LaRC-RP41: A Tough, High-Performance Composite Matrix
NASA Technical Reports Server (NTRS)
Pater, Ruth H.; Johnston, Norman J.; Smith, Ricky E.; Snoha, John J.; Gautreaux, Carol R.; Reddy, Rakasi M.
1991-01-01
New polymer exhibits increased toughness and resistance to microcracking. Cross-linking PMR-15 and linear LaRC-TPI combined to provide sequential semi-2-IPN designated as LaRC-RP41. Synthesized from PMR-15 imide prepolymer undergoing cross-linking in immediate presence of LaRC-TPI polyamic acid, also undergoing simultaneous imidization and linear chain extension. Potentially high-temperature matrix resin, adhesive, and molding resin. Applications include automobiles, electronics, aircraft, and aerospace structures.
Reversible Thermoset Adhesives
NASA Technical Reports Server (NTRS)
Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)
2016-01-01
Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.
Xu, Yongxiang; Yuan, Shenpo; Han, Jianmin; Lin, Hong; Zhang, Xuehui
2017-11-15
The development of scaffolds to mimic the gradient structure of natural tissue is an important consideration for effective tissue engineering. In the present study, a physical cross-linking chitosan hydrogel with gradient structures was fabricated via a step-by-step cross-linking process using sodium tripolyphosphate and sodium hydroxide as sequential cross-linkers. Chitosan hydrogels with different structures (single, double, and triple layers) were prepared by modifying the gelling process. The properties of the hydrogels were further adjusted by varying the gelling conditions, such as gelling time, pH, and composition of the crosslinking solution. Slight cytotoxicity was showed in MTT assay for hydrogels with uncross-linking chitosan solution and non-cytotoxicity was showed for other hydrogels. The results suggest that step-by-step cross-linking represents a practicable method to fabricate scaffolds with gradient structures. Copyright © 2017. Published by Elsevier Ltd.
2009-01-01
The α,β-unsaturated aldehydes (enals) acrolein, crotonaldehyde, and trans-4-hydroxynonenal (4-HNE) are products of endogenous lipid peroxidation, arising as a consequence of oxidative stress. The addition of enals to dG involves Michael addition of the N2-amine to give N2-(3-oxopropyl)-dG adducts, followed by reversible cyclization of N1 with the aldehyde, yielding 1,N2-dG exocyclic products. The 1,N2-dG exocyclic adducts from acrolein, crotonaldehyde, and 4-HNE exist in human and rodent DNA. The enal-induced 1,N2-dG lesions are repaired by the nucleotide excision repair pathway in both Escherichia coli and mammalian cells. Oligodeoxynucleotides containing structurally defined 1,N2-dG adducts of acrolein, crotonaldehyde, and 4-HNE were synthesized via a postsynthetic modification strategy. Site-specific mutagenesis of enal adducts has been carried out in E. coli and various mammalian cells. In all cases, the predominant mutations observed are G→T transversions, but these adducts are not strongly miscoding. When placed into duplex DNA opposite dC, the 1,N2-dG exocyclic lesions undergo ring opening to the corresponding N2-(3-oxopropyl)-dG derivatives. Significantly, this places a reactive aldehyde in the minor groove of DNA, and the adducted base possesses a modestly perturbed Watson−Crick face. Replication bypass studies in vitro indicate that DNA synthesis past the ring-opened lesions can be catalyzed by pol η, pol ι, and pol κ. It also can be accomplished by a combination of Rev1 and pol ζ acting sequentially. However, efficient nucleotide insertion opposite the 1,N2-dG ring-closed adducts can be carried out only by pol ι and Rev1, two DNA polymerases that do not rely on the Watson−Crick pairing to recognize the template base. The N2-(3-oxopropyl)-dG adducts can undergo further chemistry, forming interstrand DNA cross-links in the 5′-CpG-3′ sequence, intrastrand DNA cross-links, or DNA−protein conjugates. NMR and mass spectrometric analyses indicate that the DNA interstand cross-links contain a mixture of carbinolamine and Schiff base, with the carbinolamine forms of the linkages predominating in duplex DNA. The reduced derivatives of the enal-mediated N2-dG:N2-dG interstrand cross-links can be processed in mammalian cells by a mechanism not requiring homologous recombination. Mutations are rarely generated during processing of these cross-links. In contrast, the reduced acrolein-mediated N2-dG peptide conjugates can be more mutagenic than the corresponding monoadduct. DNA polymerases of the DinB family, pol IV in E. coli and pol κ in human, are implicated in error-free bypass of model acrolein-mediated N2-dG secondary adducts, the interstrand cross-links, and the peptide conjugates. PMID:19397281
NASA Astrophysics Data System (ADS)
Yi, Zao; Luo, Jiangshan; Tan, Xiulan; Yi, Yong; Yao, Weitang; Kang, Xiaoli; Ye, Xin; Zhu, Wenkun; Duan, Tao; Yi, Yougen; Tang, Yongjian
2015-11-01
Mesoporous gold sponges were prepared using 4-dimethylaminopyridine (DMAP)-stabilized Au seeds. This is a general process, which involves a simple template-free method, room temperature reduction of HAuCl4·4H2O with hydroxylamine. The formation process of mesoporous gold sponges could be accounted for the electrostatic interaction (the small Au nanoparticles (~3 nm) and the positively charged DMAP-stabilized Au seeds) and Ostwald ripening process. The mesoporous gold sponges had appeared to undergo electrostatic adsorption initially, sequentially linear aggregation, welding and Ostwald ripening, then, they randomly cross link into self-supporting, three-dimensional networks with time. The mesoporous gold sponges exhibit higher surface area than the literature. In addition, application of the spongelike networks as an active material for surface-enhanced Raman scattering has been investigated by employing 4-aminothiophenol (4-ATP) molecules as a probe.
Yi, Zao; Luo, Jiangshan; Tan, Xiulan; Yi, Yong; Yao, Weitang; Kang, Xiaoli; Ye, Xin; Zhu, Wenkun; Duan, Tao; Yi, Yougen; Tang, Yongjian
2015-01-01
Mesoporous gold sponges were prepared using 4-dimethylaminopyridine (DMAP)-stabilized Au seeds. This is a general process, which involves a simple template-free method, room temperature reduction of HAuCl4·4H2O with hydroxylamine. The formation process of mesoporous gold sponges could be accounted for the electrostatic interaction (the small Au nanoparticles (~3 nm) and the positively charged DMAP-stabilized Au seeds) and Ostwald ripening process. The mesoporous gold sponges had appeared to undergo electrostatic adsorption initially, sequentially linear aggregation, welding and Ostwald ripening, then, they randomly cross link into self-supporting, three-dimensional networks with time. The mesoporous gold sponges exhibit higher surface area than the literature. In addition, application of the spongelike networks as an active material for surface-enhanced Raman scattering has been investigated by employing 4-aminothiophenol (4-ATP) molecules as a probe. PMID:26538365
Jayabalan, M.
2009-01-01
The effect of reinforcement in the cross-linked poly(propylene fumarate-co-caprolactone diol) thermoset composites based on Kevlar fibres and hydroxyapatite was studied. Cross-linked poly(propylene fumarate-co-caprolactone diol) was also studied without any reinforcement for comparison. The reinforcing fibre acts as a barrier for the curing reaction leading to longer setting time and lesser cross-link density. The fibre and HA reinforced composites have almost the same compressive strength. Nonreinforced material undergoes greater degree of swelling. Among the reinforced materials, the hydroxyapatite reinforced composite has a much higher swelling percentage than the fibre reinforced one. The studies on in vitro degradation of the cured materials reveal hydrolytic degradation in Ringer's solution and PBS medium during aging. All the three materials are found to swell initially in Ringer's solution and PBS medium during aging and then undergo gradual degradation. Compression properties of these cross-linked composites increase with aging; HA reinforced composite has the highest compressive strength and compressive modulus, whereas the aged fibre-reinforced composite has the least compressive strength and modulus. PMID:20126578
Jayabalan, M
2009-01-01
The effect of reinforcement in the cross-linked poly(propylene fumarate-co-caprolactone diol) thermoset composites based on Kevlar fibres and hydroxyapatite was studied. Cross-linked poly(propylene fumarate-co-caprolactone diol) was also studied without any reinforcement for comparison. The reinforcing fibre acts as a barrier for the curing reaction leading to longer setting time and lesser cross-link density. The fibre and HA reinforced composites have almost the same compressive strength. Nonreinforced material undergoes greater degree of swelling. Among the reinforced materials, the hydroxyapatite reinforced composite has a much higher swelling percentage than the fibre reinforced one. The studies on in vitro degradation of the cured materials reveal hydrolytic degradation in Ringer's solution and PBS medium during aging. All the three materials are found to swell initially in Ringer's solution and PBS medium during aging and then undergo gradual degradation. Compression properties of these cross-linked composites increase with aging; HA reinforced composite has the highest compressive strength and compressive modulus, whereas the aged fibre-reinforced composite has the least compressive strength and modulus.
Elliott, Winston H; Bonani, Walter; Maniglio, Devid; Motta, Antonella; Tan, Wei; Migliaresi, Claudio
2015-06-10
Catering the hydrogel manufacturing process toward defined viscoelastic properties for intended biomedical use is important to hydrogel scaffolding function and cell differentiation. Silk fibroin hydrogels may undergo "physical" cross-linking through β-sheet crystallization during high pressure carbon dioxide treatment, or covalent "chemical" cross-linking by genipin. We demonstrate here that time-dependent mechanical properties are tunable in silk fibroin hydrogels by altering the chronological order of genipin cross-linking with β-sheet formation. Genipin cross-linking before β-sheet formation affects gelation mechanics through increased molecular weight, affecting gel morphology, and decreasing stiffness response. Alternately, genipin cross-linking after gelation anchored amorphous regions of the protein chain, and increasing stiffness. These differences are highlighted and validated through large amplitude oscillatory strain near physiologic levels, after incorporation of material characterization at molecular and micron length scales.
Levels of mature cross-links and advanced glycation end product cross-links in human vitreous.
Matsumoto, Yukihiro; Takahashi, Masaaki; Chikuda, Makoto; Arai, Kiyomi
2002-01-01
To determine the levels of pyridinoline and deoxypyridinoline, two mature enzymatic cross-links, and pentosidine, an advanced glycation end product (AGE) cross-link, in the human vitreous, and to investigate the correlations among the cross-links and the effects of aging and diabetes mellitus (DM) on the levels of cross-links. Forty-five vitreous samples were collected from 32 patients (32 eyes) undergoing vitrectomy for diabetic retinopathy (DM group) and from 13 patients (13 eyes) (control group) who were age- and sex-matched patients with idiopathic macular hole or epiretinal membrane with no systemic conditions. The levels of the cross-links were determined using high-performance liquid chromatography after acid hydrolysis and pretreatment with SP-Sephadex. The levels of pentosidine, pyridinoline, and deoxypyridinoline were 27.3 +/- 23.1 (mean +/- SD) pmol/mL (detectable in 45 of 45 specimens), 79.0 +/- 40.2 ng/mL (43 of 45 specimens), and 54.0 +/- 9.5 (32 of 45 specimens) ng/mL, respectively. When the vitreous samples from the DM and the control groups were compared, a significant difference (P <.05) was found in the pentosidine level but not in the levels of pyridinoline or deoxypyridinoline. No significant correlations were found between age and the cross-links. Significant correlations (P <.01) were found among the cross-links. The results indicate that mature cross-link substances exist in the human vitreous. The results also suggest that glycation may occur in the vitreous after mature cross-links form and result in the formation of AGE cross-links. In human vitreous from patients with DM, increased levels of AGE cross-links may stabilize the formation of mature cross-links, but they did not increase the mature cross-links.
El Emam, Dalia Sabry; Farag, Rania Kamel; Abouelkheir, Hossam Youssef
2016-01-01
Aim. To compare objective and subjective outcome after simultaneous wave front guided (WFG) PRK and accelerated corneal cross-linking (CXL) in patients with progressive keratoconus versus sequential WFG PRK 6 months after CXL. Methods. 62 eyes with progressive keratoconus were divided into two groups; the first including 30 eyes underwent simultaneous WFG PRK with accelerated CXL. The second including 32 eyes underwent subsequent WFG PRK performed 6 months later after accelerated CXL. Visual, refractive, topographic, and aberrometric data were determined preoperatively and during 1-year follow-up period and the results compared in between the 2 studied groups. Results. All evaluated visual, refractive, and aberrometric parameters demonstrated highly significant improvement in both studied groups (all P < 0.001). A significant improvement was observed in keratometric and Q values. The improvement in all parameters was stable till the end of follow-up. Likewise, no significant difference was determined in between the 2 groups in any of recorded parameters. Subjective data revealed similarly significant improvement in both groups. Conclusions. WFG PRK and accelerated CXL is an effective and safe option to improve the vision in mild to moderate keratoconus. In one-year follow-up, there is no statistically significant difference between the simultaneous and sequential procedure. PMID:28127465
Abou Samra, Waleed Ali; El Emam, Dalia Sabry; Farag, Rania Kamel; Abouelkheir, Hossam Youssef
2016-01-01
Aim . To compare objective and subjective outcome after simultaneous wave front guided (WFG) PRK and accelerated corneal cross-linking (CXL) in patients with progressive keratoconus versus sequential WFG PRK 6 months after CXL. Methods . 62 eyes with progressive keratoconus were divided into two groups; the first including 30 eyes underwent simultaneous WFG PRK with accelerated CXL. The second including 32 eyes underwent subsequent WFG PRK performed 6 months later after accelerated CXL. Visual, refractive, topographic, and aberrometric data were determined preoperatively and during 1-year follow-up period and the results compared in between the 2 studied groups. Results . All evaluated visual, refractive, and aberrometric parameters demonstrated highly significant improvement in both studied groups (all P < 0.001). A significant improvement was observed in keratometric and Q values. The improvement in all parameters was stable till the end of follow-up. Likewise, no significant difference was determined in between the 2 groups in any of recorded parameters. Subjective data revealed similarly significant improvement in both groups. Conclusions . WFG PRK and accelerated CXL is an effective and safe option to improve the vision in mild to moderate keratoconus. In one-year follow-up, there is no statistically significant difference between the simultaneous and sequential procedure.
Krishna, Lekshmi; Jayabalan, Muthu
2009-12-01
Biodegradable poly (caprolactone diol-co-propylene fumarate-co-ethylene glycol) amphiphilic polymer with poly (ethylene glycol) and poly (caprolactone diol) chain ends (PCL-PPF-PEG) was prepared. PCL-PPF-PEG undergoes fast setting with acrylamide (aqueous solution) by free radical polymerization and produces a crosslinked hydrogel. The cross linked and freeze-dried amphiphilic material has porous and interconnected network. It undergoes higher degree of swelling and water absorption to form hydrogel with hydrophilic and hydrophobic domains at the surface and appreciable tensile strength. The present hydrogel is compatible with L929 fibroblast cells. PCL-PPF-PEG/acrylamide hydrogel is a candidate scaffold material for tissue engineering applications.
Coussa, Razek Georges; Kapusta, Michael Alton
2017-12-01
To report the first sequential cross-over treatment with the longest ophthalmic follow-up in a case of X-linked juvenile retinoschisis (XLRS) successfully treated with topical dorzolamide. A healthy 34 year-old man presented with one month history of decreased visual acuity in his left eye. Funduscopy was significant for a blunted and cystoid-like foveal reflex in both eyes. The macular OCT showed cystic foveal changes OU. The patient was diagnosed with XLRS and was observed. On two subsequent follow-ups, a significant decrease in the patient's visual acuity warranted the use of topical dorzolamide for treating the cystic foveal changes, which completely resolved two months post-treatment initiation. Previous reports showed the benefit of dorzolamide in treating foveal cystic cavities in XLRS. To our knowledge, this is the first case of XLRS demonstrating the benefits of topical dorzolamide based on a sequential cross-over treatment regimen. It may also represent a case with the longest ophthalmic follow-up providing, in consequence, long-term understanding of the natural history and complications of this rare disease After ruling out major causes of cystoid macular edema, XLRS patients presenting with worsening of their visual acuities due to larger cystic macular changes may benefit from an alternating ON/OFF regimen of topical dorzolamide, which offers a significant treatment advantage outweighing its well-known side effects. Our study consolidates the importance of "medication vacation" by showing its efficacy in providing anatomical and visual functional improvements in patients with chronic cystic macular changes.
Nohara, Kazunari; Chen, Zheng; Yoo, Seung-Hee
2017-07-06
Chromatin immunoprecipitation (ChIP) is a powerful method to determine protein binding to chromatin DNA. Fiber-rich skeletal muscle, however, has been a challenge for ChIP due to technical difficulty in isolation of high-quality nuclei with minimal contamination of myofibrils. Previous protocols have attempted to purify nuclei before cross-linking, which incurs the risk of altered DNA-protein interaction during the prolonged nuclei preparation process. In the current protocol, we first cross-linked the skeletal muscle tissue collected from mice, and the tissues were minced and sonicated. Since we found that ultracentrifugation was not able to separate nuclei from myofibrils using cross-linked muscle tissue, we devised a sequential filtration procedure to obtain high-quality nuclei devoid of significant myofibril contamination. We subsequently prepared chromatin by using an ultrasonicator, and ChIP assays with anti-BMAL1 antibody revealed robust circadian binding pattern of BMAL1 to target gene promoters. This filtration protocol constitutes an easily applicable method to isolate high-quality nuclei from cross-linked skeletal muscle tissue, allowing consistent sample processing for circadian and other time-sensitive studies. In combination with next-generation sequencing (NGS), our method can be deployed for various mechanistic and genomic studies focusing on skeletal muscle function.
Kim, Sungwoo; Kang, Yunqing; Krueger, Chad A.; Sen, Milan; Holcomb, John B.; Chen, Di; Wenke, Joseph C.; Yang, Yunzhi
2012-01-01
The purpose of this study was to develop and characterize a chitosan gel/gelatin microspheres (MSs) dual delivery system for sequential release of bone morphogenetic protein-2 (BMP-2) and insulin-like growth factor-1 (IGF-1) to enhance osteoblast differentiation in vitro. We made and characterized the delivery system based on its degree of cross-linking, degradation, and release kinetics. We also evaluated the cytotoxicity of the delivery system and the effect of growth factors on cell response using pre-osteoblast W-20-17 mouse bone marrow stromal cells. IGF-1 was first loaded into MSs, and then the IGF-1 containing MSs were encapsulated into the chitosan gel which contained BMP-2. Cross-linking of gelatin with glyoxal via Schiff bases significantly increased thermal stability and decreased the solubility of the MSs, leading to a significant decrease in the initial release of IGF-1. Encapsulation of the MSs into the chitosan gel generated polyelectrolyte complexes by intermolecular interactions, which further affected the release kinetics of IGF-1. This combinational delivery system provided an initial release of BMP-2 followed by a slow and sustained release of IGF-1. Significantly greater alkaline phosphatase activity was found in W-20-17 cells treated with the sequential delivery system than other treatments (p<0.05) after a week of culture. PMID:22293583
The First MS-Cleavable, Photo-Thiol-Reactive Cross-Linker for Protein Structural Studies
NASA Astrophysics Data System (ADS)
Iacobucci, Claudio; Piotrowski, Christine; Rehkamp, Anne; Ihling, Christian H.; Sinz, Andrea
2018-04-01
Cleavable cross-linkers are gaining increasing importance for chemical cross-linking/mass spectrometry (MS) as they permit a reliable and automated data analysis in structural studies of proteins and protein assemblies. Here, we introduce 1,3-diallylurea (DAU) as the first CID-MS/MS-cleavable, photo-thiol-reactive cross-linker. DAU is a commercially available, inexpensive reagent that efficiently undergoes an anti-Markovnikov hydrothiolation with cysteine residues in the presence of a radical initiator upon UV-A irradiation. Radical cysteine cross-linking proceeds via an orthogonal "click reaction" and yields stable alkyl sulfide products. DAU reacts at physiological pH and cross-linking reactions with peptides, and proteins can be performed at temperatures as low as 4 °C. The central urea bond is efficiently cleaved upon collisional activation during tandem MS experiments generating characteristic product ions. This improves the reliability of automated cross-link identification. Different radical initiators have been screened for the cross-linking reaction of DAU using the thiol-containing compounds cysteine and glutathione. Our concept has also been exemplified for the biologically relevant proteins bMunc13-2 and retinal guanylyl cyclase-activating protein-2. [Figure not available: see fulltext.
Interstrand cross-links arising from strand breaks at true abasic sites in duplex DNA
Yang, Zhiyu; Price, Nathan E.; Johnson, Kevin M.
2017-01-01
Abstract Interstrand cross-links are exceptionally bioactive DNA lesions. Endogenous generation of interstrand cross-links in genomic DNA may contribute to aging, neurodegeneration, and cancer. Abasic (Ap) sites are common lesions in genomic DNA that readily undergo spontaneous and amine-catalyzed strand cleavage reactions that generate a 2,3-didehydro-2,3-dideoxyribose sugar remnant (3’ddR5p) at the 3’-terminus of the strand break. Interestingly, this strand scission process leaves an electrophilic α,β-unsaturated aldehyde residue embedded within the resulting nicked duplex. Here we present evidence that 3’ddR5p derivatives generated by spermine-catalyzed strand cleavage at Ap sites in duplex DNA can react with adenine residues on the opposing strand to generate a complex lesion consisting of an interstrand cross-link adjacent to a strand break. The cross-link blocks DNA replication by ϕ29 DNA polymerase, a highly processive polymerase enzyme that couples synthesis with strand displacement. This suggests that 3’ddR5p-derived cross-links have the potential to block critical cellular DNA transactions that require strand separation. LC-MS/MS methods developed herein provide powerful tools for studying the occurrence and properties of these cross-links in biochemical and biological systems. PMID:28531327
Cross-linkable liposomes stabilize a magnetic resonance contrast-enhancing polymeric fastener.
Smith, Cartney E; Kong, Hyunjoon
2014-04-08
Liposomes are commonly used to deliver drugs and contrast agents to their target site in a controlled manner. One of the greatest obstacles in the performance of such delivery vehicles is their stability in the presence of serum. Here, we demonstrate a method to stabilize a class of liposomes that load gadolinium, a magnetic resonance (MR) contrast agent, as a model cargo on their surfaces. We hypothesized that the sequential adsorption of a gadolinium-binding chitosan fastener on the liposome surface followed by covalent cross-linking of the lipid bilayer would provide enhanced stability and improved MR signal in the presence of human serum. To investigate this hypothesis, liposomes composed of diyne-containing lipids were assembled and functionalized via chitosan conjugated with a hydrophobic anchor and diethylenetriaminepentaacetic acid (DTPA). This postadsorption cross-linking strategy served to stabilize the thermodynamically favorable association between liposome and polymeric fastener. Furthermore, the chitosan-coated, cross-linked liposomes proved more effective as delivery vehicles of gadolinium than uncross-linked liposomes due to the reduced liposome degradation and chitosan desorption. Overall, this study demonstrates a useful method to stabilize a broad class of particles used for systemic delivery of various molecular payloads.
Cross-Linkable Liposomes Stabilize a Magnetic Resonance Contrast-Enhancing Polymeric Fastener
2015-01-01
Liposomes are commonly used to deliver drugs and contrast agents to their target site in a controlled manner. One of the greatest obstacles in the performance of such delivery vehicles is their stability in the presence of serum. Here, we demonstrate a method to stabilize a class of liposomes that load gadolinium, a magnetic resonance (MR) contrast agent, as a model cargo on their surfaces. We hypothesized that the sequential adsorption of a gadolinium-binding chitosan fastener on the liposome surface followed by covalent cross-linking of the lipid bilayer would provide enhanced stability and improved MR signal in the presence of human serum. To investigate this hypothesis, liposomes composed of diyne-containing lipids were assembled and functionalized via chitosan conjugated with a hydrophobic anchor and diethylenetriaminepentaacetic acid (DTPA). This postadsorption cross-linking strategy served to stabilize the thermodynamically favorable association between liposome and polymeric fastener. Furthermore, the chitosan-coated, cross-linked liposomes proved more effective as delivery vehicles of gadolinium than uncross-linked liposomes due to the reduced liposome degradation and chitosan desorption. Overall, this study demonstrates a useful method to stabilize a broad class of particles used for systemic delivery of various molecular payloads. PMID:24635565
Noronha, Anne M; Noll, David M; Wilds, Christopher J; Miller, Paul S
2002-01-22
The preparation and physical properties of short DNA duplexes that contain a N(4)C-ethyl-N(4)C interstrand cross-link are described. Duplexes that contain an interstrand cross-link between mismatched C-C residues and duplexes in which the C residues of a -CG- or -GC- step are linked to give "staggered" interstrand cross-links were prepared using a novel N(4)C-ethyl-N(4)C phosphoramidite reagent. Duplexes with the C-C mismatch cross-link have UV thermal transition temperatures that are 25 degrees C higher than the melting temperatures of control duplexes in which the cross-link is replaced with a G-C base pair. It appears that this cross-link stabilizes adjacent base pairs and does not perturb the structure of the helix, a conclusion that is supported by the CD spectrum of this duplex and by molecular models. An even higher level of stabilization, 49 degrees C, is seen with the duplex that contains a -CG- staggered cross-link. Molecular models suggest that this cross-link may induce propeller twisting in the cross-linked base pairs, and the CD spectrum of this duplex exhibits an unusual negative band at 298 nm, although the remainder of the spectrum is similar to that of B-form DNA. Mismatched C-C or -CG- staggered cross-linked duplexes that have complementary overhanging ends can undergo self-ligation catalyzed by T4 DNA ligase. Analysis of the ligated oligomers by nondenaturing polyacrylamide gel electrophoresis shows that the resulting oligomers migrate in a manner similar to that of a mixture of non-cross-linked control oligomers and suggests that these cross-links do not result in significant bending of the helix. However, the orientation of the staggered cross-link can have a significant effect on the structure and stability of the cross-linked duplex. Thus, the thermal stability of the duplex that contains a -GC- staggered cross-link is 10 degrees C lower than the melting temperature of the control, non-cross-linked duplex. Unlike the -CG- staggered cross-link, in which the cross-linked base pairs can still maintain hydrogen bond contacts, molecular models suggest that formation of the -GC- staggered cross-link disrupts hydrogen bonding and may also perturb adjacent base pairs leading to an overall reduction in helix stability. Duplexes with specifically positioned and oriented cross-links can be used as substrates to study DNA repair mechanisms.
Interstrand cross-links arising from strand breaks at true abasic sites in duplex DNA.
Yang, Zhiyu; Price, Nathan E; Johnson, Kevin M; Wang, Yinsheng; Gates, Kent S
2017-06-20
Interstrand cross-links are exceptionally bioactive DNA lesions. Endogenous generation of interstrand cross-links in genomic DNA may contribute to aging, neurodegeneration, and cancer. Abasic (Ap) sites are common lesions in genomic DNA that readily undergo spontaneous and amine-catalyzed strand cleavage reactions that generate a 2,3-didehydro-2,3-dideoxyribose sugar remnant (3'ddR5p) at the 3'-terminus of the strand break. Interestingly, this strand scission process leaves an electrophilic α,β-unsaturated aldehyde residue embedded within the resulting nicked duplex. Here we present evidence that 3'ddR5p derivatives generated by spermine-catalyzed strand cleavage at Ap sites in duplex DNA can react with adenine residues on the opposing strand to generate a complex lesion consisting of an interstrand cross-link adjacent to a strand break. The cross-link blocks DNA replication by ϕ29 DNA polymerase, a highly processive polymerase enzyme that couples synthesis with strand displacement. This suggests that 3'ddR5p-derived cross-links have the potential to block critical cellular DNA transactions that require strand separation. LC-MS/MS methods developed herein provide powerful tools for studying the occurrence and properties of these cross-links in biochemical and biological systems. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shuaishuai; Fifield, Leonard S.; Bowler, Nicola
Cross-linked polyethylene (XLPE) cable insulation material undergoes simultaneous, accelerated thermal and gamma-radiation aging to simulate the long-term aging environment within nuclear power plants (NPPs). A variety of materials characterization tests, including scanning electron microscopy, thermo-gravimetric analysis, differential scanning calorimetry, oxidation induction time, gel-fraction and dielectric properties measurement, are conducted on pristine and differently aged XLPE samples. A preliminary model of one possible aging mechanism of XLPE cable insulation material under gamma radiation at elevated temperature of 115 °C is suggested.
Einstein, Andrew J.; Wolff, Steven D.; Manheimer, Eric D.; Thompson, James; Terry, Sylvia; Uretsky, Seth; Pilip, Adalbert; Peters, M. Robert
2009-01-01
Radiation dose from coronary computed tomography angiography may be reduced using a sequential scanning protocol rather than a conventional helical scanning protocol. Here we compare radiation dose and image quality from coronary computed tomography angiography in a single center between an initial period during which helical scanning with electrocardiographically-controlled tube current modulation was used for all patients (n=138) and after adoption of a strategy incorporating sequential scanning whenever appropriate (n=261). Using the sequential-if-appropriate strategy, sequential scanning was employed in 86.2% of patients. Compared to the helical-only strategy, this strategy was associated with a 65.1% dose reduction (mean dose-length product of 305.2 vs. 875.1 and mean effective dose of 14.9 mSv vs. 5.2 mSv, respectively), with no significant change in overall image quality, step artifacts, motion artifacts, or perceived image noise. For the 225 patients undergoing sequential scanning, the dose-length product was 201.9 ± 90.0 mGy·cm, while for patients undergoing helical scanning under either strategy, the dose-length product was 890.9 ± 293.3 mGy·cm (p<0.0001), corresponding to mean effective doses of 3.4 mSv and 15.1 mSv, respectively, a 77.5% reduction. Image quality was significantly greater for the sequential studies, reflecting the poorer image quality in patients undergoing helical scanning in the sequential-if-appropriate strategy. In conclusion, a sequential-if-appropriate diagnostic strategy reduces dose markedly compared to a helical-only strategy, with no significant difference in image quality. PMID:19892048
Katapally, Tarun R; Rainham, Daniel; Muhajarine, Nazeem
2016-06-27
While active living interventions focus on modifying urban design and built environment, weather variation, a phenomenon that perennially interacts with these environmental factors, is consistently underexplored. This study's objective is to develop a methodology to link weather data with existing cross-sectional accelerometry data in capturing weather variation. Saskatoon's neighbourhoods were classified into grid-pattern, fractured grid-pattern and curvilinear neighbourhoods. Thereafter, 137 Actical accelerometers were used to derive moderate to vigorous physical activity (MVPA) and sedentary behaviour (SB) data from 455 children in 25 sequential one-week cycles between April and June, 2010. This sequential deployment was necessary to overcome the difference in the ratio between the sample size and the number of accelerometers. A data linkage methodology was developed, where each accelerometry cycle was matched with localized (Saskatoon-specific) weather patterns derived from Environment Canada. Statistical analyses were conducted to depict the influence of urban design on MVPA and SB after factoring in localized weather patterns. Integration of cross-sectional accelerometry with localized weather patterns allowed the capture of weather variation during a single seasonal transition. Overall, during the transition from spring to summer in Saskatoon, MVPA increased and SB decreased during warmer days. After factoring in localized weather, a recurring observation was that children residing in fractured grid-pattern neighbourhoods accumulated significantly lower MVPA and higher SB. The proposed methodology could be utilized to link globally available cross-sectional accelerometry data with place-specific weather data to understand how built and social environmental factors interact with varying weather patterns in influencing active living.
Furuike, Tetsuya; Chaochai, Thitirat; Okubo, Tsubasa; Mori, Takahiro; Tamura, Hiroshi
2016-12-01
Since gelatin (Gel) undergoes a sol-gel transition, a novel dry-spinning procedure for Gel was used. Here, nonwoven fabrics of Gel were electrospun by applying the principles of dry spinning. The diameter of the fibers and the viscosity and flow rate of the solution were directly dependent on the concentration of Gel. Nonwoven fabrics spun with a 25% (w/w) Gel concentration only exhibited a nanoscale fiber diameter. In order to improve the properties of the nonwoven fabrics, they were cross-linked with glutaraldehyde (GTA) vapor after spinning or by the addition of N-acetyl-d-glucosamine (GlcNAc) to the Gel solution prior to spinning followed by heating these fibers. The developed nonwoven fibers were characterized using SEM, rheometry, FTIR, TGA, and mechanical tensile testing. The nonwoven fabrics cross-linked by the GTA vapor exhibited improved mechanical properties compared to those without cross-linking or with GlcNAc cross-linking. The swelling and water uptake ability resulted in no morphological changes in the fibers with GTA cross-linking. The TGA thermogram confirmed no phase change in the composite structure. Further, in vitro cytocompatibility studies using human mesenchymal stem cells showed the compatible nature of the developed nonwoven fibers. Our studies showed that these nonwoven fibers could be useful in medical care. Copyright © 2016 Elsevier B.V. All rights reserved.
Chen, Chih-Kuang; Lin, Wei-Jen; Hsia, Yu; Lo, Leu-Wei
2017-03-01
Well-defined poly(ethylene glycol)-b-allyl functional polylactide-b-polylactides (PEG-APLA-PLAs) are synthesized through sequential ring-opening polymerization. PEG-APLA-PLAs that have amphiphilic properties and reactive allyl side chains on their intermediate blocks are successfully transferred to core-shell interface cross-linked micelles (ICMs) by micellization and UV-initiated irradiation. ICMs have demonstrated enhanced colloidal stability in physiological-mimicking media. Hydrophobic molecules such as Nile Red or doxorubicin (Dox) are readily loaded into ICMs; the resulting drug-ICM formulations possess slow and sustained drug release profiles under physiological-mimicking conditions. ICMs exhibit negligible cytotoxicity in human uterine sarcoma cancer cells by using biodegradable aliphatic polyester as the hydrophobic segments. Relative to free Dox, Dox-loaded ICMs show a reduced cytotoxicity due to the late intracellular release of Dox from ICMs. Overall, ICMs represent a new type of biodegradable cross-linked micelle and can be employed as a promising platform for delivering a broad variety of hydrophobic drugs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cross-linked polyethylene does not reduce wear in total knee arthroplasty.
Lasurt-Bachs, S; Torner, P; Maculé, F; Prats, E; Menéndez-García, F; Ríos-Guillermo, J; Torrents, A
To compare two different types of inserts: Ultra-high molecular weight polyethylene (UHMWPE) and cross-linked polyethylene with a quantitative and qualitative study of polyethylene wear particles in synovial fluid 3 years after total knee arthroplasty. A prospective, randomized, controlled cohort study with blinded evaluation was carried out on 25 patients undergoing staged bilateral total knee replacement, 6 months apart. Knee arthrocentesis was performed on 12 patients 3 years after surgery, and the polyethylene particles were analyzed. No significant differences were found in the number of particles generated by the two different types of inserts at 3 years from total knee arthroplasty (3,000×: x¯ cross-linked=849.7; x¯ UHMWPE=796.9; P=.63; 20,000×: x¯ cross-linked=66.3; x¯ UHMWPE=73.1; P=.76). Likewise, no differences in the probability of finding elongated (χ 2 =0.19; P=.66) or rounded (χ 2 =1.44; P=.23) particles in both types of inserts were observed. However, the probability of finding fibrillar particles is 3.08 times greater in UHMWPE. Cross-linked polyethylene does not significantly reduce the generation of polyethylene particles in patients with total knee arthroplasty, 3 years after the surgical procedure. Copyright © 2018 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.
Randleman, J Bradley; Su, Johnny P; Scarcelli, Giuliano
2017-06-01
To evaluate the biomechanical changes occurring after LASIK flap creation and rapid corneal cross-linking (CXL) measured with Brillouin light microscopy. Porcine eyes (n = 11) were evaluated by Brillouin light microscopy sequentially in the following order: virgin state, after LASIK flap creation, and after rapid CXL. Each eye served as its own control. Depth profile of the Brillouin frequency shift was computed to reveal the depth-dependent changes in corneal stiffness. There was a statistically significant reduction of Brillouin shift (reduced corneal stiffness) after LASIK flap creation compared to virgin corneas across total corneal thickness (-0.035 GHz, P = .0195) and within the anterior stromal region (-0.104 GHz, P = .0039). Changes in the central (-0.029 GHz, P = .0391) and posterior (-0.005 GHz, P = .99) stromal regions were not significant. There was a small increase in Brillouin shift after rapid cross-linking that was not statistically or clinically significant across total corneal thickness (0.006 GHz, P = .4688 for any specific stromal region; 0.002 to 0.009 GHz, P > .46 for all). LASIK flap creation significantly reduced Brillouin shift in the anterior third of the stroma in porcine eyes. Rapid corneal cross-linking had no significant effect on Brillouin shift after LASIK flap creation in porcine eyes. With further validation, non-contact, non-perturbative Brillouin microscopy could become a useful monitoring tool to evaluate the biomechanical impact of corneal refractive procedures and corneal cross-linking protocols. [J Refract Surg. 2017;33(6):408-414.]. Copyright 2017, SLACK Incorporated.
Approaches to New Endcaps for Improved Oxidation Resistance
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Frimer, Aryeh A.
1999-01-01
Norbornenyl-end capped PMR polyimide resins are widely used as polymer matrix composite materials for aircraft engine applications, since they combine ease of processing with good oxidative stability up to 300 C. PMR resins are prepared by a two-step approach involving the initial formation of oligomeric pre-polymers capped at both ends by a latent reactive end cap. The end cap undergoes cross-linking during higher temperature processing, producing the desired low density, high specific strength materials, for PMR- 15. The end cap facilitates processing by controlling the molecular weight of the oligomer and allowing flow before it cross-links. However, after cross-linking, this very end cap accounts for much of the weight loss in the polymer on aging in air at elevated temperatures. Understanding this degradation provides clues for designing new end caps to slow down degradation, and prolong the lifetime of the material.
Population structuring of multi-copy, antigen-encoding genes in Plasmodium falciparum
Artzy-Randrup, Yael; Rorick, Mary M; Day, Karen; Chen, Donald; Dobson, Andrew P; Pascual, Mercedes
2012-01-01
The coexistence of multiple independently circulating strains in pathogen populations that undergo sexual recombination is a central question of epidemiology with profound implications for control. An agent-based model is developed that extends earlier ‘strain theory’ by addressing the var gene family of Plasmodium falciparum. The model explicitly considers the extensive diversity of multi-copy genes that undergo antigenic variation via sequential, mutually exclusive expression. It tracks the dynamics of all unique var repertoires in a population of hosts, and shows that even under high levels of sexual recombination, strain competition mediated through cross-immunity structures the parasite population into a subset of coexisting dominant repertoires of var genes whose degree of antigenic overlap depends on transmission intensity. Empirical comparison of patterns of genetic variation at antigenic and neutral sites supports this role for immune selection in structuring parasite diversity. DOI: http://dx.doi.org/10.7554/eLife.00093.001 PMID:23251784
Multi-Level Sequential Pattern Mining Based on Prime Encoding
NASA Astrophysics Data System (ADS)
Lianglei, Sun; Yun, Li; Jiang, Yin
Encoding is not only to express the hierarchical relationship, but also to facilitate the identification of the relationship between different levels, which will directly affect the efficiency of the algorithm in the area of mining the multi-level sequential pattern. In this paper, we prove that one step of division operation can decide the parent-child relationship between different levels by using prime encoding and present PMSM algorithm and CROSS-PMSM algorithm which are based on prime encoding for mining multi-level sequential pattern and cross-level sequential pattern respectively. Experimental results show that the algorithm can effectively extract multi-level and cross-level sequential pattern from the sequence database.
Fanconi Anemia Proteins and Their Interacting Partners: A Molecular Puzzle
Kaddar, Tagrid; Carreau, Madeleine
2012-01-01
In recent years, Fanconi anemia (FA) has been the subject of intense investigations, primarily in the DNA repair research field. Many discoveries have led to the notion of a canonical pathway, termed the FA pathway, where all FA proteins function sequentially in different protein complexes to repair DNA cross-link damages. Although a detailed architecture of this DNA cross-link repair pathway is emerging, the question of how a defective DNA cross-link repair process translates into the disease phenotype is unresolved. Other areas of research including oxidative metabolism, cell cycle progression, apoptosis, and transcriptional regulation have been studied in the context of FA, and some of these areas were investigated before the fervent enthusiasm in the DNA repair field. These other molecular mechanisms may also play an important role in the pathogenesis of this disease. In addition, several FA-interacting proteins have been identified with roles in these “other” nonrepair molecular functions. Thus, the goal of this paper is to revisit old ideas and to discuss protein-protein interactions related to other FA-related molecular functions to try to give the reader a wider perspective of the FA molecular puzzle. PMID:22737580
Rigid Origami via Optical Programming and Deferred Self-Folding of a Two-Stage Photopolymer.
Glugla, David J; Alim, Marvin D; Byars, Keaton D; Nair, Devatha P; Bowman, Christopher N; Maute, Kurt K; McLeod, Robert R
2016-11-02
We demonstrate the formation of shape-programmed, glassy origami structures using a single-layer photopolymer with two mechanically distinct phases. The latent origami pattern consisting of rigid, high cross-link density panels and flexible, low cross-link density creases is fabricated using a series of photomask exposures. Strong optical absorption of the polymer formulation creates depth-wise gradients in the cross-link density of the creases, enforcing directed folding which enables programming of both mountain and valley folds within the same sheet. These multiple photomask patterns can be sequentially applied because the sheet remains flat until immersed into a photopolymerizable monomer solution that differentially swells the polymer to fold and form the origami structure. After folding, a uniform photoexposure polymerizes the absorbed solution, permanently fixing the shape of the folded structure while simultaneously increasing the modulus of the folds. This approach creates sharp folds by mimicking the stiff panels and flexible creases of paper origami while overcoming the traditional trade-off of self-actuated materials that require low modulus for folding and high modulus for mechanical robustness. Using this process, we demonstrate a waterbomb base capable of supporting 1500 times its own weight.
Grossmann, Isabel; Döring, Clemens; Jekle, Mario; Becker, Thomas; Koehler, Peter
2016-07-20
Doughs supplemented with endoxylanase (XYL) and varying amounts of microbial transglutaminase (TG) were analyzed by sequential protein extraction, quantitation of protein fractions and protein types, and determination of water-extractable arabinoxylans. With increasing TG activity, the concentration of prolamins and glutelins decreased and increased, respectively, and the prolamin-to-glutelin ratio strongly declined. The overall amount of extractable protein decreased with increasing TG level showing that cross-linking by TG provided high-molecular-weight protein aggregates. The decrease of the high-molecular-weight arabinoxylan fraction and the concurrent increase of the medium-molecular-weight fraction confirmed the degradation of arabinoxylans by XYL. However, XYL addition did not lead to significant improved cross-linking of rye proteins by TG. Volume and crumb hardness measurements of bread showed increased protein connectivity induced by XYL and TG. Significant positive effects on the final bread quality were especially obtained by XYL addition.
Changes in transthoracic impedance during sequential biphasic defibrillation.
Deakin, Charles D; Ambler, Jonathan J S; Shaw, Steven
2008-08-01
Sequential monophasic defibrillation reduces transthoracic impedance (TTI) and progressively increases current flow for any given energy level. The effect of sequential biphasic shocks on TTI is unknown. We therefore studied patients undergoing elective cardioversion using a biphasic waveform to establish whether this is a phenomenon seen in the clinical setting. Adults undergoing elective DC cardioversion for atrial flutter or fibrillation received sequential transthoracic shocks using an escalating protocol (70J, 100J, 150J, 200J, and 300J) with a truncated exponential biphasic waveform. TTI was calculated through the defibrillator circuit and recorded electronically. Successful cardioversion terminated further defibrillation shocks. A total of 58 patients underwent elective cardioversion. Cardioversion was successful in 93.1% patients. First shock TTI was 92.2 [52.0-126.0]Omega (n=58) and decreased significantly with each sequential shock. Mean TTI in patients receiving five shocks (n=5) was 85.0Omega. Sequential biphasic defibrillation decreases TTI in a similar manner to that seen with monophasic waveforms. The effect is likely during defibrillation during cardiac arrest by the quick succession in which shocks are delivered and the lack of cutaneous blood flow which limits the inflammatory response. The ability of biphasic defibrillators to adjust their waveform according to TTI is likely to minimise any effect of these findings on defibrillation efficacy.
Formation mechanism of glyoxal-DNA adduct, a DNA cross-link precursor.
Vilanova, B; Fernández, D; Casasnovas, R; Pomar, A M; Alvarez-Idaboy, J R; Hernández-Haro, N; Grand, A; Adrover, M; Donoso, J; Frau, J; Muñoz, F; Ortega-Castro, J
2017-05-01
DNA nucleobases undergo non-enzymatic glycation to nucleobase adducts which can play important roles in vivo. In this work, we conducted a comprehensive experimental and theoretical kinetic study of the mechanisms of formation of glyoxal-guanine adducts over a wide pH range in order to elucidate the molecular basis for the glycation process. Also, we performed molecular dynamics simulations to investigate how open or cyclic glyoxal-guanine adducts can cause structural changes in an oligonucleotide model. A thermodynamic study of other glycating agents including methylglyoxal, acrolein, crotonaldehyde, 4-hydroxynonenal and 3-deoxyglucosone revealed that, at neutral pH, cyclic adducts were more stable than open adducts; at basic pH, however, the open adducts of 3-deoxyglucosone, methylglyoxal and glyoxal were more stable than their cyclic counterparts. This result can be ascribed to the ability of the adducts to cross-link DNA. The new insights may contribute to improve our understanding of the connection between glycation and DNA cross-linking. Copyright © 2017 Elsevier B.V. All rights reserved.
Leclercq, Ségolène; Blancher, Guillaume
2012-10-01
The respective effects of chewing activity, aroma release from a gelled candy, and aroma perception were investigated. Specifically, the study aimed at 1) comparing an imposed chewing and swallowing pattern (IP) and free protocol (FP) on panelists for in vivo measurements, 2) investigating carryover effects in sequential eating, and 3) studying the link between instrumental data and their perception counterpart. Chewing activity, in-nose aroma concentration, and aroma perception over time were measured by electromyography, proton transfer reaction-mass spectrometry, and time intensity, respectively. Model gel candies were flavored at 2 intensity levels (low-L and high-H). The panelists evaluated 3 sequences (H then H, H then L, and L then H) in duplicates with both IP and FP. They scored aroma intensity over time while their in-nose aroma concentrations and their chewing activity were measured. Overall, only limited advantages were found in imposing a chewing and swallowing pattern for instrumental and sensory data. In addition, the study highlighted the role of brain integration on perceived intensity and dynamics of perception, in the framework of sequential eating without rinsing. Because of the presence of adaptation phenomena, contrast effect, and potential taste and texture cross-modal interaction with aroma perception, it was concluded that dynamic in-nose concentration data provide only one part of the perception picture and therefore cannot be used alone in prediction models.
Hierarchically assembled theranostic nanostructures for siRNA delivery and imaging applications.
Shrestha, Ritu; Elsabahy, Mahmoud; Luehmann, Hannah; Samarajeewa, Sandani; Florez-Malaver, Stephanie; Lee, Nam S; Welch, Michael J; Liu, Yongjian; Wooley, Karen L
2012-10-24
Dual functional hierarchically assembled nanostructures, with two unique functions of carrying therapeutic cargo electrostatically and maintaining radiolabeled imaging agents covalently within separate component building blocks, have been developed via the supramolecular assembly of several spherical cationic shell cross-linked nanoparticles clustered around a central anionic shell cross-linked cylinder. The shells of the cationic nanoparticles and the hydrophobic core domain of the anionic central cylindrical nanostructure of the assemblies were utilized to complex negatively charged nucleic acids (siRNA) and to undergo radiolabeling, respectively, for potential theranostic applications. The assemblies exhibited exceptional cell transfection and radiolabeling efficiencies, providing an overall advantage over the individual components, which could each facilitate only one or the other of the functions.
S Chapman, Jocelyn; Roddy, Erika; Panighetti, Anna; Hwang, Shelley; Crawford, Beth; Powell, Bethan; Chen, Lee-May
2016-12-01
Women with breast cancer who carry BRCA1 or BRCA2 mutations must also consider risk-reducing salpingo-oophorectomy (RRSO) and how to coordinate this procedure with their breast surgery. We report the factors associated with coordinated versus sequential surgery and compare the outcomes of each. Patients in our cancer risk database who had breast cancer and a known deleterious BRCA1/2 mutation before undergoing breast surgery were included. Women who chose concurrent RRSO at the time of breast surgery were compared to those who did not. Sixty-two patients knew their mutation carrier status before undergoing breast cancer surgery. Forty-three patients (69%) opted for coordinated surgeries, and 19 (31%) underwent sequential surgeries at a median follow-up of 4.4 years. Women who underwent coordinated surgery were significantly older than those who chose sequential surgery (median age of 45 vs. 39 years; P = .025). There were no differences in comorbidities between groups. Patients who received neoadjuvant chemotherapy were more likely to undergo coordinated surgery (65% vs. 37%; P = .038). Sequential surgery patients had longer hospital stays (4.79 vs. 3.44 days, P = .01) and longer operating times (8.25 vs. 6.38 hours, P = .006) than patients who elected combined surgery. Postoperative complications were minor and were no more likely in either group (odds ratio, 4.76; 95% confidence interval, 0.56-40.6). Coordinating RRSO with breast surgery is associated with receipt of neoadjuvant chemotherapy, longer operating times, and hospital stays without an observed increase in complications. In the absence of risk, surgical options can be personalized. Copyright © 2016 Elsevier Inc. All rights reserved.
Maugeri, Pearson T; Griese, Julia J; Branca, Rui M; Miller, Effie K; Smith, Zachary R; Eirich, Jürgen; Högbom, Martin; Shafaat, Hannah S
2018-01-31
The heterobimetallic R2lox protein binds both manganese and iron ions in a site-selective fashion and activates oxygen, ultimately performing C-H bond oxidation to generate a tyrosine-valine cross-link near the active site. In this work, we demonstrate that, following assembly, R2lox undergoes photoinduced changes to the active site geometry and metal coordination motif. Through spectroscopic, structural, and mass spectrometric characterization, the photoconverted species is found to consist of a tyrosinate-bound iron center following light-induced decarboxylation of a coordinating glutamate residue and cleavage of the tyrosine-valine cross-link. This process occurs with high quantum efficiencies (Φ = 3%) using violet and near-ultraviolet light, suggesting that the photodecarboxylation is initiated via ligand-to-metal charge transfer excitation. Site-directed mutagenesis and structural analysis suggest that the cross-linked tyrosine-162 is the coordinating residue. One primary product is observed following irradiation, indicating potential use of this class of proteins, which contains a putative substrate channel, for controlled photoinduced decarboxylation processes, with relevance for in vivo functionality of R2lox as well as application in environmental remediation.
Fang, Yuyu; Li, Caixia; Wu, Lei; Bai, Bing; Li, Xing; Jia, Yiming; Feng, Wen; Yuan, Lihua
2015-09-07
A novel non-symmetric pillar[5]arene bearing triazole-linked 8-oxyquinolines at one rim was synthesized and demonstrated as a sequential fluorescence sensor for thorium(iv) followed by fluoride ions with high sensitivity and selectivity.
High data rate coding for the space station telemetry links.
NASA Technical Reports Server (NTRS)
Lumb, D. R.; Viterbi, A. J.
1971-01-01
Coding systems for high data rates were examined from the standpoint of potential application in space-station telemetry links. Approaches considered included convolutional codes with sequential, Viterbi, and cascaded-Viterbi decoding. It was concluded that a high-speed (40 Mbps) sequential decoding system best satisfies the requirements for the assumed growth potential and specified constraints. Trade-off studies leading to this conclusion are viewed, and some sequential (Fano) algorithm improvements are discussed, together with real-time simulation results.
Abolmaali, Samira Sadat; Tamaddon, Ali; Yousefi, Gholamhossein; Javidnia, Katayoun; Dinarvand, Rasoul
2014-01-01
A functional polycation nanonetwork was developed for delivery of water soluble chemotherapeutic agents. The complexes of polyethyleneimine grafted methoxy polyethylene glycol (PEI-g-mPEG) and Zn(2+) were utilized as the micellar template for cross-linking with dithiodipropionic acid, followed by an acidic pH dialysis to remove the metal ion from the micellar template. The synthesis method was optimized according to pH, the molar ratio of Zn(2+), and the cross-link ratio. The atomic force microscopy showed soft, discrete, and uniform nano-networks. They were sensitive to the simulated reductive environment as determined by Ellman's assay. They showed few positive ζ potential and an average hydrodynamic diameter of 162±10 nm, which decreased to 49±11 nm upon dehydration. The ionic character of the nano-networks allowed the achievement of a higher-loading capacity of methotrexate (MTX), approximately 57% weight per weight, depending on the cross-link and the drug feed ratios. The nano-networks actively loaded with MTX presented some suitable properties, such as the hydrodynamic size of 117±16 nm, polydispersity index of 0.22, and a prolonged swelling-controlled release profile over 24 hours that boosted following reductive activation of the nanonetwork biodegradation. Unlike the PEI ionomer, the nano-networks provided an acceptable cytotoxicity profile. The drug-loaded nano-networks exhibited more specific cytotoxicity against human hepatocellular carcinoma cells if compared to free MTX at concentrations above 1 μM. The enhanced antitumor activity in vitro might be attributed to endocytic entry of MTX-loaded nano-networks that was found in the epifluorescence microscopy experiment for the fluorophore-labeled nano-networks.
Abolmaali, Samira Sadat; Tamaddon, Ali; Yousefi, Gholamhossein; Javidnia, Katayoun; Dinarvand, Rasoul
2014-01-01
A functional polycation nanonetwork was developed for delivery of water soluble chemotherapeutic agents. The complexes of polyethyleneimine grafted methoxy polyethylene glycol (PEI-g-mPEG) and Zn2+ were utilized as the micellar template for cross-linking with dithiodipropionic acid, followed by an acidic pH dialysis to remove the metal ion from the micellar template. The synthesis method was optimized according to pH, the molar ratio of Zn2+, and the cross-link ratio. The atomic force microscopy showed soft, discrete, and uniform nano-networks. They were sensitive to the simulated reductive environment as determined by Ellman’s assay. They showed few positive ζ potential and an average hydrodynamic diameter of 162±10 nm, which decreased to 49±11 nm upon dehydration. The ionic character of the nano-networks allowed the achievement of a higher-loading capacity of methotrexate (MTX), approximately 57% weight per weight, depending on the cross-link and the drug feed ratios. The nano-networks actively loaded with MTX presented some suitable properties, such as the hydrodynamic size of 117±16 nm, polydispersity index of 0.22, and a prolonged swelling-controlled release profile over 24 hours that boosted following reductive activation of the nanonetwork biodegradation. Unlike the PEI ionomer, the nano-networks provided an acceptable cytotoxicity profile. The drug-loaded nano-networks exhibited more specific cytotoxicity against human hepatocellular carcinoma cells if compared to free MTX at concentrations above 1 μM. The enhanced antitumor activity in vitro might be attributed to endocytic entry of MTX-loaded nano-networks that was found in the epifluorescence microscopy experiment for the fluorophore-labeled nano-networks. PMID:24944513
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, William F. M.; Xie, Guojun; Vatankhah Varnoosfaderani, Mohammad
The goal of this study is to use ABA triblock copolymers with central bottlebrush B segments and crystalline linear chain A segments to demonstrate the effect of side chains on the formation and mechanical properties of physical networks cross-linked by crystallites. For this purpose, a series of bottlebrush copolymers was synthesized consisting of central amorphous bottlebrush polymer segments with a varying degree of polymerization (DP) of poly(n-butyl acrylate) (PnBA) side chains and linear tail blocks of crystallizable poly(octadecyl acrylate-stat-docosyl acrylate) (poly(ODA-stat-DA)). The materials were generated by sequential atom transfer radical polymerization (ATRP) steps starting with a series of bifunctional macroinitiatorsmore » followed by the growth of two ODA-stat-DA linear-chain tails and eventually growing poly(nBA) side chains with increasing DPs. Crystallization of the poly(ODA-stat-DA) tails resulted in a series of reversible physical networks with bottlebrush strands bridging crystalline cross-links. They displayed very low moduli of elasticity of the order of 10 3–10 4 Pa. These distinct properties are due to the bottlebrush architecture, wherein densely grafted side chains play a dual role by facilitating disentanglement of the network strands and confining crystallization of the linear-chain tails. This combination leads to physical cross-linking of supersoft networks without percolation of the crystalline phase. The cross-link density was effectively controlled by the DP of the side chains with respect to the DP of the linear tails (n A). Furthermore, shorter side chains allowed for crystallization of the linear tails of neighboring bottlebrushes, while steric repulsion between longer side chains hindered the phase separation and crystallization process and prevented network formation.« less
Daniel, William F. M.; Xie, Guojun; Vatankhah Varnoosfaderani, Mohammad; ...
2017-02-24
The goal of this study is to use ABA triblock copolymers with central bottlebrush B segments and crystalline linear chain A segments to demonstrate the effect of side chains on the formation and mechanical properties of physical networks cross-linked by crystallites. For this purpose, a series of bottlebrush copolymers was synthesized consisting of central amorphous bottlebrush polymer segments with a varying degree of polymerization (DP) of poly(n-butyl acrylate) (PnBA) side chains and linear tail blocks of crystallizable poly(octadecyl acrylate-stat-docosyl acrylate) (poly(ODA-stat-DA)). The materials were generated by sequential atom transfer radical polymerization (ATRP) steps starting with a series of bifunctional macroinitiatorsmore » followed by the growth of two ODA-stat-DA linear-chain tails and eventually growing poly(nBA) side chains with increasing DPs. Crystallization of the poly(ODA-stat-DA) tails resulted in a series of reversible physical networks with bottlebrush strands bridging crystalline cross-links. They displayed very low moduli of elasticity of the order of 10 3–10 4 Pa. These distinct properties are due to the bottlebrush architecture, wherein densely grafted side chains play a dual role by facilitating disentanglement of the network strands and confining crystallization of the linear-chain tails. This combination leads to physical cross-linking of supersoft networks without percolation of the crystalline phase. The cross-link density was effectively controlled by the DP of the side chains with respect to the DP of the linear tails (n A). Furthermore, shorter side chains allowed for crystallization of the linear tails of neighboring bottlebrushes, while steric repulsion between longer side chains hindered the phase separation and crystallization process and prevented network formation.« less
Nourbakhsh, Himan; Madadlou, Ashkan; Emam-Djomeh, Zahra; Wang, Yi-Cheng; Gunasekaran, Sundaram; Mousavi, Mohammad E
2016-02-24
A whey protein isolate solution was heat-denatured and treated with the enzyme transglutaminase, which cross-linked ≈26% of the amino groups and increased the magnitude of the ζ-potential value. The protein solution was microemulsified, and then the resulting water-in-oil microemulsion was dispersed within a gallic acid-rich model wastewater. Gallic acid extraction by the outlined microemulsion liquid membrane (MLM) from the exterior aqueous phase (wastewater) and accumulation within the internal aqueous nanodroplets induced protein cold-set gelation and resulted in the formation of gallic acid-enveloping nanoparticles. Measurements with a strain-controlled rheometer indicated a progressive increase in the MLM viscosity during gallic acid recovery corresponding to particle formation. The mean hydrodynamic size of the nanoparticles made from the heat-denatured and preheated enzymatically cross-linked proteins was 137 and 122 nm, respectively. The enzymatic cross-linking of whey proteins led to a higher gallic acid recovery yield and increased the glass transition enthalpy and temperature. A similar impact on glass transition indices was observed by the gallic acid-induced nanoparticulation of proteins. Scanning electron microscopy showed the existence of numerous jammed/fused nanoparticles. It was suggested on the basis of the results of Fourier transform infrared spectroscopy that the in situ nanoparticulation of proteins shifted the C-N stretching and C-H bending peaks to higher wavenumbers. X-ray diffraction results proposed a decreased β-sheet content for proteins because of the acid-induced particulation. The nanoparticles made from the enzymatically cross-linked protein were more stable against the in vitro gastrointestinal digestion and retained almost 19% of the entrapped gallic acid after 300 min sequential gastric and intestinal digestions.
Kanellopoulos, Anastasios John
2009-09-01
The safety and efficacy of corneal collagen cross-linking (CXL) and topography-guided photorefractive keratectomy (PRK) using a different sequence and timing were evaluated in consecutive keratoconus cases. This study included a total of 325 eyes with keratoconus. Eyes were divided into two groups. The first group (n=127 eyes) underwent CXL with subsequent topography-guided PRK performed 6 months later (sequential group) and the second group (n=198 eyes) underwent CXL and PRK in a combined procedure on the same day (simultaneous group). Statistical differences were examined for pre- to postoperative changes in uncorrected (UCVA, logMAR) and best-spectacle-corrected visual acuity (BSCVA, logMAR), manifest refraction spherical equivalent (MRSE), keratometry (K), topography, central corneal thickness, endothelial cell count, corneal haze, and ectatic progression. Mean follow-up was 36+/-18 months (range: 24 to 68 months). At last follow-up in the sequential group, the mean UCVA improved from 0.9+/-0.3 logMAR to 0.49+/-0.25 logMAR, and mean BSCVA from 0.41+/-0.25 logMAR to 0.16+/-0.22 logMAR. Mean reduction in spherical equivalent refraction was 2.50+/-1.20 diopters (D), mean haze score was 1.2+/-0.5, and mean reduction in K was 2.75+/-1.30 D. In the simultaneous group, mean UCVA improved from 0.96+/-0.2 logMAR to 0.3+/-0.2 logMAR, and mean BSCVA from 0.39+/-0.3 logMAR to 0.11+/-0.16 logMAR. Mean reduction in spherical equivalent refraction was 3.20+/-1.40 D, mean haze score was 0.5+/-0.3, and mean reduction in K was 3.50+/-1.3 D. Endothelial cell count preoperatively and at last follow-up was unchanged (P<.05) in both groups. Statistically, the simultaneous group did better (P<.05) in all fields evaluated, with improvement in UCVA and BSCVA, a greater mean reduction in spherical equivalent refraction and keratometry, and less corneal haze. Same-day simultaneous topography-guided PRK and CXL appears to be superior to sequential CXL with later PRK in the visual rehabilitation of progressing keratoconus. Copyright 2009, SLACK Incorporated.
Outcomes of simultaneous resections for patients with synchronous colorectal liver metastases.
Slesser, A A P; Chand, M; Goldin, R; Brown, G; Tekkis, P P; Mudan, S
2013-12-01
The aim of this study was to determine the outcomes associated with simultaneous resections compared to patients undergoing sequential resections for synchronous colorectal liver metastases. Consecutive patients undergoing hepatic resections between 2000 and 2012 for synchronous colorectal liver metastases were identified from a prospectively maintained database. Of the 112 hepatic resections that were performed, 36 were simultaneous resections and 76 were sequential resections. There was no difference in disease severity: number of metastases (P 0.228), metastatic size (P 0.58), the primary tumour nodal status (P 0.283), CEA (P 0.387) or the presence of extra-hepatic metastases (P 1.0). Major hepatic resections were performed in 23 (64%) and 60 (79%) of patients in the simultaneous and sequential groups respectively (P 0.089). Intra-operatively no differences were found in blood loss (P 1.0), duration of surgery (P 0.284) or number of adverse events (P 1.0). There were no differences in post-operative complications (P 0.161) or post-operative mortality (P 0.241). The length of hospital stay was 14 (95% CI 12.0-18.0) and 18.5 (95% CI 16.0-23.0) days in the simultaneous and sequential groups respectively (P 0.03). The 3-year overall survival was 75% and 64% in the simultaneous and sequential groups respectively (P 0.379). The 3-year hepatic recurrence free survival was 61% and 46% in the simultaneous and sequential groups respectively (P 0.254). Simultaneous resections result in similar short-term and long-term outcomes as patients receiving sequential resections with comparable metastatic disease and are associated with a significant reduction in the length of stay. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wang, Nelson; Qian, Pierre; Kumar, Shejil; Yan, Tristan D; Phan, Kevin
2016-04-15
There have been a myriad of studies investigating the effectiveness of N-acetylcysteine (NAC) in the prevention of contrast induced nephropathy (CIN) in patients undergoing coronary angiography (CAG) with or without percutaneous coronary intervention (PCI). However the consensus is still out about the effectiveness of NAC pre-treatment due to vastly mixed results amongst the literature. The aim of this study was to conduct a meta-analysis and trial sequential analysis to determine the effects of pre-operative NAC in lowering the incidence of CIN in patients undergoing CAG and/or PCI. A systematic literature search was performed to include all randomized controlled trials (RCTs) comparing NAC versus control as pretreatment for CAG and/or PCI. A traditional meta-analysis and several subgroup analyses were conducted using traditional meta-analysis with relative risk (RR), trial sequential analysis, and meta-regression analysis. 43 RCTs met our inclusion criteria giving a total of 3277 patients in both control and treatment arms. There was a significant reduction in the risk of CIN in the NAC treated group compared to control (OR 0.666; 95% CI, 0.532-0.834; I2=40.11%; p=0.004). Trial sequential analysis, using a relative risk reduction threshold of 15%, indicates that the evidence is firm. The results of the present paper support the use of NAC in the prevention of CIN in patients undergoing CAG±PCI. Future studies should focus on the benefits of NAC amongst subgroups of high-risk patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Wear of a 5 megarad cross-linked polyethylene liner: a 6-year RSA study.
Callary, Stuart A; Campbell, David G; Mercer, Graham; Nilsson, Kjell G; Field, John R
2013-07-01
One cross-linked polyethylene (XLPE) liner is manufactured using a lower dose of radiation, 5 Mrad, which may result in less cross-linking. The reported in vivo wear rate of this XLPE liner in patients undergoing THA has varied, and has included some patients in each reported cohort who had greater than 0.1 mm/year of wear, which is an historical threshold for osteolysis. Previous studies have measured wear on plain radiographs, an approach that has limited sensitivity. We therefore measured the amount and direction of wear at 6 years using Radiostereometric analysis (RSA) in patients who had THAs that included a cross-linked polyethylene liner manufactured using 5 Mrad radiation. We prospectively reviewed wear in 30 patients who underwent primary THAs with the same design of cross-linked acetabular liner and a 28-mm articulation. Tantalum markers were inserted during surgery and all patients had RSA radiographic examinations at 1 week, 6 months, 1, 2, and 6 years postoperatively. The mean proximal, two-dimensional (2-D) and three-dimensional (3-D) wear rates calculated between 1 year and 6 years were 0.014, 0.014, and 0.018 mm/per year, respectively. The direction of the head penetration recorded between 1 week and 6 years was in a proximal direction for all patients, proximolateral for 16 of 24 patients, and proximomedial for eight of 24 patients. The proximal, 2-D and 3-D wear of a XLPE liner produced using 5 Mrad of radiation was low but measurable by RSA after 6 years. No patients had proximal 2-D or 3-D wear rates exceeding 0.1 mm/year. Further followup is needed to evaluate the effect of XLPE wear particles on the development of long-term osteolysis.
Chan, Henry L. Y.; Leung, Nancy W. Y.; Lau, Tracy C. M.; Wong, May L.; Sung, Joseph J. Y.
2000-01-01
The aim of our study was to compare the performances of two new hepatitis B virus (HBV) DNA assays, a cross-linking assay (NAXCOR) and a hybrid-capture amplification assay (Digene), versus the widely used branched-DNA (bDNA) assay (Chiron) in the monitoring of HBV DNA levels during antiviral treatment. Serial serum samples from 12 chronically HBV infected patients undergoing a phase II trial of an antiviral drug, 2′,3′-dideoxy-5-fluoro-3′-thiacytidine (FTC), were studied. A total of 96 serum samples were tested for HBV DNA using the cross-linking, hybrid-capture amplification, and bDNA assays. In the comparison of the cross-linking and bDNA assays, concordant results were found in 77 (80.3%) samples, no significant difference was found between the median log10 HBV DNA levels (6.66 versus 7.17 meq/ml), and the results of the two assays were closely correlated (r = 0.95). In the comparison of the hybrid-capture amplification and bDNA assays, concordant results were found in 79 (82.3%) samples, no significant difference was found between the median log10 HBV DNA levels (6.98 versus 6.99 meq/ml), and the results of the two assays were closely correlated (r = 0.99). Six (6.3%) samples by the cross-linking assay and 10 (10.4%) samples by the bDNA assay required retesting because of unacceptably high within-run coefficients of variance. No sample required retesting in the hybrid-capture amplification assay according to the internal validation. In conclusion, the cross-linking and hybrid-capture amplification assays were as sensitive as the bDNA assay for HBV DNA detection and can be recommended for monitoring of HBV DNA levels during antiviral treatment. PMID:10970358
NASA Astrophysics Data System (ADS)
Olree, E.; Robinson, D. M.; McQuarrie, N.; Ghoshal, S.; Olsen, J.
2016-12-01
Using balanced cross sections, one can visualize a valid and admissible interpretation of the surface and subsurface data. Khanal (2014) and Cross (2014) produced two valid and admissible cross sections along the Marsyandi River in central Nepal. However, thermochronologic data adds another dimension that must be adhered to when producing valid and admissible balanced cross sections. Since the previous cross sections were produced, additional zircon-helium (ZHe) cooling ages along the Marsyandi River show ages of 1 Ma near the Main Central thrust in the hinterland to 4 Ma near the Main Boundary thrust closer to the foreland. This distribution of cooling ages requires recent uplift in the hinterland, which is not present in the cross sections. Although a restored version of the Khanal (2014) cross section is sequentially deformed using 2D Move, the kinematic sequence implied in the cross section is inconsistent with the ZHe age distribution. The hinterland dipping duplex proposed by Khanal would require cooling ages that are oldest near the Main Central thrust and young southwards toward the active ramp located 80 km north of the Main Frontal thrust. Instead, the 4 Ma age near the Main Boundary thrust and the increasingly younger ages to the north could be produced by either a foreland-dipping Lesser Himalayan duplex, which would keep active uplift in the north, or by translation of the hinterland dipping duplex southward over the ramp, moving the active thrust ramp northward. To address this problem, a new balanced cross section was produced using both new mapping through the region and the ZHe age distribution as additional constraints. The section was then restored and sequentially deformed in 2D Move. This study illustrates that multiple cross sections can be viable and admissible; however, they can still be incorrect. Thermochronology places additional constraints on the permissible geometries, and thus increases our ability to predict subsurface geometries. The next step of this project is to link the uplift and erosion implied by the kinematic sequence of the new cross section to the measured cooling history by importing the cross section kinematics into advection diffusion modeling software that predicts cooling ages.
Sequential anaerobic/aerobic biodegradation of chloroethenes--aspects of field application.
Tiehm, Andreas; Schmidt, Kathrin R
2011-06-01
Because of a range of different industrial activities, sites contaminated with chloroethenes are a world-wide problem. Chloroethenes can be biodegraded by reductive dechlorination under anaerobic conditions as well as by oxidation under aerobic conditions. The tendency of chloroethenes to undergo reductive dechlorination decreases with a decreasing number of chlorine substituents, whereas with less chlorine substituents chloroethenes more easily undergo oxidative degradation. There is currently a growing interest in aerobic metabolic degradation of chloroethenes, which demonstrates advantages compared to cometabolic degradation pathways. Sequential anaerobic/aerobic biodegradation can overcome the disadvantages of reductive dechlorination and leads to complete mineralization of the chlorinated pollutants. This approach shows promise for site remediation in natural settings and in engineered systems. Copyright © 2011 Elsevier Ltd. All rights reserved.
Tissue-transglutaminase contributes to neutrophil granulocyte differentiation and functions.
Balajthy, Zoltán; Csomós, Krisztián; Vámosi, György; Szántó, Attila; Lanotte, Michel; Fésüs, László
2006-09-15
Promyelocytic NB4 leukemia cells undergo differentiation to granulocytes following retinoic acid treatment. Here we report that tissue transglutaminase (TG2), a protein cross-linking enzyme, was induced, then partially translocated into the nucleus, and became strongly associated with the chromatin during the differentiation process. The transglutaminase-catalyzed cross-link content of both the cytosolic and the nuclear protein fractions increased while NB4 cells underwent cellular maturation. Inhibition of cross-linking activity of TG2 by monodansylcadaverin in these cells led to diminished nitroblue tetrazolium (NBT) positivity, production of less superoxide anion, and decreased expression of GP91PHOX, the membrane-associated subunit of NADPH oxidase. Neutrophils isolated from TG2(-/-) mice showed diminished NBT reduction capacity, reduced superoxide anion formation, and down-regulation of the gp91phox subunit of NADPH oxidase, compared with wild-type cells. It was also observed that TG2(-/-) mice exhibited increased neutrophil phagocytic activity, but had attenuated neutrophil chemotaxis and impaired neutrophil extravasation with higher neutrophil counts in their circulation during yeast extract-induced peritonitis. These results clearly suggest that TG2 may modulate the expression of genes related to neutrophil functions and is involved in several intracellular and extracellular functions of extravasating neutrophil.
Slatter, David A.; Bihan, Dominique G.; Jarvis, Gavin E.; Stone, Rachael; Pugh, Nicholas; Giddu, Sumana; Farndale, Richard W.
2012-01-01
Recently, the ability of polymeric collagen-like peptides to regulate cell behavior has generated great interest. A triple-helical peptide known as collagen-related peptide (CRP) contains the sequence (Gly-Pro-Hyp)10. With Gly-Pro-Cys triplets appended to both of its termini, designated CRPcys, chemical cross-linking using heterobifunctional reagents generates CRPcys-XL, a potent, widely used, polymeric agonist for platelet Glycoprotein VI, whereas non-cross-linked, monomeric CRPcys antagonizes Glycoprotein VI. Here, we describe how cysteine in these triplets may also undergo random air-induced oxidation, especially upon prolonged storage or repeated freeze–thawing, to form disulphide bonds, resulting in a lesser degree of polymerization than with chemical cross-linking. We investigated the monomeric and polymeric states of these and other cysteine-containing collagen-derived peptides, using gel filtration and dynamic light scattering, allowing the size of a CRP-XL aggregate to be estimated. The effect of cysteine thiols upon peptide adsorption to surfaces and subsequent platelet responses was investigated. This demonstrated that cysteine is required for strong binding to glass coverslips and to plastic plates used in ELISA assays. PMID:22555281
Slatter, David A; Bihan, Dominique G; Jarvis, Gavin E; Stone, Rachael; Pugh, Nicholas; Giddu, Sumana; Farndale, Richard W
2012-07-01
Recently, the ability of polymeric collagen-like peptides to regulate cell behavior has generated great interest. A triple-helical peptide known as collagen-related peptide (CRP) contains the sequence (Gly-Pro-Hyp)(10). With Gly-Pro-Cys triplets appended to both of its termini, designated CRP(cys), chemical cross-linking using heterobifunctional reagents generates CRP(cys)-XL, a potent, widely used, polymeric agonist for platelet Glycoprotein VI, whereas non-cross-linked, monomeric CRP(cys) antagonizes Glycoprotein VI. Here, we describe how cysteine in these triplets may also undergo random air-induced oxidation, especially upon prolonged storage or repeated freeze-thawing, to form disulphide bonds, resulting in a lesser degree of polymerization than with chemical cross-linking. We investigated the monomeric and polymeric states of these and other cysteine-containing collagen-derived peptides, using gel filtration and dynamic light scattering, allowing the size of a CRP-XL aggregate to be estimated. The effect of cysteine thiols upon peptide adsorption to surfaces and subsequent platelet responses was investigated. This demonstrated that cysteine is required for strong binding to glass coverslips and to plastic plates used in ELISA assays. Copyright © 2012 Elsevier Inc. All rights reserved.
Li, Ang; Zhang, Donghui
2016-03-14
Amphiphilic block copolypeptoids consisting of a hydrophilic poly(N-ethyl glycine) segment and a hydrophobic poly[(N-propargyl glycine)-r-(N-decyl glycine)] random copolymer segment [PNEG-b-P(NPgG-r-NDG), EPgD] have been synthesized by sequential primary amine-initiated ring-opening polymerization (ROP) of the corresponding N-alkyl N-carboxyanhydride monomers. The block copolypeptoids form micelles in water and the micellar core can be cross-linked with a disulfide-containing diazide cross-linker by copper-mediated alkyne-azide cycloaddition (CuAAC) in aqueous solution. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis revealed the formation of spherical micelles with uniform size for both the core-cross-linked micelles (CCLMs) and non-cross-linked micelles (NCLMs) precursors for selective block copolypeptoid polymers. The CCLMs exhibited increased dimensional stability relative to the NCLMs in DMF, a nonselective solvent for the core and corona segments. Micellar dissociation of CCLMs can be induced upon addition of a reducing agent (e.g., dithiothreitol) in dilute aqueous solutions, as verified by a combination of fluorescence spectroscopy, size exclusion chromatography (SEC), and (1)H NMR spectroscopic measurement. Doxorubicin (DOX), an anticancer drug, can be loaded into the hydrophobic core of CCLMs with a maximal 23% drug loading capacity (DLC) and 37% drug loading efficiency (DLE). In vitro DOX release from the CCLMs can be triggered by DTT (10 mM), in contrast to significantly reduced DOX release in the absence of DTT, attesting to the reductively responsive characteristic of the CCLMs. While the CCLMs exhibited minimal cytotoxicity toward HepG2 cancer cells, DOX-loaded CCLMs inhibited the proliferation of the HepG2 cancer cells in a concentration and time dependent manner, suggesting the controlled release of DOX from the DOX-loaded CCLMS in the cellular environment.
Cloning and characterization of 2S albumin, Car i 1, a major allergen in pecan.
Sharma, Girdhari M; Irsigler, Andre; Dhanarajan, Pushparani; Ayuso, Rosalia; Bardina, Luda; Sampson, Hugh A; Roux, Kenneth H; Sathe, Shridhar K
2011-04-27
Although pecans are associated with IgE-mediated food allergies, the allergens responsible remain to be identified and characterized. The 2S albumin gene was amplified from the pecan cDNA library. Dot-blots were used to screen the recombinant protein with pecan allergic patients' serum. The affinity purified native protein was analyzed by Edman sequencing and mass spectrometry/mass spectrometry (MS/MS) analysis. Cross-reactivity with walnut was determined by inhibition enzyme-linked immunosorbent assay (ELISA). Sequential epitopes were determined by probing the overlapping peptides with three different patients' serum pool. The 3-dimensional homology model was generated, and the locations of the pecan epitopes were compared with those of known sequential epitopes on other allergenic tree nut homologues. Of 28 patients tested by dot-blot, 22 (79%) bound to 2S albumin, designated as Car i 1. Edman sequencing and the MS/MS sequencing of native 2S albumin confirmed the identity of recombinant (r) Car i 1. Both pecan and walnut protein extracts inhibited the IgE-binding to rCar i 1. Sequential epitope mapping indicated weak, moderate, and strong reactivity against 12, 7, and 5 peptides, respectively. Of the 11 peptides recognized by all serum pools, 5 peptides were strongly reactive and located in 3 discrete regions of the Car i 1 (amino acids 43-57, 67-78, and 106-120). Three-dimensional modeling revealed IgE-reactive epitopes to be solvent accessible and share significant homology with other tree nuts providing a possible basis for previously observed cross-reactivity.
Formation of Heterogeneous Toroidal-Spiral Particles -- by Drop Sedimentation and Interaction
NASA Astrophysics Data System (ADS)
Liu, Ying; Nitsche, Ludwig; Gemeinhart, Richard; Sharma, Vishal; Szymusiak, Magdalena; Shen, Hao
2013-03-01
We describe self-assembly of polymeric particles, whereby competitive kinetics of viscous sedimentation, diffusion, and cross-linking yield a controllable toroidal-spiral (TS) structure. Precursor polymeric droplets are splashed through the surface of a less dense, miscible solution, after which viscous forces entrain the surrounding bulk solution into the sedimenting polymer drop to form TS channels. The intricate structure forms because low interfacial tension between the two miscible solutions is dominated by viscous forces. The biocompatible polymer, poly(ethylene glycol) diacrylate (PEG-DA), is used to demonstrate the solidification of the TS shapes at various configurational stages by UV-triggered cross-linking. The dimensions of the channels are controlled by Weber number during impact on the surface, and Reynolds number and viscosity ratio during subsequent sedimentation. Within the critical separation distance, interaction of multiple drops generates similar structure with more flexibility. Furthermore, the understanding of multiple drop interaction is essential for mass production of TS particles by using parallel and sequential arrays of drops. This work was supported by NSF CBET Grant CBET-1039531.
Thermoplastic processing of proteins for film formation--a review.
Hernandez-Izquierdo, V M; Krochta, J M
2008-03-01
Increasing interest in high-quality food products with increased shelf life and reduced environmental impact has encouraged the study and development of edible and/or biodegradable polymer films and coatings. Edible films provide the opportunity to effectively control mass transfer among different components in a food or between the food and its surrounding environment. The diversity of proteins that results from an almost limitless number of side-chain amino-acid sequential arrangements allows for a wide range of interactions and chemical reactions to take place as proteins denature and cross-link during heat processing. Proteins such as wheat gluten, corn zein, soy protein, myofibrillar proteins, and whey proteins have been successfully formed into films using thermoplastic processes such as compression molding and extrusion. Thermoplastic processing can result in a highly efficient manufacturing method with commercial potential for large-scale production of edible films due to the low moisture levels, high temperatures, and short times used. Addition of water, glycerol, sorbitol, sucrose, and other plasticizers allows the proteins to undergo the glass transition and facilitates deformation and processability without thermal degradation. Target film variables, important in predicting biopackage performance under various conditions, include mechanical, thermal, barrier, and microstructural properties. Comparisons of film properties should be made with care since results depend on parameters such as film-forming materials, film formulation, fabrication method, operating conditions, testing equipment, and testing conditions. Film applications include their use as wraps, pouches, bags, casings, and sachets to protect foods, reduce waste, and improve package recyclability.
Ku, Yixuan; Zhao, Di; Hao, Ning; Hu, Yi; Bodner, Mark; Zhou, Yong-Di
2015-01-01
Both monkey neurophysiological and human EEG studies have shown that association cortices, as well as primary sensory cortical areas, play an essential role in sequential neural processes underlying cross-modal working memory. The present study aims to further examine causal and sequential roles of the primary sensory cortex and association cortex in cross-modal working memory. Individual MRI-based single-pulse transcranial magnetic stimulation (spTMS) was applied to bilateral primary somatosensory cortices (SI) and the contralateral posterior parietal cortex (PPC), while participants were performing a tactile-visual cross-modal delayed matching-to-sample task. Time points of spTMS were 300 ms, 600 ms, 900 ms after the onset of the tactile sample stimulus in the task. The accuracy of task performance and reaction time were significantly impaired when spTMS was applied to the contralateral SI at 300 ms. Significant impairment on performance accuracy was also observed when the contralateral PPC was stimulated at 600 ms. SI and PPC play sequential and distinct roles in neural processes of cross-modal associations and working memory. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Fengmei; Zhang, Juan; Pu, Yuepu
2017-10-01
This study is designed to perform a meta-analysis and trial sequential analysis (TSA) to investigate whether people with G6PD deficiency suffered less malarial infection. We searched from PubMed, Science Direct, Springer Link, CNKI, and Wan Fang databases for case-control study, cohort study or cross section study until April 2017. TSA was used to determine the state of evidence and calculate the required sample size. Eight case-control studies and five cross-sectional studies (30,683participants) were included in this meta-analysis. Compared with normal control group, we found significant protection from severe malaria (OR 0.644, 95% CI [0.493-0.842]; P=0.001) among people with decreasing G6PD activity. People with variations of G6PD gene at nucleotide 202(G6PD A-) were also found to be associated with resistance on severe malaria pooled (OR 0.851, 95% CI [0.779-0.930]; P =0.0001). Sex-stratified test suggested that protection of severe malaria is conferred to both G6PD A-males and heterozygous females (with a single copy of the variant). In conclusion, our study found a significant protection from severe malaria among G6PD deficient people compared to the
A versatile nanoplatform for synergistic combination therapy to treat human esophageal cancer.
Wang, Xin-Shuai; Kong, De-Jiu; Lin, Tzu-Yin; Li, Xiao-Cen; Izumiya, Yoshihiro; Ding, Xue-Zhen; Zhang, Li; Hu, Xiao-Chen; Yang, Jun-Qiang; Gao, She-Gan; Lam, Kit S; Li, Yuan-Pei
2017-06-01
One of the major goals of precision oncology is to promote combination therapy to improve efficacy and reduce side effects of anti-cancer drugs based on their molecular mechanisms. In this study, we aimed to develop and validate new nanoformulations of docetaxel (DTX) and bortezomib (BTZ) for targeted combination therapy to treat human esophageal cancer. By leveraging our versatile disulfide cross-linked micelles (DCMs) platform, we developed nanoformulations of DTX and BTZ (named DTX-DCMs and BTZ-DCMs). Their physical properties were characterized; their anti-cancer efficacies and mechanisms of action were investigated in a human esophageal cancer cell line in vitro. Furthermore, the in vitro anti-tumor activities of combination therapies (concurrent drug treatment, sequential drug treatment, and treatment using different ratios of the drugs) were examined in comparison with the single drug treatment and free drug strategies. These drug-loaded nanoparticles were spherical in shape and relatively small in size of approximately 20-22 nm. The entrapment efficiencies of DTX and BTZ into nanoparticles were 82.4% and 84.1%, respectively. The drug release rates of DTX-DCMs and BTZ-DCMs were sustained, and greatly increased in the presence of GSH. These nanodrugs were effectively internalized by KYSE30 esophageal cancer cells, and dose-dependently induced cell apoptosis. We further revealed a strong synergistic effect between DTX-DCMs and BTZ-DCMs against KYSE30 esophageal cancer cells. Sequential combination therapy with DTX-DCMs followed by BTZ-DCMs exhibited the best anti-tumor efficacy in vitro. This study demonstrates that DTX and BTZ could be successfully nanoformulated into disulfide cross-linked micelles. The nanoformulations of DTX and BTZ demonstrate an immense potential for synergistic combination therapy to treat human esophageal cancer.
A Bayesian Theory of Sequential Causal Learning and Abstract Transfer
ERIC Educational Resources Information Center
Lu, Hongjing; Rojas, Randall R.; Beckers, Tom; Yuille, Alan L.
2016-01-01
Two key research issues in the field of causal learning are how people acquire causal knowledge when observing data that are presented sequentially, and the level of abstraction at which learning takes place. Does sequential causal learning solely involve the acquisition of specific cause-effect links, or do learners also acquire knowledge about…
Wang, Minghui; Janout, Vaclav; Regen, Steven L.
2010-07-12
A homologous series of calix[4]arene-, calix[5]arene- and calix[6]arene-based surfactants, containing pendant trimethylammonium and n-hexadecyl groups, have been compared with respect to their ability (i) to undergo ionic crosslinking at the air/water interface, (ii) to incorporate poly(4-styrenesulfonate) (PSS) in Langmuir-Blodgett (LB) bilayers, and (iii) to act as barriers towards He, N 2 and CO 2 when assembled into crosslinked LB bilayers. As these calix[n]arenes increase in size, their ability to undergo ionic crosslinking has been found to increase, the thickness of corresponding glued LB bilayers has been found to decrease, and their barrier properties and permeation selectivities have been found tomore » increase. In conclusion, the likely origin for these effects and the probable mechanism by which He, N 2 and CO 2 cross these ultrathin films are discussed.« less
Cost-effectiveness of simultaneous versus sequential surgery in head and neck reconstruction.
Wong, Kevin K; Enepekides, Danny J; Higgins, Kevin M
2011-02-01
To determine whether simultaneous (ablation and reconstruction overlaps by two teams) head and neck reconstruction is cost effective compared to sequentially (ablation followed by reconstruction) performed surgery. Case-controlled study. Tertiary care hospital. Oncology patients undergoing free flap reconstruction of the head and neck. A match paired comparison study was performed with a retrospective chart review examining the total time of surgery for sequential and simultaneous surgery. Nine patients were selected for both the sequential and simultaneous groups. Sequential head and neck reconstruction patients were pair matched with patients who had undergone similar oncologic ablative or reconstructive procedures performed in a simultaneous fashion. A detailed cost analysis using the microcosting method was then undertaken looking at the direct costs of the surgeons, anesthesiologist, operating room, and nursing. On average, simultaneous surgery required 3 hours 15 minutes less operating time, leading to a cost savings of approximately $1200/case when compared to sequential surgery. This represents approximately a 15% reduction in the cost of the entire operation. Simultaneous head and neck reconstruction is more cost effective when compared to sequential surgery.
Kuhn, Donald M.; Sykes, Catherine E.; Geddes, Timothy J.; Jaunarajs, Karen L. Eskow; Bishop, Christopher
2010-01-01
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopamine neurons of the nigrostriatal system, resulting in severe motor disturbances. Although much less appreciated, non-motor symptoms are also very common in PD and many can be traced to serotonin neuronal deficits. Tryptophan hydroxylase 2 (TPH2), the rate-limiting enzyme in the serotonin biosynthesis, is a phenotypic marker for serotonin neurons and is known to be extremely labile to oxidation. Therefore, the oxidative processes that prevail in PD could cause TPH2 misfolding and modify 5HT neuronal function much as is seen in dopamine neurons. Oxidation of TPH2 inhibits enzyme activity and leads to the formation of high molecular weight aggregates in a dithiothreitol-reversible manner. Cysteine-scanning mutagenesis shows that as long as a single cysteine residue (out of a total of 13 per monomer) remains in TPH2, it cross-links upon oxidation and only cysteine-less mutants are resistant to this effect. The effects of oxidants on TPH2 catalytic function and cross-linking are also observed in intact TPH2-expressing HEK293 cells. Oxidation shifts TPH2 from the soluble compartment into membrane fractions and large inclusion bodies. Sequential non-reducing/reducing two-dimensional SDS-PAGE and immunoblotting confirmed that TPH2 was one of a small number of cytosolic proteins that form disulfide-bonded aggregates. The propensity of TPH2 to misfold upon oxidation of its cysteine residues is responsible for its catalytic lability and may be related to loss of serotonin neuronal function in PD and the emergence of non-motor (psychiatric) symptoms. PMID:21105877
Radiation-induced changes affecting polyester based polyurethane binder
NASA Astrophysics Data System (ADS)
Pierpoint, Sujita Basi
The application of thermoplastic polyurethane elastomers as binders in the high energy explosives particularly when used in weapons presents a significantly complex and challenging problem due to the impact of the aging of this polymer on the useful service life of the explosive. In this work, the effects of radiation on the aging of the polyester based polyurethane were investigated using both electron beam and gamma irradiation at various dose rates in the presence and absence of oxygen. It was found by means of GPC that, in the presence and absence of oxygen, the poly (ester urethane) primarily undergoes cross-linking, by means of a carbon-centered secondary alkyl radical. It was also concluded that the polymer partially undergoes scission of the backbone of the main chain at C-O, N-C, and C-C bonds. Substantial changes in the conditions of irradiation and in dose levels did not affect the cross-linking and scission yields. Experiments were also performed with EPR spectroscopy for the purpose of identifying the initial carbon-centered free radicals and for studying the decay mechanisms of these radicals. It was found that the carbon-centered radical which is produced via C-C scission (primary alkyl radical) is rapidly converted to a long-lived allylic species at higher temperatures; more than 80% radicals are converted to allyl species in 2.5 hours. In the presence of oxygen, the allyl radical undergoes a fast reaction to produce a peroxyl radical; this radical decays with a 1.7 hour half-life by pseudo first-order kinetics to negligible levels in 13 hours. FTIR measurements were conducted to identify the radiation-induced changes to the functional groups in the polyester polyurethane. These measurements show an increase in carbonyl, amine and carboxylic groups as a result of reaction of H atoms with R-C-O·, ·NH-R and R-COO·. The FTIR results also demonstrate the production of the unsaturation resulting from hydrogen atom transfer during intrachain conversion of the primary alkyl radical to the allyl species, prompt trans-vinylene production in tetramethylene units, and hydrogen atom abstraction by alkyl radicals on neighboring chains. The production of unsaturation is substantiated by the EPR studies. Finally, a free radical mechanism is proposed for the production of cross-linking in polyester polyurethane.
Pre-configured polyhedron based protection against multi-link failures in optical mesh networks.
Huang, Shanguo; Guo, Bingli; Li, Xin; Zhang, Jie; Zhao, Yongli; Gu, Wanyi
2014-02-10
This paper focuses on random multi-link failures protection in optical mesh networks, instead of single, the dual or sequential failures of previous studies. Spare resource efficiency and failure robustness are major concerns in link protection strategy designing and a k-regular and k-edge connected structure is proved to be one of the optimal solutions for link protection network. Based on this, a novel pre-configured polyhedron based protection structure is proposed, and it could provide protection for both simultaneous and sequential random link failures with improved spare resource efficiency. Its performance is evaluated in terms of spare resource consumption, recovery rate and average recovery path length, as well as compared with ring based and subgraph protection under probabilistic link failure scenarios. Results show the proposed novel link protection approach has better performance than previous works.
NASA Technical Reports Server (NTRS)
Vivod, Stephanie L.; Meador, Mary Ann B.; Nguyen, Baochau N.; Quade, Derek; Randall, Jason; Perry, Renee
2008-01-01
Silica aerogels are desirable materials for many applications that take advantage of their light weight and low thermal conductivity. Addition of a conformal polymer coating which bonds with the amine decorated surface of the silica network improves the strength of the aerogels by as much as 200 times. Even with vast improvement in strength they still tend to undergo brittle failure due to the rigid silica backbone. We hope to increase the flexibility and elastic recovery of the silica based aerogel by altering the silica back-bone by incorporation of more flexible hexane links. To this end, we investigated the use of 1,6-bis(trimethoxysilyl)hexane (BTMSH), a polysilsesquioxane precursor3, as an additional co-reactant to prepare silica gels which were subsequently cross-linked with di-isocyanate. Previously, this approach of adding flexibility by BTMSH incorporation was demonstrated with styrene cross-linked aerogels. In our study, we varied silane concentration, mol % of silicon from BTMSH and di-isocyanate concentration by weight percent to attempt to optimize both the flexibility and the strength of the aerogels.
Tough, Microcracking-Resistant, High-Temperature Polymer
NASA Technical Reports Server (NTRS)
Pater, Ruth H.; Razon, Pert; Smith, Ricky; Working, Dennis; Chang, Alice; Gerber, Margaret
1990-01-01
Simultaneous synthesis from thermosetting and thermoplastic components yields polyimide with outstanding properties. Involves process in which one polymer cross-linked in immediate presence of other, undergoing simultaneous linear chain extension. New material, LaRC-RP40 synthesized from high-temperature thermosetting imide prepolymer and from thermoplastic monomer. Three significantly improved properties: toughness, resistance to microcracking, and glass-transition temperature. Shows promise as high-temperature matrix resin for variety of components of aircraft engines and for use in other aerospace structures.
Fornelli, Luca; Schmid, Adrien W; Grasso, Luigino; Vogel, Horst; Tsybin, Yury O
2011-01-10
Tissue transglutaminase (tTGase) catalyzes both deamidation and transamidation of peptides and proteins by using a peptidyl glutamine as primary substrate. A precise consensus sequence for the enzyme is unknown and the ratio between deamidated and transamidated (or cross-linked) reaction products is highly substrate-dependent. Due to its overlapping body distribution with tTGase and ease of manipulation with tandem mass spectrometry, we used the neuropeptide substance P as a model to investigate the associated enzymatic kinetics and reaction products. Online liquid-chromatography Fourier-transform ion-cyclotron-resonance mass spectrometry (FT-ICR MS) combined with electron-capture dissociation (ECD) was employed to study the tTGase-induced modifications of substance P. A particular strength of ECD for peptide-enzyme reaction product monitoring is its ability to distinguish isomeric amino acids, for example, Glu and iso-Glu, by signature product ions. Our studies show that the primary reaction observed is deamidation, with the two consecutive glutamine residues converted sequentially into glutamate: first Gln(5) , and subsequently Gln(6) . We then applied ECD FT-ICR MS to identify the transamidation site on an enzymatically cross-linked peptide, which turned out to correspond to Gln(5) . Three populations of substance-P dimers were detected that differed by the number of deamidated Gln residues. The higher reactivity of Gln(5) over Gln(6) was further confirmed by cross-linking SP with monodansylcadaverine (MDC). Overall, our approach described herein is of a general importance for mapping both enzymatically induced post-translational protein modifications and cross-linking. Finally, in vitro Ca-signaling assays revealed that the main tTGase reaction product, the singly deamidated SP (RPKPEQFFGLM-NH(2) ), has increased agonist potency towards its natural receptor, thus confirming the biologically relevant role of deamidation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2015-01-01
Lipoyl synthase (LS) catalyzes the final step in lipoyl cofactor biosynthesis: the insertion of two sulfur atoms at C6 and C8 of an (N6-octanoyl)-lysyl residue on a lipoyl carrier protein (LCP). LS is a member of the radical SAM superfamily, enzymes that use a [4Fe–4S] cluster to effect the reductive cleavage of S-adenosyl-l-methionine (SAM) to l-methionine and a 5′-deoxyadenosyl 5′-radical (5′-dA•). In the LS reaction, two equivalents of 5′-dA• are generated sequentially to abstract hydrogen atoms from C6 and C8 of the appended octanoyl group, initiating sulfur insertion at these positions. The second [4Fe–4S] cluster on LS, termed the auxiliary cluster, is proposed to be the source of the inserted sulfur atoms. Herein, we provide evidence for the formation of a covalent cross-link between LS and an LCP or synthetic peptide substrate in reactions in which insertion of the second sulfur atom is slowed significantly by deuterium substitution at C8 or by inclusion of limiting concentrations of SAM. The observation that the proteins elute simultaneously by anion-exchange chromatography but are separated by aerobic SDS-PAGE is consistent with their linkage through the auxiliary cluster that is sacrificed during turnover. Generation of the cross-linked species with a small, unlabeled (N6-octanoyl)-lysyl-containing peptide substrate allowed demonstration of both its chemical and kinetic competence, providing strong evidence that it is an intermediate in the LS reaction. Mössbauer spectroscopy of the cross-linked intermediate reveals that one of the [4Fe–4S] clusters, presumably the auxiliary cluster, is partially disassembled to a 3Fe-cluster with spectroscopic properties similar to those of reduced [3Fe–4S]0 clusters. PMID:24901788
NASA Astrophysics Data System (ADS)
Fug, Frank; Petry, Adrien; Jost, Hendrik; Ahmed, Aisha; Zamanzade, Mohammad; Possart, Wulff
2017-12-01
Thin layers of polyurethane monomers (diol, triol, diisocyanate) are deposited from gas phase onto native aluminium and copper surfaces. According to infrared external reflection absorption spectra both alcohols undergo only weak physical interactions with both metals. The diisocyanate on the other hand reveals resistance against desorption and rich new spectral features indicate strong adhesion. Preparation of urethane layers by sequential deposition of diisocyanate and diol yields urethane linkages. Urethane is formed faster on Cu than on Al. Scanning force microscopy reveals heterogeneous layers with metal dependent morphology. They show poor resistance against tetrahydrofuran rinsing i.e. most part of the formed urethane containing molecules are removed. Nevertheless, a residue of molecules sticks on the metal. It contains strongly adsorbed isocyanates and few isocyanate units which are bonded to diol units via urethane links. Further improvement of the molecular layer deposition is necessary to achieve well-crosslinked polyurethane layers.
Lopez-Lopez, Jose; Lope-Lopez, Jose; Jan-Pallí, Enric; lez-Navarro, Beatriz Gonzá; González-Navarro, Beatriz; Jané-Salas, Enric; Estrugo-Devesa, Albert; Milani, Massimo
2015-12-01
Reducing post-interventional inflammation and pain in odontostomatological surgery procedures, such as tooth extractions, implants or oral biopsies is a relevant clinical goal. Chlorhexidine oral rinse is commonly used with this aim. Recently a new product containing chlorhexidine, dexpanthenol, allantoin and chitosan (Bexident Post [BP]) in a gel formulation has been developed. We evaluated the efficacy of BP in controlling postsurgical inflammation and pain and in promoting cicatrization in subjects undergoing molar extractions. We conducted a prospective sequential cross-over, randomized controlled study in patients undergoing surgical removal of at least two impacted mandibular third molars (teeth numbers 38 and 48) (numbers 17 and 32 in the Universal Tooth Numbering System), in two separate sessions, to determine the effect of BP in comparison with bicarbonate (BC) oral rinse (one spoonful in 200 ml of water), both used three times daily. Each subject utilized both products in a randomized sequential manner after each tooth extraction. Primary outcomes of the study were post-procedure pain and inflammation. Secondary outcomes were analgesic pill rescue use (metamizole 1 cap every 8 hours if needed) and an assessor-blinded evaluation of cicatrization with a semi-quantitative scale (good, satisfactory and insufficient). Post-procedure pain was assessed 6 hours after tooth extraction and for seven consecutive days by means of a 10 cm visual analogue scale (VAS) (from 0: no pain to 10: extreme pain). The extent of inflammation was evaluated through metric measurements of facial perimeter using standardized anatomical reference points. A total of 47 patients (22 men and 25 women; mean age 34 years) were enrolled with a total of 94 molars extracted. Nineteen subjects applied BC as the first sequential treatment and 28 BP as the first. Before surgery no mean differences in the two treatments in inflammation measurements were observed. After surgery mean VAS pain score was similar between the two treatments in the first 6 hours (VAS score = 6.5). A marked progressive reduction in pain intensity with the use of BP was observed throughout the treatment period in comparison with BC (7 day mean scores 3.7 vs. 5.3; p = 0.0001). BP was superior to BC in reducing inflammation with -50% of the inflammation-related measurement (6 mm vs. 12 mm; p = 0.0001). Analgesic pill consumption was lower with BP in comparison with BC (13 pills vs. 24; p < 0.05). Cicatrization was scored 'good' in a higher percentage of subjects during BP use (64%) in comparison with the BC group (13%) (p = 0.0001). No serious side effects were reported with either treatment regimen. In this trial BP performed better than BC in controlling pain and inflammation in subjects undergoing dental surgery, reducing the consumption of analgesics and favoring better cicatrization.
Leung, C L; Sun, D; Zheng, M; Knowles, D R; Liem, R K
1999-12-13
We cloned and characterized a full-length cDNA of mouse actin cross-linking family 7 (mACF7) by sequential rapid amplification of cDNA ends-PCR. The completed mACF7 cDNA is 17 kb and codes for a 608-kD protein. The closest relative of mACF7 is the Drosophila protein Kakapo, which shares similar architecture with mACF7. mACF7 contains a putative actin-binding domain and a plakin-like domain that are highly homologous to dystonin (BPAG1-n) at its NH(2) terminus. However, unlike dystonin, mACF7 does not contain a coiled-coil rod domain; instead, the rod domain of mACF7 is made up of 23 dystrophin-like spectrin repeats. At its COOH terminus, mACF7 contains two putative EF-hand calcium-binding motifs and a segment homologous to the growth arrest-specific protein, Gas2. In this paper, we demonstrate that the NH(2)-terminal actin-binding domain of mACF7 is functional both in vivo and in vitro. More importantly, we found that the COOH-terminal domain of mACF7 interacts with and stabilizes microtubules. In transfected cells full-length mACF7 can associate not only with actin but also with microtubules. Hence, we suggest a modified name: MACF (microtubule actin cross-linking factor). The properties of MACF are consistent with the observation that mutations in kakapo cause disorganization of microtubules in epidermal muscle attachment cells and some sensory neurons.
Photodynamic therapy with 3-(1'-hexyloxyethyl) pyropheophorbide a for cancer of the oral cavity.
Rigual, Nestor; Shafirstein, Gal; Cooper, Michele T; Baumann, Heinz; Bellnier, David A; Sunar, Ulas; Tracy, Erin C; Rohrbach, Daniel J; Wilding, Gregory; Tan, Wei; Sullivan, Maureen; Merzianu, Mihai; Henderson, Barbara W
2013-12-01
The primary objective was to evaluate safety of 3-(1'-hexyloxyethyl)pyropheophorbide-a (HPPH) photodynamic therapy (HPPH-PDT) for dysplasia and early squamous cell carcinoma of the head and neck (HNSCC). Secondary objectives were the assessment of treatment response and reporters for an effective PDT reaction. Patients with histologically proven oral dysplasia, carcinoma in situ, or early-stage HNSCC were enrolled in two sequentially conducted dose escalation studies with an expanded cohort at the highest dose level. These studies used an HPPH dose of 4 mg/m(2) and light doses from 50 to 140 J/cm(2). Pathologic tumor responses were assessed at 3 months. Clinical follow up range was 5 to 40 months. PDT induced cross-linking of STAT3 were assessed as potential indicators of PDT effective reaction. Forty patients received HPPH-PDT. Common adverse events were pain and treatment site edema. Biopsy proven complete response rates were 46% for dysplasia and carcinoma in situ and 82% for squamous cell carcinomas (SCC) lesions at 140 J/cm(2). The responses in the carcinoma in situ/dysplasia cohort are not durable. The PDT-induced STAT3 cross-links is significantly higher (P = 0.0033) in SCC than in carcinoma in situ/dysplasia for all light doses. HPPH-PDT is safe for the treatment of carcinoma in situ/dysplasia and early-stage cancer of the oral cavity. Early-stage oral HNSCC seems to respond better to HPPH-PDT in comparison with premalignant lesions. The degree of STAT3 cross-linking is a significant reporter to evaluate HPPH-PDT-mediated photoreaction. ©2013 AACR.
Lymphoma and tuberculosis: temporal evolution of dual pathology on sequential 18F-FDG PET/CT.
Mukherjee, Anirban; Sharma, Punit; Karunanithi, Sellam; Dhull, Varun Singh; Kumar, Rakesh
2014-08-01
Tuberculosis can often be seen in patients undergoing chemotherapy for lymphoma, especially in endemic countries. As both tuberculosis and lymphoma can lead to hypermetabolic lesions of F-FDG PET/CT, a diagnostic dilemma often ensues. We present the sequential F-FDG PET/CT images of a 22-year-old female patient with Hodgkin lymphoma who developed tuberculosis and later relapse of lymphoma. These images present the temporal evaluation of the dual pathology on F-FDG PET/CT.
Waniewski, Jacek; Antosiewicz, Stefan; Baczynski, Daniel; Poleszczuk, Jan; Pietribiasi, Mauro; Lindholm, Bengt; Wankowicz, Zofia
2016-01-01
During peritoneal dialysis (PD), the peritoneal membrane undergoes ageing processes that affect its function. Here we analyzed associations of patient age and dialysis vintage with parameters of peritoneal transport of fluid and solutes, directly measured and estimated based on the pore model, for individual patients. Thirty-three patients (15 females; age 60 (21-87) years; median time on PD 19 (3-100) months) underwent sequential peritoneal equilibration test. Dialysis vintage and patient age did not correlate. Estimation of parameters of the two-pore model of peritoneal transport was performed. The estimated fluid transport parameters, including hydraulic permeability (LpS), fraction of ultrasmall pores (α u), osmotic conductance for glucose (OCG), and peritoneal absorption, were generally independent of solute transport parameters (diffusive mass transport parameters). Fluid transport parameters correlated whereas transport parameters for small solutes and proteins did not correlate with dialysis vintage and patient age. Although LpS and OCG were lower for older patients and those with long dialysis vintage, αu was higher. Thus, fluid transport parameters--rather than solute transport parameters--are linked to dialysis vintage and patient age and should therefore be included when monitoring processes linked to ageing of the peritoneal membrane.
Dyke, Jason Christopher; Knight, Kelly Jane; Zhou, Huaxing; Chiu, Chi-Kai; Ko, Ching-Chang; You, Wei
2012-01-01
Causes of bone deficiency are numerous, but biomimetic alloplastic grafts provide an alternative to repair tissue naturally. Previously, a hydroxyapatite-gelatin modified siloxane (HAp-Gemosil) composite was prepared by cross-linking (N, N′-bis[(3-trimethoxysilyl)propyl]ethylene diamine (enTMOS) around the HAp-Gel nanocomposite particles, to mimic the natural composition and properties of bone. However, the tensile strength remained too low for many orthopedic applications. It was hypothesized that incorporating a polymer chain into the composite could help improve long range interaction. Furthermore, designing this polymer to interact with the enTMOS siloxane cross-linked matrix would provide improved adhesion between the polymer and the ceramic composite, and improve mechanical properties. To this end, copolymers of L-Lactide (LLA), and a novel alkyne derivatized trimethylene carbonate, propargyl carbonate (PC), were synthesized. Incorporation of PC during copolymerization affects properties of copolymers such as molecular weight, Tg, and % PC incorporation. More importantly, PC monomers bear a synthetic handle, allowing copolymers to undergo post-polymerization functionalization with graft monomers to specifically tailor the properties of the final composite. For our investigation, P(LLA-co-PC) copolymers were functionalized by an azido-silane (AS) via copper catalyzed azide-alkyne cycloaddition (CuAAC) through terminal alkyne on PC monomers. The new functionalized polymer, P(LLA-co-PC)(AS) was blended with HAp-Gemosil, with the azido-silane linking the copolymer to the silsesquioxane matrix within the final composite. These HAp-Gemosil/P(LLA-co-PC)(AS) composites were subjected to mechanical and biological testing, and the results were compared with those from the HAp-Gemosil composites. This study revealed that incorporating a cross-linkable polymer served to increase the flexural strength of the composite by 50%, while maintaining the biocompatibility of HAp-Gemosil ceramics. PMID:23139457
Ligation of Siglec-8: a selective mechanism for induction of human eosinophil apoptosis.
Nutku, Esra; Aizawa, Hideyuki; Hudson, Sherry A; Bochner, Bruce S
2003-06-15
Sialic acid binding immunoglobulin-like lectin 8 (Siglec-8), which exists in 2 isoforms including one possessing cytoplasmic tyrosine motifs, is expressed only on human eosinophils, basophils, and mast cells. Until now, its function was unknown. Here we define a novel function of Siglec-8 on eosinophils. Siglec-8 cross-linking with antibodies rapidly generated caspase-3-like activity and reduced eosinophil viability through induction of apoptosis. The pancaspase inhibitor benzyloxycarbonyl (Cbz)-Val-Ala-Asp-(Ome)-fluoromethyl ketone (zVAD-FMK) completely blocked this response, implicating caspases in Siglec-8 cross-linking-induced apoptosis. Eosinophil survival-promoting cytokines such as interleukin 5 (IL-5) and granulocyte-macrophage colony-stimulating factor (GM-CSF) failed to block apoptosis and instead enhanced the sensitivity of eosinophils to undergo apoptosis in response to Siglec-8 antibody. Siglec-8 activation may provide a useful therapeutic approach to reduce numbers of eosinophils (and perhaps basophils and mast cells) in disease states where these cells are important.
Using Amphiphilic Copolymers and Nanoparticles to Organize Charged Biopolymers
NASA Astrophysics Data System (ADS)
Park, Jung Hyun; McConnell, Marla; Sun, Yujie; Goldman, Yale; Composto, Russell
2009-03-01
Nanoparticles (NPs) on amphiphilic random copolymers control filamentous actin (F-actin) attachment. 3-aminopropyltriethoxysilane (APTES) coated silica NPs are selectively bonded to acrylic acid groups on the surface of a poly(styrene-r-acrylic acid) (PS-r-PAA) film. By changing the concentration of NPs in the medium, the surface density of positively charged anchors is tuned. Using total internal reflection fluorescence (TIRF) microscopy, immobilization of F-actin is observed via electrostatic interaction with NPs at high NP coverages. Below a critical coverage, F-actin is weakly attached and undergoes thermal fluctuations near the surface. Another method to tune F-actin attachment is to use APTES to cross-link and create positive charge in PAA films. Here, the surface coverage of F-actin decreases as APTES concentration increases. This observation is attributed to an increase in surface roughness and hydrophobicity that reduces the effective surface sites that attract F-actin. In addition, in-situ G-actin polymerization to F-actin is observed on both the NP and cross-linked PAA templates.
Gaur, R K; Valcárcel, J; Green, M R
1995-01-01
Splicing of pre-mRNAs occurs via a lariat intermediate in which an intronic adenosine, embedded within a branch point sequence, forms a 2',5'-phosphodiester bond (RNA branch) with the 5' end of the intron. How the branch point is recognized and activated remains largely unknown. Using site-specific photochemical cross-linking, we have identified two proteins that specifically interact with the branch point during the splicing reaction. U2AF65, an essential splicing factor that binds to the adjacent polypyrimidine tract, crosslinks to the branch point at the earliest stage of spliceosome formation in an ATP-independent manner. A novel 28-kDa protein, which is a constituent of the mature spliceosome, contacts the branch point after the first catalytic step. Our results indicate that the branch point is sequentially recognized by distinct splicing factors in the course of the splicing reaction. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 PMID:7493318
Henares, Terence G; Uenoyama, Yuta; Nogawa, Yuto; Ikegami, Ken; Citterio, Daniel; Suzuki, Koji; Funano, Shun-ichi; Sueyoshi, Kenji; Endo, Tatsuro; Hisamoto, Hideaki
2013-06-07
This paper presents a novel rhodamine diphosphate molecule that allows highly sensitive detection of proteins by employing sequential enzyme-linked immunosorbent assay and capillary isoelectric focusing (ELISA-cIEF). Seven-fold improvement in the immunoassay sensitivity and a 1-2 order of magnitude lower detection limit has been demonstrated by taking advantage of the combination of the enzyme-based signal amplification of ELISA and the concentration of enzyme reaction products by cIEF.
Jiang, Hongyan; Chen, Yang; Sun, Peizhen; Yang, Jun
2017-01-01
This study investigated the relationship between authoritarian leadership and employees' deviant workplace behaviors (DWB), as well as the mediating effects of psychological contract violation and organizational cynicism. A cross-sectional survey was conducted among 391 manufacturing workers in a northern city of China. Structural equation modeling was performed to test the theory-driven models. The results showed that the relationship between authoritarian leadership and employees' DWB was mediated by organizational cynicism. Moreover, this relationship was also sequentially mediated by psychological contract violation and organizational cynicism. This research unveiled psychological contract violation and organizational cynicism as underlying mechanism that explained the link between authoritarian leadership and employees' DWB.
Benzimidazoles and benzoxazoles via the nucleophilic addition of anilines to nitroalkanes.
Aksenov, Alexander V; Smirnov, Alexander N; Aksenov, Nicolai A; Bijieva, Asiyat S; Aksenova, Inna V; Rubin, Michael
2015-04-14
PPA-induced umpolung triggers efficient nucleophilic addition of unactivated anilines to nitroalkanes to produce N-hydroxyimidamides. The latter undergo sequential acid-promoted cyclocondensation with ortho-OH or ortho-NHR moieties to afford benzoxazoles and benzimidazoles, respectively.
Crossed wires: 3D genome misfolding in human disease.
Norton, Heidi K; Phillips-Cremins, Jennifer E
2017-11-06
Mammalian genomes are folded into unique topological structures that undergo precise spatiotemporal restructuring during healthy development. Here, we highlight recent advances in our understanding of how the genome folds inside the 3D nucleus and how these folding patterns are miswired during the onset and progression of mammalian disease states. We discuss potential mechanisms underlying the link among genome misfolding, genome dysregulation, and aberrant cellular phenotypes. We also discuss cases in which the endogenous 3D genome configurations in healthy cells might be particularly susceptible to mutation or translocation. Together, these data support an emerging model in which genome folding and misfolding is critically linked to the onset and progression of a broad range of human diseases. © 2017 Norton and Phillips-Cremins.
Native Frames: Disentangling Sequential from Concerted Three-Body Fragmentation
NASA Astrophysics Data System (ADS)
Rajput, Jyoti; Severt, T.; Berry, Ben; Jochim, Bethany; Feizollah, Peyman; Kaderiya, Balram; Zohrabi, M.; Ablikim, U.; Ziaee, Farzaneh; Raju P., Kanaka; Rolles, D.; Rudenko, A.; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.
2018-03-01
A key question concerning the three-body fragmentation of polyatomic molecules is the distinction of sequential and concerted mechanisms, i.e., the stepwise or simultaneous cleavage of bonds. Using laser-driven fragmentation of OCS into O++C++S+ and employing coincidence momentum imaging, we demonstrate a novel method that enables the clear separation of sequential and concerted breakup. The separation is accomplished by analyzing the three-body fragmentation in the native frame associated with each step and taking advantage of the rotation of the intermediate molecular fragment, CO2 + or CS2 + , before its unimolecular dissociation. This native-frame method works for any projectile (electrons, ions, or photons), provides details on each step of the sequential breakup, and enables the retrieval of the relevant spectra for sequential and concerted breakup separately. Specifically, this allows the determination of the branching ratio of all these processes in OCS3 + breakup. Moreover, we find that the first step of sequential breakup is tightly aligned along the laser polarization and identify the likely electronic states of the intermediate dication that undergo unimolecular dissociation in the second step. Finally, the separated concerted breakup spectra show clearly that the central carbon atom is preferentially ejected perpendicular to the laser field.
Lefort, Roger; Pozueta, Julio; Shelanski, Michael
2012-08-01
The accumulation of the β-amyloid peptide (Aβ) in Alzheimer's disease (AD) is thought to play a causative role in triggering synaptic dysfunction in neurons, leading to their eventual demise through apoptosis. Aβ is produced and secreted upon sequential cleavage of the amyloid precursor protein (APP) by β-secretases and γ-secretases. However, while Aβ levels have been shown to be increased in the brains of AD patients, little is known about how the cleavage of APP and the subsequent generation of Aβ is influenced, or whether the cleavage process changes over time. It has been proposed that Aβ can bind APP and promote amyloidogenic processing of APP, further enhancing Aβ production. Proof of this idea has remained elusive because a clear mechanism has not been identified, and the promiscuous nature of Aβ binding complicates the task of demonstrating the idea. To work around these problems, we used an antibody-mediated approach to bind and cross-link cell-surface APP in cultured rat primary hippocampal neurons. Here we show that cross-linking of APP is sufficient to raise the levels of Aβ in viable neurons with a concomitant increase in the levels of the β-secretase BACE1. This appears to occur as a result of a sorting defect that stems from the caspase-3-mediated inactivation of a key sorting adaptor protein, namely GGA3, which prevents the lysosomal degradation of BACE1. Together, our data suggest the occurrence of a positive pathogenic feedback loop involving Aβ and APP in affected neurons possibly allowing Aβ to spread to nearby healthy neurons.
Rigual, Nestor; Shafirstein, Gal; Cooper, Michele T.; Baumann, Heinz; Bellnier, David A.; Sunar, Ulas; Tracy, Erin C.; Rohrbach, Daniel J.; Wilding, Gregory; Tan, Wei; Sullivan, Maureen; Merzianu, Mihai; Henderson, Barbara W.
2013-01-01
Purpose The primary objective was to evaluate safety of 3-(1’-hexyloxyethyl)pyropheophorbide-a (HPPH) photodynamic therapy (HPPH-PDT) for dysplasia and early squamous cell carcinoma of the head and neck (HNSCC). Secondary objectives were the assessment of treatment response and reporters for an effective PDT reaction. Experimental Design Patients with histologically proven oral dysplasia, carcinoma in situ (CiS ) or early stage HNSCC were enrolled in two sequentially conducted dose escalation studies with an expanded cohort at the highest dose level. These studies employed an HPPH dose of 4 mg/m2 and light doses from 50 to 140 J/cm2. Pathologic tumor responses were assessed at 3 months. Clinical follow up range was 5 to 40 months. PDT induced cross-linking of signal transducer and activator of transcription 3 (STAT3) were assessed as potential indicators of PDT effective reaction. Results Forty patients received HPPH-PDT. Common adverse events were pain and treatment site edema. Biopsy proven complete response rates were 46% for dysplasia and CiS, and 82% for SCCs lesions at 140 J/cm2. The responses in the CiS/dysplasia cohort are not durable. The PDT induced STAT3 cross-links is significantly higher (P=0.0033) in SCC than in CiS/dysplasia for all light-doses. Conclusion HPPH-PDT is safe for the treatment of CiS/dysplasia and early stage cancer of the oral cavity. Early stage oral HNSCC appears to respond better to HPPH-PDT in comparison to premalignant lesions. The degree of STAT3 cross-linking is a significant reporter to evaluate HPPH-PDT mediated photoreaction. PMID:24088736
Rapid DNA double-strand breaks resulting from processing of Cr-DNA cross-links by both MutS dimers.
Reynolds, Mindy F; Peterson-Roth, Elizabeth C; Bespalov, Ivan A; Johnston, Tatiana; Gurel, Volkan M; Menard, Haley L; Zhitkovich, Anatoly
2009-02-01
Mismatch repair (MMR) strongly enhances cyto- and genotoxicity of several chemotherapeutic agents and environmental carcinogens. DNA double-strand breaks (DSB) formed after two replication cycles play a major role in MMR-dependent cell death by DNA alkylating drugs. Here, we examined DNA damage detection and the mechanisms of the unusually rapid induction of DSB by MMR proteins in response to carcinogenic chromium(VI). We found that MSH2-MSH6 (MutSalpha) dimer effectively bound DNA probes containing ascorbate-Cr-DNA and cysteine-Cr-DNA cross-links. Binary Cr-DNA adducts, the most abundant form of Cr-DNA damage, were poor substrates for MSH2-MSH6, and their toxicity in cells was weak and MMR independent. Although not involved in the initial recognition of Cr-DNA damage, MSH2-MSH3 (MutSbeta) complex was essential for the induction of DSB, micronuclei, and apoptosis in human cells by chromate. In situ fractionation of Cr-treated cells revealed MSH6 and MSH3 chromatin foci that originated in late S phase and did not require replication of damaged DNA. Formation of MSH3 foci was MSH6 and MLH1 dependent, whereas MSH6 foci were unaffected by MSH3 status. DSB production was associated with progression of cells from S into G(2) phase and was completely blocked by the DNA synthesis inhibitor aphidicolin. Interestingly, chromosome 3 transfer into MSH3-null HCT116 cells activated an alternative, MSH3-like activity that restored dinucleotide repeat stability and sensitivity to chromate. Thus, sequential recruitment and unprecedented cooperation of MutSalpha and MutSbeta branches of MMR in processing of Cr-DNA cross-links is the main cause of DSB and chromosomal breakage at low and moderate Cr(VI) doses.
Wang, Shifei; Li, Hairui; He, Nvqin; Sun, Yili; Guo, Shengcun; Liao, Wangjun; Liao, Yulin; Chen, Yanmei; Bin, Jianping
2017-01-15
The impact of remote ischaemic preconditioning (RIPC) on major clinical outcomes in patients undergoing cardiovascular surgery remains controversial. We systematically reviewed the available evidence to evaluate the potential benefits of RIPC in such patients. PubMed, Embase, and Cochrane Library databases were searched for relevant randomised controlled trials (RCTs) conducted between January 2006 and March 2016. The pooled population of patients who underwent cardiovascular surgery was divided into the RIPC and control groups. Trial sequential analysis was applied to judge data reliability. The pooled relative risks (RRs) with 95% confidence intervals (CIs) between the groups were calculated for all-cause mortality, major adverse cardiovascular and cerebral events (MACCEs), myocardial infarction (MI), and renal failure. RIPC was not associated with improvement in all-cause mortality (RR, 1.04; 95%CI, 0.82-1.31; I 2 =26%; P>0.05) or MACCE incidence (RR, 0.90; 95%CI, 0.71-1.14; I 2 =40%; P>0.05) after cardiovascular surgery, and both results were assessed by trial sequential analysis as sufficient and conclusive. Nevertheless, RIPC was associated with a significantly lower incidence of MI (RR, 0.87; 95%CI, 0.76-1.00; I 2 =13%; P≤0.05). However, after excluding a study that had a high contribution to heterogeneity, RIPC was associated with increased rates of renal failure (RR, 1.53; 95%CI, 1.12-2.10; I 2 =5%; P≤0.05). In patients undergoing cardiovascular surgery, RIPC reduced the risk for postoperative MI, but not that for MACCEs or all-cause mortality, a discrepancy likely related to the higher rate of renal failure associated with RIPC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gao, J.; Lythe, M. B.
1996-06-01
This paper presents the principle of the Maximum Cross-Correlation (MCC) approach in detecting translational motions within dynamic fields from time-sequential remotely sensed images. A C program implementing the approach is presented and illustrated in a flowchart. The program is tested with a pair of sea-surface temperature images derived from Advanced Very High Resolution Radiometer (AVHRR) images near East Cape, New Zealand. Results show that the mean currents in the region have been detected satisfactorily with the approach.
Jiang, Hongyan; Chen, Yang; Sun, Peizhen; Yang, Jun
2017-01-01
This study investigated the relationship between authoritarian leadership and employees’ deviant workplace behaviors (DWB), as well as the mediating effects of psychological contract violation and organizational cynicism. A cross-sectional survey was conducted among 391 manufacturing workers in a northern city of China. Structural equation modeling was performed to test the theory-driven models. The results showed that the relationship between authoritarian leadership and employees’ DWB was mediated by organizational cynicism. Moreover, this relationship was also sequentially mediated by psychological contract violation and organizational cynicism. This research unveiled psychological contract violation and organizational cynicism as underlying mechanism that explained the link between authoritarian leadership and employees’ DWB. PMID:28536550
Paech, Juliane; Lippke, Sonia
2017-01-01
Recommendations for physical activity and for fruit and vegetable intake are often not translated into action due to deficits in self-regulatory strategies. The present study examines the interplay of intention, intergoal facilitation, action and coping planning and self-regulation in facilitating physical activity and healthy nutrition. In an online study, intentions and behaviours were assessed at baseline, intergoal facilitation and planning at 4-week follow-up, self-regulation, physical activity and nutrition at 6-month follow-up in a non-clinical sample. The final sample (n = 711) consisted of 27.2% men, the age ranged from 16 to 78 years. Sequential mediations were tested. Intergoal facilitation, planning and self-regulation mediated the link from intention to physical activity and nutrition; the specific indirect effects were significant. Findings suggest that intergoal facilitation and self-regulation can facilitate behaviour change, in addition to planning. Cross-behavioural mechanisms might facilitate lifestyle change in several domains.
Photoreversible Covalent Hydrogels for Soft-Matter Additive Manufacturing.
Kabb, Christopher P; O'Bryan, Christopher S; Deng, Christopher C; Angelini, Thomas E; Sumerlin, Brent S
2018-05-16
Reversible covalent chemistry provides access to robust materials with the ability to be degraded and reformed upon exposure to an appropriate stimulus. Photoresponsive units are attractive for this purpose, as the spatial and temporal application of light is easily controlled. Coumarin derivatives undergo a [2 + 2] cycloaddition upon exposure to long-wave UV irradiation (365 nm), and this process can be reversed using short-wave UV light (254 nm). Therefore, polymers cross-linked by coumarin groups are excellent candidates as reversible covalent gels. In this work, copolymerization of coumarin-containing monomers with the hydrophilic comonomer N, N-dimethylacrylamide yielded water-soluble, linear polymers that could be cured with long-wave UV light into free-standing hydrogels, even in the absence of a photoinitiator. Importantly, the gels were reverted back to soluble copolymers upon short-wave UV irradiation. This process could be cycled, allowing for recycling and remolding of the hydrogel into additional shapes. Further, this hydrogel can be imprinted with patterns through a mask-based, post-gelation photoetching method. Traditional limitations of this technique, such as the requirement for uniform etching in one direction, have been overcome by combining these materials with a soft-matter additive manufacturing methodology. In a representative application of this approach, we printed solid structures in which the interior coumarin-cross-linked gel is surrounded by a nondegradable gel. Upon exposure to short-wave UV irradiation, the coumarin-cross-linked gel was reverted to soluble prepolymers that were washed away to yield hollow hydrogel objects.
Gadalla, Hytham H; Soliman, Ghareb M; Mohammed, Fergany A; El-Sayed, Ahmed M
2016-09-01
The colon is a promising target for drug delivery owing to its long transit time of up to 78 h, which is likely to increase the time available for drug absorption. Progesterone has a short elimination half-life and undergoes extensive first-pass metabolism, which results in very low oral bioavailability (∼25%). To overcome these shortcomings, we developed an oral multiparticulate system for the colonic delivery of progesterone. Zn-pectinate/chitosan microparticles were prepared by ionotropic gelation and characterized for their size, shape, weight, drug entrapment efficiency, mucoadhesion and swelling behavior. The effect of cross-linking pH, cross-linking time and chitosan concentration on progesterone release were also studied. Spherical microparticles having a diameter of 580-720 µm were obtained. Drug entrapment efficiency of ∼75-100% was obtained depending on the microparticle composition. Microparticle mucoadhesive properties were dependent on the pectin concentration, as well as the cross-linking pH. Progesterone release in simulated gastric fluids was minimal (3-9%), followed by burst release at pH 6.8 and a sustained phase at pH 7.4. The in vivo study revealed that the microparticles significantly increased progesterone residence time in the plasma and increased its relative bioavailability to ∼168%, compared to the drug alone. This study confirms the potential of Zn-pectinate/chitosan microparticles as a colon-specific drug delivery system able to enhance the oral bioavailability of progesterone or similar drugs.
Gruber, Ranit; Levitt, Michael; Horovitz, Amnon
2017-01-01
Knowing the mechanism of allosteric switching is important for understanding how molecular machines work. The CCT/TRiC chaperonin nanomachine undergoes ATP-driven conformational changes that are crucial for its folding function. Here, we demonstrate that insight into its allosteric mechanism of ATP hydrolysis can be achieved by Arrhenius analysis. Our results show that ATP hydrolysis triggers sequential ‟conformational waves.” They also suggest that these waves start from subunits CCT6 and CCT8 (or CCT3 and CCT6) and proceed clockwise and counterclockwise, respectively. PMID:28461478
Gruber, Ranit; Levitt, Michael; Horovitz, Amnon
2017-05-16
Knowing the mechanism of allosteric switching is important for understanding how molecular machines work. The CCT/TRiC chaperonin nanomachine undergoes ATP-driven conformational changes that are crucial for its folding function. Here, we demonstrate that insight into its allosteric mechanism of ATP hydrolysis can be achieved by Arrhenius analysis. Our results show that ATP hydrolysis triggers sequential ‟conformational waves." They also suggest that these waves start from subunits CCT6 and CCT8 (or CCT3 and CCT6) and proceed clockwise and counterclockwise, respectively.
Ji, Qiang; Shi, YunQing; Xia, LiMin; Ma, RunHua; Shen, JinQiang; Lai, Hao; Ding, WenJun; Wang, ChunSheng
2017-12-25
To evaluate in-hospital and mid-term outcomes of sequential vs. separate grafting of in situ skeletonized left internal mammary artery (LIMA) to the left coronary system in a single-center, propensity-matched study.Methods and Results:After propensity score-matching, 120 pairs of patients undergoing first scheduled isolated coronary artery bypass grafting (CABG) with in situ skeletonized LIMA grafting to the left anterior descending artery (LAD) territory were entered into a sequential group (sequential grafting of LIMA to the diagonal artery and then to the LAD) or a control group (separate grafting of LIMA to the LAD). The in-hospital and follow-up clinical outcomes and follow-up LIMA graft patency were compared. Both propensity score-matched groups had similar in-hospital and follow-up clinical outcomes. Sequential LIMA grafting was not found to be an independent predictor of adverse events. During a follow-up period of 27.0±7.3 months, 99.1% patency for the diagonal site and 98.3% for the LAD site were determined by coronary computed tomographic angiography after sequential LIMA grafting, both of which were similar with graft patency of separate grafting of in situ skeletonized LIMA to the LAD. Revascularization of the left coronary system using a skeletonized LIMA resulted in excellent in-hospital and mid-term clinical outcomes and graft patency using sequential grafting.
Waniewski, Jacek; Antosiewicz, Stefan; Baczynski, Daniel; Poleszczuk, Jan; Pietribiasi, Mauro; Lindholm, Bengt; Wankowicz, Zofia
2016-01-01
During peritoneal dialysis (PD), the peritoneal membrane undergoes ageing processes that affect its function. Here we analyzed associations of patient age and dialysis vintage with parameters of peritoneal transport of fluid and solutes, directly measured and estimated based on the pore model, for individual patients. Thirty-three patients (15 females; age 60 (21–87) years; median time on PD 19 (3–100) months) underwent sequential peritoneal equilibration test. Dialysis vintage and patient age did not correlate. Estimation of parameters of the two-pore model of peritoneal transport was performed. The estimated fluid transport parameters, including hydraulic permeability (LpS), fraction of ultrasmall pores (α u), osmotic conductance for glucose (OCG), and peritoneal absorption, were generally independent of solute transport parameters (diffusive mass transport parameters). Fluid transport parameters correlated whereas transport parameters for small solutes and proteins did not correlate with dialysis vintage and patient age. Although LpS and OCG were lower for older patients and those with long dialysis vintage, αu was higher. Thus, fluid transport parameters—rather than solute transport parameters—are linked to dialysis vintage and patient age and should therefore be included when monitoring processes linked to ageing of the peritoneal membrane. PMID:26989432
Gómez-Gil, Esther; Zubiaurre-Elorza, Leire; de Antonio, Isabel Esteva; Guillamon, Antonio; Salamero, Manel
2014-03-01
To evaluate the self-reported perceived quality of life (QoL) in transsexuals attending a Spanish gender identity unit before genital sex reassignment surgery, and to identify possible determinants that likely contribute to their QoL. A sample of 119 male-to-female (MF) and 74 female-to-male (FM) transsexuals were included in the study. The WHOQOL-BREF scale was used to evaluate self-reported QoL. Possible determinants included age, sex, education, employment, partnership status, undergoing cross-sex hormonal therapy, receiving at least one non-genital sex reassignment surgery, and family support (assessed with the family APGAR questionnaire). Mean scores of all QoL domains ranged from 55.44 to 63.51. Linear regression analyses revealed that undergoing cross-sex hormonal treatment, having family support, and having an occupation were associated with a better QoL for all transsexuals. FM transsexuals have higher social domain QoL scores than MF transsexuals. The model accounts for 20.6 % of the variance in the physical, 32.5 % in the psychological, 21.9 % in the social, and 20.1 % in the environment domains, and 22.9 % in the global QoL factor. Cross-sex hormonal treatment, family support, and working or studying are linked to a better self-reported QoL in transsexuals. Healthcare providers should consider these factors when planning interventions to promote the health-related QoL of transsexuals.
Multiple roles for the actin cytoskeleton during regulated exocytosis
Porat-Shliom, Natalie; Milberg, Oleg; Masedunskas, Andrius; Weigert, Roberto
2014-01-01
Regulated exocytosis is the main mechanism utilized by specialized secretory cells to deliver molecules to the cell surface by virtue of membranous containers (i.e. secretory vesicles). The process involves a series of highly coordinated and sequential steps, which include the biogenesis of the vesicles, their delivery to the cell periphery, their fusion with the plasma membrane and the release of their content into the extracellular space. Each of these steps is regulated by the actin cytoskeleton. In this review, we summarize the current knowledge regarding the involvement of actin and its associated molecules during each of the exocytic steps in vertebrates, and suggest that the overall role of the actin cytoskeleton during regulated exocytosis is linked to the architecture and the physiology of the secretory cells under examination. Specifically, in neurons, neuroendocrine, endocrine, and hematopoietic cells, which contain small secretory vesicles that undergo rapid exocytosis (on the order of milliseconds), the actin cytoskeleton plays a role in pre-fusion events, where it acts primarily as a functional barrier and facilitates docking. In exocrine and other secretory cells, which contain large secretory vesicles that undergo slow exocytosis (seconds to minutes), the actin cytoskeleton plays a role in post-fusion events, where it regulates the dynamics of the fusion pore, facilitates the integration of the vesicles into the plasma membrane, provides structural support, and promotes the expulsion of large cargo molecules. PMID:22986507
The imaging study of a novel photopolymer used in I-line negative-tone resist
NASA Astrophysics Data System (ADS)
Liu, Lu; Zou, Yingquan
2010-04-01
By copolymerization of 2-(2-diazo-3-oxo-3-(4-dimethylaminophenyl)propionyloxy)ethyl methacrylate (DODMAPPEA), methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA), a photoactive polymer for negative-tone resist is synthesized and its photolithographic properties are investigated. Since the maximum-absorption wavelength of the photoactive monomer DODMAPPEA is 356nm and it still has a comparatively large absorption at 365nm (I-line), the copolymer poly(DODMAPPEA -co-MMA-co-HEMA) is anticipated to be used in I-line single component negative-tone resist. Upon irradiaton, the diazoketo groups which are in the side chains of the copolymers undergo the wolff rearrangement, affording ketenes that react with hydroxyl to provide cross-linking photoproducts and a negative image is obtained. Besides that, cross-linking agent hexamethoxymethylmelamine (HMMM) is added to the resist system and high sensitivity is expected. This kind of copolymer has great value in I-line non-CARs, TFT-LCD and IC discrete devices processing and the anti-dry etching ability is enhanced by the introduction of the benzene ring. In addition, this copolymer still has potential value in Ultra-violate lithographic plate.
Situation models and memory: the effects of temporal and causal information on recall sequence.
Brownstein, Aaron L; Read, Stephen J
2007-10-01
Participants watched an episode of the television show Cheers on video and then reported free recall. Recall sequence followed the sequence of events in the story; if one concept was observed immediately after another, it was recalled immediately after it. We also made a causal network of the show's story and found that recall sequence followed causal links; effects were recalled immediately after their causes. Recall sequence was more likely to follow causal links than temporal sequence, and most likely to follow causal links that were temporally sequential. Results were similar at 10-minute and 1-week delayed recall. This is the most direct and detailed evidence reported on sequential effects in recall. The causal network also predicted probability of recall; concepts with more links and concepts on the main causal chain were most likely to be recalled. This extends the causal network model to more complex materials than previous research.
NASA Astrophysics Data System (ADS)
Wang, C.-K.; Liao, W.-H.; Wu, H.-M.; Lo, Y.-H.; Lin, T.-R.; Tung, Y.-C.
2017-11-01
Polydimethylsiloxane (PDMS) has become a widely used material to construct microfluidic devices for various biomedical and chemical applications due to its desirable material properties and manufacturability. PDMS microfluidic devices are usually fabricated using soft lithography replica molding methods with master molds made of photolithogrpahy patterned photoresist layers on silicon wafers. The fabricated microfluidic channels often have rectangular cross-sectional geometries with single or multiple heights. In this paper, we develop a single step sequential PDMS wet etching process that can be used to fabricate microfluidic channels with various cross-sectional geometries from single-layer PDMS microfluidic channels. The cross-sections of the fabricated channel can be non-rectangular, and varied along the flow direction. Furthermore, the fabricated cross-sectional geometries can be numerically simulated beforehand. In the experiments, we fabricate microfluidic channels with various cross-sectional geometries using the developed technique. In addition, we fabricate a microfluidic mixer with alternative mirrored cross-sectional geometries along the flow direction to demonstrate the practical usage of the developed technique.
Christiansen, Morten H.; Conway, Christopher M.; Onnis, Luca
2011-01-01
We used event-related potentials (ERPs) to investigate the time course and distribution of brain activity while adults performed (a) a sequential learning task involving complex structured sequences, and (b) a language processing task. The same positive ERP deflection, the P600 effect, typically linked to difficult or ungrammatical syntactic processing, was found for structural incongruencies in both sequential learning as well as natural language, and with similar topographical distributions. Additionally, a left anterior negativity (LAN) was observed for language but not for sequential learning. These results are interpreted as an indication that the P600 provides an index of violations and the cost of integration of expectations for upcoming material when processing complex sequential structure. We conclude that the same neural mechanisms may be recruited for both syntactic processing of linguistic stimuli and sequential learning of structured sequence patterns more generally. PMID:23678205
Chen, Diane; Drabick, Deborah A G; Burgers, Darcy E
2015-12-01
Peer rejection and deviant peer affiliation are linked consistently to the development and maintenance of conduct problems. Two proposed models may account for longitudinal relations among these peer processes and conduct problems: the (a) sequential mediation model, in which peer rejection in childhood and deviant peer affiliation in adolescence mediate the link between early externalizing behaviors and more serious adolescent conduct problems; and (b) parallel process model, in which peer rejection and deviant peer affiliation are considered independent processes that operate simultaneously to increment risk for conduct problems. In this review, we evaluate theoretical models and evidence for associations among conduct problems and (a) peer rejection and (b) deviant peer affiliation. We then consider support for the sequential mediation and parallel process models. Next, we propose an integrated model incorporating both the sequential mediation and parallel process models. Future research directions and implications for prevention and intervention efforts are discussed.
Chen, Diane; Drabick, Deborah A. G.; Burgers, Darcy E.
2015-01-01
Peer rejection and deviant peer affiliation are linked consistently to the development and maintenance of conduct problems. Two proposed models may account for longitudinal relations among these peer processes and conduct problems: the (a) sequential mediation model, in which peer rejection in childhood and deviant peer affiliation in adolescence mediate the link between early externalizing behaviors and more serious adolescent conduct problems; and (b) parallel process model, in which peer rejection and deviant peer affiliation are considered independent processes that operate simultaneously to increment risk for conduct problems. In this review, we evaluate theoretical models and evidence for associations among conduct problems and (a) peer rejection and (b) deviant peer affiliation. We then consider support for the sequential mediation and parallel process models. Next, we propose an integrated model incorporating both the sequential mediation and parallel process models. Future research directions and implications for prevention and intervention efforts are discussed. PMID:25410430
2015-01-01
RlmN and Cfr are methyltransferases/methylsynthases that belong to the radical S-adenosylmethionine superfamily of enzymes. RlmN catalyzes C2 methylation of adenosine 2503 (A2503) of 23S rRNA, while Cfr catalyzes C8 methylation of the exact same nucleotide, and will subsequently catalyze C2 methylation if the site is unmethylated. A key feature of the unusual mechanisms of catalysis proposed for these enzymes is the attack of a methylene radical, derived from a methylcysteine residue, onto the carbon center undergoing methylation to generate a paramagnetic protein–nucleic acid cross-linked species. This species has been thoroughly characterized during Cfr-dependent C8 methylation, but does not accumulate to detectible levels in RlmN-dependent C2 methylation. Herein, we show that inactive C118S/A variants of RlmN accumulate a substrate-derived paramagnetic species. Characterization of this species by electron paramagnetic resonance spectroscopy in concert with strategic isotopic labeling shows that the radical is delocalized throughout the adenine ring of A2503, although predominant spin density is on N1 and N3. Moreover, 13C hyperfine interactions between the radical and the methylene carbon of the formerly [methyl-13C]Cys355 residue show that the radical species exists in a covalent cross-link between the protein and the nucleic acid substrate. X-ray structures of RlmN C118A show that, in the presence of SAM, the substitution does not alter the active site structure compared to that of the wild-type enzyme. Together, these findings have new mechanistic implications for the role(s) of C118 and its counterpart in Cfr (C105) in catalysis, and suggest involvement of the residue in resolution of the cross-linked species via a radical mediated process. PMID:24806349
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silakov, Alexey; Grove, Tyler L.; Radle, Matthew I.
2014-08-14
RlmN and Cfr are methyltransferases/methylsynthases that belong to the radical S-adenosylmethionine superfamily of enzymes. RlmN catalyzes C2 methylation of adenosine 2503 (A2503) of 23S rRNA, while Cfr catalyzes C8 methylation of the exact same nucleotide, and will subsequently catalyze C2 methylation if the site is unmethylated. A key feature of the unusual mechanisms of catalysis proposed for these enzymes is the attack of a methylene radical, derived from a methylcysteine residue, onto the carbon center undergoing methylation to generate a paramagnetic protein–nucleic acid cross-linked species. This species has been thoroughly characterized during Cfr-dependent C8 methylation, but does not accumulate tomore » detectible levels in RlmN-dependent C2 methylation. Herein, we show that inactive C118S/A variants of RlmN accumulate a substrate-derived paramagnetic species. Characterization of this species by electron paramagnetic resonance spectroscopy in concert with strategic isotopic labeling shows that the radical is delocalized throughout the adenine ring of A2503, although predominant spin density is on N1 and N3. Moreover, 13C hyperfine interactions between the radical and the methylene carbon of the formerly [methyl- 13C]Cys355 residue show that the radical species exists in a covalent cross-link between the protein and the nucleic acid substrate. X-ray structures of RlmN C118A show that, in the presence of SAM, the substitution does not alter the active site structure compared to that of the wild-type enzyme. Together, these findings have new mechanistic implications for the role(s) of C118 and its counterpart in Cfr (C105) in catalysis, and suggest involvement of the residue in resolution of the cross-linked species via a radical mediated process« less
Amyloid Beta Mediates Memory Formation
ERIC Educational Resources Information Center
Garcia-Osta, Ana; Alberini, Cristina M.
2009-01-01
The amyloid precursor protein (APP) undergoes sequential cleavages to generate various polypeptides, including the amyloid [beta] (1-42) peptide (A[beta][1-42]), which is believed to play a major role in amyloid plaque formation in Alzheimer's disease (AD). Here we provide evidence that, in contrast with its pathological role when accumulated,…
Thermogravimetric and differential thermal analysis of potassium bicarbonate contaminated cellulose
A. Broido
1966-01-01
When samples undergo a complicated set of simultaneous and sequential reactions, as cellulose does on heating, results of thermogravimetric and differential thermal analyses are difficult to interpret. Nevertheless, careful comparison of pure and contaminated samples, pyrolyzed under identical conditions, can yield useful information. In these experiments TGA and DTA...
USDA-ARS?s Scientific Manuscript database
Most analytical solutions available for the equations governing the advective-dispersive transport of multiple solutes undergoing sequential first-order decay reactions have been developed for infinite or semi-infinite spatial domains and steady-state boundary conditions. In this work we present an ...
ERIC Educational Resources Information Center
Christiansen, Morten H.; Conway, Christopher M.; Onnis, Luca
2012-01-01
We used event-related potentials (ERPs) to investigate the time course and distribution of brain activity while adults performed (1) a sequential learning task involving complex structured sequences and (2) a language processing task. The same positive ERP deflection, the P600 effect, typically linked to difficult or ungrammatical syntactic…
A Large and Intact Viral Particle Penetrates the Endoplasmic Reticulum Membrane to Reach the Cytosol
Inoue, Takamasa; Tsai, Billy
2011-01-01
Non-enveloped viruses penetrate host membranes to infect cells. A cell-based assay was used to probe the endoplasmic reticulum (ER)-to-cytosol membrane transport of the non-enveloped SV40. We found that, upon ER arrival, SV40 is released into the lumen and undergoes sequential disulfide bond disruptions to reach the cytosol. However, despite these ER-dependent conformational changes, SV40 crosses the ER membrane as a large and intact particle consisting of the VP1 coat, the internal components VP2, VP3, and the genome. This large particle subsequently disassembles in the cytosol. Mutant virus and inhibitor studies demonstrate VP3 and likely the viral genome, as well as cellular proteasome, control ER-to-cytosol transport. Our results identify the sequence of events, as well as virus and host components, that regulate ER membrane penetration. They also suggest that the ER membrane supports passage of a large particle, potentially through either a sizeable protein-conducting channel or the lipid bilayer. PMID:21589906
Lang, Brian H H; Woo, Yu-Cho; Chiu, Keith Wan-Hang
2018-03-19
Assessing the efficacy and safety of sequential high-intensity focused ultrasound (HIFU) ablation in a multinodular goitre (MNG) by comparing them with single HIFU ablation. One hundred and four (84.6%) patients underwent single ablation of a single nodule (group I), while 19 (15.4%) underwent sequential ablation of two relatively-dominant nodules in a MNG (group II). Extent of shrinkage per nodule [by volume reduction ratio (VRR)], pain scores (by 0-10 visual analogue scale) during and after ablation, and rate of vocal cord palsy (VCP), skin burn and nausea/vomiting were compared between the two groups. All 19 (100%) sequential ablations completed successfully. The 3- and 6-month VRR of each nodule were comparable between the two groups (p > 0.05) and in group II, the 3- and 6-month VRR between the first and second nodules were comparable (p = 0.710 and p = 0.548, respectively). Pain score was significantly higher in group II in the morning after ablation (2.29 vs 1.15, p = 0.047) and nausea/vomiting occurred significantly more frequently in group II (15.8% vs 0.0%, p = 0.012). However, VCP and skin burn were comparable (p > 0.05). Sequential ablation had comparable efficacy and safety as single ablation. However, patients undergoing sequential ablation are at higher likelihood of pain in the following morning and nausea/vomiting after ablation. • Sequential HIFU ablation is well-tolerated in patients with two dominant thyroid nodules • More pain is experienced in the morning following sequential HIFU ablation • More nausea/vomiting is experienced following sequential HIFU ablation.
Signorelli, Mauro; Lissoni, Andrea Alberto; De Ponti, Elena; Grassi, Tommaso; Ponti, Serena
2015-01-01
Objective Evaluation of the impact of sequential chemoradiotherapy in high risk endometrial cancer (EC). Methods Two hundred fifty-four women with stage IB grade 3, II and III EC (2009 FIGO staging), were included in this retrospective study. Results Stage I, II, and III was 24%, 28.7%, and 47.3%, respectively. Grade 3 tumor was 53.2% and 71.3% had deep myometrial invasion. One hundred sixty-five women (65%) underwent pelvic (+/- aortic) lymphadenectomy and 58 (22.8%) had nodal metastases. Ninety-eight women (38.6%) underwent radiotherapy, 59 (23.2%) chemotherapy, 42 (16.5%) sequential chemoradiotherapy, and 55 (21.7%) were only observed. After a median follow-up of 101 months, 78 women (30.7%) relapsed and 91 women (35.8%) died. Sequential chemoradiotherapy improved survival rates in women who did not undergo nodal evaluation (disease-free survival [DFS], p=0.040; overall survival [OS], p=0.024) or pelvic (+/- aortic) lymphadenectomy (DFS, p=0.008; OS, p=0.021). Sequential chemoradiotherapy improved both DFS (p=0.015) and OS (p=0.014) in stage III, while only a trend was found for DFS (p=0.210) and OS (p=0.102) in stage I-II EC. In the multivariate analysis, only age (≤65 years) and sequential chemoradiotherapy were statistically related to the prognosis. Conclusion Sequential chemoradiotherapy improves survival rates in high risk EC compared with chemotherapy or radiotherapy alone, in particular in stage III. PMID:26197768
Photonic polymer-blend structures and method for making
Barnes, Michael D.
2004-06-29
The present invention comprises the formation of photonic polymer-blend structures having tunable optical and mechanical properties. The photonic polymer-blend structures comprise monomer units of spherical microparticles of a polymer-blend material wherein the spherical microparticles have surfaces partially merged with one another in a robust inter-particle bond having a tunable inter-particle separation or bond length sequentially attached in a desired and programmable architecture. The photonic polymer-blend structures of the present invention can be linked by several hundred individual particles sequentially linked to form complex three-dimensional structures or highly ordered two-dimensional arrays of 3D columns with 2D spacing.
Plasma fluctuation in estradiol-17β and bone resorption markers around parturition in dairy cows
DEVKOTA, Bhuminad; TAKAHASHI, Masahiro; SATO, Saori; SASAKI, Kouya; UEKI, Atsushi; OSAWA, Takeshi; TAKAHASHI, Masahiro; YAMAGISHI, Norio
2015-01-01
Blood samples were obtained sequentially from 10 dairy cows around the time of parturition to assess plasma fluctuations in estradiol-17β (E2) levels in association with those of several bone resorption markers. Plasma E2 concentration increased sharply a few days prepartum and decreased quickly after parturition. In terms of bone resorption markers, the plasma level of tartrate-resistant acid phosphatase isoform 5b (TRAP5b) rose significantly, commencing 1 week prepartum, and was maintained at this level to a few days postpartum. The plasma concentration of carboxyterminal collagen cross-links of type-I collagen (CTx) increased significantly after parturition. These observations suggest that osteoclast-mediated bone resorption was activated after parturition when plasma E2 concentrations decreased. PMID:25755022
Plasma fluctuation in estradiol-17β and bone resorption markers around parturition in dairy cows.
Devkota, Bhuminad; Takahashi, Masahiro; Sato, Saori; Sasaki, Kouya; Ueki, Atsushi; Osawa, Takeshi; Takahashi, Masahiro; Yamagishi, Norio
2015-07-01
Blood samples were obtained sequentially from 10 dairy cows around the time of parturition to assess plasma fluctuations in estradiol-17β (E2) levels in association with those of several bone resorption markers. Plasma E2 concentration increased sharply a few days prepartum and decreased quickly after parturition. In terms of bone resorption markers, the plasma level of tartrate-resistant acid phosphatase isoform 5b (TRAP5b) rose significantly, commencing 1 week prepartum, and was maintained at this level to a few days postpartum. The plasma concentration of carboxyterminal collagen cross-links of type-I collagen (CTx) increased significantly after parturition. These observations suggest that osteoclast-mediated bone resorption was activated after parturition when plasma E2 concentrations decreased.
Wang, Lu; Liao, Shengjin; Ruan, Yong-Ling
2013-01-01
Seed development depends on coordination among embryo, endosperm and seed coat. Endosperm undergoes nuclear division soon after fertilization, whereas embryo remains quiescent for a while. Such a developmental sequence is of great importance for proper seed development. However, the underlying mechanism remains unclear. Recent results on the cellular domain- and stage-specific expression of invertase genes in cotton and Arabidopsis revealed that cell wall invertase may positively and specifically regulate nuclear division of endosperm after fertilization, thereby playing a role in determining the sequential development of endosperm and embryo, probably through glucose signaling.
Contextual view of Warner's Ranch. Third of three sequential views ...
Contextual view of Warner's Ranch. Third of three sequential views (from west to east) of the buildings in relation to the surrounding geography. Note approximate location of Overland Trail crossing left to right. Camera facing northeast - Warner Ranch, Ranch House, San Felipe Road (State Highway S2), Warner Springs, San Diego County, CA
Li, Qiuhong; Hutchins, Andrew P; Chen, Yong; Li, Shengbiao; Shan, Yongli; Liao, Baojian; Zheng, Dejin; Shi, Xi; Li, Yinxiong; Chan, Wai-Yee; Pan, Guangjin; Wei, Shicheng; Shu, Xiaodong; Pei, Duanqing
2017-05-03
Reprogramming has been shown to involve EMT-MET; however, its role in cell differentiation is unclear. We report here that in vitro differentiation of hESCs to hepatic lineage undergoes a sequential EMT-MET with an obligatory intermediate mesenchymal phase. Gene expression analysis reveals that Activin A-induced formation of definitive endoderm (DE) accompanies a synchronous EMT mediated by autocrine TGFβ signalling followed by a MET process. Pharmacological inhibition of TGFβ signalling blocks the EMT as well as DE formation. We then identify SNAI1 as the key EMT transcriptional factor required for the specification of DE. Genetic ablation of SNAI1 in hESCs does not affect the maintenance of pluripotency or neural differentiation, but completely disrupts the formation of DE. These results reveal a critical mesenchymal phase during the acquisition of DE, highlighting a role for sequential EMT-METs in both differentiation and reprogramming.
Surface Wave Elastometry of the Cornea in Porcine and Human Donor Eyes
Dupps, William J.; Netto, Marcelo V.; Herekar, Satish; Krueger, Ronald R.
2007-01-01
PURPOSE To introduce a nondestructive technique for characterization of corneal stiffness, determine measurement precision, and investigate comparative stiffness values along central, radial, and circumferential vectors in porcine corneas. The effects of epithelial debridement, relaxing incisions, and crosslink-mediated stiffening on surface wave velocity are also studied. METHODS A handheld prototype system was used to measure ultrasound surface wave propagation time between two fixed-distance transducers along a ten-position map. Repeatability was assessed with replicate measurements in 6 porcine corneas. In 12 porcine globes with controlled intraocular pressure (IOP), serial measurements were performed before and after epithelial removal, then after 250- and 750-μm-deep relaxing incisions. In human globes with constant intravitreal pressure, central wave velocity and transcorneal IOP measurements were compared before and after collagen cross-linking. RESULTS Measurement repeatability across all regions was between 2.2% and 8.1%. Epithelial removal resulted in increases in measured stiffness in 67% of eyes, but statistical power was insufficient to detect a systematic change. Wave velocity across a central incision decreased significantly after 250-μm keratotomy (P<.001), but did not undergo a significant further decrease with deeper keratotomy. Meridional stiffness changes consistent with coupling effects were detected after keratotomy. Surface wave velocity and transcorneal IOP measurements increased markedly after collagen cross-linking despite maintenance of a constant IOP. CONCLUSIONS Handheld corneal elastometry provides a repeatable measure of regional stiffness changes after relaxing incisions and collagen cross-linking in in vitro experiments. Surface wave elastometry allows focal assessment of corneal biomechanical properties that are relevant in refractive surgery, ectatic disease, and glaucoma. PMID:17269246
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hao; Liu, Haijun; Niedzwiedzki, Dariusz M.
The orange carotenoid protein (OCP) plays a photoprotective role in cyanobacterial photosynthesis similar to that of nonphotochemical quenching in higher plants. Under high-light conditions, the OCP binds to the phycobilisome (PBS) and reduces the extent of transfer of energy to the photosystems. The protective cycle starts from a light-induced activation of the OCP. Detailed information about the molecular mechanism of this process as well as the subsequent recruitment of the active OCP to the phycobilisome are not known. We report here our investigation on the OCP photoactivation from the cyanobacterium Synechocystis sp. PCC 6803 by using a combination of nativemore » electrospray mass spectrometry (MS) and protein cross-linking. We demonstrate that native MS can capture the OCP with its intact pigment and further reveal that the OCP undergoes a dimer-to-monomer transition upon light illumination. The reversion of the activated form of the OCP to the inactive, dark form was also observed by using native MS. Furthermore, in vitro reconstitution of the OCP and PBS allowed us to perform protein chemical cross-linking experiments. Liquid chromatography–MS/MS analysis identified cross-linking species between the OCP and the PBS core components. Our result indicates that the N-terminal domain of the OCP is closely involved in the association with a site formed by two allophycocyanin trimers in the basal cylinders of the phycobilisome core. This report improves our understanding of the activation mechanism of the OCP and the structural binding site of the OCP during the cyanobacterial nonphotochemical quenching process.« less
Lahari, Challa; Jasti, Lakshmi S; Fadnavis, Nitin W; Sontakke, Kalpana; Ingavle, Ganesh; Deokar, Sarika; Ponrathnam, Surendra
2010-01-19
Effects of changes in hydrophobicity of polymeric support on structure and activity of alpha-chymotrypsin (E.C. 3.4.21.1) have been studied with copolymers of allyl glycidyl ether (AGE) and ethylene glycol dimethacrylate (EGDM) with increasing molar ratio of EGDM to AGE (cross-link density 0.05 to 1.5). The enzyme is readily adsorbed from aqueous buffer at room temperature following Langmuir adsorption isotherms in unexpectedly large amounts (25% w/w). Relative hydrophobicity of the copolymers has been assessed by studying adsorption of naphthalene and Fmoc-methionine by the series of copolymers from aqueous solutions. Polymer hydrophobicity appears to increase linearly on increasing cross-link density from 0.05 to 0.25. Further increase in cross-link density causes a decrease in naphthalene binding but has little effect on binding of Fmoc-Met. Binding of alpha-chymotrypsin to these copolymers follow the trend for Fmoc-methionine binding, rather than naphthalene binding, indicating involvement of polar interactions along with hydrophobic interactions during binding of protein to the polymer. The adsorbed enzyme undergoes extensive denaturation (ca. 80%) with loss of both tertiary and secondary structure on contact with the copolymers as revealed by fluorescence, CD and Raman spectra of the adsorbed protein. Comparison of enzyme adsorption behavior with Eupergit C, macroporous Amberlite XAD-2, and XAD-7 suggests that polar interactions of the EGDM ester functional groups with the protein play a significant role in enzyme denaturation.
Talhaoui, Ibtissam; Shafirovich, Vladimir; Liu, Zhi; Saint-Pierre, Christine; Akishev, Zhiger; Matkarimov, Bakhyt T; Gasparutto, Didier; Geacintov, Nicholas E; Saparbaev, Murat
2015-06-05
Oxidatively generated guanine radical cations in DNA can undergo various nucleophilic reactions including the formation of C8-guanine cross-links with adjacent or nearby N3-thymines in DNA in the presence of O2. The G*[C8-N3]T* lesions have been identified in the DNA of human cells exposed to oxidative stress, and are most likely genotoxic if not removed by cellular defense mechanisms. It has been shown that the G*[C8-N3]T* lesions are substrates of nucleotide excision repair in human cell extracts. Cleavage at the sites of the lesions was also observed but not further investigated (Ding et al. (2012) Nucleic Acids Res. 40, 2506-2517). Using a panel of eukaryotic and prokaryotic bifunctional DNA glycosylases/lyases (NEIL1, Nei, Fpg, Nth, and NTH1) and apurinic/apyrimidinic (AP) endonucleases (Apn1, APE1, and Nfo), the analysis of cleavage fragments by PAGE and MALDI-TOF/MS show that the G*[C8-N3]T* lesions in 17-mer duplexes are incised on either side of G*, that none of the recovered cleavage fragments contain G*, and that T* is converted to a normal T in the 3'-fragment cleavage products. The abilities of the DNA glycosylases to incise the DNA strand adjacent to G*, while this base is initially cross-linked with T*, is a surprising observation and an indication of the versatility of these base excision repair proteins. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Talhaoui, Ibtissam; Shafirovich, Vladimir; Liu, Zhi; Saint-Pierre, Christine; Akishev, Zhiger; Matkarimov, Bakhyt T.; Gasparutto, Didier; Geacintov, Nicholas E.; Saparbaev, Murat
2015-01-01
Oxidatively generated guanine radical cations in DNA can undergo various nucleophilic reactions including the formation of C8-guanine cross-links with adjacent or nearby N3-thymines in DNA in the presence of O2. The G*[C8-N3]T* lesions have been identified in the DNA of human cells exposed to oxidative stress, and are most likely genotoxic if not removed by cellular defense mechanisms. It has been shown that the G*[C8-N3]T* lesions are substrates of nucleotide excision repair in human cell extracts. Cleavage at the sites of the lesions was also observed but not further investigated (Ding et al. (2012) Nucleic Acids Res. 40, 2506–2517). Using a panel of eukaryotic and prokaryotic bifunctional DNA glycosylases/lyases (NEIL1, Nei, Fpg, Nth, and NTH1) and apurinic/apyrimidinic (AP) endonucleases (Apn1, APE1, and Nfo), the analysis of cleavage fragments by PAGE and MALDI-TOF/MS show that the G*[C8-N3]T* lesions in 17-mer duplexes are incised on either side of G*, that none of the recovered cleavage fragments contain G*, and that T* is converted to a normal T in the 3′-fragment cleavage products. The abilities of the DNA glycosylases to incise the DNA strand adjacent to G*, while this base is initially cross-linked with T*, is a surprising observation and an indication of the versatility of these base excision repair proteins. PMID:25903131
NASA Astrophysics Data System (ADS)
Chen, R. M.; Diggins, Z. J.; Mahatme, N. N.; Wang, L.; Zhang, E. X.; Chen, Y. P.; Zhang, H.; Liu, Y. N.; Narasimham, B.; Witulski, A. F.; Bhuva, B. L.; Fleetwood, D. M.
2017-08-01
The single-event sensitivity of bulk 40-nm sequential circuits is investigated as a function of temperature and supply voltage. An overall increase in SEU cross section versus temperature is observed at relatively high supply voltages. However, at low supply voltages, there is a threshold temperature beyond which the SEU cross section decreases with further increases in temperature. Single-event transient induced errors in flip-flops also increase versus temperature at relatively high supply voltages and are more sensitive to temperature variation than those caused by single-event upsets.
Tetrameric subunit structure of the native brain inwardly rectifying potassium channel Kir 2.2.
Raab-Graham, K F; Vandenberg, C A
1998-07-31
Strongly inwardly rectifying potassium channels of the Kir 2 subfamily (IRK1, IRK2, and IRK3) are involved in maintenance and modulation of cell excitability in brain and heart. Electrophysiological studies of channels expressed in heterologous systems have suggested that the pore-conducting pathway contains four subunits. However, inferences from electrophysiological studies have not been tested on native channels and do not address the possibility of nonconducting auxiliary subunits. Here, we investigate the subunit stoichiometry of endogenous inwardly rectifying potassium channel Kir 2.2 (IRK2) from rat brain. Using chemical cross-linking, immunoprecipitiation, and velocity sedimentation, we report physical evidence demonstrating the tetrameric organization of the native channel. Kir 2.2 was sequentially cross-linked to produce bands on SDS-polyacrylamide gel electrophoresis corresponding in size to monomer, dimer, trimer, and three forms of tetramer. Fully cross-linked channel was present as a single band of tetrameric size. Immunoprecipitation of biotinylated membranes revealed a single band corresponding to Kir 2.2, suggesting that the channel is composed of a single type of subunit. Hydrodynamic properties of 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonic acid-solubilized channel were used to calculate the molecular mass of the channel. Velocity sedimentation in H2O or D2O gave a sharp peak with a sedimentation coefficient of 17.3 S. Gel filtration yielded a Stokes radius of 5.92 nm. These data indicate a multisubunit protein with a molecular mass of 193 kDa, calculated to contain 3.98 subunits. Together, these results demonstrate that Kir 2.2 channels are formed by the homotetrameric association of Kir 2.2 subunits and do not contain tightly associated auxiliary subunits. These studies suggest that Kir 2.2 channels differ in structure from related heterooctomeric ATP-sensitive K channels and heterotetrameric G-protein-regulated inward rectifier K channels.
Li, Guoqi; Deng, Lei; Wang, Dong; Wang, Wei; Zeng, Fei; Zhang, Ziyang; Li, Huanglong; Song, Sen; Pei, Jing; Shi, Luping
2016-01-01
Chunking refers to a phenomenon whereby individuals group items together when performing a memory task to improve the performance of sequential memory. In this work, we build a bio-plausible hierarchical chunking of sequential memory (HCSM) model to explain why such improvement happens. We address this issue by linking hierarchical chunking with synaptic plasticity and neuromorphic engineering. We uncover that a chunking mechanism reduces the requirements of synaptic plasticity since it allows applying synapses with narrow dynamic range and low precision to perform a memory task. We validate a hardware version of the model through simulation, based on measured memristor behavior with narrow dynamic range in neuromorphic circuits, which reveals how chunking works and what role it plays in encoding sequential memory. Our work deepens the understanding of sequential memory and enables incorporating it for the investigation of the brain-inspired computing on neuromorphic architecture. PMID:28066223
Practice-induced and sequential modulations of the Simon effect.
Soetens, Eric; Maetens, Kathleen; Zeischka, Peter
2010-05-01
People react more quickly and more accurately to stimuli presented in locations corresponding to the response, as compared with noncorresponding locations, even when stimulus location is irrelevant (Simon effect [SE]). The explanation that SEs are caused by the automatic priming of a corresponding response has been questioned, because of the many exceptions to the effect. We replicated practice-induced and sequential modulations of the SE in two experiments--first, by training participants with blocks of location-relevant stimuli, and second, by mixing location-relevant and location-irrelevant trials. The decrease of the SE with incompatible training was relatively permanent in the blocked experiment, whereas the effect was temporary in the mixed experiment. The difference was caused by a more permanent reversal of the SE after incongruent trials, showing that sequential modulations depend on long-term practice effects. We suggest that there is a formation of a contralateral long-term memory stimulus-response link in blocked conditions and that short-term and long-term memory links are primed by preceding events.
Morinaga, Jun; Zhao, Jiabin; Endo, Motoyoshi; Kadomatsu, Tsuyoshi; Miyata, Keishi; Sugizaki, Taichi; Okadome, Yusuke; Tian, Zhe; Horiguchi, Haruki; Miyashita, Kazuya; Maruyama, Nobuhiro; Mukoyama, Masashi; Oike, Yuichi
2018-01-01
Angiopoietin-like proteins (ANGPTLs) 3, 4, and 8 reportedly contribute to progression of metabolic disease, a risk factor for cardiovascular disease (CVD). The purpose of this study was to investigate whether circulating ANGPTL levels are associated with CVD risk after adjustment for potential confounding factors. We conducted a single center, cross-sectional study of 988 Japanese subjects undergoing routine health checks. Serum ANGPTL3, 4, and 8 levels were measured using an enzyme-linked immunosorbent assay. Using multiple regression analysis we evaluated potential association of circulating ANGPTL3, 4, and 8 levels with general medical status including age, sex, smoking, drinking, obesity, hypertension, impaired glycometabolism, dyslipidemia, hyperuricemia, hepatic impairment, chronic kidney disease, anemia, cardiac abnormality, and inflammation. Circulating ANGPTL3 levels were relatively high in health-related categories of hepatic impairment and inflammation. Circulating ANGPTL4 levels were also significantly high in impaired glycometabolism or hepatic impairment but decreased in inflammation. Finally, increased ANGPTL8 levels were observed in obesity, impaired glycometabolism and dyslipidemia. Particularly, increased levels of circulating ANGPTL8 were positively correlated with circulating triglycerides and LDL-cholesterol levels and inversely correlated with circulating HDL-cholesterol levels. Circulating ANGPTL3, 4, and 8 levels reflect some risk factors for CVD development.
A Cross-Cultural Validation of the Sequential-Simultaneous Theory of Intelligence in Children.
ERIC Educational Resources Information Center
Moon, Soo-Back; McLean, James E.; Kaufman, Alan S.
2003-01-01
The Kaufman Assessment Battery for Children - Korean (K-ABC-K) was developed to assess the intelligence and achievement of preschool and school-aged Korean children. This study examined the validity of the Sequential Processing, Simultaneous Processing and Achievement scales of the K-ABC-K. The factor analyses provided strong support for the…
Karasawa, Akira; Erkens, Guus B.; Berntsson, Ronnie P.-A.; Otten, Renee; Schuurman-Wolters, Gea K.; Mulder, Frans A. A.; Poolman, Bert
2011-01-01
The cystathionine β-synthase module of OpuA in conjunction with an anionic membrane surface acts as a sensor of internal ionic strength, which allows the protein to respond to osmotic stress. We now show by chemical modification and cross-linking studies that CBS2-CBS2 interface residues are critical for transport activity and/or ionic regulation of transport, whereas CBS1 serves no functional role. We establish that Cys residues in CBS1, CBS2, and the nucleotide-binding domain are more accessible for cross-linking at high than low ionic strength, indicating that these domains undergo conformational changes when transiting between the active and inactive state. Structural analyses suggest that the cystathionine β-synthase module is largely unstructured. Moreover, we could substitute CBS1 by a linker and preserve ionic regulation of transport. These data suggest that CBS1 serves as a linker and the structured CBS2-CBS2 interface forms a hinge point for ionic strength-dependent rearrangements that are transmitted to the nucleotide-binding domain and thereby affect translocation activity. PMID:21878634
Adsorption of hexavalent chromium on cationic cross-linked starches of different botanic origins.
Klimaviciute, Rima; Bendoraitiene, Joana; Rutkaite, Ramune; Zemaitaitis, Algirdas
2010-09-15
The influence of origin of native starch used to obtain cationic cross-linked starch (CCS) on the adsorption of Cr(VI) onto CCS has been investigated. CCS granule size is influenced by the botanic source of native starch. The equilibrium adsorption of Cr(VI) onto CCS was described by the Langmuir, Freundlich, Dubinin-Radushkevich and Temkin models. The more equal the adsorption energy of the quaternary ammonium groups in CCS granule as indicated by low value of change of Temkin adsorption energy DeltaE(T) the greater amount of Cr(VI) was adsorbed onto CCS. The value of DeltaE(T) decreased and sorption capacity of CCS increased with the decrease of CCS granule size and with the increase of number of amorphous regions in CCS granules. The affinity of dichromate anions increases and adsorption proceeds more spontaneously when Cr(VI) is adsorbed onto more amorphous CCS. Adsorption process of Cr(VI) onto such CCS is more exothermic and order of system undergoes major changes during adsorption. After the adsorption on CCS Cr(VI) could be regenerated by incineration at temperature of 800 degrees C. Copyright 2010 Elsevier B.V. All rights reserved.
1983-01-01
We report investigation of the relationship between ligand-induced B cell plasma membrane depolarization and increased expression of membrane-associated, I-A subregion encoded (mI-A) antigens. Results demonstrate that equal frequencies of B cells are stimulated to undergo membrane depolarization and to increase mI-A expression in response to mitogen, anti-Ig, and thymus-independent (TI) or thymus-dependent (TD) antigens. Further, a cause-and-effect relationship between these two events is suggested by results that demonstrate that inhibition of anti- Fab--induced depolarization by valinomycin also inhibits the subsequent increase in mI-A antigen expression and "passive" (non-ligand-mediated) depolarization of murine B cells by K+ results in hyper-mI-A antigen expression. Based upon these results we hypothesize that antigen- mediated receptor cross-linking results in signal transduction via membrane depolarization, which is resultant in increased mI-A antigen synthesis and cell surface expression. This increase in mI-A antigen density may render the B cell more receptive to subsequent interaction with I-region-restricted helper T cells. PMID:6415207
Optical assays based on colloidal inorganic nanoparticles.
Ghasemi, Amir; Rabiee, Navid; Ahmadi, Sepideh; Hashemzadeh, Shabnam; Lolasi, Farshad; Bozorgomid, Mahnaz; Kalbasi, Alireza; Nasseri, Behzad; Shiralizadeh Dezfuli, Amin; Aref, Amir Reza; Karimi, Mahdi; Hamblin, Michael R
2018-06-20
Colloidal inorganic nanoparticles have wide applications in the detection of analytes and in biological assays. A large number of these assays rely on the ability of gold nanoparticles (AuNPs, in the 20 nm diameter size range) to undergo a color change from red to blue upon aggregation. AuNP assays can be based on cross-linking, non-cross linking or unmodified charge-based aggregation. Nucleic acid-based probes, monoclonal antibodies, and molecular-affinity agents can be attached by covalent or non-covalent means. Surface plasmon resonance and SERS techniques can be utilized. Silver NPs also have attractive optical properties (higher extinction coefficient). Combinations of AuNPs and AgNPs in nanocomposites can have additional advantages. Magnetic NPs and ZnO, TiO2 and ZnS as well as insulator NPs including SiO2 can be employed in colorimetric assays, and some can act as peroxidase mimics in catalytic applications. This review covers the synthesis and stabilization of inorganic NPs and their diverse applications in colorimetric and optical assays for analytes related to environmental contamination (metal ions and pesticides), and for early diagnosis and monitoring of diseases, using medically important biomarkers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitazawa, Yuzo; Ueki, Takeshi; McIntosh, Lucas D.
2016-04-29
Here we investigate a hierarchical morphology change and accompanying sol–gel transition using a doubly thermosensitive ABC-triblock copolymer in an ionic liquid (IL). The triblock copolymer contains two different lower critical solution temperature (LCST) thermosensitive polymers, poly(benzyl methacrylate) (PBnMA) and poly(2-phenylethyl methacrylate) (PPhEtMA), as the end blocks and poly(methyl methacrylate) (PMMA) as the middle block (PBnMA-b-PMMA-b-PPhEtMA: BMP). BMP undergoes a hierarchical phase transition corresponding to the self-assembly of each of the thermosensitive blocks in the IL, and a sol–gel transition was observed in concentrated, above 10 wt %, polymer solutions. The gelation behavior was affected by polymer concentration, and at 20more » wt %, the BMP/IL composite showed a phase transition, with increasing temperature, from solution through a jammed micelle suspension to a physically cross-linked gel. For each phase was formed reversibly and rapidly over the corresponding temperature range. Finally, the jammed micelle and cross-linked gel states were characterized using viscoelastic measurements and small-angle X-ray scattering (SAXS).« less
Apoptosis and Accidental Cell Death in Cultured Human Keratinocytes after Thermal Injury
Matylevitch, Natalia P.; Schuschereba, Steven T.; Mata, Jennifer R.; Gilligan, George R.; Lawlor, David F.; Goodwin, Cleon W.; Bowman, Phillip D.
1998-01-01
The respective roles of apoptosis and accidental cell death after thermal injury were evaluated in normal human epidermal keratinocytes. By coupling the LIVE/DEAD fluorescence viability assay with the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) method and ultrastructural morphology, these two processes could be distinguished. Cells were grown on glass coverslips with a microgrid pattern so that the results of several staining procedures performed sequentially could be visualized in the same cells after heating at temperatures of up to 72°C for 1 second. After exposure to temperatures of 58 to 59°C, cells died predominantly by apoptosis; viable cells became TUNEL positive, indicating degradation of DNA. After exposure to temperatures of 60 to 66°C, both TUNEL-positive viable cells and TUNEL-positive nonviable cells were observed, indicating that apoptosis and accidental cell death were occurring simultaneously. Cells died almost immediately after exposure to temperatures above 72°C, presumably from heat fixation. The fluorescent mitochondrial probe MitoTracker Orange indicated that cells undergoing apoptosis became TUNEL positive before loss of mitochondrial function. Nucleosomal fragmentation of DNA analyzed by enzyme-linked immunosorbent assay and gel electrophoresis occurred after exposure to temperatures of 58 to 59°C. The characteristic morphological findings of cells undergoing apoptosis, by transmission electron microscopy, included cellular shrinkage, cytoplasmic budding, and relatively intact mitochondria. Depending on temperature and time of exposure, normal human epidermal keratinocytes may die by apoptosis, accidental cell death, or heat fixation. PMID:9708816
Apoptosis and accidental cell death in cultured human keratinocytes after thermal injury.
Matylevitch, N P; Schuschereba, S T; Mata, J R; Gilligan, G R; Lawlor, D F; Goodwin, C W; Bowman, P D
1998-08-01
The respective roles of apoptosis and accidental cell death after thermal injury were evaluated in normal human epidermal keratinocytes. By coupling the LIVE/DEAD fluorescence viability assay with the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) method and ultrastructural morphology, these two processes could be distinguished. Cells were grown on glass coverslips with a microgrid pattern so that the results of several staining procedures performed sequentially could be visualized in the same cells after heating at temperatures of up to 72 degrees C for 1 second. After exposure to temperatures of 58 to 59 degrees C, cells died predominantly by apoptosis; viable cells became TUNEL positive, indicating degradation of DNA. After exposure to temperatures of 60 to 66 degrees C, both TUNEL-positive viable cells and TUNEL-positive nonviable cells were observed, indicating that apoptosis and accidental cell death were occurring simultaneously. Cells died almost immediately after exposure to temperatures above 72 degrees C, presumably from heat fixation. The fluorescent mitochondrial probe MitoTracker Orange indicated that cells undergoing apoptosis became TUNEL positive before loss of mitochondrial function. Nucleosomal fragmentation of DNA analyzed by enzyme-linked immunosorbent assay and gel electrophoresis occurred after exposure to temperatures of 58 to 59 degrees C. The characteristic morphological findings of cells undergoing apoptosis, by transmission electron microscopy, included cellular shrinkage, cytoplasmic budding, and relatively intact mitochondria. Depending on temperature and time of exposure, normal human epidermal keratinocytes may die by apoptosis, accidental cell death, or heat fixation.
Berridge, Rory; Skabara, Peter J; Pozo-Gonzalo, Cristina; Kanibolotsky, Alexander; Lohr, Jan; McDouall, Joseph J W; McInnes, Eric J L; Wolowska, Joanna; Winder, Christoph; Sariciftci, N Serdar; Harrington, Ross W; Clegg, William
2006-02-23
A novel polythienylenevinylene (PTV) and two new polythiophenes (PTs), featuring fused tetrathiafulvalene (TTF) units, have been prepared and characterized by ultraviolet-visible (UV-vis) and electron paramagnetic resonance (EPR) spectroelectrochemistry. All polymers undergo two sequential, reversible oxidation processes in solution. Structures in which the TTF species is directly linked to the polymer backbone (2 and 4) display redox behavior which is dictated by the fulvalene system. Once the TTF is spatially removed from the polymer chain by a nonconjugated link (polymer 3), the electroactivity of both TTF and polythiophene moieties can be detected. Computational studies confirm the delocalization of charge over both electroactive centers (TTF and PT) and the existence of a triplet dication intermediate. PTV 4 has a low band gap (1.44 eV), is soluble in common organic solvents, and is stable under ambient conditions. Organic solar cells of polymer 4:[6,6]-phenyl-C(61) butyric acid methyl ester (PCBM) have been fabricated. Under illumination, a photovoltaic effect is observed with a power conversion efficiency of 0.13% under AM1.5 solar simulated light. The onset of photocurrent at 850 nm is consistent with the onset of the pi-pi absorption band of the polymer. Remarkably, UV-vis spectroelectrochemistry of polymer 4 reveals that the conjugated polymer chain remains unchanged during the oxidation of the polymer.
Thermally Cross-Linkable Hole Transport Materials for Solution Processed Phosphorescent OLEDs
NASA Astrophysics Data System (ADS)
Kim, Beom Seok; Kim, Ohyoung; Chin, Byung Doo; Lee, Chil Won
2018-04-01
Materials for unique fabrication of a solution-processed, multi-layered organic light-emitting diode (OLED) were developed. Preparation of a hole transport layer with a thermally cross-linkable chemical structure, which can be processed to form a thin film and then transformed into an insoluble film by using an amine-alcohol condensation reaction with heat treatment, was investigated. Functional groups, such as triplenylamine linked with phenylcarbazole or biphenyl, were employed in the chemical structure of the hole transport layer in order to maintain high triplet energy properties. When phenylcarbazole or biphenyl compounds continuously react with triphenylamine under acid catalysis, a chemically stable thin film material with desirable energy-level properties for a blue OLED could be obtained. The prepared hole transport materials showed excellent surface roughness and thermal stability in comparison with the commercial reference material. On the solution-processed model hole transport layer, we fabricated a device with a blue phosphorescent OLED by using sequential vacuum deposition. The maximum external quantum, 19.3%, was improved by more than 40% over devices with the commercial reference material (11.4%).
Production of single heavy charged leptons at a linear collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Pree, Erin; Sher, Marc; Turan, Ismail
2008-05-01
A sequential fourth generation of quarks and leptons is allowed by precision electroweak constraints if the mass splitting between the heavy quarks is between 50 and 80 GeV. Although heavy quarks can be easily detected at the LHC, it is very difficult to detect a sequential heavy charged lepton, L, due to large backgrounds. Should the L mass be above 250 GeV, it cannot be pair-produced at a 500 GeV ILC. We calculate the cross section for the one-loop process e{sup +}e{sup -}{yields}L{tau}. Although the cross section is small, it may be detectable. We also consider contributions from the two-Higgsmore » doublet model and the Randall-Sundrum model, in which case the cross section can be substantially higher.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firestone, Mary
2015-03-31
It is now understood that most plant C is utilized or transformed by soil microorganisms en route to stabilization. Hence the composition of microbial communities that mediate decomposition and transformation of root C is critical, as are the metabolic capabilities of these communities. The change in composition and function of the C-transforming microbial communities over time in effect defines the biological component of soil C stabilization. Our research was designed to test 2 general hypotheses; the first two hypotheses are discussed first; H1: Root-exudate interactions with soil microbial populations results in the expression of enzymatic capacities for macromolecular, complex carbonmore » decomposition; and H2: Microbial communities surrounding roots undergo taxonomic succession linked to functional gene activities as roots grow, mature, and decompose in soil. Over the term of the project we made significant progress in 1) quantifying the temporal pattern of root interactions with the soil decomposing community and 2) characterizing the role of root exudates in mediating these interactions.« less
Methods for Selecting Phage Display Antibody Libraries.
Jara-Acevedo, Ricardo; Diez, Paula; Gonzalez-Gonzalez, Maria; Degano, Rosa Maria; Ibarrola, Nieves; Gongora, Rafael; Orfao, Alberto; Fuentes, Manuel
2016-01-01
The selection process aims sequential enrichment of phage antibody display library in clones that recognize the target of interest or antigen as the library undergoes successive rounds of selection. In this review, selection methods most commonly used for phage display antibody libraries have been comprehensively described. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Robert L. Heath; Allen S. Lefohn; Robert C. Musselman
2009-01-01
Ozone interacts with plant tissue through distinct temporal processes. Sequentially, plants are exposed to ambient O3 hat (1) moves through the leaf boundary layer, (2) is taken up into plant tissue primarily through stomata, and (3) undergoes chemical interaction within plant tissue, first by initiating alterations and then as part of plant...
Using timed event sequential data in nursing research.
Pecanac, Kristen E; Doherty-King, Barbara; Yoon, Ju Young; Brown, Roger; Schiefelbein, Tony
2015-01-01
Measuring behavior is important in nursing research, and innovative technologies are needed to capture the "real-life" complexity of behaviors and events. The purpose of this article is to describe the use of timed event sequential data in nursing research and to demonstrate the use of this data in a research study. Timed event sequencing allows the researcher to capture the frequency, duration, and sequence of behaviors as they occur in an observation period and to link the behaviors to contextual details. Timed event sequential data can easily be collected with handheld computers, loaded with a software program designed for capturing observations in real time. Timed event sequential data add considerable strength to analysis of any nursing behavior of interest, which can enhance understanding and lead to improvement in nursing practice.
Garey, Lorra; Cheema, Mina K; Otal, Tanveer K; Schmidt, Norman B; Neighbors, Clayton; Zvolensky, Michael J
2016-10-01
Smoking rates are markedly higher among trauma-exposed individuals relative to non-trauma-exposed individuals. Extant work suggests that both perceived stress and negative affect reduction smoking expectancies are independent mechanisms that link trauma-related symptoms and smoking. Yet, no work has examined perceived stress and negative affect reduction smoking expectancies as potential explanatory variables for the relation between trauma-related symptom severity and smoking in a sequential pathway model. Methods The present study utilized a sample of treatment-seeking, trauma-exposed smokers (n = 363; 49.0% female) to examine perceived stress and negative affect reduction expectancies for smoking as potential sequential explanatory variables linking trauma-related symptom severity and nicotine dependence, perceived barriers to smoking cessation, and severity of withdrawal-related problems and symptoms during past quit attempts. As hypothesized, perceived stress and negative affect reduction expectancies had a significant sequential indirect effect on trauma-related symptom severity and criterion variables. Findings further elucidate the complex pathways through which trauma-related symptoms contribute to smoking behavior and cognitions, and highlight the importance of addressing perceived stress and negative affect reduction expectancies in smoking cessation programs among trauma-exposed individuals. (Am J Addict 2016;25:565-572). © 2016 American Academy of Addiction Psychiatry.
ERIC Educational Resources Information Center
Jacobson, Peggy F.; Walden, Patrick R.
2013-01-01
Purpose: This study explored the utility of language sample analysis for evaluating language ability in school-age Spanish-English sequential bilingual children. Specifically, the relative potential of lexical diversity and word/morpheme omission as predictors of typical or atypical language status was evaluated. Method: Narrative samples were…
Contextual view of Warner's Ranch. Second of three sequential views ...
Contextual view of Warner's Ranch. Second of three sequential views (from west to east) of the buildings in relation to the surrounding geography. Ranch house and trading post/barn on left. Note approximate location of Overland Trail crossing left to right. Camera facing north. - Warner Ranch, Ranch House, San Felipe Road (State Highway S2), Warner Springs, San Diego County, CA
Microgels: Structure, Dynamics, and Possible Applications.
NASA Astrophysics Data System (ADS)
McKenna, John; Streletzky, Kiril
2007-03-01
We cross-linked Hydropxypropylcellulose (HPC) polymer chains to produce microgel nanoparticles and studied their structure and dynamics using Dynamic Light Scattering spectroscopy. The complex nature of the fluid and large size distribution of the particles renders typical characterization algorithm CONTIN ineffective and inconsistent. Instead, the particles spectra have been fit to a sum of stretched exponentials. Each term offers three parameters for analysis and represents a single mode. The results of this analysis show that the microgels undergo a transition to a fewer modes around 41C. The CONTIN size distribution analysis shows similar results, but these come with much less consistency and resolution. Our experiments prove that microgel particles shrink under volume phase transition. The shrinkage is reversible and depends on the amount of cross-linker, salt and polymer concentrations and rate of heating. Reversibility of microgel volume phase transition property might be particularly useful for a controlled drug delivery and release.
Novel magnetic cross-linked lipase aggregates for improving the resolution of (R, S)-2-octanol.
Liu, Ying; Guo, Chen; Liu, Chun-Zhao
2015-03-01
Novel magnetic cross-linked lipase aggregates were fabricated by immobilizing the cross-linked lipase aggregates onto magnetic particles with a high number of -NH2 terminal groups using p-benzoquinone as the cross-linking agent. At the optimal fabrication conditions, 100% of immobilization efficiency and 139% of activity recovery of the magnetic cross-linked lipase aggregates were achieved. The magnetic cross-linked lipase aggregates were able to efficiently resolve (R, S)-2-octanol, and retained 100% activity and 100% enantioselectivity after 10 cycles of reuse, whereas the cross-linked lipase aggregates only retained about 50% activity and 70% enantioselectivity due to insufficient cross-linking. These results provide a great potential for industrial applications of the magnetic cross-linked lipase aggregates. © 2014 Wiley Periodicals, Inc.
Effect of base sequence on the DNA cross-linking properties of pyrrolobenzodiazepine (PBD) dimers
Rahman, Khondaker M.; James, Colin H.; Thurston, David E.
2011-01-01
Pyrrolo[2,1-c][1,4]benzodiazepine (PBD) dimers are synthetic sequence-selective DNA minor-groove cross-linking agents that possess two electrophilic imine moieties (or their equivalent) capable of forming covalent aminal linkages with guanine C2-NH2 functionalities. The PBD dimer SJG-136, which has a C8–O–(CH2)3–O–C8′′ central linker joining the two PBD moieties, is currently undergoing phase II clinical trials and current research is focused on developing analogues of SJG-136 with different linker lengths and substitution patterns. Using a reversed-phase ion pair HPLC/MS method to evaluate interaction with oligonucleotides of varying length and sequence, we recently reported (JACS, 2009, 131, 13 756) that SJG-136 can form three different types of adducts: inter- and intrastrand cross-linked adducts, and mono-alkylated adducts. These studies have now been extended to include PBD dimers with a longer central linker (C8–O–(CH2)5–O–C8′), demonstrating that the type and distribution of adducts appear to depend on (i) the length of the C8/C8′-linker connecting the two PBD units, (ii) the positioning of the two reactive guanine bases on the same or opposite strands, and (iii) their separation (i.e. the number of base pairs, usually ATs, between them). Based on these data, a set of rules are emerging that can be used to predict the DNA–interaction behaviour of a PBD dimer of particular C8–C8′ linker length towards a given DNA sequence. These observations suggest that it may be possible to design PBD dimers to target specific DNA sequences. PMID:21427082
Bandyopadhyay, Sanjay; Allison, William S
2004-07-27
In crystal structures of the bovine F(1)-ATPase (MF(1)), the side chains of gammaMet(23), gammaMet(232), and gammaLeu(77) interact in a cluster. Substitution of the corresponding residues in the alpha(3)beta(3)gamma subcomplex of TF(1) with lysine lowers the ATPase activity to 2.3, 11, and 15%, respectively, of that displayed by wild-type. In contrast, TF(1) subcomplexes containing the gammaM(23)C, gammaM(232)C, and gammaL(77)C substitutions display 36, 36, and 130%, respectively, of the wild-type ATPase activity. The ATPase activity of the gammaM(23)C/gammaM(232)C double mutant subcomplex is 36% that of the wild-type subcomplex before and after cross-linking the introduced cysteines, whereas the ATPase activity of the gammaM(23)C/L(77)C double mutant increased from 50 to 85% that of wild-type after cross-linking the introduced cysteines. Only beta-beta cross-links formed when the alpha(3)(betaE(395)C)(3)gammaM(23)C double mutant was inactivated with CuCl(2). The overall results suggest that the attenuated ATPase of the mutant subcomplexes containing the gammaM(23)K, gammaL(77)K, and gammaM(232)K substitutions is caused by disruption of the cluster of hydrophobic amino acid side chains and that the midregion of the coiled-coil comprised of the amino- and carboxyl-terminal alpha helices of the gamma subunit does not undergo unwinding or major displacement from the side chain of gammaLeu(77) during ATP-driven rotation of the gamma subunit.
Tinnefeld, Verena; Venne, A Saskia; Sickmann, Albert; Zahedi, René P
2017-02-03
Chemical cross-linking of proteins is an emerging field with huge potential for the structural investigation of proteins and protein complexes. Owing to the often relatively low yield of cross-linking products, their identification in complex samples benefits from enrichment procedures prior to mass spectrometry analysis. So far, this is mainly accomplished by using biotin moieties in specific cross-linkers or by applying strong cation exchange chromatography (SCX) for a relatively crude enrichment. We present a novel workflow to enrich cross-linked peptides by utilizing charge-based fractional diagonal chromatography (ChaFRADIC). On the basis of two-dimensional diagonal SCX separation, we could increase the number of identified cross-linked peptides for samples of different complexity: pure cross-linked BSA, cross-linked BSA spiked into a simple protein mixture, and cross-linked BSA spiked into a HeLa lysate. We also compared XL-ChaFRADIC with size exclusion chromatography-based enrichment of cross-linked peptides. The XL-ChaFRADIC approach is straightforward, reproducible, and independent of the cross-linking chemistry and cross-linker properties.
Gao, Yan-Song; Su, Jing-Tan; Yan, Yong-Bin
2010-06-25
The non-cooperative or sequential events which occur during protein thermal denaturation are closely correlated with protein folding, stability, and physiological functions. In this research, the sequential events of human brain-type creatine kinase (hBBCK) thermal denaturation were studied by differential scanning calorimetry (DSC), CD, and intrinsic fluorescence spectroscopy. DSC experiments revealed that the thermal denaturation of hBBCK was calorimetrically irreversible. The existence of several endothermic peaks suggested that the denaturation involved stepwise conformational changes, which were further verified by the discrepancy in the transition curves obtained from various spectroscopic probes. During heating, the disruption of the active site structure occurred prior to the secondary and tertiary structural changes. The thermal unfolding and aggregation of hBBCK was found to occur through sequential events. This is quite different from that of muscle-type CK (MMCK). The results herein suggest that BBCK and MMCK undergo quite dissimilar thermal unfolding pathways, although they are highly conserved in the primary and tertiary structures. A minor difference in structure might endow the isoenzymes dissimilar local stabilities in structure, which further contribute to isoenzyme-specific thermal stabilities.
Topotaxial growth of α-Fe{sub 2}O{sub 3} nanowires on iron substrate in thermal annealing method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, Himanshu, E-mail: himsri@rrcat.gov.in; Srivastava, A. K.; Babu, Mahendra
2016-06-28
A detail cross-sectional transmission electron microscopy of as-grown α-Fe{sub 2}O{sub 3} nanowire sample, synthesized on iron substrate by thermal annealing method, was carried out to understand the mechanism of growth in this system. Iron undergoes sequential oxidation to form a layered structure of Fe/FeO/Fe{sub 3}O{sub 4}/α-Fe{sub 2}O{sub 3}. α-Fe{sub 2}O{sub 3} nanowires grow on to the top of α-Fe{sub 2}O{sub 3} layer. It was found that subsequent oxide layers grow topotaxially on the grains of iron, which results in a direct orientation relationship between the α-Fe{sub 2}O{sub 3} nanowire and the parent grain of iron. The results also showed thatmore » the grains of α-Fe{sub 2}O{sub 3} layer, which were uniquely oriented in [110] direction, undergo highly anisotropic growth to form the nanowire. This anisotropic growth occurs at a twin interface, given by (−11−1), in the α-Fe{sub 2}O{sub 3} layer. It was concluded that the growth at twin interface could be the main driving factor for such anisotropic growth. These observations are not only helpful in understanding the growth mechanism of α-Fe{sub 2}O{sub 3} nanowires, but it also demonstrates a way of patterning the nanowires by controlling the texture of iron substrate.« less
Delgado, Luis M.; Bayon, Yves; Pandit, Abhay
2015-01-01
Collagen-based devices, in various physical conformations, are extensively used for tissue engineering and regenerative medicine applications. Given that the natural cross-linking pathway of collagen does not occur in vitro, chemical, physical, and biological cross-linking methods have been assessed over the years to control mechanical stability, degradation rate, and immunogenicity of the device upon implantation. Although in vitro data demonstrate that mechanical properties and degradation rate can be accurately controlled as a function of the cross-linking method utilized, preclinical and clinical data indicate that cross-linking methods employed may have adverse effects on host response, especially when potent cross-linking methods are employed. Experimental data suggest that more suitable cross-linking methods should be developed to achieve a balance between stability and functional remodeling. PMID:25517923
Sequential two-photon double ionization of noble gases by circularly polarized XUV radiation
NASA Astrophysics Data System (ADS)
Gryzlova, E. V.; Grum-Grzhimailo, A. N.; Kuzmina, E. I.; Strakhova, S. I.
2014-10-01
Photoelectron angular distributions (PADs) and angular correlations between two emitted electrons in sequential two-photon double ionization (2PDI) of atoms by circularly polarized radiation are studied theoretically. In particular, the sequential 2PDI of the valence n{{p}6} shell in noble gas atoms (neon, argon, krypton) is analyzed, accounting for the first-order corrections to the dipole approximation. Due to different selection rules in ionization transitions, the circular polarization of photons causes some new features of the cross sections, PADs and angular correlation functions in comparison with the case of linearly polarized photons.
A Study into the Collision-induced Dissociation (CID) Behavior of Cross-Linked Peptides*
Giese, Sven H.; Fischer, Lutz; Rappsilber, Juri
2016-01-01
Cross-linking/mass spectrometry resolves protein–protein interactions or protein folds by help of distance constraints. Cross-linkers with specific properties such as isotope-labeled or collision-induced dissociation (CID)-cleavable cross-linkers are in frequent use to simplify the identification of cross-linked peptides. Here, we analyzed the mass spectrometric behavior of 910 unique cross-linked peptides in high-resolution MS1 and MS2 from published data and validate the observation by a ninefold larger set from currently unpublished data to explore if detailed understanding of their fragmentation behavior would allow computational delivery of information that otherwise would be obtained via isotope labels or CID cleavage of cross-linkers. Isotope-labeled cross-linkers reveal cross-linked and linear fragments in fragmentation spectra. We show that fragment mass and charge alone provide this information, alleviating the need for isotope-labeling for this purpose. Isotope-labeled cross-linkers also indicate cross-linker-containing, albeit not specifically cross-linked, peptides in MS1. We observed that acquisition can be guided to better than twofold enrich cross-linked peptides with minimal losses based on peptide mass and charge alone. By help of CID-cleavable cross-linkers, individual spectra with only linear fragments can be recorded for each peptide in a cross-link. We show that cross-linked fragments of ordinary cross-linked peptides can be linearized computationally and that a simplified subspectrum can be extracted that is enriched in information on one of the two linked peptides. This allows identifying candidates for this peptide in a simplified database search as we propose in a search strategy here. We conclude that the specific behavior of cross-linked peptides in mass spectrometers can be exploited to relax the requirements on cross-linkers. PMID:26719564
Olusesi, A D; Oyeniran, O
2017-05-01
Few studies have compared bilateral same-day with staged tympanoplasty using cartilage graft materials. A prospective randomised observational study was performed of 38 chronic suppurative otitis media patients (76 ears) who were assigned to undergo bilateral sequential same-day tympanoplasty (18 patients, 36 ears) or bilateral sequential tympanoplasty performed 3 months apart (20 patients, 40 ears). Disease duration, intra-operative findings, combined duration of surgery, post-operative graft appearance at 6 weeks, post-operative complications, re-do rate and relative cost of surgery were recorded. Tympanic membrane perforations were predominantly subtotal (p = 0.36, odds ratio = 0.75). Most grafts were harvested from the conchal cartilage and fewer from the tragus (p = 0.59, odds ratio = 1.016). Types of complication, post-operative hearing gain and revision rates were similar in both patient groups. Surgical outcomes are not significantly different for same-day and bilateral cartilage tympanoplasty, but same-day surgery has the added benefit of a lower cost.
Xilmass: A New Approach toward the Identification of Cross-Linked Peptides.
Yılmaz, Şule; Drepper, Friedel; Hulstaert, Niels; Černič, Maša; Gevaert, Kris; Economou, Anastassios; Warscheid, Bettina; Martens, Lennart; Vandermarliere, Elien
2016-10-18
Chemical cross-linking coupled with mass spectrometry plays an important role in unravelling protein interactions, especially weak and transient ones. Moreover, cross-linking complements several structural determination approaches such as cryo-EM. Although several computational approaches are available for the annotation of spectra obtained from cross-linked peptides, there remains room for improvement. Here, we present Xilmass, a novel algorithm to identify cross-linked peptides that introduces two new concepts: (i) the cross-linked peptides are represented in the search database such that the cross-linking sites are explicitly encoded, and (ii) the scoring function derived from the Andromeda algorithm was adapted to score against a theoretical tandem mass spectrometry (MS/MS) spectrum that contains the peaks from all possible fragment ions of a cross-linked peptide pair. The performance of Xilmass was evaluated against the recently published Kojak and the popular pLink algorithms on a calmodulin-plectin complex data set, as well as three additional, published data sets. The results show that Xilmass typically had the highest number of identified distinct cross-linked sites and also the highest number of predicted cross-linked sites.
Mechanisms of palatal epithelial seam disintegration by Transforming Growth Factor (TGF)-β3
Ahmed, Shaheen; Liu, Chang-Chih; Nawshad, Ali
2007-01-01
TGFβ3 signaling initiates and completes sequential phases of cellular differentiation that is required for complete disintegration of the palatal medial edge seam, that progresses between 14 to 17 embryonic days in the murine system, which is necessary in establishing confluence of the palatal stroma. Understanding the cellular mechanism of palatal MES disintegration in response to TGFβ3 signaling will result in new approaches to defining the causes of cleft palate and other facial clefts that may result from failure of seam disintegration. We have isolated MES primary cells to study the details of MES disintegration mechanism by TGFβ3 during palate development using several biochemical and genetic approaches. Our results demonstrate a novel mechanism of MES disintegration where MES, independently yet sequentially, undergoes cell cycle arrest, cell migration and apoptosis to generate immaculate palatal confluency during palatogenesis in response to robust TGFβ3 signaling. The results contribute to a missing fundamental element to our base knowledge of the diverse roles of TGFβ3 in functional and morphological changes that MES undergo during palatal seam disintegration. We believe that our findings will lead to more effective treatment of facial clefting. PMID:17698055
Kanellopoulos, Anastasios John; Binder, Perry S
2011-05-01
To evaluate a series of patients with corneal ectasia after LASIK that underwent the Athens Protocol: combined topography-guided photorefractive keratectomy (PRK) to reduce or eliminate induced myopia and astigmatism followed by sequential, same-day ultraviolet A (UVA) corneal collagen cross-linking (CXL). Thirty-two consecutive corneal ectasia cases underwent transepithelial PRK (WaveLight ALLEGRETTO) immediately followed by CXL (3 mW/cm(2)) for 30 minutes using 0.1% topical riboflavin sodium phosphate. Uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), manifest refraction spherical equivalent, keratometry, central ultrasonic pachymetry, corneal tomography (Oculus Pentacam), and endothelial cell counts were analyzed. Mean follow-up was 27 months (range: 6 to 59 months). Twenty-seven of 32 eyes had an improvement in UDVA and CDVA of 20/45 or better (2.25 logMAR) at last follow-up. Four eyes showed some topographic improvement but no improvement in CDVA. One of the treated eyes required a subsequent penetrating keratoplasty. Corneal haze grade 2 was present in 2 eyes. Combined, same-day, topography-guided PRK and CXL appeared to offer tomographic stability, even after long-term follow-up. Only 2 of 32 eyes had corneal ectasia progression after the intervention. Seventeen of 32 eyes appeared to have improvement in UDVA and CDVA with follow-up >1.5 years. This technique may offer an alternative in the management of iatrogenic corneal ectasia. Copyright 2011, SLACK Incorporated.
Bruce, Michael I; Costuas, Karine; Davin, Thomas; Halet, Jean-François; Kramarczuk, Kathy A; Low, Paul J; Nicholson, Brian K; Perkins, Gary J; Roberts, Rachel L; Skelton, Brian W; Smith, Mark E; White, Allan H
2007-12-14
The sequential conversion of [OsBr(cod)Cp*] (9) to [OsBr(dppe)Cp*] (10), [Os([=C=CH2)(dppe)Cp*]PF6 ([11]PF6), [Os(C triple bond CH)(dppe)Cp*] (12), [{Os(dppe)Cp*}2{mu-(=C=CH-CH=C=)}][PF6]2 ([13](PF6)2) and finally [{Os(dppe)Cp*}(2)(mu-C triple bond CC triple bond C)] (14) has been used to make the third member of the triad [{M(dppe)Cp*}2(mu-C triple bond CC triple bond C)] (M = Fe, Ru, Os). The molecular structures of []PF6, 12 and 14, together with those of the related osmium complexes [Os(NCMe)(dppe)Cp*]PF6 ([15]PF6) and [Os(C triple bond CPh)(dppe)Cp*] (16), have been determined by single-crystal X-ray diffraction studies. Comparison of the redox properties of 14 with those of its iron and ruthenium congeners shows that the first oxidation potential E1 varies as: Fe approximately Os < Ru. Whereas the Fe complex has been shown to undergo three sequential 1-electron oxidation processes within conventional electrochemical solvent windows, the Ru and Os compounds undergo no fewer than four sequential oxidation events giving rise to a five-membered series of redox related complexes [{M(dppe)Cp*}2(mu-C4)]n+ (n = 0, 1, 2, 3 and 4), the osmium derivatives being obtained at considerably lower potentials than the ruthenium analogues. These results are complimented by DFT and DT DFT calculations.
Jang, Sung Won; Koh, In Jun; Kim, Man Soo; Kim, Ju Yeong; In, Yong
2016-11-01
The sequential medial release technique including semimembranosus (semiM) release is effective and safe during varus total knee arthroplasty (TKA). However, there are concerns about weakening of knee flexion strength after semiM release. We determined whether semiM release to balance the medial soft tissue decreased knee flexion strength after TKA. Fifty-nine consecutive varus knees undergoing TKA were prospectively enrolled. A 3-step sequential release protocol which consisted of release of (1) the deep medial collateral ligament (dMCL), (2) the semiM, and (3) the superficial medial collateral ligament based on medial tightness. Gap balancing was obtained after dMCL release in 31 knees. However, 28 knees required semiM release or more after dMCL release. Isometric muscle strength of the knee was compared 6 months postoperatively between the semiM release and semiM nonrelease groups. Knee stability and clinical outcomes were also compared. No differences in knee flexor or extensor peak torque were observed between the groups 6 months postoperatively (P = .322 and P = .383, respectively). No group difference was observed in medial joint opening angle on valgus stress radiographs (P = .327). No differences in the Knee Society or Western Ontario and McMaster Universities Osteoarthritis Index scores were detected between the groups (P = .840 and P = .682, respectively). These results demonstrate that semiM release as a sequential step to balance medial soft tissue in varus knees did not affect knee flexion strength after TKA. Copyright © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Kamphaus, Randy W.; And Others
The development of two types of mental processing (sequential and simultaneous) in preschool and elementary children was examined in this study. Specifically, the aims of the study were to develop a revised set of tasks based upon previous findings (Naglieri, Kaufman, Kaufman, & Kamphaus, 1981; Kaufman, Kaufman, Kamphaus, & Naglieri, in…
Application of a fast sorting algorithm to the assignment of mass spectrometric cross-linking data.
Petrotchenko, Evgeniy V; Borchers, Christoph H
2014-09-01
Cross-linking combined with MS involves enzymatic digestion of cross-linked proteins and identifying cross-linked peptides. Assignment of cross-linked peptide masses requires a search of all possible binary combinations of peptides from the cross-linked proteins' sequences, which becomes impractical with increasing complexity of the protein system and/or if digestion enzyme specificity is relaxed. Here, we describe the application of a fast sorting algorithm to search large sequence databases for cross-linked peptide assignments based on mass. This same algorithm has been used previously for assigning disulfide-bridged peptides (Choi et al., ), but has not previously been applied to cross-linking studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Continuously updated network meta-analysis and statistical monitoring for timely decision-making
Nikolakopoulou, Adriani; Mavridis, Dimitris; Egger, Matthias; Salanti, Georgia
2016-01-01
Pairwise and network meta-analysis (NMA) are traditionally used retrospectively to assess existing evidence. However, the current evidence often undergoes several updates as new studies become available. In each update recommendations about the conclusiveness of the evidence and the need of future studies need to be made. In the context of prospective meta-analysis future studies are planned as part of the accumulation of the evidence. In this setting, multiple testing issues need to be taken into account when the meta-analysis results are interpreted. We extend ideas of sequential monitoring of meta-analysis to provide a methodological framework for updating NMAs. Based on the z-score for each network estimate (the ratio of effect size to its standard error) and the respective information gained after each study enters NMA we construct efficacy and futility stopping boundaries. A NMA treatment effect is considered conclusive when it crosses an appended stopping boundary. The methods are illustrated using a recently published NMA where we show that evidence about a particular comparison can become conclusive via indirect evidence even if no further trials address this comparison. PMID:27587588
The Formation Mechanism of Hydrogels.
Lu, Liyan; Yuan, Shiliang; Wang, Jing; Shen, Yun; Deng, Shuwen; Xie, Luyang; Yang, Qixiang
2017-06-12
Hydrogels are degradable polymeric networks, in which cross-links play a vital role in structure formation and degradation. Cross-linking is a stabilization process in polymer chemistry that leads to the multi-dimensional extension of polymeric chains, resulting in network structures. By cross-linking, hydrogels are formed into stable structures that differ from their raw materials. Generally, hydrogels can be prepared from either synthetic or natural polymers. Based on the types of cross-link junctions, hydrogels can be categorized into two groups: the chemically cross-linked and the physically cross-linked. Chemically cross-linked gels have permanent junctions, in which covalent bonds are present between different polymer chains, thus leading to excellent mechanical strength. Although chemical cross-linking is a highly resourceful method for the formation of hydrogels, the cross-linkers used in hydrogel preparation should be extracted from the hydrogels before use, due to their reported toxicity, while, in physically cross-linked gels, dissolution is prevented by physical interactions, such as ionic interactions, hydrogen bonds or hydrophobic interactions. Physically cross-linked methods for the preparation of hydrogels are the alternate solution for cross-linker toxicity. Both methods will be discussed in this essay. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Modeling Protein Excited-state Structures from "Over-length" Chemical Cross-links.
Ding, Yue-He; Gong, Zhou; Dong, Xu; Liu, Kan; Liu, Zhu; Liu, Chao; He, Si-Min; Dong, Meng-Qiu; Tang, Chun
2017-01-27
Chemical cross-linking coupled with mass spectroscopy (CXMS) provides proximity information for the cross-linked residues and is used increasingly for modeling protein structures. However, experimentally identified cross-links are sometimes incompatible with the known structure of a protein, as the distance calculated between the cross-linked residues far exceeds the maximum length of the cross-linker. The discrepancies may persist even after eliminating potentially false cross-links and excluding intermolecular ones. Thus the "over-length" cross-links may arise from alternative excited-state conformation of the protein. Here we present a method and associated software DynaXL for visualizing the ensemble structures of multidomain proteins based on intramolecular cross-links identified by mass spectrometry with high confidence. Representing the cross-linkers and cross-linking reactions explicitly, we show that the protein excited-state structure can be modeled with as few as two over-length cross-links. We demonstrate the generality of our method with three systems: calmodulin, enzyme I, and glutamine-binding protein, and we show that these proteins alternate between different conformations for interacting with other proteins and ligands. Taken together, the over-length chemical cross-links contain valuable information about protein dynamics, and our findings here illustrate the relationship between dynamic domain movement and protein function. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Light-induced cross-linking and post-cross-linking modification of polyglycidol.
Marquardt, F; Bruns, M; Keul, H; Yagci, Y; Möller, M
2018-02-08
The photoinduced radical generation process has received renewed interest due to its economic and ecological appeal. Herein the light-induced cross-linking of functional polyglycidol and its post-cross-linking modification are presented. Linear polyglycidol was first functionalized with a tertiary amine in a two-step reaction. Dimethylaminopropyl functional polyglycidol was cross-linked in a UV-light mediated reaction with camphorquinone as a type II photoinitiator. The cross-linked polyglycidol was further functionalized by quaternization with various organoiodine compounds. Aqueous dispersions of the cross-linked polymers were investigated by means of DLS and zeta potential measurements. Polymer films were evaluated by DSC and XPS.
A novel visual hardware behavioral language
NASA Technical Reports Server (NTRS)
Li, Xueqin; Cheng, H. D.
1992-01-01
Most hardware behavioral languages just use texts to describe the behavior of the desired hardware design. This is inconvenient for VLSI designers who enjoy using the schematic approach. The proposed visual hardware behavioral language has the ability to graphically express design information using visual parallel models (blocks), visual sequential models (processes) and visual data flow graphs (which consist of primitive operational icons, control icons, and Data and Synchro links). Thus, the proposed visual hardware behavioral language can not only specify hardware concurrent and sequential functionality, but can also visually expose parallelism, sequentiality, and disjointness (mutually exclusive operations) for the hardware designers. That would make the hardware designers capture the design ideas easily and explicitly using this visual hardware behavioral language.
Sun, Jingjing; Tang, Xinjing
2015-01-01
DNA cross-linking technology is an attractive tool for the detection, regulation, and manipulation of genes. In this study, a series of photolabile 4-oxo-enal-modified oligonucleotides functionalized with photosensitive ο-nitrobenzyl derivatives were rationally designed as a new kind of photocaged cross-linking agents. A comprehensive evaluation of cross-linking reactions for different nucleobases in complementary strands under different conditions suggested that the modified DNA oligonucleotides tended to form interstrand cross-linking to nucleobases with the potential of thymidine > guanosine » cytidine ~ adenosine. Different from previous literature reports that cytidine and adenosine were preferential cross-linked nucleobases with 4-oxo-enal moieties, our study represents the first example of DNA cross-linking for T and G selectivity using 4-oxo-enal moiety. The cross-linked adducts were identified and their cross-linking mechanism was also illustrated. This greatly expands the applications of 4-oxo-enal derivatives in the studies of DNA damage and RNA structure PMID:26020694
Sun, Jingjing; Tang, Xinjing
2015-05-28
DNA cross-linking technology is an attractive tool for the detection, regulation, and manipulation of genes. In this study, a series of photolabile 4-oxo-enal-modified oligonucleotides functionalized with photosensitive ο-nitrobenzyl derivatives were rationally designed as a new kind of photocaged cross-linking agents. A comprehensive evaluation of cross-linking reactions for different nucleobases in complementary strands under different conditions suggested that the modified DNA oligonucleotides tended to form interstrand cross-linking to nucleobases with the potential of thymidine > guanosine » cytidine ~ adenosine. Different from previous literature reports that cytidine and adenosine were preferential cross-linked nucleobases with 4-oxo-enal moieties, our study represents the first example of DNA cross-linking for T and G selectivity using 4-oxo-enal moiety. The cross-linked adducts were identified and their cross-linking mechanism was also illustrated. This greatly expands the applications of 4-oxo-enal derivatives in the studies of DNA damage and RNA structure.
Effect of Rubber Polarity on Cluster Formation in Rubbers Cross-Linked with Diels–Alder Chemistry
2017-01-01
Diels–Alder chemistry has been used for the thermoreversible cross-linking of furan-functionalized ethylene/propylene (EPM) and ethylene/vinyl acetate (EVM) rubbers. Both furan-functionalized elastomers were successfully cross-linked with bismaleimide to yield products with a similar cross-link density. NMR relaxometry and SAXS measurements both show that the apolar EPM-g-furan precursor contains phase-separated polar clusters and that cross-linking with polar bismaleimide occurs in these clusters. The heterogeneously cross-linked network of EPM-g-furan contrasts with the homogeneous network in the polar EVM-g-furan. The heterogeneous character of the cross-links in EPM-g-furan results in a relatively high Young’s modulus, whereas the more uniform cross-linking in EVM-g-furan results in a higher tensile strength and elongation at break. PMID:29213149
Transcription factor FoxA (HNF3) on a nucleosome at an enhancer complex in liver chromatin.
Chaya, D; Hayamizu, T; Bustin, M; Zaret, K S
2001-11-30
Nucleosome-like particles and acetylated histones occur near active promoters and enhancers, and certain transcription factors can recognize their target sites on the surface of a nucleosome in vitro; yet it has been unclear whether transcription factors can occupy target sites on nucleosomes in native chromatin. We developed a method for sequential chromatin immunoprecipitation of distinct nuclear proteins that are simultaneously cross-linked to nucleosome-sized genomic DNA segments. We find that core histone H2A co-occupies, along with the FoxA (hepatocyte nuclear factor-3) transcription factor, DNA for the albumin transcriptional enhancer in native liver chromatin, where the enhancer is active. Because histone H2A on nuclear DNA is only known to exist in nucleosomes, we conclude that transcription factors can form a stable complex on nucleosomes at an active enhancer element in vivo.
Convolutional coding at 50 Mbps for the Shuttle Ku-band return link
NASA Technical Reports Server (NTRS)
Batson, B. H.; Huth, G. K.
1976-01-01
Error correcting coding is required for 50 Mbps data link from the Shuttle Orbiter through the Tracking and Data Relay Satellite System (TDRSS) to the ground because of severe power limitations. Convolutional coding has been chosen because the decoding algorithms (sequential and Viterbi) provide significant coding gains at the required bit error probability of one in 10 to the sixth power and can be implemented at 50 Mbps with moderate hardware. While a 50 Mbps sequential decoder has been built, the highest data rate achieved for a Viterbi decoder is 10 Mbps. Thus, five multiplexed 10 Mbps Viterbi decoders must be used to provide a 50 Mbps data rate. This paper discusses the tradeoffs which were considered when selecting the multiplexed Viterbi decoder approach for this application.
Elalayli, Maggie; Hall, Jacklyn D; Fakhouri, Mazen; Neiswender, Hannah; Ellison, Tambrea T; Han, Zhe; Roon, Penny; LeMosy, Ellen K
2008-07-15
The innermost layer of the Drosophila eggshell, the vitelline membrane, provides structural support and positional information to the embryo. It is assembled in an incompletely understood manner from four major proteins to form a homogeneous, transparent extracellular matrix. Here we show that RNAi knockdown or genetic deletion of a minor constituent of this matrix, Palisade, results in structural disruptions during the initial synthesis of the vitelline membrane by somatic follicle cells surrounding the oocyte, including wide size variation among the precursor vitelline bodies and disorganization of follicle cell microvilli. Loss of Palisade or the microvillar protein Cad99C results in abnormal uptake into the oocyte of sV17, a major vitelline membrane protein, and defects in non-disulfide cross-linking of sV17 and sV23, while loss of Palisade has additional effects on processing and disulfide cross-linking of these proteins. Embryos surrounded by the abnormal vitelline membranes synthesized when Palisade is reduced are fertilized but undergo developmental arrest, usually during the first 13 nuclear divisions, with a nuclear phenotype of chromatin margination similar to that described for wild-type embryos subjected to anoxia. Our results demonstrate that Palisade is involved in coordinating assembly of the vitelline membrane and is required for functional properties of the eggshell.
Elalayli, Maggie; Hall, Jacklyn D.; Fakhouri, Mazen; Neiswender, Hannah; Ellison, Tambrea T.; Han, Zhe; Roon, Penny; LeMosy, Ellen K.
2008-01-01
The innermost layer of the Drosophila eggshell, the vitelline membrane, provides structural support and positional information to the embryo. It is assembled in an incompletely understood manner from four major proteins to form a homogeneous, transparent extracellular matrix. Here we show that RNAi knockdown or genetic deletion of a minor constituent of this matrix, Palisade, results in structural disruptions during the initial synthesis of the vitelline membrane by somatic follicle cells surrounding the oocyte, including wide size variation among the precursor vitelline bodies and disorganization of follicle cell microvilli. Loss of Palisade or the microvillar protein Cad99C results in abnormal uptake into the oocyte of sV17, a major vitelline membrane protein, and defects in non-disulfide cross-linking of sV17 and sV23, while loss of Palisade has additional effects on processing and disulfide cross-linking of these proteins. Embryos surrounded by the abnormal vitelline membranes synthesized when Palisade is reduced are fertilized but undergo developmental arrest, usually during the first 13 nuclear divisions, with a nuclear phenotype of chromatin margination similar to that described for wild-type embryos subjected to anoxia. Our results demonstrate that Palisade is involved in coordinating assembly of the vitelline membrane and is required for functional properties of the eggshell. PMID:18514182
Sarcopenia is linked to treatment toxicity in patients with metastatic colorectal cancer.
Barret, Maximilien; Antoun, Sami; Dalban, Cécile; Malka, David; Mansourbakht, Touraj; Zaanan, Aziz; Latko, Ewa; Taieb, Julien
2014-01-01
Chemotherapy toxicity could be linked to decreased skeletal muscle (sarcopenia). We evaluated the effect of sarcopenia on chemotherapy toxicity among metastatic colorectal cancer (mCRC) patients. All consecutive mCRC patients in 3 hospitals were enrolled in this prospective, cross-sectional, multicenter study. Several nutritional indexes and scores were generated. Computed tomography (CT) images were analyzed to evaluate cross-sectional areas of muscle tissue (MT), visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT). Toxicities were evaluated in the 2 mo following clinical evaluation. Fifty-one mCRC patients were included in the study. Sarcopenia was observed in 71% of patients (39% of women and 82% of men) whereas only 4% and 18% were considered as underweight using body mass index (BMI) or severely malnourished using the Nutritional Risk Index (NRI), respectively. Grade 3-4 toxicities were observed in 28% of patients. In multivariate analysis including age, sex, BMI, sarcopenia, SAT, and VAT, the only factor associated with Grade 3-4 toxicities was sarcopenia (odds ratio = 13.55; 95% confidence interval [1.08; 169.31], P = 0.043). In mCRC patients undergoing chemotherapy, sarcopenia was much more frequently observed than visible malnutrition. Despite the small number of patients included in our study, we found sarcopenia to be significantly associated with severe chemotherapy toxicity.
NASA Astrophysics Data System (ADS)
Kobrina, Yevgeniya; Isaksson, Hanna; Sinisaari, Miikka; Rieppo, Lassi; Brama, Pieter A.; van Weeren, René; Helminen, Heikki J.; Jurvelin, Jukka S.; Saarakkala, Simo
2010-11-01
The collagen phase in bone is known to undergo major changes during growth and maturation. The objective of this study is to clarify whether Fourier transform infrared (FTIR) microspectroscopy, coupled with cluster analysis, can detect quantitative and qualitative changes in the collagen matrix of subchondral bone in horses during maturation and growth. Equine subchondral bone samples (n = 29) from the proximal joint surface of the first phalanx are prepared from two sites subjected to different loading conditions. Three age groups are studied: newborn (0 days old), immature (5 to 11 months old), and adult (6 to 10 years old) horses. Spatial collagen content and collagen cross-link ratio are quantified from the spectra. Additionally, normalized second derivative spectra of samples are clustered using the k-means clustering algorithm. In quantitative analysis, collagen content in the subchondral bone increases rapidly between the newborn and immature horses. The collagen cross-link ratio increases significantly with age. In qualitative analysis, clustering is able to separate newborn and adult samples into two different groups. The immature samples display some nonhomogeneity. In conclusion, this is the first study showing that FTIR spectral imaging combined with clustering techniques can detect quantitative and qualitative changes in the collagen matrix of subchondral bone during growth and maturation.
Voskresenska, Valentyna; Wilson, R. Marshall; Panov, Maxim; Tarnovsky, Alexander N.; Krause, Jeanette A.; Vyas, Shubham; Winter, Arthur H.; Hadad, Christopher M.
2009-01-01
Phenyl azides with powerful electron-donating substituents are known to deviate from the usual photochemical behavior of other phenyl azides. They do not undergo ring expansion, but form basic nitrenes that protonate to form nitrenium ions. The photochemistry of the widely used photoaffinity labeling system 4-amino-3-nitrophenyl azide, 5, has been studied by transient absorption spectroscopy from femtosecond to microsecond time domains and from a theoretical perspective. The nitrene generation from azide 5 occurs on the S2 surface, in violation of Kasha's rule. The resulting nitrene is a powerful base and abstracts protons extremely rapidly from a variety of sources to form a nitrenium ion. In methanol, this protonation occurs in about 5 ps, which is the fastest intermolecular protonation observed to date. Suitable proton sources include alcohols, amine salts, and even acidic C-H bonds such as acetonitrile. The resulting nitrenium ion is stabilized by the electron-donating 4-amino group to afford a diiminoquinone-like species that collapses relatively slowly to form the ultimate cross-linked product. In some cases in which the anion is a good hydride donor, cross-linking is replaced by reduction of the nitrenium ion to the corresponding amine. PMID:19624129
ERIC Educational Resources Information Center
Acosta, Imee C.; Acosta, Alexander S.
2017-01-01
The Philippine Educational System is undergoing a major overhaul that shifts from a 10-year education to 12 years known as Enhanced Basic Education Curriculum or K-12. The purpose of this mixed-methods sequential explanatory study was to identify factors that determine readiness of select higher education institutions to the full implementation of…
Heinz, Andrea; Ruttkies, Christoph K H; Jahreis, Günther; Schräder, Christoph U; Wichapong, Kanin; Sippl, Wolfgang; Keeley, Fred W; Neubert, Reinhard H H; Schmelzer, Christian E H
2013-04-01
Elastin is a vital protein and the major component of elastic fibers which provides resilience to many vertebrate tissues. Elastin's structure and function are influenced by extensive cross-linking, however, the cross-linking pattern is still unknown. Small peptides containing reactive allysine residues based on sequences of cross-linking domains of human elastin were incubated in vitro to form cross-links characteristic of mature elastin. The resultant insoluble polymeric biomaterials were studied by scanning electron microscopy. Both, the supernatants of the samples and the insoluble polymers, after digestion with pancreatic elastase or trypsin, were furthermore comprehensively characterized on the molecular level using MALDI-TOF/TOF mass spectrometry. MS(2) data was used to develop the software PolyLinX, which is able to sequence not only linear and bifunctionally cross-linked peptides, but for the first time also tri- and tetrafunctionally cross-linked species. Thus, it was possible to identify intra- and intermolecular cross-links including allysine aldols, dehydrolysinonorleucines and dehydromerodesmosines. The formation of the tetrafunctional cross-link desmosine or isodesmosine was unexpected, however, could be confirmed by tandem mass spectrometry and molecular dynamics simulations. The study demonstrated that it is possible to produce biopolymers containing polyfunctional cross-links characteristic of mature elastin from small elastin peptides. MALDI-TOF/TOF mass spectrometry and the newly developed software PolyLinX proved suitable for sequencing of native cross-links in proteolytic digests of elastin-like biomaterials. The study provides important insight into the formation of native elastin cross-links and represents a considerable step towards the characterization of the complex cross-linking pattern of mature elastin. Copyright © 2013 Elsevier B.V. All rights reserved.
Molecular Characterization of Macrophage-Biomaterial Interactions
Moore, Laura Beth; Kyriakides, Themis R.
2015-01-01
Implantation of biomaterials in vascularized tissues elicits the sequential engagement of molecular and cellular elements that constitute the foreign body response. Initial events include the non-specific adsorption of proteins to the biomaterial surface that render it adhesive for cells such as neutrophils and macrophages. The latter undergo unique activation and in some cases undergo cell-cell fusion to form foreign body giant cells that contribute to implant damage and fibrotic encapsulation. In this review, we discuss the molecular events that contribute to macrophage activation and fusion with a focus on the role of the inflammasome, signaling pathways such as JAK/STAT and NF-κB, and the putative involvement of micro RNAs in the regulation of these processes. PMID:26306446
Molecular Characterization of Macrophage-Biomaterial Interactions.
Moore, Laura Beth; Kyriakides, Themis R
2015-01-01
Implantation of biomaterials in vascularized tissues elicits the sequential engagement of molecular and cellular elements that constitute the foreign body response. Initial events include the non-specific adsorption of proteins to the biomaterial surface that render it adhesive for cells such as neutrophils and macrophages. The latter undergo unique activation and in some cases undergo cell-cell fusion to form foreign body giant cells that contribute to implant damage and fibrotic encapsulation. In this review, we discuss the molecular events that contribute to macrophage activation and fusion with a focus on the role of the inflammasome, signaling pathways such as JAK/STAT and NF-κB, and the putative involvement of micro RNAs in the regulation of these processes.
GEOMETRIC CROSS SECTIONS OF DUST AGGREGATES AND A COMPRESSION MODEL FOR AGGREGATE COLLISIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suyama, Toru; Wada, Koji; Tanaka, Hidekazu
2012-07-10
Geometric cross sections of dust aggregates determine their coupling with disk gas, which governs their motions in protoplanetary disks. Collisional outcomes also depend on geometric cross sections of initial aggregates. In a previous paper, we performed three-dimensional N-body simulations of sequential collisions of aggregates composed of a number of sub-micron-sized icy particles and examined radii of gyration (and bulk densities) of the obtained aggregates. We showed that collisional compression of aggregates is not efficient and that aggregates remain fluffy. In the present study, we examine geometric cross sections of the aggregates. Their cross sections decrease due to compression as wellmore » as to their gyration radii. It is found that a relation between the cross section and the gyration radius proposed by Okuzumi et al. is valid for the compressed aggregates. We also refine the compression model proposed in our previous paper. The refined model enables us to calculate the evolution of both gyration radii and cross sections of growing aggregates and reproduces well our numerical results of sequential aggregate collisions. The refined model can describe non-equal-mass collisions as well as equal-mass cases. Although we do not take into account oblique collisions in the present study, oblique collisions would further hinder compression of aggregates.« less
The distribution of individual cabinet positions in coalition governments: A sequential approach
Meyer, Thomas M.; Müller, Wolfgang C.
2015-01-01
Abstract Multiparty government in parliamentary democracies entails bargaining over the payoffs of government participation, in particular the allocation of cabinet positions. While most of the literature deals with the numerical distribution of cabinet seats among government parties, this article explores the distribution of individual portfolios. It argues that coalition negotiations are sequential choice processes that begin with the allocation of those portfolios most important to the bargaining parties. This induces conditionality in the bargaining process as choices of individual cabinet positions are not independent of each other. Linking this sequential logic with party preferences for individual cabinet positions, the authors of the article study the allocation of individual portfolios for 146 coalition governments in Western and Central Eastern Europe. The results suggest that a sequential logic in the bargaining process results in better predictions than assuming mutual independence in the distribution of individual portfolios. PMID:27546952
Lössl, Philip; Sinz, Andrea
2016-01-01
During the last 15 years, the combination of chemical cross-linking and high-resolution mass spectrometry (MS) has matured into an alternative approach for analyzing 3D-structures of proteins and protein complexes. Using the distance constraints imposed by the cross-links, models of the protein or protein complex under investigation can be created. The majority of cross-linking studies are currently conducted with homobifunctional amine-reactive cross-linkers. We extend this "traditional" cross-linking/MS strategy by adding complementary photo-cross-linking data. For this, the diazirine-containing unnatural amino acids photo-leucine and photo-methionine are incorporated into the proteins and cross-link formation is induced by UV-A irradiation. The advantage of the photo-cross-linking strategy is that it is not restricted to lysine residues and that hydrophobic regions in proteins can be targeted, which is advantageous for investigating membrane proteins. We consider the strategy of combining cross-linkers with orthogonal reactivities and distances to be ideally suited for maximizing the amount of structural information that can be gained from a cross-linking experiment.
DNA cross-linking by dehydromonocrotaline lacks apparent base sequence preference.
Rieben, W Kurt; Coulombe, Roger A
2004-12-01
Pyrrolizidine alkaloids (PAs) are ubiquitous plant toxins, many of which, upon oxidation by hepatic mixed-function oxidases, become reactive bifunctional pyrrolic electrophiles that form DNA-DNA and DNA-protein cross-links. The anti-mitotic, toxic, and carcinogenic action of PAs is thought to be caused, at least in part, by these cross-links. We wished to determine whether the activated PA pyrrole dehydromonocrotaline (DHMO) exhibits base sequence preferences when cross-linked to a set of model duplex poly A-T 14-mer oligonucleotides with varying internal and/or end 5'-d(CG), 5'-d(GC), 5'-d(TA), 5'-d(CGCG), or 5'-d(GCGC) sequences. DHMO-DNA cross-links were assessed by electrophoretic mobility shift assay (EMSA) of 32P endlabeled oligonucleotides and by HPLC analysis of cross-linked DNAs enzymatically digested to their constituent deoxynucleosides. The degree of DNA cross-links depended upon the concentration of the pyrrole, but not on the base sequence of the oligonucleotide target. Likewise, HPLC chromatograms of cross-linked and digested DNAs showed no discernible sequence preference for any nucleotide. Added glutathione, tyrosine, cysteine, and aspartic acid, but not phenylalanine, threonine, serine, lysine, or methionine competed with DNA as alternate nucleophiles for cross-linking by DHMO. From these data it appears that DHMO exhibits no strong base preference when forming cross-links with DNA, and that some cellular nucleophiles can inhibit DNA cross-link formation.
Cross-Link Guided Molecular Modeling with ROSETTA
Leitner, Alexander; Rosenberger, George; Aebersold, Ruedi; Malmström, Lars
2013-01-01
Chemical cross-links identified by mass spectrometry generate distance restraints that reveal low-resolution structural information on proteins and protein complexes. The technology to reliably generate such data has become mature and robust enough to shift the focus to the question of how these distance restraints can be best integrated into molecular modeling calculations. Here, we introduce three workflows for incorporating distance restraints generated by chemical cross-linking and mass spectrometry into ROSETTA protocols for comparative and de novo modeling and protein-protein docking. We demonstrate that the cross-link validation and visualization software Xwalk facilitates successful cross-link data integration. Besides the protocols we introduce XLdb, a database of chemical cross-links from 14 different publications with 506 intra-protein and 62 inter-protein cross-links, where each cross-link can be mapped on an experimental structure from the Protein Data Bank. Finally, we demonstrate on a protein-protein docking reference data set the impact of virtual cross-links on protein docking calculations and show that an inter-protein cross-link can reduce on average the RMSD of a docking prediction by 5.0 Å. The methods and results presented here provide guidelines for the effective integration of chemical cross-link data in molecular modeling calculations and should advance the structural analysis of particularly large and transient protein complexes via hybrid structural biology methods. PMID:24069194
Yield and Failure Behavior Investigated for Cross-Linked Phenolic Resins Using Molecular Dynamics
NASA Technical Reports Server (NTRS)
Monk, Joshua D.; Lawson, John W.
2016-01-01
Molecular dynamics simulations were conducted to fundamentally evaluate the yield and failure behavior of cross-linked phenolic resins at temperatures below the glass transition. Yield stress was investigated at various temperatures, strain rates, and degrees of cross-linking. The onset of non-linear behavior in the cross-linked phenolic structures was caused by localized irreversible molecular rearrangements through the rotation of methylene linkers followed by the formation or annihilation of neighboring hydrogen bonds. The yield stress results, with respect to temperature and strain rate, could be fit by existing models used to describe yield behavior of amorphous glasses. The degree of cross-linking only indirectly influences the maximum yield stress through its influence on glass transition temperature (Tg), however there is a strong relationship between the degree of cross-linking and the failure mechanism. Low cross-linked samples were able to separate through void formation, whereas the highly cross-linked structures exhibited bond scission.
Kong, Xiaohua; Narine, Suresh S
2008-05-01
Sequential interpenetrating polymer networks (IPNs) were prepared using polyurethane (PUR) synthesized from canola oil-based polyol with terminal primary functional groups and poly(methyl methacrylate) (PMMA). The properties of the material were evaluated by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and modulated differential scanning calorimetry (MDSC), as well as tensile properties measurements. The morphology of the IPNs was investigated using scanning electron microscopy (SEM) and MDSC. A five-phase morphology, that is, sol phase, PUR-rich phase, PUR-rich interphase, PMMA-rich interphase, and PMMA-rich phase, was observed for all the IPNs by applying a new quantitative method based on the measurement of the differential of reversing heat capacity versus temperature from MDSC, although not confirmed by SEM, most likely due to resolution restrictions. NCO/OH molar ratios (cross-linking density) and compositional variations of PUR/PMMA both affected the thermal properties and phase behaviors of the IPNs. Higher degrees of mixing occurred for the IPN with higher NCO/OH molar ratio (2.0/1.0) at PUR concentration of 25 wt %, whereas for the IPN with lower NCO/OH molar ratio (1.6/1.0), higher degrees of mixing occurred at PUR concentration of 35 wt %. The mechanical properties of the IPNs were superior to those of the constituent polymers due to the finely divided rubber and plastic combination structures in these IPNs.
NASA Technical Reports Server (NTRS)
Hsu, L. C.; Philipp, W. H.; Sheibley, D. W.; Gonzalez-Sanabria, O. D. (Inventor)
1985-01-01
A battery separator for an alkaline battery is described. The separator comprises a cross linked copolymer of vinyl alcohol units and unsaturated carboxylic acid units. The cross linked copolymer is insoluble in water, has excellent zincate diffusion and oxygen gas barrier properties and a low electrical resistivity. Cross linking with a polyaldehyde cross linking agent is preferred.
NASA Astrophysics Data System (ADS)
Zhang, Boping; Ni, Jiangpeng; Xiang, Xiongzhi; Wang, Lei; Chen, Yongming
2017-01-01
Cross-linked sulfonated polyimides are one of the most promising materials for proton exchange membrane (PEM) applications. However, these cross-linked membranes are difficult to reprocess because they are insoluble. In this study, a series of cross-linkable sulfonated polyimides with flexible pendant alkyl side chains containing trimethoxysilyl groups is successfully synthesized. The cross-linkable polymers are highly soluble in common solvents and can be used to prepare tough and smooth films. Before the cross-linking reaction is complete, the membranes can be reprocessed, and the recovery rate of the prepared films falls within an acceptable range. The cross-linked membranes are obtained rapidly when the cross-linkable membranes are immersed in an acid solution, yielding a cross-linking density of the gel fraction of greater than 90%. The cross-linked membranes exhibit high proton conductivities and tensile strengths under hydrous conditions. Compared with those of pristine membranes, the oxidative and hydrolytic stabilities of the cross-linked membranes are significantly higher. The CSPI-70 membrane shows considerable power density in a direct methanol fuel cell (DMFC) test. All of these results suggest that the prepared cross-linked membranes have great potential for applications in proton exchange membrane fuel cells.
J-integral fracture toughness and tearing modulus measurement of radiation cross-linked UHMWPE.
Gomoll, A; Wanich, T; Bellare, A
2002-11-01
Radiation and chemical cross-linking of medical grade ultrahigh molecular weight polyethylene (UHMWPE) has recently been utilized in an effort to improve wear performance of total joint replacement components. However, reductions in mechanical properties with cross-linking are cause for concern regarding the use of cross-linked UHMWPE for high-stress applications such as in total knee replacement prostheses. In this study, the fracture behavior of radiation cross-linked UHMWPE was compared to that of uncross-linked UHMWPE. The Rice and Sorensen model that utilizes mechanical parameters obtained from uniaxial tensile and compact tension tests was used to calculate the steady state J-integral fracture toughness, Jss, for radiation cross-linked UHMWPE. Jss decreased monotonically with increase in radiation dose. UHMWPE exhibited tough, ductile tearing behavior with stable crack growth when it was cross-linked using a gamma radiation dose of 0-50 kGy. However, in cross-linked UHMWPE irradiated to a dose of 100 and 200 kGy, unstable fracture occurred spontaneously upon attaining the initial crack driving force, J1c. This indicates that a high degree of cross-linking is less desirable for high-stress applications in orthopaedic implants. However, a substantial increase in J1c, even at a low degree of cross-linking, suggests that a low degree of cross-linking may be beneficial for resistance to delamination and catastrophic failure, both of which require an initiation step for the fracture to propagate in the material. This mechanical test should, however, be considered along with fatigue tests and joint simulator testing before determination of an appropriate amount of cross-linking for total joint replacement prostheses that experience high stresses.
Bypass of a psoralen DNA interstrand cross-link by DNA polymerases beta, iota, and kappa in vitro
Smith, Leigh A.; Makarova, Alena V.; Samson, Laura; Thiesen, Katherine E.; Dhar, Alok; Bessho, Tadayoshi
2012-01-01
Repair of DNA inter-strand cross-links in mammalian cells involves several biochemically distinctive processes, including the release of one of the cross-linked strands and translesion DNA synthesis (TLS). In this report, we investigated in vitro TLS activity of psoralen DNA inter-strand cross-link by three DNA repair polymerases, DNA polymerase beta, kappa and iota. DNA polymerase beta is capable of bypassing a psoralen cross-link with a low efficiency. Cell extracts prepared from DNA polymerase beta knockout mouse embryonic fibroblast showed a reduced bypass activity of the psoralen cross-link and purified DNA polymerase beta restored the bypass activity. In addition, DNA polymerase iota mis-incorporated thymine across the psoralen cross-link and DNA polymerase kappa extended these mis-paired primer ends, suggesting that DNA polymerase iota may serve as an inserter and DNA polymerase kappa may play a role as an extender in the repair of psoralen DNA inter-strand cross-links. The results demonstrated here indicate that multiple DNA polymerases could participate in TLS steps in mammalian DNA inter-strand cross-link repair. PMID:23106263
Ghafari, Mohsen; Atkinson, John D
2018-06-05
A novel one-step hyper-cross-linking method, using 1,2-dichloroethane (DCE) and 1,6-dichlorohexane (DCH) cross-linkers, expands the micropore volume of commercial styrenic polymers. Performance of virgin and modified polymers was evaluated by measuring hexane, toluene, and methyl-ethyl-ketone (MEK) adsorption capacity, adsorption/desorption kinetics, and desorption efficiency. Hyper-cross-linked polymers have up to 128% higher adsorption capacity than virgin polymers at P/P 0 = 0.05 due to micropore volume increases up to 330%. Improvements are most pronounced with the DCE cross-linker. Hyper-cross-linking has minimal impact on hexane adsorption kinetics, but adsorption rates for toluene and MEK decrease by 6-41%. Desorption rates decreased (3-36%) for all materials after hyper-cross-linking, with larger decreases for DCE hyper-cross-linked polymers due to smaller average pore widths. For room temperature desorption, 20-220% more adsorbate remains in hyper-cross-linked polymers after regeneration compared to virgin materials. DCE hyper-cross-linked polymers have 13-92% more residual adsorbate than DCH counterparts. Higher temperatures were required for DCE hyper-cross-linked polymers to completely desorb VOCs compared to the DCH hyper-cross-linked and virgin counterparts. Results show that the one-step hyper-cross-linking method for modifying styrenic polymers improves adsorption capacity because of added micropores, but decreases adsorption/desorption kinetics and desorption efficiency for large VOCs due to a decrease in average pore width. Copyright © 2018 Elsevier B.V. All rights reserved.
Impact of Temporal Masking of Flip-Flop Upsets on Soft Error Rates of Sequential Circuits
NASA Astrophysics Data System (ADS)
Chen, R. M.; Mahatme, N. N.; Diggins, Z. J.; Wang, L.; Zhang, E. X.; Chen, Y. P.; Liu, Y. N.; Narasimham, B.; Witulski, A. F.; Bhuva, B. L.; Fleetwood, D. M.
2017-08-01
Reductions in single-event (SE) upset (SEU) rates for sequential circuits due to temporal masking effects are evaluated. The impacts of supply voltage, combinational-logic delay, flip-flop (FF) SEU performance, and particle linear energy transfer (LET) values are analyzed for SE cross sections of sequential circuits. Alpha particles and heavy ions with different LET values are used to characterize the circuits fabricated at the 40-nm bulk CMOS technology node. Experimental results show that increasing the delay of the logic circuit present between FFs and decreasing the supply voltage are two effective ways of reducing SE error rates for sequential circuits for particles with low LET values due to temporal masking. SEU-hardened FFs benefit less from temporal masking than conventional FFs. Circuit hardening implications for SEU-hardened and unhardened FFs are discussed.
Effect of Plasma Surface Finish on Wettability and Mechanical Properties of SAC305 Solder Joints
NASA Astrophysics Data System (ADS)
Kim, Kyoung-Ho; Koike, Junichi; Yoon, Jeong-Won; Yoo, Sehoon
2016-12-01
The wetting behavior, interfacial reactions, and mechanical reliability of Sn-Ag-Cu solder on a plasma-coated printed circuit board (PCB) substrate were evaluated under multiple heat-treatments. Conventional organic solderability preservative (OSP) finished PCBs were used as a reference. The plasma process created a dense and highly cross-linked polymer coating on the Cu substrates. The plasma finished samples had higher wetting forces and shorter zero-cross times than those with OSP surface finish. The OSP sample was degraded after sequential multiple heat treatments and reflow processes, whereas the solderability of the plasma finished sample was retained after multiple heat treatments. After the soldering process, similar microstructures were observed at the interfaces of the two solder joints, where the development of intermetallic compounds was observed. From ball shear tests, it was found that the shear force for the plasma substrate was consistently higher than that for the OSP substrate. Deterioration of the OSP surface finish was observed after multiple heat treatments. Overall, the plasma surface finish was superior to the conventional OSP finish with respect to wettability and joint reliability, indicating that it is a suitable material for the fabrication of complex electronic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merkley, Eric D.; Baker, Erin S.; Crowell, Kevin L.
2013-02-20
Chemical cross-linking of proteins followed by proteolysis and mass spectrometric analysis of the resulting cross-linked peptides can provide insights into protein structure and protein-protein interactions. However, cross-linked peptides are by necessity of low stoichometry and have different physicochemical properties than linear peptides, routine unambiguous identification of the cross-linked peptides has remained difficult. To address this challenge, we demonstrated the use of liquid chromatography and ion mobility separations coupled with mass spectrometry in combination with a heavy-isotope labeling method. The combination of mixed-isotope cross-linking and ion mobility provided unique and easily interpretable spectral multiplet features for the intermolecular cross-linked peptides. Applicationmore » of the method to two different homodimeric proteins - SrfN, a virulence factor from Salmonella Typhimurium and SO_2176, a protein of unknown function from Shewanella oneidensis- revealed several cross-linked peptides from both proteins that were identified with a low false discovery rate (estimated using a decoy approach). A greater number of cross-linked peptides were identified using ion mobility drift time information in the analysis than when the data were summed across the drift time dimension before analysis. The identified cross-linked peptides migrated more quickly in the ion mobility drift tube than the unmodified peptides.« less
Walton, H A; Byrne, J; Robinson, G B
1992-03-20
Cross-linking glomerular basement membrane (GBM) has been shown to render it more permeable to protein. Isolated pig GBM was cross-linked with dimethylmalonimidate which reacts selectively with lysine epsilon-NH2 groups or with glutaraldehyde, a less selective cross-linking agent. Studies of the ultrafiltration properties of these materials in vitro using cytochrome c, myoglobin, bovine serum albumin and immunoglobulin showed that cross-linking had markedly increased solvent and protein fluxes as compared with native membranes particularly at higher pressures. Filtration studies with serum demonstrated that the cross-linked membranes were more permeable to serum proteins. Thickness measurements under pressure indicated that cross-linked membrane was less compressed than native membrane as pressure was increased. Pore theory did not provide a suitable model for analysis of the results, but analysis of the results using the fibre-matrix hypothesis indicated that cross-linking had the effect of bundling together the fibres (type IV collagen) in the GBM matrix. The effect of cross-linking on filtration could be explained by a combination of contraction of the membrane, fibre bundling and increased rigidity compared with native membrane. Cross-linking of GBM might lead to long-term damage of the glomerular capillary wall in nephritis, so promoting proteinuria.
Zhang, Yaqing; Zhang, Xiangmei; Xu, Ling; Wei, Shicheng; Zhai, Maolin
2015-01-01
Ionizing radiation effectively cross-links collagen into network with enhanced anti-degradability and biocompatibility, while radiation-cross-linked collagen scaffold lacks flexibility, satisfactory surface appearance, and performs poor in cell penetration and ingrowth. To make the radiation-cross-linked collagen scaffold to serve as an ideal artificial dermis, dextran was incorporated into collagen. Scaffolds with the collagen/dextran (Col/Dex) ratios of 10/0, 7/3, and 5/5 were fabricated via (60)Co γ-irradiation cross-linking, followed by lyophilization. The morphology, microstructure, physicochemical, and biological properties were investigated. Compared with pure collagen, scaffolds with dextran demonstrated more porous appearance, enhanced hydrophilicity while the cross-linking density was lower with the consequence of larger pore size, higher water uptake, as well as reduced stiffness. Accelerated degradation was observed when dextran was incorporated in both the in vitro and in vivo assays, which led to earlier integration with cell and host tissue. The effect of dextran on degradation was ascribed to the decreased cross-linking density, looser microstructure, more porous and hydrophilic surface. Considering the better appearance, softness, moderate degradation rate due to controllable cross-linking degree and good biocompatibility as well, radiation-cross-linked collagen/dextran scaffolds are expected to serve as promising artificial dermal substitutes.
Web accessibility support for visually impaired users using link content analysis.
Iwata, Hajime; Kobayashi, Naofumi; Tachibana, Kenji; Shirogane, Junko; Fukazawa, Yoshiaki
2013-12-01
Web pages are used for a variety of purposes. End users must understand dynamically changing content and sequentially follow page links to find desired material, requiring significant time and effort. However, for visually impaired users using screen readers, it can be difficult to find links to web pages when link text and alternative text descriptions are inappropriate. Our method supports the discovery of content by analyzing 8 categories of link types, and allows visually impaired users to be aware of the content represented by links in advance. This facilitates end users access to necessary information on web pages. Our method of classifying web page links is therefore effective as a means of evaluating accessibility.
Steered Molecular Dynamics Simulations Predict Conformational Stability of Glutamate Receptors.
Musgaard, Maria; Biggin, Philip C
2016-09-26
The stability of protein-protein interfaces can be essential for protein function. For ionotropic glutamate receptors, a family of ligand-gated ion channels vital for normal function of the central nervous system, such an interface exists between the extracellular ligand binding domains (LBDs). In the full-length protein, the LBDs are arranged as a dimer of dimers. Agonist binding to the LBDs opens the ion channel, and briefly after activation the receptor desensitizes. Several residues at the LBD dimer interface are known to modulate desensitization, and conformational changes around these residues are believed to be involved in the state transition. The general hypothesis is that the interface is disrupted upon desensitization, and structural evidence suggests that the disruption might be substantial. However, when cross-linking the central part of this interface, functional data suggest that the receptor can still undergo desensitization, contradicting the hypothesis of major interface disruption. Here, we illustrate how opening the dimer interface using steered molecular dynamics (SMD) simulations, and analyzing the work values required, provides a quantitative measure for interface stability. For one subtype of glutamate receptors, which is regulated by ion binding to the dimer interface, we show that opening the interface without ions bound requires less work than with ions present, suggesting that ion binding indeed stabilizes the interface. Likewise, for interface mutants with longer-lived active states, the interface is more stable, while the work required to open the interface is reduced for less active mutants. Moreover, a cross-linked mutant can still undergo initial interface opening motions similar to the native receptor and at similar energetic cost. Thus, our results support that interface opening is involved in desensitization. Furthermore, they provide reconciliation of apparently opposing data and demonstrate that SMD simulations can give relevant biological insight into longer time scale processes without the need for expensive calculations.
Severgnini, Marco; Bicciato, Silvio; Mangano, Eleonora; Scarlatti, Francesca; Mezzelani, Alessandra; Mattioli, Michela; Ghidoni, Riccardo; Peano, Clelia; Bonnal, Raoul; Viti, Federica; Milanesi, Luciano; De Bellis, Gianluca; Battaglia, Cristina
2006-06-01
Meta-analysis of microarray data is increasingly important, considering both the availability of multiple platforms using disparate technologies and the accumulation in public repositories of data sets from different laboratories. We addressed the issue of comparing gene expression profiles from two microarray platforms by devising a standardized investigative strategy. We tested this procedure by studying MDA-MB-231 cells, which undergo apoptosis on treatment with resveratrol. Gene expression profiles were obtained using high-density, short-oligonucleotide, single-color microarray platforms: GeneChip (Affymetrix) and CodeLink (Amersham). Interplatform analyses were carried out on 8414 common transcripts represented on both platforms, as identified by LocusLink ID, representing 70.8% and 88.6% of annotated GeneChip and CodeLink features, respectively. We identified 105 differentially expressed genes (DEGs) on CodeLink and 42 DEGs on GeneChip. Among them, only 9 DEGs were commonly identified by both platforms. Multiple analyses (BLAST alignment of probes with target sequences, gene ontology, literature mining, and quantitative real-time PCR) permitted us to investigate the factors contributing to the generation of platform-dependent results in single-color microarray experiments. An effective approach to cross-platform comparison involves microarrays of similar technologies, samples prepared by identical methods, and a standardized battery of bioinformatic and statistical analyses.
Somoza, Veronika; Wenzel, Elisabeth; Weiss, Carola; Clawin-Rädecker, Ingrid; Grübel, Nadine; Erbersdobler, Helmut F
2006-09-01
During the heat treatment of protein-containing foods, the amino acid lysine is most prone to undergo chemical reactions in the course of amino acid cross-linking or Maillard reactions. Among the reaction products formed, lysinoalanine (LAL), N(epsilon)-fructoselysine (FL) and N(epsilon)-carboxymethyllysine (CML) are those which serve as sensitive markers for the heat treatment applied. From a nutritional perspective, these compounds are ingested with the diet in considerable amounts but information about their metabolic transit and putative in vivo effects is scarce. In the present study, casein-linked LAL, FL and CML were administered to rats in two different doses for 10 days. Quantitation of LAL, FL and CML in plasma, tissue and faeces samples revealed that the kidneys are the predominant sites of accumulation and excretion. The maximum percent of dietary LAL, FL and CML excreted in the urine was 5.6, 5.2 and 29%, whereas the respective recoveries in the kidneys were 0.02, 26 and 1.4%. The plasma and tissue analyses revealed that the endogenous load of either compound is increased by its dietary intake. But the dose-dependent utilisation of dietary protein-linked LAL, FL and CML in rats has been demonstrated for the first time to vary substantially from each other.
ERIC Educational Resources Information Center
Lorber, Fred; Feifer, Irwin
Although Neighborhood Youth Corps (NYC) training is conducted either in NYC centers, governmental and non-profit agencies or private industry, there is no commitment for employment after training. The Mobilization for Youth-Experimental Manpower Laboratory (MFY-EML) is exploring the feasibility of linking NYC to other government manpower training…
NMR Guided Design of Endcaps With Improved Oxidation Resistance
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Frimer, Aryeh A.
2002-01-01
A polyimide is a polymer composed of alternating units of diamine and dianhydride, linked to each other via an imide bond. PMR polyimides, commonly used in the aerospace industry, are generally capped at each end by a norbornene endcap which serves a double function: (1) It limits the number of repeating units and, hence, the average molecular weight of the various polymer chains (oligomers), thereby improving processibility; (2) Upon further treatment (curing), the endcap crosslinks the various oligomer strands into a tough heat-resistant piece. Norbornenyl-end capped PMR polyimide resins' are widely used as polymer matrix composite materials for aircraft engine applications,2 since they combine ease of processing with good oxidative stability up to 300 C. PMR resins are prepared by a twestep approach involving the initial formation of oligomeric pre-polymers capped at both ends by a latent reactive end cap. The end cap undergoes cross-linking during higher temperature processing, producing the desired low density, high specific strength materials, as shown for PMR-15.
van Esch, Betty C A M; Gros-van Hest, Marjan; Westerbeek, Hans; Garssen, Johan
2013-03-27
A transglutaminase cross-linked caseinate was designed for use in dairy products to increase the viscosity of food matrices. The difference in structure of cross-linked caseinate might have implications for the risk of developing cow's milk allergy. The sensitizing capacity and the allergenicity (the potency to induce an allergic effector response) of cross-linked sodium caseinate was investigated using a mouse model for cow's milk allergy. Mice were orally sensitized with cross-linked caseinate or caseinate using cholera toxin as adjuvant. Anaphylactic shock reactions, change in body temperature, acute allergic skin response, caseinate-, cross-linked caseinate-IgE and mMCP-1 concentrations were determined after challenge with cross-linked caseinate or caseinate. Sensitization with cross-linked caseinate did not result in anaphylactic shock symptoms, drop in body temperature or release of serum mMCP-1. A tendency toward decreased casein-specific IgE levels was observed. The allergenicity did not differ between both products. These results indicate that in already caseinate-sensitized mice, cross-linked caseinate did not provoke more pronounced allergenic reactions compared to sodium caseinate. On top of that, reduced sensitization to cross-linked caseinate was observed. Cross-linked caseinate might therefore be an interesting new dietary concept for humans at risk for food allergy although more mechanistic studies and clinical trials are needed for validation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Eda, Yasuyuki; Takizawa, Mari; Murakami, Toshio; Maeda, Hiroaki; Kimachi, Kazuhiko; Yonemura, Hiroshi; Koyanagi, Satoshi; Shiosaki, Kouichi; Higuchi, Hirofumi; Makizumi, Keiichi; Nakashima, Toshihiro; Osatomi, Kiyoshi; Tokiyoshi, Sachio; Matsushita, Shuzo; Yamamoto, Naoki; Honda, Mitsuo
2006-06-01
An antibody response capable of neutralizing not only homologous but also heterologous forms of the CXCR4-tropic human immunodeficiency virus type 1 (HIV-1) MNp and CCR5-tropic primary isolate HIV-1 JR-CSF was achieved through sequential immunization with a combination of synthetic peptides representing HIV-1 Env V3 sequences from field and laboratory HIV-1 clade B isolates. In contrast, repeated immunization with a single V3 peptide generated antibodies that neutralized only type-specific laboratory-adapted homologous viruses. To determine whether the cross-neutralization response could be attributed to a cross-reactive antibody in the immunized animals, we isolated a monoclonal antibody, C25, which neutralized the heterologous primary viruses of HIV-1 clade B. Furthermore, we generated a humanized monoclonal antibody, KD-247, by transferring the genes of the complementary determining region of C25 into genes of the human V region of the antibody. KD-247 bound with high affinity to the "PGR" motif within the HIV-1 Env V3 tip region, and, among the established reference antibodies, it most effectively neutralized primary HIV-1 field isolates possessing the matching neutralization sequence motif, suggesting its promise for clinical applications involving passive immunizations. These results demonstrate that sequential immunization with B-cell epitope peptides may contribute to a humoral immune-based HIV vaccine strategy. Indeed, they help lay the groundwork for the development of HIV-1 vaccine strategies that use sequential immunization with biologically relevant peptides to overcome difficulties associated with otherwise poorly immunogenic epitopes.
Eda, Yasuyuki; Takizawa, Mari; Murakami, Toshio; Maeda, Hiroaki; Kimachi, Kazuhiko; Yonemura, Hiroshi; Koyanagi, Satoshi; Shiosaki, Kouichi; Higuchi, Hirofumi; Makizumi, Keiichi; Nakashima, Toshihiro; Osatomi, Kiyoshi; Tokiyoshi, Sachio; Matsushita, Shuzo; Yamamoto, Naoki; Honda, Mitsuo
2006-01-01
An antibody response capable of neutralizing not only homologous but also heterologous forms of the CXCR4-tropic human immunodeficiency virus type 1 (HIV-1) MNp and CCR5-tropic primary isolate HIV-1 JR-CSF was achieved through sequential immunization with a combination of synthetic peptides representing HIV-1 Env V3 sequences from field and laboratory HIV-1 clade B isolates. In contrast, repeated immunization with a single V3 peptide generated antibodies that neutralized only type-specific laboratory-adapted homologous viruses. To determine whether the cross-neutralization response could be attributed to a cross-reactive antibody in the immunized animals, we isolated a monoclonal antibody, C25, which neutralized the heterologous primary viruses of HIV-1 clade B. Furthermore, we generated a humanized monoclonal antibody, KD-247, by transferring the genes of the complementary determining region of C25 into genes of the human V region of the antibody. KD-247 bound with high affinity to the “PGR” motif within the HIV-1 Env V3 tip region, and, among the established reference antibodies, it most effectively neutralized primary HIV-1 field isolates possessing the matching neutralization sequence motif, suggesting its promise for clinical applications involving passive immunizations. These results demonstrate that sequential immunization with B-cell epitope peptides may contribute to a humoral immune-based HIV vaccine strategy. Indeed, they help lay the groundwork for the development of HIV-1 vaccine strategies that use sequential immunization with biologically relevant peptides to overcome difficulties associated with otherwise poorly immunogenic epitopes. PMID:16699036
Held, Michael A; Tan, Li; Kamyab, Abdolreza; Hare, Michael; Shpak, Elena; Kieliszewski, Marcia J
2004-12-31
Extensins are cell wall hydroxyproline-rich glycoproteins that form covalent networks putatively involving tyrosyl and lysyl residues in cross-links catalyzed by one or more extensin peroxidases. The precise cross-links remain to be chemically identified both as network components in muro and as enzymic products generated in vitro with native extensin monomers as substrates. However, some extensin monomers contain variations within their putative cross-linking motifs that complicate cross-link identification. Other simpler extensins are recalcitrant to isolation including the ubiquitous P3-type extensin whose major repetitive motif, Hyp)(4)-Ser-Hyp-Ser-(Hyp)(4)-Tyr-Tyr-Tyr-Lys, is of particular interest, not least because its Tyr-Tyr-Tyr intramolecular isodityrosine cross-link motifs are also putative candidates for further intermolecular cross-linking to form di-isodityrosine. Therefore, we designed a set of extensin analogs encoding tandem repeats of the P3 motif, including Tyr --> Phe and Lys --> Leu variations. Expression of these P3 analogs in Nicotiana tabacum cells yielded glycoproteins with virtually all Pro residues hydroxylated and subsequently arabinosylated and with likely galactosylated Ser residues. This was consistent with earlier analyses of P3 glycopeptides isolated from cell wall digests and the predictions of the Hyp contiguity hypothesis. The tyrosine-rich P3 analogs also contained isodityrosine, formed in vivo. Significantly, these isodityrosine-containing analogs were further cross-linked in vitro by an extensin peroxidase to form the tetra-tyrosine intermolecular cross-link amino acid di-isodityrosine. This is the first identification of an inter-molecular cross-link amino acid in an extensin module and corroborates earlier suggestions that di-isodityrosine represents one mechanism for cross-linking extensins in muro.
NASA Astrophysics Data System (ADS)
Konya, Andrew; Santangelo, Christian; Selinger, Robin
2014-03-01
When the underlying microstructure of an actuatable material varies in space, simple sheets can transform into complex shapes. Using nonlinear finite element elastodynamic simulations, we explore the design space of two such materials: liquid crystal elastomers and swelling polymer gels. Liquid crystal elastomers (LCE) undergo shape transformations induced by stimuli such as heating/cooling or illumination; complex deformations may be programmed by ``blueprinting'' a non-uniform director field in the sample when the polymer is cross-linked. Similarly, swellable gels can undergo shape change when they are swollen anisotropically as programmed by recently developed halftone gel lithography techniques. For each of these materials we design and test programmable motifs which give rise to complex deformation trajectories including folded structures, soft swimmers, apertures that open and close, bas relief patterns, and other shape transformations inspired by art and nature. In order to accommodate the large computational needs required to model these materials, our 3-d nonlinear finite element elastodynamics simulation algorithm is implemented in CUDA, running on a single GPU-enabled workstation.
Synthesis and characterization of a novel hyaluronic acid hydrogel.
Zhao, X
2006-01-01
Hyaluronic acid (hyaluronan, HA) has many medical applications as a biomaterial. To enhance its biostability, a novel hydrogel of cross-linked hyaluronic acid was prepared using a double cross-linking process, which involves building cross-linkages between hydroxyl group pairs and carboxyl group pairs. The present study explored a number of cross-linking processes in order to obtain different degrees of cross-linking, which were evaluated by the measurement of water absorption capacity as an index of the gel network density. To gain a better understanding of the stability of the gel, the chemical structure and particularly the rheological behaviour of the cross-linked HA, which included the influences of factors, such as degree of cross-linking, HA concentration and gel particle size, were investigated. The in vitro biostability against hyaluronidase and free radical degradation was tested to show that the cross-linked hydrogel had improved resistance to in vitro hyaluronidase and free radical degradation.
Porous Cross-Linked Polyimide Networks
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B. (Inventor); Guo, Haiquan (Inventor)
2015-01-01
Porous cross-linked polyimide networks are provided. The networks comprise an anhydride end-capped polyamic acid oligomer. The oligomer (i) comprises a repeating unit of a dianhydride and a diamine and terminal anhydride groups, (ii) has an average degree of polymerization of 10 to 50, (iii) has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups, and (iv) has been chemically imidized to yield the porous cross-linked polyimide network. Also provided are porous cross-linked polyimide aerogels comprising a cross-linked and imidized anhydride end-capped polyamic acid oligomer, wherein the oligomer comprises a repeating unit of a dianhydride and a diamine, and the aerogel has a density of 0.10 to 0.333 g/cm.sup.3 and a Young's modulus of 1.7 to 102 MPa. Also provided are thin films comprising aerogels, and methods of making porous cross-linked polyimide networks.
Ma, Hairan; Forssell, Pirkko; Kylli, Petri; Lampi, Anna-Maija; Buchert, Johanna; Boer, Harry; Partanen, Riitta
2012-06-20
Sodium caseinate was modified by transglutaminase catalyzed cross-linking reaction prior to the emulsification process in order to study the effect of cross-linking on the oxidative stability of protein stabilized emulsions. The extent of the cross-linking catalyzed by different dosages of transglutaminase was investigated by following the ammonia production during the reaction and using SDS-PAGE gel. O/W emulsions prepared with the cross-linked and non-cross-linked sodium caseinates were stored for 30 days under the same conditions. Peroxide value measurement, oxygen consumption measurement, and headspace gas chromatography analysis were used to study the oxidative stability of the emulsions. The emulsion made of the cross-linked sodium caseinate showed an improved oxidative stability with reduced formation of fatty acid hydroperoxides and volatiles and a longer period of low rate oxygen consumption. The improving effect of transglutaminase catalyzed cross-linking could be most likely attributed to the enhanced physical stability of the interfacial protein layer against competitive adsorption by oil oxidation products.
Stachel, Ines; Schwarzenbolz, Uwe; Henle, Thomas; Meyer, Michael
2010-03-08
Collagen is a popular biomaterial. To deal with its lack of thermal stability and its weak resistance to proteolytic degradation, collagen-based materials are stabilized via different cross-linking procedures. Regarding the potential toxicity of residual cross-linking agents, enzyme-mediated cross-linking would provide an alternative and nontoxic method for collagen stabilization. The results of this study show that type I collagen is a substrate for mTG. However, epsilon-(gamma-glutamyl)lysine cross-links are only incorporated at elevated temperatures when the protein is partially or completely denatured. A maximum number of 5.4 cross-links per collagen monomer were found for heat-denatured collagen. Labeling with the primary amine monodansylcadaverine revealed that at least half of the cross-links are located within the triple helical region of the collagen molecule. Because the triple helix is highly ordered in its native state, this finding might explain why the glutamine residues are inaccessible for mTG under nondenaturing conditions.
Al-Hameed, Fahad; Al-Dorzi, Hasan M; Shamy, Abdulrahman; Qadi, Abdulelah; Bakhsh, Ebtisam; Aboelnazar, Essam; Abdelaal, Mohamad; Al Khuwaitir, Tarig; Al-Moamary, Mohamed S.; Al-Hajjaj, Mohamed S.; Brozek, Jan; Schünemann, Holger; Mustafa, Reem; Falavigna, Maicon
2015-01-01
The diagnosis of deep venous thrombosis (DVT) may be challenging due to the inaccuracy of clinical assessment and diversity of diagnostic tests. On one hand, missed diagnosis may result in life-threatening conditions. On the other hand, unnecessary treatment may lead to serious complications. As a result of an initiative of the Ministry of Health of the Kingdom of Saudi Arabia (KSA), an expert panel led by the Saudi Association for Venous Thrombo-Embolism (SAVTE; a subsidiary of the Saudi Thoracic Society) with the methodological support of the McMaster University Working Group, produced this clinical practice guideline to assist healthcare providers in evidence-based clinical decision-making for the diagnosis of a suspected first DVT of the lower extremity. Twenty-four questions were identified and corresponding recommendations were made following the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach. These recommendations included assessing the clinical probability of DVT using Wells criteria before requesting any test and undergoing a sequential diagnostic evaluation, mainly using highly sensitive D-dimer by enzyme-linked immunosorbent assay (ELISA) and compression ultrasound. Although venography is the reference standard test for the diagnosis of DVT, its use was not recommended. PMID:25593601
Chloroethylating nitrosoureas in cancer therapy: DNA damage, repair and cell death signaling.
Nikolova, Teodora; Roos, Wynand P; Krämer, Oliver H; Strik, Herwig M; Kaina, Bernd
2017-08-01
Chloroethylating nitrosoureas (CNU), such as lomustine, nimustine, semustine, carmustine and fotemustine are used for the treatment of malignant gliomas, brain metastases of different origin, melanomas and Hodgkin disease. They alkylate the DNA bases and give rise to the formation of monoadducts and subsequently interstrand crosslinks (ICL). ICL are critical cytotoxic DNA lesions that link the DNA strands covalently and block DNA replication and transcription. As a result, S phase progression is inhibited and cells are triggered to undergo apoptosis and necrosis, which both contribute to the effectiveness of CNU-based cancer therapy. However, tumor cells resist chemotherapy through the repair of CNU-induced DNA damage. The suicide enzyme O 6 -methylguanine-DNA methyltransferase (MGMT) removes the precursor DNA lesion O 6 -chloroethylguanine prior to its conversion into ICL. In cells lacking MGMT, the formed ICL evoke complex enzymatic networks to accomplish their removal. Here we discuss the mechanism of ICL repair as a survival strategy of healthy and cancer cells and DNA damage signaling as a mechanism contributing to CNU-induced cell death. We also discuss therapeutic implications and strategies based on sequential and simultaneous treatment with CNU and the methylating drug temozolomide. Copyright © 2017 Elsevier B.V. All rights reserved.
Intra-molecular cross-linking of acidic residues for protein structure studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruppa, Gary Hermann; Young, Malin M.; Novak, Petr
2005-03-01
Intra-molecular cross-linking has been suggested as a method of obtaining distance constraints that would be useful in developing structural models of proteins. Recent work published on intra-molecular cross-linking for protein structural studies has employed commercially available primary amine selective reagents that can cross-link lysine residues to other lysine residues or the amino terminus. Previous work using these cross-linkers has shown that for several proteins of known structure, the number of cross-links that can be obtained experimentally may be small compared to what would be expected from the known structure, due to the relative reactivity, distribution, and solvent accessibility of themore » lysines in the protein sequence. To overcome these limitations we have investigated the use of cross-linking reagents that can react with other reactive sidechains in proteins. We used 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) to activate the carboxylic acid containing residues, aspartic acid (D), glutamic acid (E), and the carboxy terminus (O), for cross-linking reactions. Once activated, the DEO sidechains can react to form 'zero-length' cross-links with nearby primary amine containing resides, lysines (K) and the amino terminus (X), via the formation of a new amide bond. We also show that the EDC-activated DEO sidechains can be cross-linked to each other using dihydrazides, two hydrazide moieties connected by an alkyl cross-linker ann of variable length. Using these reagents, we have found three new 'zero-length' cross-links in ubiquitin consistent with its known structure (M1-E16, M1-E18, and K63-E64). Using the dihydrazide cross-linkers, we have identified 2 new cross-links (D21-D32 and E24-D32) unambiguously. Using a library of dihydrazide cross-linkers with varying arm length, we have shown that there is a minimum arm length required for the DEO-DEO cross-links of 5.8 angstroms. These results show that additional structural information can be obtained by exploiting new cross-linker chemistry, increasing the probability that the protein target of choice will yield sufficient distance constraints to develop a structural model.« less
Guasch, Joan; Giménez-Nueno, Irene; Funes-Ardoiz, Ignacio; Bernús, Miguel; Matheu, M Isabel; Maseras, Feliu; Castillón, Sergio; Díaz, Yolanda
2018-03-26
Regio- and stereoselective oxyamination of dienes through a tandem rhodium-catalysed aziridination-nucleophilic opening affords racemic oxazolidinone derivatives, which undergo a kinetic resolution acylation process with amidine-based catalysts (ABCs) to achieve s values of up to 117. This protocol was applied to the enantioselective synthesis of sphingosine. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Initial experience of using high field strength intraoperative MRI for neurosurgical procedures.
Raheja, Amol; Tandon, Vivek; Suri, Ashish; Sarat Chandra, P; Kale, Shashank S; Garg, Ajay; Pandey, Ravindra M; Kalaivani, Mani; Mahapatra, Ashok K; Sharma, Bhawani S
2015-08-01
We report our initial experience to optimize neurosurgical procedures using high field strength intraoperative magnetic resonance imaging (IOMRI) in 300 consecutive patients as high field strength IOMRI rapidly becomes the standard of care for neurosurgical procedures. Three sequential groups (groups A, B, C; n=100 each) were compared with respect to time management, complications and technical difficulties to assess improvement in these parameters with experience. We observed a reduction in the number of technical difficulties (p<0.001), time to induction (p<0.001) and total anesthesia time (p=0.007) in sequential groups. IOMRI was performed for neuronavigation guidance (n=252) and intraoperative validation of extent of resection (EOR; n=67). Performing IOMRI increased the EOR over and beyond the primary surgical attempt in 20.5% (29/141) and 18% (11/61) of patients undergoing glioma and pituitary surgery, respectively. Overall, EOR improved in 59.7% of patients undergoing IOMRI (40/67). Intraoperative tractography and real time navigation using re-uploaded IOMRI images (accounting for brain shift) helps in intraoperative planning to reduce complications. IOMRI is an asset to neurosurgeons, helping to augment the EOR, especially in glioma and pituitary surgery, with no significant increase in morbidity to the patient. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Hofer, Scott M.; Flaherty, Brian P.; Hoffman, Lesa
2006-01-01
The effect of time-related mean differences on estimates of association in cross-sectional studies has not been widely recognized in developmental and aging research. Cross-sectional studies of samples varying in age have found moderate to high levels of shared age-related variance among diverse age-related measures. These findings may be…
Spiegelhalter, David; Grigg, Olivia; Kinsman, Robin; Treasure, Tom
2003-02-01
To investigate the use of the risk-adjusted sequential probability ratio test in monitoring the cumulative occurrence of adverse clinical outcomes. Retrospective analysis of three longitudinal datasets. Patients aged 65 years and over under the care of Harold Shipman between 1979 and 1997, patients under 1 year of age undergoing paediatric heart surgery in Bristol Royal Infirmary between 1984 and 1995, adult patients receiving cardiac surgery from a team of cardiac surgeons in London,UK. Annual and 30-day mortality rates. Using reasonable boundaries, the procedure could have indicated an 'alarm' in Bristol after publication of the 1991 Cardiac Surgical Register, and in 1985 or 1997 for Harold Shipman depending on the data source and the comparator. The cardiac surgeons showed no significant deviation from expected performance. The risk-adjusted sequential probability test is simple to implement, can be applied in a variety of contexts, and might have been useful to detect specific instances of past divergent performance. The use of this and related techniques deserves further attention in the context of prospectively monitoring adverse clinical outcomes.
Soderblom, Erik J; Goshe, Michael B
2006-12-01
Chemical cross-linking combined with mass spectrometry is a viable approach to study the low-resolution structure of protein and protein complexes. However, unambiguous identification of the residues involved in a cross-link remains analytically challenging. To enable a more effective analysis across various MS platforms, we have developed a novel set of collision-induced dissociative cross-linking reagents and methodology for chemical cross-linking experiments using tandem mass spectrometry (CID-CXL-MS/MS). These reagents incorporate a single gas-phase cleavable bond within their linker region that can be selectively fragmented within the in-source region of the mass spectrometer, enabling independent MS/MS analysis for each peptide. Initial design concepts were characterized using a synthesized cross-linked peptide complex. Following verification and subsequent optimization of cross-linked peptide complex dissociation, our reagents were applied to homodimeric glutathione S-transferase and monomeric bovine serum albumin. Cross-linked residues identified by our CID-CXL-MS/MS method were in agreement with published crystal structures and previous cross-linking studies using conventional approaches. Common LC/MS/MS acquisition approaches such as data-dependent acquisition experiments using ion trap mass spectrometers and product ion spectral analysis using SEQUEST were shown to be compatible with our CID-CXL-MS/MS reagents, obviating the requirement for high resolution and high mass accuracy measurements to identify both intra- and interpeptide cross-links.
Bilateral Keratoconus Induced by Secondary Hypothyroidism After Radioactive Iodine Therapy.
Lee, Ramon; Hafezi, Farhad; Randleman, J Bradley
2018-05-01
To present a case of new-onset, bilateral, rapidly progressive keratoconus induced by secondary hypothyroidism after radioactive iodine therapy during the sixth decade of life that was successfully treated with corneal cross-linking. Case report and literature review. A 53-year-old woman with no ocular complaints but with a history of Graves' disease and thyrotoxicosis was treated with radioactive iodine therapy and oral levothyroxine for secondary acquired hypothyroidism 3 years prior. Initially, uncorrected distance visual acuity (UDVA) was 20/40 and corrected distance visual acuity (CDVA) was 20/25 in both eyes. Over the following 3 years, the patient developed worsening UDVA and CDVA, with increasing manifest astigmatism of greater than 7.00 diopters (D) in the right eye and 4.75 D in the left eye, with corneal thinning and focal steepening and was diagnosed as having bilateral progressive keratoconus. The patient underwent sequential corneal cross-linking with resultant postoperative CDVA of 20/20 and reduced maximum keratometry and manifest astigmatism in both eyes. The patient's thyroid levels were within normal limits throughout the clinical course. This case provides evidence of the relationship between keratoconus development and thyroid gland dysfunction. The pathophysiology of this relationship has yet to be completely elucidated, but elevated levels of thyroxine in the aqueous humor and tear film and thyroxine receptors in the cornea likely play a role. Screening topographies for patients with thyroid gland dysfunction may be of value for these higher risk patients. [J Refract Surg. 2018;34(5):351-353.]. Copyright 2018, SLACK Incorporated.
A smart membrane based on an antigen-responsive hydrogel.
Zhang, Rongsheng; Bowyer, Adrian; Eisenthal, Robert; Hubble, John
2007-07-01
Hydrogel membranes have been fabricated that incorporate antibody/antigen moieties. The permeability of large solutes through these membranes is dependent on the presence of soluble antigen that can compete with the internal interactions between antibody and antigen leading to an increase in gel mesh size. Specifically, the membrane's structure is based on a dextran backbone grafted with a fluorescein isothiocyanate (FITC) antigen and a sheep anti-FITC IgG antibody. The backbone is covalently cross-linked by conjugated divinyl sulfone (DVS) groups. The gel structure is additionally stabilized by affinity crosslinks formed by biospecific interactions between the bound IgG and FITC. FTIR spectra of the gel are consistent with formation of covalent bonds between cysteine groups in the IgG and DVS groups in the dextran. Results obtained using isothermal titration calorimetry (ITC) confirmed the competitive interaction binding between IgG-FITC-dextran and free sodium fluorescein at pH 5.0. Scanning electron microscopy (SEM) of samples prepared using cryofixation and cryofracturing techniques showed that observed changes in permeability correlate with free fluorescein-dependent structural changes in the gel. Three-dimensional images obtained from confocal laser scanning microscopy show that these changes occur throughout the gel and indicate that SEM results are not artifacts of sample preparation. The permeability of these gels, as shown by blue-dextran (12 kDa) diffusion, increases in response to the presence of free fluorescein of the external medium, which causes competitive displacement of the affinity cross-links. Sequential addition and removal of sodium fluorescein showed that these permeability changes are reversible. (c) 2006 Wiley Periodicals, Inc.
Bandyopadhyay, Pradipta; Kuntz, Irwin D
2009-01-01
The determination of protein structure using distance constraints is a new and promising field of study. One implementation involves attaching residues of a protein using a cross-linking agent, followed by protease digestion, analysis of the resulting peptides by mass spectroscopy, and finally sequence threading to detect the protein folds. In the present work, we carry out computational modeling of the kinetics of cross-linking reactions in proteins using the master equation approach. The rate constants of the cross-linking reactions are estimated using the pKas and the solvent-accessible surface areas of the residues involved. This model is tested with fibroblast growth factor (FGF) and cytochrome C. It is consistent with the initial experimental rate data for individual lysine residues for cytochrome C. Our model captures all observed cross-links for FGF and almost 90% of the observed cross-links for cytochrome C, although it also predicts cross-links that were not observed experimentally (false positives). However, the analysis of the false positive results is complicated by the fact that experimental detection of cross-links can be difficult and may depend on specific experimental conditions such as pH, ionic strength. Receiver operator characteristic plots showed that our model does a good job in predicting the observed cross-links. Molecular dynamics simulations showed that for cytochrome C, in general, the two lysines come closer for the observed cross-links as compared to the false positive ones. For FGF, no such clear pattern exists. The kinetic model and MD simulation can be used to study proposed cross-linking protocols.
Multiscale mechanical effects of native collagen cross-linking in tendon.
Eekhoff, Jeremy D; Fang, Fei; Lake, Spencer P
2018-06-06
The hierarchical structure of tendon allows for attenuation of mechanical strain down decreasing length scales. While reorganization of collagen fibers accounts for microscale strain attenuation, cross-linking between collagen molecules contributes to deformation mechanisms at the fibrillar and molecular scales. Divalent and trivalent enzymatic cross-links form during the development of collagen fibrils through the enzymatic activity of lysyl oxidase (LOX). By establishing connections between telopeptidyl and triple-helical domains of adjacent molecules within collagen fibrils, these cross-links stiffen the fibrils by resisting intermolecular sliding. Ultimately, greater enzymatic cross-linking leads to less compliant and stronger tendon as a result of stiffer fibrils. In contrast, nonenzymatic cross-links such as glucosepane and pentosidine are not produced during development but slowly accumulate through glycation of collagen. Therefore, these cross-links are only expected to be present in significant quantities in advanced age, where there has been sufficient time for glycation to occur, and in diabetes, where the presence of more free sugar in the extracellular matrix increases the rate of glycation. Unlike enzymatic cross-links, current evidence suggests that nonenzymatic cross-links are at least partially isolated to the surface of collagen fibers. As a result, glycation has been proposed to primarily impact tendon mechanics by altering molecular interactions at the fiber interface, thereby diminishing sliding between fibers. Thus, increased nonenzymatic cross-linking decreases microscale strain attenuation and the viscous response of tendon. In conclusion, enzymatic and nonenzymatic collagen cross-links have demonstrable and distinct effects on the mechanical properties of tendon across different length scales.
21 CFR 177.1211 - Cross-linked polyacrylate copolymers.
Code of Federal Regulations, 2011 CFR
2011-04-01
... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified as... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Cross-linked polyacrylate copolymers. 177.1211... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1211 Cross-linked polyacrylate...
21 CFR 177.1211 - Cross-linked polyacrylate copolymers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified as... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Cross-linked polyacrylate copolymers. 177.1211... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1211 Cross-linked polyacrylate...
Study on the preparation process of cross-linked porous cassava starch
NASA Astrophysics Data System (ADS)
Yin, Xiulian; You, Qinghong; Wan, Miaomiao; Zhang, Xuejuan; Dai, Chunhua
2017-04-01
Using cassava starch as raw material, preparation process of porous cross-linked cassava starch was studied. Using TSTP as cross-linking agents, Orthogonal design was applied for the optimization of cross-linked porous starch preparation process. The results showed that the opitmal conditions of cross-linked porous cassava starch were as follows: reaction temperature 45°C, reaction time 20 h, 1% of the amount of the enzyme, the enzyme ratio of 1:5, pH 5.50, substrate concentration of 40%.
Podsiadlo, Paul; Kaushik, Amit K; Shim, Bong Sup; Agarwal, Ashish; Tang, Zhiyong; Waas, Anthony M; Arruda, Ellen M; Kotov, Nicholas A
2008-11-20
The preparation of a high-strength and highly transparent nacre-like nanocomposite via layer-by-layer assembly technique from poly(vinyl alcohol) (PVA) and Na+-montmorillonite clay nanosheets is reported in this article. We show that a high density of weak bonding interactions between the polymer and the clay particles: hydrogen, dipole-induced dipole, and van der Waals undergoing break-reform deformations, can lead to high strength nanocomposites: sigmaUTS approximately 150 MPa and E' approximately 13 GPa. Further introduction of ionic bonds into the polymeric matrix creates a double network of sacrificial bonds which dramatically increases the mechanical properties: sigmaUTS approximately 320 MPa and E' approximately 60 GPa.
Bruchet, Marion; Melman, Artem
2015-10-20
Calcium cross-linked alginate hydrogels are widely used in targeted drug delivery, tissue engineering, wound treatment, and other biomedical applications. We developed a method for preparing homogeneous alginate hydrogels cross-linked with Ca(2+) cations using reductive cation exchange in homogeneous iron(III) cross-linked alginate hydrogels. Treatment of iron(III) cross-linked alginate hydrogels with calcium salts and sodium ascorbate results in reduction of iron(III) cations to iron(II) that are instantaneously replaced with Ca(2+) cations, producing homogeneous ionically cross-linking hydrogels. Alternatively, the cation exchange can be performed by photochemical reduction in the presence of calcium chloride using a sacrificial photoreductant. This approach allows fabrication of patterned calcium alginate hydrogels through photochemical patterning of iron(III) cross-linked alginate hydrogel followed by the photochemical reductive exchange of iron cations to calcium. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jeon, S; Djian, P; Green, H
1998-01-20
Epidermal keratinocytes, late in their terminal differentiation, form cross-linked envelopes resistant to ionic detergent and reducing agent. Because the cross-linking process is catalyzed by the keratinocyte transglutaminase, the absence of active transglutaminase should result in failure of the keratinocyte to form a cross-linked envelope. Three keratinocyte strains bearing mutations in the keratinocyte transglutaminase were examined: two contained no detectable transglutaminase mRNA and none contained active enzyme. All three were unable to form cross-linked envelopes, either spontaneously in stratified cultures or upon induction with Ca2+. Although stratum corneum of normal humans and scales from patients with different ichthyotic diseases contain cross-linked envelopes, those from patients with transglutaminase-negative lamellar ichthyosis do not. Therefore, the disease due to the absence of transglutaminase may be readily distinguished from other ichthyotic disease by a simple test for cross-linked envelopes.
Characterization of the Deoxyguanosine–Lysine Cross-Link of Methylglyoxal
2015-01-01
Methylglyoxal is a mutagenic bis-electrophile that is produced endogenously from carbohydrate precursors. Methylglyoxal has been reported to induce DNA–protein cross-links (DPCs) in vitro and in cultured cells. Previous work suggests that these cross-links are formed between guanine and either lysine or cysteine side chains. However, the chemical nature of the methylglyoxal induced DPC have not been determined. We have examined the reaction of methylglyoxal, deoxyguanosine (dGuo), and Nα-acetyllysine (AcLys) and determined the structure of the cross-link to be the N2-ethyl-1-carboxamide with the lysine side chain amino group (1). The cross-link was identified by mass spectrometry and the structure confirmed by comparison to a synthetic sample. Further, the cross-link between methylglyoxal, dGuo, and a peptide (AcAVAGKAGAR) was also characterized. The mechanism of cross-link formation is likely to involve an Amadori rearrangement. PMID:24801980
NASA Astrophysics Data System (ADS)
Lee, Jonghwi; Urry, Dan W.; Macosko, Christopher W.
2000-03-01
Selectively modified elastic protein-based polymers demonstrate diverse energy conversions by means of the control of a phase transition resulting from the sensitivity to stimuli of the hydrophobic association. Among these polymers, poly(GVGVP), poly(GVGIP) and analogues of poly(GVGVP) containing carboxylic acid or amino functional groups as side chains were cross-linked and their swelling behavior was studied. Regardless of cross-linking method, reversible phase transitions can be observed in the swelling of all cross-linked polymers by changing temperature and pH, where relevant. Decreased cross-link density leads to increased swelling ratio as the transition becomes more pronounced. Fibers, chemically cross-linked after formation, exhibit anisotropic dimensional changes on changing the temperature. Gamma-irradiation cross-linked poly(GVGVP) exhibited a more distinct phase transition than modified poly(GVGVP) with ion pairs between side chains, which were partially converted to amide cross-links.
Photocontrolled Cargo Release from Dual Cross-Linked Polymer Particles.
Tan, Shereen; Cui, Jiwei; Fu, Qiang; Nam, Eunhyung; Ladewig, Katharina; Ren, Jing M; Wong, Edgar H H; Caruso, Frank; Blencowe, Anton; Qiao, Greg G
2016-03-09
Burst release of a payload from polymeric particles upon photoirradiation was engineered by altering the cross-linking density. This was achieved via a dual cross-linking concept whereby noncovalent cross-linking was provided by cyclodextrin host-guest interactions, and irreversible covalent cross-linking was mediated by continuous assembly of polymers (CAP). The dual cross-linked particles (DCPs) were efficiently infiltrated (∼80-93%) by the biomacromolecule dextran (molecular weight up to 500 kDa) to provide high loadings (70-75%). Upon short exposure (5 s) to UV light, the noncovalent cross-links were disrupted resulting in increased permeability and burst release of the cargo (50 mol % within 1 s) as visualized by time-lapse fluorescence microscopy. As sunlight contains UV light at low intensities, the particles can potentially be incorporated into systems used in agriculture, environmental control, and food packaging, whereby sunlight could control the release of nutrients and antimicrobial agents.
On the Reproducibility of Label-Free Quantitative Cross-Linking/Mass Spectrometry
NASA Astrophysics Data System (ADS)
Müller, Fränze; Fischer, Lutz; Chen, Zhuo Angel; Auchynnikava, Tania; Rappsilber, Juri
2018-02-01
Quantitative cross-linking/mass spectrometry (QCLMS) is an emerging approach to study conformational changes of proteins and multi-subunit complexes. Distinguishing protein conformations requires reproducibly identifying and quantifying cross-linked peptides. Here we analyzed the variation between multiple cross-linking reactions using bis[sulfosuccinimidyl] suberate (BS3)-cross-linked human serum albumin (HSA) and evaluated how reproducible cross-linked peptides can be identified and quantified by LC-MS analysis. To make QCLMS accessible to a broader research community, we developed a workflow that integrates the established software tools MaxQuant for spectra preprocessing, Xi for cross-linked peptide identification, and finally Skyline for quantification (MS1 filtering). Out of the 221 unique residue pairs identified in our sample, 124 were subsequently quantified across 10 analyses with coefficient of variation (CV) values of 14% (injection replica) and 32% (reaction replica). Thus our results demonstrate that the reproducibility of QCLMS is in line with the reproducibility of general quantitative proteomics and we establish a robust workflow for MS1-based quantitation of cross-linked peptides.
Klockenbusch, Cordula; Kast, Juergen
2010-01-01
Formaldehyde cross-linking of protein complexes combined with immunoprecipitation and mass spectrometry analysis is a promising technique for analysing protein-protein interactions, including those of transient nature. Here we used integrin β1 as a model to describe the application of formaldehyde cross-linking in detail, particularly focusing on the optimal parameters for cross-linking, the detection of formaldehyde cross-linked complexes, the utility of antibodies, and the identification of binding partners. Integrin β1 was found in a high molecular weight complex after formaldehyde cross-linking. Eight different anti-integrin β1 antibodies were used for pull-down experiments and no loss in precipitation efficiency after cross-linking was observed. However, two of the antibodies could not precipitate the complex, probably due to hidden epitopes. Formaldehyde cross-linked complexes, precipitated from Jurkat cells or human platelets and analyzed by mass spectrometry, were found to be composed of integrin β1, α4 and α6 or β1, α6, α2, and α5, respectively. PMID:20634879
Infrared microspectroscopic determination of collagen cross-links in articular cartilage
NASA Astrophysics Data System (ADS)
Rieppo, Lassi; Kokkonen, Harri T.; Kulmala, Katariina A. M.; Kovanen, Vuokko; Lammi, Mikko J.; Töyräs, Juha; Saarakkala, Simo
2017-03-01
Collagen forms an organized network in articular cartilage to give tensile stiffness to the tissue. Due to its long half-life, collagen is susceptible to cross-links caused by advanced glycation end-products. The current standard method for determination of cross-link concentrations in tissues is the destructive high-performance liquid chromatography (HPLC). The aim of this study was to analyze the cross-link concentrations nondestructively from standard unstained histological articular cartilage sections by using Fourier transform infrared (FTIR) microspectroscopy. Half of the bovine articular cartilage samples (n=27) were treated with threose to increase the collagen cross-linking while the other half (n=27) served as a control group. Partial least squares (PLS) regression with variable selection algorithms was used to predict the cross-link concentrations from the measured average FTIR spectra of the samples, and HPLC was used as the reference method for cross-link concentrations. The correlation coefficients between the PLS regression models and the biochemical reference values were r=0.84 (p<0.001), r=0.87 (p<0.001) and r=0.92 (p<0.001) for hydroxylysyl pyridinoline (HP), lysyl pyridinoline (LP), and pentosidine (Pent) cross-links, respectively. The study demonstrated that FTIR microspectroscopy is a feasible method for investigating cross-link concentrations in articular cartilage.
Kirchenbaum, Greg A.; Carter, Donald M.
2015-01-01
ABSTRACT Broadly reactive antibodies targeting the conserved hemagglutinin (HA) stalk region are elicited following sequential infection or vaccination with influenza viruses belonging to divergent subtypes and/or expressing antigenically distinct HA globular head domains. Here, we demonstrate, through the use of novel chimeric HA proteins and competitive binding assays, that sequential infection of ferrets with antigenically distinct seasonal H1N1 (sH1N1) influenza virus isolates induced an HA stalk-specific antibody response. Additionally, stalk-specific antibody titers were boosted following sequential infection with antigenically distinct sH1N1 isolates in spite of preexisting, cross-reactive, HA-specific antibody titers. Despite a decline in stalk-specific serum antibody titers, sequential sH1N1 influenza virus-infected ferrets were protected from challenge with a novel H1N1 influenza virus (A/California/07/2009), and these ferrets poorly transmitted the virus to naive contacts. Collectively, these findings indicate that HA stalk-specific antibodies are commonly elicited in ferrets following sequential infection with antigenically distinct sH1N1 influenza virus isolates lacking HA receptor-binding site cross-reactivity and can protect ferrets against a pathogenic novel H1N1 virus. IMPORTANCE The influenza virus hemagglutinin (HA) is a major target of the humoral immune response following infection and/or seasonal vaccination. While antibodies targeting the receptor-binding pocket of HA possess strong neutralization capacities, these antibodies are largely strain specific and do not confer protection against antigenic drift variant or novel HA subtype-expressing viruses. In contrast, antibodies targeting the conserved stalk region of HA exhibit broader reactivity among viruses within and among influenza virus subtypes. Here, we show that sequential infection of ferrets with antigenically distinct seasonal H1N1 influenza viruses boosts the antibody responses directed at the HA stalk region. Moreover, ferrets possessing HA stalk-specific antibody were protected against novel H1N1 virus infection and did not transmit the virus to naive contacts. PMID:26559834
Probing structures of large protein complexes using zero-length cross-linking.
Rivera-Santiago, Roland F; Sriswasdi, Sira; Harper, Sandra L; Speicher, David W
2015-11-01
Structural mass spectrometry (MS) is a field with growing applicability for addressing complex biophysical questions regarding proteins and protein complexes. One of the major structural MS approaches involves the use of chemical cross-linking coupled with MS analysis (CX-MS) to identify proximal sites within macromolecules. Identified cross-linked sites can be used to probe novel protein-protein interactions or the derived distance constraints can be used to verify and refine molecular models. This review focuses on recent advances of "zero-length" cross-linking. Zero-length cross-linking reagents do not add any atoms to the cross-linked species due to the lack of a spacer arm. This provides a major advantage in the form of providing more precise distance constraints as the cross-linkable groups must be within salt bridge distances in order to react. However, identification of cross-linked peptides using these reagents presents unique challenges. We discuss recent efforts by our group to minimize these challenges by using multiple cycles of LC-MS/MS analysis and software specifically developed and optimized for identification of zero-length cross-linked peptides. Representative data utilizing our current protocol are presented and discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
Siritientong, Tippawan; Ratanavaraporn, Juthamas; Srichana, Teerapol; Aramwit, Pornanong
2013-01-01
The genipin-cross-linked silk sericin/poly(vinyl alcohol) (PVA) films were developed aiming to be applied as two-dimensional wound dressings for the treatment of superficial wounds. The effects of genipin cross-linking concentration on the physical and biological properties of the films were investigated. The genipin-cross-linked silk sericin/PVA films showed the increased surface density, tensile strength, and percentage of elongation, but decreased percentage of light transmission, water vapor transmission rate, and water swelling, compared to the non-cross-linked films. This explained that the cross-linking bonds between genipin and silk sericin would reduce the mobility of molecular chains within the films, resulting in the more rigid molecular structure. Silk sericin was released from the genipin-cross-linked films in a sustained manner. In addition, either L929 mouse fibroblast or HaCat keratinocyte cells showed high percentage of viability when cultured on the silk sericin/PVA films cross-linked with 0.075 and 0.1% w/v genipin. The in vivo safety test performed according to ISO 10993-6 confirmed that the genipin-cross-linked silk sericin/PVA films were safe for the medical usages. The efficacy of the films for the treatment of superficial skin wounds will be further investigated in vivo and clinically. The genipin-cross-linked silk sericin/PVA films would be promising choices of two-dimensional wound dressings for the treatment of superficial wounds. PMID:24106722
Siritientong, Tippawan; Ratanavaraporn, Juthamas; Srichana, Teerapol; Aramwit, Pornanong
2013-01-01
The genipin-cross-linked silk sericin/poly(vinyl alcohol) (PVA) films were developed aiming to be applied as two-dimensional wound dressings for the treatment of superficial wounds. The effects of genipin cross-linking concentration on the physical and biological properties of the films were investigated. The genipin-cross-linked silk sericin/PVA films showed the increased surface density, tensile strength, and percentage of elongation, but decreased percentage of light transmission, water vapor transmission rate, and water swelling, compared to the non-cross-linked films. This explained that the cross-linking bonds between genipin and silk sericin would reduce the mobility of molecular chains within the films, resulting in the more rigid molecular structure. Silk sericin was released from the genipin-cross-linked films in a sustained manner. In addition, either L929 mouse fibroblast or HaCat keratinocyte cells showed high percentage of viability when cultured on the silk sericin/PVA films cross-linked with 0.075 and 0.1% w/v genipin. The in vivo safety test performed according to ISO 10993-6 confirmed that the genipin-cross-linked silk sericin/PVA films were safe for the medical usages. The efficacy of the films for the treatment of superficial skin wounds will be further investigated in vivo and clinically. The genipin-cross-linked silk sericin/PVA films would be promising choices of two-dimensional wound dressings for the treatment of superficial wounds.
Sun, Leilei; Li, Bafang; Yao, Di; Song, Wenkui; Hou, Hu
2018-04-01
The objective of this study was to explore the effects of dehydrothermal treatment (DHT) and glutaraldehyde (GTA) cross-linking on mechanical, biological properties and biodegradation behavior of Nile tilapia skin collagen sponge fabricated by freeze-drying technology. It was found that the GTA cross-linked collagen sponge exhibited a higher degree of cross-linking in comparison with DHT. The extent of increased tensile strength as well as hygroscopicity indicated that GTA cross-linking was superior to DHT in mechanical properties and liquid absorption, which was attributed to different cross-linking mechanisms. Hygroscopicity assay indicated that cross-linking could improve stability of collagen in solutions. No obvious changes in porosity and blood coagulation time were observed whether cross-linking or not. Results from collagenase biodegradation assay in vitro illustrated that GTA-treated collagen sponge was more resistant to collagenase biodegradation, while DHT exhibited negligible resistance. In addition, photochemical stability of collagen sponge was studied by Fourier transforms infrared spectroscopy (FTIR), which indicated that both cross-linking treatments could not change the backbone structure of collagen. Furthermore, the microstructure of collagen sponge was stable after cross-linking. The highly porous and interconnected structure of collagen sponge was helpful to the absorption of wound exudates, supplement of oxygen and cell proliferation, accompanied with good blood compatibility, which indicated that our fabricated collagen sponge could be applied in biomedical materials field as wound dressings. Copyright © 2018. Published by Elsevier Ltd.
Takaoka, Anna; Babar, Natasha; Hogan, Julia; Kim, MiJung; Price, Marianne O.; Price, Francis W.; Trokel, Stephen L.; Paik, David C.
2016-01-01
Purpose Current literature contains scant information regarding the extent of enzymatic collagen cross-linking in the keratoconus (KC) cornea. The aim of the present study was to examine levels of enzymatic lysyl oxidase–derived cross-links in stromal collagen in KC tissue, and to correlate the cross-link levels with collagen fibril stability as determined by thermal denaturation temperature (Tm). Methods Surgical KC samples (n = 17) and Eye-Bank control (n = 11) corneas of age 18 to 68 years were analyzed. The samples were defatted, reduced (NaBH4), hydrolyzed (6N HCl at 110°C for 18 hours), and cellulose enriched before analysis by C8 high-performance liquid chromatography equipped with parallel fluorescent and mass detectors in selective ion monitoring mode (20 mM heptafluorobutyric acid/methanol 70:30 isocratic at 1 mL/min). Nine different cross-links were measured, and the cross-link density was determined relative to collagen content (determined colorimetrically). The Tm was determined by differential scanning calorimetry. Results Cross-links detected were dihydroxylysinonorleucine (DHLNL), hydroxylysinonorleucine, lysinonorleucine (LNL), and histidinohydroxylysinonorleucine in both control and KC samples. Higher DHLNL levels were detected in KC, whereas the dominant cross-link, LNL, was decreased in KC samples. Decreased LNL levels were observed among KC ≤ 40 corneas. There was no difference in total cross-link density between KC samples and the controls. Pyridinolines, desmosines, and pentosidine were not detected. There was no notable correlation between cross-link levels with fibril instability as determined by Tm. Conclusions Lower levels of LNL in the KC cornea suggest that there might be a cross-linking defect either in fibrillar collagen or the microfibrillar elastic network composed of fibrillin. PMID:26780316
Uragami, Tadashi; Banno, Masashi; Miyata, Takashi
2015-12-10
To obtain high dehydration membranes for an ethanol/water azeotrope, dried blend membranes prepared from mixtures of sodium alginate (Alg-Na) and sodium deoxyribonucleate (DNA-Na) were cross-linked by immersing in a methanol solution of CaCl2 or MaCl2. In the dehydration of an ethanol/water azeotropic mixture by pervaporation, the effects of immersion time in methanol solution of CaCl2 or MaCl2 on the permeation rate and water/ethanol selectivity through Alg-DNA/Ca(2+) and Alg-DNA/Mg(2+) cross-linked membranes were investigated. Alg-DNA/Mg(2+) cross-linked membrane immersed for 12h in methanol solution of MaCl2 exhibited the highest water/ethanol selectivity. This results from depressed swelling of the membranes by formation of a cross-linked structure. However, excess immersion in solution containing cross-linker led to an increase in the hydrophobicity of cross-linked membrane. Therefore, the water/ethanol selectivity of Alg-DNA/Mg(2+) cross-linked membranes with an excess immersion in cross-linking solution was lowered. The relationship between the structure of Alg-DNA/Ca(2+) and Alg-DNA/Mg(2+) cross-linked membranes and their permeation and separation characteristics during pervaporation of an ethanol/water azeotropic mixture is discussed in detail. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Wright, A. D.; Chapes, S. K.
1999-01-01
The mechanism of how superantigens function to activate cells has been linked to their ability to bind and cross-link the major histocompatibility complex class II (MHCII) molecule. Cells that lack the MHCII molecule also respond to superantigens, however, with much less efficiency. Therefore, the purpose of this study was to confirm that staphylococcal enterotoxin A (SEA) could bind the MHCI molecule and to test the hypothesis that cross-linking SEA bound to MHCII-deficient macrophages would induce a more robust cytokine response than without cross-linking. We used a capture enzyme-linked immunosorbent assay and an immunprecipitation assay to directly demonstrate that MHCI molecules bind SEA. Directly cross-linking MHCI using monoclonal antibodies or cross-linking bound SEA with an anti-SEA antibody or biotinylated SEA with avidin increased TNF-alpha and IL-6 secretion by MHCII(-/-) macrophages. The induction of a vigorous macrophage cytokine response by SEA/anti-SEA cross-linking of MHCI offers a mechanism to explain how MHCI could play an important role in superantigen-mediated pathogenesis. Copyright 1999 Academic Press.
Chou, Shih-Feng; Luo, Li-Jyuan; Lai, Jui-Yang; Ma, David Hui-Kang
2017-02-01
Due to their ability to mimic the structure of extracellular matrix, electrospun gelatin nanofibers are promising cell scaffolding materials for tissue engineering applications. However, the hydrophilic gelatin molecules usually need stabilization before use in aqueous physiological environment. Considering that biomaterials cross-linked via film immersion technique may have a more homogeneous cross-linked structure than vapor phase cross-linking, this work aims to investigate the chemical modification of electrospun gelatin nanofibrous membranes by liquid phase carbodiimide in the presence of ethanol/water co-solvents with varying ethanol concentrations ranging from 80 to 99.5vol%. The results of characterization showed that increasing water content in the binary reaction solvent system increases the extent of cross-linking of gelatin nanofibers, but simultaneously promotes the effect of biopolymer swelling and distortion in fiber mat structure. As compared to non-cross-linked counterparts, carbodiimide treated gelatin nanofibrous mats exhibited better thermal and biological stability where the shrinkage temperature and resistance to enzymatic degradation varied in response to ethanol/water solvent composition-mediated generation of cross-links. Irrespective of their cross-linking density, all studied membrane samples did not induce any responses in ocular epithelial cell cultures derived from cornea, lens, and retina. Unlike many other cross-linking agents and/or methods (e.g., excessive vapor phase cross-linking) that may pose a risk of toxicity, our study demonstrated that these nanofibrous materials are well tolerated by anterior segment tissues. These findings also indicate the safety of using ethanol/water co-solvents for chemical cross-linking of gelatin to engineer nanofibrous materials with negligible biological effects. In summary, the present results suggest the importance of solvent-mediated carbodiimide cross-linking in modulating structure-property relationship without compromising in vitro and in vivo biocompatibility of electrospun gelatin nanofibers for future ophthalmic applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Johnson, Kevin M.; Price, Nathan E.; Wang, Jin; Fekry, Mostafa I.; Dutta, Sanjay; Seiner, Derrick R.; Wang, Yinsheng; Gates, Kent S.
2014-01-01
We recently reported that the aldehyde residue of an abasic (Ap) site in duplex DNA can generate an interstrand cross-link via reaction with a guanine residue on the opposing strand. This finding is intriguing because the highly deleterious nature of interstrand cross-links suggests that even small amounts of Ap-derived cross-links could make a significant contribution to the biological consequences stemming from the generation of Ap sites in cellular DNA. Incubation of 21-bp duplexes containing a central 5′-CAp sequence under conditions of reductive amination (NaCNBH3, pH 5.2) generated much higher yields of cross-linked DNA than reported previously. At pH 7, in the absence of reducing agents, these Ap-containing duplexes also produced cross-linked duplexes that were readily detected on denaturing polyacrylamide gels. Cross-link formation was not highly sensitive to reaction conditions and, once formed, the cross-link was stable to a variety of work-up conditions. Results of multiple experiments including MALDI-TOF mass spectrometry, gel mobility, methoxyamine capping of the Ap aldehyde, inosine-for-guanine replacement, hydroxyl radical footprinting, and LCMS/MS were consistent with a cross-linking mechanism involving reversible reaction of the Ap aldehyde residue with the N2-amino group of the opposing guanine residue in 5′-CAp sequences to generate hemiaminal, imine, or cyclic hemiaminal cross-links (7-10) that were irreversibly converted under conditions of reductive amination (NaCNBH3/pH 5.2) to a stable amine linkage. Further support for the importance of the exocyclic N2-amino group in this reaction was provided by an experiment showing that installation of a 2-aminopurine-thymine base pair at the cross-linking site produced high yields (15-30%) of a cross-linked duplex at neutral pH, in the absence of NaCNBH3. PMID:23215239
ERIC Educational Resources Information Center
Lin, Jing-Wen
2017-01-01
Cross-grade studies are valuable for the development of sequential curriculum. However such studies are time and resource intensive and fail to provide a clear representation to integrate different levels of representational complexity. Lin (Lin, 2006; Lin & Chiu, 2006; Lin, Chiu, & Hsu, 2006) proposed a cladistics approach in conceptual…
ERIC Educational Resources Information Center
Ding, Lin; Zhang, Ping
2016-01-01
Previous literature on learners' epistemological beliefs about physics has almost exclusively focused on analysis of university classroom instruction and its effects on students' views. However, little is known about other populations or factors other than classroom instruction on learners' epistemologies. In this study, we used a cross-sequential…
Nano and micro mechanical properties of uncross-linked and cross-linked chitosan films
Aryaei, Ashkan; Jayatissa, Ahalapitiya H.; Jayasuriya, A. Champa
2016-01-01
The aim of this study is to determine the nano and micro mechanical properties for uncross-linked and cross-linked chitosan films. Specifically, we looked at nanoindentation hardness, microhardness, and elastic modulus. It is important to study the nano and microscale mechanical properties of chitosan since chitosan has been widely used for biomedical applications. Using the solvent-cast method, the chitosan films were prepared at room temperature on the cleaned glass plates. The chitosan solution was prepared by dissolving chitosan in acetic acid 1% (v/v). Tripolyphosphate (TPP) was used to create the cross-links between amine groups in chitosan and phosphate groups in TPP. In this study, atomic force microscopy was used to measure the nanoindentation hardness and surface topography of the uncross-linked and cross-linked chitosan films. Elastic modulus was then calculated from the nanoindentation results. The effective elastic modulus was determined by microhardness with some modifications to previous theories. The microhardness of the chitosan films were measured using Vicker’s hardness meter under three different loads. Our results show that the microhardness and elastic modulus for cross-linked chitosan films are higher than the uncross-linked films. However, the cross-linked chitosan films show increased brittleness when compared to uncross-linked films. By increasing the load magnitude, the microhardness increases for both uncross-linked and cross-linked chitosan films. PMID:22100082
Zhang, Lei; Qureshi, Zafar; Sonaglia, Lorenzo; Lautens, Mark
2014-12-08
Compatible combinations of achiral and chiral ligands can be used in rhodium/palladium catalysis to achieve highly enantioselective domino reactions. The difference in rates of catalysis and minimal effects of ligand interference confer control in the domino sequence. The "all-in-one" 1,4-conjugate arylation and C-N cross-coupling through sequential Rh/Pd catalysis provides access to enantioenriched dihydroquinolinone building blocks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rapidly photo-cross-linkable chitosan hydrogel for peripheral neurosurgeries.
Rickett, Todd A; Amoozgar, Zohreh; Tuchek, Chad A; Park, Joonyoung; Yeo, Yoon; Shi, Riyi
2011-01-10
Restoring continuity to severed peripheral nerves is crucial to regeneration and enables functional recovery. However, the two most common agents for coaptation, sutures and fibrin glues, have drawbacks such as inflammation, pathogenesis, and dehiscence. Chitosan-based adhesives are a promising alternative, reported to have good cytocompatibility and favorable immunogenicity. A photo-cross-linkable hydrogel based on chitosan is proposed as a new adhesive for peripheral nerve anastomosis. Two Az-chitosans were synthesized by conjugating 4-azidobenzoic acid with low (LMW, 15 kDa) and high (HMW, 50-190 kDa) molecular weight chitosans. These solutions formed a hydrogel in less than 1 min under UV light. The LMW Az-chitosan was more tightly cross-linked than the HMW variant, undergoing significantly less swelling and possessing a higher rheological storage modulus, and both Az-chitosan gels were stiffer than commercial fibrin glue. Severed nerves repaired by Az-chitosan adhesives tolerated longitudinal forces comparable or superior to fibrin glue. Adhesive exposure to intact nerves and neural cell culture showed both Az-chitosans to be nontoxic in the acute (minutes) and chronic (days) time frames. These results demonstrate that Az-chitosan hydrogels are cytocompatible and mechanically suitable for use as bioadhesives in peripheral neurosurgeries.
Trott, C M; Ouyang, J; El Fakhri, G
2010-11-21
Simultaneous rest perfusion/fatty-acid metabolism studies have the potential to replace sequential rest/stress perfusion studies for the assessment of cardiac function. Simultaneous acquisition has the benefits of increased signal and lack of need for patient stress, but is complicated by cross-talk between the two radionuclide signals. We consider a simultaneous rest (99m)Tc-sestamibi/(123)I-BMIPP imaging protocol in place of the commonly used sequential rest/stress (99m)Tc-sestamibi protocol. The theoretical precision with which the severity of a cardiac defect and the transmural extent of infarct can be measured is computed for simultaneous and sequential SPECT imaging, and their performance is compared for discriminating (1) degrees of defect severity and (2) sub-endocardial from transmural defects. We consider cardiac infarcts for which reduced perfusion and metabolism are observed. From an information perspective, simultaneous imaging is found to yield comparable or improved performance compared with sequential imaging for discriminating both severity of defect and transmural extent of infarct, for three defects of differing location and size.
Cross-Linked Enzyme Aggregates for Applications in Aqueous and Nonaqueous Media.
Roy, Ipsita; Mukherjee, Joyeeta; Gupta, Munishwar N
2017-01-01
Extensive cross-linking of a precipitate of a protein by a cross-linking reagent (glutaraldehyde has been most commonly used) creates an insoluble enzyme preparation called cross-linked enzyme aggregates (CLEAs). CLEAs show high stability and performance in conventional aqueous as well as nonaqueous media. These are also stable at fairly high temperatures. CLEAs with more than one kind of enzyme activity can be prepared, and such CLEAs are called combi-CLEAs or multipurpose CLEAs. Extent of cross-linking often influences their morphology, stability, activity, and enantioselectivity.
Cross-linked polyvinyl alcohol and method of making same
NASA Technical Reports Server (NTRS)
Hsu, L. C.; Sheibley, D. W.; Philipp, W. H. (Inventor)
1981-01-01
A film-forming polyvinyl alcohol polymer is mixed with a polyaldehyde-polysaccharide cross-linking agent having at least two monosaccharide units and a plurality of aldehyde groups per molecule, perferably an average of at least one aldehyde group per monosaccharide units. The cross-linking agent, such as a polydialdehyde starch, is used in an amount of about 2.5 to 20% of the theoretical amount required to cross-link all of the available hydroxyl groups of the polyvinyl alcohol polymer. Reaction between the polymer and cross-linking agent is effected in aqueous acidic solution to produce the cross-linked polymer. The polymer product has low electrical resistivity and other properties rendering it suitable for making separators for alkaline batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shepherd, D. V., E-mail: dvs23@cam.ac.uk; Shepherd, J. H.; Cameron, R. E.
We describe the production of collagen fibre bundles through a multi-strand, semi-continuous extrusion process. Cross-linking using an EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide), NHS (N-hydroxysuccinimide) combination was considered. Atomic Force Microscopy and Raman spectroscopy focused on how cross-linking affected the collagen fibrillar structure. In the cross-linked fibres, a clear fibrillar structure comparable to native collagen was observed which was not observed in the non-cross-linked fibre. The amide III doublet in the Raman spectra provided additional evidence of alignment in the cross-linked fibres. Raman spectroscopy also indicated no residual polyethylene glycol (from the fibre forming buffer) or water in any of the fibres.
Inverse sequential detection of parameter changes in developing time series
NASA Technical Reports Server (NTRS)
Radok, Uwe; Brown, Timothy J.
1992-01-01
Progressive values of two probabilities are obtained for parameter estimates derived from an existing set of values and from the same set enlarged by one or more new values, respectively. One probability is that of erroneously preferring the second of these estimates for the existing data ('type 1 error'), while the second probability is that of erroneously accepting their estimates for the enlarged test ('type 2 error'). A more stable combined 'no change' probability which always falls between 0.5 and 0 is derived from the (logarithmic) width of the uncertainty region of an equivalent 'inverted' sequential probability ratio test (SPRT, Wald 1945) in which the error probabilities are calculated rather than prescribed. A parameter change is indicated when the compound probability undergoes a progressive decrease. The test is explicitly formulated and exemplified for Gaussian samples.
Fowler, Carol B; O'Leary, Timothy J; Mason, Jeffrey T
2008-07-01
Understanding the chemistry of protein modification by formaldehyde fixation and subsequent tissue processing is central to developing improved methods for antigen retrieval in immunohistochemistry and for recovering proteins from formalin-fixed, paraffin-embedded (FFPE) tissues for proteomic analysis. Our initial studies of single proteins, such as bovine pancreatic ribonuclease A (RNase A), in 10% buffered formalin solution revealed that upon removal of excess formaldehyde, monomeric RNase A exhibiting normal immunoreactivity could be recovered by heating at 60 degrees C for 30 min at pH 4. We next studied tissue surrogates, which are gelatin-like plugs of fixed proteins that have sufficient physical integrity to be processed using normal tissue histology. Following histological processing, proteins could be extracted from the tissue surrogates by combining heat, detergent, and a protein denaturant. However, gel electrophoresis revealed that the surrogate extracts contained a mixture of monomeric and multimeric proteins. This suggested that during the subsequent steps of tissue processing protein-formaldehyde adducts undergo further modifications that are not observed in aqueous proteins. As a first step toward understanding these additional modifications we have performed a comparative evaluation of RNase A following fixation in buffered formaldehyde alone and after subsequent dehydration in 100% ethanol by combining gel electrophoresis, chemical modification, and circular dichroism spectroscopic studies. Our results reveal that ethanol-induced rearrangement of the conformation of fixed RNase A leads to protein aggregation through the formation of large geometrically compatible hydrophobic beta-sheets that are likely stabilized by formaldehyde cross-links, hydrogen bonds, and van der Waals interactions. It requires substantial energy to reverse the formaldehyde cross-links within these sheets and regenerate protein monomers free of formaldehyde modifications. Accordingly, the ethanol-dehydration step in tissue histology may be important in confounding the successful recovery of proteins from FFPE tissues for immunohistochemical and proteomic analysis.
Schmidt, Sonja; Gericke, Birthe; Fracasso, Giulio; Ramarli, Dunia; Colombatti, Marco; Naim, Hassan Y
2013-01-01
Prostate-specific membrane antigen (PSMA) is a type-II membrane glycoprotein that was initially identified in LNCaP cells. It is expressed at elevated levels in prostate cancer. In view of the correlation between the expression levels of PSMA and disease grade and stage, PSMA is considered to be one of the most promising biomarkers in the diagnosis and treatment of prostate cancer. In LNCaP cells PSMA undergoes internalization via clathrin-coated pits followed by accumulation in the endosomes. PSMA associates with different types of detergent-resistant membranes (DRMs) along the secretory pathway. Its mature form is mainly insoluble in Lubrol WX, but does not associate with Triton X-100-DRMs. To understand the mechanism of PSMA internalization we investigated its association during internalization with DRMs. For this purpose, internalization was induced by antibody cross-linking. We demonstrate at the biochemical and cell biological levels that: [i] exclusively homodimers of PSMA are associated with Lubrol WX-DRMs, [ii] antibody-induced cross-linking of PSMA molecules results in a time-dependent partitioning into another DRMs type, namely Triton X-100-DRMs, and [iii] concomitant with its association with Triton-X-100-DRMs internalization of PSMA occurs along tubulin filaments. In a previous work (Colombatti et al. (2009) PLoS One 4: e4608) we demonstrated that the small GTPases RAS and RAC1 and the MAPKs p38 and ERK1/2 are activated during antibody cross-linking. As downstream effects of this activation we observed a strong induction of NF-kB associated with an increased expression of IL-6 and CCL5 genes and that IL-6 and CCL5 enhanced the proliferative potential of LNCaP cells synergistically. These observations together with findings reported here hypothesize a fundamental role of DRMs during activation of PSMA as platforms for trafficking, endocytosis and signalling. Understanding these mechanisms constitutes an essential prerequisite for utilization of PSMA as a therapeutically suitable target in prostate cancer.
2017-01-01
Various carboxylic acid-functionalized poly(N,N-dimethylacrylamide) (PDMAC) macromolecular chain transfer agents (macro-CTAs) were chain-extended with diacetone acrylamide (DAAM) by reversible addition–fragmentation chain transfer (RAFT) aqueous dispersion polymerization at 70 °C and 20% w/w solids to produce a series of PDMAC–PDAAM diblock copolymer nano-objects via polymerization-induced self-assembly (PISA). TEM studies indicate that a PDMAC macro-CTA with a mean degree of polymerization (DP) of 68 or higher results in the formation of well-defined spherical nanoparticles with mean diameters ranging from 40 to 150 nm. In contrast, either highly anisotropic worms or polydisperse vesicles are formed when relatively short macro-CTAs (DP = 40–58) are used. A phase diagram was constructed to enable accurate targeting of pure copolymer morphologies. Dynamic light scattering (DLS) and aqueous electrophoresis studies indicated that in most cases these PDMAC–PDAAM nano-objects are surprisingly resistant to changes in either solution pH or temperature. However, PDMAC40–PDAAM99 worms do undergo partial dissociation to form a mixture of relatively short worms and spheres on adjusting the solution pH from pH 2–3 to around pH 9 at 20 °C. Moreover, a change in copolymer morphology from worms to a mixture of short worms and vesicles was observed by DLS and TEM on heating this worm dispersion to 50 °C. Postpolymerization cross-linking of concentrated aqueous dispersions of PDMAC–PDAAM spheres, worms, or vesicles was performed at ambient temperature using adipic acid dihydrazide (ADH), which reacts with the hydrophobic ketone-functionalized PDAAM chains. The formation of hydrazone groups was monitored by FT-IR spectroscopy and afforded covalently stabilized nano-objects that remained intact on exposure to methanol, which is a good solvent for both blocks. Rheological studies indicated that the cross-linked worms formed a stronger gel compared to linear precursor worms. PMID:28260814
Schmidt, Sonja; Gericke, Birthe; Fracasso, Giulio; Ramarli, Dunia; Colombatti, Marco; Naim, Hassan Y.
2013-01-01
Prostate-specific membrane antigen (PSMA) is a type-II membrane glycoprotein that was initially identified in LNCaP cells. It is expressed at elevated levels in prostate cancer. In view of the correlation between the expression levels of PSMA and disease grade and stage, PSMA is considered to be one of the most promising biomarkers in the diagnosis and treatment of prostate cancer. In LNCaP cells PSMA undergoes internalization via clathrin-coated pits followed by accumulation in the endosomes. PSMA associates with different types of detergent-resistant membranes (DRMs) along the secretory pathway. Its mature form is mainly insoluble in Lubrol WX, but does not associate with Triton X-100-DRMs. To understand the mechanism of PSMA internalization we investigated its association during internalization with DRMs. For this purpose, internalization was induced by antibody cross-linking. We demonstrate at the biochemical and cell biological levels that: [i] exclusively homodimers of PSMA are associated with Lubrol WX-DRMs, [ii] antibody-induced cross-linking of PSMA molecules results in a time-dependent partitioning into another DRMs type, namely Triton X-100-DRMs, and [iii] concomitant with its association with Triton-X-100-DRMs internalization of PSMA occurs along tubulin filaments. In a previous work (Colombatti et al. (2009) PLoS One 4: e4608) we demonstrated that the small GTPases RAS and RAC1 and the MAPKs p38 and ERK1/2 are activated during antibody cross-linking. As downstream effects of this activation we observed a strong induction of NF-kB associated with an increased expression of IL-6 and CCL5 genes and that IL-6 and CCL5 enhanced the proliferative potential of LNCaP cells synergistically. These observations together with findings reported here hypothesize a fundamental role of DRMs during activation of PSMA as platforms for trafficking, endocytosis and signalling. Understanding these mechanisms constitutes an essential prerequisite for utilization of PSMA as a therapeutically suitable target in prostate cancer. PMID:23840421
Pant, Kiran; Anderson, Brian; Perdana, Hendrik; Malinowski, Matthew A.; Win, Aye T.; Williams, Mark C.
2018-01-01
The model single-stranded DNA binding protein of bacteriophage T4, gene 32 protein (gp32) has well-established roles in DNA replication, recombination, and repair. gp32 is a single-chain polypeptide consisting of three domains. Based on thermodynamics and kinetics measurements, we have proposed that gp32 can undergo a conformational change where the acidic C-terminal domain binds internally to or near the single-stranded (ss) DNA binding surface in the core (central) domain, blocking ssDNA interaction. To test this model, we have employed a variety of experimental approaches and gp32 variants to characterize this conformational change. Utilizing stopped-flow methods, the association kinetics of wild type and truncated forms of gp32 with ssDNA were measured. When the C-domain is present, the log-log plot of k vs. [NaCl] shows a positive slope, whereas when it is absent (*I protein), there is little rate change with salt concentration, as expected for this model.A gp32 variant lacking residues 292–296 within the C-domain, ΔPR201, displays kinetic properties intermediate between gp32 and *I. The single molecule force-induced DNA helix-destabilizing activitiesas well as the single- and double-stranded DNA affinities of ΔPR201 and gp32 truncated at residue 295 also fall between full-length protein and *I. Finally, chemical cross-linking of recombinant C-domain and gp32 lacking both N- and C-terminal domains is inhibited by increasing concentrations of a short single-stranded oligonucleotide, and the salt dependence of cross-linking mirrors that expected for the model. Taken together, these results provide the first evidence in support of this model that have been obtained through structural probes. PMID:29634784
Karp, J E; Humphrey, R L; Burke, P J
1981-03-01
Malignant plasma cell proliferation and induced humoral stimulatory activity (HSA) occur in vivo at a predictable time following drug administration. Sequential sera from 11 patients with poor-risk multiple myeloma (MM) undergoing treatment with Cytoxan (CY) 2400 mq/sq m were assayed for their in vitro effects on malignant bone marrow plasma cell tritiated thymidine (3HTdR) incorporation. Peak HSA was detected day 9 following CY. Sequential changes in marrow malignant plasma cell 3HTdR-labeling indices (LI) paralleled changes in serum activity, with peak LI occurring at the time of peak HS. An in vitro model of chemotherapy demonstrated that malignant plasma cell proliferation was enhanced by HSA, as determined by 3HTdR incorporation assay, 3HTdR LI, and tumor cells counts, and that stimulated plasma cells were more sensitive to cytotoxic effects of adriamycin (ADR) than were cells cultured in autologous pretreatment serum. Based on these studies, we designed a clinical trial to treat 12 CY-refractory poor-risk patients with MM in which ADR (60 mg/sq m) was administered at the time of peak HSA and residual tumor cell LI (day 9) following initial CY, 2400 mg/m (CY1ADR9). Eight of 12 (67%) responded to timed sequential chemotherapy with a greater than 50% decrement in monoclonal protein marker and a median survival projected to be greater than 8 mo duration (range 4-21+ mo). These clinical results using timed sequential CY1ADR9 compare favorably with results obtained using ADR in nonsequential chemotherapeutic regimens.
Uçakhan, Ömür Ö; Bayraktutar, Betül
2017-01-01
To evaluate the morphological features of the corneal limbus as measured by in vivo confocal microscopy (IVCM) following standard and accelerated corneal collagen cross-linking (CXL) for keratoconus. Patients with progressive keratoconus scheduled to undergo standard CXL (group 1; 31 patients, 3 mW/cm, 370 nm, 30 minutes), or accelerated CXL (group 2; 20 patients, 9 mW/cm, 370 nm, 10 minutes) in the worse eye were included in this prospective study. Thirty eyes of 30 age-matched patients served as controls (group 3). All patient eyes underwent IVCM scanning of the central cornea and the inferior limbal area at baseline and 1, 3, and 6 months after CXL. After CXL, epithelial regrowth was complete by day 4 in both groups 1 and 2. There were no statistically significant differences between the baseline mean central corneal wing or basal cell density, limbus-palisade middle or basal cell densities of groups 1, 2, or 3. At postoperative months 1, 3, and 6, there were no statistically significant differences in either central or limbus-palisade epithelial cell densities or diameters in keratoconic eyes that underwent standard or accelerated CXL (P > 0.05). The morphology of the limbal cells was preserved as well. The morphology of limbus structures seems to be preserved following standard and accelerated CXL in short-term follow-up, as measured using IVCM.
Gamma Irradiation and Oxidative Degradation of a Silica-Filled Silicone Elastomer
Labouriau, Andrea; Cady, Carl Mcelhinney; Gill, John T.; ...
2015-03-21
The radiation oxidative degradation of a commonly used silica-filled silicone elastomer DC745 was investigated by a series of experimental techniques. This elastomer is known to be chemically and thermally stable, but insufficient data exist on the radiation resistance. In the present work, gamma doses up to 200 kGy were applied under air at RT and 1Gy/s. Radiation chemical changes were investigated by NMR, FT-IR, Raman, and mass spectroscopy. DSC and TGA experiments probed thermal transitions and thermal stability changes with exposure dose. SEM probed variations on the surface of the elastomer, and solvent swelling methods were used to investigate changesmore » in the polymer network properties. Electron paramagnetic resonance was employed to detect and identify free radicals. Uniaxial compression load tests at variable temperatures were performed to assess changes in the material’s mechanical response as a function of radiation dose. Results demonstrate that, with increasing exposure, DC745 undergoes changes in chemistry that lead to an increase in thermal stability and cross-link density, formation of free radical species, decrease in heat of fusion and increase in stiffness at low temperatures. Taken together, these results indicate that oxidative cross-linking is the dominant radiolysis mechanism that occurs when this material is exposed to gamma irradiation in air at high dose rates.« less
Gamma Irradiation and Oxidative Degradation of a Silica-Filled Silicone Elastomer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labouriau, Andrea; Cady, Carl Mcelhinney; Gill, John T.
The radiation oxidative degradation of a commonly used silica-filled silicone elastomer DC745 was investigated by a series of experimental techniques. This elastomer is known to be chemically and thermally stable, but insufficient data exist on the radiation resistance. In the present work, gamma doses up to 200 kGy were applied under air at RT and 1Gy/s. Radiation chemical changes were investigated by NMR, FT-IR, Raman, and mass spectroscopy. DSC and TGA experiments probed thermal transitions and thermal stability changes with exposure dose. SEM probed variations on the surface of the elastomer, and solvent swelling methods were used to investigate changesmore » in the polymer network properties. Electron paramagnetic resonance was employed to detect and identify free radicals. Uniaxial compression load tests at variable temperatures were performed to assess changes in the material’s mechanical response as a function of radiation dose. Results demonstrate that, with increasing exposure, DC745 undergoes changes in chemistry that lead to an increase in thermal stability and cross-link density, formation of free radical species, decrease in heat of fusion and increase in stiffness at low temperatures. Taken together, these results indicate that oxidative cross-linking is the dominant radiolysis mechanism that occurs when this material is exposed to gamma irradiation in air at high dose rates.« less
Salter-Venzon, Dawna; Kazlova, Valentina; Izzy Ford, Samantha; Intra, Janjira; Klosner, Allison E; Gellenbeck, Kevin W
2017-05-01
Despite the notable health benefits of carotenoids for human health, the majority of human diets worldwide are repeatedly shown to be inadequate in intake of carotenoid-rich fruits and vegetables, according to current health recommendations. To address this deficit, strategies designed to increase dietary intakes and subsequent plasma levels of carotenoids are warranted. When mixed carotenoids are delivered into the intestinal tract simultaneously, competition occurs for micelle formation and absorption, affecting carotenoid bioavailability. Previously, we tested the in vitro viability of a carotenoid mix designed to deliver individual carotenoids sequentially spaced from one another over the 6 hr transit time of the human upper gastrointestinal system. We hypothesized that temporally and spatially separating the individual carotenoids would reduce competition for micelle formation, improve uptake, and maximize efficacy. Here, we test this hypothesis in a double-blind, repeated-measure, cross-over human study with 12 subjects by comparing the change of plasma carotenoid levels for 8 hr after oral doses of a sequentially spaced carotenoid mix, to a matched mix without sequential spacing. We find the carotenoid change from baseline, measured as area under the curve, is increased following consumption of the sequentially spaced mix compared to concomitant carotenoids delivery. These results demonstrate reduced interaction and regulation between the sequentially spaced carotenoids, suggesting improved bioavailability from a novel sequentially spaced carotenoid mix.
Depalle, Baptiste; Qin, Zhao; Shefelbine, Sandra J.; Buehler, Markus J.
2015-01-01
Collagen is a ubiquitous protein with remarkable mechanical properties. It is highly elastic, shows large fracture strength and enables substantial energy dissipation during deformation. Most of the connective tissue in humans consists of collagen fibrils composed of a staggered array of tropocollagen molecules, which are connected by intermolecular cross-links. In this study, we report a three-dimensional coarse-grained model of collagen and analyze the influence of enzymatic cross-links on the mechanics of collagen fibrils. Two representatives immature and mature cross-links are implemented in the mesoscale model using a bottom-up approach. By varying the number, type and mechanical properties of cross-links in the fibrils and performing tensile test on the models, we systematically investigate the deformation mechanisms of cross-linked collagen fibrils. We find that cross-linked fibrils exhibit a three phase behavior, which agrees closer with experimental results than what was obtained using previous models. The fibril mechanical response is characterized by: (i) an initial elastic deformation corresponding to the collagen molecule uncoiling, (ii) a linear regime dominated by molecule sliding and (iii) the second stiffer elastic regime related to the stretching of the backbone of the tropocollagen molecules until the fibril ruptures. Our results suggest that both cross-link density and type dictate the stiffness of large deformation regime by increasing the number of interconnected molecules while cross-links mechanical properties determine the failure strain and strength of the fibril. These findings reveal that cross-links play an essential role in creating an interconnected fibrillar material of tunable toughness and strength. PMID:25153614
Actin Cross-link Assembly and Disassembly Mechanics for α-Actinin and Fascin*
Courson, David S.; Rock, Ronald S.
2010-01-01
Self-assembly of complex structures is commonplace in biology but often poorly understood. In the case of the actin cytoskeleton, a great deal is known about the components that include higher order structures, such as lamellar meshes, filopodial bundles, and stress fibers. Each of these cytoskeletal structures contains actin filaments and cross-linking proteins, but the role of cross-linking proteins in the initial steps of structure formation has not been clearly elucidated. We employ an optical trapping assay to investigate the behaviors of two actin cross-linking proteins, fascin and α-actinin, during the first steps of structure assembly. Here, we show that these proteins have distinct binding characteristics that cause them to recognize and cross-link filaments that are arranged with specific geometries. α-Actinin is a promiscuous cross-linker, linking filaments over all angles. It retains this flexibility after cross-links are formed, maintaining a connection even when the link is rotated. Conversely, fascin is extremely selective, only cross-linking filaments in a parallel orientation. Surprisingly, bundles formed by either protein are extremely stable, persisting for over 0.5 h in a continuous wash. However, using fluorescence recovery after photobleaching and fluorescence decay experiments, we find that the stable fascin population can be rapidly competed away by free fascin. We present a simple avidity model for this cross-link dissociation behavior. Together, these results place constraints on how cytoskeletal structures assemble, organize, and disassemble in vivo. PMID:20551315
Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer
Udum, Yasemin; Denk, Patrick; Adam, Getachew; Apaydin, Dogukan H.; Nevosad, Andreas; Teichert, Christian; S. White, Matthew.; S. Sariciftci, Niyazi.; Scharber, Markus C.
2014-01-01
We have developed a hole-blocking layer for bulk-heterojunction solar cells based on cross-linked polyethylenimine (PEI). We tested five different ether-based cross-linkers and found that all of them give comparable solar cell efficiencies. The initial idea that a cross-linked layer is more solvent resistant compared to a pristine PEI layer could not be confirmed. With and without cross-linking, the PEI layer sticks very well to the surface of the indium–tin–oxide electrode and cannot be removed by solvents used to process PEI or common organic semiconductors. The cross-linked PEI hole-blocking layer functions for multiple donor–acceptor blends. We found that using cross-linkers improves the reproducibility of the device fabrication process. PMID:24817837
Jeon, Saewha; Djian, Philippe; Green, Howard
1998-01-01
Epidermal keratinocytes, late in their terminal differentiation, form cross-linked envelopes resistant to ionic detergent and reducing agent. Because the cross-linking process is catalyzed by the keratinocyte transglutaminase, the absence of active transglutaminase should result in failure of the keratinocyte to form a cross-linked envelope. Three keratinocyte strains bearing mutations in the keratinocyte transglutaminase were examined: two contained no detectable transglutaminase mRNA and none contained active enzyme. All three were unable to form cross-linked envelopes, either spontaneously in stratified cultures or upon induction with Ca2+. Although stratum corneum of normal humans and scales from patients with different ichthyotic diseases contain cross-linked envelopes, those from patients with transglutaminase-negative lamellar ichthyosis do not. Therefore, the disease due to the absence of transglutaminase may be readily distinguished from other ichthyotic diseases by a simple test for cross-linked envelopes. PMID:9435253
Cross-linking and the molecular packing of corneal collagen
NASA Technical Reports Server (NTRS)
Yamauchi, M.; Chandler, G. S.; Tanzawa, H.; Katz, E. P.
1996-01-01
We have quantitatively characterized, for the first time, the cross-linking in bovine cornea collagen as a function of age. The major iminium reducible cross-links were dehydro-hydroxylysinonorleucine (deH-HLNL) and dehydro-histidinohydroxymerodesmosine (deH-HHMD). The former rapidly diminished after birth; however, the latter persisted in mature animals at a level of 0.3 - 0.4 moles/mole of collagen. A nonreducible cross-link, histidinohydroxylysinonorleucine (HHL), previously found only in skin, was also found to be a major mature cross-link in cornea. The presence of HHL indicates that cornea fibrils have a molecular packing similar to skin collagen. However, like deH-HHMD, the HHL content in corneal fibrils only reaches a maximum value with time about half that of skin. These data suggest that the corneal fibrils are comprised of discrete filaments that are internally stabilized by HHL and deH-HHMD cross-links. This pattern of intermolecular cross-linking would facilitate the special collagen swelling property required for corneal transparency.
Chen, Boru; Dang, Leping; Zhang, Xiao; Fang, Wenzhi; Hou, Mengna; Liu, Tiankuo; Wang, Zhanzhong
2017-03-15
Kudzu starch was cross-linked with sodium trimetaphosphate (STMP) at different temperatures, time and of STMP concentrations in this work. The cross-linked starches (CLSs) were fractionated further into cross-linked amylose and amylopectin in order to compare the effect of cross-linking on the microstructure. According to scanning electron microscope (SEM), CLSs displayed the resemble appearance of spherical and polygonal shapes like NS. X-ray diffraction (XRD) revealed that amylose of native starch (A), NS and CLS displayed a combination of A-type and B-type structure, while that was not found in amylose of cross-linked starch (CLA). The deconvoluted fourier transform infrared (FT-IR) indicated that crystal structure of kudzu starch was losing with the proceeding of cross-linking reaction. The CLSs exhibited a higher retrogradation and freeze-thaw stability than NS. This was accompanied by a significant decrease in sedimentation, transparency, swelling power and solubility. Copyright © 2016 Elsevier Ltd. All rights reserved.
Niosome-loaded cold-set whey protein hydrogels.
Abaee, Arash; Madadlou, Ashkan
2016-04-01
The α-tocopherol-carrying niosomes with mean diameter of 5.7 μm were fabricated and charged into a transglutaminase-cross-linked whey protein solution that was subsequently gelled with glucono delta-lactone. Encapsulation efficiency of α-tocopherol within niosomes was ≈80% and encapsulation did not influence the radical scavenging activity of α-tocopherol. Fourier transform infrared (FTIR) spectroscopy suggested formation of ε-(γ-glutamyl) lysine cross-linkages by transglutaminase and that enzymatic cross-linking increased proteins hydrophobicity. FTIR also proposed hydrogen bonding between niosomes and proteins. Dynamic rheometry indicated that transglutaminase cross-linking and niosomes charging of the protein solution enhanced the gelation process. However, charging the cross-linked protein solution with niosomal suspension resulted in lower elastic modulus (G') of the subsequently formed gel compared with both non-cross-linked niosome-loaded and cross-linked niosome-free counterparts. Electron microscopy indicated a discontinuous network for the niosome-loaded cross-linked sample. Niosome loading into the protein gel matrix increased its swelling extent in the enzyme-free simulated gastric fluid. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kwadrat, Carl F.; Horne, William D.; Edwards, Bernard L.
2002-01-01
In order to avoid selecting inadequate inter-spacecraft cross-link communications standards for Distributed Spacecraft System (DSS) missions, it is first necessary to identify cross-link communications strategies and requirements common to a cross-section of proposed missions. This paper addresses the cross-link communication strategies and requirements derived from a survey of 39 DSS mission descriptions that are projected for potential launch within the next 20 years. The inter-spacecraft communications strategies presented are derived from the topological and communications constraints from the DSS missions surveyed. Basic functional requirements are derived from an analysis of the fundamental activities that must be undertaken to establish and maintain a cross-link between two DSS spacecraft. Cross-link bandwidth requirements are derived from high-level assessments of mission science objectives and operations concepts. Finally, a preliminary assessment of possible cross-link standards is presented within the context of the basic operational and interoperability requirements.
Kim, Jong Oh; Sahay, Gaurav; Kabanov, Alexander V; Bronich, Tatiana K
2010-04-12
Novel functional polymeric nanocarriers with ionic cores containing biodegradable cross-links were developed for delivery of chemotherapeutic agents. Block ionomer complexes (BIC) of poly(ethylene oxide)-b-poly(methacylic acid) (PEO-b-PMA) and divalent metal cations (Ca(2+)) were utilized as templates. Disulfide bonds were introduced into the ionic cores by using cystamine as a biodegradable cross-linker. The resulting cross-linked micelles with disulfide bonds represented soft, hydrogel-like nanospheres and demonstrated a time-dependent degradation in the conditions mimicking the intracellular reducing environment. The ionic character of the cores allowed to achieve a very high level of doxorubicin (DOX) loading (50% w/w) into the cross-linked micelles. DOX-loaded degradable cross-linked micelles exhibited more potent cytotoxicity against human A2780 ovarian carcinoma cells as compared to micellar formulations without disulfide linkages. These novel biodegradable cross-linked micelles are expected to be attractive candidates for delivery of anticancer drugs.
Yang, Yi; Song, Haiping; He, Dan; Zhang, Shuai; Dai, Shizhong; Xie, Xiao; Lin, Shixian; Hao, Ziyang; Zheng, Huangtao; Chen, Peng R
2017-10-01
Although protein-protein interactions (PPIs) have crucial roles in virtually all cellular processes, the identification of more transient interactions in their biological context remains challenging. Conventional photo-cross-linking strategies can be used to identify transient interactions, but these approaches often suffer from high background due to the cross-linked bait proteins. To solve the problem, we have developed membrane-permeable releasable photo-cross-linkers that allow for prey-bait separation after protein complex isolation and can be installed in proteins of interest (POIs) as unnatural amino acids. Here we describe the procedures for using two releasable photo-cross-linkers, DiZSeK and DiZHSeC, in both living Escherichia coli and mammalian cells. A cleavage after protein photo-cross-linking (CAPP ) strategy based on the photo-cross-linker DiZSeK is described, in which the prey protein pool is released from a POI after affinity purification. Prey proteins are analyzed using mass spectrometry or 2D gel electrophoresis for global comparison of interactomes from different experimental conditions. An in situ cleavage and mass spectrometry (MS)-label transfer after protein photo-cross-linking (IMAPP) strategy based on the photo-cross-linker DiZHSeC is also described. This strategy can be used for the identification of cross-linking sites to allow detailed characterization of PPI interfaces. The procedures for photo-cross-linker incorporation, photo-cross-linking of interaction partners and affinity purification of cross-linked complexes are similar for the two photo-cross-linkers. The final section of the protocol describes prey-bait separation (for CAPP) and MS-label transfer and identification (for IMAPP). After plasmid construction, the CAPP and IMAPP strategies can be completed within 6 and 7 d, respectively.
Aga, D.S.; Thurman, E.M.; Pomes, M.L.
1994-01-01
Solid-phase extraction (SPE) and enzyme-linked immunosorbent assay (ELISA) were combined for the trace analysis of the herbicide alachlor and its major soil metabolite, ethanesulfonic acid (ESA). The anti-alachlor antibody cross-reacted with ESA, which produced false-positive detections of alachlor in water samples by immunoassay screens. Alachlor and ESA were isolated from water by SPE on a C18 resin and eluted sequentially with ethyl acetate and methanol. Alachlor is soluble in ethyl acetate while the anionic ESA is not. Thus ESA remained adsorbed on the C18 resin and was eluted later with methanol. The combination of SPE with ELISA effectivety separated and quantified both alachlor and ESA using the same antibody for two ELISA methods. The general method may have applicability for the separation of other herbicides and their ionic metabolites. The SPE-ELISA method has a, detection limit of 0.01 ??g/L for alachlor and 0.05 ??g/L for ESA, with a precision of ?? 10%. Analyses of surface and ground water samples were confirmed by gas chromatography/mass spectrometry and high-performance liquid chromatography with photodiode-array detection. Results showed widespread occurrence of ESA in surface and ground water of the midwestern United States, with concentrations ranging from 10 ??g/L.
Polyvinyl alcohol membranes as alkaline battery separators
NASA Technical Reports Server (NTRS)
Sheibley, D. W.; Gonzalez-Sanabria, O.; Manzo, M. A.
1982-01-01
Polyvinly alcohol (PVA) cross-linked with aldehyde reagents yields membranes that demonstrate properties that make them suitable for use as alkaline battery separators. Film properties can be controlled by the choice of cross-linker, cross-link density and the method of cross-linking. Three methods of cross-linking and their effects on film properties are discussed. Film properties can also be modified by using a copolymer of vinyl alcohol and acrylic acid as the base for the separator and cross-linking it similarly to the PVA. Fillers can be incorporated into the films to further modify film properties. Results of separator screening tests and cell tests for several variations of PBA films are discussed.
Pandey, Satya Deo; Pal, Shilpa; Kumar N, Ganesh; Bansal, Ankita; Mallick, Sathi; Ghosh, Anindya S
2018-05-07
During the peptidoglycan (PG) maturation of mycobacteria, the glycan strands are interlinked by both 3-3 (between two meso-DAP) and 4-3 cross-links (between D-ala and meso-DAP), though there is a predominance (60-80%) of 3-3 cross-links. The DD-CPases act on pentapeptides to generate tetrapeptides that are used by LD-transpeptidases as substrates to form 3-3 cross-links. Therefore, DD-CPases play a crucial role in mycobacterial PG cross-link formation. However, the physiology of DD-CPases in mycobacteria is relatively unexplored. Here, we deleted two DD-CPase genes, msmeg_2433 , and msmeg_2432 , both individually and in combination, from Mycobacterium smegmatis mc 2 155. Though the single DD-CPase deletions had no significant impact on the mycobacterial physiology, many interesting functional alterations were observed in the double deletion mutant, viz. , a predominance in PG cross-link formation was shifted from 3-3 cross-links to 4-3, cell surface glycopeptidolipid (GPL) expression was reduced and susceptibility towards β-lactams and anti-tubercular agents was enhanced. Moreover, the existence of the double mutant within murine macrophages was better as compared to the parent. Interestingly, the complementation with any one of the DD-CPase genes could restore the wild-type phenotype. In a nutshell, we infer that the altered ratio of 4-3: 3-3 PG cross-links might have influenced the expression of surface GPLs, colony morphology, biofilm formation,, drug susceptibility and subsistence of the cells within macrophages. Importance The glycan strands in mycobacterial peptidoglycan (PG) are interlinked by both 3-3 and 4-3 cross-links. The DD-CPases generate tetrapeptides by acting on the pentapeptides, and LD-transpeptidases use tetrapeptides as substrates to form 3-3 cross-links. Here, we showed that simultaneous deletions of two DD-CPases alter the nature of PG cross-linking from 3-3 cross-links to 4-3 cross-links. The deletions subsequently decrease the expression of Glycopeptidolipids (a significant surface lipid present in many non-tuberculous mycobacteria including Mycobacterium smegmatis ) and affect other physiological parameters like cell morphology, growth rate, biofilm formation, antibiotic susceptibility and existence within murine macrophages. Thus, unraveling the physiology of DD-CPases might help us design anti-mycobacterial therapeutics in future. Copyright © 2018 American Society for Microbiology.
Learning Words and Definitions in Two Languages: What Promotes Cross-Language Transfer?
ERIC Educational Resources Information Center
Pham, Giang; Donovan, Danaee; Dam, Quynh; Contant, Amy
2018-01-01
This study used a brief vocabulary training paradigm to examine two factors for cross-language transfer: how similar the first language (L1) is to the second language (L2) and L1-L2 proficiency levels. Fifty-four sequential bilingual children (aged 6-8) with similar L2 English proficiency levels were assigned to three equal groups: a…
Nitric oxide-induced interstrand cross-links in DNA.
Caulfield, Jennifer L; Wishnok, John S; Tannenbaum, Steven R
2003-05-01
The DNA damaging effects of nitrous acid have been extensively studied, and the formation of interstrand cross-links have been observed. The potential for this cross-linking to occur through a common nitrosating intermediate derived from nitric oxide is investigated here. Using a HPLC laser-induced fluorescence (LIF) system, the amount of interstrand cross-link formed on nitric oxide treatment of the 5'-fluorescein-labeled oligomer ATATCGATCGATAT was determined. This self-complimentary sequence contains two 5'-CG sequences, which is the preferred site for nitrous acid-induced cross-linking. Nitric oxide was delivered to an 0.5 mM oligomer solution at 15 nmol/mL/min to give a final nitrite concentration of 652 microM. The resulting concentration of the deamination product, xanthine, in this sample was found to be 211 +/- 39 nM, using GC/MS, and the amount of interstrand cross-link was determined to be 13 +/- 2.5 nM. Therefore, upon nitric oxide treatment, the cross-link is found at approximately 6% of the amount of the deamination product. Using this system, detection of the cross-link is also possible for significantly lower doses of nitric oxide, as demonstrated by treatment of the same oligomer with NO at a rate of 18 nmol/mL/min resulting in a final nitrite concentration of 126 microM. The concentration of interstrand cross-link was determined to be 3.6 +/- 0.1 nM in this sample. Therefore, using the same dose rate, when the total nitric oxide concentration delivered drops by a factor of approximately 5, the concentration of cross-link drops by a factor of about 4-indicating a qausi-linear response. It may now be possible to predict the number of cross-links in a small genome based on the number of CpG sequences and the yield of xanthine derived from nitrosative deamination.
Han, Biao; Chery, Daphney R; Yin, Jie; Lu, X Lucas; Lee, Daeyeon; Han, Lin
2016-01-28
This study investigates the roles of two distinct features of ionically cross-linked polyelectrolyte networks - ionic cross-links and fixed charges - in determining their nanomechanical properties. The layer-by-layer assembled poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) network is used as the model material. The densities of ionic cross-links and fixed charges are modulated through solution pH and ionic strength (IS), and the swelling ratio, elastic and viscoelastic properties are quantified via an array of atomic force microscopy (AFM)-based nanomechanical tools. The roles of ionic cross-links are underscored by the distinctive elastic and viscoelastic nanomechanical characters observed here. First, as ionic cross-links are highly sensitive to solution conditions, the instantaneous modulus, E0, exhibits orders-of-magnitude changes upon pH- and IS-governed swelling, distinctive from the rubber elasticity prediction based on permanent covalent cross-links. Second, ionic cross-links can break and self-re-form, and this mechanism dominates force relaxation of PAH/PAA under a constant indentation depth. In most states, the degree of relaxation is >90%, independent of ionic cross-link density. The importance of fixed charges is highlighted by the unexpectedly more elastic nature of the network despite low ionic cross-link density at pH 2.0, IS 0.01 M. Here, the complex is a net charged, loosely cross-linked, where the degree of relaxation is attenuated to ≈50% due to increased elastic contribution arising from fixed charge-induced Donnan osmotic pressure. In addition, this study develops a new method for quantifying the thickness of highly swollen polymer hydrogel films. It also underscores important technical considerations when performing nanomechanical tests on highly rate-dependent polymer hydrogel networks. These results provide new insights into the nanomechanical characters of ionic polyelectrolyte complexes, and lay the ground for further investigation of their unique time-dependent properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haskins, William E.; Leavell, Michael D.; Lane, Pamela
2005-03-01
Membrane proteins make up a diverse and important subset of proteins for which structural information is limited. In this study, chemical cross-linking and mass spectrometry were used to explore the structure of the G-protein-coupled photoreceptor bovine rhodopsin in the dark-state conformation. All experiments were performed in rod outer segment membranes using amino acid 'handles' in the native protein sequence and thus minimizing perturbations to the native protein structure. Cysteine and lysine residues were covalently cross-linked using commercially available reagents with a range of linker arm lengths. Following chemical digestion of cross-linked protein, cross-linked peptides were identified by accurate mass measurementmore » using liquid chromatography-fourier transform mass spectrometry and an automated data analysis pipeline. Assignments were confirmed and, if necessary, resolved, by tandem MS. The relative reactivity of lysine residues participating in cross-links was evaluated by labeling with NHS-esters. A distinct pattern of cross-link formation within the C-terminal domain, and between loop I and the C-terminal domain, emerged. Theoretical distances based on cross-linking were compared to inter-atomic distances determined from the energy-minimized X-ray crystal structure and Monte Carlo conformational search procedures. In general, the observed cross-links can be explained by re-positioning participating side-chains without significantly altering backbone structure. One exception, between C3 16 and K325, requires backbone motion to bring the reactive atoms into sufficient proximity for cross-linking. Evidence from other studies suggests that residues around K325 for a region of high backbone mobility. These findings show that cross-linking studies can provide insight into the structural dynamics of membrane proteins in their native environment.« less
Depalle, Baptiste; Qin, Zhao; Shefelbine, Sandra J; Buehler, Markus J
2015-12-01
Collagen is a ubiquitous protein with remarkable mechanical properties. It is highly elastic, shows large fracture strength and enables substantial energy dissipation during deformation. Most of the connective tissue in humans consists of collagen fibrils composed of a staggered array of tropocollagen molecules, which are connected by intermolecular cross-links. In this study, we report a three-dimensional coarse-grained model of collagen and analyze the influence of enzymatic cross-links on the mechanics of collagen fibrils. Two representatives immature and mature cross-links are implemented in the mesoscale model using a bottom-up approach. By varying the number, type and mechanical properties of cross-links in the fibrils and performing tensile test on the models, we systematically investigate the deformation mechanisms of cross-linked collagen fibrils. We find that cross-linked fibrils exhibit a three phase behavior, which agrees closer with experimental results than what was obtained using previous models. The fibril mechanical response is characterized by: (i) an initial elastic deformation corresponding to the collagen molecule uncoiling, (ii) a linear regime dominated by molecule sliding and (iii) the second stiffer elastic regime related to the stretching of the backbone of the tropocollagen molecules until the fibril ruptures. Our results suggest that both cross-link density and type dictate the stiffness of large deformation regime by increasing the number of interconnected molecules while cross-links mechanical properties determine the failure strain and strength of the fibril. These findings reveal that cross-links play an essential role in creating an interconnected fibrillar material of tunable toughness and strength. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Jost, Petr; Svobodova, Hana; Stetina, Rudolf
2015-07-25
Sulfur mustard is a highly toxic chemical warfare agent with devastating impact on intoxicated tissues. DNA cross-links are probably the most toxic DNA lesions induced in the cell by sulfur mustard. The comet assay is a very sensitive method for measuring DNA damage. In the present study using the A-549 lung cell line, the comet assay protocol was optimized for indirect detection of DNA cross-links induced by sulfur mustard. The method is based on the additional treatment of the assayed cells containing cross-links with the chemical mutagen, styrene oxide. Alkali-labile adducts of styrene oxide cause DNA breaks leading to the formation of comets. A significant dose-dependent reduction of DNA migration of the comet's tail was found after exposing cells to sulfur mustard, indicative of the amount of sulfur mustard induced cross-links. The remarkable decrease of % tail DNA could be observed as early as 5min following exposure to sulfur mustard and the maximal effect was found after 30min, when DNA migration was reduced to the minimum. Sulfur mustard preincubated in culture medium without cells lost its ability to induce cross-links and had a half-life of about 15min. Pre-incubation longer than 30min does not lead to a significant increase in cross-links when applied to cells. However, the amount of cross-links is decreased during further incubation due to repair. The current modification of the comet assay provides a useful tool for detecting DNA cross-links induced by sulfur mustard and could be used for detection of other DNA cross-linking agents such as chemotherapeutic drugs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Bergmann, U; Wittmann-Liebold, B
1993-03-23
50S ribosomal subunits from the extreme halophilic archaebacterium Haloarcula marismortui were treated with the homobifunctional protein-protein cross-linking reagents diepoxybutane (4 A) and dithiobis(succinimidyl propionate) (12 A). The dominant product with both cross-linking reagents was identified on the protein level as HmaL23-HmaL29, which is homologous to the protein pair L23-L29 from Escherichia coli [Walleczek, J., Martin, T., Redl, B., Stöffler-Meilicke, M., & Stöffler, G. (1989) Biochemistry 28, 4099-4105] and from Bacillus stearothermophilus [Brockmöller, J., & Kamp, R. M. (1986) Biol. Chem. Hoppe-Seyler 367, 925-935]. To reveal the exact cross-linking site in HmaL23-HmaL29, the cross-linked complex was purified on a preparative scale by conventional and high-performance liquid chromatography. After endoproteolytic fragmentation of the protein pair, the amino acids engaged in cross-link formation were unambiguously identified by N-terminal sequence analysis and mass spectrometry of the cross-linked peptides. The cross-link is formed between lysine-57 in the C-terminal region of HmaL29 and the alpha-amino group of the N-terminal serine in protein HmaL23, irrespective of the cross-linking reagent. This result demonstrates that the N-terminal region of protein HmaL23 and the C-terminal domain of HmaL29 are highly flexible so that the distance between the two polypeptide chains can vary by at least 8 A. Comparison of our cross-linking results with those obtained with B. stearothermophilus revealed that the fine structure within this ribosomal domain is at least partially conserved.
Caldeira, Daniel; Rodrigues, Filipe B; Pinto, Fausto J; Ferreira, Joaquim J; Costa, João
2017-01-01
Venous thromboembolism (VTE) is a potentially fatal complication of orthopedic surgery, and until recently, few antithrombotic compounds were available for postoperative thromboprophylaxis. The introduction of the non-vitamin K antagonists oral anticoagulants (NOAC), including apixaban, has extended the therapeutic armamentarium in this field. Therefore, estimation of NOAC net clinical benefit in comparison with the established treatment is needed to inform clinical decision making. Systematic review to assess the efficacy and safety of apixaban 2.5 mg twice a day versus low-molecular-weight heparins (LMWH) for thromboprophylaxis in patients undergoing knee or hip replacement. MEDLINE, Embase, and CENTRAL were searched from inception to September 2016, other systematic reviews, reference lists, and experts were consulted. All major orthopedic surgery randomized controlled trials comparing apixaban 2.5 mg twice daily with LMWH, reporting thrombotic and bleeding events. Two independent reviewers, using a predetermined form. The Cochrane tool to assess risk bias was used by two independent authors. RevMan software was used to estimate pooled risk ratio (RR) and 95% confidence intervals (95% CI) using random-effects meta-analysis. Trial sequential analysis (TSA) was performed in statistical significant results to evaluate whether cumulative sample size was powered for the obtained effect. Overall confidence in cumulative evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group methodology. Four studies comparing apixaban 2.5 mg twice daily with LMWH were included, with a total of 11.828 patients (55% undergoing knee and 45% hip replacement). The overall risk of bias across studies was low. In comparison with LMWH (all regimens), apixaban showed a significantly lower risk of VTE events and overall mortality combined (RR: 0.63, 95% CI: 0.42-0.95, I 2 = 84%, n = 8346), but not of major VTE events (RR: 0.62, 95% CI: 0.32-1.19, I 2 = 63%, n = 9493), or of symptomatic VTE events and VTE-related mortality combined (RR: 1.14, 95% CI: 0.68-1.90, I 2 = 0%, n = 11 879). Trial sequential analysis showed that the risk reduction obtained for VTE and mortality was based on underpowered cumulative sample size and effect dimension. Subgroup analysis according to LMWH regimens showed that apixaban reduced the risk of VTE events and overall mortality, and major VTE events, when compared with LMWH once daily, without differences between apixaban and LMWH twice daily. There is low to moderate evidence that in patients undergoing knee or hip replacement, apixaban seems equally effective and safe to LMWH twice a day. When compared with LMWH once a day, apixaban seems a superior thromboprophylaxis option. However, the results are underpowered which precludes definite answers regarding the true net clinical benefit of apixaban versus LMWH in this clinical context.
Weak reversible cross links may decrease the strength of aligned fiber bundles.
Nabavi, S Soran; Hartmann, Markus A
2016-02-21
Reversible cross-linking is an effective strategy to specifically tailor the mechanical properties of polymeric materials that can be found in a variety of biological as well as man-made materials. Using a simple model in this paper the influence of weak, reversible cross-links on the mechanical properties of aligned fiber bundles is investigated. Special emphasis in this analysis is put on the strength of the investigated structures. Using Monte Carlo methods two topologies of cross-links exceeding the strength of the covalent backbone are studied. Most surprisingly only two cross-links are sufficient to break the backbone of a multi chain system, resulting in a reduced strength of the material. The found effect crucially depends on the ratio of inter- to intra-chain cross-links and, thus, on the grafting density that determines this ratio.
Biswas et al. describe an “exceptional responder” lung adenocarcinoma patient who survived with metastatic lung adenocarcinoma for 7 years while undergoing single or combination ERBB2-directed therapies. Whole-genome, whole-exome, and high-coverage ion-torrent targeted sequencing were used to demonstrate extreme genomic heterogeneity between the lung and lymph node metastatic
Carter, Donald M.; Bloom, Chalise E.; Nascimento, Eduardo J. M.; Marques, Ernesto T. A.; Craigo, Jodi K.; Cherry, Joshua L.; Lipman, David J.
2013-01-01
Individuals <60 years of age had the lowest incidence of infection, with ∼25% of these people having preexisting, cross-reactive antibodies to novel 2009 H1N1 influenza. Many people >60 years old also had preexisting antibodies to novel H1N1. These observations are puzzling because the seasonal H1N1 viruses circulating during the last 60 years were not antigenically similar to novel H1N1. We therefore hypothesized that a sequence of exposures to antigenically different seasonal H1N1 viruses can elicit an antibody response that protects against novel 2009 H1N1. Ferrets were preinfected with seasonal H1N1 viruses and assessed for cross-reactive antibodies to novel H1N1. Serum from infected ferrets was assayed for cross-reactivity to both seasonal and novel 2009 H1N1 strains. These results were compared to those of ferrets that were sequentially infected with H1N1 viruses isolated prior to 1957 or more-recently isolated viruses. Following seroconversion, ferrets were challenged with novel H1N1 influenza virus and assessed for viral titers in the nasal wash, morbidity, and mortality. There was no hemagglutination inhibition (HAI) cross-reactivity in ferrets infected with any single seasonal H1N1 influenza viruses, with limited protection to challenge. However, sequential H1N1 influenza infections reduced the incidence of disease and elicited cross-reactive antibodies to novel H1N1 isolates. The amount and duration of virus shedding and the frequency of transmission following novel H1N1 challenge were reduced. Exposure to multiple seasonal H1N1 influenza viruses, and not to any single H1N1 influenza virus, elicits a breadth of antibodies that neutralize novel H1N1 even though the host was never exposed to the novel H1N1 influenza viruses. PMID:23115287
Characterization of alkyl carbon in forest soils by CPMAS 13C NMR spectroscopy and dipolar dephasing
Kogel-Knabner, I.; Hatcher, P.G.
1989-01-01
Samples obtained from forest soils at different stages of decomposition were treated sequentially with chloroform/methanol (extraction of lipids), sulfuric acid (hydrolysis), and sodium chlorite (delignification) to enrich them in refractory alkyl carbon. As revealed by NMR spectroscopy, this treatment yielded residues with high contents of alkyl carbon. In the NMR spectra of residues obtained from litter samples, resonances for carbohydrates are also present, indicating that these carbohydrates are tightly bound to the alkyl carbon structures. During decomposition in the soils this resistant carbohydrate fraction is lost almost completely. In the litter samples the alkyl carbon shows a dipolar dephasing behavior indicative of two structural components, a rigid and a more mobile component. As depth and decomposition increase, only the rigid component is observed. This fact could be due to selective degradation of the mobile component or to changes in molecular mobility during decomposition, e.g., because of an increase in cross linking or contact with the mineral matter of the soil.
Identification of matrix metalloproteinase inhibitors by chemical arrays.
Kawatani, Makoto; Fukushima, Yukako; Kondoh, Yasumitsu; Honda, Kaori; Sekine, Tomomi; Yamaguchi, Yoshiki; Taniguchi, Naoyuki; Osada, Hiroyuki
2015-01-01
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that degrade many extracellular matrix components and that have been implicated in the pathogenesis of various human diseases including cancer metastasis. Here, we screened MMP-9 inhibitors using photo-cross-linked chemical arrays, which can detect small-molecule ligand-protein interactions on a chip in a high-throughput manner. The array slides were probed sequentially with His-MMP-9, anti-His antibody, and a Cy5-labeled secondary antibody and then scanned with a microarray scanner. We obtained 27 hits among 24,275 compounds from the NPDepo library; 2 of the identified compounds (isoxazole compound 1 and naphthofluorescein) inhibited MMP-9 enzyme activity in vitro. We further explored 17 analogs of 1 and found that compound 18 had the strongest inhibitory activity. Compound 18 also inhibited other MMPs, including MMP-2, MMP-12, and MMP-13 and significantly inhibited cell migration in human fibrosarcoma HT1080 cells. These results suggest that 18 is a broad-spectrum MMP inhibitor.
Cisplatin Cross-Linked Multifunctional Nanodrugplexes for Combination Therapy.
Zhang, Weiqi; Tung, Ching-Hsuan
2017-03-15
Combination therapy efficiently tackles cancer by hitting multiple action mechanisms. However, drugs administered, simultaneously or sequentially, may not reach the targeted sites with the desired dose and ratio. The outcomes of combination therapy could be improved with a polymeric nanoparticle, which can simultaneously transport an optimal combination of drugs. We have demonstrated a simple one-pot strategy to formulate nanomedicines based on platinum coordination and the noncovalent interactions of the drugs. A naturally occurring polymer, hyaluronan (HA), was chosen as the building scaffold to form a nanodrugplex with cisplatin and aromatic-cationic drugs. The platinum coordination between cisplatin and HA induces the formation of a nanocomplex. The aromatic-cationic drugs are tightly packed by an electrostatic interaction and π-π stacking. The nanodrugplex bears excellent flexibility in drug combination and size control. It is stable in storage and has favorable release kinetics and targeting capabilities toward CD44, a receptor for HA that is highly expressed on many types of cancer cells.
The Preparation and Properties of Thermo-reversibly Cross-linked Rubber Via Diels-Alder Chemistry.
Polgar, Lorenzo Massimo; van Duin, Martin; Picchioni, Francesco
2016-08-25
A method for using Diels Alder thermo-reversible chemistry as cross-linking tool for rubber products is demonstrated. In this work, a commercial ethylene-propylene rubber, grafted with maleic anhydride, is thermo-reversibly cross-linked in two steps. The pending anhydride moieties are first modified with furfurylamine to graft furan groups to the rubber backbone. These pendant furan groups are then cross-linked with a bis-maleimide via a Diels-Alder coupling reaction. Both reactions can be performed under a broad range of experimental conditions and can easily be applied on a large scale. The material properties of the resulting Diels-Alder cross-linked rubbers are similar to a peroxide-cured ethylene/propylene/diene rubber (EPDM) reference. The cross-links break at elevated temperatures (> 150 °C) via the retro-Diels-Alder reaction and can be reformed by thermal annealing at lower temperatures (50-70 °C). Reversibility of the system was proven with infrared spectroscopy, solubility tests and mechanical properties. Recyclability of the material was also shown in a practical way, i.e., by cutting a cross-linked sample into small parts and compression molding them into new samples displaying comparable mechanical properties, which is not possible for conventionally cross-linked rubbers.
Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma
Chen, Yulong; Terajima, Masahiko; Yang, Yanan; Sun, Li; Ahn, Young-Ho; Pankova, Daniela; Puperi, Daniel S.; Watanabe, Takeshi; Kim, Min P.; Blackmon, Shanda H.; Rodriguez, Jaime; Liu, Hui; Behrens, Carmen; Wistuba, Ignacio I.; Minelli, Rosalba; Scott, Kenneth L.; Sanchez-Adams, Johannah; Guilak, Farshid; Pati, Debananda; Thilaganathan, Nishan; Burns, Alan R.; Creighton, Chad J.; Martinez, Elisabeth D.; Zal, Tomasz; Grande-Allen, K. Jane; Yamauchi, Mitsuo; Kurie, Jonathan M.
2015-01-01
Epithelial tumor metastasis is preceded by an accumulation of collagen cross-links that heighten stromal stiffness and stimulate the invasive properties of tumor cells. However, the biochemical nature of collagen cross-links in cancer is still unclear. Here, we postulated that epithelial tumorigenesis is accompanied by changes in the biochemical type of collagen cross-links. Utilizing resected human lung cancer tissues and a p21CIP1/WAF1-deficient, K-rasG12D-expressing murine metastatic lung cancer model, we showed that, relative to normal lung tissues, tumor stroma contains higher levels of hydroxylysine aldehyde–derived collagen cross-links (HLCCs) and lower levels of lysine aldehyde–derived cross-links (LCCs), which are the predominant types of collagen cross-links in skeletal tissues and soft tissues, respectively. Gain- and loss-of-function studies in tumor cells showed that lysyl hydroxylase 2 (LH2), which hydroxylates telopeptidyl lysine residues on collagen, shifted the tumor stroma toward a high-HLCC, low-LCC state, increased tumor stiffness, and enhanced tumor cell invasion and metastasis. Together, our data indicate that LH2 enhances the metastatic properties of tumor cells and functions as a regulatory switch that controls the relative abundance of biochemically distinct types of collagen cross-links in the tumor stroma. PMID:25664850
Khare, Ketan S; Khare, Rajesh
2013-06-20
We have used atomistic molecular simulations to study the effect of nanofiller dispersion on the glass transition behavior of cross-linked epoxy-carbon nanotube (CNT) nanocomposites. Specific chemical interactions at the interface of CNTs and cross-linked epoxy create an interphase region, whose impact on the properties of their nanocomposites increases with an increasing extent of dispersion. To investigate this aspect, we have compared the volumetric, structural, and dynamical properties of three systems: neat cross-linked epoxy, cross-linked epoxy nanocomposite containing dispersed CNTs, and cross-linked epoxy nanocomposite containing aggregated CNTs. We find that the nanocomposite containing dispersed CNTs shows a depression in the glass transition temperature (Tg) by ~66 K as compared to the neat cross-linked epoxy, whereas such a large depression is absent in the nanocomposite containing aggregated CNTs. Our results suggest that the poor interfacial interactions between the CNTs and the cross-linked epoxy matrix lead to a more compressible interphase region between the CNTs and the bulk matrix. An analysis of the resulting dynamic heterogeneity shows that the probability of percolation of immobile domains becomes unity near the Tg calculated from volumetric properties. Our observations also lend support to the conceptual analogy between polymer nanocomposites and the nanoconfinement of polymer thin films.
Skevington, Suzanne M
2010-10-01
This study investigated the relationship between health-related quality of life (QoL), educational level and culture, using a high quality cross-cultural generic measure (WHOQOL-BREF) containing 25 international dimensions organised in physical, psychological, social and environmental domains. Cross-cultural data from 9,404 sick and well adults in 13 countries showed that environmental QoL increased positively and sequentially from no education to tertiary education. The other three domains increased only up to secondary school level. These MANCOVA results were significantly influenced by health status, age, culture and economic development level. More positive feelings, less dependence on medication and treatment, better perceptions of financial resources, physical environment, and opportunities for information and skills, represent adult QoL advantages to those who received tertiary education compared with secondary schooling. Developing countries reported poorer environmental, psychological and physical QoL than developed countries, although social QoL was good, and no different for the two development bands. Only psychological QoL distinguished between every educational level, in developing countries. Increased positive feelings serve to link better mental health with more education. Across each domain, secondary and tertiary education was associated with better QoL in developing countries. The results support a QoL case for universal secondary education on which better health and health care may be built.
NASA Astrophysics Data System (ADS)
Fan, Ching-Lin; Shang, Ming-Chi; Hsia, Mao-Yuan; Wang, Shea-Jue; Huang, Bohr-Ran; Lee, Win-Der
2016-03-01
A Microwave-Induction Heating (MIH) scheme is proposed for the poly(4-vinylphenol) (PVP) gate insulator cross-linking process to replace the traditional oven heating cross-linking process. The cross-linking time is significantly decreased from 1 h to 5 min by heating the metal below the PVP layer using microwave irradiation. The necessary microwave power was substantially reduced to about 50 W by decreasing the chamber pressure. The MIH scheme is a good candidate to replace traditional thermal heating for cross-linking of PVP as the gate insulator for organic thin-film-transistors.
Improving the performance of transglutaminase-crosslinked microparticles for enteric delivery.
Tello, Fernando; Prata, Ana S; Rodrigues, Rodney A F; Sartoratto, Adilson; Grosso, Carlos R F
2016-10-01
Various agents for cross-linking have been investigated for stabilizing and controlling the barrier properties of microparticles for enteric applications. Transglutaminase, in addition to being commercially available for human consumption, presents inferior cross-linking action compared to glutaraldehyde. In this study, the intensity of this enzymatic cross-linking was investigated in microparticles obtained by complex coacervation between gelatin and gum Arabic. The effectiveness of cross-linking in these microparticles was evaluated based on swelling, release of a model substance (parika oleoresin: colored and hydrophobic) and gastrointestinal assays. The cross-linked microparticles remained intact under gastric conditions, whereas the uncross-linked microparticles have been dissolved. However, all of the microparticles have been dissolved under intestinal conditions. The amount of oily core that was released decreased as the amount of transglutaminase increased. For the most efficient microparticles (50U/g of protein), the performance was improved by increasing the pH of cross-linking from 4.0 to 6.0, resulting in a release of 17.1% rather than 32.3% of the core material. These results were considerably closer to the 10.3% of core material released by glutaraldehyde-cross-linked microparticles (1mM/g of protein). Copyright © 2016 Elsevier Ltd. All rights reserved.
The Transition from Stiff to Compliant Materials in Squid Beaks
Miserez, Ali; Schneberk, Todd; Sun, Chengjun; Zok, Frank W.; Waite, J. Herbert
2009-01-01
The beak of the Humboldt squid Dosidicus gigas represents one of the hardest and stiffest wholly organic materials known. As it is deeply embedded within the soft buccal envelope, the manner in which impact forces are transmitted between beak and envelope is a matter of considerable scientific interest. Here, we show that the hydrated beak exhibits a large stiffness gradient, spanning two orders of magnitude from the tip to the base. This gradient is correlated with a chemical gradient involving mixtures of chitin, water, and His-rich proteins that contain 3,4-dihydroxyphenyl-l-alanine (dopa) and undergo extensive stabilization by histidyl-dopa cross-link formation. These findings may serve as a foundation for identifying design principles for attaching mechanically mismatched materials in engineering and biological applications. PMID:18369144
The transition from stiff to compliant materials in squid beaks.
Miserez, Ali; Schneberk, Todd; Sun, Chengjun; Zok, Frank W; Waite, J Herbert
2008-03-28
The beak of the Humboldt squid Dosidicus gigas represents one of the hardest and stiffest wholly organic materials known. As it is deeply embedded within the soft buccal envelope, the manner in which impact forces are transmitted between beak and envelope is a matter of considerable scientific interest. Here, we show that the hydrated beak exhibits a large stiffness gradient, spanning two orders of magnitude from the tip to the base. This gradient is correlated with a chemical gradient involving mixtures of chitin, water, and His-rich proteins that contain 3,4-dihydroxyphenyl-L-alanine (dopa) and undergo extensive stabilization by histidyl-dopa cross-link formation. These findings may serve as a foundation for identifying design principles for attaching mechanically mismatched materials in engineering and biological applications.
The Transition from Stiff to Compliant Materials in Squid Beaks
NASA Astrophysics Data System (ADS)
Miserez, Ali; Schneberk, Todd; Sun, Chengjun; Zok, Frank W.; Waite, J. Herbert
2008-03-01
The beak of the Humboldt squid Dosidicus gigas represents one of the hardest and stiffest wholly organic materials known. As it is deeply embedded within the soft buccal envelope, the manner in which impact forces are transmitted between beak and envelope is a matter of considerable scientific interest. Here, we show that the hydrated beak exhibits a large stiffness gradient, spanning two orders of magnitude from the tip to the base. This gradient is correlated with a chemical gradient involving mixtures of chitin, water, and His-rich proteins that contain 3,4-dihydroxyphenyl-L-alanine (dopa) and undergo extensive stabilization by histidyl-dopa cross-link formation. These findings may serve as a foundation for identifying design principles for attaching mechanically mismatched materials in engineering and biological applications.
DNA sequence-directed shape change of photopatterned hydrogels via high-degree swelling
NASA Astrophysics Data System (ADS)
Cangialosi, Angelo; Yoon, ChangKyu; Liu, Jiayu; Huang, Qi; Guo, Jingkai; Nguyen, Thao D.; Gracias, David H.; Schulman, Rebecca
2017-09-01
Shape-changing hydrogels that can bend, twist, or actuate in response to external stimuli are critical to soft robots, programmable matter, and smart medicine. Shape change in hydrogels has been induced by global cues, including temperature, light, or pH. Here we demonstrate that specific DNA molecules can induce 100-fold volumetric hydrogel expansion by successive extension of cross-links. We photopattern up to centimeter-sized gels containing multiple domains that undergo different shape changes in response to different DNA sequences. Experiments and simulations suggest a simple design rule for controlled shape change. Because DNA molecules can be coupled to molecular sensors, amplifiers, and logic circuits, this strategy introduces the possibility of building soft devices that respond to diverse biochemical inputs and autonomously implement chemical control programs.
A Bayesian Theory of Sequential Causal Learning and Abstract Transfer.
Lu, Hongjing; Rojas, Randall R; Beckers, Tom; Yuille, Alan L
2016-03-01
Two key research issues in the field of causal learning are how people acquire causal knowledge when observing data that are presented sequentially, and the level of abstraction at which learning takes place. Does sequential causal learning solely involve the acquisition of specific cause-effect links, or do learners also acquire knowledge about abstract causal constraints? Recent empirical studies have revealed that experience with one set of causal cues can dramatically alter subsequent learning and performance with entirely different cues, suggesting that learning involves abstract transfer, and such transfer effects involve sequential presentation of distinct sets of causal cues. It has been demonstrated that pre-training (or even post-training) can modulate classic causal learning phenomena such as forward and backward blocking. To account for these effects, we propose a Bayesian theory of sequential causal learning. The theory assumes that humans are able to consider and use several alternative causal generative models, each instantiating a different causal integration rule. Model selection is used to decide which integration rule to use in a given learning environment in order to infer causal knowledge from sequential data. Detailed computer simulations demonstrate that humans rely on the abstract characteristics of outcome variables (e.g., binary vs. continuous) to select a causal integration rule, which in turn alters causal learning in a variety of blocking and overshadowing paradigms. When the nature of the outcome variable is ambiguous, humans select the model that yields the best fit with the recent environment, and then apply it to subsequent learning tasks. Based on sequential patterns of cue-outcome co-occurrence, the theory can account for a range of phenomena in sequential causal learning, including various blocking effects, primacy effects in some experimental conditions, and apparently abstract transfer of causal knowledge. Copyright © 2015 Cognitive Science Society, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Lingxiang; Omid, Maryam; Lin, Haiqing
Cross-linking has been widely utilized to modify polyimide nanostructures for membrane gas separations, such as increasing size sieving ability and diffusivity selectivity for H2/CO2 and CO2/CH4 separation, and improving resistance to plasticization derived from CO2 and heavy hydrocarbons for CO2/CH4 and C3H6/C3H8 separations. However, there is a lack of fundamental understanding of the relationship between cross linked structure and membrane gas separation properties. This chapter critically reviews the effect of cross linking on polymer physical properties (such as glass transition temperature, Tg), and current strategies adopted to cross link polyimides for membrane gas separation. The information is synthesized to elucidatemore » the effect of cross linking on Tg and cross linking density in polyimides, which is then used to interpret the changes of gas permeability and selectivity. The benefits of cross linking in improving gas separation properties are also illustrated in Robeson’s upper bound plots for H2/CO2, CO2/CH4 and C3H6/C3H8 separation.« less
Lee, J Y; Shank, B; Bonfiglio, P; Reid, A
1984-10-01
Sequential changes in lung density measured by CT are potentially sensitive and convenient monitors of lung abnormalities following total body irradiation (TBI). Methods have been developed to compare pre- and post-TBI CT of lung. The average local features of a cross-sectional lung slice are extracted from three peripheral regions of interest in the anterior, posterior, and lateral portions of the CT image. Also, density profiles across a specific region may be obtained. These may be compared first for verification of patient position and breathing status and then for changes between pre- and post-TBI. These may also be compared with radiation dose profiles through the lung. A preliminary study on 21 leukemia patients undergoing total body irradiation indicates the following: (a) Density gradients of patients' lungs in the antero-posterior direction show a marked heterogeneity before and after transplantation compared with normal lungs. The patients with departures from normal density gradients pre-TBI correlate with later pulmonary complications. (b) Measurements of average peripheral lung densities have demonstrated that the average lung density in the younger age group is substantially higher: pre-TBI, the average CT number (1,000 scale) is -638 +/- 39 Hounsfield unit (HU) for 0-10 years old and -739 +/- 53 HU for 21-40 years old. (c) Density profiles showed no post-TBI regional changes in lung density corresponding to the dose profile across the lung, so no differentiation of a radiation-specific effect has yet been possible. Computed tomographic density profiles in the antero-posterior direction are successfully used to verify positioning of the CT slice and the breathing level of the lung.
Fujiwara, Kei; Katayama, Tsutomu; Nomura, Shin-ichiro M.
2013-01-01
Replication of all living cells relies on the multirounds flow of the central dogma. Especially, expression of DNA replication proteins is a key step to circulate the processes of the central dogma. Here we achieved the entire sequential transcription–translation–replication process by autonomous expression of chromosomal DNA replication machineries from a reconstituted transcription–translation system (PURE system). We found that low temperature is essential to express a complex protein, DNA polymerase III, in a single tube using the PURE system. Addition of the 13 genes, encoding initiator, DNA helicase, helicase loader, RNA primase and DNA polymerase III to the PURE system gave rise to a DNA replication system by a coupling manner. An artificial genetic circuit demonstrated that the DNA produced as a result of the replication is able to provide genetic information for proteins, indicating the in vitro central dogma can sequentially undergo two rounds. PMID:23737447
Papachroni, Katerina K; Piperi, Christina; Levidou, Georgia; Korkolopoulou, Penelope; Pawelczyk, Leszek; Diamanti-Kandarakis, Evanthia; Papavassiliou, Athanasios G
2010-01-01
Abstract Connective tissue components – collagen types I, III and IV – surrounding the ovarian follicles undergo drastic changes during ovulation. Abnormal collagen synthesis and increased volume and density of ovarian stroma characterize the polycystic ovary syndrome (PCOS). During the ovulatory process, collagen synthesis is regulated by prolyl hydroxylase and lysyl oxidase (LOX) activity in ovarian follicles. LOX catalyzes collagen and elastin cross-linking and plays essential role in coordinating the control of ovarian extracellular matrix (ECM) during follicular development. We have recently shown accumulation of advanced glycation end products (AGEs), molecules that stimulate ECM production and abnormal collagen cross-linking, in ovarian tissue. However, the possible link between LOX and AGEs-induced signalling in collagen production and stroma formation in ovarian tissue from PCOS remains elusive. The present study investigates the hypothesis of AGE signalling pathway interaction with LOX gene activity in polycystic ovarian (PCO) tissue. We show an increased distribution and co-localization of LOX, collagen type IV and AGE molecules in the PCO tissue compared to control, as well as augmented expression of AGE signalling mediators/effectors, phospho(p)-ERK, phospho(p)-c-Jun and nuclear factor κB (NF-κB) in pathological tissue. Moreover, we demonstrate binding of AGE-induced transcription factors, NF-κB and activator protein-1 (AP-1) on LOX promoter, indicating a possible involvement of AGEs in LOX gene regulation, which may account for the documented increase in LOX mRNA and protein levels compared to control. These findings suggest that deposition of excess collagen in PCO tissue that induces cystogenesis may, in part, be due to AGE-mediated stimulation of LOX activity. PMID:19583806
Sequential Multiplex Analyte Capturing for Phosphoprotein Profiling*
Poetz, Oliver; Henzler, Tanja; Hartmann, Michael; Kazmaier, Cornelia; Templin, Markus F.; Herget, Thomas; Joos, Thomas O.
2010-01-01
Microarray-based sandwich immunoassays can simultaneously detect dozens of proteins. However, their use in quantifying large numbers of proteins is hampered by cross-reactivity and incompatibilities caused by the immunoassays themselves. Sequential multiplex analyte capturing addresses these problems by repeatedly probing the same sample with different sets of antibody-coated, magnetic suspension bead arrays. As a miniaturized immunoassay format, suspension bead array-based assays fulfill the criteria of the ambient analyte theory, and our experiments reveal that the analyte concentrations are not significantly changed. The value of sequential multiplex analyte capturing was demonstrated by probing tumor cell line lysates for the abundance of seven different receptor tyrosine kinases and their degree of phosphorylation and by measuring the complex phosphorylation pattern of the epidermal growth factor receptor in the same sample from the same cavity. PMID:20682761
A-Track: Detecting Moving Objects in FITS images
NASA Astrophysics Data System (ADS)
Atay, T.; Kaplan, M.; Kilic, Y.; Karapinar, N.
2017-04-01
A-Track is a fast, open-source, cross-platform pipeline for detecting moving objects (asteroids and comets) in sequential telescope images in FITS format. The moving objects are detected using a modified line detection algorithm.
Matsuura, Takashi; Tokutomi, Kentaro; Sasaki, Michiko; Katafuchi, Michitsuna; Mizumachi, Emiri; Sato, Hironobu
2014-01-01
Bone undergoes constant remodeling throughout life. The cellular and biochemical mechanisms of bone remodeling vary in a region-specific manner. There are a number of notable differences between the mandible and long bones, including developmental origin, osteogenic potential of mesenchymal stem cells, and the rate of bone turnover. Collagen, the most abundant matrix protein in bone, is responsible for determining the relative strength of particular bones. Posttranslational modifications of collagen, such as intermolecular crosslinking and lysine hydroxylation, are the most essential determinants of bone strength, although the amount of collagen is also important. In comparison to long bones, the mandible has greater collagen content, a lower amount of mature crosslinks, and a lower extent of lysine hydroxylation. The great abundance of immature crosslinks in mandibular collagen suggests that there is a lower rate of cross-link maturation. This means that mandibular collagen is relatively immature and thus more readily undergoes degradation and turnover. The greater rate of remodeling in mandibular collagen likely renders more flexibility to the bone and leaves it more suited to constant exercise. As reviewed here, it is important in clinical dentistry to understand the distinctive features of the bones of the jaw.
Tokutomi, Kentaro; Sasaki, Michiko; Katafuchi, Michitsuna; Mizumachi, Emiri; Sato, Hironobu
2014-01-01
Bone undergoes constant remodeling throughout life. The cellular and biochemical mechanisms of bone remodeling vary in a region-specific manner. There are a number of notable differences between the mandible and long bones, including developmental origin, osteogenic potential of mesenchymal stem cells, and the rate of bone turnover. Collagen, the most abundant matrix protein in bone, is responsible for determining the relative strength of particular bones. Posttranslational modifications of collagen, such as intermolecular crosslinking and lysine hydroxylation, are the most essential determinants of bone strength, although the amount of collagen is also important. In comparison to long bones, the mandible has greater collagen content, a lower amount of mature crosslinks, and a lower extent of lysine hydroxylation. The great abundance of immature crosslinks in mandibular collagen suggests that there is a lower rate of cross-link maturation. This means that mandibular collagen is relatively immature and thus more readily undergoes degradation and turnover. The greater rate of remodeling in mandibular collagen likely renders more flexibility to the bone and leaves it more suited to constant exercise. As reviewed here, it is important in clinical dentistry to understand the distinctive features of the bones of the jaw. PMID:24818151
Wiltse Nicely, Kelly L; Sloane, Douglas M; Aiken, Linda H
2013-01-01
Objective To determine whether and to what extent the lower mortality rates for patients undergoing abdominal aortic aneurysm (AAA) repair in high-volume hospitals is explained by better nursing. Data Sources State hospital discharge data, Multi-State Nursing Care and Patient Safety Survey, and hospital characteristics from the AHA Annual Survey. Study Design Cross-sectional analysis of linked patient outcomes for individuals undergoing AAA repair in four states. Data Collection Secondary data sources. Principal Findings Favorable nursing practice environments and higher hospital volumes of AAA repair are associated with lower mortality and fewer failures-to-rescue in main-effects models. Furthermore, nurse staffing interacts with volume such that there is no mortality advantage observed in high-volume hospitals with poor nurse staffing. When hospitals have good nurse staffing, patients in low-volume hospitals are 3.4 times as likely to die and 2.6 times as likely to die from complications as patients in high-volume hospitals (p < .001). Conclusions Nursing is part of the explanation for lower mortality after AAA repair in high-volume hospitals. Importantly, lower mortality is not found in high-volume hospitals if nurse staffing is poor. PMID:23088426
Organization of photosystem I polypeptides examined by chemical cross-linking
NASA Technical Reports Server (NTRS)
Armbrust, T. S.; Chitnis, P. R.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)
1996-01-01
Photosystem I from the cyanobacterium Synechocystis sp. PCC 6803 was examined using the chemical cross-linkers glutaraldehyde and N-ethyl-1-3-[3-(dimethylamino)propyl]carbodiimide to investigate the organization of the polypeptide subunits. Thylakoid membranes and photosystem I, which was isolated by Triton X-100 fractionation, were treated with cross-linking reagents and were resolved using a Tricine/urea low-molecular-weight resolution gel system. Subunit-specific antibodies and western blotting analysis were used to identify the components of cross-linked species. These analyses identified glutaraldehyde-dependent cross-linking products composed of small amounts of PsaD and PsaC, PsaC and PsaE, and PsaE and PsaF. The novel cross-link between PsaE and PsaF was also observed following treatment with N-ethyl-1-3-[3-(dimethylamino)propyl]carbodiimide. These cross-linking results suggest a structural interaction between PsaE and PsaF and predict a transmembrane topology for PsaF.
Collagen cross-linking of skin in patients with amyotrophic lateral sclerosis
NASA Technical Reports Server (NTRS)
Ono, S.; Yamauchi, M.
1992-01-01
Collagen cross-links of skin tissue (left upper arm) from 11 patients with amyotrophic lateral sclerosis (ALS) and 9 age-matched control subjects were quantified. It was found that patients with ALS had a significant reduction in the content of an age-related, stable cross-link, histidinohydroxylysinonorleucine, that was negatively correlated with the duration of illness. The contents of sodium borohydride-reducible labile cross-links, dehydro-hydroxylysinonorleucine and dehydro-histidinohydroxymerodesmosine, were significantly increased and were positively associated with the duration of illness (r = 0.703, p less than 0.05 and r = 0.684, p less than 0.05, respectively). The results clearly indicate that during the course of ALS, the cross-linking pathway of skin collagen runs counter to its normal aging, resulting in a "rejuvenation" phenomenon of skin collagen. Thus, cross-linking of skin collagen is affected in ALS.
Modified gum arabic cross-linked gelatin scaffold for biomedical applications.
Sarika, P R; Cinthya, Kuriakose; Jayakrishnan, A; Anilkumar, P R; James, Nirmala Rachel
2014-10-01
The present work deals with development of modified gum arabic cross-linked gelatin scaffold for cell culture. A new biocompatible scaffold was developed by cross-linking gelatin (Gel) with gum arabic, a polysaccharide. Gum arabic was subjected to periodate oxidation to obtain gum arabic aldehyde (GAA). GAA was reacted with gelatin under appropriate pH to prepare the cross-linked hydrogel. Cross-linking occurred due to Schiff's base reaction between aldehyde groups of oxidized gum arabic and amino groups of gelatin. The scaffold prepared from the hydrogel was characterized by swelling properties, degree of cross-linking, in vitro degradation and scanning electron microscopy (SEM). Cytocompatibility evaluation using L-929 and HepG2 cells confirmed non-cytotoxic and non-adherent nature of the scaffold. These properties are essential for generating multicellular spheroids and hence the scaffold is proposed to be a suitable candidate for spheroid cell culture. Copyright © 2014 Elsevier B.V. All rights reserved.
Photoinduced DNA Interstrand Cross-Link Formation by Naphthalene Boronates via a Carbocation.
Wang, Yibin; Lin, Zechao; Fan, Heli; Peng, Xiaohua
2016-07-18
Most photoinduced DNA cross-link formation by a bifunctional aryl derivative is through a bisquinone methide. DNA cross-linking via a bisarylcarbocation remains a less explored area. We designed and synthesized a series of naphthalene boronates that produce DNA interstrand cross-links via a carbocation upon UV irradiation. A free radical was generated from the naphthalene boronates with 350 nm irradiation and further converted to a carbocation by electron transfer. The activation mechanism was determined using the orthogonal traps, 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) and methoxyamine that react with either the free radical or the carbocation but not both. This represents a novel example of photoinduced DNA cross-link formation via carbocations generated from a bisaryl derivative. This work provides information useful for the design of novel photoactivated DNA cross-linking agents. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recent advances in corneal collagen cross-linking
Sachdev, Gitansha Shreyas; Sachdev, Mahipal
2017-01-01
Corneal collagen cross-linking has become the preferred modality of treatment for corneal ectasia since its inception in late 1990s. Numerous studies have demonstrated the safety and efficacy of the conventional protocol. Our understanding of the cross-linking process is ever evolving, with its wide implications in the form of accelerated and pulsed protocols. Newer advancements in technology include various riboflavin formulations and the ability to deliver higher fluence protocols with customised irradiation patterns. A greater degree of customisation is likely the path forward, which will aim at achieving refractive improvements along with disease stability. The use of cross-linking for myopic correction is another avenue under exploration. Combination of half fluence cross-linking with refractive correction for high errors to prevent post LASIK regression is gaining interest. This review aims to highlight the various advancements in the cross-linking technology and its clinical applications. PMID:28905820
Interrelation of electret properties of polyethylene foam from the method of cross-linking
NASA Astrophysics Data System (ADS)
Gilmanov, I. R.; Galikhanov, M. F.; Gilmanova, A. R.
2017-09-01
The electret properties of chemically cross-linked polyethylene foam and physically cross-linked polyethylene foam have been studied. It has been shown that chemically cross-linked polyethylene foam has higher surface potential, effective surface charge density and electric field strength compared to physically bonded polyethylene foam. This is due to the presence of molecules and fragments of dicumyl peroxide, which can play the role of traps for injection charge carriers, a greater degree of cross-linking and with the oxidation of polyethylene, which occurs during irradiation during physical cross-linking. When the foam is deformed, its electret properties are reduced, and when the volume is relaxed, they are restored. This is due to the partial mutual compensation of homo- and heterocharge during compression and the return of the structure of the gas-filled polymer to its former position when the load is removed.
Cross-linked polyvinyl alcohol films as alkaline battery separators
NASA Technical Reports Server (NTRS)
Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.
1983-01-01
Cross-linking methods have been investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. Then pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide-zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.
Cross-linked polyvinyl alcohol films as alkaline battery separators
NASA Technical Reports Server (NTRS)
Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.
1982-01-01
Cross-linking methods were investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. The pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide - zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.
[Diseases linked to Helicobacter pylori infection].
Gisbert, Javier P
2014-09-01
Below is a summary of the main conclusions that came from reports presented at this year's Digestive Disease Week (2014) relating to Helicobacter pylori infection. Despite the undeniable decline of the infection's frequency, in the near future, developed countries--or at least some sub-populations--will continue to have a significant prevalence of the infection. Clarithromycin, metronidazole and quinolone resistance rates are considerably high in most countries and these rates are on the rise. The eradication of H. pylori improves symptoms of functional dyspepsia, although only in a minority of patients; adding antidepressants to eradication therapy could improve long-term response. In patients who were admitted with gastrointestinal bleeding from peptic ulcers, it is necessary to thoroughly study the presence of H. pylori infection and administer eradication therapy as early as possible. Eradication of H. pylori in patients undergoing endoscopic resection of early-stage gastric cancer reduces incidence of metachronous tumors. We have some diagnostic innovations, such as carrying out various techniques--a rapid urease test, culture or PCR--based on gastric samples obtained by scraping the mucosa. The effectiveness of conventional triple therapy is clearly insufficient and continues to decline. The superiority of sequential therapy over conventional triple therapies has not been definitively established. Concomitant therapy is simpler and more effective than sequential therapy. Optimized concomitant therapy (with high doses of proton-pump inhibitors [PPI] and over 14 days) is highly effective, more so than standard concomitant therapy. For patients who are allergic to penicillin, 2 treatment options were essentially described: PPI-clarithromycin-metronidazole (clarithromycin-sensitive strains) and quadruple therapy with bismuth (when the bacterial sensitivity is unknown). If conventional triple therapy fails, second-line therapy with levofloxacin is effective and is also easier and better tolerated than quadruple therapy with bismuth. Triple therapy with levofloxacin is also a promising alternative if sequential or concomitant therapy fails. New-generation quinolones, such as moxifloxacin, could be useful as part of rescue eradication therapy. Even after 3 eradication therapies have failed, a fourth empirical rescue therapy (with rifabutin) could be effective. The eradication of H. pylori can finally be obtained in the vast majority of patients by using a rescue strategy of up to 4 consecutive empirical therapies, without conducting bacterial cultures. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.
Varghese, Oommen P; Sun, Weilun; Hilborn, Jöns; Ossipov, Dmitri A
2009-07-01
We present here a novel synthesis route to functionalize high molecular weight hyaluronan (HMW-HA) with a hydrazide group and a bioactive ligand, namely bisphosphonate (BP). For this purpose, a new symmetrical self-immolative biscarbazate linker has been devised. The hydrazide group was used to form hydrazone cross-linked hydrogel upon treating with previously described aldehyde modified hyaluronan. The 1:1 weight ratio of these two polymers gave hydrogel in less than 30 s. In this communication we present the first in vitro results showing that even though HA can target CD44 positive cancer cells (HCT-116), receptor mediated endocytosis could only occur by cleavage of high molecular weight HA with an ubiquitous enzyme, hyaluronidase (Hase). The cancer cells are known to overexpress CD44 receptors and also increase the hyaluronidase activity in vivo. Thus the pro-drug design, based on drug conjugation to HMW-HA, represents a new drug delivery platform where the drug potency is triggered by Hase mediated degradation of the HA-drug conjugate. We have successfully demonstrated that the cross-linkable HA-BP conjugate first undergoes Hase-mediated scission to the fragments of suitable sizes so as to be internalized by CD44 positive cells. The specificity of this targeting was proven by comparing the results with less CD44 positive HEK-293T cells. The localized delivery of such drugs at the surgical resection site opens up avenues to control tumor recurrence after removal of the tumor. In the form of hydrogel it would prevent systemic exposure of the drug and would allow its controlled release.
Limit Theory for Panel Data Models with Cross Sectional Dependence and Sequential Exogeneity.
Kuersteiner, Guido M; Prucha, Ingmar R
2013-06-01
The paper derives a general Central Limit Theorem (CLT) and asymptotic distributions for sample moments related to panel data models with large n . The results allow for the data to be cross sectionally dependent, while at the same time allowing the regressors to be only sequentially rather than strictly exogenous. The setup is sufficiently general to accommodate situations where cross sectional dependence stems from spatial interactions and/or from the presence of common factors. The latter leads to the need for random norming. The limit theorem for sample moments is derived by showing that the moment conditions can be recast such that a martingale difference array central limit theorem can be applied. We prove such a central limit theorem by first extending results for stable convergence in Hall and Hedye (1980) to non-nested martingale arrays relevant for our applications. We illustrate our result by establishing a generalized estimation theory for GMM estimators of a fixed effect panel model without imposing i.i.d. or strict exogeneity conditions. We also discuss a class of Maximum Likelihood (ML) estimators that can be analyzed using our CLT.
NASA Astrophysics Data System (ADS)
Maekawa, F.; Verzilov, Y. M.; Smith, D. L.; Ikeda, Y.
2000-12-01
Except for 3H and 14C, no radioactive nuclide is produced by neutron-induced reactions with lithium in lithium-containing materials such as Li 2O and Li 2CO 3. However, when the lithium-containing materials are irradiated by 14 MeV neutrons, radioactive 7Be is produced by sequential charged particle reactions (SCPR). In this study, we measured effective 7Be production cross-sections in several lithium-containing samples at 14 MeV: the cross-sections are in the order of μb. Estimation of the effective cross-sections is attempted, and the estimated values agreed well with the experimental data. It was shown that the 7Be activity in a unit volume of lithium-containing materials in D-T fusion reactors can exceed total activity of the same unit volume of the SiC structural material in a certain cooling time. Consequently, a careful consideration of the 7Be production by SCPR is required to assess radioactive inventories in lithium-containing D-T fusion blanket materials.
Devaluation and sequential decisions: linking goal-directed and model-based behavior
Friedel, Eva; Koch, Stefan P.; Wendt, Jean; Heinz, Andreas; Deserno, Lorenz; Schlagenhauf, Florian
2014-01-01
In experimental psychology different experiments have been developed to assess goal–directed as compared to habitual control over instrumental decisions. Similar to animal studies selective devaluation procedures have been used. More recently sequential decision-making tasks have been designed to assess the degree of goal-directed vs. habitual choice behavior in terms of an influential computational theory of model-based compared to model-free behavioral control. As recently suggested, different measurements are thought to reflect the same construct. Yet, there has been no attempt to directly assess the construct validity of these different measurements. In the present study, we used a devaluation paradigm and a sequential decision-making task to address this question of construct validity in a sample of 18 healthy male human participants. Correlational analysis revealed a positive association between model-based choices during sequential decisions and goal-directed behavior after devaluation suggesting a single framework underlying both operationalizations and speaking in favor of construct validity of both measurement approaches. Up to now, this has been merely assumed but never been directly tested in humans. PMID:25136310
The Synergy of Double Cross-linking Agents on the Properties of Styrene Butadiene Rubber Foams
Shao, Liang; Ji, Zhan-You; Ma, Jian-Zhong; Xue, Chao-Hua; Ma, Zhong-Lei; Zhang, Jing
2016-01-01
Sulfur (S) cross-linking styrene butadiene rubber (SBR) foams show high shrinkage due to the cure reversion, leading to reduced yield and increased processing cost. In this paper, double cross-linking system by S and dicumyl peroxide (DCP) was used to decrease the shrinkage of SBR foams. Most importantly, the synergy of double cross-linking agents was reported for the first time to our knowledge. The cell size and its distribution of SBR foams were investigated by FESEM images, which show the effect of DCP content on the cell structure of the SBR foams. The relationships between shrinkage and crystalline of SBR foams were analyzed by the synergy of double cross-linking agents, which were demonstrated by FTIR, Raman spectra, XRD, DSC and TGA. When the DCP content was 0.6 phr, the SBR foams exhibit excellent physical and mechanical properties such as low density (0.223 g/cm3), reduced shrinkage (2.25%) and compression set (10.96%), as well as elevated elongation at break (1.78 × 103%) and tear strength (54.63 N/mm). The results show that these properties are related to the double cross-linking system of SBR foams. Moreover, the double cross-linking SBR foams present high electromagnetic interference (EMI) shielding properties compared with the S cross-linking SBR foams. PMID:27841307
Induction of Caveolae in the Apical Plasma Membrane of Madin-Darby Canine Kidney Cells
Verkade, Paul; Harder, Thomas; Lafont, Frank; Simons, Kai
2000-01-01
In this paper, we have analyzed the behavior of antibody cross-linked raft-associated proteins on the surface of MDCK cells. We observed that cross-linking of membrane proteins gave different results depending on whether cross-linking occurred on the apical or basolateral plasma membrane. Whereas antibody cross-linking induced the formation of large clusters on the basolateral membrane, resembling those observed on the surface of fibroblasts (Harder, T., P. Scheiffele, P. Verkade, and K. Simons. 1998. J. Cell Biol. 929–942), only small (∼100 nm) clusters formed on the apical plasma membrane. Cross-linked apical raft proteins e.g., GPI-anchored placental alkaline phosphatase (PLAP), influenza hemagglutinin, and gp114 coclustered and were internalized slowly (∼10% after 60 min). Endocytosis occurred through surface invaginations that corresponded in size to caveolae and were labeled with caveolin-1 antibodies. Upon cholesterol depletion the internalization of PLAP was completely inhibited. In contrast, when a non-raft protein, the mutant LDL receptor LDLR-CT22, was cross-linked, it was excluded from the clusters of raft proteins and was rapidly internalized via clathrin-coated pits. Since caveolae are normally present on the basolateral membrane but lacking from the apical side, our data demonstrate that antibody cross-linking induced the formation of caveolae, which slowly internalized cross-linked clusters of raft-associated proteins. PMID:10684254
The Synergy of Double Cross-linking Agents on the Properties of Styrene Butadiene Rubber Foams
NASA Astrophysics Data System (ADS)
Shao, Liang; Ji, Zhan-You; Ma, Jian-Zhong; Xue, Chao-Hua; Ma, Zhong-Lei; Zhang, Jing
2016-11-01
Sulfur (S) cross-linking styrene butadiene rubber (SBR) foams show high shrinkage due to the cure reversion, leading to reduced yield and increased processing cost. In this paper, double cross-linking system by S and dicumyl peroxide (DCP) was used to decrease the shrinkage of SBR foams. Most importantly, the synergy of double cross-linking agents was reported for the first time to our knowledge. The cell size and its distribution of SBR foams were investigated by FESEM images, which show the effect of DCP content on the cell structure of the SBR foams. The relationships between shrinkage and crystalline of SBR foams were analyzed by the synergy of double cross-linking agents, which were demonstrated by FTIR, Raman spectra, XRD, DSC and TGA. When the DCP content was 0.6 phr, the SBR foams exhibit excellent physical and mechanical properties such as low density (0.223 g/cm3), reduced shrinkage (2.25%) and compression set (10.96%), as well as elevated elongation at break (1.78 × 103%) and tear strength (54.63 N/mm). The results show that these properties are related to the double cross-linking system of SBR foams. Moreover, the double cross-linking SBR foams present high electromagnetic interference (EMI) shielding properties compared with the S cross-linking SBR foams.
NASA Astrophysics Data System (ADS)
Balind, K.; Barber, A.; Gélinas, Y.
2017-12-01
The biogeochemical cycle of sulfur is intimately linked with that of carbon, as well as with that of iron through the formation of iron-sulfur complexes. Iron-sulfide minerals such as mackinawite (FeS) and greigite (Fe3S4) form below the oxic/anoxic redox boundary in marine and lacustrine sediments and soils. Reactive iron species, abundant in surface sediments, can undergo reductive dissolution leading to the formation of soluble Fe(II) which can then precipitate in the form of iron sulfur species. While sedimentary iron-oxides have been thoroughly explored in terms of their ability to sorb and sequester organic carbon (OC) (Lalonde et al.; 2012), the role of FeS in the long-term preservation of OC remains undefined. In this study, we present depth profiles for carbon, iron, and sulfur in the aqueous-phase, along with data from sequential extractions of sulfur speciation in the solid-phase collected from sediment cores from the St Lawrence River and estuarine system, demonstrating the transition from fresh to saltwater sediments. Additionally, we present synthetic iron sulfur sorption experiments using both model and natural organic molecules in order to assess the importance of FeS in sedimentary carbon storage.
Shen, J Q; Ji, Q; Ding, W J; Xia, L M; Wei, L; Wang, C S
2018-03-13
Objective: To evaluate in-hospital and mid-term outcomes of sequential versus separate grafting of in situ skeletonized left internal mammary artery (LIMA) to the left coronary system in a single-center, propensity-matched study. Methods: After propensity score matching, 120 pairs of patients undergoing first, scheduled, isolated coronary artery bypass grafting (CABG) with in situ skeletonized LIMA grafting to the left anterior descending artery (LAD) territory were entered into a sequential group (sequential grafting of LIMA to the diagonal artery and then to the LAD) or a control group (separate grafting of LIMA to the LAD). The in-hospital and follow-up clinical outcomes and follow-up LIMA graft patency were compared. Results: The two propensity score-matched groups had similar in-hospital and follow-up clinical outcomes. The number of bypass conduits ranged from 3 to 6 (with a mean of 3.5), and 91.3%(219/240)of the included patients received off-pump CABG surgery. No significant differences were found between the two propensity score-matched groups in the in-hospital outcomes, including in-hospital death and the incidence of complications associated with CABG (prolonged ventilation, peroperative stroke, re-operation before discharge, and deep sternal wound infection). During follow-up, 9 patients (4 patients from the sequential group and 5 patients from the control group) died, and the all-cause mortality rate was 3.9%. No significant difference was found in the all-cause mortality rate between the 2 groups[3.4% (4/116) vs 4.3% (5/115), P =0.748]. During follow-up period, 99.1% (115/116) patency for the diagonal site and 98.3% (114/116) for the LAD site were determined by coronary computed tomographic angiography after sequential LIMA grafting, both of which were similar with graft patency of separate grafting of in situ skeletonized LIMA to the LAD. Conclusions: Revascularization of the left coronary system using a skeletonized LIMA resulted in excellent in-hospital and mid-term clinical outcomes and graft patency using sequential grafting.
Gaudrain, Etienne; Carlyon, Robert P
2013-01-01
Previous studies have suggested that cochlear implant users may have particular difficulties exploiting opportunities to glimpse clear segments of a target speech signal in the presence of a fluctuating masker. Although it has been proposed that this difficulty is associated with a deficit in linking the glimpsed segments across time, the details of this mechanism are yet to be explained. The present study introduces a method called Zebra-speech developed to investigate the relative contribution of simultaneous and sequential segregation mechanisms in concurrent speech perception, using a noise-band vocoder to simulate cochlear implants. One experiment showed that the saliency of the difference between the target and the masker is a key factor for Zebra-speech perception, as it is for sequential segregation. Furthermore, forward masking played little or no role, confirming that intelligibility was not limited by energetic masking but by across-time linkage abilities. In another experiment, a binaural cue was used to distinguish the target and the masker. It showed that the relative contribution of simultaneous and sequential segregation depended on the spectral resolution, with listeners relying more on sequential segregation when the spectral resolution was reduced. The potential of Zebra-speech as a segregation enhancement strategy for cochlear implants is discussed.
Gaudrain, Etienne; Carlyon, Robert P.
2013-01-01
Previous studies have suggested that cochlear implant users may have particular difficulties exploiting opportunities to glimpse clear segments of a target speech signal in the presence of a fluctuating masker. Although it has been proposed that this difficulty is associated with a deficit in linking the glimpsed segments across time, the details of this mechanism are yet to be explained. The present study introduces a method called Zebra-speech developed to investigate the relative contribution of simultaneous and sequential segregation mechanisms in concurrent speech perception, using a noise-band vocoder to simulate cochlear implants. One experiment showed that the saliency of the difference between the target and the masker is a key factor for Zebra-speech perception, as it is for sequential segregation. Furthermore, forward masking played little or no role, confirming that intelligibility was not limited by energetic masking but by across-time linkage abilities. In another experiment, a binaural cue was used to distinguish target and masker. It showed that the relative contribution of simultaneous and sequential segregation depended on the spectral resolution, with listeners relying more on sequential segregation when the spectral resolution was reduced. The potential of Zebra-speech as a segregation enhancement strategy for cochlear implants is discussed. PMID:23297922
ElSohly, Adel M; MacDonald, James I; Hentzen, Nina B; Aanei, Ioana L; El Muslemany, Kareem M; Francis, Matthew B
2017-03-15
The synthesis of complex protein-based bioconjugates has been facilitated greatly by recent developments in chemoselective methods for biomolecular modification. The oxidative coupling of o-aminophenols or catechols with aniline functional groups is chemoselective, mild, and rapid; however, the oxidatively sensitive nature of the electron-rich aromatics and the paucity of commercial sources pose some obstacles to the general use of these reactive strategies. Herein, we identify o-methoxyphenols as air-stable, commercially available derivatives that undergo efficient oxidative couplings with anilines in the presence of periodate as oxidant. Mechanistic considerations informed the development of a preoxidation protocol that can greatly reduce the amount of periodate necessary for effective coupling. The stability and versatility of these reagents was demonstrated through the synthesis of complex protein-protein bioconjugates using a site-selective heterobifunctional cross-linker comprising both o-methoxyphenol and 2-pyridinecarboxaldehyde moieties. This compound was used to link epidermal growth factor to genome-free MS2 viral capsids, affording nanoscale delivery vectors that can target a variety of cancer cell types.
Elasticity, biodegradability and cell adhesive properties of chitosan/hyaluronan multilayer films
NASA Astrophysics Data System (ADS)
Schneider, Aurore; Richert, Ludovic; Francius, Gregory; Voegel, Jean-Claude; Picart, Catherine
2007-03-01
In the bioengineering field, a recent and promising approach to modifying biomaterial surfaces is the layer-by-layer (LbL) technique used to build thin polyelectrolyte multilayer films. In this work, we focused on polyelectrolyte multilayer films made of two polysaccharides, chitosan (CHI) and hyaluronan (HA), and on the control of their physico-chemical and cell adhesive properties by chemical cross-linking. CHI/HA films were cross-linked using a water soluble carbodiimide and observed by confocal laser scanning microscopy (CLSM) with a fluorescently labeled CHI. Film thicknesses were similar for native and cross-linked films. The film nanometer roughness was measured by atomic force microscopy and was found to be higher for cross-linked films. Cross-linking the films also leads to a drastic change in film stiffness. The elastic modulus of the films (Young's modulus) as measured by AFM nano-indentation was about tenfold increased for cross-linked films as compared to native ones. From a biological point of view, cross-liked films are more resistant to enzymatic degradation by hyaluronidase. Furthermore, the increase in film stiffness has a favorable effect on the adhesion and spreading of chondrosarcoma cells. Thus, the CHI/HA cross-linked films could be used for various applications due to their adhesive properties and to their mechanical properties (including stability in enzymatic media).
Ara h 2 cross-linking catalyzed by MTGase decreases its allergenicity.
Wu, Zhihua; Lian, Jun; Zhao, Ruifang; Li, Kun; Li, Xin; Yang, Anshu; Tong, Ping; Chen, Hongbing
2017-03-22
Peanuts, whose major allergen is Ara h 2, are included among the eight major food allergens. After reduction using dithiothreitol (DTT), cross-linking of Ara h 2 could be catalyzed by microbial transglutaminase (MTGase), a widely used enzyme in the food industry. In this study, Ara h 2 cross-linking was catalyzed by MTGase after it was reduced by DTT. Using mass spectrometry and PLINK software, five cross-linkers were identified, and five linear allergen epitopes were found to be involved in the reactions. The IgE binding capacity of cross-linked Ara h 2 was found to be significantly lower compared to that of native and reduced Ara h 2. After simulated gastric fluid (SGF) digestion, the digested products of the cross-linked Ara h 2, again, had a significantly lower IgE binding capacity compared to untreated and reduced Ara h 2. Furthermore, reduced and cross-linked Ara h 2 (RC-Ara h 2) induced lower sensitization in mice, indicating its lower allergenicity. Reduction and MTGase-catalyzed cross-linking are effective methods to decrease the allergenicity of Ara h 2. The reactions involved linear allergen epitopes destroying the material basis of the allergenicity, and this might develop a new direction for protein desensitization processes.
Enzymic cross-linkage of monomeric extensin precursors in vitro. [Lycopersicon esculentum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Everdeen, D.S.; Kiefer, S.; Willard, J.J.
Rapidly growing tomato (Lycopersicon esculentum) cell suspension cultures contain transiently high levels of cell surface, salt-elutable, monomeric precursors to the covalently cross-linked extensin network of the primary cell wall. Thus, the authors purified a highly soluble monomeric extensin substrate from rapidly growing cells, and devised a soluble in vitro cross-linking assay based on Superose-6 fast protein liquid chromatography separation, which resolved extensin monomers from the newly formed oligomers within 25 minutes. Salt elution of slowly growing (early stationary phase) cells yielded little or no extensin monomers but did give a highly active enzymic preparation that specifically cross-linked extensin monomers inmore » the presence of hydrogen peroxide, judging from: (a) a decrease in the extensin monomer peak on fast protein liquid chromatography gel filtration, (b) appearance of oligomeric peaks, and (c) direct electron microscopical observation of the cross-linked oligomers. The cross-linking reaction had a broad pH optimum between 5.5 and 6.5. An approach to substrate saturation of the enzyme required extensin monomer concentrations of 20 to 40 milligrams per milliliter. Preincubation with catalase completely inhibited the cross-linking reaction, which was highly dependent on hydrogen peroxide and optimal at 15 to 50 micromolar. They therefore identified the cross-linking activity as extensin peroxidase.« less
Automatic measurement; Mesures automatiques (in French)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ringeard, C.
1974-11-28
By its ability to link-up operations sequentially and memorize the data collected, the computer can introduce a statistical approach in the evaluation of a result. To benefit fully from the advantages of automation, a special effort was made to reduce the programming time to a minimum and to simplify link-ups between the existing system and instruments from different sources. The practical solution of the test laboratory of the C.E.A. Centralized Administration Groupe (GEC) is given.
Cinquepalmi, Lorenza; Boni, Luigi; Dionigi, Gianlorenzo; Rovera, Francesca; Diurni, Mario; Benevento, Angelo; Dionigi, Renzo
2006-01-01
Infected pancreatic necrosis (IPN) is one of the most severe complications of acute pancreatitis (AP). Sequential surgical debridement represents one of the most effective treatments in terms of morbidity and mortality. The aim of this paper is to describe the quality of life and long-term results (e.g., nutritional, muscular, and pancreatic function) of patients treated by sequential necrosectomy at the Department of Surgery of the University of Insubria (Varese, Italy). Data were collected on patients undergoing sequential surgical debridement as treatment for IPN. The severity of AP was evaluated using the Ranson criteria, the Acute Physiology and Chronic Health Evaluation (APACHE II) Score, and the Sepsis Score, as well as the extent of necrosis. The surgical approach was through a midline or subcostal laparotomy, followed by exploration of the peritoneal cavity, wide debridement, and peritoneal lavage. The abdomen was either left open or closed partially with a surgical zipper, with multiple re-laparotomies scheduled until debridement of necrotic tissue was complete. The long-term evaluation focused on late morbidity, performance status, and abdominal wall function. In the majority of patients (68%), mixed flora were isolated. Pseudomonas aeruginosa was the microorganism identified most commonly (59%), often associated with Candida albicans or C. glabrata. The mean total hospital stay was 71+/-38 days (range 13-146 days), of which 24+/-19 days (range 0-66 days) were in the intensive care unit. Eight patients died, the deaths being caused by multiple organ dysfunction syndrome in seven patients and hemorrhage from the splenic artery in one. Normal exocrine and endocrine pancreatic function was observed in 28 patients (88%). At discharge, four patients had steatorrhea, which was temporary. Eight patients (23%) developed pancreatic pseudocysts, and in six, cystogastostomy was performed. Most patients (29/32, 91%) developed a post-operative hernia, but only five required surgical repair. All patients had a Short Form (SF)-36 score>60%, and 20 of the 32 patients (68%) had scores>70-80% (good quality of life). The worst scores were related to alcoholic pancreatitis. The degree of pancreatic failure (exocrine and endocrine function) is not related to the amount of pancreatic necrosis. Even with a need for repeated laparotomy and multiple surgical procedures, the abdominal wall capacity as well as long-term quality of life remain excellent.
Schmidt, F N; Zimmermann, E A; Campbell, G M; Sroga, G E; Püschel, K; Amling, M; Tang, S Y; Vashishth, D; Busse, B
2017-04-01
Aging and many disease conditions, most notably diabetes, are associated with the accumulation of non-enzymatic cross-links in the bone matrix. The non-enzymatic cross-links, also known as advanced glycation end products (AGEs), occur at the collagen tissue level, where they are associated with reduced plasticity and increased fracture risk. In this study, Fourier-transform infrared (FTIR) imaging was used to detect spectroscopic changes associated with the formation of non-enzymatic cross-links in human bone collagen. Here, the non-enzymatic cross-link profile was investigated in one cohort with an in vitro ribose treatment as well as another cohort with an in vivo bisphosphonate treatment. With FTIR imaging, the two-dimensional (2D) spatial distribution of collagen quality associated with non-enzymatic cross-links was measured through the area ratio of the 1678/1692cm -1 subbands within the amide I peak, termed the non-enzymatic crosslink-ratio (NE-xLR). The NE-xLR increased by 35% in the ribation treatment group in comparison to controls (p<0.005), with interstitial bone tissue being more susceptible to the formation of non-enzymatic cross-links. Ultra high-performance liquid chromatography, fluorescence microscopy, and fluorometric assay confirm a correlation between the non-enzymatic cross-link content and the NE-xLR ratio in the control and ribated groups. High resolution FTIR imaging of the 2D bone microstructure revealed enhanced accumulation of non-enzymatic cross-links in bone regions with higher tissue age (i.e., interstitial bone). This non-enzymatic cross-link ratio (NE-xLR) enables researchers to study not only the overall content of AGEs in the bone but also its spatial distribution, which varies with skeletal aging and diabetes mellitus and provides an additional measure of bone's propensity to fracture. Copyright © 2017 Elsevier Inc. All rights reserved.
Szekalska, Marta; Sosnowska, Katarzyna; Zakrzeska, Agnieszka; Kasacka, Irena; Lewandowska, Alicja; Winnicka, Katarzyna
2017-01-22
Sodium alginate is a polymer with unique ability to gel with different cross-linking agents in result of ionic and electrostatic interactions. Chitosan cross-linked alginate provides improvement of swelling and mucoadhesive properties and might be used to design sustained release dosage forms. Therefore, the aim of this research was to develop and evaluate possibility of preparing chitosan cross-linked alginate microparticles containing metformin hydrochloride by the spray-drying method. In addition, influence of cross-linking agent on the properties of microparticles was evaluated. Formulation of microparticles prepared by the spray drying of 2% alginate solution cross-linked by 0.1% chitosan was characterized by good mucoadhesive properties, high drug loading and prolonged metformin hydrochloride release. It was shown that designed microparticles reduced rat glucose blood level, delayed absorption of metformin hydrochloride and provided stable plasma drug concentration. Additionally, histopathological studies of pancreas, liver and kidneys indicated that all prepared microparticles improved degenerative changes in organs of diabetic rats. Moreover, no toxicity effect and no changes in rats behavior after oral administration of chitosan cross-linked alginate microparticles were noted.
Zhao, Jun; Chen, Min; Wang, Xiaoyan; Zhao, Xiaodong; Wang, Zhenwen; Dang, Zhi-Min; Ma, Lan; Hu, Guo-Hua; Chen, Fenghua
2013-06-26
In this paper, the triple shape memory effects (SMEs) observed in chemically cross-linked polyethylene (PE)/polypropylene (PP) blends with cocontinuous architecture are systematically investigated. The cocontinuous window of typical immiscible PE/PP blends is the volume fraction of PE (v(PE)) of ca. 30-70 vol %. This architecture can be stabilized by chemical cross-linking. Different initiators, 2,5-dimethyl-2,5-di(tert-butylperoxy)-hexane (DHBP), dicumylperoxide (DCP) coupled with divinylbenzene (DVB) (DCP-DVB), and their mixture (DHBP/DCP-DVB), are used for the cross-linking. According to the differential scanning calorimetry (DSC) measurements and gel fraction calculations, DHBP produces the best cross-linking and DCP-DVB the worst, and the mixture, DHBP/DCP-DVB, is in between. The chemical cross-linking causes lower melting temperature (Tm) and smaller melting enthalpy (ΔHm). The prepared triple shape memory polymers (SMPs) by cocontinuous immiscible PE/PP blends with v(PE) of 50 vol % show pronounced triple SMEs in the dynamic mechanical thermal analysis (DMTA) and visual observation. This new strategy of chemically cross-linked immiscible blends with cocontinuous architecture can be used to design and prepare new SMPs with triple SMEs.
Kohn, K W
1977-05-01
Bifunctional alkylating agents are known to cross-link DNA by simultaneously alkylating two guanine residues located on opposite strands. Despite this apparent requirement for bifunctionality, 1-(2-chloroethyl)-1-nitrosoureas bearing a single alkylating function were found to cross-link DNA in vitro. Cross-linking was demonstrated by showing inhibition of alkali-induced strand separation. Extensive cross-linking was observed in DNA treated with 1-(2-chloroethyl)-1-nitrosourea, 1,3-bis-(2-chloroethyl)-1-nitrosourea, and 1-(2-chloroethyl(-3-cyclohexyl-1-nitrosourea. The reaction occurs in two steps, an intital binding followed by a second step which can proceed after removal of unbound drug. It is suggested that the first step is chloroethylation of a nucleophilic site on one strand and that the second step involves displacement of Cl- by a nucleophilic site on the opposite strand, resulting in an ethyl bridge between the strands. Consistent with this possibility, 1-(2-fluoroethyl)-3-cyclohexyl-1-nitrosourea produced much less cross-linking, as expected from the known low activity of F-, compared with Cl-, as leaving group. 1-Methyl-1-nitrosourea, which is known to depurinate DNA, produced no detectable cross-linking.
Automated Assignment of MS/MS Cleavable Cross-Links in Protein 3D-Structure Analysis
NASA Astrophysics Data System (ADS)
Götze, Michael; Pettelkau, Jens; Fritzsche, Romy; Ihling, Christian H.; Schäfer, Mathias; Sinz, Andrea
2015-01-01
CID-MS/MS cleavable cross-linkers hold an enormous potential for an automated analysis of cross-linked products, which is essential for conducting structural proteomics studies. The created characteristic fragment ion patterns can easily be used for an automated assignment and discrimination of cross-linked products. To date, there are only a few software solutions available that make use of these properties, but none allows for an automated analysis of cleavable cross-linked products. The MeroX software fills this gap and presents a powerful tool for protein 3D-structure analysis in combination with MS/MS cleavable cross-linkers. We show that MeroX allows an automatic screening of characteristic fragment ions, considering static and variable peptide modifications, and effectively scores different types of cross-links. No manual input is required for a correct assignment of cross-links and false discovery rates are calculated. The self-explanatory graphical user interface of MeroX provides easy access for an automated cross-link search platform that is compatible with commonly used data file formats, enabling analysis of data originating from different instruments. The combination of an MS/MS cleavable cross-linker with a dedicated software tool for data analysis provides an automated workflow for 3D-structure analysis of proteins. MeroX is available at
Courcelles, Mathieu; Coulombe-Huntington, Jasmin; Cossette, Émilie; Gingras, Anne-Claude; Thibault, Pierre; Tyers, Mike
2017-07-07
Protein cross-linking mass spectrometry (CL-MS) enables the sensitive detection of protein interactions and the inference of protein complex topology. The detection of chemical cross-links between protein residues can identify intra- and interprotein contact sites or provide physical constraints for molecular modeling of protein structure. Recent innovations in cross-linker design, sample preparation, mass spectrometry, and software tools have significantly improved CL-MS approaches. Although a number of algorithms now exist for the identification of cross-linked peptides from mass spectral data, a dearth of user-friendly analysis tools represent a practical bottleneck to the broad adoption of the approach. To facilitate the analysis of CL-MS data, we developed CLMSVault, a software suite designed to leverage existing CL-MS algorithms and provide intuitive and flexible tools for cross-platform data interpretation. CLMSVault stores and combines complementary information obtained from different cross-linkers and search algorithms. CLMSVault provides filtering, comparison, and visualization tools to support CL-MS analyses and includes a workflow for label-free quantification of cross-linked peptides. An embedded 3D viewer enables the visualization of quantitative data and the mapping of cross-linked sites onto PDB structural models. We demonstrate the application of CLMSVault for the analysis of a noncovalent Cdc34-ubiquitin protein complex cross-linked under different conditions. CLMSVault is open-source software (available at https://gitlab.com/courcelm/clmsvault.git ), and a live demo is available at http://democlmsvault.tyerslab.com/ .
Radiation cross-linking in ultra-high molecular weight polyethylene for orthopaedic applications
NASA Astrophysics Data System (ADS)
Oral, Ebru; Muratoglu, Orhun K.
2007-12-01
The motivation for radiation cross-linking of ultra-high molecular weight polyethylene (UHMWPE) is to increase its wear resistance to be used as bearing surfaces for total joint arthroplasty. However, radiation also leaves behind long-lived residual free radicals in this polymer, the reactions of which can detrimentally affect mechanical properties. In this review, we focus on the radiation cross-linking and oxidative stability of first and second generation highly cross-linked UHMWPEs developed in our laboratory.
Mižíková, Ivana; Ruiz-Camp, Jordi; Steenbock, Heiko; Madurga, Alicia; Vadász, István; Herold, Susanne; Mayer, Konstantin; Seeger, Werner; Brinckmann, Jürgen; Morty, Rory E
2015-06-01
Maturation of the lung extracellular matrix (ECM) plays an important role in the formation of alveolar gas exchange units. A key step in ECM maturation is cross-linking of collagen and elastin, which imparts stability and functionality to the ECM. During aberrant late lung development in bronchopulmonary dysplasia (BPD) patients and animal models of BPD, alveolarization is blocked, and the function of ECM cross-linking enzymes is deregulated, suggesting that perturbed ECM cross-linking may impact alveolarization. In a hyperoxia (85% O2)-based mouse model of BPD, blunted alveolarization was accompanied by alterations to lung collagen and elastin levels and cross-linking. Total collagen levels were increased (by 63%). The abundance of dihydroxylysinonorleucine collagen cross-links and the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio were increased by 11 and 18%, respectively, suggestive of a profibrotic state. In contrast, insoluble elastin levels and the abundance of the elastin cross-links desmosine and isodesmosine in insoluble elastin were decreased by 35, 30, and 21%, respectively. The lung collagen-to-elastin ratio was threefold increased. Treatment of hyperoxia-exposed newborn mice with the lysyl oxidase inhibitor β-aminopropionitrile partially restored normal collagen levels, normalized the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio, partially normalized desmosine and isodesmosine cross-links in insoluble elastin, and partially restored elastin foci structure in the developing septa. However, β-aminopropionitrile administration concomitant with hyperoxia exposure did not improve alveolarization, evident from unchanged alveolar surface area and alveoli number, and worsened septal thickening (increased by 12%). These data demonstrate that collagen and elastin cross-linking are perturbed during the arrested alveolarization of developing mouse lungs exposed to hyperoxia. Copyright © 2015 the American Physiological Society.
Carlos-Amaya, Fandila; Osorio-Diaz, Perla; Agama-Acevedo, Edith; Yee-Madeira, Hernani; Bello-Pérez, Luis Arturo
2011-02-23
Banana starch was chemically modified using single (esterification or cross-linking) and dual modification (esterification-cross-linking and cross-linking-esterification), with the objective to increase the slowly digestible starch (SDS) and resistant starch (RS) concentrations. Physicochemical properties and in vitro digestibility were analyzed. The degree of substitution of the esterified samples ranged from 0.006 to 0.020. The X-ray diffraction pattern of the modified samples did not show change; however, an increase in crystallinity level was determined (from 23.79 to 32.76%). The ungelatinized samples had low rapidly digestible starch (RDS) (4.23-9.19%), whereas the modified starches showed an increase in SDS (from 10.79 to 16.79%) and had high RS content (74.07-85.07%). In the cooked samples, the esterified starch increased the SDS content (21.32%), followed by cross-linked starch (15.13%). Dual modified starch (cross-linked-esterified) had the lowest SDS content, but the highest RS amount. The esterified and cross-linked-esterified samples had higher peak viscosity than cross-linked and esterified-cross-linked. This characteristic is due to the fact that in dual modification, the groups introduced in the first modification are replaced by the functional group of the second modification. Temperature and enthalpy of gelatinization decreased in modified starches (from 75.37 to 74.02 °C and from 10.42 to 8.68 J/g, respectively), compared with their unmodified starch (76.15 °C and 11.05 J/g). Cross-linked-esterified starch showed the lowest enthalpy of gelatinization (8.68 J/g). Retrogradation temperature decreased in modified starches compared with unmodified (59.04-57.47 °C), but no significant differences were found among the modified samples.
Labate, Cristina; Lombardo, Marco; Lombardo, Giuseppe; De Santo, Maria Penelope
2017-01-01
The purpose of this study was to investigate the biomechanical stiffening effect induced by nanoplatform-based transepithelial riboflavin/UV-A cross-linking protocol using atomic force microscopy (AFM). Twelve eye bank donor human sclerocorneal tissues were investigated using a commercial atomic force microscope operated in force spectroscopy mode. Four specimens underwent transepithelial corneal cross-linking using a hypotonic solution of 0.1% riboflavin with biodegradable polymeric nanoparticles of 2-hydroxypropyl-β-cyclodextrin plus enhancers (trometamol and ethylenediaminetetraacetic acid) and UV-A irradiation with a 10 mW/cm2 device for 9 minutes. After treatment, the corneal epithelium was removed using the Amoils brush, and the Young's modulus of the most anterior stroma was quantified as a function of scan rate by AFM. The results were compared with those collected from four specimens that underwent conventional riboflavin/UV-A corneal cross-linking and four untreated specimens. The average Young's modulus of the most anterior stroma after the nanoplatform-based transepithelial and conventional riboflavin/UV-A corneal cross-linking treatments was 2.5 times (P < 0.001) and 1.7 times (P < 0.001) greater than untreated controls respectively. The anterior stromal stiffness was significantly different between the two corneal cross-linking procedures (P < 0.001). The indentation depth decreased after corneal cross-linking treatments, ranging from an average of 2.4 ± 0.3 μm in untreated samples to an average of 1.2 ± 0.1 μm and 1.8 ± 0.1 μm after nanoplatform-based transepithelial and conventional cross-linking, respectively. The present nanotechnology-based transepithelial riboflavin/UV-A corneal cross-linking was effective to improve the biomechanical strength of the most anterior stroma of the human cornea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miknis, F.P.; Netzel, D.A.
The results of coal swelling measurements using 1,4-dioxane as the swelling reagent for premoisturized coals (raw) and coal dried thermally, chemically, and with microwave radiation are presented. An increase in the swelling ratio relative to raw coal indicates a decrease in the amount of cross-linking in the coal. Conversely, a decrease in the ratio indicates an increase in cross-linking. The extent of cross-linking (as measured by 1,4-dioxane) for Texas, Black Thunder, and Eagle Butte Coals are about the same. Illinois {number_sign}6 coal appears to have less cross-linking relative to the other three coals. These results are expected on the basismore » of coal rank. The increase in cross linking is most pronounced for coals dried thermally and with microwave radiation. A decrease in the swelling ratios for all four coals suggests that cross-linking had occurred possibly due to partial devolatilization process. However, low temperature, chemical dehydration of the coals causes only a small or no change in the internal structure for Texas and Illinois {number_sign}6 coals whereas a significant decrease in the cross-linking structure for the Black Thunder and Eagle Butte coals is observed. It is possible that the solvent (CH{sub 3}OH) and products resulting from the chemical dehydrating (acetone and methanol) occupy the surface sites that water had before the reaction and thus preventing cross-linking to occur. These reagents can also promote swelling of coals and may account for some of the decrease in the cross-linking of the coal structure observed for the chemically dried coals.« less
Aslanides, Ioannis M; Dessi, Claudia; Georgoudis, Panagiotis; Charalambidis, Georgios; Vlassopoulos, Dimitris; Coutsolelos, Athanassios G; Kymionis, George; Mukherjee, Achyut; Kitsopoulos, Theofanis N
2016-04-01
The effect of ultraviolet (UV)-riboflavin cross-linking (CXL) has been measured primarily using the strip extensometry technique. We propose a simple and reliable methodology for the assessment of CXL treatment by using an established rheologic protocol based on small amplitude oscillatory shear (SAOS) measurements. It provides information on the average cross-link density and the elastic modulus of treated cornea samples. Three fresh postmortem porcine corneas were used to study the feasibility of the technique, one serving as control and two receiving corneal collagen cross-linking treatment. Subsequently, five pairs of fresh postmortem porcine corneas received corneal collagen cross-linking treatment with riboflavin and UVA-irradiation (370 nm; irradiance of 3 mW/cm2) for 30 minutes (Dresden protocol); the contralateral porcine corneas were used as control samples. After the treatment, the linear viscoelastic moduli of the corneal samples were measured using SAOS measurements and the average cross-linking densities extracted. For all cases investigated, the dynamic moduli of the cross-linked corneas were higher compared to those of the corresponding control samples. The increase of the elastic modulus of the treated samples was between 122% and 1750%. The difference was statistically significant for all tested samples (P = 0.018, 2-tailed t-test). We report a simple and accurate methodology for quantifying the effects of cross-linking on porcine corneas treated with the Dresden protocol by means of SAOS measurements in the linear regime. The measured dynamic moduli, elastic and viscous modulus, represent the energy storage and energy dissipation, respectively. Hence, they provide a means to assess the changing physical properties of the cross-linked collagen networks after CXL treatment.
Donor cross-linking for keratoplasty: a laboratory evaluation.
Mukherjee, Achyut; Hayes, Sally; Aslanides, Ioannis; Lanchares, Elena; Meek, Keith M
2015-12-01
This laboratory-based investigation compares the topographic outcomes of conventional penetrating keratoplasty with that of a novel procedure in which donor corneas are cross-linked prior to keratoplasty. Penetrating keratoplasty procedures with continuous running sutures were carried out in a porcine whole globe model. Sixty eyes were randomly paired as 'donor' and 'host' tissue before being assigned to one of two groups. In the cross-linked group, donor corneas underwent riboflavin/UVA cross-linking prior to being trephined and sutured to untreated hosts. In the conventional keratoplasty group, both host and donor corneas remained untreated prior to keratoplasty. Topographic and corneal wavefront measurements were performed following surgery, and technical aspects of the procedure evaluated. Mean keratometric astigmatism was significantly lower in the cross-linked donor group at 3.67D (SD 1.8 D), vs. 8.43 D (SD 2.4 D) in the conventional keratoplasty group (p < 0.005). Mean wavefront astigmatism was also significantly reduced in the cross-linked donor group 4.71 D (SD 2.1) vs. 8.29D (SD 3.6) in the conventional keratoplasty group (p < 0.005). Mean RMS higher order aberration was significantly lower in the cross-linked donor group at 1.79 um (SD 0.98), vs. 3.05 um (SD 1.9) in the conventional keratoplasty group (P = 0.02). Qualitative analysis revealed less tissue distortion at the graft-host junction in the cross-linked group. Cross-linking of donor corneas prior to keratoplasty reduces intraoperative induced astigmatism and aberrations in an animal model. Further studies are indicated to evaluate the implications of this potential modification of keratoplasty surgery.
Hastrup, Hanne; Sen, Namita; Javitch, Jonathan A
2003-11-14
Using cysteine cross-linking, we demonstrated previously that the dopamine transporter (DAT) is at least a homodimer, with the extracellular end of transmembrane segment (TM) 6 at a symmetrical dimer interface. We have now explored the possibility that DAT exists as a higher order oligomer in the plasma membrane. Cysteine cross-linking of wild type DAT resulted in bands on SDS-PAGE consistent with dimer, trimer, and tetramer, suggesting that DAT forms a tetramer in the plasma membrane. A cysteine-depleted DAT (CD-DAT) into which only Cys243 or Cys306 was reintroduced was cross-linked to dimer, suggesting that these endogenous cysteines in TM4 and TM6, respectively, were cross-linked at a symmetrical dimer interface. Reintroduction of both Cys243 and Cys306 into CD-DAT led to a pattern of cross-linking indistinguishable from that of wild type, with dimer, trimer, and tetramer bands. This indicated that the TM4 interface and the TM6 interface are distinct and further suggested that DAT may exist in the plasma membrane as a dimer of dimers, with two symmetrical homodimer interfaces. The cocaine analog MFZ 2-12 and other DAT inhibitors, including benztropine and mazindol, protected Cys243 against cross-linking. In contrast, two substrates of DAT, dopamine and tyramine, did not significantly impact cross-linking. We propose that the impairment of cross-linking produced by the inhibitors results from a conformational change at the TM4 interface, further demonstrating that these compounds are not neutral blockers but by themselves have effects on the structure of the transporter.
Novel Concepts of MS-Cleavable Cross-linkers for Improved Peptide Structure Analysis
NASA Astrophysics Data System (ADS)
Hage, Christoph; Falvo, Francesco; Schäfer, Mathias; Sinz, Andrea
2017-10-01
The chemical cross-linking/mass spectrometry (MS) approach is gaining increasing importance as an alternative method for studying protein conformation and for deciphering protein interaction networks. This study is part of our ongoing efforts to develop innovative cross-linking principles for a facile and efficient assignment of cross-linked products. We evaluate two homobifunctional, amine-reactive, and MS-cleavable cross-linkers regarding their potential for automated analysis of cross-linked products. We introduce the bromine phenylurea (BrPU) linker that possesses a unique structure yielding a distinctive fragmentation pattern on collisional activation. Moreover, BrPU delivers the characteristic bromine isotope pattern and mass defect for all cross-linker-decorated fragments. We compare the fragmentation behavior of the BrPU linker with that of our previously described MS-cleavable TEMPO-Bz linker (which consists of a 2,2,6,6-tetramethylpiperidine-1-oxy moiety connected to a benzyl group) that was developed to perform free-radical-initiated peptide sequencing. Comparative collisional activation experiments (collision-induced dissociation and higher-energy collision-induced dissociation) with both cross-linkers were conducted in negative electrospray ionization mode with an Orbitrap Fusion mass spectrometer using five model peptides. As hypothesized in a previous study, the presence of a cross-linked N-terminal aspartic acid residue seems to be the prerequisite for the loss of an intact peptide from the cross-linked products. As the BrPU linker combines a characteristic mass shift with an isotope signature, it presents a more favorable combination for automated assignment of cross-linked products compared with the TEMPO-Bz linker. [Figure not available: see fulltext.
Walzthoeni, Thomas; Joachimiak, Lukasz A; Rosenberger, George; Röst, Hannes L; Malmström, Lars; Leitner, Alexander; Frydman, Judith; Aebersold, Ruedi
2015-12-01
Chemical cross-linking in combination with mass spectrometry generates distance restraints of amino acid pairs in close proximity on the surface of native proteins and protein complexes. In this study we used quantitative mass spectrometry and chemical cross-linking to quantify differences in cross-linked peptides obtained from complexes in spatially discrete states. We describe a generic computational pipeline for quantitative cross-linking mass spectrometry consisting of modules for quantitative data extraction and statistical assessment of the obtained results. We used the method to detect conformational changes in two model systems: firefly luciferase and the bovine TRiC complex. Our method discovers and explains the structural heterogeneity of protein complexes using only sparse structural information.
A Review of Collagen Cross-Linking in Cornea and Sclera
Zhang, Xiao; Tao, Xiang-chen; Zhang, Jian; Li, Zhi-wei; Xu, Yan-yun; Wang, Yu-meng; Zhang, Chun-xiao; Mu, Guo-ying
2015-01-01
Riboflavin/UVA cross-linking is a technique introduced in the past decades for the treatment of keratoconus, keratectasia, and infectious keratitis. Its efficacy and safety have been investigated with clinical and laboratory studies since its first clinical application by Wollensak for the treatment of keratoconus. Although its complications are encountered during clinical practice, such as infection inducing risk, minimal invasion merits a further investigation on its future application in clinical practice. Recently, collagen cross-linking in sclera shows a promising prospect. In present study, we summarized the representative studies describing the clinical and laboratory application of collagen cross-linking published in past decades and provided our opinion on the positive and negative results of cross-linking in the treatment of ophthalmic disorders. PMID:25922758
Wilcox, C A; Fuller, R S
1991-10-01
The Kex2 protease of the yeast Saccharomyces cerevisiae is a prototypical eukaryotic prohormone-processing enzyme that cleaves precursors of secreted peptides at pairs of basic residues. Here we have established the pathway of posttranslational modification of Kex2 protein using immunoprecipitation of the biosynthetically pulse-labeled protein from a variety of wild-type and mutant yeast strains as the principal methodology. Kex2 protein is initially synthesized as a prepro-enzyme that undergoes cotranslational signal peptide cleavage and addition of Asn-linked core oligosaccharide and Ser/Thr-linked mannose in the ER. The earliest detectable species, I1 (approximately 129 kD), undergoes rapid amino-terminal proteolytic removal of a approximately 9-kD pro-segment yielding species I2 (approximately 120 kD) before arrival at the Golgi complex. Transport to the Golgi complex is marked by extensive elaboration of Ser/Thr-linked chains and minor modification of Asn-linked oligosaccharide. During the latter phase of its lifetime, Kex2 protein undergoes a gradual increase in apparent molecular weight. This final modification serves as a marker for association of Kex2 protease with a late compartment of the yeast Golgi complex in which it is concentrated about 27-fold relative to other secretory proteins.
Achieving Integration in Mixed Methods Designs—Principles and Practices
Fetters, Michael D; Curry, Leslie A; Creswell, John W
2013-01-01
Mixed methods research offers powerful tools for investigating complex processes and systems in health and health care. This article describes integration principles and practices at three levels in mixed methods research and provides illustrative examples. Integration at the study design level occurs through three basic mixed method designs—exploratory sequential, explanatory sequential, and convergent—and through four advanced frameworks—multistage, intervention, case study, and participatory. Integration at the methods level occurs through four approaches. In connecting, one database links to the other through sampling. With building, one database informs the data collection approach of the other. When merging, the two databases are brought together for analysis. With embedding, data collection and analysis link at multiple points. Integration at the interpretation and reporting level occurs through narrative, data transformation, and joint display. The fit of integration describes the extent the qualitative and quantitative findings cohere. Understanding these principles and practices of integration can help health services researchers leverage the strengths of mixed methods. PMID:24279835
Achieving integration in mixed methods designs-principles and practices.
Fetters, Michael D; Curry, Leslie A; Creswell, John W
2013-12-01
Mixed methods research offers powerful tools for investigating complex processes and systems in health and health care. This article describes integration principles and practices at three levels in mixed methods research and provides illustrative examples. Integration at the study design level occurs through three basic mixed method designs-exploratory sequential, explanatory sequential, and convergent-and through four advanced frameworks-multistage, intervention, case study, and participatory. Integration at the methods level occurs through four approaches. In connecting, one database links to the other through sampling. With building, one database informs the data collection approach of the other. When merging, the two databases are brought together for analysis. With embedding, data collection and analysis link at multiple points. Integration at the interpretation and reporting level occurs through narrative, data transformation, and joint display. The fit of integration describes the extent the qualitative and quantitative findings cohere. Understanding these principles and practices of integration can help health services researchers leverage the strengths of mixed methods. © Health Research and Educational Trust.
Yu, Clinton; Huszagh, Alexander; Viner, Rosa; Novitsky, Eric J; Rychnovsky, Scott D; Huang, Lan
2016-10-18
Cross-linking mass spectrometry (XL-MS) represents a recently popularized hybrid methodology for defining protein-protein interactions (PPIs) and analyzing structures of large protein assemblies. In particular, XL-MS strategies have been demonstrated to be effective in elucidating molecular details of PPIs at the peptide resolution, providing a complementary set of structural data that can be utilized to refine existing complex structures or direct de novo modeling of unknown protein structures. To study structural and interaction dynamics of protein complexes, quantitative cross-linking mass spectrometry (QXL-MS) strategies based on isotope-labeled cross-linkers have been developed. Although successful, these approaches are mostly limited to pairwise comparisons. In order to establish a robust workflow enabling comparative analysis of multiple cross-linked samples simultaneously, we have developed a multiplexed QXL-MS strategy, namely, QMIX (Quantitation of Multiplexed, Isobaric-labeled cross (X)-linked peptides) by integrating MS-cleavable cross-linkers with isobaric labeling reagents. This study has established a new analytical platform for quantitative analysis of cross-linked peptides, which can be directly applied for multiplexed comparisons of the conformational dynamics of protein complexes and PPIs at the proteome scale in future studies.
Ego Depletion in Real-Time: An Examination of the Sequential-Task Paradigm.
Arber, Madeleine M; Ireland, Michael J; Feger, Roy; Marrington, Jessica; Tehan, Joshua; Tehan, Gerald
2017-01-01
Current research into self-control that is based on the sequential task methodology is currently at an impasse. The sequential task methodology involves completing a task that is designed to tax self-control resources which in turn has carry-over effects on a second, unrelated task. The current impasse is in large part due to the lack of empirical research that tests explicit assumptions regarding the initial task. Five studies test one key, untested assumption underpinning strength (finite resource) models of self-regulation: Performance will decline over time on a task that depletes self-regulatory resources. In the aftermath of high profile replication failures using a popular letter-crossing task and subsequent criticisms of that task, the current studies examined whether depletion effects would occur in real time using letter-crossing tasks that did not invoke habit-forming and breaking, and whether these effects were moderated by administration type (paper and pencil vs. computer administration). Sample makeup and sizes as well as response formats were also varied across the studies. The five studies yielded a clear and consistent pattern of increasing performance deficits (errors) as a function of time spent on task with generally large effects and in the fifth study the strength of negative transfer effects to a working memory task were related to individual differences in depletion. These results demonstrate that some form of depletion is occurring on letter-crossing tasks though whether an internal regulatory resource reservoir or some other factor is changing across time remains an important question for future research.
Ego Depletion in Real-Time: An Examination of the Sequential-Task Paradigm
Arber, Madeleine M.; Ireland, Michael J.; Feger, Roy; Marrington, Jessica; Tehan, Joshua; Tehan, Gerald
2017-01-01
Current research into self-control that is based on the sequential task methodology is currently at an impasse. The sequential task methodology involves completing a task that is designed to tax self-control resources which in turn has carry-over effects on a second, unrelated task. The current impasse is in large part due to the lack of empirical research that tests explicit assumptions regarding the initial task. Five studies test one key, untested assumption underpinning strength (finite resource) models of self-regulation: Performance will decline over time on a task that depletes self-regulatory resources. In the aftermath of high profile replication failures using a popular letter-crossing task and subsequent criticisms of that task, the current studies examined whether depletion effects would occur in real time using letter-crossing tasks that did not invoke habit-forming and breaking, and whether these effects were moderated by administration type (paper and pencil vs. computer administration). Sample makeup and sizes as well as response formats were also varied across the studies. The five studies yielded a clear and consistent pattern of increasing performance deficits (errors) as a function of time spent on task with generally large effects and in the fifth study the strength of negative transfer effects to a working memory task were related to individual differences in depletion. These results demonstrate that some form of depletion is occurring on letter-crossing tasks though whether an internal regulatory resource reservoir or some other factor is changing across time remains an important question for future research. PMID:29018390
Mechanical Strength Improvements of Carbon Nanotube Threads through Epoxy Cross-Linking
Yu, Qingyue; Alvarez, Noe T.; Miller, Peter; Malik, Rachit; Haase, Mark R.; Schulz, Mark; Shanov, Vesselin; Zhu, Xinbao
2016-01-01
Individual Carbon Nanotubes (CNTs) have a great mechanical strength that needs to be transferred into macroscopic fiber assemblies. One approach to improve the mechanical strength of the CNT assemblies is by creating covalent bonding among their individual CNT building blocks. Chemical cross-linking of multiwall CNTs (MWCNTs) within the fiber has significantly improved the strength of MWCNT thread. Results reported in this work show that the cross-linked thread had a tensile strength six times greater than the strength of its control counterpart, a pristine MWCNT thread (1192 MPa and 194 MPa, respectively). Additionally, electrical conductivity changes were observed, revealing 2123.40 S·cm−1 for cross-linked thread, and 3984.26 S·cm−1 for pristine CNT thread. Characterization suggests that the obtained high tensile strength is due to the cross-linking reaction of amine groups from ethylenediamine plasma-functionalized CNT with the epoxy groups of the cross-linking agent, 4,4-methylenebis(N,N-diglycidylaniline). PMID:28787868
Shokuhfar, Ali; Arab, Behrouz
2013-09-01
Recently, great attention has been focused on using epoxy polymers in different fields such as aerospace, automotive, biotechnology, and electronics, owing to their superior properties. In this study, the classical molecular dynamics (MD) was used to simulate the cross linking of diglycidyl ether of bisphenol-A (DGEBA) with diethylenetriamine (DETA) curing agent, and to study the behavior of resulted epoxy polymer with different conversion rates. The constant-strain (static) approach was then applied to calculate the mechanical properties (Bulk, shear and Young's moduli, elastic stiffness constants, and Poisson's ratio) of the uncured and cross-linked systems. Estimated material properties were found to be in good agreement with experimental observations. Moreover, the dependency of mechanical properties on the cross linking density was investigated and revealed improvements in the mechanical properties with increasing the cross linking density. The radial distribution function (RDF) was also used to study the evolution of local structures of the simulated systems as a function of cross linking density.
Chen, Jian; Li, Jiding; Qi, Rongbin; Ye, Hong; Chen, Cuixian
2010-01-01
Cross-linked polydimethylsiloxane (PDMS)-polyetherimide (PEI) composite membranes were prepared, in which asymmetric microporous PEI membrane prepared with phase inversion method was acted as the microporous supporting layer in the flat-plate composite membrane. Membrane characterization was conducted by Fourier transform infrared and scanning electronic microscopy analysis. The composite membranes were employed in pervaporation separation of n-heptane-thiophene mixtures. Effect of amount of PDMS, cross-linking temperature, amount of cross-linking agent, and cross-linking time on the separation efficiency of n-heptane-thiophene mixtures was investigated experimentally. Experiment results demonstrated that 80-100 degrees degrees C of cross-linking temperature was more preferable for practical application, as the amount of cross-linking agent was up to 20 wt.%, and 25 wt.% of PDMS amount was more optimal as far as flux and sulfur enrichment factor were concerned. In addition, the swelling degree of and stableness of composite membrane during long-time operation were studied, which should be significant for practical application.
Pliszka, Barbara; Martin, Brian M; Karczewska, Emilia
2008-02-01
To probe ionic contacts of skeletal muscle myosin with negatively charged residues located beyond the N-terminal part of actin, myosin subfragment 1 (S1) and actin split by ECP32 protease (ECP-actin) were cross-linked with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). We have found that unmodified S1 can be cross-linked not only to the N-terminal part, but also to the C-terminal 36 kDa fragment of ECP-actin. Subsequent experiments performed on S1 cleaved by elastase or trypsin indicate that the cross-linking site in S1 is located within loop 2. This site is composed of Lys-636 and Lys-637 and can interact with negatively charged residues of the 36 kDa actin fragment, most probably with Glu-99 and Glu-100. Cross-links are formed both in the absence and presence of MgATP.P(i) analog, although the addition of nucleotide decreases the efficiency of the cross-linking reaction.
Influence of cross-linked arabinoxylans on the postprandial blood glucose response in rats.
Vogel, Barbara; Gallaher, Daniel D; Bunzel, Mirko
2012-04-18
Viscous dietary fibers are well established to reduce the blood glucose response to a meal. In this study, arabinoxylans, the most abundant dietary fiber in most cereals, were extracted under alkaline conditions and cross-linked by using laccase. Cross-linking of the arabinoxylans led to gel formation and increased in vitro viscosity almost 100-fold after drying and rehydration. To determine the ability of these cross-linked arabinoxylans to blunt the postprandial blood glucose curve of a meal, arabinoxylans, either native or cross-linked, and either prehydrated or not, were fed to rats as part of a meal, and blood glucose was monitored at intervals after the meal. Cellulose, a nonviscous fiber, served as a control. Cross-linked, but not native, arabinoxylans significantly reduced the area under the blood glucose time curve 5-9% relative to cellulose, indicating that they remained viscous within the gastrointestinal tract, and thus likely provide the health benefits found with other viscous fibers.
NASA Astrophysics Data System (ADS)
Li, Mingyu; Zhang, Gang; Xu, Shuai; Zhao, Chengji; Han, Miaomiao; Zhang, Liyuan; Jiang, Hao; Liu, Zhongguo; Na, Hui
2014-06-01
A novel type of cross-linked proton exchange membrane of lower methanol permeation and high proton conductivity is prepared, based on a newly synthesized sulfonated cross-linker: carboxyl terminated benzimidazole trimer bearing sulfonic acid groups (s-BI). Compared to membranes cross-linked with non-sulfonated cross-linker (BI), SPEEK/s-BI-n membranes show higher IEC values and proton conductivities. Meanwhile, oxidative stability and mechanical property of SPEEK/s-BI-n membranes are obviously improved. Among SPEEK/s-BI-n membranes, SPEEK/s-BI-2 exhibits high proton conductivity, low swelling ratio (0.122 S cm-1 and 15.2% at 60 °C, respectively) and low methanol permeability coefficient. These results imply that the cross-linked membranes prepared with the newly sulfonated cross-linker are promising for the direct methanol fuel cells (DMFCs) application.
Lin, Xiaoti
2015-01-01
Objective To evaluate the efficacy of corneal collagen cross-linking (CXL) for the treatment of keratoconus. Methods We performed a literature search for randomized controlled trials that assessed the effect of CXL in slowing progression of keratoconus. The primary outcome measures included changes of topographic parameters, visual acuity, and refraction. Efficacy estimates were evaluated by weighted mean difference (WMD) and 95% confidence interval (CI) for absolute changes of the interested outcomes. Results Significant decrease in mean keratometry value, maximum keratometry value and minimum keratometry value were demonstrated in the CXL group compared with the control group (WMD = -1.65; 95% CI: -2.51 to -0.80; P < 0.00001; WMD = -2.05; 95% CI: -3.10 to -1.00; P < 0.00001; WMD = -1.94; 95% CI: -2.63 to -1.26; P < 0.00001; respectively). Best spectacle-corrected visual acuity improved significantly in CXL group (WMD = -0.10; 95% CI: -0.15 to -0.05; P < 0.00001), whereas uncorrected visual acuity did not differ statistically. Manifest cylinder error decreased significantly in patients undergoing CXL procedure compared with control patients in sensitivity analysis (WMD = -0.388; 95% CI: -0.757 to -0. 019; P = 0.04). The changes in central corneal thickness and intraocular pressure were not statistically significant. Conclusion CXL may be an effective option in stabilizing keratoconus. Further long-term follow-up studies will be necessary to assess the persistence of CXL. PMID:25985208
Triazoles inhibit cholesterol export from lysosomes by binding to NPC1.
Trinh, Michael N; Lu, Feiran; Li, Xiaochun; Das, Akash; Liang, Qiren; De Brabander, Jef K; Brown, Michael S; Goldstein, Joseph L
2017-01-03
Niemann-Pick C1 (NPC1), a membrane protein of lysosomes, is required for the export of cholesterol derived from receptor-mediated endocytosis of LDL. Lysosomal cholesterol export is reportedly inhibited by itraconazole, a triazole that is used as an antifungal drug [Xu et al. (2010) Proc Natl Acad Sci USA 107:4764-4769]. Here we show that posaconazole, another triazole, also blocks cholesterol export from lysosomes. We prepared P-X, a photoactivatable cross-linking derivative of posaconazole. P-X cross-linked to NPC1 when added to intact cells. Cross-linking was inhibited by itraconazole but not by ketoconazole, an imidazole that does not block cholesterol export. Cross-linking of P-X was also blocked by U18666A, a compound that has been shown to bind to NPC1 and inhibit cholesterol export. P-X also cross-linked to purified NPC1 that was incorporated into lipid bilayer nanodiscs. In this in vitro system, cross-linking of P-X was inhibited by itraconazole, but not by U18666A. P-X cross-linking was not prevented by deletion of the N-terminal domain of NPC1, which contains the initial binding site for cholesterol. In contrast, P-X cross-linking was reduced when NPC1 contained a point mutation (P691S) in its putative sterol-sensing domain. We hypothesize that the sterol-sensing domain has a binding site that can accommodate structurally different ligands.
Multiple binding modes of substrate to the catalytic RNA subunit of RNase P from Escherichia coli.
Pomeranz Krummel, D A; Altman, S
1999-01-01
M1 RNA that contained 4'-thiouridine was photochemically cross-linked to different substrates and to a product of the reaction it governs. The locations of the cross-links in these photochemically induced complexes were identified. The cross-links indicated that different substrates share some contacts but have distinct binding modes to M1 RNA. The binding of some substrates also results in a substrate-dependent conformational change in the enzymatic RNA, as evidenced by the appearance of an M1 RNA intramolecular cross-link. The identification of the cross-links between M1 RNA and product indicate that they are shared with only one of the three cross-linked E-S complexes that were identified, an indication of noncompetitive inhibition by the product. We also examined whether the cross-linked complexes between M1 RNA and substrate(s) or product are altered in the presence of the enzyme's protein cofactor (C5 protein) and in the presence of different concentrations of divalent metal ions. C5 protein enhanced the yield of certain M1 RNA-substrate cross-linked complexes for both wild-type M1 RNA and a deletion mutant of M1 RNA (delta[273-281]), but not for the M1 RNA-product complex. High concentrations of Mg2+ increased the yield of all M1 RNA-substrate complexes but not the M1 RNA-product complex. PMID:10445877
Solving constrained minimum-time robot problems using the sequential gradient restoration algorithm
NASA Technical Reports Server (NTRS)
Lee, Allan Y.
1991-01-01
Three constrained minimum-time control problems of a two-link manipulator are solved using the Sequential Gradient and Restoration Algorithm (SGRA). The inequality constraints considered are reduced via Valentine-type transformations to nondifferential path equality constraints. The SGRA is then used to solve these transformed problems with equality constraints. The results obtained indicate that at least one of the two controls is at its limits at any instant in time. The remaining control then adjusts itself so that none of the system constraints is violated. Hence, the minimum-time control is either a pure bang-bang control or a combined bang-bang/singular control.
Davidenko, Natalia; Bax, Daniel V; Schuster, Carlos F; Farndale, Richard W; Hamaia, Samir W; Best, Serena M; Cameron, Ruth E
2016-01-01
Short wavelength (λ = 254 nm) UV irradiation was evaluated over a range of intensities (0.06 to 0.96 J/cm(2)) as a means of cross-linking collagen- and gelatin-based scaffolds, to tailor their material characteristics whilst retaining biological functionality. Zero-link carbodiimide treatments are commonly applied to collagen-based materials, forming cross-links from carboxylate anions (for example the acidic E of GFOGER) that are an essential part of integrin binding sites on collagen. Cross-linking these amino acids therefore disrupts the bioactivity of collagen. In contrast, UV irradiation forms bonds from less important aromatic tyrosine and phenylalanine residues. We therefore hypothesised that UV cross-linking would not compromise collagen cell reactivity. Here, highly porous (~99 %) isotropic, collagen-based scaffolds were produced via ice-templating. A series of scaffolds (pore diameters ranging from 130-260 μm) with ascending stability in water was made from gelatin, two different sources of collagen I, or blends of these materials. Glucose, known to aid UV crosslinking of collagen, was added to some lower-stability formulations. These scaffolds were exposed to different doses of UV irradiation, and the scaffold morphology, dissolution stability in water, resistance to compression and cell reactivity was assessed. Stabilisation in aqueous media varied with both the nature of the collagen-based material employed and the UV intensity. Scaffolds made from the most stable materials showed the greatest stability after irradiation, although the levels of cross-linking in all cases were relatively low. Scaffolds made from pure collagen from the two different sources showed different optimum levels of irradiation, suggesting altered balance between stabilisation from cross-linking and destabilisation from denaturation. The introduction of glucose into the scaffold enhanced the efficacy of UV cross-linking. Finally, as hypothesized, cell attachment, spreading and proliferation on collagen materials were unaffected by UV cross-linking. UV irradiation may therefore be used to provide relatively low level cross-linking of collagen without loss of biological functionality.
Welsch, Nicole; Lyon, L Andrew
2017-01-01
We present a systematic study of self-cross-linked microgels formed by precipitation polymerization of oligo ethylene glycol methacrylates. The cross-linking density of these microgels and, thus, the network flexibility can be easily tuned through the modulation of the reaction temperature during polymerization. Microgels prepared in absence of any difunctional monomer, i.e. cross-linker, show enhanced deformability and particle spreading on solid surfaces as compared to microgels cross-linked with varying amounts of poly(ethylene glycol diacrylate) (PEG-DA) in addition to self-crosslinking. Particles prepared at low reaction temperatures exhibit the highest degree of spreading due to the lightly cross-linked and flexible polymer network. Moreover, AFM force spectroscopy studies suggest that cross-linker-free microgels constitute of a more homogeneous polymer network than PEG-DA cross-linked particles and have elastic moduli at the particle apex that are ~5 times smaller than the moduli of 5 mol-% PEG-DA cross-linked microgels. Resistive pulse sensing experiments demonstrate that microgels prepared at 75 and 80°C without PEG-DA are able to deform significantly to pass through nanopores that are smaller than the microgel size. Additionally, we found that polymer network flexibility of microgels is a useful tool to control the formation of particle dewetting patterns. This offers a promising new avenue for build-up of 2D self-assembled particle structures with patterned chemical and mechanical properties.
Lyon, L. Andrew
2017-01-01
We present a systematic study of self-cross-linked microgels formed by precipitation polymerization of oligo ethylene glycol methacrylates. The cross-linking density of these microgels and, thus, the network flexibility can be easily tuned through the modulation of the reaction temperature during polymerization. Microgels prepared in absence of any difunctional monomer, i.e. cross-linker, show enhanced deformability and particle spreading on solid surfaces as compared to microgels cross-linked with varying amounts of poly(ethylene glycol diacrylate) (PEG-DA) in addition to self-crosslinking. Particles prepared at low reaction temperatures exhibit the highest degree of spreading due to the lightly cross-linked and flexible polymer network. Moreover, AFM force spectroscopy studies suggest that cross-linker-free microgels constitute of a more homogeneous polymer network than PEG-DA cross-linked particles and have elastic moduli at the particle apex that are ~5 times smaller than the moduli of 5 mol-% PEG-DA cross-linked microgels. Resistive pulse sensing experiments demonstrate that microgels prepared at 75 and 80°C without PEG-DA are able to deform significantly to pass through nanopores that are smaller than the microgel size. Additionally, we found that polymer network flexibility of microgels is a useful tool to control the formation of particle dewetting patterns. This offers a promising new avenue for build-up of 2D self-assembled particle structures with patterned chemical and mechanical properties. PMID:28719648
NASA Astrophysics Data System (ADS)
Carlsohn, Elisabet; Ångström, Jonas; Emmett, Mark R.; Marshall, Alan G.; Nilsson, Carol L.
2004-05-01
Chemical cross-linking of proteins is a well-established method for structural mapping of small protein complexes. When combined with mass spectrometry, cross-linking can reveal protein topology and identify contact sites between the peptide surfaces. When applied to surface-exposed proteins from pathogenic organisms, the method can reveal structural details that are useful in vaccine design. In order to investigate the possibilities of applying cross-linking on larger protein complexes, we selected the urease enzyme from Helicobacter pylori as a model. This membrane-associated protein complex consists of two subunits: [alpha] (26.5 kDa) and [beta] (61.7 kDa). Three ([alpha][beta]) heterodimers form a trimeric ([alpha][beta])3 assembly which further associates into a unique dodecameric 1.1 MDa complex composed of four ([alpha][beta])3 units. Cross-linked peptides from trypsin-digested urease complex were analyzed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and molecular modeling. Two potential cross-linked peptides (present in the cross-linked sample but undetectable in [alpha], [beta], and native complex) were assigned. Molecular modeling of urease [alpha][beta] complex and trimeric urease units ([alpha][beta])3 revealed a linkage site between the [alpha]-subunit and the [beta]-subunit, and an internal cross-linkage in the [beta]-subunit.
Moreno-Pérez, O; Boix, V; Merino, E; Picó, A; Reus, S; Alfayate, R; Giner, L; Mirete, R; Sánchez-Payá, J; Portilla, J
2016-06-01
Inhibin B (IB) levels and the IB: follicle-stimulating hormone (FSH) ratio (IFR), biomarkers of global Sertoli cell function, show a strong relationship with male fertility. The aim of the study was to examine the prevalence of impaired fertility potential in HIV-infected men and the influence of antiretroviral therapy (ART) on fertility biomarkers. A cross-sectional study with sequential sampling was carried out. A total of 169 clinically stable patients in a cohort of HIV-infected men undergoing regular ambulatory assessment in a tertiary hospital were included. The mean [± standard deviation (SD)] age of the patients was 42.6 ± 8.1 years, all were clinically stable, 61.5% had disease classified as Centers for Disease Control and Prevention (CDC) stage A, and were na?ve to ART or had not had any changes to ART for 6 months (91.1%). Morning baseline IB and FSH concentrations were measured using an enzyme-linked immunosorbent assay (ELISA) and an electrochemiluminescent immunoassay (ECLIA), respectively. A multivariate logistic regression model was used to identify factors associated with impaired fertility, defined as IB < 119 pg/mL or IFR < 23.5. The mean (± SD) IB level was 250 ± 103 pg/mL, the median [interquartile range (IQR)] FSH concentration was 5.1 (3.3-7.8) UI/L and the median (IQR) IFR was 46.1 (26.3-83.7). The prevalence of impaired fertility was 21.9% [95% confidence interval (CI) 16.3-20.7%]. Negative correlations of body mass index and waist: hip ratio with FSH and IB levels were observed (P < 0.01), while a sedentary lifestyle and previous nevirapine exposure were associated with a decreased risk of IB levels ≤ 25th percentile in multivariate analysis. Only older age, as a risk factor, and sedentary lifestyle, with a protective effect, were independently associated with impaired fertility in multivariate analysis. Global testicular Sertoli cell function and fertility potential, assessed indirectly through serum IB levels and IB: FSH ratio, appear to be well maintained in HIV-infected men and not damaged by ART. © 2015 British HIV Association.
[Positioning of mRNA 3' of the a site bound codon on the human 80S ribosome].
Molotkov, M V; Graĭfer, D M; Demeshkina, N A; Repkova, M N; Ven'iaminova, A G; Karpova, G G
2005-01-01
Short mRNA analogues carrying a UUU triplet at the 5'-termini and a perfluorophenylazide group at either the N7 atom of the guanosine or the C5 atom of the uridine 3' of the triplet were applied to study positioning of mRNA 3' of the A site codon. Complexes of 80S ribosomes with the mRNA analogues were obtained in the presence of tRNAPhe that directed UUU codon to the P site and consequently provided placement of the nucleotide with cross-linker in positions +9 or +12 with respect to the first nucleotide of the P site bound codon. Both types mRNA analogues cross-linked to the 18S rRNA and 40S proteins under mild UV-irradiation. Cross-linking patterns in the complexes where modified nucleotides of the mRNA analogues were in position +7 were analyzed for comparison (cross-linking to the 18S rRNA in such complexes has been studied previously). The efficiency of cross-linking to the ribosomal components depended on the nature of the modified nucleotide in the mRNA analogue and its position on the ribosome, extent of cross-linking to the 18S rRNA being decreased drastically when the modified nucleotide was moved from position +7 to position +12. The nucleotides of 18S rRNA cross-linked to mRNA analogues were determined. Modified nucleotides in positions +9 and +12 cross-linked to the invariant dinucleotide A1824/A1825 and to variable A1823 in the 3'-minidomain of 18S rRNA as well as to protein S15. The same ribosomal components have been found earlier to cross-link to modified mRNA nucleotides in positions from +4 to +7. Besides, all mRNA analogues cross-linked to the invariant nucleotide c1698 in the 3'-minidomain and to and the conserved region 605-620 closing helix 18 in the 5'-domain.
Development and evaluation of polyvinyl-alcohol blend polymer films as battery separators
NASA Technical Reports Server (NTRS)
Manzo, M. A.
1982-01-01
Several dialdehydes and epoxies were evaluated for their suitability as cross-linkers. Optium concentrations of several cross-linking reagents were determined. A two-step method of cross-linking, which involves treatment of the film in an acid or acid periodate bath, was investigated and dropped in favor of a one-step method in which the acid catalyst, which initiates cross-linking, is added to the PVA - cross-linker solution before casting. The cross-linking was thus achieved during the drying step. This one-step method was much more adaptable to commercial processing. Cross-linked films were characterized as alkaline battery separators. Films were prepared in the lab and tested in cells in order to evaluate the effect of film composition and a number of processing parameters on cell performance. These tests were conducted in order to provide a broader data base from which to select optimum processing parameters. Results of the separator screening tests and the cell tests are discussed.
Inverse problems in 1D hemodynamics on systemic networks: a sequential approach.
Lombardi, D
2014-02-01
In this work, a sequential approach based on the unscented Kalman filter is applied to solve inverse problems in 1D hemodynamics, on a systemic network. For instance, the arterial stiffness is estimated by exploiting cross-sectional area and mean speed observations in several locations of the arteries. The results are compared with those ones obtained by estimating the pulse wave velocity and the Moens-Korteweg formula. In the last section, a perspective concerning the identification of the terminal models parameters and peripheral circulation (modeled by a Windkessel circuit) is presented. Copyright © 2013 John Wiley & Sons, Ltd.
Hydrogels Prepared from Cross-Linked Nanofibrillated Cellulose
Sandeep S. Nair; J.Y. Zhu; Yulin Deng; Arthur J. Ragauskas
2014-01-01
Nanocomposite hydrogels were developed by cross-linking nanofibrillated cellulose with poly(methyl vinyl ether-co-maleic acid) and polyethylene glycol. The cross-linked hydrogels showed enhanced water absorption and gel content with the addition of nanocellulose. In addition, the thermal stability, mechanical strength, and modulus increased with an increase in the...
Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels
Tobias Köhnke; Thomas Elder; Hans Theliander; Arthur J. Ragauskas
2014-01-01
Structured xylan-based hydrogels, reinforced with cellulose nanocrystals (CNCs), have successfully been prepared from water suspensions by cross-linking during freeze-casting. In order to induce cross-linking during the solidification/sublimation operation, xylan was first oxidized using sodium periodate to introduce dialdehydes. The oxidized xylan was then mixed with...
Collagen type IX from human cartilage: a structural profile of intermolecular cross-linking sites.
Diab, M; Wu, J J; Eyre, D R
1996-01-01
Type IX collagen, a quantitatively minor collagenous component of cartilage, is known to be associated with and covalently cross-linked to type II collagen fibrils in chick and bovine cartilage. Type IX collagen molecules have also been shown to form covalent cross-links with each other in bovine cartilage. In the present study we demonstrate by structural analysis and location of cross-linking sites that, in human cartilage, type IX collagen is covalently cross-linked to type II collagen and to other molecules of type IX collagen. We also present evidence that, if the proteoglycan form of type IX collagen is present in human cartilage, it can only be a minor component of the matrix, similar to findings with bovine cartilage. PMID:8660302
A General Method for Targeted Quantitative Cross-Linking Mass Spectrometry.
Chavez, Juan D; Eng, Jimmy K; Schweppe, Devin K; Cilia, Michelle; Rivera, Keith; Zhong, Xuefei; Wu, Xia; Allen, Terrence; Khurgel, Moshe; Kumar, Akhilesh; Lampropoulos, Athanasios; Larsson, Mårten; Maity, Shuvadeep; Morozov, Yaroslav; Pathmasiri, Wimal; Perez-Neut, Mathew; Pineyro-Ruiz, Coriness; Polina, Elizabeth; Post, Stephanie; Rider, Mark; Tokmina-Roszyk, Dorota; Tyson, Katherine; Vieira Parrine Sant'Ana, Debora; Bruce, James E
2016-01-01
Chemical cross-linking mass spectrometry (XL-MS) provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NMR and cryo-electron microscopy[1]. The extension of traditional quantitative proteomics methods with chemical cross-linking can provide information on the structural dynamics of protein structures and protein complexes. The identification and quantitation of cross-linked peptides remains challenging for the general community, requiring specialized expertise ultimately limiting more widespread adoption of the technique. We describe a general method for targeted quantitative mass spectrometric analysis of cross-linked peptide pairs. We report the adaptation of the widely used, open source software package Skyline, for the analysis of quantitative XL-MS data as a means for data analysis and sharing of methods. We demonstrate the utility and robustness of the method with a cross-laboratory study and present data that is supported by and validates previously published data on quantified cross-linked peptide pairs. This advance provides an easy to use resource so that any lab with access to a LC-MS system capable of performing targeted quantitative analysis can quickly and accurately measure dynamic changes in protein structure and protein interactions.
Recyclable cross-linked anion exchange membrane for alkaline fuel cell application
NASA Astrophysics Data System (ADS)
Hou, Jianqiu; Liu, Yazhi; Ge, Qianqian; Yang, Zhengjin; Wu, Liang; Xu, Tongwen
2018-01-01
Cross-linking can effectively solve the conductivity-swelling dilemma in anion exchange membranes (AEMs) but will generate solid wastes. To address this, we developed an AEM cross-linked via disulfide bonds, bearing quaternary ammonium groups, which can be easily recycled. The membrane (RC-QPPO) with IEC of 1.78 mmol g-1, when cross-linked, showed enhanced mechanical properties and good hydroxide conductivity (24.6 mS cm-1 at 30 °C). Even at higher IEC value (2.13 mmol g-1), it still has low water uptake, low swelling ratio and delivers a peak power density of 150 mW cm-2 at 65 °C. Exploiting the formation of disulfide bonds from -SH groups, the membrane can be readily cross-linked in alkaline condition and recycled by reversibly breaking disulfide bonds with dithiothreitol (DTT). The recycled membrane solution can be directly utilized to cast a brand-new AEM. By washing away the residual DTT with water and exposure to air, it can be cross-linked again and this process is repeatable. During the recycling and cross-linking processes, the membrane showed a slight IEC decrease of 5% due to functional group degradation. The strategy presented here is promising in enhancing AEM properties and reducing the impact of artificial polymers on the environment.
Hinz, Katharina; Huppertz, Thom; Kelly, Alan L
2012-11-01
The susceptibility of total casein and the individual caseins in reconstituted skim milk to transglutaminase (TGase)-induced cross-linking was studied as a function of incubation temperature (5-40 °C), pH (5·0-7·0) and mineral addition. Within the ranges studied, the level of total casein cross-linked increased with increasing temperature, pH and concentration of added trisodium citrate, whereas adding calcium chloride had the opposite effect. These effects can be largely related to the effects of these parameters on TGase activity. In addition, the parameters were also found to influence the susceptibility of κ-casein, and to a lesser extent β-casein, to cross-linking, whereas the susceptibility of αs1-casein was not affected. The susceptibility of κ-casein to cross-linking increased with increasing temperature and calcium chloride addition, but decreased with increasing pH and citrate content, whereas the susceptibility of β-casein to TGase-induced cross-linking decreased with increasing temperature, but was not affected by other parameters. These findings highlight the fact that selection of environmental conditions during cross-linking can be applied to tailor the surface, and hence possibly colloidal stability, of casein micelles in TGase-treated milk.
2013-01-01
Chemical cross-linking of proteins combined with mass spectrometry provides an attractive and novel method for the analysis of native protein structures and protein complexes. Analysis of the data however is complex. Only a small number of cross-linked peptides are produced during sample preparation and must be identified against a background of more abundant native peptides. To facilitate the search and identification of cross-linked peptides, we have developed a novel software suite, named Hekate. Hekate is a suite of tools that address the challenges involved in analyzing protein cross-linking experiments when combined with mass spectrometry. The software is an integrated pipeline for the automation of the data analysis workflow and provides a novel scoring system based on principles of linear peptide analysis. In addition, it provides a tool for the visualization of identified cross-links using three-dimensional models, which is particularly useful when combining chemical cross-linking with other structural techniques. Hekate was validated by the comparative analysis of cytochrome c (bovine heart) against previously reported data.1 Further validation was carried out on known structural elements of DNA polymerase III, the catalytic α-subunit of the Escherichia coli DNA replisome along with new insight into the previously uncharacterized C-terminal domain of the protein. PMID:24010795
A contact photo-cross-linking investigation of the active site of the 8-17 deoxyribozyme.
Liu, Yong; Sen, Dipankar
2008-09-12
The small RNA-cleaving 8-17 deoxyribozyme (DNAzyme) has been the subject of extensive mechanistic and structural investigation, including a number of recent single-molecule studies of its global folding. Little detailed insight exists, however, into this DNAzyme's active site; for instance, the identity of specific nucleotides that are proximal to or in contact with the scissile site in the substrate. Here, we report a systematic replacement of a number of bases within the magnesium-folded DNAzyme-substrate complex with thio- and halogen-substituted base analogues, which were then photochemically activated to generate contact cross-links within the complex. Mapping of the cross-links revealed a striking pattern of DNAzyme-substrate cross-links but an absence of significant intra-DNAzyme cross-links. Notably, the two nucleotides directly flanking the scissile phosphodiester cross-linked strongly with functionally important elements within the DNAzyme, the thymine of a G.T wobble base pair, a WCGR bulge loop, and a terminal AGC loop. Mutation of the wobble base pair to a G-C pair led to a significant folding instability of the DNAzyme-substrate complex. The cross-linking patterns obtained were used to generate a model for the DNAzyme's active site that had the substrate's scissile phosphodiester sandwiched between the DNAzyme's wobble thymine and its AGC and WCGR loops.
Chen, Zihao; Du, Tianming; Tang, Xiangyu; Liu, Changjun; Li, Ruixin; Xu, Cheng; Tian, Feng; Du, Zhenjie; Wu, Jimin
2016-07-01
The property of collagen-chitosan porous scaffold varies according to cross-linking density and scaffold composition. This study was designed to compare the properties of collagen-chitosan porous scaffolds cross-linked with γ-irradiation and carbodiimide (CAR) for the first time. Eleven sets of collagen-chitosan scaffolds containing different concentrations of chitosan at a 5% increasing gradient were fabricated. Fourier transform infrared spectroscopy was performed to confirm the success of cross-linking in the scaffolds. The scaffold morphology was evaluated under scanning electron microscope (SEM). SEM revealed that chitosan was an indispensable material for the fabrication of γ-ray irradiation scaffold. The microstructure of γ-ray irradiation scaffold was less stable than those of alternative scaffolds. Based upon swelling ratio, porosity factor, and collagenase degradation, γ-ray irradiation scaffold was less stable than CAR and 25% proportion of chitosan scaffolds. Mechanical property determines the orientation in γ-irradiation and CAR scaffold. In vitro degradation test indicated that γ-irradiation and CAR cross-linking can elevate the scaffold biocompatibility. Compared with γ-ray irradiation, CAR cross-linked scaffold containing 25% chitosan can more significantly enhance the bio-stability and biocompatibility of collagen-chitosan scaffolds. CAR cross-linked scaffold may be the best choice for future tissue engineering.
Linking Assessment and Instruction Using Ontologies. CSE Technical Report 693
ERIC Educational Resources Information Center
Chung, Gregory K. W. K.; Delacruz, Girlie C.; Dionne, Gary B.; Bewley, William L.
2006-01-01
In this study we report on a test of a method that uses ontologies to individualize instruction by directly linking assessment results to the delivery of relevant content. Our sample was 2nd Lieutenants undergoing entry-level training on rifle marksmanship. Ontologies are explicit expressions of the concepts in a domain, the links among the…
Single Layer Surface-Grafted PMMA as a Negative-Tone e-Beam Resist.
Yamada, Hirotaka; Aydinoglu, Ferhat; Liu, Yaoze; Dey, Ripon K; Cui, Bo
2017-12-05
One of the important challenges in electron beam lithography is nanofabrication on nonflat or irregular surfaces. Although spin coating is the most popular technique for resist coating, it is not suitable for nonflat, irregular substrates because a uniform film cannot be achieved on those surfaces. Here, it is demonstrated that single layer surface-grafted PMMA can be used as a negative-tone e-beam resist, and it can be applied to nonflat, irregular surfaces as well as flat, conventional surfaces. Although it is well known that heavily exposed PMMA undergoes cross-linking and works as a negative-tone e-beam resist when developed by solvent, solvent does not work as a developer for negative-tone single-layer surface-grafted PMMA. Instead, thermal treatment at 360 °C for 1 min is used to develop PMMA.
Shamekhi, Mohammad Amin; Rabiee, Ahmad; Mirzadeh, Hamid; Mahdavi, Hamid; Mohebbi-Kalhori, Davod; Baghaban Eslaminejad, Mohamadreza
2017-11-01
The use of various chemical cross-linking agents for the improvement of scaffolds physical and mechanical properties is a common practical method, which is limited by cytotoxicity effects. Due to exerting contract type forces, chondrocytes are known to implement shrinkage on the tissue engineered constructs, which can be avoided by the scaffold cross-linking. In the this research, chitosan scaffolds are cross-linked with hydrothermal treatment with autoclave sterilization time of 0, 10, 20 and 30min, to avoid the application of the traditional chemical toxic materials. The optimization studies with gel content and crosslink density measurements indicate that for 20min sterilization time, the gel content approaches to ~80%. The scaffolds are fully characterized by the conventional techniques such as SEM, porosity and permeability, XRD, compression, thermal analysis and dynamic mechanical thermal analysis (DMTA). FT-IR studies shows that autoclave inter-chain cross-linking reduces the amine group absorption at 1560cm -1 and increase the absorption of N-acetylated groups at 1629cm -1 . It is anticipated, that this observation evidenced by chitosan scaffold browning upon autoclave cross-linking is an indication of the familiar maillard reaction between amine moieties and carbonyl groups. The biodegradation rate analysis shows that chitosan scaffolds with lower concentrations, possess suitable degradation rate for cartilage tissue engineering applications. In addition, cytotoxicity analysis shows that fabricated scaffolds are biocompatible. The human articular chondrocytes seeding into 3D cross-linked scaffolds shows a higher viability and proliferation in comparison with the uncross-linked samples and 2D controls. Investigation of cell morphology on the scaffolds by SEM, shows a more spherical morphology of chondrocytes on the cross-linked scaffolds for 21days of in vitro culture. Copyright © 2017. Published by Elsevier B.V.
Chavez, Juan D; Cilia, Michelle; Weisbrod, Chad R; Ju, Ho-Jong; Eng, Jimmy K; Gray, Stewart M; Bruce, James E
2012-05-04
Protein interactions are critical determinants of insect transmission for viruses in the family Luteoviridae. Two luteovirid structural proteins, the capsid protein (CP) and the readthrough protein (RTP), contain multiple functional domains that regulate virus transmission. There is no structural information available for these economically important viruses. We used Protein Interaction Reporter (PIR) technology, a strategy that uses chemical cross-linking and high resolution mass spectrometry, to discover topological features of the Potato leafroll virus (PLRV) CP and RTP that are required for the diverse biological functions of PLRV virions. Four cross-linked sites were repeatedly detected, one linking CP monomers, two within the RTP, and one linking the RTP and CP. Virus mutants with triple amino acid deletions immediately adjacent to or encompassing the cross-linked sites were defective in virion stability, RTP incorporation into the capsid, and aphid transmission. Plants infected with a new, infectious PLRV mutant lacking 26 amino acids encompassing a cross-linked site in the RTP exhibited a delay in the appearance of systemic infection symptoms. PIR technology provided the first structural insights into luteoviruses which are crucially lacking and are involved in vector-virus and plant-virus interactions. These are the first cross-linking measurements on any infectious, insect-transmitted virus.
Chavez, Juan D.; Cilia, Michelle; Weisbrod, Chad R.; Ju, Ho-Jong; Eng, Jimmy K.; Gray, Stewart M.; Bruce, James E.
2012-01-01
Protein interactions are critical determinants of insect-transmission for viruses in the family Luteoviridae. Two luteovirid structural proteins, the capsid protein (CP) and the readthrough protein (RTP), contain multiple functional domains that regulate virus transmission. There is no structural information available for these economically important viruses. We used Protein Interaction Reporter (PIR) technology, a strategy that uses chemical cross-linking and high resolution mass spectrometry, to discover topological features of the Potato leafroll virus (PLRV) CP and RTP that are required for the diverse biological functions of PLRV virions. Four cross-linked sites were repeatedly detected, one linking CP monomers, two within the RTP, and one linking the RTP and CP. Virus mutants with triple amino acid deletions immediately adjacent to or encompassing the cross-linked sites were defective in virion stability, RTP incorporation into the capsid, and aphid transmission. Plants infected with a new, infectious PLRV mutant lacking 26 amino acids encompassing a cross-linked site in the RTP exhibited a delay in the appearance of systemic infection symptoms. PIR technology provided the first structural insights into luteoviruses which are crucially lacking and that are involved in vector-virus and plant-virus interactions. These are the first cross-linking measurements on any infectious, insect-transmitted virus. PMID:22390342
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horio, Takuya; Spesyvtsev, Roman; Nagashima, Kazuki
A photoexcited molecule undergoes multiple deactivation and reaction processes simultaneously or sequentially, which have been observed by combinations of various experimental methods. However, a single experimental method that enables complete observation of the photo-induced dynamics would be of great assistance for such studies. Here we report a full observation of cascaded electronic dephasing from S{sub 2}(ππ{sup *}) in pyrazine (C{sub 4}N{sub 2}H{sub 4}) by time-resolved photoelectron imaging (TRPEI) using 9.3-eV vacuum ultraviolet pulses with a sub-20 fs time duration. While we previously demonstrated a real-time observation of the ultrafast S{sub 2}(ππ{sup *}) → S{sub 1}(nπ{sup *}) internal conversion in pyrazinemore » using TRPEI with UV pulses, this study presents a complete observation of the dynamics including radiationless transitions from S{sub 1} to S{sub 0} (internal conversion) and T{sub 1}(nπ{sup *}) (intersystem crossing). Also discussed are the role of {sup 1}A{sub u}(nπ{sup *}) in the internal conversion and the configuration interaction of the S{sub 2}(ππ{sup *}) electronic wave function.« less
Shu, X Z; Zhu, K J
2002-02-21
By adopting a novel chitosan cross-linked method, i.e. chitosan/gelatin droplet coagulated at low temperature and then cross-linked by anions (sulfate, citrate and tripolyphosphate (TPP)), the chitosan beads were prepared. Scanning electron microscopy (SEM) observation showed that sulfate/chitosan and citrate/chitosan beads usually had a spherical shape, smooth surface morphology and integral inside structure. Cross-sectional analysis indicated that the cross-linking process of sulfate and citrate to chitosan was much faster than that of TPP due to their smaller molecular size. But, once completely cross-linked, TPP/chitosan beads possessed much better mechanical strength and the force to break the beads was approximately ten times higher than that of sulfate/chitosan or citrate/chitosan beads. Release media pH and ionic strength seriously influenced the controlled drug release properties of the beads, which related to the strength of electrostatic interaction between anions and chitosan. Sulfate and citrate cross-linked chitosan beads swelled and even dissociated in simulated gastric fluid (SGF) and hence, model drug (riboflavin) released completely in 5 h; while in simulated intestinal fluid (SIF), beads remained in a shrinkage state and drug released slowly (release % usually <70% in 24 h). However, swelling and drug release of TPP/chitosan bead was usually insensitive to media pH. Chitosan beads, cross-linked by a combination of TPP and citrate (or sulfate) together, not only had a good shape, but also improved pH-responsive drug release properties. Salt weakened the interaction of citrate, especially sulfate with chitosan and accelerated beads swelling and hence drug release rate, but it was insensitive to that of TPP/chitosan. These results indicate that ionically cross-linked chitosan beads may be useful in stomach specific drug delivery.
Lai, Jui-Yang; Li, Ya-Ting; Wang, Tsu-Pin
2010-01-01
The interaction between cells and biopolymers is the evaluation indicator of the biocompatibility of materials. The purpose of this work was to examine the responses of retinal pigment epithelial (RPE) cells to genipin (GP) or glutaraldehyde (GTA) cross-linked chitosan by means of cell viability assays, cytokine expression analyses, and apoptosis assays. Evaluations of non-cross-linked chitosan were conducted simultaneously for comparison. Both GP and GTA treated samples with the same extent of cross-linking (around 80%) were prepared by varying cross-linking time. Our results showed that GP cross-linking was carried out by either radical polymerization of the monomers or S(N)2 nucleophilic substitution reaction involving the replacement of the ester group on the monomer with a secondary amide linkage. On the other hand, GTA could react with free amino groups of chitosan, leading to the formation of either the Schiff bases or the Michael-type adducts with terminal aldehydes. The biocompatibility of non-cross-linked chitosan membranes was demonstrated by the absence of any signs of toxicity or inflammation reaction. The present study showed that the ARPE-19 cells exposed to GTA cross-linked chitosan membranes had significantly higher cytotoxicity, interleukin-6 levels, and number of TUNEL-positive nuclei than did those exposed to GP treated samples. In addition, the materials modified with GTA trigger apoptosis at an early stage and may induce toxicity in the RPE cells later. The findings suggest that while the chitosan molecules bridged by GP are satisfactorily cytocompatible, the counterparts treated by GTA do not seem to be tolerated. In terms of material safety, the GP cross-linked chitosan may be compatible with human RPE cells and may have a potential application as delivery carriers in the treatment of posterior segment diseases.
mRNA 3' of the A site bound codon is located close to protein S3 on the human 80S ribosome.
Molotkov, Maxim V; Graifer, Dmitri M; Popugaeva, Elena A; Bulygin, Konstantin N; Meschaninova, Maria I; Ven'yaminova, Aliya G; Karpova, Galina G
2006-07-01
Ribosomal proteins neighboring the mRNA downstream of the codon bound at the decoding site of human 80S ribosomes were identified using three sets of mRNA analogues that contained a UUU triplet at the 5' terminus and a perfluorophenylazide cross-linker at guanosine, adenosine or uridine residues placed at various locations 3' of this triplet. The positions of modified mRNA nucleotides on the ribosome were governed by tRNA(Phe) cognate to the UUU triplet targeted to the P site. Upon mild UV-irradiation, the mRNA analogues cross-linked preferentially to the 40S subunit, to the proteins and to a lesser extent to the 18S rRNA. Cross-linked nucleotides of 18S rRNA were identified previously. In the present study, it is shown that among the proteins the main target for cross-linking with all the mRNA analogues tested was protein S3 (homologous to prokaryotic S3, S3p); minor cross-linking to protein S2 (S5p) was also detected. Both proteins cross-linked to mRNA analogues in the ternary complexes as well as in the binary complexes (without tRNA). In the ternary complexes protein S15 (S19p) also cross-linked, the yield of the cross-link decreased significantly when the modified nucleotide moved from position +5 to position +12 with respect to the first nucleotide of the P site bound codon. In several ternary complexes minor cross-linking to protein S30 was likewise detected. The results of this study indicate that S3 is a key protein at the mRNA binding site neighboring mRNA downstream of the codon at the decoding site in the human ribosome.
NASA Astrophysics Data System (ADS)
Núñez-Santiago, María C.; Maristany-Cáceres, Amira J.; Suárez, Francisco J. García; Bello-Pérez, Arturo
2008-07-01
Rheological behavior at 60 °C, granule size distribution and Differential Scanning Calorimetry (DSC) tests were employed to study the effect of diverse reaction conditions: adipic acid concentration, pH and temperature during cross-linking of banana (Musa paradisiaca) starch. These properties were determined in native banana starch pastes for the purpose of comparison. Rheological behavior from pastes of cross-linked starch at 60 °C did not show hysteresis, probably due the cross-linkage of starch that avoided disruption of granules, elsewhere, native starch showed hysteresis in a thixotropic loop. All pastes exhibited non-Newtonian shear thinning behavior. In all cases, size distribution showed a decrease in the median diameter in cross-linked starches. This condition produces a decrease in swelling capacity of cross-linked starch. The median diameter decreased with an increase of acid adipic concentration; however, an increase of pH and Temperature produced an increase in this variable. Finally, an increase in gelatinization temperature and entalphy (ΔH) were observed as an effect of cross-linkage. An increase in acid adipic concentration produced an increase in Tonset and a decrease in ΔH. pH and temperature. The cross-linked of banana starch produced granules more resistant during the pasting procedure.
Silk fibroin-Thelebolan matrix: A promising chemopreventive scaffold for soft tissue cancer.
Mukhopadhyay, Sourav K; Naskar, Deboki; Bhattacharjee, Promita; Mishra, Abheepsa; Kundu, Subhas C; Dey, Satyahari
2017-07-01
Research of improved functional bio-mimetic matrix for regenerative medicine is currently one of the rapidly growing fields in tissue engineering and medical sciences. This study reports a novel bio-polymeric matrix, which is fabricated using silk protein fibroin from Bombyx mori silkworm and fungal exopolysaccharide Thelebolan from Antarctic fungus Thelebolus sp. IITKGP-BT12 by solvent evaporation and freeze drying method. Natural cross linker genipin is used to imprison the Thelebolan within the fibroin network. Different cross-linked and non-cross-linked fibroin/Thelebolan matrices are fabricated and biophysically characterized. Cross-linked thin films show robustness, good mechanical strength and high temperature stability in comparison to non-cross-linked and pure matrices. The 3D sponge matrices demonstrate good cytocompatibility. Interestingly, sustained release of the Thelebolan from the cross-linked matrices induce apoptosis in colon cancer cell line (HT-29) in time dependent manner while it is nontoxic to the normal fibroblast cells (L929).The findings indicate that the cross-linked fibroin/Thelebolan matrices can be used as potential topical chemopreventive scaffold for preclusion of soft tissue carcinoma. Copyright © 2017 Elsevier B.V. All rights reserved.
Singh, Manmohan; Li, Jiasong; Han, Zhaolong; Vantipalli, Srilatha; Liu, Chih-Hao; Wu, Chen; Raghunathan, Raksha; Aglyamov, Salavat R.; Twa, Michael D.; Larin, Kirill V.
2016-01-01
Purpose The purpose of this study was to use noncontact optical coherence elastography (OCE) to evaluate and compare changes in biomechanical properties that occurred in rabbit cornea in situ after corneal collagen cross-linking by either of two techniques: ultraviolet-A (UV-A)/riboflavin or rose-Bengal/green light. Methods Low-amplitude (≤10 μm) elastic waves were induced in mature rabbit corneas by a focused air pulse. Elastic wave propagation was imaged by a phase-stabilized swept source OCE (PhS-SSOCE) system. Corneas were then cross-linked by either of two methods: UV-A/riboflavin (UV-CXL) or rose-Bengal/green light (RGX). Phase velocities of the elastic waves were fitted to a previously developed modified Rayleigh-Lamb frequency equation to obtain the viscoelasticity of the corneas before and after the cross-linking treatments. Micro-scale depth-resolved phase velocity distribution revealed the depth-wise heterogeneity of both cross-linking techniques. Results Under standard treatment settings, UV-CXL significantly increased the stiffness of the corneas by ∼47% (P < 0.05), but RGX did not produce statistically significant increases. The shear viscosities were unaffected by either cross-linking technique. The depth-wise phase velocities showed that UV-CXL affected the anterior ∼34% of the corneas, whereas RGX affected only the anterior ∼16% of the corneas. Conclusions UV-CXL significantly strengthens the cornea, whereas RGX does not, and the effects of cross-linking by UV-CXL reach deeper into the cornea than cross-linking effects of RGX under similar conditions. PMID:27409461
UV cross-linking of donor corneas confers resistance to keratolysis.
Arafat, Samer N; Robert, Marie-Claude; Shukla, Anita N; Dohlman, Claes H; Chodosh, James; Ciolino, Joseph B
2014-09-01
The aim of this study was to develop a modified ex vivo corneal cross-linking method that increases stromal resistance to enzymatic degradation for use as a carrier for the Boston keratoprosthesis. Ex vivo cross-linking of human corneas was performed using Barron artificial anterior chambers. The corneas were deepithelialized, pretreated with riboflavin solution (0.1% riboflavin/20% dextran), and irradiated with ultraviolet A (UV-A) light (λ = 370 nm, irradiance = 3 mW/cm) for various durations. The combined effect of UV-A and gamma (γ) irradiation was also assessed using the commercially available γ-irradiated corneal donors. The corneas were then trephined and incubated at 37°C with 0.3% collagenase A solution. The time to dissolution of each cornea was compared across treatments. Deepithelialized corneas (no UV light, no riboflavin) dissolved in 5.8 ± 0.6 hours. Cross-linked corneas demonstrated increased resistance to dissolution, with a time to dissolution of 17.8 ± 2.6 hours (P < 0.0001). The corneal tissues' resistance to collagenase increased with longer UV-A exposure, reaching a plateau at 30 minutes. Cross-linking both the anterior and posterior corneas did not provide added resistance when compared with cross-linking the anterior corneas only (P > 0.05). γ-irradiated corneas dissolved as readily as deepithelialized controls regardless of whether they were further cross-linked (5.6 ± 1.2 hours) or not (6.1 ± 0.6 hours) (P = 0.43). Collagen cross-linking of the deepithelialized anterior corneal surface for 30 minutes conferred optimal resistance to in vitro keratolysis by collagenase A.
A structural and kinetic study on myofibrils prevented from shortening by chemical cross-linking.
Herrmann, C; Sleep, J; Chaussepied, P; Travers, F; Barman, T
1993-07-20
In previous work, we studied the early steps of the Mg(2+)-ATPase activity of Ca(2+)-activated myofibrils [Houadjeto, M., Travers, F., & Barman, T. (1992) Biochemistry 31, 1564-1569]. The myofibrils were free to contract, and the results obtained refer to the ATPase cycle of myofibrils contracting with no external load. Here we studied the ATPase of myofibrils contracting isometrically. To prevent shortening, we cross-linked them with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC). SDS-PAGE and Western blot analyses showed that the myosin rods were extensively cross-linked and that 8% of the myosin heads were cross-linked to the thin filament. The transient kinetics of the cross-linked myofibrils were studied in 0.1 M potassium acetate, pH 7.4 and 4 degrees C, by the rapid-flow quench method. The ATP binding steps were studied by the cold ATP chase and the cleavage and release of products steps by the Pi burst method. In Pi burst experiments, the sizes of the bursts were equal within experimental error to the ATPase site concentrations (as determined by the cold ATP chase methods) for both cross-linked (isometric) and un-cross-linked (isotonic) myofibrils. This shows that in both cases the rate-limiting step is after the cleavage of ATP. When cross-linked, the kcat of Ca(2+)-activated myofibrils was reduced from 1.7 to 0.8 s-1. This is consistent with the observation that fibers shortening at moderate velocity have a higher ATPase activity than isometric fibers.(ABSTRACT TRUNCATED AT 250 WORDS)
Gelatin Methacrylate Microspheres for Growth Factor Controlled Release
Nguyen, Anh H.; McKinney, Jay; Miller, Tobias; Bongiorno, Tom; McDevitt, Todd C.
2014-01-01
Gelatin has been commonly used as a delivery vehicle for various biomolecules for tissue engineering and regenerative medicine applications due to its simple fabrication methods, inherent electrostatic binding properties, and proteolytic degradability. Compared to traditional chemical cross-linking methods, such as the use of glutaraldehyde (GA), methacrylate modification of gelatin offers an alternative method to better control the extent of hydrogel cross-linking. Here we examined the physical properties and growth factor delivery of gelatin methacrylate (GMA) microparticles formulated with a wide range of different cross-linking densities (15–90%). Less methacrylated MPs had decreased elastic moduli and larger mesh sizes compared to GA MPs, with increasing methacrylation correlating to greater moduli and smaller mesh sizes. As expected, an inverse correlation between microparticle cross-linking density and degradation was observed, with the lowest cross-linked GMA MPs degrading at the fastest rate, comparable to GA MPs. Interestingly, GMA MPs at lower cross-linking densities could be loaded with up to a 10-fold higher relative amount of growth factor over conventional GA cross-linked MPs, despite an order of magnitude greater gelatin content of GA MPs. Moreover, a reduced GMA cross-linking density resulted in more complete release of bone morphogenic protein 4 (BMP4) and basic fibroblast growth factor (bFGF) and accelerated release rate with collagenase treatment. These studies demonstrate that GMA MPs provide a more flexible platform for growth factor delivery by enhancing the relative binding capacity and permitting proteolytic degradation tunability, thereby offering a more potent controlled release system for growth factor delivery. PMID:25463489
Vilbert, Avery C.; Caranto, Jonathan D.
2017-01-01
Ammonia (NH3)-oxidizing bacteria (AOB) derive total energy for life from the multi-electron oxidation of NH3 to nitrite (NO2–). One obligate intermediate of this metabolism is hydroxylamine (NH2OH), which can be oxidized to the potent greenhouse agent nitrous oxide (N2O) by the AOB enzyme cytochrome (cyt) P460. We have now spectroscopically characterized a 6-coordinate (6c) {FeNO}7 intermediate on the NH2OH oxidation pathway of cyt P460. This species has two fates: it can either be oxidized to the {FeNO}6 that then undergoes attack by NH2OH to ultimately generate N2O, or it can lose its axial His ligand, thus generating a stable, off-pathway 5-coordinate (5c) {FeNO}7 species. We show that the wild type (WT) cyt P460 exhibits a slow nitric oxide (NO)-independent conversion (kHis-off = 2.90 × 10–3 s–1), whereas a cross-link-deficient Lys70Tyr cyt P460 mutant protein underwent His dissociation via both a NO-independent (kHis-off = 3.8 × 10–4 s–1) and a NO-dependent pathway [kHis-off(NO) = 790 M–1 s–1]. Eyring analyses of the NO-independent pathways for these two proteins revealed a significantly larger (ca. 27 cal mol–1 K–1) activation entropy (ΔS‡) in the cross-link-deficient mutant. Our results suggest that the Lys–heme cross-link confers rigidity to the positioning of the heme P460 cofactor to avoid the fast NO-dependent His dissociation pathway and subsequent formation of the off-pathway 5c {FeNO}7 species. The relevance of these findings to NO signaling proteins such as heme-nitric oxide/oxygen binding (H-NOX) is also discussed. PMID:29629106
Garnero, Patrick; Borel, Olivier; Gineyts, Evelyne; Duboeuf, Francois; Solberg, Helene; Bouxsein, Mary L; Christiansen, Claus; Delmas, Pierre D
2006-03-01
Mechanical behavior of bone depends on its mass and architecture, and on the material properties of the matrix, which is composed of a mineral phase and an organic component mainly constituted of type I collagen. Mineral accounts largely for the stiffness of bone, whereas type I collagen provides bone its ductility and toughness, i.e., its ability to undergo deformation and absorb energy after it begins to yield. The molecular mechanisms underlying the effect of alterations in type I collagen on bone mechanical properties are unclear. We used an in vitro model of fetal bovine cortical bone specimens (n = 44), where the extent of type I collagen cross-linking was modified by incubation at 37 degrees C for 0, 60, 90 and 120 days, keeping constant the architecture and the mineral content. At each incubation time, the following parameters were determined: (1) the bone concentration of enzymatic (pyridinoline; PYD and deoxypyridinoline, DPD) and non-enzymatic (pentosidine) crosslinks by HPLC, (2) the extent of aspartic acid isomerization of the type I collagen C-telopeptide (CTX) by ELISA of native (alpha CTX) and isomerized (beta CTX) forms, (3) the mineral density by DXA, (4) the porosity by micro-computed tomography and (5) the bending and compressive mechanical properties. Incubation of bone specimens at 37 degrees C for 60 days increased the level (per molecule of collagen) of PYD (+98%, P = 0.005), DPD (+42%, P = 0.013), pentosidine (+55-fold, P = 0.005), and the degree of type I collagen C-telopeptide isomerization (+4.9-fold, P = 0.005). These biochemical changes of collagen were associated with a 30% decrease in bending and compressive yield stress and a 2.5-fold increase in compressive post-yield energy absorption (P < 0.02 for all), with no significant change of bone stiffness. In multivariate analyses, the level of collagen cross-linking was associated with yield stress and post-yield energy absorption independently of bone mineral density, explaining up to 25% of their variance. We conclude that the extent and nature of collagen cross-linking contribute to the mechanical properties of fetal bovine cortical bone independently of bone mineral density.
A facile microwave irradiation approach that results in a cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic and bimetallic systems is described. Nanocomposites of PVA cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-P...
A facile method utilizing microwave irradiation is described that accomplishes the cross-linking reaction of PVA with metallic and bimetallic systems. Nanocomposites of PVA-cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-Pt, Pt-Fe, Cu...
Synthesis, Characterization, and Antibacterial Activity of Cross-Linked Chitosan-Glutaraldehyde
Li, Bin; Shan, Chang-Lin; Zhou, Qing; Fang, Yuan; Wang, Yang-Li; Xu, Fei; Han, Li-Rong; Ibrahim, Muhammad; Guo, Long-Biao; Xie, Guan-Lin; Sun, Guo-Chang
2013-01-01
This present study deals with synthesis, characterization and antibacterial activity of cross-linked chitosan-glutaraldehyde. Results from this study indicated that cross-linked chitosan-glutaraldehyde markedly inhibited the growth of antibiotic-resistant Burkholderia cepacia complex regardless of bacterial species and incubation time while bacterial growth was unaffected by solid chitosan. Furthermore, high temperature treated cross-linked chitosan-glutaraldehyde showed strong antibacterial activity against the selected strain 0901 although the inhibitory effects varied with different temperatures. In addition, physical-chemical and structural characterization revealed that the cross-linking of chitosan with glutaraldehyde resulted in a rougher surface morphology, a characteristic Fourier transform infrared (FTIR) band at 1559 cm−1, a specific X-ray diffraction peak centered at 2θ = 15°, a lower contents of carbon, hydrogen and nitrogen, and a higher stability of glucose units compared to chitosan based on scanning electron microscopic observation, FTIR spectra, X-ray diffraction pattern, as well as elemental and thermo gravimetric analysis. Overall, this study indicated that cross-linked chitosan-glutaraldehyde is promising to be developed as a new antibacterial drug. PMID:23670533
NASA Astrophysics Data System (ADS)
Saito, Noboru; Ryuzaki, Sou; Wang, Pangpang; Park, Susie; Sakai, Nobuyuki; Tatsuma, Tetsu; Okamoto, Koichi; Tamada, Kaoru
2018-03-01
The durability of two-dimensional metal nanoparticle sheets is a crucial factor for realizing next-generation optoelectronic devices based on plasmonics such as organic light-emitting diodes. Here, we report improvements in the durability of Ag nanoparticle sheets by forming alkanedithiol (DT16) cross-linked structures between the nanoparticles. The cross-linked structures in a sheet were fabricated by the self-assembly of DT16-capped Ag nanoparticles with 10% coverage (AgDT16). The durabilities for thermal, organic solvent, and oxidation reactions of AgDT16 sheets were found to be improved owing to the cross-linked structures by comparing Ag nanoparticle sheets without the cross-linked structures. The absorbance spectra revealed that the Ag nanoparticle sheets without the structure are markedly damaged by each durability test, whereas the AgDT16 sheets remain. The molecular cross-linked structures between nanoparticles in two-dimansional metal nanoparticle sheets were found to have the potential to play a key role in the realization of plasmonic optoelectronic devices including metal nanoparticles.
The effect of ionotropic gelation residence time on alginate cross-linking and properties.
Patel, Mitulkumar A; AbouGhaly, Mohamed H H; Schryer-Praga, Jacqueline V; Chadwick, Keith
2017-01-02
The ability to engineer biocompatible polymers with controllable properties is highly desirable. One such approach is to cross-link carbohydrate polymers using ionotropic gelation (IG). Previous studies have investigated the effect of curing time on alginate cross-linking. Herein, we discuss a novel study detailing the effect of IG residence time (IGRT) on the cross-linking of alginate with calcium ions (Ca 2+ ) along with water migration (syneresis) and their subsequent impact on the pharmaceutical properties of alginate particles. IGRT was shown to have a significant effect on particle size, porosity, density, mechanical strength and swelling of calcium alginate particles as well as drug release mechanism. Furthermore, we describe a novel application of electron dispersive spectroscopy (EDS), in conjunction with Fourier Transform- infra red (FT-IR) spectroscopy, to analyze and monitor the changes in Ca 2+ concentration during cross-linking. A simple procedure to determine the concentration and distribution of the surface and internal Ca 2+ involved in alginate cross-linking was successfully developed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jang, Jinah; Seol, Young-Joon; Kim, Hyeon Ji; Kundu, Joydip; Kim, Sung Won; Cho, Dong-Woo
2014-09-01
An effective cross-linking of alginate gel was made through reaction with calcium carbonate (CaCO3). We used human chondrocytes as a model cell to study the effects of cross-linking density. Three different pore size ranges of cross-linked alginate hydrogels were fabricated. The morphological, mechanical, and rheological properties of various alginate hydrogels were characterized and responses of biosynthesis of cells encapsulated in each gel to the variation in cross-linking density were investigated. Desired outer shape of structure was maintained when the alginate solution was cross-linked with the applied method. The properties of alginate hydrogel could be tailored through applying various concentrations of CaCO3. The rate of synthesized GAGs and collagens was significantly higher in human chondrocytes encapsulated in the smaller pore structure than that in the larger pore structure. The expression of chondrogenic markers, including collagen type II and aggrecan, was enhanced in the smaller pore structure. It was found that proper structural morphology is a critical factor to enhance the performance and tissue regeneration. Copyright © 2014 Elsevier Ltd. All rights reserved.
Formaldehyde cross-linking and structural proteomics: Bridging the gap.
Srinivasa, Savita; Ding, Xuan; Kast, Juergen
2015-11-01
Proteins are dynamic entities constantly moving and altering their structures based on their functions and interactions inside and outside the cell. Formaldehyde cross-linking combined with mass spectrometry can accurately capture interactions of these rapidly changing biomolecules while maintaining their physiological surroundings. Even with its numerous established uses in biology and compatibility with mass spectrometry, formaldehyde has not yet been applied in structural proteomics. However, formaldehyde cross-linking is moving toward analyzing tertiary structure, which conventional cross-linkers have already accomplished. The purpose of this review is to describe the potential of formaldehyde cross-linking in structural proteomics by highlighting its applications, characteristics and current status in the field. Copyright © 2015 Elsevier Inc. All rights reserved.
Shikata, Y; Ohe, H; Mano, N; Kuwada, M; Asakawa, N
1998-06-01
The structure of the N-linked carbohydrate chains of peptide isomerase from the venom of the funnel web spider (Agelenopsis aperta) has been analyzed. Carbohydrates were released from peptide isomerase by hydrazinolysis and reductively aminated with 2-aminopyridine. The fluorescent derivatives were purified by phenol/chloroform extraction, followed by size-exclusion HPLC. The structure of the purified pyridylamino (PA-) carbohydrate chains were analyzed by a combination of two-dimensional HPLC mapping, sugar composition analysis, sequential exoglycosidase digestions, and mass spectrometry. The peptide isomerase contains six kinds of N-linked carbohydrate chains of truncated high-mannose type, with a fucose alpha 1-6 linked to the reducing N-acetylglucosamine in approximately 80% of them.
Adverse Outcome Pathways (AOPs) describe toxicant effects as a sequential chain of causally linked events beginning with a molecular perturbation and culminating in an adverse outcome at an individual or population level. Strategies for developing AOPs are still evolving and dep...
Adolescents' Religiousness and Substance Use Are Linked via Afterlife Beliefs and Future Orientation
ERIC Educational Resources Information Center
Holmes, Christopher; Kim-Spoon, Jungmeen
2017-01-01
Although religiousness has been identified as a protective factor against adolescent substance use, processes through which these effects may operate are unclear. The current longitudinal study examined sequential mediation of afterlife beliefs and future orientation in the relation between adolescent religiousness and cigarette, alcohol, and…
Pretest probability estimation in the evaluation of patients with possible deep vein thrombosis.
Vinson, David R; Patel, Jason P; Irving, Cedric S
2011-07-01
An estimation of pretest probability is integral to the proper interpretation of a negative compression ultrasound in the diagnostic assessment of lower-extremity deep vein thrombosis. We sought to determine the rate, method, and predictors of pretest probability estimation in such patients. This cross-sectional study of outpatients was conducted in a suburban community hospital in 2006. Estimation of pretest probability was done by enzyme-linked immunosorbent assay d-dimer, Wells criteria, and unstructured clinical impression. Using logistic regression analysis, we measured predictors of documented risk assessment. A cohort analysis was undertaken to compare 3-month thromboembolic outcomes between risk groups. Among 524 cases, 289 (55.2%) underwent pretest probability estimation using the following methods: enzyme-linked immunosorbent assay d-dimer (228; 43.5%), clinical impression (106; 20.2%), and Wells criteria (24; 4.6%), with 69 (13.2%) patients undergoing a combination of at least two methods. Patient factors were not predictive of pretest probability estimation, but the specialty of the clinician was predictive; emergency physicians (P < .0001) and specialty clinicians (P = .001) were less likely than primary care clinicians to perform risk assessment. Thromboembolic events within 3 months were experienced by 0 of 52 patients in the explicitly low-risk group, 4 (1.8%) of 219 in the explicitly moderate- to high-risk group, and 1 (0.4%) of 226 in the group that did not undergo explicit risk assessment. Negative ultrasounds in the workup of deep vein thrombosis are commonly interpreted in isolation apart from pretest probability estimations. Risk assessments varied by physician specialties. Opportunities exist for improvement in the diagnostic evaluation of these patients. Copyright © 2011 Elsevier Inc. All rights reserved.
Quarello, Paola; Tandoi, Francesco; Carraro, Francesca; Vassallo, Elena; Pinon, Michele; Romagnoli, Renato; David, Ezio; Dell Olio, Dominic; Salizzoni, Mauro; Fagioli, Franca; Calvo, Pier Luigi
2018-05-01
Hematopoietic stem cell transplantation (HSCT) is curative in patients with primary immunodeficiencies. However, pre-HSCT conditioning entails unacceptably high risks if the liver is compromised. The presence of a recurrent opportunistic infection affecting the biliary tree and determining liver cirrhosis with portal hypertension posed particular decisional difficulties in a 7-year-old child with X-linked CD40-ligand deficiency. We aim at adding to the scanty experience available on such rare cases, as successful management with sequential liver transplantation (LT) and HSCT has been reported in detail only in 1 young adult to date. A closely sequential strategy, with a surgical complication-free LT, followed by reduced-intensity conditioning, allowed HSCT to be performed only one month after LT, preventing Cryptosporidium parvum recolonization of the liver graft. Combined sequential LT and HSCT resolved the cirrhotic evolution and corrected the immunodeficiency so that the infection responsible for the progressive sclerosing cholangitis did not recur. Hopefully, this report of the successful resolution of a potentially fatal combination of immunodeficiency and chronic opportunistic infection with end-stage organ damage in a child will encourage others to adapt a sequential transplant approach to this highly complex pathology. However, caution is to be exercised to carefully balance the risks intrinsic to transplant surgery and immunosuppression in primary immunodeficiencies.
Architecture and Biosynthesis of the Saccharomyces cerevisiae Cell Wall
Orlean, Peter
2012-01-01
The wall gives a Saccharomyces cerevisiae cell its osmotic integrity; defines cell shape during budding growth, mating, sporulation, and pseudohypha formation; and presents adhesive glycoproteins to other yeast cells. The wall consists of β1,3- and β1,6-glucans, a small amount of chitin, and many different proteins that may bear N- and O-linked glycans and a glycolipid anchor. These components become cross-linked in various ways to form higher-order complexes. Wall composition and degree of cross-linking vary during growth and development and change in response to cell wall stress. This article reviews wall biogenesis in vegetative cells, covering the structure of wall components and how they are cross-linked; the biosynthesis of N- and O-linked glycans, glycosylphosphatidylinositol membrane anchors, β1,3- and β1,6-linked glucans, and chitin; the reactions that cross-link wall components; and the possible functions of enzymatic and nonenzymatic cell wall proteins. PMID:23135325
Penketh, Philip G.; Baumann, Raymond P.; Ishiguro, Kimiko; Shyam, Krishnamurthy; Seow, Helen A.; Sartorelli, Alan C.
2010-01-01
Cloretazine [1, 2-bis(methylsulfonyl)-1-(2-chloroethyl)-2-[(methylamino)carbonyl]-hydrazine; VNP40101M; 101M] is a relatively new prodrug with activity in elderly acute myelogenous leukemia patients. Its therapeutic action is due largely to the production of 1-(3-cytosinyl),2-(1-guanyl)ethane cross-links (G-C ethane cross-links) in DNA. The number of cross-links produced in three experimental leukemia lines (L1210, U937 and HL-60) were fewer than 10 per genome at their respective LC50 concentrations. Only 1 in approximately 20,000 90CE molecules produce a cross-link in the AGT (O6-alkylguanine-DNA alkyltransferase) negative L1210 and U937 cell lines and 1 in 400,000 in the AGT positive HL-60 cell line. PMID:18479747
Estok, Daniel M; Bragdon, Charles R; Plank, Gordon R; Huang, Anna; Muratoglu, Orhun K; Harris, William H
2005-02-01
Quantification of creep of highly cross-linked polyethylene would enable separation of creep from wear when evaluating femoral head penetration into polyethylene. We compared creep magnitude of a highly cross-linked versus conventional polyethylene in the laboratory. Twelve acetabular liners of each material were tested, 6 of which had a 32-mm inner diameter (ID) and 6 had 28-mm ID. Creep was measured using coordinate measuring machines during loading at 2 Hz without motion to 4 million cycles. Penetration into 32-mm ID conventional liners reached 97 microm versus 107 microm for highly cross-linked material, not significant. Penetration into 28-mm conventional liners was 132 microm versus 155 microm for highly cross-linked material (P = .017). Ninety percent of the creep had occurred by 2.5 million cycles.
Terajima, Masahiko; Taga, Yuki; Chen, Yulong; Cabral, Wayne A.; Hou-Fu, Guo; Srisawasdi, Sirivimol; Nagasawa, Masako; Sumida, Noriko; Hattori, Shunji; Kurie, Jonathan M.; Marini, Joan C.; Yamauchi, Mitsuo
2016-01-01
Covalent intermolecular cross-linking provides collagen fibrils with stability. The cross-linking chemistry is tissue-specific and determined primarily by the state of lysine hydroxylation at specific sites. A recent study on cyclophilin B (CypB) null mice, a model of recessive osteogenesis imperfecta, demonstrated that lysine hydroxylation at the helical cross-linking site of bone type I collagen was diminished in these animals (Cabral, W. A., Perdivara, I., Weis, M., Terajima, M., Blissett, A. R., Chang, W., Perosky, J. E., Makareeva, E. N., Mertz, E. L., Leikin, S., Tomer, K. B., Kozloff, K. M., Eyre, D. R., Yamauchi, M., and Marini, J. C. (2014) PLoS Genet. 10, e1004465). However, the extent of decrease appears to be tissue- and molecular site-specific, the mechanism of which is unknown. Here we report that although CypB deficiency resulted in lower lysine hydroxylation in the helical cross-linking sites, it was increased in the telopeptide cross-linking sites in tendon type I collagen. This resulted in a decrease in the lysine aldehyde-derived cross-links but generation of hydroxylysine aldehyde-derived cross-links. The latter were absent from the wild type and heterozygous mice. Glycosylation of hydroxylysine residues was moderately increased in the CypB null tendon. We found that CypB interacted with all lysyl hydroxylase isoforms (isoforms 1–3) and a putative lysyl hydroxylase-2 chaperone, 65-kDa FK506-binding protein. Tendon collagen in CypB null mice showed severe size and organizational abnormalities. The data indicate that CypB modulates collagen cross-linking by differentially affecting lysine hydroxylation in a site-specific manner, possibly via its interaction with lysyl hydroxylases and associated molecules. This study underscores the critical importance of collagen post-translational modifications in connective tissue formation. PMID:26934917
Telford, Andrew M; Thickett, Stuart C; James, Michael; Neto, Chiara
2011-12-06
We investigated the dewetting of metastable poly(N-vinylpyrrolidone) (PNVP) thin films (45 nm) on top of polystyrene (PS) thin films (58 nm) as a function of annealing temperature and molecular weight of PS (96 and 6850 kg/mol). We focused on the competition between dewetting, occurring as a result of unfavorable intermolecular interactions at the PNVP/PS interface, and spontaneous cross-linking of PNVP, occurring during thermal annealing, as we recently reported (Telford, A. M.; James, M.; Meagher, L.; Neto, C. ACS Appl. Mater. Interfaces 2010, 2, 2399-2408). Using optical microscopy, we studied how the dewetting morphology and dynamics at different temperatures depended on the relative viscosity of the top PNVP film, which increased with cross-linking time, and of the bottom PS film. In the PNVP/PS96K system, cross-linking dominated over dewetting at temperatures below 180 °C, reducing drastically nucleated hole density and their maximum size, while above 180 °C the two processes reversed, with complete dewetting occurring at 200 °C. On the other hand, the PNVP/PS6850K system never achieved advanced dewetting stages as the dewetting was slower than cross-linking in the investigated temperature range. In both systems, dewetting of the PNVP films could be avoided altogether by thermally annealing the bilayers at temperatures where cross-linking dominated. The cross-linking was characterized quantitatively using neutron reflectometry, which indicated shrinkage and densification of the PNVP film, and qualitatively through selective removal of the bottom PS film. A simple model accounting for progressive cross-linking during the dewetting process predicted well the observed hole growth profiles and produced estimates of the PNVP cross-linking rate coefficients and of the activation energy of the process, in good agreement with literature values for similar systems. © 2011 American Chemical Society
Schmidt, F.N.; Zimmermann, E.A.; Campbell, G.M.; Sroga, G.E.; Püschel, K.; Amling, M.; Tang, S. Y.; Vashishth, D.; Busse, B.
2017-01-01
Aging and many disease conditions, most notably diabetes, are associated with the accumulation of non-enzymatic cross-links in the bone matrix. The non-enzymatic crosslinks, also known as advanced glycation end products (AGEs), occur at the collagen tissue level, where they are associated with reduced plasticity and increased fracture risk. In this study, Fourier-transform infrared (FTIR) imaging was used to detect spectroscopic changes associated with the formation of non-enzymatic cross-links in human bone collagen. Here, the non-enzymatic cross-link profile was investigated in one cohort with an in vitro ribose treatment as well as another cohort with an in vivo bisphosphonate treatment. With FTIR imaging, the two-dimensional (2D) spatial distribution of collagen quality associated with non-enzymatic cross-links was measured through the area ratio of the 1678/1692 cm−1 subbands within the amide I peak, termed the non-enzymatic crosslink-ratio (NE-xLR). The NE-xLR increased by 35% in the ribation treatment group in comparison to controls (p< 0.005), with interstitial bone tissue being more susceptible to the formation of non-enzymatic cross-links. Ultra high performance liquid chromatography, fluorescence microscopy, and fluorometric assay confirm a correlation between the non-enzymatic cross-link content and the NE-xLR ratio in the control and ribated groups. High resolution FTIR imaging of the 2D bone microstructure revealed enhanced accumulation of non-enzymatic cross-links in bone regions with higher tissue age (i.e., interstitial bone). This non-enzymatic cross-link ratio (NE-xLR) enables researchers to study not only the overall content of AGEs in the bone but also its spatial distribution, which varies with skeletal aging and diabetes mellitus and provides an additional measure of bone's propensity to fracture. PMID:28109917
Terajima, Masahiko; Taga, Yuki; Chen, Yulong; Cabral, Wayne A; Hou-Fu, Guo; Srisawasdi, Sirivimol; Nagasawa, Masako; Sumida, Noriko; Hattori, Shunji; Kurie, Jonathan M; Marini, Joan C; Yamauchi, Mitsuo
2016-04-29
Covalent intermolecular cross-linking provides collagen fibrils with stability. The cross-linking chemistry is tissue-specific and determined primarily by the state of lysine hydroxylation at specific sites. A recent study on cyclophilin B (CypB) null mice, a model of recessive osteogenesis imperfecta, demonstrated that lysine hydroxylation at the helical cross-linking site of bone type I collagen was diminished in these animals (Cabral, W. A., Perdivara, I., Weis, M., Terajima, M., Blissett, A. R., Chang, W., Perosky, J. E., Makareeva, E. N., Mertz, E. L., Leikin, S., Tomer, K. B., Kozloff, K. M., Eyre, D. R., Yamauchi, M., and Marini, J. C. (2014) PLoS Genet 10, e1004465). However, the extent of decrease appears to be tissue- and molecular site-specific, the mechanism of which is unknown. Here we report that although CypB deficiency resulted in lower lysine hydroxylation in the helical cross-linking sites, it was increased in the telopeptide cross-linking sites in tendon type I collagen. This resulted in a decrease in the lysine aldehyde-derived cross-links but generation of hydroxylysine aldehyde-derived cross-links. The latter were absent from the wild type and heterozygous mice. Glycosylation of hydroxylysine residues was moderately increased in the CypB null tendon. We found that CypB interacted with all lysyl hydroxylase isoforms (isoforms 1-3) and a putative lysyl hydroxylase-2 chaperone, 65-kDa FK506-binding protein. Tendon collagen in CypB null mice showed severe size and organizational abnormalities. The data indicate that CypB modulates collagen cross-linking by differentially affecting lysine hydroxylation in a site-specific manner, possibly via its interaction with lysyl hydroxylases and associated molecules. This study underscores the critical importance of collagen post-translational modifications in connective tissue formation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
A Study of Cross-linked Regions of Poly(Vinyl Alcohol) Gels by Small-Angle Neutron Scattering
NASA Astrophysics Data System (ADS)
Lawrence, Mathias B.; Desa, J. A. E.; Aswal, V. K.
2011-07-01
A poly(vinyl alcohol)-borax cross-linked hydrogel has been studied by Small Angle Neutron Scattering as a function of borax concentration in the wave-vector transfer (Q) range of 0.017 Å-1 to 0.36 Å-1. It is found that as the concentration of borax increases, so does the intensity of scattering in this range. Beyond a borax concentration of 2 mg/ml, the increase in cross-linked PVA chains leads to cross-linked units larger than 150 Å as evidenced by a reduction in intensity in the lower Q region.
Limit Theory for Panel Data Models with Cross Sectional Dependence and Sequential Exogeneity
Kuersteiner, Guido M.; Prucha, Ingmar R.
2013-01-01
The paper derives a general Central Limit Theorem (CLT) and asymptotic distributions for sample moments related to panel data models with large n. The results allow for the data to be cross sectionally dependent, while at the same time allowing the regressors to be only sequentially rather than strictly exogenous. The setup is sufficiently general to accommodate situations where cross sectional dependence stems from spatial interactions and/or from the presence of common factors. The latter leads to the need for random norming. The limit theorem for sample moments is derived by showing that the moment conditions can be recast such that a martingale difference array central limit theorem can be applied. We prove such a central limit theorem by first extending results for stable convergence in Hall and Hedye (1980) to non-nested martingale arrays relevant for our applications. We illustrate our result by establishing a generalized estimation theory for GMM estimators of a fixed effect panel model without imposing i.i.d. or strict exogeneity conditions. We also discuss a class of Maximum Likelihood (ML) estimators that can be analyzed using our CLT. PMID:23794781
Olsson, Erik; Menzel, Carolin; Johansson, Caisa; Andersson, Roger; Koch, Kristine; Järnström, Lars
2013-11-06
Citric acid cross-linking of starch for e.g. food packaging applications has been intensely studied during the last decade as a method of producing water-insensitive renewable barrier coatings. We managed to improve a starch formulation containing citric acid as cross-linking agent for industrial paper coating applications by adjusting the pH of the starch solution. The described starch formulations exhibited both cross-linking of starch by citric acid as well as satisfactory barrier properties, e.g. fairly low OTR values at 50% RH that are comparable with EVOH. Furthermore, it has been shown that barrier properties of coated papers with different solution pH were correlated to molecular changes in starch showing both hydrolysis and cross-linking of starch molecules in the presence of citric acid. Hydrolysis was shown to be almost completely hindered at solution pH≥4 at curing temperatures≤105 °C and at pH≥5 at curing temperatures≤150 °C, whereas cross-linking still occurred to some extent at pH≤6.5 and drying temperatures as low as 70 °C. Coated papers showed a minimum in water vapor transmission rate at pH 4 of the starch coating solution, corresponding to the point where hydrolysis was effectively hindered but where a significant degree of cross-linking still occurred. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wu, Yukun; Lai, Quanyong; Lai, Shuqi; Wu, Jing; Wang, Wei; Yuan, Zhi
2014-06-01
Polymeric micelles formed in aqueous solution by assembly of amphiphilic block copolymers have been extensively investigated due to their great potential as drug carriers. However, the stability of polymeric assembly is still one of the major challenges in delivering drugs to tissues and cells. Here, we report a facile route to fabricate core cross-linked (CCL) micelles using an enzymatic polymerization as the cross-linking method. We present synthesis of poly(ethylene glycol)-block-poly(N-isopropyl acrylamide-co-N-(4-hydroxyphenethyl) acrylamide) diblock copolymer PEG-b-P(NIPAAm-co-NHPAAm) via reversible addition-fragmentation chain transfer (RAFT) polymerization. The diblock copolymer was then self-assembled into non-cross-linked (NCL) micelles upon heating above the lower critical solution temperature (LCST), and subsequently cross-linked using horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) as enzyme and oxidant. The characterization of the diblock copolymer and micelles were studied by NMR, DLS, UV-vis, and fluorescence spectroscopy. The fluorescence study reveals that the cross-linking process endows the micelles with much lower critical micelle concentration (CMC). In addition, the drug release study shows that the CCL micelles have lower release amount of doxorubicin (DOX) than the NCL micelles due to the enhanced stability of the CCL micelles by core cross-linking process. Copyright © 2014 Elsevier B.V. All rights reserved.
Kempe, Michael D.; Miller, David C.; Wohlgemuth, John H.; ...
2016-01-08
As creep of polymeric materials is potentially a safety concern for photovoltaic modules, the potential for module creep has become a significant topic of discussion in the development of IEC 61730 and IEC 61215. To investigate the possibility of creep, modules were constructed, using several thermoplastic encapsulant materials, into thin-film mock modules and deployed in Mesa, Arizona. The materials examined included poly(ethylene)-co-vinyl acetate (EVA, including formulations both cross-linked and with no curing agent), polyethylene/polyoctene copolymer (PO), poly(dimethylsiloxane) (PDMS), polyvinyl butyral (PVB), and thermoplastic polyurethane (TPU). The absence of creep in this experiment is attributable to several factors of which themore » most notable one was the unexpected cross-linking of an EVA formulation without a cross-linking agent. It was also found that some materials experienced both chain scission and cross-linking reactions, sometimes with a significant dependence on location within a module. The TPU and EVA samples were found to degrade with cross-linking reactions dominating over chain scission. In contrast, the PO materials degraded with chain scission dominating over cross-linking reactions. Furthermore, we found no significant indications that viscous creep is likely to occur in fielded modules capable of passing the qualification tests, we note that one should consider how a polymer degrades, chain scission or cross-linking, in assessing the suitability of a thermoplastic polymer in terrestrial photovoltaic applications.« less
Xiang, Junxi; Liu, Peng; Zheng, Xinglong; Dong, Dinghui; Fan, Shujuan; Dong, Jian; Zhang, Xufeng; Liu, Xuemin; Wang, Bo; Lv, Yi
2017-10-01
Weak mechanical property and unstable degradation rate limited the application of decellularized liver matrix in tissue engineering. The aim of this study was to explore a new method for improving the mechanical properties, anti-degeneration and angiogenic capability of decellularized liver matrix. This was achieved by a novel approach using riboflavin/ultraviolet A treatment to induce collagen cross-linking of decellularized matrix. Histological staining and scanning electron microscope showed that the diameter of cross-linked fibers significantly increased compared with the control group. The average peak load and Young's modulus of decellularized matrix were obviously improved after cross-linking. Then we implanted the modified matrix into the rat hepatic injury model to test the anti-degeneration and angiogenic capability of riboflavin/UVA cross-linked decellularized liver scaffolds in vivo. The results indicated that cross-linked scaffolds degrade more slowly than those in the control group. In the experiment group, average microvessel density in the implanted matrix was higher than that in the control group since the first week after implantation. In conclusion, we initiated the method to improve the biomechanical properties of decellularized liver scaffolds by riboflavin/UVA cross-linking, and more importantly, its improvement on anti-degeneration and angiogenesis was identified. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2662-2669, 2017. © 2017 Wiley Periodicals, Inc.
Ihling, Christian; Schmidt, Andreas; Kalkhof, Stefan; Schulz, Daniela M; Stingl, Christoph; Mechtler, Karl; Haack, Michael; Beck-Sickinger, Annette G; Cooper, Dermot M F; Sinz, Andrea
2006-08-01
For structural studies of proteins and their complexes, chemical cross-linking combined with mass spectrometry presents a promising strategy to obtain structural data of protein interfaces from low quantities of proteins within a short time. We explore the use of isotope-labeled cross-linkers in combination with Fourier transform ion cyclotron resonance (FTICR) mass spectrometry for a more efficient identification of cross-linker containing species. For our studies, we chose the calcium-independent complex between calmodulin and a 25-amino acid peptide from the C-terminal region of adenylyl cyclase 8 containing an "IQ-like motif." Cross-linking reactions between calmodulin and the peptide were performed in the absence of calcium using the amine-reactive, isotope-labeled (d0 and d4) cross-linkers BS3 (bis[sulfosuccinimidyl]suberate) and BS2G (bis[sulfosuccinimidyl]glutarate). Tryptic in-gel digestion of excised gel bands from covalently cross-linked complexes resulted in complicated peptide mixtures, which were analyzed by nano-HPLC/nano-ESI-FTICR mass spectrometry. In cases where more than one reactive functional group, e.g., amine groups of lysine residues, is present in a sequence stretch, MS/MS analysis is a prerequisite for unambiguously identifying the modified residues. MS/MS experiments revealed two lysine residues in the central alpha-helix of calmodulin as well as three lysine residues both in the C-terminal and N-terminal lobes of calmodulin to be cross-linked with one single lysine residue of the adenylyl cyclase 8 peptide. Further cross-linking studies will have to be conducted to propose a structural model for the calmodulin/peptide complex, which is formed in the absence of calcium. The combination of using isotope-labeled cross-linkers, determining the accurate mass of intact cross-linked products, and verifying the amino acid sequences of cross-linked species by MS/MS presents a convenient approach that offers the perspective to obtain structural data of protein assemblies within a few days.
Haniu, M.; Narhi, L. O.; Arakawa, T.; Elliott, S.; Rohde, M. F.
1993-01-01
Several amino groups of recombinant human erythropoietin are selectively cross-linked by specific cross-linkers including disuccinimidyl suberate or dithiobis(succinimidyl propionate). Intramolecular cross-linkings are obtained without significant change of the protein conformation using appropriate concentrations (0.2 mM) of the cross-linkers, which possess an 11-12-A length of a spacer between two reacting groups. Intramolecularly cross-linked peptides obtained suggest that several amino groups in erythropoietin (EPO) are positioned at a distance of near 12 A in the solution state. These interfacing amino groups include Lys 20-Lys 154, Lys 45-Lys 140, Lys 52-Lys 154, Lys 52-Lys 140, and Ala 1-Lys 116. A comparison of the cross-linking results between nonglycosylated EPO and glycosylated EPO suggests that both proteins retain high similarity regarding protein conformation. These results fit a structural model similar to that of human growth hormone, in which four alpha-helical bundles and a long stretch of beta-sheet structure are involved in the active protein. PMID:8401229
da Silva, Marcelo A; Bode, Franziska; Grillo, Isabelle; Dreiss, Cécile A
2015-04-13
Small-angle neutron scattering (SANS) was used to characterize the nanoscale structure of enzymatically cross-linked chitosan/gelatin hydrogels obtained from two protocols: a pure chemical cross-linking process (C), which uses the natural enzyme microbial transglutaminase, and a physical-co-chemical (PC) hybrid process, where covalent cross-linking is combined with the temperature-triggered gelation of gelatin, occurring through the formation of triple-helices. SANS measurements on the final and evolving networks provide a correlation length (ξ), which reflects the average size of expanding clusters. Their growth in PC gels is restricted by the triple-helices (ξ ∼ 10s of Å), while ξ in pure chemical gels increases with cross-linker concentration (∼100s of Å). In addition, the shear elastic modulus in PC gels is higher than in pure C gels. Our results thus demonstrate that gelatin triple helices provide a template to guide the cross-linking process; overall, this work provides important structural insight to improve the design of biopolymer-based gels.
Karst, Daniel J; Scibona, Ernesto; Serra, Elisa; Bielser, Jean-Marc; Souquet, Jonathan; Stettler, Matthieu; Broly, Hervé; Soos, Miroslav; Morbidelli, Massimo; Villiger, Thomas K
2017-09-01
Mammalian cell perfusion cultures are gaining renewed interest as an alternative to traditional fed-batch processes for the production of therapeutic proteins, such as monoclonal antibodies (mAb). The steady state operation at high viable cell density allows the continuous delivery of antibody product with increased space-time yield and reduced in-process variability of critical product quality attributes (CQA). In particular, the production of a confined mAb N-linked glycosylation pattern has the potential to increase therapeutic efficacy and bioactivity. In this study, we show that accurate control of flow rates, media composition and cell density of a Chinese hamster ovary (CHO) cell perfusion bioreactor allowed the production of a constant glycosylation profile for over 20 days. Steady state was reached after an initial transition phase of 6 days required for the stabilization of extra- and intracellular processes. The possibility to modulate the glycosylation profile was further investigated in a Design of Experiment (DoE), at different viable cell density and media supplement concentrations. This strategy was implemented in a sequential screening approach, where various steady states were achieved sequentially during one culture. It was found that, whereas high ammonia levels reached at high viable cell densities (VCD) values inhibited the processing to complex glycan structures, the supplementation of either galactose, or manganese as well as their synergy significantly increased the proportion of complex forms. The obtained experimental data set was used to compare the reliability of a statistical response surface model (RSM) to a mechanistic model of N-linked glycosylation. The latter outperformed the response surface predictions with respect to its capability and reliability in predicting the system behavior (i.e., glycosylation pattern) outside the experimental space covered by the DoE design used for the model parameter estimation. Therefore, we can conclude that the modulation of glycosylation in a sequential steady state approach in combination with mechanistic model represents an efficient and rational strategy to develop continuous processes with desired N-linked glycosylation patterns. Biotechnol. Bioeng. 2017;114: 1978-1990. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Jóźwiak, Tomasz; Filipkowska, Urszula; Szymczyk, Paula; Kuczajowska-Zadrożna, Małgorzata; Mielcarek, Artur
2017-11-01
A hydrogel chitosan sorbent ionically cross-linked with sodium citrate and covalently cross-linked with epichlorohydrin was used to remove nutrients from an equimolar mixture of P-PO 4 , N-NO 2 and N-NO 3 . The scope of the study included, among other things, determination of the influence of pH on nutrient sorption effectiveness, nutrient sorption kinetics as well as determination of the maximum sorption capacity of cross-linked chitosan sorbents regarding P-PO 4 (H 2 PO 4 - , HPO 4 2- ), N-NO 2 (HNO 2 , NO 2 - ), and N-NO 3 (NO 3 - ). The effect of the type of the cross-linking agent on the affinity of the modified chitosan to each nutrient was studied as well. The kinetics of nutrient sorption on the tested chitosan sorbents was best described with the pseudo-second order model. The model of intramolecular diffusion showed that P-PO 4 , N-NO 2 and N-NO3 sorption on cross-linked hydrogel chitosan beads proceeded in two phases. The best sorbent of nutrients turned out to be chitosan cross-linked covalently with epichlorohydrin; with P-PO 4 , N-NO 2 and N-NO 3 sorption capacity reaching: 1.23, 0.94 and 0.76mmol/g, respectively (total of 2.92mmol/g). For comparison, the sorption capacity of chitosan cross-linked ionically with sodium citrate was: 0.43, 0.39 and 0.39mmol/g for P-PO 4 , N-NO 2 and N-NO 3 , respectively (total of 1.21mmol/g). Copyright © 2017 Elsevier B.V. All rights reserved.
Labate, Cristina; De Santo, Maria Penelope; Lombardo, Giuseppe; Lombardo, Marco
2015-01-01
Purpose To investigate the viscoelastic changes of the human cornea induced by riboflavin/UV-A cross-linking using Atomic Force Microscopy (AFM) at the nano level. Methods Seven eye bank donor corneas were investigated, after gently removing the epithelium, using a commercial AFM in the force spectroscopy mode. Silicon cantilevers with tip radius of 10 nm and spring elastic constants between 26- and 86-N/m were used to probe the viscoelastic properties of the anterior stroma up to 3 µm indentation depth. Five specimens were tested before and after riboflavin/UV-A cross-linking; the other two specimens were chemically cross-linked using glutaraldehyde 2.5% solution and used as controls. The Young’s modulus (E) and the hysteresis (H) of the corneal stroma were quantified as a function of the application load and scan rate. Results The Young’s modulus increased by a mean of 1.1-1.5 times after riboflavin/UV-A cross-linking (P<0.05). A higher increase of E, by a mean of 1.5-2.6 times, was found in chemically cross-linked specimens using glutaraldehyde 2.5% (P<0.05). The hysteresis decreased, by a mean of 0.9-1.5 times, in all specimens after riboflavin/UV-A cross-linking (P<0.05). A substantial decrease of H, ranging between 2.6 and 3.5 times with respect to baseline values, was observed in glutaraldehyde-treated corneas (P<0.05). Conclusions The present study provides the first evidence that riboflavin/UV-A cross-linking induces changes of the viscoelastic properties of the cornea at the scale of stromal molecular interactions. PMID:25830534
Chijiwa, Shotaro; Masutani, Chikahide; Hanaoka, Fumio; Iwai, Shigenori; Kuraoka, Isao
2010-03-01
cis-Diamminedichloroplatinum(II) (cisplatin) forms DNA adducts that interfere with replication and transcription. The most common adducts formed in vivo are 1,2-intrastrand d(GpG) cross-links (Pt-GG) and d(ApG) cross-links (Pt-AG), with minor amounts of 1,3-d(GpNpG) cross-links (Pt-GNG), interstrand cross-links and monoadducts. Although the relative contribution of these different adducts to toxicity is not known, literature implicates that Pt-GG and Pt-AG adducts block replication. Thus, nucleotide excision repair (NER), by which platinum adducts are excised, and translesion DNA synthesis (TLS), which permits adduct bypass, are thought to be associated with cisplatin resistance. Recent studies have reported that the clinical benefit from platinum-based chemotherapy is high if tumor cells express low levels of NER factors. To investigate the role of platinum-DNA adducts in mediating tumor cell survival by TLS, we examined whether 1,3-intrastrand d(GpTpG) platinum cross-links (Pt-GTG), which probably exist in NER-negative tumor cells but not in NER-positive tumor cells, are bypassed by the translesion DNA polymerase eta (pol eta), which is known to bypass Pt-GG. We show that pol eta can incorporate the correct deoxycytidine triphosphate opposite the first 3'-cross-linked G of Pt-GTG but cannot insert any nucleotides opposite the second intact T or the third 5'-cross-linked G of the adducts, thereby suggesting that TLS does not facilitate replication past Pt-GTG adducts. Thus, our findings implicate Pt-GNG adducts as mediating the cytotoxicity of platinum-DNA adducts in NER-negative tumors in vivo.
Lai, Jui-Yang; Ma, David Hui-Kang
2013-01-01
Given that the cells can sense nanometer dimensions, the chemical cross-linking-mediated alteration in fibrillar structure of collagenous tissue scaffolds is critical to determining their cell culture performances. This article explores, for the first time, the effect of nanofibrous structure of glutaraldehyde (GTA) cross-linked amniotic membrane (AM) on limbal epithelial cell (LEC) cultivation. Results of ninhydrin assays demonstrated that the amount of new cross-links formed between the collagen chains is significantly increased with increasing the cross-linking time from 1 to 24 hours. By transmission electron microscopy, the AM treated with GTA for a longer duration exhibited a greater extent of molecular aggregation, thereby leading to a considerable increase in nanofiber diameter and resistance against collagenase degradation. In vitro biocompatibility studies showed that the samples cross-linked with GTA for 24 hours are not well-tolerated by the human corneal epithelial cell cultures. When the treatment duration is less than 6 hours, the biological tissues cross-linked with GTA for a longer time may cause slight reductions in 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt, and anti-inflammatory activities. Nevertheless, significant collagen molecular aggregation also enhances the stemness gene expression, indicating a high ability of these AM matrices to preserve the progenitors of LECs in vitro. It is concluded that GTA cross-linking of collagenous tissue materials may affect their nanofibrous structures and corneal epithelial stem cell culture characteristics. The AM treated with GTA for 6 hours holds promise for use as a niche for the expansion and transplantation of limbal epithelial progenitor cells.
Perera, Handunge Kumudu Irani; Handuwalage, Charith Sandaruwan
2015-06-09
Protein cross-linking which occurs towards the latter part of protein glycation is implicated in the development of chronic diabetic complications. Glycation induced protein cross-linking inhibitory effects of nine antidiabetic plants and three spices were evaluated in this study using a novel, simple, electrophoresis based method. Methanol extracts of thirteen plants including nine antidiabetic plants and three spices were used. Lysozyme and fructose were incubated at 37 °C in the presence or absence of different concentrations of plant extracts up to 31 days. Standard glycation inhibitor aminoguanidine and other appropriate controls were included. A recently established sodium dodecyl polyacrylamide gel electrophoresis (SDS-PAGE) method was used to detect the products of protein cross-linking in the incubation mixtures. High molecular weight protein products representing the dimer, trimer and tetramer of lysozyme were detected in the presence of fructose. Among the nine antidiabetic plants, seven showed glycation induced protein cross-linking inhibitory effects namely Ficus racemosa (FR) stem bark, Gymnema sylvestre (GS) leaves, Musa paradisiaca (MP) yam, Phyllanthus debilis (PD) whole plant, Phyllanthus emblica (PE) fruit, Pterocarpus marsupium (PM) latex and Tinospora cordifolia (TC) leaves. Inhibition observed with Coccinia grandis (CG) leaves and Strychnos potatorum (SP) seeds were much low. Leaves of Gymnema lactiferum (GL), the plant without known antidiabetic effects showed the lowest inhibition. All three spices namely Coriandrum sativum (CS) seeds, Cinnamomum zeylanicum (CZ) bark and Syzygium aromaticum (SA) flower buds showed cross-link inhibitory effects with higher effects in CS and SA. PD, PE, PM, CS and SA showed almost complete inhibition on the formation of cross-linking with 25 μg/ml extracts. Methanol extracts of PD, PE, PM, CS and SA have shown promising inhibitory effects on glycation induced protein cross-linking.
NASA Astrophysics Data System (ADS)
Lee, Jaemin; Ameen, Shahid; Lee, Changjin
2016-04-01
After the success of commercialization of the vacuum-evaporated organic light-emitting diodes (OLEDs), solutionprocessing or printing of OLEDs are currently attracting much research interests. However, contrary to various kinds of readily available vacuum-evaporable OLED materials, the solution-processable OLED materials are still relatively rare. Hole-transporting layer (HTL) materials for solution-processed OLEDs are especially limited, because they need additional characteristics such as cross-linking to realize multilayer structures in solution-processed OLEDs, as well as their own electrically hole-transporting characteristics. The presence of such cross-linking characteristics of solutionprocessable HTL materials therefore makes them more challenging in the development stage, and also makes them essence of solution-processable OLED materials. In this work, the structure-property relationships of thermally crosslinkable HTL materials were systematically investigated by changing styrene-based cross-linking functionalities and modifying the carbazole-based hole-transporting core structures. The temperature dependency of the cross-linking characteristics of the HTL materials was systematically investigated by the UV-vis. absorption spectroscopy. The new HTL materials were also applied to green phosphorescent OLEDs, and their device characteristics were also investigated based on the chemical structures of the HTL materials. The device configuration was [ITO / PEDOT:PSS / HTL / EML / ETL / CsF / Al]. We found out that the chemical structures of the cross-linking functionalities greatly affect not only the cross-linking characteristics of the resultant HTL materials, but also the resultant OLED device characteristics. The increase of the maximum luminance and efficiency of OLEDs was evident as the cross-linking temperature decreases from higher than 200°C to at around 150°C.
Hearon, Keith; Besset, Celine J.; Lonnecker, Alexander T.; Ware, Taylor; Voit, Walter E.; Wilson, Thomas S.; Wooley, Karen L.; Maitland, Duncan J.
2014-01-01
The synthetic design and thermomechanical characterization of shape memory polymers (SMPs) built from a new polyurethane chemistry that enables facile, bulk and tunable cross-linking of low-molecular weight thermoplastics by electron beam irradiation is reported in this study. SMPs exhibit stimuli-induced geometry changes and are being proposed for applications in numerous fields. We have previously reported a polyurethane SMP system that exhibits the complex processing capabilities of thermoplastic polymers and the mechanical robustness and tunability of thermomechanical properties that are often characteristic of thermoset materials. These previously reported polyurethanes suffer practically because the thermoplastic molecular weights needed to achieve target cross-link densities severely limit high-throughput thermoplastic processing and because thermally unstable radiation-sensitizing additives must be used to achieve high enough cross-link densities to enable desired tunable shape memory behavior. In this study, we demonstrate the ability to manipulate cross-link density in low-molecular weight aliphatic thermoplastic polyurethane SMPs (Mw as low as ~1.5 kDa) without radiation-sensitizing additives by incorporating specific structural motifs into the thermoplastic polymer side chains that we hypothesized would significantly enhance susceptibility to e-beam cross-linking. A custom diol monomer was first synthesized and then implemented in the synthesis of neat thermoplastic polyurethane SMPs that were irradiated at doses ranging from 1 to 500 kGy. Dynamic mechanical analysis (DMA) demonstrated rubbery moduli to be tailorable between 0.1 and 55 MPa, and both DMA and sol/gel analysis results provided fundamental insight into our hypothesized mechanism of electron beam cross-linking, which enables controllable bulk cross-linking to be achieved in highly processable, low-molecular weight thermoplastic shape memory polymers without sensitizing additives. PMID:25411511
Lai, Jui-Yang; Ma, David Hui-Kang
2013-01-01
Given that the cells can sense nanometer dimensions, the chemical cross-linking-mediated alteration in fibrillar structure of collagenous tissue scaffolds is critical to determining their cell culture performances. This article explores, for the first time, the effect of nanofibrous structure of glutaraldehyde (GTA) cross-linked amniotic membrane (AM) on limbal epithelial cell (LEC) cultivation. Results of ninhydrin assays demonstrated that the amount of new cross-links formed between the collagen chains is significantly increased with increasing the cross-linking time from 1 to 24 hours. By transmission electron microscopy, the AM treated with GTA for a longer duration exhibited a greater extent of molecular aggregation, thereby leading to a considerable increase in nanofiber diameter and resistance against collagenase degradation. In vitro biocompatibility studies showed that the samples cross-linked with GTA for 24 hours are not well-tolerated by the human corneal epithelial cell cultures. When the treatment duration is less than 6 hours, the biological tissues cross-linked with GTA for a longer time may cause slight reductions in 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt, and anti-inflammatory activities. Nevertheless, significant collagen molecular aggregation also enhances the stemness gene expression, indicating a high ability of these AM matrices to preserve the progenitors of LECs in vitro. It is concluded that GTA cross-linking of collagenous tissue materials may affect their nanofibrous structures and corneal epithelial stem cell culture characteristics. The AM treated with GTA for 6 hours holds promise for use as a niche for the expansion and transplantation of limbal epithelial progenitor cells. PMID:24204144
Lai, Jui-Yang; Wang, Pei-Ran; Luo, Li-Jyuan; Chen, Si-Tan
2014-01-01
To overcome the drawbacks associated with limited cross-linking efficiency of carbodiimide modified amniotic membrane, this study investigated the use of l-lysine as an additional amino acid bridge to enhance the stability of a nanofibrous tissue matrix for a limbal epithelial cell culture platform. Results of ninhydrin assays and zeta potential measurements showed that the amount of positively charged amino acid residues incorporated into the tissue collagen chains is highly correlated with the l-lysine-pretreated concentration. The cross-linked structure and hydrophilicity of amniotic membrane scaffolding materials affected by the lysine molecular bridging effects were determined. With an increase in the l-lysine-pretreated concentration from 1 to 30 mM, the cross-linking density was significantly increased and water content was markedly decreased. The variations in resistance to thermal denaturation and enzymatic degradation were in accordance with the number of cross-links per unit mass of amniotic membrane, indicating l-lysine-modulated stabilization of collagen molecules. It was also noteworthy that the carbodiimide cross-linked tissue samples prepared using a relatively high l-lysine-pretreated concentration (ie, 30 mM) appeared to have decreased light transmittance and biocompatibility, probably due to the influence of a large nanofiber size and a high charge density. The rise in stemness gene and protein expression levels was dependent on improved cross-link formation, suggesting the crucial role of amino acid bridges in constructing suitable scaffolds to preserve limbal progenitor cells. It is concluded that mild to moderate pretreatment conditions (ie, 3–10 mM l-lysine) can provide a useful strategy to assist in the development of carbodiimide cross-linked amniotic membrane as a stable stem cell niche for corneal epithelial tissue engineering. PMID:25395849
Structural interactions between retroviral Gag proteins examined by cysteine cross-linking.
Hansen, M S; Barklis, E
1995-01-01
We have examined structural interactions between Gag proteins within Moloney murine leukemia virus (M-MuLV) particles by making use of the cysteine-specific cross-linking agents iodine and bis-maleimido hexane. Virion-associated wild-type M-MuLV Pr65Gag proteins in immature particles were intermolecularly cross-linked at cysteines to form Pr65Gag oligomers, from dimers to pentamers or hexamers. Following a systematic approach of cysteine-to-serine mutagenesis, we have shown that cross-linking of Pr65Gag occurred at cysteines of the nucleocapsid (NC) Cys-His motif, suggesting that the Cys-His motifs within virus particles are packed in close proximity. The M-MuLV Pr65Gag protein did not cross-link to the human immunodeficiency virus Pr55Gag protein when the two molecules were coexpressed, indicating either that they did not coassemble or that heterologous Gag proteins were not in close enough proximity to be cross-linked. Using an assembly-competent, protease-minus, cysteine-minus Pr65Gag protein as a template, novel cysteine residues were generated in the M-MuLV capsid domain major homology region (MHR). Cross-linking of proteins containing MHR cysteines showed above-background levels of Gag-Gag dimers but also identified a novel cellular factor, present in virions, that cross-linked to MHR residues. Although the NC cysteine mutation was compatible with M-MuLV particle assembly, deletions of the NC domain were not tolerated. These results suggest that the Cys-His motif is held in close proximity within immature M-MuLV particles by interactions between CA domains and/or non-Cys-His motif domains of the NC. PMID:7815493
Orthacker, A; Schmied, R; Chernev, B; Fröch, J E; Winkler, R; Hobisch, J; Trimmel, G; Plank, H
2014-01-28
Focused ion beam processing of low melting materials, such as polymers or biological samples, often leads to chemical and morphological instabilities which prevent the straight-forward application of this versatile direct-write structuring method. In this study the behaviour of different polymer classes under ion beam exposure is investigated using different patterning parameters and strategies with the aim of (i) correlating local temperatures with the polymers' chemistry and its morphological consequences; and (ii) finding a way of processing sensitive polymers with lowest chemical degradation while maintaining structuring times. It is found that during processing of polymers three temperature regimes can be observed: (1) at low temperatures all polymers investigated show stable chemical and morphological behaviour; (2) very high temperatures lead to strong chemical degradation which entails unpredictable morphologies; and (3) in the intermediate temperature regime the behaviour is found to be strongly material dependent. A detailed look reveals that polymers which rather cross-link in the proximity of the beam show stable morphologies in this intermediate regime, while polymers that rather undergo chain scission show tendencies to develop a creeping phase, where material follows the ion beam movement leading to instable and unpredictable morphologies. Finally a simple, alternative patterning strategy is suggested, which allows stable processing conditions with lowest chemical damage even for challenging polymers undergoing chain scission.
Dysphagia after sequential chemoradiation therapy for advanced head and neck cancer.
Goguen, Laura A; Posner, Marshall R; Norris, Charles M; Tishler, Roy B; Wirth, Lori J; Annino, Donald J; Gagne, Adele; Sullivan, Christopher A; Sammartino, Daniel E; Haddad, Robert I
2006-06-01
Assess impact of sequential chemoradiation therapy (SCRT) for advanced head and neck cancer (HNCA) on swallowing, nutrition, and quality of life. Prospective cohort study of 59 patients undergoing SCRT for advanced head and neck cancer. Follow-up median was 47.5 months. Regional Cancer Center. Median time to gastrostomy tube removal was 21 weeks. Eighteen of 23 patients who underwent modified barium swallow demonstrated aspiration; none developed pneumonia. Six of 7 with pharyngoesophageal stricture underwent successful dilatation. Functional Assessment of Cancer Therapy-Head and Neck Scale questionnaires at median 6 months after treatment revealed "somewhat" satisfaction with swallowing. At the time of analysis, 97% have the gastronomy tube removed and take soft/regular diet. Early after treatment dysphagia adversely affected weight, modified barium swallow results, and quality of life. Diligent swallow therapy, and dilation as needed, allowed nearly all patients to have their gastronomy tubes removed and return to a soft/regular diet. Dysphagia is significant after SCRT but generally slowly recovers 6 to 12 months after SCRT. C-4.
Allosteric substrate switching in a voltage-sensing lipid phosphatase.
Grimm, Sasha S; Isacoff, Ehud Y
2016-04-01
Allostery provides a critical control over enzyme activity, biasing the catalytic site between inactive and active states. We found that the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP), which modifies phosphoinositide signaling lipids (PIPs), has not one but two sequential active states with distinct substrate specificities, whose occupancy is allosterically controlled by sequential conformations of the voltage-sensing domain (VSD). Using fast fluorescence resonance energy transfer (FRET) reporters of PIPs to monitor enzyme activity and voltage-clamp fluorometry to monitor conformational changes in the VSD, we found that Ci-VSP switches from inactive to a PIP3-preferring active state when the VSD undergoes an initial voltage-sensing motion and then into a second PIP2-preferring active state when the VSD activates fully. This two-step allosteric control over a dual-specificity enzyme enables voltage to shape PIP concentrations in time, and provides a mechanism for the complex modulation of PIP-regulated ion channels, transporters, cell motility, endocytosis and exocytosis.
Allosteric substrate switching in a voltage sensing lipid phosphatase
Grimm, Sasha S.; Isacoff, Ehud Y.
2016-01-01
Allostery provides a critical control over enzyme activity, biasing the catalytic site between inactive and active states. We find the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP), which modifies phosphoinositide signaling lipids (PIPs), to have not one but two sequential active states with distinct substrate specificities, whose occupancy is allosterically controlled by sequential conformations of the voltage sensing domain (VSD). Using fast FRET reporters of PIPs to monitor enzyme activity and voltage clamp fluorometry to monitor conformational changes in the VSD, we find that Ci-VSP switches from inactive to a PIP3-preferring active state when the VSD undergoes an initial voltage sensing motion and then into a second PIP2-preferring active state when the VSD activates fully. This novel 2-step allosteric control over a dual specificity enzyme enables voltage to shape PIP concentrations in time, and provides a mechanism for the complex modulation of PIP-regulated ion channels, transporters, cell motility and endo/exocytosis. PMID:26878552
Yamada, Shunsuke; Tsuruya, Kazuhiko; Yoshida, Hisako; Tokumoto, Masanori; Ueki, Kenji; Ooboshi, Hiroaki; Kitazono, Takanari
2016-07-01
Myostatin is a member of the transforming growth factor-β family, which regulates synthesis and degradation of skeletal muscle proteins and is associated with the development of sarcopenia. It is up-regulated in the skeletal muscle of chronic kidney disease patients and is considered to be involved in the development of uremic sarcopenia. However, serum myostatin levels have rarely been determined, and the relationship between serum myostatin levels with clinical and metabolic factors remains unknown. This cross-sectional study investigated the association between serum myostatin level and clinical factors in 69 outpatients undergoing peritoneal dialysis. Serum myostatin level was determined by commercially available enzyme-linked immunosorbent assay (ELISA). Univariable and multivariable analysis were conducted to determine factors associated with serum myostatin levels. The factors included age, sex, diabetes mellitus, dialysis history, body mass index, residual kidney function, peritoneal dialysate volume, serum biochemistries, and the use of vitamin D receptor activators (VDRAs). Mean serum myostatin level was 7.59 ± 3.37 ng/mL. There was no association between serum myostatin level and residual kidney function. Serum myostatin levels were significantly and positively associated with lean body mass measured by the creatinine kinetic method and negatively associated with the use of VDRAs after adjustment for potential confounding factors. Our study indicated that serum myostatin levels are associated with skeletal muscle mass and are lower in patients treated with VDRAs. Further studies are necessary to determine the significance of measuring serum myostatin level in patients undergoing peritoneal dialysis.
Elastomer Reinforced with Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Hudson, Jared L.; Krishnamoorti, Ramanan
2009-01-01
Elastomers are reinforced with functionalized, single-walled carbon nanotubes (SWNTs) giving them high-breaking strain levels and low densities. Cross-linked elastomers are prepared using amine-terminated, poly(dimethylsiloxane) (PDMS), with an average molecular weight of 5,000 daltons, and a functionalized SWNT. Cross-link densities, estimated on the basis of swelling data in toluene (a dispersing solvent) indicated that the polymer underwent cross-linking at the ends of the chains. This thermally initiated cross-linking was found to occur only in the presence of the aryl alcohol functionalized SWNTs. The cross-link could have been via a hydrogen-bonding mechanism between the amine and the free hydroxyl group, or via attack of the amine on the ester linage to form an amide. Tensile properties examined at room temperature indicate a three-fold increase in the tensile modulus of the elastomer, with rupture and failure of the elastomer occurring at a strain of 6.5.
Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; ...
2015-10-20
The development of high performance materials for CO 2 separation and capture will significantly contribute to a solution for climate change. In this work, (bicycloheptenyl) ethyl terminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO 2 permeability ~ 6800 Barrer and CO 2/N 2 selectivity ~ 14) is very promising for practical applications. The key to achieving this high performance is the use of an in-situ cross-linking method of the difunctional PDMS macromonomers, whichmore » provides lightly cross-linked membranes. By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy and gas solubility measurements, we have elucidated the key parameters necessary for achieving their excellent performance.« less
NASA Astrophysics Data System (ADS)
Morsy, Reda; Hosny, Marwa; Reicha, Fikry; Elnimr, Tarek
2017-05-01
This study aims to develop optimal cross-linked electrospun gelatin-glycerol (GEL-GLY) nano-fibrous mats suitable for tissue engineering and wound dressing applications. The optimized procedure involves heating the gelatin and gelatin-glycerol solutions up to 90 °C. The electrospinning process was performed, followed by further cross-linking of electrospun films in a container containing glutaraldehyde (GTA) vapor. The results of X-ray diffraction (XRD), Fourier transformed infrared (FTIR), and Differential thermal analysis (DTA) confirmed that heating gelatin solution up to 90 °C in the presence of glycerol affected the cross-linking efficiency and interactions between GTA molecules and gelatin chains. Scanning Electron Microscope (SEM) analysis showed that GEL-GLY nano-fibrous mats with weight ratios less than or equal (12:3 w/w) exhibited a regular morphology with defect free in addition to increasing the degradation time, cross-linking efficiency, and swelling degree of electrospun gelatin/glycerol.
Selective Photophysical Modification on Light-Emitting Polymer Films for Micro- and Nano-Patterning
Zhang, Xinping; Liu, Feifei; Li, Hongwei
2016-01-01
Laser-induced cross-linking in polymeric semiconductors was utilized to achieve micro- and nano-structuring in thin films. Single- and two-photon cross-linking processes led to the reduction in both the refractive index and thickness of the polymer films. The resultant photonic structures combine the features of both relief- and phase-gratings. Selective cross-linking in polymer blend films based on different optical response of different molecular phases enabled “solidification” of the phase-separation scheme, providing a stable template for further photonic structuring. Dielectric and metallic structures are demonstrated for the fabrication methods using cross-linking in polymer films. Selective cross-linking enables direct patterning into polymer films without introducing additional fabrication procedures or additional materials. The diffraction processes of the emission of the patterned polymeric semiconductors may provide enhanced output coupling for light-emitting diodes or distributed feedback for lasers. PMID:28773248
de Jong, Luitzen; de Koning, Edward A; Roseboom, Winfried; Buncherd, Hansuk; Wanner, Martin J; Dapic, Irena; Jansen, Petra J; van Maarseveen, Jan H; Corthals, Garry L; Lewis, Peter J; Hamoen, Leendert W; de Koster, Chris G
2017-07-07
Identification of dynamic protein-protein interactions at the peptide level on a proteomic scale is a challenging approach that is still in its infancy. We have developed a system to cross-link cells directly in culture with the special lysine cross-linker bis(succinimidyl)-3-azidomethyl-glutarate (BAMG). We used the Gram-positive model bacterium Bacillus subtilis as an exemplar system. Within 5 min extensive intracellular cross-linking was detected, while intracellular cross-linking in a Gram-negative species, Escherichia coli, was still undetectable after 30 min, in agreement with the low permeability in this organism for lipophilic compounds like BAMG. We were able to identify 82 unique interprotein cross-linked peptides with <1% false discovery rate by mass spectrometry and genome-wide database searching. Nearly 60% of the interprotein cross-links occur in assemblies involved in transcription and translation. Several of these interactions are new, and we identified a binding site between the δ and β' subunit of RNA polymerase close to the downstream DNA channel, providing a clue into how δ might regulate promoter selectivity and promote RNA polymerase recycling. Our methodology opens new avenues to investigate the functional dynamic organization of complex protein assemblies involved in bacterial growth. Data are available via ProteomeXchange with identifier PXD006287.
Linking Gestures: Cross-Cultural Variation during Instructional Analogies
ERIC Educational Resources Information Center
Richland, Lindsey Engle
2015-01-01
Deictic linking gestures, hand and arm motions that physically embody links being communicated between two or more objects in the shared communicative environment, are explored in a cross-cultural sample of mathematics instruction. Linking gestures are specifically examined here when they occur in the context of communicative analogies designed to…
Sparks, Bradley J; Hoff, Ethan F T; Xiong, Li; Goetz, James T; Patton, Derek L
2013-03-13
We report a simple and versatile method for the fabrication of superhydrophobic inorganic-organic thiol-ene coatings via sequential spray-deposition and photopolymerization under ambient conditions. The coatings are obtained by spray-deposition of UV-curable hybrid inorganic-organic thiol-ene resins consisting of pentaerythritol tetra(3-mercaptopropionate) (PETMP), triallyl isocyanurate (TTT), 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (TMTVSi), and hydrophobic fumed silica nanoparticles. The spray-deposition process and nanoparticle agglomeration/dispersion provide surfaces with hierarchical morphologies exhibiting both micro- and nanoscale roughness. The wetting behavior, dependent on the concentration of TMTVSi and hydrophobic silica nanoparticles, can be varied over a broad range to ultimately provide coatings with high static water contact angles (>150°), low contact angle hysteresis, and low roll off angles (<5°). The cross-linked thiol-ene coatings are solvent resistant, stable at low and high pH, and maintain superhydrophobic wetting behavior after extended exposure to elevated temperatures. We demonstrate the versatility of the spray-deposition and UV-cure process on a variety of substrate surfaces including glass, paper, stone, and cotton fabric.
Trifunctional lipid probes for comprehensive studies of single lipid species in living cells
Nadler, André; Haberkant, Per; Kirkpatrick, Joanna; Schifferer, Martina; Stein, Frank; Hauke, Sebastian; Porter, Forbes D.; Schultz, Carsten
2017-01-01
Lipid-mediated signaling events regulate many cellular processes. Investigations of the complex underlying mechanisms are difficult because several different methods need to be used under varying conditions. Here we introduce multifunctional lipid derivatives to study lipid metabolism, lipid−protein interactions, and intracellular lipid localization with a single tool per target lipid. The probes are equipped with two photoreactive groups to allow photoliberation (uncaging) and photo–cross-linking in a sequential manner, as well as a click-handle for subsequent functionalization. We demonstrate the versatility of the design for the signaling lipids sphingosine and diacylglycerol; uncaging of the probe for these two species triggered calcium signaling and intracellular protein translocation events, respectively. We performed proteomic screens to map the lipid-interacting proteome for both lipids. Finally, we visualized a sphingosine transport deficiency in patient-derived Niemann−Pick disease type C fibroblasts by fluorescence as well as correlative light and electron microscopy, pointing toward the diagnostic potential of such tools. We envision that this type of probe will become important for analyzing and ultimately understanding lipid signaling events in a comprehensive manner. PMID:28154130
Attachment orientation and sexual risk behaviour among young Black gay and bisexual men.
Cook, Stephanie H; Watkins, Daphne C; Calebs, Benjamin; Wilson, Patrick A
This mixed methods study used an explanatory sequential design to examine the relationship between attachment and sexual behavior among young Black gay and bisexual men (YBGBM). Cross sectional online surveys and sex diaries were completed by a sample of YBGBM in New York City ( n = 153) to assess the association between adult attachment insecurity and sexual risk behavior. The Experiences in Close Relationships Scale-Revised (ECR-R) was used to assess three types of adult attachment (i.e., secure, anxious, and avoidant). Participants reported condomless sex encounters, as well as serodiscordant condomless anal sex encounters, as measures of sexual risk. Quantitative findings suggested that there were few associations between attachment type and sexual risk behavior; only men with attachment avoidance were likely to engage in condomless sex. However, qualitative findings illuminated some of the social complexities of the association between attachment in childhood, attachment in young adulthood and intimate partnerships, which could be linked to young adult sexual risk behavior. The study findings highlight the need for researchers to further examine the process by which individual differences in attachment orientation are related to YBGBM's sexual behavior.
Hajizadeh, Solmaz; Xu, Changgang; Kirsebom, Harald; Ye, Lei; Mattiasson, Bo
2013-01-25
In this work, a new macroporous molecularly imprinted cryogel (MIP composite cryogel) was synthesized by glutaraldehyde cross-linking reaction of poly(vinyl alcohol) (PVA) particles and amino-modified molecularly imprinted core-shell nanoparticles. The MIP core-shell nanoparticles were prepared using propranolol as a template by one-pot precipitation polymerization with sequential monomer addition. The characteristics of the MIP composite cryogel were studied by scanning electron microscopy (SEM) and texture analyzer. The macroporous structure of the composite (with the pore size varying from a few micrometers to 100 μm) enabled high mass transfer of particulate-containing fluids. In a solid phase extraction (SPE) process, the efficiency and selectivity of the MIP composite cryogel were investigated, where the cryogel was used as an affinity matrix to remove propranolol from aqueous solution as well as from complex plasma sample without prior protein precipitation. The MIP composite cryogel maintained high selectivity and stability and could be used repeatedly after regeneration. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lan, Yan; You, Qingliang; Cheng, Cheng; Zhang, Suzhen; Ni, Guohua; Nagatsu, M.; Meng, Yuedong
2011-02-01
Surface modification on a polytetrafluoroethylene (PTFE) panel was performed with sequential nitrogen plasma treatments and surface-initiated polymerization. By introducing COO- groups to the surface of the PTFE panel through grafting polymerization of acrylic acid (AA), a transparent poly (acrylic acid) (PAA) membrane was achieved from acrylic acid solution. Grafting polymerization initiating from the active groups was achieved on the PTFE panel surface after the nitrogen plasma treatment. Utilizing the acrylic acid as monomers, with COO- groups as cross link sites to form reticulation structure, a transparent poly (acrylic acid) membrane with arborescent macromolecular structure was formed on the PTFE panel surface. Analysis methods, such as fourier transform infrared spectroscopy (FTIR), microscopy and X-ray photoelectron spectroscopy (XPS), were utilized to characterize the structures of the macromolecule membrane on the PTFE panel surface. A contact angle measurement was performed to characterize the modified PTFE panels. The surface hydrophilicities of modified PTFE panels were significantly enhanced after the plasma treatment. It was shown that the grafting rate is related to the treating time and the power of plasma.
Lai, Jui-Yang
2012-01-01
Chitosan is a naturally occurring cationic polysaccharide and has attracted much attention in the past decade as an important ophthalmic biomaterial. We recently demonstrated that the genipin (GP) cross-linked chitosan is compatible with human retinal pigment epithelial cells. The present work aims to further investigate the in vivo biocompatibility of GP-treated chitosan (GP-chi group) by adopting the anterior chamber of a rabbit eye model. The glutaraldehyde (GTA) cross-linked samples (GTA-chi group) were used for comparison. The 7-mm-diameter membrane implants made from either non-cross-linked chitosan or chemically modified materials with a cross-linking degree of around 80% were inserted in the ocular anterior chamber for 24 weeks and characterized by slit-lamp and specular microscopic examinations, intraocular pressure measurements, and corneal thickness measurements. The interleukin-6 expressions at mRNA level were also detected by quantitative real-time reverse transcription polymerase chain reaction. Results of clinical observations showed that the overall ocular scores in the GTA-chi groups were relatively high. In contrast, the rabbits bearing GP-chi implants in the anterior chamber of the eye exhibited no signs of ocular inflammation. As compared to the non-cross-linked counterparts, the GP-chi samples improved the preservation of corneal endothelial cell density and possessed better anti-inflammatory activities, indicating the benefit action of the GP cross-linker. In summary, the intracameral tissue response to the chemically modified chitosan materials strongly depends on the selection of cross-linking agents. PMID:23109832
Cell protein cross-linking by erbstatin and related compounds | Center for Cancer Research
The scheme depicts a possible mechanism of cross-linking by erbstatin and related analogues. A mechanism of action is proposed which involves initial oxidation to reactive quinone intermediates that subsequently cross-link protein nucleophiles via multiple 1,4-Michael-type additions. Similar alkylation of protein by protein-tyrosine kinase inhibitors, such as herbimycin A, has
Durability and mechanical properties of silane cross-linked wood thermoplastic composites
Magnus Bengtsson; Nicole M. Stark; Kristiina Oksman
2007-01-01
In this study, silane cross-linked woodâpolyethylene composite profiles were manufactured by reactive extrusion. These composites were evaluated regarding their durability and mechanical properties in comparison with two non-cross-linked woodâ polyethylene composites. An addition of only 2% w/w of silane solution during manufacturing was enough to achieve almost 60%...
Crosslinked Polybenzimidazole Membrane For Gas Separation
Jorgensen, Betty S.; Young, Jennifer S.; Espinoza, Brent F.
2005-09-20
A cross-linked, supported polybenzimidazole membrane for gas separation is prepared by layering a solution of polybenzimidazole (PBI) and a,a'dibromo-p-xylene onto a porous support and evaporating solvent. A supported membrane of cross-linked poly-2,2'-(m-phenylene)-5,5'-bibenzimidazole unexpectedly exhibits an enhanced gas permeability compared to the non-cross linked analog at temperatures over 265° C.
USDA-ARS?s Scientific Manuscript database
Bovine and caprine caseins were cross-linked with microbial transglutaminase (mTG). The mTG-cross-linked bovine or caprine casein dispersion, mixed with 14.5% maltodextrin (DE = 40), was used to prepare emulsions with 10.5% algae oil. Oxidative stability of emulsions was evaluated by peroxide valu...
Modified carbohydrate-chitosan compounds, methods of making the same and methods of using the same
Venditti, Richard A; Pawlak, Joel J; Salam, Abdus; El-Tahlawy, Khaled Fathy
2015-03-10
Compositions of matter are provided that include chitosan and a modified carbohydrate. The modified carbohydrate includes a carbohydrate component and a cross linking agent. The modified carbohydrate has increased carboxyl content as compared to an unmodified counterpart carbohydrate. A carboxyl group of the modified carbohydrate is covalently bonded with an amino group of chitosan. The compositions of matter provided herein may include cross linked starch citrate-chitosan and cross linked hemicellulose citrate-chitosan, including foams thereof. These compositions yield excellent absorbency and metal chelation properties. Methods of making cross linked modified carbohydrate-chitosan compounds are also provided.
Ong, Chong-Boon; Annuar, Mohamad S M
2018-02-07
Immobilization of cross-linked tannase on pristine multiwalled carbon nanotubes (MWCNT) was successfully performed. Cross-linking of tannase molecules was made through glutaraldehyde. The immobilized tannase exhibited significantly improved pH, thermal, and recycling stability. The optimal pH for both free and immobilized tannase was observed at pH 5.0 with optimal operating temperature at 30°C. Moreover, immobilized enzyme retained greater biocatalytic activities upon 10 repeated uses compared to free enzyme in solution. Immobilization of tannase was accomplished by strong hydrophobic interaction most likely between hydrophobic amino acid moieties of the glutaraldehyde-cross-linked tannase to the MWCNT.
Gong, Lan; Ramm, Georg; Devenish, Rodney J.; Prescott, Mark
2012-01-01
Genetically encoded fluorescent cross-linking agents represent powerful tools useful both for visualising and modulating protein interactions in living cells. The far-red fluorescent protein HcRed, which is fluorescent only in a dimer form, can be used to promote the homo-dimerisation of target proteins, and thereby yield useful information about biological processes. We have in yeast cells expressed HcRed fused to a subunit of mitochondrial ATP synthase (mtATPase). This resulted in cross-linking of the large multi-subunit mtATPase complex within the inner-membrane of the mitochondrion. Fluorescence microscopy revealed aberrant mitochondrial morphology, and mtATPase complexes isolated from mitochondria were recovered as fluorescent dimers under conditions where complexes from control mitochondria were recovered as monomers. When viewed by electron microscopy normal cristae were absent from mitochondria in cells in which mATPase complexes were cross-linked. mtATPase dimers are believed to be the building blocks that are assembled into supramolecular mtATPase ribbons that promote the formation of mitochondrial cristae. We propose that HcRed cross-links mATPase complexes in the mitochondrial membrane hindering the normal assembly/disassembly of the supramolecular forms of mtATPase. PMID:22496895
NASA Astrophysics Data System (ADS)
Li, Yiju; Yu, Neng; Yan, Peng; Li, Yuguang; Zhou, Xuemei; Chen, Shuangling; Wang, Guiling; Wei, Tong; Fan, Zhuangjun
2015-12-01
In this paper, MnO2 nanoplates loading on biomass-derived cross-linked carbon nanosheets have been prepared by a two-step synthesis. At first, the cross-linked carbon nanosheets derived from willow catkin are synthesized by one-step pyrolysis and activation method, then the MnO2 anchored cross-linked carbon nanosheets is prepared via in-situ hydrothermal deposition. The asymmetric supercapacitor with terrific energy and power density is assembled by employing the MnO2 anchored cross-linked carbon nanosheets as the positive electrode and the cross-linked carbon nanosheets as the negative electrode in a 1 M Na2SO4 electrolyte. The asymmetric supercapacitor displays a high energy density of 23.6 Wh kg-1 at a power density of 188.8 W kg-1 within a wide voltage rage of 0-1.9 V. In addition, the asymmetric supercapacitor exhibits excellent cycling stability with only 1.4% capacitance loss after 10000 cycles at 1 A g-1. These discoveries open up the prospect of biomass/biowaste derived carbon-based composites for high-voltage asymmetric supercapacitors with superb energy and power density performance.
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Johnston, J. Christopher; Cavano, Paul J.
1997-01-01
Solid NMR of C-13 isotope-labeled samples of PMR-15 was used to follow the cross-linking reaction of the nadic end cap. Some samples were labeled on one of the carbon atoms of the nadic end cap, and others on the methylene carbon atom of the methylenedianiline portion of the polymer. NMR spectra were run on these samples both before and after cross-linking. In this way, direct evidence of the major products of cross-linking under normal cure conditions is provided. The majority (approximately 85%) of the cross-linking derives from olefin polymerization through the double bond of the end cap. Approximately 15% of the products could come from a pathway involving a retro-Diels-Alder reaction. However, all of the products could be explained by a biradical intermediate without a retro-Diels-Alder reaction. Evidence is also presented that the methylene moiety in the methylenedianiline part of the polymer chain also participates in the cross-linking, albeit to a small extent, by a radical transfer reaction. Different cure conditions (higher temperatures, longer times) could change the relative distribution of the products.
Xu, Chuanhui; Cao, Liming; Lin, Baofeng; Liang, Xingquan; Chen, Yukun
2016-07-13
Introducing ionic associations is one of the most effective approaches to realize a self-healing behavior for rubbers. However, most of commercial rubbers are nonpolar rubbers without now available functional groups to be converted into ionic groups. In this paper, our strategy was based on a controlled peroxide-induced vulcanization to generate massive ionic cross-links via polymerization of zinc dimethacrylate (ZDMA) in natural rubber (NR) and exploited it as a potential self-healable material. We controlled vulcanization process to retard the formation of covalent cross-link network, and successfully generated a reversible supramolecular network mainly constructed by ionic cross-links. Without the restriction of covalent cross-linkings, the NR chains in ionic supramolecular network had good flexibility and mobility. The nature that the ionic cross-links was easily reconstructed and rearranged facilitating the self-healing behavior, thereby enabling a fully cut sample to rejoin and retain to its original properties after a suitable self-healing process at ambient temperature. This study thus demonstrates a feasible approach to impart an ionic association induced self-healing function to commercial rubbers without ionic functional groups.
Cross-linking Chemistry of Squid Beak*
Miserez, Ali; Rubin, Daniel; Waite, J. Herbert
2010-01-01
In stark contrast to most aggressive predators, Dosidicus gigas (jumbo squids) do not use minerals in their powerful mouthparts known as beaks. Their beaks instead consist of a highly sclerotized chitinous composite with incremental hydration from the tip to the base. We previously reported l-3,4-dihydroxyphenylalanine (dopa)-histidine (dopa-His) as an important covalent cross-link providing mechanical strengthening to the beak material. Here, we present a more complete characterization of the sclerotization chemistry and describe additional cross-links from D. gigas beak. All cross-links presented in this report share common building blocks, a family of di-, tri-, and tetra-histidine-catecholic adducts, that were separated by affinity chromatography and high performance liquid chromatography (HPLC) and identified by tandem mass spectroscopy and proton nuclear magnetic resonance (1H NMR). The data provide additional insights into the unusually high cross-link density found in mature beaks. Furthermore, we propose both a low molecular weight catechol, and peptidyl-dopa, to be sclerotization agents of squid beak. This appears to represent a new strategy for forming hard tissue in animals. The interplay between covalent cross-linking and dehydration on the graded properties of the beaks is discussed. PMID:20870720
Cross-linking chemistry of squid beak.
Miserez, Ali; Rubin, Daniel; Waite, J Herbert
2010-12-03
In stark contrast to most aggressive predators, Dosidicus gigas (jumbo squids) do not use minerals in their powerful mouthparts known as beaks. Their beaks instead consist of a highly sclerotized chitinous composite with incremental hydration from the tip to the base. We previously reported l-3,4-dihydroxyphenylalanine (dopa)-histidine (dopa-His) as an important covalent cross-link providing mechanical strengthening to the beak material. Here, we present a more complete characterization of the sclerotization chemistry and describe additional cross-links from D. gigas beak. All cross-links presented in this report share common building blocks, a family of di-, tri-, and tetra-histidine-catecholic adducts, that were separated by affinity chromatography and high performance liquid chromatography (HPLC) and identified by tandem mass spectroscopy and proton nuclear magnetic resonance ((1)H NMR). The data provide additional insights into the unusually high cross-link density found in mature beaks. Furthermore, we propose both a low molecular weight catechol, and peptidyl-dopa, to be sclerotization agents of squid beak. This appears to represent a new strategy for forming hard tissue in animals. The interplay between covalent cross-linking and dehydration on the graded properties of the beaks is discussed.
Mono- and bifunctional binding of cis-diamminedichloroplatinum(II) to dinucleotides.
Försti, A; Laatikainen, R; Hemminki, K
1987-01-01
cis-Diamminedichloroplatinum(II) (cis-Pt) was reacted with four homodinucleotides (GpG, ApA, CpC, and UpU) and six heterodinucleotides (GpC, CpG, GpU, UpG, GpA, and ApG) at pH 6, and the reaction products were purified by HPLC. The most important products were characterized by 1H-NMR spectra. In all the heterodinucleotides except the ones containing uridine the main Pt-adduct was an intramolecular cross-link, but monofunctional adducts and intermolecular cross-links were also detected. Intramolecular cross-links were also formed with GpU and UpG but the amounts of them were about the same as the amounts of intermolecular cross-links. In the case of homodinucleotides GpG gave almost entirely intramolecular cross-links, in which cis-Pt was chelated between the N-7 atoms of two guanines. cis-Pt reacted also with ApA forming both monofunctional and bifunctional Pt-adducts. The main adducts were intramolecular cross-links. cis-Pt reacted equally well with all guanosine-containing dinucleotides, while the reaction with ApA was much slower. With CpC and UpU no reaction products were formed.
Cross-Linked Amylose Bio-Plastic: A Transgenic-Based Compostable Plastic Alternative
Sagnelli, Domenico; Kemmer, Gerdi Christine; Holse, Mette; Hebelstrup, Kim H.; Bao, Jinsong; Stelte, Wolfgang; Bjerre, Anne-Belinda; Blennow, Andreas
2017-01-01
Bio-plastics and bio-materials are composed of natural or biomass derived polymers, offering solutions to solve immediate environmental issues. Polysaccharide-based bio-plastics represent important alternatives to conventional plastic because of their intrinsic biodegradable nature. Amylose-only (AO), an engineered barley starch with 99% amylose, was tested to produce cross-linked all-natural bioplastic using normal barley starch as a control. Glycerol was used as plasticizer and citrate cross-linking was used to improve the mechanical properties of cross-linked AO starch extrudates. Extrusion converted the control starch from A-type to Vh- and B-type crystals, showing a complete melting of the starch crystals in the raw starch granules. The cross-linked AO and control starch specimens displayed an additional wide-angle diffraction reflection. Phospholipids complexed with Vh-type single helices constituted an integrated part of the AO starch specimens. Gas permeability tests of selected starch-based prototypes demonstrated properties comparable to that of commercial Mater-Bi© plastic. The cross-linked AO prototypes had composting characteristics not different from the control, indicating that the modified starch behaves the same as normal starch. The data shows the feasibility of producing all-natural bioplastic using designer starch as raw material. PMID:28973963
Synthesis and enzymatic degradation of epichlorohydrin cross-linked pectins.
Semdé, Rasmané; Moës, André J; Devleeschouwer, Michel J; Amighi, Karim
2003-02-01
The water solubility of pectin was successfully decreased by cross-linking with increasing amounts of epichlorohydrin in the reaction media. The initial molar ratios of epichlorohydrin/ galacturonic acid monomer in the reaction mixtures were 0, 0.37, 0.56, 0.74, 1.00, 1.47, and 2.44. The resulting epichlorohydrin cross-linked pectins were thus referred to as C-LP0, C-LP37, C-LP56, C-LP75, C-LP100, C-LP150, and C-LP250, respectively. Methoxylation degrees ranged from 60.5 +/- 0.9% to 68.0 +/- 0.6%, and the effective cross-linking degrees, determined by quantification of the hydroxyl anions consumed during the reaction, were 0, 17.8, 26.0, 38.3, 46.5, 53.5, and 58.7%. respectively. After incubating the different cross-linked pectins (0.5% w/v) in 25 mL of 0.05 M acetate-phosphate buffer (pH 4.5), containing 50 microL of Pectinex Ultra SP-L (pectinolytic enzymes), between 60 and 80% of the pectin osidic bounds were broken in less than 1 hr. Moreover, increasing the cross-linking degree only resulted in a weak slowing on the enzymatic degradation velocity.
Cross-Linked Amylose Bio-Plastic: A Transgenic-Based Compostable Plastic Alternative.
Sagnelli, Domenico; Hooshmand, Kourosh; Kemmer, Gerdi Christine; Kirkensgaard, Jacob J K; Mortensen, Kell; Giosafatto, Concetta Valeria L; Holse, Mette; Hebelstrup, Kim H; Bao, Jinsong; Stelte, Wolfgang; Bjerre, Anne-Belinda; Blennow, Andreas
2017-09-30
Bio-plastics and bio-materials are composed of natural or biomass derived polymers, offering solutions to solve immediate environmental issues. Polysaccharide-based bio-plastics represent important alternatives to conventional plastic because of their intrinsic biodegradable nature. Amylose-only (AO), an engineered barley starch with 99% amylose, was tested to produce cross-linked all-natural bioplastic using normal barley starch as a control. Glycerol was used as plasticizer and citrate cross-linking was used to improve the mechanical properties of cross-linked AO starch extrudates. Extrusion converted the control starch from A-type to Vh- and B-type crystals, showing a complete melting of the starch crystals in the raw starch granules. The cross-linked AO and control starch specimens displayed an additional wide-angle diffraction reflection. Phospholipids complexed with Vh-type single helices constituted an integrated part of the AO starch specimens. Gas permeability tests of selected starch-based prototypes demonstrated properties comparable to that of commercial Mater-Bi © plastic. The cross-linked AO prototypes had composting characteristics not different from the control, indicating that the modified starch behaves the same as normal starch. The data shows the feasibility of producing all-natural bioplastic using designer starch as raw material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilbur, Jeffrey D.; Gomez, Enrique D.; Ellsworth, Mark W.
A procedure for creating samples that can be repeatedly cycled between weakly aligned and strongly aligned states is described. Poly(styrene-b-isoprene) block copolymer samples were first shear-aligned and then cross-linked using a high energy electron beam. Samples with more than 1.0 cross-links per chain on average showed almost complete recovery of their initial alignment state even after 20 cycles of heating above the order–disorder transition temperature of the un-cross-linked block copolymer. Samples with 1.1 cross-links per chain, which showed over 90% loss of alignment on heating and almost 100% recovery of alignment on cooling, provided the best example of a reversiblemore » aligned-to-unaligned transition. Samples with lower cross-linking densities exhibited irreversible loss of alignment upon heating, while those with higher cross-linking densities exhibited less than 90% loss of alignment upon heating. Alignment was quantified by a technique that we call two color depolarized light scattering (TCDLS), an extension of the traditional depolarized light scattering experiment used to determine the state of order in block copolymers. Qualitative confirmation of our interpretation of TCDLS data was obtained by small-angle X-ray scattering and transmission electron microscopy.« less
In vivo oxidation in remelted highly cross-linked retrievals.
Currier, B H; Van Citters, D W; Currier, J H; Collier, J P
2010-10-20
Elimination of free radicals to prevent oxidation has played a major role in the development and product differentiation of the latest generation of highly cross-linked ultra-high molecular weight polyethylene bearing materials. In the current study, we (1) examined oxidation in a series of retrieved remelted highly cross-linked ultra-high molecular weight polyethylene bearings from a number of device manufacturers and (2) compared the retrieval results with findings for shelf-stored control specimens. The hypothesis was that radiation-cross-linked remelted ultra-high molecular weight polyethylene would maintain oxidative stability in vivo comparable with the stability during shelf storage and in published laboratory aging tests. Fifty remelted highly cross-linked ultra-high molecular weight polyethylene acetabular liners and nineteen remelted highly cross-linked ultra-high molecular weight polyethylene tibial inserts were received after retrieval from twenty-one surgeons from across the U.S. Thirty-two of the retrievals had been in vivo for two years or more. Each was measured for oxidation with use of Fourier transform infrared spectroscopy. A control series of remelted highly cross-linked ultra-high molecular weight polyethylene acetabular liners from three manufacturers was analyzed with electron paramagnetic resonance spectroscopy to measure free radical content and with Fourier transform infrared spectroscopy to measure oxidation initially and after eight to nine years of shelf storage in air. The never-implanted, shelf-aged controls had no measurable free-radical content initially or after eight to nine years of shelf storage. The never-implanted controls showed no increase in oxidation during shelf storage. Oxidation measurements showed measurable oxidation in 22% of the retrieved remelted highly cross-linked liners and inserts after an average of two years in vivo. Because never-implanted remelted highly cross-linked ultra-high molecular weight polyethylene materials had no measurable free-radical concentration and no increase in oxidation during shelf storage, these materials were expected to be oxidation-resistant in vivo. However, some remelted highly cross-linked ultra-high molecular weight polyethylene retrievals showed measurable oxidation after an average of more than two years in vivo. This apparent departure from widely expected behavior requires continued study of the process of in vivo oxidation of ultra-high molecular weight polyethylene materials.
Cross-Linked Nanotube Materials with Variable Stiffness Tethers
NASA Technical Reports Server (NTRS)
Frankland, Sarah-Jane V.; Odegard, Gregory M.; Herzog, Matthew N.; Gates, Thomas S.; Fay, Catherine C.
2004-01-01
The constitutive properties of a cross-linked single-walled carbon nanotube material are predicted with a multi-scale model. The material is modeled as a transversely isotropic solid using concepts from equivalent-continuum modeling. The elastic constants are determined using molecular dynamics simulation. Some parameters of the molecular force field are determined specifically for the cross-linker from ab initio calculations. A demonstration of how the cross-linked nanotubes may affect the properties of a nanotube/polyimide composite is included using a micromechanical analysis.
Serum Albumin Domain Structures in Human Blood Serum by Mass Spectrometry and Computational Biology.
Belsom, Adam; Schneider, Michael; Fischer, Lutz; Brock, Oliver; Rappsilber, Juri
2016-03-01
Chemical cross-linking combined with mass spectrometry has proven useful for studying protein-protein interactions and protein structure, however the low density of cross-link data has so far precluded its use in determining structures de novo. Cross-linking density has been typically limited by the chemical selectivity of the standard cross-linking reagents that are commonly used for protein cross-linking. We have implemented the use of a heterobifunctional cross-linking reagent, sulfosuccinimidyl 4,4'-azipentanoate (sulfo-SDA), combining a traditional sulfo-N-hydroxysuccinimide (sulfo-NHS) ester and a UV photoactivatable diazirine group. This diazirine yields a highly reactive and promiscuous carbene species, the net result being a greatly increased number of cross-links compared with homobifunctional, NHS-based cross-linkers. We present a novel methodology that combines the use of this high density photo-cross-linking data with conformational space search to investigate the structure of human serum albumin domains, from purified samples, and in its native environment, human blood serum. Our approach is able to determine human serum albumin domain structures with good accuracy: root-mean-square deviation to crystal structure are 2.8/5.6/2.9 Å (purified samples) and 4.5/5.9/4.8Å (serum samples) for domains A/B/C for the first selected structure; 2.5/4.9/2.9 Å (purified samples) and 3.5/5.2/3.8 Å (serum samples) for the best out of top five selected structures. Our proof-of-concept study on human serum albumin demonstrates initial potential of our approach for determining the structures of more proteins in the complex biological contexts in which they function and which they may require for correct folding. Data are available via ProteomeXchange with identifier PXD001692. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Cross-linked compared with historical polyethylene in THA: an 8-year clinical study.
Geerdink, Carel H; Grimm, Bernd; Vencken, Wendy; Heyligers, Ide C; Tonino, Alphons J
2009-04-01
Wear particle-induced osteolysis is a major cause of aseptic loosening in THA. Increasing wear resistance of polyethylene (PE) occurs by increasing the cross-link density and early reports document low wear rates with such implants. To confirm longer-term reductions in wear we compared cross-linked polyethylene (irradiation in nitrogen, annealing) with historical polyethylene (irradiation in air) in a prospective, randomized clinical study involving 48 patients who underwent THAs with a minimum followup of 7 years (mean, 8 years; range, 7-9 years). The insert material was the only variable. The Harris hip score, radiographic signs of osteolysis, and polyethylene wear were recorded annually. Twenty-three historical and 17 moderately cross-linked polyethylene inserts were analyzed (five patients died, three were lost to followup). At 8 years, the wear rate was lower for cross-linked polyethylene (0.088 +/- 0.03 mm/year) than for the historical polyethylene (0.142 +/- 0.07 mm/year). This reduction (38%) did not diminish with time (33% at 5 years). Acetabular cyst formation was less frequent (39% versus 12%), affected fewer DeLee and Charnley zones (17% versus 4%), and was less severe for the cross-linked polyethylene. The only revision was for an aseptically loose cup in the historical polyethylene group. Moderately cross-linked polyethylene maintained its wear advantage with time and produced less osteolysis, showing no signs of aging at mid-term followup. Level I, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.
Yamaguchi, Hideto; Hirakura, Yutaka; Shirai, Hiroki; Mimura, Hisashi; Toyo'oka, Toshimasa
2011-06-01
The need for a simple and high-throughput method for identifying the tertiary structure of protein pharmaceuticals has increased. In this study, a simple method for mapping the protein fold is proposed for use as a complementary quality test. This method is based on cross-linking a protein using a [bis(sulfosuccinimidyl)suberate (BS(3))], followed by peptide mapping by LC-MS. Consensus interferon (CIFN) was used as the model protein. The tryptic map obtained via liquid chromatography tandem mass spectroscopy (LC-MS/MS) and the mass mapping obtained via matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy were used to identify cross-linked peptides. While LC-MS/MS analyses found that BS(3) formed cross-links in the loop region of the protein, which was regarded as the biologically active site, sodium dodecyl-sulfate polyacrylamide gel electrophoresis demonstrated that cross-linking occurred within a protein molecule, but not between protein molecules. The occurrence of cross-links at the active site depends greatly on the conformation of the protein, which is determined by the denaturing conditions. Quantitative evaluation of the tertiary structure of CIFN was thus possible by monitoring the amounts of cross-linked peptides generated. Assuming that background information is available at the development stage, this method may be applicable to process development as a complementary test for quality control. Copyright © 2011 Elsevier B.V. All rights reserved.
Role of special cross-links in structure formation of bacterial DNA polymer
NASA Astrophysics Data System (ADS)
Agarwal, Tejal; Manjunath, G. P.; Habib, Farhat; Lakshmi Vaddavalli, Pavana; Chatterji, Apratim
2018-01-01
Using data from contact maps of the DNA-polymer of Escherichia coli (E. Coli) (at kilobase pair resolution) as an input to our model, we introduce cross-links between monomers in a bead-spring model of a ring polymer at very specific points along the chain. Via suitable Monte Carlo simulations, we show that the presence of these cross-links leads to a particular organization of the chain at large (micron) length scales of the DNA. We also investigate the structure of a ring polymer with an equal number of cross-links at random positions along the chain. We find that though the polymer does get organized at the large length scales, the nature of the organization is quite different from the organization observed with cross-links at specific biologically determined positions. We used the contact map of E. Coli bacteria which has around 4.6 million base pairs in a single circular chromosome. In our coarse-grained flexible ring polymer model, we used 4642 monomer beads and observed that around 80 cross-links are enough to induce the large-scale organization of the molecule accounting for statistical fluctuations caused by thermal energy. The length of a DNA chain even of a simple bacterial cell such as E. Coli is much longer than typical proteins, hence we avoided methods used to tackle protein folding problems. We define new suitable quantities to identify the large scale structure of a polymer chain with a few cross-links.
Hastrup, Hanne; Karlin, Arthur; Javitch, Jonathan A.
2001-01-01
There is evidence both for and against Na+- and Cl−-dependent neurotransmitter transporters forming oligomers. We found that cross-linking the human dopamine transporter (DAT), which is heterologously expressed in human embryonic kidney 293 cells, either with copper phenanthroline (CuP) or the bifunctional reagent bis-(2-methanethiosulfonatoethyl)amine hydrochloride (bis-EA) increased the apparent molecular mass determined with nonreducing SDS/PAGE from ≈85 to ≈195 kDa. After cross-linking, but not before, coexpressed, differentially epitope-tagged DAT molecules, solubilized in Triton X-100, were coimmunoprecipitated. Thus, the 195-kDa complex was a homodimer. Cross-linking of DAT did not affect tyramine uptake. Replacement of Cys-306 with Ala prevented cross-linking. Replacement of all of the non-disulfide-bonded cysteines in the extracellular and membrane domains, except for Cys-306, did not prevent cross-linking. We conclude that the cross-link is between Cys-306 at the extracellular end of TM6 in each of the two DATs. The motif GVXXGVXXA occurs at the intracellular end of TM6 in DAT and is found in a number of other neurotransmitter transporters. This sequence was originally found at the dimerization interface in glycophorin A, and it promotes dimerization in model systems. Mutation of either glycine disrupted DAT expression and function. The intracellular end of TM6, like the extracellular end, is likely to be part of the dimerization interface. PMID:11526230
Hastrup, H; Karlin, A; Javitch, J A
2001-08-28
There is evidence both for and against Na(+)- and Cl(-)-dependent neurotransmitter transporters forming oligomers. We found that cross-linking the human dopamine transporter (DAT), which is heterologously expressed in human embryonic kidney 293 cells, either with copper phenanthroline (CuP) or the bifunctional reagent bis-(2-methanethiosulfonatoethyl)amine hydrochloride (bis-EA) increased the apparent molecular mass determined with nonreducing SDS/PAGE from approximately 85 to approximately 195 kDa. After cross-linking, but not before, coexpressed, differentially epitope-tagged DAT molecules, solubilized in Triton X-100, were coimmunoprecipitated. Thus, the 195-kDa complex was a homodimer. Cross-linking of DAT did not affect tyramine uptake. Replacement of Cys-306 with Ala prevented cross-linking. Replacement of all of the non-disulfide-bonded cysteines in the extracellular and membrane domains, except for Cys-306, did not prevent cross-linking. We conclude that the cross-link is between Cys-306 at the extracellular end of TM6 in each of the two DATs. The motif GVXXGVXXA occurs at the intracellular end of TM6 in DAT and is found in a number of other neurotransmitter transporters. This sequence was originally found at the dimerization interface in glycophorin A, and it promotes dimerization in model systems. Mutation of either glycine disrupted DAT expression and function. The intracellular end of TM6, like the extracellular end, is likely to be part of the dimerization interface.
Nojima, Kuniharu; Hochegger, Helfrid; Saberi, Alihossein; Fukushima, Toru; Kikuchi, Koji; Yoshimura, Michio; Orelli, Brian J; Bishop, Douglas K; Hirano, Seiki; Ohzeki, Mioko; Ishiai, Masamichi; Yamamoto, Kazuhiko; Takata, Minoru; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Yamazoe, Mitsuyoshi; Kawamoto, Takuo; Araki, Kasumi; Takahashi, Jun A; Hashimoto, Nobuo; Takeda, Shunichi; Sonoda, Eiichiro
2005-12-15
Cross-linking agents that induce DNA interstrand cross-links (ICL) are widely used in anticancer chemotherapy. Yeast genetic studies show that nucleotide excision repair (NER), Rad6/Rad18-dependent postreplication repair, homologous recombination, and cell cycle checkpoint pathway are involved in ICL repair. To study the contribution of DNA damage response pathways in tolerance to cross-linking agents in vertebrates, we made a panel of gene-disrupted clones from chicken DT40 cells, each defective in a particular DNA repair or checkpoint pathway, and measured the sensitivities to cross-linking agents, including cis-diamminedichloroplatinum (II) (cisplatin), mitomycin C, and melphalan. We found that cells harboring defects in translesion DNA synthesis (TLS), Fanconi anemia complementation groups (FANC), or homologous recombination displayed marked hypersensitivity to all the cross-linking agents, whereas NER seemed to play only a minor role. This effect of replication-dependent repair pathways is distinctively different from the situation in yeast, where NER seems to play a major role in dealing with ICL. Cells deficient in Rev3, the catalytic subunit of TLS polymerase Polzeta, showed the highest sensitivity to cisplatin followed by fanc-c. Furthermore, epistasis analysis revealed that these two mutants work in the same pathway. Our genetic comprehensive study reveals a critical role for DNA repair pathways that release DNA replication block at ICLs in cellular tolerance to cross-linking agents and could be directly exploited in designing an effective chemotherapy.
Walking of antitumor bifunctional trinuclear PtII complex on double-helical DNA
Malina, Jaroslav; Kasparkova, Jana; Farrell, Nicholas P.; Brabec, Viktor
2011-01-01
The trinuclear BBR3464 ([{trans-PtCl(NH3)2}2µ-(trans-Pt(NH3)2(H2N(CH2)6NH2)2)]4+) belongs to the polynuclear class of platinum-based anticancer agents. DNA adducts of this complex differ significantly in structure and type from those of clinically used mononuclear platinum complexes, especially, long-range (Pt, Pt) intrastrand and interstrand cross-links are formed in both 5′–5′ and 3′–3′ orientations. We show employing short oligonucleotide duplexes containing single, site-specific cross-links of BBR3464 and gel electrophoresis that in contrast to major DNA adducts of clinically used platinum complexes, under physiological conditions the coordination bonds between platinum and N7 of G residues involved in the cross-links of BBR3464 can be cleaved. This cleavage may lead to the linkage isomerization reactions between this metallodrug and double-helical DNA. Differential scanning calorimetry of duplexes containing single, site-specific cross-links of BBR3464 reveals that one of the driving forces that leads to the lability of DNA cross-links of this metallodrug is a difference between the thermodynamic destabilization induced by the cross-link and by the adduct into which it could isomerize. The rearrangements may proceed in the way that cross-links originally formed in one strand of DNA can spontaneously translocate from one DNA strand to its complementary counterpart, which may evoke walking of the platinum complex on DNA molecule. PMID:20833634