ii regions (we find filling factors of 10-20 per cent), at least for a main sequence star with mass M⋆ ~ 30 M⊙. Furthermore, even for supersonic velocities the wind bow shock does not significantly trap the ionization front. X-ray emission from the wind bubble is soft, faint, and comes mainly from the turbulent mixing layer between the wind bubble and the H ii region. The wind bubble radiates <1 per cent of its energy in X-rays; it loses most of its energy by turbulent mixing with cooler photoionized gas. Comparison of the simulations with the H ii region RCW 120 shows that its dynamical age is ≲0.4 Myr and that stellar motion ≲4 km s-1 is allowed, implying that the ionizing source is unlikely to be a runaway star but more likely formed in situ. The region's youth, and apparent isolation from other O or B stars, makes it very interesting for studies of massive star formation and of initial mass functions. Movies are available in electronic form at http://www.aanda.org

  4. Anomalous inverse bremsstrahlung heating of laser-driven plasmas

    NASA Astrophysics Data System (ADS)

    Kundu, Mrityunjay

    2016-05-01

    Absorption of laser light in plasma via electron-ion collision (inverse bremsstrahlung) is known to decrease with the laser intensity as I 0 -3/2 or with the electron temperature as T e -3/2 where Coulomb logarithm ln Λ = 0.5ln(1 + k 2 min/k 2 max) in the expression of electron-ion collision frequency v ei is assumed to be independent of ponderomotive velocity v 0 = E0/ω which is unjustified. Here k -1 min = v th/max(ω, ω p), and k -1 max = Z/v 2 th are maximum and minimum cut-off distances of the colliding electron from the ion, v th = √T e is its thermal velocity, ω, ω p are laser and plasma frequency. Earlier with a total velocity v = (v 2 0 + v 2 th)1/2 dependent ln Λ(v) it was reported that v ei and corresponding fractional laser absorption (α) initially increases with increasing intensity, reaches a maximum value, and then fall according to the conventional I 0 -3/2 scaling. This anomalous increase in v ei and α may be objected due to an artifact introduced in ln Λ(v) through k-1 min ∝ v. Here we show similar anomalous increase of v ei and α versus I 0 (in the low temperature and under-dense density regime) with quantum and classical kinetic models of v ei without using ln Λ, but a proper choice of the total velocity dependent inverse cut-off length kmax -1 ∝ v 2 (in classical case) or kmax ∝ v (in quantum case). For a given I 0 < 5 × 1014Wcm-2, v ei versus T e also exhibits so far unnoticed identical anomalous increase as v ei versus Io, even if the conventional k max ∝ v2 th, or k max ∝ v th is chosen. However, for higher T e > 15 eV, anomalous growth of vei and a disappear. The total velocity dependent k max in kinetic models, as proposed here, may explain anomalous increase of a with I 0 measured in some earlier laser-plasma experiments. This work may be important to understand collisional absorption in the under-dense pre-plasma region due to low intensity pre-pulses and amplified spontaneous emission (ASE) pedestal in the context of laser induced inertial confinement fusion.

  5. The Zero-Degree Detector System

    NASA Technical Reports Server (NTRS)

    Adams, James H.; Christl, Mark J.; Howell, Leonard W.; Kouznetsov, Evgueni

    2006-01-01

    We will report on a detector system used for accelerator measurement of nuclear fragmentation cross sections. This system consists of two detector planes, each carrying a ring of 8 detectors. Each detector has 64 pads. These two detector planes are arranged facing each other so that the matching detector pads on each plane form a two element charged particle telescope. Each of these telescopes is capable of determining the elemental identity of nuclear fragments passing through it. The system is used to measure light fragment production in the presence of heavier fragments. We will present a detailed discussion of the 64-pad detector design, the substrate design. The front-end electronics used to read out the signals is based on a custom VLSI chip developed for the Advanced Thin Ionization Calorimeter experiment which has been flown successfully twice in Antarctica. Each of these chips has 16 channels and each channel consists of a charge-sensitive preamplifier followed by a shaping amplifier and a track-and-hold circuit. The track-and-hold circuits are connected via a multiplexer to an output line driver. This allows the held signals to be presented, one-by-one via a common data line to a analog-to-digital converter. Because the output line driver can be placed in a high input impedance state when not in use, it is possible to daisy-change many chips on the same common data line. The front-end electronics and data readout scheme will be discussed in detail. The Zero Degree Detector has been used in several accelerator experiments conducted at the NASA Space Radiation Laboratory and the Alternating Gradient Synchrotron at Brookhaven National Laboratory as well as at the HIMAC accelerator in Japan. We will show examples of data taken at these accelerator runs to demonstrate how the system works.

  6. Expansion of Hydrogen-poor Knots in the Born-again Planetary Nebulae A30 and A78

    NASA Astrophysics Data System (ADS)

    Fang, X.; Guerrero, M. A.; Marquez-Lugo, R. A.; Toalá, J. A.; Arthur, S. J.; Chu, Y.-H.; Blair, W. P.; Gruendl, R. A.; Hamann, W.-R.; Oskinova, L. M.; Todt, H.

    2014-12-01

    We analyze the expansion of hydrogen-poor knots and filaments in the born-again planetary nebulae A30 and A78 based on Hubble Space Telescope (HST) images obtained almost 20 yr apart. The proper motion of these features generally increases with distance to the central star, but the fractional expansion decreases, i.e., the expansion is not homologous. As a result, there is not a unique expansion age, which is estimated to be 610-950 yr for A30 and 600-1140 yr for A78. The knots and filaments have experienced complex dynamical processes: the current fast stellar wind is mass loaded by the material ablated from the inner knots; the ablated material is then swept up until it shocks the inner edges of the outer, hydrogen-rich nebula. The angular expansion of the outer filaments shows a clear dependence on position angle, indicating that the interaction of the stellar wind with the innermost knots channels the wind along preferred directions. The apparent angular expansion of the innermost knots seems to be dominated by the rocket effect of evaporating gas and by the propagation of the ionization front inside them. Radiation-hydrodynamical simulations show that a single ejection of material followed by a rapid onset of the stellar wind and ionizing flux can reproduce the variety of clumps and filaments at different distances from the central star found in A30 and A78. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program No. 12935.

  7. Modeling Solar Atmospheric Phenomena with AtomDB and PyAtomDB

    NASA Astrophysics Data System (ADS)

    Dupont, Marcus; Foster, Adam

    2018-01-01

    Taking advantage of the modeling tools made available by PyAtomDB (Foster 2015), we evaluated the impact of changing atomic data on solar phenomena, in particular their effects on models of coronal mass ejections (CME). Intitially, we perform modifications to the canonical SunNEI code (Murphy et al. 2011) in order to include non-equilibrium ionization (NEI) processes that occur in the CME modeled in SunNEI. The methods used involve the consideration of radiaitive cooling as well as ion balance calculations. These calculations were subsequently implemented within the SunNEI simulation. The insertion of aforementioned processes and parameter customizaton produced quite similar results of the original except for the case of iron. These differences were traced to inconsistencies in the recombination rates for Argon-like iron ions between the CHIANTI and AtomDB databases, even though they in theory use the same data. The key finding was that theoretical models are greatly impacted by the relative atomic database update cycles.Following the SunNEI comparison, we then use the AtomDB database to model the time depedencies of intensity flux spikes produced by a coronal shock wave (Ma et al. 2011). We produced a theretical representation for an ionizing plasma that interpolated over the intensity in four Astronomical Imaging Assembly (AIA) filters. Specifically, the 171 A (Fe IX) ,193 A (Fe XII, FeXXIV),211 A (Fe XIV),and 335 A (Fe XVI) wavelengths in order to assess the comparative spectral emissions between AtomDB and the observed data. The results of the theoretical model, in principle, shine light on both the equilibrium conditions before the shock and the non-equilibrium response to the shock front, as well as discrepancies introduced by changing the atomic data.

  8. New Data for Modeling Hypersonic Entry into Earth's Atmosphere: Electron-impact Ionization of Atomic Nitrogen

    NASA Astrophysics Data System (ADS)

    Savin, Daniel Wolf; Ciccarino, Christopher

    2017-06-01

    Meteors passing through Earth’s atmosphere and space vehicles returning to Earth from beyond orbit enter the atmosphere at hypersonic velocities (greater than Mach 5). The resulting shock front generates a high temperature reactive plasma around the meteor or vehicle (with temperatures greater than 10,000 K). This intense heat is transferred to the entering object by radiative and convective processes. Modeling the processes a meteor undergoes as it passes through the atmosphere and designing vehicles to withstand these conditions requires an accurate understanding of the underlying non-equilibrium high temperature chemistry. Nitrogen chemistry is particularly important given the abundance of nitrogen in Earth's atmosphere. Line emission by atomic nitrogen is a major source of radiative heating during atomspheric entry. Our ability to accurately calculate this heating is hindered by uncertainties in the electron-impact ionization (EII) rate coefficient for atomic nitrogen.Here we present new EII calculations for atomic nitrogen. The atom is treated as a 69 level system, incorporating Rydberg values up to n=20. Level-specific cross sections are from published B-Spline R-Matrix-with-Pseudostates results for the first three levels and binary-encounter Bethe (BEB) calculations that we have carried out for the remaining 59 levels. These cross section data have been convolved into level-specific rate coefficients and fit with the commonly-used Arrhenius-Kooij formula for ease of use in hypersonic chemical models. The rate coefficient data can be readily scaled by the relevant atomic nitrogen partition function which varies in time and space around the meteor or reentry vehicle. Providing data up to n=20 also enables modelers to account for the density-dependent lowering of the continuum.

  9. Summary of ionizing radiation analysis on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Parnell, T. A.

    1992-01-01

    The ionizing radiation measurements flown on the Long Duration Exposure Facility (LDEF) were contained in 15 experiments which utilized passive detectors to pursue objectives in astrophysics and to measure the radiation environment and dosimetric quantities. The spacecraft structure became sufficiently radioactive to permit additional important studies. The induced activity allows extensive radiation mapping in the structure, and independent comparison with experiment dosimetric techniques, and significant studies of secondary effects. The long exposure time, attitude stability, and number and types of measurements produced a unique and critical set of data for low Earth orbit that will not be duplicated for more than a decade. The data allow an unprecedented test, and improvement if required, of models of the radiation environment and the radiation transport methods that are used to calculate the internal radiation and its effects in spacecraft. Results of measurements in the experiments, as well as from radioactivity in the structure, have clearly shown effects from the directional properties of the radiation environment, and progress was made in the dosimetric mapping of LDEF. These measurements have already influenced some Space Station Freedom design requirements. Preliminary results from experiments, reported at this symposium and in earlier papers, show that the 5.8 years exposure considerably enhanced the scientific return of the radiation measurements. The early results give confidence that the experiments will make significant advances in the knowledge of ultra heavy cosmic rays, anomalous cosmic rays, and heavy ions trapped in the radiation belts. Unexpected phenomena were observed, which require explanation. These include stopping iron group ions between the energy ranges anticipated for anomalous and galactic cosmic rays in the LDEF orbit. A surprising concentration of the Be-7 nuclide was discovered on the 'front' surface of LDEF, apparently transported up from the stratosphere with exceptional efficiency.

  10. Uv-Optical Spectra and Imagery of the Bubble Nebula NGC 7635

    NASA Astrophysics Data System (ADS)

    Walter, Donald

    1997-07-01

    We propose to acquire UV-optical STIS spectra and WFPC2 imagery of the wind-blown Bubble Nebula NGC 7635. This object is significant to our understanding of galactic chemical evolution, star formation {possibly triggered by radiative implosion}, the mass-loss history of precursors to supernovae, the effect of wind-driven shocks on the ISM and the process of ionization and photoevaporation of high density knots {possibly HH objects} in the presence of an intense stellar wind and radiation field. The ener getic environment of NGC 7635 is more extreme and its features have evolved on a different time scale than in more quiescent objects studied with HST {e.g. Orion and M16}. HST is essential to our study in order to achieve high spatial resolution and ac cess to the UV region of the spectrum. The nebula's nearly spherical shell is the result of a recent { < 10^6 years} stellar mass-loss event and is the best young, clearly observed bubble available for study. We will exam in e the ionization front at the r im of the bubble, the extent to which it is shock-driven and the scale of the photoevaporative flow off the face of the molecular cloud. We will resolve high density knots down to a size of 2.1 x 10^15 cm {140 au}, searching for protostellar objects. STIS U V spectra will allow us to calculate the first accurate C/H abundance in the Perseus arm and test for the presence of a galactic abundance gradient. Finally, with our HST data we will compare our observational results with our radiative shock-model predi ctions.

  11. Time of flight emission spectroscopy of laser produced nickel plasma: Short-pulse and ultrafast excitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smijesh, N.; Chandrasekharan, K.; Joshi, Jagdish C.

    2014-07-07

    We report the experimental investigation and comparison of the temporal features of short-pulse (7 ns) and ultrafast (100 fs) laser produced plasmas generated from a solid nickel target, expanding into a nitrogen background. When the ambient pressure is varied in a large range of 10⁻⁶Torr to 10²Torr, the plume intensity is found to increase rapidly as the pressure crosses 1 Torr. Time of flight (TOF) spectroscopy of emission from neutral nickel (Ni I) at 361.9 nm (3d⁹(²D) 4p → 3d⁹(²D) 4s transition) reveals two peaks (fast and slow species) in short-pulse excitation and a single peak in ultrafast excitation. Themore » fast and slow peaks represent recombined neutrals and un-ionized neutrals, respectively. TOF emission from singly ionized nickel (Ni II) studied using the 428.5 nm (3p⁶3d⁸(³P) 4s→ 3p⁶3d⁹ 4s) transition shows only a single peak for either excitation. Velocities of the neutral and ionic species are determined from TOF measurements carried out at different positions (i.e., at distances of 2 mm and 4 mm, respectively, from the target surface) on the plume axis. Measured velocities indicate acceleration of neutrals and ions, which is caused by the Coulomb pull of the electrons enveloping the plume front in the case of ultrafast excitation. Both Coulomb pull and laser-plasma interaction contribute to the acceleration in the case of short-pulse excitation. These investigations provide new information on the pressure dependent temporal behavior of nickel plasmas produced by short-pulse and ultrafast laser pulses, which have potential uses in applications such as pulsed laser deposition and laser-induced nanoparticle generation.« less

  12. Physical Properties of the Very Young PN Hen3-1357 (Stingray Nebula) Based on Multiwavelength Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otsuka, Masaaki; Parthasarathy, M.; Tajitsu, A.

    We carried out a detailed analysis of the interesting and important very young planetary nebula (PN) Hen3-1357 (Stingray Nebula) based on a unique data set of optical to far-IR spectra and photometric images. We calculated the abundances of nine elements using collisionally excited lines (CELs) and recombination lines (RLs). The RL C/O ratio indicates that this PN is O-rich, which is also supported by the detection of the broad 9/18 μ m bands from amorphous silicate grains. The observed elemental abundances can be explained by asymptotic giant branch (AGB) nucleosynthesis models for initially 1–1.5 M {sub ⊙} stars with Zmore » = 0.008. The Ne overabundance might be due to the enhancement of {sup 22}Ne isotope in the He-rich intershell. Using the spectrum of the central star synthesized by Tlusty as the ionization/heating source of the PN, we constructed the self-consistent photoionization model with Cloudy to the observed quantities and derived the gas and dust masses, dust-to-gas mass ratio, and core mass of the central star. About 80% of the total dust mass is from warm–cold dust component beyond ionization front. Comparison with other Galactic PNe indicates that Hen3-1357 is an ordinary amorphous silicate-rich and O-rich gas PN. Among other studied PNe, IC4846 shows many similarities in properties of the PN to Hen3-1357, although their post-AGB evolution is quite different from each other. Further monitoring of observations and comparisons with other PNe such as IC4846 are necessary to understand the evolution of Hen3-1357.« less

  13. A Compact Ion and Neutral Mass Spectrometer for Measuring Atmospheric Composition with Preliminary Results from the Dellingr Mission

    NASA Astrophysics Data System (ADS)

    Jones, S.; Paschalidis, N.; Rodriguez, M.; Sittler, E. C., Jr.; Chornay, D. J.; Uribe, P.; Cameron, T.

    2017-12-01

    A compact Ion and Neutral Mass Spectrometer (INMS) has been developed for GSFC's Dellingr mission, using the 6U CubeSat platform. Dellingr is expected to deploy into ISS orbit in October 2017 to measure the dynamics of the ionosphere-thermosphere-mesosphere and to determine the steady state background atmospheric conditions at this altitude. The INMS makes in situ measurements of ionized and neutral H, He, N, O, N2, O2 densities with M/dM of approximately 10-12 for thermal particles. The INMS is based on particle acceleration, electronically gated time of flight (TOF), electrostatic analyzer, and CEM detectors. The compact instrument has a dual symmetric configuration with ion and neutral sensor heads on opposite sides of the shared electronics. The neutral front-end includes thermionic ionization and ion-blocking grids. The electronics include fast preamplifiers, electric gating, and TOF measurements and processing, C&DH digital electronics for commands, data storage and back-end I/O, and HVPS for detector and sensor biases. The data package includes 400 bins of mass spectra per ion and neutral sensor and key housekeeping and calibration data, in a single time tagged data frame of 14kbits uncompressed. The nominal data sampling is 1 sec corresponding to 7.5km spatial resolution in LEO orbits. This miniaturized instrument occupies a 1.1U volume, weighs only 570g and nominally operates at 1.2W. This presentation will include preliminary flight data of ions and neutrals from the Dellingr mission and outlines improvements incorporated into the design for the Dellingr (Oct 2017), ExoCube2 (Dec 2017) and petitSat (2020) CubeSat missions.

  14. Ultraviolet imaging of planetary nebulae with GALEX

    NASA Astrophysics Data System (ADS)

    Bianchi, Luciana; Thilker, David

    2018-05-01

    Over four hundred Galactic Planetary Nebulae (PNe) have been imaged by GALEX in two ultraviolet (UV) bands, far-UV (FUV, 1344-1786 Å, λ _{eff}= 1528 Å) and near-NUV (NUV, 1771-2831 Å, λ _{eff} = 2271 Å). We present examples of extended PNe, for which UV spectroscopy is also available, to illustrate the variety in UV morphology and color, which reflects ionization conditions. The depth of the GALEX imaging varies from flux ≈ 0.4/5× 10 ^{-18} ergs cm^{-2} s^{-1} Å^{-1} \\square ^'' -1} (FUV/NUV) for exposures of the order of ˜ 100 seconds, typical of the survey with the largest area coverage, to ˜ 0.3/8.3× 10^{-19} ergs cm^{-2} s^{-1} Å^{-1} \\square ^'' -1} (FUV/NUV) for ˜ 1500 sec exposures, typical of the second largest survey (see Bianchi in Astrophys. Space Sci. 320:11, 2009; Bianchi et al. in Adv. Space Res. 53:900, 2014). GALEX broad-band FUV and NUV fluxes include nebular emission lines and in some cases nebular continuum emission. The sensitivity of the GALEX instrument and the low sky background, especially in FUV, enable detection and mapping of very faint ionization regions and fronts, including outermost wisps and bow shocks. The FUV-NUV color of the central star provides a good indication of its T_{eff}, because the GALEX FUV-NUV color is almost reddening-free for Milky Way type dust (Bianchi et al. in Astrophys. J. Suppl. Ser. 230:24, 2017; Bianchi in Astrophys. Space Sci. 335:51, 2011, Bianchi in Astrophys. Space Sci. 354:103, 2014) and it is more sensitive to hot temperatures than optical colors.

  15. Cosmic Rays in Thunderstorms

    NASA Astrophysics Data System (ADS)

    Buitink, Stijn; Scholten, Olaf; van den Berg, Ad; Ebert, Ute

    2013-04-01

    Cosmic Rays in Thunderstorms Cosmic rays are protons and heavier nuclei that constantly bombard the Earth's atmosphere with energies spanning a vast range from 109 to 1021 eV. At typical altitudes up to 10-20 km they initiate large particle cascades, called extensive air showers, that contain millions to billions of secondary particles depending on their initial energy. These particles include electrons, positrons, hadrons and muons, and are concentrated in a compact particle front that propagates at relativistic speed. In addition, the shower leaves behind a trail of lower energy electrons from ionization of air molecules. Under thunderstorm conditions these electrons contribute to the electrical and ionization processes in the cloud. When the local electric field is strong enough the secondary electrons can create relativistic electron run-away avalanches [1] or even non-relativistic avalanches. Cosmic rays could even trigger lightning inception. Conversely, strong electric fields also influence the development of the air shower [2]. Extensive air showers emit a short (tens of nanoseconds) radio pulse due to deflection of the shower particles in the Earth's magnetic field [3]. Antenna arrays, such as AERA, LOFAR and LOPES detect these pulses in a frequency window of roughly 10-100 MHz. These systems are also sensitive to the radiation from discharges associated to thunderstorms, and provide a means to study the interaction of cosmic ray air showers and the electrical processes in thunderstorms [4]. In this presentation we discuss the involved radiation mechanisms and present analyses of thunderstorm data from air shower arrays [1] A. Gurevich et al., Phys. Lett. A 165, 463 (1992) [2] S. Buitink et al., Astropart. Phys. 33, 1 (2010) [3] H. Falcke et al., Nature 435, 313 (2005) [4] S. Buitink et al., Astron. & Astrophys. 467, 385 (2007)

  16. Evidence of the Solar EUV Hot Channel as a Magnetic Flux Rope from Remote-sensing and In Situ Observations

    NASA Astrophysics Data System (ADS)

    SONG, H. Q.; CHEN, Y.; ZHANG, J.; CHENG, X.; Wang, B.; HU, Q.; LI, G.; WANG, Y. M.

    2015-07-01

    Hot channels (HCs), high-temperature erupting structures in the lower corona of the Sun, have been proposed as a proxy of magnetic flux ropes (MFRs) since their initial discovery. However, it is difficult to provide definitive proof given the fact that there is no direct measurement of the magnetic field in the corona. An alternative method is to use the magnetic field measurement in the solar wind from in situ instruments. On 2012 July 12, an HC was observed prior to and during a coronal mass ejection (CME) by the Atmospheric Imaging Assembly high-temperature images. The HC is invisible in the EUVI low-temperature images, which only show the cooler leading front (LF). However, both the LF and an ejecta can be observed in the coronagraphic images. These are consistent with the high temperature and high density of the HC and support that the ejecta is the erupted HC. Meanwhile, the associated CME shock was identified ahead of the ejecta and the sheath through the COR2 images, and the corresponding ICME was detected by the Advanced Composition Explorer, showing the shock, sheath, and magnetic cloud (MC) sequentially, which agrees with the coronagraphic observations. Further, the MC average Fe charge state is elevated, containing a relatively low-ionization-state center and a high-ionization-state shell, consistent with the preexisting HC observation and its growth through magnetic reconnection. All of these observations support that the MC detected near the Earth is the counterpart of the erupted HC in the corona for this event. The study provides strong observational evidence of the HC as an MFR.

  17. Evidence of the Solar EUV Hot Channel as a Magnetic Flux Rope from Remote-sensing and in situ Observations

    NASA Astrophysics Data System (ADS)

    Song, H.

    2015-12-01

    Hot channels (HCs), high-temperature erupting structures in the lower corona of the Sun, have been proposed as a proxy of magnetic flux ropes (MFRs) since their initial discovery. However, it is difficult to provide definitive proof given the fact that there is no direct measurement of the magnetic field in the corona. An alternative method is to use the magnetic field measurement in the solar wind from in situ instruments. On 2012 July 12, an HC was observed prior to and during a coronal mass ejection (CME) by the Atmospheric Imaging Assembly high-temperature images. The HC is invisible in the EUVI low-temperature images, which only show the cooler leading front (LF). However, both the LF and an ejecta can be observed in the coronagraphic images. These are consistent with the high temperature and high density of the HC and support that the ejecta is the erupted HC. Meanwhile, the associated CME shock was identified ahead of the ejecta and the sheath through the COR2 images, and the corresponding ICME was detected by the Advanced Composition Explorer, showing the shock, sheath, and magnetic cloud (MC) sequentially, which agrees with the coronagraphic observations. Further, the MC average Fe charge state is elevated, containing a relatively low-ionization-state center and a high-ionization-state shell, consistent with the preexisting HC observation and its growth through magnetic reconnection. All of these observations support that the MC detected near the Earth is the counterpart of the erupted HC in the corona for this event. The study provides strong observational evidence of the HC as an MFR.

  18. Transition fronts of time periodic bistable reaction-diffusion equations in RN

    NASA Astrophysics Data System (ADS)

    Sheng, Wei-Jie; Guo, Hong-Jun

    2018-09-01

    This paper is concerned with the existence and qualitative properties of transition fronts for time periodic bistable reaction-diffusion equations in RN. We first show that any almost-planar transition front is actually planar, regardless of the number of transition layers. Then we prove that all transition fronts admit a global mean speed γ and it holds γ = | c |, where c is the speed of the planar traveling front. Finally we establish the existence of a transition front in RN that is not a standard traveling front. Such a front behaves like three moving time periodic planar fronts as time goes to -∞ and like a time periodic V-shaped traveling front as time goes to ∞.

  19. OXYGEN-RICH SUPERNOVA REMNANT IN THE LARGE MAGELLANIC CLOUD

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a NASA Hubble Space Telescope image of the tattered debris of a star that exploded 3,000 years ago as a supernova. This supernova remnant, called N132D, lies 169,000 light-years away in the satellite galaxy, the Large Magellanic Cloud. A Hubble Wide Field Planetary Camera 2 image of the inner regions of the supernova remnant shows the complex collisions that take place as fast moving ejecta slam into cool, dense interstellar clouds. This level of detail in the expanding filaments could only be seen previously in much closer supernova remnants. Now, Hubble's capabilities extend the detailed study of supernovae out to the distance of a neighboring galaxy. Material thrown out from the interior of the exploded star at velocities of more than four million miles per hour (2,000 kilometers per second) plows into neighboring clouds to create luminescent shock fronts. The blue-green filaments in the image correspond to oxygen-rich gas ejected from the core of the star. The oxygen-rich filaments glow as they pass through a network of shock fronts reflected off dense interstellar clouds that surrounded the exploded star. These dense clouds, which appear as reddish filaments, also glow as the shock wave from the supernova crushes and heats the clouds. Supernova remnants provide a rare opportunity to observe directly the interiors of stars far more massive than our Sun. The precursor star to this remnant, which was located slightly below and left of center in the image, is estimated to have been 25 times the mass of our Sun. These stars 'cook' heavier elements through nuclear fusion, including oxygen, nitrogen, carbon, iron etc., and the titanic supernova explosions scatter this material back into space where it is used to create new generations of stars. This is the mechanism by which the gas and dust that formed our solar system became enriched with the elements that sustain life on this planet. Hubble spectroscopic observations will be used to determine the exact chemical composition of this nuclear- processed material, and thereby test theories of stellar evolution. The image shows a region of the remnant 50 light-years across. The supernova explosion should have been visible from Earth's southern hemisphere around 1,000 B.C., but there are no known historical records that chronicle what would have appeared as a 'new star' in the heavens. This 'true color' picture was made by superposing images taken on 9-10 August 1994 in three of the strongest optical emission lines: singly ionized sulfur (red), doubly ionized oxygen (green), and singly ionized oxygen (blue). Photo credit: Jon A. Morse (STScI) and NASA Investigating team: William P. Blair (PI; JHU), Michael A. Dopita (MSSSO), Robert P. Kirshner (Harvard), Knox S. Long (STScI), Jon A. Morse (STScI), John C. Raymond (SAO), Ralph S. Sutherland (UC-Boulder), and P. Frank Winkler (Middlebury). Image files in GIF and JPEG format may be accessed via anonymous ftp from oposite.stsci.edu in /pubinfo: GIF: /pubinfo/GIF/N132D.GIF JPEG: /pubinfo/JPEG/N132D.jpg The same images are available via World Wide Web from links in URL http://www.stsci.edu/public.html.

  20. KSC-2014-2473

    NASA Image and Video Library

    2014-05-09

    CAPE CANAVERAL, Fla. – Researchers fill a water bag with ionized water for the Veggie plant growth system inside a control chamber at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. In front is Jim Smodell, a technician with SGT. Standing behind him is Chuck Spern, lead project engineer with QinetiQ North America. The growth chamber will be used as a control unit and procedures will be followed identical to those being performed on Veggie and the Veg-01 experiment on the International Space Station by Expedition 39 flight engineer and NASA astronaut Steve Swanson. Veggie and Veg-01 were delivered to the space station aboard the SpaceX-3 mission. Veggie is the first fresh food production system delivered to the station. Six plant pillows, each containing outredgeous red romaine lettuce seeds and a root mat were inserted into Veggie. The plant chamber's red, blue and green LED lights were activated. The plant growth will be monitored for 28 days. At the end of the cycle, the plants will be carefully harvested, frozen and stored for return to Earth. Photo credit: NASA/Dimitri Gerondidakis

  1. Electric field measurement in the dielectric tube of helium atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Sretenović, Goran B.; Guaitella, Olivier; Sobota, Ana; Krstić, Ivan B.; Kovačević, Vesna V.; Obradović, Bratislav M.; Kuraica, Milorad M.

    2017-03-01

    The results of the electric field measurements in the capillary of the helium plasma jet are presented in this article. Distributions of the electric field for the streamers are determined for different gas flow rates. It is found that electric field strength in front of the ionization wave decreases as it approaches to the exit of the tube. The values obtained under presented experimental conditions are in the range of 5-11 kV/cm. It was found that the increase in gas flow above 1500 SCCM could induce substantial changes in the discharge operation. This is reflected through the formation of the brighter discharge region and appearance of the electric field maxima. Furthermore, using the measured values of the electric field strength in the streamer head, it was possible to estimate electron densities in the streamer channel. Maximal density of 4 × 1011 cm-3 is obtained in the vicinity of the grounded ring electrode. Similar behaviors of the electron density distributions to the distributions of the electric field strength are found under the studied experimental conditions.

  2. Temporal characterization of ultrashort linearly chirped electron bunches generated from a laser wakefield accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, C. J.; Hua, J. F.; Wan, Y.

    A new method for diagnosing the temporal characteristics of ultrashort electron bunches with linear energy chirp generated from a laser wakefield accelerator is described. When the ionization-injected bunch interacts with the back of the drive laser, it is deflected and stretched along the direction of the electric field of the laser. Upon exiting the plasma, if the bunch goes through a narrow slit in front of the dipole magnet that disperses the electrons in the plane of the laser polarization, it can form a series of bunchlets that have different energies but are separated by half a laser wavelength. Sincemore » only the electrons that are undeflected by the laser go through the slit, the energy spectrum of the bunch is modulated. By analyzing the modulated energy spectrum, the shots where the bunch has a linear energy chirp can be recognized. Consequently, the energy chirp and beam current profile of those bunches can be reconstructed. Lastly, this method is demonstrated through particle-in-cell simulations and experiment.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jadidian, Jouya; Zahn, Markus; Lavesson, Nils

    Streamer branching in liquid dielectrics is driven by stochastic and deterministic factors. The presence of stochastic causes of streamer branching such as inhomogeneities inherited from noisy initial states, impurities, or charge carrier density fluctuations is inevitable in any dielectric. A fully three-dimensional streamer model presented in this paper indicates that deterministic origins of branching are intrinsic attributes of streamers, which in some cases make the branching inevitable depending on shape and velocity of the volume charge at the streamer frontier. Specifically, any given inhomogeneous perturbation can result in streamer branching if the volume charge layer at the original streamer headmore » is relatively thin and slow enough. Furthermore, discrete nature of electrons at the leading edge of an ionization front always guarantees the existence of a non-zero inhomogeneous perturbation ahead of the streamer head propagating even in perfectly homogeneous dielectric. Based on the modeling results for streamers propagating in a liquid dielectric, a gauge on the streamer head geometry is introduced that determines whether the branching occurs under particular inhomogeneous circumstances. Estimated number, diameter, and velocity of the born branches agree qualitatively with experimental images of the streamer branching.« less

  4. Young stellar objects & photoevaporating protoplanetary disks in the Orion's sibling NGC 1977.

    NASA Astrophysics Data System (ADS)

    Kim, J. S.; Fang, M.; Clarke, C. J.; Facchini, S.; Pascucci, I.; Apai, D.; Bally, J.

    We present young stellar population in NGC 1977, Orion Nebula's sibling, and the discovery of new photoevaporating protoplanetary disks (proplyds) around a B star, 42 Ori. NGC 1977 (age≲2 Myr) is located at ˜30arcmin north of the Orion Nebula at a distance of ˜400 pc, but it lacks high mass O stars unlike in Orion Nebula Cluster (ONC). Nevertheless, we have identified seven proplyds in vicinity of its most massive star, 42 Ori (B1V). The proplyds show cometary Halpha emission in HST images, with clear ionization front and tails evaporating away from 42 Ori. These are the first proplyds to be found around a B star, while previously known proplyds were found near O stars. The FUV radiation impinging on these proplyds is 10-30 times weaker than that on the proplyds in ONC. We find that observed proplyd sizes are consistent with a model for photoevaporation in weak FUV radiation field. We briefly discuss one of the interesting YSOs found in this lesser-known star forming region in Orion, NGC 1977.

  5. The characteristics of RF modulated plasma boundary sheaths: An analysis of the standard sheath model

    NASA Astrophysics Data System (ADS)

    Naggary, Schabnam; Brinkmann, Ralf Peter

    2015-09-01

    The characteristics of radio frequency (RF) modulated plasma boundary sheaths are studied on the basis of the so-called ``standard sheath model.'' This model assumes that the applied radio frequency ωRF is larger than the plasma frequency of the ions but smaller than that of the electrons. It comprises a phase-averaged ion model - consisting of an equation of continuity (with ionization neglected) and an equation of motion (with collisional ion-neutral interaction taken into account) - a phase-resolved electron model - consisting of an equation of continuity and the assumption of Boltzmann equilibrium -, and Poisson's equation for the electrical field. Previous investigations have studied the standard sheath model under additional approximations, most notably the assumption of a step-like electron front. This contribution presents an investigation and parameter study of the standard sheath model which avoids any further assumptions. The resulting density profiles and overall charge-voltage characteristics are compared with those of the step-model based theories. The authors gratefully acknowledge Efe Kemaneci for helpful comments and fruitful discussions.

  6. The thermodynamic and dynamical features of double front structures during 21 31 July 1998 in China

    NASA Astrophysics Data System (ADS)

    Zhou, Yushu; Deng, Guo; Lei, Ting; Ju, Jianhua

    2005-11-01

    The daily 1° × 1° data of the Aviation (AVN) model, the black body temperature (TBB) data of cloud top, and cloud images by geostationary meteorological satellite (GMS) are used to identify a dew-point front near the periphery of the western Pacific subtropical high (WPSH). The results clearly demonstrate the existence of the dew-point front, and its thermodynamic and dynamic structural characteristics are analyzed in detail. The dew-point front is a transitional belt between the moist southwest monsoon flow and the dry adiabatic sinking flow near the WPSH, manifested by a large horizontal moisture gradient in the mid-lower troposphere and conjugated with the mei-yu front to form a predominant double-front structure associated with intense rainfall in the mei-yu period. The mei-yu front is located between 30° and 35°N, vertically extends from the ground level to the upper level and shifts northward. The dew-point front is to the south of the mei-yu front and lies up against the periphery of the WPSH. Generally, it is located between 850 hPa and 500 hPa. On the dew-point front side, the southwesterly prevails at the lower level and the northeasterly at the upper level; this wind distribution is different from that on the mei-yu front side. Vertical ascending motion exists between the two fronts, and there are descending motions on the north side of the mei-yu front and on the south side of the dew-point front, which form a secondary circulation. The dynamics of the double fronts also have some interesting features. At the lower level, positive vertical vorticity and obvious convergence between the two fronts are clearly identified. At the mid-lower level, negative local change of the divergence (corresponding to increasing convergence) is often embedded in the two fronts or against the mei-yu front. Most cloud clusters occur between the two fronts and propagate down stream in a wave-like manner.

  7. A Detailed Analysis of Frontal Precipitation in a Decadal Convection-Resolving Regional Climate Simulation over Europe

    NASA Astrophysics Data System (ADS)

    Ruedisuehli, S.; Sprenger, M.; Leutwyler, D.; Schar, C.; Wernli, H.

    2017-12-01

    We study fronts and precipitation in a decadal continental-scale convection-resolving (2.2 km) regional climate simulation over Europe, which has been conducted using a GPU-enabled version of the COSMO model. Resolving convection substantially improves the representation of precipitation, e.g., the diurnal cycle of summer convection or organization of convection along fronts, while the large domain is able to represent most synoptic fronts affecting Europe with their full spatial extent. Studying nine years of the simulation, we present climatological results of how precipitation relates to fronts both structurally and quantitatively, and address seasonal, regional, and diurnal effects. Cold and warm fronts are identified at hourly intervals based on horizontal gradients of equivalent potential temperature on 850 hPa. We track the frontal areas using a new feature tracking algorithm, which accounts for mergings and splittings and supports complex tracks.Based on track properties, we separate synoptic and local fronts. The latter mostly form along orography and coasts during summer. While the resulting front climatology is already valuable, we exploit the full potential of the simulation by relating fronts to precipitation. We subdivide the domain at every timestep into pre-, at-, post-, and non-frontal areas by considering at every grid point the time since the latest and until the next frontal passage (separately for cold and warm fronts). This allows, for the first time, to disaggregate the precipitation field into front-related components, and to quantify the influence of fronts on both regular and extreme precipitation throughout the domain. To investigate the average structure of precipitation across fronts, we composite precipitation relative to the time of frontal passage. This approach reveals characteristic properties of the precipitation distribution across fronts. The Figure shows the mean across-front distribution of precipitation, separated into intensity components, for all cold and warm fronts during JJA 2007. Precipitation amounts peak at the front for both front types, but the distribution around cold (warm) fronts is heavily tilted towards pre-frontal (post-frontal) precipitation. Post-frontal showers lead to a second increase behind many cold fronts, starting at around + 9 h.

  8. Beginning inflation in an inhomogeneous universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    East, William E.; Kleban, Matthew; Linde, Andrei

    Using numerical solutions of the full Einstein field equations coupled to a scalar inflaton field in 3+1 dimensions, we study the conditions under which a universe that is initially expanding, highly inhomogeneous and dominated by gradient energy can transition to an inflationary period. If the initial scalar field variations are contained within a sufficiently flat region of the inflaton potential, and the universe is spatially flat or open on average, inflation will occur following the dilution of the gradient and kinetic energy due to expansion. This is the case even when the scale of the inhomogeneities is comparable to themore » initial Hubble length, and overdense regions collapse and form black holes, because underdense regions continue expanding, allowing inflation to eventually begin. In conclusion, this establishes that inflation can arise from highly inhomogeneous initial conditions and solve the horizon and flatness problems, at least as long as the variations in the scalar field do not include values that exceed the inflationary plateau.« less

  9. Beginning inflation in an inhomogeneous universe

    DOE PAGES

    East, William E.; Kleban, Matthew; Linde, Andrei; ...

    2016-09-06

    Using numerical solutions of the full Einstein field equations coupled to a scalar inflaton field in 3+1 dimensions, we study the conditions under which a universe that is initially expanding, highly inhomogeneous and dominated by gradient energy can transition to an inflationary period. If the initial scalar field variations are contained within a sufficiently flat region of the inflaton potential, and the universe is spatially flat or open on average, inflation will occur following the dilution of the gradient and kinetic energy due to expansion. This is the case even when the scale of the inhomogeneities is comparable to themore » initial Hubble length, and overdense regions collapse and form black holes, because underdense regions continue expanding, allowing inflation to eventually begin. In conclusion, this establishes that inflation can arise from highly inhomogeneous initial conditions and solve the horizon and flatness problems, at least as long as the variations in the scalar field do not include values that exceed the inflationary plateau.« less

  10. Beginning inflation in an inhomogeneous universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    East, William E.; Kleban, Matthew; Linde, Andrei

    Using numerical solutions of the full Einstein field equations coupled to a scalar inflaton field in 3+1 dimensions, we study the conditions under which a universe that is initially expanding, highly inhomogeneous and dominated by gradient energy can transition to an inflationary period. If the initial scalar field variations are contained within a sufficiently flat region of the inflaton potential, and the universe is spatially flat or open on average, inflation will occur following the dilution of the gradient and kinetic energy due to expansion. This is the case even when the scale of the inhomogeneities is comparable to themore » initial Hubble length, and overdense regions collapse and form black holes, because underdense regions continue expanding, allowing inflation to eventually begin. This establishes that inflation can arise from highly inhomogeneous initial conditions and solve the horizon and flatness problems, at least as long as the variations in the scalar field do not include values that exceed the inflationary plateau.« less

  11. Galaxy evolution in extreme environments: Molecular gas content star formation and AGN in isolated void galaxies

    NASA Astrophysics Data System (ADS)

    Das, Mousumi; Iono, Daisuke; Saito, Toshiki; Subramanian, Smitha

    Since the early redshift surveys of the large scale structure of our universe, it has become clear that galaxies cluster along walls, sheet and filaments leaving large, empty regions called voids between them. Although voids represent the most under dense parts of our universe, they do contain a sparse but significant population of isolated galaxies that are generally low luminosity, late type disk galaxies. Recent studies show that most void galaxies have ongoing star formation and are in an early stage of evolution. We present radio, optical studies of the molecular gas content and star formation in a sample of void galaxies. Using SDSS data, we find that AGN are rare in these systems and are found only in the Bootes void; their black hole masses and radio properties are similar to bright spirals galaxies. Our studies suggest that close galaxy interactions and gas accretion are the main drivers of galaxy evolution in these systems despite their location in the underdense environment of the voids.

  12. The f ( R ) halo mass function in the cosmic web

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun-Bates, F. von; Winther, H.A.; Alonso, D.

    An important indicator of modified gravity is the effect of the local environment on halo properties. This paper examines the influence of the local tidal structure on the halo mass function, the halo orientation, spin and the concentration-mass relation. We use the excursion set formalism to produce a halo mass function conditional on large-scale structure. Our simple model agrees well with simulations on large scales at which the density field is linear or weakly non-linear. Beyond this, our principal result is that f ( R ) does affect halo abundances, the halo spin parameter and the concentration-mass relationship in anmore » environment-independent way, whereas we find no appreciable deviation from \\text(ΛCDM) for the mass function with fixed environment density, nor the alignment of the orientation and spin vectors of the halo to the eigenvectors of the local cosmic web. There is a general trend for greater deviation from \\text(ΛCDM) in underdense environments and for high-mass haloes, as expected from chameleon screening.« less

  13. Brillouin Scattering of Picosecond Laser Pulses in Preformed, Short-Scale-Length Plasmas

    NASA Astrophysics Data System (ADS)

    Gaeris, A. C.; Fisher, Y.; Delettrez, J. A.; Meyerhofer, D. D.

    1996-11-01

    Brillouin scattering (BS) has been studied in short-scale-length, preformed plasmas. The backscattered and specularly reflected light resulting from the interaction of high-power picosecond pulses with preformed silicon plasmas has been measured. A first laser pulse forms a short-scale-length plasma -- without significant BS -- while a second delayed pulse interacts with an expanded, drifting underdense region of the plasma with density scale length (0 <= Ln <= 600 λ _L). The pulses are generated at λ L = 1054 nm, with intensities up to 10^16 W/cm^2. The backscattered light spectra, threshold intensities, and enhanced reflectivities have been determined for different plasma-density scale lengths and are compared to Liu, Rosenbluth, and White's(C. S. Liu, M. N. Rosenbluth, and R. B. White, Phys. Fluids 17, 1211 (1974).) WKB treatment of stimulated Brillouin scattering in inhomogeneous drifting plasmas. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  14. Proton acceleration: new developments for focusing and energy selection, and applications in plasma physics

    NASA Astrophysics Data System (ADS)

    Audebert, P.

    2007-11-01

    In the last few years, intense research has been conducted on laser-accelerated ion sources and their applications. These sources have exceptional properties, i.e. high brightness and high spectral cut-off, high directionality and laminarity, short burst duration. We have shown that for proton energies >10 MeV, the transverse and longitudinal emittance are respectively <0.004 mm-mrad and <10-4 eV-s, i.e. at least 100-fold and may be as much as 10^4-fold better than conventional accelerators beams. Thanks to these properties, these sources allow for example point-projection radiography with unprecedented resolution. We will show example of such time and space-resolved radiography of fast evolving fields, either of associated with the expansion of a plasma in vacuum [*] or with the propagation of a ICF-relevant laser beam in an underdense plasma. These proton sources also open new opportunities for ion beam generation and control, and could stimulate development of compact ion accelerators for many applications.

  15. Influence of the electron density on the characteristics of terahertz waves generated under laser–cluster interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, A. A., E-mail: frolov@ihed.ras.ru

    2016-12-15

    A theory of generation of terahertz radiation under laser–cluster interaction, developed earlier for an overdense cluster plasma [A. A. Frolov, Plasma Phys. Rep. 42. 637 (2016)], is generalized for the case of arbitrary electron density. The spectral composition of radiation is shown to substantially depend on the density of free electrons in the cluster. For an underdense cluster plasma, there is a sharp peak in the terahertz spectrum at the frequency of the quadrupole mode of a plasma sphere. As the electron density increases to supercritical values, this spectral line vanishes and a broad maximum at the frequency comparable withmore » the reciprocal of the laser pulse duration appears in the spectrum. The dependence of the total energy of terahertz radiation on the density of free electrons is analyzed. The radiation yield is shown to increase significantly under resonance conditions, when the laser frequency is close to the eigenfrequency of the dipole or quadrupole mode of a plasma sphere.« less

  16. Lensing in the geodesic light-cone coordinates and its (exact) illustration to an off-center observer in Lemaȋtre-Tolman-Bondi models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fanizza, G.; Nugier, F., E-mail: giuseppe.fanizza@ba.infn.it, E-mail: fabienjean.nugier@unibo.it

    We present in this paper a new application of the geodesic light-cone (GLC) gauge for weak lensing calculations. Using interesting properties of this gauge, we derive an exact expression of the amplification matrix—involving convergence, magnification and shear—and of the deformation matrix—involving the optical scalars. These expressions are simple and non-perturbative as long as no caustics are created on the past light-cone and are, by construction, free from the thin lens approximation. We apply these general expressions on the example of an Lemaȋtre-Tolman-Bondi (LTB) model with an off-center observer and obtain explicit forms for the lensing quantities as a direct consequencemore » of the non-perturbative transformation between GLC and LTB coordinates. We show their evolution in redshift after a numerical integration, for underdense and overdense LTB models, and interpret their respective variations in the simple non-curvature case.« less

  17. Modeling the Shock Hugoniot in Porous Materials

    NASA Astrophysics Data System (ADS)

    Cochrane, Kyle R.; Shulenburger, Luke; Mattsson, Thomas R.; Lane, J. Matthew D.; Weck, Philippe F.; Vogler, Tracy J.; Desjarlais, Michael P.

    2017-06-01

    Porous materials are present in many scenarios from planetary science to ICF. Understanding how porosity modifies the behavior of the shock Hugoniot in an equation of state is key to being able to predictively simulate experiments. For example, modeling shocks in under-dense iron oxide can aid in understanding planetary formation and silica aerogel can be used to approximate the shock response of deuterium. Simulating the shock response of porous materials presents a variety of theoretical challenges, but by combining ab initio calculations with a surface energy and porosity model, we are able to accurately represent the shock Hugoniot. Finally, we show that this new approach can be used to calculate the Hugoniot of porous materials using existing tabular equations of state. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Radar observations of the Geminid meteoroid stream

    NASA Astrophysics Data System (ADS)

    Cevolani, G.; Bortolotti, G.; Foschini, L.; Franceschi, C.; Grassi, G.; Trivellone, G.

    1994-08-01

    Continuous radio-wave monitoring of the Geminid activity in December 1992 and 1993 by using a forward-scatter (FS) bistatic radar over the Bologna-Lecce baseline (700 km) in Italy, reveals peculiar structural aspects of the stream in terms of signal amplitude-rate and duration-rate dependence. The observational results of the Geminid display obtained in the two consecutive years with differentiated peak levels of transmitted power, exhibit different time distributions of underdense meteors against the signal received power. Both sets of data relative to the peak activity in December 12-14, show reflection properties of Geminids which are atypical if compared with echoes from cometary-type showers, with really high echo counts at mid-upper levels of the peak received power. A comparison with the records of 1986 Geminids at the Budrio backscatter radar station near Bologna, shows an asymmetric curve of activity, with smaller particles shifted to shorter and less eccentric orbits, the peak flux occurring earlier than that of larger ones.

  19. Producing High Intense Attosecond Pulse Train by Interaction of Three-Color Pulse and Overdense Plasma

    NASA Astrophysics Data System (ADS)

    Salehi, M.; Mirzanejad, S.

    2017-05-01

    Amplifying the attosecond pulse by the chirp pulse amplification method is impossible. Furthermore, the intensity of attosecond pulse is low in the interaction of laser pulse and underdense plasma. This motivates us to propose using a multi-color pulse to produce the high intense attosecond pulse. In the present study, the relativistic interaction of a three-color linearly-polarized laser-pulse with highly overdense plasma is studied. We show that the combination of {{ω }}1, {{ω }}2 and {{ω }}3 frequencies decreases the instance full width at half maximum reflected attosecond pulse train from the overdense plasma surface. Moreover, we show that the three-color pulse increases the intensity of generated harmonics, which is explained by the relativistic oscillating mirror model. The obtained results demonstrate that if the three-color laser pulse interacts with overdense plasma, it will enhance two orders of magnitude of intensity of ultra short attosecond pulses in comparison with monochromatic pulse.

  20. Simulated performance of the optical Thomson scattering diagnostic designed for the National Ignition Facility.

    PubMed

    Ross, J S; Datte, P; Divol, L; Galbraith, J; Froula, D H; Glenzer, S H; Hatch, B; Katz, J; Kilkenny, J; Landen, O; Manuel, A M; Molander, W; Montgomery, D S; Moody, J D; Swadling, G; Weaver, J

    2016-11-01

    An optical Thomson scattering diagnostic has been designed for the National Ignition Facility to characterize under-dense plasmas. We report on the design of the system and the expected performance for different target configurations. The diagnostic is designed to spatially and temporally resolve the Thomson scattered light from laser driven targets. The diagnostic will collect scattered light from a 50 × 50 × 200 μm volume. The optical design allows operation with different probe laser wavelengths. A deep-UV probe beam (λ 0 = 210 nm) will be used to Thomson scatter from electron plasma densities of ∼5 × 10 20 cm -3 while a 3ω probe will be used for plasma densities of ∼1 × 10 19 cm -3 . The diagnostic package contains two spectrometers: the first to resolve Thomson scattering from ion acoustic wave fluctuations and the second to resolve scattering from electron plasma wave fluctuations. Expected signal levels relative to background will be presented for typical target configurations (hohlraums and a planar foil).

  1. Measurements of electron density and temperature profiles in plasma produced by Nike KrF laser for laser plasma instability research

    NASA Astrophysics Data System (ADS)

    Oh, Jaechul; Weaver, J. L.; Karasik, M.; Chan, L. Y.

    2015-08-01

    A grid image refractometer (GIR) has been implemented at the Nike krypton fluoride laser facility of the Naval Research Laboratory. This instrument simultaneously measures propagation angles and transmissions of UV probe rays (λ = 263 nm, Δt = 10 ps) refracted through plasma. We report results of the first Nike-GIR measurement on a CH plasma produced by the Nike laser pulse (˜1 ns FWHM) with the intensity of 1.1 × 1015 W/cm2. The measured angles and transmissions were processed to construct spatial profiles of electron density (ne) and temperature (Te) in the underdense coronal region of the plasma. Using an inversion algorithm developed for the strongly refracted rays, the deployed GIR system probed electron densities up to 4 × 1021 cm-3 with the density scale length of 120 μm along the plasma symmetry axis. The resulting ne and Te profiles are verified to be self-consistent with the measured quantities of the refracted probe light.

  2. Optical spectroscopy using gas-phase femtosecond laser filamentation.

    PubMed

    Odhner, Johanan; Levis, Robert

    2014-01-01

    Femtosecond laser filamentation occurs as a dynamic balance between the self-focusing and plasma defocusing of a laser pulse to produce ultrashort radiation as brief as a few optical cycles. This unique source has many properties that make it attractive as a nonlinear optical tool for spectroscopy, such as propagation at high intensities over extended distances, self-shortening, white-light generation, and the formation of an underdense plasma. The plasma channel that constitutes a single filament and whose position in space can be controlled by its input parameters can span meters-long distances, whereas multifilamentation of a laser beam can be sustained up to hundreds of meters in the atmosphere. In this review, we briefly summarize the current understanding and use of laser filaments for spectroscopic investigations of molecules. A theoretical framework of filamentation is presented, along with recent experimental evidence supporting the established understanding of filamentation. Investigations carried out on vibrational and rotational spectroscopy, filament-induced breakdown, fluorescence spectroscopy, and backward lasing are discussed.

  3. A study of the formation and dynamics of galaxies

    NASA Astrophysics Data System (ADS)

    Fillmore, J. A.

    The first half of this thesis is a study on the growth of perturbations in the early universe which might lead to galaxies, clusters of galaxies, or regions void of galaxies. The growth of self-similar perturbations in an Einstein-deSitter universe with cold, collisionless particles is investigated. Three classes of solutions are obtained; one each with planar, cylindrical, and spherical symmetry. The solutions follow the development of structure in both the linear and nonlinear regimes. Self-similar spherical voids which develop from initially underdense regions are also investigated. The character of each solution depends upon the initial density deficit. The second half of this thesis details solutions of steady-state axisymmetric models of elliptical and disk galaxies, and considers which observable properties can be used as diagnostics of the kinematic configuration of the spheroidal component of these systems. Two component mass models are fitted to surface brightness measurements and used to fit kinematic models to the velocity data.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stelljes, T. S., E-mail: tenzin.s.stelljes@uni-oldenburg.de; Looe, H. K.; Chofor, N.

    Purpose: The dosimetric properties of the OCTAVIUS Detector 1500 (OD1500) ionization chamber array (PTW-Freiburg, Freiburg, Germany) have been investigated. A comparative study was carried out with the OCTAVIUS Detector 729 and OCTAVIUS Detector 1000 SRS arrays. Methods: The OD1500 array is an air vented ionization chamber array with 1405 detectors in a 27 × 27 cm{sup 2} measurement area arranged in a checkerboard pattern with a chamber-to-chamber distance of 10 mm in each row. A sampling step width of 5 mm can be achieved by merging two measurements shifted by 5 mm, thus fulfilling the Nyquist theorem for intensity modulatedmore » dose distributions. The stability, linearity, and dose per pulse dependence were investigated using a Semiflex 31013 chamber (PTW-Freiburg, Freiburg, Germany) as a reference detector. The effective depth of measurement was determined by measuring TPR curves with the array and a Roos chamber type 31004 (PTW-Freiburg, Freiburg, Germany). Comparative output factor measurements were performed with the array, the Semiflex 31010 ionization chamber and the Diode 60012 (both PTW-Freiburg, Freiburg, Germany). The energy dependence of the OD1500 was measured by comparing the array’s readings to those of a Semiflex 31010 ionization chamber for varying mean photon energies at the depth of measurement, applying to the Semiflex chamber readings the correction factor k{sub NR} for nonreference conditions. The Gaussian lateral dose response function of a single array detector was determined by searching the convolution kernel suitable to convert the slit beam profiles measured with a Diode 60012 into those measured with the array’s central chamber. An intensity modulated dose distribution measured with the array was verified by comparing a OD1500 measurement to TPS calculations and film measurements. Results: The stability and interchamber sensitivity variation of the OD1500 array were within ±0.2% and ±0.58%, respectively. Dose linearity was within 1% over the range from 5 to 1000 MU. The effective point of measurement of the OD1500 for dose measurements in RW3 phantoms was determined to be (8.7 ± 0.2) mm below its front surface. Output factors showed deviations below 1% for field sizes exceeding 4 × 4 cm{sup 2}. The dose per pulse dependence was smaller than 0.4% for doses per pulse from 0.2 to 1 mGy. The energy dependence of the array did not exceed ±0.9%. The parameter σ of the Gaussian lateral dose response function was determined as σ{sub 6MV} = (2.07 ± 0.02) mm for 6 MV and σ{sub 15MV} = (2.09 ± 0.02) mm for 15 MV. An IMRT verification showed passing rates well above 90% for a local 3 mm/3% criterion. Conclusions: The OD1500 array’s dosimetric properties showed the applicability of the array for clinical dosimetry with the possibility to increase the spatial sampling frequency and the coverage of a dose distribution with the sensitive areas of ionization chambers by merging two measurements.« less

  5. Numerical analysis of wavefront measurement characteristics by using plenoptic camera

    NASA Astrophysics Data System (ADS)

    Lv, Yang; Ma, Haotong; Zhang, Xuanzhe; Ning, Yu; Xu, Xiaojun

    2016-01-01

    To take advantage of the large-diameter telescope for high-resolution imaging of extended targets, it is necessary to detect and compensate the wave-front aberrations induced by atmospheric turbulence. Data recorded by Plenoptic cameras can be used to extract the wave-front phases associated to the atmospheric turbulence in an astronomical observation. In order to recover the wave-front phase tomographically, a method of completing the large Field Of View (FOV), multi-perspective wave-front detection simultaneously is urgently demanded, and it is plenoptic camera that possesses this unique advantage. Our paper focuses more on the capability of plenoptic camera to extract the wave-front from different perspectives simultaneously. In this paper, we built up the corresponding theoretical model and simulation system to discuss wave-front measurement characteristics utilizing plenoptic camera as wave-front sensor. And we evaluated the performance of plenoptic camera with different types of wave-front aberration corresponding to the occasions of applications. In the last, we performed the multi-perspective wave-front sensing employing plenoptic camera as wave-front sensor in the simulation. Our research of wave-front measurement characteristics employing plenoptic camera is helpful to select and design the parameters of a plenoptic camera, when utilizing which as multi-perspective and large FOV wave-front sensor, which is expected to solve the problem of large FOV wave-front detection, and can be used for AO in giant telescopes.

  6. Convection induced by thermal gradients on thin reaction fronts

    NASA Astrophysics Data System (ADS)

    Ruelas Paredes, David R. A.; Vasquez, Desiderio A.

    2017-09-01

    We present a thin front model for the propagation of chemical reaction fronts in liquids inside a Hele-Shaw cell or porous media. In this model we take into account density gradients due to thermal and compositional changes across a thin interface. The front separating reacted from unreacted fluids evolves following an eikonal relation between the normal speed and the curvature. We carry out a linear stability analysis of convectionless flat fronts confined in a two-dimensional rectangular domain. We find that all fronts are stable to perturbations of short wavelength, but they become unstable for some wavelengths depending on the values of compositional and thermal gradients. If the effects of these gradients oppose each other, we observe a range of wavelengths that make the flat front unstable. Numerical solutions of the nonlinear model show curved fronts of steady shape with convection propagating faster than flat fronts. Exothermic fronts increase the temperature of the fluid as they propagate through the domain. This increment in temperature decreases with increasing speed.

  7. HST STIS Spectroscopy of the Bubble Nebula, NGC 7635

    NASA Astrophysics Data System (ADS)

    Buckalew, B.; Dufour, R.; Ghavamian, P.; Hartigan, P.; Walter, D.; Hester, J.; Scowen, P.

    1999-05-01

    We report the results of longslit spectroscopy of the wind-blown bubble and photoevaporating knots around the O6.5iiif star BD+ 60(deg) 2522 made with the Space Telescope Imaging Spectrograph. The Of star is the primary ionizing source for the H ii region NGC 7635, located in the Perseus Arm. The spectra were taken through a 0.2'' x 52'' slit with low and medium resolution gratings covering the wavelength range 2900-6870 Angstroms. Observations with two slit orientations were made; one across the line of embedded knots to the west of the Of star and the second running from the Of star across the bubble to the NE. The 2D STIS spectra permit us to subtract the surrounding H ii region's diffuse emission from that of the knots and the bubble, and to study the spatial variations in various emission lines in these features to a resolution of ~ 0.1'', an order of magnitude improvement over the best ground-based spectra of this object in the literature. We present high spatial resolution emission line and line ratio profiles across the bubble and knots, and compare them with the predicted variations from photoionization, photoevaporation, and wind-shock models. We also present an analysis of temperatures, densities, and abundances in the features from higher S/N spectra extracted over selected lengths of the slit. From our analysis, we find that our measured abundances for nitrogen and oxygen are what we would expect for an H ii region at this galactocentric distance. However, the rim helium and carbon abundances show an enhancement which may be caused by contamination from the stellar wind. From our spatial scan studies of the knots and rim, we conclude that the knots are composed of photoevaporating knots surrounded by an ionization front, confirming the results of the imagery which indicate that the knots are like the EGGs of M16 seen face on. The rim appears to be the edge of a slightly supersonic shell of ionized gas that is being snowplowed through the surrounding H ii region by the star's supersonic wind. Acknowledgements. This research was supported in part by AURA/STScI grant GO-7515 and NASA-Ames grant NGT 2-52252.

  8. Modeling the heating and atomic kinetics of a photoionized neon plasma experiment

    NASA Astrophysics Data System (ADS)

    Lockard, Tom E.

    Motivated by gas cell photoionized plasma experiments performed by our group at the Z facility of Sandia National Laboratories, we discuss in this dissertation a modeling study of the heating and ionization of the plasma for conditions characteristic of these experiments. Photoionized plasmas are non-equilibrium systems driven by a broadband x-ray radiation flux. They are commonly found in astrophysics but rarely seen in the laboratory. Several modeling tools have been employed: (1) a view-factor computer code constrained with side x-ray power and gated monochromatic image measurements of the z-pinch radiation, to model the time-history of the photon-energy resolved x-ray flux driving the photoionized plasma, (2) a Boltzmann self-consistent electron and atomic kinetics model to simulate the electron distribution function and configuration-averaged atomic kinetics, (3) a radiation-hydrodynamics code with inline non-equilibrium atomic kinetics to perform a comprehensive numerical simulation of the experiment and plasma heating, and (4) steady-state and time-dependent collisional-radiative atomic kinetics calculations with fine-structure energy level description to assess transient effects in the ionization and charge state distribution of the plasma. The results indicate that the photon-energy resolved x-ray flux impinging on the front window of the gas cell is very well approximated by a linear combination of three geometrically-diluted Planckian distributions. Knowledge of the spectral details of the x-ray drive turned out to be important for the heating and ionization of the plasma. The free electrons in the plasma thermalize quickly relative to the timescales associated with the time-history of the x-ray drive and the plasma atomic kinetics. Hence, electrons are well described by a Maxwellian energy distribution of a single temperature. This finding is important to support the application of a radiation-hydrodynamic model to simulate the experiment. It is found that the computed plasma heating compares well with experimental observation when the effects of the windows, hydrodynamics, and non-equilbirium neon emissivity and opacity are employed. The atomic kinetics shows significant time-dependent effects because the timescale of the x-ray drive is too short compared to that of the photoionization process. These modeling and simulation results are important to test theory and modeling assumptions and approximations, and also to provide guidance on data interpretation and analysis.

  9. Slow slip and the transition from fast to slow fronts in the rupture of frictional interfaces

    PubMed Central

    Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Scheibert, Julien; Thøgersen, Kjetil; Amundsen, David Skålid; Malthe-Sørenssen, Anders

    2014-01-01

    The failure of the population of microjunctions forming the frictional interface between two solids is central to fields ranging from biomechanics to seismology. This failure is mediated by the propagation along the interface of various types of rupture fronts, covering a wide range of velocities. Among them are the so-called slow fronts, which are recently discovered fronts much slower than the materials’ sound speeds. Despite intense modeling activity, the mechanisms underlying slow fronts remain elusive. Here, we introduce a multiscale model capable of reproducing both the transition from fast to slow fronts in a single rupture event and the short-time slip dynamics observed in recent experiments. We identify slow slip immediately following the arrest of a fast front as a phenomenon sufficient for the front to propagate further at a much slower pace. Whether slow fronts are actually observed is controlled both by the interfacial stresses and by the width of the local distribution of forces among microjunctions. Our results show that slow fronts are qualitatively different from faster fronts. Because the transition from fast to slow fronts is potentially as generic as slow slip, we anticipate that it might occur in the wide range of systems in which slow slip has been reported, including seismic faults. PMID:24889640

  10. Speed of fast and slow rupture fronts along frictional interfaces

    NASA Astrophysics Data System (ADS)

    Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Thøgersen, Kjetil; Scheibert, Julien; Malthe-Sørenssen, Anders

    2015-07-01

    The transition from stick to slip at a dry frictional interface occurs through the breaking of microjunctions between the two contacting surfaces. Typically, interactions between junctions through the bulk lead to rupture fronts propagating from weak and/or highly stressed regions, whose junctions break first. Experiments find rupture fronts ranging from quasistatic fronts, via fronts much slower than elastic wave speeds, to fronts faster than the shear wave speed. The mechanisms behind and selection between these fronts are still imperfectly understood. Here we perform simulations in an elastic two-dimensional spring-block model where the frictional interaction between each interfacial block and the substrate arises from a set of junctions modeled explicitly. We find that material slip speed and rupture front speed are proportional across the full range of front speeds we observe. We revisit a mechanism for slow slip in the model and demonstrate that fast slip and fast fronts have a different, inertial origin. We highlight the long transients in front speed even along homogeneous interfaces, and we study how both the local shear to normal stress ratio and the local strength are involved in the selection of front type and front speed. Last, we introduce an experimentally accessible integrated measure of block slip history, the Gini coefficient, and demonstrate that in the model it is a good predictor of the history-dependent local static friction coefficient of the interface. These results will contribute both to building a physically based classification of the various types of fronts and to identifying the important mechanisms involved in the selection of their propagation speed.

  11. Turbulent transport model of wind shear in thunderstorm gust fronts and warm fronts

    NASA Technical Reports Server (NTRS)

    Lewellen, W. S.; Teske, M. E.; Segur, H. C. O.

    1978-01-01

    A model of turbulent flow in the atmospheric boundary layer was used to simulate the low-level wind and turbulence profiles associated with both local thunderstorm gust fronts and synoptic-scale warm fronts. Dimensional analyses of both type fronts provided the physical scaling necessary to permit normalized simulations to represent fronts for any temperature jump. The sensitivity of the thunderstorm gust front to five different dimensionless parameters as well as a change from axisymmetric to planar geometry was examined. The sensitivity of the warm front to variations in the Rossby number was examined. Results of the simulations are discussed in terms of the conditions which lead to wind shears which are likely to be most hazardous for aircraft operations.

  12. Wintertime sea surface temperature fronts in the Taiwan Strait

    NASA Astrophysics Data System (ADS)

    Chang, Yi; Shimada, Teruhisa; Lee, Ming-An; Lu, Hsueh-Jung; Sakaida, Futoki; Kawamura, Hiroshi

    2006-12-01

    We present wintertime variations and distributions of sea surface temperature (SST) fronts in the Taiwan Strait by applying an entropy-based edge detection method to 10-year (1996-2005) satellite SST images with grid size of 0.01°. From climatological monthly mean maps of SST gradient magnitude in winter, we identify four significant SST fronts in the Taiwan Strait. The Mainland China Coastal Front is a long frontal band along the 50-m isobath near the Chinese coast. The sharp Peng-Chang Front appears along the Peng-Hu Channel and extends northward around the Chang-Yuen Ridge. The Taiwan Bank Front evolves in early winter. As the winter progresses, the front becomes broad and moves toward the Chinese coast, connecting to the Mainland China Coastal Front. The Kuroshio Front extends northeastward from the northeastern tip of Taiwan with a semicircle-shape curving along the 100-m isobath.

  13. Systems and methods for cylindrical hall thrusters with independently controllable ionization and acceleration stages

    DOEpatents

    Diamant, Kevin David; Raitses, Yevgeny; Fisch, Nathaniel Joseph

    2014-05-13

    Systems and methods may be provided for cylindrical Hall thrusters with independently controllable ionization and acceleration stages. The systems and methods may include a cylindrical channel having a center axial direction, a gas inlet for directing ionizable gas to an ionization section of the cylindrical channel, an ionization device that ionizes at least a portion of the ionizable gas within the ionization section to generate ionized gas, and an acceleration device distinct from the ionization device. The acceleration device may provide an axial electric field for an acceleration section of the cylindrical channel to accelerate the ionized gas through the acceleration section, where the axial electric field has an axial direction in relation to the center axial direction. The ionization section and the acceleration section of the cylindrical channel may be substantially non-overlapping.

  14. Seabird diving behaviour reveals the functional significance of shelf-sea fronts as foraging hotspots

    NASA Astrophysics Data System (ADS)

    Cox, S. L.; Miller, P. I.; Embling, C. B.; Scales, K. L.; Bicknell, A. W. J.; Hosegood, P. J.; Morgan, G.; Ingram, S. N.; Votier, S. C.

    2016-09-01

    Oceanic fronts are key habitats for a diverse range of marine predators, yet how they influence fine-scale foraging behaviour is poorly understood. Here, we investigated the dive behaviour of northern gannets Morus bassanus in relation to shelf-sea fronts. We GPS (global positioning system) tracked 53 breeding birds and examined the relationship between 1901 foraging dives (from time-depth recorders) and thermal fronts (identified via Earth Observation composite front mapping) in the Celtic Sea, Northeast Atlantic. We (i) used a habitat-use availability analysis to determine whether gannets preferentially dived at fronts, and (ii) compared dive characteristics in relation to fronts to investigate the functional significance of these oceanographic features. We found that relationships between gannet dive probabilities and fronts varied by frontal metric and sex. While both sexes were more likely to dive in the presence of seasonally persistent fronts, links to more ephemeral features were less clear. Here, males were positively correlated with distance to front and cross-front gradient strength, with the reverse for females. Both sexes performed two dive strategies: shallow V-shaped plunge dives with little or no active swim phase (92% of dives) and deeper U-shaped dives with an active pursuit phase of at least 3 s (8% of dives). When foraging around fronts, gannets were half as likely to engage in U-shaped dives compared with V-shaped dives, independent of sex. Moreover, V-shaped dive durations were significantly shortened around fronts. These behavioural responses support the assertion that fronts are important foraging habitats for marine predators, and suggest a possible mechanistic link between the two in terms of dive behaviour. This research also emphasizes the importance of cross-disciplinary research when attempting to understand marine ecosystems.

  15. 49 CFR 541.5 - Requirements for passenger motor vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Engine. (2) Transmission. (3) Right front fender. (4) Left front fender. (5) Hood. (6) Right front door. (7) Left front door. (8) Right rear door. (9) Left rear door. (10) Sliding or cargo door(s). (11) Front bumper. (12) Rear bumper. (13) Right rear quarter panel (passenger cars). (14) Left rear quarter...

  16. 49 CFR 541.5 - Requirements for passenger motor vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Engine. (2) Transmission. (3) Right front fender. (4) Left front fender. (5) Hood. (6) Right front door. (7) Left front door. (8) Right rear door. (9) Left rear door. (10) Sliding or cargo door(s). (11) Front bumper. (12) Rear bumper. (13) Right rear quarter panel (passenger cars). (14) Left rear quarter...

  17. Null geodesics and wave front singularities in the Gödel space-time

    NASA Astrophysics Data System (ADS)

    Kling, Thomas P.; Roebuck, Kevin; Grotzke, Eric

    2018-01-01

    We explore wave fronts of null geodesics in the Gödel metric emitted from point sources both at, and away from, the origin. For constant time wave fronts emitted by sources away from the origin, we find cusp ridges as well as blue sky metamorphoses where spatially disconnected portions of the wave front appear, connect to the main wave front, and then later break free and vanish. These blue sky metamorphoses in the constant time wave fronts highlight the non-causal features of the Gödel metric. We introduce a concept of physical distance along the null geodesics, and show that for wave fronts of constant physical distance, the reorganization of the points making up the wave front leads to the removal of cusp ridges.

  18. Fronts and Thermohaline Structure of the Brazil Current Confluence System

    NASA Astrophysics Data System (ADS)

    Severov, Dimitri

    and Thermohaline Structure of the Brazil Current Confluence System (BCCS) are stud-ied from climatic data, "Marathon Exp. Leg.8, 1984"data, and two Sea surface temperature (SST) data bases: "Meteor satellite"(1989-1994) and "ds277-Reynolds" (1981-2000).The South Atlantic Central Water (SACW) is divided in two main types: tropical (TW) and subtropical water (ST). Water masses, fronts, inter-frontal and frontal zones are analysed and classified: a) the water masses: Tropical Low-Salinity Water, Tropical Surface Water, Tropical Tropospheric Water, Subtropical Low-Salinity Water, Subtropical Surface Water, Subtropical Tropospheric Water. T,S characteristics of intermediate, deep and bottom water defined by different authors are confirmed and completed; b) the Inter-frontal Zones: Tropical/Brazil Current Zone, Sub-tropical Zone and Subantarctic Zone; c) the Frontal Zones: Subtropical, Subantarctic and Polar, and d) the Fronts: Subtropical Front of the Brazil Current, Principal Subtropical Front, North Subtropical Front, Subtropical Surface Front, South Subtropical Front, Subantarctic Surface Front, Subantarctic Front and Polar Front. Several stable T-S relationships are found below the friction layer and at the Fronts. The maximum gradient of the oceanographic characteris-tics occurs at the Brazil Current Front, which can be any of the subtropical fronts, depending on season. Minimum mean depth of the pycnocline coincides with the fronts of the BCCS, indicating the paths of low-salinity shelf waters into the open ocean. D. N. Severov (a) , V. Pshennikov (b) and A.V. Remeslo (c) a -Sección Oceanologé Facultad de Ciencia, Universidad de la Republica, Igué 4225, 11400 ıa, a Montevideo, Uruguay. Tel. (598-2) 525-8618, Fax (598-2) 525-8617, mail: dima@fcien.edu.uy b -Instituto de Física, Facultad de Ciencias, Universidad de la Republica, Igué 4225, 11400 Mon-a tevideo, Uruguay, mail: seva@fisica.edu.uy c -Atlantic Research Inst. For Fisheries Oceanology (Atlant/NIRO), Kaliningrad, Russia

  19. Unconstrained paving and plastering method for generating finite element meshes

    DOEpatents

    Staten, Matthew L.; Owen, Steven J.; Blacker, Teddy D.; Kerr, Robert

    2010-03-02

    Computer software for and a method of generating a conformal all quadrilateral or hexahedral mesh comprising selecting an object with unmeshed boundaries and performing the following while unmeshed voids are larger than twice a desired element size and unrecognizable as either a midpoint subdividable or pave-and-sweepable polyhedra: selecting a front to advance; based on sizes of fronts and angles with adjacent fronts, determining which adjacent fronts should be advanced with the selected front; advancing the fronts; detecting proximities with other nearby fronts; resolving any found proximities; forming quadrilaterals or unconstrained columns of hexahedra where two layers cross; and establishing hexahedral elements where three layers cross.

  20. United theory of planet formation (i): Tandem regime

    NASA Astrophysics Data System (ADS)

    Ebisuzaki, Toshikazu; Imaeda, Yusuke

    2017-07-01

    The present paper is the first one of a series of papers that present the new united theory of planet formation, which includes magneto-rotational instability and porous aggregation of solid particles in an consistent way. We here describe the ;tandem; planet formation regime, in which a solar system like planetary systems are likely to be produced. We have obtained a steady-state, 1-D model of the accretion disk of a protostar taking into account the magneto-rotational instability (MRI) and and porous aggregation of solid particles. We find that the disk is divided into an outer turbulent region (OTR), a MRI suppressed region (MSR), and an inner turbulent region (ITR). The outer turbulent region is fully turbulent because of MRI. However, in the range, rout(= 8 - 60 AU) from the central star, MRI is suppressed around the midplane of the gas disk and a quiet area without turbulence appears, because the degree of ionization of gas becomes low enough. The disk becomes fully turbulent again in the range rin(= 0.2 - 1 AU), which is called the inner turbulent region, because the midplane temperature become high enough (>1000 K) due to gravitational energy release. Planetesimals are formed through gravitational instability at the outer and inner MRI fronts (the boundaries between the MRI suppressed region (MSR) and the outer and inner turbuent regions) without particle enhancement in the original nebula composition, because of the radial concentration of the solid particles. At the outer MRI front, icy particles grow through low-velocity collisions into porous aggregates with low densities (down to ∼10-5 gcm-3). They eventually undergo gravitational instability to form icy planetesimals. On the other hand, rocky particles accumulate at the inner MRI front, since their drift velocities turn outward due to the local maximum in gas pressure. They undergo gravitational instability in a sub-disk of pebbles to form rocky planetesimals at the inner MRI front. They are likely to be volatile-free because of the high temperature (>1000 K) at this formation site. Such water-free rocky particles may explain the formation of enstatite chondrites, of which the Earth is likely to be primarily composed of. It is also consistent with the model in which the Earth was initially formed as a completely volatile-free planet. The water and other volatile elements came later through the accretion of icy particles by the occasional scatterings in the outer regions. Our new proposed tandem planet formation regime shows that planetesimals are formed at two distinct sites (outer and inner edges of the MRI suppressed region). The former is likely to be the source of outer gas giants and the latter inner rocky planets. The tandem regime also explains the gap in the distribution of solid components (2-4 AU), which is necessary to form a ;solar-system-like; planetary system, which has a relatively small Mars and a very small mass in the main asteroid belt. We found that this tandem regime dose not take place when the vertical magnetic field of the disk five times weaker compared with that we assumed in the present paper, since the outer MRI front shift outward beyond 100 AU. This suggests that yet other regimes exists in our united theory. It may explain the variation observed in exsoplanetary systems by variations in magnetic field and probably angular momentum of the parent molecular cloud.

  1. Research fronts analysis : A bibliometric to identify emerging fields of research

    NASA Astrophysics Data System (ADS)

    Miwa, Sayaka; Ando, Satoko

    Research fronts analysis identifies emerging areas of research through observing co-clustering in highly-cited papers. This article introduces the concept of research fronts analysis, explains its methodology and provides case examples. It also demonstrates developing research fronts in Japan by looking at the past winners of Thomson Reuters Research Fronts Awards. Research front analysis is currently being used by the Japanese government to determine new trends in science and technology. Information professionals can also utilize this bibliometric as a research evaluation tool.

  2. Frozen reaction fronts in steady flows: A burning-invariant-manifold perspective

    NASA Astrophysics Data System (ADS)

    Mahoney, John R.; Li, John; Boyer, Carleen; Solomon, Tom; Mitchell, Kevin A.

    2015-12-01

    The dynamics of fronts, such as chemical reaction fronts, propagating in two-dimensional fluid flows can be remarkably rich and varied. For time-invariant flows, the front dynamics may simplify, settling in to a steady state in which the reacted domain is static, and the front appears "frozen." Our central result is that these frozen fronts in the two-dimensional fluid are composed of segments of burning invariant manifolds, invariant manifolds of front-element dynamics in x y θ space, where θ is the front orientation. Burning invariant manifolds (BIMs) have been identified previously as important local barriers to front propagation in fluid flows. The relevance of BIMs for frozen fronts rests in their ability, under appropriate conditions, to form global barriers, separating reacted domains from nonreacted domains for all time. The second main result of this paper is an understanding of bifurcations that lead from a nonfrozen state to a frozen state, as well as bifurcations that change the topological structure of the frozen front. Although the primary results of this study apply to general fluid flows, our analysis focuses on a chain of vortices in a channel flow with an imposed wind. For this system, we present both experimental and numerical studies that support the theoretical analysis developed here.

  3. Mesopelagic fish assemblages across oceanic fronts: A comparison of three frontal systems in the southern California Current Ecosystem

    NASA Astrophysics Data System (ADS)

    Netburn, Amanda N.; Koslow, J. Anthony

    2018-04-01

    With strong horizontal gradients in physical properties, oceanic frontal regions can lead to disproportionately high biological productivity. We examined cross-frontal changes in mesopelagic fish assemblages at three separate frontal systems in the southern California Current Ecosystem (CCE) as part of the CCE Long Term Ecological Research program: the A-Front sampled in October 2008, the C-Front in June/July 2011, and the E-Front in July/August 2012. We analyzed the differential effects of front-associated regions on density and species composition of adult migratory and non-migratory fishes and larvae, and the larval to adult ratio (as a possible index of a population growth potential) for migratory and non-migratory species. The fronts did not have a strong effect on densities of any subset of the mesopelagic fish assemblage. The species composition of the vertical migratory fishes (and their larvae) was typically altered across fronts, with different assemblages present on either side of each front. The migratory assemblages at the fronts themselves were indistinguishable from those at the more productive side of the frontal system. In contrast, the assemblage composition of the non-migratory fishes was indistinguishable between regions across all three of the fronts. The differences between the Northern and Southern assemblages at the A-Front were primarily based on biogeographic provinces, while the assemblages at the E-Front were largely distinguishable by their oceanic or coastal-upwelling zone associations. These results generally confirm those of previous studies on frontal systems in the California Current Ecosystem and elsewhere. The ratio of larvae to adults, a potential index of population growth potential, was altered across two of the fronts for migratory species, elevated on the colder side of the A-Front and the warmer side of the E-Front. This finding suggests that fronts may be regions of enhanced reproduction. The larvae to adult ratio was indistinguishable for non-migratory species at all three frontal systems. The non-migratory component of the community was little influenced by the presence of a front, apparently because the regions of strongest horizontal spatial gradients were too shallow to be experienced directly. We speculate that there was no change in larval community composition and population growth index at the most dynamic frontal system (C-Front) compared to the other fronts surveyed because the frontal feature was short-lived relative to the time scale for population growth of the fish. However, the difference in results of the C-Front may also be due to a change in methodology used in this study. If mesoscale features such as fronts increase in frequency off the California coast in the future as predicted, they have the potential to alter population growth potential and restructure mesopelagic fish assemblages, which are dominated by migratory species.

  4. Atmospheric fronts in current and future climates

    NASA Astrophysics Data System (ADS)

    Catto, J. L.; Nicholls, N.; Jakob, C.; Shelton, K. L.

    2014-11-01

    Atmospheric fronts are important for the day-to-day variability of weather in the midlatitudes. It is therefore vital to know how their distribution and frequency will change in a projected warmer climate. Here we apply an objective front identification method, based on a thermal front parameter, to 6-hourly data from models participating in Coupled Model Intercomparison Project phase 5. The historical simulations are evaluated against ERA-Interim and found to produce a similar frequency of fronts and with similar front strength. The models show some biases in the location of the front frequency maxima. Future changes are estimated using the high emissions scenario simulations (Representative Concentration Pathway 8.5). Projections show an overall decrease in front frequency in the Northern Hemisphere, with a poleward shift of the maxima of front frequency and a strong decrease at high latitudes where the temperature gradient is decreased. The Southern Hemisphere shows a poleward shift of the frequency maximum, consistent with previous storm track studies.

  5. An explanation of unstable wetting fronts in soils

    NASA Astrophysics Data System (ADS)

    Steenhuis, Tammo; Parlange, Jean-Yves; Kung, Samuel; Stoof, Cathelijne; Baver, Christine

    2016-04-01

    Despite the findings of Raats on unstable wetting front almost a half a century ago, simulating wetting fronts in soils is still an area of active research. One of the critical questions currently is whether Darcy law is valid at the wetting front. In this talk, we pose that in many cases for dry soils, Darcy's law does not apply because the pressure field across the front is not continuous. Consequently, the wetting front pressure is not dependent on the pressure ahead of the front but is determined by the radius of water meniscuses and the dynamic contact angle of the water. If we further assume since the front is discontinuous, that water flows at one pore at the time, then by using the modified Hoffman relationship - relating the dynamic contact angle to the pore water velocity - we find the elevated pressures at the wetting front typical for unstable flows that are similar to those observed experimentally in small diameter columns. The theory helps also explain the funnel flow phenomena observed in layered soils.

  6. Fronts and frontogenesis as revealed by high time resolution data

    NASA Technical Reports Server (NTRS)

    Frank, A. E.; Barber, D. A.

    1977-01-01

    Upper air sounding are used to examine a cold front of average intensity. Vertical cross sections of potential temperature and wind, and horizontal analyses were compared and adjusted for consistency. These analyses were then used to study the evolution of the front, found to consist of a complex system of fronts occurring at all levels of the troposphere. Low level fronts were strongest at the surface and rapidly weakened with height. Fronts in the midddle troposphere were much more intense. The warm air ahead of the fronts was nearly barotropic, while the cold air behind was baroclinic through deep layers. A deep mixed layer was observed to grow in this cold air.

  7. [An effective method for improving the imaging spatial resolution of terahertz time domain spectroscopy system].

    PubMed

    Zhang, Zeng-yan; Ji, Te; Zhu, Zhi-yong; Zhao, Hong-wei; Chen, Min; Xiao, Ti-qiao; Guo, Zhi

    2015-01-01

    Terahertz radiation is an electromagnetic radiation in the range between millimeter waves and far infrared. Due to its low energy and non-ionizing characters, THz pulse imaging emerges as a novel tool in many fields, such as material, chemical, biological medicine, and food safety. Limited spatial resolution is a significant restricting factor of terahertz imaging technology. Near field imaging method was proposed to improve the spatial resolution of terahertz system. Submillimeter scale's spauial resolution can be achieved if the income source size is smaller than the wawelength of the incoming source and the source is very close to the sample. But many changes were needed to the traditional terahertz time domain spectroscopy system, and it's very complex to analyze sample's physical parameters through the terahertz signal. A method of inserting a pinhole upstream to the sample was first proposed in this article to improve the spatial resolution of traditional terahertz time domain spectroscopy system. The measured spatial resolution of terahertz time domain spectroscopy system by knife edge method can achieve spatial resolution curves. The moving stage distance between 10 % and 90 Yo of the maximum signals respectively was defined as the, spatial resolution of the system. Imaging spatial resolution of traditional terahertz time domain spectroscopy system was improved dramatically after inserted a pinhole with diameter 0. 5 mm, 2 mm upstream to the sample. Experimental results show that the spatial resolution has been improved from 1. 276 mm to 0. 774 mm, with the increment about 39 %. Though this simple method, the spatial resolution of traditional terahertz time domain spectroscopy system was increased from millimeter scale to submillimeter scale. A pinhole with diameter 1 mm on a polyethylene plate was taken as sample, to terahertz imaging study. The traditional terahertz time domain spectroscopy system and pinhole inserted terahertz time domain spectroscopy system were applied in the imaging experiment respectively. The relative THz-power loss imaging of samples were use in this article. This method generally delivers the best signal to noise ratio in loss images, dispersion effects are cancelled. Terahertz imaging results show that the sample's boundary was more distinct after inserting the pinhole in front of, sample. The results also conform that inserting pinhole in front of sample can improve the imaging spatial resolution effectively. The theoretical analyses of the method which improve the spatial resolution by inserting a pinhole in front of sample were given in this article. The analyses also indicate that the smaller the pinhole size, the longer spatial coherence length of the system, the better spatial resolution of the system. At the same time the terahertz signal will be reduced accordingly. All the experimental results and theoretical analyses indicate that the method of inserting a pinhole in front of sample can improve the spatial resolution of traditional terahertz time domain spectroscopy system effectively, and it will further expand the application of terahertz imaging technology.

  8. The effects of variable front persistence and intensity on mesopelagic fish communities: a comparison of three fronts in the California Current Ecosystem

    NASA Astrophysics Data System (ADS)

    Netburn, A. N.; Koslow, J. A.

    2016-02-01

    Although the strong physical gradients at fronts are primarily realized in the epipelagic, the biological impacts of frontal ecosystems can extend into mesopelagic waters. In 2008, Lara-Lopez et al. (2012) observed a significant shift in total biomass and community composition of migrating mesopelagic fishes at a strong persistent front off of the Pt. Conception area of the southern California Current Ecosystem. Through the California Current Ecosystem Long-Term Ecological Research Program, two additional intensive sampling cruises have been conducted on frontal systems in the general region. In 2011 and 2012, paired day and night midwater Matsuda-Oozeki-Hu trawls were conducted at stations located on either side of the fronts and at the fronts themselves, a suite of concurrent observations of the physical environment measured, and lower trophic levels sampled. Using satellite imagery, we estimate front duration of each of the 2008, 2011, and 2012 fronts, and investigate changes to the relative abundance and community composition across these systems, comparing the resolved patterns in 2011 and 2012 to those published from 2008. Results of this work will help address the questions: (1) What are the timescales required for front presence to impact mesopelagic fish communities? (2) Do different types of frontal systems (e.g., an eddy front vs. a "classic" front) result in different patterns of mesopelagic fish abundance and community composition? These answers will provide insight into the mechanisms of accumulation of fishes at fronts. As many mesopelagic fishes are important forage species for oceanic predators, understanding their response to the high productivity frontal systems is key to understanding ecosystem-wide impacts of fronts.

  9. A study on the consumer's perception of front-of-pack nutrition labeling

    PubMed Central

    Kim, Woo Kyoung

    2009-01-01

    The goal of this research is to investigate the present situation for front of pack labeling in Korea and the perception of consumers for the new system of labeling, front of pack labeling, based on the consumer survey. We investigated the number of processed foods with front of pack labeling in one retailer in Youngin-si. And we also surveyed 1,019 participants nationwide whose ages were from 20 to 49; the knowledge of nutrition labeling, the knowledge of 'front of pack labeling', and the opinion about the labeling system. The data were analyzed using SAS statistics program. The results were as follows: 13.4% of processed foods had front of pack labeling, and 16.8% of the consumers always checked the nutrition labeling, while 32.7% of the consumers seldom checked it. In addition, 44.3% of the consumers think that 'front of pack labeling' is necessary, and 58.3% of the consumers think it is important to show the percentage of daily value as a way of 'front of pack labeling'. However, 32% of the consumer think the possibility of 'front of pack labeling' is slim. Meanwhile, 58.3% of the consumers think that it is important to have the color difference according to contents. The number of favorite nutrients in the front of pack was four or five. It seems that the recognition of current nutrition labeling has the influence on the willingness of using the future 'front of pack labeling'. Along with our study, the policy for 'front of pack labeling' has to be updated and improved constantly since 'front of pack labeling' helps consumer understand nutrition facts. PMID:20098583

  10. Dissociative-ionization cross sections for 12-keV-electron impact on CO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, Pragya; Singh, Raj; Yadav, Namita

    The dissociative ionization of a CO{sub 2} molecule is studied at an electron energy of 12 keV using the multiple ion coincidence imaging technique. The absolute partial ionization cross sections and the precursor-specific absolute partial ionization cross sections of resulting fragment ions are obtained and reported. It is found that {approx}75% of single ionization, 22% of double ionization, and {approx}2% of triple ionization of the parent molecule contribute to the total fragment ion yield; quadruple ionization of CO{sub 2} is found to make a negligibly small contribution. Furthermore, the absolute partial ionization cross sections for ion-pair and ion-triple formation aremore » measured for nine dissociative ionization channels of up to a quadruply ionized CO{sub 2} molecule. In addition, the branching ratios for single-ion, ion-pair, and ion-triple formation are also determined.« less

  11. 35. EAST FRONT OF POWERHOUSE AND CAR BARN: East front ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. EAST FRONT OF POWERHOUSE AND CAR BARN: East front of powerhouse and car barn. 'Annex' is right end of building. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  12. 9. DETAIL OF INTERIOR OF FRONT PORCH SHOWING FRONT ENTRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAIL OF INTERIOR OF FRONT PORCH SHOWING FRONT ENTRY (LEFT) AND BLANK WALL (CENTER) CORRESPONDING TO LOCATION OF INTERIOR VAULTS. VIEW TO SOUTHEAST. - Boise Project, Boise Project Office, 214 Broadway, Boise, Ada County, ID

  13. Condensation Front Migration in a Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2004-01-01

    Condensation front dynamics are investigated in the mid-solar nebula region. A quasi-steady model of the evolving nebula is combined with equilibrium vapor pressure curves to determine evolutionary condensation fronts for selected species. These fronts are found to migrate inwards from the far-nebula to final positions during a period of 10(exp 7) years. The physical process governing this movement is a combination of local viscous heating and luminescent heating from the central star. Two luminescent heating models are used and their effects on the ultimate radial position of the condensation front are discussed. At first the fronts move much faster than the nebular accretion velocity, but after a time the accreting gas and dust overtakes the slowing condensation front.

  14. Biological Effects of Ionizing Radiation

    DOE R&D Accomplishments Database

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  15. 3. VIEW NORTH, SOUTHWEST FRONT, SOUTHEAST SIDE Front and side ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW NORTH, SOUTHWEST FRONT, SOUTHEAST SIDE Front and side elevation. Note gasoline sign post added. Flush store window not altered, 1900 clapboard siding and panelling remaining. - 510 Central Avenue (Commercial Building), Ridgely, Caroline County, MD

  16. Are the argon metastables important in high power impulse magnetron sputtering discharges?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gudmundsson, J. T., E-mail: tumi@hi.is; Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik; Lundin, D.

    2015-11-15

    We use an ionization region model to explore the ionization processes in the high power impulse magnetron sputtering (HiPIMS) discharge in argon with a titanium target. In conventional dc magnetron sputtering (dcMS), stepwise ionization can be an important route for ionization of the argon gas. However, in the HiPIMS discharge stepwise ionization is found to be negligible during the breakdown phase of the HiPIMS pulse and becomes significant (but never dominating) only later in the pulse. For the sputtered species, Penning ionization can be a significant ionization mechanism in the dcMS discharges, while in the HiPIMS discharge Penning ionization ismore » always negligible as compared to electron impact ionization. The main reasons for these differences are a higher plasma density in the HiPIMS discharge, and a higher electron temperature. Furthermore, we explore the ionization fraction and the ionized flux fraction of the sputtered vapor and compare with recent experimental work.« less

  17. Seasonal variability of thermal fronts in the northern South China Sea from satellite data

    NASA Astrophysics Data System (ADS)

    Wang, Dongxiao; Liu, Yun; Qi, Yiquan; Shi, Ping

    The 8-year (1991-1998) Pathfinder sea surface temperature data have been applied here to produce the objectively derived seasonality of the oceanic thermal fronts in the northern South China Sea from 17°N to 25°N. Several fronts have been clearly distinguished, namely, Fujian and Guangdong Coastal Water, Pear River Estuary Coastal, Taiwan Bank, Kuroshio Intrusion, Hainan Island East Coast and Tonkin Gulf Coastal fronts. The frontal patterns in winter, spring and summer are quite similar, whereas individual fronts display different modes of seasonal variability due to different mechanisms favoring those fronts.

  18. Case study of mesospheric front dissipation observed over the northeast of Brazil

    NASA Astrophysics Data System (ADS)

    Fragoso Medeiros, Amauri; Paulino, Igo; Wrasse, Cristiano Max; Fechine, Joaquim; Takahashi, Hisao; Valentin Bageston, José; Paulino, Ana Roberta; Arlen Buriti, Ricardo

    2018-03-01

    On 3 October 2005 a mesospheric front was observed over São João do Cariri (7.4° S, 36.5° W). This front propagated to the northeast and appeared in the airglow images on the west side of the observatory. By about 1.5 h later, it dissipated completely when the front crossed the local zenith. Ahead of the front, several ripple structures appeared during the dissipative process of the front. Using coincident temperature profile from the TIMED/SABER satellite and wind profiles from a meteor radar at São João do Cariri, the background of the atmosphere was investigated in detail. On the one hand, it was noted that a strong vertical wind shear in the propagation direction of the front produced by a semidiunal thermal tide was mainly responsible for the formation of duct (Doppler duct), in which the front propagated up to the zenith of the images. On the other hand, the evolution of the Richardson number as well as the appearance of ripples ahead of the main front suggested that a presence of instability in the airglow layer that did not allow the propagation of the front to the other side of the local zenith.

  19. Front blind spot crashes in Hong Kong.

    PubMed

    Cheng, Yuk Ki; Wong, Koon Hung; Tao, Chi Hang; Tam, Cheok Ning; Tam, Yiu Yan; Tsang, Cheuk Nam

    2016-09-01

    In 2012-2014, our laboratory had investigated a total of 9 suspected front blind spot crashes, in which the medium and heavy goods vehicles pulled away from rest and rolled over the pedestrians, who were crossing immediately in front of the vehicles. The drivers alleged that they did not see any pedestrians through the windscreens or the front blind spot mirrors. Forensic assessment of the goods vehicles revealed the existence of front blind spot zones in 3 out of these 9 accident vehicles, which were attributed to the poor mirror adjustments or even the absence of a front blind spot mirror altogether. In view of this, a small survey was devised involving 20 randomly selected volunteers and their goods vehicles and 5 out of these vehicles had blind spots at the front. Additionally, a short questionnaire was conducted on these 20 professional lorry drivers and it was shown that most of them were not aware of the hazards of blind spots immediately in front of their vehicles, and many did not use the front blind spot mirrors properly. A simple procedure for quick measurements of the coverage of front blind spot mirrors using a coloured plastic mat with dimensional grids was also introduced and described in this paper. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Characterization of a multilayer ionization chamber prototype for fast verification of relative depth ionization curves and spread-out-Bragg-peaks in light ion beam therapy.

    PubMed

    Mirandola, Alfredo; Magro, Giuseppe; Lavagno, Marco; Mairani, Andrea; Molinelli, Silvia; Russo, Stefania; Mastella, Edoardo; Vai, Alessandro; Maestri, Davide; La Rosa, Vanessa; Ciocca, Mario

    2018-05-01

    To dosimetrically characterize a multilayer ionization chamber (MLIC) prototype for quality assurance (QA) of pristine integral ionization curves (ICs) and spread-out-Bragg-peaks (SOBPs) for scanning light ion beams. QUBE (De.Tec.Tor., Torino, Italy) is a modular detector designed for QA in particle therapy (PT). Its main module is a MLIC detector, able to evaluate particle beam relative depth ionization distributions at different beam energies and modulations. The charge collecting electrodes are made of aluminum, for a nominal water equivalent thickness (WET) of ~75 mm. The detector prototype was calibrated by acquiring the signals in the initial plateau region of a pristine BP and in terms of WET. Successively, it was characterized in terms of repeatability response, linearity, short-term stability and dose rate dependence. Beam-induced measurements of activation in terms of ambient dose equivalent rate were also performed. To increase the detector coarse native spatial resolution (~2.3 mm), several consecutive acquisitions with a set of certified 0.175-mm-thick PMMA sheets (Goodfellow, Cambridge Limited, UK), placed in front of the QUBE mylar entrance window, were performed. The ICs/SOBPs were achieved as the result of the sum of the set of measurements, made up of a one-by-one PMMA layer acquisition. The newly obtained detector spatial resolution allowed the experimental measurements to be properly comparable against the reference curves acquired in water with the PTW Peakfinder. Furthermore, QUBE detector was modeled in the FLUKA Monte Carlo (MC) code following the technical design details and ICs/SOBPs were calculated. Measurements showed a high repeatability: mean relative standard deviation within ±0.5% for all channels and both particle types. Moreover, the detector response was linear with dose (R 2  > 0.998) and independent on the dose rate. The mean deviation over the channel-by-channel readout respect to the reference beam flux (100%) was equal to 0.7% (1.9%) for the 50% (20%) beam flux level. The short-term stability of the gain calibration was very satisfying for both particle types: the channel mean relative standard deviation was within ±1% for all the acquisitions performed at different times. The ICs obtained with the MLIC QUBE at improved resolution satisfactorily matched both the MC simulations and the reference curves acquired with Peakfinder. Deviations from the reference values in terms of BP position, peak width and distal fall-off were submillimetric for both particle types in the whole investigated energy range. For modulated SOBPs, a submillimetric deviation was found when comparing both experimental MLIC QUBE data against the reference values and MC calculations. The relative dose deviations for the experimental MLIC QUBE acquisitions, with respect to Peakfinder data, ranged from ~1% to ~3.5%. Maximum value of 14.1 μSv/h was measured in contact with QUBE entrance window soon after a long irradiation with carbon ions. MLIC QUBE appears to be a promising detector for accurately measuring pristine ICs and SOBPs. A simple procedure to improve the intrinsic spatial resolution of the detector is proposed. Being the detector very accurate, precise, fast responding, and easy to handle, it is therefore well suited for daily checks in PT. © 2018 American Association of Physicists in Medicine.

  1. Resolution of fine biological structure including small narcomedusae across a front in the Southern California Bight

    NASA Astrophysics Data System (ADS)

    McClatchie, Sam; Cowen, Robert; Nieto, Karen; Greer, Adam; Luo, Jessica Y.; Guigand, Cedric; Demer, David; Griffith, David; Rudnick, Daniel

    2012-04-01

    We sampled a front detected by SST gradient, ocean color imagery, and a Spray glider south of San Nicolas Island in the Southern California Bight between 14 and 18 October 2010. We sampled the front with an unusually extensive array of instrumentation, including the Continuous Underway Fish Egg Sampler (CUFES), the undulating In Situ Ichthyoplankton Imaging System (ISIIS) (fitted with temperature, salinity, oxygen, and fluorescence sensors), multifrequency acoustics, a surface pelagic trawl, a bongo net, and a neuston net. We found higher fluorescence and greater cladoceran, decapod, and euphausiid densities in the front, indicating increased primary and secondary production. Mesopelagic fish were most abundant in oceanic waters to the west of the front, market squid were abundant in the front associated with higher krill and decapod densities, and jack mackerel were most common in the front and on the shoreward side of the front. Egg densities peaked to either side of the front, consistent with both offshore (for oceanic squid and mesopelagic fish) and shelf origins (for white croaker and California halibut). We discovered unusually high concentrations of predatory narcomedusae in the surface layer of the frontal zone. Potential ichthyoplankton predators were more abundant either in the front (decapods, euphausiids, and squid) or shoreward of the front (medusae, chaetognaths, and jack mackerel). For pelagic fish like sardine, which can thrive in less productive waters, the safest place to spawn would be offshore because there are fewer potential predators.

  2. VizieR Online Data Catalog: Spectroscopy and HST imaging in ONC (O'Dell+, 2015)

    NASA Astrophysics Data System (ADS)

    O'Dell, C. R.; Ferland, G. J.; Henney, W. J.; Peimbert, M.; Garcia-Diaz, Ma. T.; Rubin, R. H.

    2016-02-01

    We are able to draw on both new and existing observational data for both imaging and spectroscopy. Since the ionization range of the Orion Nebula is quite low, we use the high signal-to-noise ratio (S/N) F658N and F502N images in our analysis Our new imaging observations were made with Hubble Space Telescope (HST)'s WFC3 as part of program GO 12543. Observations were made (2012 January 7) with the narrowband emission line filters F487N (Hβ409s), F502N ([OIII]348s), F656N (Hα349s), F658N ([NII]602s), and F673N ([SII]700s), in addition to observations with the continuum sampling intermediate-width filter F547M (348s). The characteristics of these filters and their calibration have been described by O'Dell et al. (2013AJ....145...92O). The images are the highest angular resolution (0.04''/pixel sampling) optical images of a portion of the Huygens Region. When used alone, we employed the original images in combination with one another. When used for comparison with earlier (undersampled) WFPC2 images (0.0996''/pixel), we processed them with IRAF task "Gauss" to match their broader image cores. We have been able to use earlier HST observations made with the WFPC2 (program GO 5085 (FOV5) on MJD49737; program GO 5469 on MJD49797; program GO 11038 (FOV1) on MJD54406; program GO 12543 on MJD55935). The most useful data set of spectra is the compilation of north-south orientation long-slit spectra by Garcia-Diaz et al. (2008RMxAA..44..181G). In addition to their original observations (Garcia-Diaz & Henney, 2007AJ....133..952G) in low-ionization lines, they recalibrate the high-ionization spectra of Doi et al. 2004 (cat. J/AJ/127/3456) and present combined results for emission lines from a wide variety of ionization states ([OI]630.0nm, [SII]671.6nm+673.1nm, [NII]658.4nm, [SIII]631.2nm, Hα656.3nm, [OIII]500.7nm) calibrated to 2km/s accuracy and a resolution of about 10km/s. We will refer to this as the Spectroscopic Atlas, or simply the Atlas. New observations were made at the San Pedro Martir Observatory in 2013 February in the [OIII] 500.7nm line in essentially the same manner as the earlier low-ionization line observations, except that the slit was oriented east-west. The slit center was at 5:35:15.9. Fifteen spectra were obtained in steps of 1.4'' starting at 23'' south of θ1Ori C and proceeding south. Their total exposure time in each slit of 300 or 600s, depending on the source brightness, with the 2.1m telescope's MEZCAL spectrograph gave higher-S/N images than the earlier observations made at the Kitt Peak National Observatory with the 4m telescope's echelle spectrograph by Doi et al. 2004 (cat. J/AJ/127/3456). The [NII] 658.3nm and [OIII] 500.7nm archived spectra had an instrumental FWHM intensity of about 10km/s, and the new [OIII] spectra's FWHM are slightly smaller. The quadratic addition of the instrumental and thermal FWHM values gives an expected observed FWHM of 11.5km/s for [NII] and 11.4km/s for [OIII]. The tangential velocities determined from HST images are presented in Table6. The radial velocities of features not directly associated with the Main Ionization Front (MIF) are presented in Table7, using data from the spectroscopic Atlas. (2 data files).

  3. Influence of renormalization shielding on the electron-impact ionization process in dense partially ionized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Mi-Young; Yoon, Jung-Sik; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr

    2015-04-15

    The renormalization shielding effects on the electron-impact ionization of hydrogen atom are investigated in dense partially ionized plasmas. The effective projectile-target interaction Hamiltonian and the semiclassical trajectory method are employed to obtain the transition amplitude as well as the ionization probability as functions of the impact parameter, the collision energy, and the renormalization parameter. It is found that the renormalization shielding effect suppresses the transition amplitude for the electron-impact ionization process in dense partially ionized plasmas. It is also found that the renormalization effect suppresses the differential ionization cross section in the peak impact parameter region. In addition, it ismore » found that the influence of renormalization shielding on the ionization cross section decreases with an increase of the relative collision energy. The variations of the renormalization shielding effects on the electron-impact ionization cross section are also discussed.« less

  4. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    DOEpatents

    Britton, Jr., Charles L.; Buckner, Mark A [Oak Ridge, TN; Hanson, Gregory R [Clinton, TN; Bryan, William L [Knoxville, TN

    2011-05-03

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes insitu polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  5. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    DOEpatents

    Britton, Jr; Charles, L [Alcoa, TN; Buckner, Mark A [Oak Ridge, TN; Hanson, Gregory R [Clinton, TN; Bryan, William L [Knoxville, TN

    2011-04-26

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes in situ polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  6. Observations of a tidal intrusion front in a tidal channel

    NASA Astrophysics Data System (ADS)

    Lu, Shasha; Xia, Xiaoming; Thompson, Charlie E. L.; Cao, Zhenyi; Liu, Yifei

    2017-11-01

    A visible front indicated by a surface colour change, and sometimes associated with foam or debris lines, was observed in a tidal channel during neap tide. This is an example of a tidal intrusion front occurring in the absence of sudden topographical changes or reversing flows, typically reported to be associated with such fronts. Detailed Acoustic Doppler Current Profiler and conductivity/temperature/depth measurements were taken on repeated transects both with fronts apparent and with fronts absent. The results indicated that the front occurred as a result of stratification, which was sustained by the buoyancy flux and the weak tide-induced mixing during neap ebb tide. The stronger tide-induced mixing during spring tide restrained stratification, leading to the absence of a front. The mechanism of the frontogenesis was the density gradient between the stratified water formed during neap ebb tide, and the more mixed seawater during neap flood tide; thus, the water on the landward (southwestern) side of the front was stratified, and that on the seaward side (northeastern) of the front was vertically well mixed. Gradient Richardson number estimates suggest that the flow between the stratified and mixed water was near the threshold 0.25 for shear instability. Meanwhile, the density gradient would provide an initial baroclinic contribution to velocity convergence, which is indicated by the accumulation of buoyant matter such as foam, grass, and debris into a sharply defined line along the surface. The front migrates with the flood current, with a local maximum towards the eastern side of the channel, leading to an asymmetrical shape with the eastern side of the front driven further into the Tiaozhoumen tidal channel.

  7. Ionization of EPA Contaminants in Direct and Dopant-Assisted Atmospheric Pressure Photoionization and Atmospheric Pressure Laser Ionization

    NASA Astrophysics Data System (ADS)

    Kauppila, Tiina J.; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  8. The excited-state structure, vibrations, lifetimes, and nonradiative dynamics of jet-cooled 1-methylcytosine.

    PubMed

    Trachsel, Maria A; Wiedmer, Timo; Blaser, Susan; Frey, Hans-Martin; Li, Quansong; Ruiz-Barragan, Sergi; Blancafort, Lluís; Leutwyler, Samuel

    2016-10-07

    We have investigated the S 0 → S 1 UV vibronic spectrum and time-resolved S 1 state dynamics of jet-cooled amino-keto 1-methylcytosine (1MCyt) using two-color resonant two-photon ionization, UV/UV holeburning and depletion spectroscopies, as well as nanosecond and picosecond time-resolved pump/delayed ionization measurements. The experimental study is complemented with spin-component-scaled second-order coupled-cluster and multistate complete active space second order perturbation ab initio calculations. Above the weak electronic origin of 1MCyt at 31 852 cm -1 about 20 intense vibronic bands are observed. These are interpreted as methyl group torsional transitions coupled to out-of-plane ring vibrations, in agreement with the methyl group rotation and out-of-plane distortions upon 1 ππ ∗ excitation predicted by the calculations. The methyl torsion and ν 1 ' (butterfly) vibrations are strongly coupled, in the S 1 state. The S 0 → S 1 vibronic spectrum breaks off at a vibrational excess energy E exc ∼ 500 cm -1 , indicating that a barrier in front of the ethylene-type S 1 ⇝S 0 conical intersection is exceeded, which is calculated to lie at E exc = 366 cm -1 . The S 1 ⇝S 0 internal conversion rate constant increases from k IC = 2 ⋅ 10 9 s -1 near the S 1 (v = 0) level to 1 ⋅ 10 11 s -1 at E exc = 516 cm -1 . The 1 ππ ∗ state of 1MCyt also relaxes into the lower-lying triplet T 1 ( 3 ππ ∗ ) state by intersystem crossing (ISC); the calculated spin-orbit coupling (SOC) value is 2.4 cm -1 . The ISC rate constant is 10-100 times lower than k IC ; it increases from k ISC = 2 ⋅ 10 8 s -1 near S 1 (v = 0) to k ISC = 2 ⋅ 10 9 s -1 at E exc = 516 cm -1 . The T 1 state energy is determined from the onset of the time-delayed photoionization efficiency curve as 25 600 ± 500 cm -1 . The T 2 ( 3 nπ ∗ ) state lies >1500 cm -1 above S 1 (v = 0), so S 1 ⇝T 2 ISC cannot occur, despite the large SOC parameter of 10.6 cm -1 . An upper limit to the adiabatic ionization energy of 1MCyt is determined as 8.41 ± 0.02 eV. Compared to cytosine, methyl substitution at N1 lowers the adiabatic ionization energy by ≥0.32 eV and leads to a much higher density of vibronic bands in the S 0 → S 1 spectrum. The effect of methylation on the radiationless decay to S 0 and ISC to T 1 is small, as shown by the similar break-off of the spectrum and the similar computed mechanisms.

  9. The excited-state structure, vibrations, lifetimes, and nonradiative dynamics of jet-cooled 1-methylcytosine

    NASA Astrophysics Data System (ADS)

    Trachsel, Maria A.; Wiedmer, Timo; Blaser, Susan; Frey, Hans-Martin; Li, Quansong; Ruiz-Barragan, Sergi; Blancafort, Lluís; Leutwyler, Samuel

    2016-10-01

    We have investigated the S0 → S1 UV vibronic spectrum and time-resolved S1 state dynamics of jet-cooled amino-keto 1-methylcytosine (1MCyt) using two-color resonant two-photon ionization, UV/UV holeburning and depletion spectroscopies, as well as nanosecond and picosecond time-resolved pump/delayed ionization measurements. The experimental study is complemented with spin-component-scaled second-order coupled-cluster and multistate complete active space second order perturbation ab initio calculations. Above the weak electronic origin of 1MCyt at 31 852 cm-1 about 20 intense vibronic bands are observed. These are interpreted as methyl group torsional transitions coupled to out-of-plane ring vibrations, in agreement with the methyl group rotation and out-of-plane distortions upon 1ππ∗ excitation predicted by the calculations. The methyl torsion and ν1 ' (butterfly) vibrations are strongly coupled, in the S1 state. The S0 → S1 vibronic spectrum breaks off at a vibrational excess energy Eexc ˜ 500 cm-1, indicating that a barrier in front of the ethylene-type S1⇝S0 conical intersection is exceeded, which is calculated to lie at Eexc = 366 cm-1. The S1⇝S0 internal conversion rate constant increases from kIC = 2 ṡ 109 s-1 near the S1(v = 0) level to 1 ṡ 1011 s-1 at Eexc = 516 cm-1. The 1ππ∗ state of 1MCyt also relaxes into the lower-lying triplet T1 (3ππ∗) state by intersystem crossing (ISC); the calculated spin-orbit coupling (SOC) value is 2.4 cm-1. The ISC rate constant is 10-100 times lower than kIC; it increases from kISC = 2 ṡ 108 s-1 near S1(v = 0) to kISC = 2 ṡ 109 s-1 at Eexc = 516 cm-1. The T1 state energy is determined from the onset of the time-delayed photoionization efficiency curve as 25 600 ± 500 cm-1. The T2 (3nπ∗) state lies >1500 cm-1 above S1(v = 0), so S1⇝T2 ISC cannot occur, despite the large SOC parameter of 10.6 cm-1. An upper limit to the adiabatic ionization energy of 1MCyt is determined as 8.41 ± 0.02 eV. Compared to cytosine, methyl substitution at N1 lowers the adiabatic ionization energy by ≥0.32 eV and leads to a much higher density of vibronic bands in the S0 → S1 spectrum. The effect of methylation on the radiationless decay to S0 and ISC to T1 is small, as shown by the similar break-off of the spectrum and the similar computed mechanisms.

  10. Turbulent premixed combustion in V-shaped flames: Characteristics of flame front

    NASA Astrophysics Data System (ADS)

    Kheirkhah, S.; Gülder, Ö. L.

    2013-05-01

    Flame front characteristics of turbulent premixed V-shaped flames were investigated experimentally using the Mie scattering and the particle image velocimetry techniques. The experiments were performed at mean streamwise exit velocities of 4.0, 6.2, and 8.6 m/s, along with fuel-air equivalence ratios of 0.7, 0.8, and 0.9. Effects of vertical distance from the flame-holder, mean streamwise exit velocity, and fuel-air equivalence ratio on statistics of the distance between the flame front and the vertical axis, flame brush thickness, flame front curvature, and angle between tangent to the flame front and the horizontal axis were studied. The results show that increasing the vertical distance from the flame-holder and the fuel-air equivalence ratio increase the mean and root-mean-square (RMS) of the distance between the flame front and the vertical axis; however, increasing the mean streamwise exit velocity decreases these statistics. Spectral analysis of the fluctuations of the flame front position depicts that the normalized and averaged power-spectrum-densities collapse and show a power-law relation with the normalized wave number. The flame brush thickness is linearly correlated with RMS of the distance between the flame front and the vertical axis. Analysis of the curvature of the flame front data shows that the mean curvature is independent of the experimental conditions tested and equals to zero. Values of the inverse of the RMS of flame front curvature are similar to those of the integral length scale, suggesting that the large eddies in the flow make a significant contribution in wrinkling of the flame front. Spectral analyses of the flame front curvature as well as the angle between tangent to the flame front and the horizontal axis show that the power-spectrum-densities feature a peak. Value of the inverse of the wave number pertaining to the peak is larger than that of the integral length scale.

  11. Environmental and psychosocial factors affecting seat belt use among Turkish front-seat occupants in Ankara: two observation studies.

    PubMed

    Simşekoğlu, Ozlem; Lajunen, Timo

    2008-01-01

    Low seat belt use rate among car occupants is one of the main problems contributing to low driver and passenger safety in Turkey, where injury and fatality rates of car occupants are very high in traffic crashes. The present article consists of two observation studies, which were conducted in Ankara. The first study aimed at investigating environmental factors and occupant characteristics affecting seat belt use among front-seat occupants, and the objective of the second study was to investigate the relationship between driver and front-seat passenger seat belt use. In the first study, 4, 227 front-seat occupants (drivers or front seat passengers) were observed on four different road sides and, in the second study 1, 398 front seat occupants were observed in car parks of five different shopping centers in Ankara. In both observations, front-seat occupants' seat bet use (yes, no), sex (male, female), and age (< 30 years, 30-50 years, > 50 years) were recorded. The data were analyzed using chi-square statistics and binary logistic regression techniques. Results of the first study showed that seat belt use proportion among observed front seat occupants was very low (25%). Being female and traveling on intercity roads were two main factors positively related to use a seat belt among front-seat occupants. High correlations between seat belt use of the drivers and front-seat passengers were found in the second study. Overall, low seat belt use rate (25%) among the front-seat occupants should be increased urgently for an improved driver and passenger safety in Turkey. Seat belt campaigns especially tailored for male front-seat occupants and for the front-seat occupants traveling on city roads are needed to increase seat belt use rates among them. Also, both drivers and passengers may have an important role in enforcing seat belt use among themselves.

  12. Polarization and wavelength diversities of Gulf Stream fronts imaged by AIRSAR

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Jansen, R. W.; Marmorino, G. O.; Chubb, S. R.

    1995-01-01

    During the 1990 Gulf Stream Experiment, NASA/JPL AIRSAR imaged the north edge of the Gulf Stream near the coast of Virginia. Simultaneous in-situ measurements of currents, temperatures, salinities, etc. were made for several crossings of the north edge by the R/V Cape Henlopen. Measurements identified two fronts with shearing and converging flows. The polarimetric SAR images from the fronts showed two bright linear features. One of them corresponds to the temperature front, which separated the warm Gulf Stream water to the south from a cool, freshwater filament to the north. The other line, located about 8 km north of the temperature front, is believed to correspond to the velocity front between the filament and the slope water. At these fronts, wave-current interactions produced narrow bands of steep and breaking waves manifesting higher radar returns in polarimetric SAR images. In general, our AIRSAR imagery shows that the signal-to-clutter ratio of radar cross sections for the temperature front is higher than that of the velocity front. In this paper, we study the polarization and wavelength diversities of radar response of these two fronts using the P-, L-, and C-Band Polarimetric SAR data. The north-south flight path of the AIRSAR crossed the temperature front several times and provided valuable data for analysis. Three individual passes are investigated. We found that for the temperature front, the cross-pol (HV) responses are much higher than co-pol responses (VV and HH), and that P-Band HV has the highest signal to clutter ratio. For the velocity front, the ratio is the strongest in P-Band VV, and it is indistinguishable for all polarizations in C-Band. The radar cross sections for all three polarization (HH, HV, and VV) and for all three bands are modelled using an ocean wave model and a composite Bragg scattering model. In our initial investigations, the theoretical model agrees qualitatively with the AIRSAR observations.

  13. Relativistic Tennis with Photons: Frequency Up-Shifting, Light Intensification and Ion Acceleration with Flying Mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.

    2011-01-04

    We formulate the Flying Mirror Concept for relativistic interaction of ultra-intense electromagnetic waves with plasmas, present its theoretical description and the results of computer simulations and laboratory experiments. In collisionless plasmas, the relativistic flying mirrors are thin and dense electron or electron-ion layers accelerated by the high intensity electromagnetic waves up to velocity close to the speed of light in vacuum; in nonlinear-media and in nonlinear vacuum they are the ionization fronts and the refraction index modulations induced by a strong electromagnetic wave. The reflection of the electromagnetic wave at the relativistic mirror results in its energy and frequency changemore » due to the double Doppler effect. In the co-propagating configuration, in the radiation pressure dominant regime, the energy of the electromagnetic wave is transferred to the ion energy providing a highly efficient acceleration mechanism. In the counter-propagation configuration the frequency of the reflected wave is multiplied by the factor proportional to the gamma-factor squared. If the relativistic mirror performs an oscillatory motion as in the case of the electron motion at the plasma-vacuum interface, the reflected light spectrum is enriched with high order harmonics.« less

  14. Stochastic and deterministic causes of streamer branching in liquid dielectrics

    NASA Astrophysics Data System (ADS)

    Jadidian, Jouya; Zahn, Markus; Lavesson, Nils; Widlund, Ola; Borg, Karl

    2013-08-01

    Streamer branching in liquid dielectrics is driven by stochastic and deterministic factors. The presence of stochastic causes of streamer branching such as inhomogeneities inherited from noisy initial states, impurities, or charge carrier density fluctuations is inevitable in any dielectric. A fully three-dimensional streamer model presented in this paper indicates that deterministic origins of branching are intrinsic attributes of streamers, which in some cases make the branching inevitable depending on shape and velocity of the volume charge at the streamer frontier. Specifically, any given inhomogeneous perturbation can result in streamer branching if the volume charge layer at the original streamer head is relatively thin and slow enough. Furthermore, discrete nature of electrons at the leading edge of an ionization front always guarantees the existence of a non-zero inhomogeneous perturbation ahead of the streamer head propagating even in perfectly homogeneous dielectric. Based on the modeling results for streamers propagating in a liquid dielectric, a gauge on the streamer head geometry is introduced that determines whether the branching occurs under particular inhomogeneous circumstances. Estimated number, diameter, and velocity of the born branches agree qualitatively with experimental images of the streamer branching.

  15. Performance of timing Resistive Plate Chambers with protons from 200 to 800 MeV

    NASA Astrophysics Data System (ADS)

    Machado, J.; Adamczewski-Musch, J.; Blanco, A.; Boretzky, K.; Cabanelas, P.; Cartegni, L.; Ferreira Marques, R.; Fonte, P.; Fruehauf, J.; Galaviz, D.; Heil, M.; Henriques, A.; . Ickert, G.; Körper, D.; Lopes, L.; Palka, M.; Pereira, A.; Rossi, D.; Simon, H.; Teubig, P.; Traxler, M.; Velho, P.; Altstadt, S.; Atar, L.; Aumann, T.; Bemmerer, D.; Caesar, C.; Charpy, A.; Elekes, Z.; Fiori, E.; Gasparic, I.; Gerbig, J.; Göbel, K.; Heftrich, T.; Heine, M.; Heinz, A.; Holl, M.; Ignatov, A.; Isaak, J.; Johansson, H.; Kelic-Heil, A.; Lederer, C.; Lindberg, S.; Löher, B.; Marganiec, J.; Martensson, M.; Nilsson, T.; Panin, V.; Paschalis, S.; Petri, M.; Plag, R.; Pohl, M.; Rastrepina, G.; Reifarth, R.; Reinhardt, T. P.; Röder, M.; Savran, D.; Scheit, H.; Schrock, P.; Silva, J.; Stach, D.; Strannerdahl, F.; Thies, R.; Wagner, A.; Wamers, F.; Weigand, M.

    2015-01-01

    A prototype composed of four resistive plate chamber layers has been exposed to quasi-monoenergetic protons produced from a deuteron beam of varying energy (200 to 800 AMeV) in experiment S406 at GSI, Darmstadt, Germany. The aim of the experiment is to characterize the response of the prototype to protons in this energy range, which deposit from 1.75 to 6 times more energy than minimum ionizing particles. Each layer, with an active area of about 2000 × 500 mm2, is made of modules containing the active gaps, all in multigap construction. Each gap is defined by 0.3 mm nylon mono-filaments positioned between 2.85 mm thick float glass electrodes. The modules are operated in avalanche mode with a non-flammable gas mixture composed of 90% C2H2F4 and 10% SF6. The signals are readout by a pick-up electrode formed by 15 copper strips (per layer), spaced at a pitch of 30 mm, connected at both sides to timing front end electronics. Results show an uniform efficiency close to 100% along with a timing resolution of around 60 ps on the entire 2000 × 500 mm2 area.

  16. Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC

    NASA Astrophysics Data System (ADS)

    Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Bullard, B.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; De Geronimo, G.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fadeeva, A. A.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; Hourlier, A.; Huang, E.-C.; James, C.; de Vries, J. Jan; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, S.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Radeka, V.; Rafique, A.; Rescia, S.; Rochester, L.; von Rohr, C. Rudolf; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Thorn, C.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van De Pontseele, W.; Van de Water, R. G.; Viren, B.; Weber, M.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yates, L.; Yu, B.; Zeller, G. P.; Zennamo, J.; Zhang, C.

    2017-08-01

    The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Current induced on each TPC wire is amplified and shaped by custom low-power, low-noise ASICs immersed in the liquid argon. The digitization of the signal waveform occurs outside the cryostat. Using data from the first year of MicroBooNE operations, several excess noise sources in the TPC were identified and mitigated. The residual equivalent noise charge (ENC) after noise filtering varies with wire length and is found to be below 400 electrons for the longest wires (4.7 m). The response is consistent with the cold electronics design expectations and is found to be stable with time and uniform over the functioning channels. This noise level is significantly lower than previous experiments utilizing warm front-end electronics.

  17. RADIO SYNCHROTRON EMISSION FROM A BOW SHOCK AROUND THE GAS CLOUD G2 HEADING TOWARD THE GALACTIC CENTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan, Ramesh; Sironi, Lorenzo; Oezel, Feryal

    2012-10-01

    A dense ionized cloud of gas has been recently discovered to be moving directly toward the supermassive black hole, Sgr A*, at the Galactic center. In 2013 June, at the pericenter of its highly eccentric orbit, the cloud will be approximately 3100 Schwarzschild radii from the black hole and will move supersonically through the ambient hot gas with a velocity of v{sub p} Almost-Equal-To 5400 km s{sup -1}. A bow shock is likely to form in front of the cloud and could accelerate electrons to relativistic energies. We estimate via particle-in-cell simulations the energy distribution of the accelerated electrons andmore » show that the non-thermal synchrotron emission from these electrons might exceed the quiescent radio emission from Sgr A* by a factor of several. The enhanced radio emission should be detectable at GHz and higher frequencies around the time of pericentric passage and in the following months. The bow shock emission is expected to be displaced from the quiescent radio emission of Sgr A* by {approx}33 mas. Interferometric observations could resolve potential changes in the radio image of Sgr A* at wavelengths {approx}< 6 cm.« less

  18. Components Qualification for a Possible use in the Mu2e Calorimeter Waveform Digitizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Falco, S.; Donati, S.; Morescalchi, L.

    2017-03-30

    The Mu2e experiment at Fermilab searches for the charged flavor violating conversion of a muon into an electron in the Coulomb field of a nucleus. The detector consists of a straw tube tracker and a CSI crystal electromagnetic calorimeter, both housed in a superconducting solenoid. Both the front-end and the digital electronics, located inside the cryostat, will be operated in vacuum under a 1 T magnetic field, having to sustain the high flux of neutrons and ionizing particles coming from the muons stopping target. These harsh experimental conditions make the design of the calorimeter waveform digitizer quite challenging. All themore » selected commercial devices must be tested individually and qualified for radiation hardness and operation in high magnetic field. At the moment the expected particles flux and spectra at the digitizers location are not completely simulated and we are using initial rough estimates to select the components for the first prototype. We are gaining experience in the qualification procedures using the selected components but the choice will be frozen only when dose and neutron flux simulations will be completed. The experimental results of the first qualification campaign are presented.« less

  19. Bactericial effect of a non-thermal plasma needle against Enterococcus faecalis biofilms

    NASA Astrophysics Data System (ADS)

    Jiang, Chunqi; Schaudinn, C.; Jaramillo, D. E.; Sedghizadeh, P. P.; Webster, P.; Costerton, J. W.

    2011-10-01

    Up to 3 cm long submillimeter-in-scale plasma needle was generated in ambient atmosphere for root canal disinfection. Powered with 1-2 kHz, multi-kilovolt nanosecond electric pulses, this He/(1%)O2 plasma jet consists of ionization fronts propagating at speeds of the order of 107 cm/s. Plasma treatment of Enterococcus faecalis biofilms on hydroxyapatite (HA) discs for 5 min resulted in severe damage of the bacterial cells and sterilized HA surfaces of more than 3 mm in diameter, observed by the scanning electron microscopy. With a curing dielectric microtube placed 1 cm or less below the nozzle, the plasma jet entered even at a sharp angle and followed the curvature of the tube, and reached the bottom of the tube. The bactericidal effect of the plasma needle against E. faecalis biofilm grown on the inner surfaces of the tube was demonstrated. However, the bactericidal effect weakens or diminishes for the bacteria grown deeper in the tube, indicating improvement of the plasma treatment scheme is needed. Mechanisms of the plasma bactericidal effects are discussed. Supported by the National Institute of Dental and Craniofacial Research and the Air Force Office of Scientific Research.

  20. Comprehensive blood plasma lipidomics by liquid chromatography/quadrupole time-of-flight mass spectrometry.

    PubMed

    Sandra, Koen; Pereira, Alberto Dos Santos; Vanhoenacker, Gerd; David, Frank; Sandra, Pat

    2010-06-18

    A lipidomics strategy, combining high resolution reversed-phase liquid chromatography (RPLC) with high resolution quadrupole time-of-flight mass spectrometry (QqTOF), is described. The method has carefully been assessed in both a qualitative and a quantitative fashion utilizing human blood plasma. The inherent low technical variability associated with the lipidomics method allows to measure 65% of the features with an intensity RSD value below 10%. Blood plasma lipid spike-in experiments demonstrate that relative concentration differences smaller than 25% can readily be revealed by means of a t-test. Utilizing an advanced identification strategy, it is shown that the detected features mainly originate from (lyso-)phospholipids, sphingolipids, mono-, di- and triacylglycerols and cholesterol esters. The high resolution offered by the up-front RPLC step further allows to discriminate various isomeric species associated with the different lipid classes. The added value of utilizing a Jetstream electrospray ionization (ESI) source over a regular ESI source in lipidomics is for the first time demonstrated. In addition, the application of ultra high performance LC (UHPLC) up to 1200bar to extend the peak capacity or increase productivity is discussed. Copyright (c) 2010 Elsevier B.V. All rights reserved.

Top