Science.gov

Sample records for undergraduate biochemistry laboratory

  1. Ribose 5-Phosphate Isomerase Investigations for the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Jewett, Kathy; Sandwick, Roger K.

    2011-01-01

    The enzyme ribose 5-phosphate isomerase (RpiA) has many features that make it attractive as a focal point of a semester-long, advanced biochemistry laboratory for undergraduate students. The protein can easily and inexpensively be isolated from spinach using traditional purification techniques. Characterization of RpiA enzyme activity can be…

  2. A Curriculum Skills Matrix for Development and Assessment of Undergraduate Biochemistry and Molecular Biology Laboratory Programs

    ERIC Educational Resources Information Center

    Caldwell, Benjamin; Rohlman, Christopher; Benore-Parsons, Marilee

    2004-01-01

    We have designed a skills matrix to be used for developing and assessing undergraduate biochemistry and molecular biology laboratory curricula. We prepared the skills matrix for the Project Kaleidoscope Summer Institute workshop in Snowbird, Utah (July 2001) to help current and developing undergraduate biochemistry and molecular biology program…

  3. An Experiment Using Sucrose Density Gradients in the Undergraduate Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Turchi, Sandra L.; Weiss, Monica

    1988-01-01

    Describes an experiment to be performed in an undergraduate biochemistry laboratory that is based on a gradient centrifugation system employing a simple bench top centrifuge, a freezer, and frozen surcose gradient solution to separate macromolecules and subcellular components. (CW)

  4. Purification and Characterization of Taq Polymerase: A 9-Week Biochemistry Laboratory Project for Undergraduate Students

    ERIC Educational Resources Information Center

    Bellin, Robert M.; Bruno, Mary K.; Farrow, Melissa A.

    2010-01-01

    We have developed a 9-week undergraduate laboratory series focused on the purification and characterization of "Thermus aquaticus" DNA polymerase (Taq). Our aim was to provide undergraduate biochemistry students with a full-semester continuing project simulating a research-like experience, while having each week's procedure focus on a single…

  5. Known Structure, Unknown Function: An Inquiry-Based Undergraduate Biochemistry Laboratory Course

    ERIC Educational Resources Information Center

    Gray, Cynthia; Price, Carol W.; Lee, Christopher T.; Dewald, Alison H.; Cline, Matthew A.; McAnany, Charles E.; Columbus, Linda; Mura, Cameron

    2015-01-01

    Undergraduate biochemistry laboratory courses often do not provide students with an authentic research experience, particularly when the express purpose of the laboratory is purely instructional. However, an instructional laboratory course that is inquiry- and research-based could simultaneously impart scientific knowledge and foster a student's…

  6. DNA Topology Analysis in the Undergraduate Biochemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Keck, Michael V.

    2000-11-01

    The ability of a cell to control precisely and regulate DNA winding and topology is critical for many intracellular processes, such as replication, transcription, recombination, and repair. A set of complementary experiments is described which are useful in teaching the principles of DNA topology to undergraduate biochemistry students. In one experiment, a copper-o-phenanthroline complex is used to oxidatively cleave closed circular supercoiled DNA and generate nicked and linear forms. In the second experiment, the antitumor agent cis-diamminedichloroplatinum is used to gradually remove supercoils by unwinding the DNA helix. In a third experiment, DNA topoisomerase I is used to generate a set of topoisomers of covalently closed circular DNA. In all experiments, the results are readily analyzed by agarose gel electrophoresis. Together, these experiments greatly facilitate the students' understanding of the basic principles of DNA topology and provide an interesting backdrop for teaching agarose gel electrophoresis methodology. They also serve to introduce topics such as small molecule-DNA interactions and DNA damage and repair.

  7. Forensic Analysis of Canine DNA Samples in the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Carson, Tobin M.; Bradley, Sharonda Q.; Fekete, Brenda L.; Millard, Julie T.; LaRiviere, Frederick J.

    2009-01-01

    Recent advances in canine genomics have allowed the development of highly distinguishing methods of analysis for both nuclear and mitochondrial DNA. We describe a laboratory exercise suitable for an undergraduate biochemistry course in which the polymerase chain reaction is used to amplify hypervariable regions of DNA from dog hair and saliva…

  8. Analyzing Exonuclease-Induced Hyperchromicity by Uv Spectroscopy: An Undergraduate Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Ackerman, Megan M.; Ricciardi, Christopher; Weiss, David; Chant, Alan; Kraemer-Chant, Christina M.

    2016-01-01

    An undergraduate biochemistry laboratory experiment is described that utilizes free online bioinformatics tools along with readily available exonucleases to study the effects of base stacking and hydrogen bonding on the UV absorbance of DNA samples. UV absorbance of double-stranded DNA at the ?[subscript max] is decreased when the DNA bases are…

  9. Integrating Bio-Inorganic and Analytical Chemistry into an Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Erasmus, Daniel J.; Brewer, Sharon E.; Cinel, Bruno

    2015-01-01

    Undergraduate laboratories expose students to a wide variety of topics and techniques in a limited amount of time. This can be a challenge and lead to less exposure to concepts and activities in bio-inorganic chemistry and analytical chemistry that are closely-related to biochemistry. To address this, we incorporated a new iron determination by…

  10. Known structure, unknown function: An inquiry‐based undergraduate biochemistry laboratory course

    PubMed Central

    Gray, Cynthia; Price, Carol W.; Lee, Christopher T.; Dewald, Alison H.; Cline, Matthew A.; McAnany, Charles E.

    2015-01-01

    Abstract Undergraduate biochemistry laboratory courses often do not provide students with an authentic research experience, particularly when the express purpose of the laboratory is purely instructional. However, an instructional laboratory course that is inquiry‐ and research‐based could simultaneously impart scientific knowledge and foster a student's research expertise and confidence. We have developed a year‐long undergraduate biochemistry laboratory curriculum wherein students determine, via experiment and computation, the function of a protein of known three‐dimensional structure. The first half of the course is inquiry‐based and modular in design; students learn general biochemical techniques while gaining preparation for research experiments in the second semester. Having learned standard biochemical methods in the first semester, students independently pursue their own (original) research projects in the second semester. This new curriculum has yielded an improvement in student performance and confidence as assessed by various metrics. To disseminate teaching resources to students and instructors alike, a freely accessible Biochemistry Laboratory Education resource is available at http://biochemlab.org. © 2015 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 43(4):245–262, 2015. PMID:26148241

  11. Known structure, unknown function: An inquiry-based undergraduate biochemistry laboratory course.

    PubMed

    Gray, Cynthia; Price, Carol W; Lee, Christopher T; Dewald, Alison H; Cline, Matthew A; McAnany, Charles E; Columbus, Linda; Mura, Cameron

    2015-01-01

    Undergraduate biochemistry laboratory courses often do not provide students with an authentic research experience, particularly when the express purpose of the laboratory is purely instructional. However, an instructional laboratory course that is inquiry- and research-based could simultaneously impart scientific knowledge and foster a student's research expertise and confidence. We have developed a year-long undergraduate biochemistry laboratory curriculum wherein students determine, via experiment and computation, the function of a protein of known three-dimensional structure. The first half of the course is inquiry-based and modular in design; students learn general biochemical techniques while gaining preparation for research experiments in the second semester. Having learned standard biochemical methods in the first semester, students independently pursue their own (original) research projects in the second semester. This new curriculum has yielded an improvement in student performance and confidence as assessed by various metrics. To disseminate teaching resources to students and instructors alike, a freely accessible Biochemistry Laboratory Education resource is available at http://biochemlab.org.

  12. Vesicle Stability and Dynamics: An Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Del Bianco, Cristina; Torino, Domenica; Mansy, Sheref S.

    2014-01-01

    A laboratory exercise is described that helps students learn about lipid self-assembly by making vesicles under different solution conditions. Concepts covering the chemical properties of different lipids, the dynamics of lipids, and vesicle stability are explored. Further, the described protocol is easy and cheap to implement. One to two…

  13. Integrating bio-inorganic and analytical chemistry into an undergraduate biochemistry laboratory.

    PubMed

    Erasmus, Daniel J; Brewer, Sharon E; Cinel, Bruno

    2015-01-01

    Undergraduate laboratories expose students to a wide variety of topics and techniques in a limited amount of time. This can be a challenge and lead to less exposure to concepts and activities in bio-inorganic chemistry and analytical chemistry that are closely-related to biochemistry. To address this, we incorporated a new iron determination by atomic absorption spectroscopy exercise as part of a five-week long laboratory-based project on the purification of myoglobin from beef. Students were required to prepare samples for chemical analysis, operate an atomic absorption spectrophotometer, critically evaluate their iron data, and integrate these data into a study of myoglobin.

  14. Identification of Forensic Samples via Mitochondrial DNA in the Undergraduate Biochemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Millard, Julie T.; Pilon, André M.

    2003-04-01

    A recent forensic approach for identification of unknown biological samples is mitochondrial DNA (mtDNA) sequencing. We describe a laboratory exercise suitable for an undergraduate biochemistry course in which the polymerase chain reaction is used to amplify a 440 base pair hypervariable region of human mtDNA from a variety of "crime scene" samples (e.g., teeth, hair, nails, cigarettes, envelope flaps, toothbrushes, and chewing gum). Amplification is verified via agarose gel electrophoresis and then samples are subjected to cycle sequencing. Sequence alignments are made via the program CLUSTAL W, allowing students to compare samples and solve the "crime."

  15. Integrating responsible conduct of research education into undergraduate biochemistry and molecular biology laboratory curricula.

    PubMed

    Hendrickson, Tamara L

    2015-01-01

    Recently, a requirement for directed responsible conduct in research (RCR) education has become a priority in the United States and elsewhere. In the US, both the National Institutes of Health and the National Science Foundation require RCR education for all students who are financially supported by federal awards. The guidelines produced by these agencies offer useful templates for the introduction of RCR materials into courses worldwide. Many academic programs already offer courses or workshops in RCR for their graduate students and for undergraduate science majors and/or researchers. Introducing RCR into undergraduate biochemistry and molecular biology laboratory curricula is another, highly practical way that students can be exposed to these important topics. In fact, a strong argument can be made for integrating RCR into laboratory courses because these classes often introduce students to a scientific environment like that they might encounter in their careers after graduation. This article focuses on general strategies for incorporating explicit RCR education into biochemistry and molecular biology laboratory coursework using the topics suggested by NIH as a starting point.

  16. The Determination of Vitamin D-Dependent Calcium Binding Protein in Chick Intesting: An Undergraduate Biochemistry Laboratory Experiment.

    ERIC Educational Resources Information Center

    Lessard, George M.

    1980-01-01

    Described is an experiment used in an undergraduate biochemistry laboratory involving inducing rickets in chicks and correlating the disease to a reduction in vitamin D-dependent calcium binding protein. Techniques involved are hormone induction, protein isolation, and radioisotope methodology. (Author/DS)

  17. HPLC of the Polypeptides in a Hydrolyzate of Egg-White Lysozyme. An Experiment for the Undergraduate Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Richardson, W. S., III; Burns, L.

    1988-01-01

    Describes a simple high-performance liquid chromatography experiment for undergraduate biochemistry laboratories. The experiment illustrates the separation of polypeptides by a step gradient elution using a single pump instrument with no gradient attachments. Discusses instrumentation, analysis, a sample preparation, and results. (CW)

  18. An Undergraduate Biochemistry Laboratory Course with an Emphasis on a Research Experience

    ERIC Educational Resources Information Center

    Caspers, Mary Lou; Roberts-Kirchhoff, Elizabeth S.

    2003-01-01

    In their junior or senior year, biochemistry majors at the University of Detroit Mercy are required to take a two-credit biochemistry laboratory course. Five years ago, the format of this course was changed from structured experiments to a more project-based approach. Several structured experiments were included at the beginning of the course…

  19. Glycobiology, How to Sugar-Coat an Undergraduate Advanced Biochemistry Laboratory

    ERIC Educational Resources Information Center

    McReynolds, Katherine D.

    2006-01-01

    A second semester biochemistry laboratory has been implemented as an independent projects course at California State University, Sacramento since 1999. To incorporate aspects of carbohydrate biochemistry, or glycobiology, into our curriculum, projects in lectin isolation and purification were undertaken over the course of two semesters. Through…

  20. Affinity Chromatography of Lactate Dehydrogenase: An Experiment for the Undergraduate Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Anderson, Alexander J.

    1988-01-01

    Discusses a laboratory technique of enzyme purification by affinity chromatography as part of an undergraduate biochemical methodology course. Provides preparation details of the rat muscle homogenate and reagents. Proposes column requirements and assaying information. (MVL)

  1. A Static Method as an Alternative to Gel Chromatography: An Experiment for the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Burum, Alex D.; Splittgerber, Allan G.

    2008-01-01

    This article describes a static method as an alternative to gel chromatography, which may be used as an undergraduate laboratory experiment. In this method, a constant mass of Sephadex gel is swollen in a series of protein solutions. UV-vis spectrophotometry is used to find a partition coefficient, KD, that indicates the fraction of the interior…

  2. An Inexpensive, Relatively Green, and Rapid Method to Purify Genomic DNA from "Escherichia Coli": An Experiment for the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Sims, Paul A.; Branscum, Katie M.; Kao, Lydia; Keaveny, Virginia R.

    2010-01-01

    A method to purify genomic DNA from "Escherichia coli" is presented. The method is an amalgam of published methods but has been modified and optimized for use in the undergraduate biochemistry laboratory. Specifically, the method uses Tide Free 2x Ultra laundry detergent, which contains unspecified proteases and lipases, "n"-butanol, 2-propanol,…

  3. Drug Synthesis and Analysis on a Dime: A Capstone Medicinal Chemistry Experience for the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Streu, Craig N.; Reif, Randall D.; Neiles, Kelly Y.; Schech, Amanda J.; Mertz, Pamela S.

    2016-01-01

    Integrative, research-based experiences have shown tremendous potential as effective pedagogical approaches. Pharmaceutical development is an exciting field that draws heavily on organic chemistry and biochemistry techniques. A capstone drug synthesis/analysis laboratory is described where biochemistry students synthesize azo-stilbenoid compounds…

  4. A Kinetic Experiment for the Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Palmer, Richard E.

    1986-01-01

    Discusses the use of specific reactions of metabolic pathways to make measurements in the laboratory. Describes an adaptation of an experiment used in undergraduate biochemistry laboratories involving the induction of an enzyme in E. coli, as well as its partial purification and characterization. (TW)

  5. Team-Based Learning, Faculty Research, and Grant Writing Bring Significant Learning Experiences to an Undergraduate Biochemistry Laboratory Course

    ERIC Educational Resources Information Center

    Evans, Hedeel Guy; Heyl, Deborah L.; Liggit, Peggy

    2016-01-01

    This biochemistry laboratory course was designed to provide significant learning experiences to expose students to different ways of succeeding as scientists in academia and foster development and improvement of their potential and competency as the next generation of investigators. To meet these goals, the laboratory course employs three…

  6. A Metabolic Murder Mystery: A Case-Based Experiment for the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Childs-Disney, Jessica L.; Kauffmann, Andrew D.; Poplawski, Shane G.; Lysiak, Daniel R.; Stewart, Robert J.; Arcadi, Jane K.; Dinan, Frank J.

    2010-01-01

    In 1990, a woman was wrongly convicted of poisoning her infant son and was sentenced to life in prison. Her conviction was based on laboratory work that wrongly identified ethylene glycol as present in her son's blood and in the formula he drank prior to his death. The actual cause of the infant's death, a metabolic disease, was eventually…

  7. Equilibrium Gel Filtration Chromatography for the Measurement of Protein-Ligand Binding in the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Craig, Douglas B.

    2005-01-01

    A laboratory exercise used in the senior biochemistry course at the University of Winnipeg for three years is discussed. It combines liquid chromatography and absorbance spectroscopy and also allows the students to produce a quantitative result within a single three-hour period.

  8. Environmental regulation of plant gene expression: an RT-qPCR laboratory project for an upper-level undergraduate biochemistry or molecular biology course.

    PubMed

    Eickelberg, Garrett J; Fisher, Alison J

    2013-01-01

    We present a novel laboratory project employing "real-time" RT-qPCR to measure the effect of environment on the expression of the FLOWERING LOCUS C gene, a key regulator of floral timing in Arabidopsis thaliana plants. The project requires four 3-hr laboratory sessions and is aimed at upper-level undergraduate students in biochemistry or molecular biology courses. The project provides students with hands-on experience with RT-qPCR, the current "gold standard" for gene expression analysis, including detailed data analysis using the common 2-ΔΔCT method. Moreover, it provides a convenient starting point for many inquiry-driven projects addressing diverse questions concerning ecological biochemistry, naturally occurring genetic variation, developmental biology, and the regulation of gene expression in nature.

  9. Using an ePortfolio System as an Electronic Laboratory Notebook in Undergraduate Biochemistry and Molecular Biology Practical Classes

    ERIC Educational Resources Information Center

    Johnston, Jill; Kant, Sashi; Gysbers, Vanessa; Hancock, Dale; Denyer, Gareth

    2014-01-01

    Despite many apparent advantages, including security, back-up, remote access, workflow, and data management, the use of electronic laboratory notebooks (ELNs) in the modern research laboratory is still developing. This presents a challenge to instructors who want to give undergraduate students an introduction to the kinds of data curation and…

  10. Immobilized alpha-Galactosidase in the Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Mulimani, V. H.; Dhananjay, K.

    2007-01-01

    This laboratory experiment was designed to demonstrate the application of immobilized galactosidase in food industry to hydrolyze raffinose family oligosaccharides in soymilk. This laboratory experiment was conducted for postgraduate students of biochemistry and developed for graduate and undergraduate students of biochemistry, biotechnology,…

  11. The Biochemistry of the Muscle Contraction Process: An Undergraduate Laboratory Experiment Using Viscosity to Follow the Progress of a Reaction.

    ERIC Educational Resources Information Center

    Belliveau, James F.; And Others

    1981-01-01

    Describes an undergraduate laboratory experiment using viscosity to follow the progress of the contractile process in muscles. This simple, short experiment illustrates the action of ATP as the source of energy in the contractile process and the catalytic effect of calcium ions as a control in the energy producing process. (CS)

  12. Using an ePortfolio system as an electronic laboratory notebook in undergraduate biochemistry and molecular biology practical classes.

    PubMed

    Johnston, Jill; Kant, Sashi; Gysbers, Vanessa; Hancock, Dale; Denyer, Gareth

    2014-01-01

    Despite many apparent advantages, including security, back-up, remote access, workflow, and data management, the use of electronic laboratory notebooks (ELNs) in the modern research laboratory is still developing. This presents a challenge to instructors who want to give undergraduate students an introduction to the kinds of data curation and notebook keeping skills that will inevitably be required as ELNs penetrate normal laboratory practice. An additional problem for the teacher is that ELNs do not generally have student-administrative functions and are prohibitively expensive. In this report, we describe the use and impact of an ePortfolio system as a surrogate ELN. Introduction of the system led to several pedagogic outcomes, namely: increased preparedness of students for class, encouragement of creativity and reflection with respect to experimental methods, greatly enhanced engagement between students and tutors, and it gave instructors the ability to scrutinize original data files and monitor student-tutor feedback cycles. However, implementation led to a disruption of tutor workloads and incurred new levels of accountability that threatened to undermine the initiative. Through course evaluations and other reflective processes, we reached an appreciation of how an ELN should be introduced into practical class teaching so that it not only becomes an appropriate aid for teaching the laboratory experience, but also becomes a life-long resource for students.

  13. An "in Silico" DNA Cloning Experiment for the Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Elkins, Kelly M.

    2011-01-01

    This laboratory exercise introduces students to concepts in recombinant DNA technology while accommodating a major semester project in protein purification, structure, and function in a biochemistry laboratory for junior- and senior-level undergraduate students. It is also suitable for forensic science courses focused in DNA biology and advanced…

  14. Immobilized Lactase in the Biochemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Allison, Matthew J.; Bering, C. Larry

    1998-10-01

    Immobilized enzymes have many practical applications. They may be used in clinical, industrial, and biotechnological laboratories and in many clinical diagnostic kits. For educational purposes, use of immobilized enzymes can easily be taught at the undergraduate or even secondary level. We have developed an immobilized enzyme experiment that combines many practical techniques used in the biochemistry laboratory and fits within a three-hour time frame. In this experiment, lactase from over-the-counter tablets for patients with lactose intolerance is immobilized in polyacrylamide, which is then milled into small beads and placed into a chromatography column. A lactose solution is added to the column and the eluant is assayed using the glucose oxidase assay, available as a kit. We have determined the optimal conditions to give the greatest turnover of lactose while allowing the immobilized enzymes to be active for long periods at room temperature.

  15. Differentiating biochemistry course laboratories based on student experience.

    PubMed

    Jakubowski, Henry V

    2011-01-01

    Content and emphases in undergraduate biochemistry courses can be readily tailored to accommodate the standards of the department in which they are housed, as well as the backgrounds of the students in the courses. A more challenging issue is how to construct laboratory experiences for a class with both chemistry majors, who usually have little or no experience with biochemical techniques and biology and biochemistry majors who do. This manuscript describes a strategy for differentiating biochemistry labs to meet the needs of students with differing backgrounds.

  16. Doing That Thing That Scientists Do: A Discovery-Driven Module on Protein Purification and Characterization for the Undergraduate Biochemistry Laboratory Classroom

    ERIC Educational Resources Information Center

    Garrett, Teresa A.; Osmundson, Joseph; Isaacson, Marisa; Herrera, Jennifer

    2015-01-01

    In traditional introductory biochemistry laboratory classes students learn techniques for protein purification and analysis by following provided, established, step-by-step procedures. Students are exposed to a variety of biochemical techniques but are often not developing procedures or collecting new, original data. In this laboratory module,…

  17. Differentiating Biochemistry Course Laboratories Based on Student Experience

    ERIC Educational Resources Information Center

    Jakubowski, Henry V.

    2011-01-01

    Content and emphases in undergraduate biochemistry courses can be readily tailored to accommodate the standards of the department in which they are housed, as well as the backgrounds of the students in the courses. A more challenging issue is how to construct laboratory experiences for a class with both chemistry majors, who usually have little or…

  18. An Undergraduate Investigation into the 10-23 DNA Enzyme that Cleaves RNA: DNA Can Cut It in the Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Flynn-Charlebois, Amber; Burns, Jamie; Chapelliquen, Stephanie; Sanmartino, Holly

    2011-01-01

    A low-cost biochemistry experiment is described that demonstrates current techniques in the use of catalytic DNA molecules and introduces a nonradioactive, nonfluorescent, inexpensive, fast, and safe method for monitoring these nucleic acid reactions. The laboratory involves the exploration of the 10-23 DNA enzyme as it cleaves a specific RNA…

  19. A Two-Week Guided Inquiry Protein Separation and Detection Experiment for Undergraduate Biochemistry

    ERIC Educational Resources Information Center

    Carolan, James P.; Nolta, Kathleen V.

    2016-01-01

    A laboratory experiment for teaching protein separation and detection in an undergraduate biochemistry laboratory course is described. This experiment, performed in two, 4 h laboratory periods, incorporates guided inquiry principles to introduce students to the concepts behind and difficulties of protein purification. After using size-exclusion…

  20. Incorporation of Bioinformatics Exercises into the Undergraduate Biochemistry Curriculum

    ERIC Educational Resources Information Center

    Feig, Andrew L.; Jabri, Evelyn

    2002-01-01

    The field of bioinformatics is developing faster than most biochemistry textbooks can adapt. Supplementing the undergraduate biochemistry curriculum with data-mining exercises is an ideal way to expose the students to the common databases and tools that take advantage of this vast repository of biochemical information. An integrated collection of…

  1. A Project-Oriented Biochemistry Laboratory Course.

    ERIC Educational Resources Information Center

    Craig, Paul A.

    1999-01-01

    Describes a biochemistry laboratory course in which the curriculum revolves around a single theme: the purification, characterization, and molecular biology of threonine dehydrogenase (TDH) from Escherechia coli. Lists examples of related class research projects. Contains 41 references. (WRM)

  2. Doing that thing that scientists do: A discovery-driven module on protein purification and characterization for the undergraduate biochemistry laboratory classroom.

    PubMed

    Garrett, Teresa A; Osmundson, Joseph; Isaacson, Marisa; Herrera, Jennifer

    2015-01-01

    In traditional introductory biochemistry laboratory classes students learn techniques for protein purification and analysis by following provided, established, step-by-step procedures. Students are exposed to a variety of biochemical techniques but are often not developing procedures or collecting new, original data. In this laboratory module, students develop research skills through work on an original research project and gain confidence in their ability to design and execute an experiment while faculty can enhance their scholarly pursuits through the acquisition of original data in the classroom laboratory. Students are prepared for a 6-8 week discovery-driven project on the purification of the Escherichia coli cytidylate kinase (CMP kinase) through in class problems and other laboratory exercises on bioinformatics and protein structure analysis. After a minimal amount of guidance on how to perform the CMP kinase in vitro enzyme assay, SDS-PAGE, and the basics of protein purification, students, working in groups of three to four, develop a protein purification protocol based on the scientific literature and investigate some aspect of CMP kinase that interests them. Through this process, students learn how to implement a new but perhaps previously worked out procedure to answer their research question. In addition, they learn the importance of keeping a clear and thorough laboratory notebook and how to interpret their data and use that data to inform the next set of experiments. Following this module, students had increased confidence in their ability to do basic biochemistry techniques and reported that the "self-directed" nature of this lab increased their engagement in the project.

  3. Undergraduate Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bretz, Stacey Lowery; Fay, Michael; Bruck, Laura B.; Towns, Marcy H.

    2013-01-01

    Forty chemistry faculty from American Chemical Society-approved departments were interviewed to determine their goals for undergraduate chemistry laboratory. Faculty were stratified by type of institution, departmental success with regard to National Science Foundation funding for laboratory reform, and level of laboratory course. Interview…

  4. Raising environmental awareness through applied biochemistry laboratory experiments.

    PubMed

    Salman Ashraf, S

    2013-01-01

    Our environment is under constant pressure and threat from various sources of pollution. Science students, in particular chemistry students, must not only be made aware of these issues, but also be taught that chemistry (and science) can provide solutions to such real-life issues. To this end, a newly developed biochemistry laboratory experiment is described that guides students to learn about the applicability of peroxidase enzymes to degrade organic dyes (as model pollutants) in simulated waste water. In addition to showing how enzymes can potentially be used for waste water remediation, various factors than can affect enzyme-based reactions such as pH, temperature, concentration of substrates/enzymes, and denaturants can also be tested. This "applied biotechnology" experiment was successfully implemented in an undergraduate biochemistry laboratory course to enhance students' learning of environmental issues as well important biochemistry concepts. Student survey confirmed that this laboratory experiment was successful in achieving the objectives of raising environmental awareness in students and illustrating the usefulness of chemistry in solving real-life problems. This experiment can be easily adopted in an introductory biochemistry laboratory course and taught as an inquiry-guided exercise.

  5. A Streamlined Molecular Biology Module for Undergraduate Biochemistry Labs

    ERIC Educational Resources Information Center

    Muth, Gregory W.; Chihade, Joseph W.

    2008-01-01

    Site-directed mutagenesis and other molecular biology techniques, including plasmid manipulation and restriction analysis, are commonly used tools in the biochemistry research laboratory. In redesigning our biochemistry lab curricula, we sought to integrate these techniques into a term-long, project-based course. In the module presented here,…

  6. Teaching Receptor Theory to Biochemistry Undergraduates

    ERIC Educational Resources Information Center

    Benore-Parsons, Marilee; Sufka, Kenneth J.

    2003-01-01

    Receptor:ligand interactions account for numerous reactions critical to biochemistry and molecular biology. While students are typically exposed to some examples, such as hemoglobin binding of oxygen and signal transduction pathways, the topic could easily be expanded. Theory and kinetic analysis, types of receptors, and the experimental assay…

  7. Biochemistry in Undergraduate Health Courses: Structure and Organization

    ERIC Educational Resources Information Center

    Silva, Irani F.; Batista, Nildo A.

    2003-01-01

    This article describes the following aspects of teaching biochemistry in undergraduate health courses: objectives, number of hours, time in which the subject is studied, selection of content, teaching strategies, and evaluation methodologies used. Fifty-three courses distributed in 13 areas within the health field and offered by 12 institutions…

  8. Thermodynamic Exploration of Eosin-Lysozyme Binding: A Physical Chemistry and Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Huisman, Andrew J.; Hartsell, Lydia R.; Krueger, Brent P.; Pikaart, Michael J.

    2010-01-01

    We developed a modular pair of experiments for use in the undergraduate physical chemistry and biochemistry laboratories. Both experiments examine the thermodynamics of the binding of a small molecule, eosin Y, to the protein lysozyme. The assay for binding is the quenching of lysozyme fluorescence by eosin through resonant energy transfer. In…

  9. Kinetics of Carboxylesterase: An Experiment for Biochemistry and Physical Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Nichols, C. S.; Cromartie, T. H.

    1979-01-01

    Describes a convenient, inexpensive experiment in enzyme kinetics developed for the undergraduate biochemistry laboratory at the University of Virginia. Required are a single beam visible spectrophotometer with output to a recorder, a constant temperature, a commercially available enzyme, substrates, and buffers. (BT)

  10. Integrating Internet Assignments into a Biochemistry/Molecular Biology Laboratory Course

    ERIC Educational Resources Information Center

    Kaspar, Roger L.

    2002-01-01

    A main challenge in educating undergraduate students is to introduce them to the Internet and to teach them how to effectively use it in research. To this end, an Internet assignment was developed that introduces students to websites related to biomedical research at the beginning of a biochemistry/molecular biology laboratory course. The basic…

  11. The Kinetics and Inhibition of Gamma-Glutamyl Transpeptidase: A Biochemistry Laboratory Experiment.

    ERIC Educational Resources Information Center

    Splittgerber, A. G.; Sohl, Julie

    1988-01-01

    Discusses an enzyme kinetics laboratory experiment involving a two substrate system for undergraduate biochemistry. Uses the enzyme gamma-glutamyl transpeptidase as this enzyme in blood serum is of clinical significance. Notes elevated levels are seen in liver disease, alcoholism, and epilepsy. Uses a spectrophotometer for the analysis. (MVL)

  12. An SDS-PAGE Examination of Protein Quaternary Structure and Disulfide Bonding for a Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Powers, Jennifer L.; Andrews, Carla S.; St. Antoine, Caroline C.; Jain, Swapan S.; Bevilacqua, Vicky L. H.

    2005-01-01

    Electrophoresis is a valuable tool for biochemists, yet this technique is often not included in biochemistry laboratory curricula owing to time constraints or lack of equipment. Protein structure is also a topic of interest in many disciplines, yet most undergraduate lab experiments focus only on primary structure. In this experiment, students use…

  13. An Integrated Biochemistry Laboratory, Including Molecular Modeling

    NASA Astrophysics Data System (ADS)

    Hall, Adele J. Wolfson Mona L.; Branham, Thomas R.

    1996-11-01

    The dilemma of designing an advanced undergraduate laboratory lies in the desire to teach and reinforce basic principles and techniques while at the same time exposing students to the excitement of research. We report here on a one-semester, project-based biochemistry laboratory that combines the best features of a cookbook approach (high success rate, achievement of defined goals) with those of an investigative, discovery-based approach (student involvement in the experimental design, excitement of real research). Individual modules may be selected and combined to meet the needs of different courses and different institutions. The central theme of this lab is protein purification and design. This laboratory accompanies the first semester of biochemistry (Structure and Function of Macromolecules, a course taken mainly by junior and senior chemistry and biological chemistry majors). The protein chosen as the object of study is the enzyme lysozyme, which is utilized in all projects. It is suitable for a student lab because it is easily and inexpensively obtained from egg white and is extremely stable, and its high isoelectric point (pI = 11) allows for efficient separation from other proteins by ion-exchange chromatography. Furthermore, a literature search conducted by the resourceful student reveals a wealth of information, since lysozyme has been the subject of numerous studies. It was the first enzyme whose structure was determined by crystallography (1). Hendrickson et al. (2) have previously described an intensive one-month laboratory course centered around lysozyme, although their emphasis is on protein stability rather than purification and engineering. Lysozyme continues to be the focus of much exciting new work on protein folding and dynamics, structure and activity (3 - 5). This lab course includes the following features: (i) reinforcement of basic techniques, such as preparation of buffers, simple enzyme kinetics, and absorption spectroscopy; (ii

  14. A focused assignment encouraging deep reading in undergraduate biochemistry.

    PubMed

    Spiegelberg, Bryan D

    2014-01-01

    Encouraging undergraduate students to access, read, and analyze current primary literature can positively impact learning, especially in advanced courses. The incorporation of literature into coursework typically involves reading and responding to full research reports. Such exercises have clear value as students make connections between experiments and are able to probe and critique scientific logic. The exclusive use of full papers, though, may reinforce certain students' tendencies to rely on textual clues rather than a critical analysis of the actual data presented. I propose that structured activities requiring students to focus on individual parts of research papers, even on a single figure, are beneficial in a literature-centered advanced undergraduate course, because they promote the deep reading that is critical to scientific discourse. In addition, I describe how one such focused assignment boosted learning and was well received by students in a second-semester biochemistry course.

  15. Environmental Regulation of Plant Gene Expression: An Rt-qPCR Laboratory Project for an Upper-Level Undergraduate Biochemistry or Molecular Biology Course

    ERIC Educational Resources Information Center

    Eickelberg, Garrett J.; Fisher, Alison J.

    2013-01-01

    We present a novel laboratory project employing "real-time" RT-qPCR to measure the effect of environment on the expression of the "FLOWERING LOCUS C" gene, a key regulator of floral timing in "Arabidopsis thaliana" plants. The project requires four 3-hr laboratory sessions and is aimed at upper-level undergraduate…

  16. An in silico DNA cloning experiment for the biochemistry laboratory.

    PubMed

    Elkins, Kelly M

    2011-01-01

    This laboratory exercise introduces students to concepts in recombinant DNA technology while accommodating a major semester project in protein purification, structure, and function in a biochemistry laboratory for junior- and senior-level undergraduate students. It is also suitable for forensic science courses focused in DNA biology and advanced high school biology classes. Students begin by examining a plasmid map with the goal of identifying which restriction enzymes may be used to clone a piece of foreign DNA containing a gene of interest into the vector. From the National Center for Biotechnology Initiative website, students are instructed to retrieve a protein sequence and use Expasy's Reverse Translate program to reverse translate the protein to cDNA. Students then use Integrated DNA Technologies' OligoAnalyzer to predict the complementary DNA strand and obtain DNA recognition sequences for the desired restriction enzymes from New England Biolabs' website. Students add the appropriate DNA restriction sequences to the double-stranded foreign DNA for cloning into the plasmid and infecting Escherichia coli cells. Students are introduced to computational biology tools, molecular biology terminology and the process of DNA cloning in this valuable single session, in silico experiment. This project develops students' understanding of the cloning process as a whole and contrasts with other laboratory and internship experiences in which the students may be involved in only a piece of the cloning process/techniques. Students interested in pursuing postgraduate study and research or employment in an academic biochemistry or molecular biology laboratory or industry will benefit most from this experience.

  17. [superscript 1]H NMR Spectroscopy-Based Configurational Analysis of Mono- and Disaccharides and Detection of ß-Glucosidase Activity: An Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Periyannan, Gopal R.; Lawrence, Barbara A.; Egan, Annie E.

    2015-01-01

    A [superscript 1]H NMR spectroscopy-based laboratory experiment explores mono- and disaccharide structural chemistry, and the enzyme-substrate specificity of glycosidic bond cleavage by ß-glucosidase towards cellobiose (ß-linked gluco-disaccharide) and maltose (a-linked gluco-disaccharide). Structural differences between cellobiose, maltose, and…

  18. Teaching Structure: Student Use of Software Tools for Understanding Macromolecular Structure in an Undergraduate Biochemistry Course

    ERIC Educational Resources Information Center

    Jaswal, Sheila S.; O'Hara, Patricia B.; Williamson, Patrick L.; Springer, Amy L.

    2013-01-01

    Because understanding the structure of biological macromolecules is critical to understanding their function, students of biochemistry should become familiar not only with viewing, but also with generating and manipulating structural representations. We report a strategy from a one-semester undergraduate biochemistry course to integrate use of…

  19. Need assessment of enhancing the weightage of applied biochemistry in the undergraduate curriculum at MGIMS, sevagram.

    PubMed

    Kumar, Satish; Jena, Lingaraja; Vagha, Jayant

    2016-05-06

    In order to review the need assessment of enhancing the weightage of Applied Biochemistry in the undergraduate curriculum at Mahatma Gandhi Institute of Medical Sciences (MGIMS), Sevagram, a validated questionnaire was sent to 453 participants which include 387 undergraduate students, 11 interns, 23 postgraduate students, and 32 faculty members. A web-based data collection and analysis tool was designed for online questionnaire distribution, data collection, and analysis. Response rate was 100%. Most of the respondents agreed that the subject Biochemistry has relevance in clinical practice (81.24%) and applied based learning of Biochemistry by medical undergraduates would help in overall improvement in the health standards/patients care (83.44%). According to 65.12% respondents, most of the medical undergraduates read Biochemistry just for examination purpose only. Nearly half of the respondents agreed that minute details of biochemical reactions were not much useful in clinical practice (53.86%) and the vast majority of diagrammatic cycles memorized by the medical undergraduates had no relevance in clinical practice (51.21%), the decreased interest in learning the Applied Biochemistry was due to more amount of clinically irrelevant information taught to medical undergraduates (73.51%), there was a need to rethink for removing the diagrammatic biochemical cycles from curriculum for medical undergraduates (48.12%), the less learning of Applied Biochemistry or competencies would affect the clinical skills and knowledge of medical undergraduates (70.42%). The result of this study suggests that there is need for restructuring the Biochemistry curriculum with more clinical relevance. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:230-240, 2016.

  20. A Laboratory Course in Clinical Biochemistry Emphasizing Interest and Relevance

    ERIC Educational Resources Information Center

    Schwartz, Peter L.

    1975-01-01

    Ten laboratory experiments are described which are used in a successful clinical biochemistry laboratory course (e.g. blood alcohol, glucose tolerance, plasma triglycerides, coronary risk index, gastric analysis, vitamin C and E). Most of the experiments are performed on the students themselves using simple equipment with emphasis on useful…

  1. Need Assessment of Enhancing the Weightage of Applied Biochemistry in the Undergraduate Curriculum at MGIMS, Sevagram

    ERIC Educational Resources Information Center

    Kumar, Satish; Jena, Lingaraja; Vagha, Jayant

    2016-01-01

    In order to review the need assessment of enhancing the weightage of Applied Biochemistry in the undergraduate curriculum at Mahatma Gandhi Institute of Medical Sciences (MGIMS), Sevagram, a validated questionnaire was sent to 453 participants which include 387 undergraduate students, 11 interns, 23 postgraduate students, and 32 faculty members. A…

  2. Raising Environmental Awareness through Applied Biochemistry Laboratory Experiments

    ERIC Educational Resources Information Center

    Salman Ashraf, S.

    2013-01-01

    Our environment is under constant pressure and threat from various sources of pollution. Science students, in particular chemistry students, must not only be made aware of these issues, but also be taught that chemistry (and science) can provide solutions to such real-life issues. To this end, a newly developed biochemistry laboratory experiment…

  3. Teaching structure: student use of software tools for understanding macromolecular structure in an undergraduate biochemistry course.

    PubMed

    Jaswal, Sheila S; O'Hara, Patricia B; Williamson, Patrick L; Springer, Amy L

    2013-01-01

    Because understanding the structure of biological macromolecules is critical to understanding their function, students of biochemistry should become familiar not only with viewing, but also with generating and manipulating structural representations. We report a strategy from a one-semester undergraduate biochemistry course to integrate use of structural representation tools into both laboratory and homework activities. First, early in the course we introduce the use of readily available open-source software for visualizing protein structure, coincident with modules on amino acid and peptide bond properties. Second, we use these same software tools in lectures and incorporate images and other structure representations in homework tasks. Third, we require a capstone project in which teams of students examine a protein-nucleic acid complex and then use the software tools to illustrate for their classmates the salient features of the structure, relating how the structure helps explain biological function. To ensure engagement with a range of software and database features, we generated a detailed template file that can be used to explore any structure, and that guides students through specific applications of many of the software tools. In presentations, students demonstrate that they are successfully interpreting structural information, and using representations to illustrate particular points relevant to function. Thus, over the semester students integrate information about structural features of biological macromolecules into the larger discussion of the chemical basis of function. Together these assignments provide an accessible introduction to structural representation tools, allowing students to add these methods to their biochemical toolboxes early in their scientific development.

  4. A 13-week research-based biochemistry laboratory curriculum.

    PubMed

    Lefurgy, Scott T; Mundorff, Emily C

    2017-03-02

    Here, we present a 13-week research-based biochemistry laboratory curriculum designed to provide the students with the experience of engaging in original research while introducing foundational biochemistry laboratory techniques. The laboratory experience has been developed around the directed evolution of an enzyme chosen by the instructor, with mutations designed by the students. Ideal enzymes for this curriculum are able to be structurally modeled, solubly expressed, and monitored for activity by UV/Vis spectroscopy, and an example curriculum for haloalkane dehalogenase is given. Unique to this curriculum is a successful implementation of saturation mutagenesis and high-throughput screening of enzyme function, along with bioinformatics analysis, homology modeling, structural analysis, protein expression and purification, polyacrylamide gel electrophoresis, UV/Vis spectroscopy, and enzyme kinetics. Each of these techniques is carried out using a novel student-designed mutant library or enzyme variant unique to the lab team and, importantly, not described previously in the literature. Use of a well-established set of protocols promotes student data quality. Publication may result from the original student-generated hypotheses and data, either from the class as a whole or individual students that continue their independent projects upon course completion. © 2017 by The International Union of Biochemistry and Molecular Biology, 2017.

  5. Synthesis of Vitamin K Expoxide: An Undergraduate Biochemistry Experiment.

    ERIC Educational Resources Information Center

    Thierry-Palmer, M.

    1984-01-01

    Provides procedures for synthesizing and purifying a vitamin K metabolite (2,3-epoxide) to introduce many of the techniques used in lipid biochemistry. Includes typical results obtained as well as an optional experiment designed to test the purity of the epoxide obtained. (JM)

  6. An Appraisal of a New Undergraduate Biochemistry Research Project.

    ERIC Educational Resources Information Center

    Adamson, Ishola

    1980-01-01

    Described is the first part of a two-term project involving final-year students in biochemistry. Listed are the required experiments compiled to test students' abilities to search biochemical literature, extract experiments from journals and carry them out, generate data, and interpret results. (CS)

  7. A Course Designed for Undergraduate Biochemistry Students to Learn about Cultural Diversity Issues

    ERIC Educational Resources Information Center

    Benore-Parsons, Marilee

    2006-01-01

    Biology, biochemistry, and other science students are well trained in science and familiar with how to conduct and evaluate scientific experiments. They are less aware of cultural issues or how these will impact their careers in research, education, or as professional health care workers. A course was developed for advanced undergraduate science…

  8. The Views of Undergraduates about Problem-Based Learning Applications in a Biochemistry Course

    ERIC Educational Resources Information Center

    Tarhan, Leman; Ayyildiz, Yildizay

    2015-01-01

    The effect of problem-based learning (PBL) applications in an undergraduate biochemistry course on students' interest in this course was investigated through four modules during one semester. Students' views about active learning and improvement in social skills were also collected and evaluated. We conducted the study with 36 senior students from…

  9. A Proposal for Teaching Undergraduate Chemistry Students Carbohydrate Biochemistry by Problem-Based Learning Activities

    ERIC Educational Resources Information Center

    Figueira, Angela C. M.; Rocha, Joao B. T.

    2014-01-01

    This article presents a problem-based learning (PBL) approach to teaching elementary biochemistry to undergraduate students. The activity was based on "the foods we eat." It was used to engage students' curiosity and to initiate learning about a subject that could be used by the future teachers in the high school. The experimental…

  10. 78 FR 4170 - License Amendment Request for Analytical Bio-Chemistry Laboratories, Inc., Columbia, MO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ... COMMISSION License Amendment Request for Analytical Bio-Chemistry Laboratories, Inc., Columbia, MO AGENCY... issuance of a license amendment to Materials License No. 24-13365-01 issued to Analytical Bio-Chemistry... accession numbers are: 1. Analytical Bio-Chemistry Laboratories, Inc., Licensee amendment request...

  11. Undergraduate Laboratory for Surface Science

    NASA Astrophysics Data System (ADS)

    Okumura, Mitchio; Beauchamp, Jesse L.; Dickert, Jeffrey M.; Essy, Blair R.; Claypool, Christopher L.

    1996-02-01

    Surface science has developed into a multidisciplinary field of research with applications ranging from heterogeneous catalysis to semiconductor etching (1). Aspects of surface chemistry are now included in physical chemistry textbooks (2) and undergraduate curricula (3), but the perceived cost and complexity of equipment has deterred the introduction of surface science methods in undergraduate laboratories (4). Efforts to expose chemistry undergraduates to state-of-the-art surface instrumentation have just begun (5). To provide our undergraduates with hands-on experience in using standard techniques for characterizing surface morphology, adsorbates, kinetics, and reaction mechanisms, we have developed a set of surface science experiments for our physical chemistry laboratory sequence. The centerpiece of the laboratory is an ultrahigh vacuum (UHV) chamber for studies of single crystal surfaces. This instrument, shown in the figure, has surface analysis capabilities including low energy electron diffraction (LEED), Auger spectroscopy, and temperature-programmed desorption (TPD). The laboratory exercises involve experiments on the well-studied Pt(111) surface. Students prepare a previously mounted single crystal sample by sputtering it with an argon ion gun and heating it under O2. Electron diffraction patterns from the cleaned surface are then obtained with a reverse view LEED apparatus (Princeton Instruments). Images are captured by a charge-coupled device (CCD) camera interfaced to a personal computer for easy downloading and subsequent analysis. Although the LEED images from a Pt(111) surface can be readily interpreted using simple diffraction arguments, this lab provides an excellent context for introducing Miller indices and reciprocal lattices (6). The surface chemical composition can be investigated by Auger spectroscopy, using the LEED apparatus as a simple energy analyzer. The temperature programmed desorption experiment, which is nearly complete, will be

  12. Overhauling the Undergraduate Physics Laboratory in India.

    ERIC Educational Resources Information Center

    Khandelwal, D. P.

    1993-01-01

    Highlights the need to make the undergraduate physics laboratory more exciting and commensurate with the time assigned for it in the curriculum. Suggests establishing a model undergraduate physics laboratory at one place then reproducing it in five places for a massive reorientation program for teachers. Contains brief outlines of 30 experiments…

  13. Myoglobin structure and function: A multiweek biochemistry laboratory project.

    PubMed

    Silverstein, Todd P; Kirk, Sarah R; Meyer, Scott C; Holman, Karen L McFarlane

    2015-01-01

    We have developed a multiweek laboratory project in which students isolate myoglobin and characterize its structure, function, and redox state. The important laboratory techniques covered in this project include size-exclusion chromatography, electrophoresis, spectrophotometric titration, and FTIR spectroscopy. Regarding protein structure, students work with computer modeling and visualization of myoglobin and its homologues, after which they spectroscopically characterize its thermal denaturation. Students also study protein function (ligand binding equilibrium) and are instructed on topics in data analysis (calibration curves, nonlinear vs. linear regression). This upper division biochemistry laboratory project is a challenging and rewarding one that not only exposes students to a wide variety of important biochemical laboratory techniques but also ties those techniques together to work with a single readily available and easily characterized protein, myoglobin.

  14. Titration of Alanine Monitored by NMR Spectroscopy: A Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Waller, Francis J.; And Others

    1977-01-01

    The experiment described here involves simultaneous monitoring of pH and NMR chemical shifts during an aqueous titration of alpha- and beta-alanine. This experiment is designed for use in an undergraduate biochemistry course. (MR)

  15. The Use of Case Studies in an Undergraduate Biochemistry Course

    NASA Astrophysics Data System (ADS)

    Cornely, Kathleen

    1998-04-01

    Most college biochemistry courses are taught in a format in which the professor lectures and the student memorizes. Although this is the best method for conveying large amounts of material, it puts the student in the position of passive learner. The lecture-based format has not been abandoned, but has been supplemented with case study projects assigned to the students upon completion of the intermediary metabolism unit. The case study assignment is modeled on similar exercises carried out in medical school biochemistry courses in the US and around the world. A description of the assignment follows: a group of 4-5 students is given a case study which gives the medical history of a patient with an inherited metabolic disease. The group is asked to provide biochemical explanations for the patient's symptoms and to suggest an effective course of treatment. The evaluation consists of a short paper that the students write as a group. The assignment provides the opportunity for small group interaction within a larger class and emphasizes cooperative-collaborative learning. Students learn by researching the topic on their own and debating it in small group discussions, and in so doing, gain a sense of confidence in themselves and the material they have learned over the course of the semester. Solving a "real-life" problem helps develop analytical and higher-order thinking skills and allows the students to see how biochemical concepts they have learned apply to a clinical situation.

  16. A Focused Assignment Encouraging Deep Reading in Undergraduate Biochemistry

    ERIC Educational Resources Information Center

    Spiegelberg, Bryan D.

    2014-01-01

    Encouraging undergraduate students to access, read, and analyze current primary literature can positively impact learning, especially in advanced courses. The incorporation of literature into coursework typically involves reading and responding to full research reports. Such exercises have clear value as students make connections between…

  17. Biochemistry of Neuromuscular Diseases: A Course for Undergraduate Students

    ERIC Educational Resources Information Center

    Ohlendieck, Kay

    2002-01-01

    This article outlines an undergraduate course focusing on supramolecular membrane protein complexes involved in the molecular pathogenesis of neuromuscular disorders. The emphasis of this course is to introduce students to the key elements involved in the ion regulation and membrane stabilization during muscle contraction and the role of these…

  18. Purification and Characterization of Enzymes from Yeast: An Extended Undergraduate Laboratory Sequence for Large Classes

    ERIC Educational Resources Information Center

    Johanson, Kelly E.; Watt, Terry J.; McIntyre, Neil R.; Thompson, Marleesa

    2013-01-01

    Providing a project-based experience in an undergraduate biochemistry laboratory class can be complex with large class sizes and limited resources. We have designed a 6-week curriculum during which students purify and characterize the enzymes invertase and phosphatase from bakers yeast. Purification is performed in two stages via ethanol…

  19. HPLC for Undergraduate Introductory Laboratories

    NASA Astrophysics Data System (ADS)

    van Arman, Scott A.; Thomsen, Marcus W.

    1997-01-01

    Undergraduate laboratories continue increasing the use of instrumentation in teaching. One technique that is growing in popularity is HPLC. We have designed a set of simple HPLC separations as part of an introductory set of projects that serve as an introduction to chromatography early in the organic course. We have introduced quantitative analysis to the common separation of analgesics so that students may identify the composition of an unknown commercial tablet. Derived from this system is a Ån adaptation of the well known separation of nucleosides by reversed-phase HPLC such that students can quantitatively identify the components of an unknown "RNA digest." Students must determine retention times and an instrumental response factor for each component. For both separations all components elute in × 6 min. and baseline separation is excellent. From the retention times of standard individual component samples the identity of each component in the sample can be ascertained. From the instrumental response factors of standard individual component samples the percent composition of each component can be calculated.

  20. Fluid Flow Experiment for Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Vilimpochapornkul, Viroj; Obot, Nsima T.

    1986-01-01

    The undergraduate fluid mechanics laboratory at Clarkson University consists of three experiments: mixing; drag measurements; and fluid flow and pressure drop measurements. The latter experiment is described, considering equipment needed, procedures used, and typical results obtained. (JN)

  1. Synthesis, Characterization, and Secondary Structure Determination of a Silk-Inspired, Self-Assembling Peptide: A Laboratory Exercise for Organic and Biochemistry Courses

    ERIC Educational Resources Information Center

    Albin, Tyler J.; Fry, Melany M.; Murphy, Amanda R.

    2014-01-01

    This laboratory experiment gives upper-division organic or biochemistry undergraduate students a comprehensive look at the synthesis, chemical characterization, self-assembly, and secondary structure determination of small, N-acylated peptides inspired by the protein structure of silkworm silk. All experiments can be completed in one 4 h lab…

  2. Utilizing Isolation, Purification, and Characterization of Enzymes as Project-Oriented Labs for Undergraduate Biochemistry

    NASA Astrophysics Data System (ADS)

    Deal, S. Todd; Hurst, Michael O.

    1997-02-01

    Senior-level biochemistry labs are mostly verification-type laboratories with little chance for exploration. We have developed a project-based biochemistry laboratory which gives them a chance to carry out a major biochemistry project. In the first quarter it is based on the purification of the enzyme lysozyme. The students are given some basic information, and then work out the details of their own procedures, make up their own solutions, and work at their own pace. Students use centrifugation, ion-exchange chromatography, spectral enzyme assays, and SDS-gel electrophoresis to purify and characterize the protein. In the second quarter students are given acid phosphatase and the basic assay for the enzyme, and then develop and carry out a method for determining the kinetic parameters of the enzyme. These experiments continue the development of laboratory independence of the students which steadily progresses in most curriculum

  3. Implementation of a Collaborative Series of Classroom-Based Undergraduate Research Experiences Spanning Chemical Biology, Biochemistry, and Neurobiology.

    PubMed

    Kowalski, Jennifer R; Hoops, Geoffrey C; Johnson, R Jeremy

    2016-01-01

    Classroom undergraduate research experiences (CUREs) provide students access to the measurable benefits of undergraduate research experiences (UREs). Herein, we describe the implementation and assessment of a novel model for cohesive CUREs focused on central research themes involving faculty research collaboration across departments. Specifically, we implemented three collaborative CUREs spanning chemical biology, biochemistry, and neurobiology that incorporated faculty members' research interests and revolved around the central theme of visualizing biological processes like Mycobacterium tuberculosis enzyme activity and neural signaling using fluorescent molecules. Each CURE laboratory involved multiple experimental phases and culminated in novel, open-ended, and reiterative student-driven research projects. Course assessments showed CURE participation increased students' experimental design skills, attitudes and confidence about research, perceived understanding of the scientific process, and interest in science, technology, engineering, and mathematics disciplines. More than 75% of CURE students also engaged in independent scientific research projects, and faculty CURE contributors saw substantial increases in research productivity, including increased undergraduate student involvement and academic outputs. Our collaborative CUREs demonstrate the advantages of multicourse CUREs for achieving increased faculty research productivity and traditional CURE-associated student learning and attitude gains. Our collaborative CURE design represents a novel CURE model for ongoing laboratory reform that benefits both faculty and students.

  4. Implementation of a Collaborative Series of Classroom-Based Undergraduate Research Experiences Spanning Chemical Biology, Biochemistry, and Neurobiology

    PubMed Central

    Kowalski, Jennifer R.; Hoops, Geoffrey C.; Johnson, R. Jeremy

    2016-01-01

    Classroom undergraduate research experiences (CUREs) provide students access to the measurable benefits of undergraduate research experiences (UREs). Herein, we describe the implementation and assessment of a novel model for cohesive CUREs focused on central research themes involving faculty research collaboration across departments. Specifically, we implemented three collaborative CUREs spanning chemical biology, biochemistry, and neurobiology that incorporated faculty members’ research interests and revolved around the central theme of visualizing biological processes like Mycobacterium tuberculosis enzyme activity and neural signaling using fluorescent molecules. Each CURE laboratory involved multiple experimental phases and culminated in novel, open-ended, and reiterative student-driven research projects. Course assessments showed CURE participation increased students’ experimental design skills, attitudes and confidence about research, perceived understanding of the scientific process, and interest in science, technology, engineering, and mathematics disciplines. More than 75% of CURE students also engaged in independent scientific research projects, and faculty CURE contributors saw substantial increases in research productivity, including increased undergraduate student involvement and academic outputs. Our collaborative CUREs demonstrate the advantages of multicourse CUREs for achieving increased faculty research productivity and traditional CURE-associated student learning and attitude gains. Our collaborative CURE design represents a novel CURE model for ongoing laboratory reform that benefits both faculty and students. PMID:27810870

  5. Probing Changes in the Conformation of tRNA[superscript Phe]: An Integrated Biochemistry Laboratory Course

    ERIC Educational Resources Information Center

    Kirk, Sarah R.; Silverstein, Todd P.; McFarlane Holman, Karen L.; Taylor, Buck L. H.

    2008-01-01

    We have designed a new guided-inquiry laboratory for an advanced biochemistry course. This integrated laboratory focuses on the biomolecule tRNA[superscript Phe] and combines elements of bioorganic and bioinorganic chemistry with biochemistry. Throughout the semester students work together to study tRNA[superscript Phe] structure and ligand…

  6. Outcomes of a Research-Driven Laboratory and Literature Course Designed to Enhance Undergraduate Contributions to Original Research

    ERIC Educational Resources Information Center

    Rasche, Madeline E.

    2004-01-01

    This work describes outcomes of a research-driven advanced microbiology laboratory and literature research course intended to enhance undergraduate preparation for and contributions to original research. The laboratory section was designed to teach fundamental biochemistry and molecular biology techniques in the context of an original research…

  7. A Pharmacy Practice Laboratory Exercise to Apply Biochemistry Concepts

    PubMed Central

    McFalls, Marsha A.

    2010-01-01

    Objectives To develop exercises that allow pharmacy students to apply foundational knowledge discussed in a first-professional year (P1) biochemistry course to specific disease states and patient scenarios. Design A pharmacy practice laboratory exercise was developed to accompany a lecture sequence pertaining to purine biosynthesis and degradation. The assignment required students to fill a prescription, provide patient counseling tips, and answer questions pertaining to the disease state, the underlying biochemical problem, and the prescribed medication. Assessment Students were graded on the accuracy with which they filled the prescription, provided patient counseling, and answered the questions provided. Overall, students displayed mastery in all of these areas. Additionally, students completed a course survey on which they rated this exercise favorably, noting that it helped them to integrate basic science concepts and pharmacy practice. Conclusion A laboratory exercise provided an opportunity for P1 students to apply foundational pharmacy knowledge to a patient case and can serve as a template for the design of additional exercises. PMID:21179255

  8. Undergraduate Organic Chemistry Laboratory Safety

    NASA Astrophysics Data System (ADS)

    Luckenbaugh, Raymond W.

    1996-11-01

    Each organic chemistry student should become familiar with the educational and governmental laboratory safety requirements. One method for teaching laboratory safety is to assign each student to locate safety resources for a specific class laboratory experiment. The student should obtain toxicity and hazardous information for all chemicals used or produced during the assigned experiment. For example, what is the LD50 or LC50 for each chemical? Are there any specific hazards for these chemicals, carcinogen, mutagen, teratogen, neurotixin, chronic toxin, corrosive, flammable, or explosive agent? The school's "Chemical Hygiene Plan", "Prudent Practices for Handling Hazardous Chemicals in the Laboratory" (National Academy Press), and "Laboratory Standards, Part 1910 - Occupational Safety and Health Standards" (Fed. Register 1/31/90, 55, 3227-3335) should be reviewed for laboratory safety requirements for the assigned experiment. For example, what are the procedures for safe handling of vacuum systems, if a vacuum distillation is used in the assigned experiment? The literature survey must be submitted to the laboratory instructor one week prior to the laboratory session for review and approval. The student should then give a short presentation to the class on the chemicals' toxicity and hazards and describe the safety precautions that must be followed. This procedure gives the student first-hand knowledge on how to find and evaluate information to meet laboartory safety requirements.

  9. The experimental teaching reform in biochemistry and molecular biology for undergraduate students in Peking University Health Science Center.

    PubMed

    Yang, Xiaohan; Sun, Luyang; Zhao, Ying; Yi, Xia; Zhu, Bin; Wang, Pu; Lin, Hong; Ni, Juhua

    2015-01-01

    Since 2010, second-year undergraduate students of an eight-year training program leading to a Doctor of Medicine degree or Doctor of Philosophy degree in Peking University Health Science Center (PKUHSC) have been required to enter the "Innovative talent training project." During that time, the students joined a research lab and participated in some original research work. There is a critical educational need to prepare these students for the increasing accessibility of research experience. The redesigned experimental curriculum of biochemistry and molecular biology was developed to fulfill such a requirement, which keeps two original biochemistry experiments (Gel filtration and Enzyme kinetics) and adds a new two-experiment component called "Analysis of anti-tumor drug induced apoptosis." The additional component, also known as the "project-oriented experiment" or the "comprehensive experiment," consists of Western blotting and a DNA laddering assay to assess the effects of etoposide (VP16) on the apoptosis signaling pathways. This reformed laboratory teaching system aims to enhance the participating students overall understanding of important biological research techniques and the instrumentation involved, and to foster a better understanding of the research process all within a classroom setting. Student feedback indicated that the updated curriculum helped them improve their operational and self-learning capability, and helped to increase their understanding of theoretical knowledge and actual research processes, which laid the groundwork for their future research work.

  10. Preparing the Biochemistry Laboratory for the Next Outbreak: Lessons from SARS in Singapore

    PubMed Central

    2005-01-01

    Severe acute respiratory syndrome (SARS) is an emerging disease characterised by fever and atypical pneumonia and caused by a novel coronavirus. Singapore was affected by the global pandemic in early 2003, with 238 cases and 33 deaths. Samples sent to the biochemistry laboratory made up the majority (69%) of all SARS samples, yet remained a minority (29%) of total biochemistry workload. This paper describes the problems encountered and solutions adopted by the biochemistry laboratory at the designated SARS hospital in coping with this epidemic. It provides practical advice for laboratories planning for the handling of samples from future outbreaks. PMID:16450013

  11. Laser Mode Structure Experiments for Undergraduate Laboratories.

    ERIC Educational Resources Information Center

    Phillips, Richard A.; Gehrz, Robert D.

    Experiments dealing with laser mode structure are presented which are suitable for an upper division undergraduate laboratory. The theory of cavity modes is summarized. The mode structure of the radiation from a helium-neon laser is measured by using a photodiode detector and spectrum analyzer to detect intermode beating. Off-axial modes can be…

  12. Environmental Chemistry in the Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Wenzel, Thomas J.; Austin, Rachel N.

    2001-01-01

    Discusses the importance of environmental chemistry and the use of laboratory exercises in analytical and general chemistry courses. Notes the importance of lab work in heightening student interest in coursework including problem-based learning in undergraduate curricula, ready adaptability of environmental coursework to existing curricula, and…

  13. A Mechanical Resonance Apparatus for Undergraduate Laboratories.

    ERIC Educational Resources Information Center

    Jones, Christopher C.

    1995-01-01

    Reports the use of a heavy duty hacksaw blade and a 1000 turn pick-up coil to form the basis of a mechanical oscillator for a laboratory exercise in mechanical resonance designed for either the elementary undergraduate course or in association with an upper level mechanics course. (LZ)

  14. Digital Storage Oscilloscopes in the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2012-01-01

    Digital storage oscilloscopes (DSOs) are now easily available to undergraduate laboratories. In many cases, a DSO can replace a data-acquisition system. Seven such experiments/demonstrations are considered: (i) families of "I-V" characteristics of electronic devices (bipolar junction transistor), (ii) the "V-I" curve of a high-temperature…

  15. Guaiacol Peroxidase Zymography for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Wilkesman, Jeff; Castro, Diana; Contreras, Lellys M.; Kurz, Liliana

    2014-01-01

    This laboratory exercise presents a novel way to introduce undergraduate students to the specific detection of enzymatic activity by electrophoresis. First, students prepare a crude peroxidase extract and then analyze the homogenate via electrophoresis. Zymography, that is, a SDS-PAGE method to detect enzyme activity, is used to specifically…

  16. An Undergraduate Laboratory Experiment for Upper-Level Forensic Science, Biochemistry, or Molecular Biology Courses: Human DNA Amplification Using STR Single Locus Primers by Real-Time PCR with SYBR Green Detection

    ERIC Educational Resources Information Center

    Elkins, Kelly M.; Kadunc, Raelynn E.

    2012-01-01

    In this laboratory experiment, real-time polymerase chain reaction (real-time PCR) was conducted using published human TPOX single-locus DNA primers for validation and various student-designed short tandem repeat (STR) primers for Combined DNA Index System (CODIS) loci. SYBR Green was used to detect the amplification of the expected amplicons. The…

  17. Kinetics of Papain: An Introductory Biochemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Cornely, Kathleen; Crespo, Eric; Earley, Michael; Kloter, Rachel; Levesque, Aime; Pickering, Mary

    1999-05-01

    Enzyme kinetics experiments are popular in the undergraduate laboratory. These experiments have pedagogic value because they reinforce the concepts of Michaelis-Menten kinetics covered in the lecture portion of the course and give students the experience of calculating kinetic constants from data they themselves have generated. In this experiment, we investigate the kinetics of the thiol protease papain. The source of the papain is commercially available papaya latex. A specific substrate, Na-benzoyl-arginine-p-nitroanilide (BAPNA), is used, which takes advantage of the fact that papain interacts with a phenylalanine residue two amino acids away from the peptide bond cleaved. Upon hydrolysis by papain, a bright yellow product is released, p-nitroaniline. This allows the reaction to be monitored spectrophotometrically by measuring the rate of formation of the p-nitroaniline product as a function of the increase in absorbance of the solution at the lmax of p-nitroaniline (400 nm) over time at various substrate concentrations. These data are used to plot a Lineweaver-Burk plot from which the vmax and KM are obtained. If time permits, students carry out additional investigations in which e of p-nitroaniline is measured, the enzyme solution protein concentration is measured, the enzyme purity is evaluated by SDS-PAGE, and a pH-rate profile is constructed from experimental data.

  18. Undergraduate students' goals for chemistry laboratory coursework

    NASA Astrophysics Data System (ADS)

    DeKorver, Brittland K.

    Chemistry laboratory coursework has the potential to offer many benefits to students, yet few of these learning goals are realized in practice. Therefore, this study seeks to characterize undergraduate students' learning goals for their chemistry laboratory coursework. Data were collected by recording video of students completing laboratory experiments and conducting interviews with the students about their experiences that were analyzed utilizing the frameworks of Human Constructivism and Self-Regulated Learning. A cross-sectional sampling of students allowed comparisons to be made among students with varying levels of chemistry experience and interest in chemistry. The student goals identified by this study were compared to previously described laboratory learning goals of the faculty who instruct these courses in an effort to identify potential avenues to improve laboratory learning.

  19. Teaching Writing Skills in the Undergraduate Laboratory

    NASA Astrophysics Data System (ADS)

    Ugolini, Dennis W.

    1998-04-01

    Stanford University's Writing in the Major program (WIM) requires every undergraduate degree program to include a writing course specific to its field of study. In the physics department's WIM course, undergraduates learn writing skills by composing laboratory reports in the form of journal articles. While studying such topics as scintillation and population inversion, students also practice techniques for communicating the physics more effectively. Students learn how to select a thesis, organize a complex argument, write concisely, aim their content at the proper audience, prove their assertions, and revise a finished draft. Through clearer writing, students reach a clearer understanding of the physics, and the improvements in both understanding and communication stay with the students through later courses and into their graduate studies. Teaching assistants for the course also notice a marked improvement in their own writing skills.

  20. A Semester-Long Project-Oriented Biochemistry Laboratory Based on "Helicobacter pylori" Urease

    ERIC Educational Resources Information Center

    Farnham, Kate R.; Dube, Danielle H.

    2015-01-01

    Here we present the development of a 13 week project-oriented biochemistry laboratory designed to introduce students to foundational biochemical techniques and then enable students to perform original research projects once they have mastered these techniques. In particular, we describe a semester-long laboratory that focuses on a biomedically…

  1. Guided Inquiry in a Biochemistry Laboratory Course Improves Experimental Design Ability

    ERIC Educational Resources Information Center

    Goodey, Nina M.; Talgar, Cigdem P.

    2016-01-01

    Many biochemistry laboratory courses expose students to laboratory techniques through pre-determined experiments in which students follow stepwise protocols provided by the instructor. This approach fails to provide students with sufficient opportunities to practice experimental design and critical thinking. Ten inquiry modules were created for a…

  2. Water bottle rocket in undergraduate laboratory

    NASA Astrophysics Data System (ADS)

    Schultz, William

    2012-11-01

    In the winter semester of 2012, we implemented the modeling and testing of a water bottle rocket in ME 495, the Senior Laboratory in Mechanical Engineering at the University of Michigan. The four week lab was the most well received by the students in recent memory. There were significant challenges, but the result was a thorough review of their undergraduate fluids class with some advanced concepts such as directional stability of a projectile. The student teams designed their own rockets based on one of many standard 20 ounce soft drink bottles. The culminating contest brought impressive results and a surprise ending.

  3. Undergraduate physics laboratory: Electrophoresis in chromatography paper

    NASA Astrophysics Data System (ADS)

    Hyde, Alexander; Batishchev, Oleg

    2015-12-01

    An experiment studying the physical principles of electrophoresis in liquids was developed for an undergraduate laboratory. We have improved upon the standard agarose gel electrophoresis experimental regime with a straightforward and cost-effective procedure, in which drops of widely available black food coloring were separated by electric field into their dye components on strips of chromatography paper soaked in a baking soda/water solution. Terminal velocities of seven student-safe dyes were measured as a function of the electric potential applied along the strips. The molecular mobility was introduced and calculated by analyzing data for a single dye. Sources of systematic and random errors were investigated.

  4. A proposal for teaching undergraduate chemistry students carbohydrate biochemistry by problem-based learning activities.

    PubMed

    Figueira, Angela C M; Rocha, Joao B T

    2014-01-01

    This article presents a problem-based learning (PBL) approach to teaching elementary biochemistry to undergraduate students. The activity was based on "the foods we eat." It was used to engage students' curiosity and to initiate learning about a subject that could be used by the future teachers in the high school. The experimental activities (8-12 hours) were related to the questions: (i) what does the Benedict's Reagent detect? and (ii) What is determined by glucose oxidase (GOD)? We also ask the students to compare the results with those obtained with the Lugol reagent, which detects starch. Usually, students inferred that the Benedict reagent detects reducing sugars, while GOD could be used to detect glucose. However, in GOD assay, an open question was left, because the results could be due to contamination of the sugars (particularly galactose) with glucose. Though not stressed, GOD does not oxidize the carbohydrates tested and all the positive results are due to contamination. The activities presented here can be easily done in the high school, because they are simple and non-expensive. Furthermore, in the case of Benedict reaction, it is possible to follow the reduction of Cu (II) "macroscopically" by following the formation of the brick-orange precipitate. The concrete observation of a chemical reaction can motivate and facilitate students understanding about chemistry of life.

  5. Discovery of Escherichia coli CRISPR sequences in an undergraduate laboratory.

    PubMed

    Militello, Kevin T; Lazatin, Justine C

    2016-09-28

    Clustered regularly interspaced short palindromic repeats (CRISPRs) represent a novel type of adaptive immune system found in eubacteria and archaebacteria. CRISPRs have recently generated a lot of attention due to their unique ability to catalog foreign nucleic acids, their ability to destroy foreign nucleic acids in a mechanism that shares some similarity to RNA interference, and the ability to utilize reconstituted CRISPR systems for genome editing in numerous organisms. In order to introduce CRISPR biology into an undergraduate upper-level laboratory, a five-week set of exercises was designed to allow students to examine the CRISPR status of uncharacterized Escherichia coli strains and to allow the discovery of new repeats and spacers. Students started the project by isolating genomic DNA from E. coli and amplifying the iap CRISPR locus using the polymerase chain reaction (PCR). The PCR products were analyzed by Sanger DNA sequencing, and the sequences were examined for the presence of CRISPR repeat sequences. The regions between the repeats, the spacers, were extracted and analyzed with BLASTN searches. Overall, CRISPR loci were sequenced from several previously uncharacterized E. coli strains and one E. coli K-12 strain. Sanger DNA sequencing resulted in the discovery of 36 spacer sequences and their corresponding surrounding repeat sequences. Five of the spacers were homologous to foreign (non-E. coli) DNA. Assessment of the laboratory indicates that improvements were made in the ability of students to answer questions relating to the structure and function of CRISPRs. Future directions of the laboratory are presented and discussed. © 2016 by The International Union of Biochemistry and Molecular Biology, 2016.

  6. Use of Solid Phase Extraction in the Biochemistry Laboratory to Separate Different Lipids

    ERIC Educational Resources Information Center

    Flurkey, William H.

    2005-01-01

    Solid-phase extraction (SPE) was used to demonstrate how various lipids and lipid classes could be separated in a biochemistry laboratory setting. Three different SPE methods were chosen on their ability to separate a lipid mixture, consisting of a combination of a either a fatty acid, a triacylglycerol, a mono- or diacylglycerol, phospholipid,…

  7. Web Camera Use in Developing Biology, Molecular Biology and Biochemistry Laboratories

    ERIC Educational Resources Information Center

    Ogren, Paul J.; Deibel, Michael; Kelly, Ian; Mulnix, Amy B.; Peck, Charlie

    2004-01-01

    The use of a network-ready color camera is described which is primarily marketed as a security device and is used for experiments in developmental biology, genetics and biochemistry laboratories and in special student research projects. Acquiring and analyzing project and archiving images is very important in microscopy, electrophoresis and…

  8. Teaching Protein Purification and Characterization Techniques: A Student-Initiated, Project-Oriented Biochemistry Laboratory Course

    ERIC Educational Resources Information Center

    MacDonald, Gina

    2008-01-01

    This report describes a biochemistry laboratory that is completely project-oriented. Upper-level biology and chemistry majors work in teams to purify a protein of their choice. After the student groups have completed literature searches, ordered reagents, and made buffers they continue to learn basic protein purification and biochemical techniques…

  9. Myoglobin Structure and Function: A Multiweek Biochemistry Laboratory Project

    ERIC Educational Resources Information Center

    Silverstein, Todd P.; Kirk, Sarah R.; Meyer, Scott C.; Holman, Karen L. McFarlane

    2015-01-01

    We have developed a multiweek laboratory project in which students isolate myoglobin and characterize its structure, function, and redox state. The important laboratory techniques covered in this project include size-exclusion chromatography, electrophoresis, spectrophotometric titration, and FTIR spectroscopy. Regarding protein structure,…

  10. A Multistep Synthesis for an Advanced Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Chang Ji; Peters, Dennis G.

    2006-01-01

    Multistep syntheses are often important components of the undergraduate organic laboratory experience and a three-step synthesis of 5-(2-sulfhydrylethyl) salicylaldehyde was described. The experiment is useful as a special project for an advanced undergraduate organic chemistry laboratory course and offers opportunities for students to master a…

  11. Design and Implementation of an Undergraduate Laboratory Course in Psychophysiology

    ERIC Educational Resources Information Center

    Thibodeau, Ryan

    2011-01-01

    Most psychology curricula require the completion of coursework on the physiological bases of behavior. However, delivery of this critical content in a laboratory format is somewhat rare at the undergraduate level. To fill this gap, this article describes the design and implementation of an undergraduate laboratory course in psychophysiology at a…

  12. Reaction Kinetics: An Experiment for Biochemistry and Organic Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Ewing, Sheila

    1982-01-01

    Describes an experiment to examine the kinetics of carbamate decomposition and the effect of buffer catalysis on the reaction. Includes background information, laboratory procedures, evaluation of data, and teaching suggestions. (Author/JN)

  13. Spectroscopic Instrumentation in Undergraduate Astronomy Laboratories

    NASA Astrophysics Data System (ADS)

    Ludovici, Dominic; Mutel, Robert Lucien; Lang, Cornelia C.

    2017-01-01

    We have designed and built two spectrographs for use in undergraduate astronomy laboratories at the University of Iowa. The first, a low cost (appx. $500) low resolution (R ~ 150 - 300) grating-prism (grism) spectrometer consists of five optical elements and is easily modified to other telescope optics. The grism spectrometer is designed to be used in a modified filter wheel. This type of spectrometer allows students to undertake projects requiring sensitive spectral measurements, such as determining the redshifts of quasars. The second instrument is a high resolution (R ~ 8000), moderate cost (appx. $5000) fiber fed echelle spectrometer. The echelle spectrometer will allow students to conduct Doppler measurements such as those used to study spectroscopic binaries. Both systems are designed to be used with robotic telescope systems. The availability of 3D printing enables both of these spectrographs to be constructed in hands-on instrumentation courses where students build and commission their own instruments. Additionally, these instruments enable introductory majors and non-majors laboratory students to gain experience conducting their own spectroscopic observations.

  14. Working with Enzymes - Where Is Lactose Digested? An Enzyme Assay for Nutritional Biochemistry Laboratories

    NASA Astrophysics Data System (ADS)

    Pope, Sandi R.; Tolleson, Tonya D.; Williams, R. Jill; Underhill, Russell D.; Deal, S. Todd

    1998-06-01

    At Georgia Southern University, we offer a sophomore-level introductory biochemistry course that is aimed at nutrition and chemistry education majors. The laboratory portion of this course has long lacked an experimental introduction to enzymes. We have developed a simple enzyme assay utilizing lactase enzyme from crushed LactAid tablets and a 5% lactose solution ("synthetic milk"). In the experiment, the students assay the activity of the enzyme on the "synthetic milk" at pHs of approximately 1, 6, and 8 with the stated goal of determining where lactose functions in the digestive tract. The activity of the lactase may be followed chromatographically or spectrophotometrically. The experiment, which is actually a simple pH assay, is easily implemented in allied health chemistry laboratory courses and readily lends itself to adaptation for more complex kinetic assays in upper-level biochemistry laboratory courses. The experimental details, including a list of required supplies and hints for implementation, are provided.

  15. A semester-long project-oriented biochemistry laboratory based on Helicobacter pylori urease.

    PubMed

    Farnham, Kate R; Dube, Danielle H

    2015-01-01

    Here we present the development of a 13 week project-oriented biochemistry laboratory designed to introduce students to foundational biochemical techniques and then enable students to perform original research projects once they have mastered these techniques. In particular, we describe a semester-long laboratory that focuses on a biomedically relevant enzyme--Helicobacter pylori (Hp) urease--the activity of which is absolutely required for the gastric pathogen Hp to colonize the human stomach. Over the course of the semester, students undertake a biochemical purification of Hp urease, assess the success of their purification, and investigate the activity of their purified enzyme. In the final weeks of the semester, students design and implement their own experiments to study Hp urease. This laboratory provides students with an understanding of the importance of biochemistry in human health while empowering them to engage in an active area of research.

  16. A Semester-Long Project-Oriented Biochemistry Laboratory Based on Helicobacter pylori Urease

    PubMed Central

    Farnham, Kate R.; Dube, Danielle H.

    2015-01-01

    Here we present the development of a thirteen-week project-oriented biochemistry laboratory designed to introduce students to foundational biochemical techniques and then enable students to perform original research projects once they have mastered these techniques. In particular, we describe a semester-long laboratory that focuses on a biomedically relevant enzyme – Helicobacter pylori (Hp) urease – the activity of which is absolutely required for the gastric pathogen Hp to colonize the human stomach. Over the course of the semester, students undertake a biochemical purification of Hp urease, assess the success of their purification, and investigate the activity of their purified enzyme. In the final weeks of the semester, students design and implement their own experiments to study Hp urease. This laboratory provides students with an understanding of the importance of biochemistry in human health while empowering them to engage in an active area of research. PMID:26173574

  17. Digital holography system for undergraduate student laboratory

    NASA Astrophysics Data System (ADS)

    Buranasiri, P.; Plaipichit, S.; Yindeesuk, W.; Yoshimori, K.

    2015-07-01

    In this paper, we discuss the digital holography (DH) experiment in our optical and communication laboratory course for undergraduate students at Physics department, KMITL. The purposes of DH experiment are presenting our students the meaning and advantage of DH and its applications. The Gabor configurations of in-line DH has been set up for recording a number of samples, which were placed on different distances, simultaneously. Then, the images of all objects have been numerical reconstructed by using computer. The students have been learned that all of reconstructed images have been got from only one time recording, while using the conventional recording technique, sharp images of different objects have been gotten from different recording time. The students also have been learned how to use DH technique for investigation some different kinds of samples on their own of interested such as a human hair or a fingerprint. In our future work, our DH system will be developed to be a portable apparatus for easily showing to children in different areas.

  18. Unnecessary repeated total cholesterol tests in biochemistry laboratory

    PubMed Central

    Demir, Suleyman; Zorbozan, Nergiz; Basak, Elif

    2016-01-01

    Introduction We aimed to determine the number of repeated cholesterol (RC) tests and the ratio of unnecessary-repeated cholesterol (URC) tests among patients admitted to Pamukkale University Hospital (Denizli, Turkey) and provide solutions to avoid URC testing. Materials and methods Total cholesterol (T-cholesterol) tests (N = 86,817) between June 2014 and May 2015 were evaluated. The tests performed more than once per patient were determined as RC test (N = 28,811). RC test with an interval shorter than 4 weeks were determined as URC test (N = 3968) according to the shortest retest interval stated in ACC/AHA blood cholesterol guideline. RC testing included internal medicine, surgery and paediatric outpatients and inpatients. Reference change value (RCV) of total cholesterol was calculated. Results The 33.1% of the T-cholesterol tests were RC tests (N = 28,811), 13.7% of them were URC tests (N = 3968). Our RCV value was 25%. The percentage change between consecutive tests was less than RCV in 86.1% (N = 3418) of URC tests. URC tests were performed more frequently in patients with desirable total cholesterol value (P < 0.001). Conclusion There is a significant part of repeated T-cholesterol tests requested in our hospital. URC test requests can be evaluated by laboratories and the obtained data should be shared with clinicians. Laboratories can calculate RCV for the tests they performed and report this value with the test result. To prevent from URC tests, a warning plug-in can be added to hospital information software in accordance with guidelines to prevent from URC test requests. PMID:26981021

  19. [Effect of August 2003 heat wave in France on a hospital biochemistry laboratory activity in Paris].

    PubMed

    Mario, N; Pernet, P; Lasnier, E; Hermand, C; Vaubourdolle, M

    2004-01-01

    In August 2003, France sustained an exceptional heat wave. Heat-generated pathologies (dehydratation, heat stroke, cardio-vascular diseases) were responsible for additional biological analysis orders at the Saint-Antoine Hospital biochemistry laboratory in Paris from 4 to 18 august, compared to the same period in 2002. Variations were: + 17.6% for analysis orders, + 30.1% for ionograms, + 28.9% for plasma troponins I and + 58.6% for blood gazes analysis. Women and patients older than 75 years ratios were higher in august 2003. Biochemistry results analysis showed higher frequency of elevated plasma sodium, creatinine and troponin in 2003, confirming that most of patients admitted during heat wave were affected by heat-related diseases. Finally, laboratory excess activity was performed and quality was maintained, in spite of reduced staff and unusual climatic conditions.

  20. Commentary: Why Abandoning Undergraduate Laboratories Is Not an Option

    ERIC Educational Resources Information Center

    Costa, Manuel Joao

    2010-01-01

    Laboratory exercises (labs) are sometimes regarded as dispensable in biochemistry and molecular biology (BMB) education for various reasons including a combination of increased class costs and small budget allocations, pressing demands for more time to lecture to fit in new BMB discoveries within constant time span of courses, and the fact that…

  1. Undergraduate Laboratory Exercises Specific to Food Spoilage Microbiology

    ERIC Educational Resources Information Center

    Snyder, Abigail B.; Worobo, Randy W.; Orta-Ramirez, Alicia

    2016-01-01

    Food spoilage has an enormous economic impact, and microbial food spoilage plays a significant role in food waste and loss; subsequently, an equally significant portion of undergraduate food microbiology instruction should be dedicated to spoilage microbiology. Here, we describe a set of undergraduate microbiology laboratory exercises that focus…

  2. Application of indices Cp and Cpk to improve quality control capability in clinical biochemistry laboratories.

    PubMed

    Chen, Ming-Shu; Wu, Ming-Hsun; Lin, Chih-Ming

    2014-04-30

    The traditional criteria for acceptability of analytic quality may not be objective in clinical laboratories. To establish quality control procedures intended to enhance Westgard multi-rules for improving the quality of clinical biochemistry tests, we applied the Cp and Cpk quality-control indices to monitor tolerance fitting and systematic variation of clinical biochemistry test results. Daily quality-control data of a large Taiwanese hospital in 2009 were analyzed. The test items were selected based on an Olympus biochemistry machine and included serum albumin, aspartate aminotransferase, cholesterol, glucose and potassium levels. Cp and Cpk values were calculated for normal and abnormal levels, respectively. The tolerance range was estimated with data from 50 laboratories using the same instruments and reagents. The results showed a monthly trend of variation for the five items under investigation. The index values of glucose were lower than those of the other items, and their values were usually <2. In contrast to the Cp value for cholesterol, Cpk of cholesterol was lower than 2, indicating a systematic error that should be further investigated. This finding suggests a degree of variation or failure to meet specifications that should be corrected. The study indicated that Cp and Cpk could be applied not only for monitoring variations in quality control, but also for revealing inter-laboratory qualitycontrol capability differences.

  3. Measuring Dynamic Kidney Function in an Undergraduate Physiology Laboratory

    ERIC Educational Resources Information Center

    Medler, Scott; Harrington, Frederick

    2013-01-01

    Most undergraduate physiology laboratories are very limited in how they treat renal physiology. It is common to find teaching laboratories equipped with the capability for high-resolution digital recordings of physiological functions (muscle twitches, ECG, action potentials, respiratory responses, etc.), but most urinary laboratories still rely on…

  4. [External quality assessment in clinical biochemistry laboratories: pilot study in 11 laboratories of Lomé (Togo)].

    PubMed

    Kouassi, Kafui; Fétéké, Lochina; Assignon, Selom; Dorkenoo, Ameyo; Napo-Koura, Gado

    2015-01-01

    This study aims to evaluate the performance of a few biochemistry analysis and make recommendations to the place of the stakeholders. It is a cross-sectional study conducted between the October 1(st), 2012 and the July 31, 2013 bearing on the results of 5 common examinations of clinical biochemistry, provided by 11 laboratories volunteers opening in the public and private sectors. These laboratories have analysed during the 3 cycles, 2 levels (medium and high) of serum concentration of urea, glucose, creatinine and serum aminotransferases. The performance of laboratories have been determined from the acceptable limits corresponding to the limits of total errors, defined by the French Society of Clinical Biology (SFBC). A system of internal quality control is implemented by all laboratories and 45% of them participated in international programs of external quality assessment (EQA). The rate of acceptable results for the entire study was of 69%. There was a significant difference (p<0.002) between the performance of the group of laboratories engaged in a quality approach and the group with default implementation of the quality approach. Also a significant difference was observed between the laboratories of the central level and those of the peripheral level of our health system (p<0.047). The performance of the results provided by the laboratories remains relatively unsatisfactory. It is important that the Ministry of Health put in place a national program of EQA with mandatory participation.

  5. Undergraduate Skills Laboratories at Sonoma State University

    NASA Astrophysics Data System (ADS)

    Gill, Amandeep; Zack, K.; Mills, H.; Cunningham, B.; Jackowski, S.

    2014-01-01

    Due to the current economic climate, funding sources for many laboratory courses have been cut from university budgets. However, it is still necessary for undergraduates to master laboratory skills to be prepared and competitive applicants when entering the professional world and/or graduate school. In this context, student-led programs may be able to compensate for this lack of formal instruction and reinforce concepts from lecture by applying research techniques to develop hands-on comprehension. The Sonoma State University Chapter of Society of Physics Students has established a peer-led skills lab to teach research techniques in the fields of astronomy and physics. The goal is to alleviate the pressures of both independently learning and efficiently applying techniques to junior and senior-level research projects. These skill labs are especially valuable for nontraditional students who, due to work or family duties, may not get a chance to fully commit to research projects. For example, a topic such as Arduino programming has a multitude of applications in both astronomy and physics, but is not taught in traditional university courses. Although some programming and electronics skills are taught in (separate) classes, they are usually not applied to actual research projects, which combined expertise is needed. For example, in astronomy, there are many situations involving programming telescopes and taking data with electronic cameras. Often students will carry out research using these tools but when something goes wrong, the students will not have the skills to trouble shoot and fix the system. Another astronomical topic to be taught in the skills labs is the analysis of astronomical data, including running remote telescopes, analyzing photometric variability, and understanding the concepts of star magnitudes, flat fields, and biases. These workshops provide a setting in which the student teacher may strengthen his or her understanding of the topic by presenting

  6. Introducing Undergraduates to a Research Laboratory

    ERIC Educational Resources Information Center

    Weinberg, Robert

    1974-01-01

    Discusses a student project which is intended to teach undergraduates concepts and techniques of nuclear physics, experimental methods used in particle detection, and provide experience in a functioning research environment. Included are detailed procedures for carrying out the project. (CC)

  7. Fluorescence quantum yield measurements of fluorescent proteins: a laboratory experiment for a biochemistry or molecular biophysics laboratory course.

    PubMed

    Wall, Kathryn P; Dillon, Rebecca; Knowles, Michelle K

    2015-01-01

    Fluorescent proteins are commonly used in cell biology to assess where proteins are within a cell as a function of time and provide insight into intracellular protein function. However, the usefulness of a fluorescent protein depends directly on the quantum yield. The quantum yield relates the efficiency at which a fluorescent molecule converts absorbed photons into emitted photons and it is necessary to know for assessing what fluorescent protein is the most appropriate for a particular application. In this work, we have designed an upper-level, biochemistry laboratory experiment where students measure the fluorescence quantum yields of fluorescent proteins relative to a standard organic dye. Four fluorescent protein variants, enhanced cyan fluorescent protein (ECFP), enhanced green fluorescent protein (EGFP), mCitrine, and mCherry, were used, however the methods described are useful for the characterization of any fluorescent protein or could be expanded to fluorescent quantum yield measurements of organic dye molecules. The laboratory is designed as a guided inquiry project and takes two, 4 hr laboratory periods. During the first day students design the experiment by selecting the excitation wavelength, choosing the standard, and determining the concentration needed for the quantum yield experiment that takes place in the second laboratory period. Overall, this laboratory provides students with a guided inquiry learning experience and introduces concepts of fluorescence biophysics into a biochemistry laboratory curriculum.

  8. DNA fingerprint analysis of three short tandem repeat (STR) loci for biochemistry and forensic science laboratory courses.

    PubMed

    McNamara-Schroeder, Kathleen; Olonan, Cheryl; Chu, Simon; Montoya, Maria C; Alviri, Mahta; Ginty, Shannon; Love, John J

    2006-09-01

    We have devised and implemented a DNA fingerprinting module for an upper division undergraduate laboratory based on the amplification and analysis of three of the 13 short tandem repeat loci that are required by the Federal Bureau of Investigation Combined DNA Index System (FBI CODIS) data base. Students first collect human epithelial (cheek) cells using sterile buccal swabs and then utilize commercially available kits and materials to extract genomic DNA. This is followed by the PCR amplification of three specific short tandem repeat loci (i.e. CSF1PO, TPOX, THO1). Polyacrylamide gel electrophoresis is used to resolve the allelic bands associated with the three short tandem repeat loci, and the results are statistically analyzed in the context of human population genetics. In addition, DNA was collected from a family, and the children's allele sets were compared with those of the parents to help illustrate paternal and maternal relatedness. This module enables students to use the materials and methods employed by actual law enforcement agencies and therefore can be used for laboratory exercises in traditional biochemistry curricula as well as for the growing field of forensic science and education.

  9. The Most Proficient Enzyme as the Central Theme in an Integrated, Research-based Biochemistry Laboratory Course

    ERIC Educational Resources Information Center

    Smiley, Jeffrey A.

    2002-01-01

    The enzyme orotidine-5'-monophosphate decarboxylase is an attractive choice for the central theme of an integrated, research-based biochemistry laboratory course. A series of laboratory exercises common to most instructional laboratories, including enzyme assays, protein purification, enzymatic characterization, elementary kinetics, and…

  10. Analysis of a p53 Mutation Associated with Cancer Susceptibility for Biochemistry and Genetic Laboratory Courses

    ERIC Educational Resources Information Center

    Soto-Cruz, Isabel; Legorreta-Herrera, Martha

    2009-01-01

    We have devised and implemented a module for an upper division undergraduate laboratory based on the amplification and analysis of a p53 polymorphism associated with cancer susceptibility. First, students collected a drop of peripheral blood cells using a sterile sting and then used FTA cards to extract the genomic DNA. The p53 region is then PCR…

  11. A model system for the study of gene expression in the undergraduate laboratory.

    PubMed

    Hargadon, Kristian M

    2016-07-08

    The flow of genetic information from DNA to RNA to protein, otherwise known as the "central dogma" of biology, is one of the most basic and overarching concepts in the biological sciences. Nevertheless, numerous studies have reported student misconceptions at the undergraduate level of this fundamental process of gene expression. This study reports on the efficacy of a model system for teaching gene expression in the undergraduate laboratory. A student-centered investigation of Tgfb1 gene expression in two murine melanoma cell lines was used to emphasize not only the process of gene expression but also various research methods for studying this phenomenon. Traditional RT-PCR, quantitative real-time RT-PCR, and flow cytometry-based in situ hybridization assays were employed to study expression of this immunosuppressive cytokine gene in the highly tumorigenic B16-F1 melanoma cell line and the poorly tumorigenic D5.1G4 melanoma cell line, both at the population and single-cell levels. A pre- and post-laboratory assessment instrument demonstrated the utility of this model system in enhancing student learning both of content related to gene expression and of research methods and data analysis skills. The pedagogical approach described in this study is therefore an effective way to improve the teaching and learning of gene expression at the undergraduate level. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(4):397-404, 2016.

  12. Kinetics of Carbaryl Hydrolysis: An Undergraduate Environmental Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hawker, Darryl

    2015-01-01

    Kinetics is an important part of undergraduate environmental chemistry curricula and relevant laboratory exercises are helpful in assisting students to grasp concepts. Such exercises are also useful in general chemistry courses because students can see relevance to real-world issues. The laboratory exercise described here involves determination of…

  13. Measuring Stellar Temperatures: An Astrophysical Laboratory for Undergraduate Students

    ERIC Educational Resources Information Center

    Cenadelli, D.; Zeni, M.

    2008-01-01

    While astrophysics is a fascinating subject, it hardly lends itself to laboratory experiences accessible to undergraduate students. In this paper, we describe a feasible astrophysical laboratory experience in which the students are guided to take several stellar spectra, using a telescope, a spectrograph and a CCD camera, and perform a full data…

  14. Information Management Systems in the Undergraduate Instrumental Analysis Laboratory.

    ERIC Educational Resources Information Center

    Merrer, Robert J.

    1985-01-01

    Discusses two applications of Laboratory Information Management Systems (LIMS) in the undergraduate laboratory. They are the coulometric titration of thiosulfate with electrogenerated triiodide ion and the atomic absorption determination of calcium using both analytical calibration curve and standard addition methods. (JN)

  15. An Undergraduate Nanotechnology Engineering Laboratory Course on Atomic Force Microscopy

    ERIC Educational Resources Information Center

    Russo, D.; Fagan, R. D.; Hesjedal, T.

    2011-01-01

    The University of Waterloo, Waterloo, ON, Canada, is home to North America's first undergraduate program in nanotechnology. As part of the Nanotechnology Engineering degree program, a scanning probe microscopy (SPM)-based laboratory has been developed for students in their fourth year. The one-term laboratory course "Nanoprobing and…

  16. What Skills Should Students of Undergraduate Biochemistry and Molecular Biology Programs Have upon Graduation?

    ERIC Educational Resources Information Center

    White, Harold B.; Benore, Marilee A.; Sumter, Takita F.; Caldwell, Benjamin D.; Bell, Ellis

    2013-01-01

    Biochemistry and molecular biology (BMB) students should demonstrate proficiency in the foundational concepts of the discipline and possess the skills needed to practice as professionals. To ascertain the skills that should be required, groups of BMB educators met in several focused workshops to discuss the expectations with the ultimate goal of…

  17. Case-Study Investigation of Equine Maternity via PCR-RFLP: A Biochemistry Laboratory Experiment

    PubMed Central

    Millard, Julie T.; Chuang, Edward; Lucas, James S.; Nagy, Erzsebet E.; Davis, Griffin T.

    2013-01-01

    A simple and robust biochemistry laboratory experiment is described that uses restriction fragment length polymorphism (RFLP) of polymerase chain reaction (PCR) products to verify the identity of a potentially valuable horse. During the first laboratory period, students purify DNA from equine samples and amplify two loci of mitochondrial DNA. During the second laboratory period, students digest PCR products with restriction enzymes and analyze the fragment sizes through agarose gel electrophoresis. An optional step of validating DNA extracts through realtime PCR can expand the experiment to three weeks. This experiment, which has an engaging and versatile scenario, provides students with exposure to key principles and techniques of molecular biology, bioinformatics, and evolution in a forensic context. PMID:24363455

  18. Case-Study Investigation of Equine Maternity via PCR-RFLP: A Biochemistry Laboratory Experiment.

    PubMed

    Millard, Julie T; Chuang, Edward; Lucas, James S; Nagy, Erzsebet E; Davis, Griffin T

    2013-11-12

    A simple and robust biochemistry laboratory experiment is described that uses restriction fragment length polymorphism (RFLP) of polymerase chain reaction (PCR) products to verify the identity of a potentially valuable horse. During the first laboratory period, students purify DNA from equine samples and amplify two loci of mitochondrial DNA. During the second laboratory period, students digest PCR products with restriction enzymes and analyze the fragment sizes through agarose gel electrophoresis. An optional step of validating DNA extracts through realtime PCR can expand the experiment to three weeks. This experiment, which has an engaging and versatile scenario, provides students with exposure to key principles and techniques of molecular biology, bioinformatics, and evolution in a forensic context.

  19. EDITORIAL: Student undergraduate laboratory and project work

    NASA Astrophysics Data System (ADS)

    Schumacher, Dieter

    2007-05-01

    that new experiments which illustrate both fundamental physics and modern technology can be realized even with a small budget. Traditional labwork courses often provide a catalogue of well known experiments. The students must first learn the theoretical background. They then assemble the setup from specified equipment, collect the data and perform the default data processing. However, there is no way to learn to swim without water. In order to achieve a constructivist access to learning, 'project labs' are needed. In a project labwork course a small group of students works as a team on a mini research project. The students have to specify the question of research, develop a suitable experimental setup, conduct the experiment and find a suitable way to evaluate the data. Finally they must present their results e.g. in the framework of a public poster session. Three contributions refer to this approach, however they focus on different aspects: 'Project laboratory for first-year students' by Gorazd Planinšič, 'RealTime Physics: active learning laboratories' by David Sokoloff et al and 'Labs outside labs: miniprojects at a spring camp for future physics teachers' by Leos Dvorák. Is it possible to prepare the students specifically for project labwork? This question is answered by the contribution 'A new labwork course for physics students: devices, methods and research projects' by Knut Neumann and Manuela Welzel. The two main parts of the labwork course cover first experimental devices (e.g. multimeters, oscilloscopes, different sensors, operational amplifiers, step motors, AD/DA-converters). Then subjects such as data processing, consideration of measurement uncertainties, keeping records or using tools like LABVIEW etc are focused on. Another concrete proposal for a new curriculum is provided by James Sharp et al, in 'Computer based learning in an undergraduate physics laboratory: interfacing and instrument control using MATLAB'. One can well imagine that project labs

  20. Measuring meaningful learning in the undergraduate chemistry laboratory

    NASA Astrophysics Data System (ADS)

    Galloway, Kelli R.

    The undergraduate chemistry laboratory has been an essential component in chemistry education for over a century. The literature includes reports on investigations of singular aspects laboratory learning and attempts to measure the efficacy of reformed laboratory curriculum as well as faculty goals for laboratory learning which found common goals among instructors for students to learn laboratory skills, techniques, experimental design, and to develop critical thinking skills. These findings are important for improving teaching and learning in the undergraduate chemistry laboratory, but research is needed to connect the faculty goals to student perceptions. This study was designed to explore students' ideas about learning in the undergraduate chemistry laboratory. Novak's Theory of Meaningful Learning was used as a guide for the data collection and analysis choices for this research. Novak's theory states that in order for meaningful learning to occur the cognitive, affective, and psychomotor domains must be integrated. The psychomotor domain is inherent in the chemistry laboratory, but the extent to which the cognitive and affective domains are integrated is unknown. For meaningful learning to occur in the laboratory, students must actively integrate both the cognitive domain and the affective domains into the "doing" of their laboratory work. The Meaningful Learning in the Laboratory Instrument (MLLI) was designed to measure students' cognitive and affective expectations and experiences within the context of conducting experiments in the undergraduate chemistry laboratory. Evidence for the validity and reliability of the data generated by the MLLI were collected from multiple quantitative studies: a one semester study at one university, a one semester study at 15 colleges and universities across the United States, and a longitudinal study where the MLLI was administered 6 times during two years of general and organic chemistry laboratory courses. Results from

  1. Better understanding of homologous recombination through a 12-week laboratory course for undergraduates majoring in biotechnology.

    PubMed

    Li, Ming; Shen, Xiaodong; Zhao, Yan; Hu, Xiaomei; Hu, Fuquan; Rao, Xiancai

    2017-03-17

    Homologous recombination, a central concept in biology, is defined as the exchange of DNA strands between two similar or identical nucleotide sequences. Unfortunately, undergraduate students majoring in biotechnology often experience difficulties in understanding the molecular basis of homologous recombination. In this study, we developed and implemented a 12-week laboratory course for biotechnology undergraduates in which gene targeting in Streptococcus suis was used to facilitate their understanding of the basic concept and process of homologous recombination. Students worked in teams of two to select a gene of interest to create a knockout mutant using methods that relied on homologous recombination. By integrating abstract knowledge and practice in the process of scientific research, students gained hands-on experience in molecular biology techniques while learning about the principle and process of homologous recombination. The learning outcomes and survey-based assessment demonstrated that students substantially enhanced their understanding of how homologous recombination could be used to study gene function. Overall, the course was very effective for helping biotechnology undergraduates learn the theory and application of homologous recombination, while also yielding positive effects in developing confidence and scientific skills for future work in research. © 2017 by The International Union of Biochemistry and Molecular Biology, 2017.

  2. Safety Concepts for Undergraduate Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Chlad, Frank L.; Hardy, James K.

    1983-01-01

    Safety procedures used by Department of Chemistry at the University of Akron are discussed. These include policy that no chemicals are stored in the teaching laboratories. Instead, dispensing stockrooms are used to service the laboratories. Other aspects discussed include ventilation procedures and development of microprocessor use in stockrooms.…

  3. Making Connections in the Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Poole, Bobbie J.; Kidder, Stanley Q.

    1996-01-01

    Describes a strategy used in a meteorology course to increase its relevance to students' lives. Involves combining the lecture and laboratory portions of the course and including a Connections section in the lab report in which students comment on the connections they saw between the coursework, the laboratory exercises, and their own experience.…

  4. Undergraduate Laboratory Module on Skin Diffusion

    ERIC Educational Resources Information Center

    Norman, James J.; Andrews, Samantha N.; Prausnitz, Mark R.

    2011-01-01

    To introduce students to an application of chemical engineering directly related to human health, we developed an experiment for the unit operations laboratory at Georgia Tech examining diffusion across cadaver skin in the context of transdermal drug delivery. In this laboratory module, students prepare mouse skin samples, set up diffusion cells…

  5. Purification and characterization of enzymes from yeast: an extended undergraduate laboratory sequence for large classes.

    PubMed

    Johanson, Kelly E; Watt, Terry J; McIntyre, Neil R; Thompson, Marleesa

    2013-01-01

    Providing a project-based experience in an undergraduate biochemistry laboratory class can be complex with large class sizes and limited resources. We have designed a 6-week curriculum during which students purify and characterize the enzymes invertase and phosphatase from bakers yeast. Purification is performed in two stages via ethanol precipitation and anion exchange chromatography, and students perform both direct and coupled enzyme assays. By completion of the experimental series, students are able to identify which enzymes they have purified and have obtained kinetic parameters for one. This experimental series requires minimal instructor preparation time, is cost effective, and works with multiple sections of large groups of students. Students participating in this sequence showed increases in conceptual understanding of biochemical concepts as measured through in-class assessments and anonymous surveys.

  6. Chemical Reaction Experiment for the Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Kwon, K. C.; And Others

    1987-01-01

    Provides an overview of an experiment on reaction kinetics of the anthracene-hydrogen system. Includes a description of the laboratory equipment, procedures, and data analysis requirements. Points out the advantages of the recommended technique. (ML)

  7. Magnetic Braking Revisited: Activities for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Ireson, Gren; Twidle, John

    2008-01-01

    This paper revisits the demonstration of Lenz by dropping magnets down a non-magnetic tube. Recent publications are reviewed and ideas for undergraduate laboratory investigations are suggested. Finally, an example of matching theory to observation is presented. (Contains 4 tables, 5 figures and 3 footnotes.)

  8. Synthesis and Characterization of Silver Nanoparticles for an Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Orbaek, Alvin W.; McHale, Mary M.; Barron, Andrew R.

    2015-01-01

    The aim of this simple, quick, and safe laboratory exercise is to provide undergraduate students an introduction to nanotechnology using nanoparticle (NP) synthesis. Students are provided two procedures that allow for the synthesis of different yet controlled sizes of silver NPs. After preparing the NPs, the students perform UV-visible…

  9. An Integrated Enzyme Kinetics Laboratory Sequence for Undergraduates.

    ERIC Educational Resources Information Center

    Bucholtz, Michael L.

    1988-01-01

    Describes a three-week sequence to take undergraduate students through the study of enzyme kinetics in an integrated manner that reinforces the basic concepts of initial velocity and the effects of varying operational parameters. Discusses laboratory sessions and the use of a microcomputer in instruction. (CW)

  10. An Undergraduate Laboratory Exercise for Studying Kinetics of Batch Crystallization

    ERIC Educational Resources Information Center

    Louhi­-Kultanen, Marjatta; Han, Bing; Nurkka, Annikka; Hatakka, Henry

    2015-01-01

    The present work describes an undergraduate laboratory exercise for improving understanding of fundamental phenomena in cooling crystallization. The exercise of nucleation and crystal growth kinetics supports learning of theories and models presented in lectures and calculation exercises. The teaching methodology incorporates precepts the…

  11. Field Research Studying Whales in an Undergraduate Animal Behavior Laboratory

    ERIC Educational Resources Information Center

    MacLaren, R. David; Schulte, Dianna; Kennedy, Jen

    2012-01-01

    This work describes a new field research laboratory in an undergraduate animal behavior course involving the study of whale behavior, ecology and conservation in partnership with a non-profit research organization--the Blue Ocean Society for Marine Conservation (BOS). The project involves two weeks of training and five weekend trips on whale watch…

  12. Measurement of phosphorylated extracellular signal-regulated kinase 1 and 2 in an undergraduate teaching laboratory with ALPHAscreen technology.

    PubMed

    Hay, Debbie L

    2009-03-17

    Teaching the practical aspects of signal transduction to large undergraduate classes can be challenging when there is only a finite time frame in which to engage in laboratory activities. This teaching resource describes the use of bead-based ALPHAscreen technology for a class of 300 second-year biochemistry students, exposing the next generation of researchers to cutting-edge technology. Although in this case phosphorylated extracellular signal-regulated kinase 1 and 2 were measured, this technology is applicable to the measurement of many different signaling components. This resource provides a practical guide for instructors and exemplifies how such traditionally high-throughput research technologies can be used as teaching tools.

  13. Evaluating performance in sweat testing in medical biochemistry laboratories in Croatia

    PubMed Central

    Aralica, Merica; Krleza, Jasna Lenicek

    2017-01-01

    Introduction Sweat test has a diagnostic role in evaluation of cystic fibrosis. Its performance includes sweat stimulation, collection and analysis. All listed may be sources of inconsistencies in everyday practice. The aim of this study was an evaluation of external quality assessment (EQA) of sweat chloride measurement including sweat test performance in medical biochemistry laboratories in Croatia. Materials and methods EQA for sweat chloride measurement was provided by Croatian Centre for Quality Assessment in Laboratory Medicine (CROQALM) in five consecutive exercises to medical biochemistry laboratories (MBL) that offered sweat testing. A questionnaire regarding all phases of testing was mailed to involved MBL (N = 10). Survey results were compared to current guidelines for sweat test performance. Results Reported results of EQA in 2015 exercises showed coefficients of variation (CV) from 28.9%, 29.0% to 35.3%, respectively. An introduction of uniform sweat chloride measurement protocol resulted in CV of 15.5% and 14.7% reported in following two exercises in 2016. All MBL included in this study replied to the questionnaire. Results reported by MBL indicated: lack of patient information policy (7/10), use of unacceptable electrodes (6/9), misuse of minimum of acceptable sweat weight (6/9), lack of internal quality assessment (5/9) and recommended reference ranges (5/9 and 4/9). Agreements to guidelines were found in approach to unsuitable patients (9/10) and sweat collection (8/9). Conclusion Presented results indicate major weak points of current practice in sweat test performance in Croatian MBL and stress the need for its standardization on a national level.

  14. An undergraduate laboratory class using CRISPR/Cas9 technology to mutate drosophila genes.

    PubMed

    Adame, Vanesa; Chapapas, Holly; Cisneros, Marilyn; Deaton, Carol; Deichmann, Sophia; Gadek, Chauncey; Lovato, TyAnna L; Chechenova, Maria B; Guerin, Paul; Cripps, Richard M

    2016-05-06

    CRISPR/Cas9 genome editing technology is used in the manipulation of genome sequences and gene expression. Because of the ease and rapidity with which genes can be mutated using CRISPR/Cas9, we sought to determine if a single-semester undergraduate class could be successfully taught, wherein students isolate mutants for specific genes using CRISPR/Cas9. Six students were each assigned a single Drosophila gene, for which no mutants currently exist. Each student designed and created plasmids to encode single guide RNAs that target their selected gene; injected the plasmids into Cas9-expressing embryos, in order to delete the selected gene; carried out a three-generation cross to test for germline transmission of a mutated allele and generate a stable stock of the mutant; and characterized the mutant alleles by PCR and sequencing. Three genes out of six were successfully mutated. Pre- and post- survey evaluations of the students in the class revealed that student attitudes towards their research competencies increased, although the changes were not statistically significant. We conclude that it is feasible to develop a laboratory genome editing class, to provide effective laboratory training to undergraduate students, and to generate mutant lines for use by the broader scientific community. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:263-275, 2016.

  15. Undergraduate Laboratory Data Acquisition With a Microcomputer.

    ERIC Educational Resources Information Center

    Weston, Kenneth C.

    1981-01-01

    Describes a flexible, multichannel, highly accurate, digital data acquisition system for use with a microcomputer. Includes a description of instrumentation for computer data acquisition, data acquisition systems, software, uses in the curriculum, library interaction and action, and use in a mechanical engineering laboratory. (DS)

  16. Microcomputers in an Undergraduate Optics Laboratory.

    ERIC Educational Resources Information Center

    Tomaselli, V. P.; And Others

    1990-01-01

    Describes a junior-level, one-year optics laboratory course for physics and engineering students. The course offers a range of experiments from conventional geometric optics to contemporary spatial filtering and fiber optics. Presents an example of an experiment with pictures. (Author/YP)

  17. What skills should students of undergraduate biochemistry and molecular biology programs have upon graduation?

    PubMed

    White, Harold B; Benore, Marilee A; Sumter, Takita F; Caldwell, Benjamin D; Bell, Ellis

    2013-01-01

    Biochemistry and molecular biology (BMB) students should demonstrate proficiency in the foundational concepts of the discipline and possess the skills needed to practice as professionals. To ascertain the skills that should be required, groups of BMB educators met in several focused workshops to discuss the expectations with the ultimate goal of clearly articulating the skills required. The results of these discussions highlight the critical importance of experimental, mathematical, and interpersonal skills including collaboration, teamwork, safety, and ethics. The groups also found experimental design, data interpretation and analysiand the ability to communicate findings to diverse audience to be essential skills. To aid in the development of appropriate assessments these skills are grouped into three categories, 1) Process of Science, 2) Communication and Comprehension of Science, and 3) Community of Practice Aspects of Science. Finally, the groups worked to align these competencies with the best practices in both teaching and in skills assessment.

  18. Basic neuron model electrical equivalent circuit: an undergraduate laboratory exercise.

    PubMed

    Dabrowski, Katie M; Castaño, Diego J; Tartar, Jaime L

    2013-01-01

    We developed a hands-on laboratory exercise for undergraduate students in which they can build and manipulate a neuron equivalent circuit. This exercise uses electrical circuit components that resemble neuron components and are easy to construct. We describe the methods for creating the equivalent circuit and how to observe different neuron properties through altering the structure of the equivalent circuit. We explain how this hands-on laboratory activity allows for the better understanding of this fundamental neuroscience concept. At the conclusion of this laboratory exercise, undergraduate students will be able to apply the principles of Ohm's law, cable theory with regards to neurons, and understand the functions of resistance and capacitance in a neuron.

  19. A laboratory course for teaching laboratory techniques, experimental design, statistical analysis, and peer review process to undergraduate science students.

    PubMed

    Gliddon, C M; J Rosengren, R

    2012-01-01

    This article describes a 13-week laboratory course called Human Toxicology taught at the University of Otago, New Zealand. This course used a guided inquiry based laboratory coupled with formative assessment and collaborative learning to develop in undergraduate students the skills of problem solving/critical thinking, data interpretation and written discussion of results. The laboratory practices were a guided inquiry based around retinol's ability to potentiate acetaminophen-mediated hepatotoxicity. To induce critical thinking, students were given a choice as to which assay they could use to determine how retinol affected acetaminophen hepatotoxicity. Short summaries were handed in following each assay and formed the bases of the formative assessment. To complete the feedback loop, a summative assessment that consisted of all the graphs and concepts from the short summaries were combined into a manuscript. To give the students exposure to science communication, the manuscript had to be written in accordance to the submission guidelines for Toxicological Sciences. Evaluation of this course was determined by a student questionnaire using a Likert scale and students' responses were very favorable. While the subject matter was toxicological centric, the content could be easily modified to suit another subject matter in biochemistry and molecular biology.

  20. Development of a Semester-Long, Inquiry-Based Laboratory Course in Upper-Level Biochemistry and Molecular Biology

    ERIC Educational Resources Information Center

    Murthy, Pushpalatha P. N.; Thompson, Martin; Hungwe, Kedmon

    2014-01-01

    A semester-long laboratory course was designed and implemented to familiarize students with modern biochemistry and molecular biology techniques. The designed format involved active student participation, evaluation of data, and critical thinking, and guided students to become independent researchers. The first part of the course focused on…

  1. Taking a new biomarker into routine use – A perspective from the routine clinical biochemistry laboratory

    PubMed Central

    Sturgeon, Catharine; Hill, Robert; Hortin, Glen L; Thompson, Douglas

    2010-01-01

    There is increasing pressure to provide cost-effective healthcare based on “best practice.” Consequently, new biomarkers are only likely to be introduced into routine clinical biochemistry departments if they are supported by a strong evidence base and if the results will improve patient management and outcome. This requires convincing evidence of the benefits of introducing the new test, ideally reflected in fewer hospital admissions, fewer additional investigations and/or fewer clinic visits. Carefully designed audit and cost-benefit studies in relevant patient groups must demonstrate that introducing the biomarker delivers an improved and more effective clinical pathway. From the laboratory perspective, pre-analytical requirements must be thoroughly investigated at an early stage. Good stability of the biomarker in relevant physiological matrices is essential to avoid the need for special processing. Absence of specific timing requirements for sampling and knowledge of the effect of medications that might be used to treat the patients in whom the biomarker will be measured is also highly desirable. Analytically, automation is essential in modern high-throughput clinical laboratories. Assays must therefore be robust, fulfilling standard requirements for linearity on dilution, precision and reproducibility, both within- and between-run. Provision of measurements by a limited number of specialized reference laboratories may be most appropriate, especially when a new biomarker is first introduced into routine practice. PMID:21137030

  2. Seed storage proteins as a system for teaching protein identification by mass spectrometry in biochemistry laboratory.

    PubMed

    Wilson, Karl A; Tan-Wilson, Anna

    2013-01-01

    Mass spectrometry (MS) has become an important tool in studying biological systems. One application is the identification of proteins and peptides by the matching of peptide and peptide fragment masses to the sequences of proteins in protein sequence databases. Often prior protein separation of complex protein mixtures by 2D-PAGE is needed, requiring more time and expertise than instructors of large laboratory classes can devote. We have developed an experimental module for our Biochemistry Laboratory course that engages students in MS-based protein identification following protein separation by one-dimensional SDS-PAGE, a technique that is usually taught in this type of course. The module is based on soybean seed storage proteins, a relatively simple mixture of proteins present in high levels in the seed, allowing the identification of the main protein bands by MS/MS and in some cases, even by peptide mass fingerprinting. Students can identify their protein bands using software available on the Internet, and are challenged to deduce post-translational modifications that have occurred upon germination. A collection of mass spectral data and tutorials that can be used as a stand-alone computer-based laboratory module were also assembled.

  3. Characterizing Instructional Practices in the Laboratory: The Laboratory Observation Protocol for Undergraduate STEM

    ERIC Educational Resources Information Center

    Velasco, Jonathan B.; Knedeisen, Adam; Xue, Dihua; Vickrey, Trisha L.; Abebe, Marytza; Stains, Marilyne

    2016-01-01

    Chemistry laboratories play an essential role in the education of undergraduate Science, Technology, Engineering, and Mathematics (STEM) and non-STEM students. The extent of student learning in any educational environment depends largely on the effectiveness of the instructors. In chemistry laboratories at large universities, the instructors of…

  4. Rapid and Adaptable Measurement of Protein Thermal Stability by Differential Scanning Fluorimetry: Updating a Common Biochemical Laboratory Experiment

    ERIC Educational Resources Information Center

    Johnson, R. Jeremy; Savas, Christopher J.; Kartje, Zachary; Hoops, Geoffrey C.

    2014-01-01

    Measurement of protein denaturation and protein folding is a common laboratory technique used in undergraduate biochemistry laboratories. Differential scanning fluorimetry (DSF) provides a rapid, sensitive, and general method for measuring protein thermal stability in an undergraduate biochemistry laboratory. In this method, the thermal…

  5. Measuring dynamic kidney function in an undergraduate physiology laboratory.

    PubMed

    Medler, Scott; Harrington, Frederick

    2013-12-01

    Most undergraduate physiology laboratories are very limited in how they treat renal physiology. It is common to find teaching laboratories equipped with the capability for high-resolution digital recordings of physiological functions (muscle twitches, ECG, action potentials, respiratory responses, etc.), but most urinary laboratories still rely on a "dipstick" approach of urinalysis. Although this technique can provide some basic insights into the functioning of the kidneys, it overlooks the dynamic processes of filtration, reabsorption, and secretion. In the present article, we provide a straightforward approach of using renal clearance measurements to estimate glomerular filtration rate, fractional water reabsorption, glucose clearance, and other physiologically relevant parameters. The estimated values from our measurements in laboratory are in close agreement with those anticipated based on textbook parameters. For example, we found glomerular filtration rate to average 124 ± 45 ml/min, serum creatinine to be 1.23 ± 0.4 mg/dl, and fractional water reabsorption to be ∼96.8%. Furthermore, analyses for the class data revealed significant correlations between parameters like fractional water reabsorption and urine concentration, providing opportunities to discuss urine concentrating mechanisms and other physiological processes. The procedures outlined here are general enough that most undergraduate physiology laboratory courses should be able to implement them without difficulty.

  6. Detection of the "cp4 epsps" Gene in Maize Line NK603 and Comparison of Related Protein Structures: An Advanced Undergraduate Experiment

    ERIC Educational Resources Information Center

    Swope, Nicole K.; Fryfogle, Patrick J.; Sivy, Tami L.

    2015-01-01

    A flexible, rigorous laboratory experiment for upper-level biochemistry undergraduates is described that focuses on the Roundup Ready maize line. The work is appropriate for undergraduate laboratory courses that integrate biochemistry, molecular biology, or bioinformatics. In this experiment, DNA is extracted and purified from maize kernel and…

  7. Fighting Tuberculosis in an Undergraduate Laboratory: Synthesizing, Evaluating and Analyzing Inhibitors

    ERIC Educational Resources Information Center

    Daniels, David; Berkes, Charlotte; Nekoie, Arjan; Franco, Jimmy

    2015-01-01

    A drug discovery project has been successfully implemented in a first-year general, organic, and biochemistry (GOB) health science course and second-year organic undergraduate chemistry course. This project allows students to apply the fundamental principles of chemistry and biology to a problem of medical significance, practice basic laboratory…

  8. Video Episodes and Action Cameras in the Undergraduate Chemistry Laboratory: Eliciting Student Perceptions of Meaningful Learning

    ERIC Educational Resources Information Center

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2016-01-01

    A series of quantitative studies investigated undergraduate students' perceptions of their cognitive and affective learning in the undergraduate chemistry laboratory. To explore these quantitative findings, a qualitative research protocol was developed to characterize student learning in the undergraduate chemistry laboratory. Students (N = 13)…

  9. A Virtual Embedded Microcontroller Laboratory for Undergraduate Education: Development and Evaluation

    ERIC Educational Resources Information Center

    Richardson, Jeffrey J.; Adamo-Villani, Nicoletta

    2010-01-01

    Laboratory instruction is a major component of the engineering and technology undergraduate curricula. Traditional laboratory instruction is hampered by several factors including limited access to resources by students and high laboratory maintenance cost. A photorealistic 3D computer-simulated laboratory for undergraduate instruction in…

  10. An Undergraduate Laboratory Exercise to Study Weber’s Law

    PubMed Central

    Holden, Jameson K.; Francisco, Eric M.; Zhang, Zheng; Baric, Cristina; Tommerdahl, Mark

    2011-01-01

    Weber’s Law describes the relationship between actual and perceived differences in stimulus intensity. To observe the relationship described in this law, we developed an exercise for undergraduate students, as experiential learning is an integral part of scientific education. We describe the experimental methods used for determining the subject’s discriminative capacity at multiple vibrotactile amplitudes. A novel four-point stimulator (designed and fabricated at the University of North Carolina) was used for the study. Features of the device, such as automated skin detection, make it feasible to perform this laboratory exercise in a reasonable lab period. At the conclusion of the lab exercise, students will thoroughly understand the principle of Weber’s Law as well as fundamental quantitative sensory testing concepts. This introduction to sensory testing will provide a suitable foundation for the undergraduate neuroscience student to investigate other aspects of sensory information processing in subsequent lab exercises. PMID:23493843

  11. Blended learning within an undergraduate exercise physiology laboratory.

    PubMed

    Elmer, Steven J; Carter, Kathryn R; Armga, Austin J; Carter, Jason R

    2016-03-01

    In physiological education, blended course formats (integration of face-to-face and online instruction) can facilitate increased student learning, performance, and satisfaction in classroom settings. There is limited evidence on the effectiveness of using blending course formats in laboratory settings. We evaluated the impact of blended learning on student performance and perceptions in an undergraduate exercise physiology laboratory. Using a randomized, crossover design, four laboratory topics were delivered in either a blended or traditional format. For blended laboratories, content was offloaded to self-paced video demonstrations (∼15 min). Laboratory section 1 (n = 16) completed blended laboratories for 1) neuromuscular power and 2) blood lactate, whereas section 2 (n = 17) completed blended laboratories for 1) maximal O2 consumption and 2) muscle electromyography. Both sections completed the same assignments (scored in a blinded manner using a standardized rubric) and practicum exams (evaluated by two independent investigators). Pre- and postcourse surveys were used to assess student perceptions. Most students (∼79%) watched videos for both blended laboratories. Assignment scores did not differ between blended and traditional laboratories (P = 0.62) or between sections (P = 0.91). Practicum scores did not differ between sections (both P > 0.05). At the end of the course, students' perceived value of the blended format increased (P < 0.01) and a greater percentage of students agreed that learning key foundational content through video demonstrations before class greatly enhanced their learning of course material compared with a preassigned reading (94% vs. 78%, P < 0.01). Blended exercise physiology laboratories provided an alternative method for delivering content that was favorably perceived by students and did not compromise student performance.

  12. Improvement of the quality of work in a biochemistry laboratory via measurement system analysis.

    PubMed

    Chen, Ming-Shu; Liao, Chen-Mao; Wu, Ming-Hsun; Lin, Chih-Ming

    2016-10-31

    An adequate and continuous monitoring of operational variations can effectively reduce the uncertainty and enhance the quality of laboratory reports. This study applied the evaluation rule of the measurement system analysis (MSA) method to estimate the quality of work conducted in a biochemistry laboratory. Using the gauge repeatability & reproducibility (GR&R) approach, variations in quality control (QC) data among medical technicians in conducting measurements of five biochemical items, namely, serum glucose (GLU), aspartate aminotransferase (AST), uric acid (UA), sodium (Na) and chloride (Cl), were evaluated. The measurements of the five biochemical items showed different levels of variance among the different technicians, with the variances in GLU measurements being higher than those for the other four items. The ratios of precision-to-tolerance (P/T) for Na, Cl and GLU were all above 0.5, implying inadequate gauge capability. The product variation contribution of Na was large (75.45% and 31.24% in normal and abnormal QC levels, respectively), which showed that the impact of insufficient usage of reagents could not be excluded. With regard to reproducibility, high contributions (of more than 30%) of variation for the selected items were found. These high operator variation levels implied that the possibility of inadequate gauge capacity could not be excluded. The analysis of variance (ANOVA) of GR&R showed that the operator variations in GLU measurements were significant (F=5.296, P=0.001 in the normal level and F=3.399, P=0.015 in the abnormal level, respectively). In addition to operator variations, product variations of Na were also significant for both QC levels. The heterogeneity of variance for the five technicians showed significant differences for the Na and Cl measurements in the normal QC level. The accuracy of QC for five technicians was identified for further operational improvement. This study revealed that MSA can be used to evaluate product and

  13. Teaching PCR Through Inquiry in an Undergraduate Biology Laboratory Course

    NASA Astrophysics Data System (ADS)

    Dorighi, K. M.; Betancourt, J.; Sapp, J.; Quan, T. K.; Lee, J.

    2010-12-01

    In this paper, we describe the design and implementation of an inquiry-based laboratory unit on the Polymerase Chain Reaction (PCR). This unit was designed and taught for the undergraduate Eukaryotic Genetics Laboratory class (Bio105L) at the University of California, Santa Cruz. Our activity utilizes an authentic molecular biology research question to teach the underlying molecular mechanisms and experimental technique of PCR, as well as fundamental scientific process skills such as planning experiments, making predictions and interpreting data. In particular, the activity prompts students to use PCR to determine which gene has been deleted in a region of the Drosophila genome. During this activity, students also gained technical experience in common molecular biology techniques, learned about additional applications of PCR and used a hands-on approach to model each step of PCR.

  14. Marine Biochemistry: A New Interdisciplinary Course for the Interim

    ERIC Educational Resources Information Center

    Goldberg, Arthur S.

    1976-01-01

    Discusses an undergraduate course which includes lectures, laboratory, and field trips and is designed for the interim winter semester. The course is interdisciplinary, involving a study of the biochemistry, pharmacology, and physiological significance of compounds from marine flora and fauna. (MLH)

  15. DNA Fingerprint Analysis of Three Short Tandem Repeat (STR) Loci for Biochemistry and Forensic Science Laboratory Courses

    ERIC Educational Resources Information Center

    McNamara-Schroeder, Kathleen; Olonan, Cheryl; Chu, Simon; Montoya, Maria C.; Alviri, Mahta; Ginty, Shannon; Love, John J.

    2006-01-01

    We have devised and implemented a DNA fingerprinting module for an upper division undergraduate laboratory based on the amplification and analysis of three of the 13 short tandem repeat loci that are required by the Federal Bureau of Investigation Combined DNA Index System (FBI CODIS) data base. Students first collect human epithelial (cheek)…

  16. Enhancing Scientific Literacy in the Undergraduate Cell Biology Laboratory Classroom†

    PubMed Central

    Woodham, Hadiya; Marbach-Ad, Gili; Downey, Gretchen; Tomei, Erika; Thompson, Katerina

    2016-01-01

    This paper describes the implementation of the Scientific Literacy in Cell Biology (SLCB) curriculum in an undergraduate biology laboratory course. The SLCB curriculum incorporated the reading and discussion of primary literature into hands-on and collaborative practical experiences. It was implemented in five stages over an 11-week period, during which students were also introduced to the theory and practice of common cell biology techniques. We report on the effectiveness of the course, as measured by pre- and post-course survey data probing students’ content knowledge and their level of familiarity, confidence, and experience with different skills pertaining to analyzing (reading, interpreting, and discussing) primary literature. In the spring 2015 semester, 287 (72%) of the 396 students who were enrolled in the laboratory completed both the pre- and post-course survey. The average score on the content questions of the post-course survey was significantly higher (p < 0.0001) than the average score on the pre-course survey. Students reported that they gained greater familiarity, experience, and confidence in the skills that were measured. Our findings may aid in reforming higher-education science laboratory courses to better promote writing, reading, data processing, and presentation skills. Journal of Microbiology & Biology Education PMID:28101274

  17. An inquiry-based biochemistry laboratory structure emphasizing competency in the scientific process: a guided approach with an electronic notebook format.

    PubMed

    L Hall, Mona; Vardar-Ulu, Didem

    2014-01-01

    The laboratory setting is an exciting and gratifying place to teach because you can actively engage the students in the learning process through hands-on activities; it is a dynamic environment amenable to collaborative work, critical thinking, problem-solving and discovery. The guided inquiry-based approach described here guides the students through their laboratory work at a steady pace that encourages them to focus on quality observations, careful data collection and thought processes surrounding the chemistry involved. It motivates students to work in a collaborative manner with frequent opportunities for feedback, reflection, and modification of their ideas. Each laboratory activity has four stages to keep the students' efforts on track: pre-lab work, an in-lab discussion, in-lab work, and a post-lab assignment. Students are guided at each stage by an instructor created template that directs their learning while giving them the opportunity and flexibility to explore new information, ideas, and questions. These templates are easily transferred into an electronic journal (termed the E-notebook) and form the basic structural framework of the final lab reports the students submit electronically, via a learning management system. The guided-inquiry based approach presented here uses a single laboratory activity for undergraduate Introductory Biochemistry as an example. After implementation of this guided learning approach student surveys reported a higher level of course satisfaction and there was a statistically significant improvement in the quality of the student work. Therefore we firmly believe the described format to be highly effective in promoting student learning and engagement.

  18. Status of Undergraduate Pharmacology Laboratories in Colleges of Pharmacy in the United States

    ERIC Educational Resources Information Center

    Katz, Norman L.; And Others

    1978-01-01

    U.S. colleges of pharmacy were surveyed in 1976 to determine whether a trend exists in continuing, discontinuing, or restructuring laboratory time in pharmaceutical education. Data regarding core undergraduate pharmacology courses, undergraduate pharmacology laboratory status, and pharmacology faculty are presented. (LBH)

  19. Faculty Perspectives of Undergraduate Chemistry Laboratory: Goals and Obstacles to Success

    ERIC Educational Resources Information Center

    Bruck, Laura B.; Towns, Marcy; Bretz, Stacey Lowery

    2010-01-01

    Faculty perspectives of the undergraduate chemistry laboratory were the focus of a study to articulate the goals, strategies, and assessments used in undergraduate teaching laboratories. Data were collected via semistructured interviews with faculty (N = 22) from community colleges, liberal arts colleges, comprehensive universities, and research…

  20. Oxygen Uptake by a Cobalt(II) Complex: An Undergraduate Experiment

    ERIC Educational Resources Information Center

    Appleton, Trevor G.

    1977-01-01

    An experimental procedure is described for studying oxygen uptake by a transition metal. This procedure is designed for use with undergraduates and may be used in organic or biochemistry laboratories. Diagrams of the apparatus are included. (MR)

  1. Planning an Objective and Need Based Curriculum: The Logistics with Reference to the Undergraduate Medical Education in Biochemistry

    PubMed Central

    Ramasamy, Ramesh; Gopal, Niranjan; Srinivasan, A R; Murugaiyan, Sathish Babu

    2013-01-01

    Purpose: The medical education is recently being transformed into several domains in order to adapt to the need and the value based academics which is required for the quality doctors who serve the community. Presently, the biochemistry curricula for the graduate students of medicine have been questioned by as many experts, because of their multiple lacunae. In this review, we would like to highlight the scenario which is related to the existing biochemistry curricula for graduate medical students, which have been followed in several medical schools and universities and we also hope to share our ideas for implementing objective and pragmatic curricula. Evidence based research, wherein the articles which are related to innovative teaching-learning tools are collected and the pros and cons which are related to the different methods analyzed in biochemistry point of view. Conclusion: Rapid changes in the content of the curriculum may not be required, but a gradual introduction of the novel approach and the methods of teaching biochemistry can be adopted into the curriculum. PMID:23634431

  2. Utility of Self-Made Crossword Puzzles as an Active Learning Method to Study Biochemistry in Undergraduate Education

    ERIC Educational Resources Information Center

    Coticone, Sulekha Rao

    2013-01-01

    To incorporate an active learning component in a one-semester biochemistry course, students were asked to create crossword puzzles using key concepts. Student observations on the use of self-made crossword puzzles as an active-learning instructional tool were collected using a 5-point Likert survey at the end of the semester. A majority of the…

  3. Implementation of a Collaborative Series of Classroom-Based Undergraduate Research Experiences Spanning Chemical Biology, Biochemistry, and Neurobiology

    ERIC Educational Resources Information Center

    Kowalski, Jennifer R.; Hoops, Geoffrey C.; Johnson, R. Jeremy

    2016-01-01

    Classroom undergraduate research experiences (CUREs) provide students access to the measurable benefits of undergraduate research experiences (UREs). Herein, we describe the implementation and assessment of a novel model for cohesive CUREs focused on central research themes involving faculty research collaboration across departments. Specifically,…

  4. A Project-Based Biochemistry Laboratory Promoting the Understanding and Uses of Fluorescence Spectroscopy in the Study of Biomolecular Structures and Interactions

    ERIC Educational Resources Information Center

    Briese, Nicholas; Jakubowsk, Henry V.

    2007-01-01

    A laboratory project for a first semester biochemistry course is described, which integrates the traditional classroom study of the structure and function of biomolecules with the laboratory study of these molecules using fluorescence spectroscopy. Students are assigned a specific question addressing the stability/function of lipids, proteins, or…

  5. Conceptualization, Development and Validation of an Instrument for Investigating Elements of Undergraduate Physics Laboratory Learning Environments: The UPLLES (Undergraduate Physics Laboratory Learning Environment Survey)

    ERIC Educational Resources Information Center

    Thomas, Gregory P; Meldrum, Al; Beamish, John

    2013-01-01

    First-year undergraduate physics laboratories are important physics learning environments. However, there is a lack of empirically informed literature regarding how students perceive their overall laboratory learning experiences. Recipe formats persist as the dominant form of instructional design in these sites, and these formats do not adequately…

  6. Introducing principles of validation into biochemistry and biotechnology courses: Practical concepts and a framework for active learning.

    PubMed

    Pembroke, J T

    2008-01-01

    Although undergraduate biochemistry and biotechnology courses teach the concept of accuracy and precision during practical laboratory sessions, the formal teaching of validation methodologies receives little attention. An increasing number of biochemistry and biotechnology graduates are finding work in industry in the area of industrial validation associated with biopharmaceutical, diagnostics, biomedical device, and pharmaceutical validation. We have introduced a structured introduction to validation into our undergraduate industrial biochemistry programme to illustrate the importance of validation within a framework of good manufacturing practice (GMP) and to show how validation is essential for regulatory compliance.

  7. Integrating Responsible Conduct of Research Education into Undergraduate Biochemistry and Molecular Biology Laboratory Curricula

    ERIC Educational Resources Information Center

    Hendrickson, Tamara L.

    2015-01-01

    Recently, a requirement for directed responsible conduct in research (RCR) education has become a priority in the United States and elsewhere. In the US, both the National Institutes of Health and the National Science Foundation require RCR education for all students who are financially supported by federal awards. The guidelines produced by these…

  8. Dipeptide Structural Analysis Using Two-Dimensional NMR for the Undergraduate Advanced Laboratory

    ERIC Educational Resources Information Center

    Gonzalez, Elizabeth; Dolino, Drew; Schwartzenburg, Danielle; Steiger, Michelle A.

    2015-01-01

    A laboratory experiment was developed to introduce students in either an organic chemistry or biochemistry lab course to two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy using simple biomolecules. The goal of this experiment is for students to understand and interpret the information provided by a 2D NMR spectrum. Students are…

  9. Prepare, Do, Review: A skills-based approach for laboratory practical classes in biochemistry and molecular biology.

    PubMed

    Arthur, Peter; Ludwig, Martha; Castelli, Joane; Kirkwood, Paul; Attwood, Paul

    2016-05-06

    A new laboratory practical system is described which is comprised of a number of laboratory practical modules, each based around a particular technique or set of techniques, related to the theory part of the course but not designed to be dependent on it. Each module comprises an online recorded pre-lab lecture, the laboratory practical itself and a post-lab session in which students make oral presentations on different aspects of the practical. Each part of the module is assessed with the aim of providing rapid feedback to staff and students. Each laboratory practical is the responsibility of a single staff member and through this "ownership," continual review and updating is promoted. Examples of changes made by staff to modules as a result of student feedback are detailed. A survey of students who had experienced both the old-style laboratory course and the new one provided evidence of increased satisfaction with the new program. The assessment of acquired shills in the new program showed that it was much more effective than the old course. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:276-287, 2016.

  10. Capillary blood sampling: national recommendations on behalf of the Croatian Society of Medical Biochemistry and Laboratory Medicine.

    PubMed

    Krleza, Jasna Lenicek; Dorotic, Adrijana; Grzunov, Ana; Maradin, Miljenka

    2015-01-01

    Capillary blood sampling is a medical procedure aimed at assisting in patient diagnosis, management and treatment, and is increasingly used worldwide, in part because of the increasing availability of point-of-care testing. It is also frequently used to obtain small blood volumes for laboratory testing because it minimizes pain. The capillary blood sampling procedure can influence the quality of the sample as well as the accuracy of test results, highlighting the need for immediate, widespread standardization. A recent nationwide survey of policies and practices related to capillary blood sampling in medical laboratories in Croatia has shown that capillary sampling procedures are not standardized and that only a small proportion of Croatian laboratories comply with guidelines from the Clinical Laboratory Standards Institute (CLSI) or the World Health Organization (WHO). The aim of this document is to provide recommendations for capillary blood sampling. This document has been produced by the Working Group for Capillary Blood Sampling within the Croatian Society of Medical Biochemistry and Laboratory Medicine. Our recommendations are based on existing available standards and recommendations (WHO Best Practices in Phlebotomy, CLSI GP42-A6 and CLSI C46-A2), which have been modified based on local logistical, cultural, legal and regulatory requirements. We hope that these recommendations will be a useful contribution to the standardization of capillary blood sampling in Croatia.

  11. Development of sensorial experiments and their implementation into undergraduate laboratories

    NASA Astrophysics Data System (ADS)

    Bromfield Lee, Deborah Christina

    "Visualization" of chemical phenomena often has been limited in the teaching laboratories to the sense of sight. We have developed chemistry experiments that rely on senses other than eyesight to investigate chemical concepts, make quantitative determinations, and familiarize students with chemical techniques traditionally designed using only eyesight. Multi-sensory learning can benefit all students by actively engaging them in learning through stimulation or an alternative way of experiencing a concept or ideas. Perception of events or concepts usually depends on the information from the different sensory systems combined. The use of multi-sensory learning can take advantage of all the senses to reinforce learning as each sense builds toward a more complete experience of scientific data. Research has shown that multi-sensory representations of scientific phenomena is a valuable tool for enhancing understanding of chemistry as well as displacing misconceptions through experience. Multi-sensory experiences have also been shown to enrich memory performance. There are few experiments published which utilize multiple senses in the teaching laboratory. The sensorial experiments chosen were conceptually similar to experiments currently performed in undergraduate laboratories; however students collect different types of data using multi-sensory observations. The experiments themselves were developed by using chemicals that would provide different sensory changes or capitalizing on sensory observations that were typically overlooked or ignored and obtain similar and precise results as in traditional experiments. Minimizing hazards and using safe practices are especially essential in these experiments as students utilize senses traditionally not allowed to be used in the laboratories. These sensorial experiments utilize typical equipment found in the teaching laboratories as well as inexpensive chemicals in order to aid implementation. All experiments are rigorously tested

  12. Determination of Rate Constants for Ouabain Inhibition of Adenosine Triphosphatase: An Undergraduate Biological Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Sall, Eri; And Others

    1978-01-01

    Describes an undergraduate biological chemistry laboratory experiment which provides students with an example of pseudo-first-order kinetics with the cardiac glycoside inhibition of mammalism sodium and potassium transport. (SL)

  13. The Quartz-Crystal Microbalance in an Undergraduate Laboratory Experiment: I. Fundamentals and Instrumentation

    ERIC Educational Resources Information Center

    Tsionsky, Vladimir

    2007-01-01

    The fundamentals, as well as the instrumentation of the quartz-crystal microbalance (QCM) technique that is used in an undergraduate laboratory experiment are being described. The QCM response can be easily used to change the properties of any system.

  14. A Green Starting Material for Electrophilic Aromatic Substitution for the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Jones-Wilson, T. Michelle; Burtch, Elizabeth A.

    2005-01-01

    Electrophilic aromatic substitution (EAS) experiment is designed for the second-semester and undergraduate organic chemistry laboratory. In the EAS experiment, the principles of green chemistry are discussed and illustrated in conjunction with the presentation of electrophilic aromatic substitution.

  15. Screening for Saponins Using the Blood Hemolysis Test. An Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Sotheeswaran, Subramaniam

    1988-01-01

    Describes an experiment for undergraduate chemistry laboratories involving a chemical found in plants and some sea animals. Discusses collection and identification of material, a hemolysis test, preparation of blood-coated agar plates, and application of samples. (CW)

  16. Blood gas testing and related measurements: National recommendations on behalf of the Croatian Society of Medical Biochemistry and Laboratory Medicine.

    PubMed

    Dukić, Lora; Kopčinović, Lara Milevoj; Dorotić, Adrijana; Baršić, Ivana

    2016-10-15

    Blood gas analysis (BGA) is exposed to risks of errors caused by improper sampling, transport and storage conditions. The Clinical and Laboratory Standards Institute (CLSI) generated documents with recommendations for avoidance of potential errors caused by sample mishandling. Two main documents related to BGA issued by the CLSI are GP43-A4 (former H11-A4) Procedures for the collection of arterial blood specimens; approved standard - fourth edition, and C46-A2 Blood gas and pH analysis and related measurements; approved guideline - second edition. Practices related to processing of blood gas samples are not standardized in the Republic of Croatia. Each institution has its own protocol for ordering, collection and analysis of blood gases. Although many laboratories use state of the art analyzers, still many preanalytical procedures remain unchanged. The objective of the Croatian Society of Medical Biochemistry and Laboratory Medicine (CSMBLM) is to standardize the procedures for BGA based on CLSI recommendations. The Working Group for Blood Gas Testing as part of the Committee for the Scientific Professional Development of the CSMBLM prepared a set of recommended protocols for sampling, transport, storage and processing of blood gas samples based on relevant CLSI documents, relevant literature search and on the results of Croatian survey study on practices and policies in acid-base testing. Recommendations are intended for laboratory professionals and all healthcare workers involved in blood gas processing.

  17. Blood gas testing and related measurements: National recommendations on behalf of the Croatian Society of Medical Biochemistry and Laboratory Medicine

    PubMed Central

    Dukić, Lora; Kopčinović, Lara Milevoj; Dorotić, Adrijana; Baršić, Ivana

    2016-01-01

    Blood gas analysis (BGA) is exposed to risks of errors caused by improper sampling, transport and storage conditions. The Clinical and Laboratory Standards Institute (CLSI) generated documents with recommendations for avoidance of potential errors caused by sample mishandling. Two main documents related to BGA issued by the CLSI are GP43-A4 (former H11-A4) Procedures for the collection of arterial blood specimens; approved standard – fourth edition, and C46-A2 Blood gas and pH analysis and related measurements; approved guideline – second edition. Practices related to processing of blood gas samples are not standardized in the Republic of Croatia. Each institution has its own protocol for ordering, collection and analysis of blood gases. Although many laboratories use state of the art analyzers, still many preanalytical procedures remain unchanged. The objective of the Croatian Society of Medical Biochemistry and Laboratory Medicine (CSMBLM) is to standardize the procedures for BGA based on CLSI recommendations. The Working Group for Blood Gas Testing as part of the Committee for the Scientific Professional Development of the CSMBLM prepared a set of recommended protocols for sampling, transport, storage and processing of blood gas samples based on relevant CLSI documents, relevant literature search and on the results of Croatian survey study on practices and policies in acid-base testing. Recommendations are intended for laboratory professionals and all healthcare workers involved in blood gas processing. PMID:27812301

  18. Measuring Meaningful Learning in the Undergraduate Chemistry Laboratory: A National, Cross-Sectional Study

    ERIC Educational Resources Information Center

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2015-01-01

    Research on laboratory learning points to the need to better understand what and how students learn in the undergraduate chemistry laboratory. The Meaningful Learning in the Laboratory Instrument (MLLI) was administered to general and organic chemistry students from 15 colleges and universities across the United States in order to measure the…

  19. Measuring Meaningful Learning in the Undergraduate General Chemistry and Organic Chemistry Laboratories: A Longitudinal Study

    ERIC Educational Resources Information Center

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2015-01-01

    Understanding how students learn in the undergraduate chemistry teaching laboratory is an essential component to developing evidence-based laboratory curricula. The Meaningful Learning in the Laboratory Instrument (MLLI) was developed to measure students' cognitive and affective expectations and experiences for learning in the chemistry…

  20. 4,5-Diphenyl-1-methylimidazole: An Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Anastas, Paul T.; And Others

    1985-01-01

    Background information and procedures used are provided for the synthesis of 4,5-diphenyl-methylimidazole. This experiment on the chemistry of heterocycles is ideally suited for beginning undergraduate organic chemistry students. (JN)

  1. A Laboratory Course for Teaching Laboratory Techniques, Experimental Design, Statistical Analysis, and Peer Review Process to Undergraduate Science Students

    ERIC Educational Resources Information Center

    Gliddon, C. M.; Rosengren, R. J.

    2012-01-01

    This article describes a 13-week laboratory course called Human Toxicology taught at the University of Otago, New Zealand. This course used a guided inquiry based laboratory coupled with formative assessment and collaborative learning to develop in undergraduate students the skills of problem solving/critical thinking, data interpretation and…

  2. Structural Studies of Phycobiliproteins from Spirulina: Combining Spectroscopy, Thermodynamics, and Molecular Modeling in an Undergraduate Biochemistry Experiment

    NASA Astrophysics Data System (ADS)

    Taylor, Ann T. S.; Feller, Scott E.

    2002-12-01

    Molecular modeling provides a powerful mechanism for students to connect molecular-level structural changes with macroscopically observable properties. We describe an experiment that integrates spectroscopy, thermodynamics, and molecular modeling into a single activity examining structural changes in phycobiliproteins upon denaturation with urea. Phycobiliproteins contain a covalently attached chromophore, phycocyanobilin, which is constrained in a planar conformation by the folded protein. Upon denaturation of the protein, the chromophore undergoes a conformational change, leading to a significant alteration of the absorption spectrum. By measuring the absorbance at 625 nm as a function of urea concentration, the free energy of unfolding can be determined. Students determine the dihedral angles in the chromophore and map the contacts between protein and chromophore using Protein Explorer, a structure visualization program freely available on the Internet. The change in absorption wavelength can be related to the difference between the LUMO and HOMO energies, obtained using PC Spartan Pro, for the chromophore in the folded and unfolded phycobiliprotein. This experiment could be used in a physical chemistry class in a curriculum that integrates biochemistry throughout the course work as well as in a traditional biochemistry course.

    Featured on the Cover

  3. The Experimental Teaching Reform in Biochemistry and Molecular Biology for Undergraduate Students in Peking University Health Science Center

    ERIC Educational Resources Information Center

    Yang, Xiaohan; Sun, Luyang; Zhao, Ying; Yi, Xia; Zhu, Bin; Wang, Pu; Lin, Hong; Ni, Juhua

    2015-01-01

    Since 2010, second-year undergraduate students of an eight-year training program leading to a Doctor of Medicine degree or Doctor of Philosophy degree in Peking University Health Science Center (PKUHSC) have been required to enter the "Innovative talent training project." During that time, the students joined a research lab and…

  4. Determination of Sulfate by Conductometric Titration: An Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Garcia, Jennifer; Schultz, Linda D.

    2016-01-01

    The classic technique for sulfate analysis in an undergraduate quantitative analysis lab involves precipitation as the barium salt with barium chloride, collection of the precipitate by gravity filtration using ashless filter paper, and removal of the filter paper by charring over a Bunsen burner. The entire process is time-consuming, hazardous,…

  5. Enhancing Undergraduate Agro-Ecological Laboratory Employment through Experiential Learning

    ERIC Educational Resources Information Center

    Grossman, J. M.; Patel, M.; Drinkwater, L. E.

    2010-01-01

    We piloted an educational model, the Sustainable Agriculture Scholars Program, linking research in organic agriculture to experiential learning activities for summer undergraduate employees in 2007 and 2008. Our objectives were to: (1) further student understanding of sustainable agriculture research, (2) increase student interest in sustainable…

  6. Cavity Ring down Spectroscopy Experiment for an Advanced Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Stacewicz, T.; Wasylczyk, P.; Kowalczyk, P.; Semczuk, M.

    2007-01-01

    A simple experiment is described that permits advanced undergraduates to learn the principles and applications of the cavity ring down spectroscopy technique. The apparatus is used for measurements of low concentrations of NO[subscript 2] produced in air by an electric discharge. We present the setup, experimental procedure, data analysis and some…

  7. Acoustic resonance spectroscopy for the advanced undergraduate laboratory

    NASA Astrophysics Data System (ADS)

    Franco-Villafañe, J. A.; Flores-Olmedo, E.; Báez, G.; Gandarilla-Carrillo, O.; Méndez-Sánchez, R. A.

    2012-11-01

    We present a simple experiment that allows advanced undergraduates to learn the principles and applications of spectroscopy. The technique, known as acoustic resonance spectroscopy, is applied to study a vibrating rod. The setup includes electromagnetic-acoustic transducers, an audio amplifier and a vector network analyzer. Typical results of compressional, torsional and bending waves are analyzed and compared with analytical results.

  8. Coulometric Analysis Experiment for the Undergraduate Chemistry Laboratory

    ERIC Educational Resources Information Center

    Dabke, Rajeev B.; Gebeyehu, Zewdu; Thor, Ryan

    2011-01-01

    An undergraduate experiment on coulometric analysis of four commercial household products is presented. A special type of coulometry cell made of polydimethylsiloxane (PDMS) polymer is utilized. The PDMS cell consists of multiple analyte compartments and an internal network of salt bridges. Experimental procedure for the analysis of the acid in a…

  9. Undergraduate Laboratory Experiment Modules for Probing Gold Nanoparticle Interfacial Phenomena

    ERIC Educational Resources Information Center

    Karunanayake, Akila G.; Gunatilake, Sameera R.; Ameer, Fathima S.; Gadogbe, Manuel; Smith, Laura; Mlsna, Deb; Zhang, Dongmao

    2015-01-01

    Three gold-nanoparticle (AuNP) undergraduate experiment modules that are focused on nanoparticles interfacial phenomena have been developed. Modules 1 and 2 explore the synthesis and characterization of AuNPs of different sizes but with the same total gold mass. These experiments enable students to determine how particle size affects the AuNP…

  10. Integrated Laboratories: Laying the Foundation for Undergraduate Research Experiences

    ERIC Educational Resources Information Center

    Dillner, Debra K.; Ferrante, Robert F.; Fitzgerald, Jeffrey P.; Schroeder, Maria J.

    2011-01-01

    Interest in undergraduate student research has grown in response to initiatives from various professional societies and educational organizations. Participation in research changes student attitudes towards courses as they realize the utility and relevance of what they are learning. At the U.S. Naval Academy, the chemistry majors' curriculum was…

  11. Aza-Michael Reaction for an Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Nigam, Manisha; Rush, Brittney; Patel, Jay; Castillo, Raul; Dhar, Preeti

    2016-01-01

    A green, aza-Michael reaction is described that can be used to teach undergraduate students conjugate addition of nitrogen nucleophile to an a,ß-unsaturated ester. Students analyze spectral data of the product obtained from the assigned reaction to determine product structure and propose the mechanism of its formation. The experiment requires…

  12. Upper-Level Undergraduate Chemistry Students' Goals for Their Laboratory Coursework

    ERIC Educational Resources Information Center

    DeKorver, Brittland K.; Towns, Marcy H.

    2016-01-01

    Efforts to reform undergraduate chemistry laboratory coursework typically focus on the curricula of introductory-level courses, while upper-level courses are bypassed. This study used video-stimulated recall to interview 17 junior- and senior- level chemistry majors after they carried out an experiment as part of a laboratory course. It is assumed…

  13. A Comprehensive Microfluidics Device Construction and Characterization Module for the Advanced Undergraduate Analytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Piunno, Paul A. E.; Zetina, Adrian; Chu, Norman; Tavares, Anthony J.; Noor, M. Omair; Petryayeva, Eleonora; Uddayasankar, Uvaraj; Veglio, Andrew

    2014-01-01

    An advanced analytical chemistry undergraduate laboratory module on microfluidics that spans 4 weeks (4 h per week) is presented. The laboratory module focuses on comprehensive experiential learning of microfluidic device fabrication and the core characteristics of microfluidic devices as they pertain to fluid flow and the manipulation of samples.…

  14. A Survey of the Practices, Procedures, and Techniques in Undergraduate Organic Chemistry Teaching Laboratories

    ERIC Educational Resources Information Center

    Martin, Christopher B.; Schmidt, Monica; Soniat, Michael

    2011-01-01

    A survey was conducted of four-year institutions that teach undergraduate organic chemistry laboratories in the United States. The data include results from over 130 schools, describes the current practices at these institutions, and discusses the statistical results such as the scale of the laboratories performed, the chemical techniques applied,…

  15. A Coastal Environment Field and Laboratory Activity for an Undergraduate Geomorphology Course

    ERIC Educational Resources Information Center

    Ellis, Jean T.; Rindfleisch, Paul R.

    2006-01-01

    A field and laboratory exercise for an undergraduate geomorphology class is described that focuses on the beach. The project requires one day of fieldwork and two laboratory sessions. In the field, students measure water surface fluctuations (waves) with a pressure sensor, survey beach profiles, collect sediment samples, and observe the beach…

  16. An Alternative Approach for Preparing and Standardizing Some Common Aqueous Reagents Used in an Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Melaku, Samuel; Dabke, Rajeev B.

    2014-01-01

    A guide for instructors and laboratory assistants to prepare some common aqueous reagents used in an undergraduate laboratory is presented. Dilute reagents consisting of H[superscript +](aq), I[subscript 3][superscript-](aq), Ce[superscript 4+](aq), and Ag[superscript+](aq) were prepared by electrolytic oxidation of respective precursors.…

  17. A Microcomputer-Based Data Acquisition System for Use in Undergraduate Laboratories.

    ERIC Educational Resources Information Center

    Johnson, Ray L.

    1982-01-01

    A laboratory computer system based on the Commodore PET 2001 is described including three applications for the undergraduate analytical chemistry laboratory: (1) recording a UV-visible absorption spectrum; (2) recording and use of calibration curves; and (3) recording potentiometric data. Lists of data acquisition programs described are available…

  18. Can Report Templates Aid Student Learning in Undergraduate Chemistry Laboratory Classes?

    ERIC Educational Resources Information Center

    Paton-Walsh, Clare

    2015-01-01

    This paper describes a study aimed at assessing the ability of report templates to help students learn key concepts during undergraduate laboratory classes. The report templates were designed so that a set of assessment questions led the students through the logical steps required to perform the laboratory exercise and to calculate the required…

  19. Green Chemistry Decision-Making in an Upper-Level Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Edgar, Landon J. G.; Koroluk, Katherine J.; Golmakani, Mehrnaz; Dicks, Andrew P.

    2014-01-01

    A self-directed independent synthesis experiment was developed for a third-year undergraduate organic laboratory. Students were provided with the CAS numbers of starting and target compounds and devised a synthetic plan to be executed over two 4.5 h laboratory periods. They consulted the primary literature in order to develop and carry out an…

  20. Investigating Affective Experiences in the Undergraduate Chemistry Laboratory: Students' Perceptions of Control and Responsibility

    ERIC Educational Resources Information Center

    Galloway, Kelli R.; Malakpa, Zoebedeh; Bretz, Stacey Lowery

    2016-01-01

    Meaningful learning requires the integration of cognitive and affective learning with the psychomotor, i.e., hands-on learning. The undergraduate chemistry laboratory is an ideal place for meaningful learning to occur. However, accurately characterizing students' affective experiences in the chemistry laboratory can be a very difficult task. While…

  1. Hairy Root as a Model System for Undergraduate Laboratory Curriculum and Research

    ERIC Educational Resources Information Center

    Keyes, Carol A.; Subramanian, Senthil; Yu, Oliver

    2009-01-01

    Hairy root transformation has been widely adapted in plant laboratories to rapidly generate transgenic roots for biochemical and molecular analysis. We present hairy root transformations as a versatile and adaptable model system for a wide variety of undergraduate laboratory courses and research. This technique is easy, efficient, and fast making…

  2. An Operationally Simple Sonogashira Reaction for an Undergraduate Organic Chemistry Laboratory Class

    ERIC Educational Resources Information Center

    Cranwell, Philippa B.; Peterson, Alexander M.; Littlefield, Benjamin T. R.; Russell, Andrew T.

    2015-01-01

    An operationally simple, reliable, and cheap Sonogashira reaction suitable for an undergraduate laboratory class that can be completed within a day-long (8 h) laboratory session has been developed. Cross-coupling is carried out between 2-methyl-3-butyn-2-ol and various aryl iodides using catalytic amounts of bis(triphenylphosphine)palladium(II)…

  3. The Design, Enactment, and Impact of an Undergraduate, Inquiry-Based, Astronomy Laboratory Learning Environment

    ERIC Educational Resources Information Center

    Stewart, Steven A.

    2013-01-01

    This study investigated the design, enactment, and impact of an undergraduate, inquiry-based astronomy laboratory learning environment. The professor, Richard, adopted laboratory materials from the Center for Astronomy and Physics Education Research [CAPER] which were described by the group as inquiry-based. Students worked through these…

  4. Development, Implementation, and Analysis of a National Survey of Faculty Goals for Undergraduate Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bruck, Aaron D.; Towns, Marcy

    2013-01-01

    This work reports the development of a survey for laboratory goals in undergraduate chemistry, the analysis of reliable and valid data collected from a national survey of college chemistry faculty, and a synthesis of the findings. The study used a sequential exploratory mixed-methods design. Faculty goals for laboratory emerged across seven…

  5. An Undergraduate Laboratory Experiment in Bioinorganic Chemistry: Ligation States of Myoglobin

    ERIC Educational Resources Information Center

    Bailey, James A.

    2011-01-01

    Although there are numerous inorganic model systems that are readily presented as undergraduate laboratory experiments in bioinorganic chemistry, there are few examples that explore the inorganic chemistry of actual biological molecules. We present a laboratory experiment using the oxygen-binding protein myoglobin that can be easily incorporated…

  6. Conceptual Change in the Undergraduate Biology Teaching Laboratory: A "Type Specimen" Case Study.

    ERIC Educational Resources Information Center

    Jones, Dorothy A.; Eichinger, David C.

    This paper introduces the biology laboratory as a learning project. Biology laboratories provide unique learning opportunities to students as traditional achievement outcome measures, and play an important role in the development of process skills, manual skills, and attitudes. However, there is insufficient data on undergraduate students majoring…

  7. Preparative Protein Production from Inclusion Bodies and Crystallization: A Seven-Week Biochemistry Sequence

    ERIC Educational Resources Information Center

    Peterson, Megan J.; Snyder, W. Kalani; Westerman, Shelley; McFarland, Benjamin J.

    2011-01-01

    We describe how to produce and purify proteins from "Escherichia coli" inclusion bodies by adapting versatile, preparative-scale techniques to the undergraduate laboratory schedule. This 7-week sequence of experiments fits into an annual cycle of research activity in biochemistry courses. Recombinant proteins are expressed as inclusion bodies,…

  8. Dishonesty in the Biochemistry Classroom Laboratory: A Synthesis of Causes and Prevention

    ERIC Educational Resources Information Center

    Del Carlo, Dawn; Bodner, George

    2006-01-01

    Although reports of academic cheating are abundant, there are relatively few papers in the literature that focus on cheating in the context of science courses and even fewer that address dishonest practices, such as "cooking" or fudging data, within the classroom laboratory. This paper briefly reviews the existing literature on academic dishonesty…

  9. Evaluation of an Online Instructional Database Accessed by QR Codes to Support Biochemistry Practical Laboratory Classes

    ERIC Educational Resources Information Center

    Yip, Tor; Melling, Louise; Shaw, Kirsty J.

    2016-01-01

    An online instructional database containing information on commonly used pieces of laboratory equipment was created. In order to make the database highly accessible and to promote its use, QR codes were utilized. The instructional materials were available anytime and accessed using QR codes located on the equipment itself and within undergraduate…

  10. Green, Enzymatic Syntheses of Divanillin and Diapocynin for the Organic, Biochemistry, or Advanced General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Nishimura, Rachel T.; Giammanco, Chiara H.; Vosburg, David A.

    2010-01-01

    Environmentally benign chemistry is an increasingly important topic both in the classroom and the laboratory. In this experiment, students synthesize divanillin from vanillin or diapocynin from apocynin, using horseradish peroxidase and hydrogen peroxide in water. The dimerized products form rapidly at ambient temperature and are isolated by…

  11. Laboratory testing of extravascular body fluids in Croatia: a survey of the Working group for extravascular body fluids of the Croatian Society of Medical Biochemistry and Laboratory Medicine

    PubMed Central

    Kopcinovic, Lara Milevoj; Vogrinc, Zeljka; Kocijan, Irena; Culej, Jelena; Aralica, Merica; Jokic, Anja; Antoncic, Dragana; Bozovic, Marija

    2016-01-01

    Introduction We hypothesized that extravascular body fluid (EBF) analysis in Croatia is not harmonized and aimed to investigate preanalytical, analytical and postanalytical procedures used in EBF analysis in order to identify key aspects that should be addressed in future harmonization attempts. Materials and methods An anonymous online survey created to explore laboratory testing of EBF was sent to secondary, tertiary and private health care Medical Biochemistry Laboratories (MBLs) in Croatia. Statements were designed to address preanalytical, analytical and postanalytical procedures of cerebrospinal, pleural, peritoneal (ascites), pericardial, seminal, synovial, amniotic fluid and sweat. Participants were asked to declare the strength of agreement with proposed statements using a Likert scale. Mean scores for corresponding separate statements divided according to health care setting were calculated and compared. Results The survey response rate was 0.64 (58 / 90). None of the participating private MBLs declared to analyse EBF. We report a mean score of 3.45 obtained for all statements evaluated. Deviations from desirable procedures were demonstrated in all EBF testing phases. Minor differences in procedures used for EBF analysis comparing secondary and tertiary health care MBLs were found. The lowest scores were obtained for statements regarding quality control procedures in EBF analysis, participation in proficiency testing programmes and provision of interpretative comments on EBF’s test reports. Conclusions Although good laboratory EBF practice is present in Croatia, procedures for EBF analysis should be further harmonized to improve the quality of EBF testing and patient safety. PMID:27812307

  12. ATR-FTIR Spectroscopy in the Undergraduate Chemistry Laboratory: Part II--A Physical Chemistry Laboratory Experiment on Surface Adsorption

    ERIC Educational Resources Information Center

    Schuttlefield, Jennifer D.; Larsen, Sarah C.; Grassian, Vicki H.

    2008-01-01

    Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy is a useful technique for measuring the infrared spectra of solids and liquids as well as probing adsorption on particle surfaces. The use of FTIR-ATR spectroscopy in organic and inorganic chemistry laboratory courses as well as in undergraduate research was presented…

  13. Laboratory Accreditation in Argentina.

    PubMed

    Acuña, María Amelia; Collino, Cesar; Chiabrando, Gustavo A

    2015-11-01

    Laboratory accreditation is an essential element in the healthcare system since it contributes substantially to decision-making, in the prevention, diagnosis, treatment and follow-up of the health status of the patients, as well as in the organization and management of public healthcare. Therefore, the clinical biochemistry professional works continuously to provide reliable results and contributes to the optimization of operational logistics and integration of a laboratory into the health system. ISO 15189 accreditation, ensures compliance of the laboratory to minimize instances of error through the planning, prevention, implementation, evaluation and improvement of its procedures, which provides skill areas that involve both training undergraduate and graduate professionals in clinical biochemistry.

  14. Motion tracking in undergraduate physics laboratories with the Wii remote

    NASA Astrophysics Data System (ADS)

    Tomarken, Spencer L.; Simons, Dallas R.; Helms, Richard W.; Johns, Will E.; Schriver, Kenneth E.; Webster, Medford S.

    2012-04-01

    We report the incorporation of the Wiimote, a light-tracking remote control device, into two undergraduate-level experiments. We provide an overview of the Wiimote's basic functions and a systematic analysis of its motion tracking capabilities. We describe the Wiimote's use in measuring conservation of linear and angular momentum on an air table, and measuring the gravitational constant with the classic Cavendish torsion pendulum. Our results show that Wiimote is a simple and affordable way to streamline the data acquisition process and produce results that are generally superior to those obtained with conventional techniques.

  15. Immunoprecipitation of Serum Albumin with Protein A-Sepharose: A Biochemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Bohinski, Robert C.

    2000-11-01

    An exercise has been designed and optimized to acquaint students with the simple yet powerful technique of immunoprecipitation. Protein A-Sepharose (PA-S) is used as a solid-phase precipitant to recover bovine serum albumin (BSA, the antigen) recognized by anti-BSA antibody (Ab). The high degree of binding specificity between antigen and antibody is illustrated by recovery of BSA from a complex mixture of proteins obtained from wheat germ and chicken breast. Various controls are included for a thorough data analysis. The solid phase of Ag/Ab/PA-S is recovered by centrifugation, thoroughly washed, and treated to dissociate the BSA antigen. Samples are examined by discontinuous denaturing gel electrophoresis (SDS-PAGE) with Coomassie blue staining. The supernatants, containing proteins that are not precipitated, are also analyzed. Antigenic cross-reactivity, ranging from strong to none, is demonstrated in a second part by using serum albumins from seven different sources. Systems can be set up, shaken, and prepared for electrophoresis in a single lab period with time for laboratory lecture and discussion about antibody structure and function, antibody-based methods in general, and immunoprecipitation in particular.

  16. Comparison of the microbial dynamics and biochemistry of laboratory sourdoughs prepared with grape, apple and yogurt.

    PubMed

    Gordún, Elena; del Valle, Luis J; Ginovart, Marta; Carbó, Rosa

    2015-09-01

    The microbiological culture-dependent characterization and physicochemical characteristics of laboratory sourdough prepared with grape (GS) were evaluated and compared with apple (AS) and yogurt (YS), which are the usual Spanish sourdough ingredients. Ripe GS took longer than AS and YS to reach the appropriate acidity and achieved lower values of lactic acid. In all sourdoughs, the lactic acid bacteria (LAB) increased during processing and were the dominant microorganisms (>1E+8 CFU/g). GS, as well as AS, had high diversity of LAB species. In ripe YS, Pediococcus pentosaceus was the only species identified; in GS and AS, several Lactobacilli were also found, Lb. plantarum, Lb. brevis, and Lb. sakei; in addition, in GS Weisella cibaria also appeared. Regarding the yeast population, non-Saccharomyces yeasts from GS and AS showed a very high specific population (>1E+7 CFU/g), but this was reduced in ripe sourdough (<1E+4 CFU/g). Finally, the Saccharomyces group dominated in all sourdoughs. Starting ingredients or raw material provided microbiological specificity to sourdoughs, and grape could be considered one of them.

  17. A New Model for Transitioning Students from the Undergraduate Teaching Laboratory to the Research Laboratory

    ERIC Educational Resources Information Center

    Hollenbeck, Jessica J.; Wixson, Emily N.; Geske, Grant D.; Dodge, Matthew W.; Tseng, T. Andrew; Clauss, Allen D.; Blackwell, Helen E.

    2006-01-01

    The transformation of 346 chemistry courses into a training experience that could provide undergraduate students with a skill set essential for a research-based chemistry career is presented. The course has an innovative structure that connects undergraduate students with graduate research labs at the semester midpoint and also includes new,…

  18. Current practice in laboratory diagnostics of autoimmune diseases in Croatia. 
Survey of the Working group for laboratory diagnostics of autoimmune diseases of the Croatian Society of Medical Biochemistry and Laboratory Medicine

    PubMed Central

    Kuna, Andrea Tešija; Đerek, Lovorka; Kozmar, Ana; Drvar, Vedrana

    2016-01-01

    Introduction With the trend of increasing incidence of autoimmune diseases, laboratories are faced with exponential growth of the requests for tests relating the diagnosis of these diseases. Unfortunately, the lack of laboratory personnel experienced in this specific discipline of laboratory diagnostic, as well as an unawareness of a method limitation often results in confusion for clinicians. The aim was to gain insight into number and type of Croatian laboratories that perform humoral diagnostics with the final goal to improve and harmonize laboratory diagnostics of autoimmune diseases in Croatia. Materials and methods In order to get insight into current laboratory practice two questionnaires, consisting of 42 questions in total, were created. Surveys were conducted using SurveyMonkey application and were sent to 88 medical biochemistry laboratories in Croatia for the first survey. Out of 33 laboratories that declared to perform diagnostic from the scope, 19 were selected for the second survey based on the tests they pleaded to perform. The survey comprised questions regarding autoantibody hallmarks of systemic autoimmune diseases while regarding organ-specific autoimmune diseases was limited to diseases of liver, gastrointestinal and nervous system. Results Response rate was high with 80 / 88 (91%) laboratories which answered the first questionnaire, and 19 / 19 (1.0) for the second questionnaire. Obtained results of surveys indicate high heterogeneity in the performance of autoantibody testing among laboratories in Croatia. Conclusions Results indicate the need of creating recommendations and algorithms in order to harmonize the approach to laboratory diagnostics of autoimmune diseases in Croatia. PMID:27812306

  19. Practicing biology: Undergraduate laboratory research, persistence in science, and the impact of self-efficacy beliefs

    NASA Astrophysics Data System (ADS)

    Berkes, Elizabeth

    As undergraduate laboratory research internships become more popular and universities devote considerable resources towards promoting them, it is important to clarify what students specifically gain through involvement in these experiences and it is important to understand their impact on the science pipeline. By examining recent findings describing the primary benefits of undergraduate research participation, along with self-efficacy theory, this study aims to provide more explanatory power to the anecdotal and descriptive accounts regarding the relationship between undergraduate research experiences and interest in continuing in science. Furthermore, this study characterizes practices that foster students' confidence in doing scientific work with detailed description and analysis of the interactions of researchers in a laboratory. Phase 1 of the study, a survey of undergraduate biology majors (n=71) at a major research university, investigates the relationships among participation in biology laboratory research internships, biology laboratory self-efficacy strength, and interest in persisting in science. Phase 2 of the study, a two-year investigation of a university biology research laboratory, investigates how scientific communities of practice develop self-efficacy beliefs. The findings suggest that participation in lab internships results in increased interest in continuing in life science/biology graduate school and careers. They also suggest that a significant proportion of that interest is related to the students' biology laboratory self-efficacy. The findings of this study point to two primary ways that undergraduate research participation might work to raise self-efficacy strength. First, university research laboratory communities can provide students with a variety of resources that scaffold them into biology laboratory mastery experiences. Second, university research laboratory communities can provide students with coping and mastery Discourse models

  20. Creative Report Writing in Undergraduate Organic Chemistry Laboratory Inspires Nonmajors

    ERIC Educational Resources Information Center

    Henary, Maged; Owens, Eric A.; Tawney, Joseph G.

    2015-01-01

    Laboratory-based courses require students to compose reports based on the performed experiments to assess their overall understanding of the presented material; unfortunately, the sterile and formulated nature of the laboratory report disinterests most students. As a result, the outcome is a lower-quality product that does not reveal full…

  1. Assessing Practical Laboratory Skills in Undergraduate Molecular Biology Courses

    ERIC Educational Resources Information Center

    Hunt, Lynne; Koenders, Annette; Gynnild, Vidar

    2012-01-01

    This study explored a new strategy of assessing laboratory skills in a molecular biology course to improve: student effort in preparation for and participation in laboratory work; valid evaluation of learning outcomes; and students' employment prospects through provision of evidence of their skills. Previously, assessment was based on written…

  2. Merging of Research and Teaching in Developmental Biology: Adaptation of Current Scientific Research Papers for Use in Undergraduate Laboratory Exercises

    ERIC Educational Resources Information Center

    Lee, H. H.; and others

    1970-01-01

    Describes two laboratory exercises adopted from current research papers for use in an undergraduate developmental biology course. Gives methods, summary of student results, and student comments. Lists lecture topics, text and reprint assignments, and laboratory exercises for course. (EB)

  3. Topics in Chemical Instrumentation: Information Management Systems in the Undergraduate Instrumental Analysis Laboratory: Part I. Introduction to LIMS.

    ERIC Educational Resources Information Center

    Merrer, Robert J.

    1985-01-01

    Provides an overview of Laboratory Information Management Systems (LIMS) and their implementation in undergraduate analytical laboratories. Basic components of a well-constructed LIMS system, hardware considerations, and software considerations are addressed. (JN)

  4. Validating the Collision-Dominated Child-Langmuir Law for a DC Discharge Cathode Sheath in an Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Lisovskiy, V.; Yegorenkov, V.

    2009-01-01

    In this paper, we propose a simple method of observing the collision-dominated Child-Langmuir law in the course of an undergraduate laboratory work devoted to studying the properties of gas discharges. To this end we employ the dc gas discharge whose properties are studied in sufficient detail. The undergraduate laboratory work itself is reduced…

  5. High Performance Liquid Chromatography Experiments to Undergraduate Laboratories

    ERIC Educational Resources Information Center

    Kissinger, Peter T.; And Others

    1977-01-01

    Reviews the principles of liquid chromatography with electrochemical detection (LCEC), an analytical technique that incorporates the advantages of both liquids chromatography and electrochemistry. Also suggests laboratory experiments using this technique. (MLH)

  6. Cross-Disciplinary Thermoregulation and Sweat Analysis Laboratory Experiences for Undergraduate Chemistry and Exercise Science Students

    ERIC Educational Resources Information Center

    Mulligan, Gregory; Taylor, Nichole; Glen, Mary; Tomlin, Dona; Gaul, Catherine A.

    2011-01-01

    Cross-disciplinary (CD) learning experiences benefit student understanding of concepts and curriculum by offering opportunities to explore topics from the perspectives of alternate fields of study. This report involves a qualitative evaluation of CD health sciences undergraduate laboratory experiences in which concepts and students from two…

  7. High-Performance Liquid Chromatography in the Undergraduate Chemical Engineering Laboratory

    ERIC Educational Resources Information Center

    Frey, Douglas D.; Guo, Hui; Karnik, Nikhila

    2013-01-01

    This article describes the assembly of a simple, low-cost, high-performance liquid chromatography (HPLC) system and its use in the undergraduate chemical engineering laboratory course to perform simple experiments. By interpreting the results from these experiments students are able to gain significant experience in the general method of…

  8. ATR-FTIR Spectroscopy in the Undergraduate Chemistry Laboratory: Part I--Fundamentals and Examples

    ERIC Educational Resources Information Center

    Schuttlefield, Jennifer D.; Grassian, Vicki H.

    2008-01-01

    Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy is a useful technique for measuring the infrared spectra of solids and liquids as well as probing adsorption on particle surfaces. Several examples of the use of FTIR-ATR spectroscopy in different undergraduate chemistry laboratory courses are presented here. These…

  9. Incorporating Course-Based Undergraduate Research Experiences into Analytical Chemistry Laboratory Curricula

    ERIC Educational Resources Information Center

    Kerr, Melissa A.; Yan, Fei

    2016-01-01

    A continuous effort within an undergraduate university setting is to improve students' learning outcomes and thus improve students' attitudes about a particular field of study. This is undoubtedly relevant within a chemistry laboratory. This paper reports the results of an effort to introduce a problem-based learning strategy into the analytical…

  10. Investigation of the Regioselectivity of Alkene Hydrations for the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Bichler, Katherine A.; Van Ornum, Scott G.; Franz, Margaret C.; Imhoff, Andrea M.

    2015-01-01

    Due to a lack of time and, thus, an inability to present every possibility in a chemical reaction, organic chemistry professors tend to present each reaction with a single outcome. In practice, this is clearly not the case. A first-semester, three-week laboratory experiment designed for undergraduate organic chemistry students is described in…

  11. Determination of Equilibrium Constants of Metal Complexes from Spectrophotometric Measurements. An Undergraduate Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Ibañez, Gabriela A.; Olivieri, Alejandro C.; Escandar*, Graciela M.

    1999-09-01

    We describe an undergraduate laboratory practice involving the determination of complex equilibrium constants by spectrophotometric techniques. The results are obtained through model fitting using a computer program. As an example of these determinations, salicylic acid was selected and evaluated in the presence of copper(II) ion. The experimental conditions, general procedures, and computational strategem are discussed.

  12. The Quartz-Crystal Microbalance in an Undergraduate Laboratory Experiment: Measuring Mass

    ERIC Educational Resources Information Center

    Tsionsky, Vladimir

    2007-01-01

    The study explains the quartz-crystal microbalance (QCM) technique, which is often used as an undergraduate laboratory experiment for measuring the mass of a system. QCM can be used as a mass sensor only when the measured mass is rigidly attached to the surface.

  13. Making Microscopy Motivating, Memorable, & Manageable for Undergraduate Students with Digital Imaging Laboratories

    ERIC Educational Resources Information Center

    Weeks, Andrea; Bachman. Beverly; Josway, Sarah; North, Brittany; Tsuchiya, Mirian T.N.

    2013-01-01

    Microscopy and precise observation are essential skills that are challenging to teach effectively to large numbers of undergraduate biology students. We implemented student-driven digital imaging assignments for microscopy in a large enrollment laboratory for organismal biology. We detail how we promoted student engagement with the material and…

  14. Undergraduate Introductory Quantitative Chemistry Laboratory Course: Interdisciplinary Group Projects in Phytoremediation

    ERIC Educational Resources Information Center

    Van Engelen, Debra L.; Suljak, Steven W.; Hall, J. Patrick; Holmes, Bert E.

    2007-01-01

    The laboratory course around the phytoremediation is designed to develop both individual skills and promote cooperative learning while starting students work on projects in a specific area of environmental chemistry and analysis. Many research-active undergraduate institutions have developed courses, which are interdisciplinary in nature that…

  15. Creating a Research-Rich Chemistry Curriculum with an Integrated, Upper-Level-Undergraduate Laboratory Program

    ERIC Educational Resources Information Center

    Gron, Liz U.; Hales, David A.; Teague, M. Warfield

    2007-01-01

    A new research-rich chemistry curriculum with an integrated, upper-level undergraduate laboratory program has recently been developed to impart better understanding to the students. The program is called Advanced techniques in Experimental Chemistry and helps prepare students for more real-world problems.

  16. Development of an Assessment Tool to Measure Students' Meaningful Learning in the Undergraduate Chemistry Laboratory

    ERIC Educational Resources Information Center

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2015-01-01

    Research on learning in the undergraduate chemistry laboratory necessitates an understanding of students' perspectives of learning. Novak's Theory of Meaningful Learning states that the cognitive (thinking), affective (feeling), and psychomotor (doing) domains must be integrated for meaningful learning to occur. The psychomotor domain is the…

  17. Thermodynamics of Sodium Dodecyl Sulfate (SDS) Micellization: An Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Marcolongo, Juan P.; Mirenda, Martin

    2011-01-01

    An undergraduate laboratory experiment is presented that allows a thermodynamic characterization of micelle formation of sodium dodecyl sulfate (SDS) in aqueous solutions. The critical micelle concentration (CMC) and the degree of micelle ionization (alpha) are obtained at different temperatures by conductimetry. The molar standard free energy…

  18. Borohydride Reduction of Estrone: Demonstration of Diastereoselectivity in the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Aditya, Animesh; Nichols, David E.; Loudon, G. Marc

    2008-01-01

    This experiment presents a guided-inquiry approach to the demonstration of diastereoselectivity in an undergraduate organic chemistry laboratory. Chiral hindered ketones such as estrone, undergo facile reduction with sodium borohydride in a highly diastereoselective manner. The diastereomeric estradiols produced in the reaction can be analyzed and…

  19. A Green Polymerization of Aspartic Acid for the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Bennett, George D.

    2005-01-01

    The green polymerization of aspartic acid carried out during an organic-inorganic synthesis laboratory course for undergraduate students is described. The procedure is based on work by Donlar Corporation, a Peru, Illinois-based company that won a Green Chemistry Challenge Award in 1996 in the Small Business category for preparing thermal…

  20. An Integrated Visualization and Basic Molecular Modeling Laboratory for First-Year Undergraduate Medicinal Chemistry

    ERIC Educational Resources Information Center

    Hayes, Joseph M.

    2014-01-01

    A 3D model visualization and basic molecular modeling laboratory suitable for first-year undergraduates studying introductory medicinal chemistry is presented. The 2 h practical is embedded within a series of lectures on drug design, target-drug interactions, enzymes, receptors, nucleic acids, and basic pharmacokinetics. Serving as a teaching aid…

  1. An Undergraduate Course and Laboratory in Digital Signal Processing with Field Programmable Gate Arrays

    ERIC Educational Resources Information Center

    Meyer-Base, U.; Vera, A.; Meyer-Base, A.; Pattichis, M. S.; Perry, R. J.

    2010-01-01

    In this paper, an innovative educational approach to introducing undergraduates to both digital signal processing (DSP) and field programmable gate array (FPGA)-based design in a one-semester course and laboratory is described. While both DSP and FPGA-based courses are currently present in different curricula, this integrated approach reduces the…

  2. Impact of Collaborative Groups versus Individuals in Undergraduate Inquiry-Based Astronomy Laboratory Learning Exercises

    ERIC Educational Resources Information Center

    Sibbernsen, Kendra J.

    2014-01-01

    A mixed-method quasi-experimental study was designed to determine how 130 undergraduates in an introductory astronomy survey course laboratory changed their understanding of scientific inquiry working as individuals in relative isolation compared to working in small, collaborative learning groups when using specially designed astronomy curricula…

  3. Development of a Web-Enabled Learning Platform for Geospatial Laboratories: Improving the Undergraduate Learning Experience

    ERIC Educational Resources Information Center

    Mui, Amy B.; Nelson, Sarah; Huang, Bruce; He, Yuhong; Wilson, Kathi

    2015-01-01

    This paper describes a web-enabled learning platform providing remote access to geospatial software that extends the learning experience outside of the laboratory setting. The platform was piloted in two undergraduate courses, and includes a software server, a data server, and remote student users. The platform was designed to improve the quality…

  4. Testing Plastic Deformations of Materials in the Introductory Undergraduate Mechanics Laboratory

    ERIC Educational Resources Information Center

    Romo-Kroger, C. M.

    2012-01-01

    Normally, a mechanics laboratory at the undergraduate level includes an experiment to verify compliance with Hooke's law in materials, such as a steel spring and an elastic rubber band. Stress-strain curves are found for these elements. Compression in elastic bands is practically impossible to achieve due to flaccidity. A typical experiment for…

  5. A Measure of the Effectiveness of Incorporating 3D Human Anatomy into an Online Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Hilbelink, Amy J.

    2009-01-01

    Results of a study designed to determine the effectiveness of implementing three-dimensional (3D) stereo images of a human skull in an undergraduate human anatomy online laboratory were gathered and analysed. Mental model theory and its applications to 3D relationships are discussed along with the research results. Quantitative results on 62 pairs…

  6. Glucose Transport in Cultured Animal Cells: An Exercise for the Undergraduate Cell Biology Laboratory

    ERIC Educational Resources Information Center

    Ledbetter, Mary Lee S.; Lippert, Malcolm J.

    2002-01-01

    Membrane transport is a fundamental concept that undergraduate students of cell biology understand better with laboratory experience. Formal teaching exercises commonly used to illustrate this concept are unbiological, qualitative, or intricate and time consuming to prepare. We have developed an exercise that uses uptake of radiolabeled nutrient…

  7. Construction of an Instructional Design Model for Undergraduate Chemistry Laboratory Design: A Delphi Approach

    ERIC Educational Resources Information Center

    Bunag, Tara

    2012-01-01

    The purpose of this study was to construct an instructional systems design model for chemistry teaching laboratories at the undergraduate level to accurately depict the current practices of design experts. This required identifying the variables considered during design, prioritizing and ordering these variables, and constructing a model. Experts…

  8. Incorporation of Gas Chromatography-Mass Spectrometry into the Undergraduate Organic Chemistry Laboratory Curriculum

    ERIC Educational Resources Information Center

    Giarikos, Dimitrios G.; Patel, Sagir; Lister, Andrew; Razeghifard, Reza

    2013-01-01

    Gas chromatography-mass spectrometry (GC-MS) is a powerful analytical tool for detection, identification, and quantification of many volatile organic compounds. However, many colleges and universities have not fully incorporated this technique into undergraduate teaching laboratories despite its wide application and ease of use in organic…

  9. Advanced Undergraduate-Laboratory Experiment on Electron Spin Resonance in Single-Crystal Ruby

    ERIC Educational Resources Information Center

    Collins, Lee A.; And Others

    1974-01-01

    An electron-spin-resonance experiment which has been successfully performed in an advanced undergraduate physics laboratory is described. A discussion of that part of the theory of magnetic resonance necessary for the understanding of the experiment is also provided in this article. (DT)

  10. Simple & Rapid Generation of Complex DNA Profiles for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Kass, David H.

    2007-01-01

    Deoxyribonucleic acid (DNA) profiles can be generated by a variety of techniques incorporating different types of DNA markers. Simple methods are commonly utilized in the undergraduate laboratory, but with certain drawbacks. In this article, the author presents an advancement of the "Alu" dimorphism technique involving two tetraplex polymerase…

  11. Investigation of Macrophage Differentiation and Cytokine Production in an Undergraduate Immunology Laboratory

    ERIC Educational Resources Information Center

    Berkes, Charlotte; Chan, Leo Li-Ying

    2015-01-01

    We have developed a semester-long laboratory project for an undergraduate immunology course in which students study multiple aspects of macrophage biology including differentiation from progenitors in the bone marrow, activation upon stimulation with microbial ligands, expression of cell surface markers, and modulation of cytokine production. In…

  12. Student Perceptions of the Cell Biology Laboratory Learning Environment in Four Undergraduate Science Courses in Spain

    ERIC Educational Resources Information Center

    De Juan, Joaquin; Pérez-Cañaveras, Rosa M.; Segovia, Yolanda; Girela, Jose Luis; Martínez-Ruiz, Noemi; Romero-Rameta, Alejandro; Gómez-Torres, Maria José; Vizcaya-Moreno, M. Flores

    2016-01-01

    Cell biology is an academic discipline that organises and coordinates the learning of the structure, function and molecular composition of cells in some undergraduate biomedical programs. Besides course content and teaching methodologies, the laboratory environment is considered a key element in the teaching of and learning of cell biology. The…

  13. Gas Clathrate Hydrates Experiment for High School Projects and Undergraduate Laboratories

    ERIC Educational Resources Information Center

    Prado, Melissa P.; Pham, Annie; Ferazzi, Robert E.; Edwards, Kimberly; Janda, Kenneth C.

    2007-01-01

    We present a laboratory procedure, suitable for high school and undergraduate students, for preparing and studying propane clathrate hydrate. Because of their gas storage potential and large natural deposits, gas clathrate hydrates may have economic importance both as an energy source and a transportation medium. Similar to pure ice, the gas…

  14. Microfluidics in the Undergraduate Laboratory: Device Fabrication and an Experiment to Mimic Intravascular Gas Embolism

    ERIC Educational Resources Information Center

    Jablonski, Erin L.; Vogel, Brandon M.; Cavanagh, Daniel P.; Beers, Kathryn L.

    2010-01-01

    A method to fabricate microfluidic devices and an experimental protocol to model intravascular gas embolism for undergraduate laboratories are presented. The fabrication process details how to produce masters on glass slides; these masters serve as molds to pattern channels in an elastomeric polymer that can be adhered to a substrate, resulting in…

  15. Bacterial Production of Poly(3-hydroxybutyrate): An Undergraduate Student Laboratory Experiment

    ERIC Educational Resources Information Center

    Burns, Kristi L.; Oldham, Charlie D.; May, Sheldon W.

    2009-01-01

    As part of a multidisciplinary course that is cross-listed between five departments, we developed an undergraduate student laboratory experiment for culturing, isolating, and purifying the biopolymer, poly(3-hydroxybutyrate), PHB. This biopolyester accumulates in the cytoplasm of bacterial cells under specific growth conditions, and it has…

  16. The Impact of Collaborative Groups versus Individuals in Undergraduate Inquiry-Based Astronomy Laboratory Learning Exercises

    ERIC Educational Resources Information Center

    Sibbernsen, Kendra J.

    2010-01-01

    One of the long-standing general undergraduate education requirements common to many colleges and universities is a science course with a laboratory experience component. One of the objectives frequently included in the description of most of these courses is that a student will understand the nature and processes of scientific inquiry. However,…

  17. Topics in Chemical Instrumentation: XCVIII. Experiments Involving Thermal Methods of Analysis for Undergraduate Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Ewing, Galen W., Ed.

    1978-01-01

    Explains some experiments involving thermal methods of analysis for undergraduate chemistry laboratories. Some experiments are: (1) the determination of the density and degree of crystallinity of a polymer; and (2) the determination of the specific heat of a nonvolatile compound. (HM)

  18. Transitioning from Expository Laboratory Experiments to Course-Based Undergraduate Research in General Chemistry

    ERIC Educational Resources Information Center

    Clark, Ted M.; Ricciardo, Rebecca; Weaver, Tyler

    2016-01-01

    General chemistry courses predominantly use expository experiments that shape student expectations of what a laboratory activity entails. Shifting within a semester to course-based undergraduate research activities that include greater decision-making, collaborative work, and "messy" real-world data necessitates a change in student…

  19. Microfluidic Gel Electrophoresis in the Undergraduate Laboratory Applied to Food Analysis

    ERIC Educational Resources Information Center

    Chao, Tzu-Chiao; Bhattacharya, Sanchari; Ros, Alexandra

    2012-01-01

    A microfluidics-based laboratory experiment for the analysis of DNA fragments in an analytical undergraduate course is presented. The experiment is set within the context of food species identification via amplified DNA fragments. The students are provided with berry samples from which they extract DNA and perform polymerase chain reaction (PCR)…

  20. An Advanced Undergraduate Chemistry Laboratory Experiment Exploring NIR Spectroscopy and Chemometrics

    ERIC Educational Resources Information Center

    Wanke, Randall; Stauffer, Jennifer

    2007-01-01

    An advanced undergraduate chemistry laboratory experiment to study the advantages and hazards of the coupling of NIR spectroscopy and chemometrics is described. The combination is commonly used for analysis and process control of various ingredients used in agriculture, petroleum and food products.

  1. Computation of Chemical Shifts for Paramagnetic Molecules: A Laboratory Experiment for the Undergraduate Curriculum

    ERIC Educational Resources Information Center

    Pritchard, Benjamin P.; Simpson, Scott; Zurek, Eva; Autschbach, Jochen

    2014-01-01

    A computational experiment investigating the [superscript 1]H and [superscript 13]C nuclear magnetic resonance (NMR) chemical shifts of molecules with unpaired electrons has been developed and implemented. This experiment is appropriate for an upper-level undergraduate laboratory course in computational, physical, or inorganic chemistry. The…

  2. 3D Printing of Protein Models in an Undergraduate Laboratory: Leucine Zippers

    ERIC Educational Resources Information Center

    Meyer, Scott C.

    2015-01-01

    An upper-division undergraduate laboratory experiment is described that explores the structure/function relationship of protein domains, namely leucine zippers, through a molecular graphics computer program and physical models fabricated by 3D printing. By generating solvent accessible surfaces and color-coding hydrophobic, basic, and acidic amino…

  3. Adsorption of Phosphate on Goethite: An Undergraduate Research Laboratory Project

    ERIC Educational Resources Information Center

    Tribe, Lorena; Barja, Beatriz C.

    2004-01-01

    A laboratory experiment on the adsorption of phosphate on goethite is presented, which also includes discussion on surface properties, interfaces, acid-base equilibrium, molecular structure and solid state chemistry. It was seen that many students were able to produce qualitatively correct results for a complex system of real interest and they…

  4. Glycosidation of Methanol with Ribose: An Interdisciplinary Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Simon, Erin; Cook, Katie; Pritchard, Meredith R.; Stripe, Wayne; Bruch, Martha; Bendinskas, Kestutis

    2010-01-01

    This exercise provides students hands-on experience with the topics of glycosidation, hemiacetal and acetal formation, proton nuclear magnetic resonance ([superscript 1]H NMR) spectroscopy, and kinetic and thermodynamic product formation. In this laboratory experiment, the methyl acetal of ribose is synthesized, and the kinetic and thermodynamic…

  5. Development of Sensorial Experiments and Their Implementation into Undergraduate Laboratories

    ERIC Educational Resources Information Center

    Bromfield Lee, Deborah Christina

    2009-01-01

    "Visualization" of chemical phenomena often has been limited in the teaching laboratories to the sense of sight. We have developed chemistry experiments that rely on senses other than eyesight to investigate chemical concepts, make quantitative determinations, and familiarize students with chemical techniques traditionally designed using only…

  6. Vectors and Fomites: An Investigative Laboratory for Undergraduates.

    ERIC Educational Resources Information Center

    Adamo, Joseph A.; Gealt, Michael A.

    1996-01-01

    Presents a laboratory model system for introductory microbiology students that involves hands-on studies of bacteria vectored in soil nematodes. Describes a series of experiments designed to demonstrate vector-fomite transmission, bacterial survival, and disinfectant activity. Introduces the concept of genetically engineered microorganisms and the…

  7. An Undergraduate Vacuum Ultraviolet Spectroscopy Laboratory at Georgia Tech.

    ERIC Educational Resources Information Center

    Stevenson, James R.; Bartlett, Roger J.

    Experimental techniques are taught in a laboratory course designed with some student options available. Eight experiments which use vacuum systems, radiation sources, dispersion and detection systems are outlined. A course outline and time table are given. The final examination is described as 30 minutes of individual practical work and dialogue…

  8. An Enzyme Kinetics Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Olsen, Robert J.; Olsen, Julie A.; Giles, Greta A.

    2010-01-01

    An experiment using [superscript 1]H NMR spectroscopy to observe the kinetics of the acylase 1-catalyzed hydrolysis of "N"-acetyl-DL-methionine has been developed for the organic laboratory. The L-enantiomer of the reactant is hydrolyzed completely in less than 2 h, and [superscript 1]H NMR spectroscopic data from a single sample can be worked up…

  9. Blended Learning within an Undergraduate Exercise Physiology Laboratory

    ERIC Educational Resources Information Center

    Elmer, Steven J.; Carter, Kathryn R.; Armga, Austin J.; Carter, Jason R.

    2016-01-01

    In physiological education, blended course formats (integration of face-to-face and online instruction) can facilitate increased student learning, performance, and satisfaction in classroom settings. There is limited evidence on the effectiveness of using blending course formats in laboratory settings. We evaluated the impact of blended learning…

  10. Creatine Synthesis: An Undergraduate Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Smith, Andri L.; Tan, Paula

    2006-01-01

    Students in introductory chemistry classes typically appreciate seeing the connection between course content and the "real world". For this reason, we have developed a synthesis of creatine monohydrate--a popular supplement used in sports requiring short bursts of energy--for introductory organic chemistry laboratory courses. Creatine monohydrate…

  11. A Green Enantioselective Aldol Condensation for the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Bennett, George D.

    2006-01-01

    A number of laboratory exercises for the organic chemistry curriculum that emphasize enantioselective synthesis of the aldol condensation which involves the proline-catalyzed condensation between acetone and isobutyraldehyde are explored. The experiment illustrates some of the trade-offs involved in green chemistry like the use of acetone in large…

  12. Two Crystallographic Laboratory and Computational Exercises for Undergraduates.

    ERIC Educational Resources Information Center

    Lessinger, Leslie

    1988-01-01

    Describes two introductory exercises designed to teach the fundamental ideas and methods of crystallography, and to convey some important features of inorganic and organic crystal structures to students in an advanced laboratory course. Exercises include "The Crystal Structure of NiO" and "The Crystal Structure of Beta-Fumaric Acid." (CW)

  13. A Thermal Management of Electronics Course and Laboratory for Undergraduates

    ERIC Educational Resources Information Center

    Okamoto, Nicole; Hsu, Tai-Ran; Bash, Cullen E.

    2009-01-01

    A novel thermal management of electronics course with an associated laboratory has been developed for mechanical, electrical, and computer engineering students. The lecture topics, term project, computer modeling project, and six associated experiments that were built from scratch are described. Over half of the course lectures as well as all lab…

  14. Using Capillary Electrophoresis to Determine the Purity of Acetylsalicylic Acid Synthesized in the Undergraduate Laboratory

    NASA Astrophysics Data System (ADS)

    Welder, Frank; Colyer, Christa L.

    2001-11-01

    Capillary electrophoresis (CE), although a powerful analytical tool, has found only limited application in undergraduate laboratory study. In an effort to expose freshman and sophomore chemistry students to this technique, thereby giving them practical instrumental experience early in their careers, we propose to use CE in the analysis of student-synthesized acetylsalicylic acid (ASA). The synthesis of ASA from salicylic acid (SA) is a routine undergraduate laboratory, although students rarely have the opportunity to test the purity of their product. The CE method described herein provides students with a method to test purity and yield of their product and to determine the effect of aging on their sample. CE can accomplish this in a short period of time, with minimal disruption to the regular laboratory curriculum. Optimized separation conditions, limits of detection, and linear range for ASA and SA are also given.

  15. The impact of collaborative groups versus individuals in undergraduate inquiry-based astronomy laboratory learning exercises

    NASA Astrophysics Data System (ADS)

    Sibbernsen, Kendra J.

    One of the long-standing general undergraduate education requirements common to many colleges and universities is a science course with a laboratory experience component. One of the objectives frequently included in the description of most of these courses is that a student will understand the nature and processes of scientific inquiry. However, recent research has shown that learners in traditional undergraduate science laboratory environments are not developing a sufficiently meaningful understanding of scientific inquiry. Recently, astronomy laboratory activities have been developed that intentionally scaffold a student from guided activities to open inquiry ones and preliminary results show that these laboratories are successful for supporting students to understand the nature of scientific inquiry (Slater, S., Slater, T. F., & Shaner, 2008). This mixed-method quasi-experimental study was designed to determine how students in an undergraduate astronomy laboratory increase their understanding of inquiry working in relative isolation compared to working in small collaborative learning groups. The introductory astronomy laboratory students in the study generally increased their understanding of scientific inquiry over the course of the semester and this held true similarly for students working in groups and students working individually in the laboratories. This was determined by the examining the change in responses from the pretest to the posttest administration of the Views of Scientific Inquiry (VOSI) survey, the increase in scores on laboratory exercises, and observations from the instructor. Because the study was successful in determining that individuals in the astronomy laboratory do as well at understanding inquiry as those who complete their exercises in small groups, it would be appropriate to offer these inquiry-based exercises in an online format.

  16. Holographic study of a vibrating bell: An undergraduate laboratory experiment

    NASA Astrophysics Data System (ADS)

    Menou, Kristen; Audit, Benjamin; Boutillon, Xavier; Vach, Holger

    1998-05-01

    An experiment combining holography and musical acoustics is described. Structures of vibration modes of a bell are visualized by time-average holography under either acoustical or mechanical excitation. The vibration amplitude as measured by an accelerometer shows very good quantitative agreement with that determined from our holograms by fringe counting. An effect of degenerate level separation is shown in the mechanical case. It is argued that this experiment is not only very inexpensive for a physics laboratory already equipped for holography, but that it also strongly stimulates students to deepen their insight into a variety of different topics in applied physics.

  17. Genesis of "Biochemistry: A Problems Approach"

    ERIC Educational Resources Information Center

    Wood, William B.

    2002-01-01

    When the author began teaching as a young assistant professor at Caltech in 1966, his assignment was to take over the undergraduate biochemistry course taught for many years by Henry Borsook, who was about to retire. Students dreaded this course. Having delighted in biochemistry during his graduate training at Stanford, he was determined to put…

  18. An undergraduate laboratory activity on molecular dynamics simulations.

    PubMed

    Spitznagel, Benjamin; Pritchett, Paige R; Messina, Troy C; Goadrich, Mark; Rodriguez, Juan

    2016-01-01

    Vision and Change [AAAS, 2011] outlines a blueprint for modernizing biology education by addressing conceptual understanding of key concepts, such as the relationship between structure and function. The document also highlights skills necessary for student success in 21st century Biology, such as the use of modeling and simulation. Here we describe a laboratory activity that allows students to investigate the dynamic nature of protein structure and function through the use of a modeling technique known as molecular dynamics (MD). The activity takes place over two lab periods that are 3 hr each. The first lab period unpacks the basic approach behind MD simulations, beginning with the kinematic equations that all bioscience students learn in an introductory physics course. During this period students are taught rudimentary programming skills in Python while guided through simple modeling exercises that lead up to the simulation of the motion of a single atom. In the second lab period students extend concepts learned in the first period to develop skills in the use of expert MD software. Here students simulate and analyze changes in protein conformation resulting from temperature change, solvation, and phosphorylation. The article will describe how these activities can be carried out using free software packages, including Abalone and VMD/NAMD.

  19. A writing-intensive, methods-based laboratory course for undergraduates.

    PubMed

    Colabroy, Keri L

    2011-01-01

    Engaging undergraduate students in designing and executing original research should not only be accompanied by technique training but also intentional instruction in the critical analysis and writing of scientific literature. The course described here takes a rigorous approach to scientific reading and writing using primary literature as the model while simultaneously integrating laboratory instruction on basic enzyme purification and characterization, followed by 6 weeks of laboratory dedicated to student-designed original research projects. In the preparation and execution of their original projects, students engage in analysis of the primary literature, proposal writing, peer review, manuscript preparation, and oral presentation. The result is a comprehensive and challenging course that teaches third- and fourth-year undergraduates what it means to "think and work like a scientist."

  20. Introducing Undergraduate Students to Real-Time PCR

    ERIC Educational Resources Information Center

    Hancock, Dale; Funnell, Alister; Jack, Briony; Johnston, Jill

    2010-01-01

    An experiment is conducted, which in four 3 h laboratory sessions, introduces third year undergraduate Biochemistry students to the technique of real-time PCR in a biological context. The model used is a murine erythroleukemia cell line (MEL cells). These continuously cycling, immature red blood cells, arrested at an early stage in erythropoiesis,…

  1. Television Medical Dramas as Case Studies in Biochemistry

    ERIC Educational Resources Information Center

    Millard, Julie T.

    2009-01-01

    Several case studies from popular television medical dramas are described for use in an undergraduate biochemistry course. These cases, which illustrate fundamental principles of biochemistry, are used as the basis for problems that can be discussed further in small groups. Medical cases provide an interesting context for biochemistry with video…

  2. The Scanning Electron Microscope As An Accelerator For The Undergraduate Advanced Physics Laboratory

    SciTech Connect

    Peterson, Randolph S.; Berggren, Karl K.; Mondol, Mark

    2011-06-01

    Few universities or colleges have an accelerator for use with advanced physics laboratories, but many of these institutions have a scanning electron microscope (SEM) on site, often in the biology department. As an accelerator for the undergraduate, advanced physics laboratory, the SEM is an excellent substitute for an ion accelerator. Although there are no nuclear physics experiments that can be performed with a typical 30 kV SEM, there is an opportunity for experimental work on accelerator physics, atomic physics, electron-solid interactions, and the basics of modern e-beam lithography.

  3. Policies and practices in haemostasis testing among laboratories in Croatia: a survey on behalf of a Working Group for Laboratory Coagulation of the Croatian Society of Medical Biochemistry and Laboratory Medicine

    PubMed Central

    Bronić, Ana; Herak, Desiree Coen; Margetić, Sandra; Milić, Marija

    2017-01-01

    Introduction The objective of this survey was to assess current policies and practice in haemostasis testing among both hospital and outpatient laboratories in Republic of Croatia. Materials and methods A questionnaire with seventy questions divided into nine sections was created in May 2015. Participants were asked about their practice related to test request form, sample collection, prothrombin time (PT) and activated partial thromboplastin time assays, other individual haemostasis assays, point-of-care testing (POCT), reporting of coagulation tests results and quality assurance of procedures, the personnel and other laboratory resources, as well as on issues related to education and implementation of additional coagulation assays in their laboratory. The survey was administered and data were collected between June and September 2015. Results A total survey response rate was 104/170 (61.2%). Most respondents were faced with incomplete information on prescribed therapy and diagnosis on the test request or inappropriate samples withdrawn on distant locations, but also do not have protocols for handling samples with high haematocrit values. Reporting of PT-INR and D-dimer results was different between laboratories. Although almost all laboratories developed a critical value reporting system, reporting a value to general practitioners is still a problem. Result on coagulation POCT testing showed that not all devices were supervised by laboratories, which is not in compliance with Croatian Chamber of Medical Biochemistry acts. Conclusion Obtained results highlighted areas that need improvement and different practice patterns in particular field of haemostasis testing among laboratories. A harmonization of the overall process of haemostasis testing at national level should be considered and undertaken.

  4. Study of Polymer Glasses by Modulated Differential Scanning Calorimetry in the Undergraduate Physical Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Folmer, J. C. W.; Franzen, Stefan

    2003-07-01

    Recent technological advances in thermal analysis present educational opportunities. In particular, modulated differential scanning calorimetry (MDSC) can be used to contrast reversing and nonreversing processes in practical laboratory experiments. The introduction of these concepts elucidates the relationship between experimental timescales and reversibility. The latter is a key concept of undergraduate thermodynamics theory that deserves reinforcement. In this paper, the theory and application of MDSC to problems of current interest is outlined with special emphasis on the contrast between crystallization and vitrification. Glass formation deserves greater emphasis in the undergraduate curriculum. Glass transitions are increasingly recognized as an important aspect of materials properties and dynamics in fields ranging from polymer science to protein folding. The example chosen for study is a comparison of polyethylene glycol and atactic polypropylene glycol. The experiment is easily performed in a typical three-hour lab session.

  5. ELISA and GC-MS as Teaching Tools in the Undergraduate Environmental Analytical Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Wilson, Ruth I.; Mathers, Dan T.; Mabury, Scott A.; Jorgensen, Greg M.

    2000-12-01

    An undergraduate experiment for the analysis of potential water pollutants is described. Students are exposed to two complementary techniques, ELISA and GC-MS, for the analysis of a water sample containing atrazine, desethylatrazine, and simazine. Atrazine was chosen as the target analyte because of its wide usage in North America and its utility for students to predict environmental degradation products. The water sample is concentrated using solid-phase extraction for GC-MS, or diluted and analyzed using a competitive ELISA test kit for atrazine. The nature of the water sample is such that students generally find that ELISA gives an artificially high value for the concentration of atrazine. Students gain an appreciation for problems associated with measuring pollutants in the aqueous environment: sensitivity, accuracy, precision, and ease of analysis. This undergraduate laboratory provides an opportunity for students to learn several new analysis and sample preparation techniques and to critically evaluate these methods in terms of when they are most useful.

  6. Pencil-and-Paper Neural Networks: An Undergraduate Laboratory Exercise in Computational Neuroscience.

    PubMed

    Crisp, Kevin M; Sutter, Ellen N; Westerberg, Jacob A

    2015-01-01

    Although it has been more than 70 years since McCulloch and Pitts published their seminal work on artificial neural networks, such models remain primarily in the domain of computer science departments in undergraduate education. This is unfortunate, as simple network models offer undergraduate students a much-needed bridge between cellular neurobiology and processes governing thought and behavior. Here, we present a very simple laboratory exercise in which students constructed, trained and tested artificial neural networks by hand on paper. They explored a variety of concepts, including pattern recognition, pattern completion, noise elimination and stimulus ambiguity. Learning gains were evident in changes in the use of language when writing about information processing in the brain.

  7. Using Laboratory Experiments and Circuit Simulation IT Tools in an Undergraduate Course in Analog Electronics

    NASA Astrophysics Data System (ADS)

    Baltzis, Konstantinos B.; Koukias, Konstantinos D.

    2009-12-01

    Laboratory-based courses play a significant role in engineering education. Given the role of electronics in engineering and technology, laboratory experiments and circuit simulation IT tools are used in their teaching in several academic institutions. This paper discusses the characteristics and benefits of both methods. The content and structure of an introductory laboratory course in analog electronics is described. The aim of the course is the better understanding of the basic principles of analog electronic circuits without the need of specific technical and computer skills. The impact of the proposed method on the learning process is investigated. The evaluation of our proposal was based on both quantitative and qualitative data. Interesting conclusions about the teaching of electronics in undergraduate education are finally drawn.

  8. Safety in the Chemical Laboratory: An Undergraduate Chemical Laboratory Safety Course.

    ERIC Educational Resources Information Center

    Nicholls, L. Jewel

    1982-01-01

    Describes a two-quarter hour college chemistry course focusing on laboratory safety. Includes lists of topics/assignments, problem sets (toxicology, storage, and energy) and videotapes, films, and slide sets used in the course. (JN)

  9. Safety in the Chemical Laboratory: Learning How to Run Safer Undergraduate Laboratories.

    ERIC Educational Resources Information Center

    Mohrig, Jerry R.

    1983-01-01

    Discusses responsibilities for providing safe experiments and for teaching about safety. Provides lists of references on chemical safety and regulated/potential carcinogens. Also discusses general laboratory safety procedures including waste disposal and recycling of solvents. (JM)

  10. A Response to "BIO 2010: Transforming Undergraduate Education for Future Research Biologists," from the Perspective of the Biochemistry and Molecular Biology Major Program at Kenyon College

    ERIC Educational Resources Information Center

    Slonczewski, Joan L.; Marusak, Rosemary

    2004-01-01

    The National Research Council completed a major study of undergraduate biology education, "BIO 2010-Transforming Undergraduate Education For Future Research Biologists (BIO 2010)," funded by the Howard Hughes Medical Institute and the National Institutes of Health. The "BIO 2010" report recommends that biology pedagogy should use an…

  11. Chromatin Isolation and DNA Sequence Analysis in Large Undergraduate Laboratory Sections

    NASA Astrophysics Data System (ADS)

    Hagerman, Ann E.

    1999-10-01

    A pair of exercises that introduce undergraduate students to basic techniques and concepts of molecular biology and that are appropriate for classes with large enrollments are described. One exercise is a simple laboratory experiment in which chromatin is isolated from chicken liver and is resolved into histone proteins and DNA by ion-exchange chromatography. The other is a series of computer simulations that introduce DNA sequencing, mapping, and sequence analysis to the students. The final step of the simulation is submission of a sequence to a database on the World Wide Web for identification of the protein product of the gene.

  12. Development of an undergraduate optics laboratory based on the analysis of digital images

    NASA Astrophysics Data System (ADS)

    Ramil, Alberto; López, Ana J.; Fiorucci, M. Paula; Vincitorio, Fabio

    2014-07-01

    The aim of this work is to present an experience based on the use of digital images and computer processing techniques for enhanced optics laboratory teaching aids. The use of digital images offers the possibility of analysing some phenomena quantitatively, which would be very difficult to do with the traditional equipment available in teaching labs. In order to obtain high quality teaching material, a number of practical aspects should be taken into account during the process of image acquisition and subsequent analysis. Examples of quantitative experiments are presented; they cover the usual topics at undergraduate level, both geometrical and physical optics and even spectral analysis of the light.

  13. Undergraduate Laboratory Module for Implementing ELISA on the High Performance Microfluidic Platform.

    PubMed

    Giri, Basant; Peesara, Ravichander R; Yanagisawa, Naoki; Dutta, Debashis

    Implementing enzyme-linked immunosorbent assays (ELISA) in microchannels offers several advantages over its traditional microtiter plate-based format, including a reduced sample volume requirement, shorter incubation period, and greater sensitivity. Moreover, microfluidic ELISA platforms are inexpensive to fabricate and allow integration of analytical procedures, such as sample preconcentration, that further enhance the performance of the immunoassay. In view of the scientific potential of microfluidic ELISAs, inclusion of this technique into an undergraduate curriculum is valuable in preparing the next generation of scientists and engineers. Here, an experimental module is presented for this immunoassay method that can be completed in an undergraduate laboratory setting within two 3-h periods (including all incubation and data analyses procedures) using only a microliter of sample and reagents per assay. In addition to acquainting students with the microfluidic technology, the reported module provides training in quantitating ELISAs using the kinetic format of the assay. Furthermore, it offers a useful educational tool for introducing undergraduates to basic image analysis techniques, as well as signal-to-noise ratio and limit of detection calculations that are valuable in characterizing any analytical method.

  14. Undergraduate Laboratory Module for Implementing ELISA on the High Performance Microfluidic Platform

    PubMed Central

    Giri, Basant; Peesara, Ravichander R.; Yanagisawa, Naoki; Dutta, Debashis

    2015-01-01

    Implementing enzyme-linked immunosorbent assays (ELISA) in microchannels offers several advantages over its traditional microtiter plate-based format, including a reduced sample volume requirement, shorter incubation period, and greater sensitivity. Moreover, microfluidic ELISA platforms are inexpensive to fabricate and allow integration of analytical procedures, such as sample preconcentration, that further enhance the performance of the immunoassay. In view of the scientific potential of microfluidic ELISAs, inclusion of this technique into an undergraduate curriculum is valuable in preparing the next generation of scientists and engineers. Here, an experimental module is presented for this immunoassay method that can be completed in an undergraduate laboratory setting within two 3-h periods (including all incubation and data analyses procedures) using only a microliter of sample and reagents per assay. In addition to acquainting students with the microfluidic technology, the reported module provides training in quantitating ELISAs using the kinetic format of the assay. Furthermore, it offers a useful educational tool for introducing undergraduates to basic image analysis techniques, as well as signal-to-noise ratio and limit of detection calculations that are valuable in characterizing any analytical method. PMID:26052160

  15. Design for a Simple and Inexpensive Cylinder-within-a-Cylinder Gradient Maker for the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Sims, Paul A.; O'Mealey, Gary B.; Khan, Nabeel A.; Larabee, Chelsea M.

    2011-01-01

    A design for a simple and inexpensive gradient maker is described. The gradient maker is assembled by (i) cutting the tops off two plastic bottles of differing diameters to produce two cylinders with intact bottoms; (ii) drilling a small hole toward the bottom of the smaller diameter cylinder and plugging the hole with a size 00 cork stopper; and…

  16. Utilizing Unnatural Amino Acids to Illustrate Protein Structure-Function Relationships: An Experiment Designed for an Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Maza, Johnathan C.; Villa, Jordan K.; Landino, Lisa M.; Young, Douglas D

    2016-01-01

    The site-specific introduction of unnatural amino acids (UAAs) has been demonstrated to be a useful tool in protein engineering. Moreover, the incorporation of a UAA into a protein has become feasible with the increased commercial availability of UAAs and robust expression plasmids. In addition to the ease of incorporation, the concepts utilized…

  17. Designing Laboratory Exercises for the Undergraduate Molecular Biology/Biochemistry Student: Techniques and Ethical Implications Involved in Personalized Medicine

    ERIC Educational Resources Information Center

    Weinlander, Kenneth M.; Hall, David J.

    2010-01-01

    Personalized medicine refers to medical care that involves genetically screening patients for their likelihood to develop various disorders. Commercial genome screening only involves identifying a consumer's genotype for a few single nucleotide polymorphisms. A phenotype (such as an illness) is greatly influenced by three factors: genes, gene…

  18. Microwave-Enhanced Organic Syntheses for the Undergraduate Laboratory: Diels-Alder Cycloaddition, Wittig Reaction, and Williamson Ether Synthesis

    ERIC Educational Resources Information Center

    Baar, Marsha R.; Falcone, Danielle; Gordon, Christopher

    2010-01-01

    Microwave heating enhanced the rate of three reactions typically performed in our undergraduate organic chemistry laboratory: a Diels-Alder cycloaddition, a Wittig salt formation, and a Williamson ether synthesis. Ninety-minute refluxes were shortened to 10 min using a laboratory-grade microwave oven. In addition, yields improved for the Wittig…

  19. So These Numbers Really Mean Something? A Role Playing Scenario-Based Approach to the Undergraduate Instrumental Analysis Laboratory

    ERIC Educational Resources Information Center

    Grannas, Amanda M.; Lagalante, Anthony F.

    2010-01-01

    A new curricular approach in our undergraduate second-year instrumental analysis laboratory was implemented. Students work collaboratively on scenarios in diverse fields including pharmaceuticals, forensics, gemology, art conservation, and environmental chemistry. Each laboratory section (approximately 12 students) is divided into three groups…

  20. Federal Support for Undergraduate Laboratory Work in Physics. A Statement by the American Association of Physics Teachers.

    ERIC Educational Resources Information Center

    American Association of Physics Teachers, College Park, MD.

    The teaching laboratory in physics departments in colleges and universities is a source of great potential strength in undergraduate education. Recent surveys and conferences, have identified inadequate teaching equipment and laboratory development. This report reviews these problems and offers suggestions for an enhanced federal effort to solve…

  1. "Anisakis Simplex" Infection in Mackerel: A Reliable Laboratory Exercise to Demonstrate Important Principles in Parasitology to Undergraduates

    ERIC Educational Resources Information Center

    Coombs, I.; Tatner, M.; Paterson, V.

    2013-01-01

    Practical laboratory work in parasitology can be very limited, due to the difficulty in maintaining multi-host parasite life cycles, especially for a large, once-yearly undergraduate laboratory class for life science students. The use of mackerel, "Scomber scombrus," bought from a local fishmonger, is an ideal model to investigate important…

  2. Nutritional Biochemistry

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.

    2010-01-01

    This slide presentation reviews some of the effects that space flight has on humans nutritional biochemistry. Particular attention is devoted to the study of protein breakdown, inflammation, hypercatabolism, omega 3 fatty acids, vitamin D, calcium, urine, folate and nutrient stability of certain vitamins, the fluid shift and renal stone risk, acidosis, iron/hematology, and the effects on bone of dietary protein, potassium. inflammation, and omega-3 fatty acids

  3. Prepare, Do, Review: A Skills-Based Approach for Laboratory Practical Classes in Biochemistry and Molecular Biology

    ERIC Educational Resources Information Center

    Arthur, Peter; Ludwig, Martha; Castelli, Joane; Kirkwood, Paul; Attwood, Paul

    2016-01-01

    A new laboratory practical system is described which is comprised of a number of laboratory practical modules, each based around a particular technique or set of techniques, related to the theory part of the course but not designed to be dependent on it. Each module comprises an online recorded pre-lab lecture, the laboratory practical itself and…

  4. Development, Evaluation and Use of a Student Experience Survey in Undergraduate Science Laboratories: The Advancing Science by Enhancing Learning in the Laboratory Student Laboratory Learning Experience Survey

    NASA Astrophysics Data System (ADS)

    Barrie, Simon C.; Bucat, Robert B.; Buntine, Mark A.; Burke da Silva, Karen; Crisp, Geoffrey T.; George, Adrian V.; Jamie, Ian M.; Kable, Scott H.; Lim, Kieran F.; Pyke, Simon M.; Read, Justin R.; Sharma, Manjula D.; Yeung, Alexandra

    2015-07-01

    Student experience surveys have become increasingly popular to probe various aspects of processes and outcomes in higher education, such as measuring student perceptions of the learning environment and identifying aspects that could be improved. This paper reports on a particular survey for evaluating individual experiments that has been developed over some 15 years as part of a large national Australian study pertaining to the area of undergraduate laboratories-Advancing Science by Enhancing Learning in the Laboratory. This paper reports on the development of the survey instrument and the evaluation of the survey using student responses to experiments from different institutions in Australia, New Zealand and the USA. A total of 3153 student responses have been analysed using factor analysis. Three factors, motivation, assessment and resources, have been identified as contributing to improved student attitudes to laboratory activities. A central focus of the survey is to provide feedback to practitioners to iteratively improve experiments. Implications for practitioners and researchers are also discussed.

  5. Assessing students' ability to critically evaluate evidence in an inquiry-based undergraduate laboratory course.

    PubMed

    Colthorpe, Kay; Mehari Abraha, Hyab; Zimbardi, Kirsten; Ainscough, Louise; Spiers, Jereme G; Chen, Hsiao-Jou Cortina; Lavidis, Nickolas A

    2017-03-01

    The ability to critically evaluate and use evidence from one's own work or from primary literature is invaluable to any researcher. These skills include the ability to identify strengths and weakness of primary literature, to gauge the impact of research findings on a field, to identify gaps in a field that require more research, and to contextualize findings within a field. This study developed a model to examine undergraduate science students' abilities to critically evaluate and use evidence through an analysis of laboratory reports from control and experimental groups in nonresearch-aligned and research-aligned inquiry-based laboratory classes, respectively, and contrasted these with published scientific research articles. The reports analyzed (n = 42) showed that students used evidence in a variety of ways, most often referring to literature indirectly, and least commonly highlighting limitations of literature. There were significant positive correlations between grade awarded and the use of references, evidence, and length, but there were no significant differences between control and experimental groups, so data were pooled. The use of evidence in scientific research articles (n = 7) was similar to student reports except that expert authors were more likely to refer to their own results and cite more references. Analysis showed that students, by the completion of the second year of their undergraduate degree, had expertise approaching that of published authors. These findings demonstrate that it is possible to provide valuable broad-scale undergraduate research experiences to all students in a cohort, giving them exposure to the methods and communication processes of research as well as an opportunity to hone their critical evaluation skills.

  6. Computer based learning in an undergraduate physics laboratory: interfacing and instrument control using Matlab

    NASA Astrophysics Data System (ADS)

    Sharp, J. S.; Glover, P. M.; Moseley, W.

    2007-05-01

    In this paper we describe the recent changes to the curriculum of the second year practical laboratory course in the School of Physics and Astronomy at the University of Nottingham. In particular, we describe how Matlab has been implemented as a teaching tool and discuss both its pedagogical advantages and disadvantages in teaching undergraduate students about computer interfacing and instrument control techniques. We also discuss the motivation for converting the interfacing language that is used in the laboratory from LabView to Matlab. We describe an example of a typical experiment the students are required to complete and we conclude by briefly assessing how the recent curriculum changes have affected both student performance and compliance.

  7. Student perceptions of an upper-level, undergraduate human anatomy laboratory course without cadavers.

    PubMed

    Wright, Shirley J

    2012-01-01

    Several programs in health professional education require or are considering requiring upper-level human anatomy as prerequisite for their applicants. Undergraduate students are confronted with few institutions offering such a course, in part because of the expense and logistical issues associated with a cadaver-based human anatomy course. This study describes the development of and student reactions to an upper-level human anatomy laboratory course for undergraduate students that used a regional approach and contemporary, alternative teaching methods to a cadaver-based course. The alternative pedagogy to deliver the curriculum included use of commercially available, three-dimensional anatomical virtual dissection software, anatomical models coupled with a learning management system to offer Web-based learning, and a new laboratory manual with collaborative exercises designed to develop the student's anatomical skills and collaborative team skills. A Likert-scale survey with open-ended questions was used to ascertain student perceptions of the course and its various aspects. Students perceived that the noncadaver-based, upper-level human anatomy course with an engaging, regional approach is highly valuable in their learning of anatomy. anatomy.

  8. An undergraduate laboratory class using CRISPR/Cas9 technology to mutate Drosophila genes

    PubMed Central

    Adame, Vanesa; Chapapas, Holly; Cisneros, Marilyn; Deaton, Carol; Deichmann, Sophia; Gadek, Chauncey; Lovato, TyAnna L.; Chechenova, Maria B.; Guerin, Paul; Cripps, Richard M.

    2017-01-01

    CRISPR/Cas9 genome editing technology is used in the manipulation of genome sequences and gene expression. Due to the ease and rapidity with which genes can be mutated using CRISPR/Cas9, we sought to determine if a single-semester undergraduate class could be successfully taught, wherein students isolate mutants for specific genes using CRISPR/Cas9. Six students were each assigned a single Drosophila gene, for which no mutants currently exist. Each student designed and created plasmids to encode single guide RNAs that target their selected gene; injected the plasmids into Cas9-expressing embryos, in order to delete the selected gene; carried out a two-generation cross to test for germline transmission of a mutated allele and generate a stable stock of the mutant; and characterized the mutant alleles by PCR and sequencing. Three genes out of six were successfully mutated. Pre- and post- survey evaluations of the students in the class revealed that student attitudes towards their research competencies increased, although the changes were not statistically significant. We conclude that it is feasible to develop a laboratory genome editing class, to provide effective laboratory training to undergraduate students, and to generate mutant lines for use by the broader scientific community. PMID:27009801

  9. An ultrafast optics undergraduate advanced laboratory with a mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Schaffer, Andrew; Fredrick, Connor; Hoyt, Chad; Jones, Jason

    2015-05-01

    We describe an ultrafast optics undergraduate advanced laboratory comprising a mode-locked erbium fiber laser, auto-correlation measurements, and an external, free-space parallel grating dispersion compensation apparatus. The simple design of the stretched pulse laser uses nonlinear polarization rotation mode-locking to produce pulses at a repetition rate of 55 MHz and average power of 5.5 mW. Interferometric and intensity auto-correlation measurements are made using a Michelson interferometer that takes advantage of the two-photon nonlinear response of a common silicon photodiode for the second order correlation between 1550 nm laser pulses. After a pre-amplifier and compression, pulse widths as narrow as 108 fs are measured at 17 mW average power. A detailed parts list includes previously owned and common components used by the telecommunications industry, which may decrease the cost of the lab to within reach of many undergraduate and graduate departments. We also describe progress toward a relatively low-cost optical frequency comb advanced laboratory. NSF EIR #1208930.

  10. The ATLAS project: The effects of a constructionist digital laboratory project on undergraduate laboratory performance.

    PubMed

    Shoepe, Todd C; Cavedon, Dana K; Derian, Joseph M; Levy, Celine S; Morales, Amy

    2015-01-01

    Anatomical education is a dynamic field where developments in the implementation of constructive, situated-learning show promise in improving student achievement. The purpose of this study was to examine the effectiveness of an individualized, technology heavy project in promoting student performance in a combined anatomy and physiology laboratory course. Mixed-methods research was used to compare two cohorts of anatomy laboratories separated by the adoption of a new laboratory atlas project, which were defined as preceding (PRE) and following the adoption of the Anatomical Teaching and Learning Assessment Study (ATLAS; POST). The ATLAS project required the creation of a student-generated, photographic atlas via acquisition of specimen images taken with tablet technology and digital microscope cameras throughout the semester. Images were transferred to laptops, digitally labeled and photo edited weekly, and compiled into a digital book using Internet publishing freeware for final project submission. An analysis of covariance confirmed that student final examination scores were improved (P < 0.05) following the implementation of the laboratory atlas project (PRE, n = 75; POST, n = 90; means ± SE; 74.9 ± 0.9 versus 78.1 ± 0.8, respectively) after controlling for cumulative student grade point average. Analysis of questionnaires collected (n = 68) from the post group suggested students identified with atlas objectives, appreciated the comprehensive value in final examination preparation, and the constructionism involved, but recommended alterations in assignment logistics and the format of the final version. Constructionist, comprehensive term-projects utilizing student-preferred technologies could be used to improve performance toward student learning outcomes.

  11. Ordering patterns for laboratory and radiology tests by students from different undergraduate medical curricula

    PubMed Central

    2013-01-01

    Background The overuse of laboratory tests and radiology imaging and their possible hazards to patients and the health care system is observed with growing concern in the medical community. With this study the authors wished to determine whether ordering patterns for laboratory and radiology tests by medical students close to their graduation are related to undergraduate training. Methods We developed an assessment for near graduates in the setting of a resident’s daily routine including a consultation hour with five simulated patients, three hours for patient work up with simulated distracting tasks, and thirty minutes for reporting of patient management to a supervisor. In 2011, 60 students participated in this assessment: 30 from a vertically integrated (VI) curriculum (Utrecht, The Netherlands) and 30 from a traditional, non-VI curriculum (Hamburg, Germany). We assessed and compared the number of laboratory and radiology requests and correlated the results with the scores participants received from their supervisors for the facet of competence “scientifically and empirically grounded method of working”. Results Students from a VI curriculum used significantly (p < .01) less total laboratory requests (N = 283 versus N = 466) which correlated with their scores for a “scientifically and empirically grounded method of working” (Pearson’s r = .572). A significantly (p < .01) higher number of radiology imaging was ordered with a large effect size (V = .618) by near graduates from a non-VI curriculum (N = 156 versus N = 97) even when this was not supporting the diagnostic process. Conclusion The focused ordering patterns from VI students might be a result of their early exposure to the clinical environment and a different approach to clinical decision making during their undergraduate education which further studies should address in greater detail. PMID:23945311

  12. Identification of threshold concepts for biochemistry.

    PubMed

    Loertscher, Jennifer; Green, David; Lewis, Jennifer E; Lin, Sara; Minderhout, Vicky

    2014-01-01

    Threshold concepts (TCs) are concepts that, when mastered, represent a transformed understanding of a discipline without which the learner cannot progress. We have undertaken a process involving more than 75 faculty members and 50 undergraduate students to identify a working list of TCs for biochemistry. The process of identifying TCs for biochemistry was modeled on extensive work related to TCs across a range of disciplines and included faculty workshops and student interviews. Using an iterative process, we prioritized five concepts on which to focus future development of instructional materials. Broadly defined, the concepts are steady state, biochemical pathway dynamics and regulation, the physical basis of interactions, thermodynamics of macromolecular structure formation, and free energy. The working list presented here is not intended to be exhaustive, but rather is meant to identify a subset of TCs for biochemistry for which instructional and assessment tools for undergraduate biochemistry will be developed.

  13. Identification of Threshold Concepts for Biochemistry

    PubMed Central

    Green, David; Lewis, Jennifer E.; Lin, Sara; Minderhout, Vicky

    2014-01-01

    Threshold concepts (TCs) are concepts that, when mastered, represent a transformed understanding of a discipline without which the learner cannot progress. We have undertaken a process involving more than 75 faculty members and 50 undergraduate students to identify a working list of TCs for biochemistry. The process of identifying TCs for biochemistry was modeled on extensive work related to TCs across a range of disciplines and included faculty workshops and student interviews. Using an iterative process, we prioritized five concepts on which to focus future development of instructional materials. Broadly defined, the concepts are steady state, biochemical pathway dynamics and regulation, the physical basis of interactions, thermodynamics of macromolecular structure formation, and free energy. The working list presented here is not intended to be exhaustive, but rather is meant to identify a subset of TCs for biochemistry for which instructional and assessment tools for undergraduate biochemistry will be developed. PMID:25185234

  14. Advancing Space Sciences through Undergraduate Research Experiences at UC Berkeley's Space Sciences Laboratory - a novel approach to undergraduate internships for first generation community college students

    NASA Astrophysics Data System (ADS)

    Raftery, C. L.; Davis, H. B.; Peticolas, L. M.; Paglierani, R.

    2015-12-01

    The Space Sciences Laboratory at UC Berkeley launched an NSF-funded Research Experience for Undergraduates (REU) program in the summer of 2015. The "Advancing Space Sciences through Undergraduate Research Experiences" (ASSURE) program recruited heavily from local community colleges and universities, and provided a multi-tiered mentorship program for students in the fields of space science and engineering. The program was focussed on providing a supportive environment for 2nd and 3rd year undergraduates, many of whom were first generation and underrepresented students. This model provides three levels of mentorship support for the participating interns: 1) the primary research advisor provides academic and professional support. 2) The program coordinator, who meets with the interns multiple times per week, provides personal support and helps the interns to assimilate into the highly competitive environment of the research laboratory. 3) Returning undergraduate interns provided peer support and guidance to the new cohort of students. The impacts of this program on the first generation students and the research mentors, as well as the lessons learned will be discussed.

  15. Palm-Based Data Acquisition Solutions for the Undergraduate Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Hudgins, Susan; Qin, Yu; Bakker, Eric; Shannon, Curtis

    2003-11-01

    Handheld computers provide a compact and cost-effective means to log data in the undergraduate chemistry laboratory. Handheld computers have the ability to record multiple forms of data, be programmed for specific projects, and later have data transferred to a personal computer for manipulation and analysis. They are more affordable than notebook computers and are more widely applicable than programmable calculators. This study focuses on acid base titration experiments that are commonly used in introductory chemistry courses. We wrote an interactive Basic language program that allowed a Palm device to measure pH during the course of a titration, and we used a compatible interface for the data acquisition, which we found to record accurate voltage measurements. After synchronizing the device to a laboratory workstation, the experimental data could be transferred into a spreadsheet file, viewed in graphical form and analyzed. Many other applications of handheld computers in the laboratory are possible with the ability to write individual programs on a handheld device. Therefore, the Palm's size, ease of use, and affordability make it an attractive alternative to previous data acquisition methods for use in the chemical laboratory.

  16. Expression, purification, and characterization of a carbohydrate-active enzyme: A research-inspired methods optimization experiment for the biochemistry laboratory.

    PubMed

    Willbur, Jaime F; Vail, Justin D; Mitchell, Lindsey N; Jakeman, David L; Timmons, Shannon C

    2016-01-01

    The development and implementation of research-inspired, discovery-based experiences into science laboratory curricula is a proven strategy for increasing student engagement and ownership of experiments. In the novel laboratory module described herein, students learn to express, purify, and characterize a carbohydrate-active enzyme using modern techniques and instrumentation commonly found in a research laboratory. Unlike in a traditional cookbook-style experiment, students generate their own hypotheses regarding expression conditions and quantify the amount of protein isolated using their selected variables. Over the course of three 3-hour laboratory periods, students learn to use sterile technique to express a protein using recombinant DNA in E. coli, purify the resulting enzyme via affinity chromatography and dialysis, analyze the success of their purification scheme via SDS-PAGE, assess the activity of the enzyme via an HPLC-based assay, and quantify the amount of protein isolated via a Bradford assay. Following the completion of this experiment, students were asked to evaluate their experience via an optional survey. All students strongly agreed that this laboratory module was more interesting to them than traditional experiments because of its lack of a pre-determined outcome and desired additional opportunities to participate in the experimental design process. This experiment serves as an example of how research-inspired, discovery-based experiences can benefit both the students and instructor; students learned important skills necessary for real-world biochemistry research and a more concrete understanding of the research process, while generating new knowledge to enhance the scholarly endeavors of the instructor.

  17. Laboratory Techniques in Geology: Embedding Analytical Methods into the Undergraduate Curriculum

    NASA Astrophysics Data System (ADS)

    Baedke, S. J.; Johnson, E. A.; Kearns, L. E.; Mazza, S. E.; Gazel, E.

    2014-12-01

    Paid summer REU experiences successfully engage undergraduate students in research and encourage them to continue to graduate school and scientific careers. However these programs only accommodate a limited number of students due to funding constraints, faculty time commitments, and limited access to needed instrumentation. At JMU, the Department of Geology and Environmental Science has embedded undergraduate research into the curriculum. Each student fulfilling a BS in Geology or a BA in Earth Science completes 3 credits of research, including a 1-credit course on scientific communication, 2 credits of research or internship, followed by a presentation of that research. Our department has successfully acquired many analytical instruments and now has an XRD, SEM/EDS, FTIR, handheld Raman, AA, ion chromatograph, and an IRMS. To give as many students as possible an overview to the scientific uses and operation methods for these instruments, we revived a laboratory methods course that includes theory and practical use of instrumentation at JMU, plus XRF sample preparation and analysis training at Virginia Tech during a 1-day field trip. In addition to practical training, projects included analytical concepts such as evaluating analytical vs. natural uncertainty, determining error on multiple measurements, signal-to-noise ratio, and evaluating data quality. State funding through the 4-VA program helped pay for analytical supplies and support for students to complete research projects over the summer or during the next academic year using instrumentation from the course. This course exemplifies an alternative path to broadening participation in undergraduate research and creating stronger partnerships between PUI's and research universities.

  18. Affordable Hands-On DNA Sequencing and Genotyping: An Exercise for Teaching DNA Analysis to Undergraduates

    ERIC Educational Resources Information Center

    Shah, Kushani; Thomas, Shelby; Stein, Arnold

    2013-01-01

    In this report, we describe a 5-week laboratory exercise for undergraduate biology and biochemistry students in which students learn to sequence DNA and to genotype their DNA for selected single nucleotide polymorphisms (SNPs). Students use miniaturized DNA sequencing gels that require approximately 8 min to run. The students perform G, A, T, C…

  19. The Transect Program: Undergraduate Research at Sea and in the Laboratory

    NASA Astrophysics Data System (ADS)

    Sautter, L. R.; Sancho, G.

    2005-12-01

    Active participation in independent research that begins with data collection at sea has been shown to significantly increase undergraduate interest toward pursuing a career in ocean science. Thirty-five undergraduate students have recently enrolled in one of four NSF-sponsored Transect Programs at the College of Charleston. Each multi-disciplinary program consisted of an intensive 5-day research cruise, followed by a rigorous semester Oceanographic Research course in which students learned laboratory techniques for analyzing the biological, physical and geological samples collected. Students also conducted individual research, presented their results at both a poster and oral session, and prepared a manuscript following journal guidelines. Students showed significant comprehension of their research results and interest in continuing their research. Student applications to jobs, graduate schools, scholarships and internships have shown greater than 90% acceptance rate. The program's next phase will include expansion to numerous institutions in the southeast and elsewhere, coordinating with coastal and ocean observatory networks while training a new generation of oceanographers.

  20. Demand for interdisciplinary laboratories for physiology research by undergraduate students in biosciences and biomedical engineering.

    PubMed

    Clase, Kari L; Hein, Patrick W; Pelaez, Nancy J

    2008-12-01

    Physiology as a discipline is uniquely positioned to engage undergraduate students in interdisciplinary research in response to the 2006-2011 National Science Foundation Strategic Plan call for innovative transformational research, which emphasizes multidisciplinary projects. To prepare undergraduates for careers that cross disciplinary boundaries, students need to practice interdisciplinary communication in academic programs that connect students in diverse disciplines. This report surveys policy documents relevant to this emphasis on interdisciplinary training and suggests a changing role for physiology courses in bioscience and engineering programs. A role for a physiology course is increasingly recommended for engineering programs, but the study of physiology from an engineering perspective might differ from the study of physiology as a basic science. Indeed, physiology laboratory courses provide an arena where biomedical engineering and bioscience students can apply knowledge from both fields while cooperating in multidisciplinary teams under specified technical constraints. Because different problem-solving approaches are used by students of engineering and bioscience, instructional innovations are needed to break down stereotypes between the disciplines and create an educational environment where interdisciplinary teamwork is used to bridge differences.

  1. Structured inquiry-based learning: Drosophila GAL4 enhancer trap characterization in an undergraduate laboratory course.

    PubMed

    Dunne, Christopher R; Cillo, Anthony R; Glick, Danielle R; John, Katherine; Johnson, Cody; Kanwal, Jaspinder; Malik, Brian T; Mammano, Kristina; Petrovic, Stefan; Pfister, William; Rascoe, Alexander S; Schrom, Diane; Shapiro, Scott; Simkins, Jeffrey W; Strauss, David; Talai, Rene; Tomtishen, John P; Vargas, Josephine; Veloz, Tony; Vogler, Thomas O; Clenshaw, Michael E; Gordon-Hamm, Devin T; Lee, Kathryn L; Marin, Elizabeth C

    2014-12-01

    We have developed and tested two linked but separable structured inquiry exercises using a set of Drosophila melanogaster GAL4 enhancer trap strains for an upper-level undergraduate laboratory methods course at Bucknell University. In the first, students learn to perform inverse PCR to identify the genomic location of the GAL4 insertion, using FlyBase to identify flanking sequences and the primary literature to synthesize current knowledge regarding the nearest gene. In the second, we cross each GAL4 strain to a UAS-CD8-GFP reporter strain, and students perform whole mount CNS dissection, immunohistochemistry, confocal imaging, and analysis of developmental expression patterns. We have found these exercises to be very effective in teaching the uses and limitations of PCR and antibody-based techniques as well as critical reading of the primary literature and scientific writing. Students appreciate the opportunity to apply what they learn by generating novel data of use to the wider research community.

  2. Design and Construction of a Two-Temperature Preference Behavioral Assay for Undergraduate Neuroscience Laboratories

    PubMed Central

    Daniels, Richard L.; McKemy, David D.

    2010-01-01

    Behavioral assays in the undergraduate neuroscience laboratory are useful for illustrating a variety of physiological concepts. An example is homeostatic temperature regulation (thermoregulation). Many model organisms, from flies to mice, regulate internal temperatures in part by moving to suitable climates (thermotaxis). A particularly reliable method of quantifying temperature-dependent thermotactic behaviors is the two-temperature preference behavioral assay. In this preparation, an organism is free to move between two temperature-controlled surfaces, thus revealing its preferred thermal environment. Here we present the design and construction of a two-temperature preference assay chamber. The device uses Peltier-based thermoelectric modules (TECs) for heating and cooling, and is capable of precision control of temperatures from −5ºC to 60ºC. Our approach can be easily adapted for use in a variety of physiological and behavioral assays that require precise temperature control over a wide range of temperatures. PMID:23494724

  3. A Study of Concept Mapping as an Instructional Intervention in an Undergraduate General Chemistry Calorimetry Laboratory

    NASA Astrophysics Data System (ADS)

    Stroud, Mary W.

    This investigation, rooted in both chemistry and education, considers outcomes occurring in a small-scale study in which concept mapping was used as an instructional intervention in an undergraduate calorimetry laboratory. A quasi-experimental, multiple-methods approach was employed since the research questions posed in this study warranted the use of both qualitative and quantitative perspectives and evaluations. For the intervention group of students, a convenience sample, post-lab concept maps, written discussions, quiz responses and learning surveys were characterized and evaluated. Archived quiz responses for non-intervention students were also analyzed for comparison. Students uniquely constructed individual concept maps containing incorrect, conceptually correct and "scientifically thin" calorimetry characterizations. Students more greatly emphasized mathematical relationships and equations utilized during the calorimetry experiment; the meaning of calorimetry concepts was demonstrated to a lesser extent.

  4. One-dimensional light localization with classical scatterers: An advanced undergraduate laboratory experiment

    NASA Astrophysics Data System (ADS)

    Kemp, K. J.; Barker, S.; Guthrie, J.; Hagood, B.; Havey, M. D.

    2016-10-01

    The phenomenon of electronic wave localization through disorder remains an important area of fundamental and applied research. Localization of all wave phenomena, including light, is thought to exist in a restricted one-dimensional geometry. We present here a series of experiments to illustrate, using a straightforward experimental arrangement and approach, the localization of light in a quasi-one-dimensional physical system. In the experiments, reflected and transmitted light from a stack of glass slides of varying thickness reveals an Ohm's law type behavior for small thicknesses, and evolution to exponential decay of the transmitted power for larger thicknesses. For larger stacks of slides, a weak departure from one-dimensional behavior is also observed. The experiment and analysis of the results, showing many of the essential features of wave localization, is relatively straightforward, economical, and suitable for laboratory experiments at an undergraduate level.

  5. A basic Michelson laser interferometer for the undergraduate teaching laboratory demonstrating picometer sensitivity

    NASA Astrophysics Data System (ADS)

    Libbrecht, Kenneth G.; Black, Eric D.

    2015-05-01

    We describe a basic Michelson laser interferometer experiment for the undergraduate teaching laboratory that achieves picometer sensitivity in a hands-on, table-top instrument. In addition to providing an introduction to interferometer physics and optical hardware, the experiment also focuses on precision measurement techniques including servo control, signal modulation, phase-sensitive detection, and different types of signal averaging. Students examine these techniques in a series of steps that take them from micron-scale sensitivity using direct fringe counting to picometer sensitivity using a modulated signal and phase-sensitive signal averaging. After students assemble, align, and characterize the interferometer, they then use it to measure nanoscale motions of a simple harmonic oscillator system as a substantive example of how laser interferometry can be used as an effective tool in experimental science.

  6. Monitoring Hammerhead Ribozyme-Catalyzed Cleavage with a Fluorescein-Labeled Substrate: Effects of Magnesium Ions and Antibiotic Inhibitors. A Biochemistry Laboratory: Part 2

    NASA Astrophysics Data System (ADS)

    Chow, Christine S.; Somne, Smita; Llano-Sotelo, Beatriz

    1999-05-01

    An experiment is presented that demonstrates current techniques in modern RNA research and introduces a method for nonradioactive monitoring of RNA reactions. The laboratory involves the study of hammerhead ribozyme activity and the influence of metal ions and antibiotics on these important RNA-based reactions. The ribozyme class of RNA catalysts has current applications in both biotechnology and medicine and therefore should be of great interest to upper-level undergraduate students who anticipate careers in these areas. The students gain hands-on experience in working with RNA on a picomole level and also learn about gel electrophoresis, the use of fluorescent tagging, RNA-small molecule interactions, and the role of metal ions in biological systems. This laboratory offers students an opportunity to work with molecules that have direct applications in drug therapy and RNA catalysis.

  7. Towards the Standardization of a MATLAB-Based Control Systems Laboratory Experience for Undergraduate Students

    SciTech Connect

    Dixon, W.E.

    2001-03-15

    This paper seeks to begin a discussion with regard to developing standardized Computer Aided Control System Design (CACSD) tools that are typically utilized in an undergraduate controls laboratory. The advocated CACSD design tools are based on the popular, commercially available MATLAB environment, the Simulink toolbox, and the Real-Time Workshop toolbox. The primary advantages of the proposed approach are as follows: (1) the required computer hardware is low cost, (2) commercially available plants from different manufacturers can be supported under the same CACSD environment with no hardware modifications, (3) both the Windows and Linux operating systems can be supported via the MATLAB based Real-Time Windows Target and the Quality Real Time Systems (QRTS) based Real-Time Linux Target, and (4) the Simulink block diagram approach can be utilized to prototype control strategies; thereby, eliminating the need for low level programming skills. It is believed that the above advantages related to standardization of the CACSD design tools will facilitate: (1) the sharing of laboratory resources within each university (i.e., between departments) and (2) the development of Internet laboratory experiences for students (i.e., between universities).

  8. Cross-disciplinary thermoregulation and sweat analysis laboratory experiences for undergraduate Chemistry and Exercise Science students.

    PubMed

    Mulligan, Gregory; Taylor, Nichole; Glen, Mary; Tomlin, Dona; Gaul, Catherine A

    2011-06-01

    Cross-disciplinary (CD) learning experiences benefit student understanding of concepts and curriculum by offering opportunities to explore topics from the perspectives of alternate fields of study. This report involves a qualitative evaluation of CD health sciences undergraduate laboratory experiences in which concepts and students from two distinct disciplines [chemistry (CHEM) and exercise physiology (EPHE)] combined to study exercise thermoregulation and sweat analysis. Twenty-eight senior BSc Kinesiology (EPHE) students and 42 senior BSc CHEM students participated as part of their mutually exclusive, respective courses. The effectiveness of this laboratory environment was evaluated qualitatively using written comments collected from all students as well as from formal focus groups conducted after the CD laboratory with a representative cohort from each class (n = 16 CHEM students and 9 EPHE students). An open coding strategy was used to analyze the data from written feedback and focus group transcripts. Coding topics were generated and used to develop five themes found to be consistent for both groups of students. These themes reflected the common student perceptions that the CD experience was valuable and that students enjoyed being able to apply academic concepts to practical situations as well as the opportunity to interact with students from another discipline of study. However, students also reported some challenges throughout this experience that stemmed from the combination of laboratory groups from different disciplines with limited modification to the design of the original, pre-CD, learning environments. The results indicate that this laboratory created an effective learning opportunity that fostered student interest and enthusiasm for learning. The findings also provide information that could inform subsequent design and implementation of similar CD experiences to enhance engagement of all students and improve instructor efficacy.

  9. Biotechnology by Design: An Introductory Level, Project-Based, Synthetic Biology Laboratory Program for Undergraduate Students†

    PubMed Central

    Beach, Dale L.; Alvarez, Consuelo J.

    2015-01-01

    Synthetic biology offers an ideal opportunity to promote undergraduate laboratory courses with research-style projects, immersing students in an inquiry-based program that enhances the experience of the scientific process. We designed a semester-long, project-based laboratory curriculum using synthetic biology principles to develop a novel sensory device. Students develop subject matter knowledge of molecular genetics and practical skills relevant to molecular biology, recombinant DNA techniques, and information literacy. During the spring semesters of 2014 and 2015, the Synthetic Biology Laboratory Project was delivered to sophomore genetics courses. Using a cloning strategy based on standardized BioBrick genetic “parts,” students construct a “reporter plasmid” expressing a reporter gene (GFP) controlled by a hybrid promoter regulated by the lac-repressor protein (lacI). In combination with a “sensor plasmid,” the production of the reporter phenotype is inhibited in the presence of a target environmental agent, arabinose. When arabinose is absent, constitutive GFP expression makes cells glow green. But the presence of arabinose activates a second promoter (pBAD) to produce a lac-repressor protein that will inhibit GFP production. Student learning was assessed relative to five learning objectives, using a student survey administered at the beginning (pre-survey) and end (post-survey) of the course, and an additional 15 open-ended questions from five graded Progress Report assignments collected throughout the course. Students demonstrated significant learning gains (p < 0.05) for all learning outcomes. Ninety percent of students indicated that the Synthetic Biology Laboratory Project enhanced their understanding of molecular genetics. The laboratory project is highly adaptable for both introductory and advanced courses. PMID:26753032

  10. Biotechnology by Design: An Introductory Level, Project-Based, Synthetic Biology Laboratory Program for Undergraduate Students.

    PubMed

    Beach, Dale L; Alvarez, Consuelo J

    2015-12-01

    Synthetic biology offers an ideal opportunity to promote undergraduate laboratory courses with research-style projects, immersing students in an inquiry-based program that enhances the experience of the scientific process. We designed a semester-long, project-based laboratory curriculum using synthetic biology principles to develop a novel sensory device. Students develop subject matter knowledge of molecular genetics and practical skills relevant to molecular biology, recombinant DNA techniques, and information literacy. During the spring semesters of 2014 and 2015, the Synthetic Biology Laboratory Project was delivered to sophomore genetics courses. Using a cloning strategy based on standardized BioBrick genetic "parts," students construct a "reporter plasmid" expressing a reporter gene (GFP) controlled by a hybrid promoter regulated by the lac-repressor protein (lacI). In combination with a "sensor plasmid," the production of the reporter phenotype is inhibited in the presence of a target environmental agent, arabinose. When arabinose is absent, constitutive GFP expression makes cells glow green. But the presence of arabinose activates a second promoter (pBAD) to produce a lac-repressor protein that will inhibit GFP production. Student learning was assessed relative to five learning objectives, using a student survey administered at the beginning (pre-survey) and end (post-survey) of the course, and an additional 15 open-ended questions from five graded Progress Report assignments collected throughout the course. Students demonstrated significant learning gains (p < 0.05) for all learning outcomes. Ninety percent of students indicated that the Synthetic Biology Laboratory Project enhanced their understanding of molecular genetics. The laboratory project is highly adaptable for both introductory and advanced courses.

  11. Application of sigma metrics for the assessment of quality assurance in clinical biochemistry laboratory in India: a pilot study.

    PubMed

    Singh, Bhawna; Goswami, Binita; Gupta, Vinod Kumar; Chawla, Ranjna; Mallika, Venkatesan

    2011-04-01

    Ensuring quality of laboratory services is the need of the hour in the field of health care. Keeping in mind the revolution ushered by six sigma concept in corporate world, health care sector may reap the benefits of the same. Six sigma provides a general methodology to describe performance on sigma scale. We aimed to gauge our laboratory performance by sigma metrics. Internal quality control (QC) data was analyzed retrospectively over a period of 6 months from July 2009 to December 2009. Laboratory mean, standard deviation and coefficient of variation were calculated for all the parameters. Sigma was calculated for both the levels of internal QC. Satisfactory sigma values (>6) were elicited for creatinine, triglycerides, SGOT, CPK-Total and Amylase. Blood urea performed poorly on the sigma scale with sigma <3. The findings of our exercise emphasize the need for detailed evaluation and adoption of ameliorative measures in order to effectuate six sigma standards for all the analytical processes.

  12. Effects of Various Dental Materials on Alkaline Phosphatase Extracted from Pulp: An Experiment for the Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Thompson, Lorin R.

    1980-01-01

    A laboratory experiment that demonstrates the effects of various dental materials on a representative enzyme from the pulp is outlined. The experiment encourages students to consider the effects that various restorative materials and techniques might have on enzymes in the living pulp. (Author/MLW)

  13. Detection of an ABCA1 Variant Associated with Type 2 Diabetes Mellitus Susceptibility for Biochemistry and Genetic Laboratory Courses

    ERIC Educational Resources Information Center

    Legorreta-Herrera, M.; Mosqueda-Romo, N. A.; Hernández-Clemente, F.; Soto-Cruz, I.

    2013-01-01

    We selected diabetes mellitus for this laboratory exercise to provide students with an explicit model for scientific research concerning the association between the R230C polymorphism and susceptibility to type 2 diabetes mellitus, which is highly prevalent in the Mexican population. We used a collaborative project-based learning to engage…

  14. Assembly of a Modular Fluorimeter and Associated Software: Using LabVIEW in an Advanced Undergraduate Analytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Algar, W. Russ; Massey, Melissa; Krull, Ulrich J.

    2009-01-01

    A laboratory activity for an upper-level undergraduate course in instrumental analysis has been created around LabVIEW. Students learn rudimentary programming and interfacing skills during the construction of a fluorimeter assembled from common modular components. The fluorimeter consists of an inexpensive data acquisition module, LED light…

  15. Isolation and Culture of Bovine Oviductal Epithelial Cells for Use in the Anatomy and Physiology Laboratory and Undergraduate Research

    ERIC Educational Resources Information Center

    Way, Amy L.

    2006-01-01

    This article presents methods for the isolation and culture of epithelial cells from the bovine oviduct for use in both research and the teaching laboratory and provides examples of ways that an oviductal cell culture can be incorporated into an undergraduate research program. Cow reproductive tracts are readily available from area butchers, and…

  16. Oxidation of Borneol to Camphor Using Oxone and Catalytic Sodium Chloride: A Green Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Lang, Patrick T.; Harned, Andrew M.; Wissinger, Jane E.

    2011-01-01

    A new green oxidation procedure was developed for the undergraduate organic teaching laboratories using Oxone and a catalytic quantity of sodium chloride for the conversion of borneol to camphor. This simple 1 h, room temperature reaction afforded high quality and yield of product, was environmentally friendly, and produced negligible quantities…

  17. Red Seaweed Enzyme-Catalyzed Bromination of Bromophenol Red: An Inquiry-Based Kinetics Laboratory Experiment for Undergraduates

    ERIC Educational Resources Information Center

    Jittam, Piyachat; Boonsiri, Patcharee; Promptmas, Chamras; Sriwattanarothai, Namkang; Archavarungson, Nattinee; Ruenwongsa, Pintip; Panijpan, Bhinyo

    2009-01-01

    Haloperoxidase enzymes are of interest for basic and applied bioscientists because of their increasing importance in pharmaceutical industry and environmental cleanups. In a guided inquiry-based laboratory experiment for life-science, agricultural science, and health science undergraduates, the bromoperoxidase from a red seaweed was used to…

  18. SIPCAn (Separation, Isolation, Purification, Characterization, and Analysis): A One-Term, Integrated Project for the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Dintzner, Matthew R.; Kinzie, Charles R.; Pulkrabek, Kimberly A.; Arena, Anthony F.

    2011-01-01

    SIPCAn, an acronym for separation, isolation, purification, characterization, and analysis, is presented as a one-term, integrated project for the first-term undergraduate organic laboratory course. Students are assigned two mixtures of unknown organic compounds--a mixture of two liquid compounds and a mixture of two solid compounds--at the…

  19. Acid-Catalyzed Preparation of Biodiesel from Waste Vegetable Oil: An Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bladt, Don; Murray, Steve; Gitch, Brittany; Trout, Haylee; Liberko, Charles

    2011-01-01

    This undergraduate organic laboratory exercise involves the sulfuric acid-catalyzed conversion of waste vegetable oil into biodiesel. The acid-catalyzed method, although inherently slower than the base-catalyzed methods, does not suffer from the loss of product or the creation of emulsion producing soap that plagues the base-catalyzed methods when…

  20. Kinetics of Hydrolysis of Acetic Anhydride by In-Situ FTIR Spectroscopy: An Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Haji, Shaker; Erkey, Can

    2005-01-01

    A reaction kinetics experiment for the chemical engineering undergraduate laboratory course was developed in which in-situ Fourier Transfer Infrared spectroscopy was used to measure reactant and product concentrations. The kinetics of the hydrolysis of acetic anhydride was determined by experiments carried out in a batch reactor. The results…

  1. The Cyclohexanol Cycle and Synthesis of Nylon 6,6: Green Chemistry in the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Dintzner, Matthew R.; Kinzie, Charles R.; Pulkrabek, Kimberly; Arena, Anthony F.

    2012-01-01

    A one-term synthesis project that incorporates many of the principles of green chemistry is presented for the undergraduate organic laboratory. In this multistep scheme of reactions, students react, recycle, and ultimately convert cyclohexanol to nylon 6,6. The individual reactions in the project employ environmentally friendly methodologies, and…

  2. COED Transactions, Vol. XI, No. 12, December 1979. Some Alternate Applications of Microprocessor Trainers in Support of Undergraduate Laboratories.

    ERIC Educational Resources Information Center

    Mitchell, Eugene E., Ed.

    Ways are described for the use of a microprocessor trainer in undergraduate laboratories. Listed are microcomputer applications that have been used as demonstrations and which provide signals for other experiments which are not related to microprocessors. Information and figures are provided for methods to do the following: direct generation of…

  3. Synthesis of 10-Ethyl Flavin: A Multistep Synthesis Organic Chemistry Laboratory Experiment for Upper-Division Undergraduate Students

    ERIC Educational Resources Information Center

    Sichula, Vincent A.

    2015-01-01

    A multistep synthesis of 10-ethyl flavin was developed as an organic chemistry laboratory experiment for upper-division undergraduate students. Students synthesize 10-ethyl flavin as a bright yellow solid via a five-step sequence. The experiment introduces students to various hands-on experimental organic synthetic techniques, such as column…

  4. Fitting It All In: Adapting a Green Chemistry Extraction Experiment for Inclusion in an Undergraduate Analytical Laboratory

    ERIC Educational Resources Information Center

    Buckley, Heather L.; Beck, Annelise R.; Mulvihill, Martin J.; Douskey, Michelle C.

    2013-01-01

    Several principles of green chemistry are introduced through this experiment designed for use in the undergraduate analytical chemistry laboratory. An established experiment of liquid CO2 extraction of D-limonene has been adapted to include a quantitative analysis by gas chromatography. This facilitates drop-in incorporation of an exciting…

  5. Validating the Goldstein-Wehner Law for the Stratified Positive Column of DC Discharge in an Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Lisovskiy, V. A.; Koval, V. A.; Artushenko, E. P.; Yegorenkov, V. D.

    2012-01-01

    In this paper we suggest a simple technique for validating the Goldstein-Wehner law for a stratified positive column of dc glow discharge while studying the properties of gas discharges in an undergraduate laboratory. To accomplish this a simple device with a pre-vacuum mechanical pump, dc source and gas pressure gauge is required. Experiments may…

  6. Enhancing Hispanic Minority Undergraduates' Botany Laboratory Experiences: Implementation of an Inquiry-Based Plant Tissue Culture Module Exercise

    ERIC Educational Resources Information Center

    Siritunga, Dimuth; Navas, Vivian; Diffoot, Nanette

    2012-01-01

    Early involvement of students in hands-on research experiences are known to demystify research and promote the pursuit of careers in science. But in large enrollment departments such opportunities for undergraduates to participate in research are rare. To counteract such lack of opportunities, inquiry-based laboratory module in plant tissue…

  7. Ab Initio Determinations of Photoelectron Spectra Including Vibronic Features: An Upper-Level Undergraduate Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Lord, Richard L.; Davis, Lisa; Millam, Evan L.; Brown, Eric; Offerman, Chad; Wray, Paul; Green, Susan M. E.

    2008-01-01

    We present a first-principles determination of the photoelectron spectra of water and hypochlorous acid as a laboratory exercise accessible to students in an undergraduate physical chemistry course. This paper demonstrates the robustness and user-friendliness of software developed for the Franck-Condon factor calculation. While the calculator is…

  8. Gold Electrodes Modified with Self-Assembled Monolayers for Measuring L-Ascorbic Acid: An Undergraduate Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Ito, Takashi; Perera, D. M. Neluni T.; Nagasaka, Shinobu

    2008-01-01

    This article describes an undergraduate electrochemistry laboratory experiment in which the students measure the L-ascorbic acid content of a real sample. Gold electrodes modified with self-assembled monolayers (SAMs) of thioctic acid and cysteamine are prepared to study the effects of surface modification on the electrode reaction of L-ascorbic…

  9. Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling in a Green Alcohol Solvent for an Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hie, Liana; Chang, Jonah J.; Garg, Neil K.

    2015-01-01

    A modern undergraduate organic chemistry laboratory experiment involving the Suzuki-Miyaura coupling is reported. Although Suzuki-Miyaura couplings typically employ palladium catalysts in environmentally harmful solvents, this experiment features the use of inexpensive nickel catalysis, in addition to a "green" alcohol solvent. The…

  10. Laboratory Accreditation in Argentina

    PubMed Central

    Collino, Cesar; Chiabrando, Gustavo A.

    2015-01-01

    Laboratory accreditation is an essential element in the healthcare system since it contributes substantially to decision-making, in the prevention, diagnosis, treatment and follow-up of the health status of the patients, as well as in the organization and management of public healthcare. Therefore, the clinical biochemistry professional works continuously to provide reliable results and contributes to the optimization of operational logistics and integration of a laboratory into the health system. ISO 15189 accreditation, ensures compliance of the laboratory to minimize instances of error through the planning, prevention, implementation, evaluation and improvement of its procedures, which provides skill areas that involve both training undergraduate and graduate professionals in clinical biochemistry. PMID:27683497

  11. Development of a Green Fluorescent Protein-Based Laboratory Curriculum

    ERIC Educational Resources Information Center

    Larkin, Patrick D.; Hartberg, Yasha

    2005-01-01

    A laboratory curriculum has been designed for an undergraduate biochemistry course that focuses on the investigation of the green fluorescent protein (GFP). The sequence of procedures extends from analysis of the DNA sequence through PCR amplification, recombinant plasmid DNA synthesis, bacterial transformation, expression, isolation, and…

  12. Using Field Trips and Field-Based Laboratories to Teach Undergraduate Soil Science

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.; Steffan, Joshua; Hopkins, David

    2015-04-01

    Classroom activities can provide important background information allowing students to understand soils. However, soils are formed in nature; therefore, understanding their properties and spatial relationships in the field is a critical component for gaining a comprehensive and holistic understanding of soils. Field trips and field-based laboratories provide students with the field experiences and skills needed to gain this understanding. Field studies can 1) teach students the fundamentals of soil descriptions, 2) expose students to features (e.g., structure, redoximorphic features, clay accumulation, etc.) discussed in the classroom, and 3) allow students to verify for themselves concepts discussed in the more theoretical setting of the classroom. In each case, actually observing these aspects of soils in the field reinforces and improves upon classroom learning and comprehension. In addition, the United States Department of Agriculture's Natural Resources Conservation Service has identified a lack of fundamental field skills as a problem when they hire recent soil science graduates, thereby demonstrating the need for increased field experiences for the modern soil science student. In this presentation we will provide examples of field trips and field-based laboratories that we have designed for our undergraduate soil science classes, discuss the learning objectives, and provide several examples of comments our students have made in response to these field experiences.

  13. Synthesis of a Partially Protected Azidodeoxy Sugar. A Project Suitable for the Advanced Undergraduate Organic Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Norris, Peter; Freeze, Scott; Gabriel, Christopher J.

    2001-01-01

    The synthetic chemistry of carbohydrates provides a wealth of possible experiments for the undergraduate organic chemistry laboratory. However, few appropriate examples have been developed to date. With this simple two-step synthesis of a partially protected azidodeoxy sugar, we demonstrate several important concepts introduced in undergraduate chemistry (alcohol activation, steric hindrance, nucleophilic substitution) while offering products that are readily amenable to analysis by high field NMR. Students are exposed to techniques such as monitoring reactions by TLC, workup of reaction mixtures, and isolation by flash chromatography. Suitable methods for analysis of products include NMR, IR, MS, and polarimetry.

  14. Illuminating the Undergraduate Behavioral Neuroscience Laboratory: A Guide for the in vivo Application of Optogenetics in Mammalian Model Organisms.

    PubMed

    Roberts, Bradley M; Jarrin, Sarah E; Mathur, Brian N; Bailey, Aileen M

    2016-01-01

    Optogenetics is a technology that is growing rapidly in neuroscience, establishing itself as a fundamental investigative tool. As this tool is increasingly utilized across the neuroscience community and is one of the primary research techniques being presented at neuroscience conferences and in journals, we believe that it is important that this technology is introduced into the undergraduate neuroscience research laboratory. While there has been a significant body of work concentrated to deploy optogenetics in invertebrate model organisms, little to no work has focused on brining this technology to mammalian model organisms in undergraduate neuroscience laboratories. The establishment of in vivo optogenetics could provide for high-impact independent research projects for upper-level undergraduate students. Here we review the considerations for establishing in vivo optogenetics with the use of rodents in an undergraduate laboratory setting and provide some cost-saving guidelines to assist in making optogenetic technologies financially accessible. We discuss opsin selection, cell-specific opsin expression strategies, species selection, experimental design, selection of light delivery systems, and the construction of implantable optical fibers for the application of in vivo optogenetics in rodents.

  15. Illuminating the Undergraduate Behavioral Neuroscience Laboratory: A Guide for the in vivo Application of Optogenetics in Mammalian Model Organisms

    PubMed Central

    Roberts, Bradley M.; Jarrin, Sarah E.; Mathur, Brian N.; Bailey, Aileen M.

    2016-01-01

    Optogenetics is a technology that is growing rapidly in neuroscience, establishing itself as a fundamental investigative tool. As this tool is increasingly utilized across the neuroscience community and is one of the primary research techniques being presented at neuroscience conferences and in journals, we believe that it is important that this technology is introduced into the undergraduate neuroscience research laboratory. While there has been a significant body of work concentrated to deploy optogenetics in invertebrate model organisms, little to no work has focused on brining this technology to mammalian model organisms in undergraduate neuroscience laboratories. The establishment of in vivo optogenetics could provide for high-impact independent research projects for upper-level undergraduate students. Here we review the considerations for establishing in vivo optogenetics with the use of rodents in an undergraduate laboratory setting and provide some cost-saving guidelines to assist in making optogenetic technologies financially accessible. We discuss opsin selection, cell-specific opsin expression strategies, species selection, experimental design, selection of light delivery systems, and the construction of implantable optical fibers for the application of in vivo optogenetics in rodents. PMID:27385919

  16. Nickel-Catalyzed Suzuki–Miyaura Cross-Coupling in a Green Alcohol Solvent for an Undergraduate Organic Chemistry Laboratory

    PubMed Central

    2015-01-01

    A modern undergraduate organic chemistry laboratory experiment involving the Suzuki–Miyaura coupling is reported. Although Suzuki–Miyaura couplings typically employ palladium catalysts in environmentally harmful solvents, this experiment features the use of inexpensive nickel catalysis, in addition to a “green” alcohol solvent. The experiment employs heterocyclic substrates, which are important pharmaceutical building blocks. Thus, this laboratory procedure exposes students to a variety of contemporary topics in organic chemistry, including transition metal-catalyzed cross-couplings, green chemistry, and the importance of heterocycles in drug discovery, none of which are well represented in typical undergraduate organic chemistry curricula. The experimental protocol uses commercially available reagents and is useful in both organic and inorganic instructional laboratories. PMID:25774064

  17. Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling in a Green Alcohol Solvent for an Undergraduate Organic Chemistry Laboratory.

    PubMed

    Hie, Liana; Chang, Jonah J; Garg, Neil K

    2015-03-10

    A modern undergraduate organic chemistry laboratory experiment involving the Suzuki-Miyaura coupling is reported. Although Suzuki-Miyaura couplings typically employ palladium catalysts in environmentally harmful solvents, this experiment features the use of inexpensive nickel catalysis, in addition to a "green" alcohol solvent. The experiment employs heterocyclic substrates, which are important pharmaceutical building blocks. Thus, this laboratory procedure exposes students to a variety of contemporary topics in organic chemistry, including transition metal-catalyzed cross-couplings, green chemistry, and the importance of heterocycles in drug discovery, none of which are well represented in typical undergraduate organic chemistry curricula. The experimental protocol uses commercially available reagents and is useful in both organic and inorganic instructional laboratories.

  18. Identification of Threshold Concepts for Biochemistry

    ERIC Educational Resources Information Center

    Loertscher, Jennifer; Green, David; Lewis, Jennifer E.; Lin, Sara; Minderhout, Vicky

    2014-01-01

    Threshold concepts (TCs) are concepts that, when mastered, represent a transformed understanding of a discipline without which the learner cannot progress. We have undertaken a process involving more than 75 faculty members and 50 undergraduate students to identify a working list of TCs for biochemistry. The process of identifying TCs for…

  19. Predictors of performance of students in biochemistry in a doctor of chiropractic curriculum.

    PubMed

    Shaw, Kathy; Rabatsky, Ali; Dishman, Veronica; Meseke, Christopher

    2014-01-01

    Objective : This study investigated the effect of completion of course prerequisites, undergraduate grade point average (GPA), undergraduate degree, and study habits on the performance of students in the biochemistry course at Palmer College of Chiropractic Florida. Methods : Students self-reported information regarding academic preparation at the beginning of the semester using a questionnaire. Final exam grade and final course grade were noted and used as measures of performance. Multivariate analysis of variance was used to determine if number of prerequisites completed, undergraduate GPA, undergraduate degree, hours spent studying in undergraduate study, and hours spent studying in the first quarter of the chiropractic program were associated significantly with the biochemistry final exam grade or the final grade for the biochemistry course. Results : The number of prerequisites completed, undergraduate degree, hours spent studying in undergraduate study, and hours spent studying in the first quarter of the chiropractic program did not significantly affect the biochemistry final exam grade or the final grade for the biochemistry course, but undergraduate GPA did. Subsequent univariate analysis and Tukey's post hoc comparisons revealed that students with an undergraduate GPA in the 3.5 to 3.99 range earned significantly higher final course grades than students with an undergraduate GPA in the 2.5 to 2.99 range. Conclusion : No single variable was determined to be a factor that determines student success in biochemistry. The interrelationship between the factors examined warrants further investigation to understand fully how to predict the success of a student in the biochemistry course.

  20. [A Perspective on Innovation for Efficient Medical Practice in View of Undergraduate and Postgraduate Education and Training in Laboratory Medicine].

    PubMed

    Kawai, Tadashi

    2015-10-01

    Continuous advances in medical laboratory technology have driven major changes in the practice of laboratory medicine over the past two decades. The importance of the overall quality of a medical laboratory has been ever-increasing in order to improve and ensure the quality and safety of clinical practice by physicians in any type of medical facility. Laboratory physicians and professional staff should challenge themselves more than ever in various ways to cooperate and contribute with practicing physicians for the appropriate utilization of laboratory testing. This will certainly lead to a decrease in inappropriate or unnecessary laboratory testing, resulting in reducing medical costs. In addition, not only postgraduate, but also undergraduate medical education/training systems must be markedly innovated, considering recent rapid progress in electronic information and communication technologies.

  1. Safety in the Chemical Laboratory: Safety in Academic Departments with Graduate and Undergraduate Programs.

    ERIC Educational Resources Information Center

    Landgrebe, John A.

    1985-01-01

    Describes the University of Kansas chemistry department's safety program. Comprehensive regulation, undergraduate regulations, safety equipment, handling accidents, inspections, and training are addressed. (JN)

  2. Adsorption laboratory experiment for undergraduate chemical engineering: Introducing kinetic, equilibrium and thermodynamic concepts

    NASA Astrophysics Data System (ADS)

    Muryanto, S.; Djatmiko Hadi, S.

    2016-11-01

    Adsorption laboratory experiment for undergraduate chemical engineering program is discussed. The experiment demonstrated adsorption of copper ions commonly found in wastewater using bio-sorbent, i.e. agricultural wastes. The adsorption was performed in a batch mode under various parameters: adsorption time (up to 120 min), initial pH (2 to 6), adsorbent dose (2.0 to 12.0 g L-1), adsorbent size (50 to 170 mesh), initial Cu2+ concentration (25 to 100 ppm) and temperatures (room temp to 40°C). The equilibrium and kinetic data of the experiments were calculated using the two commonly used isotherms: Langmuir and Lagergren pseudo-first-order kinetics. The maximum adsorption capacity for Cu2+ was found as 94.34 mg g-1. Thermodynamically, the adsorption process was spontaneous and endothermic. The calculated activation energy for the adsorption was observed as high as 127.94 kJ mol-1. Pedagogically, the experiment was assumed to be important in increasing student understanding of kinetic, equilibrium and thermodynamic concepts.

  3. Applying Statistics in the Undergraduate Chemistry Laboratory: Experiments with Food Dyes

    NASA Astrophysics Data System (ADS)

    Thomasson, Kathryn A.; Lofthus-Herschman, Sheila; Humbert, Michelle; Kulevsky, Norman

    1998-02-01

    Simple experiments have been developed using visible spectroscopy to introduce students to statistical analysis of data. Students in chemistry often gain their first substantial experience with statistics in undergraduate chemistry laboratories (Quantitative Analysis and Physical Chemistry). Simple experiments using Beer's Law of absorption spectroscopy help introduce students to applying statistics. We have chosen two food coloring dyes found in many household items: FD and C Red #40 and FD and C Blue #1. To learn to evaluate their data, the students determine the concentration of a solution at a variety of confidence limits, and treat their data for suspicious values using the Q-test. Other experiments can be done to learn the concept of pooled variance. For example, students compare solutions they make themselves to determine if they are the same to what confidence level. Furthermore, Beer's Law can be used to teach linear least squares fitting by using a serial dilution of a colored compound and measuring absorbance for each concentration. Finally, by using common household substances and a simple analysis technique, students find that statistics can be considerably less threatening, and in some cases even fun.

  4. Faculty perspectives of the undergraduate laboratory: A survey of faculty goals for the laboratory and comparative analysis of responses using statistical techniques

    NASA Astrophysics Data System (ADS)

    Bruck, Aaron D.

    Qualitative research methods were used in a previous study to discover the goals of faculty members teaching undergraduate laboratories. Assertions about the goals and the unique characteristics of innovative lab programs were developed from categories that emerged from the interviews. The purpose of the present research was to create a survey instrument to measure the prevalence of these themes and faculty goals for undergraduate laboratories with a national sample. This was achieved through a two-stage process that utilized a pilot survey to determine the factor structure and reduce the number of survey items to a manageable size. Once the number of survey questions was reduced, the full survey was given to a national sample of undergraduate laboratory faculty. The 312 responses to the survey were then analyzed using factor analysis. Comparative analyses were conducted using analysis of variance (ANOVA). This dissertation focuses on the processes involved in the creation of this survey and the subsequent analyses of the data the survey produced. The results of these analyses and the implications of this research will also be discussed.

  5. Demand for Interdisciplinary Laboratories for Physiology Research by Undergraduate Students in Biosciences and Biomedical Engineering

    ERIC Educational Resources Information Center

    Clase, Kari L.; Hein, Patrick W.; Pelaez, Nancy J.

    2008-01-01

    Physiology as a discipline is uniquely positioned to engage undergraduate students in interdisciplinary research in response to the 2006-2011 National Science Foundation Strategic Plan call for innovative transformational research, which emphasizes multidisciplinary projects. To prepare undergraduates for careers that cross disciplinary…

  6. Synthesis and Kinetics of Hydrolysis of 3,5-Dimethyl-N-acetyl-p-benzoquinone Imine: An Undergraduate Laboratory

    NASA Astrophysics Data System (ADS)

    Buccigross, Jeanne M.; Metz, Christa; Elliot, Lori; Becker, Pamela; Earley, Angela S.; Hayes, Jerry W.; Novak, Michael; Underwood, Gayl A.

    1996-04-01

    The synthesis of the title compound by a three-step procedure is described. The hydrolysis kinetics, which involve two consecutive psuedo-first-order processes, are also described. The synthesis and kinetics experiments described here are proposed for incorporation into undergraduate laboratory courses under a variety of formats. The compound described here is related to a toxic metabolite of the common analgesics acetaminophen and phenacetin.

  7. Glycoprotein Biochemistry--Some Clinical Aspects of Interest to Biochemistry Students.

    ERIC Educational Resources Information Center

    Smith, Christopher A.; And Others

    1991-01-01

    Authors describe some clinical features of glycoprotein biochemistry, including recognition, selected blood glycoproteins, glycated proteins, histochemistry, and cancer. The material presented has largely been taught to medical laboratory students; however, it can be used to teach premedical students and pure biochemistry students. Includes two…

  8. Clinical biochemistry education in Spain.

    PubMed

    Queraltó, J M

    1994-12-31

    Clinical biochemistry in Spain was first established in 1978 as an independent specialty. It is one of several clinical laboratory sciences specialties, together with haematology, microbiology, immunology and general laboratory (Clinical analysis, análisis clinicos). Graduates in Medicine, Pharmacy, Chemistry and Biological Sciences can enter post-graduate training in Clinical Chemistry after a nation-wide examination. Training in an accredited Clinical Chemistry department is 4 years. A national committee for medical and pharmacist specialties advises the government on the number of trainees, program and educational units accreditation criteria. Technical staff includes nurses and specifically trained technologists. Accreditation of laboratories is developed at different regional levels. The Spanish Society for Clinical Biochemistry and Molecular Pathology (SECQ), the national representative in the IFCC, has 1600 members, currently publishes a scientific journal (Química Clinica) and a newsletter. It organizes a continuous education program, a quality control program and an annual Congress.

  9. Bringing the Excitement and Motivation of Research to Students; Using Inquiry and Research-Based Learning in a Year-Long Biochemistry Laboratory: Part II--Research-Based Laboratory--A Semester-Long Research Approach Using Malate Dehydrogenase as a Research Model

    ERIC Educational Resources Information Center

    Knutson, Kristopher; Smith, Jennifer; Nichols, Paul; Wallert, Mark A.; Provost, Joseph J.

    2010-01-01

    Research-based learning in a teaching environment is an effective way to help bring the excitement and experience of independent bench research to a large number of students. The program described here is the second of a two-semester biochemistry laboratory series. Here, students are empowered to design, execute and analyze their own experiments…

  10. New Ideas for an Old Enzyme: A Short, Question-Based Laboratory Project for the Purification and Identification of an Unknown LDH Isozyme

    ERIC Educational Resources Information Center

    Coleman, Aaron B.

    2010-01-01

    Enzyme purification projects are an excellent way to introduce many aspects of protein biochemistry, but can be difficult to carry out under the constraints of a typical undergraduate laboratory course. We have designed a short laboratory project for the purification and identification of an "unknown" lactate dehydrogenase (LDH) isozyme that can…

  11. Graduate Teaching Assistants; Critical Colleagues or Casual Components in the Undergraduate Laboratory Learning? An Exploration of the Role of the Postgraduate Teacher in the Sciences

    ERIC Educational Resources Information Center

    Ryan, Barry J.

    2014-01-01

    Laboratory training is key to many science subjects and those that teach the practical laboratory skills maintain a pivotal role in undergraduate science training. Graduate Teaching Assistants (GTAs) are regularly used in higher education institutes to teach these practical lab skills. The GTA can be involved in both laboratory teaching and…

  12. Construction, implementation, and evaluation of an undergraduate biology laboratory teaching model

    NASA Astrophysics Data System (ADS)

    Tarrant, Todd M.

    This dissertation documents a time series study in which an undergraduate non-majors biology laboratory was revised, leading to the development of a new teaching model. The course model was developed at a large Midwestern university enrolling about 827 students in 32 sections per semester and using graduate teaching assistants as primary instructors. The majority of the students consisted of freshman and sophomores, with the remainder being juniors and seniors. This dissertation explains the rationale leading to the development and implementation of this educational model using graduate teaching assistants as the primary course instructors and embedded course assessment as evidence of its success. The major components of this model include six major items including: learning community, course design, GTA professional development, course delivery, assessment, and the filter. The major aspects of this model include clear links between instruction, GTA professional development, embedded assessment (student and GTA), course revision, student perceptions, and performance. The model includes the following components: Formal and informal discourse in the learning community, teaching assistant professional development, the use of multiple assessment tools, a filter to guide course evaluation, and redirection and delivery of course content based on embedded formal course assessment. Teaching assistants receive both initial and ongoing professional development throughout the semester in effective instructional pedagogy from an instructor of record. Results for three years of operation show a significant increase in student biology content knowledge and the use of scientific process/critical thinking skills with mean improvement in student performance of 25.5% and 18.9% respectively. Mean attendance for ISB 208L is 95% for the six semesters of this study showing students regularly attend the laboratory classes and remain in the course with a completion rate of 93

  13. Formative evaluation of traditional instruction and cooperative inquiry projects in undergraduate chemistry laboratory courses

    NASA Astrophysics Data System (ADS)

    Panichas, Michael A.

    Reform agendas for practice in undergraduate chemistry are moving curriculum beyond traditional behaviorist teaching strategies to include constructivist approaches, for extending student learning beyond simple mastery of chemistry content (Bunce & Robinson, 1997; Lagowski, 1998; Herron & Nurrenburn, 1999). Yet implementing new strategies requires assessment of their benefit to learning. This study was undertaken to provide a formal and formative evaluation of the curricula in General and Organic chemistry laboratory courses, which are structured with both Traditional expository lab exercises, and a cooperative inquiry exercise called the Open Ended Project. Using a mixed-methodological case study framework, the primary goal of the research was to determine how the inclusion of these teaching strategies impacts student learning in the areas of Academic Achievement and Affective Learning from the perspective of the students enrolled in these lab classes. The findings suggest that the current curriculum structure of including both Traditional Instruction and the Open Ended Project does address students' Academic Achievement and Affective Learning. However, students perceived that these curriculum components each contributed differently to their learning. For Academic Achievement, Traditional Experiments and the Project had a positive impact on students' operational skills, such as how to use and choose lab techniques for performing or designing experiments, as well as their conceptual learning, such as understanding concepts, and relating those concepts during data analysis. Yet for Affective Learning, such as students' sense of confidence, accomplishment, and engagement, the Project, which has a cooperative learning element, had a positive impact on student learning, while Traditional Experiments, which do not have a cooperative learning element, had a moderate negative impact. The findings point to Cooperative Learning as the key element, which makes the positive

  14. Clinical biochemistry

    NASA Technical Reports Server (NTRS)

    Alexander, W. C.; Leach, C. S.; Fischer, C. L.

    1975-01-01

    The objectives of the biochemical studies conducted for the Apollo program were (1) to provide routine laboratory data for assessment of preflight crew physical status and for postflight comparisons; (2) to detect clinical or pathological abnormalities which might have required remedial action preflight; (3) to discover as early as possible any infectious disease process during the postflight quarantine periods following certain missions; and (4) to obtain fundamental medical knowledge relative to man's adjustment to and return from the space flight environment. The accumulated data presented suggest that these requirements were met by the program described. All changes ascribed to the space flight environment were subtle, whereas clinically significant changes were consistent with infrequent illnesses unrelated to the space flight exposure.

  15. Simple Laboratory Exercise for Induction of Beta-Mannanase from "Aspergillus niger"

    ERIC Educational Resources Information Center

    Mulimani, V. H.; Naganagouda, K.

    2010-01-01

    This laboratory experiment was designed for Biochemistry, Biotechnology, Microbiology, and Food Technology students of undergraduate and postgraduate courses. The experiment shows the advantages of using agricultural waste, copra mannan as potent inducer of [beta]-mannanase. The students were able to compare the enzyme induction by commercial…

  16. Designing Polymerase Chain Reaction (PCR) Primer Multiplexes in the Forensic Laboratory

    ERIC Educational Resources Information Center

    Elkins, Kelly M.

    2011-01-01

    The polymerase chain reaction (PCR) is a common experiment in upper-level undergraduate biochemistry, molecular biology, and forensic laboratory courses as reagents and thermocyclers have become more affordable for institutions. Typically, instructors design PCR primers to amplify the region of interest and the students prepare their samples for…

  17. Preparation, Purification, and Secondary Structure Determination of Bacillus Circulans Xylanase. A Molecular Laboratory Incorporating Aspects of Molecular Biology, Biochemistry, and Biophysical Chemistry

    ERIC Educational Resources Information Center

    Russo, Sal; Gentile, Lisa

    2006-01-01

    A project module designed for biochemistry or cellular and molecular biology student which involves determining the secondary structure of Bacillus circulans xylanase (BCX) by circular dichroism (CD) spectroscopy under conditions that compromise its stabilizing intramolecular forces is described. The lab model enhanced students knowledge of the…

  18. Are Electrode Caps Worth the Investment? An Evaluation of EEG Methods in Undergraduate Neuroscience Laboratory Courses and Research

    PubMed Central

    Shields, Stephanie M.; Morse, Caitlin E.; Applebaugh, E. Drew; Muntz, Tyler L.; Nichols, David F.

    2016-01-01

    Electroencephalography (EEG) is a common neuroscience technique that is more accessible to undergraduate programs than expensive techniques such as fMRI and single-cell recording. The use of EEG can provide undergraduates with firsthand neuroscience research experience without taking too many financial resources away from a program. There are multiple types of EEG equipment that can be used, including individual electrodes and electrode caps. This study used surveys administered to students who were in a neuroscience laboratory course, conducting research, or participating in research in order to discern which of these two EEG setups is preferred by undergraduates. According to average reaction scores calculated from the surveys, laboratory students tended to prefer individual electrodes over electrode caps, and when explicitly asked about their overall preference, a majority of laboratory students chose individual electrodes over electrode caps. Additionally, comparable levels of improvement in learning objectives and the quality of data collected in laboratory sessions were found across methods. Student researchers’ ratings revealed a marginal preference for caps over individual electrodes, and all 5 researchers surveyed chose caps on a discriminate choice question. Research participants’ ratings of caps and individual electrodes, however, were not significantly different. These results do not point to a concrete recommendation of one setup over the other but rather suggest that either setup could be a viable option. Therefore, we conclude that programs can comfortably decide which to use based on their own needs and resources as well as the relative advantages and disadvantages of each setup. For example, individual electrodes may be better for programs with low budgets looking to introduce students to EEG data recording, whereas electrode caps may be better for programs looking to better prepare students for future EEG research or to perform multichannel

  19. Quality of Undergraduate Physics Students' Written Scientific Arguments: How to Promote Students' Appropriation of Scientific Discourse in Physics Laboratory Reports?

    NASA Astrophysics Data System (ADS)

    Aydeniz, Mehmet; Yeter-Aydeniz, Kubra

    2015-03-01

    In this study we challenged 18 undergraduate physics students to develop four written scientific arguments across four physics labs: 1) gravity-driven acceleration, 2) conservation of mechanical energy, 3) conservation of linear momentum and 4) boyle's law, in a mechanics and thermodynamics laboratory course. We evaluated quality of the written scientific arguments developed by the participants using the Claim, Evidence, Reasoning and Rebuttal (CERR) rubric. The results indicate that while students developed adequate scientific explanations that summarized the findings of their experiments, they experienced unique difficulties in using a persuasive and critical discourse in their written arguments. Students experienced the most difficulty in considering alternative explanations in formulating their written scientific arguments. We elaborate on the implications of these findings for teaching physics laboratories and assessing students' learning in physics laboratories. We especially focus on the importance of framing in helping students to appropriate the epistemic norms of science in writing scientific arguments.

  20. The Genomics Education Partnership: Successful Integration of Research into Laboratory Classes at a Diverse Group of Undergraduate Institutions

    PubMed Central

    Shaffer, Christopher D.; Alvarez, Consuelo; Bailey, Cheryl; Barnard, Daron; Bhalla, Satish; Chandrasekaran, Chitra; Chandrasekaran, Vidya; Chung, Hui-Min; Dorer, Douglas R.; Du, Chunguang; Eckdahl, Todd T.; Poet, Jeff L.; Frohlich, Donald; Goodman, Anya L.; Gosser, Yuying; Hauser, Charles; Hoopes, Laura L.M.; Johnson, Diana; Jones, Christopher J.; Kaehler, Marian; Kokan, Nighat; Kopp, Olga R.; Kuleck, Gary A.; McNeil, Gerard; Moss, Robert; Myka, Jennifer L.; Nagengast, Alexis; Morris, Robert; Overvoorde, Paul J.; Shoop, Elizabeth; Parrish, Susan; Reed, Kelynne; Regisford, E. Gloria; Revie, Dennis; Rosenwald, Anne G.; Saville, Ken; Schroeder, Stephanie; Shaw, Mary; Skuse, Gary; Smith, Christopher; Smith, Mary; Spana, Eric P.; Spratt, Mary; Stamm, Joyce; Thompson, Jeff S.; Wawersik, Matthew; Wilson, Barbara A.; Youngblom, Jim; Leung, Wilson; Buhler, Jeremy; Mardis, Elaine R.; Lopatto, David

    2010-01-01

    Genomics is not only essential for students to understand biology but also provides unprecedented opportunities for undergraduate research. The goal of the Genomics Education Partnership (GEP), a collaboration between a growing number of colleges and universities around the country and the Department of Biology and Genome Center of Washington University in St. Louis, is to provide such research opportunities. Using a versatile curriculum that has been adapted to many different class settings, GEP undergraduates undertake projects to bring draft-quality genomic sequence up to high quality and/or participate in the annotation of these sequences. GEP undergraduates have improved more than 2 million bases of draft genomic sequence from several species of Drosophila and have produced hundreds of gene models using evidence-based manual annotation. Students appreciate their ability to make a contribution to ongoing research, and report increased independence and a more active learning approach after participation in GEP projects. They show knowledge gains on pre- and postcourse quizzes about genes and genomes and in bioinformatic analysis. Participating faculty also report professional gains, increased access to genomics-related technology, and an overall positive experience. We have found that using a genomics research project as the core of a laboratory course is rewarding for both faculty and students. PMID:20194808

  1. Excited-State Processes in Slow Motion: An Experiment in the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Galley, William C.; Tanchak, Oleh M.; Yager, Kevin G.; Wilczek-Vera, Grazyna

    2010-01-01

    Lasers have transformed chemistry and the everyday world. Therefore, it is not surprising that undergraduate chemistry students are frequently exposed to fairly advanced laser techniques. The usual topics studied with lasers are molecular spectroscopy and chemical kinetics. Static and dynamic fluorescence experiments seem to be particularly…

  2. Organic Materials in the Undergraduate Laboratory: Microscale Synthesis and Investigation of a Donor-Acceptor Molecule

    ERIC Educational Resources Information Center

    Pappenfus, Ted M.; Schliep, Karl B.; Dissanayake, Anudaththa; Ludden, Trevor; Nieto-Ortega, Belen; Lopez Navarrete, Juan T.; Ruiz Delgado, M. Carmen; Casado, Juan

    2012-01-01

    A series of experiments for undergraduate courses (e.g., organic, physical) have been developed in the area of small molecule organic materials. These experiments focus on understanding the electronic and redox properties of a donor-acceptor molecule that is prepared in a convenient one-step microscale reaction. The resulting intensely colored…

  3. Solvent Extraction of Copper: An Extractive Metallurgy Exercise for Undergraduate Teaching Laboratories

    ERIC Educational Resources Information Center

    Smellie, Iain A.; Forgan, Ross S.; Brodie, Claire; Gavine, Jack S.; Harris, Leanne; Houston, Daniel; Hoyland, Andrew D.; McCaughan, Rory P.; Miller, Andrew J.; Wilson, Liam; Woodhall, Fiona M.

    2016-01-01

    A multidisciplinary experiment for advanced undergraduate students has been developed in the context of extractive metallurgy. The experiment serves as a model of an important modern industrial process that combines aspects of organic/inorganic synthesis and analysis. Students are tasked to prepare a salicylaldoxime ligand and samples of the…

  4. Undergraduate Laboratory Experiment Facilitating Active Learning of Concepts in Transport Phenomena: Experiment with a Subliming Solid

    ERIC Educational Resources Information Center

    Utgikar, Vivek P.

    2015-01-01

    An experiment based on the sublimation of a solid was introduced in the undergraduate Transport Phenomena course. The experiment required the students to devise their own apparatus and measurement techniques. The theoretical basis, assignment of the experiment, experimental results, and student/instructor observations are described in this paper.…

  5. Student Perceptions of an Upper-Level, Undergraduate Human Anatomy Laboratory Course without Cadavers

    ERIC Educational Resources Information Center

    Wright, Shirley J.

    2012-01-01

    Several programs in health professional education require or are considering requiring upper-level human anatomy as prerequisite for their applicants. Undergraduate students are confronted with few institutions offering such a course, in part because of the expense and logistical issues associated with a cadaver-based human anatomy course. This…

  6. A Computer-Interfaced O2 Probe: Instrumentation for Undergraduate Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Adamson, Gary E.; Nakhleh, Mary B.; Zimmerman, James R.

    1997-01-01

    Describes interfacing a hand-held oxygen probe with a microcomputer and suggests experiments for undergraduate chemistry courses that could facilitate student understanding of aquatic environmental processes which involve dissolved oxygen. Data can be analyzed through the program or exported into other software. Presents results of an experiment…

  7. Synthesis and Characterization of Calixarene Tetraethers: An Exercise in Supramolecular Chemistry for the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Debbert, Stefan L.; Hoh, Bradley D.; Dulak, David J.

    2016-01-01

    In this experiment for an introductory undergraduate organic chemistry lab, students tetraalkylate tertbutylcalix[4]arene, a bowl-shaped macrocyclic oligophenol, and examine the supramolecular chemistry of the tetraether product by proton nuclear magnetic resonance (NMR) spectroscopy. Complexation with a sodium ion reduces the conformational…

  8. Physico-Geometrical Kinetics of Solid-State Reactions in an Undergraduate Thermal Analysis Laboratory

    ERIC Educational Resources Information Center

    Koga, Nobuyoshi; Goshi, Yuri; Yoshikawa, Masahiro; Tatsuoka, Tomoyuki

    2014-01-01

    An undergraduate kinetic experiment of the thermal decomposition of solids by microscopic observation and thermal analysis was developed by investigating a suitable reaction, applicable techniques of thermal analysis and microscopic observation, and a reliable kinetic calculation method. The thermal decomposition of sodium hydrogen carbonate is…

  9. Rapid Multistep Synthesis of a Bioactive Peptidomimetic Oligomer for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Utku, Yeliz; Rohatgi, Abhinav; Yoo, Barney; Kirshenbaum, Kent; Zuckermann, Ronald N.; Pohl, Nicola L.

    2010-01-01

    Peptidomimetic compounds are increasingly important in drug-discovery applications. We introduce the synthesis of an N-substituted glycine oligomer, a bioactive "peptoid" trimer. The six-step protocol is conducted on solid-phase resin, enabling the synthesis to be performed by undergraduate organic chemistry students. This synthesis lab was…

  10. Use of Microcomputers in the Undergraduate Chemistry Laboratory: An Absorption Spectrum Experiment.

    ERIC Educational Resources Information Center

    Terry, Ronald J.; And Others

    1989-01-01

    Describes a computer program designed to enable undergraduate students to apply computer skills for data acquisition and processing in experimental chemistry. An example is given that examines the absorption spectra of conjugated molecules such as carbocyanine dyes, and the free electron model is explained. (six references) (LRW)

  11. A Model System for the Study of Gene Expression in the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Hargadon, Kristian M.

    2016-01-01

    The flow of genetic information from DNA to RNA to protein, otherwise known as the "central dogma" of biology, is one of the most basic and overarching concepts in the biological sciences. Nevertheless, numerous studies have reported student misconceptions at the undergraduate level of this fundamental process of gene expression. This…

  12. Hydrogen Storage Experiments for an Undergraduate Laboratory Course--Clean Energy: Hydrogen/Fuel Cells

    ERIC Educational Resources Information Center

    Bailey, Alla; Andrews, Lisa; Khot, Ameya; Rubin, Lea; Young, Jun; Allston, Thomas D.; Takacs, Gerald A.

    2015-01-01

    Global interest in both renewable energies and reduction in emission levels has placed increasing attention on hydrogen-based fuel cells that avoid harm to the environment by releasing only water as a byproduct. Therefore, there is a critical need for education and workforce development in clean energy technologies. A new undergraduate laboratory…

  13. Analysis of Currently Available Analgesic Tablets by Modern Liquid Chromatography: An Undergraduate Laboratory Introduction to HPLC.

    ERIC Educational Resources Information Center

    Kagel, R. A.; Farwell, S. O.

    1983-01-01

    Background information, procedures, and results, are provided for an undergraduate experiment in which analgesic tablets are analyzed using liquid chromatography. The experiment, an improved, modified version of the Waters Associates Inc. experiment, is simple to prepare, requiring little glassware and minimal sample manipulation by students. (JN)

  14. Learning Chemistry Research Outside the Laboratory: Novel Graduate and Undergraduate Courses in Research Methodology.

    ERIC Educational Resources Information Center

    Schildcrout, Steven M.

    2002-01-01

    Describes two courses in research methodology, required respectively for graduate and undergraduate chemistry students as they begin research projects. The courses include traditional classroom sessions with discussion as well as exercises in writing and speaking, critiquing a journal article and a thesis, and preparing a research proposal.…

  15. A Cost-Effective Atomic Force Microscope for Undergraduate Control Laboratories

    ERIC Educational Resources Information Center

    Jones, C. N.; Goncalves, J.

    2010-01-01

    This paper presents a simple, cost-effective and robust atomic force microscope (AFM), which has been purposely designed and built for use as a teaching aid in undergraduate controls labs. The guiding design principle is to have all components be open and visible to the students, so the inner functioning of the microscope has been made clear to…

  16. A Gas-Sensor-Based Urea Enzyme Electrode: Its Construction and Use in the Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Riechel, Thomas L.

    1984-01-01

    Describes an undergraduate experiment for the potentiometric determination of urea based on the physical entrapment of urease on the tip of an ammonia gas sensor. An advantage of this technique is the ease with which the ammonia electrode can be converted to a urea electrode. (JN)

  17. Verification of Compton Collision and Klein-Nishina Formulas--An Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Singhal, R. P.; Burns, A. J.

    1978-01-01

    Describes an experiment to verify the Compton collision formula and the angular dependance of the Klein-Nishina formula. Equipment used is a 1-mCi(137)Cs source, 2x2 in. NaI detector and a multichannel analyzer. Suitable for honor undergraduates. (Author/GA)

  18. An Undergraduate Laboratory Class Using CRISPR/Cas9 Technology to Mutate Drosophila Genes

    ERIC Educational Resources Information Center

    Adame, Vanesa; Chapapas, Holly; Cisneros, Marilyn; Deaton, Carol; Deichmann, Sophia; Gadek, Chauncey; Lovato, TyAnna L.; Chechenova, Maria B.; Guerin, Paul; Cripps, Richard M.

    2016-01-01

    CRISPR/Cas9 genome editing technology is used in the manipulation of genome sequences and gene expression. Because of the ease and rapidity with which genes can be mutated using CRISPR/Cas9, we sought to determine if a single-semester undergraduate class could be successfully taught, wherein students isolate mutants for specific genes using…

  19. A Writing-Intensive, Methods-Based Laboratory Course for Undergraduates

    ERIC Educational Resources Information Center

    Colabroy, Keri L.

    2011-01-01

    Engaging undergraduate students in designing and executing original research should not only be accompanied by technique training but also intentional instruction in the critical analysis and writing of scientific literature. The course described here takes a rigorous approach to scientific reading and writing using primary literature as the model…

  20. Aligning the Undergraduate Organic Laboratory Experience with Professional Work: The Centrality of Reliable and Meaningful Data

    ERIC Educational Resources Information Center

    Alaimo, Peter J.; Langenhan, Joseph M.; Suydam, Ian T.

    2014-01-01

    Many traditional organic chemistry lab courses do not adequately help students to develop the professional skills required for creative, independent work. The overarching goal of the new organic chemistry lab series at Seattle University is to teach undergraduates to think, perform, and behave more like professional scientists. The conversion of…

  1. Integration of Computational Chemistry into the Undergraduate Organic Chemistry Laboratory Curriculum

    ERIC Educational Resources Information Center

    Esselman, Brian J.; Hill, Nicholas J.

    2016-01-01

    Advances in software and hardware have promoted the use of computational chemistry in all branches of chemical research to probe important chemical concepts and to support experimentation. Consequently, it has become imperative that students in the modern undergraduate curriculum become adept at performing simple calculations using computational…

  2. Aerobic Alcohol Oxidation Using a Copper(I)/TEMPO Catalyst System: A Green, Catalytic Oxidation Reaction for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hill, Nicholas J.; Hoover, Jessica M.; Stahl, Shannon S.

    2013-01-01

    Modern undergraduate organic chemistry textbooks provide detailed discussion of stoichiometric Cr- and Mn-based reagents for the oxidation of alcohols, yet the use of such oxidants in instructional and research laboratories, as well as industrial chemistry, is increasingly avoided. This work describes a laboratory exercise that uses ambient air as…

  3. Determining the Transference Number of H[superscript +](aq) by a Modified Moving Boundary Method: A Directed Study for the Undergraduate Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Dabke, Rajeev B.; Gebeyehu, Zewdu; Padelford, Jonathan

    2012-01-01

    A directed study for the undergraduate physical chemistry laboratory for determining the transference number of H[superscript +](aq) using a modified moving boundary method is presented. The laboratory study combines Faraday's laws of electrolysis with mole ratios and the perfect gas equation. The volume of hydrogen gas produced at the cathode is…

  4. Spectroscopy in Sol-Gel Matrices: An Open-Ended Laboratory Experience for Upper-Level Undergraduates

    NASA Astrophysics Data System (ADS)

    Higginbotham, Catrena; Pike, Charles F.; Rice, Jeanette K.

    1998-04-01

    Guided-inquiry/cooperative learning laboratory experiences encourage critical thinking, problem- solving and teamwork skills in students, and have been proposed for many undergraduate laboratories, particularly general and organic. Fewer reports have appeared for upper level courses such as instrumental analysis. In this report, we discuss our recent conversion of our Instrumental Analysis:Spectroscopy course to guided-inquiry format, and describe an appropriate novel experiment. Sol-gel technology is incorporated as a means to investigate spectral properties of various organic molecules. Students are exposed to silicate glass synthesis as well as modern spectroscopic techniques. Experimental details are researched, designed and executed by the students, and the results presented in both written format as well as oral presentation/examination.

  5. Measurement of cAMP in an undergraduate teaching laboratory, using ALPHAscreen technology.

    PubMed

    Bartho, Joseph D; Ly, Kien; Hay, Debbie L

    2012-02-14

    Adenosine 3',5'-monophosphate (cAMP) is a cellular second messenger with central relevance to pharmacology, cell biology, and biochemistry teaching programs. cAMP is produced from adenosine triphosphate by adenylate cyclase, and its production is reduced or enhanced upon activation of many G protein-coupled receptors. Therefore, the measurement of cAMP serves as an indicator of receptor activity. Although there are many assays available for measuring cAMP, few are suitable for large class teaching, and even fewer seem to have been adapted for this purpose. Here, we describe the use of bead-based ALPHAscreen (Amplified Luminescent Proximity Homogenous Assay) technology for teaching a class of more than 300 students the practical aspects of detecting signal transduction. This technology is applicable to the measurement of many different signaling pathways. This resource is designed to provide a practical guide for instructors and a useful model for developing other classes using similar technologies.

  6. Urban Field Experiences for Undergraduate Liberal Arts Students: Using Compromised Environments as Living Laboratories

    NASA Astrophysics Data System (ADS)

    MacAvoy, S. E.; Knee, K.

    2015-12-01

    While urban environments may lack the beauty of relatively pristine field sites, they can be used to deliver an effective demonstration of actual environmental damage. Students demanding applied field experiences from their undergraduate environmental science programs can be well served in urban settings. Here, we present strategies for integrating degraded urban systems into the undergraduate field experience. Urban locations provide an opportunity for a different type of local "field-work" than would otherwise be available. In the upper-level undergraduate Environmental Methods class, we relied on a National Park area located a 10-minute walk from campus for most field exercises. Activities included soil analysis, measuring stream flow and water quality parameters, dendrochronology, and aquatic microbe metabolism. In the non-majors class, we make use of our urban location to contrast water quality in parks and highly channelized urban streams. Students spend labs immersed in streams and wetlands heavily impacted by the urban runoff their city generates. Here we share lesson plans and budgets for field activities that can be completed during a class period of 2.5 hours with a $75 course fee, show how these activities help students gain quantitative competency.

  7. Reproduction, Physiology and Biochemistry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter focuses on the reproduction, physiology, and biochemistry of the root-knot nematodes. The extensive amount of information on the reproduction and cytogenetics of species of Meloidogyne contrasts with the limited information on physiology, biochemistry, and biochemical pathways. In commo...

  8. Curricular Guidelines in Biochemistry.

    ERIC Educational Resources Information Center

    Adams, A. Birk; And Others

    1981-01-01

    Curricular guidelines for biochemistry are presented, developed by the Section on Biochemistry and Nutrition and the Section on Oral Diagnosis and Oral Medicine of the American Association of Dental Schools for use by individual educational institutions as curriculum development aids. (MLW)

  9. Hormones and Antibiotics in Nature: A Laboratory Module Designed to Broaden Undergraduate Perspectives on Typically Human-Centered Topics†

    PubMed Central

    Weber, Carolyn F.

    2014-01-01

    Bringing discovery-based research into undergraduate laboratory courses increases student motivation and learning gains over traditional exercises that merely teach technique or demonstrate well-documented phenomena. Laboratory experiences are further enhanced when they are designed to challenge student perspectives on topics relevant to their lives. To this end, a laboratory module on antibiotics and hormones, which are generally discussed in the context of human health, was developed for students to explore the multifaceted roles of antibiotics and hormones in nature (e.g. interspecies communication) via reading primary scientific literature and performing discovery-based experiments. The main objective of this module was to increase the general biological literacy of students as determined by their ability to connect the Five Core Concepts of Biological Literacy (American Association for the Advancement of Science, Vision and Change in Undergraduate Education: A Call to Action, 2011) to the topics “hormones” and “antibiotics” in pre- and postmodule surveys. After discussing unpublished research findings, cell biology students performed experiments demonstrating that: 1) fungi may promote fern growth via hormone production, 2) novel bacterial isolates in the genus Streptomyces produce antifungal compounds, and 3) subinhibitory antibiotic concentrations may enhance soil bacterial growth. The third finding provided evidence supporting a hypothesis framed in a scientific article that students read and discussed. Student perspectives on premodule surveys focused on roles of hormones and antibiotics in the human body (e.g. development, fighting infection), but their broadened postmodule perspectives encompassed the roles of these molecules in organismal communication and possibly the evolution of multicellularity. PMID:25574294

  10. Hormones and antibiotics in nature: a laboratory module designed to broaden undergraduate perspectives on typically human-centered topics.

    PubMed

    Weber, Carolyn F

    2014-12-01

    Bringing discovery-based research into undergraduate laboratory courses increases student motivation and learning gains over traditional exercises that merely teach technique or demonstrate well-documented phenomena. Laboratory experiences are further enhanced when they are designed to challenge student perspectives on topics relevant to their lives. To this end, a laboratory module on antibiotics and hormones, which are generally discussed in the context of human health, was developed for students to explore the multifaceted roles of antibiotics and hormones in nature (e.g. interspecies communication) via reading primary scientific literature and performing discovery-based experiments. The main objective of this module was to increase the general biological literacy of students as determined by their ability to connect the Five Core Concepts of Biological Literacy (American Association for the Advancement of Science, Vision and Change in Undergraduate Education: A Call to Action, 2011) to the topics "hormones" and "antibiotics" in pre- and postmodule surveys. After discussing unpublished research findings, cell biology students performed experiments demonstrating that: 1) fungi may promote fern growth via hormone production, 2) novel bacterial isolates in the genus Streptomyces produce antifungal compounds, and 3) subinhibitory antibiotic concentrations may enhance soil bacterial growth. The third finding provided evidence supporting a hypothesis framed in a scientific article that students read and discussed. Student perspectives on premodule surveys focused on roles of hormones and antibiotics in the human body (e.g. development, fighting infection), but their broadened postmodule perspectives encompassed the roles of these molecules in organismal communication and possibly the evolution of multicellularity.

  11. Zebrafish development and genetics: introducing undergraduates to developmental biology and genetics in a large introductory laboratory class.

    PubMed

    D'Costa, Allison; Shepherd, Iain T

    2009-06-01

    We have taken advantage of the strengths of the zebrafish model system to introduce developmental biology and genetics to undergraduates in their second semester of the Introductory Biology course at Emory. We designed a 6-week laboratory module based on research being undertaken by faculty in the department, and incorporated experiments that used current research methods including bioinformatics. Students undertook a range of experiments including direct observation of live wild-type zebrafish at different stages of embryogenesis, whole-mount in situ hybridization of mutant and wild-type embryos, vital dye staining of mutant and wild-type embryos, and pharmacological treatments to perturb normal development. These laboratories engaged the students by providing a hands-on, research-centered experience, while also enhancing their written (worksheets and laboratory reports) and oral (group presentation) communication skills. We describe the proceedings of each lab and the logistics of preparing and running these labs for 400-500 students (120 students taking lab each day), and provide a preliminary assessment of the success of the laboratories data based on student evaluations.

  12. Biochemistry (by Jochanan Stenesh)

    NASA Astrophysics Data System (ADS)

    Glasfeld, Arthur

    1999-06-01

    Plenum: New York, 1998. Hardcover, ISBN 0 306-45732-6. 95. Paperback, ISBN 0 306 45733 4. 55 (set of 3). Solutions manual and transparencies available. According to the promotional materials accompanying this text, its intended audience is students in one-semester undergraduate biochemistry courses. At just over 500 pages, the book is shorter than the norm of well over 1000 pages. The challenge, then, is to present the subject in a coherent and compelling fashion while necessarily omitting a large fraction of the material that one normally finds in more inclusive texts. That kind of editing is obviously going to lead to squawking from some quarters, so I should put my prejudices on the table. I teach a one-semester course in biochemical structure, and I have a long-standing interest in using molecular models to explain biochemical behavior, both in research and in teaching. The editing performed by Professor Stenesh is likely to trouble someone with a structural or mechanistic background. Rather than selectively excluding some topics, Stenesh has created a table of contents that looks like it's from a much longer text. The usual chapters on biochemical structure, catalysis, metabolism and molecular genetics are included here. The ax fell elsewhere, and most obvious to my eye are the omissions of structure and chemical mechanism beyond those few chapters that are dedicated to them. A brief presentation on the structure and function of hemoglobin is given in the chapter on proteins, and the catalytic mechanism of chymotrypsin is briefly presented in the chapter on catalysis. But in chapters on metabolism, the structures of substrates and products are shown while mechanisms of conversion are omitted. For example, in the description of aldolase, we're informed that the enzyme catalyzes a reverse aldol condensation, but the reader isn't shown how the aldol condensation relates to the chemical conversion we see in the figure. (Part of the problem may be that the text

  13. Using Zebrafish to Implement a Course-Based Undergraduate Research Experience to Study Teratogenesis in Two Biology Laboratory Courses.

    PubMed

    Sarmah, Swapnalee; Chism, Grady W; Vaughan, Martin A; Muralidharan, Pooja; Marrs, Jim A; Marrs, Kathleen A

    2016-08-01

    A course-based undergraduate research experience (CURE) spanning three semesters was introduced into freshman and sophomore biology classes, with the hypothesis that participation in a CURE affects skills in research, communication, and collaboration, which may help students persist in science. Student research projects were centered on the hypothesis that nicotine and caffeine exposure during early development affects gastrulation and heart development in zebrafish. First, freshmen generated original data showing distinct effects of embryonic nicotine and caffeine exposure on zebrafish heart development and function. Next, Cell Biology laboratory students continued the CURE studies and identified novel teratogenic effects of nicotine and caffeine during gastrulation. Finally, new freshmen continued the CURE research, examining additional toxicant effects on development. Students designed new protocols, made measurements, presented results, and generated high-quality preliminary data that were studied in successive semesters. By implementing this project, the CURE extended faculty research and provided a scalable model to address national goals to involve more undergraduates in authentic scientific research. In addition, student survey results support the hypothesis that CUREs provide significant gains in student ability to (1) design experiments, (2) analyze data, and (3) make scientific presentations, translating into high student satisfaction and enhanced learning.

  14. Predictors of performance of students in biochemistry in a doctor of chiropractic curriculum

    PubMed Central

    Shaw, Kathy; Rabatsky, Ali; Dishman, Veronica; Meseke, Christopher

    2014-01-01

    Objective This study investigated the effect of completion of course prerequisites, undergraduate grade point average (GPA), undergraduate degree, and study habits on the performance of students in the biochemistry course at Palmer College of Chiropractic Florida. Methods Students self-reported information regarding academic preparation at the beginning of the semester using a questionnaire. Final exam grade and final course grade were noted and used as measures of performance. Multivariate analysis of variance was used to determine if number of prerequisites completed, undergraduate GPA, undergraduate degree, hours spent studying in undergraduate study, and hours spent studying in the first quarter of the chiropractic program were associated significantly with the biochemistry final exam grade or the final grade for the biochemistry course. Results The number of prerequisites completed, undergraduate degree, hours spent studying in undergraduate study, and hours spent studying in the first quarter of the chiropractic program did not significantly affect the biochemistry final exam grade or the final grade for the biochemistry course, but undergraduate GPA did. Subsequent univariate analysis and Tukey's post hoc comparisons revealed that students with an undergraduate GPA in the 3.5 to 3.99 range earned significantly higher final course grades than students with an undergraduate GPA in the 2.5 to 2.99 range. Conclusion No single variable was determined to be a factor that determines student success in biochemistry. The interrelationship between the factors examined warrants further investigation to understand fully how to predict the success of a student in the biochemistry course. PMID:24295362

  15. Ion Exchange and Thin Layer Chromatographic Separation and Identification of Amino Acids in a Mixture: An Experiment for General Chemistry and Biotechnology Laboratories

    ERIC Educational Resources Information Center

    Brunauer, Linda S.; Caslavka, Katelyn E.; Van Groningen, Karinne

    2014-01-01

    A multiday laboratory exercise is described that is suitable for first-year undergraduate chemistry, biochemistry, or biotechnology students. Students gain experience in performing chromatographic separations of biomolecules, in both a column and thin layer chromatography (TLC) format. Students chromatographically separate amino acids (AA) in an…

  16. Parallel Combinatorial Synthesis of Azo Dyes: A Combinatorial Experiment Suitable for Undergraduate Laboratories

    ERIC Educational Resources Information Center

    Gung, Benjamin W.; Taylor, Richard T.

    2004-01-01

    An experiment in the parallel synthesis of azo dyes that demonstrates the concepts of structure-activity relationships and chemical diversity with vivid colors is described. It is seen that this experiment is suitable for the second-semester organic chemistry laboratory and also for the one-semester organic laboratory.

  17. Synthesis and Biological Testing of Penicillins: An Investigative Approach to the Undergraduate Teaching Laboratory

    ERIC Educational Resources Information Center

    Whitaker, Ragnhild D.; Truhlar, Laura M.; Yksel, Deniz; Walt, David R.; Williams, Mark D.

    2010-01-01

    The development and implementation of a research-based organic chemistry laboratory experiment is presented. The experiment was designed to simulate a scientific research environment, involve students in critical thinking, and develop the student's ability to analyze and present research-based data. In this experiment, a laboratory class…

  18. Using Laboratory Experiments and Circuit Simulation IT Tools in an Undergraduate Course in Analog Electronics

    ERIC Educational Resources Information Center

    Baltzis, Konstantinos B.; Koukias, Konstantinos D.

    2009-01-01

    Laboratory-based courses play a significant role in engineering education. Given the role of electronics in engineering and technology, laboratory experiments and circuit simulation IT tools are used in their teaching in several academic institutions. This paper discusses the characteristics and benefits of both methods. The content and structure…

  19. Using Model Organisms in an Undergraduate Laboratory to Link Genotype, Phenotype, and the Environment

    ERIC Educational Resources Information Center

    Jacobs-McDaniels, Nicole L.; Maine, Eleanor M.; Albertson, R. Craig; Wiles, Jason R.

    2013-01-01

    We developed laboratory exercises using zebrafish ("Danio rerio") and nematodes ("Caenorhabditis elegans") for a sophomore-level Integrative Biology Laboratory course. Students examined live wildtype zebrafish at different stages of development and noted shifts occurring in response to "fgf8a" deficiency. Students were introduced to development in…

  20. The Use of Contextual Learning to Teach Biochemistry to Dietetic Students

    ERIC Educational Resources Information Center

    Macaulay, J. O.; Van Damme, M. -P.; Walker, K. Z.

    2009-01-01

    This article describes the use of contextualized and "blended" learning to teach biochemistry to dietetic students during the second year of their professional training in a 4-year undergraduate degree (Bachelor of Nutrition and Dietetics). Contextualized content was used to engage students and motivate them to learn biochemistry, which many…

  1. Learning Chemistry Research outside the Laboratory: New Graduate and Undergraduate Courses in Research Methodology

    NASA Astrophysics Data System (ADS)

    Schildcrout, Steven M.

    2002-11-01

    Without guidance, research students may delay choosing a research advisor and a research problem or may encounter difficulties in understanding the goal and significance of their work and staying focused on it. The students may find writing the thesis or final report to be problematic. To ameliorate such problems at Youngstown State University, we help students structure their research experience by using two courses in research methodology, required respectively for graduate and undergraduate chemistry students as they begin their research projects. The courses include traditional classroom sessions with discussion, as well as exercises in writing and speaking, critiquing a journal article and thesis, and preparing a research proposal. Students work with both the course instructor and the research advisor, integrating the coursework into the students' research projects. Although such courses are not widely used elsewhere, our students and faculty find these courses valuable.

  2. A low-cost polarimeter for an undergraduate laboratory to study the polarization pattern of skylight

    NASA Astrophysics Data System (ADS)

    Abayaratne, Chula P.; Bandara, Vibodha

    2017-03-01

    A simple, low-cost, fully automated polarimeter, which demonstrates fundamental properties of skylight scattering and polarization for undergraduate physics students, is described. The polarimeter includes a microprocessor-based control unit, a Sun tracker, an elevation-azimuth mount with two degrees of freedom, and a polarization sensor unit equipped with a light-dependent resistor for measuring light intensity. Results obtained in the principal plane of the Sun using the polarimeter on a relatively clear day, together with the theoretically expected results for a molecular atmosphere, are presented. A root-mean-square error comparison indicates fairly good agreement between theory and experiment. Construction and experimentation with the polarimeter will provide students with insight into important physical concepts involved in skylight scattering and polarization as well as improve their instrumentation capabilities.

  3. Undergraduates at Sea and in the Laboratory Conducting Habitat Mapping Using Multibeam and Sidescan Sonar

    NASA Astrophysics Data System (ADS)

    Sautter, L. R.; Harris, M. S.

    2008-12-01

    During the last five years, undergraduate students at the College of Charleston have had numerous opportunities to take part in the college's Transect Program and sail aboard research vessels on 2-5 day cruises to study the continental shelf. The program's purpose is to train students in oceanographic research while developing a long-term information geodatabase to characterize and monitor essential fish habitats, and to map seafloor geomorphology. During these cruises students take the lead to conduct a variety of research investigations which include hydrographic surveys of the seafloor using sidescan sonar, multibeam bathymetry, and video collected using a remotely operated vehicle and during SCUBA dives. Following the data collection cruises, students have enrolled in semester-long research courses to analyze data and document results through poster and oral presentations. More than 60 students have taken part in at least one of 6 programs. In the past two years, the NOAA Ship NANCY FOSTER has provided invaluable sea time to conduct multibeam surveys of the mid- and outer continental shelf off Charleston, so that the 22 participating Transect students have focused their work on seafloor mapping, and have become trained in state-of-the art CARIS multibeam and sidescan sonar processing software. Most of these students have presented their results at professional meetings, and manuscripts are currently in preparation. Students have had numerous post-program opportunities to conduct further research at sea and in the lab. They have collaborated with NOAA scientists and other investigators, conducting bathymetry data processing and analysis from other regions. Most recently, two program graduates worked with University of Washington investigators to map sites for the Ocean Observatory Initiative Regional Scale Nodes. Several students have been contracted or hired as hydrographic survey technicians, while others have gone to graduate school to continue their work

  4. Gamma-Nonanoic Lactone: Synthesis of a Fragrance and Flavor Enhancer in the Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Bunce, Richard A.; Reeves, Henry D.

    1990-01-01

    Described is an experiment in which students are able to synthesize an unnatural compound having the odor and flavor of coconuts. Laboratory equipment, procedures, and analysis of the product are discussed. (CW)

  5. An investigation of student understanding in the undergraduate organic chemistry laboratory

    NASA Astrophysics Data System (ADS)

    Grutsch, John Leo, Jr.

    Laboratory activities in organic chemistry involve a mixture of sophisticated logic and empirical observation that requires the integration of mechanistic thought, laboratory technique, and problem-solving skills. In an effort to understand how students develop the thought processes and problem-solving skills necessary for laboratory work in organic chemistry, student understanding of how the interaction between a reaction system (reactants or starting material(s), reagent(s), and/or solvent), experimental variables (pH, temperature, concentrations, etc), provides a result of interest (yield, selectivity, purity, etc.) for an experiment performed in the organic chemistry laboratory was investigated through the collection of responses to questions posed on pre-laboratory quizzes followed by in-depth interviews during which student volunteers discussed their responses along with their experiences in the laboratory. The conceptual change theory of learning which assumes new conceptions are understood, judged, acquired, or rejected in a conceptual context was used as a theoretical paradigm to examine students responses to questions posed on pre-laboratory quizzes and transcripts of the interviews with student volunteers. Students were found to not have developed a mechanistic understanding of how the interaction between a reaction system (reactants or starting material(s), reagent(s), and/or solvent), experimental variables (pH, temperature, concentrations, etc), provides a result of interest (yield, selectivity, purity, etc.) for an experiment performed in the organic chemistry laboratory. However, students' prior exposure to and understanding of chemical concepts was found to simultaneously assist and hinder in their development of a partial mechanistic understanding of how a reaction system (reactants or starting material(s), reagent(s), and/or solvent), experimental variables (pH, temperature, concentrations, etc), interact to provide a result of interest (yield

  6. A laboratory module on radiometry, photometry and colorimetry for an undergraduate optics course

    NASA Astrophysics Data System (ADS)

    Polak, Robert D.

    2014-07-01

    The bachelor's degree in Physics at Loyola University Chicago requires both an upper-division course in Optics as well as a companion Optics Laboratory course. Recently, the laboratory course has undergone dramatic changes. Traditional weekly laboratories have been replaced with three laboratory modules, where students focus on a single topic over several weeks after which the students submit a laboratory report written in the style of a journal article following American Institute of Physics style manual. With this method, students are able to gain a deeper understanding of the specific topic areas of radiometry, photometry and colorimetry, lens design and aberrations, and polarization and interference while using industry-standard equipment and simulation software. In particular, this work will provide the details of the laboratory module on radiometry, photometry and colorimetry where students use a photoradiometer and integrating sphere to characterize the optical properties of an LCD monitor, light bulb and a fiber optic light source calculating properties such as luminous flux, luminous intensity, luminance, CIE color coordinates, NTSC ratio, color temperature and luminous efficacy.

  7. Reproduction, physiology and biochemistry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter summarizes fundamental knowledge and recent discoveries about the reproduction, physiology and biochemistry of plant-parasitic nematodes. Various types of reproduction are reviewed, including sexual reproduction and mitotic and meiotic parthenogenesis. Although much is known about the p...

  8. A Solvent-Free Baeyer-Villiger Lactonization for the Undergraduate Organic Laboratory: Synthesis of Gamma-T-Butyl-Epsilon-Caprolactone

    ERIC Educational Resources Information Center

    Esteb, John J.; Hohman, Nathan J.; Schlamandinger, Diana E.; Wilson, Anne M.

    2005-01-01

    The solvent-free or solid-state reaction systems like the Baeyer-Villiger rearrangement have become popular in the synthetic organic community and viable option for undergraduate laboratory series to reduce waste and cost and simplify reaction process. The reaction is an efficient method to transform ketones to esters and lactones.

  9. Argument-Driven Inquiry: Using the Laboratory to Improve Undergraduates' Science Writing Skills through Meaningful Science Writing, Peer-Review, and Revision

    ERIC Educational Resources Information Center

    Walker, Joi Phelps; Sampson, Victor

    2013-01-01

    This paper presents preliminary evidence supporting the use of peer review in undergraduate science as a means to improve student writing and to alleviate barriers, such as lost class time, by incorporation of the peer-review process into the laboratory component of the course. The study was conducted in a single section of an undergraduate…

  10. A Research-Based Undergraduate Organic Laboratory Project: Investigation of a One-Pot, Multicomponent, Environmentally Friendly Prins-Friedel-Crafts-Type Reaction

    ERIC Educational Resources Information Center

    Dintzner, Matthew R.; Maresh, Justin J.; Kinzie, Charles R.; Arena, Anthony F.; Speltz, Thomas

    2012-01-01

    Students in the undergraduate organic laboratory synthesize tetrahydro-2-(4-nitrophenyl)-4-phenyl-2"H"-pyran via the Montmorillonite K10 clay-catalyzed reaction of p-nitrobenzaldehye with methanol, 3-buten-1-ol, and benzene. The synthesis comprises an environmentally friendly tandem Prins-Friedel-Crafts-type multicomponent reaction (MCR) and sets…

  11. A Simplified Undergraduate Laboratory Experiment to Evaluate the Effect of the Ionic Strength on the Equilibrium Concentration Quotient of the Bromcresol Green Dye

    ERIC Educational Resources Information Center

    Rodriguez, Hernan B.; Mirenda, Martin

    2012-01-01

    A modified laboratory experiment for undergraduate students is presented to evaluate the effects of the ionic strength, "I", on the equilibrium concentration quotient, K[subscript c], of the acid-base indicator bromcresol green (BCG). The two-step deprotonation of the acidic form of the dye (sultone form), as it is dissolved in water, yields…

  12. Synthesis and Catalytic Activity of Ruthenium-Indenylidene Complexes for Olefin Metathesis: Microscale Experiments for the Undergraduate Inorganic or Organometallic Laboratories

    ERIC Educational Resources Information Center

    Pappenfus, Ted M.; Hermanson, David L.; Ekerholm, Daniel P.; Lilliquist, Stacie L.; Mekoli, Megan L.

    2007-01-01

    A series of experiments for undergraduate laboratory courses (e.g., inorganic, organometallic or advanced organic) have been developed. These experiments focus on understanding the design and catalytic activity of ruthenium-indenylidene complexes for olefin metathesis. Included in the experiments are the syntheses of two ruthenium-indenylidene…

  13. Virtual and Traditional Slides for Teaching Cellular Morphology to Medical Laboratory Science Undergraduates: A Comparative Study of Performance Outcomes, Retention, and Self-Efficacy Beliefs

    ERIC Educational Resources Information Center

    Solberg, Brooke L.

    2011-01-01

    As a result of massive retirement and educational program expense and closure, the field of Medical Laboratory Science (MLS) is facing a critical workforce shortage. Combatting this issue by increasing undergraduate class size is a difficult proposition due to the intense psychomotor curricular requirements of MLS programs. Technological advances…

  14. Ligand-Free Suzuki-Miyaura Coupling Reactions Using an Inexpensive Aqueous Palladium Source: A Synthetic and Computational Exercise for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hill, Nicholas J.; Bowman, Matthew D.; Esselman, Brian J.; Byron, Stephen D.; Kreitinger, Jordan; Leadbeater, Nicholas E.

    2014-01-01

    An inexpensive procedure for introducing the Suzuki-Miyaura coupling reaction into a high-enrollment undergraduate organic chemistry laboratory course is described. The procedure employs an aqueous palladium solution as the catalyst and a range of para-substituted aryl bromides and arylboronic acids as substrates. The coupling reactions proceed…

  15. A Western Blot-based Investigation of the Yeast Secretory Pathway Designed for an Intermediate-Level Undergraduate Cell Biology Laboratory

    ERIC Educational Resources Information Center

    Hood-DeGrenier, Jennifer K.

    2008-01-01

    The movement of newly synthesized proteins through the endomembrane system of eukaryotic cells, often referred to generally as the secretory pathway, is a topic covered in most intermediate-level undergraduate cell biology courses. An article previously published in this journal described a laboratory exercise in which yeast mutants defective in…

  16. Synthesis and Characterization of Aldol Condensation Products from Unknown Aldehydes and Ketones: An Inquiry-Based Experiment in the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Angelo, Nicholas G.; Henchey, Laura K.; Waxman, Adam J.; Canary, James W.; Arora, Paramjit S.; Wink, Donald

    2007-01-01

    An experiment for the undergraduate chemistry laboratory in which students perform the aldol condensation on an unknown aldehyde and an unknown ketone is described. The experiment involves the use of techniques such as TLC, column chromatography, and recrystallization, and compounds are characterized by [to the first power]H NMR, GC-MS, and FTIR.…

  17. Preparation of a Cobalt(II) Cage: An Undergraduate Laboratory Experiment That Produces a ParaSHIFT Agent for Magnetic Resonance Spectroscopy

    ERIC Educational Resources Information Center

    Burns, Patrick J.; Tsitovich, Pavel B.; Morrow, Janet R.

    2016-01-01

    Laboratory experiments that demonstrate the effect of paramagnetic complexes on chemical shifts and relaxation times of protons are a useful way to introduce magnetic resonance spectroscopy (MRS) probes or magnetic resonance imaging (MRI) contrast agents. In this undergraduate inorganic chemistry experiment, a paramagnetic Co(II) cage complex is…

  18. Volumetric Titrations Using Electrolytically Generated Reagents for the Determination of Ascorbic Acid and Iron in Dietary Supplement Tablets: An Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Scanlon, Christopher; Gebeyehu, Zewdu; Griffin, Kameron; Dabke, Rajeev B.

    2014-01-01

    An undergraduate laboratory experiment for the volumetric quantitative analysis of ascorbic acid and iron in dietary supplement tablets is presented. Powdered samples of the dietary supplement tablets were volumetrically titrated against electrolytically generated reagents, and the mass of dietary reagent in the tablet was determined from the…

  19. Using Mole Ratios of Electrolytic Products of Water for Analysis of Household Vinegar: An Experiment for the Undergraduate Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Dabke, Rajeev B.; Gebeyehu, Zewdu

    2012-01-01

    A simple 3-h physical chemistry undergraduate experiment for the quantitative analysis of acetic acid in household vinegar is presented. The laboratory experiment combines titration concept with electrolysis and an application of the gas laws. A vinegar sample was placed in the cathode compartment of the electrolysis cell. Electrolysis of water…

  20. The Miracle Fruit: An Undergraduate Laboratory Exercise in Taste Sensation and Perception.

    PubMed

    Lipatova, Olga; Campolattaro, Matthew M

    2016-01-01

    "Miracle Fruit" is a taste-altering berry that causes sour foods to be perceived as sweet. The present paper describes a laboratory exercise that uses Miracle Fruit to educate students about the sensation and perception of taste. This laboratory exercise reinforces course material pertaining to the function of sweet taste receptors covered in a Sensation and Perception course at Christopher Newport University. Here we provide a step-by-step explanation of the methodology, and an example of data collected and analyzed by one group of students who participated in this laboratory exercise. The origins of the Miracle Fruit, the structure and the physiological function of miraculin (the glycoprotein responsible for the taste-modifying effect found in the pulp of the Miracle Fruit) were discussed before the laboratory exercise. Students then sampled foods known to target different types of tastes (i.e., sweet, sour, bitter and salty) and rated their perception of taste intensity for each food item. Next, students each consumed Miracle Fruit berries, then resampled each original food item and again recorded their perception of taste intensity ratings for these foods. The data confirmed that the sour food items were perceived sweeter after the Miracle Fruit was consumed. The students also completed a written assignment to assess what they learned about the origins, structure, and physiological function of Miracle Fruit. This hands-on laboratory exercise received positive feedback from students. The exercise can be used by other neuroscience educators to teach concepts related to the sensory system of taste.

  1. Detergent-Based Isolation of Yeast Membrane Rafts: An Inquiry-Based Laboratory Series for the Undergraduate Cell Biology or Biochemistry Lab

    ERIC Educational Resources Information Center

    Willhite, D. Grant; Wright, Stephen E.

    2009-01-01

    Lipid rafts have been implicated in numerous cellular processes including cell signaling, endocytosis, and even viral infection. Isolation of these lipid rafts often involves detergent treatment of the membrane to dissolve nonraft components followed by separation of raft regions in a density gradient. We present here an inquiry-based lab series…

  2. The Use of Multiple Tools for Teaching Medical Biochemistry

    ERIC Educational Resources Information Center

    Se, Alexandre B.; Passos, Renato M.; Ono, Andre H.; Hermes-Lima, Marcelo

    2008-01-01

    In this work, we describe the use of several strategies employing the philosophies of active learning and problem-based learning (PBL) that may be used to improve the teaching of metabolic biochemistry to medical and nutritional undergraduate students. The main activities are as follows: 1) a seminar/poster system in a mini-congress format (using…

  3. Using Assessment to Improve Learning in the Biochemistry Classroom

    ERIC Educational Resources Information Center

    Loertscher, Jennifer

    2010-01-01

    In recent years, major drivers of undergraduate science education reform including the National Science Foundation (NSF) and the Howard Hughes Medical Institute (HHMI) have called on college and university instructors to take a more scientific approach to their teaching. Although many biochemistry instructors are gaining confidence in using…

  4. Changing undergraduate human anatomy and physiology laboratories: perspectives from a large-enrollment course.

    PubMed

    Griff, Edwin R

    2016-09-01

    In the present article, a veteran lecturer of human anatomy and physiology taught several sections of the laboratory component for the first time and shares his observations and analysis from this unique perspective. The article discusses a large-enrollment, content-heavy anatomy and physiology course in relationship to published studies on learning and student self-efficacy. Changes in the laboratory component that could increase student learning are proposed. The author also points out the need for research to assess whether selective curricular changes could increase the depth of understanding and retention of learned material.

  5. Pure Rotational Spectroscopy of Asymmetric Tops in the Undergraduate Classroom or Laboratory

    NASA Astrophysics Data System (ADS)

    Minei, A. J.; Cooke, S. A.

    2013-06-01

    Due to concerns of complexity, the asymmetric top, for which κ = {(2B - A - C) / (A - C)} ≠ ± 1, is feared, or at least avoided, by many instructors when explaining the rigid rotor. However, the spectral patterns formed by cold} asymmetric rigid rotors in the centimeter-wave} region of the electromagnetic spectrum can be easily identified. We will present some techniques for spectral analyses that we have successfully employed with undergraduate students who are either ``pre-quantum mechanics" or are currently enrolled in a chemical quantum mechanics class. The activities are simple, requiring the students to first locate repeating patterns and then apply simple algebraic expressions in order to determine all three rotational constants. The method will be illustrated using the spectra of 2,2,3,3-tetrafluoropropyl trifluoroacetate (CF_3C(=O)OCH_2CF_2CHF_2), (E)-1,3,3,3-tetrafluoropropene (CF_3CH=CHF), 1H,1H,2H-perfluorocyclobutane (CF_2CF_2CHFCH_2), and 2H-nonafluorobutane (CF_3CHFCF_2CF_3). The first two of these species have predominantly a-type spectra, the third has a predominantly b-type spectrum, the fourth has a predominantly c-type spectrum.

  6. Characterizing Mystery Cell Lines: Student-driven Research Projects in an Undergraduate Neuroscience Laboratory Course.

    PubMed

    Lemons, Michele L

    2012-01-01

    Inquiry-based projects promote discovery and retention of key concepts, increase student engagement, and stimulate interest in research. Described here are a series of lab exercises within an undergraduate upper level neuroscience course that train students to design, execute and analyze their own hypothesis-driven research project. Prior to developing their own projects, students learn several research techniques including aseptic cell culture, cell line maintenance, immunocytochemistry and fluorescent microscopy. Working in groups, students choose how to use these techniques to characterize and identify a "mystery" cell line. Each lab group is given a unique cell line with either a neural, astrocyte, or Schwann cell origin. Working together, students plan and execute experiments to determine the cellular origin and other unique characteristics of their mystery cell line. Students generate testable hypotheses, design interpretable experiments, generate and analyze data, and report their findings in both oral and written formats. Students receive instructor and peer feedback throughout the entire project. In summary, these labs train students the process of scientific research. This series of lab exercises received very strong positive feedback from the students. Reflections on student feedback and plans for future improvements are discussed.

  7. Remediation of Water Contaminated with an Azo Dye: An Undergraduate Laboratory Experiment Utilizing an Inexpensive Photocatalytic Reactor

    NASA Astrophysics Data System (ADS)

    Bumpus, John A.; Tricker, Jennifer; Andrzejewski, Ken; Rhoads, Heather; Tatarko, Matthew

    1999-12-01

    The construction and use of an inexpensive photocatalytic reactor that utilizes titanium dioxide as the photocatalyst for wastewater treatment is described. In these experiments and in supplementary material, students are made aware that a variety of techniques have been developed to treat wastewaters, including those generated by the chemical industry. Water contaminated with the azo dye Congo Red was selected as an example of how one might treat contaminated water from a textile manufacturing facility. These experiments emphasize that, in addition to product development, chemists must also be concerned with waste treatment. A summary of the theory of titanium dioxide-mediated photocatalysis is provided. The phenomenon of photosensitization is also discussed. The usefulness of Congo Red is summarized and a brief history of this dye is given. In addition to being inexpensive, the photocatalytic reactor described is easy to construct and uses a readily available low-wattage fluorescent light. An important feature of this reactor is that the heat generated by the light source is readily dissipated by the water undergoing treatment. Thus no special cooling apparatus is required. One of the most important aspects of this work is that it provides a wide variety of continuing research suggestions that would be suitable and readily accomplished in undergraduate departments and high school laboratories; even those where budgetary priorities are a major concern. Use of this reactor would also enable students to design systems to treat "real-world" wastes, including some that are generated in instructional laboratories.

  8. Computer Based Learning in an Undergraduate Physics Laboratory: Interfacing and Instrument Control Using Matlab

    ERIC Educational Resources Information Center

    Sharp, J. S.; Glover, P. M.; Moseley, W.

    2007-01-01

    In this paper we describe the recent changes to the curriculum of the second year practical laboratory course in the School of Physics and Astronomy at the University of Nottingham. In particular, we describe how Matlab has been implemented as a teaching tool and discuss both its pedagogical advantages and disadvantages in teaching undergraduate…

  9. Gravimetric Analysis of Bismuth in Bismuth Subsalicylate Tablets: A Versatile Quantitative Experiment for Undergraduate Laboratories

    ERIC Educational Resources Information Center

    Davis, Eric; Cheung, Ken; Pauls, Steve; Dick, Jonathan; Roth, Elijah; Zalewski, Nicole; Veldhuizen, Christopher; Coeler, Joel

    2015-01-01

    In this laboratory experiment, lower- and upper-division students dissolved bismuth subsalicylate tablets in acid and precipitated the resultant Bi[superscript 3+] in solution with sodium phosphate for a gravimetric determination of bismuth subsalicylate in the tablets. With a labeled concentration of 262 mg/tablet, the combined data from three…

  10. An Undergraduate Organic Laboratory Project Involving Independent Synthesis of Novel Flavones.

    ERIC Educational Resources Information Center

    Letcher, R. M.

    1980-01-01

    Describes a synthetic organic laboratory experiment which ensures independence of students but is not excessively demanding of instructor time. Each student is provided with different starting materials to prepare different flavones but use the same general procedure, the "organic synthesis" flavone preparation. Various features of this procedure…

  11. Solid-Liquid and Liquid-Liquid Mixing Laboratory for Chemical Engineering Undergraduates

    ERIC Educational Resources Information Center

    Pour, Sanaz Barar; Norca, Gregory Benoit; Fradette, Louis; Legros, Robert; Tanguy, Philippe A.

    2007-01-01

    Solid-liquid and liquid-liquid mixing experiments have been developed to provide students with a practical experience on suspension and emulsification processes. The laboratory focuses on the characterization of the process efficiency, specifically the influence of the main operating parameters and the effect of the impeller type. (Contains 2…

  12. Individualizing Instruction in Large Undergraduate Biology Laboratories. II. Computers and Investigation

    ERIC Educational Resources Information Center

    Norberg, Ann Marie

    1975-01-01

    Describes the following uses of computers in college biology laboratories: (1) to organize and analyze research data and (2) to simulate biological systems. Also being developed are computer simulations to systematically prepare students for independent investigations. (See also SE 515 092.) (LS)

  13. Studying Epigenetic DNA Modifications in Undergraduate Laboratories Using Complementary Bioinformatic and Molecular Approaches

    ERIC Educational Resources Information Center

    Militello, Kevin T.

    2013-01-01

    Epigenetic inheritance is the inheritance of genetic information that is not based on DNA sequence alone. One type of epigenetic information that has come to the forefront in the last few years is modified DNA bases. The most common modified DNA base in nature is 5-methylcytosine. Herein, we describe a laboratory experiment that combines…

  14. Successful Implementation of Inquiry-Based Physiology Laboratories in Undergraduate Major and Nonmajor Courses

    ERIC Educational Resources Information Center

    Casotti, G.; Rieser-Danner, L.; Knabb, M. T.

    2008-01-01

    Recent evidence has demonstrated that inquiry-based physiology laboratories improve students' critical- and analytical-thinking skills. We implemented inquiry-based learning into three physiology courses: Comparative Vertebrate Physiology (majors), Human Physiology (majors), and Human Anatomy and Physiology (nonmajors). The aims of our curricular…

  15. Dehydration of 2-Methyl-1-Cyclohexanol: New Findings from a Popular Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Friesen, J. Brent; Schretzman, Robert

    2011-01-01

    The mineral acid-catalyzed dehydration of 2-methyl-1-cyclohexanol has been a popular laboratory exercise in second-year organic chemistry for several decades. The dehydration experiment is often performed by organic chemistry students to illustrate Zaitsev's rule. However, sensitive analytical techniques reveal that the results do not entirely…

  16. Using the Polymerase Chain Reaction in an Undergraduate Laboratory to Produce "DNA Fingerprints."

    ERIC Educational Resources Information Center

    Phelps, Tara L.; And Others

    1996-01-01

    Presents a laboratory exercise that demonstrates the sensitivity of the Polymerase Chain Reaction as well as its potential application to forensic analysis during a criminal investigation. Can also be used to introduce, review, and integrate population and molecular genetics topics such as genotypes, multiple alleles, allelic and genotypic…

  17. Microfluidics Meets Dilute Solution Viscometry: An Undergraduate Laboratory to Determine Polymer Molecular Weight Using a Microviscometer

    ERIC Educational Resources Information Center

    Pety, Stephen J.; Lu, Hang; Thio, Yonathan S.

    2011-01-01

    This paper describes a student laboratory experiment to determine the molecular weight of a polymer sample by measuring the viscosity of dilute polymer solutions in a PDMS microfluidic viscometer. Sample data are given for aqueous solutions of poly(ethylene oxide) (PEO). A demonstration of shear thinning behavior using the microviscometer is…

  18. Reflective Practice: A Place in Enhancing Learning in the Undergraduate Bioscience Teaching Laboratory?

    ERIC Educational Resources Information Center

    Parry, Damian; Walsh, Cathy; Larsen, Carl; Hogan, Joanne

    2012-01-01

    Bioscience employers demand graduates with better practical competence. It is our supposition that, although undesirable, student learning is assessment driven and this is leading students to simply go through the motions in the practical setting (whether field work or laboratory based). In this intervention a Critical Incident Report was…

  19. Biocatalyzed Regioselective Synthesis in Undergraduate Organic Laboratories: Multistep Synthesis of 2-Arachidonoylglycerol

    ERIC Educational Resources Information Center

    Johnston, Meghan R.; Makriyannis, Alexandros; Whitten, Kyle M.; Drew, Olivia C.; Best, Fiona A.

    2016-01-01

    In order to introduce the concepts of biocatalysis and its utility in synthesis to organic chemistry students, a multistep synthesis of endogenous cannabinergic ligand 2-arachidonoylglycerol (2-AG) was tailored for use as a laboratory exercise. Over four weeks, students successfully produced 2-AG, purifying and characterizing products at each…

  20. The Miracle Fruit: An Undergraduate Laboratory Exercise in Taste Sensation and Perception

    PubMed Central

    Lipatova, Olga; Campolattaro, Matthew M.

    2016-01-01

    “Miracle Fruit” is a taste-altering berry that causes sour foods to be perceived as sweet. The present paper describes a laboratory exercise that uses Miracle Fruit to educate students about the sensation and perception of taste. This laboratory exercise reinforces course material pertaining to the function of sweet taste receptors covered in a Sensation and Perception course at Christopher Newport University. Here we provide a step-by-step explanation of the methodology, and an example of data collected and analyzed by one group of students who participated in this laboratory exercise. The origins of the Miracle Fruit, the structure and the physiological function of miraculin (the glycoprotein responsible for the taste-modifying effect found in the pulp of the Miracle Fruit) were discussed before the laboratory exercise. Students then sampled foods known to target different types of tastes (i.e., sweet, sour, bitter and salty) and rated their perception of taste intensity for each food item. Next, students each consumed Miracle Fruit berries, then resampled each original food item and again recorded their perception of taste intensity ratings for these foods. The data confirmed that the sour food items were perceived sweeter after the Miracle Fruit was consumed. The students also completed a written assignment to assess what they learned about the origins, structure, and physiological function of Miracle Fruit. This hands-on laboratory exercise received positive feedback from students. The exercise can be used by other neuroscience educators to teach concepts related to the sensory system of taste. PMID:27980471

  1. Bringing the Excitement and Motivation of Research to Students; Using Inquiry and Research-Based Learning in a Year-Long Biochemistry Laboratory: Part I--Guided Inquiry--Purification and Characterization of a Fusion Protein--Histidine Tag, Malate Dehydrogenase, and Green Fluorescent Protein

    ERIC Educational Resources Information Center

    Knutson, Kristopher; Smith, Jennifer; Wallert, Mark A.; Provost, Joseph J.

    2010-01-01

    A successful laboratory experience provides the foundation for student success, creating active participation in the learning process. Here, we describe a new approach that emphasizes research, inquiry and problem solving in a year-long biochemistry experience. The first semester centers on the purification, characterization, and analysis of a…

  2. Climate-Literacy Laboratory Exercises for Undergraduate Students in an Introductory Weather and Climate Course

    NASA Astrophysics Data System (ADS)

    Diem, J.; Elliott, W.; Criswell, B.; Morrow, C. A.

    2012-12-01

    A suite of NASA-sponsored, Web-based exercises are in development for an introductory weather and climate course at Georgia State University (GSU) to improve climate literacy among undergraduate students. An extremely small percentage of the students are STEM majors. The exercises make extensive use of NASA resources and are guided in part by the concepts in Climate Literacy: The Essential Principles of Climate Science. At least two thousand undergraduate students have completed a majority of the exercises over the past two years. Nine of the twelve exercises in the course are connected strongly to climate literacy. The topics of those nine exercises are as follows: (1) Solar Irradiance, (2) Stratospheric Ozone, (3) Tropospheric Air, (4) The Carbon Cycle, (5) Global Surface Temperature, (6) Glacial-Interglacial Cycles, (7) Temperature Changes during the Past Millennium, (8) Climate & Ecosystems, and (9) Current & Future Climate Change. Two of the exercises (Tropospheric Air and The Carbon Cycle) make use of carbon dioxide (CO2) measurements made by students themselves and by a stationary CO2 monitor at GSU. The three remaining exercises, The Hadley Cell, Atlanta Weather, and Air Pollution, are less connected to multiple climate-literacy concepts; nonetheless, they provide a more complete experience for the students in the understanding of climate processes, differences between weather and climate, and human impacts on the atmosphere. All exercises are based on an inquiry-based learning cycle (i.e. 7 Es) and require substantial amounts of engagement, applied thinking, and critical thinking by the students. Not only do students become knowledgeable about the essential principles of climate change, especially global warming, but extensive use of geographical-information software and hand-held measurement devices has provided students with training in geography and technology. Student attitudes towards the labs were gathered via an on-line, anonymous survey from

  3. Expression, Purification, and Characterization of a Carbohydrate-Active Enzyme: A Research-Inspired Methods Optimization Experiment for the Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Willbur, Jaime F.; Vail, Justin D.; Mitchell, Lindsey N.; Jakeman, David L.; Timmons, Shannon C.

    2016-01-01

    The development and implementation of research-inspired, discovery-based experiences into science laboratory curricula is a proven strategy for increasing student engagement and ownership of experiments. In the novel laboratory module described herein, students learn to express, purify, and characterize a carbohydrate-active enzyme using modern…

  4. BOREAS TE-9 NSA Canopy Biochemistry

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Margolis, Hank; Charest, Martin; Sy, Mikailou

    2000-01-01

    The BOREAS TE-9 team collected several data sets related to chemical and photosynthetic properties of leaves. This data set contains canopy biochemistry data collected in 1994 in the NSA at the YJP, OJR, OBS, UBS, and OA sites, including biochemistry lignin, nitrogen, cellulose, starch, and fiber concentrations. These data were collected to study the spatial and temporal changes in the canopy biochemistry of boreal forest cover types and how a high-resolution radiative transfer model in the mid-infrared could be applied in an effort to obtain better estimates of canopy biochemical properties using remote sensing. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  5. Electrospray and tandem mass spectrometry in biochemistry.

    PubMed Central

    Griffiths, W J; Jonsson, A P; Liu, S; Rai, D K; Wang, Y

    2001-01-01

    Over the last 20 years, biological MS has changed out of all recognition. This is primarily due to the development in the 1980s of 'soft ionization' methods that permit the ionization and vaporization of large, polar, and thermally labile biomolecules. These developments in ionization mode have driven the design and manufacture of smaller and cheaper mass analysers, making the mass spectrometer a routine instrument in the biochemistry laboratory today. In the present review the revolutionary 'soft ionization' methods will be discussed with particular reference to electrospray. The mass analysis of ions will be described, and the concept of tandem MS introduced. Where appropriate, examples of the application of MS in biochemistry will be provided. Although the present review will concentrate on the MS of peptides/proteins and lipids, all classes of biomolecules can be analysed, and much excellent work has been done in the fields of carbohydrate and nucleic acid biochemistry. PMID:11311115

  6. The effectiveness and user perception of 3-dimensional digital human anatomy in an online undergraduate anatomy laboratory

    NASA Astrophysics Data System (ADS)

    Hilbelink, Amy Joanne

    2007-12-01

    The primary purpose of this study was to determine the effectiveness of implementing desktop 3-dimensional (3D) stereo images of human anatomy into an undergraduate human anatomy distance laboratory. User perceptions of 2D and 3D images were gathered via questionnaire in order to determine ease of use and level of satisfaction associated with the 3D software in the online learning environment. Mayer's (2001, p. 184) principles of design were used to develop the study materials that consisted of PowerPoint presentations and AVI files accessed via Blackboard. The research design employed a mixed-methods approach. Volunteers each were administered a demographic survey and were then stratified into groups based upon pre-test scores. A total sample size of 62 pairs was available for combined data analysis. Quantitative research questions regarding the effectiveness of 2D versus the 3D treatment were analyzed using a doubly-multivariate repeated measures (Doubly-MANOVA) design. Paired test scores achieved by undergraduates on a laboratory practical of identification and spatial relationships of the bones and features of a human skull were used in the analysis. The questionnaire designed to gather user perceptions consisted of quantitative and qualitative questions. Response frequencies were analyzed for the two groups and common themes were noted. Results revealed a statistically significant difference in group means for the main effect of the treatment groups 2D and 3D and for the variables of identification and relationship with the 3D group outperforming the 2D group on both dependent variables. Effect sizes were determined to be small, 0.215 for the identification variable and 0.359 for the relationship variable. Overall, all students liked the convenience of using PowerPoint and AVI files online. The 3D group felt their PowerPoint was more realistic than did the 2D group and both groups appreciated the detailed labeling of the online images. One third of the

  7. Solvent-Free Synthesis and Fluorescence of a Thiol-Reactive Sensor for Undergraduate Organic Laboratories.

    PubMed

    Patterson, Anastasia L; May, Mary D; Visser, Bryan J; Kislukhin, Alexander A; Vosburg, David A

    2013-12-10

    A green organic laboratory experiment was developed in which students synthesize a sensor for thiols using a microscale, solventless Diels-Alder reaction at room temperature or 37 °C. The molecular probe is easily purified by column chromatography in a Pasteur pipet and characterized by thin-layer chromatography and NMR spectroscopy. The thiol-reactive sensor becomes intensely fluorescent upon exposure to thiols from N-acetylcysteine, bovine serum albumin, or human hair (pretreated with a reducing agent to reveal cysteine thiols in α-keratin). This fluorescence is observable even with micrograms of probe.

  8. Solvent-Free Synthesis and Fluorescence of a Thiol-Reactive Sensor for Undergraduate Organic Laboratories

    PubMed Central

    Patterson, Anastasia L.; May, Mary D.; Visser, Bryan J.; Kislukhin, Alexander A.; Vosburg, David A.

    2013-01-01

    A green organic laboratory experiment was developed in which students synthesize a sensor for thiols using a microscale, solventless Diels–Alder reaction at room temperature or 37 °C. The molecular probe is easily purified by column chromatography in a Pasteur pipet and characterized by thin-layer chromatography and NMR spectroscopy. The thiol-reactive sensor becomes intensely fluorescent upon exposure to thiols from N-acetylcysteine, bovine serum albumin, or human hair (pretreated with a reducing agent to reveal cysteine thiols in α-keratin). This fluorescence is observable even with micrograms of probe. PMID:24415795

  9. Can Random Mutation Mimic Design?: A Guided Inquiry Laboratory for Undergraduate Students

    PubMed Central

    Kalinowski, Steven T.; Taper, Mark L.; Metz, Anneke M.

    2006-01-01

    Complex biological structures, such as the human eye, have been interpreted as evidence for a creator for over three centuries. This raises the question of whether random mutation can create such adaptations. In this article, we present an inquiry-based laboratory experiment that explores this question using paper airplanes as a model organism. The main task for students in this investigation is to figure out how to simulate paper airplane evolution (including reproduction, inheritance, mutation, and selection). In addition, the lab requires students to practice analytic thinking and to carefully delineate the implications of their results. PMID:16951065

  10. Potential alternate life biochemistries

    NASA Astrophysics Data System (ADS)

    Konesky, Gregory

    2013-09-01

    While life on Earth continues to be discovered in unlikely environments, the underlying biochemistry is all very similar, based on the element carbon, and requiring liquid water. We consider alternate biochemistries based on elements other than carbon, including other group IVA elements, such as silicon and germanium, and solvents other than water. Terminal electron acceptors other than oxygen are also discussed. A fundamental issue is raised related to the detection of, and even the definition of life, whether it is carbon or non-carbon based. An extreme example of this issue would be in consideration of speculative life based on electrically charged dusty plasmas, which may have no physical body.

  11. Demonstrating Chemical and Analytical Concepts in the Undergraduate Laboratory Using Capillary Electrophoresis and Micellar Electrokinetic Chromatography

    NASA Astrophysics Data System (ADS)

    Palmer, Christopher P.

    1999-11-01

    This paper describes instrumental analysis laboratory exercises that utilize capillary electrophoresis and micellar electrokinetic chromatography to demonstrate several analytical and chemical principles. Alkyl parabens (4-hydroxy alkyl benzoates), which are common ingredients in cosmetic formulations, are separated by capillary electrophoresis. The electrophoretic mobilities of the parabens can be explained on the basis of their relative size. 3-Hydroxy ethylbenzoate is also separated to demonstrate the effect of substituent position on the acid dissociation constant and the effect this has on electrophoretic mobility. Homologous series of alkyl benzoates and alkyl phthalates (common plasticizers) are separated by micellar electrokinetic chromatography at four surfactant concentrations. This exercise demonstrates the separation mechanism of micellar electrokinetic chromatography, the concept of chromatographic phase ratio, and the concepts of micelle formation. A photodiode array detector is used in both exercises to demonstrate the advantages and limitations of the detector and to demonstrate the effect of pH and substituent position on the spectra of the analytes.

  12. Papers from U.S. Department of Energy Science Undergraduate Laboratory Internship Program (SULI) 2005

    SciTech Connect

    Quinn, Helen,; /SLAC

    2005-12-16

    Polarization measurements at X-ray and gamma-ray energies can provide crucial information on the emission region around massive compact objects such as black holes and neutron stars. The Polarized Gamma-ray Observer (PoGO) is a new balloon-borne instrument designed to measure polarization from such astrophysical objects in the 30-100 keV range, under development by an international collaboration with members from United States, Japan, Sweden and France. The PoGO instrument has been designed by the collaboration and several versions of prototype models have been built at SLAC. The purpose of this experiment is to test the latest prototype model with a radioactive gamma-ray source. For this, we have to polarize gamma-rays in a laboratory environment. Unpolarized gamma-rays from Am241 (59.5 keV) were Compton scattered at around 90 degrees for this purpose. Computer simulation of the scattering process in the setup predicts a 86% polarization. The polarized beam was then used to irradiate the prototype PoGO detector. The data taken in this experiment showed a clear polarization signal, with a measured azimuthal modulation factor of 0.35 {+-} 0.02. The measured modulation is in very close agreement with the value expected from a previous beam test study of a polarized gamma-ray beam at the Argonne National Laboratories Advanced Photon Source. This experiment has demonstrated that the PoGO instrument (or any other polarimeter in the energy range) can be tested in a libratory with a simple setup to a similar accuracy.

  13. Use of the Herb Gymnema sylvestre to Illustrate the Principles of Gustatory Sensation: An Undergraduate Neuroscience Laboratory Exercise.

    PubMed

    Schroeder, Joseph A; Flannery-Schroeder, Ellen

    2005-01-01

    The Indian herb Gymnema sylvestre has been used in traditional Ayurvedic medicine for 2000 years, most recently for the treatment of diabetes. Loose leaf Gymnema sylvestre can be prepared as a tea and will impair the ability to taste sugar by blocking sweet receptors on the tongue. This report describes a laboratory exercise easily applied to an undergraduate neuroscience course that can be used to illustrate the principles of gustatory sensation. Combined with a preceding lecture on the primary taste sensations, students experience and appreciate how the primary tastes are combined to produce overall taste. In addition, the exercises outlined here expand upon previously published demonstrations employing Gymnema sylvestre to include illustrations of the different sensory transduction mechanisms associated with each of the four or five primary taste modalities. Students compare their qualitative primary taste experiences to salt, sugar, aspartame, chocolate, and sweet-sour candy prior to and following exposure to Gymnema sylvestre. The herb's impairment of sweet sensation is profound and dramatically alters the perception of sweetness in sugar, chocolate, and candy without altering the perception of the other primary tastes. The exercise has an indelible effect on students because the herb's intense effect compels students to rely on their unique personal experiences to highlight the principles of gustatory sensation.

  14. Use of the Herb Gymnema sylvestre to Illustrate the Principles of Gustatory Sensation: An Undergraduate Neuroscience Laboratory Exercise

    PubMed Central

    Schroeder, Joseph A.; Flannery-Schroeder, Ellen

    2005-01-01

    The Indian herb Gymnema sylvestre has been used in traditional Ayurvedic medicine for 2000 years, most recently for the treatment of diabetes. Loose leaf Gymnema sylvestre can be prepared as a tea and will impair the ability to taste sugar by blocking sweet receptors on the tongue. This report describes a laboratory exercise easily applied to an undergraduate neuroscience course that can be used to illustrate the principles of gustatory sensation. Combined with a preceding lecture on the primary taste sensations, students experience and appreciate how the primary tastes are combined to produce overall taste. In addition, the exercises outlined here expand upon previously published demonstrations employing Gymnema sylvestre to include illustrations of the different sensory transduction mechanisms associated with each of the four or five primary taste modalities. Students compare their qualitative primary taste experiences to salt, sugar, aspartame, chocolate, and sweet-sour candy prior to and following exposure to Gymnema sylvestre. The herb’s impairment of sweet sensation is profound and dramatically alters the perception of sweetness in sugar, chocolate, and candy without altering the perception of the other primary tastes. The exercise has an indelible effect on students because the herb’s intense effect compels students to rely on their unique personal experiences to highlight the principles of gustatory sensation. PMID:23493970

  15. Student-Driven Engagement: An Interdisciplinary-Team Research-Learning Renewable Energy Laboratory Experience for Undergraduates

    NASA Astrophysics Data System (ADS)

    Tuominen, Mark

    How does engagement and deep learning happen? Every science department seeks to cultivate an excellent level of scientific skills and knowledge in its undergraduate students. Yet, this is not sufficient to thrive as a professional. Engaging directly in real-world challenges can foster a professional attitude: a high level of self-efficacy, a genuine sense of relevance, and proactivity. This talk will describe pedagogical developments of a junior-year renewable energy laboratory course at the University of Massachusetts Amherst that is part of a four-year Integrated Concentration in Science (iCons) program. Over the four years, the interdisciplinary iCons students-from 24 various majors-work through case studies, selection and analysis of real-world problems, inception and development of potential solutions, integrative communication, experimental practice, and capstone research. The team dynamic is a central aspect of the experience, yielding significant educational and developmental benefits. The third-year energy course uses adopts a culture of a small vibrant R and D company (I3E - ``Energy, Powered By Intelligence''), in which every person in the course has a vital responsibility and creative resourcefulness must be employed in the project work. The course emphasizes the practice of using reflection and redesign, as a means of generating better solutions and embedding the practice of learning in a real-world context. This work is supported in part by NSF Grant DUE-1140805.

  16. An Undergraduate Laboratory Exercise that Demonstrates the Difference Between Peripherally and Centrally Mediated Measures

    PubMed Central

    Lowe, Sam; Tommerdahl, Anna; Lensch, Rachael; Francisco, Eric; Holden, Jameson; Tommerdahl, Mark

    2016-01-01

    One of the first concepts that students of neuroscience are exposed to is the overall organization of the nervous system and the two principle divisions of it: the Peripheral Nervous System (PNS) and the Central Nervous System (CNS). In sensory systems, this fundamental division plays a particularly prominent role in the information processing stream that integrates and processes information from the external environment to the CNS. To better understand the differences between the roles that the PNS and CNS play in information processing, we developed a relatively simple in-class laboratory exercise. The experimental methods used to determine several aspects of a subject’s discriminative capacity (threshold detection, amplitude discrimination, duration discrimination) are described. These methods were used either under control conditions or after the students altered their skin sensitivity (i.e., the PNS) by cold water immersion. At the conclusion of the lab exercise, students will thoroughly understand the principle of the PNS vs. CNS, as well as a fundamental understanding of quantitative sensory testing. This fundamental understanding of sensory testing provides a foundation for students to pursue or investigate other aspects of sensory information processing in either independent studies or subsequent lab exercises. PMID:27980467

  17. Biochemistry Off the Shelf.

    ERIC Educational Resources Information Center

    Wilson, Jerry L.

    1985-01-01

    Provides sources of nonanimal biochemical materials (which are relatively inexpensive, readily available, and require no special storage) suitable for use in biochemistry experiments. They are presented under these headings: (1) enzymes and other proteins; (2) carbohydrates; (3) lipids; (4) nucleic acids; and (5) metabolism. (JN)

  18. An Inquiry-Based Biochemistry Laboratory Structure Emphasizing Competency in the Scientific Process: A Guided Approach with an Electronic Notebook Format

    ERIC Educational Resources Information Center

    Hall, Mona L.; Vardar-Ulu, Didem

    2014-01-01

    The laboratory setting is an exciting and gratifying place to teach because you can actively engage the students in the learning process through hands-on activities; it is a dynamic environment amenable to collaborative work, critical thinking, problem-solving and discovery. The guided inquiry-based approach described here guides the students…

  19. Integrating a Discovery-Based Laboratory to Teach Supply Chain Management Fundamentals in an Undergraduate Management Course

    ERIC Educational Resources Information Center

    Zeng, Amy; Johnson, Sharon

    2009-01-01

    Using experiential simulation games is a commonly used pedagogical method to enrich classroom discussions and to facilitate students' learning in supply chain management education at both undergraduate and graduate levels. However, existing games are inappropriate for undergraduate students that are first-time learners of the subject. In this…

  20. Two Successful Outreach Programs at Storm Peak Laboratory: GRASP for Undergraduates and Partnership for 5th Grade Science Education

    NASA Astrophysics Data System (ADS)

    Hallar, A. G.; McCubbin, I. B.; Wright, J.

    2007-12-01

    The Desert Research Institute operates a high elevation facility, Storm Peak Laboratory (SPL), located on the Steamboat Springs Ski Resort at an elevation 10,500 ft. SPL provides an ideal location for long-term atmospheric research. The SPL mission statement is to ensure that the laboratory will continue to integrate climate research and education by advancing discovery and understanding within the field of pollution, aerosol and cloud interactions. During the last year, SPL has created two successful outreach programs reaching very different audiences. First, to engage students from local elementary schools, SPL established a 5th grade climate education program. This program is based on a partnership between SPL and Yampatika's&penvironmental educators. Yampatika is a non-profit outdoor environmental education organization. The program spans three days for each school and includes five elementary schools. During the first day, educators from Yampatika visit each classroom to introduce the concepts of climate and weather as well as teach students how to use scientific equipment. During the field program on the second day, students measure and record information about temperature, pressure, relative humidity, wind speed, and particle concentration while they travel to SPL via the gondola (in winter) or Suburban (in fall). Once at the laboratory, students tour the facility, discuss SPL research activities, and explore application of these activities to their curriculum. Following the field trip, Yampatika educators and SPL scientists will visit the school for a follow-up to help children explore concepts, answer questions, and evaluate students" learning. The second program, Geoscience Research at Storm Peak (GRASP), was designed to engage students from underrepresented groups and created a partnership between three Minority Serving Institutions and the University of Nevada, Reno (UNR). Undergraduate students from Tennessee State University, Howard University