Sample records for underlies increased expression

  1. BMP-2 up-regulates PTEN expression and induces apoptosis of pulmonary artery smooth muscle cells under hypoxia.

    PubMed

    Pi, Weifeng; Guo, Xuejun; Su, Liping; Xu, Weiguo

    2012-01-01

    To investigate the role of bone morphogenetic protein 2 (BMP-2) in regulation of phosphatase and tensin homologue deleted on chromosome ten (PTEN) and apoptosis of pulmonary artery smooth muscle cells (PASMCs) under hypoxia. Normal human PASMCs were cultured in growth medium (GM) and treated with BMP-2 from 5-80 ng/ml under hypoxia (5% CO(2)+94% N(2)+1% O(2)) for 72 hours. Gene expression of PTEN, AKT-1 and AKT-2 were determined by quantitative RT-PCR (QRT-PCR). Protein expression levels of PTEN, AKT and phosph-AKT (pAKT) were determined. Apoptosis of PASMCs were determined by measuring activities of caspases-3, -8 and -9. siRNA-smad-4, bpV(HOpic) (PTEN inhibitor) and GW9662 (PPARγ antagonist) were used to determine the signalling pathways. Proliferation of PASMCs showed dose dependence of BMP-2, the lowest proliferation rate was achieved at 60 ng/ml concentration under hypoxia (82.2±2.8%). BMP-2 increased PTEN gene expression level, while AKT-1 and AKT-2 did not change. Consistently, the PTEN protein expression also showed dose dependence of BMP-2. AKT activity significantly reduced in BMP-2 treated PASMCs. Increased activities of caspase-3, -8 and -9 of PASMCs were found after cultured with BMP-2. PTEN expression remained unchanged when Smad-4 expression was inhibited by siRNA-Smad-4. bpV(HOpic) and GW9662 (PPARγ inhibitor) inhibited PTEN protein expression and recovered PASMCs proliferation rate. BMP-2 increased PTEN expression under hypoxia in a dose dependent pattern. BMP-2 reduced AKT activity and increased caspase activity of PASMCs under hypoxia. The increased PTEN expression may be mediated through PPARγ signalling pathway, instead of BMP/Smad signalling pathway.

  2. Knockdown of AMPKα decreases ATM expression and increases radiosensitivity under hypoxia and nutrient starvation in an SV40-transformed human fibroblast cell line, LM217.

    PubMed

    Murata, Yasuhiko; Hashimoto, Takuma; Urushihara, Yusuke; Shiga, Soichiro; Takeda, Kazuya; Jingu, Keiichi; Hosoi, Yoshio

    2018-01-22

    Presence of unperfused regions containing cells under hypoxia and nutrient starvation contributes to radioresistance in solid human tumors. It is well known that hypoxia causes cellular radioresistance, but little is known about the effects of nutrient starvation on radiosensitivity. We have reported that nutrient starvation induced decrease of mTORC1 activity and decrease of radiosensitivity in an SV40-transformed human fibroblast cell line, LM217, and that nutrient starvation induced increase of mTORC1 activity and increase of radiosensitivity in human liver cancer cell lines, HepG2 and HuH6 (Murata et al., BBRC 2015). Knockdown of mTOR using small interfering RNA (siRNA) for mTOR suppressed radiosensitivity under nutrient starvation alone in HepG2 cells, which suggests that mTORC1 pathway regulates radiosensitivity under nutrient starvation alone. In the present study, effects of hypoxia and nutrient starvation on radiosensitivity were investigated using the same cell lines. LM217 and HepG2 cells were used to examine the effects of hypoxia and nutrient starvation on cellular radiosensitivity, mTORC1 pathway including AMPK, ATM, and HIF-1α, which are known as regulators of mTORC1 activity, and glycogen storage, which is induced by HIF-1 and HIF-2 under hypoxia and promotes cell survival. Under hypoxia and nutrient starvation, AMPK activity and ATM expression were increased in LM217 cells and decreased in HepG2 cells compared with AMPK activity under nutrient starvation alone or ATM expression under hypoxia alone. Under hypoxia and nutrient starvation, radiosensitivity was decreased in LM217 cells and increased in HepG2 cells compared with radiosensitivity under hypoxia alone. Under hypoxia and nutrient starvation, knockdown of AMPK decreased ATM activity and increased radiation sensitivity in LM217 cells. In both cell lines, mTORC1 activity was decreased under hypoxia and nutrient starvation. Under hypoxia alone, knockdown of mTOR slightly increased ATM expression but did not affect radiosensitivity in LM217. Under hypoxia and nutrient starvation, HIF-1α expression was suppressed and glycogen storage was reduced. Our data suggest that AMPK regulates ATM expression and partially regulates radiosensitivity under hypoxia and nutrient starvation. The molecular mechanism underlying the induction of ATM expression by AMPK remains to be elucidated. Copyright © 2017. Published by Elsevier Inc.

  3. The role of hypoxia and HIF1α in the regulation of STAR-mediated steroidogenesis in granulosa cells.

    PubMed

    Kowalewski, Mariusz Pawel; Gram, Aykut; Boos, Alois

    2015-02-05

    The adaptive responses to hypoxia are mediated by hypoxia-inducible factor 1 alpha (HIF1α). Its role, however, in regulating steroidogenesis remains poorly understood. We examined the role of hypoxia and HIF1α in regulating steroid acute regulatory protein (STAR) expression and steroidogenesis in immortalized (KK1) mouse granulosa cells under progressively lowering O2 concentrations (20%, 15%, 10%, 5%, 1%). Basal and dbcAMP-stimulated progesterone synthesis was decreased under severe hypoxia (1% and 5% O2). The partial hypoxia revealed opposing effects, with a significant increase in steroidogenic response at 10% O2 in dbcAMP-treated cells: Star-promoter activity, mRNA and protein expression were increased. The hypoxia-stimulated STAR expression was PKA-dependent. Binding of HIF1α to the Star-promoter was potentiated under partial hypoxia. Inhibition of the transcriptional activity or expression of HIF1α suppressed STAR-expression. HIF1α appears to be a positive regulator of basal and stimulated STAR-expression, which under partial hypoxia is capable of increasing the steroidogenic capacity of granulosa cells. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  4. Effects of hypoxia on ionic regulation, glycogen utilization and antioxidative ability in the gills and liver of the aquatic air-breathing fish Trichogaster microlepis.

    PubMed

    Huang, Chun-Yen; Lin, Hui-Chen; Lin, Cheng-Huang

    2015-01-01

    We examined the hypothesis that Trichogaster microlepis, a fish with an accessory air-breathing organ, uses a compensatory strategy involving changes in both behavior and protein levels to enhance its gas exchange ability. This compensatory strategy enables the gill ion-regulatory metabolism to maintain homeostasis during exposure to hypoxia. The present study aimed to determine whether ionic regulation, glycogen utilization and antioxidant activity differ in terms of expression under hypoxic stresses; fish were sampled after being subjected to 3 or 12h of hypoxia and 12h of recovery under normoxia. The air-breathing behavior of the fish increased under hypoxia. No morphological modification of the gills was observed. The expression of carbonic anhydrase II did not vary among the treatments. The Na(+)/K(+)-ATPase enzyme activity did not decrease, but increases in Na(+)/K(+)-ATPase protein expression and ionocyte levels were observed. The glycogen utilization increased under hypoxia as measured by glycogen phosphorylase protein expression and blood glucose level, whereas the glycogen content decreased. The enzyme activity of several components of the antioxidant system in the gills, including catalase, glutathione peroxidase, and superoxidase dismutase, increased in enzyme activity. Based on the above data, we concluded that T. microlepis is a hypoxia-tolerant species that does not exhibit ion-regulatory suppression but uses glycogen to maintain energy utilization in the gills under hypoxic stress. Components of the antioxidant system showed increased expression under the applied experimental treatments. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Violaxanthin de-epoxidase is rate-limiting for non-photochemical quenching under subsaturating light or during chilling in Arabidopsis.

    PubMed

    Chen, Zhong; Gallie, Daniel R

    2012-09-01

    In response to conditions of excess light energy, plants induce non-photochemical quenching (NPQ) as a protective mechanism to prevent over reduction of photosystem II and the generation of reactive oxygen species (ROS). The xanthophyll cycle, which contributes significantly to reversible NPQ to thermally dissipate excess absorbed light energy, involves de-epoxidation of violaxanthin and antheraxanthin to zeaxanthin in response to excess light energy. The activation of violaxanthin de-epoxidase (VDE), which catalyzes the de-epoxidation reaction, requires the generation of a light-induced, transthylakoid pH gradient. In this work, we overexpressed or repressed the expression of VDE in Arabidopsis (Arabidopsis thaliana) to examine whether VDE is rate-limiting for the induction of NPQ. Increasing VDE expression increased the de-epoxidation state of xanthophyll pigments, the rate of NPQ induction, and the level of NPQ achieved under subsaturating light. In saturating light, however, overexpression of VDE did not increase the xanthophyll pigment de-epoxidation state, the level of NPQ achieved following its initial induction, or substantially improve tolerance to high light. Only under chilling, which reduces VDE activity, did an increase in VDE expression provide slightly greater phototolerance. Repression of VDE expression impaired violaxanthin de-epoxidation, reduced the generation of NPQ, and lowered the level of NPQ achieved while increasing photosensitivity. These results demonstrate that the endogenous level of VDE is rate-limiting for NPQ in Arabidopsis under subsaturating but not saturating light and can become rate-limiting under chilling conditions. These results also show that increasing VDE expression confers greater phototolerance mainly under conditions which limit endogenous VDE activity. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  6. How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels

    PubMed Central

    Balotf, Sadegh; Islam, Shahidul; Kavoosi, Gholamreza; Kholdebarin, Bahman; Juhasz, Angela

    2018-01-01

    Nitrogen (N) is one of the most important nutrients for plants and nitric oxide (NO) as a signaling plant growth regulator involved in nitrogen assimilation. Understanding the influence of exogenous NO on nitrogen metabolism at the gene expression and enzyme activity levels under different sources of nitrogen is vitally important for increasing nitrogen use efficiency (NUE). This study investigated the expression of key genes and enzymes in relation to nitrogen assimilation in two Australian wheat cultivars, a popular high NUE cv. Spitfire and a normal NUE cv. Westonia, under different combinations of nitrogen and sodium nitroprusside (SNP) as the NO donor. Application of NO increased the gene expressions and activities of nitrogen assimilation pathway enzymes in both cultivars at low levels of nitrogen. At high nitrogen supplies, the expressions and activities of N assimilation genes increased in response to exogenous NO only in cv. Spitfire but not in cv. Westonia. Exogenous NO caused an increase in leaf NO content at low N supplies in both cultivars, while under high nitrogen treatments, cv. Spitfire showed an increase under ammonium nitrate (NH4NO3) treatment but cv. Westonia was not affected. N assimilation gene expression and enzyme activity showed a clear relationship between exogenous NO, N concentration and N forms in primary plant nitrogen assimilation. Results reveal the possible role of NO and different nitrogen sources on nitrogen assimilation in Triticum aestivum plants. PMID:29320529

  7. How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels.

    PubMed

    Balotf, Sadegh; Islam, Shahidul; Kavoosi, Gholamreza; Kholdebarin, Bahman; Juhasz, Angela; Ma, Wujun

    2018-01-01

    Nitrogen (N) is one of the most important nutrients for plants and nitric oxide (NO) as a signaling plant growth regulator involved in nitrogen assimilation. Understanding the influence of exogenous NO on nitrogen metabolism at the gene expression and enzyme activity levels under different sources of nitrogen is vitally important for increasing nitrogen use efficiency (NUE). This study investigated the expression of key genes and enzymes in relation to nitrogen assimilation in two Australian wheat cultivars, a popular high NUE cv. Spitfire and a normal NUE cv. Westonia, under different combinations of nitrogen and sodium nitroprusside (SNP) as the NO donor. Application of NO increased the gene expressions and activities of nitrogen assimilation pathway enzymes in both cultivars at low levels of nitrogen. At high nitrogen supplies, the expressions and activities of N assimilation genes increased in response to exogenous NO only in cv. Spitfire but not in cv. Westonia. Exogenous NO caused an increase in leaf NO content at low N supplies in both cultivars, while under high nitrogen treatments, cv. Spitfire showed an increase under ammonium nitrate (NH4NO3) treatment but cv. Westonia was not affected. N assimilation gene expression and enzyme activity showed a clear relationship between exogenous NO, N concentration and N forms in primary plant nitrogen assimilation. Results reveal the possible role of NO and different nitrogen sources on nitrogen assimilation in Triticum aestivum plants.

  8. Noradrenaline increases the expression and release of Hsp72 by human neutrophils.

    PubMed

    Giraldo, E; Multhoff, G; Ortega, E

    2010-05-01

    The blood concentration of extracellular 72kDa heat shock protein (eHsp72) increases under conditions of stress, including intense exercise. However, the signal(s), source(s), and secretory pathways in its release into the bloodstream have yet to be clarified. The aim of the present study was to evaluate the role of noradrenaline (NA) as a stress signal on the expression and release of Hsp72 by circulating neutrophils (as a source), all within a context of the immunophysiological regulation during exercise-induced stress in sedentary and healthy young (21-26years) women. The expression of Hsp72 on the surface of isolated neutrophils was determined by flow cytometry, and its release by cultured isolated neutrophils was determined by ELISA. Incubation with cmHsp70-FITC showed that neutrophils express Hsp72 on their surface under basal conditions. In addition, cultured isolated neutrophils (37 degrees C and 5% CO(2)) also released Hsp72 under basal conditions, with this release increasing from 10min to 24h in the absence of cell damage. NA at 10(-9)-10(-5)M doubled the percentage of neutrophils expressing Hsp72 after 60min and 24h incubation. NA also stimulated (by about 20%) the release of Hsp72 after 10min of incubation. (1) Hsp72 is expressed on the surface of isolated neutrophils under basal conditions, and this expression is augmented by NA. (2) Isolated neutrophils can also release Hsp72 under cultured basal conditions in the absence of cell death, and NA can increase this release. These results may contribute to confirming the hypothesis that NA can act as a "stress signal" for the increased eHsp72 in the context of exercise stress, with a role for neutrophils as a source for the expression and, to a lesser degree, the release of Hsp72 after activation by NA. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Over-expression of the Arabidopsis proton-pyrophosphatase AVP1 enhances transplant survival, root mass, and fruit development under limiting phosphorus conditions

    PubMed Central

    Yang, Haibing; Zhang, Xiao; Gaxiola, Roberto A.; Xu, Guohua; Peer, Wendy Ann; Murphy, Angus S.

    2014-01-01

    Phosphorus (P), an element required for plant growth, fruit set, fruit development, and fruit ripening, can be deficient or unavailable in agricultural soils. Previously, it was shown that over-expression of a proton-pyrophosphatase gene AVP1/AVP1D (AVP1DOX) in Arabidopsis, rice, and tomato resulted in the enhancement of root branching and overall mass with the result of increased mineral P acquisition. However, although AVP1 over-expression also increased shoot biomass in Arabidopsis, this effect was not observed in tomato under phosphate-sufficient conditions. AVP1DOX tomato plants exhibited increased rootward auxin transport and root acidification compared with control plants. AVP1DOX tomato plants were analysed in detail under limiting P conditions in greenhouse and field trials. AVP1DOX plants produced 25% (P=0.001) more marketable ripened fruit per plant under P-deficient conditions compared with the controls. Further, under low phosphate conditions, AVP1DOX plants displayed increased phosphate transport from leaf (source) to fruit (sink) compared to controls. AVP1DOX plants also showed an 11% increase in transplant survival (P<0.01) in both greenhouse and field trials compared with the control plants. These results suggest that selection of tomato cultivars for increased proton pyrophosphatase gene expression could be useful when selecting for cultivars to be grown on marginal soils. PMID:24723407

  10. Expression of animal anti-apoptotic gene Ced-9 enhances tolerance during Glycine max L.-Bradyrhizobium japonicum interaction under saline stress but reduces nodule formation.

    PubMed

    Robert, Germán; Muñoz, Nacira; Melchiorre, Mariana; Sánchez, Federico; Lascano, Ramiro

    2014-01-01

    The mechanisms by which the expression of animal cell death suppressors in economically important plants conferred enhanced stress tolerance are not fully understood. In the present work, the effect of expression of animal antiapoptotic gene Ced-9 in soybean hairy roots was evaluated under root hairs and hairy roots death-inducing stress conditions given by i) Bradyrhizobium japonicum inoculation in presence of 50 mM NaCl, and ii) severe salt stress (150 mM NaCl), for 30 min and 3 h, respectively. We have determined that root hairs death induced by inoculation in presence of 50 mM NaCl showed characteristics of ordered process, with increased ROS generation, MDA and ATP levels, whereas the cell death induced by 150 mM NaCl treatment showed non-ordered or necrotic-like characteristics. The expression of Ced-9 inhibited or at least delayed root hairs death under these treatments. Hairy roots expressing Ced-9 had better homeostasis maintenance, preventing potassium release; increasing the ATP levels and controlling the oxidative damage avoiding the increase of reactive oxygen species production. Even when our results demonstrate a positive effect of animal cell death suppressors in plant cell ionic and redox homeostasis under cell death-inducing conditions, its expression, contrary to expectations, drastically inhibited nodule formation even under control conditions.

  11. Upregulation of osteopontin expression via the interaction of macrophages and fibroblasts under IL-1b stimulation.

    PubMed

    Shimodaira, Takahiro; Matsuda, Kazuyuki; Uchibori, Takaaki; Sugano, Mitsutoshi; Uehara, Takeshi; Honda, Takayuki

    2018-04-25

    Fibrosis is attributed to dysregulation of tissue-remodeling. In remodeling areas, fibroblasts and macrophages actively make contact with each other. Osteopontin (OPN) is a pro-fibrotic molecule, whose expression is upregulated by interleukin (IL)-1β via secretion of its downstream cytokines, such as IL-6. Here, we investigated the effect of interaction between fibroblasts and macrophages under IL-1β stimulation on the expression of OPN. We used human lung fibroblasts and THP-1 macrophages differentiated from THP-1 cells using phorbol 12-myristate 13-acetate. These cells were either cultured alone or co-cultured under IL-1β stimulation. Secretion of OPN and IL-6 were examined by enzyme-linked immunosorbent assay, and mRNA expression was assessed by quantitative real-time PCR. The effects of siRNA against IL-6 or OPN on OPN expression were evaluated. OPN expression increased when fibroblasts and THP-1 macrophages were co-cultured under IL-1β stimulation. The siRNA against IL-6 in fibroblasts suppressed the upregulation of OPN expression during co-culture, whereas siRNA against IL-6 in THP-1 macrophages did not. The upregulation of expression of OPN mRNA in fibroblasts or THP-1 macrophages when co-cultured under IL-1β stimulation was mediated by IL-6 from fibroblasts. OPN from THP-1 macrophages was involved in the increase of OPN expression in fibroblasts. The present study revealed the crosstalk between fibroblasts and THP-1 macrophages under IL-1β stimulation, where IL-6 from fibroblasts, stimulated by IL-1β, upregulated OPN expression in fibroblasts themselves via increase in OPN from THP-1 macrophages. The fibroblasts/macrophages network may induce activation or qualitative changes in both cells, which contributes to inflammation-associated fibrosis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Acute exercise induces biphasic increase in respiratory mRNA in skeletal muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeda, Shin-ichi; Kizaki, Takako; Haga, Shukoh

    2008-04-04

    Peroxisome proliferator-activated receptor {gamma} coactivator-1{alpha} (PGC-1{alpha}) promotes the expression of oxidative enzymes in skeletal muscle. We hypothesized that activation of the p38 MAPK (mitogen-activated protein kinase) in response to exercise was associated with exercise-induced PGC-1{alpha} and respiratory enzymes expression and aimed to demonstrate this under the physiological level. We subjected mice to a single bout of treadmill running and found that the exercise induced a biphasic increase in the expression of respiratory enzymes mRNA. The second phase of the increase was accompanied by an increase in PGC-1{alpha} protein, but the other was not. Administration of SB203580 (SB), an inhibitor ofmore » p38 MAPK, suppressed the increase in PGC-1{alpha} expression and respiratory enzymes mRNA in both phases. These data suggest that p38 MAPK is associated with the exercise-induced expression of PGC-1{alpha} and biphasic increase in respiratory enzyme mRNAs in mouse skeletal muscle under physiological conditions.« less

  13. Farnesoid X receptor is essential for the survival of renal medullary collecting duct cells under hypertonic stress.

    PubMed

    Xu, Sujuan; Huang, Shizheng; Luan, Zhilin; Chen, Tingyue; Wei, Yuanyi; Xing, Miaomiao; Li, Yaqing; Du, Chunxiu; Wang, Bing; Zheng, Feng; Wang, Nanping; Guan, Youfei; Gustafsson, Jan-Åke; Zhang, Xiaoyan

    2018-05-22

    Hypertonicity in renal medulla is critical for the kidney to produce concentrated urine. Renal medullary cells have to survive high medullary osmolarity during antidiuresis. Previous study reported that farnesoid X receptor (FXR), a nuclear receptor transcription factor activated by endogenous bile acids, increases urine concentrating ability by up-regulating aquaporin 2 expression in medullary collecting duct cells (MCDs). However, whether FXR is also involved in the maintenance of cell survival of MCDs under dehydration condition and hypertonic stress remains largely unknown. In the present study, we demonstrate that 24-hours water restriction selectively up-regulated renal medullary expression of FXR with little MCD apoptosis in wild-type mice. In contrast, water deprivation caused a massive apoptosis of MCDs in both global FXR gene-deficient mice and collecting duct-specific FXR knockout mice. In vitro studies showed that hypertonicity significantly increased FXR and tonicity response enhancer binding protein (TonEBP) expression in mIMCD3 cell line and primary cultured MCDs. Activation and overexpression of FXR markedly increased cell viability and decreased cell apoptosis under hyperosmotic conditions. In addition, FXR can increase gene expression and nuclear translocation of TonEBP. We conclude that FXR protects MCDs from hypertonicity-induced cell injury very likely via increasing TonEBP expression and nuclear translocation. This study provides insights into the molecular mechanism by which FXR enhances urine concentration via maintaining cell viability of MCDs under hyperosmotic condition.

  14. Transcriptional profiling of the early stages of germination in Candida albicans by real-time RT-PCR.

    PubMed

    Toyoda, Mika; Cho, Tamaki; Kaminishi, Hidenori; Sudoh, Masayuki; Chibana, Hiroji

    2004-12-01

    By using real-time RT-PCR, we profiled the expression of CGR1, CaMSI3, EFG1, NRG1, and TUP1 in Candida albicans strains JCM9061 and CAI4 under several conditions, including induction of morphological transition, heat shock, and treatment with calcium inhibitors. Expression of CaMSI3 changed under these growth conditions except during heat shock. CGR1 expression increased during the early stages of hyphal growth in JCM9061, while expression was strain-dependent during heat shock. Both EFG1 and NRG1 were similarly expressed under hypha-inducing conditions and heat shock. Expression of TUP1 was slightly different from the expression of EFG1 or NRG1.

  15. Hypoxia-inducible factor 1–mediated human GATA1 induction promotes erythroid differentiation under hypoxic conditions

    PubMed Central

    Zhang, Feng-Lin; Shen, Guo-Min; Liu, Xiao-Ling; Wang, Fang; Zhao, Ying-Ze; Zhang, Jun-Wu

    2012-01-01

    Abstract Hypoxia-inducible factor promotes erythropoiesis through coordinated cell type–specific hypoxia responses. GATA1 is essential to normal erythropoiesis and plays a crucial role in erythroid differentiation. In this study, we show that hypoxia-induced GATA1 expression is mediated by HIF1 in erythroid cells. Under hypoxic conditions, significantly increased GATA1 mRNA and protein levels were detected in K562 cells and erythroid induction cultures of CD34+ haematopoietic stem/progenitor cells. Enforced HIF1α expression increased GATA1 expression, while HIF1α knockdown by RNA interference decreased GATA1 expression. In silico analysis revealed one potential hypoxia response element (HRE). The results from reporter gene and mutation analysis suggested that this element is necessary for hypoxic response. Chromatin immunoprecipitation (ChIP)-PCR showed that the putative HRE was recognized and bound by HIF1 in vivo. These results demonstrate that the up-regulation of GATA1 during hypoxia is directly mediated by HIF1.The mRNA expression of some erythroid differentiation markers was increased under hypoxic conditions, but decreased with RNA interference of HIF1α or GATA1. Flow cytometry analysis also indicated that hypoxia, desferrioxamine or CoCl2 induced expression of erythroid surface markers CD71 and CD235a, while expression repression of HIF1α or GATA1 by RNA interference led to a decreased expression of CD235a. These results suggested that HIF1-mediated GATA1 up-regulation promotes erythropoiesis in order to satisfy the needs of an organism under hypoxic conditions. PMID:22050843

  16. Cloning and expression analysis of carboxyltransferase of acetyl-coA carboxylase from Jatropha curcas.

    PubMed

    Xie, Wu-Wei; Gao, Shun; Wang, Sheng-Hua; Zhu, Jin-Qiu; Xu, Ying; Tang, Lin; Chen, Fang

    2010-01-01

    A full-length cDNA of the carboxyltransferase (accA) gene of acetyl-coenzym A (acetyl-CoA) carboxylase from Jatropha curcas was cloned and sequenced. The gene with an open reading frame (ORF) of 1149 bp encodes a polypeptide of 383 amino acids, with a molecular mass of 41.9 kDa. Utilizing fluorogenic real-time polymerase chain reaction (RT-PCR), the expression levels of the accA gene in leaves and fruits at early, middle and late stages under pH 7.0/8.0 and light/darkness stress were investigated. The expression levels of the accA gene in leaves at early, middle and late stages increased significantly under pH 8.0 stress compared to pH 7.0. Similarly, the expression levels in fruits showed a significant increase under darkness condition compared to the control. Under light stress, the expression levels in the fruits at early, middle and late stages showed the largest fluctuations compared to those of the control. These findings suggested that the expression levels of the accA gene are closely related to the growth conditions and developmental stages in the leaves and fruits of Jatropha curcas.

  17. The two-component system GrvRS (EtaRS) regulates ace expression in Enterococcus faecalis OG1RF.

    PubMed

    Roh, Jung Hyeob; Singh, Kavindra V; La Rosa, Sabina Leanti; Cohen, Ana Luisa V; Murray, Barbara E

    2015-01-01

    Expression of ace (adhesin to collagen of Enterococcus faecalis), encoding a virulence factor in endocarditis and urinary tract infection models, has been shown to increase under certain conditions, such as in the presence of serum, bile salts, urine, and collagen and at 46 °C. However, the mechanism of ace/Ace regulation under different conditions is still unknown. In this study, we identified a two-component regulatory system GrvRS as the main regulator of ace expression under these stress conditions. Using Northern hybridization and β-galactosidase assays of an ace promoter-lacZ fusion, we found transcription of ace to be virtually absent in a grvR deletion mutant under the conditions that increase ace expression in wild-type OG1RF and in the complemented strain. Moreover, a grvR mutant revealed decreased collagen binding and biofilm formation as well as attenuation in a murine urinary tract infection model. Here we show that GrvR plays a major role in control of ace expression and E. faecalis virulence. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Effects of hypothermia and cerebral ischemia on cold-inducible RNA-binding protein mRNA expression in rat brain.

    PubMed

    Liu, Aijun; Zhang, Zhiwen; Li, Anmin; Xue, Jinghui

    2010-08-06

    CIRP (cold-inducible RNA-binding protein) mRNA is highly expressed in hypothermic conditions in mammalian cells, and the relationship between CIRP and neuroprotection for cerebral ischemia under hypothermia has been focused upon. At present, however, the expression characteristics of CIRP under hypothermia and cerebral ischemia in vivo are not clearly elucidated. In this study, CIRP mRNA expression in various regions of rat brain was examined by reverse transcriptase polymerase chain reaction (RT-PCR). CIRP expression levels were found to be similar in the hippocampus and cortex. Real-time quantitative PCR analysis revealed increasing CIRP mRNA expression in the cortex during the 24-h observation period following treatment with hypothermia or cerebral ischemia, with a greater increase in the hypothermia group. When cerebral ischemia was induced following hypothermia, CIRP mRNA expression in the cortex again showed a significant increasing tendency, but ischemia delayed the appearance of this increase. To reveal the relationship between CIRP and energy metabolism in the rat brain, lactate and pyruvate concentrations in the cortex of the rats treated with hypothermia, ischemia and ischemia after hypothermia were determined by spectrophotometric assay, and levels of phosphofructokinas-1 (PFK-1), the major regulatory enzyme of the glycolytic pathway, in the rat cortex in the three groups was also analyzed by Western blot. Using linear correlation, lactate and pyruvate concentrations, and PFK-1 levels, were each analyzed in the three groups in association with CIRP mRNA expression levels. The analysis did not reveal any correlation between the three metabolic parameters and CIRP mRNA expression induced by hypothermia, suggesting that while playing a role in neuroprotection under hypothermia, CIRP does not affect cerebral energy metabolism. Copyright 2010. Published by Elsevier B.V.

  19. Spontaneous extrusion of a stainless steel glaucoma drainage implant (Ex-PRESS).

    PubMed

    Tavolato, M; Babighian, S; Galan, A

    2006-01-01

    To report a case of spontaneous extrusion of a stainless steel glaucoma drainage implant (Ex-PRESS). An Ex-PRESS was implanted under the conjunctiva in a 76-year-old man with primary open-angle glaucoma. Two years after implantation, the Ex-Press extruded spontaneously. Despite this adverse event, there was no increase in intraocular pressure. This is the first report of spontaneous extrusion of an Ex-PRESS device. Implanting the device under a scleral flap should be considered to avoid adverse events such as extrusion or conjunctival erosion.

  20. Lipopolysaccharide (LPS)-stimulated iNOS Induction Is Increased by Glucosamine under Normal Glucose Conditions but Is Inhibited by Glucosamine under High Glucose Conditions in Macrophage Cells*

    PubMed Central

    Hwang, Ji-Sun; Kwon, Mi-Youn; Kim, Kyung-Hong; Lee, Yunkyoung; Lyoo, In Kyoon; Kim, Jieun E.; Oh, Eok-Soo; Han, Inn-Oc

    2017-01-01

    We investigated the regulatory effect of glucosamine (GlcN) for the production of nitric oxide (NO) and expression of inducible NO synthase (iNOS) under various glucose conditions in macrophage cells. At normal glucose concentrations, GlcN dose dependently increased LPS-stimulated production of NO/iNOS. However, GlcN suppressed NO/iNOS production under high glucose culture conditions. Moreover, GlcN suppressed LPS-induced up-regulation of COX-2, IL-6, and TNF-α mRNAs under 25 mm glucose conditions yet did not inhibit up-regulation under 5 mm glucose conditions. Glucose itself dose dependently increased LPS-induced iNOS expression. LPS-induced MAPK and IκB-α phosphorylation did not significantly differ at normal and high glucose conditions. The activity of LPS-induced nuclear factor-κB (NF-κB) and DNA binding of c-Rel to the iNOS promoter were inhibited under high glucose conditions in comparison with no significant changes under normal glucose conditions. In addition, we found that the LPS-induced increase in O-GlcNAcylation as well as DNA binding of c-Rel to the iNOS promoter were further increased by GlcN under normal glucose conditions. However, both O-GlcNAcylation and DNA binding of c-Rel decreased under high glucose conditions. The NF-κB inhibitor, pyrrolidine dithiocarbamate, inhibited LPS-induced iNOS expression under high glucose conditions but it did not influence iNOS induction under normal glucose conditions. In addition, pyrrolidine dithiocarbamate inhibited NF-κB DNA binding and c-Rel O-GlcNAcylation only under high glucose conditions. By blocking transcription with actinomycin D, we found that stability of LPS-induced iNOS mRNA was increased by GlcN under normal glucose conditions. These results suggest that GlcN regulates inflammation by sensing energy states of normal and fuel excess. PMID:27927986

  1. Expression of profibrotic growth factors and their receptors by mouse lung macrophages and fibroblasts under conditions of acute viral inflammation in influenza A/H5N1 virus.

    PubMed

    Anikina, A G; Shkurupii, V A; Potapova, O V; Kovner, A V; Shestopalov, A M

    2014-04-01

    Morphological signs of early interstitial fibrosis, developing under conditions of acute viral inflammation (postinfection days 1-14), were observed in C57Bl/6 mice infected with influenza A/H5N1 A/goose/Krasnoozerskoye/627/05 virus. The development of fibrosis was confirmed by an increase in the number of lung cells expressing TNF-α. These changes were recorded in the presence of a many-fold increase in the counts of macrophages and fibroblasts expressing FGF, EGF, and their receptors.

  2. Differential Effects of Methyl Jasmonate on the Expression of the Early Light-Inducible Proteins and Other Light-Regulated Genes in Barley1

    PubMed Central

    Wierstra, Inken; Kloppstech, Klaus

    2000-01-01

    The effects of methyl jasmonate (JA-Me) on early light-inducible protein (ELIP) expression in barley (Hordeum vulgare L. cv Apex) have been studied. Treatment of leaf segments with JA-Me induces the same symptoms as those exhibited by norflurazon bleaching, including a loss of pigments and enhanced light stress that results in increased ELIP expression under both high- and low-light conditions. The expression of both low- and high-molecular-mass ELIP families is considerably down-regulated by JA-Me at the transcript and protein levels. This repression occurs despite increased photoinhibition measurable as a massive degradation of D1 protein and a delayed recovery of photosystem II activity. In JA-Me-treated leaf segments, the decrease of the photochemical efficiency of photosystem II under high light is substantially more pronounced as compared to controls in water. The repression of ELIP expression by JA-Me is superimposed on the effect of the increased light stress that leads to enhanced ELIP expression. The fact that the reduction of ELIP transcript levels is less pronounced than those of light-harvesting complex II and small subunit of Rubisco transcripts indicates that light stress is still affecting gene expression in the presence of JA-Me. The jasmonate-induced protein transcript levels that are induced by JA-Me decline under light stress conditions. PMID:11027731

  3. EARLY FLOWERING3 Regulates Flowering in Spring Barley by Mediating Gibberellin Production and FLOWERING LOCUS T Expression[C][W

    PubMed Central

    Boden, Scott A.; Weiss, David; Ross, John J.; Davies, Noel W.; Trevaskis, Ben; Chandler, Peter M.; Swain, Steve M.

    2014-01-01

    EARLY FLOWERING3 (ELF3) is a circadian clock gene that contributes to photoperiod-dependent flowering in plants, with loss-of-function mutants in barley (Hordeum vulgare), legumes, and Arabidopsis thaliana flowering early under noninductive short-day (SD) photoperiods. The barley elf3 mutant displays increased expression of FLOWERING LOCUS T1 (FT1); however, it remains unclear whether this is the only factor responsible for the early flowering phenotype. We show that the early flowering and vegetative growth phenotypes of the barley elf3 mutant are strongly dependent on gibberellin (GA) biosynthesis. Expression of the central GA biosynthesis gene, GA20oxidase2, and production of the bioactive GA, GA1, were significantly increased in elf3 leaves under SDs, relative to the wild type. Inhibition of GA biosynthesis suppressed the early flowering of elf3 under SDs independently of FT1 and was associated with altered expression of floral identity genes at the developing apex. GA is also required for normal flowering of spring barley under inductive photoperiods, with chemical and genetic attenuation of the GA biosynthesis and signaling pathways suppressing inflorescence development under long-day conditions. These findings illustrate that GA is an important floral promoting signal in barley and that ELF3 suppresses flowering under noninductive photoperiods by blocking GA production and FT1 expression. PMID:24781117

  4. [A study on the expression of HSP70 in endothelial cells pretreated with ethanol and fluid shear stress].

    PubMed

    Yan, Hong-tao; Zhang, Yi; Liao, Ga; Zhang, Kui; Li, Bin; Wang, Ye; Liao, Zhi-gang

    2006-07-01

    To detect whether ethanol can affect the expression of HSP70 in endothelial cells under fluid shear stress. Ethanol at different concentrations was added to the culture medium of endothelial cells, EA. Hy926, which was treated statically or under 1Pa fluid shear stress. After the incubation of 1 h, 2 h, 4 h and 6 h, the expression of HSP70 was detected by immunohistochemical method(SP). In the control group, the expression of HSP70 was negative under static state, while it was positive under 1Pa fluid shear stress lasting 4 h even without ethanol. No statistic difference was found between the 50 mg/dL ethanol group and the control group with the same treatment time of fluid shear stress. HSP70 expression was found under static state with 150 mg/dL ethanol after 4 h or 300 mg/dL ethanol after 2 h respectively. The expression increased greatly under 1Pa fluid shear stress in the same ethanol concentrations. Medium to high ethanol concentration in coordination with fluid shear stress can strongly stimulates the expression of HSP70 by a kinetic mechanism of time-dependent.

  5. Differential effects of Pseudomonas mendocina and Glomus intraradices on lettuce plants physiological response and aquaporin PIP2 gene expression under elevated atmospheric CO2 and drought.

    PubMed

    Alguacil, Maria Del Mar; Kohler, Josef; Caravaca, Fuensanta; Roldán, Antonio

    2009-11-01

    Arbuscular mycorrhizal (AM) symbiosis and plant-growth-promoting rhizobacterium (PGPR) can alleviate the effects of water stress in plants, but it is unknown whether these benefits can be maintained at elevated CO2. Therefore, we carried out a study where seedlings of Lactuca sativa were inoculated with the AM fungus (AMF) Glomus intraradices N.C. Schenk & G.S. Sm. or the PGPR Pseudomonas mendocina Palleroni and subjected to two levels of watering and two levels of atmospheric CO2 to ascertain their effects on plant physiological parameters and gene expression of one PIP aquaporin in roots. The inoculation with PGPR produced the greatest growth in lettuce plants under all assayed treatments as well as the highest foliar potassium concentration and leaf relative water content under elevated [CO2] and drought. However, under such conditions, the PIP2 gene expression remained almost unchanged. G. intraradices increased significantly the AMF colonization, foliar phosphorus concentration and leaf relative water content in plants grown under drought and elevated [CO2]. Under drought and elevated [CO2], the plants inoculated with G. intraradices showed enhanced expression of the PIP2 gene as compared to P. mendocina or control plants. Our results suggest that both microbial inoculation treatments could help to alleviate drought at elevated [CO2]. However, the PIP2 gene expression was increased only by the AMF but not by the PGPR under these conditions.

  6. Response of heat shock protein genes of the oriental fruit moth under diapause and thermal stress reveals multiple patterns dependent on the nature of stress exposure.

    PubMed

    Zhang, Bo; Peng, Yu; Zheng, Jincheng; Liang, Lina; Hoffmann, Ary A; Ma, Chun-Sen

    2016-07-01

    Heat shock protein gene (Hsp) families are thought to be important in thermal adaptation, but their expression patterns under various thermal stresses have still been poorly characterized outside of model systems. We have therefore characterized Hsp genes and their stress responses in the oriental fruit moth (OFM), Grapholita molesta, a widespread global orchard pest, and compared patterns of expression in this species to that of other insects. Genes from four Hsp families showed variable expression levels among tissues and developmental stages. Members of the Hsp40, 70, and 90 families were highly expressed under short exposures to heat and cold. Expression of Hsp40, 70, and Hsc70 family members increased in OFM undergoing diapause, while Hsp90 was downregulated. We found that there was strong sequence conservation of members of large Hsp families (Hsp40, Hsp60, Hsp70, Hsc70) across taxa, but this was not always matched by conservation of expression patterns. When the large Hsps as well as small Hsps from OFM were compared under acute and ramping heat stress, two groups of sHsps expression patterns were apparent, depending on whether expression increased or decreased immediately after stress exposure. These results highlight potential differences in conservation of function as opposed to sequence in this gene family and also point to Hsp genes potentially useful as bioindicators of diapause and thermal stress in OFM.

  7. Effect of low oxygen tension on the biological characteristics of human bone marrow mesenchymal stem cells.

    PubMed

    Kim, Dae Seong; Ko, Young Jong; Lee, Myoung Woo; Park, Hyun Jin; Park, Yoo Jin; Kim, Dong-Ik; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2016-11-01

    Culture of mesenchymal stem cells (MSCs) under ambient conditions does not replicate the low oxygen environment of normal physiological or pathological states and can result in cellular impairment during culture. To overcome these limitations, we explored the effect of hypoxia (1 % O 2 ) on the biological characteristics of MSCs over the course of different culture periods. The following biological characteristics were examined in human bone marrow-derived MSCs cultured under hypoxia for 8 weeks: proliferation rate, morphology, cell size, senescence, immunophenotypic characteristics, and the expression levels of stemness-associated factors and cytokine and chemokine genes. MSCs cultured under hypoxia for approximately 2 weeks showed increased proliferation and viability. During long-term culture, hypoxia delayed phenotypic changes in MSCs, such as increased cell volume, altered morphology, and the expression of senescence-associated-β-gal, without altering their characteristic immunophenotypic characteristics. Furthermore, hypoxia increased the expression of stemness and chemokine-related genes, including OCT4 and CXCR7, and did not decrease the expression of KLF4, C-MYC, CCL2, CXCL9, CXCL10, and CXCR4 compared with levels in cells cultured under normoxia. In conclusion, low oxygen tension improved the biological characteristics of MSCs during ex vivo expansion. These data suggest that hypoxic culture could be a useful method for increasing the efficacy of MSC cell therapies.

  8. Reactive oxygen species regulate programmed cell death progress of endosperm in winter wheat (Triticum aestivum L.) under waterlogging.

    PubMed

    Cheng, Xiang-Xu; Yu, Min; Zhang, Nan; Zhou, Zhu-Qing; Xu, Qiu-Tao; Mei, Fang-Zhu; Qu, Liang-Huan

    2016-03-01

    Previous studies have proved that waterlogging stress accelerates the programmed cell death (PCD) progress of wheat endosperm cells. A highly waterlogging-tolerant wheat cultivar Hua 8 and a waterlogging susceptible wheat cultivar Hua 9 were treated with different waterlogging durations, and then, dynamic changes of reactive oxygen species (ROS), gene expressions, and activities of antioxidant enzymes in endosperm cells were detected. The accumulation of ROS increased considerably after 7 days of waterlogging treatment (7 DWT) and 12 DWT in both cultivars compared with control group (under non-waterlogged conditions), culminated at 12 DAF (days after flowering) and reduced hereafter. Waterlogging resulted in a great increase of H2O2 and O2 (-) in plasma membranes, cell walls, mitochondrias, and intercellular spaces with ultracytochemical localization. Moreover, the deformation and rupture of cytomembranes as well as the swelling and distortion of mitochondria were obvious. Under waterlogging treatment conditions, catalase (CAT) gene expression increased in endosperm of Hua 8 but activity decreased. In addition, Mn superoxide dismutase (MnSOD) gene expression and superoxide dismutase (SOD) activity increased. Compared with Hua 8, both CAT, MnSOD gene expressions and CAT, SOD activities decreased in Hua 9. Moreover, ascorbic acid and mannitol relieve the intensifying of PCD processes in Hua 8 endosperm cells induced by waterlogging. These results indicate that ROS have important roles in the PCD of endosperm cells, the changes both CAT, MnSOD gene expressions and CAT, SOD activities directly affected the accumulation of ROS in two different wheat cultivars under waterlogging, ultimately led to the PCD acceleration of endosperm.

  9. Local expression of vaginal Th1 and Th2 cytokines in murine vaginal candidiasis under different immunity conditions.

    PubMed

    Chen, Shanjuan; Li, Shaohua; Wu, Yan; Liu, Zhixiang; Li, Jiawen

    2008-08-01

    To investigate the expression of vaginal Th1 and Th2 cytokines in rats with experimental vaginal candidiasis under different immune conditions, ICR murine vaginal candidiasis model was established and immno-suppressed murine models of vaginal cadidiasis were established in estrogen-treated mice. Non-estrogen-treated mice were used as controls. The mRNA level of Th1 (IL-2)/Th2 (IL-4, IL-10, TGF-beta1) cytokines in murine vaginal tissues was determined by RT-PCR. The cykotine in local tissues was increased to different extent under normal immune condition. IL-2 mRNA was increased during early stage of infection, while IL-10 was increased transiently during late stage of infection. TGF-beta1 production was found to be increased persistently. At same time, the expression of IL-2 mRNA was suppressed in immno-suppressed group, and the level of IL-4, IL-10, and TGF-beta1 were higher than the normal immunity group to different degree during infection. The high level of IL-2 mRNA during early stage of infection was associated with clearance of mucosal Candidia albicans (C. albicans), and its expression suppressed leading to decreased clearance of mucosal C. albican in immuno-suppression. The over-expression of IL-4 and IL-10 could significantly enhance the susceptibility to C. albicans infection in mice.

  10. Developmental expression of the receptor for advanced glycation end-products (RAGE) and its response to hyperoxia in the neonatal rat lung

    PubMed Central

    Lizotte, Pierre-Paul; Hanford, Lana E; Enghild, Jan J; Nozik-Grayck, Eva; Giles, Brenda-Louise; Oury, Tim D

    2007-01-01

    Background The receptor for advanced glycation end products (mRAGE) is associated with pathology in most tissues, while its soluble form (sRAGE) acts as a decoy receptor. The adult lung is unique in that it expresses high amounts of RAGE under normal conditions while other tissues express low amounts normally and up-regulate RAGE during pathologic processes. We sought to determine the regulation of the soluble and membrane isoforms of RAGE in the developing lung, and its expression under hyperoxic conditions in the neonatal lung. Results Fetal (E19), term, 4 day, 8 day and adult rat lung protein and mRNA were analyzed, as well as lungs from neonatal (0–24 hrs) 2 day and 8 day hyperoxic (95% O2) exposed animals. mRAGE transcripts in the adult rat lung were 23% greater than in neonatal (0–24 hrs) lungs. On the protein level, rat adult mRAGE expression was 2.2-fold higher relative to neonatal mRAGE expression, and adult sRAGE protein expression was 2-fold higher compared to neonatal sRAGE. Fetal, term, 4 day and 8 day old rats had a steady increase in both membrane and sRAGE protein expression evaluated by Western Blot and immunohistochemistry. Newborn rats exposed to chronic hyperoxia showed significantly decreased total RAGE expression compared to room air controls. Conclusion Taken together, these data show that rat pulmonary RAGE expression increases with age beginning from birth, and interestingly, this increase is counteracted under hyperoxic conditions. These results support the emerging concept that RAGE plays a novel and homeostatic role in lung physiology. PMID:17343756

  11. Environmental effects on resistance gene expression in milk stage popcorn kernels and associations with mycotoxin production

    USDA-ARS?s Scientific Manuscript database

    Like other forms of maize, popcorn is subject to increased levels of contamination by a variety of different mycotoxins under stress conditions, although levels generally are less than dent maize under comparable stress. Gene array analysis was used to determine expression differences of disease res...

  12. Responses of plant seedlings to hypergravity: cellular and molecular aspects

    NASA Astrophysics Data System (ADS)

    Hoson, T.; Yoshioka, R.; Soga, K.; Wakabayashi, K.; Takeba, G.

    Hypergravity produced by centrifugation has been used to analyze the responses of plant seedlings to gravity stimulus. Elongation growth of stem organs is suppressed by hypergravity, which can be recognized as a way for plants to resist gravitational force. The mechanisms inducing growth suppression under hypergravity conditions were analyzed at cellular and molecular levels. When growth was suppressed by hypergravity, a decrease in the cell wall extensibility was brought about in various plants. Hypergravity also induced a cell wall thickening and an increase in the molecular mass of the certain hemicellulosic polysaccharides. Both a decrease in the activities hydrolyzing such polysaccharides and an increase in the apoplast pH were involved in such changes in the cell wall constituents. Thus, the cell wall metabolism is greatly modified under hypergravity conditions, which causes a decrease in the cell wall extensibility, thereby inhibiting elongation growth in stem organs. On the other hand, to identify genes involved in hypergravity-induced growth suppression, changes in gene expression by hypergravity treatment were analyzed in Arabidopsis hypocotyls by differential display method. Sixty-two genes were expressed differentially: expression levels of 39 genes increased, whereas those of 23 genes decreased under hypergravity conditions. The expression of these genes was further analyzed using RT-PCR. One of genes upregulated by hypergravity encoded hydroxymethylglutaryl-CoA reductase (HMGR), which catalyzes a reaction producing mevalonic acid, a key precursor of hormones such as gibberellic acid and abscisic acid. The expression of HMGR gene increased within several hours after hypergravity treatment. Also, compactin, an inhibitor of HMGR activity, prevented hypergravity-induced growth suppression, suggesting that HMGR is involved in suppression of Arabidopsis hypocotyl growth by hypergravity. In addition, hypergravity increased the expression levels of CCR1 and ERD15, which were shown to take part in the signaling pathway of environmental stimuli such as temperature and water. These cellular and molecular changes appear to be involved in a series of events leading to growth suppression of stem organs under hypergravity conditions.

  13. Daytime soybean transcriptome fluctuations during water deficit stress.

    PubMed

    Rodrigues, Fabiana Aparecida; Fuganti-Pagliarini, Renata; Marcolino-Gomes, Juliana; Nakayama, Thiago Jonas; Molinari, Hugo Bruno Correa; Lobo, Francisco Pereira; Harmon, Frank G; Nepomuceno, Alexandre Lima

    2015-07-07

    Since drought can seriously affect plant growth and development and little is known about how the oscillations of gene expression during the drought stress-acclimation response in soybean is affected, we applied Illumina technology to sequence 36 cDNA libraries synthesized from control and drought-stressed soybean plants to verify the dynamic changes in gene expression during a 24-h time course. Cycling variables were measured from the expression data to determine the putative circadian rhythm regulation of gene expression. We identified 4866 genes differentially expressed in soybean plants in response to water deficit. Of these genes, 3715 were differentially expressed during the light period, from which approximately 9.55% were observed in both light and darkness. We found 887 genes that were either up- or down-regulated in different periods of the day. Of 54,175 predicted soybean genes, 35.52% exhibited expression oscillations in a 24 h period. This number increased to 39.23% when plants were submitted to water deficit. Major differences in gene expression were observed in the control plants from late day (ZT16) until predawn (ZT20) periods, indicating that gene expression oscillates during the course of 24 h in normal development. Under water deficit, dissimilarity increased in all time-periods, indicating that the applied stress influenced gene expression. Such differences in plants under stress were primarily observed in ZT0 (early morning) to ZT8 (late day) and also from ZT4 to ZT12. Stress-related pathways were triggered in response to water deficit primarily during midday, when more genes were up-regulated compared to early morning. Additionally, genes known to be involved in secondary metabolism and hormone signaling were also expressed in the dark period. Gene expression networks can be dynamically shaped to acclimate plant metabolism under environmental stressful conditions. We have identified putative cycling genes that are expressed in soybean leaves under normal developmental conditions and genes whose expression oscillates under conditions of water deficit. These results suggest that time of day, as well as light and temperature oscillations that occur considerably affect the regulation of water deficit stress response in soybean plants.

  14. Impacts of elevated CO2 on exogenous Bacillus thuringiensis toxins and transgene expression in transgenic rice under different levels of nitrogen.

    PubMed

    Jiang, Shoulin; Lu, Yongqing; Dai, Yang; Qian, Lei; Muhammad, Adnan Bodlah; Li, Teng; Wan, Guijun; Parajulee, Megha N; Chen, Fajun

    2017-11-07

    Recent studies have highlighted great challenges of transgene silencing for transgenic plants facing climate change. In order to understand the impacts of elevated CO 2 on exogenous Bacillus thuringiensis (Bt) toxins and transgene expression in transgenic rice under different levels of N-fertilizer supply, we investigated the biomass, exogenous Bt toxins, Bt-transgene expression and methylation status in Bt rice exposed to two levels of CO 2 concentrations and nitrogen (N) supply (1/8, 1/4, 1/2, 1 and 2 N). It is elucidated that the increased levels of global atmospheric CO 2 concentration will trigger up-regulation of Bt toxin expression in transgenic rice, especially with appropriate increase of N fertilizer supply, while, to some extent, the exogenous Bt-transgene expression is reduced at sub-N levels (1/4 and 1/2N), even though the total protein of plant tissues is reduced and the plant growth is restricted. The unpredictable and stochastic occurrence of transgene silencing and epigenetic alternations remains unresolved for most transgenic plants. It is expected that N fertilization supply may promote the expression of transgenic Bt toxin in transgenic Bt rice, particularly under elevated CO 2 .

  15. MicroRNA268 Overexpression Affects Rice Seedling Growth under Cadmium Stress.

    PubMed

    Ding, Yanfei; Wang, Yi; Jiang, Zhihua; Wang, Feijuan; Jiang, Qiong; Sun, Junwei; Chen, Zhixiang; Zhu, Cheng

    2017-07-26

    MicroRNAs (miRNAs) are 21-24-nucleotide-long RNAs that function as ubiquitous post-transcriptional regulators of gene expression in plants and animals. Increasing evidence points to the important role of miRNAs in plant responses to abiotic and biotic stresses. Cadmium (Cd) is a nonessential heavy metal highly toxic to plants. Although many genes encoding metal transporters have been characterized, the mechanisms for the regulation of the expression of the heavy-metal transporter genes are largely unknown. In this study, we found that the expression of miR268 in rice was significantly induced under Cd stress. By contrast, expression of natural resistance-associated macrophage protein 3 (NRAMP3), a target gene of miR268, was dramatically decreased by Cd treatment. Overexpression of miR268 inhibited rice seedling growth under Cd stress. The transgenic miR268-overexpressing plant leaves contained increased levels of hydrogen peroxide and malondialdehyde, and their seedlings accumulated increased levels of Cd when compared to those in wild-type plants. These results indicate that miR268 acts as a negative regulator of rice's tolerance to Cd stress. Thus, miRNA-guided regulation of gene expression plays an important role in plant responses to heavy-metal stress.

  16. Hypoxia triggers angiogenesis by increasing expression of LOX genes in 3-D culture of ASCs and ECs.

    PubMed

    Xie, Qiang; Xie, Jiamin; Tian, Taoran; Ma, Quanquan; Zhang, Qi; Zhu, Bofeng; Cai, Xiaoxiao

    2017-03-01

    This study aimed to investigate the expression changes of LOX (lysyl oxidase) family genes, VEGFA, and VEGFB under hypoxic conditions in a co-culture system of ASCs (adipose-derived stromal cells) and ECs (endothelial cells). ASCs and ECs were co-cultured under hypoxic and normal oxygen conditions in a 1:1 ratio, and the formation of vessel-like was detected at 7 days. The transwell co-culture system was used and cell lysates were collected at 7 days after co-culture in hypoxic and normal oxygen condition. Semi-quantitative PCR was performed to quantify the mRNA expression of VEGFA, VEGFB, and the LOX genes (LOX, LOXL-1, LOXL-2, LOXL-3, and LOXL-4). Expression changes were determined by densitomery. Enhanced angiogenesis was detected in the co-culture of ASCs and ECs under hypoxic conditions. Among the genes screened, VEGFA, VEGFB, LOXL-1, and LOXL-3 in ECs, both mono-cultured and co-cultured, were significantly enhanced after culturing under hypoxic conditions. In ASCs, VEGFB, LOXL-1, and LOXL-3 were upregulated. Contact co-culture between ASCs and ECs promotes angiogenesis under hypoxia. LOXL-1 and LOXL-3 expressions were increased in both ASCs and ECs and might play important roles in the enhanced angiogenesis promoted by hypoxia. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Increased Thymic Cell Turnover under Boron Stress May Bypass TLR3/4 Pathway in African Ostrich

    PubMed Central

    Huang, Hai-bo; Xiao, Ke; Lu, Shun; Yang, Ke-li; Ansari, Abdur Rahman; Khaliq, Haseeb; Song, Hui; Zhong, Juming; Liu, Hua-zhen; Peng, Ke-mei

    2015-01-01

    Previous studies revealed that thymus is a targeted immune organ in malnutrition, and high-boron stress is harmful for immune organs. African ostrich is the living fossil of ancient birds and the food animals in modern life. There is no report about the effect of boron intake on thymus of ostrich. The purpose of present study was to evaluate the effect of excessive boron stress on ostrich thymus and the potential role of TLR3/4 signals in this process. Histological analysis demonstrated that long-term boron stress (640 mg/L for 90 days) did not disrupt ostrich thymic structure during postnatal development. However, the numbers of apoptotic cells showed an increased tendency, and the expression of autophagy and proliferation markers increased significantly in ostrich thymus after boron treatment. Next, we examined the expression of TLR3 and TLR4 with their downstream molecular in thymus under boron stress. Since ostrich genome was not available when we started the research, we first cloned ostrich TLR3 TLR4 cDNA from thymus. Ostrich TLR4 was close to white-throated Tinamou. Whole avian TLR4 codons were under purify selection during evolution, whereas 80 codons were under positive selection. TLR3 and TLR4 were expressed in ostrich thymus and bursa of fabricius as was revealed by quantitative real-time PCR (qRT-PCR). TLR4 expression increased with age but significantly decreased after boron treatment, whereas TLR3 expression showed the similar tendency. Their downstream molecular factors (IRF1, JNK, ERK, p38, IL-6 and IFN) did not change significantly in thymus, except that p100 was significantly increased under boron stress when analyzed by qRT-PCR or western blot. Taken together, these results suggest that ostrich thymus developed resistance against long-term excessive boron stress, possibly by accelerating intrathymic cell death and proliferation, which may bypass the TLR3/4 pathway. In addition, attenuated TLRs activity may explain the reduced inflammatory response to pathogens under boron stress. PMID:26053067

  18. Increased Thymic Cell Turnover under Boron Stress May Bypass TLR3/4 Pathway in African Ostrich.

    PubMed

    Huang, Hai-bo; Xiao, Ke; Lu, Shun; Yang, Ke-li; Ansari, Abdur Rahman; Khaliq, Haseeb; Song, Hui; Zhong, Juming; Liu, Hua-zhen; Peng, Ke-mei

    2015-01-01

    Previous studies revealed that thymus is a targeted immune organ in malnutrition, and high-boron stress is harmful for immune organs. African ostrich is the living fossil of ancient birds and the food animals in modern life. There is no report about the effect of boron intake on thymus of ostrich. The purpose of present study was to evaluate the effect of excessive boron stress on ostrich thymus and the potential role of TLR3/4 signals in this process. Histological analysis demonstrated that long-term boron stress (640 mg/L for 90 days) did not disrupt ostrich thymic structure during postnatal development. However, the numbers of apoptotic cells showed an increased tendency, and the expression of autophagy and proliferation markers increased significantly in ostrich thymus after boron treatment. Next, we examined the expression of TLR3 and TLR4 with their downstream molecular in thymus under boron stress. Since ostrich genome was not available when we started the research, we first cloned ostrich TLR3 TLR4 cDNA from thymus. Ostrich TLR4 was close to white-throated Tinamou. Whole avian TLR4 codons were under purify selection during evolution, whereas 80 codons were under positive selection. TLR3 and TLR4 were expressed in ostrich thymus and bursa of fabricius as was revealed by quantitative real-time PCR (qRT-PCR). TLR4 expression increased with age but significantly decreased after boron treatment, whereas TLR3 expression showed the similar tendency. Their downstream molecular factors (IRF1, JNK, ERK, p38, IL-6 and IFN) did not change significantly in thymus, except that p100 was significantly increased under boron stress when analyzed by qRT-PCR or western blot. Taken together, these results suggest that ostrich thymus developed resistance against long-term excessive boron stress, possibly by accelerating intrathymic cell death and proliferation, which may bypass the TLR3/4 pathway. In addition, attenuated TLRs activity may explain the reduced inflammatory response to pathogens under boron stress.

  19. Cloning and expression of γ-glutamyl transpeptidase and its relationship to greening in crushed garlic (Allium sativum) cloves.

    PubMed

    Cho, Jungeun; Park, Minkyu; Choi, Doil; Lee, Seung Koo

    2012-01-30

    Garlic greening occurs when garlic cloves are stored at low temperature, increasing 1-propenyl cysteine sulfoxide, which is induced by γ-glutamyl transpeptidase (GGT) activity. Although the metabolism of the γ-glutamyl peptide is important for the biosynthesis of green pigments in crushed garlic cloves, garlic GGT is poorly characterised. For the analysis of GGT at the gene level, the garlic GGT sequence was partially cloned using an onion GGT sequence. The relationship between garlic greening and related gene expressions, depending on storage condition, was investigated using reverse transcription polymerase chain reaction for garlic GGT and alliinase. Three storage conditions were set: A, storage at a constant temperature of 20 °C; B, storage at 20 °C for 3 months and then transfer to 0 °C for an additional 3 months; C, storage at 0 °C for 3 months and then transfer to 20 °C for an additional 3 months. GGT expression increased under storage condition B and decreased under storage condition C. However, alliinase expression was not affected by storage condition. Greening in crushed garlic cloves increases with increasing GGT expression at low temperature, while alliinase expression is not affected. Copyright © 2011 Society of Chemical Industry.

  20. Luteolin and fisetin suppress oxidative stress by modulating sirtuins and forkhead box O3a expression under in vitro diabetic conditions.

    PubMed

    Kim, Arang; Lee, Wooje; Yun, Jung-Mi

    2017-10-01

    Chronic hyperglycemia induces oxidative stress via accumulation of reactive oxygen species (ROS) and contributes to diabetic complications. Hyperglycemia induces mitochondrial superoxide anion production through the increased activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. This study aimed to determine whether fisetin and luteolin treatments suppress the oxidative stress by modulating the expression of sirtuins (SIRTs) and forkhead box O3a (FOXO3a) under hyperglycemic conditions in human monocytes. Human monocytic cells (THP-1) were cultured under osmotic control (14.5 mmol/L mannitol), normoglycemic (NG, 5.5 mmol/L glucose), or hyperglycemic (HG, 20 mmol/L glucose) conditions, in the absence or presence of fisetin and luteolin for 48 h. To determine the effect of fisetin and luteolin treatments on high glucose-induced oxidative stress, western blotting and intracellular staining were performed. Hyperglycemic conditions increased the ROS production, as compared to normoglycemic condition. However, fisetin and luteolin treatments inhibited ROS production under hyperglycemia. To obtain further insight into ROS production in hyperglycemic conditions, evaluation of p47phox expression revealed that fisetin and luteolin treatments inhibited p47phox expression under hyperglycemic conditions. Conversely, the expression levels of SIRT1, SIRT3, SIRT6, and FOXO3a were decreased under high glucose conditions compared to normal glucose conditions, but exposure to fisetin and luteolin induced the expression of SIRT1, SIRT3, SIRT6, and FOXO3a. The above findings suggest that fisetin and luteolin inhibited high glucose-induced ROS production in monocytes through the activation of SIRTs and FOXO3a. The results of our study supports current researches that state fisetin and luteolin as potential agents for the development of novel strategies for diabetes.

  1. Luteolin and fisetin suppress oxidative stress by modulating sirtuins and forkhead box O3a expression under in vitro diabetic conditions

    PubMed Central

    Kim, Arang; Lee, Wooje

    2017-01-01

    BACKGROUND/OBJECTIVE Chronic hyperglycemia induces oxidative stress via accumulation of reactive oxygen species (ROS) and contributes to diabetic complications. Hyperglycemia induces mitochondrial superoxide anion production through the increased activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. This study aimed to determine whether fisetin and luteolin treatments suppress the oxidative stress by modulating the expression of sirtuins (SIRTs) and forkhead box O3a (FOXO3a) under hyperglycemic conditions in human monocytes. MATERIALS/METHODS Human monocytic cells (THP-1) were cultured under osmotic control (14.5 mmol/L mannitol), normoglycemic (NG, 5.5 mmol/L glucose), or hyperglycemic (HG, 20 mmol/L glucose) conditions, in the absence or presence of fisetin and luteolin for 48 h. To determine the effect of fisetin and luteolin treatments on high glucose-induced oxidative stress, western blotting and intracellular staining were performed. RESULTS Hyperglycemic conditions increased the ROS production, as compared to normoglycemic condition. However, fisetin and luteolin treatments inhibited ROS production under hyperglycemia. To obtain further insight into ROS production in hyperglycemic conditions, evaluation of p47phox expression revealed that fisetin and luteolin treatments inhibited p47phox expression under hyperglycemic conditions. Conversely, the expression levels of SIRT1, SIRT3, SIRT6, and FOXO3a were decreased under high glucose conditions compared to normal glucose conditions, but exposure to fisetin and luteolin induced the expression of SIRT1, SIRT3, SIRT6, and FOXO3a. The above findings suggest that fisetin and luteolin inhibited high glucose-induced ROS production in monocytes through the activation of SIRTs and FOXO3a. CONCLUSIONS The results of our study supports current researches that state fisetin and luteolin as potential agents for the development of novel strategies for diabetes. PMID:28989580

  2. Cytokinin oxidase/dehydrogenase overexpression modifies antioxidant defense against heat, drought and their combination in Nicotiana tabacum plants.

    PubMed

    Lubovská, Zuzana; Dobrá, Jana; Storchová, Helena; Wilhelmová, Naďa; Vanková, Radomíra

    2014-11-01

    Cytokinins (CKs) as well as the antioxidant enzyme system (AES) play important roles in plant stress responses. The expression and activity of antioxidant enzymes (AE) were determined in drought, heat and combination of both stresses, comparing the response of tobacco plants overexpressing the main cytokinin degrading enzyme, cytokinin oxidase/dehydrogenase, under the control of root-specific WRKY6 promoter (W6:CKX1 plants) or constitutive promoter (35S:CKX1 plants) and the corresponding wild-type (WT). Expression levels as well as activities of cytosolic ascorbate peroxidase, catalase 3, and cytosolic superoxide dismutase were low under optimal conditions and increased after heat and combined stress in all genotypes. Unlike catalase 3, two other peroxisomal enzymes, catalase 1 and catalase 2, were transcribed extensively under control conditions. Heat stress, in contrast to drought or combined stress, increased catalase 1 and reduced catalase 2 expression in WT and W6:CKX1 plants. In 35S:CKX1, catalase 1 expression was enhanced by heat or drought, but not under combined stress conditions. Mitochondrial superoxide dismutase expression was generally higher in 35S:CKX1 plants than in WT. Genes encoding for chloroplastic AEs, stromatal ascorbate peroxidase, thylakoidal ascorbate peroxidase and chloroplastic superoxide dismutase, were strongly transcribed under control conditions. All stresses down-regulated their expression in WT and W6:CKX1, whereas more stress-tolerant 35S:CKX1 plants maintained high expression during drought and heat. The achieved data show that the effect of down-regulation of CK levels on AES may be mediated by altered habit, resulting in improved stress tolerance, which is associated with diminished stress impact on photosynthesis, and changes in source/sink relations. Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. Cadherin-11 modulates cell morphology and collagen synthesis in periodontal ligament cells under mechanical stress.

    PubMed

    Feng, Lishu; Zhang, Yimei; Kou, Xiaoxing; Yang, Ruili; Liu, Dawei; Wang, Xuedong; Song, Yang; Cao, Haifeng; He, Danqing; Gan, Yehua; Zhou, Yanheng

    2017-03-01

    To examine the role of cadherin-11, an integral membrane adhesion molecule, in periodontal ligament cells (PDLCs) under mechanical stimulation. Human PDLCs were cultured and subjected to mechanical stress. Cadherin-11 expression and cell morphology of PDLCs were investigated via immunofluorescence staining. The mRNA and protein expressions of cadherin-11 and type I collagen (Col-I) of PDLCs were evaluated by quantitative real-time polymerase chain reaction and Western blot, respectively. Small interfering RNA was used to knock down cadherin-11 expression in PDLCs. The collagen matrix of PDLCs was examined using toluidine blue staining. Cadherin-11 was expressed in PDLCs. Mechanical stress suppressed cadherin-11 expression in PDLCs with prolonged force treatment time and increased force intensity, accompanied by suppressed β-catenin expression. Simultaneously, mechanical stress altered cell morphology and repressed Col-I expression in a time- and dose-dependent manner in PDLCs. Moreover, knockdown of cadherin-11 with suppressed β-catenin expression resulted in altered PDLC morphology and repressed collagen expression, which were consistent with the changes observed under mechanical stress. Results of this study suggest that cadherin-11 is expressed in PDLCs and modulates PDLC morphology and collagen synthesis in response to mechanical stress, which may play an important role in the homeostasis and remodeling of the PDL under mechanical stimulation.

  4. Accumulation of p62 in degenerated spinal cord under chronic mechanical compression

    PubMed Central

    Tanabe, Fumito; Yone, Kazunori; Kawabata, Naoya; Sakakima, Harutoshi; Matsuda, Fumiyo; Ishidou, Yasuhiro; Maeda, Shingo; Abematsu, Masahiko; Komiya, Setsuro

    2011-01-01

    Intracellular accumulation of altered proteins, including p62 and ubiquitinated proteins, is the basis of most neurodegenerative disorders. The relationship among the accumulation of altered proteins, autophagy, and spinal cord dysfunction by cervical spondylotic myelopathy has not been clarified. We examined the expression of p62 and autophagy markers in the chronically compressed spinal cord of tiptoe-walking Yoshimura mice. In addition, we examined the expression and roles of p62 and autophagy in hypoxic neuronal cells. Western blot analysis showed the accumulation of p62, ubiquitinated proteins, and microtubule-associated protein 1 light chain 3 (LC3), an autophagic marker, in the compressed spinal cord. Immunohistochemical examinations showed that p62 accumulated in neurons, axons, astrocytes, and oligodendrocytes. Electron microscopy showed the expression of autophagy markers, including autolysosomes and autophagic vesicles, in the compressed spinal cord. These findings suggest the presence of p62 and autophagy in the degenerated compressed spinal cord. Hypoxic stress increased the expression of p62, ubiquitinated proteins, and LC3-II in neuronal cells. In addition, LC3 turnover assay and GFP-LC3 cleavage assay showed that hypoxic stress increased autophagy flux in neuronal cells. These findings suggest that hypoxic stress induces accumulation of p62 and autophagy in neuronal cells. The forced expression of p62 decreased the number of neuronal cells under hypoxic stress. These findings suggest that p62 accumulation under hypoxic stress promotes neuronal cell death. Treatment with 3-methyladenine, an autophagy inhibitor decreased the number of neuronal cells, whereas lithium chloride, an autophagy inducer increased the number of cells under hypoxic stress. These findings suggest that autophagy promotes neuronal cell survival under hypoxic stress. Our findings suggest that pharmacological inducers of autophagy may be useful for treating cervical spondylotic myelopathy patients. PMID:22082874

  5. Mechanism Governing Human Kappa-Opioid Receptor Expression under Desferrioxamine-Induced Hypoxic Mimic Condition in Neuronal NMB Cells

    PubMed Central

    Babcock, Jennifer; Herrera, Alberto; Coricor, George; Karch, Christopher; Liu, Alexander H.; Rivera-Gines, Aida; Ko, Jane L.

    2017-01-01

    Cellular adaptation to hypoxia is a protective mechanism for neurons and relevant to cancer. Treatment with desferrioxamine (DFO) to induce hypoxia reduced the viability of human neuronal NMB cells. Surviving/attached cells exhibited profound increases of expression of the human kappa-opioid receptor (hKOR) and hypoxia inducible factor-1α (HIF-1α). The functional relationship between hKOR and HIF-1α was investigated using RT-PCR, Western blot, luciferase reporter, mutagenesis, siRNA and receptor-ligand binding assays. In surviving neurons, DFO increased HIF-1α expression and its amount in the nucleus. DFO also dramatically increased hKOR expression. Two (designated as HIFC and D) out of four potential HIF response elements of the hKOR gene (HIFA–D) synergistically mediated the DFO response. Mutation of both elements completely abolished the DFO-induced effect. The CD11 plasmid (containing HIFC and D with an 11 bp spacing) produced greater augmentation than that of the CD17 plasmid (HIFC and D with a 17 bp-spacing), suggesting that a proper topological interaction of these elements synergistically enhanced the promoter activity. HIF-1α siRNA knocked down the increase of endogenous HIF-1α messages and diminished the DFO-induced increase of hKOR expression. Increased hKOR expression resulted in the up-regulation of hKOR protein. In conclusion, the adaptation of neuronal hKOR under hypoxia was governed by HIF-1, revealing a new mechanism of hKOR regulation. PMID:28117678

  6. Exogenous Methyl Jasmonate and Salicylic Acid Induce Subspecies-Specific Patterns of Glucosinolate Accumulation and Gene Expression in Brassica oleracea L.

    PubMed

    Yi, Go-Eun; Robin, Arif Hasan Khan; Yang, Kiwoung; Park, Jong-In; Hwang, Byung Ho; Nou, Ill-Sup

    2016-10-24

    Glucosinolates have anti-carcinogenic properties. In the recent decades, the genetics of glucosinolate biosynthesis has been widely studied, however, the expression of specific genes involved in glucosinolate biosynthesis under exogenous phytohormone treatment has not been explored at the subspecies level in Brassica oleracea . Such data are vital for strategies aimed at selective exploitation of glucosinolate profiles. This study quantified the expression of 38 glucosinolate biosynthesis-related genes in three B. oleracea subspecies, namely cabbage, broccoli and kale, and catalogued associations between gene expression and increased contents of individual glucosinolates under methyl jasmonate (MeJA) and salicylic acid (SA) treatments. Glucosinolate accumulation and gene expression in response to phytohormone elicitation was subspecies specific. For instance, cabbage leaves showed enhanced accumulation of the aliphatic glucoiberin, progoitrin, sinigrin and indolic neoglucobrassicin under both MeJA and SA treatment. MeJA treatment induced strikingly higher accumulation of glucobrassicin (GBS) in cabbage and kale and of neoglucobrassicin (NGBS) in broccoli compared to controls. Notably higher expression of ST5a (Bol026200), CYP81F1 (Bol028913, Bol028914) and CYP81F4 genes was associated with significantly higher GBS accumulation under MeJA treatment compared to controls in all three subspecies. CYP81F4 genes, trans-activated by MYB34 genes, were expressed at remarkably high levels in all three subspecies under MeJA treatment, which also induced in higher indolic NGBS accumulation in all three subspecies. Remarkably higher expression of MYB28 (Bol036286), ST5b , ST5c , AOP2 , FMOGS-OX5 (Bol031350) and GSL-OH (Bol033373) was associated with much higher contents of aliphatic glucosinolates in kale leaves compared to the other two subspecies. The genes expressed highly could be utilized in strategies to selectively increase glucosinolate compounds in B. oleracea subspecies. These results promote efforts to develop genotypes of B. oleracea and other species with enhanced levels of desired glucosinolates.

  7. Molecular cloning and sequence analysis of two carbonic anhydrase in the swimming crab Portunus trituberculatus and its expression in response to salinity and pH stress.

    PubMed

    Pan, Luqing; Hu, Dongxu; Liu, Maoqi; Hu, Yanyan; Liu, Shengnan

    2016-01-15

    Carbonic anhydrase (CA) is involved in ion transport, acid-base balance and pH regulation by catalyzing the interconversion of CO2 and HCO3(-). In this study, full-length cDNA sequences of two CA isoforms were identified from Portunus trituberculatus. One was Portunus trituberculatus cytoplasmic carbonic anydrase (PtCAc) and the other one was Portunus trituberculatus glycosyl-phosphatidylinositol-linked carbonic anhydrase (PtCAg). The sequence of PtCAc was formed by an ORF of 816 bp, encoding a protein of 30.18 kDa. The PtCAg was constituted by an ORF of 927 bp, encoding a protein of 34.09 kDa. The deduced amino acid sequences of the two CA isoforms were compared to other crustacean' CA sequences. Both of them reflected high conservation of the residues and domains essential to the function of the two enzymes. The tissue expression analysis of PtCAc and PtCAg were detected in gill, muscle, hepatopancreas, hemocytes and gonad. PtCAc and PtCAg gene expressions were studied under salinity and pH challenge. The results showed that when salinity decreased (30 to 20 ppt), the mRNA expression of PtCAc increased significantly at 24 and 48 h, and the highest value appeared at 24h. The mRNA expression of PtCAg had the same situation with PtCAc. However, when salinity increased (30 to 35 ppt), only the mRNA expression of PtCAc increased significantly at 48 h. When pH changed, only the mRNA expression of PtCAc increased significantly at 12h, which was under low pH situation. The mRNA expression of PtCAg increased significantly at 12-48 h, and there was no significant difference of the expression between the pH challenged group and the control group in other experimental time. The results provided the base of understanding CA' function and the underlying mechanism in response to environmental changes in crustaceans. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Dynamic processes at stress promoters regulate the bimodal expression of HOG response genes

    PubMed Central

    2011-01-01

    Osmotic stress triggers the activation of the HOG (high osmolarity glycerol) pathway in Saccharomyces cerevisiae. This signaling cascade culminates in the activation of the MAPK (mitogen-activated protein kinase) Hog1. Quantitative single cell measurements revealed a discrepancy between kinase- and transcriptional activities of Hog1. While kinase activity increases proportionally to stress stimulus, gene expression is inhibited under low stress conditions. Interestingly, a slow stochastic gene activation process is responsible for setting a tunable threshold for gene expression under basal or low stress conditions, which generates a bimodal expression pattern at intermediate stress levels. PMID:22446531

  9. Integrated analysis of transcriptome and metabolites reveals an essential role of metabolic flux in starch accumulation under nitrogen starvation in duckweed.

    PubMed

    Yu, Changjiang; Zhao, Xiaowen; Qi, Guang; Bai, Zetao; Wang, Yu; Wang, Shumin; Ma, Yubin; Liu, Qian; Hu, Ruibo; Zhou, Gongke

    2017-01-01

    Duckweed is considered a promising source of energy due to its high starch content and rapid growth rate. Starch accumulation in duckweed involves complex processes that depend on the balanced expression of genes controlled by various environmental and endogenous factors. Previous studies showed that nitrogen starvation induces a global stress response and results in the accumulation of starch in duckweed. However, relatively little is known about the mechanisms underlying the regulation of starch accumulation under conditions of nitrogen starvation. In this study, we used next-generation sequencing technology to examine the transcriptome responses of Lemna aequinoctialis 6000 at three stages (0, 3, and 7 days) during nitrogen starvation in the presence of exogenously applied sucrose. Overall, 2522, 628, and 1832 differentially expressed unigenes (DEGs) were discovered for the treated and control samples. Clustering and enrichment analysis of DEGs revealed several biological processes occurring under nitrogen starvation. Genes involved in nitrogen metabolism showed the earliest responses to nitrogen starvation, whereas genes involved in carbohydrate biosynthesis were responded subsequently. The expression of genes encoding nitrate reductase, glutamine synthetase, and glutamate synthase was down-regulated under nitrogen starvation. The expression of unigenes encoding enzymes involved in gluconeogenesis was up-regulated, while the majority of unigenes involved in glycolysis were down-regulated. The metabolite results showed that more ADP-Glc was accumulated and lower levels of UDP-Glc were accumulated under nitrogen starvation, the activity of AGPase was significantly increased while the activity of UGPase was dramatically decreased. These changes in metabolite levels under nitrogen starvation are roughly consistent with the gene expression changes in the transcriptome. Based on these results, it can be concluded that the increase of ADP-glucose and starch contents under nitrogen starvation is a consequence of increased output from the gluconeogenesis and TCA pathways, accompanied with the reduction of lipids and pectin biosynthesis. The results provide novel insights into the underlying mechanisms of starch accumulation during nitrogen starvation, which provide a foundation for the improvement of advanced bioethanol production in duckweed.

  10. Hypergravity-induced changes in gene expression in Arabidopsis hypocotyls

    NASA Astrophysics Data System (ADS)

    Yoshioka, R.; Soga, K.; Wakabayashi, K.; Takeba, G.; Hoson, T.

    2003-05-01

    Under hypergravity conditions, the cell wall of stem organs becomes mechanically rigid and elongation growth is suppressed, which can be recognized as the mechanism for plants to resist gravitational force. The changes in gene expression by hypergravity treatment were analyzed in Arabidopsis hypocotyls by the differential display method, for identifying genes involved in hypergravity-induced growth suppression. Sixty-two cDNA clones were expressed differentially between the control and 300 g conditions: the expression levels of 39 clones increased, whereas those of 23 clones decreased under hypergravity conditions. Sequence analysis and database searching revealed that 12 clones, 9 up-regulated and 3 down-regulated, have homology to known proteins. The expression of these genes was further analyzed using RT-PCR. Finally, six genes were confirmed to be up-regulated by hypergravity. One of such genes encoded 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGR), which catalyzes a reaction producing mevalonic acid, a key precursor ofterpenoids such as membrane sterols and several types of hormones. The expression of HMGR gene increased within several hours after hypergravity treatment. Also, compactin, an inhibitor of HMGR, prevented hypergravity-induced growth suppression, suggesting that HMGR is involved in suppression of Arabidopsis hypocotyl growth by hypergravity. In addition, hypergravity increased the expression levels of genes encoding CCR1 and ERD15, which were shown to take part in the signaling pathway of environmental stimuli such as temperature and water, and those of the α-tubulin gene. These genes may be involved in a series of cellular events leading to growth suppression of stem organs under hypergravity conditions.

  11. Altered fatty acid-binding protein 4 (FABP4) expression and function in human and animal models of hepatocellular carcinoma.

    PubMed

    Thompson, Kyle J; Austin, Rebecca Garland; Nazari, Shayan S; Gersin, Keith S; Iannitti, David A; McKillop, Iain H

    2017-11-24

    Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality. Risk factors for developing HCC include viral hepatitis, alcohol and obesity. Fatty acid-binding proteins (FABPs) bind long-chain free fatty acids (FFAs) and are expressed in a tissue-specific pattern; FABP1 being the predominant hepatic form, and FABP4 the predominant adipocyte form. The aims of this study were to investigate the expression and function of FABPs1-9 in human and animal models of obesity-related HCC. FABP1-9 expression was determined in a mouse model of obesity-promoted HCC. Based on these data, expression and function of FABP4 was determined in human HCC cells (HepG2 and HuH7) in vitro. Serum from patients with different underlying hepatic pathologies was analysed for circulating FABP4 levels. Livers from obese mice, independent of tumour status, exhibited increased FABP4 mRNA and protein expression concomitant with elevated serum FABP4. In vitro, FABP4 expression was induced in human HCC cells by FFA treatment, and led to FABP4 release into culture medium. Treatment of HCC cells with exogenous FABP4 significantly increased proliferation and migration of human HCC cells. Patient serum analysis demonstrated significantly increased FABP4 in those with underlying liver disease, particularly non-alcoholic fatty liver disease (NAFLD) and HCC. These data suggest FABP4, an FABP not normally expressed in the liver, can be synthesized and secreted by hepatocytes and HCC cells, and that FABP4 may play a role in regulating tumour progression in the underlying setting of obesity. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. TRB3 reverses chemotherapy resistance and mediates crosstalk between endoplasmic reticulum stress and AKT signaling pathways in MHCC97H human hepatocellular carcinoma cells.

    PubMed

    Li, Yang; Zhu, Danxi; Hou, Lidan; Hu, Bin; Xu, Min; Meng, Xiangjun

    2018-01-01

    Tribbles homolog 3 (TRB3), a type of pseudokinase that contains a consensus serine/threonine kinase catalytic core structure, is upregulated in hepatocellular carcinoma. However, the effect of TRB3 expression in hepatocellular carcinoma and the molecular mechanisms underlying TRB3-mediated effects on tumorigenesis in hepatocellular carcinoma have not been fully elucidated. The present study focused on the effect of TRB3 expression in MHCC97H hepatocellular carcinoma cells and investigated the underlying molecular mechanisms in MHCC97H cells. In the present study, it was revealed that TRB3 was significantly overexpressed in the MHCC97H hepatocellular carcinoma cell compared with L-02 normal hepatic cells. Under endoplasmic reticulum (ER) stress induced by thapsigargin and tunicamycin, the levels of TRB3, CCAAT/enhancer binding protein homologous protein (CHOP), protein kinase B (AKT) and phosphorylated (p)AKT expression were upregulated. Furthermore, when the expression of TRB3 was silenced by short hairpin (sh)RNA, the survival of MHCC97H hepatocellular carcinoma cells was increased. Notably, following transduction with lentiviral containing TRB3-shRNA, cell survival also increased after treatment with chemotherapy drug cisplatin. The present study demonstrated that knockdown of CHOP by shRNA was able to reduce TRB3 expression, and the knockdown of TRB3 markedly increased the level of pAKT. TRB3 was overexpressed in MHCC97H hepatocellular carcinoma cells, particularly under endoplasmic reticulum stress. Knockdown of TRB3 was able to increase cell survival. Therefore, TRB3 expression may induce apoptosis and reverse resistance to chemotherapy in MHCC97H hepatic carcinoma cells. The present study suggests that TRB3 is a key molecule that mediates the crosstalk between ER stress and AKT signal pathways. Furthermore, the present study may provide further insight into the cancer biology of hepatocellular carcinoma and the development of anticancer drugs targeting the ER stress and AKT signaling pathways.

  13. Expression of cholera toxin under non-AKI conditions in Vibrio cholerae El Tor induced by increasing the exposed surface of cultures.

    PubMed

    Sánchez, Joaquín; Medina, Gerardo; Buhse, Thomas; Holmgren, Jan; Soberón-Chavez, Gloria

    2004-03-01

    The regulatory systems controlling expression of the ctxAB genes encoding cholera toxin (CT) in the classical and El Tor biotypes of pathogenic Vibrio cholerae have been characterized and found to be almost identical. Notwithstanding this, special in vitro conditions, called AKI conditions, are required for El Tor bacteria to produce CT. The AKI conditions involve biphasic cultures. In phase 1 the organism is grown in a still tube for 4 h. In phase 2 the medium is poured into a flask to continue growth with shaking. Virtually no expression of CT occurs if this protocol is not followed. Here we demonstrated that CT expression takes place in single-phase still cultures if the volume-to-surface-area ratio is decreased, both under air and under an inert atmosphere. The expression of key genes involved in the regulation of CT production was analyzed, and we found that the expression pattern closely resembles the in vivo expression pattern.

  14. Positive feedback regulation of a Lycium chinense-derived VDE gene by drought-induced endogenous ABA, and over-expression of this VDE gene improve drought-induced photo-damage in Arabidopsis.

    PubMed

    Guan, Chunfeng; Ji, Jing; Zhang, Xuqiang; Li, Xiaozhou; Jin, Chao; Guan, Wenzhu; Wang, Gang

    2015-03-01

    Violaxanthin de-epoxidase (VDE) plays an important role in protecting the photosynthetic apparatus from photo-damage by dissipating excessively absorbed light energy as heat, via the conversion of violaxanthin (V) to intermediate product antheraxanthin (A) and final product zeaxanthin (Z) under light stress. We have cloned a VDE gene (LcVDE) from Lycium chinense, a deciduous woody perennial halophyte, which can grow in a large variety of soil types. The amino acid sequence of LcVDE has high homology with VDEs in other plants. Under drought stress, relative expression of LcVDE and the de-epoxidation ratio (Z+0.5A)/(V+A+Z) increased rapidly, and non-photochemical quenching (NPQ) also rose. Interestingly, these elevations induced by drought stress were reduced by the topical administration of abamine SG, a potent ABA inhibitor via inhibition of NCED in the ABA synthesis pathway. Until now, little has been done to explore the relationship between endogenous ABA and the expression of VDE genes. Since V serves as a common precursor for ABA, these data support the possible involvement of endogenous ABA in the positive feedback regulation of LcVDE gene expression in L. chinense under drought stress. Moreover, the LcVDE may be involved in modulating the level of photosynthesis damage caused by drought stress. Furthermore, the ratio of (Z+0.5A)/(V+A+Z) and NPQ increased more in transgenic Arabidopsis over-expressing LcVDE gene than the wild types under drought stress. The maximum quantum yield of primary photochemistry of PSII (Fv/Fm) in transgenic Arabidopsis decreased more slowly during the stressed period than that in wild types under the same conditions. Furthermore, transgenic Arabidopsis over-expressing LcVDE showed increased tolerance to drought stress. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Induction of ICAM-1 Expression in Mouse Embryonic Fibroblasts Cultured on Fibroin-Gelatin Scaffolds

    PubMed Central

    Nosenko, M. A.; Maluchenko, N. V.; Drutskaya, M. S.; Arkhipova, A. Y.; Agapov, I. I.; Nedospasov, S. A.; Moisenovich, M. M.

    2017-01-01

    Culturing of allogeneic or autologous cells in three-dimensional bioresorbable scaffolds is an important step in the engineering of constructs for regenerative medicine, as well as for experimental systems to study the mechanisms of cell differentiation and cell-to-cell interaction. Artificial substrates can modulate the phenotype and functional activity of immobilized cells. Investigating these changes is important for understanding the fundamental processes underlying cellular interactions in a 3D microenvironment and for improving tissue-engineered structures. In this study, we investigated the expression of the ICAM-1 adhesion molecule in mouse embryonic fibroblasts (MEF) when cultured on gelatin-fibroin scaffolds. Increased expression of ICAM-1 in MEF was detected only under 3D culture conditions both at the mRNA and protein levels. At the same time, the MEF cultured on various substrates did not oerexpress MAdCAM-1, indicating the selective effect of 3D culture conditions on ICAM-1 expression. One possible mechanism for ICAM-1 induction in MEF is associated with the activation of AP-1, since expression of c-Fos and Junb (but not cJun and Jund) was increased in MEF in 3D. When cultured under 2D conditions, the expression level of AP-1 components did not change. PMID:29104780

  16. Haemoglobin modulates NO emission and hyponasty under hypoxia-related stress in Arabidopsis thaliana.

    PubMed

    Hebelstrup, Kim H; van Zanten, Martijn; Mandon, Julien; Voesenek, Laurentius A C J; Harren, Frans J M; Cristescu, Simona M; Møller, Ian M; Mur, Luis A J

    2012-09-01

    Nitric oxide (NO) and ethylene are signalling molecules that are synthesized in response to oxygen depletion. Non-symbiotic plant haemoglobins (Hbs) have been demonstrated to act in roots under oxygen depletion to scavenge NO. Using Arabidopsis thaliana plants, the online emission of NO or ethylene was directly quantified under normoxia, hypoxia (0.1-1.0% O(2)), or full anoxia. The production of both gases was increased with reduced expression of either of the Hb genes GLB1 or GLB2, whereas NO emission decreased in plants overexpressing these genes. NO emission in plants with reduced Hb gene expression represented a major loss of nitrogen equivalent to 0.2mM nitrate per 24h under hypoxic conditions. Hb gene expression was greatly enhanced in flooded roots, suggesting induction by reduced oxygen diffusion. The function could be to limit loss of nitrogen under NO emission. NO reacts with thiols to form S-nitrosylated compounds, and it is demonstrated that hypoxia substantially increased the content of S-nitrosylated compounds. A parallel up-regulation of Hb gene expression in the normoxic shoots of the flooded plants may reflect signal transmission from root to shoot via ethylene and a role for Hb in the shoots. Hb gene expression was correlated with ethylene-induced upward leaf movement (hyponastic growth) but not with hypocotyl growth, which was Hb independent. Taken together the data suggest that Hb can influence flood-induced hyponasty via ethylene-dependent and, possibly, ethylene-independent pathways.

  17. Effects of P limitation and molecules from peanut root exudates on pqqE gene expression and pqq promoter activity in the phosphate-solubilizing strain Serratia sp. S119.

    PubMed

    Ludueña, Liliana M; Anzuay, Maria S; Magallanes-Noguera, Cynthia; Tonelli, Maria L; Ibañez, Fernando J; Angelini, Jorge G; Fabra, Adriana; McIntosh, Matthew; Taurian, Tania

    2017-10-01

    The mineral phosphate-solubilizing phenotype in bacteria is attributed predominantly to secretion of gluconic acid produced by oxidation of glucose by the glucose dehydrogenase enzyme and its cofactor, pyrroloquinoline quinone. This study analyzes pqqE gene expression and pqq promoter activity in the native phosphate-solubilizing bacterium Serratia sp S119 growing under P-limitation, and in the presence of root exudates obtained from peanut plants, also growing under P-limitation. Results indicated that Serratia sp. S119 contains a pqq operon composed of six genes (pqqA,B,C,D,E,F) and two promoters, one upstream of pqqA and other between pqqA and pqqB. PqqE gene expression and pqq promoter activity increased under P-limiting growth conditions and not under N-deficient conditions. In the plant-bacteria interaction assay, the activity of the bacterial pqq promoter region varied depending on the concentration and type of root exudates and on the bacterial growth phase. Root exudates from peanut plants growing under P-available and P-limiting conditions showed differences in their composition. It is concluded from this study that the response of Serratia sp. S119 to phosphorus limitation involves an increase in expression of pqq genes, and that molecules exuded by peanut roots modify expression of these phosphate-solubilizing bacterial genes during plant-bacteria interactions. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  18. Mechanism underlying berberine's effects on HSP70/TNFα under heat stress: Correlation with the TATA boxes.

    PubMed

    Jiang, Jing-Fei; Lei, Fan; Yuan, Zhi-Yi; Wang, Yu-Gang; Wang, Xin-Pei; Yan, Xiao-Jin; Yu, Xuan; Xing, Dong-Ming; DU, Li-Jun

    2017-03-01

    Heat stress can stimulate an increase in body temperature, which is correlated with increased expression of heat shock protein 70 (HSP70) and tumor necrosis factor α (TNFα). The exact mechanism underlying the HSP70 and TNFα induction is unclear. Berberine (BBR) can significantly inhibit the temperature rise caused by heat stress, but the mechanism responsible for the BBR effect on HSP70 and TNFα signaling has not been investigated. The aim of the present study was to explore the relationship between the expression of HSP70 and TNFα and the effects of BBR under heat conditions, using in vivo and in vitro models. The expression levels of HSP70 and TNFα were determined using RT-PCR and Western blotting analyses. The results showed that the levels of HSP70 and TNFα were up-regulated under heat conditions (40 °C). HSP70 acted as a chaperone to maintain TNFα homeostasis with rising the temperature, but knockdown of HSP70 could not down-regulate the level of TNFα. Furthermore, TNFα could not influence the expression of HSP70 under normal and heat conditions. BBR targeted both HSP70 and TNFα by suppressing their gene transcription, thereby decreasing body temperature under heat conditions. In conclusion, BBR has a potential to be developed as a therapeutic strategy for suppressing the thermal effects in hot environments. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  19. Fluctuation of Dof1/Dof2 expression ratio under the influence of varying nitrogen and light conditions: involvement in differential regulation of nitrogen metabolism in two genotypes of finger millet (Eleusine coracana L.).

    PubMed

    Gupta, Supriya; Gupta, Sanjay Mohan; Gupta, Alok Kumar; Gaur, Vikram Singh; Kumar, Anil

    2014-08-10

    In order to gain insights into the mechanism of high nitrogen use efficiency (NUE) of finger millet (FM) the role of Dof2 transcription factor (TF), which is a repressor of genes involved in C/N metabolism was investigated. The partial cDNA fragment of EcDof2 (912-bp; GenBank acc. no. KF261117) was isolated and characterized from finger millet (FM) that showed 63% and 58% homology with Dof2 of Zea mays at nucleotide and protein level, respectively. Its expression studies were carried out along with the activator EcDof1 in two genotypes (GE3885, high protein genotype (HPG); GE1437, low protein genotype (LPG)) of FM differing in grain protein contents (13.8% and 6.2%) showed that EcDof2 is expressed in both shoot and root tissues with significantly (p≤0.05) higher expression in the roots. The diurnal expression of both EcDof1 and EcDof2 in shoots was differential having different time of peak expression indicating a differential response to diurnal condition. Under continuous dark conditions, expression of EcDof1 and EcDof2 oscillated in both the genotypes whereas on illumination, the fold expression of EcDof1 was higher as compared to EcDof2. Under increasing nitrate concentration, EcDof2 expression increases in roots and shoots of LPG while it remains unchanged in HPG. However, the EcDof1 expression was found to increase in both genotypes. Further, time kinetics studies under single nitrate concentration revealed that EcDof2 was repressed in the roots of both genotypes whereas EcDof1 oscillated with time. The EcDof1/EcDof2 ratio measured showed differential response under different light and nitrogen conditions. It was higher in the roots of HPG indicating higher activation of genes involved in N uptake and assimilation resulting in high grain protein accumulation. The results indicate that both light and nitrogen concentration influence Dof1 and Dof2 expression and suggests a complex pattern of regulation of genes influenced by these plant specific TFs. In nutshell, the Dof1/Dof2 ratio can serve as an index for measuring the N responsiveness and NUE of crops and can be further validated by Dof2 knock down approach. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Expression and regulation of the neutral amino acid transporter B0AT1 in rat small intestine

    PubMed Central

    Jando, Julia; Camargo, Simone M. R.; Herzog, Brigitte

    2017-01-01

    Absorption of neutral amino acids across the luminal membrane of intestinal enterocytes is mediated by the broad neutral amino acid transporter B0AT1 (SLC6A19). Its intestinal expression depends on co-expression of the membrane-anchored peptidase angiotensin converting enzyme 2 (ACE2) and is additionally enhanced by aminopeptidase N (CD13). We investigated in this study the expression of B0AT1 and its auxiliary peptidases as well as its transport function along the rat small intestine. Additionally, we tested its possible short- and long-term regulation by dietary proteins and amino acids. We showed by immunofluorescence that B0AT1, ACE2 and CD13 co-localize on the luminal membrane of small intestinal villi and by Western blotting that their protein expression increases in distal direction. Furthermore, we observed an elevated transport activity of the neutral amino acid L-isoleucine during the nocturnal active phase compared to the inactive one. Gastric emptying was delayed by intragastric application of an amino acid cocktail but we observed no acute dietary regulation of B0AT1 protein expression and L-isoleucine transport. Investigation of the chronic dietary regulation of B0AT1, ACE2 and CD13 by different diets revealed an increased B0AT1 protein expression under amino acid-supplemented diet in the proximal section but not in the distal one and for ACE2 protein expression a reverse localization of the effect. Dietary regulation for CD13 protein expression was not as distinct as for the two other proteins. Ring uptake experiments showed a tendency for increased L-isoleucine uptake under amino acid-supplemented diet and in vivo L-isoleucine absorption was more efficient under high protein and amino acid-supplemented diet. Additionally, plasma levels of branched-chain amino acids were elevated under high protein and amino acid diet. Taken together, our experiments did not reveal an acute amino acid-induced regulation of B0AT1 but revealed a chronic dietary adaptation mainly restricted to the proximal segment of the small intestine. PMID:28915252

  1. Evolution under monogamy feminizes gene expression in Drosophila melanogaster.

    PubMed

    Hollis, Brian; Houle, David; Yan, Zheng; Kawecki, Tadeusz J; Keller, Laurent

    2014-03-18

    Many genes have evolved sexually dimorphic expression as a consequence of divergent selection on males and females. However, because the sexes share a genome, the extent to which evolution can shape gene expression independently in each sex is controversial. Here, we use experimental evolution to reveal suboptimal sex-specific expression for much of the genome. By enforcing a monogamous mating system in populations of Drosophila melanogaster for over 100 generations, we eliminated major components of selection on males: female choice and male-male competition. If gene expression is subject to sexually antagonistic selection, relaxed selection on males should cause evolution towards female optima. Monogamous males and females show this pattern of feminization in both the whole-body and head transcriptomes. Genes with male-biased expression patterns evolved decreased expression under monogamy, while genes with female-biased expression evolved increased expression, relative to polygamous populations. Our results demonstrate persistent and widespread evolutionary tension between male and female adaptation.

  2. EPA and DHA increased PPARγ expression and deceased integrin-linked kinase and integrin β1 expression in rat glomerular mesangial cells treated with lipopolysaccharide.

    PubMed

    Han, Wenchao; Zhao, Hui; Jiao, Bo; Liu, Fange

    2014-04-01

    Fish oil containing n-3 polyunsaturated fatty acids (n-3 PUFAs) including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is known to prevent the progression of nephropathy and retard the progression of kidney disease. This study sought to investigate the underlying mechanisms of EPA and DHA in terms of peroxisome proliferator-activated receptor γ (PPARγ), integrin-linked kinase (ILK), and integrin β1 expression in glomerular mesangial cells (GMCs) because of their critical roles in the development and progression of nephropathy. Lipopolysaccharide (LPS) significantly reduced the expression of PPARγand increased the expression of ILK at the mRNA level and at the protein level in GMCs as indicated by real-time PCR and Western blotting. In addition, LPS increased integrin β1 expression in GMCs at the mRNA level. Treatment with EPA and DHA significantly increased the expression of PPARγ and decreased the expression of ILK and integrin β1 in GMCs. These data suggest that the renoprotective effects of EPA and DHA may be related to their potential to increase the expression of PPARγ and decrease the expression of ILK and integrin β1.

  3. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism

    NASA Astrophysics Data System (ADS)

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-08-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns.

  4. Osmoadaptation of wine yeast (Saccharomyces cerevisiae) during Icewine fermentation leads to high levels of acetic acid.

    PubMed

    Heit, C; Martin, S J; Yang, F; Inglis, D L

    2018-06-01

    Volatile acidity (VA) production along with gene expression patterns, encoding enzymes involved in both acetic acid production and utilization, were investigated to relate gene expression patterns to the production of undesired VA during Icewine fermentation. Icewine juice and diluted Icewine juice were fermented using the Saccharomyces cerevisiae wine yeast K1-V1116. Acetic acid production increased sixfold during the Icewine fermentation vs the diluted juice condition, while ethyl acetate production increased 2·4-fold in the diluted fermentation relative to the Icewine. Microarray analysis profiled the transcriptional response of K1-V1116 under both conditions. ACS1 and ACS2 were downregulated 19·0-fold and 11·2-fold, respectively, in cells fermenting Icewine juice compared to diluted juice. ALD3 expression was upregulated 14·6-fold, and gene expressions involved in lipid and ergosterol synthesis decreased during Icewine fermentation. Decreased expression of ACS1 and ACS2 together with increased ALD3 expression contributes to the higher acetic acid and lower ethyl acetate levels generated by K1-V1116 fermenting under hyperosmotic stress. This work represents a more comprehensive understanding of how and why commercial wine yeast respond at the transcriptional and metabolic level during fermentation of Icewine juice, and how these responses contribute to increased acetic acid and decreased ethyl acetate production. © 2018 The Society for Applied Microbiology.

  5. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism

    PubMed Central

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-01-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns. PMID:27502578

  6. Antidepressant effects of abscisic acid mediated by the downregulation of corticotrophin-releasing hormone gene expression in rats.

    PubMed

    Qi, Cong-Cong; Zhang, Zhi; Fang, Hui; Liu, Ji; Zhou, Nan; Ge, Jin-Fang; Chen, Fang-Han; Xiang, Cheng-Bin; Zhou, Jiang-Ning

    2014-10-31

    Corticotrophin-releasing hormone (CRH) is considered to be the central driving force of the hypothalamic-pituitary-adrenal axis, which plays a key role in the stress response and depression. Clinical reports have suggested that excess retinoic acid (RA) is associated with depression. Abscisic acid (ABA) and RA are direct derivatives of carotenoids and share a similar molecular structure. Here, we proposed that ABA also plays a role in the regulation of CRH activity sharing with the RA signaling pathway. [3H]-ABA radioimmunoassay demonstrated that the hypothalamus of rats shows the highest concentration of ABA compared with the cortex and the hippocampus under basal conditions. Under acute stress, ABA concentrations increased in the serum, but decreased in the hypothalamus and were accompanied by increased corticosterone in the serum and c-fos expression in the hypothalamus. Moreover, chronic ABA administration increased sucrose intake and decreased the mRNA expression of CRH and retinoic acid receptor alpha (RARα) in the hypothalamus of rats. Furthermore, ABA improved the symptom of chronic unpredictable mild stress in model rats, as indicated by increased sucrose intake, increased swimming in the forced swim test, and reduced mRNA expression of CRH and RARα in the rat hypothalamus. In vitro, CRH expression decreased after ABA treatment across different neural cells. In BE(2)-C cells, ABA inhibited a series of retinoid receptor expression, including RARα, a receptor that could facilitate CRH expression directly. These results suggest that ABA may play a role in the pathogenesis of depression by downregulating CRH mRNA expression shared with the RA signaling pathway. © The Author 2014. Published by Oxford University Press on behalf of CINP.

  7. CD200:CD200R Interactions Regulate Osteoblastogenesis and Osteoclastogenesis in Space

    NASA Astrophysics Data System (ADS)

    Kos, Olha; Lee, Lydia; Gorezynski, Reginald M.

    2008-06-01

    We report data from studies on a recent FOTON mission, using an eOSTEO cell culture system developed by Systems Technologies Canada Inc., showing that in space overexpression of CD200 (using cell cultures derived from transgenic mice expressing CD200 under control of a doxycycline-inducible promoter) is associated with an attenuation in the suppression of mRNA markers of osteoblastogeneis (including BSP, OPG) with concomitant loss of the preferential increased osteoclastogenesis which is otherwise seen in the absence of CD200. In separate cultures we also explored the additional effect of altered inflammatory cytokines on the perturbation of expression of these bone-related genes, using cells from cytokine-receptor knockout mice. Our data suggest that while exogenous inflammatory cytokines (TNFα+IL1β) increased mRNAs typical for osteoclastogenesis under ground conditions, they appeared to produce no further modification of mRNA expression in flight. We suggest that altered mRNA expression in flight is not primarily driven by altered expression of inflammatory cytokines.

  8. In silico analysis of stomach lineage specific gene set expression pattern in gastric cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandi, Narayanan Sathiya, E-mail: sathiyapandi@gmail.com; Suganya, Sivagurunathan; Rajendran, Suriliyandi

    Highlights: •Identified stomach lineage specific gene set (SLSGS) was found to be under expressed in gastric tumors. •Elevated expression of SLSGS in gastric tumor is a molecular predictor of metabolic type gastric cancer. •In silico pathway scanning identified estrogen-α signaling is a putative regulator of SLSGS in gastric cancer. •Elevated expression of SLSGS in GC is associated with an overall increase in the survival of GC patients. -- Abstract: Stomach lineage specific gene products act as a protective barrier in the normal stomach and their expression maintains the normal physiological processes, cellular integrity and morphology of the gastric wall. However,more » the regulation of stomach lineage specific genes in gastric cancer (GC) is far less clear. In the present study, we sought to investigate the role and regulation of stomach lineage specific gene set (SLSGS) in GC. SLSGS was identified by comparing the mRNA expression profiles of normal stomach tissue with other organ tissue. The obtained SLSGS was found to be under expressed in gastric tumors. Functional annotation analysis revealed that the SLSGS was enriched for digestive function and gastric epithelial maintenance. Employing a single sample prediction method across GC mRNA expression profiles identified the under expression of SLSGS in proliferative type and invasive type gastric tumors compared to the metabolic type gastric tumors. Integrative pathway activation prediction analysis revealed a close association between estrogen-α signaling and SLSGS expression pattern in GC. Elevated expression of SLSGS in GC is associated with an overall increase in the survival of GC patients. In conclusion, our results highlight that estrogen mediated regulation of SLSGS in gastric tumor is a molecular predictor of metabolic type GC and prognostic factor in GC.« less

  9. Suppression of transient receptor potential melastatin 4 expression promotes conversion of endothelial cells into fibroblasts via transforming growth factor/activin receptor-like kinase 5 pathway.

    PubMed

    Echeverría, Cesar; Montorfano, Ignacio; Cabello-Verrugio, Claudio; Armisén, Ricardo; Varela, Diego; Simon, Felipe

    2015-05-01

    To study whether transient receptor potential melastatin 4 (TRPM4) participates in endothelial fibrosis and to investigate the underlying mechanism. Primary human endothelial cells were used and pharmacological and short interfering RNA-based approaches were used to test the transforming growth factor beta (TGF-β)/activin receptor-like kinase 5 (ALK5) pathway participation and contribution of TRPM7 ion channel. Suppression of TRPM4 expression leads to decreased endothelial protein expression and increased expression of fibrotic and extracellular matrix markers. Furthermore, TRPM4 downregulation increases intracellular Ca levels as a potential condition for fibrosis. The underlying mechanism of endothelial fibrosis shows that inhibition of TRPM4 expression induces TGF-β1 and TGF-β2 expression, which act through their receptor, ALK5, and the nuclear translocation of the profibrotic transcription factor smad4. TRPM4 acts to maintain endothelial features and its loss promotes fibrotic conversion via TGF-β production. The regulation of TRPM4 levels could be a target for preserving endothelial function during inflammatory diseases.

  10. Increased Expression of Escherichia coli Polynucleotide Phosphorylase at Low Temperatures Is Linked to a Decrease in the Efficiency of Autocontrol

    PubMed Central

    Mathy, N.; Jarrige, A.-C.; Robert-Le Meur, M.; Portier, C.

    2001-01-01

    Polynucleotide phosphorylase (PNPase) synthesis is translationally autocontrolled via an RNase III-dependent mechanism, which results in a tight correlation between protein level and messenger stability. In cells grown at 18°C, the amount of PNPase is twice that found in cells grown at 30°C. To investigate whether this effect was transcriptional or posttranscriptional, the expression of a set of pnp-lacZ transcriptional and translational fusions was analyzed in cells grown at different temperatures. In the absence of PNPase, there was no increase in pnp-lacZ expression, indicating that the increase in pnp expression occurs at a posttranscriptional level. Other experiments clearly show that increased pnp expression at low temperature is only observed under conditions in which the autocontrol mechanism of PNPase is functional. At low temperature, the destabilizing effect of PNPase on its own mRNA is less efficient, leading to a decrease in repression and an increase in the expression level. PMID:11395447

  11. Increased expression of Escherichia coli polynucleotide phosphorylase at low temperatures is linked to a decrease in the efficiency of autocontrol.

    PubMed

    Mathy, N; Jarrige, A C; Robert-Le Meur, M; Portier, C

    2001-07-01

    Polynucleotide phosphorylase (PNPase) synthesis is translationally autocontrolled via an RNase III-dependent mechanism, which results in a tight correlation between protein level and messenger stability. In cells grown at 18 degrees C, the amount of PNPase is twice that found in cells grown at 30 degrees C. To investigate whether this effect was transcriptional or posttranscriptional, the expression of a set of pnp-lacZ transcriptional and translational fusions was analyzed in cells grown at different temperatures. In the absence of PNPase, there was no increase in pnp-lacZ expression, indicating that the increase in pnp expression occurs at a posttranscriptional level. Other experiments clearly show that increased pnp expression at low temperature is only observed under conditions in which the autocontrol mechanism of PNPase is functional. At low temperature, the destabilizing effect of PNPase on its own mRNA is less efficient, leading to a decrease in repression and an increase in the expression level.

  12. Interaction of Polyamines, Abscisic Acid, Nitric Oxide, and Hydrogen Peroxide under Chilling Stress in Tomato (Lycopersicon esculentum Mill.) Seedlings.

    PubMed

    Diao, Qiannan; Song, Yongjun; Shi, Dongmei; Qi, Hongyan

    2017-01-01

    Polyamines (PAs) play a vital role in the responses of higher plants to abiotic stresses. However, only a limited number of studies have examined the interplay between PAs and signal molecules. The aim of this study was to elucidate the cross-talk among PAs, abscisic acid (ABA), nitric oxide (NO), and hydrogen peroxide (H 2 O 2 ) under chilling stress conditions using tomato seedlings [( Lycopersicon esculentum Mill.) cv. Moneymaker]. The study showed that during chilling stress (4°C; 0, 12, and 24 h), the application of spermidine (Spd) and spermine (Spm) elevated NO and H 2 O 2 levels, enhanced nitrite reductase (NR), nitric oxide synthase (NOS)-like, and polyamine oxidase activities, and upregulated LeNR relative expression, but did not influence LeNOS1 expression. In contrast, putrescine (Put) treatment had no obvious impact. During the recovery period (25/15°C, 10 h), the above-mentioned parameters induced by the application of PAs were restored to their control levels. Seedlings pretreated with sodium nitroprusside (SNP, an NO donor) showed elevated Put and Spd levels throughout the treatment period, consistent with increased expression in leaves of genes encoding arginine decarboxylase ( LeADC. LeADC1 ), ornithine decarboxylase ( LeODC ), and Spd synthase ( LeSPDS ) expressions in tomato leaves throughout the treatment period. Under chilling stress, the Put content increased first, followed by a rise in the Spd content. Exogenously applied SNP did not increase the expression of genes encoding S -adenosylmethionine decarboxylase ( LeSAMDC ) and Spm synthase ( LeSPMS ), consistent with the observation that Spm levels remained constant under chilling stress and during the recovery period. In contrast, exogenous Put significantly increased the ABA content and the 9- cis -epoxycarotenoid dioxygenase ( LeNCED1 ) transcript level. Treatment with ABA could alleviate the electrolyte leakage (EL) induced by D-Arg (an inhibitor of Put). Taken together, it is concluded that, under chilling stress, Spd and Spm enhanced the production of NO in tomato seedlings through an H 2 O 2 -dependent mechanism, via the NR and NOS-like pathways. ABA is involved in Put-induced tolerance to chilling stress, and NO could increase the content of Put and Spd under chilling stress.

  13. Interaction of Polyamines, Abscisic Acid, Nitric Oxide, and Hydrogen Peroxide under Chilling Stress in Tomato (Lycopersicon esculentum Mill.) Seedlings

    PubMed Central

    Diao, Qiannan; Song, Yongjun; Shi, Dongmei; Qi, Hongyan

    2017-01-01

    Polyamines (PAs) play a vital role in the responses of higher plants to abiotic stresses. However, only a limited number of studies have examined the interplay between PAs and signal molecules. The aim of this study was to elucidate the cross-talk among PAs, abscisic acid (ABA), nitric oxide (NO), and hydrogen peroxide (H2O2) under chilling stress conditions using tomato seedlings [(Lycopersicon esculentum Mill.) cv. Moneymaker]. The study showed that during chilling stress (4°C; 0, 12, and 24 h), the application of spermidine (Spd) and spermine (Spm) elevated NO and H2O2 levels, enhanced nitrite reductase (NR), nitric oxide synthase (NOS)-like, and polyamine oxidase activities, and upregulated LeNR relative expression, but did not influence LeNOS1 expression. In contrast, putrescine (Put) treatment had no obvious impact. During the recovery period (25/15°C, 10 h), the above-mentioned parameters induced by the application of PAs were restored to their control levels. Seedlings pretreated with sodium nitroprusside (SNP, an NO donor) showed elevated Put and Spd levels throughout the treatment period, consistent with increased expression in leaves of genes encoding arginine decarboxylase (LeADC. LeADC1), ornithine decarboxylase (LeODC), and Spd synthase (LeSPDS) expressions in tomato leaves throughout the treatment period. Under chilling stress, the Put content increased first, followed by a rise in the Spd content. Exogenously applied SNP did not increase the expression of genes encoding S-adenosylmethionine decarboxylase (LeSAMDC) and Spm synthase (LeSPMS), consistent with the observation that Spm levels remained constant under chilling stress and during the recovery period. In contrast, exogenous Put significantly increased the ABA content and the 9-cis-epoxycarotenoid dioxygenase (LeNCED1) transcript level. Treatment with ABA could alleviate the electrolyte leakage (EL) induced by D-Arg (an inhibitor of Put). Taken together, it is concluded that, under chilling stress, Spd and Spm enhanced the production of NO in tomato seedlings through an H2O2-dependent mechanism, via the NR and NOS-like pathways. ABA is involved in Put-induced tolerance to chilling stress, and NO could increase the content of Put and Spd under chilling stress. PMID:28261254

  14. Gene expression of apoptosis-related genes, stress protein and antioxidant enzymes in hemocytes of white shrimp Litopenaeus vannamei under nitrite stress.

    PubMed

    Guo, Hui; Xian, Jian-An; Li, Bin; Ye, Chao-Xia; Wang, An-Li; Miao, Yu-Tao; Liao, Shao-An

    2013-05-01

    Apoptotic cell ratio and mRNA expression of caspase-3, cathepsin B (CTSB), heat shock protein 70 (HSP70), manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx) and thioredoxin (TRx) in hemocytes of white shrimp Litopenaeus vannamei exposed to nitrite-N (20 mg/L) was investigated at different stress time (0, 4, 8, 12, 24, 48 and 72 h). The apoptotic cell ratio and mRNA expression level of CTSB were significantly increased in shrimp exposed to nitrite-N for 48 and 72 h. Caspase-3 mRNA expression level significantly increased by 766.50% and 1811.16% for 24 and 48 h exposure, respectively. HSP70 expression level significantly increased at 8 and 72 h exposure. MnSOD mRNA expression in hemocytes up-regulated at 8 and 48 h, while CAT mRNA expression level increased at 24 and 48 h. GPx expression showed a trend that increased first and then decreased. Significant increases of GPx expression were observed at 8 and 12 h exposure. Expression level of TRx reached its highest level after 48 h exposure. These results suggest that nitrite exposure induces expression of apoptosis-related genes in hemocytes, and subsequently caused hemocyte apoptosis. Meanwhile, expression levels of HSP70 and antioxidant enzymes up-regulated to protect the hemocyte against nitrite stress. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. The sodium-bicarbonate cotransporter NBCe2 (slc4a5) expressed in human renal proximal tubules shows increased apical expression under high-salt conditions.

    PubMed

    Gildea, John J; Xu, Peng; Carlson, Julia M; Gaglione, Robert T; Bigler Wang, Dora; Kemp, Brandon A; Reyes, Camellia M; McGrath, Helen E; Carey, Robert M; Jose, Pedro A; Felder, Robin A

    2015-12-01

    The electrogenic sodium bicarbonate cotransporter (NBCe2) is encoded by SLC4A5, variants of which have been associated with salt sensitivity of blood pressure, which affects 25% of the adult population. NBCe2 is thought to mediate sodium bicarbonate cotransport primarily in the renal collecting duct, but NBCe2 mRNA is also found in the rodent renal proximal tubule (RPT). The protein expression or function of NBCe2 has not been demonstrated in the human RPT. We validated an NBCe2 antibody by shRNA and Western blot analysis, as well as overexpression of an epitope-tagged NBCe2 construct in both RPT cells (RPTCs) and human embryonic kidney 293 (HEK293) cells. Using this validated NBCe2 antibody, we found NBCe2 protein expression in the RPT of fresh and frozen human kidney slices, RPTCs isolated from human urine, and isolated RPTC apical membrane. Under basal conditions, NBCe2 was primarily found in the Golgi, while NBCe1 was primarily found at the basolateral membrane. Following an acute short-term increase in intracellular sodium, NBCe2 expression was increased at the apical membrane in cultured slices of human kidney and polarized, immortalized RPTCs. Sodium bicarbonate transport was increased by monensin and overexpression of NBCe2, decreased by NBCe2 shRNA, but not by NBCe1 shRNA, and blocked by 2,2'-(1,2-ethenediyl)bis[5-isothiocyanato-benzenesulfonic acid]. NBCe2 could be important in apical sodium and bicarbonate cotransport under high-salt conditions; the implication of the ex vivo studies to the in vivo situation when salt intake is increased remains unclear. Therefore, future studies will examine the role of NBCe2 in mediating increased renal sodium transport in humans whose blood pressures are elevated by an increase in sodium intake. Copyright © 2015 the American Physiological Society.

  16. Neutral buoyancy and sleep-deprived serum factors alter expression of cytokines regulating osteogenesis

    NASA Astrophysics Data System (ADS)

    Gorczynski, Reginald M.; Gorczynski, Christopher P.; Gorczynski, Laura Y.; Hu, Jiang; Lu, Jin; Manuel, Justin; Lee, Lydia

    2005-05-01

    We examined expression of genes associated with cytokine production, and genes implicated in regulating bone metabolism, in bone stromal and osteoblast cells incubated under standard ground conditions and under conditions of neutral buoyancy, and in the presence/absence of serum from normal or sleep-deprived mice. We observed a clear interaction between these two conditions (exposure to neutral buoyancy and serum stimulation) in promoting enhanced osteoclastogenesis. Both conditions independently altered expression of a number of cytokines implicated in the regulation of bone metabolism. However, using stromal cells from IL-1 and TNF α cytokine r KO mice, we concluded that the increased bone loss under microgravity conditions was not primarily cytokine mediated.

  17. Comparative Effects of Fructose and Glucose on Lipogenic Gene Expression and Intermediary Metabolism in HepG2 Liver Cells

    PubMed Central

    Fiehn, Oliver; Adams, Sean H.

    2011-01-01

    Consumption of large amounts of fructose or sucrose increases lipogenesis and circulating triglycerides in humans. Although the underlying molecular mechanisms responsible for this effect are not completely understood, it is possible that as reported for rodents, high fructose exposure increases expression of the lipogenic enzymes fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC-1) in human liver. Since activation of the hexosamine biosynthesis pathway (HBP) is associated with increases in the expression of FAS and ACC-1, it raises the possibility that HBP-related metabolites would contribute to any increase in hepatic expression of these enzymes following fructose exposure. Thus, we compared lipogenic gene expression in human-derived HepG2 cells after incubation in culture medium containing glucose alone or glucose plus 5 mM fructose, using the HBP precursor 10 mM glucosamine (GlcN) as a positive control. Cellular metabolite profiling was conducted to analyze differences between glucose and fructose metabolism. Despite evidence for the active uptake and metabolism of fructose by HepG2 cells, expression of FAS or ACC-1 did not increase in these cells compared with those incubated with glucose alone. Levels of UDP-N-acetylglucosamine (UDP-GlcNAc), the end-product of the HBP, did not differ significantly between the glucose and fructose conditions. Exposure to 10 mM GlcN for 10 minutes to 24 hours resulted in 8-fold elevated levels of intracellular UDP-GlcNAc (P<0.001), as well as a 74–126% increase in FAS (P<0.05) and 49–95% increase in ACC-1 (P<0.01) expression above controls. It is concluded that in HepG2 liver cells cultured under standard conditions, sustained exposure to fructose does not result in an activation of the HBP or increased lipogenic gene expression. Should this scenario manifest in human liver in vivo, it would suggest that high fructose consumption promotes triglyceride synthesis primarily through its action to provide lipid precursor carbon and not by activating lipogenic gene expression. PMID:22096489

  18. Baicalin increases VEGF expression and angiogenesis by activating the ERRα/PGC-1α pathway

    PubMed Central

    Zhang, Keqiang; Lu, Jianming; Mori, Taisuke; Smith-Powell, Leslie; Synold, Timothy W.; Chen, Shiuan; Wen, Wei

    2011-01-01

    Aims Baicalin is the major component found in Scutellaria baicalensis root, a widely used herb in traditional Chinese medicine. Although it has been used for thousands of years to treat stroke, the mechanisms of action of S. baicalensis have not been clearly elucidated. In this report, we studied the modulation of angiogenesis as one possible mechanism by investigating the effects of these agents on expression of vascular endothelial growth factor (VEGF), a critical factor for angiogenesis. Methods and results The effects of baicalin and an extract of S. baicalensis on VEGF expression were tested in several cell lines. Both agents induced VEGF expression in all cells without increasing expression of hypoxia-inducible factor-1α (HIF-1α). The expression of reporter genes was also activated under the control of the VEGF promoter containing either a functional or a defective HIF response element (HRE). Only minimal effects were observed on reporter activation under the HRE promoter. Instead, both agents significantly induced oestrogen-related receptor (ERRα) expression as well as the activity of reporter genes under the control of ERRα-binding element. Their ability to induce VEGF expression was suppressed once ERRα expression was knocked down by siRNA or ERRα-binding sites were deleted in the VEGF promoter. We also found that both agents stimulated cell migration and vessel sprout formation from the aorta. Conclusion Our results implicate baicalin and S. baicalensis in angiogenesis by inducing VEGF expression through the activation of the ERRα pathway. These data may facilitate a better understanding of the potential health benefits of these agents in the treatment of cardiovascular diseases. PMID:20851810

  19. Cafeteria diet overfeeding in young male rats impairs the adaptive response to fed/fasted conditions and increases adiposity independent of body weight.

    PubMed

    Castro, H; Pomar, C A; Picó, C; Sánchez, J; Palou, A

    2015-03-01

    We analyzed the effects of a short exposure to a cafeteria diet during early infancy in rats on their metabolic response to fed/fasting conditions in key tissues involved in energy homeostasis. Ten-day-old male pups were fed a control or a cafeteria diet for 12 days and then killed under ad libitum feeding conditions or 12 h fasting. The expression of key genes related to energy metabolism in liver, retroperitoneal white adipose tissue (WAT) and hypothalamus were analyzed. Despite no differences in body weight, cafeteria-fed animals had almost double the fat mass of control rats. They also showed higher food intake, higher leptinemia and altered hypothalamic expression of Neuropetide Y, suggesting a dysfunction in the control of food intake. Unlike controls, cafeteria-fed animals did not decrease WAT expression of Pparg, sterol regulatory element binding transcription factor 1 or Cidea under fasting conditions, and displayed lower Pnpla2 expression than controls. In liver, compared with controls, cafeteria animals presented: (i) lower expression of genes related with fatty acid uptake and lipogenesis under ad libitum-fed conditions; (ii) higher expression of fatty acid oxidation-related genes and glucokinase under fasting conditions; (iii) greater expression of leptin and insulin receptors; and higher protein levels of insulin receptor and the pAMPK/AMPK ratio. A short period of exposure to a cafeteria diet in early infancy in rat pups is enough to disturb the metabolic response to fed/fasting conditions in key tissues involved in energy homeostasis, particularly in WAT, and hence induces an exacerbated body fat accumulation and increased metabolic risk, with no apparent effects on body weight.

  20. Iron-Regulated Expression of Alginate Production, Mucoid Phenotype, and Biofilm Formation by Pseudomonas aeruginosa

    PubMed Central

    Wiens, Jacinta R.; Vasil, Adriana I.; Schurr, Michael J.; Vasil, Michael L.

    2014-01-01

    ABSTRACT Pseudomonas aeruginosa strains of non-cystic fibrosis (non-CF) origin do not produce significant amounts of extracellular alginate and are nonmucoid. In CF, such isolates can become mucoid through mutation of one of the genes (mucA, mucB, mucC, or mucD) that produce regulatory factors that sequester AlgU, required for increased expression of alginate genes. Mutation of the muc genes in the nonmucoid PAO1, PA14, PAKS-1, and Ps388 strains led to increased levels of extracellular alginate and an obvious mucoid phenotype, but only under iron-limiting growth conditions (≤5 µM), not under iron-replete conditions (≥10 µM). In contrast, >50% of P. aeruginosa isolates from chronic CF pulmonary infections expressed increased levels of alginate and mucoidy both under iron-limiting and iron-replete conditions (i.e., iron-constitutive phenotype). No single iron regulatory factor (e.g., Fur, PvdS) was associated with this loss of iron-regulated alginate expression and mucoidy in these CF isolates. However, the loss of only pyoverdine production, or its uptake, abrogated the ability of P. aeruginosa to produce a robust biofilm that represents the Psl-type of biofilm. In contrast, we show that mutation of the pyoverdine and pyochelin biosynthesis genes and the pyoverdine receptor (FpvA) lead to iron-constitutive expression of the key alginate biosynthesis gene, algD, and an explicitly mucoid phenotype in both iron-limiting and iron-replete conditions. These data indicate that alginate production and mucoidy, in contrast to other types of biofilms produced by P. aeruginosa, are substantially enhanced under iron limitation. These results also have compelling implications in relation to the use of iron chelators in the treatment of P. aeruginosa CF infections. PMID:24496793

  1. Losartan attenuates vascular remodeling of the aorta in spontaneously hypertensive rats and the underlying mechanism.

    PubMed

    Li, Fangxiong; Shi, Ruizheng; Liao, Meichun; Li, Jianzhe; Li, Shixun; Pan, Wei; Yang, Tianlun; Zhang, Guogang

    2010-08-01

    To determine the effect of losartan on vascular remodeling and the underlying mechanism in spontaneously hypertensive rats(SHR). SHR of 12 weeks old were given losartan orally [0, 15, 30 mg/(kg.d), n=12]. The tail arterial pressure was measured every week. Eight weeks later, the pathological changes and p22(phox) expression in the thoracic aorta, the activity of catalase (CAT), the contents of H(2)O(2) and Ang II in the plasma were evaluated. Blood pressure was increased in the SHR accompanied by the thickened wall and increased p22(phox) expression in the thoracic aorta. The plasma levels of H(2)O(2) and Ang II were elevated while the CAT level was decreased in the SHR. Administration of losartan reversed the thickened wall and increased the CAT activity concomitantly with the decreased plasma levels of H(2)O(2) and p22(phox) expression in the SHR. The plasma level of Ang II increased after the losartan treatment. Oxidative stress induces the vascular remodeling of the aorta in the SHR. Losartan can reverse the vascular remodeling through down-regulating p22(phox) expression and inhibiting the oxidative stress.

  2. Progranulin Protects Hippocampal Neurogenesis via Suppression of Neuroinflammatory Responses Under Acute Immune Stress.

    PubMed

    Ma, Yanbo; Matsuwaki, Takashi; Yamanouchi, Keitaro; Nishihara, Masugi

    2017-07-01

    Immune stress is well known to suppress adult neurogenesis in the hippocampus. We have demonstrated that progranulin (PGRN) has a mitogenic effect on neurogenesis under several experimental conditions. We have also shown that PGRN suppresses excessive neuroinflammatory responses after traumatic brain injury. However, the role of PGRN in modulating neurogenesis under acute immune stress is yet to be elucidated. In the present study, we evaluated the involvement of PGRN in neurogenesis and inflammatory responses in the hippocampus using a lipopolysaccharide (LPS)-induced immune stress model. Treatment of mice with LPS significantly increased the expression of PGRN in activated microglia and decreased neurogenesis in the dentate gyrus of the hippocampus. PGRN deficiency increased CD68-immunoreactive area and exacerbated suppression of neurogenesis following LPS treatment. The expression levels of lysosomal genes including lysozyme M, macrophage expressed gene 1, and cathepsin Z were higher in PGRN-deficient than in wild-type mice, while PGRN deficiency decreased mammalian target of rapamycin (mTOR) mRNA levels, suggesting that PGRN suppresses excessive lysosomal biogenesis by promoting mTOR signaling. LPS treatment also increased the expression of proinflammatory genes such as interleukin (IL)-1β, tumor necrosis factor-α, and microsomal prostaglandin E synthase-1 (mPGES-1) in the hippocampus, and PGRN deficiency further enhanced gene expression of IL-6 and mPGES-1. These results suggest that PGRN plays a protecting role in hippocampal neurogenesis at least partially by attenuating neuroinflammatory responses during LPS-induced acute immune stress.

  3. Increased atherosclerosis in mice with increased vascular biglycan content.

    PubMed

    Thompson, Joel C; Tang, Tao; Wilson, Patricia G; Yoder, Meghan H; Tannock, Lisa R

    2014-07-01

    The response to retention hypothesis of atherogenesis proposes that atherosclerosis is initiated via the retention of atherogenic lipoproteins by vascular proteoglycans. Co-localization studies suggest that of all the vascular proteoglycans, biglycan is the one most closely co-localized with LDL. The goal of this study was to determine if over-expression of biglycan in hyperlipidemic mice would increase atherosclerosis development. Transgenic mice were developed by expressing biglycan under control of the smooth muscle actin promoter, and were crossed to the LDL receptor deficient (C57BL/6 background) atherosclerotic mouse model. Biglycan transgenic and non-transgenic control mice were fed an atherogenic Western diet for 4-12 weeks. LDL receptor deficient mice overexpressing biglycan under control of the smooth muscle alpha actin promoter had increased atherosclerosis development that correlated with vascular biglycan content. Increased vascular biglycan content predisposes to increased lipid retention and increased atherosclerosis development. Published by Elsevier Ireland Ltd.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Lingling; Zaidi, Samir; Peng Yuanzhen

    Strontium ranelate, a new agent for the treatment of osteoporosis, has been shown stimulate bone formation in various experimental models. This study examines the effect of strontium ranelate on gene expression in osteoblasts, as well as the formation of mineralized (von Kossa-positive) colony-forming unit-osteoblasts (CFU-obs). Bone marrow-derived stromal cells cultured for 21 days under differentiating conditions, when exposed to strontium ranelate, displayed a significant time- and concentration-dependent increase in the expression of the master gene, Runx2, as well as bone sialoprotein (BSP), but interestingly without effects on osteocalcin. This was associated with a significant increase in the formation of CFU-obsmore » at day 21 of culture. In U-33 pre-osteoblastic cells, strontium ranelate significantly enhanced the expression of Runx2 and osteocalcin, but not BSP. Late, more mature osteoblastic OB-6 cells showed significant elevations in BSP and osteocalcin, but with only minimal effects on Runx2. In conclusion, strontium ranelate stimulates osteoblast differentiation, but the induction of the program of gene expression appears to be cell type-specific. The increased osteoblastic differentiation is the likely basis underlying the therapeutic bone-forming actions of strontium ranelate.« less

  5. Effect of postharvest temperature and ethylene on carotenoid accumulation in the Flavedo and juice sacs of Satsuma Mandarin ( Citrus unshiu Marc.) fruit.

    PubMed

    Matsumoto, Hikaru; Ikoma, Yoshinori; Kato, Masaya; Nakajima, Naoko; Hasegawa, Yoshinori

    2009-06-10

    The effect of postharvest temperature (5, 20, and 30 degrees C) and ethylene at different temperatures (20 and 5 degrees C) on carotenoid content and composition and on the expression of the carotenoid biosynthesis-related genes was investigated in the flavedo and juice sacs of Satsuma mandarin ( Citrus unshiu Marc.) fruit. Under an ethylene-free atmosphere, storage at 20 degrees C rapidly increased the carotenoid content in flavedo and maintained the content in juice sacs. In contrast, storage at 5 and 30 degrees C gradually decreased the content in juice sacs but slowly increased that in flavedo. Under an ethylene atmosphere, storage at 20 degrees C enhanced the carotenoid accumulation in flavedo more dramatically than found under an ethylene-free atmosphere with distinct changes in the carotenoid composition but did not noticeably change the content and composition in juice sacs. In contrast, storage at 5 degrees C under an ethylene atmosphere repressed carotenoid accumulation with changes in the carotenoid composition in flavedo but did not clearly change the carotenoid content in juice sacs. Under an ethylene-free atmosphere, differences in the gene expression profile among the temperatures were observed but were not well-correlated with those in the carotenoid content in flavedo and juice sacs. Under an ethylene atmosphere, in flavedo, the gene expression of phytoene synthase (PSY) and phytoene desaturase (PDS) was slightly higher at 20 degrees C but lower at 5 degrees C than under an ethylene-free atmosphere. At 20 degrees C, the gene expression of several carotenoid biosynthetic enzymes promoted by ethylene seemed to be responsible for the enhanced accumulation of carotenoid in flavedo. In contrast, at 5 degrees C, the repressed gene expression of PSY and PDS by ethylene seemed to be primarily responsible for the repressed accumulation of carotenoid in flavedo. In juice sacs, the small response of the gene expression to ethylene seemed to be responsible for small changes in carotenoid accumulation under an ethylene atmosphere.

  6. Increased DNA methylation of scavenger receptor class B type I contributes to inhibitory effects of prenatal caffeine ingestion on cholesterol uptake and steroidogenesis in fetal adrenals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Dong-Mei; He, Zheng; Ma, Liang-Peng

    Steroid hormones synthesized from cholesterol in the fetal adrenal are crucial for fetal development. We have observed the inhibited fetal adrenal corticosterone synthesis and increased intrauterine growth retardation (IUGR) rate in rats under prenatal caffeine ingestion. The aim of this study is to evaluate the effects of prenatal caffeine ingestion on cholesterol supply in fetal adrenal steroidogenesis in rats and explore the underlying epigenetic mechanisms. Pregnant Wistar rats were treated with 60 mg/kg·d caffeine from gestational day (GD) 7 to GD17. Histological changes of fetal adrenals and increased IUGR rates were observed in the caffeine group. There were significantly decreasedmore » steroid hormone contents and cholesterol supply in caffeine-treated fetal adrenals. Data from the gene expression array suggested that prenatal caffeine ingestion caused increased expression of genes related to DNA methylation and decreased expression of genes related to cholesterol uptake. The following conjoint analysis of DNA methylation array with these differentially expressed genes suggested that scavenger receptor class B type I (SR-BI) may play an important role in caffeine-induced cholesterol supply deficiency. Moreover, real-time RT-PCR and immunohistochemical detection certified the inhibitory effects of caffeine on both mRNA expression and protein expression of SR-BI in the fetal adrenal. And the increased DNA methylation frequency in the proximal promoter of SR-BI was confirmed by bisulfite-sequencing PCR. In conclusion, prenatal caffeine ingestion can induce DNA hypermethylation of the SR-BI promoter in the rat fetal adrenal. These effects may lead to decreased SR-BI expression and cholesterol uptake, which inhibits steroidogenesis in the fetal adrenal. - Highlights: • Prenatal caffeine ingestion inhibits steroid hormone production in the fetal adrenal. • Prenatal caffeine ingestion inhibits cholesterol uptake in the fetal adrenal. • Prenatal caffeine ingestion inhibits the expression of SR-BI. • Prenatal caffeine ingestion induces increased DNA methylation of SR-BI promoter.« less

  7. Hormonal regulation of β-myosin heavy chain expression in the mouse left ventricle.

    PubMed

    Patrizio, Mario; Musumeci, Marco; Piccone, Ambra; Raggi, Carla; Mattei, Elisabetta; Marano, Giuseppe

    2013-03-01

    We investigated the influence of sex hormones on the expression of α- and β-cardiac myosin heavy chain isoforms (α-MHC and β-MHC) in C57bl/6 mice of both sexes under physiological and pathological conditions. In the left ventricles (LVs) of fertile female mice, β-MHC expression was tenfold higher compared with the age-matched males, whereas no difference was found in α-MHC expression. These differences disappeared after ovariectomy or in immature mice. We also found a sex-related difference in expression of β-adrenoceptors (β1-AR), as mRNA levels of this gene were 40% lower in fertile females compared with males of the same age but did not differ in prepubertal or ovariectomized animals. Interestingly, the deletion of both β1- and β2-ARs abolished sex difference of β-MHC expression, as mRNA levels in the LVs of knockout males were increased and reached values comparable to those of knockout females. Moreover, the β1-AR antagonist metoprolol induced about a threefold increase in β-MHC expression in adult male mice. The capability of gender to regulate β-MHC expression was also evaluated in the presence of hemodynamic overload. Thoracic aortic coarctation (TAC) produced cardiac hypertrophy along with a 12-fold increase in β-MHC and a 50% decrease in β1-AR expression in males but not in females, thus abolishing the gender difference observed in sham animals for such genes. By contrast, TAC did not change β2-AR expression. In conclusion, our results show that the expression of β-MHC and β1-AR in the LVs undergo gender-related and correlated changes under both physiological and pathological conditions and suggest a role of β1-AR-mediated signaling.

  8. Inoculation of Soil with Plant Growth Promoting Bacteria Producing 1-Aminocyclopropane-1-Carboxylate Deaminase or Expression of the Corresponding acdS Gene in Transgenic Plants Increases Salinity Tolerance in Camelina sativa

    PubMed Central

    Heydarian, Zohreh; Yu, Min; Gruber, Margaret; Glick, Bernard R.; Zhou, Rong; Hegedus, Dwayne D.

    2016-01-01

    Camelina sativa (camelina) is an oilseed crop touted for use on marginal lands; however, it is no more tolerant of soil salinity than traditional crops, such as canola. Plant growth-promoting bacteria (PGPB) that produce 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase) facilitate plant growth in the presence of abiotic stresses by reducing stress ethylene. Rhizospheric and endophytic PGPB and the corresponding acdS- mutants of the latter were examined for their ability to enhance tolerance to salt in camelina. Stimulation of growth and tolerance to salt was correlated with ACC deaminase production. Inoculation of soil with wild-type PGPB led to increased shoot length in the absence of salt, and increased seed production by approximately 30–50% under moderately saline conditions. The effect of ACC deaminase was further examined in transgenic camelina expressing a bacterial gene encoding ACC deaminase (acdS) under the regulation of the CaMV 35S promoter or the root-specific rolD promoter. Lines expressing acdS, in particular those using the rolD promoter, showed less decline in root length and weight, increased seed production, better seed quality and higher levels of seed oil production under salt stress. This study clearly demonstrates the potential benefit of using either PGPB that produce ACC deaminase or transgenic plants expressing the acdS gene under the control of a root-specific promoter to facilitate plant growth, seed production and seed quality on land that is not normally suitable for the majority of crops due to high salt content. PMID:28018305

  9. Reduced amygdala response in youths with disruptive behavior disorders and psychopathic traits: decreased emotional response versus increased top-down attention to nonemotional features.

    PubMed

    White, Stuart F; Marsh, Abigail A; Fowler, Katherine A; Schechter, Julia C; Adalio, Christopher; Pope, Kayla; Sinclair, Stephen; Pine, Daniel S; Blair, R James R

    2012-07-01

    Amygdala dysfunction has been reported to exist in youths and adults with psychopathic traits. However, there has been disagreement as to whether this dysfunction reflects a primary emotional deficit or is secondary to atypical attentional control. The authors examined the validity of the contrasting predictions. Participants were 15 children and adolescents (ages 10–17 years) with both disruptive behavior disorders and psychopathic traits and 17 healthy comparison youths. Functional MRI was used to assess the response of the amygdala and regions implicated in top-down attentional control (the dorsomedial and lateral frontal cortices) to emotional expression under conditions of high and low attentional load. Relative to youths with disruptive behavior disorders and psychopathic traits, healthy comparison subjects showed a significantly greater increase in the typical amygdala response to fearful expressions under low relative to high attentional load conditions. There was also a selective inverse relationship between the response to fearful expressions under low attentional load and the callous-unemotional component (but not the narcissism or impulsivity component) of psychopathic traits. In contrast, the two groups did not differ in the significant recruitment of the dorsomedial and lateral frontal cortices as a function of attentional load. Youths with disruptive behavior disorders and psychopathic traits showed reduced amygdala responses to fearful expressions under low attentional load but no indications of increased recruitment of regions implicated in top-down attentional control. These findings suggest that the emotional deficit observed in youths with disruptive behavior disorders and psychopathic traits is primary and not secondary to increased top-down attention to nonemotional stimulus features.

  10. Increased complexity of circRNA expression during species evolution.

    PubMed

    Dong, Rui; Ma, Xu-Kai; Chen, Ling-Ling; Yang, Li

    2017-08-03

    Circular RNAs (circRNAs) are broadly identified from precursor mRNA (pre-mRNA) back-splicing across various species. Recent studies have suggested a cell-/tissue- specific manner of circRNA expression. However, the distinct expression pattern of circRNAs among species and its underlying mechanism still remain to be explored. Here, we systematically compared circRNA expression from human and mouse, and found that only a small portion of human circRNAs could be determined in parallel mouse samples. The conserved circRNA expression between human and mouse is correlated with the existence of orientation-opposite complementary sequences in introns that flank back-spliced exons in both species, but not the circRNA sequences themselves. Quantification of RNA pairing capacity of orientation-opposite complementary sequences across circRNA-flanking introns by Complementary Sequence Index (CSI) identifies that among all types of complementary sequences, SINEs, especially Alu elements in human, contribute the most for circRNA formation and that their diverse distribution across species leads to the increased complexity of circRNA expression during species evolution. Together, our integrated and comparative reference catalog of circRNAs in different species reveals a species-specific pattern of circRNA expression and suggests a previously under-appreciated impact of fast-evolved SINEs on the regulation of (circRNA) gene expression.

  11. Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions.

    PubMed

    Li, Yajun; Zhang, Jiachang; Zhang, Juan; Hao, Ling; Hua, Jinping; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2013-08-01

    LOS5/ABA3 gene encoding molybdenum cofactor sulphurase is involved in aldehyde oxidase (AO) activity in Arabidopsis, which indirectly regulates ABA biosynthesis and increased stress tolerance. Here, we used a constitutive super promoter to drive LOS5/ABA3 overexpression in soybean (Glycine max L.) to enhance drought tolerance in growth chamber and field conditions. Expression of LOS5/ABA3 was up-regulated by drought stress, which led to increasing AO activity and then a notable increase in ABA accumulation. Transgenic soybean under drought stress had reduced water loss by decreased stomatal aperture size and transpiration rate, which alleviated leaf wilting and maintained higher relative water content. Exposed to drought stress, transgenic soybean exhibited reduced cell membrane damage by reducing electrolyte leakage and production of malondialdehyde and promoting proline accumulation and antioxidant enzyme activities. Also, overexpression of LOS5/ABA3 enhanced expression of stress-up-regulated genes. Furthermore, the seed yield of transgenic plants is at least 21% higher than that of wide-type plants under drought stress conditions in the field. These data suggest that overexpression of LOS5/ABA3 could improve drought tolerance in transgenic soybean via enhanced ABA accumulation, which could activate expression of stress-up-regulated genes and cause a series of physiological and biochemical resistant responses. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Accumulation of p62 in degenerated spinal cord under chronic mechanical compression: functional analysis of p62 and autophagy in hypoxic neuronal cells.

    PubMed

    Tanabe, Fumito; Yone, Kazunori; Kawabata, Naoya; Sakakima, Harutoshi; Matsuda, Fumiyo; Ishidou, Yasuhiro; Maeda, Shingo; Abematsu, Masahiko; Komiya, Setsuro; Setoguchi, Takao

    2011-12-01

    Intracellular accumulation of altered proteins, including p62 and ubiquitinated proteins, is the basis of most neurodegenerative disorders. The relationship among the accumulation of altered proteins, autophagy, and spinal cord dysfunction by cervical spondylotic myelopathy has not been clarified. We examined the expression of p62 and autophagy markers in the chronically compressed spinal cord of tiptoe-walking Yoshimura mice. In addition, we examined the expression and roles of p62 and autophagy in hypoxic neuronal cells. Western blot analysis showed the accumulation of p62, ubiquitinated proteins, and microtubule-associated protein 1 light chain 3 (LC3), an autophagic marker, in the compressed spinal cord. Immunohistochemical examinations showed that p62 accumulated in neurons, axons, astrocytes, and oligodendrocytes. Electron microscopy showed the expression of autophagy markers, including autolysosomes and autophagic vesicles, in the compressed spinal cord. These findings suggest the presence of p62 and autophagy in the degenerated compressed spinal cord. Hypoxic stress increased the expression of p62, ubiquitinated proteins, and LC3-II in neuronal cells. In addition, LC3 turnover assay and GFP-LC3 cleavage assay showed that hypoxic stress increased autophagy flux in neuronal cells. These findings suggest that hypoxic stress induces accumulation of p62 and autophagy in neuronal cells. The forced expression of p62 decreased the number of neuronal cells under hypoxic stress. These findings suggest that p62 accumulation under hypoxic stress promotes neuronal cell death. Treatment with 3-methyladenine, an autophagy inhibitor decreased the number of neuronal cells, whereas lithium chloride, an autophagy inducer increased the number of cells under hypoxic stress. These findings suggest that autophagy promotes neuronal cell survival under hypoxic stress. Our findings suggest that pharmacological inducers of autophagy may be useful for treating cervical spondylotic myelopathy patients.

  13. Modification of plasma membrane proton pumps in cucumber roots as an adaptation mechanism to salt stress.

    PubMed

    Janicka-Russak, Małgorzata; Kabała, Katarzyna; Wdowikowska, Anna; Kłobus, Grażyna

    2013-07-01

    The effect of salt stress (50mM NaCl) on modification of plasma membrane (PM) H(+)-ATPase (EC 3.6.3.14) activity in cucumber roots was studied. Plants were grown under salt stress for 1, 3 or 6 days. In salt-stressed plants, weak stimulation of ATP hydrolytic activity of PM H(+)-ATPase and significant stimulation of proton transport through the plasma membrane were observed. The H(+)/ATP coupling ratio in the plasma membrane of plants subjected to salt stress significantly increased. The greatest stimulation of PM H(+)-ATPase was in 6-day stressed plants. Increased H2O2 accumulation under salt stress conditions in cucumber roots was also observed, with the greatest accumulation observed in 6-day stressed plants. Additionally, during the sixth day of salinity, there appeared heat shock proteins (HSPs) 17.7 and 101, suggesting that repair processes and adaptation to stress occurred in plants. Under salt stress conditions, fast post-translational modifications took place. Protein blot analysis with antibody against phosphothreonine and 14-3-3 proteins showed that, under salinity, the level of those elements increased. Additionally, under salt stress, activity changes of PM H(+)-ATPase can partly result from changes in the pattern of expression of PM H(+)-ATPase genes. In cucumber seedlings, there was increased expression of CsHA10 under salt stress and the transcript of a new PM H(+)-ATPase gene isoform, CsHA1, also appeared. Accumulation of the CsHA1 transcript was induced by NaCl exposure, and was not expressed at detectable levels in roots of control plants. The appearance of a new PM H(+)-ATPase transcript, in addition to the increase in enzyme activity, indicates the important role of the enzyme in maintaining ion homeostasis in plants under salt stress. Copyright © 2013 Elsevier GmbH. All rights reserved.

  14. Salicylic acid promotes plant growth and salt-related gene expression in Dianthus superbus L. (Caryophyllaceae) grown under different salt stress conditions.

    PubMed

    Zheng, Jian; Ma, Xiaohua; Zhang, Xule; Hu, Qingdi; Qian, Renjuan

    2018-03-01

    Salt stress is a critical factor that affects the growth and development of plants. Salicylic acid (SA) is an important signal molecule that mitigates the negative effects of salt stress on plants. To elucidate salt tolerance in large pink Dianthus superbus L. (Caryophyllaceae) and the regulatory mechanism of exogenous SA on D. superbus under different salt stresses, we conducted a pot experiment to evaluate leaf biomass, leaf anatomy, soluble protein and sugar content, and the relative expression of salt-induced genes in D. superbus under 0.3, 0.6, and 0.9% NaCl conditions with and without 0.5 mM SA. The result showed that exposure of D. superbus to salt stress lead to a decrease in leaf growth, soluble protein and sugar content, and mesophyll thickness, together with an increase in the expression of MYB and P5CS genes. Foliar application of SA effectively increased leaf biomass, soluble protein and sugar content, and upregulated the expression of MYB and P5CS in the D. superbus , which facilitated in the acclimation of D. superbus to moderate salt stress. However, when the plants were grown under severe salt stress (0.9% NaCl), no significant difference in plant physiological responses and relevant gene expression between plants with and without SA was observed. The findings of this study suggest that exogenous SA can effectively counteract the adverse effects of moderate salt stress on D. superbus growth and development.

  15. Changes in gene expression and catalase activity in Oryza sativa L. under abiotic stress.

    PubMed

    Vighi, I L; Benitez, L C; do Amaral, M N; Auler, P A; Moraes, G P; Rodrigues, G S; da Maia, L C; Pinto, L S; Braga, E J B

    2016-11-03

    Different rice (Oryza sativa L.) genotypes were subjected to high salinity and low temperature (150 mM NaCl and 13°C, respectively) for 0, 6, 24, 48, or 72 h. We evaluated the simultaneous expression of the genes OsCATA, OsCATB, and OsCATC, correlated gene expression with enzyme activity, and verified the regulation of these genes through identification of cis-elements in the promoter region. The hydrogen peroxide content increased in a tolerant genotype and decreased in a sensitive genotype under both stress conditions. Lipid peroxidation increased in the tolerant genotype when exposed to cold, and in the sensitive genotype when exposed to high salinity. Catalase activity significantly increased in both genotypes when subjected to 13°C. In the tolerant genotype, OsCATA and OsCATB were the most responsive to high salinity and cold, while in the sensitive genotype, OsCATA and OsCATC responded positively to saline stress, as did OsCATA and OsCATB to low temperature. Cis-element analysis identified different regulatory sequences in the catalase promoter region of each genotype. The sensitive genotype maintained a better balance between hydrogen oxyacid levels, catalase activity, and lipid peroxidation under low temperature than the resistant genotype. OsCATA and OsCATB were the most responsive in the salt-tolerant genotype to cold, OsCATA and OsCATC were the most responsive to saline stress, and OsCATA and OsCATB were the most responsive to chilling stress in the sensitive genotype. There were positive correlations between catalase activity and OsCATB expression in the tolerant genotype under saline stress and in the sensitive genotype under cold stress.

  16. Differential expression of glucose-metabolizing enzymes in multiple sclerosis lesions.

    PubMed

    Nijland, Philip G; Molenaar, Remco J; van der Pol, Susanne M A; van der Valk, Paul; van Noorden, Cornelis J F; de Vries, Helga E; van Horssen, Jack

    2015-12-04

    Demyelinated axons in multiple sclerosis (MS) lesions have an increased energy demand in order to maintain conduction. However, oxidative stress-induced mitochondrial dysfunction likely alters glucose metabolism and consequently impairs neuronal function in MS. Imaging and pathological studies indicate that glucose metabolism is altered in MS, although the underlying mechanisms and its role in neurodegeneration remain elusive. We investigated expression patterns of key enzymes involved in glycolysis, tricarboxylic acid (TCA) cycle and lactate metabolism in well-characterized MS tissue to establish which regulators of glucose metabolism are involved in MS and to identify underlying mechanisms. Expression levels of glycolytic enzymes were increased in active and inactive MS lesions, whereas expression levels of enzymes involved in the TCA cycle were upregulated in active MS lesions, but not in inactive MS lesions. We observed reduced expression and production capacity of mitochondrial α-ketoglutarate dehydrogenase (αKGDH) in demyelinated axons, which correlated with signs of axonal dysfunction. In inactive lesions, increased expression of lactate-producing enzymes was observed in astrocytes, whereas lactate-catabolising enzymes were mainly detected in axons. Our results demonstrate that the expression of various enzymes involved in glucose metabolism is increased in both astrocytes and axons in active MS lesions. In inactive MS lesions, we provide evidence that astrocytes undergo a glycolytic shift resulting in enhanced astrocyte-axon lactate shuttling, which may be pivotal for the survival of demyelinated axons. In conclusion, we show that key enzymes involved in energy metabolism are differentially expressed in active and inactive MS lesions. Our findings imply that, in addition to reduced oxidative phosphorylation activity, other bioenergetic pathways are affected as well, which may contribute to ongoing axonal degeneration in MS.

  17. Changes in gravitational force induce alterations in gene expression that can be monitored in the live, developing zebrafish heart

    NASA Astrophysics Data System (ADS)

    Gillette-Ferguson, I.; Ferguson, D. G.; Poss, K. D.; Moorman, S. J.

    2003-10-01

    Little is known about the effect of microgravity on gene expression, particularly in vivo during embryonic development. Using transgenic zebrafish that express the gfp gene under the influence of a β-actin promoter, we examined the affect of simulated-microgravity on GFP expression in the heart. Zebrafish embryos, at the 18-20 somite-stage, were exposed to simulated-microgravity for 24 hours. The intensity of GFP fluorescence associated with the heart was then determined using fluorescence microscopy. Our measurements indicated that simulated-microgravity induced a 23.9% increase in GFP-associated fluorescence in the heart. In contrast, the caudal notochord showed a 17.5% increase and the embryo as a whole showed only an 8.5% increase in GFP-associated fluorescence. This suggests that there are specific effects on the heart causing the more dramatic increase. These studies indicate that microgravity can influence gene expression and demonstrate the usefulness of this in vivo model of "reporter-gene" expression for studying the effects of microgravity.

  18. Modification of the hTERT promoter by heat shock elements enhances the efficiency and specificity of cancer targeted gene therapy.

    PubMed

    Wang, Xiaolong; Zhou, PeiHua; Sun, XueJun; Wei, GuangBing; Zhang, Li; Wang, Hui; Yao, JianFeng; Jia, PengBo; Zheng, JianBao

    2016-05-01

    One of the current challenges facing cancer gene therapy is the tumour-specific targeting of therapeutic genes. Effective targeting in gene therapy requires accurate spatial and temporal control of gene expression. To develop a sufficient and accurate tumour-targeting method for cancer gene therapy, we have investigated the use of hyperthermia to control the expression of a transgene under the control of the human telomerase reverse transcriptase (hTERT) promoter and eight heat shock elements (8HSEs). Luciferase reporters were constructed by inserting eight HSEs and the hTERT promoter (8HSEs-hTERTp) upstream of the pGL4.20 vector luciferase gene. The luciferase activity of the hTERT promoter and 8HSEs-hTERT promoter were then compared in the presence and absence of heat. The differences in luciferase activity were analysed using dual luciferase assays in SW480 (high hTERT expression), MKN28 and MRC-5 cells (low hTERT expression). The luciferase activity of the Hsp70B promoter was also compared to the 8HSEs-hTERT promoter in the above listed cell lines. Lentiviral vector and heat-induced expression of EGFP expression under the control of the 8HSEs-hTERT promoter in cultured cells and mouse tumour xenografts was measured by reverse transcription polymerase (RT-PCR), Western blot and immunofluorescence assays. hTERT promoter activity was higher in SW480 cells than in MKN28 or MRC-5 cells. At 43 °C, the luciferase activity of the 8HSEs-hTERT promoter was significantly increased in SW480 cells, but not in MKN28 or MRC-5 cells. Importantly, the differences in luciferase activity were much more obvious in both high (SW480) and low (MKN28 and MRC-5) hTERT expressing cells when the activity of the 8HSEs-hTERT promoter was compared to the Hsp70B promoter. Moreover, under the control of 8HSEs-hTERT promoter in vitro and in vivo, EGFP expression was obviously increased by heat treatment in SW480 cells but not in MKN28 or MRC-5 cells, nor was expression increased under normal temperature conditions. The hTERT promoter is a potentially powerful tumour-specific promoter and gene therapy tool for cancer treatment. Incorporating heat-inducible therapeutic elements (8HSEs) into the hTERT promoter may enhance the efficiency and specificity of cancer targeting gene therapy under hyperthermic clinical conditions.

  19. High Temperature Inhibits Ascorbate Recycling and Light Stimulation of the Ascorbate Pool in Tomato despite Increased Expression of Biosynthesis Genes

    PubMed Central

    Massot, Capucine; Bancel, Doriane; Lopez Lauri, Félicie; Truffault, Vincent; Baldet, Pierre; Stevens, Rebecca; Gautier, Hélène

    2013-01-01

    Understanding how the fruit microclimate affects ascorbate (AsA) biosynthesis, oxidation and recycling is a great challenge in improving fruit nutritional quality. For this purpose, tomatoes at breaker stage were harvested and placed in controlled environment conditions at different temperatures (12, 17, 23, 27 and 31°C) and irradiance regimes (darkness or 150 µmol m-2 s-1). Fruit pericarp tissue was used to assay ascorbate, glutathione, enzymes related to oxidative stress and the AsA/glutathione cycle and follow the expression of genes coding for 5 enzymes of the AsA biosynthesis pathway (GME, VTC2, GPP, L-GalDH, GLDH). The AsA pool size in pericarp tissue was significantly higher under light at temperatures below 27°C. In addition, light promoted glutathione accumulation at low and high temperatures. At 12°C, increased AsA content was correlated with the enhanced expression of all genes of the biosynthesis pathway studied, combined with higher DHAR and MDHAR activities and increased enzymatic activities related to oxidative stress (CAT and APX). In contrast, at 31°C, MDHAR and GR activities were significantly reduced under light indicating that enzymes of the AsA/glutathione cycle may limit AsA recycling and pool size in fruit pericarp, despite enhanced expression of genes coding for AsA biosynthesis enzymes. In conclusion, this study confirms the important role of fruit microclimate in the regulation of fruit pericarp AsA content, as under oxidative conditions (12°C, light) total fruit pericarp AsA content increased up to 71%. Moreover, it reveals that light and temperature interact to regulate both AsA biosynthesis gene expression in tomato fruits and AsA oxidation and recycling. PMID:24367665

  20. High temperature inhibits ascorbate recycling and light stimulation of the ascorbate pool in tomato despite increased expression of biosynthesis genes.

    PubMed

    Massot, Capucine; Bancel, Doriane; Lopez Lauri, Félicie; Truffault, Vincent; Baldet, Pierre; Stevens, Rebecca; Gautier, Hélène

    2013-01-01

    Understanding how the fruit microclimate affects ascorbate (AsA) biosynthesis, oxidation and recycling is a great challenge in improving fruit nutritional quality. For this purpose, tomatoes at breaker stage were harvested and placed in controlled environment conditions at different temperatures (12, 17, 23, 27 and 31 °C) and irradiance regimes (darkness or 150 µmol m(-2) s(-1)). Fruit pericarp tissue was used to assay ascorbate, glutathione, enzymes related to oxidative stress and the AsA/glutathione cycle and follow the expression of genes coding for 5 enzymes of the AsA biosynthesis pathway (GME, VTC2, GPP, L-GalDH, GLDH). The AsA pool size in pericarp tissue was significantly higher under light at temperatures below 27 °C. In addition, light promoted glutathione accumulation at low and high temperatures. At 12 °C, increased AsA content was correlated with the enhanced expression of all genes of the biosynthesis pathway studied, combined with higher DHAR and MDHAR activities and increased enzymatic activities related to oxidative stress (CAT and APX). In contrast, at 31 °C, MDHAR and GR activities were significantly reduced under light indicating that enzymes of the AsA/glutathione cycle may limit AsA recycling and pool size in fruit pericarp, despite enhanced expression of genes coding for AsA biosynthesis enzymes. In conclusion, this study confirms the important role of fruit microclimate in the regulation of fruit pericarp AsA content, as under oxidative conditions (12 °C, light) total fruit pericarp AsA content increased up to 71%. Moreover, it reveals that light and temperature interact to regulate both AsA biosynthesis gene expression in tomato fruits and AsA oxidation and recycling.

  1. Oxidative stress-induced increase of intracellular zinc in astrocytes decreases their functional expression of P2X7 receptors and engulfing activity.

    PubMed

    Furuta, Takahiro; Mukai, Ayumi; Ohishi, Akihiro; Nishida, Kentaro; Nagasawa, Kazuki

    2017-12-01

    Neuron-glia communication mediated by neuro- and glio-transmitters such as ATP and zinc is crucial for the maintenance of brain homeostasis, and its dysregulation is found under pathological conditions. It is reported that under oxidative stress-loaded conditions, astrocytes exhibit increased intra- and extra-cellular labile zinc, the latter triggering microglial M1 activation, while the pathophysiological role of the former remains unrevealed. In this study, we examined whether the oxidative stress-induced increase of intracellular labile zinc is involved in the P2X7 receptor (P2X7R)-mediated regulation of astrocytic engulfing activity. The exposure of cultured astrocytes to sub-lethal oxidative stress through their treatment with 400 μM H 2 O 2 increased intracellular labile zinc, of which the concentration reached a peak level of approximately 2 μM at 2 h after the treatment. In astrocytes under sub-lethal oxidative stress, the uptake of YO-PRO-1 and latex beads as markers for P2X7R channel/pore activity and astrocytic engulfing activity, respectively, was decreased, and these decreased activities were accompanied by decreased expression of P2X7R at the plasma membrane via intracellular labile zinc-mediated translocation of it. With the oxidative stress, the expression level of full length P2X7R relative to that of its splice variants in astrocytes was decreased, leading to a decrease of the relative expression of the trimer consisting of full length P2X7R. Collectively, sub-lethal oxidative stress induces an astrocytic modal shift from the normal resting engulfing mode to the activated astrogliosis mode via an intracellular labile zinc-mediated decrease of the functional expression of P2X7R.

  2. Oxidative stress upregulates zinc uptake activity via Zrt/Irt-like protein 1 (ZIP1) in cultured mouse astrocytes.

    PubMed

    Furuta, Takahiro; Ohshima, Chiaki; Matsumura, Mayu; Takebayashi, Naoto; Hirota, Emi; Mawaribuchi, Toshiki; Nishida, Kentaro; Nagasawa, Kazuki

    2016-04-15

    Zinc released from glutamatergic boutons and astrocytes acts as neuro- and glio-transmitters, and thus its extracellular level has to be strictly regulated. We previously revealed that uptake of zinc by astrocytes plays a critical role in its clearance, and zinc transporter Zrt/Irt-like protein 1 (ZIP1) is the molecule responsible for the uptake. However, it is unknown whether or not the functionality of the zinc clearance system is altered under oxidative stress-loaded conditions. Here, we characterized zinc uptake by oxidative stress-loaded astrocytes. Cultured mouse astrocytes were treated with hydrogen peroxide (H2O2) to load oxidative stress. Functional expression of ZIP1 in astrocytes was evaluated by means of (65)Zn uptake, Western blotting and immunocytochemical analysis. Treatment of astrocytes with 0.4mM H2O2 for 24h increased the expression levels of glial fibrillary acidic protein and 4-hydroxynonenal without significant decreases in their viability, indicating that induction of oxidative stress in astrocytes. Under oxidative stress-loaded conditions, astrocytes exhibited increased (65)Zn uptake activity, and the maximum uptake velocity for the uptake was significantly increased compared to that in the control group, while there was no change in the Michaelis constants, which were almost identical to that of mouse ZIP1. In the H2O2-treated astrocytes, the expression levels of ZIP1 were significantly increased in the cellular and plasma membrane fractions. It appears that under oxidative stress-loaded conditions, astrocytes exhibit increased zinc clearance activity and this is due, at least in part, to increased ZIP1 expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. [Application of dhfr gene negative Chinese hamster ovary cell line to express hepatitis B virus surface antigen].

    PubMed

    Yi, Y; Zhang, M; Liu, C

    2001-06-01

    To set up an efficient expressing system for recombinant hepatitis B virus surface antigen (HBsAg) in dhfr gene negative CHO cell line. HBsAg gene expressing plasmid pCI-dhfr-S was constructed by integrating HBsAg gene into plasmid pCI which carries dhfr gene. The HBsAg expressing cell line was set up by transfection of plasmid pCI-dhfr-S into dhfr gene negative CHO cell line in the way of lipofectin. Under the selective pressure of MTX, 18 of 28 clonized cell lines expressed HBsAg, 4 of them reached a high titer of 1:32 and protein content 1-3 micrograms/ml. In this study, the high level expression of HBsAg demonstrated that the dhfr negative mammalian cell line when recombined with plasmid harboring the corresponding deleted gene can efficiently express the foreign gene. The further steps toward building optimum conditions of the expressing system and the increase of expressed product are under study.

  4. Biological mechanisms discriminating growth rate and adult body weight phenotypes in two Chinese indigenous chicken breeds.

    PubMed

    Dou, Tengfei; Zhao, Sumei; Rong, Hua; Gu, Dahai; Li, Qihua; Huang, Ying; Xu, Zhiqiang; Chu, Xiaohui; Tao, Linli; Liu, Lixian; Ge, Changrong; Te Pas, Marinus F W; Jia, Junjing

    2017-06-20

    Intensive selection has resulted in increased growth rates and muscularity in broiler chickens, in addition to adverse effects, including delayed organ development, sudden death syndrome, and altered metabolic rates. The biological mechanisms underlying selection responses remain largely unknown. Non-artificially-selected indigenous Chinese chicken breeds display a wide variety of phenotypes, including differential growth rate, body weight, and muscularity. The Wuding chicken breed is a fast growing large chicken breed, and the Daweishan mini chicken breed is a slow growing small chicken breed. Together they form an ideal model system to study the biological mechanisms underlying broiler chicken selection responses in a natural system. The objective of this study was to study the biological mechanisms underlying differential phenotypes between the two breeds in muscle and liver tissues, and relate these to the growth rate and body development phenotypes of the two breeds. The muscle tissue in the Wuding breed showed higher expression of muscle development genes than muscle tissue in the Daweishan chicken breed. This expression was accompanied by higher expression of acute inflammatory response genes in Wuding chicken than in Daweishan chicken. The muscle tissue of the Daweishan mini chicken breed showed higher expression of genes involved in several metabolic mechanisms including endoplasmic reticulum, protein and lipid metabolism, energy metabolism, as well as specific immune traits than in the Wuding chicken. The liver tissue showed fewer differences between the two breeds. Genes displaying higher expression in the Wuding breed than in the Daweishan breed were not associated with a specific gene network or biological mechanism. Genes highly expressed in the Daweishan mini chicken breed compared to the Wuding breed were enriched for protein metabolism, ABC receptors, signal transduction, and IL6-related mechanisms. We conclude that faster growth rates and larger body size are related to increased expression of genes involved in muscle development and immune response in muscle, while slower growth rates and smaller body size are related to increased general cellular metabolism. The liver of the Daweishan breed displayed increased expression of metabolic genes.

  5. Integrative Analysis Reveals Relationships of Genetic and Epigenetic Alterations in Osteosarcoma

    PubMed Central

    Skårn, Magne; Namløs, Heidi M.; Barragan-Polania, Ana H.; Cleton-Jansen, Anne-Marie; Serra, Massimo; Liestøl, Knut; Hogendoorn, Pancras C. W.; Hovig, Eivind; Myklebost, Ola; Meza-Zepeda, Leonardo A.

    2012-01-01

    Background Osteosarcomas are the most common non-haematological primary malignant tumours of bone, and all conventional osteosarcomas are high-grade tumours showing complex genomic aberrations. We have integrated genome-wide genetic and epigenetic profiles from the EuroBoNeT panel of 19 human osteosarcoma cell lines based on microarray technologies. Principal Findings The cell lines showed complex patterns of DNA copy number changes, where genomic copy number gains were significantly associated with gene-rich regions and losses with gene-poor regions. By integrating the datasets, 350 genes were identified as having two types of aberrations (gain/over-expression, hypo-methylation/over-expression, loss/under-expression or hyper-methylation/under-expression) using a recurrence threshold of 6/19 (>30%) cell lines. The genes showed in general alterations in either DNA copy number or DNA methylation, both within individual samples and across the sample panel. These 350 genes are involved in embryonic skeletal system development and morphogenesis, as well as remodelling of extracellular matrix. The aberrations of three selected genes, CXCL5, DLX5 and RUNX2, were validated in five cell lines and five tumour samples using PCR techniques. Several genes were hyper-methylated and under-expressed compared to normal osteoblasts, and expression could be reactivated by demethylation using 5-Aza-2′-deoxycytidine treatment for four genes tested; AKAP12, CXCL5, EFEMP1 and IL11RA. Globally, there was as expected a significant positive association between gain and over-expression, loss and under-expression as well as hyper-methylation and under-expression, but gain was also associated with hyper-methylation and under-expression, suggesting that hyper-methylation may oppose the effects of increased copy number for detrimental genes. Conclusions Integrative analysis of genome-wide genetic and epigenetic alterations identified dependencies and relationships between DNA copy number, DNA methylation and mRNA expression in osteosarcomas, contributing to better understanding of osteosarcoma biology. PMID:23144859

  6. Phospholipase Dε enhances Braasca napus growth and seed production in response to nitrogen availability.

    PubMed

    Lu, Shaoping; Yao, Shuaibing; Wang, Geliang; Guo, Liang; Zhou, Yongming; Hong, Yueyun; Wang, Xuemin

    2016-03-01

    Phospholipase D (PLD), which hydrolyses phospholipids to produce phosphatidic acid, has been implicated in plant response to macronutrient availability in Arabidopsis. This study investigated the effect of increased PLDε expression on nitrogen utilization in Brassica napus to explore the application of PLDε manipulation to crop improvement. In addition, changes in membrane lipid species in response to nitrogen availability were determined in the oil seed crop. Multiple PLDε over expression (PLDε-OE) lines displayed enhanced biomass accumulation under nitrogen-deficient and nitrogen-replete conditions. PLDε-OE plants in the field produced more seeds than wild-type plants but have no impact on seed oil content. Compared with wild-type plants, PLDε-OE plants were enhanced in nitrate transporter expression, uptake and reduction, whereas the activity of nitrite reductase was higher under nitrogen-depleted, but not at nitrogen-replete conditions. The level of nitrogen altered membrane glycerolipid metabolism, with greater impacts on young than mature leaves. The data indicate increased expression of PLDε has the potential to improve crop plant growth and production under nitrogen-depleted and nitrogen-replete conditions. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Increased expression of Fas receptor and Fas ligand in the culture of the peripheral blood mononuclear cells stimulated with Borrelia burgdorferi sensu lato.

    PubMed

    Grygorczuk, Sambor; Osada, Joanna; Moniuszko, Anna; Świerzbińska, Renata; Kondrusik, Maciej; Zajkowska, Joanna; Dunaj, Justyna; Dąbrowska, Milena; Pancewicz, Sławomir

    2015-03-01

    Apoptosis of the lymphocytes plays an essential role in the regulation of inflammatory/immune responses and its abnormalities may contribute to a chronic infection, persistent inflammation and autoimmunity. Its role in the pathogenesis of the late Lyme borreliosis manifestations has not been studied so far. We have measured Th lymphocyte apoptosis rate, membrane expression of pro-apoptotic Fas receptor, and supernatant concentrations of selected soluble pro- and anti-apoptotic mediators in cultures of peripheral blood mononuclear cells from 16 patients with disseminated Lyme borreliosis (6 with osteoarticular symptoms, 7 with neuroborreliosis and 3 with acrodermatitis chronica atrophicans) and 8 healthy controls. The cultures stimulated for 48h with live Borrelia burgdorferi sensu stricto, B. garinii or B. afzelii spirochetes. Fraction of the apoptotic Th (CD3+CD4+) lymphocytes and expression of Fas in this cell population was measured cytometrically and concentrations of soluble Fas, soluble Fas ligand, IL-10, IL-12 and TGF-β in culture supernatant with ELISA assays. The expression of IL-10, soluble and membrane Fas and soluble Fas ligand was increased under stimulation and higher in the presence of B. burgdorferi sensu stricto than the other species. Apoptosis rate was not affected. There was no difference between Lyme borreliosis patients and controls. IL-10 concentration correlated negatively with the membrane Fas expression and apoptosis under stimulation with B. afzelii and B. garinii. Expression of Fas/FasL system is up-regulated under stimulation with B. burgdorferi, but without corresponding increase in lymphocyte apoptosis. Variable responses observed with different B. burgdorferi species may reflect differences in the pathogenesis of the infection in vivo. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. MicroRNA Mediation of Endothelial Inflammatory Response to Smooth Muscle Cells and its Inhibition by Atheroprotective Shear Stress

    PubMed Central

    Chen, Li-Jing; Chuang, Li; Huang, Yi-Hsuan; Zhou, Jing; Lim, Seh Hong; Lee, Chih-I; Lin, Wei-Wen; Lin, Ting-Er; Wang, Wei-Li; Chen, Linyi; Chien, Shu; Chiu, Jeng-Jiann

    2015-01-01

    Rationale In atherosclerotic lesions, synthetic smooth muscle cells (sSMCs) induce aberrant microRNA (miR) profiles in endothelial cells (ECs) under flow stagnation. Increase in shear stress induces favorable miR modulation to mitigate sSMC-induced inflammation. Objective To address the role of miRs in sSMC-induced EC inflammation and its inhibition by shear stress. Methods and Results Co-culturing ECs with sSMCs under static condition causes initial increases of four anti-inflammatory miRs (146a/708/451/98) in ECs followed by decreases below basal levels at 7 days; the increases for miR-146a/708 peaked at 24 h and those for miR-451/98 lasted for only 6-12 h. Shear stress (12 dynes/cm2) to co-cultured ECs for 24 h augments these four miR expressions. In vivo, these four miRs are highly expressed in neointimal ECs in injured arteries under physiological levels of flow, but not expressed under flow stagnation. MiR-146a, -708, -451, and -98 target interleukin (IL)-1 receptor-associated kinase, inhibitor of nuclear factor-κB (NF-κB) kinase subunit-γ, IL-6 receptor, and conserved helix-loop-helix ubiquitous kinase, respectively, to inhibit NF-κB signaling, which exerts negative feedback control on the biogenesis of these miRs. NF-E2-related factor-2 (Nrf-2) is critical for shear-induction of miR-146a in co-cultured ECs. Silencing either Nrf-2 or miR-146a led to increased neointima formation of injured rat carotid artery under physiological levels of flow. Overexpressing miR-146a inhibits neointima formation of rat or mouse carotid artery induced by injury or flow cessation. Conclusions Nrf-2-mediated miR-146a expression is augmented by atheroprotective shear stress in ECs adjacent to sSMCs to inhibit neointima formation of injured arteries. PMID:25623956

  9. Expression of Rice Mature Carbonic Anhydrase Gene Increase E. coli Tolerance to Heat Stress.

    PubMed

    Tianpei, Xiuzi; Mao, Zhinang; Zhu, Yingguo; Li, Shaoqing

    2015-05-01

    Carbonic anhydrate is a zinc-containing metalloenzyme and involved in plant abiotic stress tolerance. In this study, we found that heat stress could induce rice mature carbonic anhydrate gene over-expression in rice plants. An Escherichia coli heterologous expression system was performed to identify the function of rice mature carbonic anhydrate in vitro. By sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), mature OsCA fusion protein was identified and proved to be soluble. The results of spot, survival rate, and growth curve assay demonstrated that the expression of the mature OsCA could enhance the thermo-tolerance of the induced mature OsCA recombinants in comparison with controls under heat stress. Meanwhile, compared with controls, the levels of reactive oxygen species in induced mature OsCA recombinants were apparently low under heat stress, and correspondingly, activities of the critical antioxidant enzymes including superoxide dismutase, catalase, and peroxidase in the induced mature OsCA recombinants were significantly increased. Additionally, relative to controls, the activity of the lactate dehydrogenase decreased in the induced mature OsCA recombinants under heat stress. Based on these results, we suggest that mature OsCA protein could confer the E. coli recombinants' tolerance to heat stress by a synergistic fashion of increasing the antioxidant enzymes' activities to reduce the oxidative damage and maintaining the lactate dehydrogenase (LDH) activity of E. coli.

  10. Myocilin Regulates Cell Proliferation and Survival*

    PubMed Central

    Joe, Myung Kuk; Kwon, Heung Sun; Cojocaru, Radu; Tomarev, Stanislav I.

    2014-01-01

    Myocilin, a causative gene for open angle glaucoma, encodes a secreted glycoprotein with poorly understood functions. To gain insight into its functions, we produced a stably transfected HEK293 cell line expressing myocilin under an inducible promoter and compared gene expression profiles between myocilin-expressing and vector control cell lines by a microarray analysis. A significant fraction of differentially expressed genes in myocilin-expressing cells was associated with cell growth and cell death, suggesting that myocilin may have a role in the regulation of cell growth and survival. Increased proliferation of myocilin-expressing cells was demonstrated by the WST-1 proliferation assay, direct cell counting, and immunostaining with antibodies against Ki-67, a cellular proliferation marker. Myocilin-containing conditioned medium also increased proliferation of unmodified HEK293 cells. Myocilin-expressing cells were more resistant to serum starvation-induced apoptosis than control cells. TUNEL-positive apoptotic cells were dramatically decreased, and two apoptotic marker proteins, cleaved caspase 7 and cleaved poly(ADP-ribose) polymerase, were significantly reduced in myocilin-expressing cells as compared with control cells under apoptotic conditions. In addition, myocilin-deficient mesenchymal stem cells exhibited reduced proliferation and enhanced susceptibility to serum starvation-induced apoptosis as compared with wild-type mesenchymal stem cells. Phosphorylation of ERK1/2 and its upstream kinases, c-Raf and MEK, was increased in myocilin-expressing cells compared with control cells. Elevated phosphorylation of ERK1/2 was also observed in the trabecular meshwork of transgenic mice expressing 6-fold higher levels of myocilin when compared with their wild-type littermates. These results suggest that myocilin promotes cell proliferation and resistance to apoptosis via the ERK1/2 MAPK signaling pathway. PMID:24563482

  11. Hydrostatic pressure influences HIF-2 alpha expression in chondrocytes.

    PubMed

    Inoue, Hiroaki; Arai, Yuji; Kishida, Tsunao; Terauchi, Ryu; Honjo, Kuniaki; Nakagawa, Shuji; Tsuchida, Shinji; Matsuki, Tomohiro; Ueshima, Keiichirou; Fujiwara, Hiroyoshi; Mazda, Osam; Kubo, Toshikazu

    2015-01-05

    Hypoxia-inducible factor (HIF)-2α is considered to play a major role in the progression of osteoarthritis. Recently, it was reported that pressure amplitude influences HIF-2α expression in murine endothelial cells. We examined whether hydrostatic pressure is involved in expression of HIF-2α in articular chondrocytes. Chondrocytes were cultured and stimulated by inflammation or hydrostatic pressure of 0, 5, 10, or 50 MPa. After stimulation, heat shock protein (HSP) 70, HIF-2α, nuclear factor kappa B (NF-κB), matrix metalloproteinase (MMP)-13, MMP-3, and vascular endothelial growth factor (VEGF) gene expression were evaluated. The levels of all gene expression were increased by inflammatory stress. When chondrocytes were exposed to a hydrostatic pressure of 5 MPa, HIF-2α, MMP-13, and MMP-3 gene expression increased significantly although those of HSP70 and NF-κB were not significantly different from the control group. In contrast, HIF-2α gene expression did not increase under a hydrostatic pressure of 50 MPa although HSP70 and NF-κB expression increased significantly compared to control. We considered that hydrostatic pressure of 5 MPa could regulate HIF-2α independent of NF-κB, because the level of HIF-2α gene expression increased significantly without upregulation of NF-κB expression at 5 MPa. Hydrostatic pressure may influence cartilage degeneration, inducing MMP-13 and MMP-3 expression through HIF-2α.

  12. The influence of fluid shear stress on the expression of Cbfa1 in MG-63 cells cultured under different gravitational conditions

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Wang, B.; Cao, X. S.; Yang, Z.; Sun, X. Q.

    2008-12-01

    AuthorPurposeThis study was aimed to explore the effect of flow shear stress on the expression of Cbfa1 in human osteosarcoma cells and to survey its functional alteration in simulated microgravity. After culture for 48 h in two different gravitational environments, i.e. 1 G terrestrial gravitational condition and simulated microgravity condition, human osteosarcoma cells (MG-63) were treated with 0.5 or 1.5 Pa fluid shear stress (FSS) in a flow chamber for 15, 30, and 60 min, respectively. The total RNA in cells was isolated. RT-PCR analysis was made to examine the gene expression of Cbfa1. The total protein of cells was extracted and the expression of Cbfa1 protein was detected by means of Western blotting. ResultsMG-63 cells cultured in 1 G condition reacted to FSS treatment with an enhanced expression of Cbfa1. Compared with no-FSS control group, Cbfa1 mRNA expression increased significantly at 30 and 60 min with the treatment of FSS ( P < 0.01). And there was remarkable difference on the Cbfa1 mRNA expression between the treatments of 0.5 and 1.5 Pa FSS at 30 or 60 min ( P < 0.01). Cbfa1 protein expressions had a trend to increase at 30 min with the treatment of FSS and they increased significantly at 60 min with the treatment of 0.5 or 1.5 Pa FSS ( P < 0.05). As to the cells cultured in simulated microgravity by using clinostat, the expression of Cbfa1 was significantly different between 1 G and simulated microgravity conditions at each test time ( P < 0.05). Compared with no-FSS control group cultured in simulated microgravity, Cbfa1 mRNA expression increased significantly at 30 and 60 min with the treatment of FSS ( P < 0.05). And Cbfa1 protein expression increased significant at 60 min with the treatment of 1.5 Pa FSS under simulated microgravity conditions ( P < 0.05). ConclusionsFSS can significantly increase the gene and protein expression of Cbfa1 in human osteosarcoma cells. And this inducible function of FSS was adversely affected by simulated microgravity.

  13. The Effects of Glucosamine Sulfate on Intervertebral Disc Annulus Fibrosus Cells in Vitro

    PubMed Central

    Sowa, Gwendolyn; Coelho, J. Paulo; Jacobs, Lloydine; Komperda, Kasey; Sherry, Nora; Vo, Nam; Preuss, Harry; Balk, Judith; Kang, Jame

    2014-01-01

    Background context Glucosamine has gained widespread use among patients, despite inconclusive efficacy data. Inconsistency in the clinical literature may be related to lack of understanding of the effects of glucosamine on the intervertebral disc, and therefore, improper patient selection. Purpose The goal of our study was to investigate the effects of glucosamine on intervertebral disc cells in vitro under the physiological conditions of inflammation and mechanical loading. Study Design Controlled in vitro laboratory setting Methods Intervertebral disc cells isolated from the rabbit annulus fibrosus were exposed to glucosamine sulfate in the presence and absence of interleukin-1beta and tensile strain. Outcome measures included gene expression, measurement of total glycosaminoglycans, new proteoglycan synthesis, prostaglandin E2 production, and matrix metalloproteinase activity. The study was funded by NIH/NCCAM and the authors have no conflicts of interest. Results Under conditions of inflammatory stimulation alone, glucosamine demonstrated a dose dependent effect in decreasing inflammatory and catabolic mediators and increasing anabolic genes. However, under conditions of mechanical stimulation, although inflammatory gene expression was decreased, PGE2 was not. In addition, MMP-3 gene expression was increased and aggrecan expression decreased, both of which would have a detrimental effect on matrix homeostasis. Consistent with this, measurement of total glycosaminoglycans and new proteoglycan synthesis demonstrated detrimental effects of glucosamine under all conditions tested. Conclusions These results may in part help to explain the conflicting reports of efficacy, as there is biological plausibility for a therapeutic effect under conditions of predominate inflammation, but not under conditions where mechanical loading is present or in which matrix synthesis is needed. PMID:24361347

  14. Double-Stranded RNA-Binding Protein Regulates Vascular Endothelial Growth Factor mRNA Stability, Translation, and Breast Cancer Angiogenesis▿

    PubMed Central

    Vumbaca, Frank; Phoenix, Kathryn N.; Rodriguez-Pinto, Daniel; Han, David K.; Claffey, Kevin P.

    2008-01-01

    Vascular endothelial growth factor (VEGF) is a key angiogenic factor expressed under restricted nutrient and oxygen conditions in most solid tumors. The expression of VEGF under hypoxic conditions requires transcription through activated hypoxia-inducible factor 1 (HIF-1), increased mRNA stability, and facilitated translation. This study identified double-stranded RNA-binding protein 76/NF90 (DRBP76/NF90), a specific isoform of the DRBP family, as a VEGF mRNA-binding protein which plays a key role in VEGF mRNA stability and protein synthesis under hypoxia. The DRBP76/NF90 protein binds to a human VEGF 3′ untranslated mRNA stability element. RNA interference targeting the DRBP76/NF90 isoform limited hypoxia-inducible VEGF mRNA and protein expression with no change in HIF-1-dependent transcriptional activity. Stable repression of DRBP76/NF90 in MDA-MB-435 breast cancer cells demonstrated reduced polysome-associated VEGF mRNA levels under hypoxic conditions and reduced mRNA stability. Transient overexpression of the DRBP76/NF90 protein increased both VEGF mRNA and protein levels synthesized under normoxic and hypoxic conditions. Cells with stable repression of the DRBP76/NF90 isoform showed reduced tumorigenic and angiogenic potential in an orthotopic breast tumor model. These data demonstrate that the DRBP76/NF90 isoform facilitates VEGF expression by promoting VEGF mRNA loading onto polysomes and translation under hypoxic conditions, thus promoting breast cancer growth and angiogenesis in vivo. PMID:18039850

  15. Ocean acidification increases the sensitivity of and variability in physiological responses of an intertidal limpet to thermal stress

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Russell, Bayden D.; Ding, Meng-Wen; Dong, Yun-Wei

    2018-05-01

    Understanding physiological responses of organisms to warming and ocean acidification is the first step towards predicting the potential population- and community-level ecological impacts of these stressors. Increasingly, physiological plasticity is being recognized as important for organisms to adapt to the changing microclimates. Here, we evaluate the importance of physiological plasticity for coping with ocean acidification and elevated temperature, and its variability among individuals, of the intertidal limpet Cellana toreuma from the same population in Xiamen. Limpets were collected from shaded mid-intertidal rock surfaces. They were acclimated under combinations of different pCO2 concentrations (400 and 1000 ppm, corresponding to a pH of 8.1 and 7.8) and temperatures (20 and 24 °C) in a short-term period (7 days), with the control conditions (20 °C and 400 ppm) representing the average annual temperature and present-day pCO2 level at the collection site. Heart rates (as a proxy for metabolic performance) and expression of genes encoding inducible and constitutive heat-shock proteins (hsp70 and hsc70) at different heat-shock temperatures (26, 30, 34, and 38 °C) were measured. Hsp70 and Hsc70 play important roles in protecting cells from heat stresses, but have different expression patterns, with Hsp70 significantly increased in expression during stress and Hsc70 constitutively expressed and only mildly induced during stress. Analysis of heart rate showed significantly higher temperature coefficients (Q10 rates) for limpets at 20 °C than at 24 °C and post-acclimation thermal sensitivity of limpets at 400 ppm was lower than at 1000 ppm. Expression of hsp70 linearly increased with the increasing heat-shock temperatures, with the largest slope occurring in limpets acclimated under a future scenario (24 °C and 1000 ppm pCO2). These results suggested that limpets showed increased sensitivity and stress response under future conditions. Furthermore, the increased variation in physiological response under the future scenario indicated that some individuals have higher physiological plasticity to cope with these conditions. While short-term acclimation to reduced pH seawater decreases the ability of partial individuals against thermal stress, physiological plasticity and variability seem to be crucial in allowing some intertidal animals to survive in a rapidly changing environment.

  16. Expression of Arabidopsis glycine-rich RNA-binding protein AtGRP2 or AtGRP7 improves grain yield of rice (Oryza sativa) under drought stress conditions.

    PubMed

    Yang, Deok Hee; Kwak, Kyung Jin; Kim, Min Kyung; Park, Su Jung; Yang, Kwang-Yeol; Kang, Hunseung

    2014-01-01

    Although posttranscriptional regulation of RNA metabolism is increasingly recognized as a key regulatory process in plant response to environmental stresses, reports demonstrating the importance of RNA metabolism control in crop improvement under adverse environmental stresses are severely limited. To investigate the potential use of RNA-binding proteins (RBPs) in developing stress-tolerant transgenic crops, we generated transgenic rice plants (Oryza sativa) that express Arabidopsis thaliana glycine-rich RBP (AtGRP) 2 or 7, which have been determined to harbor RNA chaperone activity and confer stress tolerance in Arabidopsis, and analyzed the response of the transgenic rice plants to abiotic stresses. AtGRP2- or AtGRP7-expressing transgenic rice plants displayed similar phenotypes comparable with the wild-type plants under high salt or cold stress conditions. By contrast, AtGRP2- or AtGRP7-expressing transgenic rice plants showed much higher recovery rates and grain yields compared with the wild-type plants under drought stress conditions. The higher grain yield of the transgenic rice plants was due to the increases in filled grain numbers per panicle. Collectively, the present results show the importance of posttranscriptional regulation of RNA metabolism in plant response to environmental stress and suggest that GRPs can be utilized to improve the yield potential of crops under stress conditions. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Enhancement of Non-photochemical Quenching as an Adaptive Strategy under Phosphorus Deprivation in the Dinoflagellate Karlodinium veneficum

    PubMed Central

    Cui, Yudong; Zhang, Huan; Lin, Senjie

    2017-01-01

    Intensified water column stratification due to global warming has the potential to decrease nutrient availability while increasing excess light for the photosynthesis of phytoplankton in the euphotic zone, which together will increase the need for photoprotective strategies such as non-photochemical quenching (NPQ). We investigated whether NPQ is enhanced and how it is regulated molecularly under phosphorus (P) deprivation in the dinoflagellate Karlodinium veneficum. We grew K. veneficum under P-replete and P-depleted conditions, monitored their growth rates and chlorophyll fluorescence, and conducted gene expression and comparative proteomic analyses. The results were used to characterize NPQ modulation and associated gene expression dynamics under P deprivation. We found that NPQ in K. veneficum was elevated significantly under P deprivation. Accordingly, the abundances of three light-harvesting complex stress-related proteins increased under P-depleted condition. Besides, many proteins related to genetic information flow were down-regulated while many proteins related to energy production and conversion were up-regulated under P deprivation. Taken together, our results indicate that K. veneficum cells respond to P deprivation by reconfiguring the metabolic landscape and up-tuning NPQ to increase the capacity to dissipate excess light energy and maintain the fluency of energy flow, which provides a new perspective about what adaptive strategy dinoflagellates have evolved to cope with P deprivation. PMID:28360892

  18. Estrogen Enhances the Expression of the Multidrug Transporter Gene ABCG2-Increasing Drug Resistance of Breast Cancer Cells through Estrogen Receptors.

    PubMed

    Chang, Fung-Wei; Fan, Hueng-Chuen; Liu, Jui-Ming; Fan, Tai-Ping; Jing, Jin; Yang, Chia-Ling; Hsu, Ren-Jun

    2017-01-14

    Multidrug resistance is a major obstacle in the successful therapy of breast cancer. Studies have proved that this kind of drug resistance happens in both human cancers and cultured cancer cell lines. Understanding the molecular mechanisms of drug resistance is important for the reasonable design and use of new treatment strategies to effectively confront cancers. In our study, ATP-binding cassette sub-family G member 2 (ABCG2), adenosine triphosphate (ATP) synthase and cytochrome c oxidase subunit VIc (COX6C) were over-expressed more in the MCF-7/MX cell line than in the normal MCF7 cell line. Therefore, we believe that these three genes increase the tolerance of MCF7 to mitoxantrone (MX). The data showed that the high expression of COX6C made MCF-7/MX have more stable on mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) expression than normal MCF7 cells under hypoxic conditions. The accumulation of MX was greater in the ATP-depleted treatment MCF7/MX cells than in normal MCF7/MX cells. Furthermore, E2 increased the tolerance of MCF7 cells to MX through inducing the expression of ABCG2. However, E2 could not increase the expression of ABCG2 after the inhibition of estrogen receptor α (ERα) in MCF7 cells. According to the above data, under the E2 treatment, MDA-MB231, which lacks ER, had a higher sensitivity to MX than MCF7 cells. E2 induced the expression of ABCG2 through ERα and the over-expressed ABCG2 made MCF7 more tolerant to MX. Moreover, the over-expressed ATP synthase and COX6c affected mitochondrial genes and function causing the over-expressed ABCG2 cells pumped out MX in a concentration gradient from the cell matrix. Finally lead to chemoresistance.

  19. Estrogen Enhances the Expression of the Multidrug Transporter Gene ABCG2—Increasing Drug Resistance of Breast Cancer Cells through Estrogen Receptors

    PubMed Central

    Chang, Fung-Wei; Fan, Hueng-Chuen; Liu, Jui-Ming; Fan, Tai-Ping; Jing, Jin; Yang, Chia-Ling; Hsu, Ren-Jun

    2017-01-01

    Background: Multidrug resistance is a major obstacle in the successful therapy of breast cancer. Studies have proved that this kind of drug resistance happens in both human cancers and cultured cancer cell lines. Understanding the molecular mechanisms of drug resistance is important for the reasonable design and use of new treatment strategies to effectively confront cancers. Results: In our study, ATP-binding cassette sub-family G member 2 (ABCG2), adenosine triphosphate (ATP) synthase and cytochrome c oxidase subunit VIc (COX6C) were over-expressed more in the MCF-7/MX cell line than in the normal MCF7 cell line. Therefore, we believe that these three genes increase the tolerance of MCF7 to mitoxantrone (MX). The data showed that the high expression of COX6C made MCF-7/MX have more stable on mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) expression than normal MCF7 cells under hypoxic conditions. The accumulation of MX was greater in the ATP-depleted treatment MCF7/MX cells than in normal MCF7/MX cells. Furthermore, E2 increased the tolerance of MCF7 cells to MX through inducing the expression of ABCG2. However, E2 could not increase the expression of ABCG2 after the inhibition of estrogen receptor α (ERα) in MCF7 cells. According to the above data, under the E2 treatment, MDA-MB231, which lacks ER, had a higher sensitivity to MX than MCF7 cells. Conclusions: E2 induced the expression of ABCG2 through ERα and the over-expressed ABCG2 made MCF7 more tolerant to MX. Moreover, the over-expressed ATP synthase and COX6c affected mitochondrial genes and function causing the over-expressed ABCG2 cells pumped out MX in a concentration gradient from the cell matrix. Finally lead to chemoresistance. PMID:28098816

  20. AhIRT1 and AhNRAMP1 metal transporter expression correlates with Cd uptake in peanuts under iron deficiency

    PubMed Central

    Xia, Shenglan; Deng, Rubo; Liu, Caifeng; Shi, Gangrong

    2017-01-01

    Fe deficiency may increase Cd accumulation in peanuts. However, the mechanisms are not yet fully understood. In the present study, two contrasting peanut cultivars, Luhua 8 (low seed-Cd cultivar) and Zhenghong 3 (high seed-Cd cultivar) were used to investigate the effect of Fe deficiency on the uptake and accumulation of cadmium (Cd) by hydroponic experiments. Under Fe-sufficient conditions, compared with Luhua 8, Zhenghong 3 had higher specific root length (SRL) and proportion of fine roots with a lower Km for Cd and showed slightly higher expression of AhIRT1 and AhNRAMP1 in the roots. These traits may be responsible for high capacity for Cd accumulation in Zhenghong 3. Under Fe deficiency, the increase of Cd accumulation was much larger in Zhenghong 3 than in Luhua 8. Kinetics studies revealed that the Vmax for Cd influx was 1.56-fold higher in Fe-deficient plants than in Fe-sufficient plants for Zhenghong 3, versus 0.48-fold higher for Luhua 8. Moreover, the increased expression levels of AhIRT1 and AhNRAMP1 induced by Fe deficiency was higher in Zhenghong 3 than in Luhua 8. Yeast complementation assays suggested that the AhIRT1 and AhNRAMP1 may function as transporters involved in Cd uptake. In conclusion, the different Cd accumulation between the two cultivars under Fe deficiency may be correlated with Vmax value for Cd uptake and the expression levels of AhIRT1 and AhNRAMP1 in the roots. PMID:28981520

  1. Connective tissue cells expressing fibro/adipogenic progenitor markers increase under chronic damage: relevance in fibroblast-myofibroblast differentiation and skeletal muscle fibrosis.

    PubMed

    Contreras, Osvaldo; Rebolledo, Daniela L; Oyarzún, Juan Esteban; Olguín, Hugo C; Brandan, Enrique

    2016-06-01

    Fibrosis occurs in skeletal muscle under various pathophysiological conditions such as Duchenne muscular dystrophy (DMD), a devastating disease characterized by fiber degeneration that results in progressive loss of muscle mass, weakness and increased extracellular matrix (ECM) accumulation. Fibrosis is also observed after skeletal muscle denervation and repeated cycles of damage followed by regeneration. The ECM is synthesized largely by fibroblasts in the muscle connective tissue under normal conditions. Myofibroblasts, cells that express α-smooth muscle actin (α-SMA), play a role in many tissues affected by fibrosis. In skeletal muscle, fibro/adipogenic progenitors (FAPs) that express cell-surface platelet-derived growth factor receptor-α (PDGFR-α) and the transcription factor Tcf4 seem to be responsible for connective tissue synthesis and are good candidates for the origin of myofibroblasts. We show that cells positive for Tcf4 and PDGFR-α are expressed in skeletal muscle under normal conditions and are increased in various skeletal muscles of mdx mice, a murine model for DMD, wild type muscle after sciatic denervation and muscle subjected to chronic damage. These cells co-label with the myofibroblast marker α-SMA in dystrophic muscle but not in normal tissue. The Tcf4-positive cells lie near macrophages mainly concentrated in dystrophic necrotic-regenerating foci. The close proximity of Tcf4-positive cells to inflammatory cells and their previously described role in muscle regeneration might reflect an active interaction between these cell types and growth factors, possibly resulting in a muscular regenerative or fibrotic condition.

  2. Protective effects of zymosan on heat stress-induced immunosuppression and apoptosis in dairy cows and peripheral blood mononuclear cells.

    PubMed

    Sun, Yuhang; Liu, Jin; Ye, Gengping; Gan, Fang; Hamid, Mohammed; Liao, Shengfa; Huang, Kehe

    2018-06-02

    Dairy cows exposed to heat stress (HS) show decreased performance and immunity, but increased heat shock protein expressions and apoptosis. Zymosan, an extract from yeast cell walls, has been shown to modulate immune responses and defense against oxidative stress. However, few literatures are available about the effects of zymosan on immune responses and other parameters of the dairy cows under HS. Here, both primary peripheral blood mononuclear cell (PBMC) and dairy cow models were established to assess the effects of zymosan on performance, immunity, heat shock protein, and apoptosis-related gene expressions of dairy cows under HS. In vitro study showed that proliferation, IL-2 production, and Bcl-2/Bax-α ratio of cow primary PBMC were reduced, whereas hsp70 mRNA and protein expressions, as well as Annexin V-bing, were increased when PBMCs were exposed to heat. In contrast, zymosan significantly reversed these above changes induced by the HS. In the in vivo study, 40 Holstein dairy cows were randomly selected and assigned into zymosan group (supplemental zymosan; n = 20) and control group (no supplemental zymosan; n = 20). The results showed that zymosan improved significantly the dry matter intake and milk yield, increased IgA, IL-2, and tumor necrosis factor-α (TNF-α) contents in sera, as well as hepatic Bcl-2/Bax-α ratio, but decreased respiration rate and hepatic hsp70 expressions in the dairy cows under HS. Taken together, zymosan could alleviate HS-induced immunosuppression and apoptosis and improve significantly the productive performance and immunity of dairy cows under HS.

  3. Gene Expression Biomarkers Provide Sensitive Indicators of in Planta Nitrogen Status in Maize[W][OA

    PubMed Central

    Yang, Xiaofeng S.; Wu, Jingrui; Ziegler, Todd E.; Yang, Xiao; Zayed, Adel; Rajani, M.S.; Zhou, Dafeng; Basra, Amarjit S.; Schachtman, Daniel P.; Peng, Mingsheng; Armstrong, Charles L.; Caldo, Rico A.; Morrell, James A.; Lacy, Michelle; Staub, Jeffrey M.

    2011-01-01

    Over the last several decades, increased agricultural production has been driven by improved agronomic practices and a dramatic increase in the use of nitrogen-containing fertilizers to maximize the yield potential of crops. To reduce input costs and to minimize the potential environmental impacts of nitrogen fertilizer that has been used to optimize yield, an increased understanding of the molecular responses to nitrogen under field conditions is critical for our ability to further improve agricultural sustainability. Using maize (Zea mays) as a model, we have characterized the transcriptional response of plants grown under limiting and sufficient nitrogen conditions and during the recovery of nitrogen-starved plants. We show that a large percentage (approximately 7%) of the maize transcriptome is nitrogen responsive, similar to previous observations in other plant species. Furthermore, we have used statistical approaches to identify a small set of genes whose expression profiles can quantitatively assess the response of plants to varying nitrogen conditions. Using a composite gene expression scoring system, this single set of biomarker genes can accurately assess nitrogen responses independently of genotype, developmental stage, tissue type, or environment, including in plants grown under controlled environments or in the field. Importantly, the biomarker composite expression response is much more rapid and quantitative than phenotypic observations. Consequently, we have successfully used these biomarkers to monitor nitrogen status in real-time assays of field-grown maize plants under typical production conditions. Our results suggest that biomarkers have the potential to be used as agronomic tools to monitor and optimize nitrogen fertilizer usage to help achieve maximal crop yields. PMID:21980173

  4. Gene expression biomarkers provide sensitive indicators of in planta nitrogen status in maize.

    PubMed

    Yang, Xiaofeng S; Wu, Jingrui; Ziegler, Todd E; Yang, Xiao; Zayed, Adel; Rajani, M S; Zhou, Dafeng; Basra, Amarjit S; Schachtman, Daniel P; Peng, Mingsheng; Armstrong, Charles L; Caldo, Rico A; Morrell, James A; Lacy, Michelle; Staub, Jeffrey M

    2011-12-01

    Over the last several decades, increased agricultural production has been driven by improved agronomic practices and a dramatic increase in the use of nitrogen-containing fertilizers to maximize the yield potential of crops. To reduce input costs and to minimize the potential environmental impacts of nitrogen fertilizer that has been used to optimize yield, an increased understanding of the molecular responses to nitrogen under field conditions is critical for our ability to further improve agricultural sustainability. Using maize (Zea mays) as a model, we have characterized the transcriptional response of plants grown under limiting and sufficient nitrogen conditions and during the recovery of nitrogen-starved plants. We show that a large percentage (approximately 7%) of the maize transcriptome is nitrogen responsive, similar to previous observations in other plant species. Furthermore, we have used statistical approaches to identify a small set of genes whose expression profiles can quantitatively assess the response of plants to varying nitrogen conditions. Using a composite gene expression scoring system, this single set of biomarker genes can accurately assess nitrogen responses independently of genotype, developmental stage, tissue type, or environment, including in plants grown under controlled environments or in the field. Importantly, the biomarker composite expression response is much more rapid and quantitative than phenotypic observations. Consequently, we have successfully used these biomarkers to monitor nitrogen status in real-time assays of field-grown maize plants under typical production conditions. Our results suggest that biomarkers have the potential to be used as agronomic tools to monitor and optimize nitrogen fertilizer usage to help achieve maximal crop yields.

  5. Anaerobic metabolism in Brassica seedlings

    NASA Astrophysics Data System (ADS)

    Park, Myoung-Ryoul; Hasenstein, Karl H.

    Germination typically depends on oxidative respiration. The lack of convection under space conditions may create hypoxic or conditions during seed germination. We investigated the effect of reduced oxygen on seed germination and metabolism to understand how metabolic constraints affect seed growth and responsiveness to reorientation. Germination was completely inhibited when seeds were imbibed in the absence of oxygen; germination occurred at 5% oxygen and higher levels. Adding oxygen after 72 h resulted in immediate germination (protrusion of the radicle). Hypoxia typically activates alcohol dehydrogenase (ADH, EC 1.1.1.1) and lactate dehydrogenase (LDH, EC 1.1.1.27) which produce ethanol and/or L-lactate, respectively. We report on the expression of ADH1 and LDH1, and changes in total soluble sugars, starch, pH, and L-lactate in seedlings grown at 28°C in 0, 2.5, 5, 10% and ambient (21%) oxygen conditions as controls. The highest consumption (lowest level) of sugars was seen at 0% oxygen but the lowest level of starch occurred 24 h after imbibition under ambient condition. Expression levels of ADH1 in ambient oxygen condition increased within 24 h but increased threefold under hypoxic conditions; LDH1 increased up to 8-fold under hypoxia compared to controls but ADH1 and LDH1 were less expressed as the oxygen levels increased. The intracellular pH of seeds decreased as the content of L-lactate increased for all oxygen concentrations. These results indicate that germination of Brassica is sensitive to oxygen levels and that oxygen availability during germination is an important factor for metabolic activities. (Supported by NASA grant NNX10AP91G)

  6. Downregulation of SIRT1 signaling underlies hepatic autophagy impairment in glycogen storage disease type Ia

    PubMed Central

    Cho, Jun-Ho; Pan, Chi-Jiunn; Anduaga, Javier

    2017-01-01

    A deficiency in glucose-6-phosphatase-α (G6Pase-α) in glycogen storage disease type Ia (GSD-Ia) leads to impaired glucose homeostasis and metabolic manifestations including hepatomegaly caused by increased glycogen and neutral fat accumulation. A recent report showed that G6Pase-α deficiency causes impairment in autophagy, a recycling process important for cellular metabolism. However, the molecular mechanism underlying defective autophagy is unclear. Here we show that in mice, liver-specific knockout of G6Pase-α (L-G6pc-/-) leads to downregulation of sirtuin 1 (SIRT1) signaling that activates autophagy via deacetylation of autophagy-related (ATG) proteins and forkhead box O (FoxO) family of transcriptional factors which transactivate autophagy genes. Consistently, defective autophagy in G6Pase-α-deficient liver is characterized by attenuated expressions of autophagy components, increased acetylation of ATG5 and ATG7, decreased conjugation of ATG5 and ATG12, and reduced autophagic flux. We further show that hepatic G6Pase-α deficiency results in activation of carbohydrate response element-binding protein, a lipogenic transcription factor, increased expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), a lipid regulator, and suppressed expression of PPAR-α, a master regulator of fatty acid β-oxidation, all contributing to hepatic steatosis and downregulation of SIRT1 expression. An adenovirus vector-mediated increase in hepatic SIRT1 expression corrects autophagy defects but does not rectify metabolic abnormalities associated with G6Pase-α deficiency. Importantly, a recombinant adeno-associated virus (rAAV) vector-mediated restoration of hepatic G6Pase-α expression corrects metabolic abnormalities, restores SIRT1-FoxO signaling, and normalizes defective autophagy. Taken together, these data show that hepatic G6Pase-α deficiency-mediated down-regulation of SIRT1 signaling underlies defective hepatic autophagy in GSD-Ia. PMID:28558013

  7. Effects of extracellular modulation through hypoxia on the glucose metabolism of human breast cancer stem cells

    NASA Astrophysics Data System (ADS)

    Yustisia, I.; Jusman, S. W. A.; Wanandi, S. I.

    2017-08-01

    Cancer stem cells have been reported to maintain stemness under certain extracellular changes. This study aimed to analyze the effect of extracellular O2 level modulation on the glucose metabolism of human CD24-/CD44+ breast cancer stem cells (BCSCs). The primary BCSCs (CD24-/CD44+ cells) were cultured under hypoxia (1% O2) for 0.5, 4, 6, 24 and 48 hours. After each incubation period, HIF1α, GLUT1 and CA9 expressions, as well as glucose metabolism status, including glucose consumption, lactate production, O2 consumption and extracellular pH (pHe) were analyzed using qRT-PCR, colorimetry, fluorometry, and enzymatic reactions, respectively. Hypoxia caused an increase in HIF1α mRNA expressions and protein levels and shifted the metabolic states to anaerobic glycolysis, as demonstrated by increased glucose consumption and lactate production, as well as decreased O2 consumption and pHe. Furthermore, we demonstrated that GLUT1 and CA9 mRNA expressions simultaneously increased, in line with HIF1α expression. In conclusion, modulation of the extracellular environment of human BCSCs through hypoxia shifedt the metabolic state of BCSCs to anaerobic glycolysis, which might be associated with GLUT1 and CA9 expressions regulated by HIFlα transcription factor.

  8. Unilateral scrotal angiomas: An expression of underlying varicocele.

    PubMed

    Tromp, Elise E; Kouwenhoven, Stijn T P; Quint, Koen D; Gmelig Meijling, Kevin A; Genders, Roel E

    2016-01-01

    The current case report describes a 35-year-old man who presented with unilateral scrotal angiomas. The presence of unilateral scrotal angiomas was associated with an underlying varicocele on the ipsilateral side due to increased venous pressure. In case of unilateral scrotal angiomas further examination for underlying pathology is necessary.

  9. Mitogen activated protein kinase (MAPK) pathway regulates heme oxygenase-1 gene expression by hypoxia in vascular cells.

    PubMed

    Ryter, Stefan W; Xi, Sichuan; Hartsfield, Cynthia L; Choi, Augustine M K

    2002-08-01

    Hypoxia induces the stress protein heme oxygenase-1 (HO-1), which participates in cellular adaptation. The molecular pathways that regulate ho-1 gene expression under hypoxia may involve mitogen activated protein kinase (MAPK) signaling and reactive oxygen. Hypoxia (8 h) increased HO-1 mRNA in rat pulmonary aortic endothelial cells (PAEC), and also activated both extracellular signal-regulated kinase 1 (ERK1)/ERK2 and p38 MAPK pathways. The role of these kinases in hypoxia-induced ho-1 gene expression was examined using chemical inhibitors of these pathways. Surprisingly, SB203580, an inhibitor of p38 MAPK, and PD98059, an inhibitor of mitogen-activated protein kinase kinase (MEK1), strongly enhanced hypoxia-induced HO-1 mRNA expression in PAEC. UO126, a MEK1/2 inhibitor, enhanced HO-1 expression in PAEC under normoxia, but not hypoxia. Diphenylene iodonium, an inhibitor of NADPH oxidase, also induced the expression of HO-1 in PAEC under both normoxia and hypoxia. Similar results were observed in aortic vascular smooth muscle cells. Furthermore, hypoxia induced activator protein (AP-1) DNA-binding activity in PAEC. Pretreatment with SB203580 and PD98059 enhanced AP-1 binding activity under hypoxia in PAEC; UO126 stimulated AP-1 binding under normoxia, whereas diphenylene iodonium stimulated AP-1 binding under normoxia and hypoxia. These results suggest a relationship between MAPK and hypoxic regulation of ho-1 in vascular cells, involving AP-1.

  10. Pleiotropic effect of sigE over-expression on cell morphology, photosynthesis and hydrogen production in Synechocystis sp. PCC 6803.

    PubMed

    Osanai, Takashi; Kuwahara, Ayuko; Iijima, Hiroko; Toyooka, Kiminori; Sato, Mayuko; Tanaka, Kan; Ikeuchi, Masahiko; Saito, Kazuki; Hirai, Masami Yokota

    2013-11-01

    Over-expression of sigE, a gene encoding an RNA polymerase sigma factor in the unicellular cyanobacterium Synechocystis sp. PCC 6803, is known to activate sugar catabolism and bioplastic production. In this study, we investigated the effects of sigE over-expression on cell morphology, photosynthesis and hydrogen production in this cyanobacterium. Transmission electron and scanning probe microscopic analyses revealed that sigE over-expression increased the cell size, possibly as a result of aberrant cell division. Over-expression of sigE reduced respiration and photosynthesis activities via changes in gene expression and chlorophyll fluorescence. Hydrogen production under micro-oxic conditions is enhanced in sigE over-expressing cells. Despite these pleiotropic phenotypes, the sigE over-expressing strain showed normal cell viability under both nitrogen-replete and nitrogen-depleted conditions. These results provide insights into the inter-relationship among metabolism, cell morphology, photosynthesis and hydrogen production in this unicellular cyanobacterium. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  11. The emotional body and time perception.

    PubMed

    Droit-Volet, Sylvie; Gil, Sandrine

    2016-01-01

    We examined the effects of emotional bodily expressions on the perception of time. Participants were shown bodily expressions of fear, happiness and sadness in a temporal bisection task featuring different stimulus duration ranges. Stimulus durations were judged to be longer for bodily expressions of fear than for those of sadness, whereas no significant difference was observed between sad and happy postures. In addition, the magnitude of the lengthening effect of fearful versus sad postures increased with duration range. These results suggest that the perception of fearful bodily expressions increases the level of arousal which, in turn, speeds up the internal clock system underlying the representation of time. The effect of bodily expressions on time perception is thus consistent with findings for other highly arousing emotional stimuli, such as emotional facial expressions.

  12. Dietary protein-induced hepatic IGF-1 secretion mediated by PPARγ activation.

    PubMed

    Wan, Xiaojuan; Wang, Songbo; Xu, Jingren; Zhuang, Lu; Xing, Kongping; Zhang, Mengyuan; Zhu, Xiaotong; Wang, Lina; Gao, Ping; Xi, Qianyun; Sun, Jiajie; Zhang, Yongliang; Li, Tiejun; Shu, Gang; Jiang, Qingyan

    2017-01-01

    Dietary protein or amino acid (AA) is a crucial nutritional factor to regulate hepatic insulin-like growth factor-1 (IGF-1) expression and secretion. However, the underlying intracellular mechanism by which dietary protein or AA induces IGF-1 expression remains unknown. We compared the IGF-1 gene expression and plasma IGF-1 level of pigs fed with normal crude protein (CP, 20%) and low-protein levels (LP, 14%). RNA sequencing (RNA-seq) was performed to detect transcript expression in the liver in response to dietary protein. The results showed that serum concentrations and mRNA levels of IGF-1 in the liver were higher in the CP group than in the LP group. RNA-seq analysis identified a total of 1319 differentially expressed transcripts (667 upregulated and 652 downregulated), among which the terms "oxidative phosphorylation", "ribosome", "gap junction", "PPAR signaling pathway", and "focal adhesion" were enriched. In addition, the porcine primary hepatocyte and HepG2 cell models also demonstrated that the mRNA and protein levels of IGF-1 and PPARγ increased with the increasing AA concentration in the culture. The PPARγ activator troglitazone increased IGF-1 gene expression and secretion in a dose dependent manner. Furthermore, inhibition of PPARγ effectively reversed the effects of the high AA concentration on the mRNA expression of IGF-1 and IGFBP-1 in HepG2 cells. Moreover, the protein levels of IGF-1 and PPARγ, as well as the phosphorylation of mTOR, significantly increased in HepG2 cells under high AA concentrations. mTOR phosphorylation can be decreased by the mTOR antagonist, rapamycin. The immunoprecipitation results also showed that high AA concentrations significantly increased the interaction of mTOR and PPARγ. In summary, PPARγ plays an important role in the regulation of IGF-1 secretion and gene expression in response to dietary protein.

  13. Molecular Mechanisms of Antidiuretic Effect of Oxytocin

    PubMed Central

    Li, Chunling; Wang, Weidong; Summer, Sandra N.; Westfall, Timothy D.; Brooks, David P.; Falk, Sandor; Schrier, Robert W.

    2008-01-01

    Oxytocin is known to have an antidiuretic effect, but the mechanisms underlying this effect are not completely understood. We infused oxytocin by osmotic minipump into vasopressin-deficient Brattleboro rats for five days and observed marked antidiuresis, increased urine osmolality, and increased solute-free water reabsorption. Administration of oxytocin also significantly increased the protein levels of aquaporin-2 (AQP2), phosphorylated AQP2 (p-AQP2), and AQP3 in the inner medulla and in the outer medulla plus cortex. Immunohistochemistry demonstrated increased AQP2 and p-AQP2 expression and trafficking to the apical plasma membrane of principal cells in the collecting duct, and increased AQP3 expression in the basolateral membrane. These oxytocin-induced effects were blocked by treatment with the vasopressin V2 receptor antagonist SR121463B, but not by treatment with the oxytocin receptor antagonist GW796679X. We conclude that vasopressin V2 receptors mediate the antidiuretic effects of oxytocin, including increased expression and apical trafficking of AQP2, p-AQP2, and increased AQP3 protein expression. PMID:18057218

  14. Season-dependent effects of photoperiod and temperature on circadian rhythm of arylalkylamine N-acetyltransferase2 gene expression in pineal organ of an air-breathing catfish, Clarias gariepinus.

    PubMed

    Singh, Kshetrimayum Manisana; Saha, Saurav; Gupta, Braj Bansh Prasad

    2017-08-01

    Arylalkylamine N-acetyltransferase (AANAT) activity, aanat gene expression and melatonin production have been reported to exhibit prominent circadian rhythm in the pineal organ of most species of fish. Three types of aanat genes are expressed in fish, but the fish pineal organ predominantly expresses aanat2 gene. Increase and decrease in daylength is invariably associated with increase and decrease in temperature, respectively. But so far no attempt has been made to delineate the role of photoperiod and temperature in regulation of the circadian rhythm of aanat2 gene expression in the pineal organ of any fish with special reference to seasons. Therefore, we studied effects of various lighting regimes (12L-12D, 16L-8D, 8L-16D, LL and DD) at a constant temperature (25°C) and effects of different temperatures (15°, 25° and 35°C) under a common photoperiod 12L-12D on circadian rhythm of aanat2 gene expression in the pineal organ of Clarias gariepinus during summer and winter seasons. Aanat2 gene expression in fish pineal organ was studied by measuring aanat2 mRNA levels using Real-Time PCR. Our findings indicate that the pineal organ of C. gariepinus exhibits a prominent circadian rhythm of aanat2 gene expression irrespective of photoperiods, temperatures and seasons, and the circadian rhythm of aanat2 gene expression responds differently to different photoperiods and temperatures in a season-dependent manner. Existence of circadian rhythm of aanat2 gene expression in pineal organs maintained in vitro under 12L-12D and DD conditions as well as a free running rhythm of the gene expression in pineal organ of the fish maintained under LL and DD conditions suggest that the fish pineal organ possesses an endogenous circadian oscillator, which is entrained by light-dark cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Viability, biofilm formation, and MazEF expression in drug-sensitive and drug-resistant Mycobacterium tuberculosis strains circulating in Xinjiang, China.

    PubMed

    Zhao, Ji-Li; Liu, Wei; Xie, Wan-Ying; Cao, Xu-Dong; Yuan, Li

    2018-01-01

    Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) is one of the most common chronic infectious amphixenotic diseases worldwide. Prevention and control of TB are greatly difficult, due to the increase in drug-resistant TB, particularly multidrug-resistant TB. We speculated that there were some differences between drug-sensitive and drug-resistant MTB strains and that mazEF 3,6,9 toxin-antitoxin systems (TASs) were involved in MTB viability. This study aimed to investigate differences in viability, biofilm formation, and MazEF expression between drug-sensitive and drug-resistant MTB strains circulating in Xinjiang, China, and whether mazEF 3,6,9 TASs contribute to MTB viability under stress conditions. Growth profiles and biofilm-formation abilities of drug-sensitive, drug-resistant MTB strains and the control strain H37Rv were monitored. Using molecular biology experiments, the mRNA expression of the mazF 3, 6, and 9 toxin genes, the mazE 3, 6, and 9 antitoxin genes, and expression of the MazF9 protein were detected in the different MTB strains, H37RvΔ mazEF 3,6,9 mutants from the H37Rv parent strain were generated, and mutant viability was tested. Ex vivo culture analyses demonstrated that drug-resistant MTB strains exhibit higher survival rates than drug-sensitive strains and the control strain H37Rv. However, there was no statistical difference in biofilm-formation ability in the drug-sensitive, drug-resistant, and H37Rv strains. mazE 3,6 mRNA-expression levels were relatively reduced in the drug-sensitive and drug-resistant strains compared to H37Rv. Conversely, mazE 3,9 expression was increased in drug-sensitive strains compared to drug-resistant strains. Furthermore, compared with the H37Rv strain, mazF 3,6 expression was increased in drug-resistant strains, mazF 9 expression was increased in drug-sensitive strains, and mazF 9 exhibited reduced expression in drug-resistant strains compared with drug-sensitive strains. Protein expression of mazF9 was increased in drug-sensitive and drug-resistant strains compared to H37Rv, while drug-resistant strains exhibited reduced mazF9 expression compared to drug-sensitive strains. Compared to H37Rv, H37RvΔ mazEF 3,6,9-deletion mutants grew more slowly under both stress conditions, and their ability to survive in host macrophages was also weaker. Furthermore, the host macrophage-apoptosis rate was higher after infection with any of the H37RvΔ mazE F3,6,9 mutants than with the H37Rv strain. The increased viability of MTB drug-resistant strains compared with drug-sensitive strains is likely to be related to differential MazEF mRNA and protein expression. mazEF 3,6,9 TASs contribute to MTB viability under stress conditions.

  16. A fucose containing polymer-rich fraction from the brown alga Ascophyllum nodosum mediates lifespan increase and thermal-tolerance in Caenorhabditis elegans, by differential effects on gene and protein expression.

    PubMed

    Kandasamy, Saveetha; Khan, Wajahatullah; Evans, Franklin D; Critchley, Alan T; Zhang, Junzeng; Fitton, J H; Stringer, Damien N; Gardiner, Vicki-Anne; Prithiviraj, Balakrishnan

    2014-02-01

    The extracts of the brown alga, Ascophyllum nodosum, which contains several bioactive compounds, have been shown to impart biotic and abiotic stress tolerance properties when consumed by animals. However, the physiological, biochemical and molecular mechanism underlying such effects remain elusive. We investigated the effect of A. nodosum fucose-containing polymer (FCP) on tolerance to thermally induced stress using the invertebrate animal model, Caenorhabditis elegans. FCP at a concentration of 150 μg mL(-1) significantly improved the life span and tolerance against thermally induced stress in C. elegans. The treatment increased the C. elegans survival by approximately 24%, when the animals were under severe thermally induced stress (i.e. 35 °C) and 27% under mild stress (i.e. 30 °C) conditions. The FCP induced differential expression of genes and proteins is associated with stress response pathways. Under thermal stress, FCP treatment significantly altered the expression of 65 proteins (54 up-regulated & 11 down-regulated). Putative functional analysis of FCP-induced differential proteins signified an association of altered proteins in stress-related molecular and biochemical pathways of the model worm.

  17. Milk yield differences between 1x and 4x milking are associated with changes in mammary mitochondrial number and milk protein gene expression, but not mammary cell apoptosis or "SOCS" gene expression

    USDA-ARS?s Scientific Manuscript database

    Milking frequency is known to affect milk production and lactation persistence in dairy cows. Despite this, the mechanisms underlying this effect are only partially understood. Previous work in dairy cows examining increases in milk yield due to increased milking frequency have identified changes in...

  18. The expression of heat shock proteins 70 and 90 in pea seedlings under simulated microgravity conditions

    NASA Astrophysics Data System (ADS)

    Kozeko, L.

    Microgravity is an abnormal and so stress factor for plants. Expression of known stress-related genes is appeared to implicate in the cell response to different kinds of stress. Heat shock proteins HSP70 and HSP90 are present in plant cells under the normal growth conditions and their quantity increases during stress. The effect of simulated microgravity on expression of HSP70 and HSP90 was studied in etiolated Pisum sativum seedlings grown on the horizontal clinostat (2 rpm) from seed germination for 3 days. Seedlings were also subjected to two other types of stressors: vertical clinorotatoin (2 rpm) and 2 h temperature elevation (40°C). HSPs' level was measured by ELISA. The quantity of both HSPs increased more than in three times in the seedlings on the horizontal clinostat in comparison with the stationary 1 g control. Vertical clinorotation also increased HSPs' level but less at about 20% than horizontal one. These effects were comparable with the influence of temperature elevation. The data presented suggest that simulated microgravity upregulate HSP70 and HSP90 expression. The increased HSPs' level might evidence the important functional role of these proteins in plant adaptation to microgravity. We are currently investigating the contribution of constitutive or inducible forms of the HSPs in this stress response.

  19. Proximal tubule-specific glutamine synthetase deletion alters basal and acidosis-stimulated ammonia metabolism

    PubMed Central

    Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E.; Lamers, Wouter H.; Chaudhry, Farrukh A.; Verlander, Jill W.

    2016-01-01

    Glutamine synthetase (GS) catalyzes the recycling of NH4+ with glutamate to form glutamine. GS is highly expressed in the renal proximal tubule (PT), suggesting ammonia recycling via GS could decrease net ammoniagenesis and thereby limit ammonia available for net acid excretion. The purpose of the present study was to determine the role of PT GS in ammonia metabolism under basal conditions and during metabolic acidosis. We generated mice with PT-specific GS deletion (PT-GS-KO) using Cre-loxP techniques. Under basal conditions, PT-GS-KO increased urinary ammonia excretion significantly. Increased ammonia excretion occurred despite decreased expression of key proteins involved in renal ammonia generation. After the induction of metabolic acidosis, the ability to increase ammonia excretion was impaired significantly by PT-GS-KO. The blunted increase in ammonia excretion occurred despite greater expression of multiple components of ammonia generation, including SN1 (Slc38a3), phosphate-dependent glutaminase, phosphoenolpyruvate carboxykinase, and Na+-coupled electrogenic bicarbonate cotransporter. We conclude that 1) GS-mediated ammonia recycling in the PT contributes to both basal and acidosis-stimulated ammonia metabolism and 2) adaptive changes in other proteins involved in ammonia metabolism occur in response to PT-GS-KO and cause an underestimation of the role of PT GS expression. PMID:27009341

  20. Molecular insights into a dinoflagellate bloom

    PubMed Central

    Gong, Weida; Browne, Jamie; Hall, Nathan; Schruth, David; Paerl, Hans; Marchetti, Adrian

    2017-01-01

    In coastal waters worldwide, an increase in frequency and intensity of algal blooms has been attributed to eutrophication, with further increases predicted because of climate change. Yet, the cellular-level changes that occur in blooming algae remain largely unknown. Comparative metatranscriptomics was used to investigate the underlying molecular mechanisms associated with a dinoflagellate bloom in a eutrophied estuary. Here we show that under bloom conditions, there is increased expression of metabolic pathways indicative of rapidly growing cells, including energy production, carbon metabolism, transporters and synthesis of cellular membrane components. In addition, there is a prominence of highly expressed genes involved in the synthesis of membrane-associated molecules, including those for the production of glycosaminoglycans (GAGs), which may serve roles in nutrient acquisition and/or cell surface adhesion. Biotin and thiamine synthesis genes also increased expression along with several cobalamin biosynthesis-associated genes, suggesting processing of B12 intermediates by dinoflagellates. The patterns in gene expression observed are consistent with bloom-forming dinoflagellates eliciting a cellular response to elevated nutrient demands and to promote interactions with their surrounding bacterial consortia, possibly in an effort to cultivate for enhancement of vitamin and nutrient exchanges and/or direct consumption. Our findings provide potential molecular targets for bloom characterization and management efforts. PMID:27935592

  1. Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2.

    PubMed

    Benner, Ina; Diner, Rachel E; Lefebvre, Stephane C; Li, Dian; Komada, Tomoko; Carpenter, Edward J; Stillman, Jonathon H

    2013-01-01

    Increased atmospheric pCO2 is expected to render future oceans warmer and more acidic than they are at present. Calcifying organisms such as coccolithophores that fix and export carbon into the deep sea provide feedbacks to increasing atmospheric pCO2. Acclimation experiments suggest negative effects of warming and acidification on coccolithophore calcification, but the ability of these organisms to adapt to future environmental conditions is not well understood. Here, we tested the combined effect of pCO2 and temperature on the coccolithophore Emiliania huxleyi over more than 700 generations. Cells increased inorganic carbon content and calcification rate under warm and acidified conditions compared with ambient conditions, whereas organic carbon content and primary production did not show any change. In contrast to findings from short-term experiments, our results suggest that long-term acclimation or adaptation could change, or even reverse, negative calcification responses in E. huxleyi and its feedback to the global carbon cycle. Genome-wide profiles of gene expression using RNA-seq revealed that genes thought to be essential for calcification are not those that are most strongly differentially expressed under long-term exposure to future ocean conditions. Rather, differentially expressed genes observed here represent new targets to study responses to ocean acidification and warming.

  2. Proteomic analysis of soybean hypocotyl during recovery after flooding stress.

    PubMed

    Khan, Mudassar Nawaz; Sakata, Katsumi; Komatsu, Setsuko

    2015-05-21

    Soybean is a nutritionally important crop, but exhibits reduced growth and yields under flooding stress. To investigate soybean responses during post-flooding recovery, a gel-free proteomic technique was used to examine the protein profile in the hypocotyl. Two-day-old soybeans were flooded for 2 days and hypocotyl was collected under flooding and during the post-flooding recovery period. A total of 498 and 70 proteins were significantly changed in control and post-flooding recovering soybeans, respectively. Based on proteomic and clustering analyses, three proteins were selected for mRNA expression and enzyme activity assays. Pyruvate kinase was increased under flooding, but gradually decreased during post-flooding recovery period at protein abundance, mRNA, and enzyme activity levels. Nucleotidylyl transferase was decreased under flooding and increased during post-flooding recovery at both mRNA expression and enzyme activity levels. Beta-ketoacyl reductase 1 was increased under flooding and decreased during recovery at protein abundance and mRNA expression levels, but its enzyme activity gradually increased during the post-flooding recovery period. These results suggest that pyruvate kinase, nucleotidylyl transferase, and beta-ketoacyl reductase play key roles in post-flooding recovery in soybean hypocotyl by promoting glycolysis for the generation of ATP and regulation of secondary metabolic pathways. This study analyzed post-flooding recovery response mechanisms in soybean hypocotyl, which is a model organ for studying secondary growth, using a gel-free proteomic technique. Mass spectrometry analysis of proteins extracted from soybean hypocotyls identified 20 common proteins between control and flooding-stressed soybeans that changed significantly in abundance over time. The hypocotyl proteins that changed during post-flooding recovery were assigned to protein, development, secondary metabolism, and glycolysis categories. The analysis revealed that three proteins, pyruvate kinase, nucleotidylyl transferase, and beta-ketoacyl reductase, were increased in hypocotyl under flooding conditions and during post-flooding recovery. The proteins are involved in glycolysis, nucleotide synthesis and amino acid activation, and complex fatty acid biosynthesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Expression profiling of Ribosomal Protein gene family in dehydration stress responses and characterization of transgenic rice plants overexpressing RPL23A for water-use efficiency and tolerance to drought and salt stresses

    NASA Astrophysics Data System (ADS)

    Moin, Mazahar; Bakshi, Achala; Madhav, M. S.; Kirti, P. B.

    2017-11-01

    Our previous findings on the screening of a large-pool of activation tagged rice plants grown under limited water conditions revealed the activation of Ribosomal Protein Large (RPL) subunit genes, RPL6 and RPL23A in two mutants that exhibited high water-use efficiency (WUE) with the genes getting activated by the integrated 4x enhancers (Moin et al., 2016a). In continuation of these findings, we have comprehensively characterized the Ribosomal Protein (RP) gene family including both small (RPS) and large (RPL) subunits, which have been identified to be encoded by at least 70 representative genes; RP-genes exist as multiple expressed copies with high nucleotide and amino acid sequence similarity. The differential expression of all the representative genes in rice was performed under limited water and drought conditions at progressive time intervals in the present study. More than 50% of the RP genes were upregulated in both shoot and root tissues. Some of them exhibited an overlap in the upregulation under both the treatments indicating that they might have a common role in inducing tolerance under limited water and drought conditions. Among the genes that became significantly upregulated in both the tissues and under both the treatments are RPL6, 7, 23A, 24 and 31 and RPS4, 10 and 18a. To further validate the role of RP genes in WUE and inducing tolerance to other stresses, we have raised transgenic plants overexpressing RPL23A in rice. The high expression lines of RPL23A exhibited low Δ13C, increased quantum efficiency along with suitable growth and yield parameters with respect to negative control under the conditions of limited water availability. The constitutive expression of RPL23A was also associated with transcriptional upregulation of many other RPL and RPS genes. The seedlings of RPL23A high expression lines also showed a significant increase in fresh weight, root length, proline and chlorophyll contents under simulated drought and salt stresses. Taken together, our findings provide a secure basis for the RPL gene family expression as a potential resource for exploring abiotic stress tolerant properties in rice.

  4. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes.

    PubMed

    Fu, Ling; John, Linu M; Adams, Sean H; Yu, Xing Xian; Tomlinson, Elizabeth; Renz, Mark; Williams, P Mickey; Soriano, Robert; Corpuz, Racquel; Moffat, Barbara; Vandlen, Richard; Simmons, Laura; Foster, Jessica; Stephan, Jean-Philippe; Tsai, Siao Ping; Stewart, Timothy A

    2004-06-01

    Hormonal control of metabolic rate can be important in regulating the imbalance between energy intake and expenditure that underlies the development of obesity. In mice fed a high-fat diet, human fibroblast growth factor 19 (FGF19) increased metabolic rate [1.53 +/- 0.06 liters O(2)/h.kg(0.75) (vehicle) vs. 1.93 +/- 0.05 liters O(2)/h.kg(0.75) (FGF19); P < 0.001] and decreased respiratory quotient [0.82 +/- 0.01 (vehicle) vs. 0.80 +/- 0.01 (FGF19); P < 0.05]. In contrast to the vehicle-treated mice that gained weight (0.14 +/- 0.05 g/mouse.d), FGF19-treated mice lost weight (-0.13 +/- 0.03 g/mouse.d; P < 0.001) without a significant change in food intake. Furthermore, in addition to a reduction in weight gain, treatment with FGF19 prevented or reversed the diabetes that develops in mice made obese by genetic ablation of brown adipose tissue or genetic absence of leptin. To explore the mechanisms underlying the FGF19-mediated increase in metabolic rate, we profiled the FGF19-induced gene expression changes in the liver and brown fat. In brown adipose tissue, chronic exposure to FGF19 led to a gene expression profile that is consistent with activation of this tissue. We also found that FGF19 acutely increased liver expression of the leptin receptor (1.8-fold; P < 0.05) and decreased the expression of acetyl coenzyme A carboxylase 2 (0.6-fold; P < 0.05). The gene expression changes were consistent with the experimentally determined increase in fat oxidation and decrease in liver triglycerides. Thus, FGF19 is able to increase metabolic rate concurrently with an increase in fatty acid oxidation.

  5. Hypoxia-induced Bcl-2 expression in endothelial cells via p38 MAPK pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Cui-Li, E-mail: zhangcuili@hotmail.com; Song, Fei; Zhang, Jing

    Angiogenesis and apoptosis are reciprocal processes in endothelial cells. Bcl-2, an anti-apoptotic protein, has been found to have angiogenic activities. The purpose of this study was to determine the role of Bcl-2 in hypoxia-induced angiogenesis in endothelial cells and to investigate the underlying mechanisms. Human aortic endothelial cells (HAECs) were exposed to hypoxia followed by reoxygenation. Myocardial ischemia and reperfusion mouse model was used and Bcl-2 expression was assessed. Bcl-2 expression increased in a time-dependent manner in response to hypoxia from 2 to 72 h. Peak expression occurred at 12 h (3- to 4-fold, p < 0.05). p38 inhibitor (SB203580)more » blocked hypoxia-induced Bcl-2 expression, whereas PKC, ERK1/2 and PI3K inhibitors did not. Knockdown of Bcl-2 resulted in decreased HAECs' proliferation and migration. Over-expression of Bcl-2 increased HAECs' tubule formation, whereas knockdown of Bcl-2 inhibited this process. In this model of myocardial ischemia and reperfusion, Bcl-2 expression was increased and was associated with increased p38 MAPK activation. Our results showed that hypoxia induces Bcl-2 expression in HAECs via p38 MAPK pathway.« less

  6. Engineered microorganisms capable of producing target compounds under anaerobic conditions

    DOEpatents

    Buelter, Thomas [Denver, CO; Meinhold, Peter [Denver, CO; Feldman, Reid M. Renny [San Francisco, CA; Hawkins, Andrew C [Parker, CO; Urano, Jun [Irvine, CA; Bastian, Sabine [Pasadena, CA; Arnold, Frances [La Canada, CA

    2012-01-17

    The present invention is generally provides recombinant microorganisms comprising engineered metabolic pathways capable of producing C3-C5 alcohols under aerobic and anaerobic conditions. The invention further provides ketol-acid reductoisomerase enzymes which have been mutated or modified to increase their NADH-dependent activity or to switch the cofactor preference from NADPH to NADH and are expressed in the modified microorganisms. In addition, the invention provides isobutyraldehyde dehydrogenase enzymes expressed in modified microorganisms. Also provided are methods of producing beneficial metabolites under aerobic and anaerobic conditions by contacting a suitable substrate with the modified microorganisms of the present invention.

  7. Altered Cytokine Gene Expression in Peripheral Blood Monocytes across the Menstrual Cycle in Primary Dysmenorrhea: A Case-Control Study

    PubMed Central

    Ma, Hongyue; Hong, Min; Duan, Jinao; Liu, Pei; Fan, Xinsheng; Shang, Erxin; Su, Shulan; Guo, Jianming; Qian, Dawei; Tang, Yuping

    2013-01-01

    Primary dysmenorrhea is one of the most common gynecological complaints in young women, but potential peripheral immunologic features underlying this condition remain undefined. In this paper, we compared 84 common cytokine gene expression profiles of peripheral blood mononuclear cells (PBMCs) from six primary dysmenorrheic young women and three unaffected controls on the seventh day before (secretory phase), and the first (menstrual phase) and the fifth (regenerative phase) days of menstruation, using a real-time PCR array assay combined with pattern recognition and gene function annotation methods. Comparisons between dysmenorrhea and normal control groups identified 11 (nine increased and two decreased), 14 (five increased and nine decreased), and 15 (seven increased and eight decreased) genes with ≥2-fold difference in expression (P<0.05) in the three phases of menstruation, respectively. In the menstrual phase, genes encoding pro-inflammatory cytokines (IL1B, TNF, IL6, and IL8) were up-regulated, and genes encoding TGF-β superfamily members (BMP4, BMP6, GDF5, GDF11, LEFTY2, NODAL, and MSTN) were down-regulated. Functional annotation revealed an excessive inflammatory response and insufficient TGF-β superfamily member signals with anti-inflammatory consequences, which may directly contribute to menstrual pain. In the secretory and regenerative phases, increased expression of pro-inflammatory cytokines and decreased expression of growth factors were also observed. These factors may be involved in the regulation of decidualization, endometrium breakdown and repair, and indirectly exacerbate primary dysmenorrhea. This first study of cytokine gene expression profiles in PBMCs from young primary dysmenorrheic women demonstrates a shift in the balance between expression patterns of pro-inflammatory cytokines and TGF-β superfamily members across the whole menstrual cycle, underlying the peripheral immunologic features of primary dysmenorrhea. PMID:23390521

  8. The transcription factor GCN4 regulates PHM8 and alters triacylglycerol metabolism in Saccharomyces cerevisiae.

    PubMed

    Yadav, Kamlesh Kumar; Rajasekharan, Ram

    2016-11-01

    PHM8 is a very important enzyme in nonpolar lipid metabolism because of its role in triacylglycerol (TAG) biosynthesis under phosphate stress conditions. It is positively regulated by the PHO4 transcription factor under low phosphate conditions; however, its regulation has not been explored under normal physiological conditions. General control nonderepressible (GCN4), a basic leucine-zipper transcription factor activates the transcription of amino acids, purine biosynthesis genes and many stress response genes under various stress conditions. In this study, we demonstrate that the level of TAG is regulated by the transcription factor GCN4. GCN4 directly binds to its consensus recognition sequence (TGACTC) in the PHM8 promoter and controls its expression. The analysis of cells expressing the P PHM8 -lacZ reporter gene showed that mutations (TGACTC-GGGCCC) in the GCN4-binding sequence caused a significant increase in β-galactosidase activity. Mutation in the GCN4 binding sequence causes an increase in PHM8 expression, lysophosphatidic acid phosphatase activity and TAG level. PHM8, in conjunction with DGA1, a mono- and diacylglycerol transferase, controls the level of TAG. These results revealed that GCN4 negatively regulates PHM8 and that deletion of GCN4 causes de-repression of PHM8, which is responsible for the increased TAG content in gcn4∆ cells.

  9. Engineering the bacterial shapes for enhanced inclusion bodies accumulation.

    PubMed

    Jiang, Xiao-Ran; Wang, Huan; Shen, Rui; Chen, Guo-Qiang

    2015-05-01

    Many bacteria can accumulate inclusion bodies such as sulfur, polyphosphate, glycogen, proteins or polyhydroxyalkanoates. To exploit bacteria as factories for effective production of inclusion bodies, a larger intracellular space is needed for more inclusion body accumulation. In this study, polyhydroxybutyrate (PHB) was investigated as an inclusion bodies representative to be accumulated by Escherichia coli JM109SG. Various approaches were taken to increase the bacterial cell sizes including deletion on actin-like protein gene mreB, weak expression of mreB in mreB deletion mutant, and weak expression of mreB in mreB deletion mutant under inducible expression of SulA, the inhibitor of division ring protein FtsZ. All of the methods resulted in different levels of increases in bacterial sizes and PHB granules accumulation. Remarkably, an increase of over 100% PHB accumulation was observed in recombinant E. coli overexpressing mreB in an mreB deletion mutant under inducible expression of FtsZ inhibiting protein SulA. The molecular mechanism of enlarged bacterial size was found to be directly relate to weakened cytoskeleton which was the result of broken skeleton helix. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  10. Effects of gonadectomy and testosterone treatment on aquaporin expression in the kidney of normotensive and hypertensive rats.

    PubMed

    Loh, Su Yi; Giribabu, Nelli; Salleh, Naguib

    2017-07-01

    We tested the hypothesis that testosterone-induced increase in blood pressure was due to changes in aquaporin (AQP) expression in kidneys. In this study, expression level of kidney AQPs was investigated under testosterone influence. Adult normotensive Wistar Kyoto (WKY) and hypertensive SHR male and female rats underwent gonadectomy. For female rats, testosterone was given for six weeks duration, two weeks following ovariectomy via subcutaneous silastic implant. Mean arterial pressure (MAP) was measured in all the rats after eight weeks via carotid artery cannulation and the rats were then sacrificed and kidneys were harvested for analyses of AQP-1, 2, 3, 4, 6, and 7 mRNA and protein expressions by quantitative real-time PCR and Western blotting, respectively. Distribution of AQP subunits' protein in kidneys was observed by immunofluorescence. In male WKY rats, MAP, AQP-1, 2, 4, and 7 protein; and mRNA expression decreased however AQP-3 protein and mRNA expression increased following orchidectomy. The vice versa effects were observed in testosterone-treated ovariectomized female WKY rats. However, no changes in AQP-6 expression were observed. Meanwhile, in adult male SHR rats, MAP and expression level of all AQP subunits decreased following orchidectomy. The opposite effects were seen in ovariectomized female SHR rats following testosterone treatment. Immunofluorescence study showed AQP-1 and AQP-7 were distributed in the proximal convoluted tubules (PCT) while AQP-2, AQP-4, and AQP-6 were distributed in the collecting ducts (CDs). AQP-3 was distributed in the PCT and CD. In conclusion, changes in AQP subunit expression in kidneys could explain changes in blood pressure under testosterone influence. Impact statement This study provides fundamental understanding on the mechanisms underlying testosterone-induced increase in blood pressure which involve regulation of aquaporin channel subunits in the kidneys. A better understanding of this issue can help to explain the reason for higher blood pressure in males as compared to females and may explain the reason for higher blood pressure in females after menopause than females before menopause, the former most probably related to the changes in female androgen.

  11. An inducible HSP70 gene from the midge Chironomus dilutus: Characterization and transcription profile under environmental stress

    USGS Publications Warehouse

    Karouna-Renier, N. K.; Rao, K.R.

    2009-01-01

    In the present study, we identified and characterized an inducible heat shock protein 70 (HSP70) from the midge Chironomus dilutus and investigated the transcriptional profile of the gene under baseline and environmentally stressful conditions. Using real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), we observed increased expression of CD-HSP70-1 in response to both heat shock and copper stress. We also investigated the expression of this gene during midge development. All C. dilutus developmental stages expressed CD-HSP70-1 under normal conditions, although at extremely low levels. Phylogenetic analysis of the amino acid sequence demonstrated distinct clustering of this gene with inducible HSP70s from other insect species. ?? 2008 The Authors.

  12. Electrically evoked local muscle contractions cause an increase in hippocampal BDNF.

    PubMed

    Maekawa, Takahiro; Ogasawara, Riki; Tsutaki, Arata; Lee, Kihyuk; Nakada, Satoshi; Nakazato, Koichi; Ishii, Naokata

    2018-05-01

    High-intensity exercise has recently been shown to cause an increase in brain-derived neurotropic factor (BDNF) in the hippocampus. Some studies have suggested that myokines secreted from contracting skeletal muscle, such as irisin (one of the truncated form of fibronectin type III domain-containing protein 5 (FNDC5)), play important roles in this process. Thus, we hypothesized that locally evoked muscle contractions may cause an increase of BDNF in the hippocampus through some afferent mechanisms. Under anesthesia, Sprague-Dawley rats were fixed on a custom-made dynamometer and their triceps surae muscles were made to maximally contract via delivery of electric stimulations of the sciatic nerve (100 Hz with 1-ms pulse and 3-s duration). Following 50 repeated maximal isometric contractions, the protein expressions of BDNF and activation of its receptor in the hippocampus significantly increased compared with the sham-operated control rats. However, the expression of both BDNF and FNDC5 within stimulated muscles did not significantly increase, nor did their serum concentrations change. These results indicate that local muscular contractions under unconsciousness can induce BDNF expression in the hippocampus. This effect may be mediated by peripheral reception of muscle contraction, but not by systemic factors.

  13. Effect of Morinda citrifolia (Noni)-Enriched Diet on Hepatic Heat Shock Protein and Lipid Metabolism-Related Genes in Heat Stressed Broiler Chickens.

    PubMed

    Flees, Joshua; Rajaei-Sharifabadi, Hossein; Greene, Elizabeth; Beer, Lesleigh; Hargis, Billy M; Ellestad, Laura; Porter, Tom; Donoghue, Annie; Bottje, Walter G; Dridi, Sami

    2017-01-01

    Heat stress (HS) has been reported to alter fat deposition in broilers, however the underlying molecular mechanisms are not well-defined. The objectives of the current study were, therefore: (1) to determine the effects of acute (2 h) and chronic (3 weeks) HS on the expression of key molecular signatures involved in hepatic lipogenic and lipolytic programs, and (2) to assess if diet supplementation with dried Noni medicinal plant (0.2% of the diet) modulates these effects. Broilers (480 males, 1 d) were randomly assigned to 12 environmental chambers, subjected to two environmental conditions (heat stress, HS, 35°C vs. thermoneutral condition, TN, 24°C) and fed two diets (control vs. Noni) in a 2 × 2 factorial design. Feed intake and body weights were recorded, and blood and liver samples were collected at 2 h and 3 weeks post-heat exposure. HS depressed feed intake, reduced body weight, and up regulated the hepatic expression of heat shock protein HSP60, HSP70, HSP90 as well as key lipogenic proteins (fatty acid synthase, FASN; acetyl co-A carboxylase alpha, ACCα and ATP citrate lyase, ACLY). HS down regulated the hepatic expression of lipoprotein lipase (LPL) and hepatic triacylglycerol lipase (LIPC), but up-regulated ATGL. Although it did not affect growth performance, Noni supplementation regulated the hepatic expression of lipogenic proteins in a time- and gene-specific manner. Prior to HS, Noni increased ACLY and FASN in the acute and chronic experimental conditions, respectively. During acute HS, Noni increased ACCα, but reduced FASN and ACLY expression. Under chronic HS, Noni up regulated ACCα and FASN but it down regulated ACLY. In vitro studies, using chicken hepatocyte cell lines, showed that HS down-regulated the expression of ACCα, FASN, and ACLY. Treatment with quercetin, one bioactive ingredient in Noni, up-regulated the expression of ACCα, FASN, and ACLY under TN conditions, but it appeared to down-regulate ACCα and increase ACLY levels under HS exposure. In conclusion, our findings indicate that HS induces hepatic lipogenesis in chickens and this effect is probably mediated via HSPs. The modulation of hepatic HSP expression suggest also that Noni might be involved in modulating the stress response in chicken liver.

  14. Effect of Morinda citrifolia (Noni)-Enriched Diet on Hepatic Heat Shock Protein and Lipid Metabolism-Related Genes in Heat Stressed Broiler Chickens

    PubMed Central

    Flees, Joshua; Rajaei-Sharifabadi, Hossein; Greene, Elizabeth; Beer, Lesleigh; Hargis, Billy M.; Ellestad, Laura; Porter, Tom; Donoghue, Annie; Bottje, Walter G.; Dridi, Sami

    2017-01-01

    Heat stress (HS) has been reported to alter fat deposition in broilers, however the underlying molecular mechanisms are not well-defined. The objectives of the current study were, therefore: (1) to determine the effects of acute (2 h) and chronic (3 weeks) HS on the expression of key molecular signatures involved in hepatic lipogenic and lipolytic programs, and (2) to assess if diet supplementation with dried Noni medicinal plant (0.2% of the diet) modulates these effects. Broilers (480 males, 1 d) were randomly assigned to 12 environmental chambers, subjected to two environmental conditions (heat stress, HS, 35°C vs. thermoneutral condition, TN, 24°C) and fed two diets (control vs. Noni) in a 2 × 2 factorial design. Feed intake and body weights were recorded, and blood and liver samples were collected at 2 h and 3 weeks post-heat exposure. HS depressed feed intake, reduced body weight, and up regulated the hepatic expression of heat shock protein HSP60, HSP70, HSP90 as well as key lipogenic proteins (fatty acid synthase, FASN; acetyl co-A carboxylase alpha, ACCα and ATP citrate lyase, ACLY). HS down regulated the hepatic expression of lipoprotein lipase (LPL) and hepatic triacylglycerol lipase (LIPC), but up-regulated ATGL. Although it did not affect growth performance, Noni supplementation regulated the hepatic expression of lipogenic proteins in a time- and gene-specific manner. Prior to HS, Noni increased ACLY and FASN in the acute and chronic experimental conditions, respectively. During acute HS, Noni increased ACCα, but reduced FASN and ACLY expression. Under chronic HS, Noni up regulated ACCα and FASN but it down regulated ACLY. In vitro studies, using chicken hepatocyte cell lines, showed that HS down-regulated the expression of ACCα, FASN, and ACLY. Treatment with quercetin, one bioactive ingredient in Noni, up-regulated the expression of ACCα, FASN, and ACLY under TN conditions, but it appeared to down-regulate ACCα and increase ACLY levels under HS exposure. In conclusion, our findings indicate that HS induces hepatic lipogenesis in chickens and this effect is probably mediated via HSPs. The modulation of hepatic HSP expression suggest also that Noni might be involved in modulating the stress response in chicken liver. PMID:29230177

  15. O2 availability impacts iron homeostasis in Escherichia coli.

    PubMed

    Beauchene, Nicole A; Mettert, Erin L; Moore, Laura J; Keleş, Sündüz; Willey, Emily R; Kiley, Patricia J

    2017-11-14

    The ferric-uptake regulator (Fur) is an Fe 2+ -responsive transcription factor that coordinates iron homeostasis in many bacteria. Recently, we reported that expression of the Escherichia coli Fur regulon is also impacted by O 2 tension. Here, we show that for most of the Fur regulon, Fur binding and transcriptional repression increase under anaerobic conditions, suggesting that Fur is controlled by O 2 availability. We found that the intracellular, labile Fe 2+ pool was higher under anaerobic conditions compared with aerobic conditions, suggesting that higher Fe 2+ availability drove the formation of more Fe 2+ -Fur and, accordingly, more DNA binding. O 2 regulation of Fur activity required the anaerobically induced FeoABC Fe 2+ uptake system, linking increased Fur activity to ferrous import under iron-sufficient conditions. The increased activity of Fur under anaerobic conditions led to a decrease in expression of ferric import systems. However, the combined positive regulation of the feoABC operon by ArcA and FNR partially antagonized Fur-mediated repression of feoABC under anaerobic conditions, allowing ferrous transport to increase even though Fur is more active. This design feature promotes a switch from ferric import to the more physiological relevant ferrous iron under anaerobic conditions. Taken together, we propose that the influence of O 2 availability on the levels of active Fur adds a previously undescribed layer of regulation in maintaining cellular iron homeostasis.

  16. O2 availability impacts iron homeostasis in Escherichia coli

    PubMed Central

    Beauchene, Nicole A.; Mettert, Erin L.; Moore, Laura J.; Keleş, Sündüz; Willey, Emily R.; Kiley, Patricia J.

    2017-01-01

    The ferric-uptake regulator (Fur) is an Fe2+-responsive transcription factor that coordinates iron homeostasis in many bacteria. Recently, we reported that expression of the Escherichia coli Fur regulon is also impacted by O2 tension. Here, we show that for most of the Fur regulon, Fur binding and transcriptional repression increase under anaerobic conditions, suggesting that Fur is controlled by O2 availability. We found that the intracellular, labile Fe2+ pool was higher under anaerobic conditions compared with aerobic conditions, suggesting that higher Fe2+ availability drove the formation of more Fe2+-Fur and, accordingly, more DNA binding. O2 regulation of Fur activity required the anaerobically induced FeoABC Fe2+ uptake system, linking increased Fur activity to ferrous import under iron-sufficient conditions. The increased activity of Fur under anaerobic conditions led to a decrease in expression of ferric import systems. However, the combined positive regulation of the feoABC operon by ArcA and FNR partially antagonized Fur-mediated repression of feoABC under anaerobic conditions, allowing ferrous transport to increase even though Fur is more active. This design feature promotes a switch from ferric import to the more physiological relevant ferrous iron under anaerobic conditions. Taken together, we propose that the influence of O2 availability on the levels of active Fur adds a previously undescribed layer of regulation in maintaining cellular iron homeostasis. PMID:29087312

  17. Hydrostatic Pressure Influences HIF-2 Alpha Expression in Chondrocytes

    PubMed Central

    Inoue, Hiroaki; Arai, Yuji; Kishida, Tsunao; Terauchi, Ryu; Honjo, Kuniaki; Nakagawa, Shuji; Tsuchida, Shinji; Matsuki, Tomohiro; Ueshima, Keiichirou; Fujiwara, Hiroyoshi; Mazda, Osam; Kubo, Toshikazu

    2015-01-01

    Hypoxia-inducible factor (HIF)-2α is considered to play a major role in the progression of osteoarthritis. Recently, it was reported that pressure amplitude influences HIF-2α expression in murine endothelial cells. We examined whether hydrostatic pressure is involved in expression of HIF-2α in articular chondrocytes. Chondrocytes were cultured and stimulated by inflammation or hydrostatic pressure of 0, 5, 10, or 50 MPa. After stimulation, heat shock protein (HSP) 70, HIF-2α, nuclear factor kappa B (NF-κB), matrix metalloproteinase (MMP)-13, MMP-3, and vascular endothelial growth factor (VEGF) gene expression were evaluated. The levels of all gene expression were increased by inflammatory stress. When chondrocytes were exposed to a hydrostatic pressure of 5 MPa, HIF-2α, MMP-13, and MMP-3 gene expression increased significantly although those of HSP70 and NF-κB were not significantly different from the control group. In contrast, HIF-2α gene expression did not increase under a hydrostatic pressure of 50 MPa although HSP70 and NF-κB expression increased significantly compared to control. We considered that hydrostatic pressure of 5 MPa could regulate HIF-2α independent of NF-κB, because the level of HIF-2α gene expression increased significantly without upregulation of NF-κB expression at 5 MPa. Hydrostatic pressure may influence cartilage degeneration, inducing MMP-13 and MMP-3 expression through HIF-2α. PMID:25569085

  18. Nuclear receptor TLX stimulates hippocampal neurogenesis and enhances learning and memory in a transgenic mouse model.

    PubMed

    Murai, Kiyohito; Qu, Qiuhao; Sun, GuoQiang; Ye, Peng; Li, Wendong; Asuelime, Grace; Sun, Emily; Tsai, Guochuan E; Shi, Yanhong

    2014-06-24

    The role of the nuclear receptor TLX in hippocampal neurogenesis and cognition has just begun to be explored. In this study, we generated a transgenic mouse model that expresses TLX under the control of the promoter of nestin, a neural precursor marker. Transgenic TLX expression led to mice with enlarged brains with an elongated hippocampal dentate gyrus and increased numbers of newborn neurons. Specific expression of TLX in adult hippocampal dentate gyrus via lentiviral transduction increased the numbers of BrdU(+) cells and BrdU(+)NeuN(+) neurons. Furthermore, the neural precursor-specific expression of the TLX transgene substantially rescued the neurogenic defects of TLX-null mice. Consistent with increased neurogenesis in the hippocampus, the TLX transgenic mice exhibited enhanced cognition with increased learning and memory. These results suggest a strong association between hippocampal neurogenesis and cognition, as well as significant contributions of TLX to hippocampal neurogenesis, learning, and memory.

  19. Heterogeneity of leukemia-initiating capacity of chronic myelogenous leukemia stem cells

    PubMed Central

    Zhang, Bin; Li, Ling; Ho, Yinwei; Li, Min; Marcucci, Guido

    2016-01-01

    Chronic myelogenous leukemia (CML) results from transformation of a long-term hematopoietic stem cell (LTHSC) by expression of the BCR-ABL fusion gene. However, BCR-ABL–expressing LTHSCs are heterogeneous in their capacity as leukemic stem cells (LSCs). Although discrepancies in proliferative, self-renewal, and differentiation properties of normal LTHSCs are being increasingly recognized, the mechanisms underlying heterogeneity of leukemic LTHSCs are poorly understood. Using a CML mouse model, we identified gene expression differences between leukemic and nonleukemic LTHSCs. Expression of the thrombopoietin (THPO) receptor MPL was elevated in leukemic LTHSC populations. Compared with LTHSCs with low MPL expression, LTHSCs with high MPL expression showed enhanced JAK/STAT signaling and proliferation in response to THPO in vitro and increased leukemogenic capacity in vivo. Although both G0 and S phase subpopulations were increased in LTHSCs with high MPL expression, LSC capacity was restricted to quiescent cells. Inhibition of MPL expression in CML LTHSCs reduced THPO-induced JAK/STAT signaling and leukemogenic potential. These same phenotypes were also present in LTHSCs from patients with CML, and patient LTHSCs with high MPL expression had reduced sensitivity to BCR-ABL tyrosine kinase inhibitor treatment but increased sensitivity to JAK inhibitors. Together, our studies identify MPL expression levels as a key determinant of heterogeneous leukemia-initiating capacity and drug sensitivity of CML LTHSCs and suggest that high MPL–expressing CML stem cells are potential targets for therapy. PMID:26878174

  20. Differential tissue-specific expression of NtAQP1 in Arabidopsis thaliana reveals a role for this protein in stomatal and mesophyll conductance of CO₂ under standard and salt-stress conditions.

    PubMed

    Sade, Nir; Gallé, Alexander; Flexas, Jaume; Lerner, Stephen; Peleg, Gadi; Yaaran, Adi; Moshelion, Menachem

    2014-02-01

    The regulation of plant hydraulic conductance and gas conductance involves a number of different morphological, physiological and molecular mechanisms working in harmony. At the molecular level, aquaporins play a key role in the transport of water, as well as CO₂, through cell membranes. Yet, their tissue-related function, which controls whole-plant gas exchange and water relations, is less understood. In this study, we examined the tissue-specific effects of the stress-induced tobacco Aquaporin1 (NtAQP1), which functions as both a water and CO₂ channel, on whole-plant behavior. In tobacco and tomato plants, constitutive overexpression of NtAQP1 increased net photosynthesis (A(N)), mesophyll CO₂ conductance (g(m)) and stomatal conductance (g(s)) and, under stress, increased root hydraulic conductivity (L(pr)) as well. Our results revealed that NtAQP1 that is specifically expressed in the mesophyll tissue plays an important role in increasing both A(N) and g(m). Moreover, targeting NtAQP1 expression to the cells of the vascular envelope significantly improved the plants' stress response. Surprisingly, NtAQP1 expression in the guard cells did not have a significant effect under any of the tested conditions. The tissue-specific involvement of NtAQP1 in hydraulic and gas conductance via the interaction between the vasculature and the stomata is discussed.

  1. Regulation of human heme oxygenase-1 gene expression under thermal stress.

    PubMed

    Okinaga, S; Takahashi, K; Takeda, K; Yoshizawa, M; Fujita, H; Sasaki, H; Shibahara, S

    1996-06-15

    Heme oxygenase-1 is an essential enzyme in heme catabolism, and its human gene promoter contains a putative heat shock element (HHO-HSE). This study was designed to analyze the regulation of human heme oxygenase-1 gene expression under thermal stress. The amounts of heme oxygenase-1 protein were not increased by heat shock (incubation at 42 degrees C) in human alveolar macrophages and in a human erythroblastic cell line, YN-1-0-A, whereas heat shock protein 70 (HSP70) was noticeably induced. However, heat shock factor does bind in vitro to HHO-HSE and the synthetic HHO-HSE by itself is sufficient to confer the increase in the transient expression of a reporter gene upon heat shock. The deletion of the sequence, located downstream from HHO-HSE, resulted in the activation of a reporter gene by heat shock. These results suggest that HHO-HSE is potentially functional but is repressed in vivo. Interestingly, heat shock abolished the remarkable increase in the levels of heme oxygenase-1 mRNA in YN-1-0-A cells treated with hemin or cadmium, in which HSP70 mRNA was noticeably induced. Furthermore, transient expression assays showed that heat shock inhibits the cadmium-mediated activation of the heme oxygenase-1 promoter, whereas the HSP70 gene promoter was activated upon heat shock. Such regulation of heme oxygenase-1 under thermal stress may be of physiologic significance in erythroid cells.

  2. PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside.

    PubMed

    Vaishnav, Anukool; Kumari, Sarita; Jain, Shekhar; Varma, Ajit; Tuteja, Narendra; Choudhary, Devendra Kumar

    2016-11-01

    Increasing evidence shows that nitric oxide (NO), a typical signaling molecule plays important role in development of plant and in bacteria-plant interaction. In the present study, we tested the effect of sodium nitroprusside (SNP)-a nitric oxide donor, on bacterial metabolism and its role in establishment of PGPR-plant interaction under salinity condition. In the present study, we adopted methods namely, biofilm formation assay, GC-MS analysis of bacterial volatiles, chemotaxis assay of root exudates (REs), measurement of electrolyte leakage and lipid peroxidation, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for gene expression. GC-MS analysis revealed that three new volatile organic compounds (VOCs) were expressed after treatment with SNP. Two VOCs namely, 4-nitroguaiacol and quinoline were found to promote soybean seed germination under 100 mM NaCl stress. Chemotaxis assay revealed that SNP treatment, altered root exudates profiling (SS-RE), found more attracted to Pseudomonas simiae bacterial cells as compared to non-treated root exudates (S-RE) under salt stress. Expression of Peroxidase (POX), catalase (CAT), vegetative storage protein (VSP), and nitrite reductase (NR) genes were up-regulated in T6 treatment seedlings, whereas, high affinity K + transporter (HKT1), lipoxygenase (LOX), polyphenol oxidase (PPO), and pyrroline-5-carboxylate synthase (P5CS) genes were down-regulated under salt stress. The findings suggest that NO improves the efficiency and establishment of PGPR strain in the plant environment during salt condition. This strategy may be applied on soybean plants to increase their growth during salinity stress. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Study on the effects of gradient mechanical pressures on the proliferation, apoptosis, chondrogenesis and hypertrophy of mandibular condylar chondrocytes in vitro.

    PubMed

    Li, Hui; Huang, Linjian; Xie, Qianyang; Cai, Xieyi; Yang, Chi; Wang, Shaoyi; Zhang, Min

    2017-01-01

    To investigate the effects of gradient mechanical pressure on chondrocyte proliferation, apoptosis, and the expression of markers of chondrogenesis and chondrocyte hypertrophy. Mandibular condylar chondrocytes from 5 rabbits were cultured in vitro, and pressed with static pressures of 50kPa, 100kPa, 150kPa and 200kPa for 3h, respectively. The chondrocytes cultured without pressure (0kPa) were used as control. Cell proliferation, apoptosis, and the expression of aggrecan (AGG), collagen II (COL2), collagen X (COL10), alkaline phosphatase (ALP) were investigated. Ultrastructures of the pressurized chondrocytes under transmission electron microscopy (TEM) were observed. Chondrocyte proliferation increased at 100kPa and decreased at 200kPa. Chondrocyte apoptosis increased with peak pressure at 200kPa in a dose-dependent manner. Chondrocyte necrosis increased at 200kPa. The expression of AGG increased at 200kPa. The expression of COL2 decreased at 50kPa and increased at 150kPa. The expression of COL10 and ALP increased at 150kPa. Ultrastructure of the pressurized chondrocytes under TEM showed: at 100kPa, cells were enlarged with less cellular microvillus and a bigger nucleus; at 200kPa, cells shrank with the sign of apoptosis, and apoptosis cells were found. The mechanical loading of 150kPa is the moderate pressure for chondrocyte: cell proliferation and apoptosis is balanced, necrosis is reduced, and chondrogenesis and chondrocyte hypertrophy are promoted. When the pressure is lower, chondrogenesis and chondrocyte hypertrophy are inhibited. At 200kPa, degeneration of cartilage is implied. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Rewiring of auxin signaling under persistent shade.

    PubMed

    Pucciariello, Ornella; Legris, Martina; Costigliolo Rojas, Cecilia; Iglesias, María José; Hernando, Carlos Esteban; Dezar, Carlos; Vazquez, Martín; Yanovsky, Marcelo J; Finlayson, Scott A; Prat, Salomé; Casal, Jorge J

    2018-05-22

    Light cues from neighboring vegetation rapidly initiate plant shade-avoidance responses. Despite our detailed knowledge of the early steps of this response, the molecular events under prolonged shade are largely unclear. Here we show that persistent neighbor cues reinforce growth responses in addition to promoting auxin-responsive gene expression in Arabidopsis and soybean. However, while the elevation of auxin levels is well established as an early event, in Arabidopsis , the response to prolonged shade occurs when auxin levels have declined to the prestimulation values. Remarkably, the sustained low activity of phytochrome B under prolonged shade led to ( i ) decreased levels of PHYTOCHROME INTERACTING FACTOR 4 (PIF4) in the cotyledons (the organs that supply auxin) along with increased levels in the vascular tissues of the stem, ( ii ) elevated expression of the PIF4 targets INDOLE-3-ACETIC ACID 19 ( IAA19 ) and IAA29 , which in turn reduced the expression of the growth-repressive IAA17 regulator, ( iii ) reduced abundance of AUXIN RESPONSE FACTOR 6, ( iv ) reduced expression of MIR393 and increased abundance of its targets, the auxin receptors, and ( v ) elevated auxin signaling as indicated by molecular markers. Mathematical and genetic analyses support the physiological role of this system-level rearrangement. We propose that prolonged shade rewires the connectivity between light and auxin signaling to sustain shade avoidance without enhanced auxin levels.

  5. Maturation of the myogenic program is induced by postmitotic expression of insulin-like growth factor I.

    PubMed

    Musarò, A; Rosenthal, N

    1999-04-01

    The molecular mechanisms underlying myogenic induction by insulin-like growth factor I (IGF-I) are distinct from its proliferative effects on myoblasts. To determine the postmitotic role of IGF-I on muscle cell differentiation, we derived L6E9 muscle cell lines carrying a stably transfected rat IGF-I gene under the control of a myosin light chain (MLC) promoter-enhancer cassette. Expression of MLC-IGF-I exclusively in differentiated L6E9 myotubes, which express the embryonic form of myosin heavy chain (MyHC) and no endogenous IGF-I, resulted in pronounced myotube hypertrophy, accompanied by activation of the neonatal MyHC isoform. The hypertrophic myotubes dramatically increased expression of myogenin, muscle creatine kinase, beta-enolase, and IGF binding protein 5 and activated the myocyte enhancer factor 2C gene which is normally silent in this cell line. MLC-IGF-I induction in differentiated L6E9 cells also increased the expression of a transiently transfected LacZ reporter driven by the myogenin promoter, demonstrating activation of the differentiation program at the transcriptional level. Nuclear reorganization, accumulation of skeletal actin protein, and an increased expression of beta1D integrin were also observed. Inhibition of the phosphatidyl inositol (PI) 3-kinase intermediate in IGF-I-mediated signal transduction confirmed that the PI 3-kinase pathway is required only at early stages for IGF-I-mediated hypertrophy and neonatal MyHC induction in these cells. Expression of IGF-I in postmitotic muscle may therefore play an important role in the maturation of the myogenic program.

  6. Stearoyl-CoA desaturase expression and fatty acid composition in milkfish (Chanos chanos) and grass carp (Ctenopharyngodon idella) during cold acclimation.

    PubMed

    Hsieh, S L; Kuo, C-M

    2005-05-01

    Desaturation of fatty acids is an important adaptation mechanism for fish to maintain membrane fluidity under thermal stress. To comprehend the temperature adaptation mechanism in fish, we investigated the difference in the changes of stearoyl-CoA desaturase expression and fatty acid composition between milkfish and grass carp under cold acclimation. We find that in both fish the proportions of unsaturated fatty acids at 15 degrees C are all higher than those at 25 degrees C. In milkfish Delta(9)-desaturation index (ratios of 16:1/16:0 and 18:1/18:0) increases significantly in the beginning of cold acclimation at 15 degrees C and decreases afterward, but in grass carp it increases slightly in the beginning of cold acclimation followed by a sustained dramatic increase. Similarly, activity of stearoyl-CoA desaturase in milkfish increases significantly in the beginning, peaks at day 4, and then decreases constantly, but in grass carp it increases gradually in the first week, rises dramatically afterward, and then maintains a very high level. The change of stearoyl-CoA desaturase activity is parallel to the change of Delta(9)-desaturation index in both milkfish and grass carp, but it is one day earlier than Delta(9)-desaturation index in milkfish. The difference of adaptation capability between milkfish and grass carp under cold stress is further evidenced by RT-PCR and Northern blot analysis of stearoyl-CoA desaturase gene expression.

  7. Trophoblast expression of the minor histocompatibility antigen HA-1 is regulated by oxygen and is increased in placentas from preeclamptic women.

    PubMed

    Linscheid, C; Heitmann, E; Singh, P; Wickstrom, E; Qiu, L; Hodes, H; Nauser, T; Petroff, M G

    2015-08-01

    Maternal T-cells reactive towards paternally inherited fetal minor histocompatibility antigens are expanded during pregnancy. Placental trophoblast cells express at least four fetal antigens, including human minor histocompatibility antigen 1 (HA-1). We investigated oxygen as a potential regulator of HA-1 and whether HA-1 expression is altered in preeclamptic placentas. Expression and regulation of HA-1 mRNA and protein were examined by qRT-PCR and immunohistochemistry, using first, second, and third trimester placentas, first trimester placental explant cultures, and term purified cytotrophoblast cells. Low oxygen conditions were achieved by varying ambient oxygen, and were mimicked using cobalt chloride. HA-1 mRNA and protein expression levels were evaluated in preeclamptic and control placentas. HA-1 protein expression was higher in the syncytiotrophoblast of first trimester as compared to second trimester and term placentas (P<0.01). HA-1 mRNA was increased in cobalt chloride-treated placental explants and purified cytotrophoblast cells (P = 0.04 and P<0.01, respectively) and in purified cytotrophoblast cells cultured under 2% as compared to 8% and 21% oxygen (P<0.01). HA-1 mRNA expression in preeclamptic vs. control placentas was increased 3.3-fold (P = 0.015). HA-1 protein expression was increased in syncytial nuclear aggregates and the syncytiotrophoblast of preeclamptic vs. control placentas (P = 0.02 and 0.03, respectively). Placental HA-1 expression is regulated by oxygen and is increased in the syncytial nuclear aggregates and syncytiotrophoblast of preeclamptic as compared to control placentas. Increased HA-1 expression, combined with increased preeclamptic syncytiotrophoblast deportation, provides a novel potential mechanism for exposure of the maternal immune system to increased fetal antigenic load during preeclampsia. Published by Elsevier Ltd.

  8. Carcinogen-induced trans activation of gene expression.

    PubMed Central

    Kleinberger, T; Flint, Y B; Blank, M; Etkin, S; Lavi, S

    1988-01-01

    We report a new mechanism of carcinogen action by which the expression of several genes was concomitantly enhanced. This mechanism involved the altered activity of cellular factors which modulate the expression of genes under their control. The increased expression was regulated at least in part on the transcriptional level and did not require amplification of the overexpressed genes. This phenomenon was transient; it was apparent as early as 24 h after carcinogen treatment and declined a few days later. Images PMID:2835673

  9. Effect of dexamethasone on expression of glucocorticoid receptor in human monocyte cell line THP-1.

    PubMed

    Li, Bo; Bai, Xiangjun; Wanh, Haiping

    2006-01-01

    The effect of dexamethasone with different concentrations and different stimulating periods on the expression of glucocorticoid receptors (GRalpha, GRbeta) protein was investigated in human monocyte cell line THP-1. The cultured human monocyte line THP-1 cells were stimulated by dexamethasone with different concentrations and different periods. The expression of GRalpha and GRbeta protein was detected by Western blotting. The results showed that the expression of GRalpha and GRbeta was detected in the THP-1 cells. The quantity of GRalpha expression was reduced by dexamethasone under the same concentration with the prolongation of the stimulating periods. The quantity of GRbeta expression was increased by dexamethasone treatment in a time- and dose-dependent manner. It was concluded that dexamethasone stimulation time-dependently reduced the GRalpha expression in THP-1 cells. Dexamethasone stimulation time- and dose-dependently increased the GRbeta expression in THP-1 cells. The expression of GRalpha and GRbeta was regulated by glucocorticoid.

  10. Expression variability of co-regulated genes differentiates Saccharomyces cerevisiae strains

    PubMed Central

    2011-01-01

    Background Saccharomyces cerevisiae (Baker's yeast) is found in diverse ecological niches and is characterized by high adaptive potential under challenging environments. In spite of recent advances on the study of yeast genome diversity, little is known about the underlying gene expression plasticity. In order to shed new light onto this biological question, we have compared transcriptome profiles of five environmental isolates, clinical and laboratorial strains at different time points of fermentation in synthetic must medium, during exponential and stationary growth phases. Results Our data unveiled diversity in both intensity and timing of gene expression. Genes involved in glucose metabolism and in the stress response elicited during fermentation were among the most variable. This gene expression diversity increased at the onset of stationary phase (diauxic shift). Environmental isolates showed lower average transcript abundance of genes involved in the stress response, assimilation of nitrogen and vitamins, and sulphur metabolism, than other strains. Nitrogen metabolism genes showed significant variation in expression among the environmental isolates. Conclusions Wild type yeast strains respond differentially to the stress imposed by nutrient depletion, ethanol accumulation and cell density increase, during fermentation of glucose in synthetic must medium. Our results support previous data showing that gene expression variability is a source of phenotypic diversity among closely related organisms. PMID:21507216

  11. 4-Phenylbutyrate modulates ubiquitination of hepatocanalicular MRP2 and reduces serum total bilirubin concentration.

    PubMed

    Hayashi, Hisamitsu; Mizuno, Tadahaya; Horikawa, Reiko; Nagasaka, Hironori; Yabuki, Takashi; Takikawa, Hajime; Sugiyama, Yuichi

    2012-05-01

    Multidrug resistance-associated protein 2 (in humans, MRP2; in rodents, Mrp2) mediates biliary excretion of bilirubin glucuronides. Therefore, upregulation of MRP2/Mrp2 expression may improve hyperbilirubinemia. We investigated the effects of 4-phenylbutyrate (4PBA), a drug used to treat ornithine transcarbamylase deficiency (OTCD), on the cell surface expression and transport function of MRP2/Mrp2 and serum T-Bil concentration. MRP2-expressing MDCKII (MRP2-MDCKII) cells and rats were studied to explore the change induced by 4PBA treatment in the cell surface expression and transport function of MRP2/Mrp2 and its underlying mechanism. Serum and liver specimens from OTCD patients were analyzed to examine the effect of 4PBA on hepatic MRP2 expression and serum T-Bil concentration in humans. In MRP2-MDCKII cells and the rat liver, 4PBA increased the cell surface expression and transport function of MRP2/Mrp2. In patients with OTCD, hepatic MRP2 expression increased and serum T-Bil concentration decreased significantly after 4PBA treatment. In vitro studies designed to explore the mechanism underlying this drug action suggested that cell surface-resident MRP2/Mrp2 is degraded via ubiquitination-mediated targeting to the endosomal/lysosomal degradation pathway and that 4PBA inhibits the degradation of cell surface-resident MRP2/Mrp2 by reducing its susceptibility to ubiquitination. 4PBA activates MRP2/Mrp2 function through increased expression of MRP2/Mrp2 at the hepatocanalicular membrane by modulating its ubiquitination, and thereby decreases serum T-Bil concentration. 4PBA has thus therapeutic potential for improving hyperbilirubinemia. Copyright © 2012 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  12. Gene Expression Profiling of Transcription Factors of Helicobacter pylori under Different Environmental Conditions.

    PubMed

    De la Cruz, Miguel A; Ares, Miguel A; von Bargen, Kristine; Panunzi, Leonardo G; Martínez-Cruz, Jessica; Valdez-Salazar, Hilda A; Jiménez-Galicia, César; Torres, Javier

    2017-01-01

    Helicobacter pylori is a Gram-negative bacterium that colonizes the human gastric mucosa and causes peptic ulcers and gastric carcinoma. H. pylori strain 26695 has a small genome (1.67 Mb), which codes for few known transcriptional regulators that control bacterial metabolism and virulence. We analyzed by qRT-PCR the expression of 16 transcriptional regulators in H. pylori 26695, including the three sigma factors under different environmental conditions. When bacteria were exposed to acidic pH, urea, nickel, or iron, the sigma factors were differentially expressed with a particularly strong induction of fliA . The regulatory genes hrcA, hup , and crdR were highly induced in the presence of urea, nickel, and iron. In terms of biofilm formation fliA, flgR, hp1021, fur, nikR , and crdR were induced in sessile bacteria. Transcriptional expression levels of rpoD, flgR, hspR, hp1043 , and cheY were increased in contact with AGS epithelial cells. Kanamycin, chloramphenicol, and tetracycline increased or decreased expression of regulatory genes, showing that these antibiotics affect the transcription of H. pylori . Our data indicate that environmental cues which may be present in the human stomach modulate H. pylori transcription.

  13. NFE2 Induces miR-423-5p to Promote Gluconeogenesis and Hyperglycemia by Repressing the Hepatic FAM3A-ATP-Akt Pathway.

    PubMed

    Yang, Weili; Wang, Junpei; Chen, Zhenzhen; Chen, Ji; Meng, Yuhong; Chen, Liming; Chang, Yongsheng; Geng, Bin; Sun, Libo; Dou, Lin; Li, Jian; Guan, Youfei; Cui, Qinghua; Yang, Jichun

    2017-07-01

    Hepatic FAM3A expression is repressed under obese conditions, but the underlying mechanism remains unknown. This study determined the role and mechanism of miR-423-5p in hepatic glucose and lipid metabolism by repressing FAM3A expression. miR-423-5p expression was increased in the livers of obese diabetic mice and in patients with nonalcoholic fatty liver disease (NAFLD) with decreased FAM3A expression. miR-423-5p directly targeted FAM3A mRNA to repress its expression and the FAM3A-ATP-Akt pathway in cultured hepatocytes. Hepatic miR-423-5p inhibition suppressed gluconeogenesis and improved insulin resistance, hyperglycemia, and fatty liver in obese diabetic mice. In contrast, hepatic miR-423-5p overexpression promoted gluconeogenesis and hyperglycemia and increased lipid deposition in normal mice. miR-423-5p inhibition activated the FAM3A-ATP-Akt pathway and repressed gluconeogenic and lipogenic gene expression in diabetic mouse livers. The miR-423 precursor gene was further shown to be a target gene of NFE2, which induced miR-423-5p expression to repress the FAM3A-ATP-Akt pathway in cultured hepatocytes. Hepatic NFE2 overexpression upregulated miR-423-5p to repress the FAM3A-ATP-Akt pathway, promoting gluconeogenesis and lipid deposition and causing hyperglycemia in normal mice. In conclusion, under the obese condition, activation of the hepatic NFE2/miR-423-5p axis plays important roles in the progression of type 2 diabetes and NAFLD by repressing the FAM3A-ATP-Akt signaling pathway. © 2017 by the American Diabetes Association.

  14. Dose-dependent effects of wheel running on cocaine-seeking and prefrontal cortex Bdnf exon IV expression in rats.

    PubMed

    Peterson, Alexis B; Abel, Jean M; Lynch, Wendy J

    2014-04-01

    Physical activity, and specifically exercise, has shown promise as an intervention for drug addiction; however, the exercise conditions that produce the most efficacious response, as well as its underlying mechanism, are unknown. In this study, we examined the dose-dependent effects of wheel running, an animal model of exercise, during abstinence on subsequent cocaine-seeking and associated changes in prefrontal cortex (PFC) brain-derived neurotrophic factor (Bdnf) exon IV expression, a marker of epigenetic regulation implicated in cocaine relapse and known to be regulated by exercise. Cocaine-seeking was assessed under a within-session extinction/cue-induced reinstatement procedure following extended access cocaine or saline self-administration (24-h/day, 4 discrete trials/h, 10 days, 1.5 mg/kg/infusion) and a 14-day abstinence period. During abstinence, rats had either locked or unlocked running wheel access for 1, 2, or 6 h/day. Bdnf exon IV expression was assessed using quantitative real-time polymerase chain reaction. Cocaine-seeking was highest under the locked wheel condition, and wheel running dose dependently attenuated this effect. Cocaine increased Bdnf exon IV expression, and wheel running dose dependently attenuated this increase, with complete blockade in rats given 6-h/day access. Notably, the efficacy of exercise was inversely associated with Bdnf exon IV expression, and both its efficacy and its effects on Bdnf exon IV expression were mimicked by treatment during abstinence with sodium butyrate, a histone deacetylase inhibitor that, like exercise, modulates gene transcription, including Bdnf exon IV expression. Taken together, these results indicate that the efficacy of exercise is dose dependent and likely mediated through epigenetic regulation of PFC Bdnf.

  15. Role of Spermidine in Overwintering of Cyanobacteria

    PubMed Central

    Zhu, Xiangzhi; Li, Qiong; Yin, Chuntao; Fang, Xiantao

    2015-01-01

    ABSTRACT Polyamines are found in all groups of cyanobacteria, but their role in environmental adaptation has been barely investigated. In Synechocystis sp. strain PCC 6803, inactivation of spermidine synthesis genes significantly reduced the survivability under chill (5°C)-light stress, and the survivability could be restored by addition of spermidine. To analyze the effects of spermidine on gene expression at 5°C, lacZ was expressed from the promoter of carboxy(nor)spermidine decarboxylase gene (CASDC) in Synechocystis. Synechocystis 6803::PCASDC-lacZ pretreated at 15°C showed a high level of LacZ activity for a long period of time at 5°C; without the pretreatment or with protein synthesis inhibited at 5°C, the enzyme activity gradually decreased. In a spermidine-minus mutant harboring PCASDC-lacZ, lacZ showed an expression pattern as if protein synthesis were inhibited at 5°C, even though the stability of its mRNA increased. Four other genes, including rpoA that encodes the α subunit of RNA polymerase, showed similar expression patterns. The chill-light stress led to a rapid increase of protein carbonylation in Synechocystis. The protein carbonylation then quickly returned to the background level in the wild type but continued to slowly increase in the spermidine-minus mutant. Our results indicate that spermidine promotes gene expression and replacement of damaged proteins in cyanobacteria under the chill-light stress in winter. IMPORTANCE Outbreak of cyanobacterial blooms in freshwater lakes is a worldwide environmental problem. In the annual cycle of bloom-forming cyanobacteria, overwintering is the least understood stage. Survival of Synechocystis sp. strain PCC 6803 under long-term chill (5°C)-light stress has been established as a model for molecular studies on overwintering of cyanobacteria. Here, we show that spermidine, the most common polyamine in cyanobacteria, promotes the survivability of Synechocystis under long-term chill-light stress and that the physiological function is based on its effects on gene expression and recovery from protein damage. This is the first report on the role of polyamines in survival of overwintering cyanobacteria. We also analyzed spermidine synthesis pathways in cyanobacteria on the basis of bioinformatic and experimental data. PMID:25917915

  16. Hereditary mixed polyposis syndrome is caused by a 40-kb upstream duplication that leads to increased and ectopic expression of the BMP antagonist GREM1.

    PubMed

    Jaeger, Emma; Leedham, Simon; Lewis, Annabelle; Segditsas, Stefania; Becker, Martin; Cuadrado, Pedro Rodenas; Davis, Hayley; Kaur, Kulvinder; Heinimann, Karl; Howarth, Kimberley; East, James; Taylor, Jenny; Thomas, Huw; Tomlinson, Ian

    2012-05-06

    Hereditary mixed polyposis syndrome (HMPS) is characterized by apparent autosomal dominant inheritance of multiple types of colorectal polyp, with colorectal carcinoma occurring in a high proportion of affected individuals. Here, we use genetic mapping, copy-number analysis, exclusion of mutations by high-throughput sequencing, gene expression analysis and functional assays to show that HMPS is caused by a duplication spanning the 3' end of the SCG5 gene and a region upstream of the GREM1 locus. This unusual mutation is associated with increased allele-specific GREM1 expression. Whereas GREM1 is expressed in intestinal subepithelial myofibroblasts in controls, GREM1 is predominantly expressed in the epithelium of the large bowel in individuals with HMPS. The HMPS duplication contains predicted enhancer elements; some of these interact with the GREM1 promoter and can drive gene expression in vitro. Increased GREM1 expression is predicted to cause reduced bone morphogenetic protein (BMP) pathway activity, a mechanism that also underlies tumorigenesis in juvenile polyposis of the large bowel.

  17. Hypoxia promotes luteal cell death in bovine corpus luteum.

    PubMed

    Nishimura, Ryo; Komiyama, Junichi; Tasaki, Yukari; Acosta, Tomas J; Okuda, Kiyoshi

    2008-03-01

    Low oxygen caused by a decreasing blood supply is known to induce various responses of cells, including apoptosis. The present study was conducted to examine whether low-oxygen conditions (hypoxia) induce luteal cell apoptosis in cattle. Bovine midluteal cells incubated under hypoxia (3% O(2)) showed significantly more cell death than did those incubated under normoxia (20% O(2)) at 24 and 48 h of culture, and had significantly lower progesterone (P4) levels starting at 8 h. Characteristic features of apoptosis, such as shrunken nuclei and DNA fragmentation, were observed in cells cultured under hypoxia for 48 h. Hypoxia increased the mRNA expressions of BNIP3 and caspase 3 at 24 and 48 h of culture. Hypoxia had no significant effect on the expressions of BCL2 and BAX mRNA. Hypoxia also increased BNIP3 protein, and activated caspase-3. Treatment of P4 attenuated cell death, caspase-3 mRNA expression, and caspase-3 activity under hypoxia. Overall results of the present study indicate that hypoxia induces luteal cell apoptosis by enhancing the expression of proapoptotic protein, BNIP3, and by activating caspase-3, and that the induction of apoptosis by hypoxia is partially caused by a decrease in P4 production. Because hypoxia suppresses P4 synthesis in bovine luteal cells, we suggest that oxygen deficiency caused by a decreasing blood supply in bovine corpus luteum is one of the major factors contributing to both functional and structural luteolysis.

  18. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, L.O.; Ohta, Kazuyoshi; Wood, B.E.

    1998-10-13

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol. 13 figs.

  19. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    1998-01-01

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  20. Recombinant cells that highly express chromosomally-integrated heterologous gene

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    2007-03-20

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  1. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    2000-08-22

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  2. Increased Cdc7 expression is a marker of oral squamous cell carcinoma and overexpression of Cdc7 contributes to the resistance to DNA-damaging agents.

    PubMed

    Cheng, An Ning; Jiang, Shih Sheng; Fan, Chi-Chen; Lo, Yu-Kang; Kuo, Chan-Yen; Chen, Chung-Hsing; Liu, Ying-Lan; Lee, Chun-Chung; Chen, Wei-Shone; Huang, Tze-Sing; Wang, Tao-Yeuan; Lee, Alan Yueh-Luen

    2013-09-01

    Cdc7-Dbf4 kinase (Dbf4-dependent kinase, DDK) is an essential factor of DNA replication and DNA damage response (DDR), which is associated with tumorigenesis. However, Cdc7 expression has never been associated to the outcome of oral squamous cell carcinoma (OSCC) patients, and the mechanism underlying cancer cell survival mediated by Cdc7 remains unclear. The Cdc7 protein expression of 105 OSCC tumor and 30 benign tissues was examined by immunohistochemistry assay. Overall survival rates of 80 OSCC patients were measured using Kaplan-Meier estimates and the log-rank tests. Cdc7 overexpression by adenovirus system was used to scrutinize the underlying mechanism contributed to cancer cell survival upon DDR. In silico analysis showed that increased Cdc7 is a common feature of cancer. Cdc7 overexpression was found in 96 of 105 (91.4%) studied cases of OSCC patients. Patients with higher Cdc7 expression, either categorized into two groups: Cdc7 high expression (2+ to 3+) versus Cdc7 low expression (0 to 1+) [hazard ratios (HR)=2.6; 95% confidence interval (CI)=1.28-5.43; P=0.0087] or four groups (0 to 3+) [HR=1.71; 95% CI=1.20-2.44; P=0.0032], exhibited a poorer outcome. Multivariate analysis showed that Cdc7 is an independent marker for survival prediction. Overexpressed Cdc7 inhibits genotoxin-induced apoptosis to increase the survival of cancer cells. In summary, Cdc7 expression, which is universally upregulated in cancer, is an independent prognostic marker of OSCC. Cdc7 inhibits genotoxin-induced apoptosis and increases survival in cancer cells upon DDR, suggesting that high expression of Cdc7 enhances the resistance to chemotherapy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Indoxyl sulfate enhances IL-1β-induced E-selectin expression in endothelial cells in acute kidney injury by the ROS/MAPKs/NFκB/AP-1 pathway.

    PubMed

    Shen, Wen-Ching; Liang, Chan-Jung; Huang, Tao-Ming; Liu, Chen-Wei; Wang, Shu-Huei; Young, Guang-Huar; Tsai, Jaw-Shiun; Tseng, Ying-Chin; Peng, Yu-Sen; Wu, Vin-Cent; Chen, Yuh-Lien

    2016-11-01

    Uremic toxins are considered a risk factor for cardiovascular disorders in kidney diseases, but it is not known whether, under inflammatory conditions, they affect adhesion molecule expression on endothelial cells, which may play a critical role in acute kidney injury (AKI). In the present study, in cardiovascular surgery-related AKI patients, who are known to have high plasma levels of the uremic toxin indoxyl sulfate (IS), plasma levels of IL-1β were found to be positively correlated with plasma levels of the adhesion molecule E-selectin. In addition, high E-selectin and IL-1β expression were seen in the kidney of ischemia/reperfusion mice in vivo. We also examined the effects of IS on E-selectin expression by IL-1β-treated human umbilical vein endothelial cells (HUVECs) and the underlying mechanism. IS pretreatment of HUVECs significantly increased IL-1β-induced E-selectin expression, monocyte adhesion, and the phosphorylation of mitogen-activated protein kinases (ERK, p38, and JNK) and transcription factors (NF-κB and AP-1), and phosphorylation was decreased by pretreatment with inhibitors of ERK1/2 (PD98059), p38 MAPK (SB202190), and JNK (SP600125). Furthermore, IS increased IL-1β-induced reactive oxygen species (ROS) production and this effect was inhibited by pretreatment with N-acetylcysteine (a ROS scavenger) or apocynin (a NADPH oxidase inhibitor). Gel shift assays and ChIP-PCR demonstrated that IS enhanced E-selectin expression in IL-1-treated HUVECs by increasing NF-κB and AP-1 DNA-binding activities. Moreover, IS-enhanced E-selectin expression in IL-1β-treated HUVECs was inhibited by Bay11-7082, a NF-κB inhibitor. Thus, IS may play an important role in the development of cardiovascular disorders in kidney diseases during inflammation by increasing endothelial expression of E-selectin.

  4. Role of endogenous cortistatin in the regulation of ghrelin system expression at pancreatic level under normal and obese conditions.

    PubMed

    Chanclón, Belén; Luque, Raúl M; Córdoba-Chacón, José; Gahete, Manuel D; Pozo-Salas, Ana I; Castaño, Justo P; Gracia-Navarro, Francisco; Martínez-Fuentes, Antonio J

    2013-01-01

    Ghrelin-system components [native ghrelin, In1-ghrelin, Ghrelin-O-acyltransferase enzyme (GOAT) and receptors (GHS-Rs)] are expressed in a wide variety of tissues, including the pancreas, where they exert different biological actions including regulation of neuroendocrine secretions, food intake and pancreatic function. The expression of ghrelin system is regulated by metabolic conditions (fasting/obesity) and is associated with the progression of obesity and insulin resistance. Cortistatin (CORT), a neuropeptide able to activate GHS-R, has emerged as an additional link in gut-brain interplay. Indeed, we recently reported that male CORT deficient mice (cort-/-) are insulin-resistant and present a clear dysregulation in the stomach ghrelin-system. The present work was focused at analyzing the expression pattern of ghrelin-system components at pancreas level in cort-/- mice and their control littermates (cort +/+) under low- or high-fat diet. Our data reveal that all the ghrelin-system components are expressed at the mouse pancreatic level, where, interestingly, In1-ghrelin was expressed at higher levels than native-ghrelin. Thus, GOAT mRNA levels were significantly lower in cort-/- mice compared with controls while native ghrelin, In1-ghrelin and GHS-R transcript levels remained unaltered under normal metabolic conditions. Moreover, under obese condition, a significant increase in pancreatic expression of native-ghrelin, In1-ghrelin and GHS-R was observed in obese cort+/+ but not in cort-/- mice. Interestingly, insulin expression and release was elevated in obese cort+/+, while these changes were not observed in obese cort-/- mice. Altogether, our results indicate that the ghrelin-system expression is clearly regulated in the pancreas of cort+/+ and cort -/- under normal and/or obesity conditions suggesting that this system may play relevant roles in the endocrine pancreas. Most importantly, our data demonstrate, for the first time, that endogenous CORT is essential for the obesity-induced changes in insulin expression/secretion observed in mice, suggesting that CORT is a key regulatory component of the pancreatic function.

  5. Altered Expression of the Malate-Permeable Anion Channel OsALMT4 Reduces the Growth of Rice Under Low Radiance

    PubMed Central

    Liu, Jie; Xu, Muyun; Estavillo, Gonzalo M.; Delhaize, Emmanuel; White, Rosemary G.; Zhou, Meixue; Ryan, Peter R.

    2018-01-01

    We examined the function of OsALMT4 in rice (Oryza sativa L.) which is a member of the aluminum-activated malate transporter family. Previous studies showed that OsALMT4 localizes to the plasma membrane and that expression in transgenic rice lines results in a constitutive release of malate from the roots. Here, we show that OsALMT4 is expressed widely in roots, shoots, flowers, and grain but not guard cells. Expression was also affected by ionic and osmotic stress, light and to the hormones ABA, IAA, and salicylic acid. Malate efflux from the transgenic plants over-expressing OsALMT4 was inhibited by niflumate and salicylic acid. Growth of transgenic lines with either increased OsALMT4 expression or reduced expression was measured in different environments. Light intensity caused significant differences in growth between the transgenic lines and controls. When day-time light was reduced from 700 to 300 μmol m-2s-1 independent transgenic lines with either increased or decreased OsALMT4 expression accumulated less biomass compared to their null controls. This response was not associated with differences in photosynthetic capacity, stomatal conductance or sugar concentrations in tissues. We propose that by disrupting malate fluxes across the plasma membrane carbon partitioning and perhaps signaling are affected which compromises growth under low light. We conclude that OsALMT4 is expressed widely in rice and facilitates malate efflux from different cell types. Altering OsALMT4 expression compromises growth in low-light environments. PMID:29774038

  6. Expression of the nifBfdxNnifOQ region of Azotobacter vinelandii and its role in nitrogenase activity.

    PubMed Central

    Rodríguez-Quiñones, F; Bosch, R; Imperial, J

    1993-01-01

    The nifBQ transcriptional unit of Azotobacter vinelandii has been previously shown to be required for activity of the three nitrogenase systems, Mo nitrogenase, V nitrogenase, and Fe nitrogenase, present in this organism. We studied regulation of expression and the role of the nifBQ region by means of translational beta-galactosidase fusions to each of the five open reading frames: nifB, orf2 (fdxN), orf3 (nifO), nifQ, and orf5. Expression of the first three open reading frames was observed under all three diazotrophic conditions; expression of orf5 was never observed. Genes nifB and fdxN were expressed at similar levels. With Mo, expression of nifO and nifQ was approximately 20- and approximately 400-fold lower than that of fdxN, respectively. Without Mo, expression of nifB dropped three- to fourfold and that of nifQ dropped to the detection limit. However, expression of nifO increased threefold. The products of nifB, fdxN, nifO, and nifQ have been visualized in A. vinelandii as beta-galactosidase fusion proteins with the expected molecular masses. The NifB- fusion lacked activity for any of the three nitrogenase systems and showed an iron-molybdenum cofactor-deficient phenotype in the presence of Mo. The FdxN- mutation resulted in reduced nitrogenase activities, especially when V was present. Dinitrogenase activity in extracts was similarly affected, suggesting a role of FdxN in iron-molybdenum cofactor synthesis. The NifO(-)-producing mutation did not affect any of the nitrogenases under standard diazotrophic conditions. The NifQ(-)-producing mutation resulted in an increased (approximately 1,000-fold) Mo requirement for Mo nitrogenase activity, a phenotype already observed with Klebsiella pneumoniae. No effect of the NifQ(-)-producing mutation on V or Fe nitrogenase was found; this is consistent with its very low expression under those conditions. Mutations in orf5 had no effect on nitrogenase activity. Images PMID:8491713

  7. In vivo correlation between c-Fos expression and corticotroph stimulation by adrenocorticotrophic hormone secretagogues in rat anterior pituitary gland.

    PubMed

    Takigami, Shu; Fujiwara, Ken; Kikuchi, Motoshi; Yashiro, Takashi

    2008-03-01

    In the anterior pituitary gland, c-Fos expression is evoked by various stimuli. However, whether c-Fos expression is directly related to the stimulation of anterior pituitary cells by hypothalamic secretagogues is unclear. To confirm whether the reception of hormone-releasing stimuli evokes c-Fos expression in anterior pituitary cells, we have examined c-Fos expression of anterior pituitary glands in rats administered with synthetic corticotrophin-releasing hormone (CRH) intravenously or subjected to restraint stress. Single intravenous administration of CRH increases the number of c-Fos-expressing cells, and this number does not change even if the dose is increased. Double-immunostaining has revealed that most of the c-Fos-expressing cells contain adrenocorticotrophic hormone (ACTH); corticotrophs that do not express c-Fos in response to CRH have also been found. However, restraint stress evokes c-Fos expression in most of the corticotrophs and in a partial population of lactotrophs. These results suggest that c-Fos expression increases in corticotrophs stimulated by ACTH secretagogues, including CRH. Furthermore, we have found restricted numbers of corticotrophs expressing c-Fos in response to CRH. Although the mechanism underlying the different responses to CRH is not apparent, c-Fos is probably a useful immunohistochemical marker for corticotrophs stimulated by ACTH secretagogues.

  8. A WRKY Transcription Factor Regulates Fe Translocation under Fe Deficiency.

    PubMed

    Yan, Jing Ying; Li, Chun Xiao; Sun, Li; Ren, Jiang Yuan; Li, Gui Xin; Ding, Zhong Jie; Zheng, Shao Jian

    2016-07-01

    Iron (Fe) deficiency affects plant growth and development, leading to reduction of crop yields and quality. Although the regulation of Fe uptake under Fe deficiency has been well studied in the past decade, the regulatory mechanism of Fe translocation inside the plants remains unknown. Here, we show that a WRKY transcription factor WRKY46 is involved in response to Fe deficiency. Lack of WRKY46 (wrky46-1 and wrky46-2 loss-of-function mutants) significantly affects Fe translocation from root to shoot and thus causes obvious chlorosis on the new leaves under Fe deficiency. Gene expression analysis reveals that expression of a nodulin-like gene (VACUOLAR IRON TRANSPORTER1-LIKE1 [VITL1]) is dramatically increased in wrky46-1 mutant. VITL1 expression is inhibited by Fe deficiency, while the expression of WRKY46 is induced in the root stele. Moreover, down-regulation of VITL1 expression can restore the chlorosis phenotype on wrky46-1 under Fe deficiency. Further yeast one-hybrid and chromatin immunoprecipitation experiments indicate that WRKY46 is capable of binding to the specific W-boxes present in the VITL1 promoter. In summary, our results demonstrate that WRKY46 plays an important role in the control of root-to-shoot Fe translocation under Fe deficiency condition via direct regulation of VITL1 transcript levels. © 2016 American Society of Plant Biologists. All Rights Reserved.

  9. The Lcn2-engineered HEK-293 cells show senescence under stressful condition

    PubMed Central

    Bahmani, Bahareh; Amiri, Fatemeh; Mohammadi Roushandeh, Amaneh; Bahadori, Marzie; Harati, Mozhgan Dehghan; Habibi Roudkenar, Mehryar

    2015-01-01

    Objective(s): Lipocalin2 (Lcn2) gene is highly expressed in response to various types of cellular stresses. The precise role of Lcn2 has not been fully understood yet. However, it plays a key role in controlling vital cellular processes such as proliferation, apoptosis and metabolism. Recently it was shown that Lcn2 decreases senescence and increases proliferation of mesenchymal stem cells (MSC) with finite life span under either normal or oxidative stress conditions. However, Lcn2 effects on immortal cell line with infinite proliferation are not defined completely. Materials and Materials and Methods: HEK-293 cells were transfected with recombinant pcDNA3.1 containing Lcn2 fragment (pcDNA3.1-Lcn2). Expression of lipocalin2 in transfected cells was evaluated by RT-PCR, real time RT-PCR, and ELISA. Different cell groups were treated with H2O2 and WST-1 assay was performed to determine their proliferation rate. Senescence was studied by β-galactosidase and gimsa staining methods as well as evaluation of the expression of senescence-related genes by real time RT-PCR. Results: Lcn2 increased cell proliferation under normal culture condition, while the proliferation slightly decreased under oxidative stress. This decrease was further found to be attributed to senescence. Conclusion: Our findings indicated that under harmful conditions, Lcn2 gene is responsible for the regulation of cell survival through senescence. PMID:26124931

  10. Ambient particulate matter induces IL-8 expression through an alternative NF-kB mechanism in human airway epithelial cells

    EPA Science Inventory

    BACKGROUND: Exposure to ambient air particulate matter (PM) has been shown to increase rates of cardio-pulmonary morbidity and mortality, but the underlying mechanisms are still not well understood. OBJECTIVE: To examine signaling events involved in the expression of the inflamma...

  11. Increase of CTGF mRNA expression by respiratory syncytial virus infection is abrogated by caffeine in lung epithelial cells.

    PubMed

    Kunzmann, Steffen; Krempl, Christine; Seidenspinner, Silvia; Glaser, Kirsten; Speer, Christian P; Fehrholz, Markus

    2018-04-16

    Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract infection in early childhood. Underlying pathomechanisms of elevated pulmonary morbidity in later infancy are largely unknown. We found that RSV-infected H441 cells showed increased mRNA expression of connective tissue growth factor (CTGF), a key factor in airway remodeling. Additional dexamethasone treatment led to further elevated mRNA levels, indicating additive effects. Caffeine treatment prevented RSV-mediated increase of CTGF mRNA. RSV may be involved in airway remodeling processes by increasing CTGF mRNA expression. Caffeine might abrogate these negative effects and thereby help to restore lung homeostasis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. The in vitro maintenance of clock genes expression within the rat pineal gland under standard and norepinephrine-synchronized stimulation.

    PubMed

    Andrade-Silva, Jéssica; Cipolla-Neto, José; Peliciari-Garcia, Rodrigo A

    2014-01-01

    Although the norepinephrine (NE) synchronization protocol was proved to be an important procedure for further modulating in vitro pineal melatonin synthesis, the maintenance of clock genes under the same conditions remained to be investigated. The aim of this study was to investigate the maintenance of the clock genes expression in pineal gland cultures under standard and NE-synchronized stimulation. The glands were separated into three experimental groups: Control, Standard (acute NE-stimulation), and NE-synchronized. The expression of Bmal1, Per2, Cry2, Rev-erbα, the clock controlled gene Dbp and Arylalkylamine-N-acetyltransferase were investigated, as well as melatonin content. No oscillations were observed in the expression of the investigated genes from the control group. Under Standard NE stimulation, the clock genes did not exhibit a rhythmic pattern of expression. However, in the NE-synchronized condition, a rhythmic expression pattern was observed in all cases. An enhancement in pineal gland responsiveness to NE stimulation, reflected in an advanced synthesis of melatonin was also observed. Our results reinforce our previous hypothesis that NE synchronization of pineal gland culture mimics the natural rhythmic release of NE in the gland, increasing melatonin synthesis and keeping the pineal circadian clock synchronized, ensuring the fine adjustments that are relied in the clockwork machinery. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  13. The Ectopic Expression of the Wheat Puroindoline Genes Increase Germ Size and Seed Oil Content in Transgenic Corn

    PubMed Central

    Zhang, Jinrui; Martin, John M.; Beecher, Brian; Lu, Chaofu; Hannah, L. Curtis; Wall, Michael L.; Altosaar, Illimar; Giroux, Michael J.

    2014-01-01

    Plant oil content and composition improvement is a major goal of plant breeding and biotechnology. The Puroindoline a and b (PINA and PINB) proteins together control whether wheat seeds are soft or hard textured and share a similar structure to that of plant non-specific lipid-transfer proteins. Here we transformed corn (Zea mays L.) with the wheat (Triticum aestivum L.) puroindoline genes (Pina and Pinb) to assess their effects upon seed oil content and quality. Pina and Pinb coding sequences were introduced into corn under the control of a corn Ubiquitin promoter. Three Pina/Pinb expression positive transgenic events were evaluated over two growing seasons. The results showed that Pin expression increased germ size significantly without negatively impacting seed size. Germ yield increased 33.8% while total seed oil content was increased by 25.23%. Seed oil content increases were primarily the result of increased germ size. This work indicates that higher oil content corn hybrids having increased food or feed value could be produced via puroindoline expression. PMID:20725765

  14. Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2

    PubMed Central

    Benner, Ina; Diner, Rachel E.; Lefebvre, Stephane C.; Li, Dian; Komada, Tomoko; Carpenter, Edward J.; Stillman, Jonathon H.

    2013-01-01

    Increased atmospheric pCO2 is expected to render future oceans warmer and more acidic than they are at present. Calcifying organisms such as coccolithophores that fix and export carbon into the deep sea provide feedbacks to increasing atmospheric pCO2. Acclimation experiments suggest negative effects of warming and acidification on coccolithophore calcification, but the ability of these organisms to adapt to future environmental conditions is not well understood. Here, we tested the combined effect of pCO2 and temperature on the coccolithophore Emiliania huxleyi over more than 700 generations. Cells increased inorganic carbon content and calcification rate under warm and acidified conditions compared with ambient conditions, whereas organic carbon content and primary production did not show any change. In contrast to findings from short-term experiments, our results suggest that long-term acclimation or adaptation could change, or even reverse, negative calcification responses in E. huxleyi and its feedback to the global carbon cycle. Genome-wide profiles of gene expression using RNA-seq revealed that genes thought to be essential for calcification are not those that are most strongly differentially expressed under long-term exposure to future ocean conditions. Rather, differentially expressed genes observed here represent new targets to study responses to ocean acidification and warming. PMID:23980248

  15. FAK Regulates Intestinal Epithelial Cell Survival and Proliferation during Mucosal Wound Healing

    PubMed Central

    Tilghman, Robert W.; Casanova, James E.; Bouton, Amy H.

    2011-01-01

    Background Following damage to the intestinal epithelium, restoration of epithelial barrier integrity is triggered by a robust proliferative response. In other tissues, focal adhesion kinase (FAK) regulates many of the cellular processes that are critical for epithelial homeostasis and restitution, including cell migration, proliferation and survival. However, few studies to date have determined how FAK contributes to mucosal wound healing in vivo. Methodology and Principal Findings To examine the role of FAK in intestinal epithelial homeostasis and during injury, we generated intestinal epithelium (IE)-specific conditional FAK knockout mice. Colitis was induced with dextran-sulfate-sodium (DSS) and intestinal tissues were analyzed by immunohistochemistry and immunoblotting. While intestinal development occurred normally in mice lacking FAK, FAK-deficient animals were profoundly susceptible to colitis. The loss of epithelial FAK resulted in elevated p53 expression and an increased sensitivity to apoptosis, coincident with a failure to upregulate epithelial cell proliferation. FAK has been reported to function as a mechanosensor, inducing cyclin D1 expression and promoting cell cycle progression under conditions in which tissue/matrix stiffness is increased. Collagen deposition, a hallmark of inflammatory injury resulting in increased tissue rigidity, was observed in control and FAK knockout mice during colitis. Despite this fibrotic response, the colonic epithelium in FAK-deficient mice exhibited significantly reduced cyclin D1 expression, suggesting that proliferation is uncoupled from fibrosis in the absence of FAK. In support of this hypothesis, proliferation of Caco-2 cells increased proportionally with matrix stiffness in vitro only under conditions of normal FAK expression; FAK depleted cells exhibited reduced proliferation concomitant with attenuated cyclin D1 expression. Conclusions In the colon, FAK functions as a regulator of epithelial cell survival and proliferation under conditions of mucosal injury and a mechanosensor of tissue compliance, inducing repair-driven proliferation in the colonic epithelium through upregulation of cyclin D1. PMID:21887232

  16. Vitamin B12 in Association with Antipsychotic Drugs Can Modulate the Expression of Pro-/Anti-Inflammatory Cytokines in Alzheimer Disease Patients.

    PubMed

    Vakilian, Alireza; Razavi-Nasab, Seyed Moein; Ravari, Ali; Mirzaei, Tayebeh; Moghadam-Ahmadi, Amir; Jalali, Nazanin; Bahramabadi, Reza; Rezayati, Mohammadtaghi; Yazdanpanah-Ravari, Amin; Bahmaniar, Farhad; Bagheri, Mohammad Reza; Sheikh Fathollahi, Mahmood; Asadikaram, Gholamreza; Kazemi Arababadi, Mohammad

    2017-01-01

    Patients with Alzheimer disease (AD) suffer from psychotic symptoms including pain. The current antipsychotic drugs confer limited effectiveness, and hence new strategies are being designed to decrease pain in order to increase antipsychological effectiveness. Vitamin B12 is a safe supplementary drug to decrease pain. Additionally, cytokines participate in the pathogenesis of immune-related diseases such as AD. Thus, the main aim of this clinical trial study was to determine the effects of treatment with risperidone and quetiapine, as antipsychotic drugs, with and without vitamin B12 on the psychotic symptoms of AD patients and the expression of IL-6, IL-8, tumor growth factor (TGF)-β, tumor necrosis factor (TNF)-α, and endothelin (ET)-1). Serum levels of IL-6, IL-8, TGF-β, TNF-α, and ET-1 were evaluated in the following groups: healthy controls, nonpsychotic AD patients, psychotic AD patients, psychotic AD patients under treatment with risperidone, psychotic AD patients under treatment with risperidone plus vitamin B12, psychotic AD patients under treatment with quetiapine, and psychotic AD patients under treatment with quetiapine plus vitamin B12. Treatment with antipsychotic drugs plus vitamin B12 led to a decreased expression of IL-8 and TNF-α and an increased expression of TGF-β. Vitamin B12 in association with quetiapine reduced the pain in psychotic AD patients. Proinflammatory cytokines play important roles in the pathogenesis of psychosis in AD patients. Antipsychotic drugs plus vitamin B12 can reduce and induce the expression of proinflammatory and anti-inflammatory cytokines to improve psychotic symptoms in AD patients. © 2018 S. Karger AG, Basel.

  17. Cooperation in the dark: signalling and collective action in quorum-sensing bacteria.

    PubMed

    Brown, S P; Johnstone, R A

    2001-05-07

    The study of quorum-sensing bacteria has revealed a widespread mechanism of coordinating bacterial gene expression with cell density. By monitoring a constitutively produced signal molecule, individual bacteria can limit their expression of group-beneficial phenotypes to cell densities that guarantee an effective group outcome. In this paper, we attempt to move away from a commonly expressed view that these impressive feats of coordination are examples of multicellularity in prokaryotic populations. Here, we look more closely at the individual conflict underlying this cooperation, illustrating that, even under significant levels of genetic conflict, signalling and resultant cooperative behaviour can stably exist. A predictive two-trait model of signal strength and of the extent of cooperation is developed as a function of relatedness (reflecting multiplicity of infection) and basic population demographic parameters. The model predicts that the strength of quorum signalling will increase as conflict (multiplicity of infecting strains) increases, as individuals attempt to coax more cooperative contributions from their competitors, leading to a devaluation of the signal as an indicator of density. Conversely, as genetic conflict increases, the model predicts that the threshold density for cooperation will increase and the subsequent strength of group cooperation will be depressed.

  18. Identification of EayjjPB encoding a dicarboxylate transporter important for succinate production under aerobic and anaerobic conditions in Enterobacter aerogenes.

    PubMed

    Fukui, Keita; Nanatani, Kei; Hara, Yoshihiko; Tokura, Mitsunori; Abe, Keietsu

    2018-05-01

    Enterobacter aerogenes, a gram-negative, rod-shaped bacterium, is an effective producer of succinate from glucose via the reductive tricarboxylic acid cycle under anaerobic conditions. However, to date, succinate-exporter genes have not been identified in E. aerogenes, although succinate exporters have a large impact on fermentative succinate production. Recently, we genetically identified yjjP and yjjB, as genes encoding a succinate transporter in Escherichia coli. Evaluation of the yjjPB homologs in E. aerogenes (EayjjPB genes) showed that succinate accumulation increased from 4.1 g L -1 to 9.1 g L -1 when the EayjjPB genes were expressed under aerobic conditions. Under anaerobic conditions, succinate yield increased from 53% to 60% by EayjjPB expression and decreased to 48% by deletion of EayjjPB. Furthermore, the production levels of fumarate and malate, which are intermediates of the succinate-biosynthesis pathway, were also increased by EayjjPB expression. A complementation assay conducted in Corynebacterium glutamicum strain AJ110655ΔsucE1 demonstrated that both EaYjjP and EaYjjB are required for the restoration of succinate production. Taken together, these results suggest that EaYjjPB function as a dicarboxylate transporter in E. aerogenes and that the products of both genes are required for dicarboxylate transport. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Towards a cognitive resource limitations model of diminished expression in schizotypy.

    PubMed

    Cohen, Alex S; Morrison, Sean C; Brown, Laura A; Minor, Kyle S

    2012-02-01

    Diminished expression of speech is a pernicious feature of both schizophrenia and schizotypy--defined as the personality organization reflecting a putative genetic schizophrenia liability. As yet, the mechanism underlying diminished expression is unclear. We tested the hypothesis that diminished expression reflects a cognitive resource issue--that is, as cognitive resources are depleted, expression becomes diminished in individuals with psychometrically defined schizotypy. Acoustic analysis of natural speech was procured during experimentally manipulated baseline and high cognitive-load dual tasks and examined in 38 individuals with psychometrically defined schizotypy and 34 controls. For both groups, expression significantly decreased as a function of increased task demands, although there were no group differences in expression or magnitude of change across baseline to high cognitive-load conditions. Participants with self-reported constricted affect showed significant reductions in expression under high-load versus baseline speaking conditions relative to other schizotypal and control participants. Moreover, psychometrically defined schizotypal participants with poor cognitive performance on the high-load task, suggestive of depleted cognitive resources, also showed expressivity reductions compared with other participants. These findings suggest that diminished expression occurs as a function of limited cognitive resources in psychometrically defined schizotypy. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  20. Apigenin inhibited hypoxia induced stem cell marker expression in a head and neck squamous cell carcinoma cell line.

    PubMed

    Ketkaew, Yuwaporn; Osathanon, Thanaphum; Pavasant, Prasit; Sooampon, Sireerat

    2017-02-01

    Cancer stem cells contribute to tumor recurrence, and a hypoxic environment is critical for maintaining cancer stem cells. Apigenin is a natural product with anticancer activity. However, the effect of apigenin on cancer stem cells remains unclear. Our aim was to investigate the effect of apigenin on cancer stem cell marker expression in head and neck squamous cell carcinoma cells under hypoxia. We used three head and neck squamous cell carcinoma cell lines; HN-8, HN-30, and HSC-3. The mRNA expression of cancer stem cell markers was determined by semiquantitative RT-PCR and Real-time PCR. The cytotoxic effect of apigenin was determined by MTT colorimetric assay. Flow cytometry was used to reveal the number of cells expressing cancer stem cell surface markers. HN-30 cells, a cancer cell line from the pharynx, showed the greatest response to hypoxia by increasing their expression of CD44, CD105, NANOG, OCT-4, REX-1, and VEGF. Apigenin significantly decreased HN-30 cell viability in dose- and time-dependent manners. In addition, 40μM apigenin significantly down-regulated the mRNA expression of CD44, NANOG, and CD105. Consistent with these results, the hypoxia-induced increase in CD44 + cells, CD105 + cells, and STRO-1 + cells was significantly abolished by apigenin. Apigenin suppresses cancer stem cell marker expression and the number of cells expressing cell surface markers under hypoxia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Glucose metabolism in batch and continuous cultures of Gluconacetobacter diazotrophicus PAL 3.

    PubMed

    Luna, María F; Bernardelli, Cecilia E; Galar, María L; Boiardi, José L

    2006-03-01

    Periplasmic glucose oxidation (by way of a pyrrolo-quinoline-quinone [PQQ]-linked glucose dehydrogenase [GDH]) was observed in continuous cultures of Gluconacetobacter diazotrophicus regardless of the carbon source (glucose or gluconate) and the nitrogen source (N(2) or NH(3)). Its synthesis was stimulated by conditions of high energetic demand (i.e., N(2)-fixation) and/or C-limitation. Under C-excess conditions, PQQ-GDH synthesis increased with the glucose concentration in the culture medium. In batch cultures, PQQ-GDH was actively expressed in very early stages with higher activities under conditions of N(2)-fixation. Hexokinase activity was almost absent under any culture condition. Cytoplasmic nicotinamide adenine dinucleotide (NAD)-linked glucose dehydrogenase (GDH) was expressed in continuous cultures under all tested conditions, and its synthesis increased with the glucose concentration. In contrast, low activities of this enzyme were detected in batch cultures. Periplasmic oxidation, by way of PQQ-GDH, seems to be the principal pathway for metabolism of glucose in G. Diazotrophicus, and NAD-GDH is an alternative route under certain environmental conditions.

  2. Behaviorally activated mRNA expression profiles produce signatures of learning and enhanced inhibition in aged rats with preserved memory.

    PubMed

    Haberman, Rebecca P; Colantuoni, Carlo; Koh, Ming Teng; Gallagher, Michela

    2013-01-01

    Aging is often associated with cognitive decline, but many elderly individuals maintain a high level of function throughout life. Here we studied outbred rats, which also exhibit individual differences across a spectrum of outcomes that includes both preserved and impaired spatial memory. Previous work in this model identified the CA3 subfield of the hippocampus as a region critically affected by age and integral to differing cognitive outcomes. Earlier microarray profiling revealed distinct gene expression profiles in the CA3 region, under basal conditions, for aged rats with intact memory and those with impairment. Because prominent age-related deficits within the CA3 occur during neural encoding of new information, here we used microarray analysis to gain a broad perspective of the aged CA3 transcriptome under activated conditions. Behaviorally-induced CA3 expression profiles differentiated aged rats with intact memory from those with impaired memory. In the activated profile, we observed substantial numbers of genes (greater than 1000) exhibiting increased expression in aged unimpaired rats relative to aged impaired, including many involved in synaptic plasticity and memory mechanisms. This unimpaired aged profile also overlapped significantly with a learning induced gene profile previously acquired in young adults. Alongside the increased transcripts common to both young learning and aged rats with preserved memory, many transcripts behaviorally-activated in the current study had previously been identified as repressed in the aged unimpaired phenotype in basal expression. A further distinct feature of the activated profile of aged rats with intact memory is the increased expression of an ensemble of genes involved in inhibitory synapse function, which could control the phenotype of neural hyperexcitability found in the CA3 region of aged impaired rats. These data support the conclusion that aged subjects with preserved memory recruit adaptive mechanisms to retain tight control over excitability under both basal and activated conditions.

  3. Insights into the Regulation of DMSP Synthesis in the Diatom Thalassiosira pseudonana through APR Activity, Proteomics and Gene Expression Analyses on Cells Acclimating to Changes in Salinity, Light and Nitrogen

    PubMed Central

    Kettles, Nicola Louise; Kopriva, Stanislav; Malin, Gill

    2014-01-01

    Despite the importance of dimethylsulphoniopropionate (DMSP) in the global sulphur cycle and climate regulation, the biological pathways underpinning its synthesis in marine phytoplankton remain poorly understood. The intracellular concentration of DMSP increases with increased salinity, increased light intensity and nitrogen starvation in the diatom Thalassiosira pseudonana. We used these conditions to investigate DMSP synthesis at the cellular level via analysis of enzyme activity, gene expression and proteome comparison. The activity of the key sulphur assimilatory enzyme, adenosine 5′-phosphosulphate reductase was not coordinated with increasing intracellular DMSP concentration. Under all three treatments coordination in the expression of sulphur assimilation genes was limited to increases in sulphite reductase transcripts. Similarly, proteomic 2D gel analysis only revealed an increase in phosphoenolpyruvate carboxylase following increases in DMSP concentration. Our findings suggest that increased sulphur assimilation might not be required for increased DMSP synthesis, instead the availability of carbon and nitrogen substrates may be important in the regulation of this pathway. This contrasts with the regulation of sulphur metabolism in higher plants, which generally involves up-regulation of several sulphur assimilatory enzymes. In T. pseudonana changes relating to sulphur metabolism were specific to the individual treatments and, given that little coordination was seen in transcript and protein responses across the three growth conditions, different patterns of regulation might be responsible for the increase in DMSP concentration seen under each treatment. PMID:24733415

  4. Major cellular and physiological impacts of ocean acidification on a reef building coral.

    PubMed

    Kaniewska, Paulina; Campbell, Paul R; Kline, David I; Rodriguez-Lanetty, Mauricio; Miller, David J; Dove, Sophie; Hoegh-Guldberg, Ove

    2012-01-01

    As atmospheric levels of CO(2) increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO(2) conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification.

  5. Major Cellular and Physiological Impacts of Ocean Acidification on a Reef Building Coral

    PubMed Central

    Kaniewska, Paulina; Campbell, Paul R.; Kline, David I.; Rodriguez-Lanetty, Mauricio; Miller, David J.

    2012-01-01

    As atmospheric levels of CO2 increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO2 conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification. PMID:22509341

  6. Hypoxia reduces the E-cadherin expression and increases OSCC cell migration regardless of the E-cadherin methylation profile.

    PubMed

    Domingos, Patrícia Luciana Batista; Souza, Marcela Gonçalves; Guimarães, Talita Antunes; Santos, Eliane Sobrinho; Farias, Lucyana Conceição; de Carvalho Fraga, Carlos Alberto; Jones, Kimberly Marie; Santos, Sérgio Henrique Souza; de Paula, Alfredo Maurício Batista; Guimarães, André Luiz Sena

    2017-05-01

    The purpose of the current study is to investigate the association between E-cadherin methylation status, hypoxia and OSCC. HaCat and SCC9 cell lines were submitted to hypoxic treatment, followed by methylation profile analysis (MS-PCR) and analysis of the expression of mRNA gene E-cadherin (RT-PCR). Study group samples comprise individuals affected by potentially malignant lesions Potential Malignant Oral Lesion (PMOL, n=18) and oral squamous cell carcinoma (OSCC, n=28). The control group oral mucosa (OM, n=15) of patients with an oral mucocele. Cell migration ability was evaluated a scratch wound assay in SCC9 and HaCat cell lines RESULTS: E-cadherin mRNA expression in the cell lines SCC9 and HaCat was significantly reduced under hypoxia, regardless of the methylation profile, when compared to the control group. No differences in methylation profile of the E-cadherin were observed among the groups OM, PMOL and OSCC. HaCat and SCC9 presented increases in cell migration rates under hypoxia. The current study demonstrates that hypoxia reduces E-cadherin expression and increase cell migration, regardless of the methylation profile. Additionally, no differences in E-cadherin methylation patterns were observed among OM, PMOL and OSCC. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Desiccation and osmotic stress increase the abundance of mRNA of the tonoplast aquaporin BobTIP26-1 in cauliflower cells.

    PubMed

    Barrieu, F; Marty-Mazars, D; Thomas, D; Chaumont, F; Charbonnier, M; Marty, F

    1999-07-01

    Changes in vacuolar structure and the expression at the RNA level of a tonoplast aquaporin (BobTIP26-1) were examined in cauliflower (Brassicaoleracea L. var. botrytis) under water-stress conditions. Gradual drying out of slices of cauliflower floret tissue caused its collapse, with a shrinkage in tissue and cell volumes and an apparent vesiculation of the central vacuole, whereas osmotic stress resulted in plasmolysis with a collapse of the cytoplasm and the central vacuole within. Osmotic stress caused a rapid and substantial increase in BobTIP26 mRNA in slices of floret tissue. Exposure of tissue slices to a regime of desiccation showed a slower but equally large rise in BobTIP26 mRNA followed by a rapid decline upon rehydration. In situ hybridization showed that BobTIP26-2 mRNA is expressed most highly in meristematic and expanding cells of the cauliflower florets and that desiccation strongly increased the expression in those cells and in differentiated cells near the xylem vessels. These data indicate that under water-deficit conditions, expression of the tonoplast aquaporin gene in cauliflower is subject to a precise regulation that can be correlated with important cytological changes in the cells.

  8. A discrete role for alternative oxidase under hypoxia to increase nitric oxide and drive energy production.

    PubMed

    Vishwakarma, Abhaypratap; Kumari, Aprajita; Mur, Luis A J; Gupta, Kapuganti Jagadis

    2018-03-28

    Alternative oxidase (AOX) is an integral part of the mitochondrial electron transport and can prevent reactive oxygen species (ROS) and nitric oxide (NO) production under non-stressed, normoxic conditions. Here we assessed the roles of AOX by imposing stress under normoxia in comparison to hypoxic conditions using AOX over expressing (AOX OE) and anti-sense (AOX AS) transgenic Arabidopsis seedlings and roots. Under normoxic conditions stress was induced with the defence elicitor flagellin (flg22). AOX OE reduced NO production whilst this was increased in AOX AS. Moreover AOX AS also exhibited an increase in superoxide and therefore peroxynitrite, tyrosine nitration suggesting that scavenging of NO by AOX can prevent toxic peroxynitrite formation under normoxia. In contrast, during hypoxia interestingly we found that AOX is a generator of NO. Thus, the NO produced during hypoxia, was enhanced in AOX OE and suppressed in AOX AS. Additionally, treatment of WT or AOX OE with the AOX inhibitor SHAM inhibited hypoxic NO production. The enhanced levels of NO correlated with expression of non-symbiotic haemoglobin, increased NR activity and ATP production. The ATP generation was suppressed in nia1,2 mutant and non symbiotic haemoglobin antisense line treated with SHAM. Taken together these results suggest that hypoxic NO generation mediated by AOX has a discrete role by feeding into the haemoglobin-NO cycle to drive energy efficiency under conditions of low oxygen tension. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. A paradoxical increase of a metabolite upon increased expression of its catabolic enzyme: the case of diadenosine tetraphosphate (Ap4A) and Ap4A phosphorylase I in Saccharomyces cerevisiae.

    PubMed Central

    Avila, D M; Robinson, A K; Kaushal, V; Barnes, L D

    1991-01-01

    The APA1 gene in Saccharomyces cerevisiae encodes Ap4A phosphorylase I, the catabolic enzyme for diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A). APA1 has been inserted into a multicopy plasmid and into a centromeric plasmid with a GAL1 promoter. Enhanced expression of APA1 via the plasmids resulted in 10- and 90-fold increases in Ap4A phosphorylase activity, respectively, as assayed in vitro. However, the intracellular concentration of Ap4A exhibited increases of 2- and 15-fold, respectively, from the two different plasmids. Intracellular Ap4A increased 3- to 20-fold during growth on galactose of a transformant with APA1 under the control of the GAL1 promoter. Intracellular adenosine 5'-P1-tetraphospho-P4-5"'-guanosine (Ap4G) and diguanosine 5',5"'-P1,P4-tetraphosphate (Gp4G) also increased in the transformant under these conditions. The chromosomal locus of APA1 has been disrupted in a haploid strain. The Ap4A phosphorylase activity decreased by 80% and the intracellular Ap4A concentration increased by a factor of five in the null mutant. These results with the null mutant agree with previous results reported by Plateau et al. (P. Plateau, M. Fromant, J.-M. Schmitter, J.-M. Buhler, and S. Blancquet, J. Bacteriol. 171:6437-6445, 1989). The paradoxical increase in Ap4A upon enhanced expression of APA1 indicates that the metabolic consequences of altered gene expression may be more complex than indicated solely by assay of enzymatic activity of the gene product. PMID:1660456

  10. A paradoxical increase of a metabolite upon increased expression of its catabolic enzyme: the case of diadenosine tetraphosphate (Ap4A) and Ap4A phosphorylase I in Saccharomyces cerevisiae.

    PubMed

    Avila, D M; Robinson, A K; Kaushal, V; Barnes, L D

    1991-12-01

    The APA1 gene in Saccharomyces cerevisiae encodes Ap4A phosphorylase I, the catabolic enzyme for diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A). APA1 has been inserted into a multicopy plasmid and into a centromeric plasmid with a GAL1 promoter. Enhanced expression of APA1 via the plasmids resulted in 10- and 90-fold increases in Ap4A phosphorylase activity, respectively, as assayed in vitro. However, the intracellular concentration of Ap4A exhibited increases of 2- and 15-fold, respectively, from the two different plasmids. Intracellular Ap4A increased 3- to 20-fold during growth on galactose of a transformant with APA1 under the control of the GAL1 promoter. Intracellular adenosine 5'-P1-tetraphospho-P4-5"'-guanosine (Ap4G) and diguanosine 5',5"'-P1,P4-tetraphosphate (Gp4G) also increased in the transformant under these conditions. The chromosomal locus of APA1 has been disrupted in a haploid strain. The Ap4A phosphorylase activity decreased by 80% and the intracellular Ap4A concentration increased by a factor of five in the null mutant. These results with the null mutant agree with previous results reported by Plateau et al. (P. Plateau, M. Fromant, J.-M. Schmitter, J.-M. Buhler, and S. Blancquet, J. Bacteriol. 171:6437-6445, 1989). The paradoxical increase in Ap4A upon enhanced expression of APA1 indicates that the metabolic consequences of altered gene expression may be more complex than indicated solely by assay of enzymatic activity of the gene product.

  11. OsNucleolin1-L Expression in Arabidopsis Enhances Photosynthesis via Transcriptome Modification under Salt Stress Conditions.

    PubMed

    Udomchalothorn, Thanikarn; Plaimas, Kitiporn; Sripinyowanich, Siriporn; Boonchai, Chutamas; Kojonna, Thammaporn; Chutimanukul, Panita; Comai, Luca; Buaboocha, Teerapong; Chadchawan, Supachitra

    2017-04-01

    OsNUC1 encodes rice nucleolin, which has been shown to be involved in salt stress responses. Expression of the full-length OsNUC1 gene in Arabidopsis resulted in hypersensitivity to ABA during germination. Transcriptome analysis of the transgenic lines, in comparison with the wild type, revealed that the RNA abundance of >1,900 genes was significantly changed under normal growth conditions, while under salt stress conditions the RNAs of 999 genes were found to be significantly regulated. Gene enrichment analysis showed that under normal conditions OsNUC1 resulted in repression of genes involved in photosynthesis, while in salt stress conditions OsNUC1 increased expression of the genes involved in the light-harvesting complex. Correspondingly, the net rate of photosynthesis of the transgenic lines was increased under salt stress. Transgenic rice lines with overexpression of the OsNUC1-L gene were generated and tested for photosynthetic performance under salt stress conditions. The transgenic rice lines treated with salt stress at the booting stage had a higher photosynthetic rate and stomatal conductance in flag leaves and second leaves than the wild type. Moreover, higher contents of Chl a and carotenoids were found in flag leaves of the transgenic rice. These results suggest a role for OsNUC1 in the modification of the transcriptome, especially the gene transcripts responsible for photosynthesis, leading to stabilization of photosynthesis under salt stress conditions. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Extensive alterations of the whole-blood transcriptome are associated with body mass index: results of an mRNA profiling study involving two large population-based cohorts.

    PubMed

    Homuth, Georg; Wahl, Simone; Müller, Christian; Schurmann, Claudia; Mäder, Ulrike; Blankenberg, Stefan; Carstensen, Maren; Dörr, Marcus; Endlich, Karlhans; Englbrecht, Christian; Felix, Stephan B; Gieger, Christian; Grallert, Harald; Herder, Christian; Illig, Thomas; Kruppa, Jochen; Marzi, Carola S; Mayerle, Julia; Meitinger, Thomas; Metspalu, Andres; Nauck, Matthias; Peters, Annette; Rathmann, Wolfgang; Reinmaa, Eva; Rettig, Rainer; Roden, Michael; Schillert, Arne; Schramm, Katharina; Steil, Leif; Strauch, Konstantin; Teumer, Alexander; Völzke, Henry; Wallaschofski, Henri; Wild, Philipp S; Ziegler, Andreas; Völker, Uwe; Prokisch, Holger; Zeller, Tanja

    2015-10-15

    Obesity, defined as pathologically increased body mass index (BMI), is strongly related to an increased risk for numerous common cardiovascular and metabolic diseases. It is particularly associated with insulin resistance, hyperglycemia, and systemic oxidative stress and represents the most important risk factor for type 2 diabetes (T2D). However, the pathophysiological mechanisms underlying these associations are still not completely understood. Therefore, in order to identify potentially disease-relevant BMI-associated gene expression signatures, a transcriptome-wide association study (TWAS) on BMI was performed. Whole-blood mRNA levels determined by array-based transcriptional profiling were correlated with BMI in two large independent population-based cohort studies (KORA F4 and SHIP-TREND) comprising a total of 1977 individuals. Extensive alterations of the whole-blood transcriptome were associated with BMI: More than 3500 transcripts exhibited significant positive or negative BMI-correlation. Three major whole-blood gene expression signatures associated with increased BMI were identified. The three signatures suggested: i) a ratio shift from mature erythrocytes towards reticulocytes, ii) decreased expression of several genes essentially involved in the transmission and amplification of the insulin signal, and iii) reduced expression of several key genes involved in the defence against reactive oxygen species (ROS). Whereas the first signature confirms published results, the other two provide possible mechanistic explanations for well-known epidemiological findings under conditions of increased BMI, namely attenuated insulin signaling and increased oxidative stress. The putatively causative BMI-dependent down-regulation of the expression of numerous genes on the mRNA level represents a novel finding. BMI-associated negative transcriptional regulation of insulin signaling and oxidative stress management provide new insights into the pathogenesis of metabolic syndrome and T2D.

  13. A tetracycline inducible expression vector for Corynebacterium glutamicum allowing tightly regulable gene expression.

    PubMed

    Lausberg, Frank; Chattopadhyay, Ava Rebecca; Heyer, Antonia; Eggeling, Lothar; Freudl, Roland

    2012-09-01

    Here we report on the construction of a tetracycline inducible expression vector that allows a tightly regulable gene expression in Corynebacterium glutamicum which is used in industry for production of small molecules such as amino acids. Using the green fluorescent protein (GFP) as a reporter protein we show that this vector, named pCLTON1, is characterized by tight repression under non-induced conditions as compared to a conventional IPTG inducible expression vector, and that it allows gradual GFP synthesis upon gradual increase of anhydrotetracycline addition. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis.

    PubMed

    Zhang, Cui; Li, Liang; Jiang, Yuanda; Wang, Cuicui; Geng, Baoming; Wang, Yanqiu; Chen, Jianling; Liu, Fei; Qiu, Peng; Zhai, Guangjie; Chen, Ping; Quan, Renfu; Wang, Jinfu

    2018-03-13

    Bone formation is linked with osteogenic differentiation of mesenchymal stem cells (MSCs) in the bone marrow. Microgravity in spaceflight is known to reduce bone formation. In this study, we used a real microgravity environment of the SJ-10 Recoverable Scientific Satellite to examine the effects of space microgravity on the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs). hMSCs were induced toward osteogenic differentiation for 2 and 7 d in a cell culture device mounted on the SJ-10 Satellite. The satellite returned to Earth after going through space experiments in orbit for 12 d, and cell samples were harvested and analyzed for differentiation potentials. The results showed that space microgravity inhibited osteogenic differentiation and resulted in adipogenic differentiation, even under osteogenic induction conditions. Under space microgravity, the expression of 10 genes specific for osteogenesis decreased, including collagen family members, alkaline phosphatase ( ALP), and runt-related transcription factor 2 ( RUNX2), whereas the expression of 4 genes specific for adipogenesis increased, including adipsin ( CFD), leptin ( LEP), CCAAT/enhancer binding protein β ( CEBPB), and peroxisome proliferator-activated receptor-γ ( PPARG). In the analysis of signaling pathways specific for osteogenesis, we found that the expression and activity of RUNX2 was inhibited, expression of bone morphogenetic protein-2 ( BMP2) and activity of SMAD1/5/9 were decreased, and activity of focal adhesion kinase (FAK) and ERK-1/2 declined significantly under space microgravity. These data indicate that space microgravity plays a dual role by decreasing RUNX2 expression and activity through the BMP2/SMAD and integrin/FAK/ERK pathways. In addition, we found that space microgravity increased p38 MAPK and protein kinase B (AKT) activities, which are important for the promotion of adipogenic differentiation of hMSCs. Space microgravity significantly decreased the expression of Tribbles homolog 3 ( TRIB3), a repressor of adipogenic differentiation. Y15, a specific inhibitor of FAK activity, was used to inhibit the activity of FAK under normal gravity; Y15 decreased protein expression of TRIB3. Therefore, it appears that space microgravity decreased FAK activity and thereby reduced TRIB3 expression and derepressed AKT activity. Under space microgravity, the increase in p38 MAPK activity and the derepression of AKT activity seem to synchronously lead to the activation of the signaling pathway specifically promoting adipogenesis.-Zhang, C., Li, L., Jiang, Y., Wang, C., Geng, B., Wang, Y., Chen, J., Liu, F., Qiu, P., Zhai, G., Chen, P., Quan, R., Wang, J. Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimo, Naoki; Matsuoka, Taka-aki, E-mail: matsuoka@endmet.med.osaka-u.ac.jp; Miyatsuka, Takeshi

    Alleviation of hyperglycaemia and hyperlipidemia improves pancreatic β-cell function in type 2 diabetes. However, the underlying molecular mechanisms are still not well clarified. In this study, we aimed to elucidate how the expression alterations of key β-cell factors are altered by the short-term selective alleviation of glucotoxicity or lipotoxicity. We treated db/db mice for one week with empagliflozin and/or bezafibrate to alleviate glucotoxicity and/or liptotoxicity, respectively. The gene expression levels of Pdx1 and Mafa, and their potential targets, insulin 1, Slc2a2, and Glp1r, were higher in the islets of empagliflozin-treated mice, and levels of insulin 2 were higher in micemore » treated with both reagents, than in untreated mice. Moreover, compared to the pretreatment levels, Mafa and insulin 1 expression increased in empagliflozin-treated mice, and Slc2a2 increased in combination-treated mice. In addition, empagliflozin treatment enhanced β-cell proliferation assessed by Ki-67 immunostaining. Our date clearly demonstrated that the one-week selective alleviation of glucotoxicity led to the better expression levels of the key β-cell factors critical for β-cell function over pretreatment levels, and that the alleviation of lipotoxicity along with glucotoxicity augmented the favorable effects under diabetic conditions. - Highlights: • One-week selective reduction of gluco- and lipo-toxicity in db/db mice was performed. • Selective glucotoxicity reduction increases key pancreatic β-cell factors expression. • Selective glucotoxicity reduction improves β-cell factors over pretreatment levels. • Selective glucotoxicity reduction turns β-cell mass toward increase. • Lipotoxicity reduction has additive effects on glucotoxicity reduction.« less

  16. Protection by sulforaphane from type 1 diabetes-induced testicular apoptosis is associated with the up-regulation of Nrf2 expression and function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Xin; Bai, Yang; Zhang, Zhiguo

    Diabetes-induced testicular apoptosis is predominantly due to increased oxidative stress. The nuclear factor-erythroid 2-related factor 2 (Nrf2), as a master transcription factor in controlling anti-oxidative systems, is able to be induced by sulforaphane (SFN). To examine whether SFN prevents testicular apoptosis, type 1 diabetic mouse model was induced with multiple low-dose streptozotocin. Diabetic and age-matched control mice were treated with and without SFN at 0.5 mg/kg daily in five days of each week for 3 months and then kept until 6 months. Diabetes significantly increased testicular apoptosis that was associated with endoplasmic reticulum stress and mitochondrial cell death pathways, shownmore » by the increased expression of C/EBP homologous protein (CHOP), cleaved caspase-12, Bax to Bcl2 expression ratio, and cleaved caspase-3. Diabetes also significantly increased testicular oxidative damage, inflammation and fibrosis, and decreased germ cell proliferation. All these diabetic effects were significantly prevented by SFN treatment for the first 3 months, and the protective effect could be sustained at 3 months after SFN treatment. SFN was able to up-regulate Nrf2 expression and function. The latter was reflected by the increased phosphorylation of Nrf2 at Ser40 and expression of Nrf2 downstream antioxidants at mRNA and protein levels. These results suggest that type 1 diabetes significantly induced testicular apoptosis and damage along with increasing oxidative stress and cell death and suppressing Nrf2 expression and function. SFN is able to prevent testicular oxidative damage and apoptosis in type 1 diabetes mice, which may be associated with the preservation of testicular Nrf2 expression and function under diabetic condition. - Highlights: • Sulforaphane (SFN) could attenuate diabetes-induced germ cell apoptosis. • SFN could preserve germ cell proliferation under diabetic conditions. • SFN testicular protection was sustained until 3 months after administration. • SFN prevents testicular oxidative damage and inflammation in diabetic mice. • SFN testicular protection from diabetic damage is associated with Nrf2 activation.« less

  17. Cubilin expression is monoallelic and epigenetically augmented via PPARs

    PubMed Central

    2013-01-01

    Background Cubilin is an endocytic receptor that is necessary for renal and intestinal absorption of a range of ligands. Endocytosis mediated by cubilin and its co-receptor megalin is the principal mechanism for proximal tubule reabsorption of proteins from the glomerular filtrate. Cubilin is also required for intestinal endocytosis of intrinsic factor-vitamin B12 complex. Despite its importance, little is known about the regulation of cubilin expression. Results Here we show that cubilin expression is under epigenetic regulation by at least two processes. The first process involves inactivation of expression of one of the cubilin alleles. This monoallelic expression state could not be transformed to biallelic by inhibiting DNA methylation or histone deacetylation. The second process involves transcriptional regulation of cubilin by peroxisome proliferator-activated receptor (PPAR) transcription factors that are themselves regulated by DNA methylation and histone deacetylation. This is supported by findings that inhibitors of DNA methylation and histone deacetylation, 5Aza and TSA, increase cubilin mRNA and protein in renal and intestinal cell lines. Not only was the expression of PPARα and γ inducible by 5Aza and TSA, but the positive effects of TSA and 5Aza on cubilin expression were also dependent on both increased PPAR transcription and activation. Additionally, 5Aza and TSA had similar effects on the expression of the cubilin co-receptor, megalin. Conclusions Together, these findings reveal that cubilin and megalin mRNA expression is under epigenetic control and thus point to new avenues for overcoming pathological suppression of these genes through targeting of epigenetic regulatory processes. PMID:23773363

  18. Expressed sequence tags from heat-shocked seagrass Zostera noltii (Hornemann) from its southern distribution range.

    PubMed

    Massa, Sónia I; Pearson, Gareth A; Aires, Tânia; Kube, Michael; Olsen, Jeanine L; Reinhardt, Richard; Serrão, Ester A; Arnaud-Haond, Sophie

    2011-09-01

    Predicted global climate change threatens the distributional ranges of species worldwide. We identified genes expressed in the intertidal seagrass Zostera noltii during recovery from a simulated low tide heat-shock exposure. Five Expressed Sequence Tag (EST) libraries were compared, corresponding to four recovery times following sub-lethal temperature stress, and a non-stressed control. We sequenced and analyzed 7009 sequence reads from 30min, 2h, 4h and 24h after the beginning of the heat-shock (AHS), and 1585 from the control library, for a total of 8594 sequence reads. Among 51 Tentative UniGenes (TUGs) exhibiting significantly different expression between libraries, 19 (37.3%) were identified as 'molecular chaperones' and were over-expressed following heat-shock, while 12 (23.5%) were 'photosynthesis TUGs' generally under-expressed in heat-shocked plants. A time course analysis of expression showed a rapid increase in expression of the molecular chaperone class, most of which were heat-shock proteins; which increased from 2 sequence reads in the control library to almost 230 in the 30min AHS library, followed by a slow decrease during further recovery. In contrast, 'photosynthesis TUGs' were under-expressed 30min AHS compared with the control library, and declined progressively with recovery time in the stress libraries, with a total of 29 sequence reads 24h AHS, compared with 125 in the control. A total of 4734 TUGs were screened for EST-Single Sequence Repeats (EST-SSRs) and 86 microsatellites were identified. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Hsp27 promotes ABCA1 expression and cholesterol efflux through the PI3K/PKCζ/Sp1 pathway in THP-1 macrophages.

    PubMed

    Kuang, Hai-Jun; Zhao, Guo-Jun; Chen, Wu-Jun; Zhang, Min; Zeng, Gao-Feng; Zheng, Xi-Long; Tang, Chao-Ke

    2017-09-05

    Heat shock protein 27 (Hsp27) is a putative biomarker and therapeutic target in atherosclerosis. This study was to explore the potential mechanisms underlying Hsp27 effects on ATP-binding cassette transporter A1 (ABCA1) expression and cellular cholesterol efflux. THP-1 macrophage-derived foam cells were infected with adenovirus to express wild-type Hsp27, hyper-phosphorylated Hsp27 mimic (3D Hsp27), antisense Hsp27 or hypo-phosphorylated Hsp27 mimic (3A Hsp27). Wild-type and 3D Hsp27 were found to up-regulate ABCA1 mRNA and protein expression and increase cholesterol efflux from cells. Expression of antisense or 3A Hsp27 suppressed the expression of ABCA1 and cholesterol efflux. Furthermore, over-expression of wild-type and 3D Hsp27 significantly increased the levels of phosphorylated specificity protein 1 (Sp1), protein kinase C ζ (PKCζ) and phosphatidylinositol 3-kinase (PI3K). In addition, the up-regulation of ABCA1 expression and cholesterol efflux induced by 3D Hsp27 was suppressed by inhibition of Sp1, PKCζ and PI3K with specific kinase inhibitors. Taken together, our results revealed that Hsp27 may up-regulate the expression of ABCA1 and promotes cholesterol efflux through activation of the PI3K/PKCζ/Sp1 signal pathway in THP-1 macrophage-derived foam cells. Our findings may partly explain the mechanisms underlying the anti-atherogenic effect of Hsp27. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Identification of drought-response genes and a study of their expression during sucrose accumulation and water deficit in sugarcane culms.

    PubMed

    Iskandar, Hayati M; Casu, Rosanne E; Fletcher, Andrew T; Schmidt, Susanne; Xu, Jingsheng; Maclean, Donald J; Manners, John M; Bonnett, Graham D

    2011-01-13

    The ability of sugarcane to accumulate high concentrations of sucrose in its culm requires adaptation to maintain cellular function under the high solute load. We have investigated the expression of 51 genes implicated in abiotic stress to determine their expression in the context of sucrose accumulation by studying mature and immature culm internodes of a high sucrose accumulating sugarcane cultivar. Using a sub-set of eight genes, expression was examined in mature internode tissues of sugarcane cultivars as well as ancestral and more widely related species with a range of sucrose contents. Expression of these genes was also analysed in internode tissue from a high sucrose cultivar undergoing water deficit stress to compare effects of sucrose accumulation and water deficit. A sub-set of stress-related genes that are potentially associated with sucrose accumulation in sugarcane culms was identified through correlation analysis, and these included genes encoding enzymes involved in amino acid metabolism, a sugar transporter and a transcription factor. Subsequent analysis of the expression of these stress-response genes in sugarcane plants that were under water deficit stress revealed a different transcriptional profile to that which correlated with sucrose accumulation. For example, genes with homology to late embryogenesis abundant-related proteins and dehydrin were strongly induced under water deficit but this did not correlate with sucrose content. The expression of genes encoding proline biosynthesis was associated with both sucrose accumulation and water deficit, but amino acid analysis indicated that proline was negatively correlated with sucrose concentration, and whilst total amino acid concentrations increased about seven-fold under water deficit, the relatively low concentration of proline suggested that it had no osmoprotectant role in sugarcane culms. The results show that while there was a change in stress-related gene expression associated with sucrose accumulation, different mechanisms are responding to the stress induced by water deficit, because different genes had altered expression under water deficit.

  1. Identification of drought-response genes and a study of their expression during sucrose accumulation and water deficit in sugarcane culms

    PubMed Central

    2011-01-01

    Background The ability of sugarcane to accumulate high concentrations of sucrose in its culm requires adaptation to maintain cellular function under the high solute load. We have investigated the expression of 51 genes implicated in abiotic stress to determine their expression in the context of sucrose accumulation by studying mature and immature culm internodes of a high sucrose accumulating sugarcane cultivar. Using a sub-set of eight genes, expression was examined in mature internode tissues of sugarcane cultivars as well as ancestral and more widely related species with a range of sucrose contents. Expression of these genes was also analysed in internode tissue from a high sucrose cultivar undergoing water deficit stress to compare effects of sucrose accumulation and water deficit. Results A sub-set of stress-related genes that are potentially associated with sucrose accumulation in sugarcane culms was identified through correlation analysis, and these included genes encoding enzymes involved in amino acid metabolism, a sugar transporter and a transcription factor. Subsequent analysis of the expression of these stress-response genes in sugarcane plants that were under water deficit stress revealed a different transcriptional profile to that which correlated with sucrose accumulation. For example, genes with homology to late embryogenesis abundant-related proteins and dehydrin were strongly induced under water deficit but this did not correlate with sucrose content. The expression of genes encoding proline biosynthesis was associated with both sucrose accumulation and water deficit, but amino acid analysis indicated that proline was negatively correlated with sucrose concentration, and whilst total amino acid concentrations increased about seven-fold under water deficit, the relatively low concentration of proline suggested that it had no osmoprotectant role in sugarcane culms. Conclusions The results show that while there was a change in stress-related gene expression associated with sucrose accumulation, different mechanisms are responding to the stress induced by water deficit, because different genes had altered expression under water deficit. PMID:21226964

  2. Excess fertilizer responsive miRNAs revealed in Linum usitatissimum L.

    PubMed

    Melnikova, Nataliya V; Dmitriev, Alexey A; Belenikin, Maxim S; Speranskaya, Anna S; Krinitsina, Anastasia A; Rachinskaia, Olga A; Lakunina, Valentina A; Krasnov, George S; Snezhkina, Anastasiya V; Sadritdinova, Asiya F; Uroshlev, Leonid A; Koroban, Nadezda V; Samatadze, Tatiana E; Amosova, Alexandra V; Zelenin, Alexander V; Muravenko, Olga V; Bolsheva, Nadezhda L; Kudryavtseva, Anna V

    2015-02-01

    Effective fertilizer application is necessary to increase crop yields and reduce risk of plant overdosing. It is known that expression level of microRNAs (miRNAs) alters in plants under different nutrient concentrations in soil. The aim of our study was to identify and characterize miRNAs with expression alterations under excessive fertilizer in agriculturally important crop - flax (Linum usitatissimum L.). We have sequenced small RNAs in flax grown under normal and excessive fertilizer using Illumina GAIIx. Over 14 million raw reads was obtained for two small RNA libraries. 84 conserved miRNAs from 20 families were identified. Differential expression was revealed for several flax miRNAs under excessive fertilizer according to high-throughput sequencing data. For 6 miRNA families (miR395, miR169, miR408, miR399, miR398 and miR168) expression level alterations were evaluated on the extended sampling using qPCR. Statistically significant up-regulation was revealed for miR395 under excessive fertilizer. It is known that target genes of miR395 are involved in sulfate uptake and assimilation. However, according to our data alterations of the expression level of miR395 could be associated not only with excess sulfur application, but also with redundancy of other macro- and micronutrients. Furthermore expression level was evaluated for miRNAs and their predicted targets. The negative correlation between miR399 expression and expression of its predicted target ubiquitin-conjugating enzyme E2 gene was shown in flax for the first time. So we suggested miR399 involvement in phosphate regulation in L. usitatissimum. Revealed in our study expression alterations contribute to miRNA role in flax response to excessive fertilizer. Copyright © 2014 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  3. Integrated Analysis of the Effects of Cold and Dehydration on Rice Metabolites, Phytohormones, and Gene Transcripts1[W][OPEN

    PubMed Central

    Maruyama, Kyonoshin; Urano, Kaoru; Yoshiwara, Kyouko; Morishita, Yoshihiko; Sakurai, Nozomu; Suzuki, Hideyuki; Kojima, Mikiko; Sakakibara, Hitoshi; Shibata, Daisuke; Saito, Kazuki; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2014-01-01

    Correlations between gene expression and metabolite/phytohormone levels under abiotic stress conditions have been reported for Arabidopsis (Arabidopsis thaliana). However, little is known about these correlations in rice (Oryza sativa ‘Nipponbare’), despite its importance as a model monocot. We performed an integrated analysis to clarify the relationships among cold- and dehydration-responsive metabolites, phytohormones, and gene transcription in rice. An integrated analysis of metabolites and gene expression indicated that several genes encoding enzymes involved in starch degradation, sucrose metabolism, and the glyoxylate cycle are up-regulated in rice plants exposed to cold or dehydration and that these changes are correlated with the accumulation of glucose (Glc), fructose, and sucrose. In particular, high expression levels of genes encoding isocitrate lyase and malate synthase in the glyoxylate cycle correlate with increased Glc levels in rice, but not in Arabidopsis, under dehydration conditions, indicating that the regulation of the glyoxylate cycle may be involved in Glc accumulation under dehydration conditions in rice but not Arabidopsis. An integrated analysis of phytohormones and gene transcripts revealed an inverse relationship between abscisic acid (ABA) signaling and cytokinin (CK) signaling under cold and dehydration stresses; these stresses increase ABA signaling and decrease CK signaling. High levels of Oryza sativa 9-cis-epoxycarotenoid dioxygenase transcripts correlate with ABA accumulation, and low levels of Cytochrome P450 (CYP) 735A transcripts correlate with decreased levels of a CK precursor in rice. This reduced expression of CYP735As occurs in rice but not Arabidopsis. Therefore, transcriptional regulation of CYP735As might be involved in regulating CK levels under cold and dehydration conditions in rice but not Arabidopsis. PMID:24515831

  4. Activation of Notch1 inhibits medial edge epithelium apoptosis in all-trans retinoic acid-induced cleft palate in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yadong; Dong, Shiyi; Wang, Weicai

    Administration of all-trans retinoic acid (atRA) on E12.0 (embryonic day 12.0) leads to failure of medial edge epithelium (MEE) disappearance and cleft palate. However, the molecular mechanism underlying the relationship between atRA and MEE remains to be identified. In this study, atRA (200 mg/kg) administered by gavage induced a 75% incidence of cleft palate in C57BL/6 mice. Notch1 was up-regulated in MEE cells in the atRA-treated group compared with the controls at E15.0, together with reduced apoptosis and elevated proliferation. Next, we investigated the mechanisms underlying atRA, Notch1 and MEE degradation in palate organ culture. Our results revealed that down-regulation ofmore » Notch1 partially rescued the inhibition of atRA-induced palate fusion. Molecular analysis indicated that atRA increased the expression of Notch1 and Rbpj and decreased the expression of P21. In addition, depletion of Notch1 expression decreased the expression of Rbpj and increased the expression of P21. Moreover, inhibition of Rbpj expression partially reversed atRA-induced MEE persistence and increased P21 expression. These findings demonstrate that atRA inhibits MEE degradation, which in turn induces a cleft palate, possibly through the Notch1/RBPjk/P21 signaling pathway. - Highlights: • atRA exposure on E12.0 induced MEE persistence and cleft palate. • Notch1 was up-regulated in MEE cells in the atRA-treated embryos. • atRA inhibits MEE degradation, which in turn induces cleft palate, possibly through the Notch1/RBPjk/P21 signaling pathway.« less

  5. Double promoter expression systems for recombinant protein production by industrial microorganisms.

    PubMed

    Öztürk, Sibel; Ergün, Burcu Gündüz; Çalık, Pınar

    2017-10-01

    Using double promoter expression systems is a promising approach to increase heterologous protein production. In this review, current double promoter expression systems for the production of recombinant proteins (r-proteins) by industrially important bacteria, Bacillus subtilis and Escherichia coli; and yeasts, Saccharomyces cerevisiae and Pichia pastoris, are discussed by assessing their potentials and drawbacks. Double promoter expression systems need to be designed to maintain a higher specific product formation rate within the production domain. While bacterial double promoter systems have been constructed as chimeric tandem promoters, yeast dual promoter systems have been developed as separate expression cassettes. To increase production and productivity, the optimal transcriptional activity should be justified either by simultaneously satisfying the requirements of both promoters, or by consecutively stimulating the changeover from one to another in a biphasic process or via successive-iterations. Thus, considering the dynamics of a fermentation process, double promoters can be classified according to their operational mechanisms, as: i) consecutively operating double promoter systems, and ii) simultaneously operating double promoter systems. Among these metabolic design strategies, extending the expression period with two promoters activated under different conditions, or enhancing the transcriptional activity with two promoters activated under similar conditions within the production domain, can be applied independently from the host. Novel studies with new insights, which aim a rational systematic design and construction of dual promoter expression vectors with tailored transcriptional activity, will empower r-protein production with enhanced production and productivity. Finally, the current state-of-the-art review emphasizes the advantages of double promoter systems along with the necessity for discovering new promoters for the development of more effective and adaptive processes to meet the increasing demand of r-protein industry.

  6. Hepatitis C virus utilizes VLDLR as a novel entry pathway.

    PubMed

    Ujino, Saneyuki; Nishitsuji, Hironori; Hishiki, Takayuki; Sugiyama, Kazuo; Takaku, Hiroshi; Shimotohno, Kunitada

    2016-01-05

    Various host factors are involved in the cellular entry of hepatitis C virus (HCV). In addition to the factors previously reported, we discovered that the very-low-density lipoprotein receptor (VLDLR) mediates HCV entry independent of CD81. Culturing Huh7.5 cells under hypoxic conditions significantly increased HCV entry as a result of the expression of VLDLR, which was not expressed under normoxic conditions in this cell line. Ectopic VLDLR expression conferred susceptibility to HCV entry of CD81-deficient Huh7.5 cells. Additionally, VLDLR-mediated HCV entry was not affected by the knockdown of cellular factors known to act as HCV receptors or HCV entry factors. Because VLDLR is expressed in primary human hepatocytes, our results suggest that VLDLR functions in vivo as an HCV receptor independent of canonical CD81-mediated HCV entry.

  7. Low-Intensity Extracorporeal Shock Wave Therapy Enhances Brain-Derived Neurotrophic Factor Expression through PERK/ATF4 Signaling Pathway.

    PubMed

    Wang, Bohan; Ning, Hongxiu; Reed-Maldonado, Amanda B; Zhou, Jun; Ruan, Yajun; Zhou, Tie; Wang, Hsun Shuan; Oh, Byung Seok; Banie, Lia; Lin, Guiting; Lue, Tom F

    2017-02-16

    Low-intensity extracorporeal shock wave therapy (Li-ESWT) is used in the treatment of erectile dysfunction, but its mechanisms are not well understood. Previously, we found that Li-ESWT increased the expression of brain-derived neurotrophic factor (BDNF). Here we assessed the underlying signaling pathways in Schwann cells in vitro and in penis tissue in vivo after nerve injury. The result indicated that BDNF were significantly increased by the Li-ESWT after nerve injury, as well as the expression of BDNF in Schwann cells (SCs, RT4-D6P2T) in vitro. Li-ESWT activated the protein kinase RNA-like endoplasmic reticulum (ER) kinase (PERK) pathway by increasing the phosphorylation levels of PERK and eukaryotic initiation factor 2a (eIF2α), and enhanced activating transcription factor 4 (ATF4) in an energy-dependent manner. In addition, GSK2656157-an inhibitor of PERK-effectively inhibited the effect of Li-ESWT on the phosphorylation of PERK, eIF2α, and the expression of ATF4. Furthermore, silencing ATF4 dramatically attenuated the effect of Li-ESWT on the expression of BDNF, but had no effect on hypoxia-inducible factor (HIF)1α or glial cell-derived neurotrophic factor (GDNF) in Schwann cells. In conclusion, our findings shed new light on the underlying mechanisms by which Li-ESWT may stimulate the expression of BDNF through activation of PERK/ATF4 signaling pathway. This information may help to refine the use of Li-ESWT to further improve its clinical efficacy.

  8. Low-Intensity Extracorporeal Shock Wave Therapy Enhances Brain-Derived Neurotrophic Factor Expression through PERK/ATF4 Signaling Pathway

    PubMed Central

    Wang, Bohan; Ning, Hongxiu; Reed-Maldonado, Amanda B.; Zhou, Jun; Ruan, Yajun; Zhou, Tie; Wang, Hsun Shuan; Oh, Byung Seok; Banie, Lia; Lin, Guiting; Lue, Tom F.

    2017-01-01

    Low-intensity extracorporeal shock wave therapy (Li-ESWT) is used in the treatment of erectile dysfunction, but its mechanisms are not well understood. Previously, we found that Li-ESWT increased the expression of brain-derived neurotrophic factor (BDNF). Here we assessed the underlying signaling pathways in Schwann cells in vitro and in penis tissue in vivo after nerve injury. The result indicated that BDNF were significantly increased by the Li-ESWT after nerve injury, as well as the expression of BDNF in Schwann cells (SCs, RT4-D6P2T) in vitro. Li-ESWT activated the protein kinase RNA-like endoplasmic reticulum (ER) kinase (PERK) pathway by increasing the phosphorylation levels of PERK and eukaryotic initiation factor 2a (eIF2α), and enhanced activating transcription factor 4 (ATF4) in an energy-dependent manner. In addition, GSK2656157—an inhibitor of PERK—effectively inhibited the effect of Li-ESWT on the phosphorylation of PERK, eIF2α, and the expression of ATF4. Furthermore, silencing ATF4 dramatically attenuated the effect of Li-ESWT on the expression of BDNF, but had no effect on hypoxia-inducible factor (HIF)1α or glial cell-derived neurotrophic factor (GDNF) in Schwann cells. In conclusion, our findings shed new light on the underlying mechanisms by which Li-ESWT may stimulate the expression of BDNF through activation of PERK/ATF4 signaling pathway. This information may help to refine the use of Li-ESWT to further improve its clinical efficacy. PMID:28212323

  9. Aquaporin Expression and Water Transport Pathways inside Leaves Are Affected by Nitrogen Supply through Transpiration in Rice Plants

    PubMed Central

    Ding, Lei; Li, Yingrui; Gao, Limin; Lu, Zhifeng; Wang, Min; Ling, Ning; Shen, Qirong; Guo, Shiwei

    2018-01-01

    The photosynthetic rate increases under high-N supply, resulting in a large CO2 transport conductance in mesophyll cells. It is less known that water movement is affected by nitrogen supply in leaves. This study investigated whether the expression of aquaporin and water transport were affected by low-N (0.7 mM) and high-N (7 mM) concentrations in the hydroponic culture of four rice varieties: (1) Shanyou 63 (SY63), a hybrid variant of the indica species; (2) Yangdao 6 (YD6), a variant of indica species; (3) Zhendao 11 (ZD11), a hybrid variant of japonica species; and (4) Jiuyou 418 (JY418), another hybrid of the japonica species. Both the photosynthetic and transpiration rate were increased by the high-N supply in the four varieties. The expressions of aquaporins, plasma membrane intrinsic proteins (PIPs), and tonoplast membrane intrinsic protein (TIP) were higher in high-N than low-N leaves, except in SY63. Leaf hydraulic conductance (Kleaf) was lower in high-N than low-N leaves in SY63, while Kleaf increased under high-N supply in the YD6 variant. Negative correlations were observed between the expression of aquaporin and the transpiration rate in different varieties. Moreover, there was a significant negative correlation between transpiration rate and intercellular air space. In conclusion, the change in expression of aquaporins could affect Kleaf and transpiration. A feedback effect of transpiration would regulate aquaporin expression. The present results imply a coordination of gas exchange with leaf hydraulic conductance. PMID:29337869

  10. Egr-1 and serum response factor are involved in growth factors- and serum-mediated induction of E2-EPF UCP expression that regulates the VHL-HIF pathway.

    PubMed

    Lim, Jung Hwa; Jung, Cho-Rok; Lee, Chan-Hee; Im, Dong-Soo

    2008-11-01

    E2-EPF ubiquitin carrier protein (UCP) has been shown to be highly expressed in common human cancers and target von Hippel-Lindau (VHL) for proteosomal degradation in cells, thereby stabilizing hypoxia-inducible factor (HIF)-1alpha. Here, we investigated cellular factors that regulate the expression of UCP gene. Promoter deletion assay identified binding sites for early growth response-1 (Egr-1) and serum response factor (SRF) in the UCP promoter. Hepatocyte or epidermal growth factor (EGF), or phorbol 12-myristate 13-acetate induced UCP expression following early induction of Egr-1 expression in HeLa cells. Serum increased mRNA and protein levels of SRF and UCP in the cell. By electrophoretic mobility shift and chromatin immunoprecipitation assays, sequence-specific DNA-binding of Egr-1 and SRF to the UCP promoter was detected in nuclear extracts from HeLa cells treated with EGF and serum, respectively. Overexpression of Egr-1 or SRF increased UCP expression. RNA interference-mediated depletion of endogenous Egr-1 or SRF impaired EGF- or serum-mediated induction of UCP expression, which was required for cancer cell proliferation. Systemic delivery of EGF into mice also increased UCP expression following early induction of Egr-1 expression in mouse liver. The induced UCP expression by the growth factors or serum increased HIF-1alpha protein level under non-hypoxic conditions, suggesting that the Egr-1/SRF-UCP-VHL pathway is in part responsible for the increased HIF-1alpha protein level in vitro and in vivo. Thus, growth factors and serum induce expression of Egr-1 and SRF, respectively, which in turn induces UCP expression that positively regulates cancer cell growth.

  11. GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana.

    PubMed

    Sawa, Mariko; Kay, Steve A

    2011-07-12

    Plants perceive environmental signals such as day length and temperature to determine optimal timing for the transition from vegetative to floral stages. Arabidopsis flowers under long-day conditions through the CONSTANS (CO)-FLOWERING LOCUS T (FT) regulatory module. It is thought that the environmental cues for photoperiodic control of flowering are initially perceived in the leaves. We have previously shown that GIGANTEA (GI) regulates the timing of CO expression, together with FLAVIN-BINDING, KELCH REPEAT, F BOX protein 1. Normally, CO and FT are expressed exclusively in vascular bundles, whereas GI is expressed in various tissues. To better elucidate the role of tissue-specific expression of GI in the flowering pathway, we established transgenic lines in which GI is expressed exclusively in mesophyll, vascular bundles, epidermis, shoot apical meristem, or root. We found that GI expressed in either mesophyll or vascular bundles rescues the late-flowering phenotype of the gi-2 loss-of-function mutant under both short-day and long-day conditions. Interestingly, GI expressed in mesophyll or vascular tissues increases FT expression without up-regulating CO expression under short-day conditions. Furthermore, we examined the interaction between GI and FT repressors in mesophyll. We found that GI can bind to three FT repressors: SHORT VEGETATIVE PHASE (SVP), TEMPRANILLO (TEM)1, and TEM2. Finally, our chromatin immunoprecipitation experiments showed that GI binds to FT promoter regions that are near the SVP binding sites. Taken together, our data further elucidate the multiple roles of GI in the regulation of flowering time.

  12. Elevated CO2 increases R gene-dependent resistance of Medicago truncatula against the pea aphid by up-regulating a heat shock gene.

    PubMed

    Sun, Yucheng; Guo, Huijuan; Yuan, Erliang; Ge, Feng

    2018-03-01

    Resistance against pathogens and herbivorous insects in many plant results from the expression of resistance (R) genes. Few reports, however, have considered the effects of elevated CO 2 on R gene-based resistance in plants. The current study determined the responses of two near isogenic Medicago truncatula genotypes (Jester has an R gene and A17 does not) to the pea aphid and elevated CO 2 in open-top chambers in the field. Aphid abundance, mean relative growth rate and feeding efficiency were increased by elevated CO 2 on A17 plants but were reduced on Jester plants. According to proteomic and gene expression data, elevated CO 2 enhanced pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) but decreased the effector-triggered immunity (ETI) in aphid-infested A17 plants. For aphid-infested Jester plants, by contrast, elevated CO 2 enhanced the ETI-related heat shock protein (HSP) 90 and its co-chaperones, the jasmonic acid (JA) signaling pathway, and ubiquitin-mediated proteolysis. In a loss-of-function experiment, silencing of the HSP90 gene in Jester plants impaired the JA signaling pathway and ubiquitin-mediated proteolysis against the aphid under ambient CO 2 , and negated the increased resistance against the aphid under elevated CO 2 . Our results suggest that increases in expression of HSP90 are responsible for the enhanced resistance against the aphid under elevated CO 2 . © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  13. Environmental effects on resistance gene expression in milk stage popcorn kernels and associations with mycotoxin production.

    PubMed

    Dowd, Patrick F; Johnson, Eric T

    2015-05-01

    Like other forms of maize, popcorn is subject to increased levels of contamination by a variety of different mycotoxins under stress conditions, although levels generally are less than dent maize under comparable stress. Gene array analysis was used to determine expression differences of disease resistance-associated genes in milk stage kernels from commercial popcorn fields over 3 years. Relatively lower expression of resistance gene types was noted in years with higher temperatures and lower rainfall, which was consistent with prior results for many previously identified resistance response-associated genes. The lower rates of expression occurred for genes such as chitinases, protease inhibitors, and peroxidases; enzymes involved in the synthesis of cell wall barriers and secondary metabolites; and regulatory proteins. However, expression of several specific resistance genes previously associated with mycotoxins, such as aflatoxin in dent maize, was not affected. Insect damage altered the spectrum of resistance gene expression differences compared to undamaged ears. Correlation analyses showed expression differences of some previously reported resistance genes that were highly associated with mycotoxin levels and included glucanases, protease inhibitors, peroxidases, and thionins.

  14. Autism Spectrum Disorder in the Second Year: Stability and Change in Syndrome Expression

    ERIC Educational Resources Information Center

    Chawarska, Katarzyna; Klin, Ami; Paul, Rhea; Volkmar, Fred

    2007-01-01

    Objectives: Increasing numbers of young children referred for a differential diagnosis of autism spectrum disorders (ASD) necessitates better understanding of the early syndrome expression and the utility of the existing state-of-the art diagnostic methods in this population. Method: Out of 31 infants under the age of 2 years referred for a…

  15. A transcriptional approach to unravel the connection between phospholipases A₂ and D and ABA signal in citrus under water stress.

    PubMed

    Romero, Paco; Lafuente, M Teresa; Alférez, Fernando

    2014-07-01

    The effect of water stress on the interplay between phospholipases (PL) A2 and D and ABA signalling was investigated in fruit and leaves from the sweet orange Navelate and its fruit-specific ABA-deficient mutant Pinalate by studying simultaneously expression of 5 PLD and 3 PLA2-encoding genes. In general, expression levels of PLD-encoding genes were higher at harvest in the flavedo (coloured outer part of the peel) from Pinalate. Moreover, a higher and transient increase in expression of CsPLDα, CsPLDβ, CsPLDδ and CsPLDζ was observed in the mutant as compared to Navelate fruit under water stress, which may reflect a mechanism of acclimation to water stress influenced by ABA deficiency. An early induction in CsPLDγ gene expression, when increase in peel damage during fruit storage was most evident, suggested a role for this gene in membrane degradation processes during water stress. Exogenous ABA on mutant fruit modified the expression of all PLD genes and reduced the expression of CsPLDα and CsPLDβ by 1 week to levels similar to those of Navelate, suggesting a repressor role of ABA on these genes. In general, CssPLA2α and β transcript levels were lower in flavedo from Pinalate than from Navelate fruit during the first 3 weeks of storage, suggesting that expression of these genes also depends at least partially on ABA levels. Patterns of expression of PLD and PLA2-encoding genes were very similar in Navelate and Pinalate leaves, which have similar ABA levels, when comparing both RH conditions. Results comparison with other from previous works in the same experimental systems helped to decipher the effect of the stress severity on the differential response of some of these genes under dehydration conditions and pointed out the interplay between PLA2 and PLD families and their connection with ABA signalling in citrus. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. The AMPK-related kinase SNARK regulates muscle mass and myocyte survival

    PubMed Central

    Lessard, Sarah J.; Rivas, Donato A.; So, Kawai; Koh, Ho-Jin; Queiroz, André Lima; Hirshman, Michael F.; Fielding, Roger A.; Goodyear, Laurie J.

    2015-01-01

    The maintenance of skeletal muscle mass is critical for sustaining health; however, the mechanisms responsible for muscle loss with aging and chronic diseases, such as diabetes and obesity, are poorly understood. We found that expression of a member of the AMPK-related kinase family, the SNF1-AMPK-related kinase (SNARK, also known as NUAK2), increased with muscle cell differentiation. SNARK expression increased in skeletal muscles from young mice exposed to metabolic stress and in muscles from healthy older human subjects. The regulation of SNARK expression in muscle with differentiation and physiological stress suggests that SNARK may function in the maintenance of muscle mass. Consistent with this hypothesis, decreased endogenous SNARK expression (using siRNA) in cultured muscle cells resulted in increased apoptosis and decreased cell survival under conditions of metabolic stress. Likewise, muscle-specific transgenic animals expressing a SNARK dominant-negative inactive mutant (SDN) had increased myonuclear apoptosis and activation of apoptotic mediators in muscle. Moreover, animals expressing SDN had severe, age-accelerated muscle atrophy and increased adiposity, consistent with sarcopenic obesity. Reduced SNARK activity, in vivo and in vitro, caused downregulation of the Rho kinase signaling pathway, a key mediator of cell survival. These findings reveal a critical role for SNARK in myocyte survival and the maintenance of muscle mass with age. PMID:26690705

  17. Melatonin enhances lipid production in Monoraphidium sp. QLY-1 under nitrogen deficiency conditions via a multi-level mechanism.

    PubMed

    Zhao, Yongteng; Li, Dafei; Xu, Jun-Wei; Zhao, Peng; Li, Tao; Ma, Huixian; Yu, Xuya

    2018-07-01

    In this study, melatonin (MT) promoted lipid accumulation in Monoraphidium sp. QLY-1 under nitrogen deficiency conditions. The lipid accumulation increased 1.22- and 1.36-fold compared with a nitrogen-starved medium and a normal BG-11 medium, respectively. The maximum lipid content was 51.38%. The reactive oxygen species (ROS) level in the presence of melatonin was lower than that in the control group, likely because of the high antioxidant activities. The application of melatonin upregulated the gibberellin acid (GA) production and rbcL and accD expression levels but downregulated the abscisic acid (ABA) content and pepc expression levels. These findings demonstrated that exogenous melatonin could further improve the lipid production in Monoraphidium sp. QLY-1 by regulating antioxidant systems, signalling molecules, and lipid biosynthesis-related gene expression under nitrogen deficiency conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. In-ovo green light photostimulation during different embryonic stages affect somatotropic axis.

    PubMed

    Dishon, L; Avital-Cohen, N; Zaguri, S; Bartman, J; Heiblum, R; Druyan, S; Porter, T E; Gumulka, M; Rozenboim, I

    2018-06-01

    Previous studies demonstrated that in-ovo photostimulation with monochromatic green light increased the somatotropic axis expression in broilers embryos. The objective of the current study was to detect the critical period for in-ovo GL photostimulation, in order to find the optimal targeted photostimulation period during the incubation process. Three hundred thirty-six fertile broiler eggs were divided into 4 groups. The first group was incubated under dark conditions as a negative control. The second incubated under intermittent monochromatic green light using light-emitting diode (LED) lamps with an intensity of 0.1 W\\m2 at shell level from d 0 of the incubation as a positive control. The third group incubated under intermittent monochromatic green light from d 10 of the incubation. The last group incubated under intermittent monochromatic green light from d 15 of the incubation. In-ovo green light photostimulation from embryonic d 0 (ED0) increased plasma growth hormone (GH), as well as hypothalamic growth hormone releasing hormone (GHRH) and liver growth hormone receptor (GHR) and insulin-like growth factor-1 (IGF-1) mRNA levels. In-ovo green light photostimulation from ED10 increased the GH plasma levels compared to the negative control group, without affecting somatotropic axis mRNA genes expressions of GHRH, GHR, and IGF-1. In-ovo green light photostimulation from ED15 caused an increase in both the plasma GH levels and the somatotropic axis mRNA genes expressions of GHRH, GHR, and IGF-1, compared to the negative control group. These results suggest that the critical period of somatotropic axis acceleration by GL photostimulation start at 15 d of incubation.

  19. Homologous expression of cytosolic dehydroascorbate reductase increases grain yield and biomass under paddy field conditions in transgenic rice (Oryza sativa L. japonica).

    PubMed

    Kim, Young-Saeng; Kim, Il-Sup; Bae, Mi-Jung; Choe, Yong-Hoe; Kim, Yul-Ho; Park, Hyang-Mi; Kang, Hong-Gyu; Yoon, Ho-Sung

    2013-06-01

    Dehydroascorbate reductase (DHAR, EC 1.8.5.1) maintains redox pools of ascorbate (AsA) by recycling oxidized AsA to reduced AsA. To investigate whether DHAR affects rice yield under normal environmental conditions, cDNA-encoding DHAR (OsDHAR1) was isolated from rice and used to develop OsDHAR1-overexpressing transgenic rice plants, under the regulation of a maize ubiquitin promoter. Incorporation and expression of the transgene in transgenic rice plants was confirmed by genomic polymerase chain reaction (PCR), semi-quantitative reverse transcription PCR (RT-PCR), western blot, and enzyme activity. The expression levels were at least twofold higher in transgenic (TG) rice plants than in control wild-type (WT) rice plants. In addition, OsDHAR1-overexpression in seven-independent homologous transgenic plants, as compared to WT plants, increased photosynthetic capacity and antioxidant enzyme activities under paddy field conditions, which led to an improved AsA pool and redox homeostasis. Furthermore, OsDHAR1 overexpression significantly improved grain yield and biomass due to the increase of culm and root weights and to enhance panicle and spikelet numbers in the same seven independent TG rice plants during the farming season (2010 and 2011) in South Korea. The OsDHAR protein contained the redox-active site (Cys20), as well as the conserved GSH-binding region, GSH-binding motif, glutathione-S-transferase (GST) N-terminal domain, C-terminal domain interface, and GST C-terminal domain. Therefore, our results indicate that OsDHAR1 overexpression, capable of functioning in AsA recycling, and protein folding increases environmental adaptation to paddy field conditions by the improving AsA pool and redox homeostasis, which enhances rice grain yield and biomass.

  20. SIRT6 Is a Positive Regulator of Aldose Reductase Expression in U937 and HeLa cells under Osmotic Stress: In Vitro and In Silico Insights

    PubMed Central

    Timucin, Ahmet Can; Basaga, Huveyda

    2016-01-01

    SIRT6 is a protein deacetylase, involved in various intracellular processes including suppression of glycolysis and DNA repair. Aldose Reductase (AR), first enzyme of polyol pathway, was proposed to be indirectly associated to these SIRT6 linked processes. Despite these associations, presence of SIRT6 based regulation of AR still remains ambiguous. Thus, regulation of AR expression by SIRT6 was investigated under hyperosmotic stress. A unique model of osmotic stress in U937 cells was used to demonstrate the presence of a potential link between SIRT6 and AR expression. By overexpressing SIRT6 in HeLa cells under hyperosmotic stress, its role on upregulation of AR was revealed. In parallel, increased SIRT6 activity was shown to upregulate AR in U937 cells under hyperosmotic milieu by using pharmacological modulators. Since these modulators also target SIRT1, binding of the inhibitor, Ex-527, specifically to SIRT6 was analyzed in silico. Computational observations indicated that Ex-527 may also target SIRT6 active site residues under high salt concentration, thus, validating in vitro findings. Based on these evidences, a novel regulatory step by SIRT6, modifying AR expression under hyperosmotic stress was presented and its possible interactions with intracellular machinery was discussed. PMID:27536992

  1. RBCS1 expression in coffee: Coffea orthologs, Coffea arabica homeologs, and expression variability between genotypes and under drought stress

    PubMed Central

    2011-01-01

    Background In higher plants, the inhibition of photosynthetic capacity under drought is attributable to stomatal and non-stomatal (i.e., photochemical and biochemical) effects. In particular, a disruption of photosynthetic metabolism and Rubisco regulation can be observed. Several studies reported reduced expression of the RBCS genes, which encode the Rubisco small subunit, under water stress. Results Expression of the RBCS1 gene was analysed in the allopolyploid context of C. arabica, which originates from a natural cross between the C. canephora and C. eugenioides species. Our study revealed the existence of two homeologous RBCS1 genes in C. arabica: one carried by the C. canephora sub-genome (called CaCc) and the other carried by the C. eugenioides sub-genome (called CaCe). Using specific primer pairs for each homeolog, expression studies revealed that CaCe was expressed in C. eugenioides and C. arabica but was undetectable in C. canephora. On the other hand, CaCc was expressed in C. canephora but almost completely silenced in non-introgressed ("pure") genotypes of C. arabica. However, enhanced CaCc expression was observed in most C. arabica cultivars with introgressed C. canephora genome. In addition, total RBCS1 expression was higher for C. arabica cultivars that had recently introgressed C. canephora genome than for "pure" cultivars. For both species, water stress led to an important decrease in the abundance of RBCS1 transcripts. This was observed for plants grown in either greenhouse or field conditions under severe or moderate drought. However, this reduction of RBCS1 gene expression was not accompanied by a decrease in the corresponding protein in the leaves of C. canephora subjected to water withdrawal. In that case, the amount of RBCS1 was even higher under drought than under unstressed (irrigated) conditions, which suggests great stability of RBCS1 under adverse water conditions. On the other hand, for C. arabica, high nocturnal expression of RBCS1 could also explain the accumulation of the RBCS1 protein under water stress. Altogether, the results presented here suggest that the content of RBCS was not responsible for the loss of photosynthetic capacity that is commonly observed in water-stressed coffee plants. Conclusion We showed that the CaCe homeolog was expressed in C. eugenioides and non-introgressed ("pure") genotypes of C. arabica but that it was undetectable in C. canephora. On the other hand, the CaCc homeolog was expressed in C. canephora but highly repressed in C. arabica. Expression of the CaCc homeolog was enhanced in C. arabica cultivars that experienced recent introgression with C. canephora. For both C. canephora and C. arabica species, total RBCS1 gene expression was highly reduced with WS. Unexpectedly, the accumulation of RBCS1 protein was observed in the leaves of C. canephora under WS, possibly coming from nocturnal RBCS1 expression. These results suggest that the increase in the amount of RBCS1 protein could contribute to the antioxidative function of photorespiration in water-stressed coffee plants. PMID:21575242

  2. Low-dose radiation pretreatment improves survival of human ceiling culture-derived proliferative adipocytes (ccdPAs) under hypoxia via HIF-1 alpha and MMP-2 induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adachi, Naoki; Kubota, Yoshitaka, E-mail: kubota-cbu@umin.ac.jp; Kosaka, Kentarou

    2015-08-07

    Poor survival is a major problem of adipocyte transplantation. We previously reported that VEGF and MMPs secreted from transplanted adipocytes are essential for angiogenesis and adipogenesis. Pretreatment with low-dose (5 Gy) radiation (LDR) increased VEGF, MMP-2, and HIF-1 alpha mRNA expression in human ceiling culture-derived proliferative adipocytes (hccdPAs). Gene expression after LDR differed between adipose-derived stem cells (hASCs) and hccdPAs. Pretreatment with LDR improved the survival of hccdPAs under hypoxia, which is inevitable in the early stages after transplantation. Upregulation of VEGF and MMP-2 after LDR in hccdPAs is mediated by HIF-1 alpha expression. Our results suggest that pretreatment with LDRmore » may improve adipocyte graft survival in a clinical setting through upregulation of VEGF and MMP-2 via HIF-1 alpha. - Highlights: • Ceiling culture-derived proliferative adipocytes (ccdPAs) react to radiation. • Low-dose radiation (LDR) pretreatment improves survival of ccdPAs under hypoxia. • Gene expression after LDR differs between ccdPAs and adipose-derived stem cells. • LDR-induced increase in MMP-2 and VEGF is dependent on HIF-1 alpha induction. • LDR pretreatment may improve the adipocyte graft survival rate in clinical settings.« less

  3. Cell type-specific regulatory effects of glucocorticoids on cutaneous TLR2 expression and signalling.

    PubMed

    Su, Qi; Pfalzgraff, Anja; Weindl, Günther

    2017-07-01

    Glucocorticoids (GCs) induce Toll-like receptor (TLR) 2 expression and synergistically upregulate TLR2 with pro-inflammatory cytokines or bacteria. These paradoxical effects have drawn attention to the inflammatory initiating or promoting effects of GCs, as GC treatment can provoke inflammatory skin diseases. Here, we aimed to investigate the regulatory effects of GCs in human skin cells of different epidermal and dermal layers. We found that Dex induced TLR2 expression mainly in undifferentiated and less in calcium-induced differentiated keratinocytes but not in HaCaT cells or fibroblasts, however, Dex reduced TLR1/6 expression. Stimulation with Dex under inflammatory conditions further increased TLR2 but not TLR1 or TLR6 levels in keratinocytes. Increased ligand-induced interaction of TLR2 with MyD88 and expression of the adaptor protein TRAF6 indicated enhanced TLR2 signalling, whereas TLR2/1 or TLR2/6 signalling was not increased in Dex-pretreated keratinocytes. GC-increased TLR2 expression was negatively regulated by JNK MAPK signalling when stimulated with Propionibacterium acnes. Our results provide novel insights into the molecular mechanisms of glucocorticoid-mediated expression and function of TLR2 in human skin cells and the understanding of the mechanisms of corticosteroid side effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Hypoxia-induced endothelial NO synthase gene transcriptional activation is mediated through the tax-responsive element in endothelial cells.

    PubMed

    Min, Jiho; Jin, Yoon-Mi; Moon, Je-Sung; Sung, Min-Sun; Jo, Sangmee Ahn; Jo, Inho

    2006-06-01

    Although hypoxia is known to induce upregulation of endothelial NO synthase (eNOS) gene expression, the underlying mechanism is largely unclear. In this study, we show that hypoxia increases eNOS gene expression through the binding of phosphorylated cAMP-responsive element binding (CREB) protein (pCREB) to the eNOS gene promoter. Hypoxia (1% O2) increased both eNOS expression and NO production, peaking at 24 hours, in bovine aortic endothelial cells, and these increases were accompanied by increases in pCREB. Treatment with the protein kinase A inhibitor H-89 or transfection with dominant-negative inhibitor of CREB reversed the hypoxia-induced increases in eNOS expression and NO production, with concomitant inhibition of the phosphorylation of CREB induced by hypoxia, suggesting an involvement of protein kinase A/pCREB-mediated pathway. To map the regulatory elements of the eNOS gene responsible for pCREB binding under hypoxia, we constructed an eNOS gene promoter (-1600 to +22 nucleotides) fused with a luciferase reporter gene [pGL2-eNOS(-1600)]. Hypoxia (for 24-hour incubation) increased the promoter activity by 2.36+/-0.18-fold in the bovine aortic endothelial cells transfected with pGL2-eNOS(-1600). However, progressive 5'-deletion from -1600 to -873 completely attenuated the hypoxia-induced increase in promoter activity. Electrophoretic mobility shift, anti-pCREB antibody supershift, and site-specific mutation analyses showed that pCREB is bound to the Tax-responsive element (TRE) site, a cAMP-responsive element-like site, located at -924 to -921 of the eNOS promoter. Our data demonstrate that the interaction between pCREB and the Tax-responsive element site within the eNOS promoter may represent a novel mechanism for the mediation of hypoxia-stimulated eNOS gene expression.

  5. Apelin-APJ system is responsible for stress-induced increase in atrial natriuretic peptide expression in rat heart.

    PubMed

    Izgut-Uysal, Vecihe Nimet; Acar, Nuray; Birsen, Ilknur; Ozcan, Filiz; Ozbey, Ozlem; Soylu, Hakan; Avci, Sema; Tepekoy, Filiz; Akkoyunlu, Gokhan; Yucel, Gultekin; Ustunel, Ismail

    2018-04-01

    The cardiovascular system is a primary target of stress and stress is the most important etiologic factor in cardiovascular diseases. Stressors increase expressions of atrial natriuretic peptide (ANP) and apelin in cardiac tissue. The aim of the present study was to investigate whether stress-induced apelin has an effect on the expression of ANP in the right atrium of rat heart. The rats were divided into the control, stress and F13A+stress groups. In the stress and F13A+stress groups, the rats were subjected to water immersion and restraint stress (WIRS) for 6h. In the F13A+stress group, apelin receptor antagonist F13A, was injected intravenously immediately before application of WIRS. The plasma samples were obtained for the measurement of corticosterone and atrial natriuretic peptide. The atrial samples were used for immunohistochemistry and western blot analysis. F13A administration prevented the rise of plasma corticosterone and ANP levels induced by WIRS. While WIRS application increased the expressions of apelin, HIF-1α and ANP in atrial tissue, while F13A prevented the stress-induced increase in the expression of HIF-1α and ANP. Stress-induced apelin induces ANP expression in atrial tissue and may play a role in cardiovascular homeostasis by increasing ANP expression under WIRS conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Nuclear receptor TLX stimulates hippocampal neurogenesis and enhances learning and memory in a transgenic mouse model

    PubMed Central

    Murai, Kiyohito; Qu, Qiuhao; Sun, GuoQiang; Ye, Peng; Li, Wendong; Asuelime, Grace; Sun, Emily; Tsai, Guochuan E.; Shi, Yanhong

    2014-01-01

    The role of the nuclear receptor TLX in hippocampal neurogenesis and cognition has just begun to be explored. In this study, we generated a transgenic mouse model that expresses TLX under the control of the promoter of nestin, a neural precursor marker. Transgenic TLX expression led to mice with enlarged brains with an elongated hippocampal dentate gyrus and increased numbers of newborn neurons. Specific expression of TLX in adult hippocampal dentate gyrus via lentiviral transduction increased the numbers of BrdU+ cells and BrdU+NeuN+ neurons. Furthermore, the neural precursor-specific expression of the TLX transgene substantially rescued the neurogenic defects of TLX-null mice. Consistent with increased neurogenesis in the hippocampus, the TLX transgenic mice exhibited enhanced cognition with increased learning and memory. These results suggest a strong association between hippocampal neurogenesis and cognition, as well as significant contributions of TLX to hippocampal neurogenesis, learning, and memory. PMID:24927526

  7. Changes in oil content of transgenic soybeans expressing the yeast SLC1 gene.

    PubMed

    Rao, Suryadevara S; Hildebrand, David

    2009-10-01

    The wild type (Wt) and mutant form of yeast (sphingolipid compensation) genes, SLC1 and SLC1-1, have been shown to have lysophosphatidic acid acyltransferase (LPAT) activities (Nageic et al. in J Biol Chem 269:22156-22163, 1993). Expression of these LPAT genes was reported to increase oil content in transgenic Arabidopsis and Brassica napus. It is of interest to determine if the TAG content increase would also be seen in soybeans. Therefore, the wild type SLC1 was expressed in soybean somatic embryos under the control of seed specific phaseolin promoter. Some transgenic somatic embryos and in both T2 and T3 transgenic seeds showed higher oil contents. Compared to controls, the average increase in triglyceride values went up by 1.5% in transgenic somatic embryos. A maximum of 3.2% increase in seed oil content was observed in a T3 line. Expression of the yeast Wt LPAT gene did not alter the fatty acid composition of the seed oil.

  8. Hypoxia-inducible bidirectional shRNA expression vector delivery using PEI/chitosan-TBA copolymers for colorectal Cancer gene therapy.

    PubMed

    Javan, Bita; Atyabi, Fatemeh; Shahbazi, Majid

    2018-06-01

    This investigation was conducted to construct a hypoxia/colorectal dual-specific bidirectional short hairpin RNA (shRNA) expression vector and to transfect it into the colon cancer cell line HT-29 with PEI/chitosan-TBA nanoparticles for the simultaneous knock down of β-catenin and Bcl-2 under hypoxia. To construct a pRNA-bipHRE-CEA vector, the carcinoma embryonic antigen (CEA) promoter designed in two directions and the vascular endothelial growth factor (VEGF) enhancer were inserted between two promoters for hypoxic cancer specific gene expression. To confirm the therapeutic effect of the dual-specific vector, β-catenin and Bcl-2 shRNAs were inserted downstream of each promoter. The physicochemical properties, the cytotoxicity, and the transfection efficiency of these PEI/chitosan-TBA nanoparticles were investigated. In addition, the antitumor effects of the designed vector on the expression of β-catenin and Bcl-2, cell cycle distribution, and apoptosis were investigated in vitro. The silencing effect of the hypoxia-response shRNA expression vector was relatively low (18%-25%) under normoxia, whereas it was significantly increased to approximately 50%-60% in the HT-29 cell line. Moreover, the cancer cells showed significant G0/G1 arrest and increased apoptosis due to gene silencing under hypoxia. Furthermore, MTS assay, fluorescence microscopy images, and flow cytometry analyses confirmed that the PEI/chitosan-TBA blend system provided effective transfection with low cytotoxicity. This novel hypoxia-responsive shRNA expression vector may be useful for RNA interference (RNAi)-based cancer gene therapy in hypoxic colorectal tumors. Moreover, the PEI/chitosan-TBA copolymer might be a promising gene carrier for use in gene transfer in vivo. Copyright © 2018. Published by Elsevier Inc.

  9. Gene expression networks underlying ovarian development in wild largemouth bass (Micropterus salmoides).

    PubMed

    Martyniuk, Christopher J; Prucha, Melinda S; Doperalski, Nicholas J; Antczak, Philipp; Kroll, Kevin J; Falciani, Francesco; Barber, David S; Denslow, Nancy D

    2013-01-01

    Oocyte maturation in fish involves numerous cell signaling cascades that are activated or inhibited during specific stages of oocyte development. The objectives of this study were to characterize molecular pathways and temporal gene expression patterns throughout a complete breeding cycle in wild female largemouth bass to improve understanding of the molecular sequence of events underlying oocyte maturation. Transcriptomic analysis was performed on eight morphologically diverse stages of the ovary, including primary and secondary stages of oocyte growth, ovulation, and atresia. Ovary histology, plasma vitellogenin, 17β-estradiol, and testosterone were also measured to correlate with gene networks. Global expression patterns revealed dramatic differences across ovarian development, with 552 and 2070 genes being differentially expressed during both ovulation and atresia respectively. Gene set enrichment analysis (GSEA) revealed that early primary stages of oocyte growth involved increases in expression of genes involved in pathways of B-cell and T-cell receptor-mediated signaling cascades and fibronectin regulation. These pathways as well as pathways that included adrenergic receptor signaling, sphingolipid metabolism and natural killer cell activation were down-regulated at ovulation. At atresia, down-regulated pathways included gap junction and actin cytoskeleton regulation, gonadotrope and mast cell activation, and vasopressin receptor signaling and up-regulated pathways included oxidative phosphorylation and reactive oxygen species metabolism. Expression targets for luteinizing hormone signaling were low during vitellogenesis but increased 150% at ovulation. Other networks found to play a significant role in oocyte maturation included those with genes regulated by members of the TGF-beta superfamily (activins, inhibins, bone morphogenic protein 7 and growth differentiation factor 9), neuregulin 1, retinoid X receptor, and nerve growth factor family. This study offers novel insight into the gene networks underlying vitellogenesis, ovulation and atresia and generates new hypotheses about the cellular pathways regulating oocyte maturation.

  10. Effect of testosterone and hypoxia on the expansion of umbilical cord blood CD34+ cells in vitro

    PubMed Central

    Zhou, Liping; Zhang, Xiaowei; Zhou, Panpan; Li, Xue; Xu, Xuejing; Shi, Qing; Li, Dong; Ju, Xiuli

    2017-01-01

    Successfully expanding hematopoietic stem cells (HSCs) is advantageous for clinical HSC transplantation. The present study investigated the influence of testosterone on the proliferation, antigen phenotype and expression of hematopoiesis-related genes in umbilical cord blood-derived cluster of differentiation (CD)34+ cells under normoxic or hypoxia conditions. Cord blood (CB) CD34+ cells were separated using magnetic activated cell sorting. A cytokine cocktail and feeder cells were used to stimulate the expansion of CD34+ cells under normoxic (20% O2) and hypoxic (1% O2) conditions for 7 days and testosterone was added accordingly. Cells were identified using flow cytometry and reconstruction capacity was determined using a colony-forming unit (CFU) assay. The effects of oxygen concentration and testosterone on the expression of hematopoietic-related genes, including homeobox (HOX)A9, HOXB2, HOXB4, HOXC4 and BMI-1, were measured using reverse transcription-quantitative polymerase chain reaction. The results indicated that the number of CFUs and total cells in the testosterone group increased under normoxic and hypoxic conditions compared with the corresponding control groups. Furthermore, the presence of testosterone increased the number of CFU-erythroid colonies. In liquid culture, the growth of CD34+ cells was rapid under normoxic conditions compared with under hypoxic conditions, however CD34+ cells were maintained in an undifferentiated state under hypoxic conditions. The addition of testosterone under hypoxia promoted the differentiation of CD34+ cells into CD34+CD38+CD71+ erythroid progenitor cells. Furthermore, it was determined that the expression of hematopoietic-related genes was significantly increased (P<0.05) in the hypoxia testosterone group compared with the other groups. Therefore, the results of the current study indicate that a combination of hypoxia and testosterone may be a promising cultivation condition for HSC/hemopoietic progenitor cell expansion ex vivo. PMID:29067121

  11. Effect of testosterone and hypoxia on the expansion of umbilical cord blood CD34+ cells in vitro.

    PubMed

    Zhou, Liping; Zhang, Xiaowei; Zhou, Panpan; Li, Xue; Xu, Xuejing; Shi, Qing; Li, Dong; Ju, Xiuli

    2017-11-01

    Successfully expanding hematopoietic stem cells (HSCs) is advantageous for clinical HSC transplantation. The present study investigated the influence of testosterone on the proliferation, antigen phenotype and expression of hematopoiesis-related genes in umbilical cord blood-derived cluster of differentiation (CD)34 + cells under normoxic or hypoxia conditions. Cord blood (CB) CD34 + cells were separated using magnetic activated cell sorting. A cytokine cocktail and feeder cells were used to stimulate the expansion of CD34 + cells under normoxic (20% O 2 ) and hypoxic (1% O 2 ) conditions for 7 days and testosterone was added accordingly. Cells were identified using flow cytometry and reconstruction capacity was determined using a colony-forming unit (CFU) assay. The effects of oxygen concentration and testosterone on the expression of hematopoietic-related genes, including homeobox (HOX)A9, HOXB2, HOXB4, HOXC4 and BMI-1, were measured using reverse transcription-quantitative polymerase chain reaction. The results indicated that the number of CFUs and total cells in the testosterone group increased under normoxic and hypoxic conditions compared with the corresponding control groups. Furthermore, the presence of testosterone increased the number of CFU-erythroid colonies. In liquid culture, the growth of CD34 + cells was rapid under normoxic conditions compared with under hypoxic conditions, however CD34 + cells were maintained in an undifferentiated state under hypoxic conditions. The addition of testosterone under hypoxia promoted the differentiation of CD34 + cells into CD34 + CD38 + CD71 + erythroid progenitor cells. Furthermore, it was determined that the expression of hematopoietic-related genes was significantly increased (P<0.05) in the hypoxia testosterone group compared with the other groups. Therefore, the results of the current study indicate that a combination of hypoxia and testosterone may be a promising cultivation condition for HSC/hemopoietic progenitor cell expansion ex vivo .

  12. Modulation of Progesterone Receptor Isoform Expression in Pregnant Human Myometrium

    PubMed Central

    2017-01-01

    Background. Regulation of myometrial progesterone receptor (PR) expression is an unresolved issue central to understanding the mechanism of functional progesterone withdrawal and initiation of labor in women. Objectives. To determine whether pregnant human myometrium undergoes culture-induced changes in PR isoform expression ex situ and, further, to determine if conditions approaching the in vivo environment stabilise PR isoform expression in culture. Methods. Term nonlaboring human myometrial tissues were cultured under specific conditions: serum supplementation, steroids, stretch, cAMP, PMA, PGF2α, NF-κB inhibitors, or TSA. Following 48 h culture, PR-T, PR-A, and PR-B mRNA levels were determined using qRT-PCR. PR-A/PR-B ratios were calculated. Results. PR-T and PR-A expression and the PR-A/PR-B ratio significantly increased in culture. Steroids prevented the culture-induced increase in PR-T and PR-A expression. Stretch blocked the effects of steroids on PR-T and PR-A expression. PMA further increased the PR-A/PR-B ratio, while TSA blocked culture-induced increases of PR-A expression and the PR-A/PR-B ratio. Conclusion. Human myometrial tissue in culture undergoes changes in PR gene expression consistent with transition toward a laboring phenotype. TSA maintained the nonlaboring PR isoform expression pattern. This suggests that preserving histone and/or nonhistone protein acetylation is critical for maintaining the progesterone dependent quiescent phenotype of human myometrium in culture. PMID:28540297

  13. Comparative Analyses of Cu-Zn Superoxide Dismutase (SOD1) and Thioredoxin Reductase (TrxR) at the mRNA Level between Apis mellifera L. and Apis cerana F. (Hymenoptera: Apidae) Under Stress Conditions.

    PubMed

    Koo, Hyun-Na; Lee, Soon-Gyu; Yun, Seung-Hwan; Kim, Hyun Kyung; Choi, Yong Soo; Kim, Gil-Hah

    2016-01-01

    This study compared stress-induced expression of Cu-Zn superoxide dismutase (SOD1) and thioredoxin reductase (TrxR) genes in the European honeybee Apis mellifera L. and Asian honeybee Apis cerana F. Expression of both SOD1 and TrxR rapidly increased up to 5 h after exposure to cold (4 °C) or heat (37 °C) treatment and then gradually decreased, with a stronger effect induced by cold stress in A. mellifera compared with A. cerana. Injection of stress-inducing substances (methyl viologen, [MV] and H2O2) also increased SOD1 and TrxR expression in both A. mellifera and A. cerana, and this effect was more pronounced with MV than H2O2. Additionally, we heterologously expressed the A. mellifera and A. cerana SOD1 and TrxR proteins in an Escherichia coli expression system, and detection by SDS-PAGE, confirmed by Western blotting using anti-His tag antibodies, revealed bands at 16 and 60 kDa, respectively. Our results show that the expression patterns of SOD1 and TrxR differ between A. mellifera and A. cerana under conditions of low or high temperature as well as oxidative stress. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  14. Gene expression changes during short day induced terminal bud formation in Norway spruce.

    PubMed

    Asante, Daniel K A; Yakovlev, Igor A; Fossdal, Carl Gunnar; Holefors, Anna; Opseth, Lars; Olsen, Jorunn E; Junttila, Olavi; Johnsen, Øystein

    2011-02-01

    The molecular basis for terminal bud formation in autumn is not well understood in conifers. By combining suppression subtractive hybridization and monitoring of gene expression by qRT-PCR analysis, we aimed to identify genes involved in photoperiodic control of growth cessation and bud set in Norway spruce. Close to 1400 ESTs were generated and their functional distribution differed between short day (SD-12 h photoperiod) and long day (LD-24 h photoperiod) libraries. Many genes with putative roles in protection against stress appeared differentially regulated under SD and LD, and also differed in transcript levels between 6 and 20 SDs. Of these, PaTFL1(TERMINAL FLOWER LIKE 1) showed strongly increased transcript levels at 6 SDs. PaCCCH(CCCH-TYPE ZINC FINGER) and PaCBF2&3(C-REPEAT BINDING FACTOR 2&3) showed a later response at 20 SDs, with increased and decreased transcript levels, respectively. For rhythmically expressed genes such as CBFs, such differences might represent a phase shift in peak expression, but might also suggest a putative role in response to SD. Multivariate analyses revealed strong differences in gene expression between LD, 6 SD and 20 SD. The robustness of the gene expression patterns was verified in 6 families differing in bud-set timing under natural light with gradually decreasing photoperiod. © 2010 Blackwell Publishing Ltd.

  15. Protein kinase cα regulates the expression of complement receptor Ig in human monocyte-derived macrophages.

    PubMed

    Ma, Yuefang; Usuwanthim, Kanchana; Munawara, Usma; Quach, Alex; Gorgani, Nick N; Abbott, Catherine A; Hii, Charles S; Ferrante, Antonio

    2015-03-15

    The complement receptor Ig (CRIg) is selectively expressed by macrophages. This receptor not only promotes the rapid phagocytosis of bacteria by macrophages but also has anti-inflammatory and immunosuppressive functions. Previous findings have suggested that protein kinase C (PKC) may be involved in the regulation of CRIg expression in human macrophages. We have now examined the role of PKCα in CRIg expression in human monocyte-derived macrophages (MDM). Macrophages nucleofected with plasmid containing short hairpin RNA against PKCα showed markedly reduced expression of PKCα, but normal PKCζ expression, by Western blotting analysis, and vice versa. PKCα-deficient MDM showed increased expression of CRIg mRNA and protein (both the long and short form), an increase in phagocytosis of complement-opsonized Candida albicans, and decreased production of TNF-α and IL-6. TNF-α caused a marked decrease in CRIg expression, and addition of anti-TNF mAb to the TNF-α-producing MDMs increased CRIg expression. PKCα-deficient macrophages also showed significantly less bacterial LPS-induced downregulation of CRIg. In contrast, cells deficient in PKCα showed decreased expression of CR type 3 (CR3) and decreased production of TNF-α and IL-6 in response to LPS. MDM developed under conditions that increased expression of CRIg over CR3 showed significantly reduced production of TNF-α in response to opsonized C. albicans. The findings indicate that PKCα promotes the downregulation of CRIg and upregulation of CR3 expression and TNF-α and IL-6 production, a mechanism that may promote inflammation. Copyright © 2015 by The American Association of Immunologists, Inc.

  16. Water Stress Modulates Soybean Aphid Performance, Feeding Behavior, and Virus Transmission in Soybean

    PubMed Central

    Nachappa, Punya; Culkin, Christopher T.; Saya, Peter M.; Han, Jinlong; Nalam, Vamsi J.

    2016-01-01

    Little is known about how water stress including drought and flooding modifies the ability of plants to resist simultaneous attack by insect feeding and transmission of insect-vectored pathogen. We analyzed insect population growth, feeding behaviors, virus transmission, and plant amino acid profiles and defense gene expression to characterize mechanisms underlying the interaction between water stress, soybean aphid and aphid-transmitted, Soybean mosaic virus, on soybean plants. Population growth of non-viruliferous aphids was reduced under drought stress and saturation, likely because the aphids spent less time feeding from the sieve element on these plants compared to well-watered plants. Water stress did not impact population growth of viruliferous aphids. However, virus incidence and transmission rate was lowest under drought stress and highest under saturated conditions since viruliferous aphids took the greatest amount time to puncture cells and transmit the virus under saturated conditions and lowest time under drought stress. Petiole exudates from drought-stressed plants had the highest level of total free amino acids including asparagine and valine that are critical for aphid performance. Aphids did not benefit from improved phloem sap quality as indicated by their lower densities on drought-stressed plants. Saturation, on the other hand, resulted in low amino acid content compared to all of the other treatments. Drought and saturation had significant and opposing effects on expression of marker genes involved in abscisic acid (ABA) signaling. Drought alone significantly increased expression of ABA marker genes, which likely led to suppression of salicylic acid (SA)- and jasmonic acid (JA)-related genes. In contrast, ABA marker genes were down-regulated under saturation, while expression of SA- and JA-related genes was up-regulated. We propose that the apparent antagonism between ABA and SA/JA signaling pathways contributed to an increase in aphid densities under drought and their decrease under saturation. Taken together, our findings suggests that plant responses to water stress is complex involving changes in phloem amino acid composition and signaling pathways, which can impact aphid populations and virus transmission. PMID:27200027

  17. C/EBPβ LIP augments cell death by inducing osteoglycin.

    PubMed

    Wassermann-Dozorets, Rina; Rubinstein, Menachem

    2017-04-06

    Many types of tumor cell are devoid of the extracellular matrix proteoglycan osteoglycin (Ogn), but its role in tumor biology is poorly studied. Here we show that RNAi of Ogn attenuates stress-triggered cell death, whereas its overexpression increases cell death. We found that the transcription factor C/EBPβ regulates the expression of Ogn. C/EBPβ is expressed as a full-length, active form (LAP) and as a truncated, dominant-negative form (LIP), and the LIP/LAP ratio is positively correlated with the extent of cell death under stress. For example, we reported that drug-resistant tumor cells lack LIP altogether, and its supplementation abolished their resistance to chemotherapy and to endoplasmic reticulum (ER) stress. Here we further show that elevated LIP/LAP ratio robustly increased Ogn expression and cell death under stress by modulating the mitogen-activated protein kinase/activator protein 1 pathway (MAPK/AP-1). Our findings suggest that LIP deficiency renders tumor cell resistant to ER stress by preventing the induction of Ogn.

  18. Engineered ACC deaminase-expressing free-living cells of Mesorhizobium loti show increased nodulation efficiency and competitiveness on Lotus spp.

    PubMed

    Conforte, Valeria P; Echeverria, Mariela; Sánchez, Cintia; Ugalde, Rodolfo A; Menéndez, Ana B; Lepek, Viviana C

    2010-08-01

    Ethylene inhibits the establishment of symbiosis between rhizobia and legumes. Several rhizobia species express the enzyme ACC deaminase, which degrades the ethylene precursor 1-cyclopropane-1-carboxilate (ACC), leading to reductions in the amount of ethylene evolved by the plant. M. loti has a gene encoding ACC deaminase, but this gene is under the activity of the NifA-RpoN-dependent promoter; thus, it is only expressed inside the nodule. The M. loti structural gene ACC deaminase (acdS) was integrated into the M. loti chromosome under a constitutive promoter activity. The resulting strain induced the formation of a higher number of nodules and was more competitive than the wild-type strain on Lotus japonicus and L. tenuis. These results suggest that the introduction of the ACC deaminase activity within M. loti in a constitutive way could be a novel strategy to increase nodulation competitiveness of the bacteria, which could be useful for the forage inoculants industry.

  19. Phylogeny and expression pattern of starch branching enzyme family genes in cassava (Manihot esculenta Crantz) under diverse environments.

    PubMed

    Pei, Jinli; Wang, Huijun; Xia, Zhiqiang; Liu, Chen; Chen, Xin; Ma, Pingan; Lu, Cheng; Wang, Wenquan

    2015-08-01

    Starch branching enzyme (SBE) is one of the key enzymes involved in starch biosynthetic metabolism. In this study, six SBE family genes were identified from the cassava genome. Phylogenetic analysis divided the MeSBE family genes into dicot family A, B, C, and the new group. Tissue-specific analysis showed that MeSBE2.2 was strongly expressed in leaves, stems cortex, and root stele, and MeSBE3 had high expression levels in stem cortex and root stele of plants in the rapid growth stage under field condition, whereas the expression levels of MeSBE2.1, MeSBE4, and MeSBE5 were low except for in stems cortex. The transcriptional activity of MeSBE2.2 and MeSBE3 was higher compared with other members and gradually increased in the storage roots during root growth process, while the other MeSBE members normally remained low expression levels. Expression of MeSBE2.2 could be induced by salt, drought, exogenous abscisic acid, jasmonic acid, and salicylic acid signals, while MeSBE3 had positive response to drought, salt, exogenous abscisic acid, and salicylic acid in leaves but not in storage root, indicating that they might be more important in starch biosynthesis pathway under diverse environments.

  20. Social stress in mice induces voiding dysfunction and bladder wall remodeling

    PubMed Central

    Chang, Andy; Butler, Stephan; Sliwoski, Joanna; Valentino, Rita; Canning, Douglas

    2009-01-01

    Several studies have anecdotally reported the occurrence of altered urinary voiding patterns in rodents exposed to social stress. A recent study characterized the urodynamic and central changes in a rat model of social defeat. Here, we describe a similar voiding phenotype induced in mice by social stress and in addition we describe potential molecular mechanisms underlying the resulting bladder wall remodeling. The mechanism leading to the altered voiding habits and underlying bladder phenotype may be relevant to the human syndrome of dysfunctional voiding which is thought to have a psychological component. To better characterize and investigate social stress-induced bladder wall hypertrophy, FVB mice (6 wk old) were randomized to either social stress or control manipulation. The stress involved repeated cycles of a 1-h direct exposure to a larger aggressive C57Bl6 breeder mouse followed by a 23-h period of barrier separation over 4 wk. Social stress resulted in altered urinary voiding patterns suggestive of urinary retention and increased bladder mass. In vivo cystometry revealed an increased volume at micturition with no change in the voiding pressure. Examination of these bladders revealed increased nuclear expression of the transcription factors MEF-2 and NFAT, as well as increased expression of the myosin heavy chain B isoform mRNA. BrdU uptake was increased within the urothelium and lamina propria layers in the social stress group. We conclude that social stress induces urinary retention that ultimately leads to shifts in transcription factors, alterations in myosin heavy chain isoform expression, and increases in DNA synthesis that mediate bladder wall remodeling. Social stress-induced bladder dysfunction in rodents may provide insight into the underlying mechanisms and potential treatment of dysfunctional voiding in humans. PMID:19587139

  1. Organ-specific proteomics of soybean seedlings under flooding and drought stresses.

    PubMed

    Wang, Xin; Khodadadi, Ehsaneh; Fakheri, Baratali; Komatsu, Setsuko

    2017-06-06

    Organ-specific analyses enrich the understanding of plant growth and development under abiotic stresses. To elucidate the cellular responses in soybean seedlings exposed to flooding and drought stresses, organ-specific analysis was performed using a gel-free/label-free proteomic technique. Physiological analysis indicated that enzyme activities of alcohol dehydrogenase and delta-1-pyrroline-5-carboxylate synthase were markedly increased in leaf and root of plants treated with 6days of flooding and drought stresses, respectively. Proteins related to photosynthesis, RNA, DNA, signaling, and the tricarboxylic acid cycle were predominately affected in leaf, hypocotyl, and root in response to flooding and drought. Notably, the tricarboxylic acid cycle was suppressed in leaf and root under both stresses. Moreover, 17 proteins, including beta-glucosidase 31 and beta-amylase 5, were identified in soybean seedlings under both stresses. The protein abundances of beta-glucosidase 31 and beta-amylase 5 were increased in leaf and root under both stresses. Additionally, the gene expression of beta-amylase 5 was upregulated in leaf exposed to the flooding and drought, and the expression level was highly correlated with the protein abundance. These results suggest that beta-amylase 5 may be involved in carbohydrate mobilization to provide energy to the leaf of soybean seedlings exposed to flooding and drought. This study examined the effects of flooding and drought on soybean seedlings in different organs using a gel-free/label-free proteomic approach. Physiological responses indicated that enzyme activities of alcohol dehydrogenase and delta-1-pyrroline-5-carboxylate synthase were increased in leaf and root of soybean seedlings exposed to flooding and drought for 6days. Functional analysis of acquired protein profiles exhibited that proteins related to photosynthesis, RNA, DNA, signaling, and the tricarboxylic acid cycle were predominated affected in leaf, hypocotyl, and root under both stresses. Moreover, the tricarboxylic acid cycle was suppressed in leaf and root of stressed soybean seedlings. Additionally, increased protein abundance of beta-amylase 5 was consistent with upregulated gene expression in the leaf under both stresses, suggesting that carbohydrate metabolism might be governed in response to flooding and drought of soybean seedlings. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The Central Nervous System (CNS)-independent Anti-bone-resorptive Activity of Muscle Contraction and the Underlying Molecular and Cellular Signatures*

    PubMed Central

    Qin, Weiping; Sun, Li; Cao, Jay; Peng, Yuanzhen; Collier, Lauren; Wu, Yong; Creasey, Graham; Li, Jianhua; Qin, Yiwen; Jarvis, Jonathan; Bauman, William A.; Zaidi, Mone; Cardozo, Christopher

    2013-01-01

    Muscle and bone work as a functional unit. Cellular and molecular mechanisms underlying effects of muscle activity on bone mass are largely unknown. Spinal cord injury (SCI) causes muscle paralysis and extensive sublesional bone loss and disrupts neural connections between the central nervous system (CNS) and bone. Muscle contraction elicited by electrical stimulation (ES) of nerves partially protects against SCI-related bone loss. Thus, application of ES after SCI provides an opportunity to study the effects of muscle activity on bone and roles of the CNS in this interaction, as well as the underlying mechanisms. Using a rat model of SCI, the effects on bone of ES-induced muscle contraction were characterized. The SCI-mediated increase in serum C-terminal telopeptide of type I collagen (CTX) was completely reversed by ES. In ex vivo bone marrow cell cultures, SCI increased the number of osteoclasts and their expression of mRNA for several osteoclast differentiation markers, whereas ES significantly reduced these changes; SCI decreased osteoblast numbers, but increased expression in these cells of receptor activator of NF-κB ligand (RANKL) mRNA, whereas ES increased expression of osteoprotegerin (OPG) and the OPG/RANKL ratio. A microarray analysis revealed that ES partially reversed SCI-induced alterations in expression of genes involved in signaling through Wnt, FSH, parathyroid hormone (PTH), oxytocin, and calcineurin/nuclear factor of activated T-cells (NFAT) pathways. ES mitigated SCI-mediated increases in mRNA levels for the Wnt inhibitors DKK1, sFRP2, and sclerostin in ex vivo cultured osteoblasts. Our results demonstrate an anti-bone-resorptive activity of muscle contraction by ES that develops rapidly and is independent of the CNS. The pathways involved, particularly Wnt signaling, suggest future strategies to minimize bone loss after immobilization. PMID:23530032

  3. Tributyltin differentially promotes development of a phenotypically distinct adipocyte.

    PubMed

    Regnier, Shane M; El-Hashani, Essam; Kamau, Wakanene; Zhang, Xiaojie; Massad, Nicole L; Sargis, Robert M

    2015-09-01

    Environmental endocrine disrupting chemicals (EDCs) are increasingly implicated in the pathogenesis of obesity. Evidence implicates various EDCs as being proadipogenic, including tributyltin (TBT), which activates the peroxisome proliferator activated receptor-γ (PPARγ). However, the conditions required for TBT-induced adipogenesis and its functional consequences are incompletely known. The costimulatory conditions necessary for preadipocyte-to-adipocyte differentiation were compared between TBT and the pharmacological PPARγ agonist troglitazone (Trog) in the 3T3-L1 cell line; basal and insulin-stimulated glucose uptake were assessed using radiolabeled 2-deoxyglucose. TBT enhanced expression of the adipocyte marker C/EBPα with coexposure to either isobutylmethylxanthine or insulin in the absence of other adipogenic stimuli. Examination of several adipocyte-specific proteins revealed that TBT and Trog differentially affected protein expression despite comparable PPARγ stimulation. In particular, TBT reduced adiponectin expression upon maximal adipogenic stimulation. Under submaximal stimulation, TBT and Trog differentially promoted adipocyte-specific gene expression despite similar lipid accumulation. Moreover, TBT attenuated Trog-induced adipocyte gene expression under conditions of cotreatment. Finally, TBT-induced adipocytes exhibited altered glucose metabolism, with increased basal glucose uptake. TBT-induced adipocytes are functionally distinct from those generated by a pharmacological PPARγ agonist, suggesting that obesogen-induced adipogenesis may generate dysfunctional adipocytes with the capacity to deleteriously affect global energy homeostasis. © 2015 The Obesity Society.

  4. Physiological and molecular responses to drought in Petunia: the importance of stress severity

    PubMed Central

    Kim, Jongyun

    2012-01-01

    Plant responses to drought stress vary depending on the severity of stress and the stage of drought progression. To improve the understanding of such responses, the leaf physiology, abscisic acid (ABA) concentration, and expression of genes associated with ABA metabolism and signalling were investigated in Petunia × hybrida. Plants were exposed to different specific substrate water contents (θ = 0.10, 0.20, 0.30, or 0.40 m3·m–3) to induce varying levels of drought stress. Plant responses were investigated both during the drying period (θ decreased to the θ thresholds) and while those threshold θ were maintained. Stomatal conductance (gs) and net photosynthesis (A) decreased with decreasing midday leaf water potential (Ψleaf). Leaf ABA concentration increased with decreasing midday Ψleaf and was negatively correlated with gs (r = –0.92). Despite the increase in leaf ABA concentration under drought, no significant effects on the expression of ABA biosynthesis genes were observed. However, the ABA catabolism-related gene CYP707A2 was downregulated, primarily in plants under severe drought (θ = 0.10 m3∙m–3), suggesting a decrease in ABA catabolism under severe drought. Expression of phospholipase Dα (PLDα), involved in regulating stomatal responses to ABA, was enhanced under drought during the drying phase, but there was no relationship between PLDα expression and midday Ψleaf after the θ thresholds had been reached. The results show that drought response of plants depends on the severity of drought stress and the phase of drought progression. PMID:23077204

  5. The responses of antioxidant system in bitter melon, sponge gourd, and winter squash under flooding and chilling stresses

    NASA Astrophysics Data System (ADS)

    Do, Tuong Ha; Nguyen, Hoang Chinh; Lin, Kuan-Hung

    2018-04-01

    The objective of this paper was to review the responses of antioxidant system and physiological parameters of bitter melon (BM), sponge gourd (SG), and winter squash (WS) under waterlogged and low temperature conditions. The BM and SG plants were subjected to 0-72 h flooding treatments, and BM and WS plants were exposed to chilling at 12/7 °C (day/night) for 0-72 h. Different genotypes responded differently to environmental stress according to their various antioxidant system and physiological parameters. Increased ascorbate peroxidase (APX) and superoxide dismutase (SOD) activities provided SG and WS plants with increased waterlogging and chilling stress tolerance, respectively, compared to BM plants. The APX gene from SG and the SOD gene from WS were then cloned, and the regulation of APX and SOD gene expressions under flooding and chilling stress, respectively, were also measured. Increased expression of APX and SOD genes was accompanied by the increased activity of the enzyme involved in detoxifying reactive oxygen species (ROS) in response to those stresses. Both APX and SOD activities can be used for selecting BM lines with the best tolerances to water logging and chilling stresses.

  6. Real time expression of ACC oxidase and PR-protein genes mediated by Methylobacterium spp. in tomato plants challenged with Xanthomonas campestris pv. vesicatoria.

    PubMed

    Yim, W J; Kim, K Y; Lee, Y W; Sundaram, S P; Lee, Y; Sa, T M

    2014-07-15

    Biotic stress like pathogenic infection increases ethylene biosynthesis in plants and ethylene inhibitors are known to alleviate the severity of plant disease incidence. This study aimed to reduce the bacterial spot disease incidence in tomato plants caused by Xanthomonas campestris pv. vesicatoria (XCV) by modulating stress ethylene with 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity of Methylobacterium strains. Under greenhouse condition, Methylobacterium strains inoculated and pathogen challenged tomato plants had low ethylene emission compared to pathogen infected ones. ACC accumulation and ACC oxidase (ACO) activity with ACO related gene expression increased in XCV infected tomato plants over Methylobacterium strains inoculated plants. Among the Methylobacterium spp., CBMB12 resulted lowest ACO related gene expression (1.46 Normalized Fold Expression), whereas CBMB20 had high gene expression (3.42 Normalized Fold Expression) in pathogen challenged tomato. But a significant increase in ACO gene expression (7.09 Normalized Fold Expression) was observed in the bacterial pathogen infected plants. In contrast, Methylobacterium strains enhanced β-1,3-glucanase and phenylalanine ammonia-lyase (PAL) enzyme activities in pathogen challenged tomato plants. The respective increase in β-1,3-glucanase related gene expressions due to CBMB12, CBMB15, and CBMB20 strains were 66.3, 25.5 and 10.4% higher over pathogen infected plants. Similarly, PAL gene expression was high with 0.67 and 0.30 Normalized Fold Expression, in pathogen challenged tomato plants inoculated with CBMB12 and CBMB15 strains. The results suggest that ethylene is a crucial factor in bacterial spot disease incidence and that methylobacteria with ACC deaminase activity can reduce the disease severity with ultimate pathogenesis-related protein increase in tomato. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Tumour-associated neutrophils and loss of epithelial PTEN can promote corticosteroid-insensitive MMP-9 expression in the chronically inflamed lung microenvironment.

    PubMed

    Vannitamby, Amanda; Seow, Huei Jiunn; Anderson, Gary; Vlahos, Ross; Thompson, Michelle; Steinfort, Daniel; Irving, Louis B; Bozinovski, Steven

    2017-12-01

    Matrix metalloproteinase-9 (MMP-9) is increased in a number of pathological lung conditions, where the proteinase contributes to deleterious remodelling of the airways. While both lung cancer and COPD are associated with increased MMP-9 expression, the cellular and molecular drivers of MMP-9 remain unresolved. In this study, MMP-9 transcript measured within the tumour region from patients with non-small-cell lung cancer (NSCLC) and coexisting COPD was found to be uniformly increased relative to adjacent tumour-free tissue. MMP-9 gene expression and immunohistochemistry identified tumour-associated neutrophils, but not macrophages, as a predominant source of this proteinase. In addition, PTEN gene expression was significantly reduced in tumour and there was evidence of epithelial MMP-9 expression. To explore whether PTEN can regulate epithelial MMP-9 expression, a small interfering (si)RNA knockdown strategy was used in Beas-2B bronchial epithelial cells. PTEN knockdown by siRNA selectively increased MMP-9 expression in response to lipopolysaccharide in a corticosteroid-insensitive manner. In summary, tumour-associated neutrophils represent an important source of MMP-9 in NSCLC, and loss of epithelial PTEN may further augment steroid-insensitive expression. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  8. Increasing the yield of middle silk gland expression system through transgenic knock-down of endogenous sericin-1.

    PubMed

    Ma, Sanyuan; Xia, Xiaojuan; Li, Yufeng; Sun, Le; Liu, Yue; Liu, Yuanyuan; Wang, Xiaogang; Shi, Run; Chang, Jiasong; Zhao, Ping; Xia, Qingyou

    2017-08-01

    Various genetically modified bioreactor systems have been developed to meet the increasing demands of recombinant proteins. Silk gland of Bombyx mori holds great potential to be a cost-effective bioreactor for commercial-scale production of recombinant proteins. However, the actual yields of proteins obtained from the current silk gland expression systems are too low for the proteins to be dissolved and purified in a large scale. Here, we proposed a strategy that reducing endogenous sericin proteins would increase the expression yield of foreign proteins. Using transgenic RNA interference, we successfully reduced the expression of BmSer1 to 50%. A total 26 transgenic lines expressing Discosoma sp. red fluorescent protein (DsRed) in the middle silk gland (MSG) under the control of BmSer1 promoter were established to analyze the expression of recombinant. qRT-PCR and western blotting showed that in BmSer1 knock-down lines, the expression of DsRed had significantly increased both at mRNA and protein levels. We did an additional analysis of DsRed/BmSer1 distribution in cocoon and effect of DsRed protein accumulation on the silk fiber formation process. This study describes not only a novel method to enhance recombinant protein expression in MSG bioreactor, but also a strategy to optimize other bioreactor systems.

  9. Genes under weaker stabilizing selection increase network evolvability and rapid regulatory adaptation to an environmental shift.

    PubMed

    Laarits, T; Bordalo, P; Lemos, B

    2016-08-01

    Regulatory networks play a central role in the modulation of gene expression, the control of cellular differentiation, and the emergence of complex phenotypes. Regulatory networks could constrain or facilitate evolutionary adaptation in gene expression levels. Here, we model the adaptation of regulatory networks and gene expression levels to a shift in the environment that alters the optimal expression level of a single gene. Our analyses show signatures of natural selection on regulatory networks that both constrain and facilitate rapid evolution of gene expression level towards new optima. The analyses are interpreted from the standpoint of neutral expectations and illustrate the challenge to making inferences about network adaptation. Furthermore, we examine the consequence of variable stabilizing selection across genes on the strength and direction of interactions in regulatory networks and in their subsequent adaptation. We observe that directional selection on a highly constrained gene previously under strong stabilizing selection was more efficient when the gene was embedded within a network of partners under relaxed stabilizing selection pressure. The observation leads to the expectation that evolutionarily resilient regulatory networks will contain optimal ratios of genes whose expression is under weak and strong stabilizing selection. Altogether, our results suggest that the variable strengths of stabilizing selection across genes within regulatory networks might itself contribute to the long-term adaptation of complex phenotypes. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  10. Global gene expression in cotton (Gossypium hirsutum L.) leaves to waterlogging stress.

    PubMed

    Zhang, Yanjun; Kong, Xiangqiang; Dai, Jianlong; Luo, Zhen; Li, Zhenhuai; Lu, Hequan; Xu, Shizhen; Tang, Wei; Zhang, Dongmei; Li, Weijiang; Xin, Chengsong; Dong, Hezhong

    2017-01-01

    Cotton is sensitive to waterlogging stress, which usually results in stunted growth and yield loss. To date, the molecular mechanisms underlying the responses to waterlogging in cotton remain elusive. Cotton was grown in a rain-shelter and subjected to 0 (control)-, 10-, 15- and 20-d waterlogging at flowering stage. The fourth-leaves on the main-stem from the top were sampled and immediately frozen in liquid nitrogen for physiological measurement. Global gene transcription in the leaves of 15-d waterlogged plants was analyzed by RNA-Seq. Seven hundred and ninety four genes were up-regulated and 1018 genes were down-regulated in waterlogged cotton leaves compared with non-waterlogged control. The differentially expressed genes were mainly related to photosynthesis, nitrogen metabolism, starch and sucrose metabolism, glycolysis and plant hormone signal transduction. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis indicated that most genes related to flavonoid biosynthesis, oxidative phosphorylation, amino acid metabolism and biosynthesis as well as circadian rhythm pathways were differently expressed. Waterlogging increased the expression of anaerobic fermentation related genes, such as alcohol dehydrogenase (ADH), but decreased the leaf chlorophyll concentration and photosynthesis by down-regulating the expression of photosynthesis related genes. Many genes related to plant hormones and transcription factors were differently expressed under waterlogging stress. Most of the ethylene related genes and ethylene-responsive factor-type transcription factors were up-regulated under water-logging stress, suggesting that ethylene may play key roles in the survival of cotton under waterlogging stress.

  11. Global gene expression in cotton (Gossypium hirsutum L.) leaves to waterlogging stress

    PubMed Central

    Zhang, Yanjun; Kong, Xiangqiang; Dai, Jianlong; Luo, Zhen; Li, Zhenhuai; Lu, Hequan; Xu, Shizhen; Tang, Wei; Zhang, Dongmei; Li, Weijiang; Xin, Chengsong

    2017-01-01

    Cotton is sensitive to waterlogging stress, which usually results in stunted growth and yield loss. To date, the molecular mechanisms underlying the responses to waterlogging in cotton remain elusive. Cotton was grown in a rain-shelter and subjected to 0 (control)-, 10-, 15- and 20-d waterlogging at flowering stage. The fourth-leaves on the main-stem from the top were sampled and immediately frozen in liquid nitrogen for physiological measurement. Global gene transcription in the leaves of 15-d waterlogged plants was analyzed by RNA-Seq. Seven hundred and ninety four genes were up-regulated and 1018 genes were down-regulated in waterlogged cotton leaves compared with non-waterlogged control. The differentially expressed genes were mainly related to photosynthesis, nitrogen metabolism, starch and sucrose metabolism, glycolysis and plant hormone signal transduction. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis indicated that most genes related to flavonoid biosynthesis, oxidative phosphorylation, amino acid metabolism and biosynthesis as well as circadian rhythm pathways were differently expressed. Waterlogging increased the expression of anaerobic fermentation related genes, such as alcohol dehydrogenase (ADH), but decreased the leaf chlorophyll concentration and photosynthesis by down-regulating the expression of photosynthesis related genes. Many genes related to plant hormones and transcription factors were differently expressed under waterlogging stress. Most of the ethylene related genes and ethylene-responsive factor-type transcription factors were up-regulated under water-logging stress, suggesting that ethylene may play key roles in the survival of cotton under waterlogging stress. PMID:28953908

  12. Heat shock protein Hsp90-2 expression in the Arabidopsis thaliana seedlings under clinorotation

    NASA Astrophysics Data System (ADS)

    Kozeko, Liudmyla

    Heat shock proteins 90 kDa (Hsp90) are abundant under normal conditions and induced by stress. This family is distinguished from other chaperones in that most of its substrates are signal transduction proteins. Previously, we determined some time-dependent increase in the Hsp90 level in pea seedlings in response to simulated microgravity that indicated a stress-reaction. However, expression of the individual members of the Hsp90 family have specific pattern. The purpose of this study was to investigate possible alterations in the gene expression pattern of cytosolic Hsp90-2 in Arabidopsis thaliana seedlings under 2D-clinorotation. To obtain detailed expression pattern of the HSP90-2 genes we used seeds that provides a resource of loss-of-function mutations gene expression patterns via translational fusions with the reporter gene, GUS (a line N 166718, NASC). There were two variants of the experiment: 1) seedlings grew under clinorotation for 10, 12, 14 d; 2) seedlings grew in the stationary conditions for 10 d followed by clinorotation for 3 h -at 22o C and 16h light cycle. The seedlings grown in the stationary conditions were used as a control. GUS staining showed that HSP90-2 expression was regulated during seedling development and affected by clinorotation in the heterozygous mutant plants. In the homozygous for the mutation plants, HSP90-2 expression was stable during seedling development and not affected by clinorotation. GUS staining was observed in cotyledons, leaves and hypocotyls of the seedlings (especially intense in vascular bundles), indicating intensive cellular processes with participation of this chaperone. Possible pathways of influence of clinorotation on HSP90-2 expression are discussed.

  13. Differential Expression of miRNAs in the Respiratory Tree of the Sea Cucumber Apostichopus japonicus Under Hypoxia Stress.

    PubMed

    Huo, Da; Sun, Lina; Li, Xiaoni; Ru, Xiaoshang; Liu, Shilin; Zhang, Libin; Xing, Lili; Yang, Hongsheng

    2017-11-06

    The sea cucumber, an important economic species, has encountered high mortality since 2013 in northern China because of seasonal environmental stress such as hypoxia, high temperature, and low salinity. MicroRNAs (miRNAs) are important in regulating gene expression in marine organisms in response to environmental change. In this study, high-throughput sequencing was used to investigate alterations in miRNA expression in the sea cucumber under different levels of dissolved oxygen (DO). Nine small RNA libraries were constructed from the sea cucumber respiratory trees. A total of 26 differentially expressed miRNAs, including 12 upregulated and 14 downregulated miRNAs, were observed in severe hypoxia (DO 2 mg/L) compared with mild hypoxia (DO 4 mg/L) and normoxic conditions (DO 8 mg/L). Twelve differentially expressed miRNAs were clustered in severe hypoxia. In addition, real-time PCR revealed that 14 randomly selected differentially expressed miRNAs showed significantly increased expressions in severe hypoxia and the expressions of nine miRNAs, including key miRNAs such as Aja-miR-1, Aja-miR-2008, and Aja-miR-184, were consistent with the sequencing results. Moreover, gene ontology and pathway analyses of putative target genes suggest that these miRNAs are important in redox, transport, transcription, and hydrolysis under hypoxia stress. Notably, novel-miR-1, novel-miR-2, and novel-miR-3 were specifically clustered and upregulated in severe hypoxia, which may provide new insights into novel "hypoxamiR" identification. These results will provide a basis for future studies of miRNA regulation and molecular adaptive mechanisms in sea cucumbers under hypoxia stress. Copyright © 2017 Huo et al.

  14. Transcriptional response of Pasteurella multocida to defined iron sources.

    PubMed

    Paustian, Michael L; May, Barbara J; Cao, Dongwei; Boley, Daniel; Kapur, Vivek

    2002-12-01

    Pasteurella multocida was grown in iron-free chemically defined medium supplemented with hemoglobin, transferrin, ferritin, and ferric citrate as iron sources. Whole-genome DNA microarrays were used to monitor global gene expression over seven time points after the addition of the defined iron source to the medium. This resulted in a set of data containing over 338,000 gene expression observations. On average, 12% of P. multocida genes were differentially expressed under any single condition. A majority of these genes encoded P. multocida proteins that were involved in either transport and binding or were annotated as hypothetical proteins. Several trends are evident when the data from different iron sources are compared. In general, only two genes (ptsN and sapD) were expressed at elevated levels under all of the conditions tested. The results also show that genes with increased expression in the presence of hemoglobin did not respond to transferrin or ferritin as an iron source. Correspondingly, genes with increased expression in the transferrin and ferritin experiments were expressed at reduced levels when hemoglobin was supplied as the sole iron source. Finally, the data show that genes that were most responsive to the presence of ferric citrate did not follow a trend similar to that of the other iron sources, suggesting that different pathways respond to inorganic or organic sources of iron in P. multocida. Taken together, our results demonstrate that unique subsets of P. multocida genes are expressed in response to different iron sources and that many of these genes have yet to be functionally characterized.

  15. Auxin modulates the enhanced development of root hairs in Arabidopsis thaliana (L.) Heynh. under elevated CO(2).

    PubMed

    Niu, Yaofang; Jin, Chongwei; Jin, Gulei; Zhou, Qingyan; Lin, Xianyong; Tang, Caixian; Zhang, Yongsong

    2011-08-01

    Root hairs may play a critical role in nutrient acquisition of plants grown under elevated CO(2) . This study investigated how elevated CO(2) enhanced the development of root hairs in Arabidopsis thaliana (L.) Heynh. The plants under elevated CO(2) (800 µL L(-1)) had denser and longer root hairs, and more H-positioned cells in root epidermis than those under ambient CO(2) (350 µL L(-1)). The elevated CO(2) increased auxin production in roots. Under elevated CO(2) , application of either 1-naphthoxyacetic acid (1-NOA) or N-1-naphthylphthalamic acid (NPA) blocked the enhanced development of root hairs. The opposite was true when the plants under ambient CO(2) were treated with 1-naphthylacetic acid (NAA), an auxin analogue. Furthermore, the elevated CO(2) did not enhance the development of root hairs in auxin-response mutants, axr1-3, and auxin-transporter mutants, axr4-1, aux1-7 and pin1-1. Both elevated CO(2) and NAA application increased expressions of caprice, triptychon and rho-related protein from plants 2, and decreased expressions of werewolf, GLABRA2, GLABRA3 and the transparent testa glabra 1, genes related to root-hair development, while 1-NOA and NPA application had an opposite effect. Our study suggests that elevated CO(2) enhanced the development of root hairs in Arabidopsis via the well-characterized auxin signalling and transport that modulate the initiation of root hairs and the expression of its specific genes. © 2011 Blackwell Publishing Ltd.

  16. 5-Aminolevulinic Acid (ALA) Alleviated Salinity Stress in Cucumber Seedlings by Enhancing Chlorophyll Synthesis Pathway.

    PubMed

    Wu, Yue; Jin, Xin; Liao, Weibiao; Hu, Linli; Dawuda, Mohammed M; Zhao, Xingjie; Tang, Zhongqi; Gong, Tingyu; Yu, Jihua

    2018-01-01

    5-Aminolevulinic acid (ALA) is a common precursor of tetrapyrroles as well as a crucial growth regulator in higher plants. ALA has been proven to be effective in improving photosynthesis and alleviating the adverse effects of various abiotic stresses in higher plants. However, little is known about the mechanism of ALA in ameliorating the photosynthesis of plant under abiotic stress. In this paper, we studied the effects of exogenous ALA on salinity-induced damages of photosynthesis in cucumber ( Cucumis sativus L.) seedlings. We found that the morphology (plant height, leave area), light utilization capacity of PS II [qL, Y(II)] and gas exchange capacity (Pn, gs, Ci, and Tr) were significantly retarded under NaCl stress, but these parameters were all recovered by the foliar application of 25 mg L -1 ALA. Besides, salinity caused heme accumulation and up-regulation of gene expression of ferrochelatase ( HEMH ) with suppression of other genes involved in chlorophyll synthesis pathway. Exogenously application of ALA under salinity down-regulated the heme content and HEMH expression, but increased the gene expression levels of glutamyl-tRNA reductase ( HEMA1 ), Mg-chelatase ( CHLH ), and protochlorophyllide oxidoreductase ( POR ). Moreover, the contents of intermediates involved in chlorophyll branch were increased by ALA, including protoporphyrin IX (Proto IX), Mg-protoporphyrin IX (Mg-Proto IX, protochlorophyllide (Pchlide), and chlorophyll (Chl a and Chl b ) under salt stress. Ultrastructural observation of mesophyll cell showed that the damages of photosynthetic apparatus under salinity were fixed by ALA. Collectively, the chlorophyll biosynthesis pathway was enhanced by exogenous ALA to improve the tolerance of cucumber under salinity.

  17. [Effects of exogenous spermidine on lipid peroxidation and membrane proton pump activity of cucumber seedling leaves under high temperature stress].

    PubMed

    Tian, Jing; Guo, Shi-Rong; Sun, Jin; Wang, Li-Ping; Yang, Yan-Juan; Li, Bin

    2011-12-01

    Taking a relatively heat-resistant cucumber (Cucumis sativus) cultivar 'Jinchun No. 4' as test material, a sand culture experiment was conducted in growth chamber to investigate the effects of foliar spraying spermidine (Spd) on the lipid peroxidation, membrane proton pump activity, and corresponding gene expression of cucumber seedling leaves under high temperature stress. Compared with the control, foliar spraying Spd increased the plant height, stem diameter, dry and fresh mass, and leaf area significantly, and inhibited the increase of leaf relative conductivity, malondialdehyde (MDA) content, and lipoxygenase (LOX) activity effectively. Foliar spraying Spd also helped to the increase of leaf plasma membrane- and tonoplast H(+)-ATPase activity, but no significant difference was observed in the gene expression levels. These results suggested that exogenous Spd could significantly decrease the leaf lipid peroxidation and increase the proton pump activity, and thus, stabilize the leaf membrane structure and function, alleviate the damage induced by high temperature stress, and enhance the heat tolerance of cucumber seedlings.

  18. Molecular Insights Into a Dinoflagellate Bloom Imply Bacterial Cultivation

    NASA Astrophysics Data System (ADS)

    Gong, W.; Hall, N.; Schruth, D.; Paerl, H. W.; Marchetti, A.

    2016-02-01

    In coastal waters, an increase in frequency and intensity of algal blooms worldwide has recently been observed primarily due to eutrophication, with further increases predicted as a consequence of climate change. In many marine habitats most impacted by human activities, efforts have been made to prevent conditions that promote harmful algal blooms, or HABs, although progress is limited, due in part to our current lack of understanding of the environmental and cellular processes that promote and propagate these blooms. Comparative metatranscriptomics was used to investigate the underlying molecular mechanisms associated with a dinoflagellate bloom in a highly eutrophied estuarine system. Here we show that under bloom conditions, there is increased expression of metabolic pathways indicative of rapidly growing cells, including energy production, carbon metabolism, transporters and synthesis of nucleic acids and cellular membrane components. In addition, there is a prominence of highly expressed genes involved in synthesis of membrane-associated molecules, including those for the production of glycosaminoglycans (GAGs), which may serve roles in nutrient acquisition and/or cell surface adhesion. Biotin and thiamine synthesis genes also increased expression along with several cobalamin biosynthesis-associated genes that suggests processing of B12 intermediates by dinoflagellates. The patterns in gene expression observed are consistent with bloom-forming dinoflagellates eliciting a cellular response to facilitate interactions with their surrounding bacterial consortium, possibly in an effort to cultivate for enhancement of vitamin and nutrient exchanges and/or direct consumption. Our findings provide potential molecular targets for HAB detection and remediation efforts.

  19. Leucine deprivation stimulates fat loss via increasing CRH expression in the hypothalamus and activating the sympathetic nervous system.

    PubMed

    Cheng, Ying; Zhang, Qian; Meng, Qingshu; Xia, Tingting; Huang, Zhiying; Wang, Chunxia; Liu, Bin; Chen, Shanghai; Xiao, Fei; Du, Ying; Guo, Feifan

    2011-09-01

    We previously showed that leucine deprivation decreases abdominal fat mass largely by increasing energy expenditure, as demonstrated by increased lipolysis in white adipose tissue (WAT) and uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT). The goal of the present study was to investigate the possible involvement of central nervous system (CNS) in this regulation and elucidate underlying molecular mechanisms. For this purpose, levels of genes and proteins related to lipolysis in WAT and UCP1 expression in BAT were analyzed in wild-type mice after intracerebroventricular administration of leucine or corticotrophin-releasing hormone antibodies, or in mice deleted for three β-adrenergic receptors, after being maintained on a leucine-deficient diet for 7 d. Here, we show that intracerebroventricular administration of leucine significantly attenuates abdominal fat loss and blocks activation of hormone sensitive lipase in WAT and induction of UCP1 in BAT in leucine-deprived mice. Furthermore, we provide evidence that leucine deprivation stimulates fat loss by increasing expression of corticotrophin-releasing hormone in the hypothalamus via activation of stimulatory G protein/cAMP/protein kinase A/cAMP response element-binding protein pathway. Finally, we show that the effect of leucine deprivation on fat loss is mediated by activation of the sympathetic nervous system. These results suggest that CNS plays an important role in regulating fat loss under leucine deprivation and thereby provide novel and important insights concerning the importance of CNS leucine in the regulation of energy homeostasis.

  20. Cell-cell contact regulates gene expression in CDK4-transformed mouse podocytes.

    PubMed

    Sakairi, Toru; Abe, Yoshifusa; Jat, Parmijit S; Kopp, Jeffrey B

    2010-10-01

    We transformed mouse podocytes by ectopic expression of cyclin-dependent kinase 4 (CDK4). Compared with podocytes transformed with a thermo-sensitive SV40 large T antigen mutant tsA58U19 (tsT podocytes), podocytes transformed with CDK4 (CDK4 podocytes) exhibited significantly higher expression of nephrin mRNA. Synaptopodin mRNA expression was significantly lower in CDK4 podocytes and in tsT podocytes under growth-permissive conditions (33°C) compared with tsT podocytes under growth-restricted conditions (37°C), which suggests a role for cell cycle arrest in synaptopodin mRNA expression. Confluent CDK4 podocytes showed significantly higher mRNA expression levels for nephrin, synaptopodin, Wilms tumor 1, podocalyxin, and P-cadherin compared with subconfluent cultures. We carried out experiments to clarify roles of various factors in the confluent podocyte cultures; our findings indicate that cell-cell contact promotes expression of five podocyte marker genes studied, that cellular quiescence increases synaptopodin and podocalyxin mRNA expression, and that soluble factors play a role in nephrin mRNA expression. Our findings suggest that CDK4 podocytes are useful tools to study podocyte biology. Furthermore, the role of cell-cell contact in podocyte gene expression may have relevance for podocyte function in vivo.

  1. Angiotensin II alters the expression of duodenal iron transporters, hepatic hepcidin, and body iron distribution in mice.

    PubMed

    Tajima, Soichiro; Ikeda, Yasumasa; Enomoto, Hideaki; Imao, Mizuki; Horinouchi, Yuya; Izawa-Ishizawa, Yuki; Kihira, Yoshitaka; Miyamoto, Licht; Ishizawa, Keisuke; Tsuchiya, Koichiro; Tamaki, Toshiaki

    2015-08-01

    Angiotensin II (ANG II) has been shown to affect iron metabolism through alteration of iron transporters, leading to increased cellular and tissue iron contents. Serum ferritin, a marker of body iron storage, is elevated in various cardiovascular diseases, including hypertension. However, the associated changes in iron absorption and the mechanism underlying increased iron content in a hypertensive state remain unclear. The C57BL6/J mice were treated with ANG II to generate a model of hypertension. Mice were divided into three groups: (1) control, (2) ANG II-treated, and (3) ANG II-treated and ANG II receptor blocker (ARB)-administered (ANG II-ARB) groups. Mice treated with ANG II showed increased serum ferritin levels compared to vehicle-treated control mice. In ANG II-treated mice, duodenal divalent metal transporter-1 and ferroportin (FPN) expression levels were increased and hepatic hepcidin mRNA expression and serum hepcidin concentration were reduced. The mRNA expression of bone morphogenetic protein 6 and CCAAT/enhancer-binding protein alpha, which are regulators of hepcidin, was also down-regulated in the livers of ANG II-treated mice. In terms of tissue iron content, macrophage iron content and renal iron content were increased by ANG II treatment, and these increases were associated with reduced expression of transferrin receptor 1 and FPN and increased expression of ferritin. These changes induced by ANG II treatment were ameliorated by the administration of an ARB. Angiotensin II (ANG II) altered the expression of duodenal iron transporters and reduced hepcidin levels, contributing to the alteration of body iron distribution.

  2. Seed-specific transcription factor HSFA9 links late embryogenesis and early photomorphogenesis

    PubMed Central

    Prieto-Dapena, Pilar; Almoguera, Concepción; Personat, José-María; Merchan, Francisco

    2017-01-01

    Abstract HSFA9 is a seed-specific transcription factor that in sunflower (Helianthus annuus) is involved in desiccation tolerance and longevity. Here we show that the constitutive overexpression of HSFA9 in tobacco (Nicotiana tabacum) seedlings attenuated hypocotyl growth under darkness and accelerated the initial photosynthetic development. Plants overexpressing HSFA9 increased accumulation of carotenoids, chlorophyllide, and chlorophyll, and displayed earlier unfolding of the cotyledons. HSFA9 enhanced phytochrome-dependent light responses, as shown by an intensified hypocotyl length reduction after treatments with continuous far-red or red light. This observation indicated the involvement of at least two phytochromes: PHYA and PHYB. Reduced hypocotyl length under darkness did not depend on phytochrome photo-activation; this was inferred from the lack of effect observed using far-red light pulses applied before the dark treatment. HSFA9 increased the expression of genes that activate photomorphogenesis, including PHYA, PHYB, and HY5. HSFA9 might directly upregulate PHYA and indirectly affect PHYB transcription, as suggested by transient expression assays. Converse effects on gene expression, greening, and cotyledon unfolding were observed using a dominant-negative form of HSFA9, which was overexpressed under a seed-specific promoter. This work uncovers a novel transcriptional link, through HSFA9, between seed maturation and early photomorphogenesis. In all, our data suggest that HSFA9 enhances photomorphogenesis via early transcriptional effects that start in seeds under darkness. PMID:28207924

  3. Retrieval under stress decreases the long-term expression of a human declarative memory via reconsolidation.

    PubMed

    Larrosa, Pablo Nicolás Fernández; Ojea, Alejandro; Ojea, Ignacio; Molina, Victor Alejandro; Zorrilla-Zubilete, María Aurelia; Delorenzi, Alejandro

    2017-07-01

    Acute stress impairs memory retrieval of several types of memories. An increase in glucocorticoids, several minutes after stressful events, is described as essential to the impairing retrieval-effects of stressors. Moreover, memory retrieval under stress can have long-term consequences. Through what process does the reactivated memory under stress, despite the disrupting retrieval effects, modify long-term memories? The reconsolidation hypothesis proposes that a previously consolidated memory reactivated by a reminder enters a vulnerability phase (labilization) during which it is transiently sensitive to modulation, followed by a re-stabilization phase. However, previous studies show that the expression of memories during reminder sessions is not a condition to trigger the reconsolidation process since unexpressed memories can be reactivated and labilized. Here we evaluate whether it is possible to reactivate-labilize a memory under the impairing-effects of a mild stressor. We used a paradigm of human declarative memory whose reminder structure allows us to differentiate between a reactivated-labile memory state and a reactivated but non-labile state. Subjects memorized a list of five cue-syllables associated with their respective response-syllables. Seventy-two hours later, results showed that the retrieval of the paired-associate memory was impaired when tested 20min after a mild stressor (cold pressor stress (CPS)) administration, coincident with cortisol levels increase. Then, we investigated the long-term effects of CPS administration prior to the reminder session. Under conditions where the reminder initiates the reconsolidation process, CPS impaired the long-term memory expression tested 24h later. In contrast, CPS did not show effects when administered before a reminder session that does not trigger reconsolidation. Results showed that memory reactivation-labilization occurs even when retrieval was impaired. Memory reactivation under stress could hinder -via reconsolidation- the probability of the traces to be expressed in the long term. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Formation of friable embryogenic callus in cassava is enhanced under conditions of reduced nitrate, potassium and phosphate

    PubMed Central

    Utsumi, Yoshinori; Utsumi, Chikako; Tanaka, Maho; Ha, Vu The; Matsui, Akihiro; Takahashi, Satoshi; Seki, Motoaki

    2017-01-01

    Agrobacterium-mediated transformation is an important research tool for the genetic improvement of cassava. The induction of friable embryogenic callus (FEC) is considered as a key step in cassava transformation. In the present study, the media composition was optimized for enhancing the FEC induction, and the effect of the optimized medium on gene expression was evaluated. In relative comparison to MS medium, results demonstrated that using a medium with reducing nutrition (a 10-fold less concentration of nitrogen, potassium, and phosphate), the increased amount of vitamin B1 (10 mg/L) and the use of picrolam led to reprogram non-FEC to FEC. Gene expression analyses revealed that FEC on modified media increased the expression of genes related to the regulation of polysaccharide biosynthesis and breakdown of cell wall components in comparison to FEC on normal CIM media, whereas the gene expression associated with energy flux was not dramatically altered. It is hypothesized that we reprogram non-FEC to FEC under low nitrogen, potassium and phosphate and high vitamin B1. These findings were more effective in inducing FEC formation than the previous protocol. It might contribute to development of an efficient transformation strategy in cassava. PMID:28806727

  5. Contemporaneous Social Environment and the Architecture of Late-Life Gene Expression Profiles.

    PubMed

    Levine, Morgan E; Crimmins, Eileen M; Weir, David R; Cole, Steve W

    2017-09-01

    Environmental or social challenges can stimulate a cascade of coordinated physiological changes in stress response systems. Unfortunately, chronic activation of these adaptations under conditions such as low socioeconomic status (SES) can have negative consequences for long-term health. While there is substantial evidence tying low SES to increased disease risk and reduced life expectancy, the underlying biology remains poorly understood. Using pilot data on 120 older adults from the Health and Retirement Study (United States, 2002-2010), we examined the associations between SES and gene expression levels in adulthood, with particular focus on a gene expression program known as the conserved transcriptional response to adversity. We also used a bioinformatics-based approach to assess the activity of specific gene regulation pathways involved in inflammation, antiviral responses, and stress-related neuroendocrine signaling. We found that low SES was related to increased expression of conserved transcriptional response to adversity genes and distinct patterns of proinflammatory, antiviral, and stress signaling (e.g., sympathetic nervous system and hypothalamic-pituitary-adrenal axis) transcription factor activation. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Effects of Thermal Stress on the mRNA Expression of SOD, HSP90, and HSP70 in the Spotted Sea Bass ( Lateolabrax maculatus)

    NASA Astrophysics Data System (ADS)

    Shin, Moon-Kyeong; Park, Ho-Ra; Yeo, Won-Jun; Han, Kyung-Nam

    2018-03-01

    The aim of this study was to elucidate the molecular mechanisms underlying the thermal stress response in the spotted sea bass ( Lateolabrax maculatus). Spotted sea basses were exposed to 4 different water temperatures (20, 22, 24, and 28°C) in increasing increments of 2°C/h from 18°C (control) for different time periods (0, 6, 12, 24, 48, 72, and 96 h). Subsequently, 3 tissues (liver, muscle, and gill) were isolated, and the levels of SOD, HSP90, and HSP70 mRNA were assessed. SOD mRNA expression was maintained at baseline levels of control fish at all water temperatures in the liver, while muscle and gill tissue showed an increase followed by a decrease over each certain time with higher water temperature. HSP90 mRNA expression increased in the liver at ≤ 24°C over time, but maintained baseline expression at 28°C. In muscle, HSP90 mRNA expression gradually increased at all water temperatures, but increased and then decreased at ≥ 24°C in gill tissue. HSP70 mRNA expression exhibited an increase and then a decrease in liver tissue at 28°C, but mainly showed similar expression patterns to HSP90 in all tissues. These results suggest the activity of a defense mechanism using SOD, HSP90, and HSP70 in the spotted sea bass upon rapid increases in water temperature, where the expression of these genes indicated differences between tissues in the extent of the defense mechanisms. Also, these results indicate that high water temperature and long-term thermal stress exposure can inhibit physiological defense mechanisms.

  7. Long non-coding RNAs as novel expression signatures modulate DNA damage and repair in cadmium toxicology

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiheng; Liu, Haibai; Wang, Caixia; Lu, Qian; Huang, Qinhai; Zheng, Chanjiao; Lei, Yixiong

    2015-10-01

    Increasing evidence suggests that long non-coding RNAs (lncRNAs) are involved in a variety of physiological and pathophysiological processes. Our study was to investigate whether lncRNAs as novel expression signatures are able to modulate DNA damage and repair in cadmium(Cd) toxicity. There were aberrant expression profiles of lncRNAs in 35th Cd-induced cells as compared to untreated 16HBE cells. siRNA-mediated knockdown of ENST00000414355 inhibited the growth of DNA-damaged cells and decreased the expressions of DNA-damage related genes (ATM, ATR and ATRIP), while increased the expressions of DNA-repair related genes (DDB1, DDB2, OGG1, ERCC1, MSH2, RAD50, XRCC1 and BARD1). Cadmium increased ENST00000414355 expression in the lung of Cd-exposed rats in a dose-dependent manner. A significant positive correlation was observed between blood ENST00000414355 expression and urinary/blood Cd concentrations, and there were significant correlations of lncRNA-ENST00000414355 expression with the expressions of target genes in the lung of Cd-exposed rats and the blood of Cd exposed workers. These results indicate that some lncRNAs are aberrantly expressed in Cd-treated 16HBE cells. lncRNA-ENST00000414355 may serve as a signature for DNA damage and repair related to the epigenetic mechanisms underlying the cadmium toxicity and become a novel biomarker of cadmium toxicity.

  8. Wnt/β-Catenin Expression Does Not Correlate with Serum Alkaline Phosphatase Concentration in Canine Osteosarcoma Patients

    PubMed Central

    Piskun, Caroline M.; Muthuswamy, Anantharaman; Huelsmeyer, Michael K.; Thompson, Victoria; Stein, Timothy J.

    2011-01-01

    Osteosarcoma is an aggressive malignancy of the bone and an increase in serum alkaline phosphatase concentration has clinical prognostic value in both humans and canines. Increased serum alkaline phosphatase concentration at the time of diagnosis has been associated with poorer outcomes for osteosarcoma patients. The biology underlying this negative prognostic factor is poorly understood. Given that activation of the Wnt signaling pathway has been associated with alkaline phosphatase expression in osteoblasts, we hypothesized that the Wnt/β-catenin signaling pathway would be differentially activated in osteosarcoma tissue based on serum ALP status. Archived canine osteosarcoma samples and primary canine osteosarcoma cell lines were used to evaluate the status of Wnt/β-catenin signaling pathway activity through immunohistochemical staining, western immunoblot analyses, quantitative reverse-transcription polymerase chain reaction, and a Wnt-responsive promoter activity assay. We found no significant difference in β-catenin expression or activation between OSA populations differing in serum ALP concentration. Pathway activity was mildly increased in the primary OSA cell line generated from a patient with increased serum ALP compared to the normal serum ALP OSA cell line. Further investigation into the mechanisms underlying differences in serum ALP concentration is necessary to improve our understanding of the biological implications of this negative prognostic indicator. PMID:22022527

  9. Increased Transendothelial Transport of CCL3 Is Insufficient to Drive Immune Cell Transmigration through the Blood-Brain Barrier under Inflammatory Conditions In Vitro.

    PubMed

    De Laere, Maxime; Sousa, Carmelita; Meena, Megha; Buckinx, Roeland; Timmermans, Jean-Pierre; Berneman, Zwi; Cools, Nathalie

    2017-01-01

    Many neuroinflammatory diseases are characterized by massive immune cell infiltration into the central nervous system. Identifying the underlying mechanisms could aid in the development of therapeutic strategies specifically interfering with inflammatory cell trafficking. To achieve this, we implemented and validated a blood-brain barrier (BBB) model to study chemokine secretion, chemokine transport, and leukocyte trafficking in vitro. In a coculture model consisting of a human cerebral microvascular endothelial cell line and human astrocytes, proinflammatory stimulation downregulated the expression of tight junction proteins, while the expression of adhesion molecules and chemokines was upregulated. Moreover, chemokine transport across BBB cocultures was upregulated, as evidenced by a significantly increased concentration of the inflammatory chemokine CCL3 at the luminal side following proinflammatory stimulation. CCL3 transport occurred independently of the chemokine receptors CCR1 and CCR5, albeit that migrated cells displayed increased expression of CCR1 and CCR5. However, overall leukocyte transmigration was reduced in inflammatory conditions, although higher numbers of leukocytes adhered to activated endothelial cells. Altogether, our findings demonstrate that prominent barrier activation following proinflammatory stimulation is insufficient to drive immune cell recruitment, suggesting that additional traffic cues are crucial to mediate the increased immune cell infiltration seen in vivo during neuroinflammation.

  10. Different Expression Levels of Human Mutant Ubiquitin B+1 (UBB+1) Can Modify Chronological Lifespan or Stress Resistance of Saccharomyces cerevisiae

    PubMed Central

    Muñoz-Arellano, Ana Joyce; Chen, Xin; Molt, Andrea; Meza, Eugenio; Petranovic, Dina

    2018-01-01

    The ubiquitin-proteasome system (UPS) is the main pathway responsible for the degradation of misfolded proteins, and its dysregulation has been implicated in several neurodegenerative diseases, including Alzheimer’s disease (AD). UBB+1, a mutant variant of ubiquitin B, was found to accumulate in neurons of AD patients and it has been linked to UPS dysfunction and neuronal death. Using the yeast Saccharomyces cerevisiae as a model system, we constitutively expressed UBB+1 to evaluate its effects on proteasome function and cell death, particularly under conditions of chronological aging. We showed that the expression of UBB+1 caused inhibition of the three proteasomal proteolytic activities (caspase-like (β1), trypsin-like (β2) and chymotrypsin-like (β5) activities) in yeast. Interestingly, this inhibition did not alter cell viability of growing cells. Moreover, we showed that cells expressing UBB+1 at lower level displayed an increased capacity to degrade induced misfolded proteins. When we evaluated cells during chronological aging, UBB+1 expression at lower level, prevented cells to accumulate reactive oxygen species (ROS) and avert apoptosis, dramatically increasing yeast life span. Since proteasome inhibition by UBB+1 has previously been shown to induce chaperone expression and thus protect against stress, we evaluated our UBB+1 model under heat shock and oxidative stress. Higher expression of UBB+1 caused thermotolerance in yeast due to induction of chaperones, which occurred to a lesser extent at lower expression level of UBB+1 (where we observed the phenotype of extended life span). Altering UPS capacity by differential expression of UBB+1 protects cells against several stresses during chronological aging. This system can be valuable to study the effects of UBB+1 on misfolded proteins involved in neurodegeneration and aging.

  11. Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron.

    PubMed

    Drakakaki, Georgia; Marcel, Sylvain; Glahn, Raymond P; Lund, Elizabeth K; Pariagh, Sandra; Fischer, Rainer; Christou, Paul; Stoger, Eva

    2005-12-01

    We have generated transgenic maize plants expressing Aspergillus phytase either alone or in combination with the iron-binding protein ferritin. Our aim was to produce grains with increased amounts of bioavailable iron in the endosperm. Maize seeds expressing recombinant phytase showed enzymatic activities of up to 3 IU per gram of seed. In flour paste prepared from these seeds, up to 95% of the endogenous phytic acid was degraded, with a concomitant increase in the amount of available phosphate. In seeds expressing ferritin in addition to phytase, the total iron content was significantly increased. To evaluate the impact of the recombinant proteins on iron absorption in the human gut, we used an in vitro digestion/Caco-2 cell model. We found that phytase in the maize seeds was associated with increased cellular iron uptake, and that the rate of iron uptake correlated with the level of phytase expression regardless of the total iron content of the seeds. We also investigated iron bioavailability under more complex meal conditions by adding ascorbic acid, which promotes iron uptake, to all samples. This resulted in a further increase in iron absorption, but the effects of phytase and ascorbic acid were not additive. We conclude that the expression of recombinant ferritin and phytase could help to increase iron availability and enhance the absorption of iron, particularly in cereal-based diets that lack other nutritional components.

  12. Glucose availability controls adipogenesis in mouse 3T3-L1 adipocytes via up-regulation of nicotinamide metabolism.

    PubMed

    Jackson, Robert M; Griesel, Beth A; Gurley, Jami M; Szweda, Luke I; Olson, Ann Louise

    2017-11-10

    Expansion of adipose tissue in response to a positive energy balance underlies obesity and occurs through both hypertrophy of existing cells and increased differentiation of adipocyte precursors (hyperplasia). To better understand the nutrient signals that promote adipocyte differentiation, we investigated the role of glucose availability in regulating adipocyte differentiation and maturation. 3T3-L1 preadipocytes were grown and differentiated in medium containing a standard differentiation hormone mixture and either 4 or 25 mm glucose. Adipocyte maturation at day 9 post-differentiation was determined by key adipocyte markers, including glucose transporter 4 (GLUT4) and adiponectin expression and Oil Red O staining of neutral lipids. We found that adipocyte differentiation and maturation required a pulse of 25 mm glucose only during the first 3 days of differentiation. Importantly, fatty acids were unable to substitute for the 25 mm glucose pulse during this period. The 25 mm glucose pulse increased adiponectin and GLUT4 expression and accumulation of neutral lipids via distinct mechanisms. Adiponectin expression and other early markers of differentiation required an increase in the intracellular pool of total NAD/P. In contrast, GLUT4 protein expression was only partially restored by increased NAD/P levels. Furthermore, GLUT4 mRNA expression was mediated by glucose-dependent activation of GLUT4 gene transcription through the cis-acting GLUT4-liver X receptor element (LXRE) promoter element. In summary, this study supports the conclusion that high glucose promotes adipocyte differentiation via distinct metabolic pathways and independently of fatty acids. This may partly explain the mechanism underlying adipocyte hyperplasia that occurs much later than adipocyte hypertrophy in the development of obesity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Upregulation of aldolase B and overproduction of methylglyoxal in vascular tissues from rats with metabolic syndrome.

    PubMed

    Liu, Jianghai; Wang, Rui; Desai, Kaushik; Wu, Lingyun

    2011-12-01

    Methylglyoxal (MG) overproduction has been reported in metabolic syndrome with hyperglycaemia (diabetes) or without hyperglycaemia (hypertension), and the underlying mechanism was investigated. Contributions of different pathways or enzymes to MG formation were evaluated in aorta or cultured vascular smooth muscle cells (VSMCs). In all four animal models of metabolic syndrome, i.e. chronically fructose-fed hypertensive Sprague-Dawley rats, spontaneously hypertensive rats, obese non-diabetic Zucker rats, and diabetic Zucker rats, serum and aortic MG and fructose levels were increased, and the expression of GLUT5 (transporting fructose) and aldolase B (converting fructose to MG) in aorta were up-regulated. Aortic expressions of aldolase A, semicarbazide-sensitive amine oxidase (SSAO), and cytochrome P450 2E1 (CYP 2E1), accounting for MG formation during glycolysis, protein, and lipid metabolism, respectively, was unchanged/reduced. Fructose (25 mM) treatment of VSMCs up-regulated the expression of GLUT5 and aldolase B and accelerated MG formation. Insulin (100 nM) increased GLUT5 expression and augmented fructose-increased cellular fructose accumulation and MG formation. Glucose (25 mM) treatment activated the polyol pathway and enhanced fructose formation, leading to aldolase B upregulation and MG overproduction. Inhibition of the polyol pathway reduced the glucose-increased aldolase B expression and MG generation. The excess formation of MG in under these conditions was eliminated by knock-down of aldolase B, but not by knock-down of aldolase A or inhibition of SSAO or CYP 2E1. Upregulation of aldolase B by accumulated fructose is a common mechanism for MG overproduction in VSMCs and aorta in different models of metabolic syndrome.

  14. Regulation of theta-antigen expression by agents altering cyclic AMP level and by thymic factor.

    PubMed

    Bach, M A; Fournier, C; Bach, J F

    1975-02-28

    Thymic factor, cyclic AMP, and products increasing its cellular level, such as Prostaglandin E1, induce the appearance of the theta-antigen on T-cell precursors whether assessed by a rossette-inhibition assay or a cytotoxic assay after cell fractionation on BSA discontinuous gradiet. Synergism has been demonstrated between cyclic AMPT and TF for that effect. Conversely, decrease of theta expression has been obtained by altering cyclic AMP level in theta-positive cells either increasing it by dibutyryl cAMP treatment or decreasing it by indomethacin treatment. Finally, these data suggest the involvement of cyclic AMP in the regulation of theta expression under thymic hormone control.

  15. The change in heat shock protein expression in avermectin induced neurotoxicity of the pigeon (Columba livia) both in vivo and in vitro.

    PubMed

    Li, Ming; Wang, Xian-Song; Xu, Feng-Ping; Liu, Shuang; Xu, Shi-Wen; Li, Shu

    2014-12-01

    The expression of heat shock proteins (Hsps) commonly increases to provide neuroprotection when brain tissues are under stress conditions. Residues of avermectins (AVMs) have neurotoxic effects on a number of non-target organisms. The aim of this study was to investigate the effects of AVM exposure on the expression levels of Hsp 60, Hsp 70 and Hsp 90 for pigeon (Columba livia) neurons both in vivo and in vitro. The results showed that in general, the mRNA and protein levels of Hsps were increased in treated groups relative to control groups after AVM exposure for 30d, 60d and 90d in the cerebrum, cerebellum and optic lobe in vivo. However, AVM exposure had no significant effects on the transcription expression of Hsps for 90d in the optic lobe and decreased the translation expression of Hsps significantly for 90d in the optic lobe. In vitro, the LC50 of avermectin for King pigeon neurons is between 15μgL(-1) and 20μgL(-1). Following AVM (2.5-20μgL(-1)) exposure, the mRNA expression of the 3 Hsps was up-regulated to different degrees. Compared with the control groups, a significant decrease, a remarkable increase and a non-significant change was found in the protein expression of Hsp 60, Hsp 70 and Hsp 90 separately following AVM (2.5-20μgL(-1)) exposure. Based on these results, we conclude that AVM exposure can induce a protective stress response in pigeons by means of promoting the mRNA and protein expression of Hsps under in vivo and in vitro conditions, thus easing the neurotoxic effects of AVM to some extent. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Transcriptome, expression, and activity analyses reveal a vital heat shock protein 70 in the stress response of stony coral Pocillopora damicornis.

    PubMed

    Zhang, Yidan; Zhou, Zhi; Wang, Lingui; Huang, Bo

    2018-02-12

    Coral bleaching occurs worldwide with increasing frequencies and intensities, which is caused by the stress response of stony coral to environmental change, especially increased sea surface temperature. In the present study, transcriptome, expression, and activity analyses were employed to illustrate the underlying molecular mechanisms of heat shock protein 70 (HSP70) in the stress response of coral to environmental changes. The domain analyses of assembled transcripts revealed 30 HSP70 gene contigs in stony coral Pocillopora damicornis. One crucial HSP70 (PdHSP70) was observed, whose expressions were induced by both elevated temperature and ammonium after expression difference analysis. The complete complementary DNA (cDNA) sequence of PdHSP70 was identified, which encoded a polypeptide of 650 amino acids with a molecular weight of 71.93 kDa. The deduced amino acid sequence of PdHSP70 contained a HSP70 domain (from Pro8 to Gly616), and it shared the highest similarity (95%) with HSP70 from Stylophora pistillata. The expression level of PdHSP70 gene increased significantly at 12 h, and returned to the initial level at 24 h after the stress of high temperature (32 °C). The cDNA fragment encoding the mature peptide of PdHSP70 was recombined and expressed in the prokaryotic expression system. The ATPase activity of recombinant PdHSP70 protein was determined, and it did not change significantly in a wide range of temperature from 25 to 40 °C. These results collectively suggested that PdHSP70 was a vital heat shock protein 70 in the stony coral P. damicornis, whose mRNA expression could be induced by diverse environmental stress and whose activity could remain stable under heat stress. PdHSP70 might be involved in the regulation of the bleaching owing to heat stress in the stony coral P. damicornis.

  17. Effect of blue LED light intensity on carotenoid accumulation in citrus juice sacs.

    PubMed

    Zhang, Lancui; Ma, Gang; Yamawaki, Kazuki; Ikoma, Yoshinori; Matsumoto, Hikaru; Yoshioka, Terutaka; Ohta, Satoshi; Kato, Masaya

    2015-09-01

    In the present study, the effects of blue LED light intensity on carotenoid accumulation and expression of genes related to carotenoid biosynthesis were investigated in the juice sacs of Satsuma mandarin (Citrus unshiu Marc.) and Valencia orange (Citrus sinensis Osbeck) in vitro. The results showed that 100 μmol m(-2)s(-1) blue LED light (100B) was effective for increasing carotenoid content, especially β-cryptoxanthin, in Satsuma mandarin after cultured in vitro for four weeks. In Valencia orange, in contrast, 50 μmol m(-2)s(-1) blue LED light (50B) treatment was effective for inducing carotenoid accumulation through increasing the contents of two major carotenoids, all-trans-violaxanthin and 9-cis-violaxanthin. In addition, gene expression results showed that the simultaneous increases in the expression of genes (CitPSY, CitPDS, CitZDS, CitLCYb2, and CitHYb) involved in producing β,β-xanthophylls were well consistent with the accumulation of β-cryptoxanthin in Satsuma mandarin under 100B, and violaxanthin in Valencia orange under 50B. The results presented herein contribute to further elucidating the regulatory mechanism of carotenoid accumulation by blue LED light. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. Transgenic medaka fish as models to analyze bone homeostasis under micro-gravity conditions in vivo

    NASA Astrophysics Data System (ADS)

    Winkler, C.; Wagner, T.; Renn, J.; Goerlich, R.; Schartl, M.

    Long-term space flight and microgravity results in bone loss that can be explained by reduced activity of bone-forming osteoblast cells and/or an increase in activity of bone resorbing osteoclast cells. Osteoprotegerin (OPG), a secreted protein of 401 amino acids, has been shown to regulate the balance between osteoblast and osteoclast formation and thereby warrants constant bone mass under normal gravitational conditions. Consistent with this, earlier reports using transgenic mice have shown that increased activation of OPG leads to exc essive bone formation (osteopetrosis), while inactivation of OPG leads to bone loss (osteoporosis). Importantly, it has recently been reported that expression of murine OPG is regulated by vector averaged gravity (Kanematsu et al., 2002, Bone 30, p553). The small bony fish medaka (Oryzias latipes ) has attracted increasing attention as genetic model system to study developmental and pathological processes. To analyze the molecular mechanisms of bone formation in this small vertebrate, we have isolated two related genes, opr-1 and opr -2, from medaka. Our phylogenetic analysis revealed that both genes originated from a common ancestor by fish-specific gene duplication and represent the orthologs of the mammalian OPG gene. Both opr genes are differentially expressed during embryonic and larval development, in adult tissues and in cultured primary osteoblast cells. We have characterized their promoter regions and identified consensus binding sites for transcription factors of the bone-morphogenetic-protein (BMP) p thway and for core-binding-factor-1Aa (cbfa1). Cbfa1 has been shown to be the key regulator of OPG expression during several steps of osteoblast differentiation in mammals. This opens the possibility that the mechanisms controlling bone formation in teleost fish and higher vertebrates are regulated by related mechanisms. We are currently generating transgenic medakafish expressing a GFP reporter gene under control of the teleost OPG promoter in order to visualize osteoblast activity in a living organism under different gravity conditions. This work is supported by the German Aerospace Center, DLR.

  19. Salicylic Acid-Regulated Antioxidant Mechanisms and Gene Expression Enhance Rosemary Performance under Saline Conditions

    PubMed Central

    El-Esawi, Mohamed A.; Elansary, Hosam O.; El-Shanhorey, Nader A.; Abdel-Hamid, Amal M. E.; Ali, Hayssam M.; Elshikh, Mohamed S.

    2017-01-01

    Salinity stress as a major agricultural limiting factor may influence the chemical composition and bioactivity of Rosmarinus officinallis L. essential oils and leaf extracts. The application of salicylic acid (SA) hormone may alleviate salinity stress by modifying the chemical composition, gene expression and bioactivity of plant secondary metabolites. In this study, SA was applied to enhance salinity tolerance in R. officinallis. R. officinallis plants were subjected to saline water every 2 days (640, 2,000, and 4,000 ppm NaCl) and 4 biweekly sprays of SA at 0, 100, 200, and 300 ppm for 8 weeks. Simulated salinity reduced all vegetative growth parameters such as plant height, plant branches and fresh and dry weights. However, SA treatments significantly enhanced these plant growth and morphological traits under salinity stress. Salinity affected specific major essential oils components causing reductions in α-pinene, β-pinene, and cineole along with sharp increases in linalool, camphor, borneol, and verbenone. SA applications at 100–300 ppm largely reversed the effects of salinity. Interestingly, SA treatments mitigated salinity stress effects by increasing the total phenolic, chlorophyll, carbohydrates, and proline contents of leaves along with decline in sodium and chloride. Importantly, this study also proved that SA may stimulate the antioxidant enzymatic mechanism pathway including catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX) as well as increasing the non-enzymatic antioxidants such as free and total ascorbate in plants subjected to salinity. Quantitative real-time PCR analysis revealed that APX and 3 SOD genes showed higher levels in SA-treated rosemary under salinity stress, when compared to non-sprayed plants. Moreover, the expression level of selected genes conferring tolerance to salinity (bZIP62, DREB2, ERF3, and OLPb) were enhanced in SA-treated rosemary under salt stress, indicating that SA treatment resulted in the modulation of such genes expression which in turn enhanced rosemary tolerance to salinity stress. PMID:28983254

  20. A chromosomally encoded T7 RNA polymerase-dependent gene expression system for Corynebacterium glutamicum: construction and comparative evaluation at the single-cell level

    PubMed Central

    Kortmann, Maike; Kuhl, Vanessa; Klaffl, Simon; Bott, Michael

    2015-01-01

    Corynebacterium glutamicum has become a favourite model organism in white biotechnology. Nevertheless, only few systems for the regulatable (over)expression of homologous and heterologous genes are currently available, all of which are based on the endogenous RNA polymerase. In this study, we developed an isopropyl-β-d-1-thiogalactopyranosid (IPTG)-inducible T7 expression system in the prophage-free strain C. glutamicum MB001. For this purpose, part of the DE3 region of Escherichia coli BL21(DE3) including the T7 RNA polymerase gene 1 under control of the lacUV5 promoter was integrated into the chromosome, resulting in strain MB001(DE3). Furthermore, the expression vector pMKEx2 was constructed allowing cloning of target genes under the control of the T7lac promoter. The properties of the system were evaluated using eyfp as heterologous target gene. Without induction, the system was tightly repressed, resulting in a very low specific eYFP fluorescence (= fluorescence per cell density). After maximal induction with IPTG, the specific fluorescence increased 450-fold compared with the uninduced state and was about 3.5 times higher than in control strains expressing eyfp under control of the IPTG-induced tac promoter with the endogenous RNA polymerase. Flow cytometry revealed that T7-based eyfp expression resulted in a highly uniform population, with 99% of all cells showing high fluorescence. Besides eyfp, the functionality of the corynebacterial T7 expression system was also successfully demonstrated by overexpression of the C. glutamicum pyk gene for pyruvate kinase, which led to an increase of the specific activity from 2.6 to 135 U mg−1. It thus presents an efficient new tool for protein overproduction, metabolic engineering and synthetic biology approaches with C. glutamicum. PMID:25488698

  1. Multipotent mesenchymal stromal cells decrease transforming growth factor β1 expression in microglia/macrophages and down-regulate plasminogen activator inhibitor 1 expression in astrocytes after stroke.

    PubMed

    Xin, Hongqi; Chopp, Michael; Shen, Li Hong; Zhang, Rui Lan; Zhang, Li; Zhang, Zheng Gang; Li, Yi

    2013-05-10

    Multipotent mesenchymal stromal cells (MSCs) decrease the expression of transforming growth factor β1 (TGFβ1) in astrocytes and subsequently decrease astrocytic plasminogen activator inhibitor 1 (PAI-1) level in an autocrine manner. Since activated microglia/macrophages are also a source of TGFβ1 after stroke, we therefore tested whether MSCs regulate TGFβ1 expression in microglia/macrophages and subsequently alters PAI-1 expression after ischemia. TGFβ1 and its downstream effector phosphorylated SMAD 2/3 (p-SMAD 2/3) were measured in mice subjected to middle cerebral artery occlusion (MCAo). MSC treatment significantly decreased TGFβ1 protein expression in both astrocytes and microglia/macrophages in the ischemic boundary zone (IBZ) at day 14 after stroke. However, the p-SMAD 2/3 was only detected in astrocytes and decreased after MSC treatment. In vitro, RT-PCR results showed that the TGFβ1 mRNA level was increased in both astrocytes and microglia/macrophages in an astrocyte-microglia/macrophage co-culture system after oxygen-glucose deprived (OGD) treatment. MSCs treatment significantly decreased the above TGFβ1 mRNA level under OGD conditions, respectively. OGD increased the PAI-1 mRNA in astrocytes in the astrocyte-microglia/macrophage co-culture system, and MSC administration significantly decreased this level. PAI-1 mRNA was very low in microglia/macrophages compared with that in astrocytes under different conditions. Western blot results also verified that MSC administration significantly decreased p-SMAD 2/3 and PAI-1 level in astrocytes in astrocyte-microglia/macrophage co-culture system under OGD conditions. Our in vivo and in vitro data, in concert, suggest that MSCs decrease TGFβ1 expression in microglia/macrophages in the IBZ which contribute to the down-regulation of PAI-1 level in astrocytes. Published by Elsevier Ireland Ltd.

  2. Expression-dependent susceptibility to face distortions in processing of facial expressions of emotion.

    PubMed

    Guo, Kun; Soornack, Yoshi; Settle, Rebecca

    2018-03-05

    Our capability of recognizing facial expressions of emotion under different viewing conditions implies the existence of an invariant expression representation. As natural visual signals are often distorted and our perceptual strategy changes with external noise level, it is essential to understand how expression perception is susceptible to face distortion and whether the same facial cues are used to process high- and low-quality face images. We systematically manipulated face image resolution (experiment 1) and blur (experiment 2), and measured participants' expression categorization accuracy, perceived expression intensity and associated gaze patterns. Our analysis revealed a reasonable tolerance to face distortion in expression perception. Reducing image resolution up to 48 × 64 pixels or increasing image blur up to 15 cycles/image had little impact on expression assessment and associated gaze behaviour. Further distortion led to decreased expression categorization accuracy and intensity rating, increased reaction time and fixation duration, and stronger central fixation bias which was not driven by distortion-induced changes in local image saliency. Interestingly, the observed distortion effects were expression-dependent with less deterioration impact on happy and surprise expressions, suggesting this distortion-invariant facial expression perception might be achieved through the categorical model involving a non-linear configural combination of local facial features. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Tenascin-C promotes chronic pressure overload-induced cardiac dysfunction, hypertrophy and myocardial fibrosis.

    PubMed

    Podesser, Bruno K; Kreibich, Maximilian; Dzilic, Elda; Santer, David; Förster, Lorenz; Trojanek, Sandra; Abraham, Dietmar; Krššák, Martin; Klein, Klaus U; Tretter, Eva V; Kaun, Christoph; Wojta, Johann; Kapeller, Barbara; Gonçalves, Inês Fonseca; Trescher, Karola; Kiss, Attila

    2018-04-01

    Left ventricular (LV) hypertrophy is characterized by cardiomyocyte hypertrophy and interstitial fibrosis ultimately leading to increased myocardial stiffness and reduced contractility. There is substantial evidence that the altered expression of matrix metalloproteinases (MMP) and Tenascin-C (TN-C) are associated with the progression of adverse LV remodeling. However, the role of TN-C in the development of LV hypertrophy because of chronic pressure overload as well as the regulatory role of TN-C on MMPs remains unknown. In a knockout mouse model of TN-C, we investigated the effect of 10 weeks of pressure overload using transverse aortic constriction (TAC). Cardiac function was determined by magnetic resonance imaging. The expression of MMP-2 and MMP-9, CD147 as well as myocardial fibrosis were assessed by immunohistochemistry. The expression of TN-C was assessed by RT-qPCR and ELISA. TN-C knockout mice showed marked reduction in fibrosis (P < 0.001) and individual cardiomyocytes size (P < 0.01), in expression of MMP-2 (P < 0.05) and MMP-9 (P < 0.001) as well as preserved cardiac function (P < 0.01) in comparison with wild-type mice after 10 weeks of TAC. In addition, CD147 expression was markedly increased under pressure overload (P < 0.01), irrespectively of genotype. TN-C significantly increased the expression of the markers of hypertrophy such as ANP and BNP as well as MMP-2 in H9c2 cells (P < 0.05, respectively). Our results are pointed toward a novel signaling mechanism that contributes to LV remodeling via MMPs upregulation, cardiomyocyte hypertrophy as well as myocardial fibrosis by TN-C under chronic pressure overload.

  4. Characterization of pressure-mediated vascular tone in resistance arteries from bile duct-ligated rats

    PubMed Central

    Jadeja, Ravirajsinh N.; Thounaojam, Menaka C.; Khurana, Sandeep

    2017-01-01

    In cirrhosis, changes in pressure-mediated vascular tone, a key determinant of systemic vascular resistance (SVR), are unknown. To address this gap in knowledge, we assessed ex vivo dynamics of pressurized mesenteric resistance arteries (diameter ~ 260 μm) from bile duct-ligated (BDL) and sham-operated (SHAM) rats and determined the underlying mechanisms. At isobaric intraluminal pressure (70 mmHg) as well as with step-wise increase in pressure (10-110 mmHg), arteries from SHAM-rats constricted more than BDL-rats, and had reduced luminal area. In both groups, incubation with LNAME (a NOS inhibitor) had no effect on pressure-mediated tone, and expression of NOS isoforms were similar. TEA, which enhances Ca2+ influx, augmented arterial tone only in SHAM-rats, with minimal effect in those from BDL-rats that was associated with reduced expression of Ca2+ channel TRPC6. In permeabilized arteries, high-dose Ca2+ and γGTP enhanced the vascular tone, which remained lower in BDL-rats that was associated with reduced ROCK2 and pMLC expression. Further, compared to SHAM-rats, in BDL-rats, arteries had reduced collagen expression which was associated with increased expression and activity of MMP-9. BDL-rats also had increased plasma reactive oxygen species (ROS). In vascular smooth muscle cells in vitro, peroxynitrite enhanced MMP-9 activity and reduced ROCK2 expression. These data provide evidence that in cirrhosis, pressure-mediated tone is reduced in resistance arteries, and suggest that circulating ROS play a role in reducing Ca2+ sensitivity and enhancing elasticity to induce arterial adaptations. These findings provide insights into mechanisms underlying attenuated SVR in cirrhosis. PMID:28430609

  5. Molecular evidence for a role for K+-Cl− cotransporters in the kidney

    PubMed Central

    Melo, Zesergio; Cruz-Rangel, Silvia; Bautista, Rocio; Vázquez, Norma; Castañeda-Bueno, María; Mount, David B.; Pasantes-Morales, Herminia; Mercado, Adriana

    2013-01-01

    K+-Cl− cotransporter (KCC) isoforms 3 (KCC3) and 4 (KCC4) are expressed at the basolateral membrane of proximal convoluted tubule cells, and KCC4 is present in the basolateral membrane of the thick ascending loop of Henle's limb and α-intercalated cells of the collecting duct. Little is known, however, about the physiological roles of these transporters in the kidney. We evaluated KCC3 and KCC4 mRNA and protein expression levels and intrarenal distribution in male Wistar rats or C57 mice under five experimental conditions: hyperglycemia after a single dose of streptozotocin, a low-salt diet, metabolic acidosis induced by ammonium chloride in drinking water, and low- or high-K+ diets. Both KCC3 mRNA and protein expression were increased during hyperglycemia in the renal cortex and at the basolateral membrane of proximal tubule cells but not with a low-salt diet or acidosis. In contrast, KCC4 protein expression was increased by a low-sodium diet in the whole kidney and by metabolic acidosis in the renal outer medulla, specifically at the basolateral membrane of α-intercalated cells. The increased protein expression of KCC4 by a low-salt diet was also observed in WNK4 knockout mice, suggesting that upregulation of KCC4 in these circumstances is not WNK4 dependent. No change in KCC3 or KCC4 protein expression was observed under low- or high-K+ diets. Our data are consistent with a role for KCC3 in the proximal tubule glucose reabsorption mechanism and for KCC4 in salt reabsorption of the thick ascending loop of Henle's loop and acid secretion of the collecting duct. PMID:24089410

  6. Increased hydrostatic pressure enhances motility of lung cancer cells.

    PubMed

    Kao, Yu-Chiu; Lee, Chau-Hwang; Kuo, Po-Ling

    2014-01-01

    Interstitial fluid pressures within most solid tumors are significantly higher than that in the surrounding normal tissues. Therefore, cancer cells must proliferate and migrate under the influence of elevated hydrostatic pressure while a tumor grows. In this study, we developed a pressurized cell culture device and investigated the influence of hydrostatic pressure on the migration speeds of lung cancer cells (CL1-5 and A549). The migration speeds of lung cancer cells were increased by 50-60% under a 20 mmHg hydrostatic pressure. We also observed that the expressions of aquaporin in CL1-5 and A549 cells were increased under the hydrostatic pressure. Our preliminary results indicate that increased hydrostatic pressure plays an important role in tumor metastasis.

  7. Mouse repeated electroconvulsive seizure (ECS) does not reverse social stress effects but does induce behavioral and hippocampal changes relevant to electroconvulsive therapy (ECT) side-effects in the treatment of depression

    PubMed Central

    Sigrist, Hannes; Seifritz, Erich; Fikse, Lianne; Bosker, Fokko J.; Schoevers, Robert A.; Klein, Hans C.

    2017-01-01

    Electroconvulsive therapy (ECT) is an effective treatment for depression, but can have negative side effects including amnesia. The mechanisms of action underlying both the antidepressant and side effects of ECT are not well understood. An equivalent manipulation that is conducted in experimental animals is electroconvulsive seizure (ECS). Rodent studies have provided valuable insights into potential mechanisms underlying the antidepressant and side effects of ECT. However, relatively few studies have investigated the effects of ECS in animal models with a depression-relevant manipulation such as chronic stress. In the present study, mice were first exposed to chronic social stress (CSS) or a control procedure for 15 days followed by ECS or a sham procedure for 10 days. Behavioral effects were investigated using an auditory fear conditioning (learning) and expression (memory) test and a treadmill-running fatigue test. Thereafter, immunohistochemistry was conducted on brain material using the microglial marker Iba-1 and the cholinergic fibre marker ChAT. CSS did not increase fear learning and memory in the present experimental design; in both the control and CSS mice ECS reduced fear learning and fear memory expression. CSS induced the expected fatigue-like effect in the treadmill-running test; ECS induced increased fatigue in CSS and control mice. In CSS and control mice ECS induced inflammation in hippocampus in terms of increased expression of Iba-1 in radiatum of CA1 and CA3. CSS and ECS both reduced acetylcholine function in hippocampus as indicated by decreased expression of ChAT in several hippocampal sub-regions. Therefore, CSS increased fatigue and reduced hippocampal ChAT activity and, rather than reversing these effects, a repeated ECS regimen resulted in impaired fear learning-memory, increased fatigue, increased hippocampal Iba-1 expression, and decreased hippocampal ChAT expression. As such, the current model does not provide insights into the mechanism of ECT antidepressant function but does provide evidence for pathophysiological mechanisms that might contribute to important ECT side-effects. PMID:28910337

  8. Mouse repeated electroconvulsive seizure (ECS) does not reverse social stress effects but does induce behavioral and hippocampal changes relevant to electroconvulsive therapy (ECT) side-effects in the treatment of depression.

    PubMed

    van Buel, Erin M; Sigrist, Hannes; Seifritz, Erich; Fikse, Lianne; Bosker, Fokko J; Schoevers, Robert A; Klein, Hans C; Pryce, Christopher R; Eisel, Ulrich Lm

    2017-01-01

    Electroconvulsive therapy (ECT) is an effective treatment for depression, but can have negative side effects including amnesia. The mechanisms of action underlying both the antidepressant and side effects of ECT are not well understood. An equivalent manipulation that is conducted in experimental animals is electroconvulsive seizure (ECS). Rodent studies have provided valuable insights into potential mechanisms underlying the antidepressant and side effects of ECT. However, relatively few studies have investigated the effects of ECS in animal models with a depression-relevant manipulation such as chronic stress. In the present study, mice were first exposed to chronic social stress (CSS) or a control procedure for 15 days followed by ECS or a sham procedure for 10 days. Behavioral effects were investigated using an auditory fear conditioning (learning) and expression (memory) test and a treadmill-running fatigue test. Thereafter, immunohistochemistry was conducted on brain material using the microglial marker Iba-1 and the cholinergic fibre marker ChAT. CSS did not increase fear learning and memory in the present experimental design; in both the control and CSS mice ECS reduced fear learning and fear memory expression. CSS induced the expected fatigue-like effect in the treadmill-running test; ECS induced increased fatigue in CSS and control mice. In CSS and control mice ECS induced inflammation in hippocampus in terms of increased expression of Iba-1 in radiatum of CA1 and CA3. CSS and ECS both reduced acetylcholine function in hippocampus as indicated by decreased expression of ChAT in several hippocampal sub-regions. Therefore, CSS increased fatigue and reduced hippocampal ChAT activity and, rather than reversing these effects, a repeated ECS regimen resulted in impaired fear learning-memory, increased fatigue, increased hippocampal Iba-1 expression, and decreased hippocampal ChAT expression. As such, the current model does not provide insights into the mechanism of ECT antidepressant function but does provide evidence for pathophysiological mechanisms that might contribute to important ECT side-effects.

  9. Spatial distribution and expression of intracellular and extracellular acid phosphatases of cluster roots at different developmental stages in white lupin.

    PubMed

    Tang, Hongliang; Li, Xiaoqing; Zu, Chao; Zhang, Fusuo; Shen, Jianbo

    2013-09-15

    Acid phosphatases (APases) play a key role in phosphorus (P) acquisition and recycling in plants. White lupin (Lupinus albus L.) forms cluster roots (CRs) and produces large amounts of APases under P deficiency. However, the relationships between the activity of intracellular and extracellular APases (EC 3.1.3.2) and CR development are not fully understood. Here, comparative studies were conducted to examine the spatial variation pattern of APase activity during CR development using the enzyme-labelled fluorescence-97 (ELF-97) and the p-nitrophenyl phosphate methods. The activity of intracellular and extracellular APases was significantly enhanced under P deficiency in the non-CRs and CRs at different developmental stages. These two APases exhibited different spatial distribution patterns during CR development, and these distribution patterns were highly modified by P deficiency. The activity of extracellular APase increased steadily with CR development from meristematic, juvenile, mature to senescent stages under P deficiency. In comparison, P deficiency-induced increase in the activity of intracellular APase remained relatively constant during CR development. Increased activity of intracellular and extracellular APases was associated with enhanced expression of LaSAP1 encoding intracellular APase and LaSAP2 encoding extracellular APase. The expression levels of these two genes were significantly higher at transcriptional level in both mature and senescent CRs. Taken together, these findings demonstrate that both activity and gene expression of intracellular or extracellular APases exhibit a differential response pattern during CR development, depending on root types, CR developmental stages and P supply. Simultaneous in situ determination of intracellular and extracellular APase activity has proved to be an effective approach for studying spatial variation of APases during CR development. Copyright © 2013 Elsevier GmbH. All rights reserved.

  10. Ubiquitin ligase ATL31 functions in leaf senescence in response to the balance between atmospheric CO2 and nitrogen availability in Arabidopsis.

    PubMed

    Aoyama, Shoki; Huarancca Reyes, Thais; Guglielminetti, Lorenzo; Lu, Yu; Morita, Yoshie; Sato, Takeo; Yamaguchi, Junji

    2014-02-01

    Carbon (C) and nitrogen (N) are essential elements for metabolism, and their availability, called the C/N balance, must be tightly coordinated for optimal growth in plants. Previously, we have identified the ubiquitin ligase CNI1/ATL31 as a novel C/N regulator by screening plants grown on C/N stress medium containing excess sugar and limited N. To elucidate further the effect of C/N balance on plant growth and to determine the physiological function of ATL31, we performed C/N response analysis using an atmospheric CO2 manipulation system. Under conditions of elevated CO2 and sufficient N, plant biomass and total sugar and starch dramatically increased. In contrast, elevated CO2 with limited N did not increase plant biomass but promoted leaf chlorosis, with anthocyanin accumulation and increased senescence-associated gene expression. Similar results were obtained with plants grown in medium containing excess sugar and limited N, suggesting that disruption of the C/N balance affects senescence progression. In ATL31-overexpressing plants, promotion of senescence under disrupted CO2/N conditions was repressed, whereas in the loss-of-function mutant it was enhanced. The ATL31 gene was transcriptionally up-regulated under N deficiency and in senescent leaves, and ATL31 expression was highly correlated with WRKY53 expression, a key regulator of senescence. Furthermore, transient protoplast analysis implicated the direct activation of ATL31 expression by WRKY53, which was in accordance with the results of WRKY53 overexpression experiments. Together, these results demonstrate the importance of C/N balance in leaf senescence and the involvement of ubiquitin ligase ATL31 in the process of senescence in Arabidopsis.

  11. Targeting factor VIII expression to platelets for hemophilia A gene therapy does not induce an apparent thrombotic risk in mice.

    PubMed

    Baumgartner, C K; Mattson, J G; Weiler, H; Shi, Q; Montgomery, R R

    2017-01-01

    Essentials Platelet-Factor (F) VIII gene therapy is a promising treatment in hemophilia A. This study aims to evaluate if platelet-FVIII expression would increase the risk for thrombosis. Targeting FVIII expression to platelets does not induce or elevate thrombosis risk. Platelets expressing FVIII are neither hyper-activated nor hyper-responsive. Background Targeting factor (F) VIII expression to platelets is a promising gene therapy approach for hemophilia A, and is successful even in the presence of inhibitors. It is well known that platelets play important roles not only in hemostasis, but also in thrombosis and inflammation. Objective To evaluate whether platelet-FVIII expression might increase thrombotic risk and thereby compromise the safety of this approach. Methods In this study, platelet-FVIII-expressing transgenic mice were examined either in steady-state conditions or under prothrombotic conditions induced by inflammation or the FV Leiden mutation. Native whole blood thrombin generation assay, rotational thromboelastometry analysis and ferric chloride-induced vessel injury were used to evaluate the hemostatic properties. Various parameters associated with thrombosis risk, including D-dimer, thrombin-antithrombin complexes, fibrinogen, tissue fibrin deposition, platelet activation status and activatability, and platelet-leukocyte aggregates, were assessed. Results We generated a new line of transgenic mice that expressed 30-fold higher levels of platelet-expressed FVIII than are therapeutically required to restore hemostasis in hemophilic mice. Under both steady-state conditions and prothrombotic conditions induced by lipopolysaccharide-mediated inflammation or the FV Leiden mutation, supratherapeutic levels of platelet-expressed FVIII did not appear to be thrombogenic. Furthermore, FVIII-expressing platelets were neither hyperactivated nor hyperactivatable upon agonist activation. Conclusion We conclude that, in mice, more than 30-fold higher levels of platelet-expressed FVIII than are required for therapeutic efficacy in hemophilia A are not associated with a thrombotic predilection. © 2016 International Society on Thrombosis and Haemostasis.

  12. Loss of TIMP3 underlies diabetic nephropathy via FoxO1/STAT1 interplay.

    PubMed

    Fiorentino, Loredana; Cavalera, Michele; Menini, Stefano; Marchetti, Valentina; Mavilio, Maria; Fabrizi, Marta; Conserva, Francesca; Casagrande, Viviana; Menghini, Rossella; Pontrelli, Paola; Arisi, Ivan; D'Onofrio, Mara; Lauro, Davide; Khokha, Rama; Accili, Domenico; Pugliese, Giuseppe; Gesualdo, Loreto; Lauro, Renato; Federici, Massimo

    2013-03-01

    ADAM17 and its inhibitor TIMP3 are involved in nephropathy, but their role in diabetic kidney disease (DKD) is unclear. Diabetic Timp3(-/-) mice showed increased albuminuria, increased membrane thickness and mesangial expansion. Microarray profiling uncovered a significant reduction of Foxo1 expression in diabetic Timp3(-/-) mice compared to WT, along with FoxO1 target genes involved in autophagy, while STAT1, a repressor of FoxO1 transcription, was increased. Re-expression of Timp3 in Timp3(-/-) mesangial cells rescued the expression of Foxo1 and its targets, and decreased STAT1 expression to control levels; abolishing STAT1 expression led to a rescue of FoxO1, evoking a role of STAT1 in linking Timp3 deficiency to FoxO1. Studies on kidney biopsies from patients with diabetic nephropathy confirmed a significant reduction in TIMP3, FoxO1 and FoxO1 target genes involved in autophagy compared to controls, while STAT1 expression was strongly increased. Our study suggests that loss of TIMP3 is a hallmark of DKD in human and mouse models and designates TIMP3 as a new possible therapeutic target for diabetic nephropathy. Copyright © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

  13. Effect of dietary fat and the circadian clock on the expression of brain-derived neurotrophic factor (BDNF).

    PubMed

    Genzer, Yoni; Dadon, Maayan; Burg, Chen; Chapnik, Nava; Froy, Oren

    2016-07-15

    Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the brain and its decreased levels are associated with the development of obesity and neurodegeneration. Our aim was to test the effect of dietary fat, its timing and the circadian clock on the expression of BDNF and associated signaling pathways in mouse brain and liver. Bdnf mRNA oscillated robustly in brain and liver, but with a 12-h shift between the tissues. Brain and liver Bdnf mRNA showed a 12-h phase shift when fed ketogenic diet (KD) compared with high-fat diet (HFD) or low-fat diet (LFD). Brain or liver Bdnf mRNA did not show the typical phase advance usually seen under time-restricted feeding (RF). Clock knockdown in HT-4 hippocampal neurons led to 86% up-regulation of Bdnf mRNA, whereas it led to 60% down-regulation in AML-12 hepatocytes. Dietary fat in mice or cultured hepatocytes and hippocampal neurons led to increased Bdnf mRNA expression. At the protein level, HFD increased the ratio of the mature BDNF protein (mBDNF) to its precursor (proBDNF). In the liver, RF under LFD or HFD reduced the mBDNF/proBDNF ratio. In the brain, the two signaling pathways related to BDNF, mTOR and AMPK, showed reduced and increased levels, respectively, under timed HFD. In the liver, the reverse was achieved. In summary, Bdnf expression is mediated by the circadian clock and dietary fat. Although RF does not affect its expression phase, in the brain, when combined with high-fat diet, it leads to a unique metabolic state in which AMPK is activated, mTOR is down-regulated and the levels of mBDNF are high. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Crocin improves renal function by declining Nox-4, IL-18, and p53 expression levels in an experimental model of diabetic nephropathy.

    PubMed

    Yaribeygi, Habib; Mohammadi, Mohammad T; Rezaee, Ramin; Sahebkar, Amirhossein

    2018-03-25

    Oxidative damage, inflammation and apoptosis play significant roles in diabetic nephropathy. Previous studies demonstrated anti-inflammatory and anti-oxidative effects of crocin, but there is no evidence about its effects on IL-18, NOX-4, and p53 expression in diabetic kidneys. The aim of this study was to evaluate possible effects of crocin on improving main mechanisms underlying diabetic nephropathy. Male Wistar rats were randomly divided into four separate groups as normal (C), normal treated (CC), diabetic (D), and diabetic treated (DC) (n = 6). Diabetes was induced by a single dose of streptozotocin (40 mg/kg/intravenous). Treated groups received crocin (40 mg/kg, intraperitoneal) for 8 weeks. At the end of the 8th week of the study, all rats were sacrificed and urine, blood and tissue were collected. Levels of urea, uric acid, creatinine and glucose were determined collected sera, and proteinuria was measured in urine samples. Moreover, the contents of malondialdehyde (MDA), nitrate, and glutathione (GLT) as well as catalase (CAT) and superoxide dismutase (SOD) enzymes activities were measured. The expression of NOX-4, IL-18, and p53 at both mRNA and protein levels were also assessed. Hyperglycemia significantly increased proteinuria in diabetic rats (D). Also, depressed antioxidant defense system potency, but increased NOX-4 expression and free radicals production resulting in oxidative stress, were observed. Moreover, expressions of IL-18 (as a marker of inflammation) and p53 (as a marker of apoptosis) were increased. These outcomes were accompanied by enhanced histological damages and renal failure but, treatment with crocin improved these deteriorations, and ameliorated renal function. It potentiated renal cells antioxidant defense system and declined inflammation. Also, crocin lowered apoptosis and improved histological damages in renal cells. Oxidative stress, inflammation and apoptosis are considered three main mechanisms underlying diabetic nephropathy. Treatment with crocin prevented these deleterious effects and improved renal function under diabetic conditions. © 2018 Wiley Periodicals, Inc.

  15. [Gene expression and activity regulation of two calmodulin binding protein kinases in tobacco seedling].

    PubMed

    Hua, Wei; Li, Rong-Jun; Liang, Shu-Ping; Lu, Ying-Tang

    2005-06-01

    Two different calmodulin-binding protein kinase cDNAs (NtCBK1/2) have been isolated from tobacco. To understand the CBK protein activity regulation, we compared the activity regulation of NtCBK1 and NtCBK2 by pH, Mg(2+) concentration and Na(+) concentration. We found the autophosphorylation of NtCBK1/2 reached the maximum in pH 7.5 and 8 respectively; Mg(2+) and Na(+) shown different effects on the activity of NtCBKs, high and low Mg(2+) concentrations both inhibited the activity of NtCBKs, but Na+ had little effect on the kinase activity. In addition, to obtain further insight about the physiological roles of individual NtCBKs, we detected the expression profiles of CBKs. The results revealed different patterns of expression of NtCBK1 and NtCBK2. Both are largely expressed in leaf and flower; but in stem and root, NtCBK1 gene had stronger expression than NtCBK2. NtCBK2 expression was induced by GA treatment, while NtCBK1 expression remained unchanged under GA treatment. Expression of both NtCBK1 and NtCBK2 increased in response to salt stress, the former to a greater extent, and both expressions did not change under high/low temperature, drought, NAA and ABA treatments.

  16. MicroRNA203a suppresses glioma tumorigenesis through an ATM-dependent interferon response pathway

    PubMed Central

    Yang, Chuan He; Wang, Yinan; Sims, Michelle; Cai, Chun; He, Ping; Häcker, Hans; Yue, Junming; Cheng, Jinjun; Boop, Frederick A.; Pfeffer, Lawrence M.

    2017-01-01

    Glioblastoma (GBM) is a deadly and incurable brain tumor. Although microRNAs (miRNAs) play critical roles in regulating the cancer cell phenotype, the underlying mechanisms of how they regulate tumorigenesis are incompletely understood. We previously showed that miR-203a is expressed at relatively low levels in GBM patients, and ectopic miR-203a expression in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by interferon (IFN) or temozolomide in vitro, and inhibited GBM tumorigenesis in vivo. Here we show that ectopic expression of miR-203a in GBM cell lines promotes the IFN response pathway as evidenced by increased IFN production and IFN-stimulated gene (ISG) expression, and high basal tyrosine phosphorylation of multiple STAT proteins. Importantly, we identified that miR-203a directly suppressed the protein levels of ataxia-telangiectasia mutated (ATM) kinase that negatively regulates IFN production. We found that high ATM expression in GBM correlates with poor patient survival and that ATM expression is inversely correlated with miR-203a expression. Knockout of ATM expression and inhibition of ATM function in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by therapeutic agents in vitro, and markedly suppressed GBM tumor growth and promoted animal survival. In contrast, restoring ATM levels in GBM cells ectopically expressing miR-203a increased tumorigenicity and decreased animal survival. Our study suggests that low miR-203a expression in GBM suppresses the interferon response through an ATM-dependent pathway. PMID:29348882

  17. MicroRNA203a suppresses glioma tumorigenesis through an ATM-dependent interferon response pathway.

    PubMed

    Yang, Chuan He; Wang, Yinan; Sims, Michelle; Cai, Chun; He, Ping; Häcker, Hans; Yue, Junming; Cheng, Jinjun; Boop, Frederick A; Pfeffer, Lawrence M

    2017-12-22

    Glioblastoma (GBM) is a deadly and incurable brain tumor. Although microRNAs (miRNAs) play critical roles in regulating the cancer cell phenotype, the underlying mechanisms of how they regulate tumorigenesis are incompletely understood. We previously showed that miR-203a is expressed at relatively low levels in GBM patients, and ectopic miR-203a expression in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by interferon (IFN) or temozolomide in vitro , and inhibited GBM tumorigenesis in vivo . Here we show that ectopic expression of miR-203a in GBM cell lines promotes the IFN response pathway as evidenced by increased IFN production and IFN-stimulated gene (ISG) expression, and high basal tyrosine phosphorylation of multiple STAT proteins. Importantly, we identified that miR-203a directly suppressed the protein levels of ataxia-telangiectasia mutated (ATM) kinase that negatively regulates IFN production. We found that high ATM expression in GBM correlates with poor patient survival and that ATM expression is inversely correlated with miR-203a expression. Knockout of ATM expression and inhibition of ATM function in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by therapeutic agents in vitro , and markedly suppressed GBM tumor growth and promoted animal survival. In contrast, restoring ATM levels in GBM cells ectopically expressing miR-203a increased tumorigenicity and decreased animal survival. Our study suggests that low miR-203a expression in GBM suppresses the interferon response through an ATM-dependent pathway.

  18. Redox sensor CtBP mediates hypoxia-induced tumor cell migration

    PubMed Central

    Zhang, Qinghong; Wang, Su-Yan; Nottke, Amanda C.; Rocheleau, Jonathan V.; Piston, David W.; Goodman, Richard H.

    2006-01-01

    The rapid growth and poor vascularization of solid tumors expose cancer cells to hypoxia, which promotes the metastatic phenotype by reducing intercellular adhesion and increasing cell motility and invasiveness. In this study, we found that hypoxia increased free NADH levels in cancer cells, promoting CtBP recruitment to the E-cadherin promoter. This effect was blocked by pyruvate, which prevents the NADH increase. Furthermore, hypoxia repressed E-cadherin gene expression and increased tumor cell migration, effects that were blocked by CtBP knockdown. We propose that CtBP senses levels of free NADH to control expression of cell adhesion genes, thereby promoting tumor cell migration under hypoxic stress. PMID:16740659

  19. Study of the expression and function of ACY1 in patients with colorectal cancer.

    PubMed

    Yu, Bing; Liu, Xuezhong; Cao, Xiuzhen; Zhang, Mingyue; Chang, Hong

    2017-04-01

    Aminoacylase 1 (ACY1) is important for regulating the proliferation of numerous types of cancer. However, the expression and mechanisms underlying the function of ACY1 in colorectal cancer remain unclear. In order to investigate the expression and function of ACY1 in colorectal cancer, tumor tissue and blood samples were collected for analysis from 132 patients diagnosed with colorectal cancer. Reverse transcription-quantitative polymerase chain reaction analysis and western blotting identified significantly increased expression of ACY1 mRNA in colorectal tumor tissue (P<0.05 vs. adjacent normal tissue) and notably increased ACY1 protein levels. This ACY1 mRNA expression was found to be positively correlated with tumor stage. In addition, plasma ACY1 concentration was increased in patients with colorectal cancer compared with healthy controls. Furthermore, in vitro knockdown of ACY1 in human colorectal cancer HT-29 cells was shown to inhibit proliferation and increase apoptosis. This effect was found to be associated with the activation of ERK1 and TGF-β1 signaling. In conclusion, the results of the present study suggest that ACY1 promotes tumor progression, and thus may be a potential target for the diagnosis and treatment of colorectal cancer.

  20. Neuronal injury-induced expression and release of apolipoprotein E in mixed neuron/glia co-cultures: nuclear factor kappaB inhibitors reduce basal and lesion-induced secretion of apolipoprotein E.

    PubMed

    Petegnief, V; Saura, J; de Gregorio-Rocasolano, N; Paul, S M

    2001-01-01

    In order to better delineate the intracellular signaling pathways underlying glial apolipoprotein E (apoE) expression and release, we have characterized an in vitro model of induction of glial apoE production induced by neuronal death. Exposure of mixed fetal cortical neuron/glia co-cultures to the neurotoxin N-methyl-D-aspartate results in increased apoE expression and release in a time- and concentration-dependent manner. Increased expression of apoE messenger RNA precedes the increase in intracellular apoE, followed by accumulation of the holoprotein in the culture medium. Neuronal injury induced by N-methyl-D-aspartate is accompanied by a reactive astrogliosis as measured by an increase in glial fibrillary acidic protein messenger RNA and protein at 48 and 72h post-lesion, respectively. A similar microgliosis was observed using the microglial marker ED-1. Neuronal injury-induced glial apoE secretion is attenuated by the nuclear factor kappaB inhibitors, aspirin, Bay 11-7082 and MG-132, suggesting that this transcription factor is involved in both constitutive and induced glial apoE expression. The present data show that up-regulation of apoE is an early event in the glial activation triggered by neurodegeneration in vitro and that activation of nuclear factor kappaB directly or indirectly mediates the increase in apoE expression.

  1. A variant in a cis-regulatory element enhances claudin-14 expression and is associated with pediatric-onset hypercalciuria and kidney stones.

    PubMed

    Ure, Megan E; Heydari, Emma; Pan, Wanling; Ramesh, Ajay; Rehman, Sabah; Morgan, Catherine; Pinsk, Maury; Erickson, Robin; Herrmann, Johannes M; Dimke, Henrik; Cordat, Emmanuelle; Lemaire, Mathieu; Walter, Michael; Alexander, R Todd

    2017-06-01

    The greatest risk factor for kidney stones is hypercalciuria, the etiology of which is largely unknown. A recent genome-wide association study (GWAS) linked hypercalciuria and kidney stones to a claudin-14 (CLDN14) risk haplotype. However, the underlying molecular mechanism was not delineated. Recently, renal CLDN14 expression was found to increase in response to increased plasma calcium, thereby inducing calciuria. We hypothesized therefore that some children with hypercalciuria and kidney stones harbor a CLDN14 variant that inappropriately increases gene expression. To test this hypothesis, we sequenced the CLDN14 risk haplotype in a cohort of children with idiopathic hypercalciuria and kidney stones. An intronic SNP was more frequent in affected children. Dual luciferase and cell-based assays demonstrated increased reporter or CLDN14 expression when this polymorphism was introduced. In silico studies predicted the SNP introduced a novel insulinoma-associated 1 (INSM1) transcription factor binding site. Consistent with this, repeating the dual luciferase assay in the presence of INSM1 further increased reporter expression. Our data suggest that children with the INSM1 binding site within the CLDN14 risk haplotype have a higher likelihood of hypercalciuria and kidney stones. Enhanced CLDN14 expression may play a role in the pathophysiology of their hypercalciuria. © 2017 Wiley Periodicals, Inc.

  2. Repetitive ischemia increases myocardial dimethylarginine dimethylaminohydrolase 1 expression.

    PubMed

    Zhang, Ping; Fassett, John T; Zhu, Guangshuo; Li, Jingxin; Hu, Xinli; Xu, Xin; Chen, Yingjie; Bache, Robert J

    2017-06-01

    Pharmacologic inhibition of nitric oxide production inhibits growth of coronary collateral vessels. Dimethylarginine dimethylaminohydrolase 1 (DDAH1) is the major enzyme that degrades asymmetric dimethylarginine (ADMA), a potent inhibitor of nitric oxide synthase. Here we examined regulation of the ADMA-DDAH1 pathway in a canine model of recurrent myocardial ischemia during the time when coronary collateral growth is known to occur. Under basal conditions, DDAH1 expression was non-uniform across the left ventricular (LV) wall, with expression strongest in the subepicardium. In response to ischemia, DDAH1 expression was up-regulated in the midmyocardium of the ischemic zone, and this was associated with a significant reduction in myocardial interstitial fluid (MIF) ADMA. The decrease in MIF ADMA during ischemia was likely due to increased DDAH1 because myocardial protein arginine N-methyl transferase 1 (PRMT1) and the methylated arginine protein content (the source of ADMA) were unchanged or increased, respectively, at this time. The inflammatory mediators interleukin (IL-1β) and tumor necrosis factor (TNF-α) were also elevated in the midmyocardium where DDAH1 expression was increased. Both of these factors significantly up-regulated DDAH1 expression in cultured human coronary artery endothelial cells. Taken together, these results suggest that inflammatory factors expressed in response to myocardial ischemia contributed to up-regulation of DDAH1, which was responsible for the decrease in MIF ADMA.

  3. β3-adrenergic receptor activation induces TGFβ1 expression in cardiomyocytes via the PKG/JNK/c-Jun pathway.

    PubMed

    Xu, Zhongcheng; Wu, Jimin; Xin, Junzhou; Feng, Yenan; Hu, Guomin; Shen, Jing; Li, Mingzhe; Zhang, Youyi; Xiao, Han; Wang, Li

    2018-06-05

    In heart failure, the expression of cardiac β 3 -adrenergic receptors (β 3 -ARs) increases. However, the precise role of β 3 -AR signaling within cardiomyocytes remains unclear. Transforming growth factor β1 (TGFβ1) is a crucial cytokine mediating the cardiac remodeling that plays a causal role in the progression of heart failure. Here, we set out to determine the effect of β 3 -AR activation on TGFβ1 expression in rat cardiomyocytes and examine the underlying mechanism. The selective β 3 -AR agonist BRL37344 induced an increase in TGFβ1 expression and the phosphorylation of c-Jun N-terminal kinase (JNK) and c-Jun in β 3 -AR-overexpressing cardiomyocytes. Those effects of BRL37344 were suppressed by a β 3 -AR antagonist. Moreover, the inhibition of JNK and c-Jun activity by a JNK inhibitor and c-Jun siRNA blocked the increase in TGFβ1 expression upon β 3 -AR activation. A protein kinase G (PKG) inhibitor also attenuated β 3 -AR-agonist-induced TGFβ1 expression and the phosphorylation of JNK and c-Jun. In conclusion, the β 3 -AR activation in cardiomyocytes increases the expression of TGFβ1 via the PKG/JNK/c-Jun pathway. These results help us further understand the role of β 3 -AR signaling in heart failure. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Phorbol esters alter alpha4 and alphad integrin usage during eosinophil adhesion to VCAM-1.

    PubMed

    Kikuchi, Matsuo; Tachimoto, Hiroshi; Nutku, Esra; Hudson, Sherry A; Bochner, Bruce S

    2003-01-01

    We examined the effect of the protein kinase C activator phorbol-12-myristate-13-acetate (PMA) on the human eosinophil adhesion molecule phenotype and attachment to VCAM-1 via alpha4 and alphad integrins under static and flow conditions. PMA increased surface expression of alphad integrins and decreased alpha4 integrin expression. Under static conditions, eosinophils bound well to VCAM-1, primarily via alpha4beta1 integrins, with a minor alphadbeta2 integrin component. Unexpectedly, PMA-stimulated eosinophils bound equally well to VCAM-1 and albumin in a temperature- and divalent cation-dependent manner, yet adhesion was independent of beta1 and beta2 integrins. Under flow conditions, eosinophils readily attached to VCAM-1, and adhesion was inhibited by both alpha4 and alphad mAbs (95 and 50% inhibition, respectively). Many fewer PMA-stimulated eosinophils bound to VCAM-1 under flow conditions, but both alpha4 and alphad mAbs inhibited adhesion equally. Thus, PMA alters eosinophil integrin expression and the relative contributions of alpha4 and alphad integrins during attachment to VCAM-1.

  5. The central nervous system (CNS)-independent anti-bone-resorptive activity of muscle contraction and the underlying molecular and cellular signatures.

    PubMed

    Qin, Weiping; Sun, Li; Cao, Jay; Peng, Yuanzhen; Collier, Lauren; Wu, Yong; Creasey, Graham; Li, Jianhua; Qin, Yiwen; Jarvis, Jonathan; Bauman, William A; Zaidi, Mone; Cardozo, Christopher

    2013-05-10

    Mechanisms by which muscle regulates bone are poorly understood. Electrically stimulated muscle contraction reversed elevations in bone resorption and increased Wnt signaling in bone-derived cells after spinal cord transection. Muscle contraction reduced resorption of unloaded bone independently of the CNS, through mechanical effects and, potentially, nonmechanical signals (e.g. myokines). The study provides new insights regarding muscle-bone interactions. Muscle and bone work as a functional unit. Cellular and molecular mechanisms underlying effects of muscle activity on bone mass are largely unknown. Spinal cord injury (SCI) causes muscle paralysis and extensive sublesional bone loss and disrupts neural connections between the central nervous system (CNS) and bone. Muscle contraction elicited by electrical stimulation (ES) of nerves partially protects against SCI-related bone loss. Thus, application of ES after SCI provides an opportunity to study the effects of muscle activity on bone and roles of the CNS in this interaction, as well as the underlying mechanisms. Using a rat model of SCI, the effects on bone of ES-induced muscle contraction were characterized. The SCI-mediated increase in serum C-terminal telopeptide of type I collagen (CTX) was completely reversed by ES. In ex vivo bone marrow cell cultures, SCI increased the number of osteoclasts and their expression of mRNA for several osteoclast differentiation markers, whereas ES significantly reduced these changes; SCI decreased osteoblast numbers, but increased expression in these cells of receptor activator of NF-κB ligand (RANKL) mRNA, whereas ES increased expression of osteoprotegerin (OPG) and the OPG/RANKL ratio. A microarray analysis revealed that ES partially reversed SCI-induced alterations in expression of genes involved in signaling through Wnt, FSH, parathyroid hormone (PTH), oxytocin, and calcineurin/nuclear factor of activated T-cells (NFAT) pathways. ES mitigated SCI-mediated increases in mRNA levels for the Wnt inhibitors DKK1, sFRP2, and sclerostin in ex vivo cultured osteoblasts. Our results demonstrate an anti-bone-resorptive activity of muscle contraction by ES that develops rapidly and is independent of the CNS. The pathways involved, particularly Wnt signaling, suggest future strategies to minimize bone loss after immobilization.

  6. Reduced expression levels of PTEN are associated with decreased sensitivity of HCC827 cells to icotinib.

    PubMed

    Zhai, Yang; Zhang, Yanjun; Nan, Kejun; Liang, Xuan

    2017-05-01

    The clinical resistance of non-small cell lung cancer (NSCLC) to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) has been linked to EGFR T790M resistance mutations or MET amplifications. Additional mechanisms underlying EGFR-TKI drug resistance remain unclear. The present study demonstrated that icotinib significantly inhibited the proliferation and increased the apoptosis rate of HCC827 cells; the cellular mRNA and protein expression levels of phosphatase and tensin homolog (PTEN) were also significantly downregulated. To investigate the effect of PTEN expression levels on the sensitivity of HCC827 cells to icotinib, PTEN expression was silenced using a PTEN-specific small interfering RNA. The current study identified that the downregulation of PTEN expression levels may promote cellular proliferation in addition to decreasing the apoptosis of HCC827 cells, and may reduce the sensitivity of HCC827 cells to icotinib. These results suggested that reduced PTEN expression levels were associated with the decreased sensitivity of HCC827 cells to icotinib. Furthermore, PTEN expression levels may be a useful marker for predicting icotinib resistance and elucidating the resistance mechanisms underlying EGFR-mutated NSCLC.

  7. Reduced expression levels of PTEN are associated with decreased sensitivity of HCC827 cells to icotinib

    PubMed Central

    Zhai, Yang; Zhang, Yanjun; Nan, Kejun; Liang, Xuan

    2017-01-01

    The clinical resistance of non-small cell lung cancer (NSCLC) to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) has been linked to EGFR T790M resistance mutations or MET amplifications. Additional mechanisms underlying EGFR-TKI drug resistance remain unclear. The present study demonstrated that icotinib significantly inhibited the proliferation and increased the apoptosis rate of HCC827 cells; the cellular mRNA and protein expression levels of phosphatase and tensin homolog (PTEN) were also significantly downregulated. To investigate the effect of PTEN expression levels on the sensitivity of HCC827 cells to icotinib, PTEN expression was silenced using a PTEN-specific small interfering RNA. The current study identified that the downregulation of PTEN expression levels may promote cellular proliferation in addition to decreasing the apoptosis of HCC827 cells, and may reduce the sensitivity of HCC827 cells to icotinib. These results suggested that reduced PTEN expression levels were associated with the decreased sensitivity of HCC827 cells to icotinib. Furthermore, PTEN expression levels may be a useful marker for predicting icotinib resistance and elucidating the resistance mechanisms underlying EGFR-mutated NSCLC. PMID:28521430

  8. Skin barrier disruption by sodium lauryl sulfate-exposure alters the expressions of involucrin, transglutaminase 1, profilaggrin, and kallikreins during the repair phase in human skin in vivo.

    PubMed

    Törmä, Hans; Lindberg, Magnus; Berne, Berit

    2008-05-01

    Detergents are skin irritants affecting keratinocytes. In this study, healthy volunteers were exposed to water (vehicle) and 1% sodium lauryl sulfate (SLS) under occlusive patch tests for 24 hours. The messenger RNA (mRNA) expression of keratinocyte differentiation markers and of enzymes involved in corneodesmosome degradation was examined in skin biopsies (n=8) during the repair phase (6 hours to 7 days postexposure) using real-time reverse-transcription PCR. It was found that the expression of involucrin was increased at 6 hours, but then rapidly normalized. The expression of transglutaminase 1 exhibited a twofold increase after 24 hours in the SLS-exposed skin. Profilaggrin was decreased after 6 hours. Later (4-7 days), the expression in SLS-exposed areas was >50% above than in control areas. An increased and altered immunofluorescence pattern of involucrin, transglutaminase 1, and filaggrin was also found (n=4). At 6 hours post-SLS exposure, the mRNA expression of kallikrein-7 (KLK-7) and kallikrein-5 (KLK-5) was decreased by 50 and 75%, respectively, as compared with control and water-exposed areas. Thereafter, the expression pattern of KLK-7 and KLK-5 was normalized. Changes in protein expression of KLK-5 were also found. In conclusion, SLS-induced skin barrier defects induce altered mRNA expression of keratinocyte differentiation markers and enzymes degrading corneodesmosomes.

  9. Increased betulinic acid induced cytotoxicity and radiosensitivity in glioma cells under hypoxic conditions.

    PubMed

    Bache, Matthias; Zschornak, Martin P; Passin, Sarina; Kessler, Jacqueline; Wichmann, Henri; Kappler, Matthias; Paschke, Reinhard; Kaluđerović, Goran N; Kommera, Harish; Taubert, Helge; Vordermark, Dirk

    2011-09-09

    Betulinic acid (BA) is a novel antineoplastic agent under evaluation for tumor therapy. Because of the selective cytotoxic effects of BA in tumor cells (including gliomas), the combination of this agent with conservative therapies (such as radiotherapy and chemotherapy) may be useful. Previously, the combination of BA with irradiation under hypoxic conditions had never been studied. In this study, the effects of 3 to 30 μM BA on cytotoxicity, migration, the protein expression of PARP, survivin and HIF-1α, as well as radiosensitivity under normoxic and hypoxic conditions were analyzed in the human malignant glioma cell lines U251MG and U343MG. Cytotoxicity and radiosensitivity were analyzed with clonogenic survival assays, migration was analyzed with Boyden chamber assays (or scratch assays) and protein expression was examined with Western blot analyses. Under normoxic conditions, a half maximal inhibitory concentration (IC50) of 23 μM was observed in U251MG cells and 24 μM was observed in U343MG cells. Under hypoxic conditions, 10 μM or 15 μM of BA showed a significantly increased cytotoxicity in U251MG cells (p = 0.004 and p = 0.01, respectively) and U343MG cells (p < 0.05 and p = 0.01, respectively). The combination of BA with radiotherapy resulted in an additive effect in the U343MG cell line under normoxic and hypoxic conditions. Weak radiation enhancement was observed in U251MG cell line after treatment with BA under normoxic conditions. Furthermore, under hypoxic conditions, the incubation with BA resulted in increased radiation enhancement. The enhancement factor, at an irradiation dose of 15 Gy after treatment with 10 or 15 μM BA, was 2.20 (p = 0.02) and 4.50 (p = 0.03), respectively. Incubation with BA led to decreased cell migration, cleavage of PARP and decreased expression levels of survivin in both cell lines. Additionally, BA treatment resulted in a reduction of HIF-1α protein under hypoxic conditions. Our results suggest that BA is capable of improving the effects of tumor therapy in human malignant glioma cells, particularly under hypoxic conditions. Further investigations are necessary to characterize its potential as a radiosensitizer.

  10. Characterization of heat shock cognate protein 70 gene and its differential expression in response to thermal stress between two wing morphs of Nilaparvata lugens (Stål).

    PubMed

    Lu, Kai; Chen, Xia; Liu, Wenting; Zhou, Qiang

    2016-09-01

    Previous studies have demonstrated differences in thermotolerance between two wing morphs of Nilaparvata lugens, the most serious pest of rice across the Asia. To reveal the molecular regulatory mechanisms underlying the differential thermal resistance abilities between two wing morphs, a full-length of transcript encoding heat shock cognate protein 70 (Hsc70) was cloned, and its expression patterns across temperature gradients were analyzed. The results showed that the expression levels of NlHsc70 in macropters increased dramatically after heat shock from 32 to 38°C, while NlHsc70 transcripts in brachypters remained constant under different temperature stress conditions. In addition, NlHsc70 expression in the macropters was significantly higher than that in brachypters at 1 and 2h recovery from 40°C heat shock. There was no significant difference in NlHsc70 mRNA expression between brachypters and macropters under cold shock conditions. Therefore, NlHsc70 was indeed a constitutively expressed member of the Hsp70 family in brachypters of N. lugens, while it was heat-inducible in macropters. Furthermore, the survival rates of both morphs injected with NlHsc70 dsRNA were significantly decreased following heat shock at 40°C or cold shock at 0°C for 1h. These results suggested that the up-regulation of NlHsc70 is possibly related to the thermal resistance, and the more effective inducement expression of NlHsc70 in macropters promotes a greater thermal tolerance under temperature stress conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Expression of six peptidases from Lactobacillus helveticus in Lactococcus lactis.

    PubMed

    Luoma, S; Peltoniemi, K; Joutsjoki, V; Rantanen, T; Tamminen, M; Heikkinen, I; Palva, A

    2001-03-01

    For development of novel starter strains with improved proteolytic properties, the ability of Lactococcus lactis to produce Lactobacillus helveticus aminopeptidase N (PepN), aminopeptidase C (PepC), X-prolyl dipeptidyl aminopeptidase (PepX), proline iminopeptidase (PepI), prolinase (PepR), and dipeptidase (PepD) was studied by introducing the genes encoding these enzymes into L. lactis MG1363 and its derivatives. According to Northern analyses and enzyme activity measurements, the L. helveticus aminopeptidase genes pepN, pepC, and pepX are expressed under the control of their own promoters in L. lactis. The highest expression level, using a low-copy-number vector, was obtained with the L. helveticus pepN gene, which resulted in a 25-fold increase in PepN activity compared to that of wild-type L. lactis. The L. helveticus pepI gene, residing as a third gene in an operon in its host, was expressed in L. lactis under the control of the L. helveticus pepX promoter. The genetic background of the L. lactis derivatives tested did not affect the expression level of any of the L. helveticus peptidases studied. However, the growth medium used affected both the recombinant peptidase profiles in transformant strains and the resident peptidase activities. The levels of expression of the L. helveticus pepD and pepR clones under the control of their own promoters were below the detection limit in L. lactis. However, substantial amounts of recombinant pepD and PepR activities were obtained in L. lactis when pepD and pepR were expressed under the control of the inducible lactococcal nisA promoter at an optimized nisin concentration.

  12. Expression of Six Peptidases from Lactobacillus helveticus in Lactococcus lactis

    PubMed Central

    Luoma, Susanna; Peltoniemi, Kirsi; Joutsjoki, Vesa; Rantanen, Terhi; Tamminen, Marja; Heikkinen, Inka; Palva, Airi

    2001-01-01

    For development of novel starter strains with improved proteolytic properties, the ability of Lactococcus lactis to produce Lactobacillus helveticus aminopeptidase N (PepN), aminopeptidase C (PepC), X-prolyl dipeptidyl aminopeptidase (PepX), proline iminopeptidase (PepI), prolinase (PepR), and dipeptidase (PepD) was studied by introducing the genes encoding these enzymes into L. lactis MG1363 and its derivatives. According to Northern analyses and enzyme activity measurements, the L. helveticus aminopeptidase genes pepN, pepC, and pepX are expressed under the control of their own promoters in L. lactis. The highest expression level, using a low-copy-number vector, was obtained with the L. helveticus pepN gene, which resulted in a 25-fold increase in PepN activity compared to that of wild-type L. lactis. The L. helveticus pepI gene, residing as a third gene in an operon in its host, was expressed in L. lactis under the control of the L. helveticus pepX promoter. The genetic background of the L. lactis derivatives tested did not affect the expression level of any of the L. helveticus peptidases studied. However, the growth medium used affected both the recombinant peptidase profiles in transformant strains and the resident peptidase activities. The levels of expression of the L. helveticus pepD and pepR clones under the control of their own promoters were below the detection limit in L. lactis. However, substantial amounts of recombinant pepD and PepR activities were obtained in L. lactis when pepD and pepR were expressed under the control of the inducible lactococcal nisA promoter at an optimized nisin concentration. PMID:11229915

  13. Two iron-regulated transporter (IRT) genes showed differential expression in poplar trees under iron or zinc deficiency.

    PubMed

    Huang, Danqiong; Dai, Wenhao

    2015-08-15

    Two iron-regulated transporter (IRT) genes were cloned from the iron chlorosis resistant (PtG) and susceptible (PtY) Populus tremula 'Erecta' lines. Nucleotide sequence analysis showed no significant difference between PtG and PtY. The predicted proteins contain a conserved ZIP domain with 8 transmembrane (TM) regions. A ZIP signature sequence was found in the fourth TM domain. Phylogenetic analysis revealed that PtIRT1 was clustered with tomato and tobacco IRT genes that are highly responsible to iron deficiency. The PtIRT3 gene was clustered with the AtIRT3 gene that was related to zinc and iron transport in plants. Tissue specific expression indicated that PtIRT1 only expressed in the root, while PtIRT3 constitutively expressed in all tested tissues. Under iron deficiency, the expression of PtIRT1 was dramatically increased and a significantly higher transcript level was detected in PtG than in PtY. Iron deficiency also enhanced the expression of PtIRT3 in PtG. On the other hand, zinc deficiency down-regulated the expression of PtIRT1 and PtIRT3 in both PtG and PtY. Zinc accumulated significantly under iron-deficient conditions, whereas the zinc deficiency showed no significant effect on iron accumulation. A yeast complementation test revealed that the PtIRT1 and PtIRT3 genes could restore the iron uptake ability under the iron uptake-deficiency condition. The results will help understand the mechanisms of iron deficiency response in poplar trees and other woody species. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Cloning and functional characterization of HKT1 and AKT1 genes of Fragaria spp.-Relationship to plant response to salt stress.

    PubMed

    Garriga, Miguel; Raddatz, Natalia; Véry, Anne-Aliénor; Sentenac, Hervé; Rubio-Meléndez, María E; González, Wendy; Dreyer, Ingo

    2017-03-01

    Commercial strawberry, Fragaria x ananassa Duch., is a species sensitive to salinity. Under saline conditions, Na + uptake by the plant is increased, while K + uptake is significantly reduced. Maintaining an adequate K + /Na + cytosolic ratio determines the ability of the plant to survive in saline environments. The goal of the present work was to clone and functionally characterize the genes AKT1 and HKT1 involved in K + and Na + transport in strawberry and to determine the relationship of these genes with the responses of three Fragaria spp. genotypes having different ecological adaptations to salt stress. FaHKT1 and FcHKT1 proteins from F. x ananassa and F. chiloensis have 98.1% of identity, while FaAKT1 and FcAKT1 identity is 99.7%. FaHKT1 and FaAKT1 from F. x ananassa, were functionally characterized in Xenopus oocytes. FaHKT1, belongs to the group I of HKT transporters and is selective for Na + . Expression of FaAKT1 in oocytes showed that the protein is a typical inward-rectifying and highly K + -selective channel. The relative expression of Fragaria HKT1 and AKT1 genes was studied in roots of F. x ananassa cv. Camarosa and of F. chiloensis (accessions Bau and Cucao) grown under salt stress. The expression of AKT1 was transiently increased in 'Camarosa', decreased in 'Cucao' and was not affected in 'Bau' upon salt stress. HKT1 expression was significantly increased in roots of 'Cucao' and was not affected in the other two genotypes. The increased relative expression of HKT1 and decreased expression of AKT1 in 'Cucao' roots correlates with the higher tolerance to salinity of this genotype in comparison with 'Camarosa' and 'Bau'. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Isolation and characterization of the trophectoderm from the Arabian camel (Camelus dromedarius).

    PubMed

    Saadeldin, Islam M; Swelum, Ayman Abdel-Aziz; Elsafadi, Mona; Moumen, Abdullah F; Alzahrani, Faisal A; Mahmood, Amer; Alfayez, Musaad; Alowaimer, Abdullah N

    2017-09-01

    We isolated and characterized trophoblast from in vivo-derived camel embryos and compared with embryonic stem-like cells. Camel embryos were flushed on day 8 post-insemination and used to derive trophectoderm and embryonic stem-like cells under feeder-free culture conditions using a basement membrane matrix. Embryos were evaluated for the expression of POU5F1, MYC, KLF4, SOX2, CDX2, and KRT8 mRNA transcripts by relative quantitative polymerase chain reaction. Camel embryos grew and expanded to ∼4.5 mm and maintained their vesicular shape in vitro for 21 days post-insemination. Trophoblast and embryonic stem-like cell lines grew under feeder-free culture conditions and showed distinct morphological criteria and normal chromosomal counts. Embryonic stem-like cells showed positive staining in the alkaline phosphatase reaction. Trophoblast cells showed a significant increase in CDX2, KRT8, KLF4, and SOX2 expression compared with embryonic stem-like cells and whole embryos. Embryonic stem-like cells showed a significant decrease in CDX2 expression and increase in SOX2 and KRT8 expression compared to embryonic expression. POU5F1 and MYC expression showed no difference between embryos and both cell lines. We characterized embryo survival in vitro, particularly the derivation of trophectoderm and embryonic stem-like cells, providing a foundation for further analysis of early embryonic development and placentation in camels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Association of FLOWERING LOCUS T/TERMINAL FLOWER 1-like gene FTL2 expression with growth rhythm in Scots pine (Pinus sylvestris).

    PubMed

    Avia, Komlan; Kärkkäinen, Katri; Lagercrantz, Ulf; Savolainen, Outi

    2014-10-01

    Understanding the genetic basis of the timing of bud set, an important trait in conifers, is relevant for adaptation and forestry practice. In common garden experiments, both Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) show a latitudinal cline in the trait. We compared the regulation of their bud set biology by examining the expression of PsFTL2, a Pinus sylvestris homolog to PaFTL2, a FLOWERING LOCUS T/TERMINAL FLOWER 1 (FT/TFL1)-like gene, the expression levels of which have been found previously to be associated with the timing of bud set in Norway spruce. In a common garden study, we analyzed the relationship of bud phenology under natural and artificial photoperiods and the expression of PsFTL2 in a set of Scots pine populations from different latitudes. The expression of PsFTL2 increased in the needles preceding bud set and decreased during bud burst. In the northernmost population, even short night periods were efficient to trigger this expression, which also increased earlier under all photoperiodic regimes compared with the southern populations. Despite the different biology, with few limitations, the two conifers that diverged 140 million yr ago probably share an association of FTL2 with bud set, pointing to a common mechanism for the timing of growth cessation in conifers. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  17. Inflammation increases cells expressing ZSCAN4 and progenitor cell markers in the adult pancreas

    PubMed Central

    Azuma, Sakiko; Yokoyama, Yukihiro; Yamamoto, Akiko; Kyokane, Kazuhiro; Niida, Shumpei; Ishiguro, Hiroshi; Ko, Minoru S. H.

    2013-01-01

    We have recently identified the zinc finger and SCAN domain containing 4 (Zscan4), which is transiently expressed and regulates telomere elongation and genome stability in mouse embryonic stem (ES) cells. The aim of this study was to examine the expression of ZSCAN4 in the adult pancreas and elucidate the role of ZSCAN4 in tissue inflammation and subsequent regeneration. The expression of ZSCAN4 and other progenitor or differentiated cell markers in the human pancreas was immunohistochemically examined. Pancreas sections of alcoholic or autoimmune pancreatitis patients before and under maintenance corticosteroid treatment were used in this study. In the adult human pancreas a small number of ZSCAN4-positive (ZSCAN4+) cells are present among cells located in the islets of Langerhans, acini, ducts, and oval-shaped cells. These cells not only express differentiated cell markers for each compartment of the pancreas but also express other tissue stem/progenitor cell markers. Furthermore, the number of ZSCAN4+ cells dramatically increased in patients with chronic pancreatitis, especially in the pancreatic tissues of autoimmune pancreatitis actively regenerating under corticosteroid treatment. Interestingly, a number of ZSCAN4+ cells in the pancreas of autoimmune pancreatitis returned to the basal level after 1 yr of maintenance corticosteroid treatment. In conclusion, coexpression of progenitor cell markers and differentiated cell markers with ZSCAN4 in each compartment of the pancreas may indicate the presence of facultative progenitors for both exocrine and endocrine cells in the adult pancreas. PMID:23599043

  18. Enhancing Flower Color through Simultaneous Expression of the B-peru and mPAP1 Transcription Factors under Control of a Flower-Specific Promoter

    PubMed Central

    Kim, Da-Hye; Park, Sangkyu; Lee, Jong-Yeol; Ha, Sun-Hwa; Lim, Sun-Hyung

    2018-01-01

    Flower color is a main target for flower breeding. A transgenic approach for flower color modification requires a transgene and a flower-specific promoter. Here, we expressed the B-peru gene encoding a basic helix loop helix (bHLH) transcription factor (TF) together with the mPAP1 gene encoding an R2R3 MYB TF to enhance flower color in tobacco (Nicotiana tabacum L.), using the tobacco anthocyanidin synthase (ANS) promoter (PANS) to drive flower-specific expression. The transgenic tobacco plants grew normally and produced either dark pink (PANSBP_DP) or dark red (PANSBP_DR) flowers. Quantitative real time polymerase chain reaction (qPCR) revealed that the expression of five structural genes in the flavonoid biosynthetic pathway increased significantly in both PANSBP_DP and PANSBP_DR lines, compared with the non-transformed (NT) control. Interestingly, the expression of two regulatory genes constituting the active MYB-bHLH-WD40 repeat (WDR) (MBW) complex decreased significantly in the PANSBP_DR plants but not in the PANSBP_DP plants. Total flavonol and anthocyanin abundance correlated with flower color, with an increase of 1.6–43.2 fold in the PANSBP_DP plants and 2.0–124.2 fold in the PANSBP_DR plants. Our results indicate that combinatorial expression of B-peru and mPAP1 genes under control of the ANS promoter can be a useful strategy for intensifying flower color without growth retardation. PMID:29361688

  19. Changes of Ammonia-Metabolizing Enzyme Activity and Gene Expression of Two Strains in Shrimp Litopenaeus vannamei Under Ammonia Stress

    PubMed Central

    Qiu, Liguo; Shi, Xiang; Yu, Simeng; Han, Qian; Diao, Xiaoping; Zhou, Hailong

    2018-01-01

    Ammonia stress can inhibit the survival and growth, and even cause mortality of shrimp. In this study, ammonia-metabolizing enzyme activities and gene expression were compared between two strains of L. vannamei under different ammonia-N (NH4+) concentrations (3.4, 13.8, and 24.6 mg/L). The results showed that elevated ammonia concentrations mainly increased glutamine synthetase (GSase) activities while inhibiting transglutaminase (TGase) activities in the muscle of both strains. Thus, we concluded that L. vannamei could accelerate the synthesis of glutamine from glutamate and NH4+ to alleviate ammonia stress. Compared with the muscle, the hepatopancreas plays a major role in ammonia stress and might be a target tissue to respond to the ammonia stress. Compared to the control group, the treatment of high ammonia concentrations reduced the hepatopancreas TGase (TG) gene expression and increased the gene expression rates of glutamate dehydrogenase-β (GDH-β) and GSase (GS) in both the muscle and the hepatopancreas of the two strains (p < 0.05). These genes (GDH-β and GS) in strain B were not only expressed earlier but also at levels higher than the expression range of strain A. At the gene level, strain B showed a more rapid and positive response than strain A. These data might help reveal the physiological responses mechanisms of shrimp adapt to ammonia stress and speed up the selective breeding process in L. vannamei. PMID:29628893

  20. Molecular cloning and characterization of genistein 4'-O-glucoside specific glycosyltransferase from Bacopa monniera.

    PubMed

    Ruby; Santosh Kumar, R J; Vishwakarma, Rishi K; Singh, Somesh; Khan, Bashir M

    2014-07-01

    Health related benefits of isoflavones such as genistein are well known. Glycosylation of genistein yields different glycosides like genistein 7-O-glycoside (genistin) and genistein 4'-O-glycoside (sophoricoside). This is the first report on isolation, cloning and functional characterization of a glycosyltransferase specific for genistein 4'-O-glucoside from Bacopa monniera, an important Indian medicinal herb. The glycosyltransferase from B. monniera (UGT74W1) showed 49% identity at amino acid level with the glycosyltransferases from Lycium barbarum. The UGT74W1 sequence contained all the conserved motifs present in plant glycosyltransferases. UGT74W1 was cloned in pET-30b (+) expression vector and transformed into E. coli. The molecular mass of over expressed protein was found to be around 52 kDa. Functional characterization of the enzyme was performed using different substrates. Product analysis was done using LC-MS and HPLC, which confirmed its specificity for genistein 4'-O-glucoside. Immuno-localization studies of the UGT74W1 showed its localization in the vascular bundle. Spatio-temporal expression studies under normal and stressed conditions were also performed. The control B. monniera plant showed maximum expression of UGT74W1 in leaves followed by roots and stem. Salicylic acid treatment causes almost tenfold increase in UGT74W1 expression in roots, while leaves and stem showed decrease in expression. Since salicylic acid is generated at the time of injury or wound caused by pathogens, this increase in UGT74W1 expression under salicylic acid stress might point towards its role in defense mechanism.

  1. Identification of ATP Citrate Lyase as a Positive Regulator of Glycolytic Function in Glioblastomas

    PubMed Central

    Beckner, Marie E.; Fellows-Mayle, Wendy; Zhang, Zhe; Agostino, Naomi R.; Kant, Jeffrey A.; Day, Billy W.; Pollack, Ian F.

    2009-01-01

    Glioblastomas, the most malignant type of glioma, are more glycolytic than normal brain tissue. Robust migration of glioblastoma cells has been previously demonstrated under glycolytic conditions and their pseudopodia contain increased glycolytic and decreased mitochondrial enzymes. Glycolysis is suppressed by metabolic acids, including citric acid which is excluded from mitochondria during hypoxia. We postulated that glioma cells maintain glycolysis by regulating metabolic acids, especially in their pseudopodia. The enzyme that breaks down cytosolic citric acid is ATP citrate lyase (ACLY). Our identification of increased ACLY in pseudopodia of U87 glioblastoma cells on 1D gels and immunoblots prompted investigation of ACLY gene expression in gliomas for survival data and correlation with expression of ENO1, that encodes enolase 1. Queries of the NIH’s REMBRANDT brain tumor database based on Affymetrix data indicated that decreased survival correlated with increased gene expression of ACLY in gliomas. Queries of gliomas and glioblastomas found an association of upregulated ACLY and ENO1 expression by chi square for all probe sets (reporters) combined and correlation for numbers of probe sets indicating shared upregulation of these genes. Real-time quantitative PCR confirmed correlation between ACLY and ENO1 in 21 glioblastomas (p < 0.001). Inhibition of ACLY with hydroxycitrate suppressed (p < 0.05) in vitro glioblastoma cell migration, clonogenicity and brain invasion under glycolytic conditions and enhanced the suppressive effects of a Met inhibitor on cell migration. In summary, gene expression data, proteomics and functional assays support ACLY as a positive regulator of glycolysis in glioblastomas. PMID:19795461

  2. Effective reduction of cadmium accumulation in rice grain by expressing OsHMA3 under the control of the OsHMA2 promoter

    PubMed Central

    Shao, Ji Feng; Xia, Jixing; Yamaji, Naoki; Shen, Ren Fang; Ma, Jian Feng

    2018-01-01

    Abstract Reducing cadmium (Cd) accumulation in rice grain is an important issue for human health. The aim of this study was to manipulate both expression and tissue localization of OsHMA3, a tonoplast-localized Cd transporter, in the roots by expressing it under the control of the OsHMA2 promoter, which shows high expression in different organs including roots, nodes, and shoots. In two independent transgenic lines, the expression of OsHMA3 was significantly enhanced in all organs compared with non-transgenic rice. Furthermore, OsHMA3 protein was detected in the root pericycle cells and phloem region of both the diffuse vascular bundle and the enlarged vascular bundle of the nodes. At the vegetative stage, the Cd concentration in the shoots and xylem sap of the transgenic rice was significantly decreased, but that of the whole roots and root cell sap was increased. At the reproductive stage, the concentration of Cd, but not other essential metals, in the brown rice of transgenic lines was decreased to less than one-tenth that of the non-transgenic rice. These results indicate that expression of OsHMA3 under the control of the OsHMA2 promoter can effectively reduce Cd accumulation in rice grain through sequestering more Cd into the vacuoles of various tissues. PMID:29562302

  3. Effective reduction of cadmium accumulation in rice grain by expressing OsHMA3 under the control of the OsHMA2 promoter.

    PubMed

    Shao, Ji Feng; Xia, Jixing; Yamaji, Naoki; Shen, Ren Fang; Ma, Jian Feng

    2018-04-27

    Reducing cadmium (Cd) accumulation in rice grain is an important issue for human health. The aim of this study was to manipulate both expression and tissue localization of OsHMA3, a tonoplast-localized Cd transporter, in the roots by expressing it under the control of the OsHMA2 promoter, which shows high expression in different organs including roots, nodes, and shoots. In two independent transgenic lines, the expression of OsHMA3 was significantly enhanced in all organs compared with non-transgenic rice. Furthermore, OsHMA3 protein was detected in the root pericycle cells and phloem region of both the diffuse vascular bundle and the enlarged vascular bundle of the nodes. At the vegetative stage, the Cd concentration in the shoots and xylem sap of the transgenic rice was significantly decreased, but that of the whole roots and root cell sap was increased. At the reproductive stage, the concentration of Cd, but not other essential metals, in the brown rice of transgenic lines was decreased to less than one-tenth that of the non-transgenic rice. These results indicate that expression of OsHMA3 under the control of the OsHMA2 promoter can effectively reduce Cd accumulation in rice grain through sequestering more Cd into the vacuoles of various tissues.

  4. Cloning and expression of two 9-cis-epoxycarotenoid dioxygenase genes during fruit development and under stress conditions from Malus.

    PubMed

    Xia, Hui; Wu, Shan; Ma, Fengwang

    2014-10-01

    There is now biochemical and genetic evidence that oxidative cleavage of cis-epoxycarotenoids by 9-cis-epoxycarotenoid dioxygenase (NCED) is the critical step in the regulation of abscisic acid (ABA) synthesis in higher plants. To understand the expression characteristics of NCED during ABA biosynthesis in apple (Malus), two NCED genes cDNA sequence were cloned from Malus prunifolia using RT-PCR techniques, named MpNCED1 and MpNCED2. The two cDNA sequences have full-length open reading frame, encoding a polypeptide of 607 and 614 amino acids, respectively. Sequences analysis showed that the deduced two apple NCED proteins were highly homologous to other NCED proteins from different plant species. Real-time PCR analysis revealed MpNCED2 were expressed continuously during the whole period of apple fruit development with the pattern of "higher-low-highest", while the expression of MpNCED1 clearly declined to a steady low level in the mid-later period of fruit development. Expression of the MpNCED2 increased under the drought stress, high temperature and low temperature strongly and rapidly, whereas expression of the MpNCED1 was detected in response to temperature stress, but did not detected under drought stress. These results revealed that MpNCED1 and MpNCED2 may play different roles in regulation of the ABA biosynthesis in fruit development and various stresses response.

  5. Heterogeneity of cellular proliferation within transitional cell carcinoma: correlation of protein kinase C alpha/betaI expression and activity.

    PubMed

    Aaltonen, Vesa; Koivunen, Jussi; Laato, Matti; Peltonen, Juha

    2006-07-01

    A total of 18 histological samples containing both transitional cell carcinoma (TCC) and normal urothelial epithelium were analyzed for protein kinase C (PKC)-alpha and -betaI expression, and for their phosphorylated substrates. The results showed an increased expression of PKC-alpha in 13 out of 18 samples and -betaI in 11 out of 18 TCC samples when compared with normal urothelium. In addition, 11 out of 18 of the TCC tumors displayed heterogeneous expression of the PKC isoenzymes, with different levels of immunosignal in different areas of the tumor. Within the same sample, areas of highest PKC isoenzyme expression also showed highest classical PKC activity, as estimated by immunodetection of phosphorylated forms of PKC substrates. The areas of highest expression of PKC-alpha and/or -betaI isoenzymes showed also the highest number of cells positive for Ki67, an indicator of proliferation. Immunofluorescence and Western blotting demonstrated that in cultured TCC cells, PKC-alpha was located in the cytoplasm, whereas PKC-betaI was located primarily in the nucleus as a 65-kDa fragment and in the cytoplasm as a full-size 79-kDa protein. Our results indicate that increased expression of PKC-alpha and -betaI leads to increased total classical PKC kinase activity and suggest that increased activity of the isoenzymes plays a role in accelerated growth of TCC. Furthermore, these results suggest that even in carcinoma tissue, PKC expression and activity are under strict control.

  6. Podocyte hypertrophy precedes apoptosis under experimental diabetic conditions.

    PubMed

    Lee, Sun Ha; Moon, Sung Jin; Paeng, Jisun; Kang, Hye-Young; Nam, Bo Young; Kim, Seonghun; Kim, Chan Ho; Lee, Mi Jung; Oh, Hyung Jung; Park, Jung Tak; Han, Seung Hyeok; Yoo, Tae-Hyun; Kang, Shin-Wook

    2015-08-01

    Podocyte hypertrophy and apoptosis are two hallmarks of diabetic glomeruli, but the sequence in which these processes occur remains a matter of debate. Here we investigated the effects of inhibiting hypertrophy on apoptosis, and vice versa, in both podocytes and glomeruli, under diabetic conditions. Hypertrophy and apoptosis were inhibited using an epidermal growth factor receptor inhibitor (PKI 166) and a pan-caspase inhibitor (zAsp-DCB), respectively. We observed significant increases in the protein expression of p27, p21, phospho-eukaryotic elongation factor 4E-binding protein 1, and phospho-p70 S6 ribosomal protein kinase, in both cultured podocytes exposed to high-glucose (HG) medium, and streptozotocin-induced diabetes mellitus (DM) rat glomeruli. These increases were significantly inhibited by PKI 166, but not by zAsp-DCB. In addition, the amount of protein per cell, the relative cell size, and the glomerular volume were all significantly increased under diabetic conditions, and these changes were also blocked by treatment with PKI 166, but not zAsp-DCB. Increased protein expression of cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase, together with increased Bax/Bcl-2 ratios, were also observed in HG-stimulated podocytes and DM glomeruli. Treatment with either zAsp-DCB or PKI 166 resulted in a significant attenuation of these effects. Both PKI 166 and zAsp-DCB also inhibited the increase in number of apoptotic cells, as assessed by Hoechst 33342 staining and TUNEL assay. Under diabetic conditions, inhibition of podocyte hypertrophy results in attenuated apoptosis, whereas blocking apoptosis has no effect on podocyte hypertrophy, suggesting that podocyte hypertrophy precedes apoptosis.

  7. Expression and promoter methylation of succinate dehydrogenase and fumarase genes in maize under anoxic conditions.

    PubMed

    Eprintsev, Alexander T; Fedorin, Dmitry N; Dobychina, Maria A; Igamberdiev, Abir U

    2017-09-01

    Succinate dehydrogenase (SDH) and fumarase enzyme activity and expression of genes encoding the SDH subunits A (Sdh1-2), B (Sdh2-3), C (Sdh3), D (Sdh4) and the mitochondrial (Fum1) and cytosolic (Fum2) isoforms of fumarase were quantified in maize (Zea mays L.) seedlings exposed to atmospheres of air (control), N 2, and CO 2 . The catalytic activity of SDH gradually declined in plants exposed to N 2 atmospheres, with ∼40% activity remaining after 24h. In seedlings incubated in CO 2, the suppression was even more pronounced. Fumarase activity was more stable, decreasing by one third after 24h of anoxia. The level of Sdh1-2 transcripts in seedlings declined significantly under N 2 and even more rapidly upon exposure to CO 2 , with a concomitant increase in methylation of the corresponding promoters. The level of Sdh2-3 and Sdh3 transcripts also decreased under N 2 and CO 2, but the changes in promoter methylation were less pronounced, whereas the changes in the level of Sdh4 expression and promoter methylation were minor. Expression of Fum1 and Fum2 was affected by N 2 and CO 2 atmospheres, however without changes in corresponding promoter methylation. It is concluded that, under conditions of oxygen deficiency, succinate accumulates mainly due to downregulation of SDH gene expression and reduction of enzyme activity, and to a lesser extent due to the decrease of fumarase gene expression. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Incidence of mastitis and activity of milk neutrophils in Tharparkar cows reared under semi-arid conditions.

    PubMed

    Alhussien, Mohanned; Manjari, P; Mohammed, Seid; Sheikh, Aasif Ahmad; Reddi, Srinu; Dixit, Satpal; Dang, Ajay K

    2016-08-01

    Rearing of indigenous Tharparkar (TP) cows (native of arid Thar deserts) under high humid conditions (>75 % humidity) has increased the incidence of mammary infections in them. A study was undertaken to see the number, activity, and expression of milk neutrophils isolated from healthy and mastitic cows. There was a significant (P < 0.05) influx in milk somatic cell counts (SCC) and neutrophils in sub-clinical and clinical mastitis cows. No change was observed in the phagocytic activity (PA) of milk neutrophils between healthy and sub-clinical mastitis (SCM) cows, but these activities decreased significantly (P < 0.05) in clinical cases. Chemotactic activity showed a significant difference between all the groups. Lactose varied significantly (P < 0.05) between healthy, sub-clinical, and clinical mastitis (CM) cows. Expression of chemokine receptor (CXCR1) was more in mastitis cows and also higher as compared to CXCR2. No change was observed in cluster of differentiation molecule (CD62L) among all the three groups of TP cows. Expression of interleukin (IL-8) and CD11b was low in healthy cows, increased significantly (P < 0.05) in both sub-clinical and mastitis cows. This study indicates that low producing TP cows are also prone to mammary infections when reared under semi-arid conditions.

  9. Long-term high-soybean oil feeding alters regulation of body temperature in rats.

    PubMed

    Tsushima, Hiromi; Yamada, Kazuyo; Miyazawa, Daisuke; Mori, Mayumi; Hashimoto, Yoko; Ohkubo, Takeshi; Hibino, Hidehiko; Okuyama, Harumi

    2014-01-01

    We investigated whether body temperature (BT) regulatory mechanisms are influenced by dietary fatty acids (FA). Male Wistar rats were fed a high-fat diet containing fish oil (HFD), soybean oil (HSD) or lard (HLD). At the 20-week intervention, the BT of the HSD and HLD groups were lower than that of the normal diet (ND) group in the light and dark periods. The intracerebroventricular injections of interleukin-1β and bombesin in the HSD group induced greater hyperthermia and weaker hypothermia, respectively, than in the ND group. The HSD differentially affected BT under both physiological and pharmacological conditions. In the hypothalamus, the ratio of n-6/n-3 FAs was higher in the HSD group compared with the ND group. DNA microarrays revealed increased expression of thyroid-stimulating hormone β-subunit, and decreased expression of several genes in the hypothalamus of the HSD group compared with the ND group. The HSD feeding increased several adipokine concentrations in the plasma. However, there were no adipokines or gene expressions that changed in only the HSD and HLD groups showing significant hypothermia under the physiological condition. These findings suggested that long-term HSD intake produces abnormal BT regulation. It is less likely that adipokines or proteins/peptides are involved in abnormal BT regulation under the physiological conditions after HSD feeding.

  10. Reactive oxygen species induced by heat stress during grain filling of rice (Oryza sativa L.) are involved in occurrence of grain chalkiness.

    PubMed

    Suriyasak, Chetphilin; Harano, Keisuke; Tanamachi, Koichiro; Matsuo, Kazuhiro; Tamada, Aina; Iwaya-Inoue, Mari; Ishibashi, Yushi

    2017-09-01

    Heat stress during grain filling increases rice grain chalkiness due to increased activity of α-amylase, which hydrolyzes starch. In rice and barley seeds, reactive oxygen species (ROS) produced after imbibition induce α-amylase activity via regulation of gibberellin (GA) and abscisic acid (ABA) levels during seed germination. Here, we examined whether ROS is involved in induction of grain chalkiness by α-amylase in developing rice grains under heat stress. To elucidate the role of ROS in grain chalkiness, we grew post-anthesis rice plants (Oryza sativa L. cv. Koshihikari) under control (25°C) or heat stress (30°C) conditions with or without antioxidant (dithiothreitol) treatment. The developing grains were analyzed for expression of NADPH oxidases, GA biosynthesis genes (OsGA3ox1, OsGA20ox1), ABA catabolism genes (OsABA8'OH1, OsABA8'OH2) and an α-amylase gene (OsAmy3E), endogenous H 2 O 2 content and the grain quality. In grains exposed to heat stress, the expression of NADPH oxidase genes (especially, OsRbohB, OsRbohD, OsRbohF and OsRbohI) and the ROS content increased. Heat stress also increased the expression of OsGA3ox1, OsGA20ox1, OsABA8'OH1, OsABA8'OH2 and OsAmy3E. On the other hand, dithiothreitol treatment reduced the effects of heat stress on the expression of these genes and significantly reduced grain chalkiness induced by heat stress. These results suggest that, similar to cereal seed germination mechanism, ROS produced under heat stress is involved in α-amylase induction in maturating rice grains through GA/ABA metabolism, and consequently caused grain chalkiness. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Increased expression of 78 kD glucose-regulated protein promotes cardiomyocyte apoptosis in a rat model of liver cirrhosis

    PubMed Central

    Zhang, Lili; Zhang, Huiying; Lv, Minli; Jia, Jiantao; Fan, Yimin; Tian, Xiaoxia; Li, Xujiong; Li, Baohong; Ji, Jingquan; Wang, Limin; Zhao, Zhongfu; Han, Dewu; Ji, Cheng

    2015-01-01

    Aims: This study was to investigate the role and underlying mechanism of 78 kD glucose-regulated protein (GRP78) in cardiomyocyte apoptosis in a rat model of liver cirrhosis. Methods: A rat model of liver cirrhosis was established with multiple pathogenic factors. A total of 42 male SD rats were randomly divided into the liver cirrhosis group and control group. Cardiac structure analysis was performed to assess alterations in cardiac structure. Cardiomyocytes apoptosis was detected by TdT-mediated dUTP nick end labeling method. Expression of GRP78, CCAAT/enhancer-binding protein homologous protein (CHOP), caspase-12, nuclear factor kappa-light-chain-enhancer of activated B cells p65 subunit (NF-κB p65) and B cell lymphoma-2 (Bcl-2) was detected by immunohistochemical staining. Results: The ratios of left ventricular wall thickness to heart weight and heart weight to body weight were significantly increased with the progression of liver cirrhosis (P < 0.05). Apoptosis index of cardiomyocytes was significantly increased with the progression of liver cirrhosis (P < 0.05). The expression levels of GRP78, CHOP and caspase-12 were significantly increased in the progression of liver cirrhosis (P < 0.05). The expression levels of NF-κB p65 and Bcl-2 were highest in the 4-wk liver cirrhosis, and they were decreased in the 6-wk and 8-wk in the progression of liver cirrhosis. GRP78 expression levels were positively correlated with apoptosis index, CHOP and caspase-12 expression levels (P < 0.05). CHOP expression levels were negatively correlated with NF-κB p65 and Bcl-2 expression levels (P < 0.05). Conclusion: Increased expression of GRP78 promotes cardiomyocyte apoptosis in rats with cirrhotic cardiomyopathy. PMID:26464674

  12. Selective Deletion of the Brain-Specific Isoform of Renin Causes Neurogenic Hypertension.

    PubMed

    Shinohara, Keisuke; Liu, Xuebo; Morgan, Donald A; Davis, Deborah R; Sequeira-Lopez, Maria Luisa S; Cassell, Martin D; Grobe, Justin L; Rahmouni, Kamal; Sigmund, Curt D

    2016-12-01

    The renin-angiotensin system (RAS) in the brain is a critical determinant of blood pressure, but the mechanisms regulating RAS activity in the brain remain unclear. Expression of brain renin (renin-b) occurs from an alternative promoter-first exon. The predicted translation product is a nonsecreted enzymatically active renin whose function is unknown. We generated a unique mouse model by selectively ablating the brain-specific isoform of renin (renin-b) while preserving the expression and function of the classical isoform expressed in the kidney (renin-a). Preservation of renal renin was confirmed by measurements of renin gene expression and immunohistochemistry. Surprisingly, renin-b-deficient mice exhibited hypertension, increased sympathetic nerve activity to the kidney and heart, and impaired baroreflex sensitivity. Whereas these mice displayed decreased circulating RAS activity, there was a paradoxical increase in brain RAS activity. Physiologically, renin-b-deficient mice exhibited an exaggerated depressor response to intracerebroventricular administration of losartan, captopril, or aliskiren. At the molecular level, renin-b-deficient mice exhibited increased expression of angiotensin-II type 1 receptor in the paraventricular nucleus, which correlated with an increased renal sympathetic nerve response to leptin, which was dependent on angiotensin-II type 1 receptor activity. Interestingly, despite an ablation of renin-b expression, expression of renin-a was significantly increased in rostral ventrolateral medulla. These data support a new paradigm for the genetic control of RAS activity in the brain by a coordinated regulation of the renin isoforms, with expression of renin-b tonically inhibiting expression of renin-a under baseline conditions. Impairment of this control mechanism causes neurogenic hypertension. © 2016 American Heart Association, Inc.

  13. Myostatin induces interstitial fibrosis in the heart via TAK1 and p38.

    PubMed

    Biesemann, Nadine; Mendler, Luca; Kostin, Sawa; Wietelmann, Astrid; Borchardt, Thilo; Braun, Thomas

    2015-09-01

    Myostatin, a member of the TGF-β superfamily of secreted growth factors, is a negative regulator of skeletal muscle growth. In the heart, it is expressed at lower levels compared to skeletal muscle but up-regulated under disease conditions. Cre recombinase-mediated inactivation of myostatin in adult cardiomyocytes leads to heart failure and increased mortality but cardiac function of surviving mice is restored after several weeks probably due to compensatory expression in non-cardiomyocytes. To study long-term effects of increased myostatin expression in the heart and to analyze the putative crosstalk between cardiomyocytes and fibroblasts, we overexpressed myostatin in cardiomyocytes. Increased expression of myostatin in heart muscle cells caused interstitial fibrosis via activation of the TAK-1-MKK3/6-p38 signaling pathway, compromising cardiac function in older mice. Our results uncover a novel role of myostatin in the heart and highlight the necessity for tight regulation of myostatin to maintain normal heart function.

  14. Radiosensitivity in HeLa cervical cancer cells overexpressing glutathione S-transferase π 1

    PubMed Central

    YANG, LIANG; LIU, REN; MA, HONG-BIN; YING, MING-ZHEN; WANG, YA-JIE

    2015-01-01

    The aims of the present study were to investigate the effect of overexpressed exogenous glutathione S-transferase π 1 (GSTP1) gene on the radiosensitivity of the HeLa human cervical cancer cell line and conduct a preliminarily investigation into the underlying mechanisms of the effect. The full-length sequence of human GSTP1 was obtained by performing a polymerase chain reaction (PCR) using primers based on the GenBank sequence of GSTP1. Subsequently, the gene was cloned into a recombinant eukaryotic expression plasmid, and the resulting construct was confirmed by restriction analysis and DNA sequencing. A HeLa cell line that was stably expressing high levels of GSTP1 was obtained through stable transfection of the constructed plasmids using lipofectamine and screening for G418 resistance, as demonstrated by reverse transcription-PCR. Using the transfected HeLa cells, a colony formation assay was conducted to detect the influence of GSTP1 overexpression on the cell radiosensitivity. Furthermore, flow cytometry was used to investigate the effect of GSTP1 overexpression on cell cycle progression, with the protein expression levels of the cell cycle regulating factor cyclin B1 detected using western blot analysis. Colony formation and G2/M phase arrest in the GSTP1-expressing cells were significantly increased compared with the control group (P<0.01). In addition, the expression of cyclin B1 was significantly reduced in the GSTP1-expressing cells. These results demonstrated that increased expression of GSTP1 inhibits radiosensitivity in HeLa cells. The mechanism underlying this effect may be associated with the ability of the GSTP1 protein to reduce cyclin B1 expression, resulting in significant G2/M phase arrest. PMID:26622693

  15. Radiosensitivity in HeLa cervical cancer cells overexpressing glutathione S-transferase π 1.

    PubMed

    Yang, Liang; Liu, Ren; Ma, Hong-Bin; Ying, Ming-Zhen; Wang, Ya-Jie

    2015-09-01

    The aims of the present study were to investigate the effect of overexpressed exogenous glutathione S-transferase π 1 ( GSTP1 ) gene on the radiosensitivity of the HeLa human cervical cancer cell line and conduct a preliminarily investigation into the underlying mechanisms of the effect. The full-length sequence of human GSTP1 was obtained by performing a polymerase chain reaction (PCR) using primers based on the GenBank sequence of GSTP1. Subsequently, the gene was cloned into a recombinant eukaryotic expression plasmid, and the resulting construct was confirmed by restriction analysis and DNA sequencing. A HeLa cell line that was stably expressing high levels of GSTP1 was obtained through stable transfection of the constructed plasmids using lipofectamine and screening for G418 resistance, as demonstrated by reverse transcription-PCR. Using the transfected HeLa cells, a colony formation assay was conducted to detect the influence of GSTP1 overexpression on the cell radiosensitivity. Furthermore, flow cytometry was used to investigate the effect of GSTP1 overexpression on cell cycle progression, with the protein expression levels of the cell cycle regulating factor cyclin B1 detected using western blot analysis. Colony formation and G 2 /M phase arrest in the GSTP1 -expressing cells were significantly increased compared with the control group (P<0.01). In addition, the expression of cyclin B1 was significantly reduced in the GSTP1 -expressing cells. These results demonstrated that increased expression of GSTP1 inhibits radiosensitivity in HeLa cells. The mechanism underlying this effect may be associated with the ability of the GSTP1 protein to reduce cyclin B1 expression, resulting in significant G 2 /M phase arrest.

  16. The Characterization of AT1 Expression in the Dorsal Root Ganglia After Chronic Constriction Injury.

    PubMed

    Oroszova, Zuzana; Hricova, Ludmila; Stropkovska, Andrea; Lukacova, Nadezda; Pavel, Jaroslav

    2017-04-01

    To clarify the role of Angiotensin II in the regulation of sensory signaling, we characterized the AT 1 expression in neuronal subpopulation of lower lumbar dorsal root ganglia under normal conditions and its alteration in neuropathic pain model. The characterization of AT 1 expression was done under control and after the chronic constriction injury induced by four loose ligatures of the sciatic nerve representing the model of posttraumatic painful peripheral neuropathy. Major Angiotensin II receptor type was expressed in approximately 43 % of small-sized and 62 % of large-sized neurons in control. The AT 1 overexpression after sciatic nerve ligation lasting 7 days was detected predominantly in small-sized AT 1 immunoreactive neurons (about 38 % increase). Chronic constriction injury caused a statistically marked increase in number of the small-sized peptidergic (CGRP immunoreactive) neuronal subpopulation expressing AT 1 (about 64 %). The subpopulations of AT 1 -immunoreactive and nonpeptide-containing primary sensory neurons revealed by IB4 binding, tyrosine hydroxylase- and parvalbumin-immunoreactive neurons were not markedly changed. Our results indicate that: (1) the AT 1 overexpression after the chronic constriction injury is an important factor in Angiotensin II-potentiated pain perception; (2) Angiotensin II is involved in pathological mechanisms of neuropathic pain and this effect can be mediated perhaps in combination with other neuropeptides synthesized in the primary sensory neurons.

  17. P2Y12 expression and function in alternatively activated human microglia

    PubMed Central

    Ase, Ariel R.; Kinsara, Angham; Rao, Vijayaraghava T.S.; Michell-Robinson, Mackenzie; Leong, Soo Yuen; Butovsky, Oleg; Ludwin, Samuel K.; Séguéla, Philippe; Bar-Or, Amit; Antel, Jack P.

    2015-01-01

    Objective: To investigate and measure the functional significance of altered P2Y12 expression in the context of human microglia activation. Methods: We performed in vitro and in situ experiments to measure how P2Y12 expression can influence disease-relevant functional properties of classically activated (M1) and alternatively activated (M2) human microglia in the inflamed brain. Results: We demonstrated that compared to resting and classically activated (M1) human microglia, P2Y12 expression is increased under alternatively activated (M2) conditions. In response to ADP, the endogenous ligand of P2Y12, M2 microglia have increased ligand-mediated calcium responses, which are blocked by selective P2Y12 antagonism. P2Y12 antagonism was also shown to decrease migratory and inflammatory responses in human microglia upon exposure to nucleotides that are released during CNS injury; no effects were observed in human monocytes or macrophages. In situ experiments confirm that P2Y12 is selectively expressed on human microglia and elevated under neuropathologic conditions that promote Th2 responses, such as parasitic CNS infection. Conclusion: These findings provide insight into the roles of M2 microglia in the context of neuroinflammation and suggest a mechanism to selectively target a functionally unique population of myeloid cells in the CNS. PMID:25821842

  18. Tributyltin Differentially Promotes Development of a Phenotypically Distinct Adipocyte

    PubMed Central

    Regnier, Shane M.; El-Hashani, Essam; Kamau, Wakanene; Zhang, Xiaojie; Massad, Nicole L.; Sargis, Robert M.

    2015-01-01

    Objective Environmental endocrine disrupting chemicals (EDCs) are increasingly implicated in the pathogenesis of obesity. Evidence implicates various EDCs as being pro-adipogenic, including tributyltin (TBT), which activates the peroxisome proliferator activated receptor-γ (PPARγ). However, the conditions required for TBT-induced adipogenesis and its functional consequences are incompletely known. Methods The co-stimulatory conditions necessary for preadipocyte-to-adipocyte differentiation were compared between TBT and the pharmacological PPARγ agonist troglitazone (Trog) in the 3T3-L1 cell line; basal and insulin-stimulated glucose uptake were assessed using radiolabeled 2-deoxyglucose. Results TBT enhanced expression of the adipocyte marker C/EBPα with co-exposure to either isobutylmethylxanthine or insulin in the absence of other adipogenic stimuli. Examination of several adipocyte-specific proteins revealed that TBT and Trog differentially affected protein expression despite comparable PPARγ stimulation. In particular, TBT reduced adiponectin expression upon maximal adipogenic stimulation. Under submaximal stimulation, TBT and Trog differentially promoted adipocyte-specific gene expression despite similar lipid accumulation. Moreover, TBT attenuated Trog-induced adipocyte gene expression under conditions of co-treatment. Finally, TBT-induced adipocytes exhibited altered glucose metabolism, with increased basal glucose uptake. Conclusions TBT-induced adipocytes are functionally distinct from those generated by a pharmacological PPARγ agonist, suggesting that obesogen-induced adipogenesis may generate dysfunctional adipocytes with the capacity to deleteriously affect global energy homeostasis. PMID:26243053

  19. [Long-term expansion of multipotent mesenchymal stromal cells under reduced oxygen tension].

    PubMed

    Rylova, Iu V; Buravkova, L B

    2013-01-01

    We have shown that the decrease in oxygen tension in the culture medium of multipotent mesenchymal stromal cells (MMSCs) results in a short-term reduction in the proportion of CD73(+)-cells in the population, without effecting the number of cells expressing other constitutive surface markers (CD90 and CD105). In this case, the heterogeneity of the cell population declined: large spread cells disappeared. The proliferative activity of MMSCs significantly increased and remained stable in conditions in which the oxygen content was close to the tissue oxygen levels (5% O2). At lower oxygen concentration, proliferative activity of the cells gradually reduced from passages 3-4. The increase in proliferative activity was not accompanied by increased expression of telomerase gene indicateding the alsance of cell transformation. However, genome-wide analysis of MMSC gene expression level revealed changes in expression of cyclins (CCND2 and PCNA), regulatory subunit cyclin-dependent kinase (CKS2) and an inhibitor of cyclin-dependent kinase (CDKN2C), regulating the cell cycle, which is obviously facilitated the increase in the proliferative capacity of cells at lower oxygen tension.

  20. Cross talk between MMP2-Spm-Cer-S1P and ERK1/2 in proliferation of pulmonary artery smooth muscle cells under angiotensin II stimulation.

    PubMed

    Chowdhury, Animesh; Sarkar, Jaganmay; Pramanik, Pijush Kanti; Chakraborti, Tapati; Chakraborti, Sajal

    2016-08-01

    The aim of the present study is to establish the mechanism associated with the proliferation of PASMCs under ANG II stimulation. The results showed that treatment of PASMCs with ANG II induces an increase in cell proliferation and 100 nM was the optimum concentration for maximum increase in proliferation of the cells. Pretreatment of the cells with AT1, but not AT2, receptor antagonist inhibited ANG II induced cell proliferation. Pretreatment with pharmacological and genetic inhibitors of sphingomyelinase (SMase) and sphingosine kinase (SPHK) prevented ANG II-induced cell proliferation. ANG II has also been shown to induce SMase activity, SPHK phosphorylation and S1P production. In addition, ANG II caused an increase in proMMP-2 expression and activation, ERK1/2 phosphorylation and NADPH oxidase activation. Upon inhibition of MMP-2, SMase activity and S1P level were curbed leading to inhibition of cell proliferation. SPHK was phosphorylated by ERK1/2 during ET-1 stimulation of the cells. ANG II-induced ERK1/2 phosphorylation and proMMP-2 expression and activation in the cells were abrogated upon inhibition of NADPH oxidase activity. Overall, NADPH oxidase plays an important role in proMMP-2 expression and activation and that MMP-2 mediated SMC proliferation occurs through the involvement of Spm-Cer-S1P signaling axis under ANG II stimulation of PASMCs. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. The protective effect of Hif3a RNA interference and HIF-prolyl hydroxylase inhibition on cardiomyocytes under anoxia-reoxygenation.

    PubMed

    Drevytska, T; Gonchar, E; Okhai, I; Lynnyk, O; Mankovska, I; Klionsky, D; Dosenko, V

    2018-06-01

    The aim of this study was to investigate the molecular mechanisms underlying the protective effects of hypoxia-inducible factor (HIF) signaling pathway activation in cardiomyocytes under anoxia-reoxygenation (A/R) injury. In this study, rat neonatal cardiomyocytes were pretreated with anti-Hif3A/Hif-3α siRNA or HIF-prolyl hydroxylase inhibitor prior to A/R injury. Our results showed that both HIF3A silencing and HIF-prolyl hydroxylase inhibition effectively increased the cell viability during A/R, led to changes in mRNA expression of HIF1-target genes, and reduced the loss of mitochondrial membrane potential (Δψ m ). Furthermore, application of anti-Hif3a siRNA led to an increase in mRNA expression of Epo, Igf1, Slc2a1/Glut-1, and Slc2a4/Glut-4. Similar results were observed with HIF-prolyl hydroxylase inhibition, which additionally upregulated the mRNA expression of Epor, Tert, and Pdk1. Hif3a RNA-interference and application of HIF-prolyl hydroxylase inhibitor during A/R modelling led to an increase of Δψ m on 11.5 and 11.9 mV respectively, compared to the control groups. Thus, Hif3a RNA interference and HIF-prolyl hydroxylase inhibition protect cardiomyocytes against A/R injury via the HIF signaling pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Salt-Induced Tissue-Specific Cytosine Methylation Downregulates Expression of HKT Genes in Contrasting Wheat (Triticum aestivum L.) Genotypes.

    PubMed

    Kumar, Suresh; Beena, Ananda Sankara; Awana, Monika; Singh, Archana

    2017-04-01

    Plants have evolved several strategies, including regulation of genes through epigenetic modifications, to cope with environmental stresses. DNA methylation is dynamically regulated through the methylation and demethylation of cytosine in response to environmental perturbations. High-affinity potassium transporters (HKTs) have accounted for the homeostasis of sodium and potassium ions in plants under salt stress. Wheat (Triticum aestivum L.) is sensitive to soil salinity, which impedes its growth and development, resulting in decreased productivity. The differential expression of HKTs has been reported to confer tolerance to salt stress in plants. In this study, we investigated variations in cytosine methylation and their effects on the expression of HKT genes in contrasting wheat genotypes under salt stress. We observed a genotype- and tissue-specific increase in cytosine methylation induced by NaCl stress that downregulated the expression of TaHKT2;1 and TaHKT2;3 in the shoot and root tissues of Kharchia-65, thereby contributing to its improved salt-tolerance ability. Although TaHKT1;4 was expressed only in roots and was downregulated under the stress in salt-tolerant genotypes, it was not regulated through variations in cytosine methylation. Thus, understanding epigenetic regulation and the function of HKTs would enable an improvement in salt tolerance and the development of salt-tolerant crops.

  3. Pancreatic Fibroblasts Stimulate the Motility of Pancreatic Cancer Cells through IGF1/IGF1R Signaling under Hypoxia.

    PubMed

    Hirakawa, Toshiki; Yashiro, Masakazu; Doi, Yosuke; Kinoshita, Haruhito; Morisaki, Tamami; Fukuoka, Tatsunari; Hasegawa, Tsuyoshi; Kimura, Kenjiro; Amano, Ryosuke; Hirakawa, Kosei

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by its hypovascularity, with an extremely poor prognosis because of its highly invasive nature. PDAC proliferates with abundant stromal cells, suggesting that its invasive activity might be controlled by intercellular interactions between cancer cells and fibroblasts. Using four PDAC cell lines and two pancreas cancer-associated fibroblasts (CAFs), the expression of insulin-like growth factor-1 (IGF1) and IGF1 receptor (IGF1R) was evaluated by RT-PCR, FACScan, western blot, or ELISA. Correlation between IGF1R and the hypoxia marker carbonic anhydrase 9 (CA9) was examined by immunohistochemical staining of 120 pancreatic specimens. The effects of CAFs, IGF1, and IGF1R inhibitors on the motility of cancer cells were examined by wound-healing assay or invasion assay under normoxia (20% O2) and hypoxia (1% O2). IGF1R expression was significantly higher in RWP-1, MiaPaCa-2, and OCUP-AT cells than in Panc-1 cells. Hypoxia increased the expression level of IGF1R in RWP-1, MiaPaCa-2, and OCUP-AT cells. CA9 expression was correlated with IGF1R expression in pancreatic specimens. CAFs produced IGF1 under hypoxia, but PDAC cells did not. A conditioned medium from CAFs, which expressed αSMA, stimulated the migration and invasion ability of MiaPaCa-2, RWP-1, and OCUP-AT cells. The motility of all PDAC cells was greater under hypoxia than under normoxia. The motility-stimulating ability of CAFs was decreased by IGF1R inhibitors. These findings might suggest that pancreas CAFs stimulate the invasion activity of PDAC cells through paracrine IGF1/IGF1R signaling, especially under hypoxia. Therefore the targeting of IGF1R signaling might represent a promising therapeutic approach in IGF1R-dependent PDAC.

  4. [The Influence of UV-Light on the Sub-Populational Composition and Expression of Membrane Markers of Lymphocytes of Donor Blood].

    PubMed

    Artyukhov, V G; Basharina, O V; Zemchenkova, O V; Ryazantsev, S V

    2016-01-01

    The influence of UV-light (240-390 nm) at dozes of 151 and 755 J/m2 on the content of membrane markers of lymphocytes using the method of flow cytometry was investigated. It was demonstrated that during incubation of UV-irradiated lymphocytes the change of their populational and sub-populational composition occurs. Expression of complexes of CD3, CD 19,.CD8, CD 16, CD25 and CD95 increased. This increase was caused mainly by de novo synthesis. UV-light had immunostimulating effect on CD8+ T-lymphocyte population. Together with the increase of cytotoxic cells and NK-cells, activation of lymphocytes (increased amount of CD25+ and CD95+ cells) took place. Amount of cells undergone apoptosis or necrosis increased proportionally to the dosage. These changes were more expressed during incubation of lymphocytes in nutrition medium without autological blood serum, e.g. under deficiency of growth factors and antioxidants.

  5. Hair growth-promotion effects of different alternating current parameter settings are mediated by the activation of Wnt/β-catenin and MAPK pathway.

    PubMed

    Sohn, Ki Min; Jeong, Kwan Ho; Kim, Jung Eun; Park, Young Min; Kang, Hoon

    2015-12-01

    Electrical stimulation is being used in variable skin therapeutic conditions. There have been clinical studies demonstrating the positive effect of electrical stimuli on hair regrowth. However, the underlying exact mechanism and optimal parameter settings are not clarified yet. To investigate the effects of different parameter settings of electrical stimuli on hair growth by examining changes in human dermal papilla cells (hDPCs) in vitro and by observing molecular changes in animal tissue. In vitro, cultured hDPCs were electrically stimulated with different parameter settings at alternating current (AC). Cell proliferation was measured by MTT assay. The Ki67 expression was measured by immunofluorescence. Hair growth-related gene expressions were measured by RT-PCR. In animal model, different parameter settings of AC were applied to the shaved dorsal skin of rabbit for 8 weeks. Expression of hair-related genes in the skin of rabbit was examined by RT-PCR. At low voltage power (3.5 V) and low frequency (1 or 2 MHz) with AC, in vitro proliferation of hDPCs was successfully induced. A significant increase in Wnt/β-catenin, Ki67, p-ERK and p-AKT expressions was observed under the aforementioned settings. In animal model, hair regrowth was observed in the entire stimulated areas under individual conditions. Expression of hair-related genes in the skin significantly increased on the 6th week of treatment. There are optimal conditions for electrical stimulated hair growth, and they might be different in the cells, animals and human tissues. Electrical stimuli induce mechanisms such as the activation of Wnt/β-catenin and MAPK pathway in hair follicles. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Metformin Protects Neurons against Oxygen-Glucose Deprivation/Reoxygenation -Induced Injury by Down-Regulating MAD2B.

    PubMed

    Meng, Xianfang; Chu, Guangpin; Yang, Zhihua; Qiu, Ping; Hu, Yue; Chen, Xiaohe; Peng, Wenpeng; Ye, Chen; He, Fang-Fang; Zhang, Chun

    2016-01-01

    Metformin, the common medication for type II diabetes, has protective effects on cerebral ischemia. However, the molecular mechanisms are far from clear. Mitotic arrest deficient 2-like protein 2 (MAD2B), an inhibitor of the anaphase-promoting complex (APC), is widely expressed in hippocampal and cortical neurons and plays an important role in mediating high glucose-induced neurotoxicity. The present study investigated whether metformin modifies the expression of MAD2B and to exert its neuroprotective effects in primary cultured cortical neurons during oxygen-glucose deprivation/reoxygenation (OGD/R), a widely used in vitro model of ischemia/reperfusion. Primary cortical neurons were cultured, deprived of oxygen-glucose for 1 h, and then recovered with oxygen-glucose for 12 h and 24 h. Cell viability was measured by detecting the levels of lactate dehydrogenase (LDH) in culture medium. The levels of MAD2B, cyclin B and p-histone 3 were measured by Western blot. Cell viability of neurons was reduced under oxygen-glucose deprivation/reoxygenation (OGD/R). The expression of MAD2B was increased under OGD/R. The levels of cyclin B1, which is a substrate of APC, were also increased. Moreover, OGD/R up-regulated the phosphorylation levels of histone 3, which is the induction of aberrant re-entry of post-mitotic neurons. However, pretreatment of neurons with metformin alleviated OGD/R-induced injury. Metformin further decreased the expression of MAD2B, cyclin B1 and phosphorylation levels of histone 3. Metformin exerts its neuroprotective effect through regulating the expression of MAD2B in neurons under OGD/R. © 2016 The Author(s) Published by S. Karger AG, Basel.

  7. Comparative Evaluation of Silibinin Effects on Cell Cycling and Apoptosis in Human Breast Cancer MCF-7 and T47D Cell Lines.

    PubMed

    Jahanafrooz, Zohreh; Motameh, Nasrin; Bakhshandeh, Behnaz

    2016-01-01

    Silibinin is a natural polyphenol with high antioxidant and anticancer properties. In this study, its influence on two of the most commonly employed human breast cancer cell lines, MCF-7 and T47D, and one non-malignant MCF-10A cell line, were investigated and compared. Cell viability, the cell cycle distribution and apoptosis induction were analyzed by MTT and flow cytometry, respectively. The effect of silibinin on PTEN, Bcl-2, P21, and P27 mRNAs expression was also investigated by real-time RT-PCR. It was found that silibinin caused G1 cell cycle arrest in MCF-7 and MCF-10A cells but had no effect on the T47D cell cycle. Silibinin induced cytotoxic and apoptotic effects in T47D cells more than the MCF-7 cells and had no cytotoxic effect in MCF-10A cells under the same conditions. Silibinin upregulated PTEN in MCF-7 and caused slightly increased P21 mRNA expression in T47D cells and slightly increased PTEN and P21 expression in MCF-10A cells. Bcl-2 expression decreased in all of the examined cells under silibinin treatment. P27 mRNA expression upregulated in T47D and MCF-10A cells under silibinin treatment. PTEN mRNA in T47D and P21 and P27 mRNAsin MCF-7 were not affected by silibinin. These results suggest that silibinin has mostly different inhibitory effects in breast cancer cells and might be an effective anticancer agent for some cells linked to influence on cell cycle progression.

  8. Artemisia asiatica ethanol extract exhibits anti-photoaging activity.

    PubMed

    Jeong, Deok; Lee, Jongsung; Jeong, Seong-Gu; Hong, Yo Han; Yoo, Sulgi; Han, Sang Yun; Kim, Ji Hye; Kim, Sunggyu; Kim, Jin Sic; Chung, Young Soo; Kim, Jong-Hoon; Yi, Young-Su; Cho, Jae Youl

    2018-06-28

    Artemisia asiatica Nakai is a traditional herbal plant that has long been used in anti-inflammatory, anti-infective and skin protective remedies. In this study, traditionally known skin-protective activity of Artemisia asiatica Nakai was examined with its ethanol extract (Aa-EE) under various photoaging conditions using skin-originated cells, and the underlying mechanism was also examined using various types of cells. Effects of Aa-EE on cell viability, photocytotoxicity, and expression of matrix metalloproteinases (MMPs), cyclooxygenase (COX)-2, and moisturizing factors were measured in B16F10, HEK293, NIH3T3, and HaCaT cells under untreated and ultraviolet B (UVB)-irradiation conditions. Anti-melanogenic effect of Aa-EE was also examined by measuring both melanin content in B16F10 cells and tyrosinase activity. Anti-photoaging mechanism of Aa-EE was explored by determining the activation levels of signaling molecules by immunoblotting analysis. Aa-EE protected HaCaT cells from UVB irradiation-induced death. Aa-EE increased the expression of a type 1 pro-collagen gene and decreased the expression of matrix metalloproteinases, and COX-2 in NIH3T3 cells induced by UVB. Aa-EE increased the expression of transglutamase-1, hyaluronic acid synthase (HAS)-2, and HAS-3 in HaCaT cells and decreased the production of melanin in α-melanocyte-stimulating hormone-stimulated B16F10 cells by suppressing tyrosinase activity and the expression of tyrosinase, microphthalmia-associated transcription factor, tyrosinase-related protein (TRP)-1 and TRP-2. The results suggest that Aa-EE could be skin-protective remedy with anti-photoaging, anti-apoptotic, skin remodeling, moisturizing, and anti-melanogenesis properties. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. QsMYB1 expression is modulated in response to heat and drought stresses and during plant recovery in Quercus suber.

    PubMed

    Almeida, Tânia; Pinto, Glória; Correia, Barbara; Santos, Conceição; Gonçalves, Sónia

    2013-12-01

    Cork oak is an economically important forest species showing a great tolerance to high temperatures and shortage of water. However, the mechanisms underlying this plasticity are still poorly understood. Among the stress regulators, transcription factors (TFs) are especially important since they can control a wide range of stress-inducible genes, which make them powerful targets for genetic engineering of stress tolerance. Here we evaluated the influence of increasing temperatures (up to 55 °C) or drought (18% field capacity, FC) on the expression profile of an R2R3-MYB transcription factor of cork oak, the QsMYB1. QsMYB1 was previously identified as being preferentially expressed in cork tissues and as having an associated alternative splicing mechanism, which results in two different transcripts (QsMYB1.1 and QsMYB1.2). Expression analysis by reverse transcription quantitative PCR (RT-qPCR) revealed that increasing temperatures led to a gradual down-regulation of QsMYB1 transcripts with more effect on QsMYB1.1 abundance. On the other hand, under drought condition, expression of QsMYB1 variants, mainly the QsMYB1.2, was transiently up-regulated shortly after the stress imposition. Recovery from each stress has also resulted in a differential response by both QsMYB1 transcripts. Several physiological and biochemical parameters (plant water status, chlorophyll fluorescence, lipid peroxidation and proline content) were determined in order to monitor the plant performance under stress and recovery. In conclusion, this report provides the first evidence that QsMYB1 TF may have a putative function in the regulatory network of cork oak response to heat and drought stresses and during plant recovery. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  10. Transcriptome analysis of the Populus trichocarpa-Rhizophagus irregularis Mycorrhizal Symbiosis: Regulation of Plant and Fungal Transportomes under Nitrogen Starvation.

    PubMed

    Calabrese, Silvia; Kohler, Annegret; Niehl, Annette; Veneault-Fourrey, Claire; Boller, Thomas; Courty, Pierre-Emmanuel

    2017-06-01

    Nutrient transfer is a key feature of the arbuscular mycorrhizal (AM) symbiosis. Valuable mineral nutrients are transferred from the AM fungus to the plant, increasing its fitness and productivity, and, in exchange, the AM fungus receives carbohydrates as an energy source from the plant. Here, we analyzed the transcriptome of the Populus trichocarpa-Rhizophagus irregularis symbiosis using RNA-sequencing of non-mycorrhizal or mycorrhizal fine roots, with a focus on the effect of nitrogen (N) starvation. In R. irregularis, we identified 1,015 differentially expressed genes, whereby N starvation led to a general induction of gene expression. Genes of the functional classes of cell growth, membrane biogenesis and cell structural components were highly abundant. Interestingly, N starvation also led to a general induction of fungal transporters, indicating increased nutrient demand upon N starvation. In non-mycorrhizal P. trichocarpa roots, 1,341 genes were differentially expressed under N starvation. Among the 953 down-regulated genes in N starvation, most were involved in metabolic processes including amino acids, carbohydrate and inorganic ion transport, while the 342 up-regulated genes included many defense-related genes. Mycorrhization led to the up-regulation of 549 genes mainly involved in secondary metabolite biosynthesis and transport; only 24 genes were down-regulated. Mycorrhization specifically induced expression of three ammonium transporters and one phosphate transporter, independently of the N conditions, corroborating the hypothesis that these transporters are important for symbiotic nutrient exchange. In conclusion, our data establish a framework of gene expression in the two symbiotic partners under high-N and low-N conditions. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Isocitrate dehydrogenase 1 mutant R132H sensitizes glioma cells to BCNU-induced oxidative stress and cell death.

    PubMed

    Mohrenz, Isabelle Vanessa; Antonietti, Patrick; Pusch, Stefan; Capper, David; Balss, Jörg; Voigt, Sophia; Weissert, Susanne; Mukrowsky, Alicia; Frank, Jan; Senft, Christian; Seifert, Volker; von Deimling, Andreas; Kögel, Donat

    2013-11-01

    Isocitrate dehydrogenase 1 (IDH1) decarboxylates isocitrate to α-ketoglutarate (α-KG) leading to generation of NADPH, which is required to regenerate reduced glutathione (GSH), the major cellular ROS scavenger. Mutation of R132 of IDH1 abrogates generation of α-KG and leads to conversion of α-KG to 2-hydroxyglutarate. We hypothesized that glioma cells expressing mutant IDH1 have a diminished antioxidative capacity and therefore may encounter an ensuing loss of cytoprotection under conditions of oxidative stress. Our study was performed with LN229 cells stably overexpressing IDH1 R132H and wild type IDH1 or with a lentiviral IDH1 knockdown. Quantification of GSH under basal conditions and following treatment with the glutathione reductase inhibitor BCNU revealed significantly lower GSH levels in IDH1 R132H expressing cells and IDH1 KD cells compared to their respective controls. FACS analysis of cell death and ROS production also demonstrated an increased sensitivity of IDH1-R132H-expressing cells and IDH1 KD cells to BCNU, but not to temozolomide. The sensitivity of IDH1-R132H-expressing cells and IDH1 KD cells to ROS induction and cell death was further enhanced with the transaminase inhibitor aminooxyacetic acid and under glutamine free conditions, indicating that these cells were more addicted to glutaminolysis. Increased sensitivity to BCNU-induced ROS production and cell death was confirmed in HEK293 cells inducibly expressing the IDH1 mutants R132H, R132C and R132L. Based on these findings we propose that in addition to its established pro-tumorigenic effects, mutant IDH1 may also limit the resistance of gliomas to specific death stimuli, therefore opening new perspectives for therapy.

  12. Large gradient high magnetic field affects the association of MACF1 with actin and microtubule cytoskeleton.

    PubMed

    Qian, Ai-Rong; Hu, Li-Fang; Gao, Xiang; Zhang, Wei; Di, Sheng-Meng; Tian, Zong-Cheng; Yang, Peng-Fei; Yin, Da-Chuan; Weng, Yuan-Yuan; Shang, Peng

    2009-10-01

    The intense inhomogeneous magnetic fields acting on the diamagnetic materials naturally present in cells can generate strong magnetic forces. We have developed a superconducting magnet platform with large gradient high magnetic field (LG-HMF), which can produce three magnetic force fields of -1360, 0, and 1312 T(2)/m, and three corresponding apparent gravity levels, namely 0, 1, and 2-g for diamagnetic materials. In this study, the effects of different magnetic force fields on osteoblast-like cells (MG-63 and MC3T3-E1) viability, microtubule actin crosslinking factor 1 (MACF1) expression and its association with cytoskeleton were investigated. Results showed that cell viability increased to different degrees after exposure to 0 or 1-g conditions for 24 h, but it decreased by about 30% under 2-g conditions compared with control conditions. An increase in MACF1 expression at the RNA or protein level was observed in osteoblast-like cells under the magnetic force field of -1360 T(2)/m (0-g) relative to 1312 T(2)/m (2-g). Under control conditions, anti-MACF1 staining was scattered in the cytoplasm and partially colocalized with actin filaments (AFs) or microtubules (MTs) in the majority of osteoblast-like cells. Under 0-g conditions, MACF1 labeling was concentrated at perinuclear region and colocalization was not apparent. The patterns of anti-MACF1 labeling on MTs varied with MTs' changing under LG-HMF environment. In conclusion, LG-HMF affects osteoblast-like cell viability, MACF1 distribution, expression, and its association with cytoskeleton to some extent.

  13. Periostin promotes migration and osteogenic differentiation of human periodontal ligament mesenchymal stem cells via the Jun amino-terminal kinases (JNK) pathway under inflammatory conditions.

    PubMed

    Tang, Yi; Liu, Lin; Wang, Pei; Chen, Donglei; Wu, Ziqiang; Tang, Chunbo

    2017-12-01

    Mesenchymal stem cell (MSC)-mediated periodontal tissue regeneration is considered to be a promising method for periodontitis treatment. The molecular mechanism of functional regulation by MSCs remains unclear, thus limiting their application. Our previous study discovered that Periostin (POSTN) promoted the migration and osteogenic differentiation of periodontal ligament mesenchymal stem cells (PDLSCs), but it is still unclear whether POSTN is able to restore the regenerative potential of PDLSCs under inflammatory conditions. In this study, we investigated the effect of POSTN on PDLSCs under inflammatory conditions and its mechanism. PDLSCs were isolated from periodontal ligament tissue. TNF-α was used at 10 ng/mL to mimic inflammatory conditions. Lentivirus POSTN shRNA was used to knock down POSTN. Recombinant human POSTN (rhPOSTN) was used to stimulate PDLSCs. A scratch assay was used to analyse cell migration. Alkaline phosphatase (ALP) activity, Alizarin Red staining and expression of osteogenesis-related genes were used to investigate the osteogenic differentiation potential. Western blot analysis was used to detect the mitogen-activated protein kinases (MAPK) and AKT signalling pathways. After a 10 ng/mL TNF-α treatment, knockdown of POSTN impeded scratch closure, inhibited ALP activity and mineralization in vitro, and decreased expression of RUNX2, OSX, OPN and OCN in PDLSCs, while 75 ng/mL rhPOSTN significantly accelerated scratch closure, enhanced ALP activity and mineralization in vitro, and increased expression of RUNX2, OSX, OPN and OCN. In addition, knockdown of POSTN inhibited expression of phosphorylated c-Jun N-terminal kinase (p-JNK), while 75 ng/mL rhPOSTN increased expression of p-JNK in PDLSCs with TNF-α treatment. Furthermore, inhibition of JNK by its inhibitor SP600125 dramatically blocked POSTN-enhanced scratch closure, ALP activity and mineralization in PDLSCs. Our results revealed that POSTN might promote the migration and osteogenic differentiation potential of PDLSCs via the JNK pathway, providing insight into the mechanism underlying MSC biology under inflammatory conditions and identifying a potential target for improving periodontal tissue regeneration. © 2017 John Wiley & Sons Ltd.

  14. Vitamin E and vitamin C supplementation improves antioxidant status and immune function in oxidative-stressed breeder roosters by up-regulating expression of GSH-Px gene.

    PubMed

    Min, Y N; Niu, Z Y; Sun, T T; Wang, Z P; Jiao, P X; Zi, B B; Chen, P P; Tian, D L; Liu, F Z

    2018-04-01

    This study aimed to evaluate the effects of vitamin C and vitamin E on antioxidant capacity and immune function in oxidative-stressed breeder roosters. One hundred twenty 45-week-old Lveyang black-boned breeder roosters were randomly assigned to 5 dietary treatments, including negative control group (NC), positive control group (PC), and 3 trial groups, which were fed the diets containing 300 mg/kg VC, 200 mg/kg VE, or 300 mg/kg VC and 200 mg/kg VE (VC+VE). At 47 wk of age, the positive control and trial groups were subcutaneously injected 3 times every other d with dexamethasone (DEX) 4 mg/kg of body weight, the negative control group was injected with saline. The experiment lasted for 35 d. The results showed that at 50 wk of age, average daily feed intake of birds challenged with DEX significantly increased (P < 0.05). During post-stress recovery period (52 wk of age), dietary supplemental VE or VC+VE notably increased body weight under oxidative stress (P < 0.01). Oxidative stress induced by DEX could significantly decrease superoxide dismutase (SOD), IgM, antibody titer of ND and mRNA expression of SOD or glutathion peroxidase activity (GSH-Px), increase serous malondialdehyde (MDA) (P < 0.05). Supplementation of VC or VE significantly decreased serous MDA, and increased SOD under oxidative stress (P < 0.05). Supplementation of VC or VE, or their combination significantly increased the relative expression of GSH-Px mRNA when compared to the oxidative-stressed control treatment (P < 0.05), whereas did not alleviate the relative expression of SOD mRNA (P > 0.05). Therefore, the results suggest that addition of 300 mg/kg VC, 200 mg/kg VE or their combination could improve antioxidant ability and immune performance in oxidative-stressed breeder roosters through up-regulating the expression of GSH-Px gene.

  15. BAG3 promotes the phenotypic transformation of primary rat vascular smooth muscle cells via TRAIL.

    PubMed

    Fu, Yao; Chang, Ye; Chen, Shuang; Li, Yuan; Chen, Yintao; Sun, Guozhe; Yu, Shasha; Ye, Ning; Li, Chao; Sun, Yingxian

    2018-05-01

    Under normal physiological condition, the mature vascular smooth muscle cells (VSMCs) show differentiated phenotype. In response to various environmental stimuluses, VSMCs convert from the differentiated phenotype to dedifferentiated phenotype characterized by the increased ability of proliferation/migration and the reduction of contractile ability. The phenotypic transformation of VSMCs played an important role in atherosclerosis. Both Bcl-2-associated athanogene 3 (BAG3) and tumor necrosis factor-related apopt-osis inducing ligand (TRAIL) involved in apoptosis. The relationship between BAG3 and TRAIL and their effects the proliferation and migration in VSMCs are rarely reported. This study investigated the effects of BAG3 on the phenotypic modulation and the potential underlying mechanisms in primary rat VSMCs. Primary rat VSMCs were extracted and cultured in vitro. Cell proliferation was detected by cell counting, real-time cell analyzer (RTCA) and EdU incorporation. Cell migration was detected by wound healing, Transwell and RTCA. BAG3 and TRAIL were detected using real-time PCR and western blotting and the secreted proteins in the cultured media by dot blot. The expression of BAG3 increased with continued passages in cultured primary VSMCs. BAG3 promoted the proliferation and migration of primary rat VSMC in a time-dependent manner. BAG3 significantly increased the expression of TRAIL while had no effects on its receptors. TRAIL knockdown or blocking by neutralizing antibody inhibited the proliferation of VSMCs induced by BAG3. TRAIL knockdown exerted no obvious influence on the migration of VSMCs. Based on this study, we report for the first time that BAG3 was expressed in cultured primary rat VSMCs and the expression of BAG3 increased with continued passages. Furthermore, BAG3 promoted the proliferation of VSMCs via increasing the expression of TRAIL. In addition, we also demonstrated that BAG3 promoted the migration of VSMCs independent of TRAIL upregulation.

  16. The role of DNA methylation during anoxia tolerance in a freshwater turtle (Trachemys scripta elegans).

    PubMed

    Wijenayake, Sanoji; Storey, Kenneth B

    2016-04-01

    Oxygen deprivation is a lethal stress that only a few animals can tolerate for extended periods. This study focuses on analyzing the role of DNA methylation in aiding natural anoxia tolerance in a champion vertebrate anaerobe, the red-eared slider turtle (Trachemys scripta elegans). We examined the relative expression and total enzymatic activity of four DNA methyltransferases (DNMT1, DNMT2, DNMT3a and DNMT3b), two methyl-binding domain proteins (MBD1 and MBD2), and relative genomic levels of 5-methylcytosine under control, 5 h anoxic, and 20 h anoxic conditions in liver, heart, and white skeletal muscle (n = 4, p < 0.05). In liver, protein expression of DNMT1, DNMT2, MBD1, and MBD2 rose significantly by two- to fourfold after 5 h anoxic submergence compared to normoxic-control conditions. In heart, 5 h anoxia submergence resulted in a 1.4-fold increase in DNMT3a levels and a significant decrease in MBD1 and MBD2 levels to ~30 % of control values. In white muscle, DNMT3a and DNMT3b increased threefold and MBD1 levels increased by 50 % in response to 5 h anoxia. Total DNMT activity rose by 0.6-2.0-fold in liver and white muscle and likewise global 5mC levels significantly increased in liver and white muscle under 5 and 20 h anoxia. The results demonstrate an overall increase in DNA methylation, DNMT protein expression and enzymatic activity in response to 5 and 20 h anoxia in liver and white muscle indicating a potential downregulation of gene expression via this epigenetic mechanism during oxygen deprivation.

  17. Erythritol reduces small intestinal glucose absorption, increases muscle glucose uptake, improves glucose metabolic enzymes activities and increases expression of Glut-4 and IRS-1 in type 2 diabetic rats.

    PubMed

    Chukwuma, Chika Ifeanyi; Mopuri, Ramgopal; Nagiah, Savania; Chuturgoon, Anil Amichund; Islam, Md Shahidul

    2017-08-02

    Studies have reported that erythritol, a low or non-glycemic sugar alcohol possesses anti-hyperglycemic and anti-diabetic potentials but the underlying mode of actions is not clear. This study investigated the underlying mode of actions behind the anti-hyperglycemic and anti-diabetic potentials of erythritol using different experimental models (experiment 1, 2 and 3). Experiment 1 examined the effects of increasing concentrations (2.5-20%) of erythritol on glucose absorption and uptake in isolated rat jejunum and psoas muscle, respectively. Experiments 2 and 3 examined the effects of a single oral dose of erythritol (1 g/kg bw) on intestinal glucose absorption, gastric emptying and postprandial blood glucose increase, glucose tolerance, serum insulin level, muscle/liver hexokinase and liver glucose-6 phosphatase activities, liver and muscle glycogen contents and mRNA and protein expression of muscle Glut-4 and IRS-1 in normal and type 2 diabetic animals. Experiment 1 revealed that erythritol dose dependently enhanced muscle glucose ex vivo. Experiment 2 demonstrated that erythritol feeding delayed gastric emptying and reduced small intestinal glucose absorption as well as postprandial blood glucose rise, especially in diabetic animals. Experiment 3 showed that erythritol feeding improved glucose tolerance, muscle/liver hexokinase and liver glucose-6 phosphatase activities, glycogen storage and also modulated expression of muscle Glut-4 and IRS-1 in diabetic animals. Data suggest that erythritol may exert anti-hyperglycemic effects not only via reducing small intestinal glucose absorption, but also by increasing muscle glucose uptake, improving glucose metabolic enzymes activity and modulating muscle Glut-4 and IRS-1 mRNA and protein expression. Hence, erythritol may be a useful dietary supplement for managing hyperglycemia, particularly for T2D.

  18. Upregulation of cathepsin C expression contributes to endothelial chymase activation in preeclampsia.

    PubMed

    Gu, Yang; Lewis, David F; Alexander, J Steven; Wang, Yuping

    2017-12-01

    Chymase is an ACE (angiotensin-converting enzyme)-independent angiotensin II-forming enzyme whose expression is increased in the maternal vascular endothelium in preeclampsia. However, mechanisms underlying chymase activation in preeclampsia remain unclear. Cathepsin C is a key enzyme in the activation of several serine proteases including chymase. In this study, we determined whether increased cathepsin C expression/activity might be responsible for the upregulation of chymase expression in preeclampsia. Maternal vascular cathepsin C, chymase and ACE expression were examined through immunohistochemical staining of subcutaneous fat tissue sections of normal and preeclamptic pregnant women. The role of cathepsin C in endothelial chymase and ACE expression was determined in cells treated with cathepsin C. Consequences of chymase activation were then determined by measurement of angiotensin II production in cells treated with the ACE inhibitor captopril and the chymase inhibitor chymostatin, separately and in combination. Expression of both cathepsin C and chymase, but not ACE expression, was markedly increased in the maternal vascular endothelium in subjects with preeclampsia compared with normal pregnant controls. Exogenous cathepsin C induced a dose-dependent increase in expression of mature cathepsin C and chymase, but not ACE, in endothelial cells. Moreover, angiotensin II production was significantly inhibited in cells treated with captopril or chymostatin alone and was further inhibited in cells treated with both inhibitors. These results suggest that cathepsin C upregulation induces chymase activation and subsequently promotes angiotensin II generation in endothelial cells. These data also provide evidence of upregulation of the cathepsin C-chymase-angiotensin signaling axis in maternal vasculature in preeclampsia.

  19. Insufficiency of pro-heparin-binding epidermal growth factor-like growth factor shedding enhances hypoxic cell death in H9c2 cardiomyoblasts via the activation of caspase-3 and c-Jun N-terminal kinase.

    PubMed

    Uetani, Teruyoshi; Nakayama, Hironao; Okayama, Hideki; Okura, Takafumi; Higaki, Jitsuo; Inoue, Hirofumi; Higashiyama, Shigeki

    2009-05-01

    Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a cardiogenic and cardiohypertrophic growth factor. ProHB-EGF, a product of the Hb-egf gene and the precursor of HB-EGF, is anchored to the plasma membrane. Its ectodomain region is shed by a disintegrin and metalloproteases (ADAMs) when activated by various stimulations. It has been reported that an uncleavable mutant of Hb-egf, uc-Hb-egf, produces uc-proHB-EGF, which is not cleaved by ADAMs and causes dilation of the heart in knock-in mice. This suggests that the shedding of proHB-EGF is essential for the development and survival of cardiomyocytes: however, the molecular mechanism involved has remained unclear. In this study, we investigated the relationship between uc-proHB-EGF expression and cardiomyocyte survival. Human uc-proHB-EGF was adenovirally introduced into the rat cardiomyoblast cell line H9c2, and the cells were cultured under normoxic and hypoxic conditions. Uc-proHB-EGF-expressing H9c2 cells underwent apoptosis under normoxic conditions, which distinctly increased under hypoxic conditions. Furthermore, we observed an increased Caspase-3 activity, reactive oxygen species accumulation, and an increased c-Jun N-terminal kinase (JNK) activity in the uc-proHB-EGF-expressing H9c2 cells. Treatment of the uc-proHB-EGF transfectants with inhibitors of Caspase-3, reactive oxygen species, and JNK, namely, Z-VAD-fmk, N-acetylcysteine, and SP600125, respectively, significantly reduced hypoxic cell death. These data indicate that insufficiency of proHB-EGF shedding under hypoxic stress leads to cardiomyocyte apoptosis via Caspase-3- and JNK-dependent pathways.

  20. Muscle cell atrophy induced by HSP gene silencing was counteracted by HSP overexpression

    NASA Astrophysics Data System (ADS)

    Choi, Inho; Lee, Joo-Hee; Nikawa, Takeshi; Gwag, Taesik; Park, Kyoungsook; Park, Junsoo

    Heat shock proteins (HSP), as molecular chaperones, are known to assist protein quality control under various stresses. Although overexpression of HSP70 was found to contribute to muscle size retention under an unloading condition, it remains largely unclarified whether muscle atrophy is induced by active suppression of HSP expression. In this study, we pre-treated Hsp70 siRNA to rat L6 cells for the HSP gene silencing, and determined myotube diameter, HSP72 expression and anabolic and catabolic signaling activities in the absence or presence of triterpene celastrol (CEL), the HSP70 inducer. Relative to a negative control (NC), muscle cell diameter was reduced 0.89-fold in the siRNA-treated group, increased 1.2-fold in the CEL-treated group and retained at the size of NC in the siRNA+CEL group. HSP72 expression was decreased 0.35-fold by siRNA whereas the level was increased 6- to 8-fold in the CEL and siRNA+CEL groups. Expression of FoxO3 and atrogin-1 was increased 1.8- to 4.8-fold by siRNA, which was abolished by CEL treatment. Finally, phosphorylation of Akt1, S6K and ERK1/2 was not affected by siRNA, but was elevated 2- to 6-fold in the CEL and siRNA+CEL groups. Taken together, HSP downregulation by Hsp gene silencing led to muscle cell atrophy principally via increases in catabolic activities and that such anti-atrophic effect was counteracted by HSP overexpression.

  1. Factors Regulating Vagal Sensory Development: Potential Role in Obesities of Developmental Origin

    PubMed Central

    Fox, Edward A.; Murphy, Michelle C.

    2008-01-01

    Contributors to increased obesity in children may include perinatal under- or overnutrition. Humans and rodents raised under these conditions develop obesity, which like obesities of other etiologies has been associated with increased meal size. Since vagal sensory innervation of the gastrointestinal (GI) tract transmits satiation signals that regulate meal size, one mechanism through which abnormal perinatal nutrition could increase meal size is by altering vagal development, possibly by causing changes in the expression of factors that control it. Therefore, we have begun to characterize development of vagal innervation of the GI tract and the expression patterns and functions of the genes involved in this process. Important events in development of mouse vagal GI innervation occurred between midgestation and the second postnatal week, suggesting they could be vulnerable to effects of abnormal nutrition preor postnatally. One gene investigated was brain- derived neurotrophic factor (BDNF), which regulates survival of a subpopulation of vagal sensory neurons. BDNF was expressed in some developing stomach wall tissues innervated by vagal afferents. At birth, mice deficient in BDNF exhibited a 50% reduction of putative intraganglionic laminar ending mechanoreceptor precursors, and a 50% increase in axons that had exited fiber bundles. Additionally, BDNF was required for patterning of individual axons and fiber bundles in the antrum and differentiation of intramuscular array mechanoreceptors in the forestomach. It will be important to determine whether abnormal perinatal environments alter development of vagal sensory innervation of the GI tract, involving effects on expression of BDNF, or other factors regulating vagal development. PMID:18234244

  2. Transcriptional and posttranscriptional regulation of the glycolate oxidase gene in tobacco seedlings.

    PubMed

    Barak, S; Nejidat, A; Heimer, Y; Volokita, M

    2001-03-01

    The roles of light and of the putative plastid signal in glycolate oxidase (GLO) gene expression were investigated in tobacco (Nicotiana tabacum cv. Samsun NN) seedlings during their shift from skotomorphogenic to photomorphogenic development. GLO transcript and enzyme activities were detected in etiolated seedlings. Their respective levels increased three- and six-fold during 96 h of exposure to light. The GLO transcript was almost undetectable in seedlings in which chloroplast development was impaired by photooxidation with the herbicide norflurazon. In transgenic tobacco seedlings, photooxidation inhibited the light-dependent increase in GUS activity when it was placed under the regulation of the GLO promoter P(GLO). However, even under these photooxidative conditions, a continuous increase in GUS activity was observed as compared to etiolated seedlings. When GUS expression was driven by the CaMV 35S promoter (P35S), no apparent difference was observed between etiolated, deetiolated and photooxidized seedlings. These observations indicate that the effects of the putative plastid development signal and light on GUS expression can be separated. Translational yield analysis indicated that the translation of the GUS transcript in P(GLO)::GUS seedlings was enhanced 30-fold over that of the GUS transcript in P35S::GUS seedlings. The overall picture emerging from these results is that in etiolated seedlings GLO transcript, though present at a substantial level, is translated at a low rate. Increased GLO transcription is enhanced, however, in response to signals originating from the developing plastids. GLO gene expression is further enhanced at the translational level by a yet undefined light-dependent mechanism.

  3. Activation of ALDH2 with Low Concentration of Ethanol Attenuates Myocardial Ischemia/Reperfusion Injury in Diabetes Rat Model

    PubMed Central

    Kang, Pin-Fang; Wu, Wen-Juan; Tang, Yang; Xuan, Ling; Guan, Su-Dong; Tang, Bi; Zhang, Heng

    2016-01-01

    The aim of this paper is to observe the change of mitochondrial aldehyde dehydrogenase 2 (ALDH2) when diabetes mellitus (DM) rat heart was subjected to ischemia/reperfusion (I/R) intervention and analyze its underlying mechanisms. DM rat hearts were subjected to 30 min regional ischemia and 120 min reperfusion in vitro and pretreated with ALDH2 activator ethanol (EtOH); cardiomyocyte in high glucose (HG) condition was pretreated with ALDH2 activator Alda-1. In control I/R group, myocardial tissue structure collapse appeared. Compared with control I/R group, left ventricular parameters, SOD activity, the level of Bcl-2/Bax mRNA, ALDH2 mRNA, and protein expressions were decreased and LDH and MDA contents were increased, meanwhile the aggravation of myocardial structure injury in DM I/R group. When DM I/R rats were pretreated with EtOH, left ventricular parameters, SOD, Bcl-2/Bax, and ALDH2 expression were increased; LDH, MDA, and myocardial structure injury were attenuated. Compared with DM + EtOH I/R group, cyanamide (ALDH2 nonspecific blocker), atractyloside (mitoPTP opener), and wortmannin (PI3K inhibitor) groups all decreased left ventricular parameters, SOD, Bcl-2/Bax, and ALDH2 and increased LDH, MDA, and myocardial injury. When cardiomyocyte was under HG condition, CCK-8 activity and ALDH2 protein expression were decreased. Alda-1 increased CCK-8 and ALDH2. Our findings suggested enhanced ALDH2 expression in diabetic I/R rats played the cardioprotective role, maybe through activating PI3K and inhibiting mitoPTP opening. PMID:27829984

  4. Activation of ALDH2 with Low Concentration of Ethanol Attenuates Myocardial Ischemia/Reperfusion Injury in Diabetes Rat Model.

    PubMed

    Kang, Pin-Fang; Wu, Wen-Juan; Tang, Yang; Xuan, Ling; Guan, Su-Dong; Tang, Bi; Zhang, Heng; Gao, Qin; Wang, Hong-Ju

    2016-01-01

    The aim of this paper is to observe the change of mitochondrial aldehyde dehydrogenase 2 (ALDH2) when diabetes mellitus (DM) rat heart was subjected to ischemia/reperfusion (I/R) intervention and analyze its underlying mechanisms. DM rat hearts were subjected to 30 min regional ischemia and 120 min reperfusion in vitro and pretreated with ALDH2 activator ethanol (EtOH); cardiomyocyte in high glucose (HG) condition was pretreated with ALDH2 activator Alda-1. In control I/R group, myocardial tissue structure collapse appeared. Compared with control I/R group, left ventricular parameters, SOD activity, the level of Bcl-2/Bax mRNA, ALDH2 mRNA, and protein expressions were decreased and LDH and MDA contents were increased, meanwhile the aggravation of myocardial structure injury in DM I/R group. When DM I/R rats were pretreated with EtOH, left ventricular parameters, SOD, Bcl-2/Bax, and ALDH2 expression were increased; LDH, MDA, and myocardial structure injury were attenuated. Compared with DM + EtOH I/R group, cyanamide (ALDH2 nonspecific blocker), atractyloside (mitoPTP opener), and wortmannin (PI3K inhibitor) groups all decreased left ventricular parameters, SOD, Bcl-2/Bax, and ALDH2 and increased LDH, MDA, and myocardial injury. When cardiomyocyte was under HG condition, CCK-8 activity and ALDH2 protein expression were decreased. Alda-1 increased CCK-8 and ALDH2. Our findings suggested enhanced ALDH2 expression in diabetic I/R rats played the cardioprotective role, maybe through activating PI3K and inhibiting mitoPTP opening.

  5. Leucine Deprivation Stimulates Fat Loss via Increasing CRH Expression in the Hypothalamus and Activating The Sympathetic Nervous System

    PubMed Central

    Cheng, Ying; Zhang, Qian; Meng, Qingshu; Xia, Tingting; Huang, Zhiying; Wang, Chunxia; Liu, Bin; Chen, Shanghai; Xiao, Fei; Du, Ying

    2011-01-01

    We previously showed that leucine deprivation decreases abdominal fat mass largely by increasing energy expenditure, as demonstrated by increased lipolysis in white adipose tissue (WAT) and uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT). The goal of the present study was to investigate the possible involvement of central nervous system (CNS) in this regulation and elucidate underlying molecular mechanisms. For this purpose, levels of genes and proteins related to lipolysis in WAT and UCP1 expression in BAT were analyzed in wild-type mice after intracerebroventricular administration of leucine or corticotrophin-releasing hormone antibodies, or in mice deleted for three β-adrenergic receptors, after being maintained on a leucine-deficient diet for 7 d. Here, we show that intracerebroventricular administration of leucine significantly attenuates abdominal fat loss and blocks activation of hormone sensitive lipase in WAT and induction of UCP1 in BAT in leucine-deprived mice. Furthermore, we provide evidence that leucine deprivation stimulates fat loss by increasing expression of corticotrophin-releasing hormone in the hypothalamus via activation of stimulatory G protein/cAMP/protein kinase A/cAMP response element-binding protein pathway. Finally, we show that the effect of leucine deprivation on fat loss is mediated by activation of the sympathetic nervous system. These results suggest that CNS plays an important role in regulating fat loss under leucine deprivation and thereby provide novel and important insights concerning the importance of CNS leucine in the regulation of energy homeostasis. PMID:21719534

  6. MicroRNA-124 expression counteracts pro-survival stress responses in glioblastoma.

    PubMed

    Mucaj, V; Lee, S S; Skuli, N; Giannoukos, D N; Qiu, B; Eisinger-Mathason, T S K; Nakazawa, M S; Shay, J E S; Gopal, P P; Venneti, S; Lal, P; Minn, A J; Simon, M C; Mathew, L K

    2015-04-23

    Glioblastomas are aggressive adult brain tumors, characterized by inadequately organized vasculature and consequent nutrient and oxygen (O2)-depleted areas. Adaptation to low nutrients and hypoxia supports glioblastoma cell survival, progression and therapeutic resistance. However, specific mechanisms promoting cellular survival under nutrient and O2 deprivation remain incompletely understood. Here, we show that miR-124 expression is negatively correlated with a hypoxic gene signature in glioblastoma patient samples, suggesting that low miR-124 levels contribute to pro-survival adaptive pathways in this disease. As miR-124 expression is repressed in various cancer types (including glioblastoma), we quantified miR-124 abundance in normoxic and hypoxic regions in glioblastoma patient tissue, and investigated whether ectopic miR-124 expression compromises cell survival during tumor ischemia. Our results indicate that miR-124 levels are further diminished in hypoxic/ischemic regions within individual glioblastoma patient samples, compared with regions replete in O2 and nutrients. Importantly, we also show that increased miR-124 expression affects the ability of tumor cells to survive under O2 and/or nutrient deprivation. Moreover, miR-124 re-expression increases cell death in vivo and enhances the survival of mice bearing intracranial xenograft tumors. miR-124 exerts this phenotype in part by directly regulating TEAD1, MAPK14/p38α and SERP1, factors involved in cell proliferation and survival under stress. Simultaneous suppression of these miR-124 targets results in similar levels of cell death as caused by miR-124 restoration. Importantly, we further demonstrate that SERP1 reintroduction reverses the hypoxic cell death elicited by miR-124, indicating the importance of SERP1 in promoting tumor cell survival. In support of our experimental data, we observed a significant correlation between high SERP1 levels and poor patient outcome in glioblastoma patients. Collectively, among the many pro-tumorigeneic properties of miR-124 repression in glioblastoma, we delineated a novel role in promoting tumor cell survival under stressful microenvironments, thereby supporting tumor progression.

  7. MicroRNA-124 expression counteracts pro-survival stress responses in glioblastoma

    PubMed Central

    Mucaj, Vera; Lee, Samuel S.; Skuli, Nicolas; Giannoukos, Dionysios N.; Qiu, Bo; Eisinger-Mathason, T.S. Karin; Nakazawa, Michael S.; Shay, Jessica E.S.; Gopal, Pallavi P.; Venneti, Sriram; Lal, Priti; Minn, Andy J.; Simon, M. Celeste; Mathew, Lijoy K.

    2014-01-01

    Glioblastomas are aggressive adult brain tumors, characterized by inadequately organized vasculature and consequent nutrient and oxygen (O2)-depleted areas. Adaptation to low nutrients and hypoxia supports glioblastoma cell survival, progression, and therapeutic resistance. However, specific mechanisms promoting cellular survival under nutrient and O2 deprivation remain incompletely understood. Here, we show that miR-124 expression is negatively correlated with a hypoxic gene signature in glioblastoma patient samples, suggesting that low miR-124 levels contribute to pro-survival adaptive pathways in this disease. Since miR-124 expression is repressed in various cancers (including glioblastoma), we quantified miR-124 abundance in normoxic and hypoxic regions in glioblastoma patient tissue, and investigated whether ectopic miR-124 expression compromises cell survival, during tumor ischemia. Our results indicate that miR-124 levels are further diminished in hypoxic/ischemic regions within individual glioblastoma patient samples, compared to regions replete in O2 and nutrients. Importantly, we also show that increased miR-124 expression affects the ability of tumor cells to survive under O2 and/or nutrient deprivation. Moreover, miR-124 re-expression increases cell death in vivo, and enhances the survival of mice bearing intracranial xenograft tumors. miR-124 exerts this phenotype in part by directly regulating TEAD1, MAPK14/p38α and SERP1, factors involved in cell proliferation and survival under stress. Simultaneous suppression of these miR-124 targets results in similar levels of cell death as caused by miR-124 restoration. Importantly, we further demonstrate that SERP1 re-introduction reverses the hypoxic cell death elicited by miR-124, indicating the importance of SERP1 in promoting tumor cell survival. In support of our experimental data, we observed a significant correlation between high SERP1 levels and poor patient outcome in glioblastoma patients. Collectively, among the many pro-tumorigeneic properties of miR-124 repression in glioblastoma, we delineated a novel role in promoting tumor cell survival under stressful microenvironments, thereby supporting tumor progression. PMID:24954504

  8. Effects of 2-methoxyestradiol on apoptosis and HIF-1α and HIF-2α expression in lung cancer cells under normoxia and hypoxia.

    PubMed

    Aquino-Gálvez, Arnoldo; González-Ávila, Georgina; Delgado-Tello, Javier; Castillejos-López, Manuel; Mendoza-Milla, Criselda; Zúñiga, Joaquín; Checa, Marco; Maldonado-Martínez, Héctor Aquiles; Trinidad-López, Axel; Cisneros, José; Torres-Espíndola, Luz María; Hernández-Jiménez, Claudia; Sommer, Bettina; Cabello-Gutiérrez, Carlos; Gutiérrez-González, Luis H

    2016-01-01

    Hypoxic tumor cells are known to be more resistant to conventional chemotherapy and radiation than normoxic cells. However, the effects of 2-methoxyestradiol (2-ME), an anti-angiogenic, antiproliferative and pro-apoptotic drug, on hypoxic lung cancer cells are unknown. The aim of the present study was to compare the effects of 2-ME on cell growth, apoptosis, hypoxia-inducible factor 1α (HIF-1α) and HIF-2α gene and protein expression in A549 cells under normoxic and hypoxic conditions. To establish the optimal 2-ME concentration with which to carry out the apoptosis assay and to examine mRNA and protein expression of HIFs, cell growth analysis was carried out through N-hexa-methylpararosaniline staining assays in A549 cell cultures treated with one of five different 2-ME concentrations at different times under normoxic or hypoxic growth conditions. The 2-ME concentration of 10 mM at 72 h was selected to perform all further experiments. Apoptotic cells were analyzed by flow cytometry. Western blotting was used to determine HIF-1α and HIF-2α protein expression in total cell extracts. Cellular localization of HIF-1α and HIF-2α was assessed by immunocytochemistry. HIF-1α and HIF-2α gene expression was determined by real-time PCR. A significant increase in the percentage of apoptosis was observed when cells were treated with 2-ME under a normoxic but not under hypoxic conditions (p=0.006). HIF-1α and HIF-2α protein expression levels were significantly decreased in cells cultured under hypoxic conditions and treated with 2-ME (p<0.001). Furthermore, 2-ME decreased the HIF-1α and HIF-2α nuclear staining in cells cultured under hypoxia. The HIF-1α and HIF-2α mRNA levels were significantly lower when cells were exposed to 2-ME under normoxia and hypoxia. Our results suggest that 2-ME could have beneficial results when used with conventional chemotherapy in an attempt to lower the invasive and metastatic processes during cancer development due to its effects on the gene expression and protein synthesis of HIFs.

  9. Hypoxia Potentiates Anabolic Effects of Exogenous Hyaluronic Acid in Rat Articular Cartilage

    PubMed Central

    Ichimaru, Shohei; Nakagawa, Shuji; Arai, Yuji; Kishida, Tsunao; Shin-Ya, Masaharu; Honjo, Kuniaki; Tsuchida, Shinji; Inoue, Hiroaki; Fujiwara, Hiroyoshi; Shimomura, Seiji; Mazda, Osam; Kubo, Toshikazu

    2016-01-01

    Hyaluronic acid (HA) is used clinically to treat osteoarthritis (OA), but its pharmacological effects under hypoxic conditions remain unclear. Articular chondrocytes in patients with OA are exposed to a hypoxic environment. This study investigated whether hypoxia could potentiate the anabolic effects of exogenous HA in rat articular cartilage and whether these mechanisms involved HA receptors. HA under hypoxic conditions significantly enhanced the expression of extracellular matrix genes and proteins in explant culture, as shown by real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and dimethylmethylene blue (DMMB) assays. Staining with Safranin-O and immunohistochemical staining with antibody to type II collagen were also enhanced in pellet culture. The expression of CD44 was increased by hypoxia and significantly suppressed by transfection with siRNAs targeting hypoxia-inducible factor 1 alpha (siHIF-1α). These findings indicate that hypoxia potentiates the anabolic effects of exogenous HA by a mechanism in which HIF-1α positively regulates the expression of CD44, enhancing the binding affinity for exogenous HA. The anabolic effects of exogenous HA may increase as OA progresses. PMID:27347945

  10. Over-expression of Trxo1 increases the viability of tobacco BY-2 cells under H2O2 treatment

    PubMed Central

    Ortiz-Espín, Ana; Locato, Vittoria; Camejo, Daymi; Schiermeyer, Andreas; De Gara, Laura; Sevilla, Francisca; Jiménez, Ana

    2015-01-01

    Background and Aims Reactive oxygen species (ROS), especially hydrogen peroxide, play a critical role in the regulation of plant development and in the induction of plant defence responses during stress adaptation, as well as in plant cell death. The antioxidant system is responsible for controlling ROS levels in these processes but redox homeostasis is also a key factor in plant cell metabolism under normal and stress situations. Thioredoxins (Trxs) are ubiquitous small proteins found in different cell compartments, including mitochondria and nuclei (Trxo1), and are involved in the regulation of target proteins through reduction of disulphide bonds, although their role under oxidative stress has been less well studied. This study describes over-expression of a Trxo1 for the first time, using a cell-culture model subjected to an oxidative treatment provoked by H2O2. Methods Control and over-expressing PsTrxo1 tobacco (Nicotiana tabacum) BY-2 cells were treated with 35 mm H2O2 and the effects were analysed by studying the growth dynamics of the cultures together with oxidative stress parameters, as well as several components of the antioxidant systems involved in the metabolism of H2O2. Analysis of different hallmarks of programmed cell death was also carried out. Key Results Over-expression of PsTrxo1 caused significant differences in the response of TBY-2 cells to high concentrations of H2O2, namely higher and maintained viability in over-expressing cells, whilst the control line presented a severe decrease in viability and marked indications of oxidative stress, with generalized cell death after 3 d of treatment. In over-expressing cells, an increase in catalase activity, decreases in H2O2 and nitric oxide contents and maintenance of the glutathione redox state were observed. Conclusions A decreased content of endogenous H2O2 may be responsible in part for the delayed cell death found in over-expressing cells, in which changes in oxidative parameters and antioxidants were less extended after the oxidative treatment. It is concluded that PsTrxo1 transformation protects TBY-2 cells from exogenous H2O2, thus increasing their viability via a process in which not only antioxidants but also Trxo1 seem to be involved. PMID:26041732

  11. Expression of E-selectin ligand-1 (CFR/ESL-1) on hepatic stellate cells: implications for leukocyte extravasation and liver metastasis.

    PubMed

    Antoine, Marianne; Tag, Carmen G; Gressner, Axel M; Hellerbrand, Claus; Kiefer, Paul

    2009-02-01

    Leukocytes and tumor cells use E-selectin binding ligands to attach to activated endothelial cells expressing E-selectin during inflammation or metastasis. The cysteine-rich fibroblast growth factor receptor (CFR) represents the main E-selectin ligand (ESL-1) on granulocytes and its expression is exclusively modified by alpha(1,3)-fucosyltransferases IV or VII (FucT4 and FucT7). Hepatic stellate cells (HSC) are pericytes of liver sinusoidal endothelial cells. The activation of HSC and transdifferentiation into a myofibroblastic phenotype is involved in the repair of liver tissue injury, liver regeneration and angiogenesis of liver metastases. In the present study, we demonstrated that HSC expressed CFR together with FucT7 and exhibited a functional E-selectin binding activity on their cell surface. Since HSC appear to be oxygen-sensing cells, the expression of E-selectin binding activity was analyzed in HSC under a hypoxic atmosphere. While the expression of the glycoprotein CFR was unaffected by hypoxia, the cell-associated E-selectin binding activity decreased. However, under the same conditions, mRNA expression of the modifying enzyme FucT7 increased. The loss of E-selectin binding activity, therefore, appears to be neither the result of a reduced expression of the modifying transferase nor the expression of the backbone glycoprotein. After the transient transfection of HSC with CFR cDNA, the E-selectin binding activity (ESL-1) was efficiently released into the supernatant. Therefore, we hypothesize that under hypoxia, ESL-1 is shed from activated HSC. Our findings provide a novel perspective on the function of HSC in liver metastasis and inflammatory liver diseases.

  12. Molecular cloning, characterization, and expression analysis of a heat shock protein (HSP) 70 gene from Paphia undulata.

    PubMed

    Wu, Xiangwei; Tan, Jing; Cai, Mingyi; Liu, Xiande

    2014-06-15

    In this study, a full-length HSP70 cDNA from Paphia undulata was cloned using reverse transcriptase polymerase chain reaction (RT-PCR) coupled with rapid amplification of cDNA ends (RACE). The full-length cDNA is 2,351 bp, consisting of a 5'-untranslated region (UTR) of 83 bp, a 3'-UTR of 315 bp, and an open reading frame (ORF) of 1,953 bp. This cDNA encodes 650 amino acids with an estimated molecular weight of 71.3 kDa and an isoelectric point of 5.51. Based on the amino acid sequence analysis and phylogenetic analysis, this HSP70 gene was identified as a member of the cytoplasmic HSP70 family, being the constitutive expression, and it was designated as PuHSC70. The distribution of PuHSC70 mRNA in the mantle, digestive gland, adductor muscle, gonad, gill, heart, and hemocytes suggested that PuHSC70 is ubiquitously expressed. The mRNA levels of PuHSC70 under high temperature and high salinity stresses were analyzed by real-time PCR. Under high temperature stress of 32°C, PuHSC70 mRNA in the mantle, digestive gland, gill, and heart was significantly up-regulated at 1h and 2h, and it was then progressively down-regulated. In the adductor muscle, the level of PuHSC70 mRNA gradually increased throughout the study period; the mRNA levels in the gonad and hemocytes increased significantly at 4h and 8h (P<0.05) and then decreased at 8h and 14 h, respectively, however they increased again afterwards, reaching the highest levels at 50h. Under high salinity (32 ‰) stress, the mRNA levels of PuHSC70 in the mantle and gonad were increased significantly only at 24h and 48 h (P<0.05), and at the rest of the study period they were slightly elevated. Compared with the pretreatment level, the levels of expression in the digestive gland and gill were unchanged or reduced throughout the study period. The levels of PuHSC70 mRNA in the adductor muscle, hemocytes, and heart were significantly increased, reaching a maximum at 24h, and then they gradually decreased; moreover, in the heart, the mRNA expression recovered to the pretreatment level at 50h; while in the adductor muscle and hemocytes, the expression level remained higher than that of the control. The cloning and expression analyses of PuHSC70 provide theoretical basis to further study the mechanism of physiological response to thermal and high salinity stresses. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Stable transformation of Pleurotus ostreatus to hygromycin B resistance using Lentinus edodes GPD expression signals.

    PubMed

    Irie, T; Honda, Y; Hirano, T; Sato, T; Enei, H; Watanabe, T; Kuwahara, M

    2001-09-01

    It was reported that Pleurotus ostreatus was transformed unstably using recombinant plasmids containing a hygromycin B phosphotransferase gene (hph) under the control of Aspergillus nidulans expression signals, and that the plasmids were maintained extrachromosomally in the transformants. Here we report a stable and integrative transformation of the fungus to hygromycin B resistance, using a recombinant hph fused with Lentinus edodes glyceraldehyde-3-phosphate dehydrogenase expression signals. Restriction-enzyme-mediated integration (REMI) was also tried and increased the transformation efficiency about ten-fold.

  14. Regulation of galactan synthase expression to modify galactan content in plants

    DOEpatents

    None

    2017-08-22

    The disclosure provides methods of engineering plants to modulate galactan content. Specifically, the disclosure provides methods for engineering a plant to increase the galactan content in a plant tissue by inducing expression of beta-1,4-galactan synthase (GALS), modulated by a heterologous promoter. Further disclosed are the methods of modulating expression level of GALS under the regulation of a transcription factor, as well as overexpression of UDP-galactose epimerse in the same plant tissue. Tissue specific promoters and transcription factors can be used in the methods are also provided.

  15. Physicochemical properties of polysaccharides from Lentinus edodes under high pressure cooking treatment and its enhanced anticancer effects.

    PubMed

    Li, Weiwei; Wang, Jingya; Chen, Zhongqin; Gao, Xudong; Chen, Yue; Xue, Zihan; Guo, Qingwen; Ma, Qiqi; Chen, Haixia

    2018-04-22

    This study was to investigate the physicochemical properties and anticancer effects of polysaccharides from Lentinus edodes extracted under high pressure cooking treatment (HPLPS) in vitro and in vivo. The extraction efficiency was improved. The main molecular weight of HPLPS was about 540 and about 227 kDa. And the inhibitory effects on HepG2 and HeLa cells of HPLPS were significantly increased (p < 0.05). The in vivo anticancer effect on H22 tumor bearing mice model was evaluated. The tumor growth inhibitory rate of HPLPS-H was 67.66%. The activities of ALT and AST were decreased. The activities of SOD, CAT, GSH-Px were notably increased. The expressions of IL-2 and TNF-α were increased while the expression of VEGF was decreased. These results suggested that high pressure-assisted extracted polysaccharides from Lentinus edodes might be effectively used for the treatment of hepatocellular carcinoma through its antioxidant and immunomodulatory effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Metatranscriptome sequence analysis reveals diel periodicity of microbial community gene expression in the ocean's interior

    NASA Astrophysics Data System (ADS)

    Vislova, A.; Aylward, F.; Sosa, O.; DeLong, E.

    2016-02-01

    Previous work has revealed diel periodicity of gene expression in key metabolic pathways in both autotrophic and heterotrophic microbes in the surface ocean. In this study, we investigated patterns of diel periodicity of gene expression in depth profiles (25, 75, 125 and 250 meters). We postulated that microbial diel transcriptional signals would be increasingly dampened with depth, and that the timing of peak expression of specific transcripts would be shifted in time between depths, in accordance with depth-dependent diel light variability. Bacterioplankton were sampled from four depths every four hours at station ALOHA (22° 45' N 158° W) over 2 days. RNA was extracted from cells preserved on filters, converted to cDNA, and sequenced on the Illumina platform. Surprisingly, harmonic regression analysis revealed an increasing proportion of genes with diel periodic expression patterns with increasing depth between 25- 125 meters. At 250 meters, the proportion of genes exhibiting diel expression patterns decreased an order of magnitude compared to the photic zone. Community composition, functional gene categories, and diel patterns of gene expression were significantly different between the photic zone and 250 meter samples. The signals driving diel periodic gene expression in microbes at 250 meters is under further investigation. These data are now beginning provide a better understanding of the tempo and mode of microbial dynamics among specific taxa, throughout the ocean's interior.

  17. A Central Role for Heme Oxygenase-1 in the Control of Intestinal Epithelial Chemokine Expression.

    PubMed

    Onyiah, Joseph C; Schaefer, Rachel E M; Colgan, Sean P

    2018-05-23

    In mucosal inflammatory disorders, the protective influence of heme oxygenase-1 (HO-1) and its metabolic byproducts, carbon monoxide (CO) and biliverdin, is a topic of significant interest. Mechanisms under investigation include the regulation of macrophage function and mucosal cytokine expression. While there is an increasing recognition of the importance of epithelial-derived factors in the maintenance of intestinal mucosal homeostasis, the contribution of intestinal epithelial cell (IEC) HO-1 on inflammatory responses has not previously been investigated. We examined the influence of modulating HO-1 expression on the inflammatory response of human IECs. Engineered deficiency of HO-1 in Caco-2 and T84 IECs led to increased proinflammatory chemokine expression in response to pathogenic bacteria and inflammatory cytokine stimulation. Crosstalk with activated leukocytes also led to increased chemokine expression in HO-1-deficient cells in an IL-1β dependent manner. Treatment of Caco-2 cells with a pharmacological inducer of HO-1 led to the inhibition of chemokine expression. Mechanistic studies suggest that HO-1 and HO-1-related transcription factors, but not HO-1 metabolic products, are partly responsible for the influence of HO-1 on chemokine expression. In conclusion, our data identify HO-1 as a central regulator of IEC chemokine expression that may contribute to homeo-stasis in the intestinal mucosa. © 2018 S. Karger AG, Basel.

  18. Regulation of hepatic LDL receptors by mTORC1 and PCSK9 in mice

    PubMed Central

    Ai, Ding; Chen, Chiyuan; Han, Seongah; Ganda, Anjali; Murphy, Andrew J.; Haeusler, Rebecca; Thorp, Edward; Accili, Domenico; Horton, Jay D.; Tall, Alan R.

    2012-01-01

    Individuals with type 2 diabetes have an increased risk of atherosclerosis. One factor underlying this is dyslipidemia, which in hyperinsulinemic subjects with early type 2 diabetes is typically characterized by increased VLDL secretion but normal LDL cholesterol levels, possibly reflecting enhanced catabolism of LDL via hepatic LDLRs. Recent studies have also suggested that hepatic insulin signaling sustains LDLR levels. We therefore sought to elucidate the mechanisms linking hepatic insulin signaling to regulation of LDLR levels. In WT mice, insulin receptor knockdown by shRNA resulted in decreased hepatic mTORC1 signaling and LDLR protein levels. It also led to increased expression of PCSK9, a known post-transcriptional regulator of LDLR expression. Administration of the mTORC1 inhibitor rapamycin caused increased expression of PCSK9, decreased levels of hepatic LDLR protein, and increased levels of VLDL/LDL cholesterol in WT but not Pcsk9–/– mice. Conversely, mice with increased hepatic mTORC1 activity exhibited decreased expression of PCSK9 and increased levels of hepatic LDLR protein levels. Pcsk9 is regulated by the transcription factor HNF1α, and our further detailed analyses suggest that increased mTORC1 activity leads to activation of PKCδ, reduced activity of HNF4α and HNF1α, decreased PCSK9 expression, and ultimately increased hepatic LDLR protein levels, which result in decreased circulating LDL levels. We therefore suggest that PCSK9 inhibition could be an effective way to reduce the adverse side effect of increased LDL levels that is observed in transplant patients taking rapamycin as immunosuppressive therapy. PMID:22426206

  19. Osteopontin plays a pivotal role in increasing severity of respiratory syncytial virus infection

    PubMed Central

    Sampayo-Escobar, Viviana; Green, Ryan; Cheung, Michael B.; Bedi, Raminder; Mohapatra, Subhra

    2018-01-01

    The molecular mechanisms underlying susceptibility to severe respiratory syncytial virus (RSV) infection remain poorly understood. Herein, we report on the role of osteopontin (OPN) in regulation of RSV infection in human epithelial cells and how interleukin-1 beta (IL-1β), a cytokine secreted soon after RSV infection, when persistently expressed can induce OPN expression leading to increased viral infection. We first compared OPN expression in two human epithelial cell lines: HEK-293 and HEp-2. In contrast to HEp-2, HEK-293 expresses low levels of pro-caspase-1 resulting in decreased IL-1β expression in response to RSV infection. We found a correlation between low IL-1β levels and a delay in induction of OPN expression in RSV-infected HEK-293 cells compared to HEp-2. This phenomenon could partially explain the high susceptibility of HEp-2 cells to RSV infection versus the moderate susceptibility of HEK-293 cells. Also, HEK-293 cells expressing low levels of pro-caspase-1 exhibit decreased IL-1β expression and delayed OPN expression in response to RSV infection. HEK-293 cells incubated with human rIL-1β showed a dose-dependent increase in OPN expression upon RSV infection. Also, incubation with rOPN increased RSV viral load. Moreover, HEp-2 cells or mice infected with a mucogenic RSV strain RSV-L19F showed elevated levels of OPN in contrast to mice infected with the laboratory RSV strain rA2. This correlated with elevated levels of OPN following infection with RSV-L19F compared to rA2. Together, these results demonstrate that increased OPN expression is regulated in part by IL-1β, and the interplay between IL-1β and OPN signaling may play a pivotal role in the spread of RSV infection. PMID:29677209

  20. Human herpes simplex viruses in benign and malignant thyroid tumours.

    PubMed

    Jensen, Kirk; Patel, Aneeta; Larin, Alexander; Hoperia, Victoria; Saji, Motoyasu; Bauer, Andrew; Yim, Kevin; Hemming, Val; Vasko, Vasyl

    2010-06-01

    To test the hypothesis that herpes viruses may have a role in thyroid neoplasia, we analysed thyroid tissues from patients with benign (44) and malignant (65) lesions for HSV1 and HSV2 DNA. Confirmatory studies included direct sequencing, analysis of viral gene expression, and activation of viral-inducible signalling pathways. Expression of viral entry receptor nectin-1 was examined in human samples and in cancer cell lines. In vitro experiments were performed to explore the molecular mechanisms underlying thyroid cancer cell susceptibility to HSV. HSV DNA was detected in 43/109 (39.4%) examined samples. HSV capsid protein expression correlated with HSV DNA status. HSV-positive tumours were characterized by activation of virus-inducible signalling such as interferon-beta expression and nuclear NFkappaB expression. Lymphocyte infiltration and oncocytic cellular features were common in HSV-positive tumours. HSV1 was detected with the same frequency in benign and malignant thyroid tumours. HSV2 was significantly associated with papillary thyroid cancer and the presence of lymph node metastases. The expression of HSV entry receptor nectin-1 was increased in thyroid tumours compared to normal thyroid tissue and further increased in papillary thyroid cancer. Nectin-1 expression was detected in all examined thyroid cancer cell lines. Nectin-1 expression in cancer cells correlated with their susceptibility to HSV. Inhibition of PI3K/AKT or MAPK/ERK signalling did not affect the level of nectin-1 expression but decreased thyroid cancer cell susceptibility to HSV. These findings showed that HSV is frequently detected in thyroid cancer. During tumour progression, thyroid cells acquire increased susceptibility to HSV due to increased expression of viral entry mediator nectin-1 and activation of mitogenic signalling in cancer cells.

  1. Modulation of N-glycosylation by mesalamine facilitates membranous E-cadherin expression in colon epithelial cells☆

    PubMed Central

    Khare, Vineeta; Lang, Michaela; Dammann, Kyle; Campregher, Christoph; Lyakhovich, Alex; Gasche, Christoph

    2014-01-01

    Genome wide association studies have implicated intestinal barrier function genes in the pathogenesis of ulcerative colitis. One of such loci CDH1, encoding E-cadherin, a transmembrane glycoprotein with known tumor suppressor functions, is also linked to the susceptibility to colorectal cancer. Loss of membranous E-cadherin expression is common in both colitis and cancer. We have recently demonstrated that mesalamine (5-ASA); the anti-inflammatory drug used to treat ulcerative colitis, induces membranous expression of E-cadherin and increases intercellular adhesion. Using colorectal cancer epithelial cells with aberrant E-cadherin expression, we investigated the mechanism underlying such an effect of 5-ASA. Post-translational modification of E-cadherin glycosylation was analyzed by biotin/streptavidin detection of sialylated glycoproteins. GnT-III (N-acetylglucosaminyltransferase III) expression was assessed by qRT-PCR, Western blot and immunofluorescence. GnT-III activity was analyzed by reactivity with E-4/L-4-PHA. Expression, localization and interaction of E-cadherin and β-catenin were analyzed by Western blot, immunocytochemistry and RNA interference. 5-ASA activity modulated E-cadherin glycosylation and increased both mRNA and protein levels of GnT-III and its activity as detected by increased E4-lectin reactivity. Intestinal APCMin polyps in mice showed low expression of GnT-III and 5-ASA was effective in increasing its expression. The data demonstrated that remodeling of glycans by GnT-III mediated bisect glycosylation, contributes to the membranous retention of E-cadherin by 5-ASA; facilitating intercellular adhesion. Induction of membranous expression of E-cadherin by 5-ASA is a novel mechanism for mucosal healing in colitis that might impede tumor progression by modulation of GnT-III expression. PMID:24184502

  2. PRL-3 promotes breast cancer progression by downregulating p14ARF-mediated p53 expression.

    PubMed

    Xie, Hua; Wang, Hao

    2018-03-01

    Prior studies have demonstrated that phosphatase of regenerating liver-3 (PRL-3) serves avital function in cell proliferation and metastasis in breast cancer. However, the molecular mechanisms underlying the function of PRL-3 in breast cancer remain unknown. PRL-3 expression was analyzed in 24 pairs of breast cancer and normal tissues using the reverse transcription-quantitative polymerase chain reaction assay. The results of the present study identified that the expression of PLR-3 in breast cancer tissues was increased 4.2-fold, compared with normal tissues. Notably, overexpression of PRL-3 significantly promoted the proliferation of cancer cells and inhibited endogenous p53 expression by downregulating the expression level of p14 alternate reading frame (p14 ARF ). In addition, decreased expression levels of PRL-3 resulted in decreased breast cancer cell proliferation and increased expression level of p14 ARF . These results suggested that PRL-3 enhances cell proliferation by downregulating p14 ARF expression, which results in decreased levels ofp53. The results of the present study demonstrated that PRL-3 promotes tumor proliferation by affecting the p14 ARF -p53 axis, and that it may serve as a prognostic marker for patients with breast cancer.

  3. MRA_1571 is required for isoleucine biosynthesis and improves Mycobacterium tuberculosis H37Ra survival under stress

    PubMed Central

    Sharma, Rishabh; Keshari, Deepa; Singh, Kumar Sachin; Yadav, Shailendra; Singh, Sudheer Kumar

    2016-01-01

    Threonine dehydratase is a pyridoxal 5-phosphate dependent enzyme required for isoleucine biosynthesis. Threonine dehydratase (IlvA) participates in conversion of threonine to 2-oxobutanoate and ammonia is released as a by-product. MRA_1571 is annotated to be coding for IlvA in Mycobacterium tuberculosis H37Ra (Mtb-Ra). We developed a recombinant (KD) Mtb-Ra strain by down-regulating IlvA. The growth studies on different carbon sources suggested reduced growth of KD compared to wild-type (WT), also, isoleucine concentration dependent KD growth restoration was observed. The expression profiling of IlvA suggested increased expression of IlvA during oxygen, acid and oxidative stress. In addition, KD showed reduced survival under pH, starvation, nitric oxide and peroxide stresses. KD was more susceptible to antimycobacterial agents such as streptomycin (STR), rifampicin (RIF) and levofloxacin (LVF), while, no such effect was noticeable when exposed to isoniazid. Also, an increase in expression of IlvA was observed when exposed to STR, RIF and LVF. The dye accumulation studies suggested increased permeability of KD to ethidium bromide and Nile Red as compared to WT. TLC and Mass studies confirmed altered lipid profile of KD. In summary down-regulation of IlvA affects Mtb growth, increases its susceptibility to stress and leads to altered cell wall lipid profile. PMID:27353854

  4. Ethylene response factor AtERF72 negatively regulates Arabidopsis thaliana response to iron deficiency.

    PubMed

    Liu, Wei; Li, Qiwei; Wang, Yi; Wu, Ting; Yang, Yafei; Zhang, Xinzhong; Han, Zhenhai; Xu, Xuefeng

    2017-09-23

    Ethylene regulates the plant's response to stress caused by iron (Fe) deficiency. However, specific roles of ERF proteins in response to Fe deficiency remain poorly understood. Here, we investigated the role of ERF72 in response to iron deficiency in Arabidopsis thaliana. In this study, the levels of the ethylene response factor AtERF72 increased in leaves and roots induced under the iron deficient conditions. erf72 mutant plants showed increased growth compared to wild type (WT) when grown in iron deficient medium for 5 d. erf72 mutants had increased root H + velocity and the ferric reductase activity, and increase in the expression of the iron deficiency response genes iron-regulated transporter 1 (IRT1) and H + -ATPase (HA2) levels in iron deficient conditions. Compared to WT plants, erf72 mutants retained healthy chloroplast structure with significantly higher Fe and Mg content, and decreased chlorophyll degradation gene pheophorbide a oxygenase (PAO) and chlorophyllase (CLH1) expression when grown in iron deficient media. Yeast one-hybrid analysis showed that ERF72 could directly bind to the promoter regions of iron deficiency responses genes IRT1, HA2 and CLH1. Based on our results, we suggest that ethylene released from plants under iron deficiency stress can activate the expression of ERF72, which responds to iron deficiency in the negative regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Increased efficacy of an adenovirus-vectored foot-and-mouth disease capsid subunit vaccine expressing nonstructural protein 2B is associated with a specific T cell response

    USDA-ARS?s Scientific Manuscript database

    We previously demonstrated that an adenovirus-based FMDV serotype A24 subunit vaccine, Ad5-A24, expressed under the control of a cytomegalovirus promoter (CMV) can protect swine and bovines against homologous challenge, but swine vaccinated with an Ad5-vectored FMDV O1 Campos vaccine, Ad5-O1Campos (...

  6. Identification of differentially expressed genes in Fiskeby III under ozone stress conditions

    USDA-ARS?s Scientific Manuscript database

    As the global climate changes, plants will be challenged by environmental stresses that are more extreme and more frequent leading to increased yield loss. Specifically, ozone stress is an increasing problem in both urban and rural areas. Soybeans are one of the plant species that are quite ozone se...

  7. Overlap Chronic Placental Inflammation Is Associated with a Unique Gene Expression Pattern.

    PubMed

    Raman, Kripa; Wang, Huaqing; Troncone, Michael J; Khan, Waliul I; Pare, Guillaume; Terry, Jefferson

    2015-01-01

    Breakdown of the balance between maternal pro- and anti-inflammatory pathways is thought to allow an anti-fetal maternal immune response that underlies development of chronic placental inflammation. Chronic placental inflammation is manifested by the influx of maternal inflammatory cells, including lymphocytes, histiocytes, and plasma cells, into the placental membranes, villi, and decidua. These infiltrates are recognized pathologically as chronic chorioamnionitis, chronic villitis of unknown etiology, and chronic deciduitis. Each of these histological entities is associated with adverse fetal outcomes including intrauterine growth restriction and preterm birth. Studying the gene expression patterns in chronically inflamed placenta, particularly when overlapping histologies are present, may lead to a better understanding of the underlying mechanism(s). Therefore, this study compared tissue with and without chronic placental inflammation, manifested as overlapping chronic chorioamnionitis, chronic villitis of unknown etiology, and chronic deciduitis. RNA expression profiling was conducted on formalin fixed, paraffin embedded placental tissue using Illumina microarrays. IGJ was the most significant differentially expressed gene identified and had increased expression in the inflamed tissue. In addition, IGLL1, CXCL13, CD27, CXCL9, ICOS, and KLRC1 had increased expression in the inflamed placental samples. These differentially expressed genes are associated with T follicular helper cells, natural killer cells, and B cells. Furthermore, these genes differ from those typically associated with the individual components of chronic placental inflammation, such as chronic villitis, suggesting that the inflammatory infiltrate associated with overlapping chronic chorioamnionitis, chronic villitis of unknown etiology, and chronic deciduitis differs is unique. To further explore and validate gene expression findings, we conducted immunohistochemical assessment of protein level expression and demonstrate that IgJ expression was largely attributable to the presence of plasma cells as part of chronic deciduitis and that IgA positive plasma cells are associated with chronic deciduitis occurring in combination with chronic chorioamnionitis and chronic villitis of unknown etiology but not with isolated chronic deciduitis.

  8. Panobinostat Enhances Cytarabine and Daunorubicin Sensitivities in AML Cells through Suppressing the Expression of BRCA1, CHK1, and Rad51

    PubMed Central

    Edwards, Holly; Caldwell, J. Timothy; Chen, Wei; Inaba, Hiroto; Xu, Xuelian; Buck, Steven A.; Taub, Jeffrey W.; Baker, Sharyn D.; Ge, Yubin

    2013-01-01

    Acute myeloid leukemia (AML) remains a challenging disease to treat and urgently requires new therapies to improve its treatment outcome. In this study, we investigated the molecular mechanisms underlying the cooperative antileukemic activities of panobinostat and cytarabine or daunorubicin (DNR) in AML cell lines and diagnostic blast samples in vitro and in vivo. Panobinostat suppressed expression of BRCA1, CHK1, and RAD51 in AML cells in a dose-dependent manner. Further, panobinostat significantly increased cytarabine- or DNR-induced DNA double-strand breaks and apoptosis, and abrogated S and/or G2/M cell cycle checkpoints. Analogous results were obtained by shRNA knockdown of BRCA1, CHK1, or RAD51. Cotreatment of NOD-SCID-IL2Rγnull mice bearing AML xenografts with panobinostat and cytarabine significantly increased survival compared to either cytarabine or panobinostat treatment alone. Additional studies revealed that panobinostat suppressed the expression of BRCA1, CHK1, and RAD51 through downregulation of E2F1 transcription factor. Our results establish a novel mechanism underlying the cooperative antileukemic activities of these drug combinations in which panobinostat suppresses expression of BRCA1, CHK1, and RAD51 to enhance cytarabine and daunorubicin sensitivities in AML cells. PMID:24244429

  9. Fluoride-Induced Autophagy via the Regulation of Phosphorylation of Mammalian Targets of Rapamycin in Mice Leydig Cells.

    PubMed

    Zhang, Jianhai; Zhu, Yuchen; Shi, Yan; Han, Yongli; Liang, Chen; Feng, Zhiyuan; Zheng, Heping; Eng, Michelle; Wang, Jundong

    2017-10-11

    Fluoride is known to impair testicular function and decrease testosterone levels, yet the underlying mechanisms remain inconclusive. The objective of this study is to investigate the roles of autophagy in fluoride-induced male reproductive toxicity using both in vivo and in vitro Leydig cell models. Using transmission electron microscopy and monodansylcadaverine staining, we observed increasing numbers of autophagosomes in testicular tissue, especially in Leydig cells of fluoride-exposed mice. Further study revealed that fluoride increased the levels of mRNA and protein expression of autophagy markers LC3, Beclin1, and Atg 5 in primary Leydig cells. Furthermore, fluoride inhibited the phosphorylation of mammalian targets of rapamycin and 4EBP1, which in turn resulted in a decrease in the levels of AKT and PI3K mRNA expression, as well as an elevation of the level of AMPK expression in both testes and primary Leydig cells. Additionally, fluoride exposure significantly changed the mRNA expression of the PDK1, TSC, and Atg13 regulator genes in primary Leydig cells but not in testicular cells. Taken together, our findings highlight the roles of autophagy in fluoride-induced testicular and Leydig cell damage and contribute to the elucidation of the underlying mechanisms of fluoride-induced male reproductive toxicity.

  10. Baclofen mediates neuroprotection on hippocampal CA1 pyramidal cells through the regulation of autophagy under chronic cerebral hypoperfusion

    PubMed Central

    Liu, Li; Li, Chang-jun; Lu, Yun; Zong, Xian-gang; Luo, Chao; Sun, Jun; Guo, Lian-jun

    2015-01-01

    GABA receptors play an important role in ischemic brain injury. Studies have indicated that autophagy is closely related to neurodegenerative diseases. However, during chronic cerebral hypoperfusion, the changes of autophagy in the hippocampal CA1 area, the correlation between GABA receptors and autophagy, and their influences on hippocampal neuronal apoptosis have not been well established. Here, we found that chronic cerebral hypoperfusion resulted in rat hippocampal atrophy, neuronal apoptosis, enhancement and redistribution of autophagy, down-regulation of Bcl-2/Bax ratio, elevation of cleaved caspase-3 levels, reduction of surface expression of GABAA receptor α1 subunit and an increase in surface and mitochondrial expression of connexin 43 (CX43) and CX36. Chronic administration of GABAB receptors agonist baclofen significantly alleviated neuronal damage. Meanwhile, baclofen could up-regulate the ratio of Bcl-2/Bax and increase the activation of Akt, GSK-3β and ERK which suppressed cytodestructive autophagy. The study also provided evidence that baclofen could attenuate the decrease in surface expression of GABAA receptor α1 subunit, and down-regulate surface and mitochondrial expression of CX43 and CX36, which might enhance protective autophagy. The current findings suggested that, under chronic cerebral hypoperfusion, the effects of GABAB receptors activation on autophagy regulation could reverse neuronal damage. PMID:26412641

  11. Perinatal nicotine exposure increases obesity susceptibility by peripheral leptin resistance in adult female rat offspring.

    PubMed

    Zhang, Wan-Xia; Li, Yin-Ping; Fan, Jie; Chen, Hui-Jian; Li, Gai-Ling; Ouyang, Yan-Qiong; Yan, You-E

    2018-02-01

    Maternal nicotine (NIC) exposure causes overweight, hyperleptinemia and metabolic disorders in adult offspring. Our study aims to explore the underlying mechanism of perinatal NIC exposure increases obesity susceptibility in adult female rat offspring. In our model, we found that adult NIC-exposed females presented higher body weight and subcutaneous and visceral fat mass, as well as larger adipocytes, while no change was found in food intake. Serum profile showed a higher serum glucose, insulin and leptin levels in NIC-exposed females. In adipose tissue and liver, the leptin signaling pathway was blocked at 26 weeks, presented lower Janus tyrosine kinase 2 and signal transducer and activator of transcription 3 gene expression, higher suppressor of cytokine signaling 3 gene expression (in adipose tissue) and lower leptin receptors gene expression (in liver), indicating that peripheral leptin resistance occurred in NIC-exposed adult females. In female rats, the expression of lipolysis genes was affected dominantly in adipose tissue, but lipogenesis genes was affected in liver. Furthermore, the glucose and insulin tolerance tests showed a delayed glucose clearance and a higher area under the curve in NIC-exposed females. Therefore, perinatal NIC exposure programed female rats for adipocyte hypertrophy and obesity in adult life, through the leptin resistance in peripheral tissue. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Translational repression of mouse mu opioid receptor expression via leaky scanning

    PubMed Central

    Song, Kyu Young; Hwang, Cheol Kyu; Kim, Chun Sung; Choi, Hack Sun; Law, Ping-Yee; Wei, Li-Na; Loh, Horace H.

    2007-01-01

    Mu opioid receptor (MOR) expression is under temporal and spatial controls, but expression levels of the MOR gene are relatively low in vivo. In addition to transcriptional regulations, upstream AUGs (uAUGs) and open reading frames (uORFs) profoundly affect the translation of the primary ORF and thus the protein levels in several genes. The 5′-untranslated region (UTR) of mouse MOR mRNA contains three uORFs preceding the MOR main initiation codon. In MOR-fused EGFP or MOR promoter/luciferase reporter constructs, mutating each uAUG individually or in combinations increased MOR transient heterologous expression in neuroblastoma NMB and HEK293 cells significantly. Translation of such constructs increased up to 3-fold without altering the mRNA levels if either the third uAUG or both the second and third AUGs were mutated. Additionally, these uAUG-mediated translational inhibitions were independent of their peptide as confirmed by internal mutation analyses in each uORF. Translational studies indicated that protein syntheses were initiated at these uAUG initiation sites, with the third uAUG initiating the highest translation level. These results support the hypothesis that uORFs in mouse MOR mRNA act as negative regulators through a ribosome leaky scanning mechanism. Such leaky scanning resulted in the suppression of mouse MOR under normal conditions. PMID:17284463

  13. Acrylamide up-regulates cyclooxygenase-2 expression through the MEK/ERK signaling pathway in mouse epidermal cells.

    PubMed

    Lim, Tae-Gyu; Lee, Bo Kyung; Kwon, Jung Yeon; Jung, Sung Keun; Lee, Ki Won

    2011-06-01

    Acrylamide is formed during cooking processes and is present in many foods. Accumulating evidence suggests that AA is carcinogenic, but the underlying mechanism remains unclear. Here, we investigated the carcinogenesis mechanisms of AA. AA increased the COX-2 expression. Two major transcription factors, AP-1 and NF-κB, were activated by AA treatment. AA induced the ERK phosphorylation, and this was abolished by the treatment of U0126, a pharmacological inhibitor of MEK, an upstream kinase of ERK. AA-induced expression and promoter activity of COX-2 were suppressed by U0126. U0126 treatment attenuated AA-induced transactivation of AP-1 and NF-κB, suggesting that the MEK/ERK signaling pathway regulates COX-2 expression. In addition, myricetin, a natural inhibitor of the MEK/ERK signal pathway, reduced AA-induced activation of the COX-2 promoter as well as activation of AP-1 and NF-κB. Collectively, these results suggest that the ability of AA to up-regulate COX-2 expression through the MEK/ERK signaling pathway underlies AA carcinogenicity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Cyclooxygenase 2 Promotes Parathyroid Hyperplasia in ESRD

    PubMed Central

    Zhang, Qian; Qiu, Junsi; Li, Haiming; Lu, Yanwen; Wang, Xiaoyun; Yang, Junwei; Wang, Shaoqing; Zhang, Liyin; Gu, Yong; Hao, Chuan-Ming

    2011-01-01

    Hyperplasia of the PTG underlies the secondary hyperparathyroidism (SHPT) observed in CKD, but the mechanism underlying this hyperplasia is incompletely understood. Because aberrant cyclooxygenase 2 (COX2) expression promotes epithelial cell proliferation, we examined the effects of COX2 on the parathyroid gland in uremia. In patients with ESRD who underwent parathyroidectomy, clusters of cells within the parathyroid glands had increased COX2 expression. Some COX2-positive cells exhibited two nuclei, consistent with proliferation. Furthermore, nearly 78% of COX2-positive cells expressed proliferating cell nuclear antigen (PCNA). In the 5/6-nephrectomy rat model, rats fed a high-phosphate diet had significantly higher serum PTH levels and larger parathyroid glands than sham-operated rats. Compared with controls, the parathyroid glands of uremic rats exhibited more PCNA-positive cells and greater COX2 expression in the chief cells. Treatment with COX2 inhibitor celecoxib significantly reduced PCNA expression, attenuated serum PTH levels, and reduced the size of the glands. In conclusion, COX2 promotes the pathogenesis of hyperparathyroidism in ESRD, suggesting that inhibiting the COX2 pathway could be a potential therapeutic target. PMID:21335517

  15. Vesicular Glutamate Transporter 2 Expression in the Rat Pineal Gland: Detailed Analysis of Expression Pattern and Regulatory Mechanism

    NASA Astrophysics Data System (ADS)

    Yoshida, Sachine; Hisano, Setsuji

    Melatonin, a hormone secreted by the pineal gland, is closely related physiologically to circadian rhythm, sleep and reproduction, and also psychiatrically to mood disorders in humans. Under circadian control, melatonin secretion is modulated via nocturnal autonomic (adrenergic) stimulation to the gland, which expresses vesicular glutamate transporter (VGLUT) 1, VGLUT2 and a VGLUT1 splice variant (VGLUT1v), glutamatergic markers. Expression of VGLUT2 gene and protein in the intact gland has been reported to exhibit a rhythmic change during a day. To study VGLUT2 expression is under adrenergic control, we here performed an in vitro experiment using dispersed pineal cells of rats. Stimulation of either β-adrenergic receptor or cAMP production to the pineal cells was shown to increase mRNA level of VGLUT2, but not VGLUT1 and VGLUT1v. Because an ability of glutamate to inhibit melatonin production was previously reported in the cultured gland, it is likely that pineal VGLUT2 transports glutamate engaged in the inhibition of melatonin production.

  16. The fluorescent photobleaching properties of GFP expressed in human lung cancer cells

    NASA Astrophysics Data System (ADS)

    Jin, Ying; Xing, Da

    2003-12-01

    The characteristic properties of GFP make this protein a good candidate for use as a molecular reporter to monitor patterns of protein localization, gene expression, and intracellular protein trafficking in living cells. In this study, the dicistronic expression vector (pEGFP-C1) was used to transfected into human lung cancer cell line (ASTC-a-1) and a positive clone which stably expressed GFP in high level was obtained. After more than three months' passengers, the cells were also remained the strong fluorescence under fluorescent microscope. The results showed that the green fluorescent protein expressed in tumor cells was also photobleached under intense irradiation (approximately 488 nm) and the degree of photobleaching varied with the difference of the intensity of the excitation. Using different interdiction parcel (None, ND4, ND8, ND16), there were significant differences in photobleaching among the different excitation. The photobleaching was also affected by the time length of excitation, and the intensity of fluorescence was obviously decreased along with the increasing of excitation time, especially to stronger excitation.

  17. [Cordyceps sinensis enhances lymphocyte proliferation and CD markers expression in simulated microgravity environment].

    PubMed

    Hao, Tong; Li, Jun-Jie; Du, Zhi-Yan; Duan, Cui-Mi; Wang, Yan-Meng; Wang, Chang-Yong; Song, Jing-Ping; Wang, Lin-Jie; Li, Ying-Hui; Wang, Yan

    2012-10-01

    This study was aimed to explore the effect of cordyceps sinensis enhancing lymphocyte proliferation and surface CD marker expression in simulated microgravity environment. The splenic lymphocytes were separated from mice and cultured in the rotary cell culture system simulated microgravity environment. The cells were treated with different concentration of cordyceps sinensis solution (0, 6.25, 12.5, 25 and 50 µg/ml) for 24, 48 and 72 h respectively, then the cells were harvested, and analyzed for cell proliferation and the expression of cell surface markers (CD4 and CD8). The results showed that under simulated microgravity environment, the lymphocyte proliferation was inhibited. When the concentration of cordyceps sinensis was 25 or 50 µg/ml, the lymphocyte proliferation, CD4 and CD8 expressions all increased, but 50 µg/ml cordyceps sinensis could inhibit the proliferation ability with the time prolonging. It is concluded that the suitable concentration of cordyceps sinensis displayed the ability to enhance the lymphocyte proliferation and CD marker expression in simulated microgravity environment. These results may be valuable for screening drugs which can be potentially against immunosuppression under simulated microgravity.

  18. Osmoregulated TAQ polymerase gene expression in Escherichia coli.

    PubMed

    Cabrera Artiles, Yeosvany; Martínez García, Duniesky; Pérez Cruz, Enrique R; Márquez Perera, Gabriel J; Feble, Manuel Luis

    2002-01-01

    The Thermus aquaticus DNA Polymerase I (Taq Pol I) gene was cloned into the pOSEX4 plasmid under the osmo-inducible promoter proU and subsequently expressed into the Escherichia coli MKH13 strain. The suitability of the enzyme in polymerase assays was determined in standard 35S dATP incorporation tests and by PCR. The Taq Pol I expression in this system, which is under the control of the osmotic pressure in the growth medium, was analyzed in different media and in different sodium chloride concentrations. A study of the osmolarity effects in the growth of the strain and in Taq Pol I expression shows that an increase in sodium chloride concentration limits the growth. At 0.25 M of NaCl maximum activity was observed; at higher values of osmolarity, we found an unexpected decline of activity. This is the first report of using the pOSEX vector for the expression of an heterologous protein and it is very advantageous to make a regulated, non toxic, simple and cost-effective manner of induction in a biotechnology process using just NaCl or other non-permeable osmolyte.

  19. Protein patterns of black fungi under simulated Mars-like conditions

    NASA Astrophysics Data System (ADS)

    Zakharova, Kristina; Marzban, Gorji; de Vera, Jean-Pierre; Lorek, Andreas; Sterflinger, Katja

    2014-05-01

    Two species of microcolonial fungi - Cryomyces antarcticus and Knufia perforans - and a species of black yeasts-Exophiala jeanselmei - were exposed to thermo-physical Mars-like conditions in the simulation chamber of the German Aerospace Center. In this study the alterations at the protein expression level from various fungi species under Mars-like conditions were analyzed for the first time using 2D gel electrophoresis. Despite of the expectations, the fungi did not express any additional proteins under Mars simulation that could be interpreted as stress induced HSPs. However, up-regulation of some proteins and significant decreasing of protein number were detected within the first 24 hours of the treatment. After 4 and 7 days of the experiment protein spot number was increased again and the protein patterns resemble the protein patterns of biomass from normal conditions. It indicates the recovery of the metabolic activity under Martian environmental conditions after one week of exposure.

  20. Protein patterns of black fungi under simulated Mars-like conditions

    PubMed Central

    Zakharova, Kristina; Marzban, Gorji; de Vera, Jean-Pierre; Lorek, Andreas; Sterflinger, Katja

    2014-01-01

    Two species of microcolonial fungi – Cryomyces antarcticus and Knufia perforans - and a species of black yeasts–Exophiala jeanselmei - were exposed to thermo-physical Mars-like conditions in the simulation chamber of the German Aerospace Center. In this study the alterations at the protein expression level from various fungi species under Mars-like conditions were analyzed for the first time using 2D gel electrophoresis. Despite of the expectations, the fungi did not express any additional proteins under Mars simulation that could be interpreted as stress induced HSPs. However, up-regulation of some proteins and significant decreasing of protein number were detected within the first 24 hours of the treatment. After 4 and 7 days of the experiment protein spot number was increased again and the protein patterns resemble the protein patterns of biomass from normal conditions. It indicates the recovery of the metabolic activity under Martian environmental conditions after one week of exposure. PMID:24870977

  1. Protein patterns of black fungi under simulated Mars-like conditions.

    PubMed

    Zakharova, Kristina; Marzban, Gorji; de Vera, Jean-Pierre; Lorek, Andreas; Sterflinger, Katja

    2014-05-29

    Two species of microcolonial fungi - Cryomyces antarcticus and Knufia perforans - and a species of black yeasts-Exophiala jeanselmei - were exposed to thermo-physical Mars-like conditions in the simulation chamber of the German Aerospace Center. In this study the alterations at the protein expression level from various fungi species under Mars-like conditions were analyzed for the first time using 2D gel electrophoresis. Despite of the expectations, the fungi did not express any additional proteins under Mars simulation that could be interpreted as stress induced HSPs. However, up-regulation of some proteins and significant decreasing of protein number were detected within the first 24 hours of the treatment. After 4 and 7 days of the experiment protein spot number was increased again and the protein patterns resemble the protein patterns of biomass from normal conditions. It indicates the recovery of the metabolic activity under Martian environmental conditions after one week of exposure.

  2. Paternal low protein diet programs preimplantation embryo gene expression, fetal growth and skeletal development in mice.

    PubMed

    Watkins, Adam J; Sirovica, Slobodan; Stokes, Ben; Isaacs, Mark; Addison, Owen; Martin, Richard A

    2017-06-01

    Defining the mechanisms underlying the programming of early life growth is fundamental for improving adult health and wellbeing. While the association between maternal diet, offspring growth and adult disease risk is well-established, the effect of father's diet on offspring development is largely unknown. Therefore, we fed male mice an imbalanced low protein diet (LPD) to determine the impact on post-fertilisation development and fetal growth. We observed that in preimplantation embryos derived from LPD fed males, expression of multiple genes within the central metabolic AMPK pathway was reduced. In late gestation, paternal LPD programmed increased fetal weight, however, placental weight was reduced, resulting in an elevated fetal:placental weight ratio. Analysis of gene expression patterns revealed increased levels of transporters for calcium, amino acids and glucose within LPD placentas. Furthermore, placental expression of the epigenetic regulators Dnmt1 and Dnmt3L were increased also, coinciding with altered patterns of maternal and paternal imprinted genes. More strikingly, we observed fetal skeletal development was perturbed in response to paternal LPD. Here, while offspring of LPD fed males possessed larger skeletons, their bones comprised lower volumes of high mineral density in combination with reduced maturity of bone apatite. These data offer new insight in the underlying programming mechanisms linking poor paternal diet at the time of conception with the development and growth of his offspring. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Gene Expression Networks Underlying Ovarian Development in Wild Largemouth Bass (Micropterus salmoides)

    PubMed Central

    Martyniuk, Christopher J.; Prucha, Melinda S.; Doperalski, Nicholas J.; Antczak, Philipp; Kroll, Kevin J.; Falciani, Francesco; Barber, David S.; Denslow, Nancy D.

    2013-01-01

    Background Oocyte maturation in fish involves numerous cell signaling cascades that are activated or inhibited during specific stages of oocyte development. The objectives of this study were to characterize molecular pathways and temporal gene expression patterns throughout a complete breeding cycle in wild female largemouth bass to improve understanding of the molecular sequence of events underlying oocyte maturation. Methods Transcriptomic analysis was performed on eight morphologically diverse stages of the ovary, including primary and secondary stages of oocyte growth, ovulation, and atresia. Ovary histology, plasma vitellogenin, 17β-estradiol, and testosterone were also measured to correlate with gene networks. Results Global expression patterns revealed dramatic differences across ovarian development, with 552 and 2070 genes being differentially expressed during both ovulation and atresia respectively. Gene set enrichment analysis (GSEA) revealed that early primary stages of oocyte growth involved increases in expression of genes involved in pathways of B-cell and T-cell receptor-mediated signaling cascades and fibronectin regulation. These pathways as well as pathways that included adrenergic receptor signaling, sphingolipid metabolism and natural killer cell activation were down-regulated at ovulation. At atresia, down-regulated pathways included gap junction and actin cytoskeleton regulation, gonadotrope and mast cell activation, and vasopressin receptor signaling and up-regulated pathways included oxidative phosphorylation and reactive oxygen species metabolism. Expression targets for luteinizing hormone signaling were low during vitellogenesis but increased 150% at ovulation. Other networks found to play a significant role in oocyte maturation included those with genes regulated by members of the TGF-beta superfamily (activins, inhibins, bone morphogenic protein 7 and growth differentiation factor 9), neuregulin 1, retinoid X receptor, and nerve growth factor family. Conclusions This study offers novel insight into the gene networks underlying vitellogenesis, ovulation and atresia and generates new hypotheses about the cellular pathways regulating oocyte maturation. PMID:23527095

  4. Transcription of four Rhopalosiphum padi (L.) heat shock protein genes and their responses to heat stress and insecticide exposure.

    PubMed

    Li, Yuting; Zhao, Qi; Duan, Xinle; Song, Chunman; Chen, Maohua

    2017-03-01

    The bird cherry-oat aphid, Rhopalosiphum padi (L.), a worldwide destructive pest, is more heat tolerant than other wheat aphids, and it has developed resistance to different insecticides. Heat shock proteins (HSPs) play an important role in coping with environmental stresses. To investigate Hsp transcriptional responses to heat and insecticide stress, four full-length Hsp genes from R. padi (RpHsp60, RpHsc70, RpHsp70-1, and RpHsp70-2) were cloned. Four RpHsps were expressed during all R. padi developmental stages, but at varying levels. The mRNA levels of RpHsps were increased under thermal stress and reached maximal induction at a lower temperature (36°C) in the alate morph than in the apterous morph (37°C or 38°C). RpHsp expressions under heat stress suggest that RpHsp70-1 and RpHsp70-2 are inducible in both apterous and alate morphs, RpHsc70 is only heat-inducible in apterous morph, and RpHsp60 exhibits poor sensitivity to heat stress. The pretreatment at 37°C significantly increase both the survival rate and the RpHsps expression level of R. padi at subsequent lethal temperature. Under exposure to two sublethal concentrations (LC 10 and LC 30 ) of beta-cypermethrin, both RpHsp70-1 and RpHsp70-2 expressions were induced and reached a maximum 24h after exposure. In contrast, expression of RpHsp60 was not induced by either sublethal concentration of beta-cypermethrin. Moreover, the responses of RpHsp70-1 and RpHsp70-2 to heat shock were more sensitive than those to beta-cypermethrin. These results suggest that induction of RpHsp expression is related to thermal tolerance, and that RpHsp70-1 and RpHsp70-2 are the primary genes involved in the response to both heat and pesticide stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury.

    PubMed

    Ryge, Jesper; Winther, Ole; Wienecke, Jacob; Sandelin, Albin; Westerdahl, Ann-Charlotte; Hultborn, Hans; Kiehn, Ole

    2010-06-09

    Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence of modulatory inputs from the brain correlates with the development of spasticity. Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use a rat-tail-model with complete spinal cord transection causing injury-induced spasticity, where gene expression profiles are obtained from labeled motor neurons extracted with laser microdissection 0, 2, 7, 21 and 60 days post injury. Consensus clustering identifies 12 gene clusters with distinct time expression profiles. Analysis of these gene clusters identifies early immunological/inflammatory and late developmental responses as well as a regulation of genes relating to neuron excitability that support the development of motor neuron hyper-excitability and the reappearance of plateau potentials in the late phase of the injury response. Transcription factor motif analysis identifies differentially expressed transcription factors involved in the regulation of each gene cluster, shaping the expression of the identified biological processes and their associated genes underlying the changes in motor neuron excitability. This analysis provides important clues to the underlying mechanisms of transcriptional regulation responsible for the increased excitability observed in motor neurons in the late chronic phase of spinal cord injury suggesting alternative targets for treatment of spinal cord injury. Several transcription factors were identified as potential regulators of gene clusters containing elements related to motor neuron hyper-excitability, the manipulation of which potentially could be used to alter the transcriptional response to prevent the motor neurons from entering a state of hyper-excitability.

  6. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury

    PubMed Central

    2010-01-01

    Background Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence of modulatory inputs from the brain correlates with the development of spasticity. Results Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use a rat-tail-model with complete spinal cord transection causing injury-induced spasticity, where gene expression profiles are obtained from labeled motor neurons extracted with laser microdissection 0, 2, 7, 21 and 60 days post injury. Consensus clustering identifies 12 gene clusters with distinct time expression profiles. Analysis of these gene clusters identifies early immunological/inflammatory and late developmental responses as well as a regulation of genes relating to neuron excitability that support the development of motor neuron hyper-excitability and the reappearance of plateau potentials in the late phase of the injury response. Transcription factor motif analysis identifies differentially expressed transcription factors involved in the regulation of each gene cluster, shaping the expression of the identified biological processes and their associated genes underlying the changes in motor neuron excitability. Conclusions This analysis provides important clues to the underlying mechanisms of transcriptional regulation responsible for the increased excitability observed in motor neurons in the late chronic phase of spinal cord injury suggesting alternative targets for treatment of spinal cord injury. Several transcription factors were identified as potential regulators of gene clusters containing elements related to motor neuron hyper-excitability, the manipulation of which potentially could be used to alter the transcriptional response to prevent the motor neurons from entering a state of hyper-excitability. PMID:20534130

  7. High ambient temperature increases 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy")-induced Fos expression in a region-specific manner.

    PubMed

    Hargreaves, G A; Hunt, G E; Cornish, J L; McGregor, I S

    2007-03-16

    3,4-Methylenedioxymethamphetamine (MDMA, "Ecstasy") is a popular drug that is often taken under hot conditions at dance clubs. High ambient temperature increases MDMA-induced hyperthermia and recent studies suggest that high temperatures may also enhance the rewarding and prosocial effects of MDMA in rats. The present study investigated whether ambient temperature influences MDMA-induced expression of Fos, a marker of neural activation. Male Wistar rats received either MDMA (10 mg/kg i.p.) or saline, and were placed in test chambers for 2 h at either 19 or 30 degrees C. MDMA caused significant hyperthermia at 30 degrees C and a modest hypothermia at 19 degrees C. The 30 degrees C ambient temperature had little effect on Fos expression in vehicle-treated rats. However MDMA-induced Fos expression was augmented in 15 of 30 brain regions at the high temperature. These regions included (1) sites associated with thermoregulation such as the median preoptic nucleus, dorsomedial hypothalamus and raphe pallidus, (2) the supraoptic nucleus, a region important for osmoregulation and a key mediator of oxytocin and vasopressin release, (3) the medial and central nuclei of the amygdala, important in the regulation of social and emotional behaviors, and (4) the shell of the nucleus accumbens and (anterior) ventral tegmental area, regions associated with the reinforcing effects of MDMA. MDMA-induced Fos expression was unaffected by ambient temperature at many other sites, and was diminished at high temperature at one site (the islands of Calleja), suggesting that the effect of temperature on MDMA-induced Fos expression was not a general pharmacokinetic effect. Overall, these results indicate that high temperatures accentuate key neural effects of MDMA and this may help explain the widespread use of the drug under hot conditions at dance parties as well as the more hazardous nature of MDMA taken under such conditions.

  8. Overexpression of PDX-II gene in potato (Solanum tuberosum L.) leads to the enhanced accumulation of vitamin B6 in tuber tissues and tolerance to abiotic stresses.

    PubMed

    Bagri, Deepak Singh; Upadhyaya, Devanshi Chandel; Kumar, Ashwani; Upadhyaya, Chandrama Prakash

    2018-07-01

    Vitamin B6 is a vital metabolite required for living organisms as a cofactor in several metabolic biochemical reactions and recognized as a potent antioxidant molecule which modulates the expression of the proteins responsible for the scavenging of cellular reactive oxygen species. It is well established that the microorganisms and plants can synthesize the B6 de novo, therefore, all the animals including humans must acquire it from the plant dietary resources. However, the bioavailability of the vitamin in the edible portions of the commonly consumed plants is insufficient to meet the daily recommended doses. Genetic engineering techniques have proven successful in increasing the vitamin B6 content in the model plants. Present study describe the development of transgenic potato (Solanum tuberosum L. cv. Kufri chipsona) overexpressing key vitamin B6 pathway gene, the PDXII (NCBI database Ref. ID- NM_125447.2) isolated from Arabidopsis thaliana under the control of CaMV 35S constitutive promoter. The stable integration and expression of transgene in the transgenic lines were confirmed by PCR, Southern blot and RT-PCR analysis. Transgenic tubers exhibited considerably improved vitamin B6 accumulation (up to 107-150%) in comparison to the untransformed controls potato. This increase in vitamin B6 was also correlated with the increased mRNA expression of PDXII gene. The prominent increase in the B6 content of transgenic potato was also associated with the capability to survive under abiotic stresses, therefore, the transgenic lines were able to withstand various abiotic stresses imposed by salinity (NaCl) or methyl viologen (MV). We thus demonstrated that overexpression of PDXII gene under the control of a constitutive promoter enhanced the accumulation of the vitamin B6 which also augmented the tolerance under various abiotic stresses in potato (Solanum tuberosum L.). Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Paeonol protects rat vascular endothelial cells from ox-LDL-induced injury in vitro via downregulating microRNA-21 expression and TNF-α release

    PubMed Central

    Liu, Ya-rong; Chen, Jun-jun; Dai, Min

    2014-01-01

    Aim: Paeonol (2′-hydroxy-4′-methoxyacetophenone) from Cortex moutan root is a potential therapeutic agent for atherosclerosis. This study sought to investigate the mechanisms underlying anti-inflammatory effects of paeonol in rat vascular endothelial cells (VECs) in vitro. Methods: VECs were isolated from rat thoracic aortas. The cells were pretreated with paeonol for 24 h, and then stimulated with ox-LDL for another 24 h. The expression of microRNA-21 (miR-21) and PTEN in VECs was analyzed using qRT-PCR. The expression of PTEN protein was detected by Western blotting. TNF-α release by VECs was measured by ELISA. Results: Ox-LDL treatment inhibited VEC growth in dose- and time-dependent manners (the value of IC50 was about 20 mg/L at 24 h). Furthermore, ox-LDL (20 mg/L) significantly increased miR-21 expression and inhibited the expression of PTEN, one of downstream target genes of miR-21 in VECs. In addition, ox-LDL (20 mg/L) significantly increased the release of TNF-α from VECs. Pretreatment with paeonol increased the survival rate of ox-LDL-treated VECs in dose- and time-dependent manners. Moreover, paeonol (120 μmol/L) prevented ox-LDL-induced increases in miR-21 expression and TNF-α release, and ox-LDL-induced inhibition in PTEN expression. A dual-luciferase reporter assay showed that miR-21 bound directly to PTEN's 3′-UTR, thus inhibiting PTEN expression. In ox-LDL treated VECs, transfection with a miR-21 mimic significantly increased miR-21 expression and inhibited PTEN expression, and attenuated the protective effects of paeonol pretreatment, whereas transfection with an miR-21 inhibitor significantly decreased miR-21 expression and increased PTEN expression, thus enhanced the protective effects of paeonol pretreatment. Conclusion: miR-21 is an important target of paeonol for its protective effects against ox-LDL-induced VEC injury, which may play critical roles in development of atherosclerosis. PMID:24562307

  10. Pathophysiology of viral-induced exacerbations of COPD

    PubMed Central

    Alfredo, Potena; Gaetano, Caramori; Paolo, Casolari; Marco, Contoli; Johnston, Sebastian L; Alberto, Papi

    2007-01-01

    Inflammation of the lower airways is a central feature of chronic obstructive pulmonary disease (COPD). Inflammatory responses are associated with an increased expression of a cascade of proteins including cytokines, chemokines, growth factors, enzymes, adhesion molecules and receptors. In most cases the increased expression of these proteins is the result of enhanced gene transcription: many of these genes are not expressed in normal cells under resting conditions but they are induced in the inflammatory process in a cell-specific manner. Transcription factors regulate the expression of many pro-inflammatory genes and play a key role in the pathogenesis of airway inflammation. Many studies have suggested a role for viral infections as a causative agent of COPD exacerbations. In this review we will focus our attention on the relationship between common respiratory viral infections and the molecular and inflammatory mechanisms that lead to COPD exacerbation. PMID:18268922

  11. Effect of intermittent shear stress on corneal epithelial cells using an in vitro flow culture model.

    PubMed

    Hampel, Ulrike; Garreis, Fabian; Burgemeister, Fabian; Eßel, Nicole; Paulsen, Friedrich

    2018-04-27

    The aim of this study was to establish and to evaluate an in vitro model for culturing human telomerase-immortalized corneal epithelial (hTCEpi) cells under adjustable medium flow mimicking the movements of the tear film on the ocular surface. Using an IBIDI pump system, cells were cultured under unidirectional, continuous or oscillating, discontinuous medium flow. Cell surface and cytoskeletal architecture were investigated by scanning electron microscopy and immunofluorescence. Gene expression of e-cadherin, occludin, tight junction protein (TJP), desmoplakin, desmocollin and mucins was investigated by real-time PCR. Protein expression of desmoplakin, TJP, occludin and e-cadherin was analyzed by western blot and localization was detected by immunofluorescence. Rose bengal staining was used to assess mucin (MUC) barrier integrity. MUC1, -4 and -16 proteins were localized by immunofluorescence. Medium flow-induced shear stress dramatically changed cellular morphology of hTCEpi. Cells subjected to discontinuous shear stress displayed the typical flattened, polygonal cell shape of the superficial layer of stratified squamous epithelia. Cell surfaces showed less bulging under shear stress and less extracellular gaps. The mRNA expression of E-cadherin, occludin and TJP were increased under oscillatory medium flow. Desmoplakin and occludin protein were upregulated under oscillatory shear stress. Stress fiber formation was not aligned to flow direction. MUC1, -4, and -16 protein were localized under all culture conditions, a regulation on mRNA expression was not detectable. Rose Bengal uptake was diminished under unidirectional conditions. Our findings suggest that shear stress as it occurs at the ocular surface during blinking exerts marked effects on corneal epithelial cells, such as changes in cellular morphology and expression of cell junctions. The described model may be useful for in vitro investigations of ocular surface epithelia as it represents a much more physiologic reproduction of the in vivo situation than the commonly applied static culture conditions. Copyright © 2018. Published by Elsevier Inc.

  12. Ammonium intensifies CAM photosynthesis and counteracts drought effects by increasing malate transport and antioxidant capacity in Guzmania monostachia.

    PubMed

    Pereira, Paula Natália; Gaspar, Marília; Smith, J Andrew C; Mercier, Helenice

    2018-04-09

    Guzmania monostachia (Bromeliaceae) is a tropical epiphyte capable of up-regulating crassulacean acid metabolism (CAM) in its photosynthetic tissues in response to changing nutrient and water availability. Previous studies have shown that under drought there is a gradient of increasing CAM expression from the basal (youngest) to the apical (oldest) portion of the leaves, and additionally that nitrogen deficiency can further increase CAM intensity in the leaf apex of this bromeliad. The present study investigated the inter-relationships between nitrogen source (nitrate and/or ammonium) and water deficit in regulating CAM expression in G. monostachia leaves. The highest CAM activity was observed under ammonium nutrition in combination with water deficit. This was associated with enhanced activity of the key enzyme phosphoenolpyruvate carboxylase, elevated rates of ATP- and PPi-dependent proton transport at the vacuolar membrane in the presence of malate, and increased transcript levels of the vacuolar malate channel-encoding gene, ALMT. Water deficit was consistently associated with higher levels of total soluble sugars, which were maximal under ammonium nutrition, as were the activities of several antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase). Thus, ammonium nutrition, whilst associated with the highest degree of CAM induction in G. monostachia, also mitigates the effects of water deficit by osmotic adjustment and can limit oxidative damage in the leaves of this bromeliad under conditions that may be typical of its epiphytic habitat.

  13. Age-associated increase in aneuploidy and changes in gene expression in mouse eggs

    PubMed Central

    Pan, Hua; Ma, Pengpeng; Zhu, Wenting; Schultz, Richard M.

    2008-01-01

    An increase in the incidence of aneuploidy is well documented with increasing maternal age, in particular in human females. Remarkably, little is known regarding the underlying molecular basis for the age-associated increase in aneuploidy, which is a major source of decreased fertility in humans. Using mouse as a model system we find that eggs obtained from old mice (60–70 weeks of age) display a six-fold increase in the incidence of hyperploidy as assessed by chromosome spreads. Expression profiling of transcripts in oocytes and eggs obtained from young and old mice reveals that ~5% of the transcripts are differentially expressed in oocytes obtained from old females when compared to oocytes obtained from young females (6–12 weeks of age) and that this fraction increases to ~33% in eggs. The latter finding indicates that the normal pattern of degradation of maternal mRNAs that occurs during oocyte maturation is dramatically altered in eggs obtained from old mice and could therefore be a contributing source to the decline in fertility. Analysis of the differentially expressed transcripts also indicated that the strength of the spindle assembly checkpoint is weakened and that higher errors of microtubule-kinetochore interactions constitute part of molecular basis for the ageassociated increase in aneuploidy in females. Last, BRCA1 expression is reduced in oocytes obtained from old females and RNAi-mediated reduction of BRCA1 in oocytes obtained from young females results in perturbing spindle formation and chromosome congression following maturation. PMID:18342300

  14. The major-effect quantitative trait locus CsARN6.1 encodes an AAA ATPase domain-containing protein that is associated with waterlogging stress tolerance by promoting adventitious root formation.

    PubMed

    Xu, Xuewen; Ji, Jing; Xu, Qiang; Qi, Xiaohua; Weng, Yiqun; Chen, Xuehao

    2018-03-01

    In plants, the formation of hypocotyl-derived adventitious roots (ARs) is an important morphological acclimation to waterlogging stress; however, its genetic basis remains fragmentary. Here, through combined use of bulked segregant analysis-based whole-genome sequencing, SNP haplotyping and fine genetic mapping, we identified a candidate gene for a major-effect QTL, ARN6.1, that was responsible for waterlogging tolerance due to increased AR formation in the cucumber line Zaoer-N. Through multiple lines of evidence, we show that CsARN6.1 is the most possible candidate for ARN6.1 which encodes an AAA ATPase. The increased formation of ARs under waterlogging in Zaoer-N could be attributed to a non-synonymous SNP in the coiled-coil domain region of this gene. CsARN6.1 increases the number of ARs via its ATPase activity. Ectopic expression of CsARN6.1 in Arabidopsis resulted in better rooting ability and lateral root development in transgenic plants. Transgenic cucumber expressing the CsARN6.1 Asp allele from Zaoer-N exhibited a significant increase in number of ARs compared with the wild type expressing the allele from Pepino under waterlogging conditions. Taken together, these data support that the AAA ATPase gene CsARN6.1 has an important role in increasing cucumber AR formation and waterlogging tolerance. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  15. Iron overload in a murine model of hereditary hemochromatosis is associated with accelerated progression of osteoarthritis under mechanical stress.

    PubMed

    Camacho, A; Simão, M; Ea, H-K; Cohen-Solal, M; Richette, P; Branco, J; Cancela, M L

    2016-03-01

    Hereditary hemochromatosis (HH) is a disease caused by mutations in the Hfe gene characterised by systemic iron overload and associated with an increased prevalence of osteoarthritis (OA) but the role of iron overload in the development of OA is still undefined. To further understand the molecular mechanisms involved we have used a murine model of HH and studied the progression of experimental OA under mechanical stress. OA was surgically induced in the knee joints of 10-week-old C57BL6 (wild-type) mice and Hfe-KO mice. OA progression was assessed using histology, micro CT, gene expression and immunohistochemistry at 8 weeks after surgery. Hfe-KO mice showed a systemic iron overload and an increased iron accumulation in the knee synovial membrane following surgery. The histological OA score was significantly higher in the Hfe-KO mice at 8 weeks after surgery. Micro CT study of the proximal tibia revealed increased subchondral bone volume and increased trabecular thickness. Gene expression and immunohistochemical analysis showed a significant increase in the expression of matrix metallopeptidase 3 (MMP-3) in the joints of Hfe-KO mice compared with control mice at 8 weeks after surgery. HH was associated with an accelerated development of OA in mice. Our findings suggest that synovial iron overload has a definite role in the progression of HH-related OA. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  16. Exendin-4 Upregulates Adiponectin Level in Adipocytes via Sirt1/Foxo-1 Signaling Pathway

    PubMed Central

    Wang, Anping; Li, Ting; An, Ping; Yan, Wenhua; Zheng, Hua; Wang, Baoan; Mu, Yiming

    2017-01-01

    Glucagon-like peptide-1 (GLP-1) receptor plays an essential role in regulating glucose metabolism. GLP-1 receptor agonists have been widely used for treating diabetes and other insulin resistance-related diseases. However, mechanisms underlying the anti-diabetic effects of GLP-1 receptor agonists remain largely unknown. In this study, we investigated the effects of GLP-1 agonist exendin-4 on the expression of adiponectin, an insulin sensitizing hormone. We found that exendin-4 increased the expression and secretion of adiponectin both in vitro and in vivo. Our data showed that exendin-4 upregulated adiponectin expression at both mRNA and protein levels in adipocytes and adipose tissues. The effects of exendin-4 on adiponectin expression were dependent on the GLP-1 receptor. We further demonstrated important roles of Sirt1 and transcriptional factor Foxo-1 in mediating the function of exendin-4 in regulating adiponectin expression. Suppression of Sirt1 or Foxo-1 expression significantly impaired exendin-4-induced adiponectin expression. Consistently, exendin-4 up-regulated Sirt1 and Foxo-1 expression in vivo. Our work is the first study demonstrating the role of Sirt1/Foxo-1 in regulating the regulatory function of a GLP-1 receptor agonist in adiponectin expression both in vitro and in vivo. The results provide important information for the mechanism underlying the function of GLP-1R on improving insulin resistance and related diseases. PMID:28122026

  17. ROCK inhibitor Y-27632 enhances the survivability of dissociated buffalo (Bubalus bubalis) embryonic stem cell-like cells.

    PubMed

    Sharma, Ruchi; George, Aman; Chauhan, Manmohan S; Singla, Suresh; Manik, Radhey S; Palta, Prabhat

    2013-01-01

    This study investigated the effects of supplementation of culture medium with 10 μM Y-27632, a specific inhibitor of Rho kinase activity, for 6 days on self-renewal of buffalo embryonic stem (ES) cell-like cells at Passage 50-80. Y-27632 increased mean colony area (P<0.05) although it did not improve their survival. It decreased OCT4 expression (P<0.05), increased NANOG expression (P<0.05), but had no effect on SOX2 expression. It also increased expression of anti-apoptotic gene BCL-2 (P<0.05) and decreased that of pro-apoptotic genes BAX and BID (P<0.05). It increased plating efficiency of single-cell suspensions of ES cells (P<0.05). Following vitrification, the presence of Y-27632 in the vitrification solution or thawing medium or both did not improve ES cell colony survival. However, following seeding of clumps of ES cells transfected with pAcGFP1N1 carrying green fluorescent protein (GFP), Y-27632 increased colony formation rate (P<0.01). ES cell colonies that formed in all Y-27632-supplemented groups were confirmed for expression of pluripotency markers alkaline phosphatase, SSEA-4 and TRA-1-60, and for their ability to generate embryoid bodies containing cells that expressed markers of ectoderm, mesoderm and endoderm. In conclusion, Y-27632 improves survival of buffalo ES cells under unfavourable conditions such as enzymatic dissociation to single cells or antibiotic-assisted selection after transfection, without compromising their pluripotency.

  18. Uremic Conditions Drive Human Monocytes to Pro-Atherogenic Differentiation via an Angiotensin-Dependent Mechanism

    PubMed Central

    Trojanowicz, Bogusz; Ulrich, Christof; Seibert, Eric; Fiedler, Roman; Girndt, Matthias

    2014-01-01

    Aims Elevated expression levels of monocytic-ACE have been found in haemodialysis patients. They are not only epidemiologically linked with increased mortality and cardiovascular disease, but may also directly participate in the initial steps of atherosclerosis. To further address this question we tested the role of monocytic-ACE in promotion of atherosclerotic events in vitro under conditions mimicking those of chronic renal failure. Methods and Results Treatment of human primary monocytes or THP-1 cells with uremic serum as well as PMA-induced differentiation led to significantly up-regulated expression of ACE, further increased by additional treatment with LPS. Functionally, these monocytes revealed significantly increased adhesion and transmigration through endothelial monolayers. Overexpression of ACE in transfected monocytes or THP-1 cells led to development of more differentiated, macrophage-like phenotype with up-regulated expression of Arg1, MCSF, MCP-1 and CCR2. Expression of pro-inflammatory cytokines TNFa and IL-6 were also noticeably up-regulated. ACE overexpression resulted in significantly increased adhesion and transmigration properties. Transcriptional screening of ACE-overexpressing monocytes revealed noticeably increased expression of Angiotensin II receptors and adhesion- as well as atherosclerosis-related ICAM-1 and VCAM1. Inhibition of monocyte ACE or AngII-receptor signalling led to decreased adhesion potential of ACE-overexpressing cells. Conclusions Taken together, these data demonstrate that uremia induced expression of monocytic-ACE mediates the development of highly pro-atherogenic cells via an AngII-dependent mechanism. PMID:25003524

  19. MRNA and miRNA expression patterns associated to pathways linked to metal mixture health effects.

    PubMed

    Martínez-Pacheco, M; Hidalgo-Miranda, A; Romero-Córdoba, S; Valverde, M; Rojas, E

    2014-01-10

    Metals are a threat to human health by increasing disease risk. Experimental data have linked altered miRNA expression with exposure to some metals. MiRNAs comprise a large family of non-coding single-stranded molecules that primarily function to negatively regulate gene expression post-transcriptionally. Although several human populations are exposed to low concentrations of As, Cd and Pb as a mixture, most toxicology research focuses on the individual effects that these metals exert. Thus, this study aims to evaluate global miRNA and mRNA expression changes induced by a metal mixture containing NaAsO2, CdCl2, Pb(C2H3O2)2·3H2O and to predict possible metal-associated disease development under these conditions. Our results show that this metal mixture results in a miRNA expression profile that may be responsible for the mRNA expression changes observed under experimental conditions in which coding proteins are involved in cellular processes, including cell death, growth and proliferation related to the metal-associated inflammatory response and cancer. © 2013 Elsevier B.V. All rights reserved.

  20. NADPH Oxidase-Mediated ROS Production Determines Insulin's Action on the Retinal Microvasculature.

    PubMed

    Kida, Teruyo; Oku, Hidehiro; Horie, Taeko; Matsuo, Junko; Kobayashi, Takatoshi; Fukumoto, Masanori; Ikeda, Tsunehiko

    2015-10-01

    To determine whether insulin induces nitric oxide (NO) formation in retinal microvessels and to examine the effects of high glucose on the formation of NO. Freshly isolated rat retinal microvessels were incubated in normal (5.5 mM) or high (20 mM) glucose with or without insulin (100 nM). The levels of insulin-induced NO and reactive oxygen species (ROS) in the retinal microvessels were determined semiquantitatively using fluorescent probes, 4,5-diaminofluorescein diacetate, and hydroethidine, respectively, and a laser scanning confocal microscope. The insulin-induced changes of NO in rat retinal endothelial cells and pericytes cultured at different glucose concentrations (5.5 and 25 mM) were determined using flow cytometry. Nitric oxide synthase (NOS) protein levels were determined by Western blot analysis; intracellular levels of ROS were determined using fluorescence-activated cell sorting (FACS) analysis of ethidium fluorescence; and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase RNA expression was quantified using real-time PCR. Exposure of microvessels to insulin under normal glucose conditions led to a significant increase in NO levels; however, this increase was significantly suppressed when the microvessels were incubated under high glucose conditions. Intracellular levels of ROS were significantly increased in both retinal microvessels and cultured microvascular cells under high glucose conditions. The expression of NOS and NADPH oxidase were significantly increased in endothelial cells and pericytes under high glucose conditions. The increased formation of NO by insulin and its suppression by high glucose conditions suggests that ROS production mediated by NADPH oxidase is important by insulin's effect on the retinal microvasculature.

  1. Food Restriction Increases Acquisition, Persistence and Drug Prime-Induced Expression of a Cocaine-Conditioned Place Preference in Rats

    PubMed Central

    Zheng, Danielle; de Vaca, Soledad Cabeza; Carr, Kenneth D.

    2011-01-01

    Cocaine conditioned place preference (CPP) is more persistent in food-restricted than ad libitum fed rats. This study assessed whether food restriction acts during conditioning and/or expression to increase persistence. In Experiment 1, rats were food-restricted during conditioning with a 7.0 mg/kg (i.p.) dose of cocaine. After the first CPP test, half of the rats were switched to ad libitum feeding for three weeks, half remained on food restriction, and this was followed by CPP testing. Rats tested under the ad libitum feeding condition displayed extinction by the fifth test. Their CPP did not reinstate in response to overnight food deprivation or a cocaine prime. Rats maintained on food restriction displayed a persistent CPP. In Experiment 2, rats were ad libitum fed during conditioning with the 7.0 mg/kg dose. In the first test only a trend toward CPP was displayed. Rats maintained under the ad libitum feeding condition did not display a CPP during subsequent testing and did not respond to a cocaine prime. Rats tested under food-restriction also did not display a CPP, but expressed a CPP following a cocaine prime. In Experiment 3, rats were ad libitum fed during conditioning with a 12.0 mg/kg dose. After the first test, half of the rats were switched to food restriction for three weeks. Rats that were maintained under the ad libitum condition displayed extinction by the fourth test. Their CPP was not reinstated by a cocaine prime. Rats tested under food-restriction displayed a persistent CPP. These results indicate that food restriction lowers the threshold dose for cocaine CPP and interacts with a previously acquired CPP to increase its persistence. In so far as CPP models Pavlovian conditioning that contributes to addiction, these results suggest the importance of diet and the physiology of energy balance as modulatory factors. PMID:22074687

  2. Food restriction increases acquisition, persistence and drug prime-induced expression of a cocaine-conditioned place preference in rats.

    PubMed

    Zheng, Danielle; Cabeza de Vaca, Soledad; Carr, Kenneth D

    2012-01-01

    Cocaine conditioned place preference (CPP) is more persistent in food-restricted than ad libitum fed rats. This study assessed whether food restriction acts during conditioning and/or expression to increase persistence. In Experiment 1, rats were food-restricted during conditioning with a 7.0 mg/kg (i.p.) dose of cocaine. After the first CPP test, half of the rats were switched to ad libitum feeding for three weeks, half remained on food restriction, and this was followed by CPP testing. Rats tested under the ad libitum feeding condition displayed extinction by the fifth test. Their CPP did not reinstate in response to overnight food deprivation or a cocaine prime. Rats maintained on food restriction displayed a persistent CPP. In Experiment 2, rats were ad libitum fed during conditioning with the 7.0 mg/kg dose. In the first test only a trend toward CPP was displayed. Rats maintained under the ad libitum feeding condition did not display a CPP during subsequent testing and did not respond to a cocaine prime. Rats tested under food-restriction also did not display a CPP, but expressed a CPP following a cocaine prime. In Experiment 3, rats were ad libitum fed during conditioning with a 12.0 mg/kg dose. After the first test, half of the rats were switched to food restriction for three weeks. Rats that were maintained under the ad libitum condition displayed extinction by the fourth test. Their CPP was not reinstated by a cocaine prime. Rats tested under food-restriction displayed a persistent CPP. These results indicate that food restriction lowers the threshold dose for cocaine CPP and interacts with a previously acquired CPP to increase its persistence. In so far as CPP models Pavlovian conditioning that contributes to addiction, these results suggest the importance of diet and the physiology of energy balance as modulatory factors. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Transient co-expression of post-transcriptional gene silencing suppressors for increased in planta expression of a recombinant anthrax receptor fusion protein.

    PubMed

    Arzola, Lucas; Chen, Junxing; Rattanaporn, Kittipong; Maclean, James M; McDonald, Karen A

    2011-01-01

    Potential epidemics of infectious diseases and the constant threat of bioterrorism demand rapid, scalable, and cost-efficient manufacturing of therapeutic proteins. Molecular farming of tobacco plants provides an alternative for the recombinant production of therapeutics. We have developed a transient production platform that uses Agrobacterium infiltration of Nicotiana benthamiana plants to express a novel anthrax receptor decoy protein (immunoadhesin), CMG2-Fc. This chimeric fusion protein, designed to protect against the deadly anthrax toxins, is composed of the von Willebrand factor A (VWA) domain of human capillary morphogenesis 2 (CMG2), an effective anthrax toxin receptor, and the Fc region of human immunoglobulin G (IgG). We evaluated, in N. benthamiana intact plants and detached leaves, the expression of CMG2-Fc under the control of the constitutive CaMV 35S promoter, and the co-expression of CMG2-Fc with nine different viral suppressors of post-transcriptional gene silencing (PTGS): p1, p10, p19, p21, p24, p25, p38, 2b, and HCPro. Overall, transient CMG2-Fc expression was higher on intact plants than detached leaves. Maximum expression was observed with p1 co-expression at 3.5 days post-infiltration (DPI), with a level of 0.56 g CMG2-Fc per kg of leaf fresh weight and 1.5% of the total soluble protein, a ten-fold increase in expression when compared to absence of suppression. Co-expression with the p25 PTGS suppressor also significantly increased the CMG2-Fc expression level after just 3.5 DPI.

  4. Improved viability and activity of neutrophils differentiated from HL-60 cells by co-culture with adipose tissue-derived mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Yoon Shin; Lim, Goh-Woon; Cho, Kyung-Ah

    Highlights: Black-Right-Pointing-Pointer Neutropenia is a principal complication of cancer treatment. Black-Right-Pointing-Pointer Co-culture of neutrophils with AD-MSC retained cell survival and proliferation and inhibited neutrophil apoptosis under serum starved conditions. Black-Right-Pointing-Pointer AD-MSC increased functions of neutrophil. Black-Right-Pointing-Pointer AD-MSC promoted the viability of neutrophils by enhancing respiratory burst through the expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Black-Right-Pointing-Pointer AD-MSC can be used to improve immunity for neutropenia treatment. -- Abstract: Neutropenia is a principal complication of cancer treatment. We investigated the supportive effect of adipose tissue-derived mesenchymal stem cells (AD-MSCs) on the viability and function of neutrophils. Neutrophils were derived from HL-60 cellsmore » by dimethylformamide stimulation and cultured with or without AD-MSCs under serum-starved conditions to evaluate neutrophil survival, proliferation, and function. Serum starvation resulted in the apoptosis of neutrophils and decreased cell survival. The co-culture of neutrophils and AD-MSCs resulted in cell survival and inhibited neutrophil apoptosis under serum-starved conditions. The survival rate of neutrophils was prolonged up to 72 h, and the expression levels of interferon (IFN)-{alpha}, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor, and transforming growth factor (TGF)-{beta} in AD-MSCs were increased after co-culture with neutrophils. AD-MSCs promoted the viability of neutrophils by inhibiting apoptosis as well as enhancing respiratory burst, which could potentially be mediated by the increased expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Thus, we conclude that the use of AD-MSCs may be a promising cell-based therapy for increasing immunity by accelerating neutrophil function.« less

  5. Fructose-induced increases in expression of intestinal fructolytic and gluconeogenic genes are regulated by GLUT5 and KHK

    PubMed Central

    Patel, Chirag; Douard, Veronique; Yu, Shiyan; Tharabenjasin, Phuntila; Gao, Nan

    2015-01-01

    Marked increases in fructose consumption have been tightly linked to metabolic diseases. One-third of ingested fructose is metabolized in the small intestine, but the underlying mechanisms regulating expression of fructose-metabolizing enzymes are not known. We used genetic mouse models to test the hypothesis that fructose absorption via glucose transporter protein, member 5 (GLUT5), metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein in brain 11a (Rab11a)-dependent endosomes are required for the regulation of intestinal fructolytic and gluconeogenic enzymes. Fructose feeding increased the intestinal mRNA and protein expression of these enzymes in the small intestine of adult wild-type (WT) mice compared with those gavage fed with lysine or glucose. Fructose did not increase expression of these enzymes in the GLUT5 knockout (KO) mice. Blocking intracellular fructose metabolism by KHK ablation also prevented fructose-induced upregulation. Glycolytic hexokinase I expression was similar between WT and GLUT5- or KHK-KO mice and did not vary with feeding solution. Gavage feeding with the fructose-specific metabolite glyceraldehyde did not increase enzyme expression, suggesting that signaling occurs before the hydrolysis of fructose to three-carbon compounds. Impeding GLUT5 trafficking to the apical membrane using intestinal epithelial cell-specific Rab11a-KO mice impaired fructose-induced upregulation. KHK expression was uniformly distributed along the villus but was localized mainly in the basal region of the cytosol of enterocytes. The feedforward upregulation of fructolytic and gluconeogenic enzymes specifically requires GLUT5 and KHK and may proactively enhance the intestine's ability to process anticipated increases in dietary fructose concentrations. PMID:26084694

  6. Protection by sulforaphane from type 1 diabetes-induced testicular apoptosis is associated with the up-regulation of Nrf2 expression and function.

    PubMed

    Jiang, Xin; Bai, Yang; Zhang, Zhiguo; Xin, Ying; Cai, Lu

    2014-09-01

    Diabetes-induced testicular apoptosis is predominantly due to increased oxidative stress. The nuclear factor-erythroid 2-related factor 2 (Nrf2), as a master transcription factor in controlling anti-oxidative systems, is able to be induced by sulforaphane (SFN). To examine whether SFN prevents testicular apoptosis, type 1 diabetic mouse model was induced with multiple low-dose streptozotocin. Diabetic and age-matched control mice were treated with and without SFN at 0.5mg/kg daily in five days of each week for 3months and then kept until 6months. Diabetes significantly increased testicular apoptosis that was associated with endoplasmic reticulum stress and mitochondrial cell death pathways, shown by the increased expression of C/EBP homologous protein (CHOP), cleaved caspase-12, Bax to Bcl2 expression ratio, and cleaved caspase-3. Diabetes also significantly increased testicular oxidative damage, inflammation and fibrosis, and decreased germ cell proliferation. All these diabetic effects were significantly prevented by SFN treatment for the first 3months, and the protective effect could be sustained at 3months after SFN treatment. SFN was able to up-regulate Nrf2 expression and function. The latter was reflected by the increased phosphorylation of Nrf2 at Ser40 and expression of Nrf2 downstream antioxidants at mRNA and protein levels. These results suggest that type 1 diabetes significantly induced testicular apoptosis and damage along with increasing oxidative stress and cell death and suppressing Nrf2 expression and function. SFN is able to prevent testicular oxidative damage and apoptosis in type 1 diabetes mice, which may be associated with the preservation of testicular Nrf2 expression and function under diabetic condition. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Effect of polysaccharide of dendrobium candidum on proliferation and apoptosis of human corneal epithelial cells in high glucose

    PubMed Central

    Li, Qiangxiang; Chen, Jing; Li, Yajia; Chen, Ting; Zou, Jing; Wang, Hua

    2017-01-01

    Abstract Background: The aim of the study was to observe the effect of polysaccharide of dendrobium candidum (PDC) and high glucose on proliferation, apoptosis of human corneal epithelial cells (HCEC). Methods: The MTT method was used to screen and take the optimal high-glucose concentration, treatment time, and PDC concentration using HCEC and divide it into 4 groups: control group (C), high glucose group (HG), PDC group, and HG + PDC group. We observed and compared the effect of the 4 groups on HCEC proliferation by MTT, apoptosis by Annexin V-FITC/PI double fluorescent staining and flow cytometry (FCM), and expression of bax mRNA and bcl-2 mRNA by RT-qPCR. Results: Compared with the control group, proliferative activity of HCEC cells was reduced; the cells apoptosis ratio was increased; the expression of bax mRNA was increased, and the expression of bcl-2 mRNA was reduced in the HG group. Proliferative activity of HCEC cells in the PDC group was increased, and the expression of bcl-2 mRNA was increased but that of bax mRNA was decreased. Proliferative activity of HCEC cells in the HG + PDC group was increased, but it could not restore to the normal level; the expression of bax mRNA was significantly decreased but the expression of bcl-2 mRNA was significantly increased. Conclusions: Our results demonstrate that high glucose can inhibit proliferative activity and induce apoptosis of HCEC. PDC can improve the proliferative activity of HCEC cells under the high glucose environment and reduce the apoptosis of cells by regulating the expression of bax and bcl-2. PDC play a very important role on protecting and repairing of corneal epithelial cells damage in high glucose. PMID:28796073

  8. BAX inhibitor-1 regulates autophagy by controlling the IRE1α branch of the unfolded protein response

    PubMed Central

    Castillo, Karen; Rojas-Rivera, Diego; Lisbona, Fernanda; Caballero, Benjamín; Nassif, Melissa; Court, Felipe A; Schuck, Sebastian; Ibar, Consuelo; Walter, Peter; Sierralta, Jimena; Glavic, Alvaro; Hetz, Claudio

    2011-01-01

    Both autophagy and apoptosis are tightly regulated processes playing a central role in tissue homeostasis. Bax inhibitor 1 (BI-1) is a highly conserved protein with a dual role in apoptosis and endoplasmic reticulum (ER) stress signalling through the regulation of the ER stress sensor inositol requiring kinase 1 α (IRE1α). Here, we describe a novel function of BI-1 in the modulation of autophagy. BI-1-deficient cells presented a faster and stronger induction of autophagy, increasing LC3 flux and autophagosome formation. These effects were associated with enhanced cell survival under nutrient deprivation. Repression of autophagy by BI-1 was dependent on cJun-N terminal kinase (JNK) and IRE1α expression, possibly due to a displacement of TNF-receptor associated factor-2 (TRAF2) from IRE1α. Targeting BI-1 expression in flies altered autophagy fluxes and salivary gland degradation. BI-1 deficiency increased flies survival under fasting conditions. Increased expression of autophagy indicators was observed in the liver and kidney of bi-1-deficient mice. In summary, we identify a novel function of BI-1 in multicellular organisms, and suggest a critical role of BI-1 as a stress integrator that modulates autophagy levels and other interconnected homeostatic processes. PMID:21926971

  9. BAX inhibitor-1 regulates autophagy by controlling the IRE1α branch of the unfolded protein response.

    PubMed

    Castillo, Karen; Rojas-Rivera, Diego; Lisbona, Fernanda; Caballero, Benjamín; Nassif, Melissa; Court, Felipe A; Schuck, Sebastian; Ibar, Consuelo; Walter, Peter; Sierralta, Jimena; Glavic, Alvaro; Hetz, Claudio

    2011-09-16

    Both autophagy and apoptosis are tightly regulated processes playing a central role in tissue homeostasis. Bax inhibitor 1 (BI-1) is a highly conserved protein with a dual role in apoptosis and endoplasmic reticulum (ER) stress signalling through the regulation of the ER stress sensor inositol requiring kinase 1 α (IRE1α). Here, we describe a novel function of BI-1 in the modulation of autophagy. BI-1-deficient cells presented a faster and stronger induction of autophagy, increasing LC3 flux and autophagosome formation. These effects were associated with enhanced cell survival under nutrient deprivation. Repression of autophagy by BI-1 was dependent on cJun-N terminal kinase (JNK) and IRE1α expression, possibly due to a displacement of TNF-receptor associated factor-2 (TRAF2) from IRE1α. Targeting BI-1 expression in flies altered autophagy fluxes and salivary gland degradation. BI-1 deficiency increased flies survival under fasting conditions. Increased expression of autophagy indicators was observed in the liver and kidney of bi-1-deficient mice. In summary, we identify a novel function of BI-1 in multicellular organisms, and suggest a critical role of BI-1 as a stress integrator that modulates autophagy levels and other interconnected homeostatic processes.

  10. Central roles of iron in the regulation of oxidative stress in the yeast Saccharomyces cerevisiae.

    PubMed

    Matsuo, Ryo; Mizobuchi, Shogo; Nakashima, Maya; Miki, Kensuke; Ayusawa, Dai; Fujii, Michihiko

    2017-10-01

    Oxygen is essential for aerobic organisms but causes cytotoxicity probably through the generation of reactive oxygen species (ROS). In this study, we screened for the genes that regulate oxidative stress in the yeast Saccharomyces cerevisiae, and found that expression of CTH2/TIS11 caused an increased resistance to ROS. CTH2 is up-regulated upon iron starvation and functions to remodel metabolism to adapt to iron starvation. We showed here that increased resistance to ROS by CTH2 would likely be caused by the decreased ROS production due to the decreased activity of mitochondrial respiration, which observation is consistent with the fact that CTH2 down-regulates the mitochondrial respiratory proteins. We also found that expression of CTH1, a paralog of CTH2, also caused an increased resistance to ROS. This finding supported the above view, because mitochondrial respiratory proteins are the common targets of CTH1 and CTH2. We further showed that supplementation of iron in medium augmented the growth of S. cerevisiae under oxidative stress, and expression of CTH2 and supplementation of iron collectively enhanced its growth under oxidative stress. Since CTH2 is regulated by iron, these findings suggested that iron played crucial roles in the regulation of oxidative stress in S. cerevisiae.

  11. Effect of manipulating recombination rates on response to selection in livestock breeding programs.

    PubMed

    Battagin, Mara; Gorjanc, Gregor; Faux, Anne-Michelle; Johnston, Susan E; Hickey, John M

    2016-06-22

    In this work, we performed simulations to explore the potential of manipulating recombination rates to increase response to selection in livestock breeding programs. We carried out ten replicates of several scenarios that followed a common overall structure but differed in the average rate of recombination along the genome (expressed as the length of a chromosome in Morgan), the genetic architecture of the trait under selection, and the selection intensity under truncation selection (expressed as the proportion of males selected). Recombination rates were defined by simulating nine different chromosome lengths: 0.10, 0.25, 0.50, 1, 2, 5, 10, 15 and 20 Morgan, respectively. One Morgan was considered to be the typical chromosome length for current livestock species. The genetic architecture was defined by the number of quantitative trait variants (QTV) that affected the trait under selection. Either a large (10,000) or a small (1000 or 500) number of QTV was simulated. Finally, the proportions of males selected under truncation selection as sires for the next generation were equal to 1.2, 2.4, 5, or 10 %. Increasing recombination rate increased the overall response to selection and decreased the loss of genetic variance. The difference in cumulative response between low and high recombination rates increased over generations. At low recombination rates, cumulative response to selection tended to asymptote sooner and the genetic variance was completely eroded. If the trait under selection was affected by few QTV, differences between low and high recombination rates still existed, but the selection limit was reached at all rates of recombination. Higher recombination rates can enhance the efficiency of breeding programs to turn genetic variation into response to selection. However, to increase response to selection significantly, the recombination rate would need to be increased 10- or 20-fold. The biological feasibility and consequences of such large increases in recombination rates are unknown.

  12. Impact of low oxygen tension on stemness, proliferation and differentiation potential of human adipose-derived stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jane Ru; Pingguan-Murphy, Belinda; Wan Abas, Wan Abu Bakar

    2014-05-30

    Highlights: • Hypoxia maintains the stemness of adipose-derived stem cells (ASCs). • ASCs show an increased proliferation rate under low oxygen tension. • Oxygen level as low as 2% enhances the chondrogenic differentiation potential of ASCs. • HIF-1α may regulate the proliferation and differentiation activities of ASCs under hypoxia. - Abstract: Adipose-derived stem cells (ASCs) have been found adapted to a specific niche with low oxygen tension (hypoxia) in the body. As an important component of this niche, oxygen tension has been known to play a critical role in the maintenance of stem cell characteristics. However, the effect of O{submore » 2} tension on their functional properties has not been well determined. In this study, we investigated the effects of O{sub 2} tension on ASCs stemness, differentiation and proliferation ability. Human ASCs were cultured under normoxia (21% O{sub 2}) and hypoxia (2% O{sub 2}). We found that hypoxia increased ASC stemness marker expression and proliferation rate without altering their morphology and surface markers. Low oxygen tension further enhances the chondrogenic differentiation ability, but reduces both adipogenic and osteogenic differentiation potential. These results might be correlated with the increased expression of HIF-1α under hypoxia. Taken together, we suggest that growing ASCs under 2% O{sub 2} tension may be important in expanding ASCs effectively while maintaining their functional properties for clinical therapy, particularly for the treatment of cartilage defects.« less

  13. Activation of Peroxisome Proliferator-activated Receptor γ (PPARγ) and CD36 Protein Expression

    PubMed Central

    Yang, Xiaoxiao; Zhang, Wenwen; Chen, Yuanli; Li, Yan; Sun, Lei; Liu, Ying; Liu, Mengyang; Yu, Miao; Li, Xiaoju; Han, Jihong; Duan, Yajun

    2016-01-01

    Progesterone or its analog, one of components of hormone replacement therapy, may attenuate the cardioprotective effects of estrogen. However, the underlying mechanisms have not been fully elucidated. Expression of CD36, a receptor for oxidized LDL (oxLDL) that enhances macrophage/foam cell formation, is activated by the transcription factor peroxisome proliferator-activated receptor γ (PPARγ). CD36 also functions as a fatty acid transporter to influence fatty acid metabolism and the pathophysiological status of several diseases. In this study, we determined that progesterone induced macrophage CD36 expression, which is related to progesterone receptor (PR) activity. Progesterone enhanced cellular oxLDL uptake in a CD36-dependent manner. Mechanistically, progesterone increased PPARγ expression and PPARγ promoter activity in a PR-dependent manner and the binding of PR with the progesterone response element in the PPARγ promoter. Specific deletion of macrophage PPARγ (MφPPARγ KO) expression in mice abolished progesterone-induced macrophage CD36 expression and cellular oxLDL accumulation. We also determined that, associated with gestation and increased serum progesterone levels, CD36 and PPARγ expression in mouse adipose tissue, skeletal muscle, and peritoneal macrophages were substantially activated. Taken together, our study demonstrates that progesterone can play dual pathophysiological roles by activating PPARγ expression, in which progesterone increases macrophage CD36 expression and oxLDL accumulation, a negative effect on atherosclerosis, and enhances the PPARγ-CD36 pathway in adipose tissue and skeletal muscle, a protective effect on pregnancy. PMID:27226602

  14. Ineffective Erythropoiesis: Anemia and Iron Overload.

    PubMed

    Gupta, Ritama; Musallam, Khaled M; Taher, Ali T; Rivella, Stefano

    2018-04-01

    Stress erythropoiesis (SE) is characterized by an imbalance in erythroid proliferation and differentiation under increased demands of erythrocyte generation and tissue oxygenation. β-thalassemia represents a chronic state of SE, called ineffective erythropoiesis (IE), exhibiting an expansion of erythroid-progenitor pool and deposition of alpha chains on erythrocyte membranes, causing cell death and anemia. Concurrently, there is a decrease in hepcidin expression and a subsequent state of iron overload. There are substantial investigative efforts to target increased iron absorption under IE. There are also avenues for targeting cell contact and signaling within erythroblastic islands under SE, for therapeutic benefits. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Resveratrol increases nucleus pulposus matrix synthesis through activating the PI3K/Akt signaling pathway under mechanical compression in a disc organ culture.

    PubMed

    Han, Xiaorui; Leng, Xiaoming; Zhao, Man; Wu, Mei; Chen, Amei; Hong, Guoju; Sun, Ping

    2017-12-22

    Disc nucleus pulposus (NP) matrix homeostasis is important for normal disc function. Mechanical overloading seriously decreases matrix synthesis and increases matrix degradation. The present study aims to investigate the effects of resveratrol on disc NP matrix homeostasis under a relatively high-magnitude mechanical compression and the potential mechanism underlying this process. Porcine discs were perfusion-cultured and subjected to a relatively high-magnitude mechanical compression (1.3 MPa at a frequency of 1.0 Hz for 2 h once per day) for 7 days in a mechanically active bioreactor. The non-compressed discs were used as controls. Resveratrol was added along with culture medium to observe the effects of resveratrol on NP matrix synthesis under mechanical load respectively. NP matrix synthesis was evaluated by histology, biochemical content (glycosaminoglycan (GAG) and hydroxyproline (HYP)), and expression of matrix macromolecules (aggrecan and collagen II). Results showed that this high-magnitude mechanical compression significantly decreased NP matrix content, indicated by the decreased staining intensity of Alcian Blue and biochemical content (GAG and HYP), and the down-regulated expression of NP matrix macromolecules (aggrecan and collagen II). Further analysis indicated that resveratrol partly stimulated NP matrix synthesis and increased activity of the PI3K/Akt pathway in a dose-dependent manner under mechanical compression. Together, resveratrol is beneficial for disc NP matrix synthesis under mechanical overloading, and the activation of the PI3K/Akt pathway may participate in this regulatory process. Resveratrol may be promising to regenerate mechanical overloading-induced disc degeneration. © 2017 The Author(s).

  16. Cloning and characterization of acid invertase genes in the roots of the metallophyte Kummerowia stipulacea (Maxim.) Makino from two populations: Differential expression under copper stress.

    PubMed

    Zhang, Luan; Xiong, Zhi-ting; Xu, Zhong-rui; Liu, Chen; Cai, Shen-wen

    2014-06-01

    The roots of metallophytes serve as the key interface between plants and heavy metal-contaminated underground environments. It is known that the roots of metallicolous plants show a higher activity of acid invertase enzymes than those of non-metallicolous plants when under copper stress. To test whether the higher activity of acid invertases is the result of increased expression of acid invertase genes or variations in the amino acid sequences between the two population types, we isolated full cDNAs for acid invertases from two populations of Kummerowia stipulacea (from metalliferous and non-metalliferous soils), determined their nucleotide sequences, expressed them in Pichia pastoris, and conducted real-time PCR to determine differences in transcript levels during Cu stress. Heterologous expression of acid invertase cDNAs in P. pastoris indicated that variations in the amino acid sequences of acid invertases between the two populations played no significant role in determining enzyme characteristics. Seedlings of K. stipulacea were exposed to 0.3µM Cu(2+) (control) and 10µM Cu(2+) for 7 days under hydroponics׳ conditions. The transcript levels of acid invertases in metallicolous plants were significantly higher than in non-metallicolous plants when under copper stress. The results suggest that the expression of acid invertase genes in metallicolous plants of K. stipulacea differed from those in non-metallicolous plants under such conditions. In addition, the sugars may play an important role in regulating the transcript level of acid invertase genes and acid invertase genes may also be involved in root/shoot biomass allocation. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Molecular mechanisms underlying the physiological responses of the cold-water coral Desmophyllum dianthus to ocean acidification

    NASA Astrophysics Data System (ADS)

    Carreiro-Silva, M.; Cerqueira, T.; Godinho, A.; Caetano, M.; Santos, R. S.; Bettencourt, R.

    2014-06-01

    Cold-water corals (CWCs) are thought to be particularly vulnerable to ocean acidification (OA) due to increased atmospheric pCO2, because they inhabit deep and cold waters where the aragonite saturation state is naturally low. Several recent studies have evaluated the impact of OA on organism-level physiological processes such as calcification and respiration. However, no studies to date have looked at the impact at the molecular level of gene expression. Here, we report results of a long-term, 8-month experiment to compare the physiological responses of the CWC Desmophyllum dianthus to OA at both the organismal and gene expression levels under two pCO2/pH treatments: ambient pCO2 (460 μatm, pHT = 8.01) and elevated pCO2 (997 μatm, pHT = 7.70). At the organismal level, no significant differences were detected in the calcification and respiration rates of D. dianthus. Conversely, significant differences were recorded in gene expression profiles, which showed an up-regulation of genes involved in cellular stress (HSP70) and immune defence (mannose-binding c-type lectin). Expression of alpha-carbonic anhydrase, a key enzyme involved in the synthesis of coral skeleton, was also significantly up-regulated in corals under elevated pCO2, indicating that D. dianthus was under physiological reconditioning to calcify under these conditions. Thus, gene expression profiles revealed physiological impacts that were not evident at the organismal level. Consequently, understanding the molecular mechanisms behind the physiological processes involved in a coral's response to elevated pCO2 is critical to assess the ability of CWCs to acclimate or adapt to future OA conditions.

  18. Study of the expression and function of ACY1 in patients with colorectal cancer

    PubMed Central

    Yu, Bing; Liu, Xuezhong; Cao, Xiuzhen; Zhang, Mingyue; Chang, Hong

    2017-01-01

    Aminoacylase 1 (ACY1) is important for regulating the proliferation of numerous types of cancer. However, the expression and mechanisms underlying the function of ACY1 in colorectal cancer remain unclear. In order to investigate the expression and function of ACY1 in colorectal cancer, tumor tissue and blood samples were collected for analysis from 132 patients diagnosed with colorectal cancer. Reverse transcription-quantitative polymerase chain reaction analysis and western blotting identified significantly increased expression of ACY1 mRNA in colorectal tumor tissue (P<0.05 vs. adjacent normal tissue) and notably increased ACY1 protein levels. This ACY1 mRNA expression was found to be positively correlated with tumor stage. In addition, plasma ACY1 concentration was increased in patients with colorectal cancer compared with healthy controls. Furthermore, in vitro knockdown of ACY1 in human colorectal cancer HT-29 cells was shown to inhibit proliferation and increase apoptosis. This effect was found to be associated with the activation of ERK1 and TGF-β1 signaling. In conclusion, the results of the present study suggest that ACY1 promotes tumor progression, and thus may be a potential target for the diagnosis and treatment of colorectal cancer. PMID:28454420

  19. ATF4 is involved in the regulation of simulated microgravity induced integrated stress response

    NASA Astrophysics Data System (ADS)

    Li, Yingxian; Li, Qi; Wang, Xiaogang; Sun, Qiao; Wan, Yumin; Li, Yinghui; Bai, Yanqiang

    Objective: Many important metabolic and signaling pathways have been identified as being affected by microgravity, thereby altering cellular functions such as proliferation, differentiation, maturation and cell survival. It has been demonstrated that microgravity could induce all kinds of stress response such as endoplasmic reticulum stress and oxidative stress et al. ATF4 belongs to the ATF/CREB family of basic region leucine zipper transcription factors. ATF4 is induced by stress signals including anoxia/hypoxia, ER stress, amino acid deprivation and oxidative stress. ATF4 regulates the expression of genes involved in oxidative stress, amino acid synthesis, differentiation, metastasis and angiogenesis. The aim of this study was to examine the changes of ATF4 under microgravity, and to investigate the role of ATF4 in microgravity induced stress. MethodsMEF cells were cultured in clinostat to simulate microgravity. Reverse transcription polymerase chain reaction (RT-PCR) and western blotting were used to examine mRNA and protein levels of ATF4 expression under simulated microgravity in MEF cells. ROS levels were measured with the use of the fluorescent signal H2DCF-DA. GFP-XBP1 stably transfected cell lines was used to detect the extent of ER stress under microgravity by the intensity of GFP. Dual luciferase reporter assay was used to detect the activity of ATF4. Co-immunoprecipitation was performed to analyze protein interaction. Results: ATF4 protein levels in MEF cells increased under simulated microgravity. However, ATF4 mRNA levels were consistent. XBP1 splicing can be induced due to ER stress caused by simulated microgravity. At the same time, ROS levels were also increased. Increased ATF4 could promote the expression of CHOP, which is responsible for cell apoptosis. ATF4 also play an important role in cellular anti-oxidant stress. In ATF4 -/-MEF cells, the ROS levels after H2O2 treatment were obviously higher than that of wild type cells. HDAC4 was identified to be ATF4 interaction protein. Under microgravity, HDAC4 levels were also increased. However, the increased HDAC4 could suppress the activity of ATF4. Conclusions: These results indicated that microgravity could induce both ER stress and oxidative stress. ATF4 is involved in the regulation of these processes by activating both pro-apoptosis and pro-survival signaling. The dual role of ATF4 could be coordinated by increased HDAC4 levels under microgravity through their direct interaction.

  20. Syndecan-1 knockdown inhibits glioma cell proliferation and invasion by deregulating a c-src/FAK-associated signaling pathway.

    PubMed

    Shi, Shuang; Zhong, Dong; Xiao, Yao; Wang, Bing; Wang, Wentao; Zhang, Fu'an; Huang, Haoyang

    2017-06-20

    Recent studies have shown that increased syndecan-1 (SDC1) expression in human glioma is associated with higher tumor grades and poor prognoses, but its oncogenic functions and the underlying molecular mechanisms remain unknown. Here, we examined SDC1 expression in datasets from The Cancer Genome Atlas and the National Center for Biotechnology Information Gene Expression Omnibus. Elevated SDC1 expression in glioma was closely associated with increases in tumor progression and shorter survival. We also examined SDC1 expression and evaluated the effects of stable SDC1 knockdown in glioma cell lines. SDC1 knockdown attenuated proliferation and invasion by glioma cells and markedly decreased PCNA and MMP-9 mRNA and protein expression. In a xenograft model, SDC1 knockdown suppressed the tumorigenic effects of U87 cells in vivo. SDC1 knockdown decreased phosphorylation of the c-src/FAK complex and its downstream signaling molecules, Erk, Akt and p38 MAPK. These results suggest that SDC1 may be a novel therapeutic target in the treatment of glioma.

  1. Role of MicroRNA-143 in Nerve Injury-Induced Upregulation of Dnmt3a Expression in Primary Sensory Neurons

    PubMed Central

    Xu, Bo; Cao, Jing; Zhang, Jun; Jia, Shushan; Wu, Shaogen; Mo, Kai; Wei, Guihua; Liang, Lingli; Miao, Xuerong; Bekker, Alex; Tao, Yuan-Xiang

    2017-01-01

    Peripheral nerve injury increased the expression of the DNA methyltransferase 3A (Dnmt3a) mRNA and its encoding Dnmt3a protein in injured dorsal root ganglia (DRG). This increase is considered as an endogenous instigator in neuropathic pain genesis through epigenetic silencing of pain-associated genes (such as Oprm1) in injured DRG. However, how DRG DNMT3a is increased following peripheral nerve injury is still elusive. We reported here that peripheral nerve injury caused by the fifth spinal nerve ligation (SNL) downregulated microRNA (miR)-143 expression in injured DRG. This downregulation was required for SNL-induced DRG Dnmt3a increase as rescuing miR-143 downregulation through microinjection of miR-143 mimics into injured DRG blocked the SNL-induced increase in Dnmt3a and restored the SNL-induced decreases in Oprm1 mRNA and its encoding mu opioid receptor (MOR) in injured DRG, impaired spinal cord central sensitization and neuropathic pain, and improved morphine analgesic effects following SNL. Mimicking SNL-induced DRG miR-143 downregulation through DRG microinjection of miR143 inhibitors in naive rats increased the expression of Dnmt3a and reduced the expression of Oprm1 mRNA and MOR in injected DRG and produced neuropathic pain-like symptoms. These findings suggest that miR-143 is a negative regulator in Dnmt3a expression in the DRG under neuropathic pain conditions and may be a potential target for therapeutic management of neuropathic pain. PMID:29170626

  2. Mesenchymal stem cells increase skin graft survival time and up-regulate PD-L1 expression in splenocytes of mice.

    PubMed

    Moravej, Ali; Geramizadeh, Bita; Azarpira, Negar; Zarnani, Amir-Hassan; Yaghobi, Ramin; Kalani, Mehdi; Khosravi, Maryam; Kouhpayeh, Amin; Karimi, Mohammad-Hossein

    2017-02-01

    Recently, mesenchymal stem cells (MSCs) have gained considerable interests as hopeful therapeutic cells in transplantation due to their immunoregulatory functions. But exact mechanisms underlying MSCs immunoregulatory function is not fully understood. Herein, in addition to investigate the ability of MSCs to prolong graft survival time, the effects of them on the expression of PD-L1 and IDO immunomodulatory molecules in splenocytes of skin graft recipient mice was clarified. To achieve this goal, full-thickness skins were transplanted from C57BL/6 to BALB/c mice. MSCs were isolated from bone marrow of BALB/c mice and injected to the recipient mice. Skin graft survival was monitored daily to determine graft rejection time. On days 2, 5 and 10 post skin transplantation, serum cytokine levels and expression of PD-L1 and IDO mRNA and protein in the splenocytes of recipient mice were evaluated. The results showed that administration of MSCs prolonged skin graft survival time from 11 to 14 days. On days 2 and 5 post transplantation, splenocytes PD-L1 expression and IL-10 serum level in MSCs treated mice were higher than those in the controls, while IL-2 and IFN-γ levels were lower. Rejection in MSCs treated mice was accompanied by an increase in IL-2 and IFN-γ, and decrease in PD-L1 expression and IL-10 level. No difference in the expression of IDO between MSCs treated mice and controls was observed. In conclusion, we found that one of the mechanisms underlying MSCs immunomodulatory function could be up-regulating PD-L1 expression. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  3. Hyperactive mutant of a wheat plasma membrane Na+/H+ antiporter improves the growth and salt tolerance of transgenic tobacco.

    PubMed

    Zhou, Yang; Lai, Zesen; Yin, Xiaochang; Yu, Shan; Xu, Yuanyuan; Wang, Xiaoxiao; Cong, Xinli; Luo, Yuehua; Xu, Haixia; Jiang, Xingyu

    2016-12-01

    Wheat SOS1 (TaSOS1) activity could be relieved upon deletion of the C-terminal 168 residues (the auto-inhibitory domain). This truncated form of wheat SOS1 (TaSOS1-974) was shown to increase compensation (compared to wild-type TaSOS1) for the salt sensitivity of a yeast mutant strain, AXT3K, via increased Na + transportation out of cells during salinity stress. Expression of the plasma membrane proteins TaSOS1-974 or TaSOS1 improved the growth of transgenic tobacco plants compared with wild-type plants under normal conditions. However, plants expressing TaSOS1-974 grew better than TaSOS1-transformed plants. Upon salinity stress, Na + efflux and K + influx rates in the roots of transgenic plants expressing TaSOS1-974 or TaSOS1 were greater than those of wild-type plants. Furthermore, compared to TaSOS1-transgenic plants, TaSOS1-974-expressing roots showed faster Na + efflux and K + influx, resulting in less Na + and more K + accumulation in TaSOS1-974-transgenic plants compared to TaSOS1-transgenic and wild-type plants. TaSOS1-974-expressing plants had the lowest MDA content and electrolyte leakage among all tested plants, indicating that TaSOS1-974 might protect the plasma membrane against oxidative damage generated by salt stress. Overall, TaSOS1-974 conferred higher salt tolerance in transgenic plants compared to TaSOS1. Consistent with this result, transgenic plants expressing TaSOS1-974 showed a better growth performance than TaSOS1-expressing and wild-type plants under saline conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Ribosomal binding site sequences and promoters for expressing glutamate decarboxylase and producing γ-aminobutyrate in Corynebacterium glutamicum.

    PubMed

    Shi, Feng; Luan, Mingyue; Li, Yongfu

    2018-04-18

    Glutamate decarboxylase (GAD) converts L-glutamate (Glu) into γ-aminobutyric acid (GABA). Corynebacterium glutamicum that expresses exogenous GAD gene, gadB2 or gadB1, can synthesize GABA from its own produced Glu. To enhance GABA production in C. glutamicum, ribosomal binding site (RBS) sequence and promoter were searched and optimized for increasing the expression efficiency of gadB2. R4 exhibited the highest strength among RBS sequences tested, with 6 nt the optimal aligned spacing (AS) between RBS and start codon. This combination of RBS sequence and AS contributed to gadB2 expression, increased GAD activity by 156% and GABA production by 82% compared to normal strong RBS and AS combination. Then, a series of native promoters were selected for transcribing gadB2 under optimal RBS and AS combination. P dnaK , P dtsR , P odhI and P clgR expressed gadB2 and produced GABA as effectively as widely applied P tuf and P cspB promoters and more effectively than P sod promoter. However, each native promoter did not work as well as the synthetic strong promoter P tacM , which produced 20.2 ± 0.3 g/L GABA. Even with prolonged length and bicistronic architecture, the strength of P dnaK did not enhance. Finally, gadB2 and mutant gadB1 were co-expressed under the optimal promoter and RBS combination, thus converted Glu into GABA completely and improved GABA production to more than 25 g/L. This study provides useful promoters and RBS sequences for gene expression in C. glutamicum.

  5. Metformin reduces the endotoxin-induced down-regulation of apolipoprotein E gene expression in macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stavri, Simona; Trusca, Violeta G.; Simionescu, Maya

    The atheroprotective role of macrophage-derived apolipoprotein E (apoE) is well known. Our previous reports demonstrated that inflammatory stress down-regulates apoE expression in macrophages, aggravating atherogenesis. Metformin, extensively used as an anti-diabetic drug, has also anti-inflammatory properties, and thus confers vascular protection. In this study, we questioned whether metformin could have an effect on apoE expression in macrophages in normal conditions or under lipopolysaccharide (LPS)-induced stress. The results showed that metformin slightly increases the apoE expression only at high doses (5–10 mM). Low doses of metformin (1–3 mM) significantly reduce the LPS down-regulatory effect on apoE expression in macrophages. Our experiments demonstrated thatmore » LPS-induced NF-κB binds to the macrophage-specific distal regulatory element of apoE gene, namely to the multienhancer 2 (ME.2) and its 5′-deletion fragments. The NF-κB binding on ME.2 and apoE promoter has a down-regulatory effect. In addition, data revealed that metformin impairs NF-κB nuclear translocation, and thus, improves the apoE levels in macrophages under inflammatory stress. The positive effect of metformin in the inflammatory states, its clinical safety and low cost, make this drug a potential adjuvant in the therapeutic strategies for atherosclerosis. - Highlights: • High doses of metformin slightly increase apoE expression in macrophages. • Low doses of metformin up-regulate apoE gene in endotoxin-stressed macrophages. • Metformin reduces the negative effect of LPS on apoE expression by NF-κB inhibition.« less

  6. The activation of peroxisome proliferator-activated receptor γ is regulated by Krüppel-like transcription factors 6 & 9 under steatotic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escalona-Nandez, Ivonne; Guerrero-Escalera, Dafne; Estanes-Hernández, Alma

    2015-03-20

    Liver steatosis is characterised by lipid droplet deposition in hepatocytes that can leads to an inflammatory and fibrotic phenotype. Peroxisome proliferator-activated receptors (PPARs) play key roles in energetic homeostasis by regulating lipid metabolism in hepatic tissue. In adipose tissue PPARγ regulates the adipocyte differentiation by promoting the expression of lipid-associated genes. Within the liver PPARγ is up-regulated under steatotic conditions; however, which transcription factors participate in its expression is not completely understood. Krüppel-like transcription factors (KLFs) regulate various cellular mechanisms, such as cell proliferation and differentiation. KLFs are key components of adipogenesis by regulating the expression of PPARγ and othermore » proteins such as the C-terminal enhancer binding protein (C/EBP). Here, we demonstrate that the transcript levels of Klf6, Klf9 and Pparγ are increased in response to a steatotic insult in vitro. Chromatin immunoprecipitation (ChIp) experiments showed that klf6 and klf9 are actively recruited to the Pparγ promoter region under these conditions. Accordingly, the loss-of-function experiments reduced cytoplasmic triglyceride accumulation. Here, we demonstrated that KLF6 and KLF9 proteins directly regulate PPARγ expression under steatotic conditions. - Highlights: • Palmitic acid promotes expression of KlF6 & KLF9 in HepG2 cells. • KLF6 and KLF9 promote the expression of PPARγ in response to palmitic acid. • Binding of KLF6 and KLF9 to the PPARγ promoter promotes steatosis in HepG2 cells. • KLF6 and KLF9 loss-of function diminishes the steatosis in HepG2 cells.« less

  7. Hyperammonemia in cirrhosis induces transcriptional regulation of myostatin by an NF-κB–mediated mechanism

    PubMed Central

    Qiu, Jia; Thapaliya, Samjhana; Runkana, Ashok; Yang, Yu; Tsien, Cynthia; Mohan, Maradumane L.; Narayanan, Arvind; Eghtesad, Bijan; Mozdziak, Paul E.; McDonald, Christine; Stark, George R.; Welle, Stephen; Naga Prasad, Sathyamangla V.; Dasarathy, Srinivasan

    2013-01-01

    Loss of muscle mass, or sarcopenia, is nearly universal in cirrhosis and adversely affects patient outcome. The underlying cross-talk between the liver and skeletal muscle mediating sarcopenia is not well understood. Hyperammonemia is a consistent abnormality in cirrhosis due to impaired hepatic detoxification to urea. We observed elevated levels of ammonia in both plasma samples and skeletal muscle biopsies from cirrhotic patients compared with healthy controls. Furthermore, skeletal muscle from cirrhotics had increased expression of myostatin, a known inhibitor of skeletal muscle accretion and growth. In vivo studies in mice showed that hyperammonemia reduced muscle mass and strength and increased myostatin expression in wild-type compared with postdevelopmental myostatin knockout mice. We postulated that hyperammonemia is an underlying link between hepatic dysfunction in cirrhosis and skeletal muscle loss. Therefore, murine C2C12 myotubes were treated with ammonium acetate resulting in intracellular concentrations similar to those in cirrhotic muscle. In this system, we demonstrate that hyperammonemia stimulated myostatin expression in a NF-κB–dependent manner. This finding was also observed in primary murine muscle cell cultures. Hyperammonemia triggered activation of IκB kinase, NF-κB nuclear translocation, binding of the NF-κB p65 subunit to specific sites within the myostatin promoter, and stimulation of myostatin gene transcription. Pharmacologic inhibition or gene silencing of NF-κB abolished myostatin up-regulation under conditions of hyperammonemia. Our work provides unique insights into hyperammonemia-induced myostatin expression and suggests a mechanism by which sarcopenia develops in cirrhotic patients. PMID:24145431

  8. Hyperammonemia in cirrhosis induces transcriptional regulation of myostatin by an NF-κB-mediated mechanism.

    PubMed

    Qiu, Jia; Thapaliya, Samjhana; Runkana, Ashok; Yang, Yu; Tsien, Cynthia; Mohan, Maradumane L; Narayanan, Arvind; Eghtesad, Bijan; Mozdziak, Paul E; McDonald, Christine; Stark, George R; Welle, Stephen; Naga Prasad, Sathyamangla V; Dasarathy, Srinivasan

    2013-11-05

    Loss of muscle mass, or sarcopenia, is nearly universal in cirrhosis and adversely affects patient outcome. The underlying cross-talk between the liver and skeletal muscle mediating sarcopenia is not well understood. Hyperammonemia is a consistent abnormality in cirrhosis due to impaired hepatic detoxification to urea. We observed elevated levels of ammonia in both plasma samples and skeletal muscle biopsies from cirrhotic patients compared with healthy controls. Furthermore, skeletal muscle from cirrhotics had increased expression of myostatin, a known inhibitor of skeletal muscle accretion and growth. In vivo studies in mice showed that hyperammonemia reduced muscle mass and strength and increased myostatin expression in wild-type compared with postdevelopmental myostatin knockout mice. We postulated that hyperammonemia is an underlying link between hepatic dysfunction in cirrhosis and skeletal muscle loss. Therefore, murine C2C12 myotubes were treated with ammonium acetate resulting in intracellular concentrations similar to those in cirrhotic muscle. In this system, we demonstrate that hyperammonemia stimulated myostatin expression in a NF-κB-dependent manner. This finding was also observed in primary murine muscle cell cultures. Hyperammonemia triggered activation of IκB kinase, NF-κB nuclear translocation, binding of the NF-κB p65 subunit to specific sites within the myostatin promoter, and stimulation of myostatin gene transcription. Pharmacologic inhibition or gene silencing of NF-κB abolished myostatin up-regulation under conditions of hyperammonemia. Our work provides unique insights into hyperammonemia-induced myostatin expression and suggests a mechanism by which sarcopenia develops in cirrhotic patients.

  9. Analysis of DNA methylation of perennial ryegrass under drought using the methylation-sensitive amplification polymorphism (MSAP) technique.

    PubMed

    Tang, Xiao-Mei; Tao, Xiang; Wang, Yan; Ma, Dong-Wei; Li, Dan; Yang, Hong; Ma, Xin-Rong

    2014-12-01

    Perennial ryegrass (Lolium perenne), an excellent grass for forage and turf, is widespread in temperate regions. Drought is an important factor that limits its growth, distribution, and yield. DNA methylation affects gene expression and plays an important role in adaptation to adverse environments. In this study, the DNA methylation changes in perennial ryegrass under drought stress were assessed using methylation-sensitive amplified polymorphism (MSAP). After 15 days of drought stress treatment, the plant height was less than half of the control, and the leaves were smaller and darker. Genome-wide, a total of 652 CCGG sites were detected by MSAP. The total methylation level was 57.67 and 47.39 % in the control and drought treatment, respectively, indicating a decrease of 10.28 % due to drought exposure. Fifteen differentially displayed DNA fragments in MSAP profiles were cloned for sequencing analysis. The results showed that most of the genes involved in stress responses. The relative expression levels revealed that three demethylated fragments were up-regulated. The expression of a predicted retrotransposon increased significantly, changing from hypermethylation to non-methylation. Although the extent of methylation in two other genes decreased, the sites of methylation remained, and the expression increased only slightly. All of these results suggested that drought stress decreased the total DNA methylation level in perennial ryegrass and demethylation up-regulated related gene expressions and that the extent of methylation was negatively correlated with expression. Overall, the induced epigenetic changes in genome probably are an important regulatory mechanism for acclimating perennial ryegrass to drought and possibly other environmental stresses.

  10. CREB activity in dopamine D1 receptor expressing neurons regulates cocaine-induced behavioral effects

    PubMed Central

    Bilbao, Ainhoa; Rieker, Claus; Cannella, Nazzareno; Parlato, Rosanna; Golda, Slawomir; Piechota, Marcin; Korostynski, Michal; Engblom, David; Przewlocki, Ryszard; Schütz, Günther; Spanagel, Rainer; Parkitna, Jan R.

    2014-01-01

    It is suggested that striatal cAMP responsive element binding protein (CREB) regulates sensitivity to psychostimulants. To test the cell-specificity of this hypothesis we examined the effects of a dominant-negative CREB protein variant expressed in dopamine receptor D1 (D1R) neurons on cocaine-induced behaviors. A transgenic mouse strain was generated by pronuclear injection of a BAC-derived transgene harboring the A-CREB sequence under the control of the D1R gene promoter. Compared to wild-type, drug-naïve mutants showed moderate alterations in gene expression, especially a reduction in basal levels of activity-regulated transcripts such as Arc and Egr2. The behavioral responses to cocaine were elevated in mutant mice. Locomotor activity after acute treatment, psychomotor sensitization after intermittent drug injections and the conditioned locomotion after saline treatment were increased compared to wild-type littermates. Transgenic mice had significantly higher cocaine conditioned place preference, displayed normal extinction of the conditioned preference, but showed an augmented cocaine-seeking response following priming-induced reinstatement. This enhanced cocaine-seeking response was associated with increased levels of activity-regulated transcripts and prodynorphin. The primary reinforcing effects of cocaine were not altered in the mutant mice as they did not differ from wild-type in cocaine self-administration under a fixed ratio schedule at the training dose. Collectively, our data indicate that expression of a dominant-negative CREB variant exclusively in neurons expressing D1R is sufficient to recapitulate the previously reported behavioral phenotypes associated with virally expressed dominant-negative CREB. PMID:24966820

  11. Renal Effects and Underlying Molecular Mechanisms of Long-Term Salt Content Diets in Spontaneously Hypertensive Rats

    PubMed Central

    Berger, Rebeca Caldeira Machado; Vassallo, Paula Frizera; Crajoinas, Renato de Oliveira; Oliveira, Marilene Luzia; Martins, Flávia Letícia; Nogueira, Breno Valentim; Motta-Santos, Daisy; Araújo, Isabella Binotti; Forechi, Ludimila; Girardi, Adriana Castello Costa; Santos, Robson Augusto Souza; Mill, José Geraldo

    2015-01-01

    Several evidences have shown that salt excess is an important determinant of cardiovascular and renal derangement in hypertension. The present study aimed to investigate the renal effects of chronic high or low salt intake in the context of hypertension and to elucidate the molecular mechanisms underlying such effects. To this end, newly weaned male SHR were fed with diets only differing in NaCl content: normal salt (NS: 0.3%), low salt (LS: 0.03%), and high salt diet (HS: 3%) until 7 months of age. Analysis of renal function, morphology, and evaluation of the expression of the main molecular components involved in the renal handling of albumin, including podocyte slit-diaphragm proteins and proximal tubule endocytic receptors were performed. The relationship between diets and the balance of the renal angiotensin-converting enzyme (ACE) and ACE2 enzymes was also examined. HS produced glomerular hypertrophy and decreased ACE2 and nephrin expressions, loss of morphological integrity of the podocyte processes, and increased proteinuria, characterized by loss of albumin and high molecular weight proteins. Conversely, severe hypertension was attenuated and renal dysfunction was prevented by LS since proteinuria was much lower than in the NS SHRs. This was associated with a decrease in kidney ACE/ACE2 protein and activity ratio and increased cubilin renal expression. Taken together, these results suggest that LS attenuates hypertension progression in SHRs and preserves renal function. The mechanisms partially explaining these findings include modulation of the intrarenal ACE/ACE2 balance and the increased cubilin expression. Importantly, HS worsens hypertensive kidney injury and decreases the expression nephrin, a key component of the slit diaphragm. PMID:26495970

  12. Osteopontin inhibits osteoblast responsiveness through the down-regulation of focal adhesion kinase mediated by the induction of low-molecular weight protein tyrosine phosphatase.

    PubMed

    Kusuyama, Joji; Bandow, Kenjiro; Ohnishi, Tomokazu; Hisadome, Mitsuhiro; Shima, Kaori; Semba, Ichiro; Matsuguchi, Tetsuya

    2017-05-15

    Osteopontin (OPN) is an osteogenic marker protein. Osteoblast functions are affected by inflammatory cytokines and pathological conditions. OPN is highly expressed in bone lesions such as those in rheumatoid arthritis. However, local regulatory effects of OPN on osteoblasts remain ambiguous. Here we examined how OPN influences osteoblast responses to mechanical stress and growth factors. Expression of NO synthase 1 ( Nos1 ) and Nos2 was increased by low-intensity pulsed ultrasound (LIPUS) in MC3T3-E1 cells and primary osteoblasts. The increase of Nos1/2 expression was abrogated by both exogenous OPN overexpression and recombinant OPN treatment, whereas it was promoted by OPN-specific siRNA and OPN antibody. Moreover, LIPUS-induced phosphorylation of focal adhesion kinase (FAK), a crucial regulator of mechanoresponses, was down-regulated by OPN treatments. OPN also attenuated hepatocyte growth factor-induced vitamin D receptor ( Vdr ) expression and platelet-derived growth factor-induced cell mobility through the repression of FAK activity. Of note, the expression of low-molecular weight protein tyrosine phosphatase (LMW-PTP), a FAK phosphatase, was increased in both OPN-treated and differentiated osteoblasts. CD44 was a specific OPN receptor for LWW-PTP induction. Consistently, the suppressive influence of OPN on osteoblast responsiveness was abrogated by LMW-PTP knockdown. Taken together, these results reveal novel functions of OPN in osteoblast physiology. © 2017 Kusuyama et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Response of three broccoli cultivars to salt stress, in relation to water status and expression of two leaf aquaporins.

    PubMed

    Muries, Beatriz; Carvajal, Micaela; Martínez-Ballesta, María Del Carmen

    2013-05-01

    The aim of this study was to compare differences in water relations in the leaves of three broccoli cultivars and differential induction of the expression of PIP2 aquaporin isoforms under salt stress. Although broccoli is known to be moderately tolerant to salinity, scarce information exists about the involvement of leaf aquaporins in its adaptation to salinity. Thus, leaf water relations, leaf cell hydraulic conductivity (Lpc), gas exchange parameters and the PIP2 expression pattern were determined for short- (15 h) and long- (15 days) term NaCl treatments. In the long term, the lower half-time of water exchange in the cells of cv. Naxos, compared with Parthenon and Chronos, and its increased PIP2 abundance may have contributed to its Lpc maintenance. This unmodified Lpc in cv. Naxos under prolonged salinity may have diluted NaCl in the leaves, as suggested by lower Na(+) concentrations in the leaf sap. By contrast, the increase in the half-time of water exchange and the lower PIP2 abundance in cvs. Chronos and Parthenon would have contributed to the reduced Lpc values. In cv. Parthenon, there were no differences between the ε values of control and salt-stressed plants; in consequence, cell turgor was enhanced. Also, the increases in BoPIP2;2 and BoPIP2;3 expression in cv. Chronos for the short-term NaCl treatment suggest that these isoforms are involved in osmotic regulation as downstream factors in this cultivar, in fact, in the short-term, Chronos had a significantly reduced osmotic potential and higher PIP2 isoforms expression.

  14. Characterization of Pseudomonas putida Genes Responsive to Nutrient Limitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syn, Chris K.; Magnuson, Jon K.; Kingsley, Mark T.

    2004-06-01

    The low bioavailability of nutrients and oxygen in the soil environment has hampered successful expression of biodegradation/biocontrol genes that are driven by promoters highly active during routine laboratory conditions of high nutrient- and oxygen-availability. Hence, in the present study, expression of the gus-tagged genes in 12 Tn5-gus mutants of the soil microbe Pseudomonas putida PNL-MK25 was examined under various conditions chosen to mimic the soil environment: low carbon, phosphate, nitrate, or oxygen, and in the rhizosphere. Based on their expression profiles, three nutrient-responsive mutant (NRM) strains, NRM5, NRM7, and NRM17, were selected for identification of the tagged genes. In themore » mutant strain NRM5, expression of the glutamate dehydrogenase (gdhA) gene was increased between 4.9- to 26.4-fold under various low nutrient conditions. In NRM7, expression of the novel NADPH:quinone oxidoreductase-like (nql) gene was consistently amongst the highest and was synergistically upregulated by low nutrient and anoxic conditions. The cyoD gene in NRM17, which encodes the fourth subunit of the cytochrome o ubiquinol oxidase complex, had decreased expression in low nutrient conditions but its absolute expression levels was still amongst the highest. Additionally, it was independent of oxygen availability, in contrast to that in E. coli.« less

  15. Satellite RNA Increases DNA Damage and Accelerates Tumor Formation in Mouse Models of Pancreatic Cancer.

    PubMed

    Kishikawa, Takahiro; Otsuka, Motoyuki; Suzuki, Tatsunori; Seimiya, Takahiro; Sekiba, Kazuma; Ishibashi, Rei; Tanaka, Eri; Ohno, Motoko; Yamagami, Mari; Koike, Kazuhiko

    2018-05-10

    Highly repetitive tandem arrays such as satellite sequences in the centromeric and pericentromeric regions of chromosomes, which were previously considered to be silent, are actively transcribed in various biological processes, including cancers. In the pancreas, this aberrant expression occurs even in Kras-mutated pancreatic intraepithelial neoplasia (PanIN) tissues, which are precancerous lesions. To determine the biological role of satellite RNAs in carcinogenesis in vivo , we constructed mouse major satellite (MajSAT) RNA-expressing transgenic mice. However, these transgenic mice did not show spontaneous malignant tumor formation under normal breeding. Importantly, however, DNA damage was increased in pancreatic tissues induced by caerulein treatment or high-fat diet, which may be due to impaired nuclear localization of Y-Box Binding Protein 1 (YBX1), a component of the DNA damage repair machinery. In addition, when crossed with pancreas-specific Kras-mutant mice, MajSAT RNA expression resulted in an earlier increase in PanIN formation. These results suggest that aberrant MajSAT RNA expression accelerates oncogenesis by increasing the probability of a second driver mutation, thus accelerating cells to exit from the breakthrough phase to the expansion phase. Implications: Aberrant expression of satellite RNAs accelerates oncogenesis through a mechanism involving increased DNA damage. Mol Cancer Res; 1-8. ©2018 AACR. ©2018 American Association for Cancer Research.

  16. Tryptophan depletion under conditions that imitate insulin resistance enhances fatty acid oxidation and induces endothelial dysfunction through reactive oxygen species-dependent and independent pathways.

    PubMed

    Eleftheriadis, Theodoros; Pissas, Georgios; Sounidaki, Maria; Antoniadi, Georgia; Rountas, Christos; Liakopoulos, Vassilios; Stefanidis, Loannis

    2017-04-01

    In atherosclerosis-associated pathologic entities characterized by malnutrition and inflammation, L-tryptophan (TRP) levels are low. Insulin resistance is an independent cardiovascular risk factor and induces endothelial dysfunction by increasing fatty acid oxidation. It is also associated with inflammation and low TRP levels. Low TRP levels have been related to worse cardiovascular outcome. This study evaluated the effect of TRP depletion on endothelial dysfunction under conditions that imitate insulin resistance. Fatty acid oxidation, harmful pathways due to increased fatty acid oxidation, and endothelial dysfunction were assessed in primary human aortic endothelial cells cultured under normal glucose, low insulin conditions in the presence or absence of TRP. TRP depletion activated general control non-derepressible 2 kinase and inhibited aryl hydrocarbon receptor. It increased fatty acid oxidation by increasing expression and activity of carnitine palmitoyltransferase 1. Elevated fatty acid oxidation increased the formation of reactive oxygen species (ROS) triggering the polyol and hexosamine pathways, and enhancing protein kinase C activity and methylglyoxal production. TRP absence inhibited nitric oxide synthase activity in a ROS-dependent way, whereas it increased the expression of ICAM-1 and VCAM-1 in a ROS independent and possibly p53-dependent manner. Thus, TRP depletion, an amino acid whose low levels have been related to worse cardiovascular outcome and to inflammatory atherosclerosis-associated pathologic entities, under conditions that imitate insulin resistance enhances fatty acid oxidation and induces endothelial dysfunction through ROS-dependent and independent pathways. These findings may offer new insights at the molecular mechanisms involved in accelerated atherosclerosis that frequently accompanies malnutrition and inflammation.

  17. Molecular cloning and expression analysis of KIN10 and cold-acclimation related genes in wild banana 'Huanxi' (Musa itinerans).

    PubMed

    Liu, Weihua; Cheng, Chunzhen; Lai, Gongti; Lin, Yuling; Lai, Zhongxiong

    2015-01-01

    Banana cultivars may experience chilling or freezing injury in some of their cultivated regions, where wild banana can still grow very well. The clarification of the cold-resistant mechanism of wild banana is vital for cold-resistant banana breeding. In this study, the central stress integrator gene KIN10 and some cold-acclimation related genes (HOS1 and ICE1s) from the cold-resistant wild banana 'Huanxi' (Musa itinerans) were cloned and their expression patterns under different temperature treatments were analyzed. Thirteen full-length cDNA transcripts including 6 KIN10s, 1 HOS1 and 6 ICE1s were successfully cloned. Quantitative real-time PCR (qRT-PCR) results showed that all these genes had the highest expression levels at the critical temperature of banana (13 °C). Under chilling temperature (4 °C), the expression level of KIN10 reduced significantly but the expression of HOS1 was still higher than that at the optimal temperature (28 °C, control). Both KIN10 and HOS1 showed the lowest expression levels at 0 °C, the expression level of ICE1, however, was higher than control. As sucrose plays role in plant cold-acclimation and in regulation of KIN10 and HOS1 bioactivities, the sucrose contents of wild banana under different temperatures were detected. Results showed that the sucrose content increased as temperature lowered. Our result suggested that KIN10 may participate in cold stress response via regulating sucrose biosynthesis, which is helpful in regulating cold acclimation pathway in wild banana.

  18. Hybrid promoters directed tBid gene expression to breast cancer cells by transcriptional targeting.

    PubMed

    Farokhimanesh, Samila; Rahbarizadeh, Fatemeh; Rasaee, Mohammad J; Kamali, Abbas; Mashkani, Baratali

    2010-01-01

    Developing cancer gene therapy constructs based on transcriptional targeting of genes to cancer cells is a new and promising modality for treatment of cancer. Introducing truncated Bid (tBid), a recently known member of the Bcl-2 family, eradicates cancer cells efficiently. For transcriptional targeting of tBid, two dual-specificity promoters, combining cancer specific core promoters and response modules, were designed. These two core promoter modules contained cancer specific promoters of MUC1 and Survivin genes accompanied by hypoxia-responsive elements and estrogen responsive elements (microenvironment condition of breast cancer cells) which were employed to achieve a higher and more specific level of tBid expression in breast cancer cells. Correlation of the level of tBid expression in normal and cancer cell lines with promoter activity was measured by RT-PCR after treatment with hypoxia and estrogen. The level of tBid expression under control of new hybrid promoters was compared with its expression under control of cytomegalovirus (CMV) promoter as a control. Our data revealed that the level of tBid expression in breast cancer cells were nearly 11 times more than normal cells because of the cancer specific promoters, although tBid expression under control of CMV promoter was almost the same in normal and cancer cell lines. Increased apoptosis was detected in the transfected breast cancer cell lines by the Caspase-3 activity assay. The application of these promoters may prove to have the advantage of tumor selective gene therapy in breast cancer cells and low-potential toxicity for normal tissues.

  19. Molecular Cloning and Characterization of Violaxanthin De-Epoxidase (CsVDE) in Cucumber

    PubMed Central

    Huang, Hongyu; Kong, Lingcui; Niu, Dandan; Sui, Xiaolei; Zhang, Zhenxian

    2013-01-01

    Violaxanthin de-epoxidase (VDE) plays an important role in protecting the photosynthetic apparatus from photo-damage by dissipating excessively absorbed light energy as heat, via the conversion of violaxanthin (V) to intermediate product antheraxanthin (A) and final product zeaxanthin (Z) under high light stress. We have cloned a violaxanthin de-epoxidase gene (CsVDE) from cucumber. The amino acid sequence of CsVDE has high homology with VDEs in other plants. RT-PCR analysis and histochemical staining show that CsVDE is expressed in all green tissues in cucumber and Arabidopsis. Using GFP fusion protein and immunogold labeling methods, we show that CsVDE is mainly localized in chloroplasts in cucumber. Under high light stress, relative expression of CsVDE and the de-epoxidation ratio (A+Z)/(V+A+Z) is increased rapidly, and abundance of the gold particles was also increased. Furthermore, CsVDE is quickly induced by cold and drought stress, reaching maximum levels at the 2nd hour and the 9th day, respectively. The ratio of (A+Z)/(V+A+Z) and non-photochemical quenching (NPQ) is reduced in transgenic Arabidopsis down-regulated by the antisense fragment of CsVDE, compared to wild type (WT) Arabidopsis under high light stress. This indicates decreased functionality of the xanthophyll cycle and increased sensitivity to photoinhibition of photosystem II (PSII) in transgenic Arabidopsis under high light stress. PMID:23717606

  20. Deriving meaning from others’ emotions: attribution, appraisal, and the use of emotions as social information

    PubMed Central

    van Doorn, Evert A.; van Kleef, Gerben A.; van der Pligt, Joop

    2015-01-01

    Emotional expressions constitute a rich source of information. Integrating theorizing on attribution, appraisal processes, and the use of emotions as social information, we examined how emotional expressions influence attributions of agency and responsibility under conditions of ambiguity. Three vignette studies involving different scenarios indicate that participants used information about others’ emotional expressions to make sense of ambiguous social situations. Expressions of regret fueled inferences that the expresser was responsible for an adverse situation, whereas expressions of anger fueled inferences that someone else was responsible. Also, expressions of anger were interpreted as a sign of injustice, and expressions of disappointment increased prosocial intentions (i.e., to help the expresser). The results show that emotional expressions can help people understand ambiguous social situations by informing attributions that correspond with each emotion’s associated appraisal structures. The findings advance understanding of the ways in which emotional expressions help individuals understand and coordinate social life. PMID:26284001

  1. Identification of potential biophysical and molecular signalling mechanisms underlying hyaluronic acid enhancement of cartilage formation

    PubMed Central

    Responte, Donald J.; Natoli, Roman M.; Athanasiou, Kyriacos A.

    2012-01-01

    This study determined the effects of exogenous hyaluronic acid (HA) on the biomechanical and biochemical properties of self-assembled bovine chondrocytes, and investigated biophysical and genetic mechanisms underlying these effects. The effects of HA commencement time, concentration, application duration and molecular weight were examined using histology, biomechanics and biochemistry. Additionally, the effects of HA application on sulphated glycosaminoglycan (GAG) retention were assessed. To investigate the influence of HA on gene expression, microarray analysis was conducted. HA treatment of developing neocartilage increased compressive stiffness onefold and increased sulphated GAG content by 35 per cent. These effects were dependent on HA molecular weight, concentration and application commencement time. Additionally, applying HA increased sulphated GAG retention within self-assembled neotissue. HA administration also upregulated 503 genes, including multiple genes associated with TGF-β1 signalling. Increased sulphated GAG retention indicated that HA could enhance compressive stiffness by increasing the osmotic pressure that negatively charged GAGs create. The gene expression data demonstrate that HA treatment differentially regulates genes related to TGF-β1 signalling, revealing a potential mechanism for altering matrix composition. These results illustrate the potential use of HA to improve cartilage regeneration efforts and better understand cartilage development. PMID:22809846

  2. Exogenous abscisic acid increases antioxidant enzymes and related gene expression in pepper (Capsicum annuum) leaves subjected to chilling stress.

    PubMed

    Guo, W L; Chen, R G; Gong, Z H; Yin, Y X; Ahmed, S S; He, Y M

    2012-11-28

    To elucidate how physiological and biochemical mechanisms of chilling stress are regulated by abscisic acid (ABA) pretreatment, pepper variety (cv. 'P70') seedlings were pretreated with 0.57 mM ABA for 72 h and then subjected to chilling stress at 10°/6°C (day/night). Chilling stress caused severe necrotic lesions on the leaves and increased malondialdehyde and H(2)O(2) levels. Activities of monodehydroascorbate reductase (DHAR), dehydroascorbate reductase, glutathione reductase, guaiacol peroxidase, ascorbate peroxidase, ascorbate, and glutathione increased due to chilling stress during the 72 h, while superoxide dismutase and catalase activities decreased during 24 h, suggesting that chilling stress activates the AsA-GSH cycle under catalase deactivation in pepper leaves. ABA pretreatment induced significant increases in the above-mentioned enzyme activities and progressive decreases in ascorbate and glutathione levels. On the other hand, ABA-pretreated seedlings under chilling stress increased superoxide dismutase and guaiacol peroxidase activities and lowered concentrations of other antioxidants compared with untreated chilling-stressed plants. These seedlings showed concomitant decreases in foliage damage symptoms, and levels of malondialdehyde and H(2)O(2). Induction of Mn-SOD and POD was observed in chilling-stressed plants treated with ABA. The expression of DHAR1 and DHAR2 was altered by chilling stress, but it was higher in the presence than in the absence of ABA at 24 h. Overall, the results indicate that exogenous application of ABA increases tolerance of plants to chilling-induced oxidative damage, mainly by enhancing superoxide dismutase and guaiacol peroxidase activities and related gene expression.

  3. Vesicular glutamate transporters play a role in neuronal differentiation of cultured SVZ-derived neural precursor cells

    PubMed Central

    Sánchez-Mendoza, Eduardo H.; Bellver-Landete, Victor; Arce, Carmen; Doeppner, Thorsten R.; Hermann, Dirk M.

    2017-01-01

    The role of glutamate in the regulation of neurogenesis is well-established, but the role of vesicular glutamate transporters (VGLUTs) and excitatory amino acid transporters (EAATs) in controlling adult neurogenesis is unknown. Here we investigated the implication of VGLUTs in the differentiation of subventricular zone (SVZ)-derived neural precursor cells (NPCs). Our results show that NPCs express VGLUT1-3 and EAAT1-3 both at the mRNA and protein level. Their expression increases during differentiation closely associated with the expression of marker genes. In expression analyses we show that VGLUT1 and VGLUT2 are preferentially expressed by cultured SVZ-derived doublecortin+ neuroblasts, while VGLUT3 is found on GFAP+ glial cells. In cultured NPCs, inhibition of VGLUT by Evans Blue increased the mRNA level of neuronal markers doublecortin, B3T and MAP2, elevated the number of NPCs expressing doublecortin protein and promoted the number of cells with morphological appearance of branched neurons, suggesting that VGLUT function prevents neuronal differentiation of NPCs. This survival- and differentiation-promoting effect of Evans blue was corroborated by increased AKT phosphorylation and reduced MAPK phosphorylation. Thus, under physiological conditions, VGLUT1-3 inhibition, and thus decreased glutamate exocytosis, may promote neuronal differentiation of NPCs. PMID:28493916

  4. Epigallocatechin-3-gallate prevents lipid peroxidation and enhances antioxidant defense system via modulating hepatic nuclear transcription factors in heat-stressed quails.

    PubMed

    Sahin, K; Orhan, C; Tuzcu, M; Ali, S; Sahin, N; Hayirli, A

    2010-10-01

    Epigallocatechin-3-gallate (EGCG), a polyphenol derived from green tea, exerts antioxidant effects. Oxidative stress is one of the consequences of heat stress (HS), which also depresses performance in poultry. This experiment was conducted to elucidate the action mode of EGCG in alleviation of oxidative stress in heat-stressed quail (Coturnix coturnix japonica). A total of 180 five-week-old female Japanese quails were reared either at 22°C for 24 h/d (thermoneutral, TN) or 34°C for 8 h/d (HS) for 12 wk. Birds in both environments were randomly fed 1 of 3 diets: basal diet and basal diet added with 200 or 400 mg of EGCG/kg of diet. Each of the 2×3 factorially arranged groups was replicated in 10 cages, each containing 3 quails. Performance variables [feed intake (FI) and egg production (EP)], oxidative stress biomarkers [malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px)] and hepatic transcription factors [nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2)] were analyzed using 2-way ANOVA. Exposure to HS caused reductions in FI by 9.7% and EP by 14.4%, increased hepatic MDA level by 84.8%, and decreased hepatic SOD, CAT, and GSH-Px activities by 25.8, 52.3, and 45.5%, respectively (P<0.0001 for all). The hepatic NF-κB expression was greater (156 vs. 82%) and Nrf2 expression was lower (84 vs. 118%) for quails reared under the HS environment than for those reared under the TN environment (P<0.0001 for both). In response to increasing supplemental EGCG level, there were linear increases in FI from 29.6 to 30.9 g/d and EP from 84.3 to 90.1%/d, linear decreases in hepatic MDA level from 2.82 to 1.72 nmol/g and Nrf2 expression from 77.5 to 123.3%, and linear increases in hepatic SOD (146.4 to 182.2), CAT (36.2 to 47.1), and GSH-Px (13.5 to 18.5) activities (U/mg of protein) and NF-κB expression (149.7 to 87.3%) (P<0.0001 for all). Two-way treatment interactions revealed that the degree of restorations in all response variables was more notable under the HS environment than under the TN environment as supplemental EGCG level was increased. Moreover, levels of oxidative biomarkers were strongly correlated with expressions of hepatic nuclear transcription factors. In conclusion, supplemental EGCG alleviates oxidative stress through modulating the hepatic nuclear transcription factors in heat-stressed quails.

  5. HIF-1α activates hypoxia-induced BCL-9 expression in human colorectal cancer cells

    PubMed Central

    Chen, Tian-Rui; Wei, Hai-feng; Song, Dian-Wen; Liu, Tie-Long; Yang, Xing-Hai; Fu, Chuan-Gang; Hu, Zhi-qian; Zhou, Wang; Yan, Wang-Jun; Xiao, Jian-Ru

    2017-01-01

    B-cell CLL/lymphoma 9 protein (BCL-9), a multi-functional co-factor in Wnt signaling, induced carcinogenesis as well as promoting tumor progression, metastasis and chemo-resistance in colorectal cancer (CRC). However, the mechanisms for increased BCL-9 expression in CRC were not well understood. Here, we report that hypoxia, a hallmark of solid tumors, induced BCL-9 mRNA expression in human CRC cells. Analysis of BCL-9 promoter revealed two functional hypoxia-responsive elements (HRE-B and HRE-C) that can be specifically bound with and be transactivated by hypoxia inducible factors (HIF) -1α but not HIF-2α. Consistently, ectopic expression of HIF-1α but not HIF-2α transcriptionally induced BCL-9 expression levels in cells. Knockdown of endogenous HIF-1α but not HIF-2α by siRNA largely abolished the induction of HIF by hypoxia. Furthermore, there was a strong association of HIF-1α expression with BCL-9 expression in human CRC specimens. In summary, results from this study demonstrated that hypoxia induced BCL-9 expression in human CRC cells mainly through HIF-1α, which could be an important underlying mechanism for increased BCL-9 expression in CRC. PMID:27121066

  6. Expression of multi-drug resistance-related genes MDR3 and MRP as prognostic factors in clinical liver cancer patients.

    PubMed

    Yu, Zheng; Peng, Sun; Hong-Ming, Pan; Kai-Feng, Wang

    2012-01-01

    To investigate the expression of multi-drug resistance-related genes, MDR3 and MRP, in clinical specimens of primary liver cancer and their potential as prognostic factors in liver cancer patients. A total of 26 patients with primary liver cancer were enrolled. The expression of MDR3 and MRP genes was measured by real-time PCR and the association between gene expression and the prognosis of patients was analyzed by the Kaplan-Meier method and COX regression model. This study showed that increases in MDR3 gene expression were identified in cholangiocellular carcinoma, cirrhosis and HBsAg-positive patients, while MRP expression increased in hepatocellular carcinoma, non-cirrhosis and HBsAg-negative patients. Moreover, conjugated bilirubin and total bile acid in the serum were significantly reduced in patients with high MRP expression compared to patients with low expression. The overall survival tended to be longer in patients with high MDR3 and MRP expression compared to the control group. MRP might be an independent prognostic factor in patients with liver cancer by COX regression analysis. MDR3 and MRP may play important roles in liver cancer patients as prognostic factors and their underlying mechanisms in liver cancer are worthy of further investigation.

  7. Stable SET knockdown in breast cell carcinoma inhibits cell migration and invasion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jie; Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen; Yang, Xi-fei

    2014-10-10

    Highlights: • We employed RNA interference to knockdown SET expression in breast cancer cells. • Knockdown of SET expression inhibits cell proliferation, migration and invasion. • Knockdown of SET expression increases the activity and expression of PP2A. • Knockdown of SET expression decreases the expression of MMP-9. - Abstract: Breast cancer is the most malignant tumor for women, however, the mechanisms underlying this devastating disease remain unclear. SET is an endogenous inhibitor of protein phosphatase 2A (PP2A) and involved in many physiological and pathological processes. SET could promote the occurrence of tumor through inhibiting PP2A. In this study, we exploremore » the role of SET in the migration and invasion of breast cancer cells MDA-MB-231 and ZR-75-30. The stable suppression of SET expression through lentivirus-mediated RNA interference (RNAi) was shown to inhibit the growth, migration and invasion of breast cancer cells. Knockdown of SET increases the activity and expression of PP2Ac and decrease the expression of matrix metalloproteinase 9 (MMP-9). These data demonstrate that SET may be involved in the pathogenic processes of breast cancer, indicating that SET can serve as a potential therapeutic target for the treatment of breast cancer.« less

  8. Transcriptome analysis demonstrates that long noncoding RNA is involved in the hypoxic response in Larimichthys crocea.

    PubMed

    Liu, Wei; Liu, Xiaoxu; Wu, Changwen; Jiang, Lihua

    2018-06-15

    The large yellow croaker (Larimichthys crocea) has low hypoxia tolerance compared with other fish species, and the mRNA levels of hypoxia-inducible factor (HIF)-1α in its brain do not change markedly under hypoxic conditions. In this study, we investigated noncoding transcription in the hypoxic response mechanism of L. crocea. We generated a catalog of long noncoding RNAs (lncRNAs) from the brain of L. crocea individuals under hypoxic stress, investigated lncRNA expression patterns, and analyzed the HIF signaling pathway by RNA sequencing. Prolyl hydroxylase domain 2 (PHD2) expression significantly increased after 6 and 12 h of hypoxia, and a lncRNA (Linc_06633.1) was found in the upstream, antisense region of PHD2. Linc_06633.1 may be an important regulator that promotes PDH2 expression under hypoxia in L. crocea, and we constructed a regulatory profile of L. crocea under hypoxic conditions. To the best of our knowledge, it is the first study that has been conducted on hypoxia signaling pathway regulation by lncRNAs in L. crocea and elucidates the role played by lncRNAs in the regulation of the hypoxia stress response in teleost fish.

  9. [Expression of AMPA receptors and related protein in immobilization stressed rats and effect of Xiaoyaosan].

    PubMed

    Yue, Guang-Xin; Wang, Zhu-Feng; Zhang, Qiao-Li; Zhao, Xin; Yue, Li-Feng; Ding, Jie; Chen, Jia-Xu

    2008-05-01

    To observe protein expression changes of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor and related regulatory protein in the hippocampus and amygdala in chronic immobilization stressed rat and Xiaoyaosan's regulatory effect. Rats were tied 3 h per day to establish immobilization stress condition and treatment with Xiaoyaosan. After 7 days and 21 days stress, the protein expression of AMPA receptor subunit (GluR2/3), N-ethylmaleimide sensitive factor (NSF) and protein interacting with C-kinase 1 (PICK1) in hippocampus and amygdala were detected by using Western blot techniques. The expression of GluR2/3, NSF in dentate gyrus (DG) and amygdala were markedly attenuated (P < 0.05) and PICK1 in CA1 region were significantly increased (P < 0.05) in 7 d immobilization stressed rats while 7 days xiaoyaosan treatment showed an effective regulatory result to PICK1's changes. Under 21 days immobilization stressed condition, the expression of GluR2/3, NSF in CA1 region showed an increasing trend, and GluR2/3 showed a markedly increase (P < 0.01), but showed an significantly decreased trend in amygdala, Xiaoyaosan showed an effective result to such changes above (P < 0.05). The expression of PICK1 showed increasing trend in amygdala and xiaoyaosan could lower its expression (P < 0.05). There are different trends of the expression of AMPA receptor in repeat short-term stress versus chronic immobilization stress, and in hippocampal CA1 region versus amygdala. Xiaoyaosan has better regulation effect on the expression of AMPA receptors in the condition of chronic immobilization stress than those of repeat shortterm stress.

  10. Transcriptional profile of breast muscle in heat stressed layers is similar to that of broiler chickens at control temperature.

    PubMed

    Zahoor, Imran; de Koning, Dirk-Jan; Hocking, Paul M

    2017-09-20

    In recent years, the commercial importance of changes in muscle function of broiler chickens and of the corresponding effects on meat quality has increased. Furthermore, broilers are more sensitive to heat stress during transport and at high ambient temperatures than smaller egg-laying chickens. We hypothesised that heat stress would amplify muscle damage and expression of genes that are involved in such changes and, thus, lead to the identification of pathways and networks associated with broiler muscle and meat quality traits. Broiler and layer chickens were exposed to control or high ambient temperatures to characterise differences in gene expression between the two genotypes and the two environments. Whole-genome expression studies in breast muscles of broiler and layer chickens were conducted before and after heat stress; 2213 differentially-expressed genes were detected based on a significant (P < 0.05) genotype × treatment interaction. This gene set was analysed with the BioLayout Express 3D and Ingenuity Pathway Analysis software and relevant biological pathways and networks were identified. Genes involved in functions related to inflammatory reactions, cell death, oxidative stress and tissue damage were upregulated in control broilers compared with control and heat-stressed layers. Expression of these genes was further increased in heat-stressed broilers. Differences in gene expression between broiler and layer chickens under control and heat stress conditions suggest that damage of breast muscles in broilers at normal ambient temperatures is similar to that in heat-stressed layers and is amplified when broilers are exposed to heat stress. The patterns of gene expression of the two genotypes under heat stress were almost the polar opposite of each other, which is consistent with the conclusion that broiler chickens were not able to cope with heat stress by dissipating their body heat. The differentially expressed gene networks and pathways were consistent with the pathological changes that are observed in the breast muscle of heat-stressed broilers.

  11. pH-Signaling Transcription Factor AopacC Regulates Ochratoxin A Biosynthesis in Aspergillus ochraceus.

    PubMed

    Wang, Yan; Liu, Fei; Wang, Liuqing; Wang, Qi; Selvaraj, Jonathan Nimal; Zhao, Yueju; Wang, Yun; Xing, Fuguo; Liu, Yang

    2018-05-02

    In Aspergillus and Penicillium species, an essential pH-response transcription factor pacC is involved in growth, pathogenicity, and toxigenicity. To investigate the connection between ochratoxin A (OTA) biosynthesis and ambient pH, the AopacC in Aspergillus ochraceus was functionally characterized using a loss-of-function mutant. The mycelium growth was inhibited under pH 4.5 and 10.0, while the sporulation increased under alkaline condition. A reduction of mycelium growth and an elevation of sporulation was observed in Δ AopacC mutant. Compared to neutral condition, OTA contents were respectively reduced by 71.6 and 79.8% under acidic and alkaline conditions. The expression of AopacC increased with the elevated pH, and deleting AopacC dramatically decreased OTA production and biosynthetic genes Aopks expression. Additionally, the Δ AopacC mutant exhibited attenuated infection ability toward pear fruits. These results suggest that AopacC is an alkaline-induced regulator responsible for growth and OTA biosynthesis in A. ochraceus and this regulatory mechanism might be pH-dependent.

  12. Molecular and functional evaluation of a novel HIF inhibitor, benzopyranyl 1,2,3-triazole compound

    PubMed Central

    Park, Kyunghye; Lee, Hye Eun; Lee, Sun Hee; Lee, Doohyun; Lee, Taeho; Lee, You Mie

    2017-01-01

    Hypoxia occurs in a variety of pathological events, including the formation of solid tumors. Hypoxia-inducible factor (HIF)-1α is stabilized under hypoxic conditions and is a key molecule in tumor growth and angiogenesis. Seeking to develop novel cancer therapeutics, we investigated small molecules from our in-house chemical libraries to target HIF-1α. We employed a dual-luciferase assay that uses a luciferase (Luc) reporter vector harboring five copies of hypoxia-responsive element (HRE) in the promoter. Under hypoxic conditions that increased Luc reporter activity by four-fold, we screened 144 different compounds, nine of which showed 30–50% inhibition of hypoxia-induced Luc reporter activity. Among these, “Compound 12, a benzopyranyl 1,2,3-triazole” was the most efficient at inhibiting the expression of HIF-1α under hypoxic conditions, reducing its expression by 80%. Under hypoxic conditions, the half maximal IC50 of the compound was 24 nM in HEK-293 human embryonic kidney cells, and 2 nM in A549 human lung carcinoma cells. Under hypoxic conditions, Compound 12 increased hydroxylated HIF-1α levels and HIF-1α ubiquitination, and also dose-dependently decreased HIF-1α target gene expression as well as vascular endothelial growth factor (VEGF) secretion. Furthermore, this compound inhibited VEGF-induced in vitro angiogenesis in human umbilical vein endothelial cells (HUVECs), and in vivo, it inhibited chick chorioallantoic membrane angiogenesis. In allogaft assays, cotreatment with Compound 12 and gefitinib significantly inhibited tumor growth and angiogenesis. Compound 12 can be a novel inhibitor of HIF-1α by accelerating its degradation, and shows much potential as an anti-cancer agent through its ability to suppress tumor growth and angiogenesis. PMID:27999195

  13. Hypoxia-induced Bmi1 promotes renal tubular epithelial cell–mesenchymal transition and renal fibrosis via PI3K/Akt signal

    PubMed Central

    Du, Rui; Xia, Lin; Ning, Xiaoxuan; Liu, Limin; Sun, Wenjuan; Huang, Chen; Wang, Hanmin; Sun, Shiren

    2014-01-01

    Hypoxia is an important microenvironmental factor in the development of renal fibrosis; however, the underlying mechanisms are not well elucidated. Here we show that hypoxia induces Bmi1 mRNA and protein expression in human tubular epithelial cells. We further demonstrate that Bmi1 expression might be directly regulated by hypoxia-inducible factor-1a (HIF-1a) under low oxygen. Moreover, chromatin immunoprecipitation and reporter gene assay studies reveal cooperative transactivation of Bmi1 by HIF-1α and Twist. Enforced Bmi1 expression induces epithelial–mesenchymal transition (EMT), whereas silencing endogenous Bmi-1 expression reverses hypoxia-induced EMT. Up-regulation of Bmi1 leads to stabilization of Snail via modulation of PI3K/Akt signaling, whereas ablation of PI3K/Akt signaling partially rescues the phenotype of Bmi1-overexpressing cells, indicating that PI3K/Akt signaling might be a major mediator of Bmi1-induced EMT. In a rat model of obstructive nephropathy, Bmi1 expression increases in a time-dependent manner. Furthermore, we demonstrate that increased levels of Bmi1, correlated with HIF-1α and Twist, are associated with patients with chronic kidney disease. We provide in vitro and in vivo evidence that activation of HIF-1a/Twist-Bmi1 signaling in renal epithelial cells is associated with the development of chronic renal disease and may promote fibrogenesis via modulation of PI3K/Akt/Snail signaling by facilitating EMT. PMID:25009285

  14. Advanced glycation end products increase expression of S100A8 and A9 via RAGE-MAPK in rat dental pulp cells.

    PubMed

    Nakajima, Y; Inagaki, Y; Kido, J; Nagata, T

    2015-04-01

    Advanced glycation end products (AGE) are involved in the progression of diabetic complications. Although our previous reports show that AGE increased dental pulp calcification, AGE accumulation is also associated with inflammation. This study examined AGE effect on the expression of inflammation factors using rat dental pulp tissues and cell cultures. Receptor for AGE (RAGE), S100A8, S100A9, and interleukin (IL)-1β were selected as inflammation parameters. Rat dental pulp cells were cultured and treated with AGE, and the effects were determined by real-time PCR. An anti-RAGE antibody or MAPK pathway inhibitors (PD98059, SB203580, and SP60012) were used to investigate AGE signaling pathway. The mRNA levels of RAGE, S100A8, S100A9, and IL-1β were higher in diabetic pulp tissues. AGE increased mRNA expressions of S100A8, S100A9, and IL-1β in cultured dental pulp cells. In the presence of anti-RAGE antibody, AGE did not increase in S100A8 or S100A9 expressions. The AGE-induced increases in S100A8 and S100A9 were inhibited by PD98059 and SB203580, respectively. Advanced glycation end products increased mRNA expression of S100A8, S100A9, and IL-1β under diabetic pulp conditions, and AGE-induced increases in S100A8 and S100A9 expressions may be associated with the RAGE-MAPK signaling pathway. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Transgenic Expression of Osteoactivin/gpnmb Enhances Bone Formation In Vivo and Osteoprogenitor Differentiation Ex Vivo.

    PubMed

    Frara, Nagat; Abdelmagid, Samir M; Sondag, Gregory R; Moussa, Fouad M; Yingling, Vanessa R; Owen, Thomas A; Popoff, Steven N; Barbe, Mary F; Safadi, Fayez F

    2016-01-01

    Initial identification of osteoactivin (OA)/glycoprotein non-melanoma clone B (gpnmb) was demonstrated in an osteopetrotic rat model, where OA expression was increased threefold in mutant bones, compared to normal. OA mRNA and protein expression increase during active bone regeneration post-fracture, and primary rat osteoblasts show increased OA expression during differentiation in vitro. To further examine OA/gpnmb as an osteoinductive agent, we characterized the skeletal phenotype of transgenic mouse overexpressing OA/gpnmb under the CMV-promoter (OA-Tg). Western blot analysis showed increased OA/gpnmb in OA-Tg osteoblasts, compared to wild-type (WT). In OA-Tg mouse femurs versus WT littermates, micro-CT analysis showed increased trabecular bone volume and thickness, and cortical bone thickness; histomorphometry showed increased osteoblast numbers, bone formation and mineral apposition rates in OA-Tg mice; and biomechanical testing showed higher peak moment and stiffness. Given that OA/gpnmb is also over-expressed in osteoclasts in OA-Tg mice, we evaluated bone resorption by ELISA and histomorphometry, and observed decreased serum CTX-1 and RANK-L, and decreased osteoclast numbers in OA-Tg, compared to WT mice, indicating decreased bone remodeling in OA-Tg mice. The proliferation rate of OA-Tg osteoblasts in vitro was higher, compared to WT, as was alkaline phosphatase staining and activity, the latter indicating enhanced differentiation of OA-Tg osteoprogenitors. Quantitative RT-PCR analysis showed increased TGF-β1 and TGF-β receptors I and II expression in OA-Tg osteoblasts, compared to WT. Together, these data suggest that OA overexpression has an osteoinductive effect on bone mass in vivo and stimulates osteoprogenitor differentiation ex vivo. © 2015 Wiley Periodicals, Inc.

  16. Diet-induced non-alcoholic fatty liver disease affects expression of major cytochrome P450 genes in a mouse model.

    PubMed

    Chiba, Tsuyoshi; Noji, Keiko; Shinozaki, Shohei; Suzuki, Sachina; Umegaki, Keizo; Shimokado, Kentaro

    2016-12-01

    Non-alcoholic fatty liver disease (NAFLD) is associated with impaired liver function, and resveratrol could suppress NAFLD progression. This study examined the effects of NAFLD on the expression of major cytochrome P450 (CYP) subtypes in the liver and whether the expression could be attenuated by resveratrol. C57BL/6 mice (male, 10 weeks of age) were fed a high-fat and high-sucrose (HFHS) diet to induce NAFLD. Major Cyp subtype mRNA expression in the liver was measured by real-time RT-PCR. Body and liver weights at 4 and 12 weeks were significantly higher in mice fed the HFHS diet compared with control. The HFHS diet significantly increased the accumulation of cholesterol and triglycerides at 12 weeks. Under this condition, the HFHS diet increased the expression of Cyp1a2 and decreased that of Cyp3a11 at 1 week and thereafter. On the other hand, Cyp1a1, 2b10 and 2c29 mRNA expression levels in the liver were significantly increased at 12 weeks only. Resveratrol (0.05% (w/w) in diet) slightly suppressed lipid accumulation in the liver, but failed to recover impaired Cyp gene expression levels in NAFLD. Drug metabolism may be impaired in NAFLD, and each Cyp subtype is regulated in a different manner. © 2016 Royal Pharmaceutical Society.

  17. Increased Biomass, Seed Yield and Stress Tolerance Is Conferred in Arabidopsis by a Novel Enzyme from the Resurrection Grass Sporobolus stapfianus That Glycosylates the Strigolactone Analogue GR24

    PubMed Central

    Islam, Sharmin; Griffiths, Cara A.; Blomstedt, Cecilia K.; Le, Tuan-Ngoc; Gaff, Donald F.; Hamill, John D.; Neale, Alan D.

    2013-01-01

    Isolation of gene transcripts from desiccated leaf tissues of the resurrection grass, Sporobolus stapfianus, resulted in the identification of a gene, SDG8i, encoding a Group 1 glycosyltransferase (UGT). Here, we examine the effects of introducing this gene, under control of the CaMV35S promoter, into the model plant Arabidopsis thaliana. Results show that Arabidopsis plants constitutively over-expressing SDG8i exhibit enhanced growth, reduced senescence, cold tolerance and a substantial improvement in protoplasmic drought tolerance. We hypothesise that expression of SDG8i in Arabidopsis negatively affects the bioactivity of metabolite/s that mediate/s environmentally-induced repression of cell division and expansion, both during normal development and in response to stress. The phenotype of transgenic plants over-expressing SDG8i suggests modulation in activities of both growth- and stress-related hormones. Plants overexpressing the UGT show evidence of elevated auxin levels, with the enzyme acting downstream of ABA to reduce drought-induced senescence. Analysis of the in vitro activity of the UGT recombinant protein product demonstrates that SDG8i can glycosylate the synthetic strigolactone analogue GR24, evoking a link with strigolactone-related processes in vivo. The large improvements observed in survival of transgenic Arabidopsis plants under cold-, salt- and drought-stress, as well as the substantial increases in growth rate and seed yield under non-stress conditions, indicates that overexpression of SDG8i in crop plants may provide a novel means of increasing plant productivity. PMID:24224034

  18. Copper and ectopic expression of the Arabidopsis transport protein COPT1 alter iron homeostasis in rice (Oryza sativa L.).

    PubMed

    Andrés-Bordería, Amparo; Andrés, Fernando; Garcia-Molina, Antoni; Perea-García, Ana; Domingo, Concha; Puig, Sergi; Peñarrubia, Lola

    2017-09-01

    Copper deficiency and excess differentially affect iron homeostasis in rice and overexpression of the Arabidopsis high-affinity copper transporter COPT1 slightly increases endogenous iron concentration in rice grains. Higher plants have developed sophisticated mechanisms to efficiently acquire and use micronutrients such as copper and iron. However, the molecular mechanisms underlying the interaction between both metals remain poorly understood. In the present work, we study the effects produced on iron homeostasis by a wide range of copper concentrations in the growth media and by altered copper transport in Oryza sativa plants. Gene expression profiles in rice seedlings grown under copper excess show an altered expression of genes involved in iron homeostasis compared to standard control conditions. Thus, ferritin OsFER2 and ferredoxin OsFd1 mRNAs are down-regulated whereas the transcriptional iron regulator OsIRO2 and the nicotianamine synthase OsNAS2 mRNAs rise under copper excess. As expected, the expression of OsCOPT1, which encodes a high-affinity copper transport protein, as well as other copper-deficiency markers are down-regulated by copper. Furthermore, we show that Arabidopsis COPT1 overexpression (C1 OE ) in rice causes root shortening in high copper conditions and under iron deficiency. C1 OE rice plants modify the expression of the putative iron-sensing factors OsHRZ1 and OsHRZ2 and enhance the expression of OsIRO2 under copper excess, which suggests a role of copper transport in iron signaling. Importantly, the C1 OE rice plants grown on soil contain higher endogenous iron concentration than wild-type plants in both brown and white grains. Collectively, these results highlight the effects of rice copper status on iron homeostasis, which should be considered to obtain crops with optimized nutrient concentrations in edible parts.

  19. Molecular characteristics of the HSP70 gene and its differential expression in female and male golden apple snails (Pomacea canaliculata) under temperature stimulation.

    PubMed

    Song, Hong-Mei; Mu, Xi-Dong; Gu, Dang-En; Luo, Du; Yang, Ye-Xin; Xu, Meng; Luo, Jian-Ren; Zhang, Jia-En; Hu, Yin-Chang

    2014-07-01

    Heat-shock protein 70 (HSP70) is one of the most important heat-shock proteins that helps organisms to modulate stress response via over-expression. The HSP70 gene from Pomacea canaliculata was cloned using the RACE approach; the gene is 2,767 bp in length and contains an open reading frame of 1,932 bp, which is encoded by a polypeptide of 643 amino acids. BLAST analysis showed that the predicted amino acid sequence of the P. canaliculata HSP70 gene shared a relatively high similarity with that of other known eukaryotic species that display conserved HSP characteristics. The phylogeny demonstrated a separate clustering of the apple snail HSP70 with other constitutive members from other mollusk species. Quantitative real-time RT-PCR was used to detect the differential expression of HSP70 in both sexes of P. canaliculata at different temperature conditions. These results showed that HSP70 transcript levels decreased slightly under cold shock and increased significantly under heat-shock conditions in both sexes compared to normal temperatures (26 °C). Under cold-shock treatment, the sex effect was not significant. With heat treatment, HSP70 expression could be induced at 36 °C in both females and males, and it peaked at 42 and 39 °C in females and males, respectively. In addition, a clear time-dependent HSP70 expression pattern of the apple snail exposed to the same high temperature (36 °C) was observed at different time points. The maximal induction of HSP70 expression appeared at 12 and 48 h in males and females after heat shock, respectively. The maximal induction in females was significantly higher compared to males under heat stimulus. Taken together, these results strongly suggested that males were more susceptible to heat than females and provided useful molecular information for the ecological adaptability of P. canaliculata against extreme environmental stress.

  20. Identification of Id4 as a regulator of BRCA1 expression by using a ribozyme-library-based inverse genomics approach

    PubMed Central

    Beger, Carmela; Pierce, Leigh N.; Krüger, Martin; Marcusson, Eric G.; Robbins, Joan M.; Welcsh, Piri; Welch, Peter J.; Welte, Karl; King, Mary-Claire; Barber, Jack R.; Wong-Staal, Flossie

    2001-01-01

    Expression of the breast and ovarian cancer susceptibility gene BRCA1 is down-regulated in sporadic breast and ovarian cancer cases. Therefore, the identification of genes involved in the regulation of BRCA1 expression might lead to new insights into the pathogenesis and treatment of these tumors. In the present study, an “inverse genomics” approach based on a randomized ribozyme gene library was applied to identify cellular genes regulating BRCA1 expression. A ribozyme gene library with randomized target recognition sequences was introduced into human ovarian cancer-derived cells stably expressing a selectable marker [enhanced green fluorescence protein (EGFP)] under the control of the BRCA1 promoter. Cells in which BRCA1 expression was upregulated by particular ribozymes were selected through their concomitant increase in EGFP expression. The cellular target gene of one ribozyme was identified to be the dominant negative transcriptional regulator Id4. Modulation of Id4 expression resulted in inversely regulated expression of BRCA1. In addition, increase in Id4 expression was associated with the ability of cells to exhibit anchorage-independent growth, demonstrating the biological relevance of this gene. Our data suggest that Id4 is a crucial gene regulating BRCA1 expression and might therefore be important for the BRCA1 regulatory pathway involved in the pathogenesis of sporadic breast and ovarian cancer. PMID:11136250

Top